
Moving Object Reconstruction on Background Mosaics of

Dynamic Video Sequences

Shen Hui

October 10, 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48627205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement

It goes without saying that the process of doing the research and writing a thesis is really a

collaborative effort. Therefore I would like to thank everyone who has made this thesis possible,

bearable, or both.

I have been lucky to join the CHIME\DIVA lab, which allowed me to work with so many brilliant

researchers. First and most importantly, I would like to show my gratitude to my supervisor

Dr.Mohan Kankanhalli. He continuously gives me the most valuable guidance, helpful comments,

and insightful criticism, which are absolutely necessary in my academic life. Besides, he also

encourages me a lot when I met difficulties or feel depression during my research. I believe

what he has given me is the most that an supervisor can give his students. I am also very

grateful to Dr.Sengamedu Hanumantharao Srinivasan for his remarkable directions and advices.

He has helped me continuously, even after he left the DIVA group during my research period. He

has given me a lot of helpful advice and contributed tremendously to my work, especially in the

beginning part. Moreover, I want to show my thankfulness to Dr.Yan Weiqi, for his work in mosaic

and shaky removal, which enlightened my idea, also for his valuable discussion and suggestions.

My examiners, Leow Wee Kheng and Ng Teck Khim, gave me quite valuable suggestions and

comments to help me amend my thesis. I want to show my thankfulness to them too. The rest of

the DIVA students past and present were no less critical to my research. In alphabetical order,

I want to acknowledge Abhinav Singh, Achanta Shri Venkata Radhakrishna, Chen Lei, Chitra

Lalita Madhwacharyula, Ji Yi, Meera Gajanan Nayak, Mohammad Awrangjeb, Pradeep Kumar

Atrey, Stephen Bissol, Wang Jun, and Zhang Sheng. Their selfless efforts have significantly aided

my work. I also would like to thank School of Computing at the National University of Singapore

1

for providing the research facilities that permitted me to complete this thesis.

Finally, I want to express my deepest love and gratitude that I feel for my parents. They

instilled in me the love of learning from my childhood and always demanded that I live up to

my ability. During this research period, they have been supporting me and encouraging me from

the very beginning, which makes me feel confident to overcome any difficulty, and feel free to do

exactly what I like to do, not only at present time, but also in the future. I owe everything that

I have done and I will do to them.

2

Contents

1 Introduction 9

1.1 Background . 9

1.2 Motivation . 11

1.3 Problem statement . 12

1.4 Overview . 13

2 Related Works 14

2.1 Related works about static mosaic . 14

2.2 Related works about image registration . 25

2.3 Related works about moving object detection . 26

3 Algorithm 33

3.1 Static Mosaic Construction . 34

3.1.1 Video Frame Separation . 35

3.1.2 Corresponding Points Establishment . 35

3.1.3 Forward Homographies Computation . 38

3.1.4 Bounding Box Computation . 40

3

3.1.5 Backward Homographies Computation . 41

3.1.6 Mosaic Image Integration . 42

3.2 Coarse Frame Registration . 48

3.2.1 Reference Matrix Computation . 48

3.2.2 Frame Warping and Registration . 50

3.3 Moving Objects Detection . 51

3.3.1 Difference Picture Computation . 52

3.3.2 Optical Flow Computation . 57

3.3.3 Moving Blocks Detection . 63

3.3.4 Moving Blocks Refinement . 64

3.4 Moving Objects Reconstruction . 67

3.4.1 Moving Objects Separation . 67

3.4.2 Static Background Construction . 69

3.4.3 Pixel-Based Reconstruction . 69

4 Experimental Results 74

5 Conclusion 84

4

List of Tables

2.1 A Taxonomy of plenoptic functions. 15

3.1 Summarization of Two Color Blending Algorithms. 45

4.1 Quantitative Evaluation of Examples . 81

5

List of Figures

3.1 Corresponding Points for Static Scene . 37

3.2 Corresponding Points for Dynamic Scene . 38

3.3 Two Input Images for Static Mosaic Construction. 46

3.4 Mosaic for Building without Edge Blending Technique. 47

3.5 Mosaic for the Entire Scene without Edge Blending Technique. 47

3.6 Mosaic for Building with Edge Blending Technique. 47

3.7 The Relationship among Matrices in Mosaic Construction 49

3.8 Two Input Images in Static Scene . 53

3.9 The Difference Picture of Static Scene . 53

3.10 Two Input Images in Dynamic Scene . 54

3.11 The Difference Picture of Dynamic Scene . 54

3.12 Two Input Images with both Camera Motion and Object Motion 55

3.13 The Difference Picture before Image Registration 55

3.14 Two Input Images after Image Registration . 56

3.15 The Difference Picture after Image Registration 56

3.16 The change of image intensity equation constrains the optical flow velocity 60

6

3.17 The Aperture Problem. 60

3.18 The Motion Constancy Property in Successive Frames. 66

4.1 Selected Frames from Walking Video Sequence. 75

4.2 Mosaic Image after Static Mosaic Construction. 75

4.3 Coarse Frame Registration. 76

4.4 Moving Blocks Detection. 77

4.5 Pixel Compensation in Moving Objects. 78

4.6 Moving Objects Reconstruction on the Static Background Mosaic. 79

4.7 Shake Removal. 80

4.8 Two Input Images. 82

4.9 Static Mosaic Image. 83

7

Abstract

Traditional video consists of frames along the time axis, so we need many frames to represent

a complete scene. If we change frame-based video to be scene-based, i.e., make a mosaic from the

frame sequence, we can get a more efficient representation of the scene without any redundant

information.

However, a mosaic deals only with the static scene information and has difficulties in displaying

moving objects if the scene is dynamic. It would be more useful if we can retain motion informa-

tion, that is the dynamic information, which is one of the main advantages of video. Therefore,

here, we have developed a novel technique to reconstruct moving objects on the static background

mosaic.

Our approach is based on the separation of static and dynamic information in a video sequence.

Then we build the mosaic from the background information and reconstruct the moving objects

using dynamic information. The layer separation is again based on mosaic so that our algorithm

is simple, integrated, as well as efficient. Moreover, this technique has been tested for real videos

and achieved pleasing result.

Actually, in our work, we try to convert the video from its traditional format, which is inefficient

and hard to manipulate, to a novel representation, which is more efficient, easy to access and

control, without any information loss. Hence, our work can be viewed as a starting point to a

technique which can completely decompose video into some descriptors and reassemble them in a

new format according to users’ need or application requirements.

8

Chapter 1

Introduction

This thesis attempts to improve the traditional mosaicing technique so that it can be applied

on digital video with moving objects instead of only on static image sequence. The two main

improvements that we want to explore are: separate the moving layer from the static layer in the

video input and combine the static as well as the dynamic data together.

1.1 Background

Digital video is a rich source of information. It provides spatial information as well as temporal

information so that viewers can observe the dynamics of a scene. However, video sequence also

has large amount of information redundancy because there is a large overlap of information across

consecutive frames. Therefore, researchers have developed many different methods to represent a

digital video more efficiently and make the access and control of digital video more convenient.

For example, we can encode the video in the MPEG format using motion compensation so that it

requires less storage space. We can also find “key frame” with techniques such as “user attention

9

model” or “action retrieval” to make video indexing so that users can search and access the most

interesting periods quickly and efficiently.

Among so many different techniques, mosaicing has been an active area of research field for a

long time. One of the most important usage of mosaic is for panorama. Traditional video is based

on frame, so we need many frames to represent a complete scene, even if actually those frames

have large overlapped part. However, if we change frame-based video to be scene-based, i.e.,

we “stitch” the frames of the same scene together and remove the overlapped part, we can get a

large panoramic image which can represent the original scene without any redundant information.

Thus, mosaic can be used to gain more efficient storage, representation, and transmission of digital

video data.

For example, we can add some “frame-to-scene” conversion in video encoding process as a novel

compression method. In this situation, the unit of storage is scene rather than frame, which has

no redundant information. When we want to reconstruct the original video, we can do the reverse

conversion.

Another usage of mosaic is to enhance resolution. Some lens can help to get panoramic image,

without the help of mosaic techniques, but the mosaic can do more. Take for an example, in a

video we want to show a large museum to viewers. Of course we can take a complete view of the

whole building, but due to the resolution restriction of the video camera, the scene will be very

small and difficult to observe. Alternatively, we can capture the building from doors to windows,

or from bottom to top, to make every frame larger and clearer, but in this way, there will be large

overlapped part between every two adjacent frames because of the camera moving, and it’s not

10

so easy for the viewers to know how this building exactly looks like. In this situation, utilizing

mosaics is a good method to perform image-based rendering, which can show each part of the

scene clearly as well as it allows for the gain of high resolution.

1.2 Motivation

Till now, traditional mosaic techniques are all for static image sequences. The scene is static

and the final mosaic is also static. However, one of the most important properties of video is that

there are various kinds of motion in it, not only the camera motion, but also the object motion.

Therefore, we argue that a complete mosaic should also include the moving parts based on the

original video.

Concerning the static mosaic we talked before, we can get rid of redundant information and view

the complete scene with high resolution. Then, what else advantages can we gain if we succeed

in building dynamic mosaic? Besides those mentioned before, another important advantage only

of dynamic mosaic is that we can get clear knowledge of how the objects move in the scene.

For example, suppose we have a video clip of football game. Traditionally, the cameramen will

trace the football and capture the players who are close to the ball. In this situation, if there is

little information about background, it’s difficult to tell in which direction the football is moving,

from left to right, or from middle court to gate. If we can make a static mosaic of the whole court,

and place the “moving” football on the mosaic, then viewers can see clearly how the football is

moving, because the background is complete and static.

Actually, there do exist some techniques which can deal with video input with moving objects,

11

but what they have done is only to extract moving objects from background or to display the

moving trajectory, not to reconstruct the entire moving objects. Therefore, the dynamic video

mosaic we want to build here, is the one which not only can represent the background completely,

but also can reconstruct the moving object completely to show its trajectory as well as the object

itself.

If we are able to do this, there are many kinds of application which can use this techniques. For

example, we can make panoramic video, which is the video with complete and static background.

Also, we can deal with camera shaking and remove it totally. The idea behind this application is

that we build the mosaic for the original video first, in which the camera shaking between frames

disappears naturally, then we reconstruct the frames from the sprite in a stable manner. After

these two steps, we can get perfect video under a real “stable” virtual camera. Conversely, we

can also add shakes to static video to add excitement.

1.3 Problem statement

Strictly speaking, the problem can be stated as following. Given a video sequence input,

we should be able to detect the foreground moving objects and separate them from the static

background. After we get these two different “layers” of the scene data, we apply traditional

mosaic technique only on static part to build a large panoramic background, which represents the

scene completely and concisely. The most important improvement is done with moving part. We

want to place the detected moving part on their corresponding location in panoramic background

so that viewers can have a clear view of how the objects is really moving with respect to the

background as well as other moving objects.

12

The ideal system should be fully automatic. The input is video with moving camera and moving

object, of lower resolution. After a series of automatic processing, the output is still a video (that’s

why it is called “dynamic mosaic”), with a static “virtual camera” and the same moving objects,

having a higher resolution.

1.4 Overview

The rest of the thesis is organized as follows.

In Chapter 2, we review the past work of the mosaicing technique. It includes those which

depend more on hardware and those which depends more on software. The static image mosaic

falls into the category of software, which is the foundation of our work.

Chapter 3 describes the algorithm we used in the system. Actually, the procedure can be

divided into three steps: preprocessing, layer separation, and object registration. The technique

used in preprocessing is almost the same as what is used in static image mosaic, so we will focus

on the next two steps.

