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Abstract

Recently there has been much effort in using the Dixon method to construct sparse resultants.

In this thesis, we present new loose entry formulas for the Dixon matrix and introduce the concept

of exposed points for bidegree monomial supports. They combine to produce important results:

the rows and columns associated with exposed points have a very simple description, and rows and

columns near exposed points can be greatly simplified. These results provide useful information

for the determination of maximal minors (numerators of the quotient sparse resultant) and exact

information for the identification of extraneous factors (denominators of the quotient sparse resul-

tant). In particular, for most corners with three exposed points, the thesis pinpoints the rows or

columns generating the expected extraneous factors.

Keywords:

Dixon Matrix, Loose Entry Formulas, Exposed Points, Extraneous Factors, Reduction

of Dixon Determinant Entries, Sparse Resultant
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Summary

The thesis consists of seven chapters.

Chapter 1 introduces the thesis. After giving the motivations for constructing sparse resultants

using the Dixon method, it lists the main contributions of the thesis. These contributions can be

attributed to three important findings and concepts: loose entry formulas, exposed points, and

reductions of rows and columns. These are needed to identify extraneous factors for corners with

three exposed points.

Chapter 2 lists the mathematical notations, the Dixon method, and presentation conventions

used throughout this thesis. In addition, it proves a basic but very important theorem. This

theorem gives the exact row and column supports after the removal of some monomial points from

the corners of a rectangle monomial support.

Chapter 3 presents four loose entry formulas for the Dixon matrix and the corner-specific sim-

plified formulas derived from them. All these entry formulas have uniform summation bounds, this

property is indispensable in investigating the properties of Dixon matrix. We end the chapter by

comparing these four new loose entry formulas with an existing concise entry formula.

Chapter 4 defines exterior points, exposed points (singular or otherwise), and corner cutting.

These concepts lead to five important properties of the Dixon matrix: (1) inheritance of exterior

points; (2) inheritance of non-singular exposed points; (3) non-inheritance of singular exposed

points; (4) bracket factors from three exposed-point rows or columns; (5) linear dependence of

four or more exposed-point rows or columns. In addition, based on the number of exposed points

and current research results, we are able to classify the corner cut monomial supports into three

categories: (1) at most two exposed points at a corner; (2) at most three exposed points at a corner;

(3) any number of exposed points at a corner. For each category, one or more theorems are proved

and some conjectures are proposed.

v
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Chapter 5 examines a special corner cutting situation in which there are exactly three exposed

points at a corner. Under this condition, there are six cases covering about 72% of the possibilities.

The major result in this chapter is that rows and columns near exposed points can be reduced

using basic row and column determinant operations. For the first two cases, we are able to identify

rows or columns producing the expected extraneous factors after the reduction. For the remaining

four cases, the extraneous factors are generated from the rows and columns that intersect at zero

entries after the reduction.

Chapter 6 proposes two conjectures. To deal with the remaining 28% of the possibilities of a

corner with three exposed points, an algorithm is proposed to identify the rows or columns gener-

ating the expected extraneous factors. The other conjecture speculates the linear independence of

the rows or the columns proposed by the first conjecture. This is needed to ensure that the Dixon

matrix is indeed the only maximal minor.

Chapter 7 concludes this thesis and states two more open problems. The resolution of the

conjectures in Chapter 6 and the two problems here would completely solve the sparse resultant

problem for corners having exactly three exposed points. The first open problem concerns the

generation of the extraneous factors from the rows and columns specified in Conjecture 3. The

second open problem is on the validity of the results when degeneracy occurs.



Chapter 1

Introduction

Background. Polynomial systems are widely used in many areas like geometric reasoning, im-

plicitization, computer vision, robotics and kinematics. Elimination is an important approach in

polynomial system solving [9, 22]. Among the various elimination techniques, the method of re-

sultants stands out for its computational efficiency and its explicit formulation in matrix form

[13]. The Dixon bracket method is a well-known technique for constructing resultants [12]. Recent

research in Dixon resultants include [19, 16, 7].

Contributions. The research of this thesis aims to better understand the construction of sparse

resultants using the Dixon method for three polynomial equations with an unmixed bidegree mono-

mial support. To this end the contributions are

1. the discovery of four loose entry formulas for the Dixon matrix on which the rest of the results

in the thesis depend; (see Theorems 2 and 3)

2. the formalization of the concept of corner cutting;

3. the formalization of the concept of exterior points and their simplification effects on the Dixon

matrix; (see Theorem 1)

4. the introduction of exposed points and their simplification effects on the Dixon matrix; (see

Theorems 4 and 5)

5. the simplification effects of exposed points on the Dixon determinants in terms of reduction

to rows and columns near the exposed points; (see Theorems 14 and 15)

1



CHAPTER 1. INTRODUCTION 2

6. the consequences of corner cutting on the maximal minors of the Dixon matrix; (see Theorem

10)

7. the consequences of corner cutting on generation of the extraneous factors; (see Theorems 9

and 16)

8. the above results lead to a partial proof of a conjecture concerning unmixed bidegree supports

with at most three exposed points at each corner. (see Chapter 5)

In the course of the research many observations have been made and these are formulated as

conjectures in Chapter 6.

The above contributions can be attributed to the following three main discoveries and findings:

Loose Entry Formulas. An entry formula allows the Dixon matrix to be computed efficiently

[5, 3] and is indispensable in deriving properties of the Dixon matrix [14, 15, 16]. While the concise

entry formula given in [1] is good for computing the Dixon matrix, it is not as well suited for

theoretical exploration because to be concise each entry has distinct and complicated summation

bounds and this obscures rather than reveals useful information. It would greatly simplify derivation

if the summation bounds can be the same for the entire matrix or at least for some rows or columns

of the matrix. The thesis answers this need by presenting four loose entry formulas. These entry

formulas have uniform summation bounds for the entire matrix for a canonical, or uncut, bidegree

monomial support. For corner-cut monomial supports, each of these entry formulas become even

simpler for some rows and columns of a particular corner but still maintains the uniform summation

bounds. The tradeoff is that these formulas are loose rather than concise [1] because they may

produce redundant brackets — a bracket that vanishes due to out of range indices or brackets that

cancel mutually. It is gratifying that these loose entry formulas can be obtained quite easily, all we

have to do is simply expand a formal power series a little differently.

Exposed Points. We are interested in finding explicit sparse resultant expressions, as quotients

of determinants in brackets, for three generic bivariate polynomials over an unmixed monomial

support. This motivates the adaptation of Dixon’s method [12] to what we call corner-cut monomial

supports [23, 2]. The classes of monomial supports for which bracket quotient formulas have been

obtained are rectangular corner cutting, corner edge cutting, corner point pasting, and six-point
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isosceles triangular corner cutting [2, 14, 15, 16]. It turns out that instead of characterizing a

monomial support by some geometric properties to deduce what the sparse resultant should be

like, a better and simpler indicator is what we call exposed points.

Exposed points are significant in the formulation of sparse resultants because the entries of rows

and columns of the Dixon matrix associated with exposed points can be described by a simple

loose entry formula. These loose entry formulas show that, with respect to the same monomial

support corner, three exposed point rows or columns will produce a bracket factor and four or more

exposed point rows or columns are linearly dependent. This knowledge is valuable in finding a

maximal minor of the Dixon matrix and determining the corresponding extraneous factors. Unlike

the previous approach in [2, 14, 15, 16], the new approach is more unifying and revealing.

Exposed points also provide a quantitative classification of corner-cut unmixed monomial sup-

ports for the purpose of deducing the sparse resultant quotient formulas. The classification is

based on the number of exposed points at each corner of the monomial support. This quantitative

classification is much more encompassing and illuminating than the previous shape approach of

[2, 14, 15, 16] that relied on the geometrical peculiarities of the monomial supports in deducing the

sparse resultant formulas.

Reduction of Dixon Determinant Entries. It seems too much to hope for a non-hybrid

determinant form sparse resultant [20]. Currently the best that can be done is to have a quotient

determinant form. Thus the determination of extraneous factors (the denominator in the quotient

form) is an open problem in many situations [8]. In particular, the conjecture of [17] deals with

the extraneous factors for the bottom-left corner having three exposed points. This thesis extends

the conjecture to all four corners and proves, in a sense 72% of the conjecture. This is done by

reducing the entries of rows and columns near the exposed points by basic determinant operations.

For some cases only rows or columns are sufficient to generate the expected extraneous factors,

while for other cases both rows and columns that intersect at zero entries are needed to generate

the expected extraneous factors.



Chapter 2

Preliminaries

2.1 Sets

Let a..b denote the set of consecutive integers from a to b inclusively and let a..b× c..d denote the

cartesian product of two sets of consecutive integers. We further abbreviate the product as a× c..d

if a = b and a..b× c if c = d.

For example,

0..1× 0..1 = {0, 1} × {0, 1} = {(0, 0), (0, 1), (1, 0), (1, 1)}. (2.1)

The Minkowski sum between two sets is denoted as:

{(a, b), · · ·} ⊕ {(c, d), · · ·} = {(a + c, b + d), · · ·} (2.2)

and we write (a, b)⊕ {(c, d), · · ·} instead of {(a, b)} ⊕ {(c, d), · · ·}.
Z denotes the set of integers. And Z≥0 denotes the set of non-negative integers.

2.2 Bi-degree Polynomials, Monomial Supports

A polynomial f(s, t) is bi-degree (m,n) in the variables (s, t) if its degree in s and t are m and n

respectively. That is, f(s, t) =
∑m

i=0

∑n
j=0 ai,js

itj .

The monomial support of a polynomial f(s, t) is the set of exponents (i, j) where the coefficients of

the monomial sitj in f is non-zero. The monomial support of a general bi-degree (m,n) polynomial

in (s, t) is thus

Am,n = {0, 1, · · · ,m} × {0, 1, · · · , n} = 0..m× 0..n. (2.3)

4
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2.3 The Dixon Quotient, the Dixon Polynomial and the Dixon
Matrix

In this section we describe the Dixon method of constructing resultants and along the way explain

the notation used in the thesis.

Let f , g, h be bivariate polynomials on the monomial support A ⊆ Am,n:

f(s, t) =
∑

(i,j)∈A
fi,js

itj , g(s, t) =
∑

(i,j)∈A
gi,js

itj , h(s, t) =
∑

(i,j)∈A
hi,js

itj . (2.4)

Their Dixon quotient is

∆(f(s, t), g(α, t), h(α, β)) =

∣∣∣∣∣∣∣∣∣∣

f(s, t) g(s, t) h(s, t)

f(α, t) g(α, t) h(α, t)

f(α, β) g(α, β) h(α, β)

∣∣∣∣∣∣∣∣∣∣
(s− α)(t− β)

. (2.5)

The quotient actually divides completely and becomes the Dixon polynomial

∆(f(s, t), g(α, t), h(α, β)) =
∑

σ,τ,a,b

∆σ,τ,a,bs
σtταaβb. (2.6)

By writing the Dixon polynomial in the matrix form

∆ =
[
· · · sσtτ · · ·

]
D

[
· · · αaβb · · ·

]T

, (2.7)

we obtain the Dixon matrix for f , g, h

D = (∆σ,τ,a,b). (2.8)

The monomials sσtτ and αaβb that appear in the Dixon polynomial are called respectively the row

and column indices of D. Furthermore, the monomial support of ∆ considered as a polynomial in

s, t or α, β is called the row support R or column support C of D respectively.

The classical Dixon resultant is the determinant |D| when A = Am,n. The row and column

supports of the classical Dixon matrix are

Rm,n = 0..m− 1× 0..2n− 1, Cm,n = 0..2m− 1× 0..n− 1. (2.9)

Since the set cardinalities |Rm,n| = |Cm,n| = 2mn, the order of the classical Dixon matrix D is

2mn.
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The coefficient ∆σ,τ,a,b is a sum of brackets, which are 3 × 3 determinants whose entries are

coefficients of f , g, h. To be concise brackets are denoted by 6-tuples:

(i, j, k, l, p, q) =

fi,j gi,j hi,j

fk,l gk,l hk,l

fp,q gp,q hp,q

=

fi,j fk,l fp,q

gi,j gk,l gp,q

hi,j hk,l hp,q

. (2.10)

To conserve space in examples we ignore punctuations; for example, we shorthand

(1, 2, 4, 3, 0, 5) = 124305. (2.11)

Example 1 The Dixon polynomial for A1,1 = 0..1× 0..1 is:

t t
t t

∆ = RDC =
[

1 t
] [

001001 001011
001101 011011

] [
1
α

]
. (2.12)

ut

In expressions involving matrix multiplication, we let

(i, j) =
[

fi,j gi,j hi,j

]
or

[
fi,j gi,j hi,j

]T

. (2.13)

Similarly the vector cross product (k, l)×(p, q) is treated either as a row or a column and is denoted

with 4-tuples:

(k, l, p, q) =




gk,l hk,l

gp,q hp,q

hk,l fk,l

hp,q fp,q

fk,l gk,l

fp,q gp,q


 or its transpose. (2.14)

This notational polymorphism is very helpful because now we can express a bracket as a product

of matrices in two ways:

(i, j, k, l, p, q) = (i, j)(k, l, p, q) = (k, l, p, q)(i, j). (2.15)

This flexibility will greatly facilitate derivations involving brackets.
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2.4 Presentation Convention

We want to state similar conditions at all the four corner (0, 0), (m, 0), (m,n), (0, n) of Am,n and

then derive similar results in parallel for all the four corners. To do so concisely and make clear at

a glance regarding the applicable corner, the following convention is adopted — we write

If
P0,n Pm,n

P0,0 Pm,0

then
Q0,n Qm,n

Q0,0 Qm,0

to mean if Pi,j then Qi,j where (i, j), i = 0,m and j = 0, n.

To relate the points in R and C to the points in A, we define the following convention:

Given the monomial point (x, y) ∈ A, then (x′, y′) represents its corresponding monomial point

in R given by

(0, n− 1)⊕ (x, y) (−1, n− 1)⊕ (x, y)

(0, 0)⊕ (x, y) (−1, 0)⊕ (x, y)
(2.16)

and (x′′, y′′) represents the corresponding monomial point in C given by

(0,−1)⊕ (x, y) (m− 1,−1)⊕ (x, y)

(0, 0)⊕ (x, y) (m− 1, 0)⊕ (x, y)
(2.17)

Let S = a..b where a, b are two non-negative integers, then S∗ = −b..− a and

(S1 × S2)∗ =
S1 × S∗2 S∗1 × S∗2

S1 × S2 S∗1 × S2

. (2.18)

2.5 The Row/Column Supports of (i, j, k, l, p, q)

The following proposition gives the rows and columns in which the bracket (i, j, k, l, p, q) appears.

In the proposition,

R(i, j, k, l, p, q) = {(σ, τ)|(i, j, k, l, p, q) is a term of ∆σ,τ,a,b for some (a, b)},

C(i, j, k, l, p, q) = {(a, b)|(i, j, k, l, p, q) is a term of ∆σ,τ,a,b for some (σ, τ)}.

Proposition 1 Let i ≤ k ≤ p. The row and column supports of the bracket (i, j, k, l, p, q) in D are

R(i, j, k, l, p, q) = (0, j)⊕Q ∪ (0, q)⊕ J (2.19)

and
C(i, j, k, l, p, q) = (p, 0)⊕Q ∪ (i, 0)⊕ J (2.20)
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where

Q = i..k − 1×min(q, l).. max(q, l)− 1,

J = k..p− 1×min(j, l).. max(j, l)− 1.

2.6 The Row/Column Supports of D for when A = Am,n\∪i=0,m;j=0,nEi,j

For the proofs of most of the theorems presented in Chapters 4 and 5, it is necessary to know exactly

what the row and column supports are like after corner cutting has been applied to a monomial

support Am,n. The following theorem describes the exact simplification effects of exterior points

to the Dixon matrix.

Theorem 1 Let the set of monomial supports removed at the four corners (0, 0), (m, 0), (m,n), (0, n)
be E0,0, Em,0, Em,n, E0,n respectively with:

E0,n = 0..t× l..m \ ∪N
i=1ti..t× l..li Em,n = t..m× r..n \ ∪N

i=1t..ti × r..ri

E0,0 = 0..b× 0..l \ ∪N
i=1bi..b× li..l Em,0 = b..m× 0..r \ ∪N

i=1b..bi × ri..r
(2.21)

Note the notations for a corner are not related to the same notations in other corners and

0 < b1 < . . . < bN < b, 0 < l1 < . . . < lN < l b > b1 > . . . > bN > 0, 0 < l1 < . . . < lN < l
0 < b1 < . . . < bN < b, l > l1 > . . . > lN > 0 b > b1 > . . . > bN > 0, l > l1 > . . . > lN > 0

(2.22)

The row support R of D is

R = Rm,n \ (0, n− 1) ⊕ E0,n (−1, n− 1) ⊕ Em,n

(0, 0) ⊕ E0,0 (−1, 0) ⊕ Em,0
(2.23)

and the column support C of D is

C = Cm,n \ (0,−1) ⊕ E0,n (m− 1,−1) ⊕ Em,n

(0, 0) ⊕ E0,0 (m− 1, 0) ⊕ Em,0
. (2.24)

Proof

Consider the points:

(0, l − 1), · · · , (ti, li), · · · , (t + 1, n) (m, r − 1), · · · , (ti, ri), · · · , (t− 1, n)

(0, l + 1), · · · , (bi, li), · · · , (b + 1, 0) (m, r + 1), · · · , (bi, ri), · · · , (b− 1, 0)
. (2.25)

Let (i, j, k, l, p, q) be the bracket

(0, l − 1, ti, li, t + 1, n) (m, r − 1, ti, ri, t− 1, n)

(0, l + 1, bi, li, b + 1, 0) (m, r + 1, bi, ri, b− 1, 0)
(2.26)

then by Proposition 1, row support R(i, j, k, l, p, q) contains the following subset:

(0, n− 1) ⊕ ti..t× l..li (−1, n− 1) ⊕ t..ti × r..ri

(0, 0) ⊕ bi..b× li..l (−1, 0) ⊕ b..bi × ri..r
(2.27)
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and the column support C(i, j, k, l, p, q) contains the subset:

(0,−1) ⊕ ti..t× l..li (m− 1,−1) ⊕ t..ti × r..ri

(0, 0) ⊕ bi..b× li..l (m− 1, 0) ⊕ b..bi × ri..r
. (2.28)

So the rows indexed by

Re =
(0, n− 1) ⊕ ∪N

i=1ti..t× l..li (−1, n− 1) ⊕ ∪N
i=1t..ti × r..ri

(0, 0) ⊕ ∪N
i=1bi..b× li..l (−1, 0) ⊕ ∪N

i=1b..bi × ri..r
(2.29)

and the columns indexed by

Ce =
(0,−1) ⊕ ∪N

i=1ti..t× l..li (m− 1,−1) ⊕ ∪N
i=1t..ti × r..ri

(0, 0) ⊕ ∪N
i=1bi..b× li..l (m− 1, 0) ⊕ ∪N

i=1b..bi × ri..r
(2.30)

are nonzero.

Furthermore, from [2] it is already known that the rows of D indexed by

Rr = Rm,n \
(0, n− 1) ⊕ 0..t× l..n (−1, n− 1) ⊕ t..m× r..n

(0, 0) ⊕ 0..b× 0..l (−1, 0) ⊕ b..m× 0..r
(2.31)

and the columns D indexed by

Cr = Cm,n \
(0,−1) ⊕ 0..t× l..n (m− 1,−1) ⊕ t..m× r..n

(0, 0) ⊕ 0..b× 0..l (m− 1, 0) ⊕ b..m× 0..r
(2.32)

are non-zero.

According to the proofs in [2], it can easily deduced that the corner cutting given in (2.21) is

inherited by both row and column supports. Since

R = Re ∪Rr, C = Ce ∪ Cr. (2.33)

Thus R is the row support of D and C is the column support of D. This finishes the proof.

Q.E.D

The following example uses the above theorem to find the row and column support after the

corner cutting:

Example 2 Given the monomial support A, we can find the row support R and column support C
are:
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t
t

t

0, 0 3, 0

0, 3 3, 3

t
t
t t t

t t t
t
t

A R C
ut



Chapter 3

Loose Entry Formulas

Formal power series are used to derive four entry formulas for the Dixon matrix. With an uncut

monomial support, these entry formulas have uniform summation bounds for the entire Dixon

matrix. With a corner-cut monomial support, each of the four loose entry formulas simplifies

greatly for some rows and columns associated with a particular corner but still maintains uniform

summation bounds. Uniform summation bounds make the entry formulas loose because redundant

brackets that eventually vanish are produced. But uniform summation bounds reveal valuable

information about the properties of the Dixon matrix for a corner-cut monomial support.

This chapter consists of three sections. Section 3.1 presents the four loose entry formulas for

the Dixon matrix in two theorems. Section 3.2 customizes the entry formulas for some rows and

columns when the monomial support undergoes corner cutting. Section 3.3 gives a comparison

between the concise entry formula in [1] and the loose entry formulas.

3.1 Four Loose Entry Formulas for Uncut Monomial Supports

The denominator of the Dixon quotient (2.5) can be regarded as a formal power series. Four ways

of expanding this formal power series lead to four equivalent loose entry formulas that are different

in form.

Theorem 2 The Dixon matrix entry indexed by (sσtτ , αaβb) is

∆σ,τ,a,b =
∞∑

u=0

∞∑

v=0

m∑

k=0

n∑

l=0

B (3.1)

where

B = (σ + u + 1, τ + v + 1− l, k, l, a− u− k, b− v), or (3.2)
B = −(σ − u, τ + v + 1− l, k, l, a + u + 1− k, b− v), or (3.3)

11
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B = (σ − u, τ − v − l, k, l, a + u + 1− k, b + v + 1), or (3.4)
B = −(σ + u + 1, τ − v − l, k, l, a− u− k, b + v + 1) (3.5)

Proof

The entry formulas can be derived in parallel simply by expanding the quotient in the Dixon

quotient four ways in terms of
s

α
or

α

s
and

t

β
or

β

t
:

1
(s− α)(t− β)

= −
∞∑

u=0

αu

su+1

∞∑

v=0

tv

βv+1
=

∞∑

u=0

su

αu+1

∞∑

v=0

tv

βv+1

=
∞∑

u=0

αu

su+1

∞∑

v=0

βv

tv+1
= −

∞∑

u=0

su

αu+1

∞∑

v=0

βv

tv+1
.

(3.6)

But ∣∣∣∣∣∣∣∣∣∣

f(s, t) g(s, t) h(s, t)

f(α, t) g(α, t) h(α, t)

f(α, β) g(α, β) h(α, β)

∣∣∣∣∣∣∣∣∣∣

=
∑

i,j,k,l,p,q

(i, j, k, l, p, q)sitj+lαk+pβq (3.7)

Thus, the Dixon polynomial can be written in any of the four expansions:

∆ = =
∑

i,j,k,l,p,q

∑
u,v

(i, j, k, l, p, q)si−u−1tj+l−v−1αk+p+uβq+v

= −
∑

i,j,k,l,p,q

∑
u,v

(i, j, k, l, p, q)si+utj+l−v−1αk+p−u−1βq+v

=
∑

i,j,k,l,p,q

∑
u,v

(i, j, k, l, p, q)si+utj+l+vαk+p−u−1βq−v−1

= −
∑

i,j,k,l,p,q

∑
u,v

(i, j, k, l, p, q)si−u−1tj+l+vαk+p+uβq−v−1 .

By comparing the coefficients of

∆ =
∑

σ,τ,a,b

∆σ,τ,a,bs
σtταaβb (3.8)

to each of the four expansions, we obtain respectively the four equations given by (3.2), (3.3), (3.4),

(3.5).

Q.E.D

The above entry formulas will generate three types of redundant brackets:

1. self vanishing brackets such as (i, j, i, j, p, q),

2. mutually canceled brackets such as (i, j, k, l, p, q) + (i, j, p, q, k, l), and
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3. out of range brackets (i, j, k, l, p, q) with (i, j), (k, l), or (p, q) 6∈ Am,n. A bracket involving

out of range indices is zero since (i, j) 6∈ Am,n means fi,j = gi,j = hi,j = 0.

For practical computation, we have to shrink the ranges of u and v in the above entry formulas:

Theorem 3 The Dixon matrix entry indexed by (sσtτ , αaβb) is

∆σ,τ,a,b =
m−1∑

u=0

n−1∑

v=0

m∑

k=0

n∑

l=0

B (3.9)

where either B = (i, j, k, l, p, q) which can be (3.2) or (3.4), or B = −(i, j, k, l, p, q) which can be
(3.3) or (3.5).

Proof

When i = σ + u + 1, to have (i, j) ∈ Am,n we need

σ + u + 1 ≤ m ⇒ u ≤ m− 1 . (3.10)

When i = σ − u, to have (i, j) ∈ Am,n, we need

σ − u ≥ 0 ⇒ u ≤ σ ≤ m− 1 . (3.11)

Consequently, the upper bound of u is reduced from ∞ to m− 1.

Similarly, when q = b + v + 1, to have (p, q) ∈ Am,n we need

b + v + 1 ≤ n ⇒ v ≤ n− 1 . (3.12)

When q = b− v, to have (p, q) ∈ Am,n we need

b− v ≥ 0 ⇒ v ≤ b ≤ n− 1 . (3.13)

Consequently, the upper bound of v is reduced from ∞ to n− 1.