Chapter 4 presents the result of dynamic mosaic. The experiment demonstrates how the algo-

rithm can be applied to some practical video and achieve pleasing result. The sample video we

used in our experiment is recorded by ourselves, because our work is done on video with special

properties, i.e., moving camera and moving object. Therefore, we have to pick the video of this

kind to demonstrate the algorithm clearer and better.

Chapter 5 gives the conclusion of our work. What we did is just the first step towards dynamic

mosaic. We summarize our contributions and discuss some problems for future research.

13

Chapter 2

Related Works

We will explore three areas of previous research in this section: static mosaics, image registration

and moving object detection, which form the basis of our work. There are many works in all of

these areas, but we will only include latest works which are most relevant.

2.1 Related works about static mosaic

A mosaicing technique renders a complete image from a set of small images or a series of

video frames, which is tightly related to image-based rendering. According to [9], image-based

rending techniques can be classified into several categories according to the data dimension and

viewing space. The one with almost complete information is the 7D plenoptic function, which was

defined as the intensity of light rays passing through the camera center at every location, at every

possible viewing angle, for every wavelength and at any time. By ignoring time and wavelength,

we generate the 5D plenoptic function. The Lumigraph and Lightfield systems presented a clever

4D parameterization of the plenoptic function if the scene can be constrained to a bounding box.

14

Finally, if the viewpoint is fixed and only the viewing directions and camera zoom can be altered,

the plenoptic function simply becomes a 2D panorama.

Table 2.1 describes the above classification clearly.

Dimension Viewing Space Name Reference

7 free plenoptic function [39]

5 free plenoptic function [21]

4 inside a 3D box Lightfield/Lumigraph [36], [29]

3 inside a 2D circle concentric mosaics [9]

2 at a fixed point panorama [35], [38]

Table 2.1. A Taxonomy of plenoptic functions.

The main area of our work is the 2D panorama, but we still explore some techniques on higher

dimension.

Panorama mosaic as a field of research came into existence at the beginning of 1990s. A number

of techniques have been developed in this area, which can be roughly divided into two categories.

The first category mostly depends on the hardware. One way is to record an image onto a long

firm strip using a panoramic camera to directly capture a cylindrical panoramic image directly

[16]. Another way is to use a lens with a very large field of view such as a fisheye lens. In [7], such

kind of camera is used to capture a distortion-free 360 view of the scene so that we can capture

it all and view what we want.

The hardware method of mosaic is easy to use, and it requires little additional work. However,

it is less flexible and not so convenient to apply on all kinds of applications, especially when people

15

want some unusual effects of mosaic, such as shake artifact removal or moving object detection.

The second category depends more on software, and this category is more tightly related to our

work, so we will focus our attention on this kind of method. In order to describe the techniques

more clearly, we again divide the “software” method into two parts.

The first part is about the techniques which totally deal with static scenes.

Before we build the mosaic, first we have to get the relative position of two or more images. In

[18], Anandan et al give the traditional way of motion estimation, the beginning step of which is

actually also the traditional way to get the corresponding points in two images. The method is

the minimization of sum-of-squared-differences (SSD) of the Laplacian filtered intensity images.

This algorithm is done separately at each level, starting from a user-specified coarse level and

refining the result down to the finest level (usually it is the resolution of the original image). This

method can get the result as accurate as possible because it iterates several times within each

level, but it requires very large amount of calculation and needs long time.

The hierarchical techniques used in [18] is actually the pyramid based image encoding and

decoding scheme, and the details can be found in [31]. We outline the coding scheme as follows.

For the original image, we get the predicted image using a unimodal Gaussian-like (or related

trimodal) weighting function centered on each pixel. The predicted value for each pixel is first

obtained by convolving this weighting function with the original image. The result is a low-pass

filtered image which is subtracted from the original. The subtraction result is the prediction error.

Rather than encode the original image, we encode the prediction error and the filtered image,

which results in a net data compression, because (a) the prediction error is largely decorrelated,

16

so may be represented pixel by pixel with many fewer bits than the original, and (b) the filtered

image is low-pass filtered, so it may be encoded at a reduced sample rate. This process can be

iterated and results in a tapering pyramid data structure. This image representation is referred as

“Laplacian-pyramid code”. This is a classical image coding scheme with many attractive features.

First, we can choose the parameters of the encoding and quantizing scheme by ourselves so that

we can substantially reduce the entropy in the representation and simultaneously stay within the

distortion limits imposed by the sensitivity of the human visual system. Second, this encoding

scheme requires relatively simple computations, which are local and maybe performed in parallel,

so that we can perform them in real time applications. Third, in this representation, image features

of various size are enhanced and are directly available for various image processing. Therefore,

we can use this scheme to downsample and upsample images to perform our task if necessary.

In [40], Bhosle et al describe a new method for automatic image mosaic. The novel part of

their method is to use geometric hashing in the image alignment step to reduce time complexity.

The algorithm adopts geometric properties such as angle formed by vectors and length between

points as parameters to build hash table between two images, and compare these values in the

hash table to get possible match. This method takes much less time in finding transformation

between two images, which is better than [18], but the method used in mosaic building step is

not so satisfactory. They deal with overlapping area by taking part from only one of the images.

Although they said there is no effect of blurring in the mosaic, the edges of every image is actually

visible.

In [23], Gonzalez et al provide a method of mosaic construction which can deal with looping path

problem. Traditional mosaic construction only aligns consecutive frames, so the accumulation of

17

small alignment errors will occur. Especially, when the image path returns to a previous position

(looping path), a significant mismatch between non-consecutive frames will result, which is called

“looping path problem”. The proposed solution in this paper is to distribute the accumulated

error of positions of all images in the mosaic, and the premise of this solution is that the relative

position of a neighbor pair of images can be modified slightly without introducing a visible loss

in quality. However, the number of the equations this algorithm has to solve is the same as the

number of images. Therefore, if there are large number of images in the mosaic, this algorithm

will become very complex and time-consuming.

In [32], Jones et al propose a mosaic method which can work in compressed domain. Usually,

methods for building mosaic work in pixel domain, but this one can create mosaic directly from

an MPEG video sequence. The most important work they do is to compute the camera motion

directly from the motion vector encoded in MPEG stream, which enables mosaic building more

simply and quickly. In the frame integration step, they use a combined method of replacement

and average, but it still doesn’t work well in dealing with moving objects. The moving objects

are removed in replacement method or its position becomes transparent in average method.

In [38], Szeliski et al give some detailed description of panoramas building, including cylindri-

cal and spherical panoramas, perspective (8-parameter) panoramas and rotational (3-parameter)

panoramas. The novel part of their work is to close the gap in a panorama. One method is to

estimate the focal length, because once an initial set of focal length is available, we can improve

all the motion parameters estimation so as to improve the image registration process. The other

method is to register the same image at both the beginning and the end of the sequence. Also,

they use almost the same idea as [23], which distributes the misregistration error evenly across

18

the whole sequence. The more important in “gap closing” technique here is that they update the

focal length and estimated parameters after a complete panorama is constructed, then the process

is repeated. Using this iterative process, more accurate and robust results can be obtained.

[11] is an improved version of [38], and the most important improvement is in the method

to reduce accumulated registration errors. In this paper, besides the original methods such as

estimating the focal length and iterative update, some new algorithms are proposed, for example,

global alignment and local alignment. The global alignment is actually the block adjustment

applied to the whole sequence of images, which reduces accumulated error by simultaneously

minimizing the misregistration between all overlapping pairs of images. The local alignment

is actually the deghosting techniques which warps each image based on the results of pairwise

local image registrations. By combining these two alignment, the quality of image mosaics is

significantly improved.

Besides planar 2D panorama techniques, we also explore some algorithms dealing with mosaics

of higher dimensions.

In [9], Shum et al describe the concept of concentric mosaics. Concentric mosaics are a set of

manifold mosaics constructed from slit images taken by cameras rotating on concentric circles. In

this algorithm, they constrain camera motion to planar concentric circles and create concentric

mosaics using slit images taken at different locations along the circle. The input image rays are

indexed naturally in 3 parameters: radius, rotation angle and vertical elevation. The advantage

here is that, since this mosaicing technique is in 3D space, it provides a much richer user experience

by allowing the user to move freely in a circular region and observe significant parallax and lighting

19

changes. However, there are two disadvantages here. The first one is that the camera motion is

constrained in a circle. Although this makes capture and construction easy and convenient, it is

not so flexible and free. The second one is that rendering with concentric mosaics needs depth

correction otherwise vertical distortions will be caused.

In [30], Lhuillier et al describe another concept of relief mosaics. Relief mosaics are collections

of registered images that extend traditional mosaics by supporting motion parallax. Traditional

mosaicing algorithms always assume that the input images are free from motion parallax, i.e., the

camera translation is small or the scene is shallow or near planar. If there is a deep scene, special

equipment and calibration may be required to fix the viewing position to sufficient accuracy. How-

ever, this algorithm assembles images into a composite image using view morphing to cancel their

relative motion parallax on the registered overlapping sections, and a heuristic default mapping

on the non-overlapping sections to provide visual continuity with the registered ones. This can

be viewed as a ’2.5D’ plenoptic function, intermediate between 2D panorama and 3D concentric

mosaics in [9]. The main advantage here is that this algorithm allows motion parallax with less

amount of data and no camera geometry information is necessary.

The second part in first area is about the techniques which can deal with scene with moving

objects although the result mosaic is still almost static.

In [28], the concept of “dynamic mosaic” is first proposed. The cause to propose this concept

is that the issue of how to develop a complete representation of scenes based on mosaics, so that

the sequence can be fully recovered from the mosaic image, has not been adequately treated.

The information not captured by the traditional static mosaic techniques, which is described in

20

the first part, and needing additional representation are the changes in the scene with respect to

the background. That’s why we need to create dynamic mosaic, which is a sequence of evolving

mosaic images, where the content of each new mosaic image is updated with the most current

information from the most recent frame. According to the authors, the complete dynamic mosaic

representation of the video sequence consists of the first dynamic mosaic and the incremental

alignment parameters and the incremental residuals, which represents the changes. Besides this

novel idea of “dynamic mosaic”, they also give several kinds of mosaic applications, including

mosaic based video compression, mosaic based visualization and mosaic based video enhancement.

Therefore, this is a classic paper in mosaicing techniquesis. However, the “dynamic mosaic” here

is still different from our idea “mosaic with moving object”. Their “dynamic mosaic” is to update

the mosaic image with the most current frame, so that they can keep the information of each

new frame, but they do nothing on layer separation or object detection and the system does not

understand the scene completely.

In [41], Bhosle et al present a “static” method to deal with moving objects. The key element

here is to do background extraction before doing feature extraction so that the mosaic is built

only from background region. Using this algorithm, the moving object will be removed in the final

mosaic, so the result is static background only. The criterion they use to extract the background

is as follows:

1. It is situated behind the rest of the scene.

2. Appearance of the scene remains constant over the time; the only changes in the grey levels

are due to global motion.

21

3. Background pixels occupy the main part of the image.

The alignment method here is almost the same as [40], which seems to be a quick and efficient

method in alignment. However, although this paper can deal with video input with moving

objects, it simply removes them and only the static information is retained. Therefore, except the

first process step to extract moving part, the technique itself is still static mosaic.

In [14], Davis provides another algorithm to deal with moving objects in the scene. There are

three primary contributions here. The first is a registration method that remains unbiased by

movement–the Mellin transform is extended to register images related by a projective transform.

The second is an efficient method for finding a globally consistent registration of all images. Lastly,

a new method of compositing images is presented. Blurred areas due to moving objects are avoided

by segmenting the mosaic into disjoint regions and sampling pixels in each region from a single

source image. The key element here related to moving objects is to divide the final mosaic into

a set of regions and the pixels in each region are sampled from a single “correct” source image.

Therefore, it’s important to find a best path to divide regions so that any moving object falls in

a single region, which can avoid object truncation. Using this algorithm, the moving objects will

display once in the final mosaic, and the result is almost static background with static foreground.

In [26], Irani et al give the concept of frame-based video data and scene-based video data. They

presents an approach for efficient access, use, and manipulation of video data based on mosaic

representation. The video data are first transformed from their sequential and redundant frame-

based representation, in which the information about the scene is distributed over many frames, to

an explicit and compact scene-based representations, to which each frame can be directly related.

22

According to the authors, the scene representation is composed of three components:

1. Extended spatial information, which is represented in the form of panoramic mosaic image.

2. Extended temporal information, which is represented in the form of trajectories of indepen-

dently moving objects.

3. Geometric information, which captures the 3D scene structure as well as the geometric

transformation which maps the location of each scene point back and forth between the

mosaic images and the individual frames.

However, to recover the geometric transformations and the 3D scene structure, the regions of the

video frames corresponding to the static and dynamic portions of the scene should be determined.

Using this algorithm, we can show the trajectory of moving object on the final mosaic. The result

is static background with moving foreground, but the foreground is only the trajectory and we

still don’t know what the object really is.

Mosaicing techniques have various kinds of applications. For example, in [20], Leung and Chen

present a mosaic based compression scheme for image-based rending application. A sequence of

images is first captured by a camera located at different positions along a circle, then the mosaic

image is constructed and used to predictively encode the original images. The corresponding

part of the mosaic image is taken as the prediction image. Furthermore, motion compensation is

applied to provide a closer match at the block level between the prediction image and the original

image. The main advantage here is that mosaic based compression with motion compensation

uses less storage space but still allows random access of individual images, which is better than

23

only inter-code scheme or intra-code scheme. However, the camera motion is constrained to a

preset circle, so that the mosaic construction is also limited in this constrained situation.

Besides, Song et al also present a possible application in [37]. They concern the problem of

collaborative frame selection, which arises when one robotic pan, tilt, zoom camera is shared by

many users. They describe an algorithm which compute optimal camera parameters based on

simultaneous frame requests from all users. Although they did not mention mosaic techniques

obviously, mosaic can be definitely useful in generating the whole scene ready for frame selection.

From the above literature survey, we can find that mosaicing technique has developed a lot

since it appeared as a field of investigation. If we classify it by dimension, we get 2D panorama

[41] [16] [28] [11] [40] [32] [28] [14], 2.5D relief mosaic [30], 3D concentric mosaic [9] and mosaics

of even higher dimension. In this thesis, our focus is on 2D panorama. In this 2D panorama

subarea, we can still classify the techniques into static mosaic [38] [11], dynamic mosaic [26] [28].

Till now, we can construct static mosaics from a set of images in a static scene, and the

algorithms work well whether the input images have motion parallax or not. Moreover, we can

also do something on scenes with moving object, such as extracting the background only to still

make a static mosaic, retaining one position of the moving object, or displaying the trajectory

of moving object in the final mosaic. However, people haven’t tried to keep the whole moving

object in the mosaic scene and retain its motion information at the same time. If we can do this,

viewers can know how the object is moving as well as what the object looks like, so that they can

get more information about the scene and the activities inside it. We always keep in our mind

that the mosaic is a basis for an efficient and complete representation of video sequences, so we

should try to include information as much as possible when we build the mosaic.

24

2.2 Related works about image registration

Image registration is a fundamental task in image processing used to match two or more images.

This is also an important step in solving our problem because we need to match images and mosaics

to find the difference.

[4] is a survey paper of image registration techniques. Brown organizes the research field by

establishing the relationship between the variations in the images and the type of registration

techniques which can most appropriately be applied. Three major types of variations are de-

scribed here. The first type are the variations due to the differences in acquisition which cause

the images to be misaligned. The second type of variations are those which are also due to differ-

ences in acquisition, but cannot be modelled easily such as lighting and atmospheric conditions.

The third type of variations are differences in the images that are of interest such as object move-

ments, growth, or other scene changes. The author also gives a framework of image registration

techniques: feature space, search space, search strategy and similarity metric. The feature space

extracts the information in the images that will be used for matching. The search space is the

class of transformation that is capable of align the images. The search strategy decides how to

choose the next transformation from the search space. The similarity metric determines the rela-

tive merit for each test. Search continues according to the search strategy until a transformation

is found whose similarity metric is satisfactory. Of course, the type of variations present in im-

ages determines the selection for each of these frame components. After these basic introduction,

Brown presents the theory of image registration as well as some applicable methods. Therefore,

we can gain a complete overview of image registration techniques from this paper.

25

2.3 Related works about moving object detection

Object detection is an important problem which interests many researchers in image and video

analysis. Specific objects can be detected by means of specialized detectors, motion, sounds,

and appearance in the textual modality. Among these, grouping object based on motion is the

best in absence of other knowledge. In other words, motion is one of the most valuable features

in detection since the appearance of objects might vary widely. This technique is necessary for

surveillance applications, for guidance of autonomous vehicles, for efficient video compression, for

smart tracking of moving objects and many other applications.

Since we want to improve the static mosaic techniques so that they can deal with scenes with

moving objects, moving object detection forms an important part in our work.

In [24], Irani et al present a method for detecting and tracking occluding and transparent mov-

ing objects, which uses temporal integration without assuming motion constancy. Here, motion

constancy is an assumption which assumes that motion remains uniform in the analyzed sequence.

According to the authors, the analysis of multiple motions can be divided into two categories:

motion analysis without segmentation and motion analysis with segmentation. In the former case,

the dominant motion approach is used, which finds the parameters of a single translation in a

scene with multiple motions. In the latter case, a region-based tracking method is used, where

we should initially separate the moving objects. To detect the moving objects, a single motion

is first computed, which is called the “dominant motion”, and the corresponding object is called

the “dominant object”. Once a dominant object has been detected, it’s excluded from the region

of analysis and the process is repeated on the remaining region to find other objects and their

26

motion. This algorithm yields a continuous function, an taking a threshold on this function yields

partitioning of the image to moving and stationary regions. Also, the problem of noise can be

overcome once the algorithm is extended to handle longer sequences using temporal integration.

The temporal integration is to construct a dynamic internal representation image for each tracked

moving object, by taking a weighted average of recent frames, registered with respect to the

tracked motion (to cancel the motion). This image contains, after a few frames, a sharp image

of the tracked object and a blurred image of all the other objects. However, this detecting and

tracking methods are not able to deal with several moving objects at the same time due to the

concept of dominant motion and object.

While [24] presents a method to moving object detection only in 2D scene, [25] describes a

unified approach to handling moving object detection in both 2D and 3D scenes. The key step

in moving object detection is accounting for (or compensating for) the camera-induced image

motion. After compensation for camera-induced image motion, the remaining residual motion

must be due to the moving objects. The approach used here is based on a stratification of the

moving object detection problem into scenarios which gradually increase in their complexity.

1. Scenarios in which the camera-induced motion can be modelled by a single 2D parametric

transformation.

2. Those in which the camera-induced motion can be modelled in terms of a small number of

layers of parametric transformation.

3. General 3D scenes, in which a more complete parallax motion analysis is required.

Of course, the techniques matching the above stratification also progressively increase in their

27

complexity. The computations at one complexity level become the initial processing step at the

next complexity level. The main contribution of this paper is that it provides a unified approach

for handling moving object detection in both 2D and 3D scenes, with a strategy to gracefully

bridge the gap between those two extremes, while past techniques can only deal with one case

and fail on the other case. However, the core elements of the unified approach has been given,

but the integration into a single algorithm still remains an unsolved task in this paper.

In [33], Fablet et al describe a region-based approach with a view to directly detecting moving

objects in the scene from a color image sequence acquired by a mobile camera. The detection

includes three steps. First, they compute the 2D affine motion model accounting for the dominant

image motion. Second, a spatial graph, whose nodes correspond to spatial regions, is derived from

the color-based segmentation. Third, a Markovian framework is introduced to assign to each node

of the graph a binary label stating if a region is conform or not to the dominant motion. If the

dominant motion is due to camera motion, the set of regions labelled as non-conform includes

moving objects. The advantage of this algorithm is that it does not require to attach a parametric

motion model to each extracted region, and only the estimation of the dominant image motion

is computed. Also, it benefits from the integration of local motion-related measures to determine

the relevance of the estimated dominant motion in each spatial region. However, the disadvantage

is that the computation procedure here is very complicated, and it is necessary to decide many

parameters to make the algorithm work well. The authors do not tell how to set these parameters.

In [5], Nguyen et al present a method that segments a single video frame into independently

moving visual objects. This method follows a bottom-up approach, starting with a color-based

decomposition of the frame. Regions are then merged based on their motion parameters via a

28

statistical test. The main contribution of this paper is a new well founded measure for motion

similarity leading to a robust method for merging regions.

In [15], Courtney uses the typical procedure to manage video indexing: detecting moving ob-

jects using motion segmentation method, tracking individual objects and generating symbolic

representation. The steps we are most interested is object detection and tracking stages. In these

stages, the author uses feature-based method. The feature set used is named “V-object”, contain-

ing the label, centroid, bounding box and shape mask of its corresponding region, as well as object

velocity and trajectory information generated by tracking process. The tracking process “links”

V-object Vnp and Vn+1q if their position and estimated velocity indicate that they correspond to

the same real-world object appearing in frame Fn and Fn+1. According to the size of feature set,

there will be a trade-off between computation complexity and tracking efficiency. To make track-

ing more accurate, the V-objects are tracked both forward and backward. The main contribution

is a novel directed graph to describe the objects and their movement, and annotates it using a

rule-based scheme to identify events of interest. Besides, the utilization of motion continuity to

track objects both forward and backward is also very helpful in motion detection. However, the

motion segmentation here is only based on the absolute difference of images, which is difficult to

gain accurate results if there are both camera motion and object motion in the scene. Therefore, it

is only suitable for video sequence within static scene, such as in surveillance and scene monitoring

applications.

In [2], Badenas et al present a motion-based segmentation method and a region-based tracking

method to deal with moving objects, which is a part of a traffic monitoring system. First, it carries

out a frame-to-frame motion segmentation. Three features: x-y coordinates and intensity of pixels

29

are used to divide every image into unsupervised regions, which is the initial segmentation. Then

motion estimation involves finding the translation parameters for every region that minimize

the sum of displaced frame differences (DFD), which actually follows the idea from [18]. Next,

it matches regions based on similarity, which is formulated as a distance. Five features are

used to form a feature vector, which are region centroid(x-y), intensity mean and velocity(x-y).

A weighted squared Euclidean distance is measured. Third is to estimate motion parameters.

Here they use a recursive estimator, the Kalman filter. Once the motion parameters have been

estimated, it compares motion parameters of neighboring regions and merges them when their

motions are similar enough. It is like a feedback procedure to make segmentation more accurate.

The advantage of this paper is that it uses some new techniques to manage the region segmentation

better. One is accumulating evidence, which utilizes the motion continuity property. The other is

recovering lost region, which can help to detect moving object even if it stops moving temporarily

in the scene. However, the same problem as in [15] also exists here. This algorithm is only

suitable for static scene. If the there are both camera motion and object motion in the scene, this

algorithm won’t get satisfactory result.