Q.E.D

Example 3 We use Theorem 3 to compute the Dixon matrix D in Example 1 in four ways.
Using (3.2), (3.3), (3.4), (3.5), we have respectively

D1 =

[ ∑1
k=0

∑1
l=0(1, 1− l, k, l,−k, 0)

∑1
k=0

∑1
l=0(1, 1− l, k, l, 1− k, 0)∑1

k=0

∑1
l=0(1, 2− l, k, l,−k, 0)

∑1
k=0

∑1
l=0(1, 2− l, k, l, 1− k, 0)

]

=

[
100100 110010
110100 110110

]
, (3.14)
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D2 =

[
−∑1

k=0

∑1
l=0(0, 1− l, k, l, 1− k, 0) −∑1

k=0

∑1
l=0(0, 1− l, k, l, 2− k, 0)

−∑1
k=0

∑1
l=0(0, 2− l, k, l, 1− k, 0) −∑1

k=0

∑1
l=0(0, 2− l, k, l, 2− k, 0)

]

=

[
−011000 −001110
−011100 −011110

]
, (3.15)

D3 =

[ ∑1
k=0

∑1
l=0(0,−l, k, l, 1− k, 1)

∑1
k=0

∑1
l=0(0,−l, k, l, 2− k, 1)∑1

k=0

∑1
l=0(0, 1− l, k, l, 1− k, 1)

∑1
k=0

∑1
l=0(0, 1− l, k, l, 2− k, 1)

]

=

[
001001 001011
001101 011011

]
, (3.16)

D4 =

[ ∑1
k=0

∑1
l=0−(1,−l, k, l,−k, 1)

∑1
k=0

∑1
l=0−(1,−l, k, l, 1− k, 1)∑1

k=0

∑1
l=0−(1, 1− l, k, l,−k, 1)

∑1
k=0

∑1
l=0−(1, 1− l, k, l, 1− k, 1)

]

=

[
−100001 −100011
−110001 −100111

]
. (3.17)

From the properties of determinants, it is obvious that D = D1 = D2 = D3 = D4. ut

3.2 Corner-Specific Simplification

The following theorems describes the corner-specific simplification effects for the entries of some

rows and columns when corner cutting is applied.

Theorem 4 Let (x, y) ∈ Am,n and cutting C be applied to Am,n such that (x, y) ∈ A ⊆ Am,n \ C
with C given by

0..x× y..n \ {(x, y)} x..m× y..n \ {(x, y)}
0..x× 0..y \ {(x, y)} x..m× 0..y \ {(x, y)} . (3.18)

Then the entries of the rows indexed by (x′, y′) given by

(x, y)⊕ (0, n− 1) (x, y)⊕ (−1, n− 1)
(x, y)⊕ (0, 0) (x, y)⊕ (−1, 0)

(3.19)

are ∆x′,y′,a,b given by

−
m∑

k=0

(x, y, k, n, a + 1− k, b)
m∑

k=0

(x, y, k, n, a− k, b)

m∑

k=0

(x, y, k, 0, a + 1− k, b + 1) −
m∑

k=0

(x, y, k, 0, a− k, b + 1)
. (3.20)

Proof

Apply the entry formula in Theorem 3 and choose the bracket B in the formula to be

Equation (3.3) Equation (3.2)

Equation (3.4) Equation (3.5)
(3.21)
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After substituting (σ, τ) = (x′, y′) into B, the first ordered pair of B becomes

(x− u, y + n + v − l) (x + u, y + n + v − l)

(x− u, y − v − l) (x + u, y − v − l)
. (3.22)

To have this ordered pair not in C, we need

−u ≥ 0, n + v − l ≤ 0 u ≤ 0, n + v − l ≤ 0

−u ≥ 0,−v − l ≥ 0 u ≤ 0,−v − l ≥ 0
(3.23)

Thus,

u = v = 0, l = n u = v = 0, l = n

u = v = l = 0 u = v = l = 0
(3.24)

Substituting the values of u, v, l into the entry formula we obtain the row entry formulas (3.20).

Q.E.D

Theorem 5 Let (x, y) ∈ Am,n. If corner cutting C (3.18) is applied, then the entries of the column
indexed by (x′′, y′′) given as

(x, y)⊕ (0,−1) (x, y)⊕ (m− 1,−1)
(x, y)⊕ (0, 0) (x, y)⊕ (m− 1, 0)

(3.25)

are ∆σ,τ,x′′,y′′ given as

−
n∑

l=0

(σ + 1, τ − l, 0, l, x, y)
n∑

l=0

(σ, τ − l,m, l, x, y)

n∑

l=0

(σ + 1, τ + 1− l, 0, l, x, y) −
n∑

l=0

(σ, τ + 1− l, m, l, x, y)
(3.26)

Proof

Apply the entry formula in Theorem 3 and choose the bracket B in the formula to be

Equation (3.5) Equation (3.4)

Equation (3.2) Equation (3.3)
(3.27)

After substituting (a, b) = (x′′, y′′) into B, the last ordered pair of B becomes:

(x− u− k, y + v) (x + u + m− k, y + v)

(x− u− k, y − v) (x + u + m− k, y − v)
(3.28)

To have this ordered pair not in C, we need

−u− k ≥ 0, v ≤ 0 u + m− k ≤ 0, v ≤ 0

−u− k ≥ 0,−v ≥ 0 u + m− k ≤ 0,−v ≥ 0
(3.29)
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Thus,

u = v = k = 0 u = v = 0, k = m

u = v = k = 0 u = v = 0, k = m
(3.30)

Substituting the values of u, v, k into the entry formula, we obtain the column entry formulas

(3.26).

Q.E.D

Remark 1 Monomial points like (x, y) discussed in Theorems 4 and 5 are called exposed points.
They will be defined formally in Chapter 4. Their significance, besides the simplification effects
mentioned in the theorems, will be discussed in Chapter 4.

The following examples illustrate the row and column loose entry formulas (3.20), (3.26) for a

corner-cut monomial support.

Example 4 Consider the monomial support A = A2,2:

t t t
t t t
t t t

0, 0 2, 0

0, 2 2, 2

Take (x, y) = (2, 2). It can be easily seen that (2, 2) satisfies the cutting condition (3.18) for the
top right corner with C = ∅.

Using formulas (3.20) and (3.26) we can easily calculate the row indexed by (1, 3) = (2, 2)⊕(−1, 1)
and the column indexed by (3, 1) = (2, 2)⊕ (1,−1) respectively:

D(s1t3, αaβb) =
2∑

k=0

(2, 2, k, 2, a− k, b) (3.31)

D(sσtτ , α3β1) =
2∑

l=0

(σ, τ − l, 2, l, 2, 2). (3.32)

Substituting (a, b) = (3, 1) into Equation (3.31) and (σ, τ) = (1, 3) into Equation (3.32), we
obtain the value of the entry D(s1t3, α3β1) in two ways:

2∑

k=0

(2, 2, k, 2, 3− k, 1) = 220231 + 221221 + 222211 = 221221, (3.33)

2∑

l=0

(1, 3− l, 2, l, 2, 2) = 132022 + 122122 + 112222 = 122122. (3.34)

Note that brackets 220231 = 132022 = 0 since the indices (3, 1) 6∈ A, (1, 3) 6∈ A; and the brackets
222211 = 112222 = 0 because they have two identical rows (or columns). ut

Example 5 Consider the following monomial support A ⊆ A3,3:
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t
t

t
t t

t
t

t
t

0, 0 3, 0

0, 3 3, 3

It is easy to check that the sets {(1, 0), (2, 1), (3, 2)} and {(0, 1), (2, 3)} satisfy the cutting condi-
tions (3.18) for the bottom right and top left corners respectively. Thus the 3×2 sub-matrix formed
with the rows indexed by

{(1, 0), (2, 1), (3, 2)} ⊕ (−1, 0) = {(0, 0), (1, 1), (2, 2)} (3.35)

and the the columns indexed by

{(0, 1), (2, 3)} ⊕ (0,−1) = {(0, 0), (2, 2)}

can be computed in two ways.
Using the row entry formula (3.20) for the bottom right corner, we have:

S1 =



−∑3

k=0(1, 0, k, 0,−k, 1) −∑3
k=0(1, 0, k, 0, 2− k, 3)

−∑3
k=0(2, 1, k, 0,−k, 1) −∑3

k=0(2, 1, k, 0, 2− k, 3)
−∑3

k=0(3, 2, k, 0,−k, 1) −∑3
k=0(3, 2, k, 0, 2− k, 3)


 (3.36)

Using the column entry formula (3.26) for the top left corner, we have:

S2 =



−∑3

l=0(1, 0− l, 0, l, 0, 1) −∑3
l=0(1, 0− l, 0, l, 2, 3)

−∑3
l=0(2, 1− l, 0, l, 0, 1) −∑3

l=0(2, 1− l, 0, l, 2, 3)
−∑3

l=0(3, 2− l, 0, l, 0, 1) −∑3
l=0(3, 2− l, 0, l, 2, 3)


 (3.37)

A simple calculation shows that

S1 =



−100001 −100023
−210001 −210023
−320001 −320023


 = S2. (3.38)

ut

3.3 Comparison of Loose Entry Formulas and Concise Entry For-
mula

The loose entry formulas presented in this chapter have very simple summation bounds:

∆σ,τ,a,b =
m−1∑

u=0

n−1∑

v=0

m∑

k=0

n∑

l=0

B
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where the bracket B can be any one of (3.2), (3.3), (3.4), (3.5), this is in sharp contrast with the

complicated summation bounds in the concise entry formula given in [1]:

∆σ,τ,a,b =
min(a,m−1−σ)∑

u=0

min(b,2n−1−τ)∑

v=0

min(m,a−u)∑

k=max(0,a−u−σ)

min(n,τ+1+v)∑

l=max(b+1,τ+1+v−b)

B

+
min(a,m−1−σ)∑

u=0

min(b,2n−1−τ)∑

v=0

min(σ,a−u)∑

k=max(0,a−u−m)

min(n,τ+v−b)∑

l=max(b+1,τ+1+v−n)

B

where B is given by formula (3.2). Even more significant is that when cutting of the types in

Theorems 4, 5 are applied the entry formulas for certain rows and columns further simplify such

that only one summation bound, instead of four, remains.

This single-uniform summation bound form is very helpful for discovering properties of the

Dixon matrix. For example, with Theorem 4, we immediately see that the row associated with

the monomial point (x, y) defined by (3.18) contains the monomial point (x, y) in every bracket of

the sum. This observation, together with a single-uniform summation bound, leads to important

conclusions concerning the linear dependence of and the bracket factors produced by some rows

and columns. More details will be discussed in Chapter 4.

The loose entry formulas are very convenient for deriving theoretical results, but when computing

the Dixon entry it is better to use the concise entry formula as it produces no redundant brackets.

The total number of brackets in the Dixon matrix for bidegree polynomial [1] is

m(m + 1)2(m + 2)n(n + 1)2(n + 2)
36

but with the loose entry formulas the total number of brackets produced is

4m3(m + 1)n3(n + 1) .

Thus it is almost one hundred times faster to compute the Dixon matrix using the concise entry

formula than using a loose entry formula.



Chapter 4

Exposed Points

We introduce the concept of exposed points. They are crucial in the construction of explicit sparse

resultant quotients using the Dixon method. This is because rows and columns of the Dixon

matrix that are associated with exposed points possess simple matrix entries. Consequently we

know exactly when these rows and columns will be linearly dependent — a knowledge helpful

in finding a maximal minor of the Dixon matrix, and what factors these rows and columns will

produce — a knowledge helpful in determining the extraneous factors corresponding to the chosen

maximal minor. Furthermore, the number of exposed points with respect to a monomial support

corner serves as a key for classifying corner-cut unmixed monomial supports for which explicit

sparse resultant quotients are to be constructed.

This chapter is organized as follows. Section 4.1 defines exterior points, exposed points, and

corner cutting. Section 4.2 proves the important properties of exposed points. Section 4.3 classifies

corner cut monomial supports with several theorems and conjectures.

4.1 Exterior Points, Exposed Points, and Corner Cutting

In this section we introduce exterior points and describe how exterior points lead to exposed points

and corner cutting.

4.1.1 Exterior Points

Exterior points are defined with respect to corners.

Definition 1 A point (x, y) ∈ Am,n is an exterior point of the monomial support A ⊆ Am,n with
respect to a corner if to that corner we have

(0..x× y..n) ∩ A = ∅ (x..m× y..n) ∩ A = ∅
(0..x× 0..y) ∩ A = ∅ (x..m× 0..y) ∩ A = ∅ . (4.1)

19
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Intuitively, a point (x, y) ∈ Am,n is an exterior point with respect to a corner if every monomial

point in the rectangle with (x, y) and the corner as diagonal is cut (removed from Am,n). [8] calls

the set of exterior points as support complement of A. Here we emphasize individual exterior points

and the association of an exterior point to a corner.

Example 6 Consider the monomial support A = {(1, 0), (0, 1), (3, 3)} ⊆ A3,3:

t
t

t

0, 0 3, 0

0, 3 3, 3

The sets of exterior points with respect to the four corners (0, 0), (3, 0), (3, 3), (0, 3) are respectively:

0..2× 2..3 ∅
{(0, 0)} 2..3× 0..2

(4.2)

ut

4.1.2 Exposed Points

Next we define the concept of exposed points with respect to a corner.

Definition 2 A point (x, y) ∈ Am,n is an exposed point of the monomial support A ⊆ Am,n with
respect to a corner if to that corner we have

(0..x× y..n) ∩ A = {(x, y)} (x..m× y..n) ∩ A = {(x, y)}
(0..x× 0..y) ∩ A = {(x, y)} (x..m× 0..y) ∩ A = {(x, y)} (4.3)

Intuitively, a point (x, y) ∈ Am,n is an exposed point with respect to a corner if all monomial

points (i, j) in the rectangle with (x, y) and the corner as diagonal are cut (removed from Am,n)

except (x, y). Exposed points are called support hall vertices in [8]. Again here we stress the

association of an exposed point to a corner.