In [13], Jang et al present an improved version of Kalman filter, to be called Structural Kalman

filter, which can successfully work under some deteriorating condition such as occlusion. The

idea is to partition a target into several meaningful sub-regions instead of treating a target as one

entity. Each sub-region is evaluated independently together with their relationship and the overall

evaluation is then used to estimate the motion information on possibly occlude sub-regions. Under

this idea, the new Structural Kalman filter is a composite of two types of the Kalman filters: Cell

Kalman filters and Relation Kalman filters. The Cell Kalman filter is allocated to each sub-region

30

and the Relation Kalman filter is allocated to the connection between two adjacent sub-regions.

If the sub-region is not occluded, the Cell Kalman filter is enough. If it is occluded, the related

Relation Kalman filters are used to estimate its motion. However, it is not clear at present how

many sub-regions are suitable in an object and the compulsory partition will cause problem in

the process of object matching.

From the above literature survey and other papers which have not been mentioned here, we

can find that motion detection techniques usually rely on region-level classification schemes and

exploit local motion-related information, which can be the DFD (Displaced Frame Difference)

[2], or the normal flow. Concerning the classification step to get moving or static part, most

techniques either use threshold [24] [25] or Bayesian framework [17]. Besides, as far as motion-

based segmentation is concerned, pixel-level and region-level labelling are often used, and it seems

that region-level labelling is more popular [33] [2], because region-level labelling is closer to the

“object” concept and easier to track than pixel-level labelling. Of course, there are also some

techniques called “subregion” [13], which is a combination of region-level and pixel-level, and

can deal with occlusion. Moreover, the computation of a primary separation of spatial regions

is processed either relying on motion-based criterion [15] [12], or on intensity, texture or color

information [5] [42]. Using intensity, texture or color contours usually supplies a better localization

partition. In fact, most techniques start from this initial spatial partition, then a 2D parametric

motion model, generally an affine one [33], is attached to each spatial region. After that, the

original spatial regions are merged according to the motion properties. To this end, the merge

techniques can be classified into clustering schemes in motion parameter space [19], MDL criterion

[12], and Markovian graph labelling approach [22].

31

Till now, we can detect motion in both 2D and 3D scenes, in either pixel-level or region-level.

We can detect object motion even when it is occluded by others sometimes. Moreover, we can

deduce which activities happen in the scene based on objects motion and their interaction using

some predefined rules. However, there are few techniques concerning motion detection in dynamic

scene, i.e., there are both camera motion and object motion in the scene. Although there do exist

a few algorithms which can work in dynamic scenes, they are either too complicated or with

tremendous computational load. If we can get a relatively simple algorithm which can also work

well in dynamic scenes, it would be a very meaningful work.

32

Chapter 3

Algorithm

In this chapter, we discuss our approaches for building complete mosaic of dynamic scene and

reconstructing moving objects. This can be called dynamic video mosaic. We divide the whole

algorithm into four steps as given in follows. Of course our approaches is based on others’ works,

but the integration of these all is novel. Besides, we give our novel methods and make quite a few

improvements, which we will state clearly in the following parts.

Step 1: Static Mosaic Construction. The input video is preprocessed and a static mosaic

is built without separating objects from background.

Step 2: Coarse Frame Registration. The whole frame is registered according to the mosaic,

which actually is a preparation step of object detection.

Step 3: Moving Objects Detection. The moving objects are detected using difference pic-

tures and optical flow. In this step, we get two different layers of the input video.

Step 4: Moving Objects Reconstruction. The moving objects are reconstructed in the

mosaic scene, so that the final mosaic has both static scene information and dynamic

33

motion information.

One of the difficulties in this chapter is that we want to detect the moving objects based on

mosaic techniques. In this way, the mosaic step is not only a step to process the scene, but also

a step to prepare for the motion detection. Another difficulty is that to reconstruct the detected

objects in the scene, we have to get both the position and the warp information, which requires a

complete list of motion estimation matrix as well as some matrix transformation such as inverse

and productive.

Additionally, we want to clarify the preconditions of our work. Due to the motion model we

used and the limitations of our algorithms, there are constrains on both camera and objects.

The camera should move in a line and the scene should be nearly a flat plane. Concerning the

object, currently, our algorithm works well only when there is one moving object and its size is

proportional to the scene.

3.1 Static Mosaic Construction

The technique for static mosaic construction has been explored by many researchers, and various

kinds of methods have been presented. However, to make this thesis self-contained, we will

still describe our algorithm in this section. It is a classical one, which has been used by many

researchers as a basis and even appears in textbooks.

The input in this step is many frames with overlap and the output is a large mosaic picture

representing the complete scene.

34

3.1.1 Video Frame Separation

Before we do anything about mosaic, we should first slice frames from video clips. Here, we use

MPEG2Decoder [6] to separate individual frames from MPEG encoded video, and the number

of frames we get is equal to the frame rate, usually 30 frames per second. Therefore, if the time

length is a bit large, we would get a large number of frames and there is only very little change

between two adjacent ones. To avoid processing too many similar frames, we use one out of five

or ten frames instead of using frame one by one.

3.1.2 Corresponding Points Establishment

The first step to construct a mosaic based representation is image alignment, which depends on

both the chosen world model and the motion model. The alignment can be limited to 2D para-

metric motion models, or can utilize more complex 3D motion models and layered representations.

Till now, most techniques utilize 2D alignment models.

In our work, the most important part is to include motion information into the mosaic repre-

sentation, so we simply use 2D parametric models to simplify the mosaic construction procedure

and pay more attention to the moving part.

In our current implementation, the 2D parametric motion models we use is an 8-parameter

projective model, which requires at least 4 corresponding points for one pair of images. Moreover,

the mosaic we want to build here is not the traditional static mosaic, but the dynamic mosaic,

the concept of which is presented in [28]. This is a dynamic mosaic which increases every time

when a new frame is added, so the corresponding points we establish are between the latest frame

and the current mosaic.

35

To establish corresponding points of two adjacent frames in a static scene, we can use a relatively

simple algorithm presented at [27]. To make the description clear, we refer the first frame as the

source frame, and the second as the destination frame.

1: Detect the corners in two frames and mark every corner point (x,y) in the source frame.

2: Extract an r × r square window of pixels with the marked point in the center of the

square, in the source frame.

3: Overlay the source square window onto the destination frame at the point (u,v), so

that (x,y) coincides with (u,v).

4: Calculate the sum-of-square difference (SSD) of the pixel values to measure the match

quality. The SSD measure is:

E({r}) =
∑

r

(I(x) − I(u))2 (3.1)

where x = (x,y) denotes the position of the point in the source frame, u = (u,v) the

position of the coincident point in the destination frame, and I denotes the image

intensity. The sum is computed over all the points within the region and {r} is used

to denote the entire field within that region.

5: If the source window perfectly matches the destination window, then the value of SSD

measure would be 0. If not, shift the square window in destination frame so that (x,y)

in the source frame coincides with (u+1,v) in the destination frame, and compute the

SSD again.

6: Continue shifting the window within an r × r region in the destination frame and

36

Figure 3.1. Corresponding Points for Static Scene

computing the SSD each time until the smallest SSD value is got. The center of the

destination window that gives the smallest SSD is the correct (u,v).

For simplicity, we do this corresponding points establishment using grey-scale images, and the

sample result is shown in Figure 3.1.

However, at this step, the scene still appears as a whole, i.e., we have no information about

which part is the background and which part is the moving objects. Therefore, if we apply this

algorithm directly in dynamic scenes, it would mark some incorrect corresponding points in the

moving part and cause image misalignment in the later construction procedure. One example is

shown in Figure 3.2.

One possible solution for this problem is that we enable user to select the suitable points after

we get a complete set of corresponding points. However, this would make the system slow to

process. Therefore, for simplicity, at the current stage, we establish the corresponding points in

the frame and mosaic manually, and import it as input datafiles to the program. To get sub-pixel

level accuracy, we utilize a build-in function cpselect in MATLAB. Furthermore, although the

37

Figure 3.2. Corresponding Points for Dynamic Scene

required number of corresponding pairs is 4 according to the motion model, we select 8-9 pairs to

minimize the misalignment of the mosaic.

3.1.3 Forward Homographies Computation

Forward homography is an estimation matrix which maps the points in the source image to

their corresponding points in the destination image. Since we build dynamic increasing mosaic

here, the source image refers to the current built mosaic, and the destination image refers to the

latest to-be-added frame. This definition remains effective in the rest part of this thesis.

As we mentioned before, we use 2D 8-parameter perspective motion model here [10]. Such a

model works well under the scenarios where there is little translation of the camera, or the entire

scene can be approximated by a single parametric surface (typically a plane). This motion model

can be described in matrix format as follows:

38

u1

v1

1

=

a b c

d e f

g h i

x1

y1

1

(3.2)

where (x1, y1) refers to the point in source image and (x1, y1) refers to its corresponding point

in the destination image, and the equality is up to scale. Although there are 9 unknowns a,. . . ,i in

the homography matrix, only 8 of them need to be found because we are working in homogeneous

coordinates. It is customary to let i = 1, and then seek to determine the other unknowns. We can

rewrite the above matrix equation for each pair of corresponding points in terms of the unknowns

a,. . . ,h and get an 8 × 8 system as follows:

x1 y1 1 0 0 0 −u1x1 −u1y1

x2 y2 1 0 0 0 −u2x2 −u2y2

x3 y3 1 0 0 0 −u3x3 −u3y3

x4 y4 1 0 0 0 −u4x4 −u4y4

0 0 0 x1 y1 1 −v1x1 −v1y1

0 0 0 x2 y2 1 −v2x2 −v2y2

0 0 0 x3 y3 1 −v3x3 −v3y3

0 0 0 x4 y4 1 −v4x4 −v4y4

︸ ︷︷ ︸

A

a

b

c

d

e

f

g

h

︸ ︷︷ ︸

p

=

u1

u2

u3

u4

v1

v2

v3

v4

︸ ︷︷ ︸

b

(3.3)

If we note the structure of above matrix A, we can easily understand why the minimum re-

quirement is 4 pairs of corresponding points. Of course, this matrix equation can be extended to

handle n > 4 pairs of corresponding points. What we want to get is the vector p, which can be

solved using the pseudoinverse:

39

p = A†b (3.4)

where A† = (ATA)−1AT .

Rewrite vector p in matrix format as follows:

a b c

d e f

g h i

then we get forward homography HSD
1, which maps each point in the source image to its

corresponding point in the destination image.

3.1.4 Bounding Box Computation

In this subsection, we will describe the method on how to compute the bounding box. Bounding

box is the smallest rectangle that contain the final mosaic completely, so it is the same as how

to compute the size of the output mosaic image. To compute the size of the mosaic, we have to

compute the maximum extent of both two images after they are warped.

However, we have to specify a reference image first. This is the image to whose viewpoint the

other image will be warped. Since we are working on a dynamic increasing mosaic, we update

the mosaic every time when we get a new frame. Therefore, we designate the current frame

as the reference image to produce the new mosaic. Since we already have HSD as the forward

homography which maps points from mosaic to current frame, the two reference matrices are:

1The subscript SD denotes that this homography is from source image to destination image, i.e., the computa-

tion direction is forward.

40

HSR = HSD

HDR = I

(3.5)

where I denotes the identity matrix2.

Normally, homographies transform rectangles into quadrilaterals, so what we need to do is to

keep track of the 4 corners of both images to be warped. The four corners in one image are (1,1),

(w,1), (1,h), (w,h), where w is the width of the image and h is its height. We have two images

as the input, so we will get 8 corners. After warping, we find the minimum and maximum X-Y

coordinates from all 8 corners, which will become the upper left corner and the lower right corner

of the result bounding box, respectively. If we let (xmin, ymin) and (xmax, ymax) denote these two

corners, the width and height of the bounding box, i.e., the output mosaic are:

bw = xmax − xmin

bh = ymax − ymin

(3.6)

where bw and bh refer to the width and height respectively.