Example 7 Consider the monomial support A ⊆ A4,3, |A| = 10:

tt t t
t t t

t t t
t

0, 0 4, 0

0, 3 4, 3

The exposed points with respect to the corners (0, 0), (4, 0), (4, 3), (0, 3) are respectively

(0, 2), (1, 3) (1, 3), (2, 2), (3, 1), (4, 0)
(0, 2), (1, 1), (2, 0) (4, 0)

(4.4)

ut
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We also need to distinguish a class of exposed points called singular exposed points.

Definition 3 An exposed point is singular if it is exposed to two adjacent corners. A singular ex-
posed point with respect to the two bottom, two right, two top, two left corners are called respectively
a bottom, right, top, or left singular exposed point.

Example 8 Consider the monomial support A = {(0, 0), (1, 2), (2, 2)} ⊆ A2,2:

t

t t

0, 0 2, 0

0, 2 2, 2

The exposed points at the four corners are respectively

(0, 0), (1, 2) (2, 2)
(0, 0) (0, 0), (2, 2)

(4.5)

ut

Note that (0, 0) is both a bottom singular and a left singular exposed point; and (2, 2) is a right

singular exposed point.

4.1.3 Corner Cutting

Definition 4 Corner cutting refers to the introduction of exterior points to Am,n to obtain a mono-
mial support A ⊆ Am,n without removing any edge of Am,n entirely; that is,

A ∩ (0..m× 0) 6= ∅, A ∩ (0..m× n) 6= ∅;
A ∩ (0× 0..n) 6= ∅, A ∩ (m× 0..n) 6= ∅. (4.6)

The non-empty intersection with the edges condition (4.6) loses no generality; they either prevent

unnecessarily high degrees due to zero coefficients or disallow trivial common factors of f , g, h of

the form sutv.

4.2 Effects of Exposed Points

All the results in the chapter come from the eight loose entry formulas given in Theorems 4 and 5.

The loose entry formulas (3.20), (3.26) in Theorems 4, 5 have the following immediate consequences.

4.2.1 Inheritance of Exterior Points

[2] showed laboriously that exterior points are inherited in the row and column supports of D. This

fact is obtained again here as a trivial consequence of the loose entry formulas.
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Theorem 6 Exterior points of the monomial Support A are inherited by the row support R and
the column Support C. That is, if (x, y) ∈ Am,n is an exterior point with respect to a corner, then
(x′, y′), dependent on the corner and given by (3.19), is an exterior point of the row support R
with respect to the same corner; and (x′′, y′′), dependent on the corner and given by (3.25), is an
exterior point of the column support C with respect to the same corner.

Proof

From the loose row and column entry formulas (3.20) and (3.26), we see that when an exposed

point (x, y) is removed from A to become an exterior point, the formulas produce zero because

every bracket in the formulas involves (x, y). That is, each time an exposed point is converted to

an exterior point at a corner, a zero row and a zero column are introduced. In other words, the

changes needed to convert Am,n to A trigger similar changes at the row and column supports at

the corresponding corners, and these changes convert Rm,n to R and Cm,n to C.
Q.E.D

Example 9 If A ⊆ Am,n is a corner-cut monomial support and |A| = 2, then the Dixon polynomial
is zero. Due to Condition (4.6), there are only two possible cases:

A = {(0, n), (m, 0)}, A = {(0, 0), (m,n)} (4.7)

and their diagrams are respectively:
s

s s

s

In either case, there are mn + mn = 2mn exterior points. By Theorem 6 and its remark we have
|R| = |C| = 2mn − 2mn = 0. That is, all rows and columns are zero and the Dixon polynomial
vanishes. This fact can also be established by brute force computation but the above derivation
seems quite elegant. ut

4.2.2 Inheritance of Non-Singular Exposed Points

Theorem 7 Let A ⊆ Am,n be a corner-cut monomial support. Let R and C be respectively the row
and column support of D. If (x, y) ∈ A is a non-singular exposed point with respect to some corner,
then the point (x′, y′) ∈ R, dependent on the corner and given by (3.19), is an exposed point of
R with respect to the same corner; the point (x′′, y′′) ∈ C, dependent on the corner and given by
(3.25), is an exposed point of C with respect to the same corner.

Proof

Since (x, y) is a non-singular exposed point with respect to a corner and A is obtained by corner-

cutting, there exist monomial points

(0, l), (t, n) ∈ A, t > x, l < y (m, r), (t, n) ∈ A, t < x, r < y

(0, l), (b, 0) ∈ A, b > x, l > y (m, r), (b, 0) ∈ A, b < x, r > y
(4.8)
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It is routine to check, using Equation (3.20), that the row indexed by (x′, y′) contains the bracket

−(x, y, t, n, 0, l) (x, y, t, n, m, r)

(x, y, b, 0, 0, l) −(x, y, b, 0, m, r)
(4.9)

at the column indexed by

(t− 1, l) (m + t, r)

(b− 1, l − 1) (m + b, r − 1)
(4.10)

The above shows that (x′, y′) indexes a non-zero row, together with Theorem 6, we conclude

that (x′, y′) is an exposed point of R.

Again, it is routine to check, using Equation (3.26), that the columns indexed by (x′′, y′′) contains

the bracket (4.9) at the row indexed by

(t− 1, n + l) (t, n + r)

(b− 1, l − 1) (b, r − 1)
(4.11)

The above shows that (x′′, y′′) indexes a non-zero column, together with Theorem 6, we conclude

that (x′′, y′′) is an exposed point of R.

Q.E.D

The above theorem actually follows more or less from Theorem 1. But we proved it this way to

illustrate the usefulness of the loose entry formulas.

Example 10 Consider the monomial support given in Example 7:

tt t t
t t t

t t t
t

0, 0 4, 0

0, 3 4, 3

The set of non-singular exposed point with respect to the four corners of A are respectively:

∅ {(2, 2), (3, 1)}
{(1, 1), (2, 0)} ∅ (4.12)

Its corresponding row support R and column support C are:

t
t
t

t
t
t
t

t
t
t
t

t
t
t

t t t t t
t t t t t
t t t t
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It is easy to check that the set of points

∅ {(2, 2), (3, 1)} ⊕ (−1, 2)
{(1, 1), (2, 0)} ∅ (4.13)

and

∅ {(2, 2), (3, 1)} ⊕ (3,−1)
{(1, 1), (2, 0)} ∅ (4.14)

are subsets of the set of the exposed points of R and C with respect to the four corners. ut

4.2.3 Non-Inheritance of Singular Exposed Points

Due to Condition (4.6) of a corner-cut monomial support, clearly we have

• (x, y) is a bottom singular exposed point if and only if A ∩ (0..m× 0) = {(x, y)}.

• (x, y) is a right singular exposed point if and only if A ∩ (m× 0..n) = {(x, y)}.

• (x, y) is a top singular exposed point if and only if A ∩ (0..m× n) = {(x, y)}.

• (x, y) is a left singular exposed point if and only if A ∩ (0× 0..n) = {(x, y)}.

Consequently, bottom/top singular exposed points are not inherited by the row support, and

right/left singular exposed points are not inherited by the column support in the sense of the

following theorem.

Theorem 8 Let A ⊆ Am,n be a corner-cut monomial support. Let R and C be respectively the row
and column supports of D. Let (x, y) ∈ A be a singular exposed point. We have

• If (x, y) is a bottom singular exposed point then R ∩ (0..m − 1 × 0) = ∅. In particular,
(x, y) 6∈ R, (x− 1, y) 6∈ R.

• If (x, y) is a right singular exposed point then C ∩ (2m − 1 × 0..n − 1) = ∅. In particular,
(x + m− 1, y) 6∈ C, (x + m− 1, y − 1) 6∈ C.

• If (x, y) is a top singular exposed point then R ∩ (0..m − 1 × 2n − 1) = ∅. In particular,
(x, y + n− 1) 6∈ R, (x− 1, y + n− 1) 6∈ R.

• If (x, y) is a left singular exposed point then C ∩ (0× 0..n− 1) = ∅. In particular, (x, y) 6∈ C,
(x, y − 1) 6∈ C.

Proof

We prove the case for right singular exposed points. Other cases are similar.
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Let Ei,j be the set of exterior points with respect to the corner (i, j), i = 0,m and j = 0, n. If

(x, y) is a right singular exposed point, by Condition (4.6), we must have A∩ (m×0..n) = {(x, y)}.
Thus (x + m− 1, y) ∈ E′′

m,n, (x + m− 1, y − 1) ∈ E′′
m,0, and C ∩ (2m− 1× 0..n− 1) = ∅.

Q.E.D

Example 11 Consider the monomial support and its row and column supports in Example 10.
The point (1, 3) ∈ A is a top singular exposed point, we have A ∩ (0..4 × 3) = {(1, 3)} and

R∩ (0..3× 5) = ∅.
The point (0, 2) ∈ A is a left singular exposed point, we have A ∩ (0 × 0..3) = {(0, 2)} and

C ∩ (0× 0..2) = ∅.
The point (4, 0) ∈ A is a right singular exposed point, we have A ∩ (4 × 0..3) = {(4, 0)} and

C ∩ (7× 0..2) = ∅. ut

4.2.4 Bracket Factors from Three Exposed-Point Rows or Columns

We say N rows (or columns) of the Dixon matrix D produce a factor F if the determinant of any

N ×N submatrix of these rows (or columns) has F as a factor. Here N is 2 or 3.

The following theorem sheds some light on extraneous factors when a maximal minor of the

Dixon matrix is not an exact sparse resultant.

Theorem 9 Let A ⊆ Am,n be a corner-cut monomial support. Let (x1, y1), (x2, y2), and (x3, y3) be
three exposed points at a corner. Let (x′i, y

′
i), (x′′i , y

′′
i ), i=1,2,3, be given by (3.19), (3.25) respectively

according to the corner. Then the rows indexed by

{(x′1, y′1), (x′2, y′2), (x′3, y′3)} ∩ R (4.15)

produce the bracket factor (x1, y1, x2, y2, x3, y3), and the columns indexed by

{(x′′1, y′′1), (x′′2, y
′′
2), (x′′3, y

′′
3)} ∩ C (4.16)

also produce the bracket factor (x1, y1, x2, y2, x3, y3).

Proof

We prove the theorem for rows. The proof for columns is similar.

Case 1: (x1, y1), (x2, y2) and (x3, y3) are non-singular.

By Theorem 7, {(x′1, y′1), (x′2, y′2), (x′3, y′3)} ∩ R = {(x′1, y′1), (x′2, y′2), (x′3, y′3)}.
With Formula (3.20), any 3× 3 submatrix of the three rows indexed by (x′1, y′1), (x′2, y′2), (x′3, y′3)

can be written as a product of two 3× 3 matrices T ′P ′ where

T ′ =




(x1, y1)

(x2, y2)

(x3, y3)




=




fx1,y1 gx1,y1 hx1,y1

fx2,y2 gx2,y2 hx2,y2

fx3,y3 gx3,y3 hx3,y3




(4.17)
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and the columns of P ′ are

−∑
k(k, n, aj + 1− k, bj)

∑
k(k, n, aj − k, bj)

∑
k(k, 0, aj + 1− k, bj + 1) −∑

k(k, 0, aj − k, bj + 1)
(4.18)

where each j denotes a column.

Thus, the three rows indexed by (x′1, y′1), (x′2, y′2), (x′3, y′3) produce a factor which is the bracket

(x1, y1, x2, y2, x3, y3).

Case 2: Some of (x1, y1), (x2, y2) and (x3, y3) are singular.

First we consider the row support R. By Theorem 8, we need consider only bottom singular

exposed points if K is the bottom left or bottom right corner and top singular exposed points if K

is the top left or top right corner; otherwise, the situation is the same as Case 1 even with singular

exposed points. Thus we may assume

A ∩ (0..m× n) = {(x1, y1)} A ∩ (0..m× n) = {(x1, y1)}
A ∩ (0..m× 0) = {(x1, y1)} A ∩ (0..m× 0) = {(x1, y1)}

(4.19)

and we have

{(x′1, y′1), (x′2, y′2), (x′3, y′3)} ∩ R = {(x′2, y′2), (x′3, y′3)}. (4.20)

But the bracket is zero when the summation index k 6= x1, so the entries of the rows indexed by

(x′i, y
′
i), i = 2, 3, can be simplified to

(xi, yi, x1, y1, sj , tj) (4.21)

where each j denotes a column and (sj , tj), j = 1, 2 is given by

−(aj + 1− x1, bj) (aj − x1, bj)

(aj + 1− x1, bj + 1) −(aj − x1, bj + 1)
. (4.22)

The determinant of any 2 × 2 submatrix of the two rows indexed by (x′2.y′2), (x′3, y′3) can be

written as
∣∣∣∣∣∣∣

(x2, y2, x1, y1, s1, t1) (x2, y2, x1, y1, s2, t2)

(x3, y3, x1, y1, s1, t1) (x3, y3, x1, y1, s2, t2)

∣∣∣∣∣∣∣
=

(x1, y1, x2, y2, x3, y3)(x1, y1, s1, t1, s2, t2) (4.23)

Thus, the rows indexed by (x′2, y′2), (x′3, y′3) given by (3.19) produce the factor (x1, y1, x2, y2, x3, y3).
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In both Case 1 and Case 2, the rows indexed by (4.15) produce a factor which is a bracket

consisting of the three exposed points.