3.1.5 Backward Homographies Computation

In this subsection, we will describe how to compute backward homography. The backward

homography is used to find the corresponding points in two input images given their position in

the reference image. However, it is not just the inverse of the reference matrix mentioned in last

section, because the origin of the coordinate has already been shifted due to the bounding box

2The subscript SR and DR denote that the reference matrices are from the source frame and the destination

frame to the reference frame, respectively.

41

computation. With respect to the reference image, the upper left corner of the bounding box is at

(xmin, ymin), but we have to make this the new origin for convenience when producing the output

image.

Therefore, considering the inverse and the translation of the coordinate origin together, the

backward homographies of the two inputs can be achieved as follows:

HBS = HSR
−1T

HBD = HDR
−1T

(3.7)

where the translation matrix is given by: T =

1 0 xmin

0 1 ymin

0 0 1

3.1.6 Mosaic Image Integration

In the above five subsections, we have prepared all the necessary information for the mosaic

construction. In this subsection, we finally reach the mosaic construction stage. The method we

use here is the destination scan method, which can be described as follows.

1. for x = 1 to bw

2. for y = 1 to bh

3. Find (u,v), the point in the source image where (x,y), the point in the

mosaic image warps to. Use the backward homography HBS.

4. Get c, the color at (u,v) in the source image. If (u,v) falls outside the

source image, no color is assigned to c.

42

5. Repeat steps 3 and 4 for the destination image, using backward homography

HBD.

6. Compute the final color of the mosaic image based on the colors we get in

two input images. Let the final color be CFinal.

7. Set the color in the mosaic image at (x,y) to be CFinal.

NOTE: The homographies here specify only the geometric information, not the color. To know

the color of an output pixel, we trace where that pixel comes from (via the backward

homographies) to get the color from the input images. These colors together contribute

something to the output mosaic.

We should pay attention that there are several kinds of methods to get color of input images

in step 3 and to compute final color of mosaic image in step 6. We will describe some of them

below and choose the one which is suitable in our work.

Color Selection

In most cases, the (u,v) coordinates we get are not integer values, i.e., the point falls between

the pixels of the input images. Therefore, we need some methods to get the approximate color.

To get the color representation in the input images, we can directly use the color in the nearest

position or use interpolation method to get better result.

If we get the color directly, we should find the nearest point from the result point traced using

backward homographies. The color of this point is used to represent the color of the warped point.

If we want to get better result, we can compute the color using interpolation method. One of

43

the widely used interpolation methods is bilinear interpolation. We describe this method in the

following.

Without loss of generality, let the 4 pixels immediately surrounding (u,v) have coordinates (0,0),

(0,1), (1,0), (1,1), and let (u,v) have values between 0 and 1. Thus (u,v) falls within the square

whose corners are the coordinates given above. Let the colors at these corners be c00, c01, c10, c11

respectively. Then:

cuv = (1 − u)(1 − v)c00 + u(1 − v)c10 + (1 − u)vc01 + uvc11 (3.8)

This equation can also be applied to RGB color system by simply interpolating for each channel,

i.e., doing it for R,G,B separately. To optimize the above formula, we can transform it to the

following equations, which use 3 multiplies instead of 8:

cu0 = c00 + u(c10 − c00)

cu1 = c01 + u(c11 − c01)

cuv = cu0 + v(cu1 − cu0)

(3.9)

In our work, we use the direct method, not only because it is easier and faster, but also because

the color retrieval function we use from the public library [8] can only deal with integer coordinate

values.

Color Blending

Each point in the mosaic image comes from all the corresponding points in the input images.

The question is that how to decide the final color based on several color inputs. Color blending

44

algorithm is used to solve this question. Generally speaking, there are two widely used ways to

determine the overlapped region: selection method and combination method.

In selection method, we only select one point from all the available points and use its color to

represent the final color. Although it looks not so accurate because only one point is selected to

represent several points, this method works better in cases where camera motion, scene geometry

and image conditions are challenging[1]. However, it requires accurate alignment along the seams.

In combination method, we compute all the available points using a suitable function such as

median, average, etc, to get the final color. This method requires an accurate alignment over the

entire overlapped region, otherwise the result will be blurred due to the color combination. This

method works better in relative static scene.

These two color blending algorithms can be summarized as Table 3.1.

Definition Requirement Suitable Case

Selection Select one point from several ones alignment along seams dynamic scenes

Combination Combine several points together alignment over entire region static scenes

Table 3.1. Summarization of Two Color Blending Algorithms.

In this thesis, we work in scenes where there are both camera motion and object motion, so we

can’t use combination method only because it will cause serious blur in moving regions. However,

if we use selection method, it will still cause visible seams along the edges of every input image.

Therefore, we make our improvement to try to use both of them to deal with different regions of

input images.

45

Figure 3.3. Two Input Images for Static Mosaic Construction.

In the regions where the points only come from one input image, the only method we can

choose is the selection method. In the regions where the points come from two input images, both

methods can be used. To get better result, we choose to use combination method along the edge

to make the seam invisible, and use selection method in other regions to maintain the clear shape

moving objects. Since our dynamic mosaic is updated every time when a new frame is coming,

we always select the point from latest input image instead of from old mosaic.

In the combination method to deal with the edge, we make some improvement to do better.

The original combination method uses the combination function such as median or average, but

we change to use distance-based parameter function instead. Concerning the two corresponding

points from two input images, the one which is closer to the edge contributes more to the final

color, so that there is stable transition across the edge, which makes it invisible.

The following example can be used to show the intermediate result after this step.

Figure 3.3 shows two input images.

Figure 3.4 shows mosaic result for two images and Figure 3.5 shows mosaic result for the entire

46

Figure 3.4. Mosaic for Building without Edge Blending Technique.

Figure 3.5. Mosaic for the Entire Scene without Edge Blending Technique.

Figure 3.6. Mosaic for Building with Edge Blending Technique.

47

scene. Both are without edge blending technique. Figure 3.6 shows the mosaic result for two

images, using the same color combination method, but with edge blending technique. We can see

clearly that with edge blending technique, the edges are almost invisible in the result mosaic.

3.2 Coarse Frame Registration

After finishing the above section, we now get a complete mosaic consisting of all input frames,

and several lists of motion matrix computed in the construction process. This part is mostly based

on others’ work. In this section, we will describe our own development about how to register each

input frame on the mosaic coarsely (without any detection or separation). Why we need to do

this step? Remember that we always update the mosaic on every input, so that on the last output

the only complete frame on the mosaic is the last frame. However, we need to present every input

frame completely on the mosaic to detect the moving objects. Therefore, this step is necessary to

cancel the camera motion, as a preparation for the moving object detection.

3.2.1 Reference Matrix Computation

To register each frame on the final mosaic, we have to compute the reference matrix from the

final mosaic to each input images. Although we have already got HBS, HSR, HBD and HDR in the

above sections, these matrix are only between the input images and the intermediate constructed

mosaic instead of the final mosaic. Therefore, we have to compute final reference matrix. The

relationship among these matrices can be shown in Figure 3.7.

In Figure 3.7, the computation method to get the final reference matrix is very clear.

48

Input
Image 1

Input
Image 2

Input
Image n

Input
Image 3

Mosaic 1
(viewpoint of 2)

Mosaic 2
(viewpoint of 3)

Mosaic n-1
(viewpoint of n)

HSR1 HBS1
HDR1 HBD1

HSR2 HBS2

HDR2
HBD2

HSRn-1

HBSn-1

HDRn-1

HBDn-1

HFR1 HFR2

HFR3
HFRn

Legend
Forward Reference Matrix
Backward Reference Matrix
Final Reference Matrix

Figure 3.7. The Relationship among Matrices in Mosaic Construction

49

HFR1 = HBSn-1 × HBSn-2 × · · · × HBS1

HFR2 = HBSn-1 × HBSn-2 × · · · × HBS2 × HBD1

HFR3 = HBSn-1 × HBSn-2 × · · · × HBS3 × HBD2

...

HFRn-1 = HBSn-1 × HBDn-2

HFRn = HBDn-1

(3.10)

If we summarize the equations above, we can have the following formulas3:

HFR1 =
∏n−1

i=1 HBSi

HFRk =
∏n−1

i=k HBSi × HBDk-1 (2 ≤ k ≤ n − 1)

HFRn = HBDn-1

(3.11)

3.2.2 Frame Warping and Registration

In the above subsection, we got the final reference matrix for each input images from the final

mosaic. In this subsection, we describe how to register the whole input images on the final mosaic.

For each input image Fk, do the followings:

1. for x = 1 to image width

2. for y = 1 to image height

3. Find (u,v), the point in the input image Fk where (x,y), the point in the

mosaic image warps to. Use the final reference matrix HFRk.

3The subscript FRk denotes the final reference from the final mosaic to the k
th input frame.

50

4. If (u,v) falls inside the input image, the color at (x,y) in the mosaic is set

as the same color at (u,v) in the input image.

5. If (u,v) falls outside the input image, the color at (x,y) in the mosaic

remains unchanged.

After this coarse registration, we have a series of mosaic images, on each of which one input

frames has been registered. These images represent a complete background, on which dynamic

frames move following the trajectory of camera motion.

3.3 Moving Objects Detection

Moving objects detection can be generalized to change detection. Any perceptible motion in a

scene results in some change in the sequence of frames of the scene. Motion characteristics can be

analyzed if such changes are detected. In our situation, the motion is restricted to a plane that is

parallel to the image plane, so a good quantitative estimate of the motion components of objects

can be obtained.

Starting with frame-to-frame change detection, a global analysis of the sequence may be per-

formed. Changes can be detected at different levels: pixel, edge, or region. Changes detected

at the pixel level can be aggregated to obtain useful information with which the computational

requirements of later phases can be constrained.

In this section, we will start with one of the simplest, yet one of the most useful change detection

techniques, difference pictures, and then discuss one of the motion analysis techniques, optical flow.

Although there is much work done in both fields, here we make our improvement to combine these

51

two and reach a rather simple motion detection algorithm. Moreover, we develop our own method

to discard the noise according to motion constancy concept and camera attention property, which

will be explained later, and get the regions of moving objects more accurately.

3.3.1 Difference Picture Computation

The most obvious method of detecting change between two frames is to directly compare the

corresponding pixels of the two frames to determine whether they are the same.

In the simplest form, if we use F(x, y, j) and F(x, y, k) to denote two input frames with the same

size, the difference picture DPjk(x, y) is obtained by:

DPjk(x, y) =

1 if |F(x, y, j) − F(x, y, k)| > τ

0 otherwise

(3.12)

where τ is a threshold [34].

The result difference picture DPjk is a binary picture. In this picture, pixels which have value

1 may be considered to be the result of object motion or illumination changes. One example is

shown in Figure 3.8 and Figure 3.9. The Figure 3.8 shows two input images from a static scene,

in which only one object is moving. The Figure 3.9 shows the difference picture from the above

input.

However, to get correct result, this simple method assumes that the frames are properly reg-

istered or the scene is static. Only in these situation, the changed parts detected are caused by

object motion. If there are both camera motion and object motion in the scene, most pixels in the

difference picture will have value 1, and we can not tell which ones are caused by object motion or

52

Figure 3.8. Two Input Images in Static Scene

Figure 3.9. The Difference Picture of Static Scene

53

which ones are caused by camera motion. One example in dynamic scene is shown in Figure 3.10

and Figure 3.11. The Figure 3.10 shows two input images from a dynamic scene, in which the

whole scene is moving. The Figure 3.11 shows the difference picture got from the above input.

Figure 3.10. Two Input Images in Dynamic Scene

Figure 3.11. The Difference Picture of Dynamic Scene

In this example, there is only camera motion in the scene, all the objects remaining still.

However, we can not tell this from the difference picture, because it detects camera motion as

54

well as object motion. To make the difference picture detect object motion correctly, we have to

compensate the camera motion, or register the input frames properly. That’s why we need mosaic

construction and image registration before this detection step.

The original input with both camera motion and object motion is shown in Figure 3.12.

Figure 3.12. Two Input Images with both Camera Motion and Object Motion

Figure 3.13. The Difference Picture before Image Registration

The corresponding difference picture of Figure 3.12 is shown in Figure 3.13.

55

If we build mosaic and register frames properly on it before computing difference picture, we

can get registered frames as shown in Figure 3.14.

Figure 3.14. Two Input Images with both Camera Motion and Object Motion after Image Registration

Figure 3.15. The Difference Picture after Image Registration

The corresponding difference picture of Figure 3.14 is shown in Figure 3.15. We can see that in

the final difference picture after image registration, the correct shape and position of the changed

parts are detected correctly.

56

3.3.2 Optical Flow Computation

The most attractive aspect of the difference picture for motion detection is its simplicity. How-

ever, this simplest method is noise-prone. Changes in illumination and misregistration, in addition

to electronic noise of the camera, can result in many false alarms. Changes in illumination will

create problems for all intensity-based approaches. Misregistration of frames results in the assign-

ment of false motion components, which can be eliminated using accumulative difference pictures

or other additional information.

What we actually want to detect is motion, but difference picture only shows the changes, which

can be caused by other factors in addition to motion. To detect the motion more accurately, we

choose to compute the optical flow as another measurement for motion detection.

According to [34], we have the following definition:

Definition 3.3.1 Optical flow is the velocity field in the image plane due to the motion of the

observer, the motion of objects in the scene, or apparent motion which is a change in the image

intensity between frames that mimics object or observer motion.

Generally speaking, optical flow is the distribution of velocity of movement of brightness pat-

terns over the points in an image. It can arise from relative motion of objects and the viewer. It

can give important information about the spatial arrangement of the objects viewed and the rate

of change of this arrangement. Discontinuities in the optical flow can help in segmenting images

into regions that correspond to different objects. Therefore, optical flow carries information which

is very valuable for our analysis of dynamic scenes.

57

The computing of optical flow can be classified into two general categories: feature-based and

gradient-based. If a stationary camera is used, most of the points in an image will have zero

velocity. This is assuming that a very small subset of the scene is in motion, which is usually true.

Thus, most application for optical flow involve a moving camera.

Feature-Based Methods

Feature-based methods for computing optical flow first select some features in the image frames

and then match these features and calculate the disparities between frames. The correspondence

may be solved on a stereo image pair using relaxation. The same approach may also be used to

solve the correspondence problem in dynamic scenes. However, the problem of selecting features

and establishing correspondence is not so easy. Furthermore, this method only produces velocity

vectors at sparse points.

Gradient-Based Methods

Gradient-based methods exploit the relationship between the spatial and temporal gradients of

intensity. This relationship can be used to segment images based on the velocity of points. One

of the classic papers, which presented this method first, is [3], and the method we use here also

follows this paper. In the follows, we will describe how to compute optical flow using gradient-

based method.

Suppose the image intensity at a point in the image plane is given as E(x, y, t). Assuming small

motion in successive frames in a video sequence, the intensity at this point will remain constant,

so that:

58

dE

dt
= 0 (3.13)

Using the chain rule for differentiation, we can get:

∂E

∂x

dx

dt
+

∂E

∂y

dy

dt
+

∂E

∂t
= 0 (3.14)

If we let the velocities

u =
dx

dt
(3.15)

and

v =
dy

dt
(3.16)

we can easily have a single linear equation in the two unknowns u and v

Exu + Eyv + Et = 0 (3.17)

where we have introduced the additional abbreviations Ex, Ey, and Et for the partial derivatives

of image intensity with respect to x, y and t, respectively. The constraint on the local optical flow

expressed by this equation can be illustrated in Figure 3.16.

Ex, Ey, and Et can be computed directly from the image. Thus, at every point in an image,

there are two unknowns, u and v, and only one equation. Therefore, using information only at

one point, the optical flow can not be computed. This can be explained using Figure 3.17.

59

V

U

(Ex,Ey)

constraint line

Figure 3.16. The change of image intensity equation constrains the optical flow velocity. The velocity

(u, v) has to lie along a line perpendicular to the intensity gradient vector (Ex, Ey). The distance of

this line from the origin equals Et divided by the magnitude of (Ex, Ey).

Figure 3.17. The Aperture Problem.

60

If one sees a point using a tube such that only one point is visible, then motion of the point can

not be determined. One can only get the sense of the motion, not the components of the motion

vector. This problem is commonly known as the aperture problem. The velocity components at

one point can not be determined using the information at only one point in the image without

making further assumption.

The new assumption we make is smoothness constraint, which assumes that the velocity field

varies smoothly over an image. This assumption is reasonable because if every point of the inten-

sity pattern can move independently, there is little hope of recovering the velocities. Therefore, we

can combine the optical flow constraint equation with the above assumption about the smoothness

of the optical flow velocity field to compute the optical flow using variational methods.

We recall that the optical flow constraint equation is

Exu + Eyv + Et = 0 (3.18)

where u and v are the x and y components of the optical flow, respectively, and Ex, Ey, and

Et are the spatial and temporal derivatives of the image intensity. For a smoothness measure, we

use the sum of the squared magnitudes of each optical flow component as the integrand in the

regularization term:

∫ ∫
[(

∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2
]

dx dy (3.19)

Then we combine the smoothness measure with a measure of deviations from the optical flow

constraint weighted by a parameter which controls the balance between deviations from the optical

61

flow constraint and deviations from smoothness constraint. What we get is:

∫ ∫
{

(Exu + Eyv + Et)
2 + ν2

[(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2
]}

dx dy (3.20)

Use the calculus of variations to transform this norm into a pair of partial differential equations:

ν2∇2u = E
2
xu + ExEyv + ExEt

ν2∇2v = ExEyu + E
2
yv + EyEt

(3.21)

Then, we use finite difference methods to replace the Laplacian in each equation with a weighted

sum of the flow vectors in a local neighborhood, and use iterative methods to solve the difference

equations. The iterative equations are as follows:

u = uaverage −Ex
P

D

v = vaverage −Ey
P

D

(3.22)

where

P = Exuaverage + Eyvaverage + Et (3.23)

and

D = λ2 + E
2
x + E

2
y (3.24)

In the above equations, Ex, Ey, Et, and λ represent the spatial gradients in the X and Y

directions, the temporal gradient, and a constant multiplier, respectively. When only two frames

62

are used, the computation is iterated over the same frames many times. For more than two frames,

each iteration uses a new frame.

This classic method to compute optical flow has been used for more than twenty years since

it first appeared, but it still has some problems. One important fact to remember about this

method is that it assumes a linear variation of intensities and computes the point-wise velocities

under this assumption. It is typically expected that this assumption is satisfied at edge points

in images and, hence, the velocity can be computed at these points. The smoothness constraint

is not satisfied at the boundaries of objects because the surfaces of objects may be at different

depths. When overlapping objects are moving in different directions, the constraint will also be

violated. These abrupt changes in the velocity field at the boundaries cause problems. If we

want to remove these problems, we should use some other information to refine the above optical

flow determining method. However, since our algorithm is not totally dependent on optical flow

computation, this method is enough for us.

3.3.3 Moving Blocks Detection

In the above two subsection, we detect the changed parts using difference picture and compute

the optical flow for each point using gradient-based method. In this subsection, we will describe

how to really detect the moving parts using these two kinds of information. The method we use

is based on block.

For two input frames F(x, y, j) and F(x, y, k), we now can get the difference picture DPjk(x, y),

and compute the optical flow (u, v) for each pixel (x, y), using the above-mentioned algorithms.

Then we divide the images into blocks, the size of which is denoted by Sblock.

63

The following detection is based on block. For each block, we assign a value Mblock to indicate

the motion property of this block, which is calculated using the following equation:

Mblock =
∑

Sblock

DP(x,y)=1

√

u2
(x,y) + v2

(x,y) (3.25)

where Sblock means this computation is done within the size of one block.

This equation summarizes the motion value from the optical flow. To get more accurate result,

we only calculate the pixels with great difference, which can eliminate some noise from optical

flow. Furthermore, we can use smaller block size to make the block-based detection more closed

to the object boundary.

The judgement of the moving block is based on the Mblock using the following criterion:

The block is moving :

true if Mblock > τ

false otherwise

(3.26)

The input images in this detection are coarse registered images, in which the background is

already made static. Therefore, the moving blocks we detect here are really caused by object

moving instead of camera moving.

However, we need a pair of frames at one time. Therefore, if we have N input frames in total,

we can detect moving blocks in only N-1 frames.

3.3.4 Moving Blocks Refinement

In the last step, we detect the moving blocks using the combination of difference picture and

optical flow. However, due to the slight alignment error in the coarse registration step, the

64

computation limitation of optical flow, and the image noise, there will be false alarms in the

detection results out of question. In order to refine the detection, we utilize some properties

in object motion and camera shoot. We will describe these useful properties in the following

respectively.

Motion Constancy

One of most obvious properties we can use is motion constancy. In [24], motion constancy is an

assumption which assumes that motion remains uniform in the analyzed sequence. This assump-

tion is reasonable under the similar reason of smoothness constraint in optical flow computation,

because If the motion is not stable and pixels can move independently, the computation of velocity

and the detecting as well as tracking are almost impossible.

According to this assumption, we can eliminate some noise blocks which are wrongly detected in

the last step. We use B(a, b, n) to denote one detected moving block in frame n, then its neighbor

blocks in the next frame n+1 are denoted as B(a, b−1, n+1), B(a, b+1, n+1), B(a−1, b, n+1)

and B(a + 1, b, n + 1). The refinement is done as followings:

1. for every moving block in frame n

2. Search its neighbor blocks in frame n+1.

3. If at least one of the neighbor blocks is also detected as moving in frame n+1,

the original block in frame n is confirmed as moving.

4. Otherwise, if none of neighbor blocks are moving in the next frame, this block

is discarded as noise block.

65

Frame n

Frame n+1
with motion constancy

Frame n+1
without motion constancy

Figure 3.18. The Motion Constancy Property in Successive Frames.

This idea can be illustrated clearly in Figure 3.18. The block filled with thin grey color denotes

the moving block in the first frame, and the blocks filled with thick grey color denote the moving

blocks in the next frame.

Camera Focus Property

In this part, we describe another property coming from cinematography practice, which can also

be used to improve the detection results. Generally speaking, if there are moving objects in the

view scope, cameramen will follow these objects and place them in the central part to attract

more attention from viewers. Therefore, if the detected moving blocks are very close to the edge

66

of the frames, we can assume that they are noise blocks and discard them safely.

In a complete refinement process, a detected moving block should meet these two criteria

simultaneously, then it can be confirmed to be really moving.

3.4 Moving Objects Reconstruction

Till now, we have got the whole mosaic, the estimated reference matrix, and the moving blocks

in every input frame. Using these information, we can build static background without moving

objects and reconstruct these objects on the final mosaic.

To fulfil this task, we have to do the following things: separate moving objects from input

frames, build static mosaic using processed inputs, reconstruct moving objects. The concept of

reconstruction is first proposed here, therefore, our methods to do the relative work are newly

developed based on this concept. We will describe them respectively.

3.4.1 Moving Objects Separation

In this subsection, we will discuss how to separate the moving objects from the input images.

One important fact we should remember is that the moving block detection is done in coarse

registered images, but the moving objects separation should be done in original input images.