Q.E.D

Example 12 Consider the monomial support A ⊆ A4,3, |A| = 7:
t

t
t

t
t

t
t

4, 3

4, 00, 0

0, 3

Its row support R and column support C are respectively:

t
t

t
t
t
t

t
t
t

t
t

t t t
t t t t t
t t t

The exposed points are

(0, 3)lt (0, 3)lt, (2, 2), (3, 1), (4, 0)br

(0, 3)lt, (1, 1), (4, 0)br (4, 0)br
(4.24)

where the subscripts b, r, t, l indicate a bottom, right, top, left singular exposed point respectively.
By Theorem 9, the rows and the bracket factors produced by them are as follows:

{(0, 3), (1, 1)} 031140
{(2, 2), (3, 1), (4, 0)} ⊕ (−1, 2) 223140
{(2, 2), (3, 1)} ⊕ (−1, 2) 032231
{(2, 2), (4, 0)} ⊕ (−1, 2) 032240
{(3, 1), (4, 0)} ⊕ (−1, 2) 033140

. (4.25)

Again by Theorem 9, the columns and the bracket factors produced by them are as follows:

{(1, 1), (4, 0)} 031140
{(0, 3), (2, 2), (3, 1)} ⊕ (3,−1) 032231
{(0, 3), (2, 2)} ⊕ (3,−1) 032240
{(0, 3), (3, 1)} ⊕ (3,−1) 033140
{(2, 2), (3, 1)} ⊕ (3,−1) 223140

. (4.26)

ut
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4.2.5 Linear Dependence of Four or More Exposed-Point Rows or Columns

The following result follows almost immediately from the above theorem. But due to its importance

we shall present it as a theorem and not a corollary.

Theorem 10 Let A ⊆ Am,n be a corner-cut monomial support. Let (xi, yi), i = 1, 2, 3, 4, be
four exposed points at the same corner. Let (x′i, y

′
i), (x′′i , y

′′
i ), i=1,2,3,4 be given by (3.19), (3.25)

respectively according to the corner. Then the rows indexed by

{(x′1, y′1), (x′2, y′2), (x′3, y′3), (x′4, y′4)} ∩ R (4.27)

are linearly dependent; the columns indexed by

{(x′′1, y′′1), (x′′2, y
′′
2), (x′′3, y

′′
3), (x′′4, y

′′
4)} ∩ C (4.28)

are also linearly dependent.

Proof

We prove the theorem for rows, the proof for columns are similar.

Case 1: The four monomial points (xi, yi), i = 1, 2, 3, 4, are non-singular. By Theorem 7, we

have

{(x′i, y′i) | i = 1, 2, 3, 4} ∩ R = {(x′i, y′i) | i = 1, 2, 3, 4}. (4.29)

Let the dimension of the Dixon matrix D be N ×N .

From the proof of Theorem 9, we see that the row indexed by the exposed point (x′i, y
′
i), i =

1, 2, 3, 4, can be written as a product of a 1×3 matrix (xi, yi) and a 3×N matrix P whose columns

are given by (4.18). The entries of P are independent of (xi, yi). This means the row indexed by

(x′i, y
′
i) is a linear combinations of the three rows of P . Since the four rows indexed by (x′1, y′1),

(x′2, y′2), (x′3, y′3), (x′4, y′4) are generated from three rows, thus they are linearly dependent.

Case 2: Some of (xi, yi), i = 1, 2, 3, 4 are singular.

Applying the same argument and making the same assumption that leads to Equation (4.19),

we have

{(x′1, y′1), (x′2, y′2), (x′3, y′3), (x′4, y′4)} ∩ R = {(x′2, y′2), (x′3, y′3), (x′4, y′4)} (4.30)

and we can write the entry of the row indexed by (x′i, y
′
i), i = 2, 3, 4 as

(xi, yi, x1, y1, sj , tj). (4.31)

By brute force computation or otherwise, it can be checked that the following identity holds:

4∑

i=2

(xki , yki , xli , yli , x1, y1)× (xi, yi, x1, y1, sj , tj) = 0 (4.32)
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where k2 = 3, l2 = 4; k3 = 4, l3 = 2; k4 = 2, l4 = 3. Since (xki
, yki

, xli , yli , x1, y1) is nonzero, the

rows indexed by (x′i, y
′
i),i = 2, 3, 4, are linearly dependent.

Q.E.D

Example 13 Consider the monomial support of Example 12. The four points (0, 3), (2, 2), (3, 1)
and (4, 0) are exposed with respect to the top right corner in A. By Theorem 10, we know the three
rows indexed by

{(1, 4), (2, 3), (3, 2)} = ({(0, 3), (2, 2), (3, 1), (4, 0)} ⊕ (−1, 2)) ∩R (4.33)

and the three columns indexed by

{(3, 2), (5, 1), (6, 0)} = ({(0, 3), (2, 2), (3, 1), (4, 0)} ⊕ (3,−1)) ∩ C (4.34)

are linearly dependent. ut

4.3 Classification of Corner Cut Monomial Supports for Sparse
Resultant Expressions

Theorems 9 and 10 suggest that we can use the number of exposed points at each corner to classify

the effects of corner cutting on the form of sparse resultants obtained by the Dixon method.

4.3.1 At Most 2 Exposed Points at Each Corner

It seems clearer to re-state the results of rectangular corner cutting in [2] as follows:

Theorem 11 The Dixon determinant |D| is the sparse resultant of the corner cut monomial sup-
port A ⊆ Am,n if A has at most two exposed point with respect to each of the four corners of
Am,n.

The classical results of [12] becomes the special case in which there is exactly one exposed point

at each corner.

4.3.2 At Most 3 Exposed Points at Each Corner

The BKK degree bound [9] motivates the following definitions.

Definition 5 The area deficiency at a corner of a corner-cut monomial support A is twice the area
reduced at the corner between the convex hulls of A and Am,n.

Definition 6 The excess degree at a corner of a corner-cut monomial support A is the difference
between the area deficiency and the number of exterior points at the corner.

Example 14 Consider the following monomial support A ⊆ A4,4, |A| = 10:
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4, 4

4, 00, 0

0, 4

The excess degree at each corner is:

area deficiency − number of exterior points = excess degree,

8 2
0 10

− 6 2
0 7

=
2 0
0 3

ut

The excess degree at a corner with three exposed points has the following geometric interpreta-

tion.

Theorem 12 If a corner K of a corner-cut monomial support A ⊆ Am,n has exactly three exposed
points, the exposed points can be written as

(0, y1), (x2, y2), (x3, n) (m, y1), (x2, y2), (x3, n)
(0, y1), (x2, y2), (x3, 0) (m, y1), (x2, y2), (x3, 0)

(4.35)

Note that the notations at a corner are independent of the same notations at other corners. As
diagonals, the point (x2, y2) and the corner K determine a rectangle whose area is A, the point
(x2, y2) and the point (x3, y1) determine a rectangle whose area is A′. The excess degree at corner
K is

ε = min(A,A′) (4.36)

Figure 4.1 shows that how A,A′ are computed by the three exposed points at the bottom left corner
when K = (0, 0).

Proof

Use brute force calculation.

Q.E.D

For the rest of discussion in this section, we recall the following important properties of the

Dixon matrix and sparse resultants: (1) maximal minors of the Dixon matrix are multiples of the

sparse resultant [13, 19], (2) sparse resultants are irreducible [9], and (3) the degree of the sparse

resultant in the coefficients of each of the polynomials f , g, h is twice the area of the convex hull

of the monomial support A of f , g, h. These properties and Theorem 9 suggest that the results of

[14, 15] can be rephrased as follows:
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s

s

s

y2

x2

y1

x3

Figure 4.1: When K = (0, 0), A = x2y2, A
′ = (x3 − x2)(y1 − y2).

Theorem 13 If each corner of a corner-cut monomial support A has at most three exposed points
and for each corner with three exposed points the excess degree is one, then the Dixon matrix is
maximal and the sparse resultant is the Dixon determinant divided by a product of brackets, each
bracket in the product consists of the three exposed points at a corner.

Example 15 Consider the following monomial support A ⊆ A5,5, |A| = 19:

t
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5, 5

5, 00, 0

0, 5

Since the excess degree at each corner is 1 and the set of the exposed points at each corner is
respectively

{(0, 2), (1, 3), (2, 5)} {(2, 5), (3, 4), (5, 3)}
{(0, 2), (1, 1), (2, 0)} {(2, 0), (4, 1), (5, 2)} (4.37)

by Theorem 13, we know that the Dixon matrix is maximal and its A-resultant is

|D|
021120 · 204152 · 253453 · 021325

ut

A generalization of Theorem 13 is the following conjecture [17]:

Conjecture 1 If each corner of a corner-cut monomial support A has at most three exposed points,
then the sparse resultant is

|D|∏
(i,j)∈K B

εi,j

i,j

(4.38)

where K ⊆ {(0, 0), (m, 0), (m,n), (0, n)} and Bi,j is the bracket determined by the three exposed
points at corner (i, j), εi,j is the excess degree at corner (i, j).

Some special cases of the conjecture will be proved in Chapter 5.
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4.3.3 Any Number of Exposed Points at Each Corner

Theorems 9 and 10 also suggest that [16] proved a special case of the following conjecture.

Conjecture 2 Suppose corner (i, j), i = 0,m and j = 0, n, of a corner-cut monomial support A
has Ni,j exposed points, and when Ni,j ≥ 3 the excess degree at corner (i, j) is Ni,j − 1. A maximal
minor of the Dixon matrix can be obtained by dropping any Ni,j − 3 rows and any Ni,j − 3 columns
associated with exposed points for each corner (i, j) with Ni,j ≥ 3. The sparse resultant is the
chosen maximal minor divided by a product of pairs of brackets; one bracket in the pair comes from
the three remaining exposed points not involved in the dropping of rows and another bracket in the
pair comes from the three remaining exposed points not involved in the dropping of columns.

The following example illustrates Conjecture 2 at the bottom right corner, Theorem 11 at the

top right corner, and Conjecture 1 at the top left corner.

Example 16 Consider the following monomial support A ⊆ A4,4, |A| = 9:
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4, 4

4, 00, 0

0, 4

The excess degree at each corner and the set of exposed points at each corner are respectively:

1 0
0 3

,
{(0, 0), (1, 1), (2, 4)} {(2, 4), (4, 3)}

{(0, 0)} {(0, 0), (2, 1), (3, 2), (4, 3)} .

Since (0, 0) is a bottom and left singular exposed point and (4, 3) is a right singular exposed point,
by Theorem 8, (0, 0) 6∈ R, (0, 0) 6∈ C, (7, 3) 6∈ C. So we have

{(0, 0), (2, 1), (3, 2), (4, 3)} ⊕ (−1, 0) ∩R = {(1, 1), (2, 2), (3, 3)}
{(0, 0), (2, 1), (3, 2), (4, 3)} ⊕ (3, 0) ∩ C = {(3, 0), (5, 1), (6, 2)}

Thus, by Conjecture 2, the sparse resultant can be written as nine expressions:

|D(11, 30)|
001124 · 003243 · 213243

,
|D(11, 51)|

001124 · 003243 · 003243
,

|D(11, 62)|
001124 · 003243 · 002143

,

|D(22, 30)|
001124 · 002143 · 213243

,
|D(22, 51)|

001124 · 002143 · 003243
,

|D(22, 62)|
001124 · 002143 · 002143

,

|D(33, 30)|
001124 · 002132 · 213243

,
|D(33, 51)|

001124 · 002132 · 003243
,

|D(33, 62)|
001124 · 002132 · 002143

.

Here D(στ, ab) represents the maximal minor obtained by removing the row indexed by (σ, τ) and
the column indexed by (a, b) from the Dixon matrix D. ut



Chapter 5

Corners with Three Exposed Points

This chapter examines an important corner cutting situation in which there are exactly three

exposed points at a corner. Recall Conjecture 1:

If each corner of a corner-cut monomial support A has at most three exposed points,

then the sparse resultant is
|D|∏

(i,j)∈K B
εi,j

i,j

(5.1)

where K ⊆ {(0, 0), (m, 0), (m,n), (0, n)} and Bi,j is the bracket determined by the three

exposed points at corner (i, j), εi,j is the excess degree at corner (i, j).

Except for specific quantities, the following derivations and discussions are applicable to any

of the four corners. We will thus put quantities peculiar to a corner in a box with four quad-

rants according to the convention of Section 2.4. In particular, we will simply write ε instead

of εi,j in the discussion. Let T be the set of the three exposed points at the corner, that is,

T = {(x1, y1), (x2, y2), (x3, y3)}. Note that actually T is

{(0, y1), (x2, y2), (x3, n)} {(m, y1), (x2, y2), (x3, n)}
{(0, y1), (x2, y2), (x3, 0)} {(m, y1), (x2, y2), (x3, 0)}

(5.2)

and we define w1, h1, w2, h2 to be

w1 =
x2 m− x2

x2 m− x2

h1 =
n− y2 n− y2

y2 y2

, (5.3)

w2 =
x3 − x2 x2 − x3

x3 − x2 x2 − x3

h2 =
y2 − y1 y2 − y1

y1 − y2 y1 − y2

. (5.4)

33
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Section 5.1 shows for rows and columns near exposed points within a range 0.. min(w1, w2) −
1 × 0.. min(h1, h2) − 1, their entries can be greatly simplified in case they are considered as the

rows or columns of a determinant. Section 5.2 presents the cases having been successfully proved

to generate the expected denominator in (5.1).