Therefore, it is necessary to map the blocks detected in coarse registered images to input images,

using final reference matrix computed before. This map is done pixel by pixel within the blocks,

and the method is almost the same as that in section Frame Warping and Registration. We

use RI1, RI2, · · · , RIn to denote the coarse registered images, and OI1, OI2, · · · , OIn to denote

the corresponding original input images.

67

Now we get the corresponding position and scope of moving blocks in original input image.

However, to separate them, we can not simply set the intensity value of the pixels within these

blocks to zero, because if we do like that, there will be black holes in these images, and these holes

will remain in the background mosaic, which impacts the result badly.

In order to solve this problem, we do pixel compensation instead of simply resetting the value.

The algorithm is presented as follows:

1. for each pixel p within each moving block in one registered image RIk

2. Using the final reference matrix FR to get its corresponding pixel in each original

input image, denoted by p1, p2, · · · , pn. Of course, these pixels should within the image

scope, otherwise, it is set to null.

3. Compute the intensity value of pixel pk in corresponding input image OIk using

the following formula:

pk =
1

c

n∑

i=1
i6=k

pi (3.27)

where pi should within the background part and constant c denotes the number of this

kind of pixels.

4. Repeat the step 1 to 3 for each registered image to process each original input image.

The idea of the above algorithm is to replace the pixel value in the moving parts in one input

image with the average value of all the corresponding pixels in background parts in other input

images. In the processed images, moving parts are removed from the background, and the hole

68

after removal is compensated using the information from other images. However, sometimes ghost

will appear in the processed images, which is caused by illumination change or misalignment error.

In order to remove the ghost, we use selected input frames instead of all, and calculate the pixel

value using alpha-blending technique instead of simple average algorithm.

3.4.2 Static Background Construction

In the last step, we get a series of images which are very similar to the original images, and the

only difference between them is that, in the former, the moving parts have already been removed

and compensated.

Now we can build a background mosaic which is completely static. The construction process is

the same as that in first step, and the homographies are also the same, because we only change

some pixel values in the images and the alignment remains unaltered.

3.4.3 Pixel-Based Reconstruction

Till now, we get the static background mosaic, input images with moving blocks detected,

and reference matrix. These information is enough for us to do the last step: moving objects

reconstruction.

Actually, the reconstruction here is a refined version of the coarse registration. In the coarse

frame registration step, we register the whole frame using the reference matrix. Here, we

register the moving blocks using the same matrix. Therefore, we won’t repeat the registration

algorithm here, but still need to mention one important fact.

Unlike the coarse registration, which place the whole frame on the mosaic pixel by pixel, here

69

we do not place the whole moving blocks. This is because our motion detection is based on block,

so that the detection result doesn’t follow the boundaries of objects accurately. If we place the

whole blocks, there will be visible box around the moving objects.

To solve this problem, we only select suitable pixels in the moving blocks to replace the back-

ground pixels in the final static mosaic. The selection of pixel is based on the difference of the

intensity value from pixel in moving blocks to pixels in mosaic background. If there is great

difference, we can assume that this pixel is really from moving object so that we can replace the

background with it, otherwise, we know that this pixel is quite similar to the background so that

the original background remains unaltered.

Adding this comparison step before refined block registration, we can almost register the objects

in their really shapes. Strictly speaking, what we use is a combination of block-based method and

pixel-based method. The block-based method is used to find the moving parts roughly, while the

pixel-based method is used to pick the moving pixels accurately in the blocks. Combining these

two, we can detect and register moving objects efficiently and accurately.

Overall, the whole algorithm can be summarized as the following sequences.

The first subsection, static mosaic construction, is shown in Algorithm 1.

The second subsection, coarse frame registration, is shown in Algorithm 2.

The third subsection, moving objects detection, is shown in Algorithm 3. This part should be

done for every two coarse registered mosaics.

The fourth subsection, moving objects reconstruction, is shown in Algorithm 4.

70

Input : One input video: V

Output: One large mosaic image: M

Procedure:

1. Separate the input video into a series of n images

V = (I1, I2 . . . , In).

2. Calculate a group of corresponding points between I1 and I2

p1 = Correspond(I1, I2).

3. Compute forward and backward homographies from corresponding points

(HF , HB)1 = Homography(p1).

4. Integrate I1 and I2 into I12

I12 = I1 + I2

5. Repeat 2-4, but replace the input of I1 and I2 with I12 and I3, and so on.

6. M = I12...n.

Algorithm 1: Static Mosaic Construction

Input : One large mosaic image: M , Separated n images: I1, I2 . . . , In

Output: Coarse registered n Mosaics: M1,M2, . . . ,Mn

Procedure:

1. Compute final reference matrix for every image from (HF , HB) in last subsection

HFR = Final(HF , HB).

2. Register every image on the mosaic

M1 = Register(M, I1, HFR1).

3. Repeat step 2 for every image.

Algorithm 2: Coarse Frame Registration

71

Input : Coarse registered mosaics:Mk, Mk+1

Output: Image with moving Blocks: MkMB1, MkMB2, . . ., MkMBn

Procedure:

1. Calculate the difference picture between M1 and M2

DPk,k+1 = Difference(Mk, Mk+1).

2. Calculate the optical flow between Mk and Mk+1

(u, v) = OpticalFlow(Mk, Mk+1).

3. Create a moving image and divide the image into blocks

Mk = (MkB1,MkB2, . . . ,MkBn).

4. Calculate the motion value for each block. If this value exceeds a threshold, we primarily

detect this block as moving

Mblock = M(u, v,DP)

5. Discard a moving block if its motion is not constant.

6. Discard a moving block if it is close to the edge.

Algorithm 3: Moving Objects Detection

72

Input : n images with detected moving blocks: (MkMB1, MkMB2, . . ., MkMBn) for every

image

Output: The result video: Voutput

Procedure:

1. Extract moving parts from the original images and do compensation

Ik = Moving Objects Imk + Background Ibk .

2. Build new background mosaic using Algorithm 1, but this time the input images are

Ib1, . . . , Ibn

Mb = Mosaic(Ib1, Ib2, . . . , Ibn).

3. Register moving objects on the background mosaic

Mbk = Register(Mb, Ik,MkMB1,MkB2, . . . ,MkBn).

4. Make output video from n mosaic images after reconstruction

Voutput = (Mb1,Mb2, . . . ,Mbn)

Algorithm 4: Moving Objects Reconstruction

73

Chapter 4

Experimental Results

In this chapter, we will use some video examples to evaluate our approach. Due to our simple

algorithms used in the processing steps, there are some constraints in the scene situation, such as

depth variation and motion parallax. Therefore, the video examples we use here are captured by

ourselves.

Example No.1 is used to show the result of the whole process.

Figure 4.1 is the selected frames from a video sequence in which a man is walking across the

road.

Figure 4.2 is the static mosaic from all available frames without layer separation. Since we

update this mosaic every time when we get a new frame, this mosaic only displays the final

position of the moving object.

Figure 4.3 is the selected result of coarse frame registration. We can see clearly the edges of the

registered frames due to little warping and alignment error. However, these kinds of error won’t

74

Figure 4.1. Selected Frames from Walking Video Sequence.

Figure 4.2. Mosaic Image after Static Mosaic Construction.

75

Figure 4.3. Coarse Frame Registration.

76

Figure 4.4. Moving Blocks Detection.

impact our final result, because we only use the difference pictures of these frames in the later

steps, not the pixel position and their intensity value.

Figure 4.4 shows the result of moving object detection. The black parts show the corresponding

position of moving objects. Please notice that the size of the block has great influence on the

detection result. At the present, the size is determined empirically. We find that when there is a

suitable scale, such as 1:8 ∼ 1:10 between the block size and the object size, we can get the better

detection result.

Figure 4.5 shows the result of pixel compensation after we detect the moving blocks. We can

see that in the second image, the pixels of moving object is replaced by average the background

pixels from other images.

However, we still can notice shadow in the second image. The shadow in this frame is caused by

pixel compensation because we have to remove the object from the scene. Actually, the shadow

exists in all frames, but it is covered in other frames by the mosaic constructing process (we

77

Figure 4.5. Pixel Compensation in Moving Objects.

update the mosaic using the most current frame every time when we get a new input). The final

frame appears as a whole in the final mosaic, so the shadow is visible. That is to say, the shadow

in other frames is covered by an entire frame, not pixel, so it is ”seamless”. If we use pixel to

cover the shadow (the original position of the object), as we did in the last frame, it is still visible,

even if we already tried our best to choose the most appropriate pixels. Remember, we still have

illumination change in the sequence, which cause pixel value to change even if the pixel is in the

same position throughout all frames.

Figure 4.6 shows the final static mosaic with moving objects reconstruction. Now the back-

ground is static and the moving object is still moving.

Example No.6 shows one kind of application of our work, which can be called shake removal.

Since we can build a complete static background mosaic of the scene, it does not matter whether

the input video is shaky or not. Then we can retrieve the frames from the mosaic by imagining

that there is a virtual stable camera and build a new video clip using the new frames. After this

frame-scene-frame conversion, we can change shaky video to stable video easily and quickly. The

78

Figure 4.6. Moving Objects Reconstruction on the Static Background Mosaic.

79

Figure 4.7. Shake Removal.

idea of this application can be shown as Figure 4.7.

However, we can only view the result of example No.6 in video format, so we will give the link

for it later. Moreover, example No.6 is also better viewed in video format, and we have some other

test examples on our website too. All these experiment results can be accessed in our website

given by URL:

http://www.comp.nus.edu.sg/∼shenhui/project.htm

All the experiments can be summarized using Table 4.1 (The test platform is Pentium IV 1.6G

with Windows 2000. All examples have 10 frames.).

From Table 4.1, we find that there are quite a few false alarms in coarse detection, because it is

easily influenced by the mosaic alignment. However, our two improvement methods can eliminate

80

Property Ex 1 Ex 2 Ex 3 Ex 4 Ex 5a Ex 5b

Frame

Size

320×240 320×240 320×240 320×240 320×240 320×240

Block

Size

15×15 20×20 20×20 15×15 20×20 25×25

Time

(ms)

16163 14671 18456 15152 17164 17796

Coarse

Blocks

275 152 528 384 482 405

Refined

Blocks

109 75 83 82 119 109

Table 4.1. Quantitative Evaluation of Examples

81

Figure 4.8. Two Input Images.

most of the noise and smoothen the results.

Furthermore, we should point out that the scenes in our examples are similar so that our

algorithm seems not to be applicable to various situations. Actually, this constraint is caused

by our quite simple mosaic construction method. It requires the scene to be almost planar and

without motion parallax. If we take a look at the following example, where Figure 4.8 is two

selected input images and Figure 4.9 is the static mosaic image, we can find that there are quite a

few misalignments in the mosaic image and the scene is a bit distorted. Therefore, our algorithm

is applicable only to some certain kinds of scenes. One problem in this example is that the scene

is not planar, and object moves not only in X-Y plane, but also in Z direction. One possible

solution is to add zoom parameters in the algorithm to deal with motion parallax situation. Of

course, we can also change to a more complex motion model which we use in mosaic phase to

release the scene limitations in a more general way.

Meanwhile, the objects in the scene should have great contrast with the background. This

assumption is reasonable because otherwise, it is even difficult for human beings to detect the

objects, let alone computer vision techniques.

82

Figure 4.9. Static Mosaic Image.

Therefore, a better mosaicing technique for more complex scenes can help to generalize our

algorithm. Also, we can utilize more parameters to detect the moving objects because we find

the coarse detection still has a long way to go. For example, there are still some noise blocks in

several experiments even after detection refinement, and these noise blocks cause problems again

in later steps.