5.1 Reducibility of Rows and Columns Near Exposed Points

Let (x, y) be an exposed point. Rows and columns indexed respectively by (σ, τ) “close” to (x′, y′)

and (a, b) “close” to (x′′, y′′) can be simplified when they are treated as rows and columns of a

determinant.

First we need the following lemma:

Lemma 1 For any P, Q, R, S, X, Y ∈ Am,n, the following bracket identity holds:

PQR×XY S −QRS ×XY P + RSP ×XY Q− SPQ×XY R = 0

Proof

This lemma can be easily verified with a computer algebra system like Maple.

Q.E.D

Lemma 2 Let (x, y) ∈ T , 1 ≤ w ≤ min(w1, w2) and 1 ≤ h ≤ min(h1, h2). Consider the rows
indexed by the points (σ, τ) given by

(0, n− 1)⊕ (x + p, y − q) (−1, n− 1)⊕ (x− p, y − q)
(x + p, y + q) (−1, 0)⊕ (x− p, y + q)

(5.5)

with 0 ≤ p ≤ w − 1 and 0 ≤ q ≤ h− 1. The row entry indexed by (σ, τ) can be represented as

∑p
u=0

∑n
l−v=n−q

∑m
k=0 B0,n

∑p
u=0

∑n
l−v=n−q

∑m
k=0 Bm,n∑p

u=0

∑q
l+v=0

∑m
k=0 B0,0

∑p
u=0

∑q
l+v=0

∑m
k=0 Bm,0

(5.6)

where

B0,0 = (x + p− u, y + q − v − l, k, l, a + u + 1− k, b + v + 1)
Bm,0 = −(x− p + u, y + q − v − l, k, l, a− u− k, b + v + 1)
Bm,n = (x− p + u, y + n + v − q − l, k, l, a− u− k, b− v)
B0,n = −(x + p− u, y + n + v − q − l, k, l, a + u + 1− k, b− v)

Proof

Apply the entry formula in Theorem 3 and choose the bracket B in the formula to be

Equation (3.3) Equation (3.2)

Equation (3.4) Equation (3.5)
(5.7)
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After substituting the value of (σ, τ) in (5.5) into B, the first ordered pair of B becomes

(x + p− u, y + n + v − q − l) (x− p + u, y + n + v − q − l)

(x + p− u, y + q − v − l) (x− p + u, y + q − v − l)
. (5.8)

In order to let this ordered pair in A, we need

0 ≤ p− u, n + v − q − l ≤ 0 −p + u ≤ 0, n + v − q − l ≤ 0

0 ≤ p− u, 0 ≤ q − v − l −p + u ≤ 0, 0 ≤ q − v − l
(5.9)

Thus, together with 0 ≤ u, 0 ≤ v and 0 ≤ l ≤ n we have

0 ≤ u ≤ p, n− q ≤ l − v ≤ n 0 ≤ u ≤ p, n− q ≤ l − v ≤ n

0 ≤ u ≤ p, 0 ≤ v + l ≤ q 0 ≤ u ≤ p, 0 ≤ v + l ≤ q
(5.10)

Consequently we get the entry formula given in (5.6).

Q.E.D

Definition 7 The set of the above rows close to (x′, y′) are called (0..w − 1 × 0..h − 1)-near row
block with respect to (x′, y′). In particular, the row indexed by (5.5) is called (p, q)-near row with
respect to (x′, y′).

Lemma 3 Let (x, y) ∈ T , 1 ≤ w ≤ min(w1, w2) and 1 ≤ h ≤ min(h1, h2).
Consider the columns indexed by the points (a, b) given by

(0,−1)⊕ (x + p, y − q) (m− 1,−1)⊕ (x− p, y − q)
(x + p, y + q) (m− 1, 0)⊕ (x− p, y + q)

(5.11)

with 0 ≤ p ≤ w − 1 and 0 ≤ q ≤ h− 1. The column entry indexed by (a, b) can be represented as

∑p
u+k=0

∑q
v=0

∑n
l=0 B0,n

∑m
k−u=m−p

∑q
v=0

∑n
l=0 Bm,n∑p

u+k=0

∑q
v=0

∑n
l=0 B0,0

∑m
k−u=m−p

∑q
v=0

∑n
l=0 Bm,0

(5.12)

where

B0,0 = (σ + u + 1, τ + v + 1− l, k, l, x + p− u− k, y + q − v)
Bm,0 = −(σ − u, τ + v + 1− l, k, l, x + m− p + u− k, y + q − v)
Bm,n = (σ − u, τ − v − l, k, l, x + m− p + u− k, y − q + v)
B0,n = −(σ + u + 1, τ − v − l, k, l, x + p− u− k, y − q + v)

Proof

Apply the entry formula in Theorem 3 and choose the bracket B in the formula to be

Equation (3.5) Equation (3.4)

Equation (3.2) Equation (3.3)
(5.13)
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(a) (b) (c) (d)
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Figure 5.1: Bottom left corner. The small rectangles (with bold line) represent the rows and
columns considered.

After substituting (a, b) into B, the last ordered pair of B becomes:

(x + p− u− k, y − q + v) (x + m− p + u− k, y − q + v)

(x + p− u− k, y + q − v) (x + m− p + u− k, y + q − v)
(5.14)

In order to let this ordered pair in A, we need

0 ≤ p− u− k,−q + v ≤ 0 m− p + u− k ≤ 0,−q + v ≤ 0

0 ≤ p− u− k, 0 ≤ q − v m− p + u− k ≤ 0, 0 ≤ q − v
(5.15)

Thus, together with 0 ≤ u, 0 ≤ v and 0 ≤ k ≤ m we have

0 ≤ u + k ≤ p, 0 ≤ v ≤ q m− p ≤ k − u ≤ m, 0 ≤ v ≤ q

0 ≤ u + k ≤ p, 0 ≤ v ≤ q m− p ≤ k − u ≤ m, 0 ≤ v ≤ q
(5.16)

Consequently, we get the entry formula given in (5.12). This finishes the proof.

Q.E.D

Definition 8 The set of the above columns close to (x′′, y′′) is called (0..w − 1 × 0..h − 1)-near
column block with respect to (x′′, y′′). In particular, the column indexed by (5.11) is called (p, q)-
near column.

Figure 5.1 gives some examples at the bottom left corner of the rows and the columns we

considered in Lemmas 2 and 3.

Example 17 Consider the monomial support A ⊆ A6,3:

t t t
t t t t t

t t t t t t t
t t t t t t t

0, 0 6, 0

0, 3 6, 3
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and its corresponding row and column support are

t t t t t t t t
t t t t t t t t t t

t t t t t t t t t t t t

f f
f f

f f

t t
t t t t

t t t t t t
t t t t t t
t t t t t t
t t t t t t

f f
f f

f f

R C

There are three exposed points at bottom left corner: (0, 2), (2, 1), (4, 0). So by definition

w1 = 2, h1 = 2, w2 = 4− 2 = 2, h2 = 2− 1 = 1.

Take w = 2, h = 1.
By Lemma 2, the rows indexed {(0, 2), (2, 1), (4, 0)}⊕(p, q) with 0 ≤ p ≤ 1, q = 0 can be computed

as follows:

p = 0, q = 0 (0, 2)
∑6

k=0(0, 2, k, 0, a + 1− k, b + 1)

(2, 1)
∑6

k=0(2, 1, k, 0, a + 1− k, b + 1)

(4, 0)
∑6

k=0(4, 0, k, 0, a + 1− k, b + 1)

p = 1, q = 0 (1, 2)
∑1

u=0

∑6
k=0(1− u, 2, k, 0, a + u + 1− k, b + 1)

(3, 1)
∑1

u=0

∑6
k=0(3− u, 1, k, 0, a + u + 1− k, b + 1)

(5, 0)
∑1

u=0

∑6
k=0(5− u, 0, k, 0, a + u + 1− k, b + 1)

(5.17)

By Lemma 3, the columns indexed by {(0, 2), (2, 1), (4, 0)} ⊕ (p, q) with 0 ≤ p ≤ 1, q = 0 can be
computed as

p = 0, q = 0 (0, 2)
∑3

l=0(σ + 1, τ + 1− l, 0, l, 0, 2)

(2, 1)
∑3

l=0(σ + 1, τ + 1− l, 0, l, 2, 1)

(4, 0)
∑3

l=0(σ + 1, τ + 1− l, 0, l, 4, 0)

p = 1, q = 0 (1, 2)
∑1

u+k=0

∑3
l=0(σ + u + 1, τ + 1− l, k, l, 1− u− k, 2)

(3, 1)
∑1

u+k=0

∑3
l=0(σ + u + 1, τ + 1− l, k, l, 3− u− k, 1)

(5, 0)
∑1

u+k=0

∑3
l=0(σ + u + 1, τ + 1− l, k, l, 5− u− k, 0)

(5.18)

ut
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The above two lemmas lead to a chain reduction on (0..w − 1 × 0..h − 1)-near row block and

column block starting from (x′i, y
′
i), i = 1, 2, 3 and (x′′i , y

′′
i ), i = 1, 2, 3 respectively.

Theorem 14 Let (x, y) ∈ T and (p, q) ∈ (0..w − 1 × 0..h − 1), then for the (p, q)-near row with
respect to (x′, y′), its row entry formula (5.6) can be reduced to

∑
l−v=n−q

∑m
k=0−(x, y, k, l, a + p + 1− k, b− v)

∑
l−v=n−q

∑m
k=0(x, y, k, l, a− p− k, b− v)

∑
v+l=q

∑m
k=0(x, y, k, l, a + p + 1− k, b + v + 1)

∑
v+l=q

∑m
k=0−(x, y, k, l, a− p− k, b + v + 1)

(5.19)

Proof

Base Case. p = q = 0.

The (0, 0)-near row is the row indexed by (x′, y′) itself whose formula has been given by (3.20).

We substitute p = q = 0 into the formula in (5.19). The resulting formula is the same as the row

entry formula given in (3.20). So the (0, 0)-near row entry can be reduced (5.19) trivially.

Induction. p > 0 or q > 0.

Step 1: The (p, q)-near row entry formula can be written as two parts.

To highlight that σ depends on x′, p and τ depends on y′, q, we denote (σ, τ) as (σ(x′, p), τ(y′, q)).

By Lemma 2, the (p, q)-near row entry formula (5.6) can be written as

∆σ(x′,p),τ(y′,q),a,b = ∆̂σ(x′,p),τ(y′,q),a,b + ∆̃σ(x′,p),τ(y′,q),a,b (5.20)

with ∆̂σ(x′,p),τ(y′,q),a,b equal to

∑
(u,l−v)=(p,n−q)

∑m
k=0 B0,n(σ(x′, p), τ(y′, q))

∑
(u,l−v)=(p,n−q)

∑m
k=0 Bm,n(σ(x′, p), τ(y′, q))

∑
(u,v+l)=(p,q)

∑m
k=0 B0,0(σ(x′, p), τ(y′, q))

∑
(u,v+l)=(p,q)

∑m
k=0 Bm,0(σ(x′, p), τ(y′, q))

(5.21)

and ∆̃σ(x′,p),τ(y′,q),a,b equal to

∑
(u,l−v)∈T ′p,n−q

∑m
k=0 B0,n(σ(x′, p), τ(y′, q))

∑
(u,l−v)∈T ′p,n−q

∑m
k=0 Bm,n(σ(x′, p), τ(y′, q))

∑
(u,v+l)∈T ′p,q

∑m
k=0 B0,0(σ(x′, p), τ(y′, q))

∑
(u,v+l)∈T ′p,q

∑m
k=0 Bm,0(σ(x′, p), τ(y′, q))

(5.22)

where T ′p,n−q = 0..p× (n− q)..n− {(p, n− q)} and T ′p,q = 0..p× 0..q − {(p, q)}.
Substituting u = p into B0,0, Bm,0, Bm,n, B0,n in (5.21) respectively, we get the formula in (5.19).



CHAPTER 5. CORNERS WITH THREE EXPOSED POINTS 39

Step 2: ∆̃σ(x′,p),τ(y′,q),a,b can be canceled off by ∆̂σ(x′i,f),τ(y′i,g),a,b with i = 1, 2, 3 and (f, g) ∈ T ′p,q.

Since p > 0 or q > 0, we have T ′p,q 6= ∅ and T ′p,n−q 6= ∅. Given (f, g) ∈ T ′p,q for each corner, we

get

(f, g) ∈ T ′p,q ⇒ (f, n− g) ∈ T ′p,n−q (f, g) ∈ T ′p,q ⇒ (f, n− g) ∈ T ′p,n−q

(f, g) ∈ T ′p,q (f, g) ∈ T ′p,q

(5.23)

By strong mathematical induction hypothesis, we know the row entry formula ∆σ(x′i,f),τ(y′i,g),a,b

can be reduced to ∆̂σ(x′i,f),τ(y′i,g),a,b which is

∑
l−v=n−g

∑m
k=0−(xi, yi, k, l, a + f + 1− k, b− v)

∑
l−v=n−g

∑m
k=0(xi, yi, k, l, a− f − k, b− v)

∑
v+l=g

∑m
k=0(xi, yi, k, l, a + f + 1− k, b + v + 1)

∑
v+l=g

∑m
k=0−(xi, yi, k, l, a− f − k, b + v + 1)

(5.24)

or
∑

(u,l−v)=(f,n−g)

∑m
k=0 B0,n(σ(x′i, f), τ(y′i, g))

∑
(u,l−v)=(f,n−g)

∑m
k=0 Bm,n(σ(x′i, f), τ(y′i, g))

∑
(u,v+l)=(f,g)

∑m
k=0 B0,0(σ(x′i, f), τ(y′i, g))

∑
(u,v+l)=(f,g)

∑m
k=0 Bm,0(σ(x′i, f), τ(y′i, g))

(5.25)

for i = 1, 2, 3. By Lemma 1 with P = (x1, y1), Q = (x2, y2), R = (x3, y3) and

S =
(x + p− f, y − q + g) (x + f − p, y + g − q)

(x + p− f, y − g + q) (x + f − p, y + q − g)
(5.26)

it can easily checked that the sum

∑
(u,l−v)=(f,n−g)

∑m
k=0 B0,n(σ(x′, p), τ(y′, q))

∑
(u,l−v)=(f,n−g)

∑m
k=0 Bm,n(σ(x′, p), τ(y′, q))

∑
(u,v+l)=(f,g)

∑m
k=0 B0,0(σ(x′, p), τ(y′, q))

∑
(u,v+l)=(f,g)

∑m
k=0 Bm,0(σ(x′, p), τ(y′, q))

(5.27)

can be written as a linear combination of the three formulas (5.24) with coefficients independent

of a, b for (f, g) ∈ T ′p,q.

In conclusion, ∆σ(x′,p),τ(y′,q),a,b can be reduced to the formula (5.19). This finishes the proof.

Q.E.D

Theorem 15 Let (x, y) ∈ T and (p, q) ∈ (0..w− 1× 0..h− 1), then for the (p, q)-near column with
respect to (x′′, y′′), its column entry formula (5.12) can be reduced to

∑
u+k=p

∑n
l=0−(σ + u + 1, τ − q − l, k, l, x, y)

∑
k−u=m−p

∑n
l=0(σ − u, τ − q − l, k, l, x, y)

∑
u+k=p

∑n
l=0(σ + u + 1, τ + q + 1− l, k, l, x, y)

∑
k−u=m−p

∑n
l=0−(σ − u, τ + q + 1− l, k, l, x, y)

(5.28)
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Proof

Base Case. p = q = 0.

The (0, 0)-near column is the column indexed by (x′′, y′′) itself whose formula has been given by

(3.26). We substitute p = q = 0 into the formula in (5.28). The resulting formula is the same as

the column entry formula given in (3.26). So the (0, 0)-near column entry can be reduced (5.28)

trivially.

Induction. p > 0 or q > 0.

Step 1: The (p, q)-near column entry formula can be written as two parts.

To highlight that a depends on x′′, p and b depends on y′′, q, we denote (a, b) as (a(x′′, p), b(y′′, q)).

By Lemma 3, the (p, q)-near column entry formula (5.12) can be written as

∆σ,τ,a(x′′,p),b(y′′,q) = ∆̂σ,τ,a(x′′,p),b(y′′,q) + ∆̃σ,τ,a(x′′,p),b(y′′,q) (5.29)

with ∆̂σ,τ,a(x′′,p),b(y′′,q) equal to

∑
(u+k,v)=(p,q)

∑n
l=0 B0,n(a(x′′, p), b(y′′, q))

∑
(k−u,v)=(m−p,q)

∑n
l=0 Bm,n(a(x′′, p), b(y′′, q))

∑
(u+k,v)=(p,q)

∑n
l=0 B0,0(a(x′′, p), b(y′′, q))

∑
(k−u,v)=(m−p,q)

∑n
l=0 Bm,0(a(x′′, p), b(y′′, q))

(5.30)

and ∆̃σ,τ,a(x′′,p),b(y′′,q) equal to

∑
(u+k,v)∈T ′p,q

∑n
l=0 B0,n(a(x′′, p), b(y′′, q))

∑
(k−u,v)∈T ′m−p,q

∑n
l=0 Bm,n(a(x′′, p), b(y′′, q))

∑
(u+k,v)∈T ′p,q

∑m
k=0 B0,0(a(x′′, p), b(y′′, q))

∑
(k−u,v)∈T ′m−p,q

∑m
k=0 Bm,0(a(x′′, p), b(y′′, q))

(5.31)

where T ′m−p,q = (m− p)..m× 0..q − {(m− p, q)} and T ′p,q = 0..p× 0..q − {(p, q)}.
Substituting v = q into B0,0, Bm,0, Bm,n, B0,n in (5.30) respectively, we get the formula in (5.28).

Step 2: ∆̃σ,τ,a(x′′,p),b(y′′,q) can be canceled off by ∆̂σ,τ,a(x′′i ,f),b(y′′i ,g) with i = 1, 2, 3 and (f, g) ∈ T ′p,q.

Since p > 0 or q > 0, we have T ′p,q 6= ∅ and T ′m−p,q 6= ∅. Given (f, g) ∈ T ′p,q for each corner, we

get

(f, g) ∈ T ′p,q (f, g) ∈ T ′p,q ⇒ (m− f, g) ∈ T ′m−p,q

(f, g) ∈ T ′p,q (f, g) ∈ T ′p,q ⇒ (m− f, g) ∈ T ′m−p,q

(5.32)

By strong mathematical induction hypothesis, we know the row entry formula ∆σ,τ,a(x′′i ,f),b(y′′i ,g)
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can be reduced to ∆̂σ,τ,a(x′′i ,f),b(y′′i ,g) which is

∑
u+k=f

∑n
l=0−(σ + u + 1, τ − g − l, k, l, xi, yi)

∑
k−u=m−f

∑n
l=0(σ − u, τ − g − l, k, l, xi, yi)

∑
u+k=f

∑n
l=0(σ + u + 1, τ + g + 1− l, k, l, xi, yi)

∑
k−u=m−f

∑n
l=0−(σ − u, τ + g + 1− l, k, l, xi, yi)

(5.33)

or

∑
(u+k,v)=(f,g)

∑n
l=0 B0,n(a(x′′i , f), b(y′′i , g))

∑
(k−u,v)=(m−f,g)

∑n
l=0 Bm,n(a(x′′i , f), b(y′′i , g))

∑
(u+k,v)=(f,g)

∑n
l=0 B0,0(a(x′′i , f), b(y′′i , g))

∑
(k−u,v)=(m−f,g)

∑n
l=0 Bm,0(a(x′′i , f), b(y′′i , g))

(5.34)

for i = 1, 2, 3. Similarly by Lemma 1, it can easily checked that the sum

∑
(u+k,v)=(f,g)

∑n
l=0 B0,n(a(x′′, p), b(y′′, q))

∑
(k−u,v)=(m−f,g)

∑n
l=0 Bm,n(a(x′′, p), b(y′′, q))

∑
(u+k,v)=(f,g)

∑n
l=0 B0,0(a(x′′, p), b(y′′, q))

∑
(k−u,v)=(m−f,g)

∑n
l=0 Bm,0(a(x′′, p), b(y′′, q))

(5.35)

can be written as a linear combination of the three formulas (5.33) with coefficients independent

of σ, τ with (f, g) ∈ T ′p,q.

In conclusion, ∆σ,τ,a(x′′,p),b(y′′,q) can be reduced to the formula (5.28). This finishes the proof.

Q.E.D

Example 18 Consider the monomial support in Example 17.
By Theorem 14, we can reduce the rows indexed by (1, 2), (3, 1), (5, 0) to

∆̂1,2,a,b
∑6

k=0(0, 2, k, 0, a + 2− k, b + 1)

∆̂3,1,a,b
∑6

k=0(2, 1, k, 0, a + 2− k, b + 1)

∆̂5,0,a,b
∑6

k=0(4, 0, k, 0, a + 2− k, b + 1)

(5.36)

By Theorem 15, we can reduce the columns indexed by (1, 2), (3, 1), (5, 0) to

∆̂σ,τ,1,2
∑

u+k=1

∑3
l=0(σ + u + 1, τ + 1− l, k, 1, 0, 2)

∆̂σ,τ,3,1
∑

u+k=1

∑3
l=0(σ + u + 1, τ + 1− l, k, l, 2, 1)

∆̂σ,τ,5,0
∑

u+k=1

∑3
l=0(σ + u + 1, τ + 1− l, k, l, 4, 0)

(5.37)

ut
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5.2 Extraneous Factors Generation for Six Solved Cases

By Theorem 12, we have ε = min(w1h1, w2h2).

When ε = 1. It indicates w1 = h1 = 1 or w2 = h2 = 1. w1 = h1 = 1 corresponds to corner edge

cutting in [14] and w2 = h2 = 1 corresponds to corner point pasting in [15]. The conjecture has

been shown by Foo & Chionh to be true for these two special cases.

When ε > 1. For most situations, we are able to show certain rows or columns of the Dixon

matrix D does produce the denominator given in (5.1). The results are summarized systematically

in the following table:

w1 > w2 w1 = w2 w1 < w2

w1 > 2w2 w1 = 2w2 w1 < 2w2 w2 < 2w1 w2 = 2w1 w2 > 2w1

h1 > 2h2 solved solved open
h1 > h2 h1 = 2h2 solved solved solved solved solved

h1 < 2h2 open solved solved
h1 = h2 solved solved solved

h2 < 2h1 solved solved open
h1 < h2 h2 = 2h1 solved solved solved solved solved

h2 > 2h1 open solved solved

Given a rectangle monomial support Am,n, by definition,the following restrictions are imposed

on w1, w2 and h1, h2:

0 ≤ w1, w2 ≤ m,w1 + w2 ≤ m; 0 ≤ h1, h2 ≤ n, h1 + h2 ≤ n (5.38)

To estimate the percentages of the solved and unsolved cases, we draw the following figure:
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w2 = 2w1 w1 = w2

w1 = 2w2

A
B

C

D

Then we have:

the probability of w2 ≥ 2w1 is A
A+B+C+D = 1

3 ,

the probability of w1 ≤ w2 < 2w1 is B
A+B+C+D = 1

6 ,
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the probability of w2 < w1 < 2w2 is C
A+B+C+D = 1

6 ,

the probability of w1 ≥ 2w2 is D
A+B+C+D = 1

3 .

We can compute the probabilities of h1, h2 under the similar conditions in a similar way. As a

result, the following probability table can be obtained:

Pr(w1 ≥ 2w2) Pr(w2 < w1 < 2w2) Pr(w1 ≤ w2 < 2w1) Pr(w2 ≥ 2w1)
1
3

1
6

1
6

1
3

Pr(h1 ≥ 2h2) 1
3 1/9 1/18 1/18 1/9

Pr(h2 < h1 < 2h2) 1
6 1/18 1/36 1/36 1/18

Pr(h1 ≤ h2 < 2h1) 1
6 1/18 1/36 1/36 1/18

Pr(h2 ≥ 2h1) 1
3 1/9 1/18 1/18 1/9

Thus the probability of unsolved cases is 1
9 + 1

36 + 1
9 + 1

36 = 5
18

.= 28%.

And the probability of solved cases is 1− 28% .= 72%.

In fact, the above solved conditions can be grouped into six cases with some overlapping:

1. w1 ≥ w2, h1 ≥ h2

2. w1 ≤ w2, h1 ≤ h2

3. w1 ≥ 2w2, h1 < h2 ≤ 2h1

4. w2 < w1 ≤ 2w2, 2h1 ≤ h2

5. w1 < w2 ≤ 2w1, 2h2 ≤ h1

6. w2 ≥ 2w1, h2 < h1 ≤ 2h2.

We will show the proofs of how the rows and the columns of the Dixon matrix produce the

extraneous factors given in the denominator of (5.1) step by step for the six cases. Section 5.2.1

proves the first two cases. And the proofs of the last four cases are given in Section 5.2.2.

5.2.1 The Two Cases: w1 ≤ w2, h1 ≤ h2 and w1 ≥ w2, h1 ≥ h2

By Theorem 12, ε = min(w1h1, w2h2). Consequently, these two cases can be characterized as

ε = min(w1, w2)min(h1, h2). Figure 5.2 shows the two conditions for the bottom left corner:

By Theorems 14, 15 and 9, we can conclude that

Theorem 16 The three (0..w − 1 × 0..h − 1)-near row blocks with respect to (x′i, y
′
i), i = 1, 2, 3

produce a factor (x1, y1, x2, y2, x3, y3)wh. The three (0..w − 1 × 0..h − 1)-near column blocks with
respect to (x′′i , y

′′
i ), i = 1, 2, 3 also produce a factor (x1, y1, x2, y2, x3, y3)wh.
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Proof

We prove the theorem for the rows. The proof of columns are similar.