83

Chapter 5

Conclusion

In this thesis, we designed a system to separate the moving parts from static parts in input video

sequence, then reconstruct the moving parts on the background mosaic which is built from the

static parts. In Chapter 1, we introduced the research background, state our motivation and

describe the problem which we want to solve. Chapter 2 is the literature survey, which provided

the theoretical background of our work. Since our work roughly consists of three parts: static

mosaic, image registration, and motion detection, this chapter was also divided into three sections.

Chapter 3 was the main body of this thesis. We presented the complete methods on how to build

the mosaic, to detect the moving objects, and to reconstruct them on the mosaic background.

We have proposed a novel method to register images on their mosaic which can lead to more

interesting applications. We have then developed a new algorithm for motion detection based on

our mosaic techniques, which is both simple and efficient. Of course, we have implemented our

techniques and tried them on several real videos. The experimental results shown in Chapter 4 are

promising despite the fact that the input videos are with some constraints due to the limitation

84

of our simple algorithms.

The most important contribution of our work is that our new mosaic technique is able to retain

all the information in dynamic scenes, especially the motion, which is usually omitted in past work.

However, our work is only a preliminary step towards the development of the complete system

and the accurate theory. All the results should be evaluated with more accurate mathematical

parameters instead of dependent on human feelings. Moreover, we can apply more advanced basic

mosaic techniques in our first step to enable the complete algorithm to deal with more complicated

scenes. Actually, the main objective of our work is simple and effective, so there are limitations

in almost every step due to the simple algorithms we used.

In our mind, the perfect system should be able to process various kinds of input videos au-

tomatically, which may be with different camera motion and much object motion, separate the

moving objects along their accurate boundaries, and reconstruct them on the final background

mosaic at their accurate positions. If this kind of system is the eventual goal, there are quite a

few interesting and challenge problems for future study:

1. Automatic correspondence establishment in a dynamic scene

- To construct mosaic, the first step is to find correspondence between images as the

information for alignment. If the scene is static, many techniques can be applied.

However, important problem rises here if the scene is dynamic with object motion.

Even if we still can find correspondence within the region of moving objects, this

information cannot be used to build mosaic, otherwise it will cause alignment

errors. Therefore, we should have a method to tell the difference between true

85

correspondence and false correspondence and how to select the correct one.

2. Illumination change in coarse registration

- As we described before, we do coarse frame registration as a preparation step

before motion detection. However, if the illumination in the scene changes during

camera shooting, it will cause additional “alignment error” in the registration.

The cause is like the following: The final mosaic is always updated until the last

frame, so that if we register successive frames in the middle part of the stream, the

illumination change will be great enough between them and the mosaic to cause

detectable different part in difference picture, which may be wrongly detected as

moving objects later. To solve this problem, maybe we can compensate for the

illumination before frame registration according to its change.

3. Moving object detection along its accurate shape

- Our present method for motion detection is based on block, so that we cannot

follow the real shape of the objects, which also causes problems in later steps.

Of course, we cannot change the block-based method to pixel-based, expecting

that this can solve the problem. Pure pixel-based method will be prone to noise

and difficult to group in object regions. Actually, some techniques are already

available for accurate edge detection for moving objects, such as [33], but it is too

complicated to be incorporated. We want to have a more simple one on the same

basis of ours but presenting accurate shape.

4. Sequence-to-sequence alignment

86

- Presently, our method is applied to video sequence within one camera shot, because

it is easy to locate and track the moving objects within the same shot. However,

it would be better if we can automatically align two sequences in the same scene

from different shot, and still be able to detect and reconstruct the moving objects

at their correct positions.

5. Extension of availability

- Apply our algorithm to more general videos. If some of the above problems can

be solved so that there are less limitations, we can extend the availability of our

algorithm to videos from more complicated scenes or with more complicated camera

motion.

The long-term goal of our research is to build novel video descriptors, not only the mosaic,

but also in other formats. Following this explanation, in our present work, we only separate two

layers and make a few descriptors such as background mosaic and moving object regions. From

this starting point, it is possible to extract more information from videos and make more kinds

of descriptors. The more interesting thing we can imagine is that: we can make an intelligent

video analysis and processing system. We tell it what we want to know from a video, then it can

analyze our requirements, extract the necessary descriptors automatically, and finally combine

these descriptors together to make a new representation of video, other than the traditional time-

based frame stream, according to the requirements of users and applications.

87

Bibliography

[1] A.Zisserman and D.Capel. Automated mosaicing with super-resolution zoom. In Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition, pages 120–128, 1998.

[2] Jorge Badenas, Jose Miguel Sanchiz, and Filiberto Pla. Motion-based segmentation and

region tracking in image sequences. Journal of Pattern Recognition, 34(3):661–670, 2001.

[3] Berthold.K.P.Horn and Brian.G.Schunck. Determining optical flow. Artificial Intelligence,

17:185–203, 1981.

[4] Lisa Gottesfeld Brown. A survey of image registration techniques. ACM Computing Surveys,

24(4):325–376, December 1992.

[5] H.T.Nguyen, M.Worring, and A.Dev. Detection of moving objects in video using a robust

motion similarity measure. IEEE Transactions on Image Processing, 9(1):137–141, 2000.

[6] http://tns www.lcs.mit.edu/manuals/mpeg2/.

[7] http://www.behere.com.

[8] http://www.intel.com/research/mrl/research/opencv/.

88

[9] H.Y.Shum and L.W.He. Rendering with concentric mosaic. In ACM SIGGRAPH Computer

Graphics Annual Conference, pages 299–306, CA, USA, August 1999.

[10] H.Y.Shum and R.Szeliski. Panoramic image mosaics. Technical Report MSR-TR-97-23,

Microsoft Research, 1997.

[11] H.Y.Shum and R.Szeliski. Construction of panoramic image mosaics with global and local

alignment. International Journal of Computer Vision, 36(2):101–130, February 2000.

[12] H.Zheng and D.Blostein. Motion-based object segmentation and estimation using the mdl

principle. IEEE Transactions on Image Processing, 4(9):1223–1235, September 1995.

[13] Dae-Sik Jang, Seok-Woo Jang, and Hyung-Il Choi. 2d human body tracking with structural

kalman filter. Journal of Pattern Recognition, 35(10):2041–2049, October 2002.

[14] J.Davis. Mosaics of scenes with moving objects. In Proc. of IEEE International Conference

on CVPR, pages 354–360, Santa Barbara, USA, June 1998.

[15] J.D.Courtney. Automatic video indexing via object motion analysis. Journal of Pattern

Recognition, 30(4):607–625, April 1997.

[16] J.Meehan. Panoramic Photography. Watson-Guptill, 1990.

[17] J.M.Odobez and P.Bouthemy. Video Data Compression for Multimedia Computing, chapter

Chapter 8, Separation of Moving Regions from Background in an Image Sequence Acquired

with a Mobile Camera, pages 295–311. Kluwer Academic Publisher edition, 1997.

89

[18] J.R.Bergen, P.Anandan, K.J.Hanna, and R.Hingorani. Hierarchical model based motion

estimation. In Proc. of Second European Conference on Computer Vision, pages 237–252,

1992.

[19] J.Y.A.Wang and E.H.Adelson. Representing moving images with layers. IEEE Transactions

on Image Processing, 3(5):625–638, September 1994.

[20] Wing Ho Leung and Tsuhan Chen. Compression with mosaic prediction for image-based

rendering applications. In IEEE Internation Conference on Multimedia and Expo, pages

1649–1652, New York, USA, July 2000.

[21] L.McMillan and G.Bishop. Plenoptic modeling: An image-based rendering system. In ACM

SIGGRAPH Computer Graphics Annual Conference, pages 39–46, August 1995.

[22] M.Gelgon and P.Bouthemy. A region-level motion-based graph representation and labeling

for tracking a spatial image region. Journal of Pattern Recognition, 33(4):725–745, April

2000.

[23] M.G.Gonzalez, P.Holifield, and M.Varley. Improved video mosaic construction by accu-

mulated alignment error distribution. In Proc. of 9th British Machine Vision Conference,

http://www.bmva.ac.uk/bmvc/1998/papers/d024/h024.htm, 1997.

[24] M.Irani, B.Rousso, and S.Peleg. Computing occluding and transparent motions. International

Journal of Computer Vision, 12(1):5–16, January 1994.

[25] M.Irani and P.Anandan. A unified approach to moving object detection in 2d and 3d scenes.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(6):577–589, June 1998.

90

[26] M.Irani and P.Anandan. Video indexing based on mosaic representation. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 86(5):905–921, May 1998.

[27] M.Irani, P.Anandan, J.Bergen, R.Kumar, and S.Hsu. Efficient representations of video se-

quences and their applications. Signal Processing:Image Communication, 8:327–351, 1996.

[28] M.Irani, P.Anandan, and S.Hsu. Mosaic based representation of video sequences and their

applications. In Proc. of International Conference on Computer Vision, pages 605–611,

Boston, USA, June 1995.

[29] M.Levoy and P.Hanrahan. Light field rendering. In ACM SIGGRAPH Computer Graphics

Annual Conference, pages 31–42, August 1996.

[30] M.Lhuillier, L.Quan, H.Shum, and H.T.Tsui. Relief mosaics by joint view triangulation.

In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA,

December 2001.

[31] P.J.Burt and E.H.Adelson. The laplacian pyramid as a compact image code. IEEE Trans-

actions on Communications, 31:532–540, 1983.

[32] R.C.Jones, D.DeMenthon, and D.S.Doermann. Building mosaics from video using mpeg

motion vectors. In Proc. of 7th ACM Multimedia, pages 29–32, Florida, USA, 1999.

[33] R.Fablet, P.Bouthemy, and M.Gelgon. Moving object detection in color image sequences

using region-level graph labeling. In Proc. 6th IEEE International Conference on Image

Processing, pages 939–943, Kobe, Japan, October 1999.

[34] R.Jain, R.Kasturi, and B.G.Schunck. Machine Vision. McGraw-Hill, 1995.

91

[35] S.E.Chen. Quicktime vr - an image-based approach to virtual environment navigation. In

ACM SIGGRAPH Computer Graphics Annual Conference, number 29, pages 29–38, August

1995.

[36] S.J.Gortler, R.Grzeszczuk, R.Szeliski, and M.F.Cohen. The lumigraph. In ACM SIGGRAPH

Computer Graphics Annual Conference, pages 43–54, August 1996.

[37] Dezhen Song, A.Frank van der Stappen, and Ken Goldberg. Collaborative frame selection:

Exact and distributed algorithms for a networked robotic camera with discrete zoom levels.

Submitted to the International Journal of Robotics Research, May 2003.

[38] Richard Szeliski and Heung-Yeung Shum. Creating full view panoramic image mosaics and

environment maps. In ACM SIGGRAPH Computer Graphics Annual Conference, number 31,

pages 251–258, 1997.

[39] T.Wong, P.Heng, S.Or, and W.Ng. Image-based rendering with controllable illumination.

In Proceedings of the 8th Eurographics Workshop on Rendering, pages 13–22, France, June

1997.

[40] U.Bhosle, S.Chaudhuri, and S.D.Roy. The use of geometric hashing for automatic image

mosaicing. In Proc. of National Conference on Communications, pages 533–537, India, 2002.

[41] U.Bhosle, S.Chaudhuri, and S.D.Roy. Background mosaicing for scenes with moving objects.

In Proc. of National Conference on Communications, pages 85–89, India, 2003.

[42] P.Ehran Y.Altunbasak and A.Murat Tekalp. Region-based parametric motion segmentation

using color information. Graphical Models and Image Processing, 60(1):13–23, January 1998.

92