By Theorem 14, we know that for each (p, q) ∈ (0..w − 1 × 0..h − 1), the (p, q)-near row with

respect to (xi, yi), i = 1, 2, 3 can be reduced to

∑
l−v=n−q

∑m
k=0−(xi, yi, k, l, a + p + 1− k, b− v)

∑
l−v=n−q

∑m
k=0(xi, yi, k, l, a− p− k, b− v)

∑
v+l=q

∑m
k=0(xi, yi, k, l, a + p + 1− k, b + v + 1)

∑
v+l=q

∑m
k=0−(xi, yi, k, l, a− p− k, b + v + 1)

(5.39)

Similar to the proof of Theorem 9 Case 1, any 3×3 submatrix of the (p, q)-near rows with respect

to (xi, yi), i = 1, 2, 3 can be written as a product of BP ′ where B = (x1, y1, x2, y2, x3, y3) and P ′

equal to

∑
l−v=n−q

∑m
k=0−(k, l, aj + p + 1− k, bj − v)

∑
l−v=n−q

∑m
k=0(k, l, aj − p− k, bj − v)

∑
v+l=q

∑m
k=0(k, l, aj + p + 1− k, bj + v + 1)

∑
v+l=q

∑m
k=0−(k, l, aj − p− k, bj + v + 1)

(5.40)

where j indexes a column.

Thus, a group of (p, q)-near rows produces a factor (x1, y1, x2, y2, x3, y3).

And there are wh groups in (0..w − 1 × 0..h − 1)-near row blocks with respect to (xi, yi), i =

1, 2, 3. By Laplace Expansion these three (0..w − 1 × 0..h − 1)-near row blocks produce a factor

(x1, y1, x2, y2, x3, y3)wh.

Q.E.D

Example 19 Consider the monomial support in Example 17.
By Theorem 16, the rows indexed by {(0, 2), (2, 1), (4, 0)}⊕ (0..1×0) generate the factor 0221402.

This also can checked from the results presented in Example 18.
By Theorem 16, the columns indexed by {(0, 2), (2, 1), (4, 0)} ⊕ (0..1 × 0) can also generate the

factor 0221402. ut

(a) (b)

y2

x2 x3

y1

h1

w1

w2

h2t
t

t
y2

x2 x3
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h1

w1

w2

h2

t

t

t

Figure 5.2: Bottom left corner. (a)w1 ≥ w2, h1 ≥ h2; (b)w1 ≤ w2, h1 ≤ h2.
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Example 20 Consider the following monomial support A ⊆ A8,7:

t t t t
t t t t
t t t t
t t t t t t t
t t t t t t t

t t t t t t t
t t t t
t t t t

0, 0 8, 0

0, 7 8, 7

Bottom right corner. The three exposed points at this corner are: (8, 5), (6, 3), (3, 0). Thus

w1 = 8− 6 = 2, h1 = 3, w2 = 6− 3 = 3, h2 = 8− 6 = 2.

Take w = 2, h = 2. By Theorem 16, we have the rows indexed by

(−1, 0)⊕ {(8, 5), (6, 3), (3, 0)} ⊕ (−1..0× 0..1)

generate the factor 8563304 and the columns indexed by

(7, 0)⊕ {(8, 5), (6, 3), (3, 0)} ⊕ (−1..0× 0..1)

can also generate the factor 8563304.

Top left corner. The three exposed points at this corner are: (0, 4), (2, 5), (5, 7). Thus

w1 = 2, h1 = 7− 5 = 2, w2 = 5− 2 = 3, h2 = 5− 4 = 1.

Take w = 2, h = 1. By Theorem 16, we have the rows indexed by

(0, 6)⊕ {(0, 4), (2, 5), (5, 7)} ⊕ (0..1× 0)

generate the factor 0425572 and the columns indexed by

(0,−1)⊕ {(0, 4), (2, 5), (5, 7)} ⊕ (0..1× 0)

can also generate the factor 0425572. ut

Corollary 1 Let w1 ≥ w2 and h1 ≥ h2.
The (0..w2 − 1 × 0..h2 − 1)-near row blocks with respect to (x′i, y

′
i), i = 1, 2, 3 generate a factor

(x1, y1, x2, y2, x3, y3)ε.
The (0..w2 − 1× 0..h2 − 1)-near column blocks with respect to (x′′i , y

′′
i ), i = 1, 2, 3 also generate a

factor (x1, y1, x2, y2, x3, y3)ε.
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Proof

By definition, we have ε = min(w1h1, w2h2) = w2h2. Since w2 = min(w1, w2) and h2 =

min(h1, h2), by Theorem 16, we have the (0..w2 − 1 × 0..h2 − 1)-near row blocks generate the

factor

(x1, y1, x2, y2, x3, y3)w2h2 = (x1, y1, x2, y2, x3, y3)ε. (5.41)

The proof of the columns is similar.

Q.E.D

Corollary 2 Let w1 ≤ w2 and h1 ≤ h2.
The (0..w1 − 1 × 0..h1 − 1)-near row blocks with respect to (x′i, y

′
i), i = 1, 2, 3 generate a factor

(x1, y1, x2, y2, x3, y3)ε.
The (0..w1 − 1× 0..h1 − 1)-near column blocks with respect to (x′′i , y

′′
i ), i = 1, 2, 3 also generate a

factor (x1, y1, x2, y2, x3, y3)ε.

Proof

The proof is similar to Corollary 2 except that w1 = min(w1, w2), h1 = min(h1, h2) and we

substitute w, h in Theorem 16 by w1, h1.

Q.E.D

Example 21 Consider the monomial support A ⊆ A9,7:

t t t t
t t t t t t t
t t t t t t t

t t t t t t t t
t t t t t t t t
t t t t t t
t t t t t t
t t t t t t

0, 0 9, 0

0, 7 9, 7

Top right corner. The three exposed points are (9, 2), (7, 4), (5, 7). So we have

w1 = 2, h1 = 3, w2 = 2, h2 = 2 =⇒ w1 = w2, h1 ≥ h2, ε9,7 = 4.

By Corollary 1, the rows indexed by

(−1, 6)⊕ {(9, 2), (7, 4), (5, 7)} ⊕ (−1..0×−1..0)

generate the factor 9274574 and the columns indexed by

(8,−1)⊕ {(9, 2), (7, 4), (5, 7)} ⊕ (−1..0×−1..0)

can also generate the expected extraneous factor 9274574.
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Bottom left corner. The three exposed points are (0, 3), (3, 1), (6, 0). So we have

w1 = 3, h1 = 1, w2 = 6− 3 = 3, h2 = 3− 1 = 2 =⇒ w1 = w2, h1 ≤ h2, ε0,0 = 3.

By Corollary 2, the rows indexed by

{(0, 3), (3, 1), (6, 0)} ⊕ (0..2× 0)

generate the factor 0331603 and the columns indexed by the same set of points can also generate
the factor 0331603. ut

5.2.2 The Other Four Cases

In this section, we will prove how extraneous factors are generated for the rest four cases by using

Theorem 16 and row/column intersections. It is trivial to check the following cases satisfy the

condition

min(w1, w2)min(h1, h2) < ε ≤ 2min(w1, w2)min(h1, h2). (5.42)

Case min(w1, w2)min(h1, h2) ε 2 min(w1, w2)min(h1, h2)

w1 ≥ 2w2, h1 < h2 ≤ 2h1 w2h1 w2h2 w22h1

w2 < w1 ≤ 2w2, h2 ≥ 2h1 w2h1 w1h1 2w2h1

w1 < w2 ≤ 2w1, h1 ≥ 2h2 w1h2 w2h2 2w1h2

w2 ≥ 2w1, h2 < h1 ≤ 2h2 w1h2 w1h1 w12h2

(5.43)

Let T be the set of the three exposed points, T = {(x1, y1), (x2, y2), (x3, y3)} and

T ′ = {(x′1, y′1), (x′2, y′2), (x′3, y′3)}, T ′′ = {(x′′1, y′′1), (x′′2, y
′′
2), (x′′3, y

′′
3)}. (5.44)

Theorem 17 If w2 < w1 ≤ 2w2, h2 ≥ 2h1, then

1. when w1 is even.
The intersecting entries of the rows indexed by

T ′ ⊕
(

0..
w1

2
− 1× 0..h1 − 1

)∗

and the columns indexed by

T ′′ ⊕
(

0..
w1

2
− 1× 0..h1 − 1

)∗

are zeros.
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2. when w1 is odd but h1 is even.
The intersecting entries of the rows indexed by

T ′ ⊕
(

0..
w1 − 1

2
− 1× 0..h1 − 1

)∗
∪ T ′ ⊕

(
w1 − 1

2
× 0..

h1

2
− 1

)∗

and the column indexed by

T ′′ ⊕
(

0..
w1 − 1

2
− 1× 0..h1 − 1

)∗
∪ T ′′ ⊕

(
w1 − 1

2
× 0..

h1

2
− 1

)∗

are zeros.

3. when w1 and h1 are both odd.
The intersecting entries of the rows indexed by

T ′ ⊕
(

0..
w1 − 1

2
− 1× 0..h1 − 1

)∗
∪ T ′ ⊕

(
w1 − 1

2
× 0..

h1 + 1
2

− 1
)∗

and the columns indexed by

T ′′ ⊕
(

0..
w1 − 1

2
− 1× 0..h1 − 1

)∗
∪ T ′′ ⊕

(
w1 − 1

2
× 0..

h1 − 1
2

− 1
)∗

are zeros.

Proof

Let B = (i, j, k, l, p, q) which can be (3.2) or (3.4), or B = −(i, j, k, l, p, q) which can be (3.3) or

(3.5). Apply the entry formula in Theorem 3 and choose the bracket B in the formula to be

Equation (3.5) Equation (3.4)

Equation (3.2) Equation (3.3)
(5.45)

Substituting

(σ, τ) =
x′i + ∆1, y

′
i −∆2 x′i −∆1, y

′
i −∆2

x′i + ∆1, y
′
i + ∆2 x′i −∆1, y

′
i + ∆2

(5.46)

and

(a, b) =
x′′j + ∆3, y

′′
j −∆4 x′′j −∆3, y

′′
j −∆4

x′′j + ∆3, y
′′
j + ∆4 x′′j −∆3, y

′′
j + ∆4

(5.47)

into the bracket B, thus the first ordered pair (i, j) of B becomes

(xi + ∆1 + u + 1, yi −∆2 + n− 1− v − l) (xi −∆1 − u− 1, yi −∆2 + n− 1− v − l)

(xi + ∆1 + u + 1, yi + ∆2 + v + 1− l) (xi −∆1 − u− 1, yi + ∆2 + v + 1− l)
(5.48)



CHAPTER 5. CORNERS WITH THREE EXPOSED POINTS 49

and the last ordered pair (p, q) of B becomes

(xj + ∆3 − u− k, yj −∆4 + v) (xj −∆3 + u + m− k, yj −∆4 + v)

(xj + ∆3 − u− k, yj + ∆4 − v) (xj −∆3 + u + m− k, yj + ∆4 − v)
(5.49)

So in order to ensure (i, j) in the monomial support A, we need:

∆1 + u + 1 ≥ 0,−∆2 + n− 1− v − l ≤ 0 −∆1 − u− 1 ≤ 0,−∆2 + n− 1− v − l ≤ 0

∆1 + u + 1 ≥ 0, ∆2 + v + 1− l ≥ 0 −∆1 − u− 1 ≤ 0, ∆2 + v + 1− l ≥ 0
(5.50)

and (p, q) in A we need

∆3 − u− k ≥ 0,−∆4 + v ≤ 0 −∆3 + u + m− k ≤ 0,−∆4 + v ≤ 0

∆3 − u− k ≥ 0, ∆4 − v ≥ 0 −∆3 + u + m− k ≤ 0, ∆4 − v ≥ 0
(5.51)

These conditions can be combined to become

k ≤ ∆1 + ∆3 + 1, l ≥ n− 1−∆2 −∆4 k ≥ m− 1−∆1 −∆3, l ≥ n− 1−∆2 −∆4

k ≤ ∆1 + ∆3 + 1, l ≤ ∆2 + ∆4 + 1 k ≥ m− 1−∆1 −∆3, l ≤ ∆2 + ∆4 + 1
(5.52)

By the cases given, we have the possibilities of the sum pair of max(∆1 +∆3) and max(∆2 +∆4):

max(∆1 + ∆3) max(∆2 + ∆4)

w1 − 2 2h1 − 2

w1 − 3 2h1 − 2

w1 − 1 h1 − 2

w1 − 2 3
2h1 − 2

w1 − 2 3
2h1 − 5

2

w1 − 2 3
2h1 − 3

2

(5.53)

When max(∆1 + ∆3) ≤ w1 − 2, max(∆2 + ∆4) ≤ 2h1 − 2,

k ≤ w1 − 1, l ≥ n + 1− 2h1 k ≥ m + 1− w1, l ≥ n + 1− 2h1

k ≤ w1 − 1, l ≤ 2h1 − 1 k ≥ m + 1− w1, l ≤ 2h1 − 1
(5.54)

When max(∆1 + ∆3) = w1 − 1, max(∆2 + ∆4) = h1 − 2,

k ≤ w1, l ≥ n + 1− h1 k ≥ m− w1, l ≥ n + 1− h1

k ≤ w1, l ≤ h1 − 1 k ≥ m− w1, l ≤ h1 − 1
(5.55)
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Both ranges of (k, l) are not in A. So their intersecting entries are zeros.

Q.E.D

We can prove the other three cases holding the similar properties in a similar way. They are

stated in the following three theorems:

Theorem 18 If w1 ≥ 2w2, h1 < h2 ≤ 2h1, then

1. when h2 is even.
The intersecting entries of the rows indexed by

T ′ ⊕
(

0..w2 − 1× 0..
h2

2
− 1

)∗

and the columns indexed by

T ′′ ⊕
(

0..w2 − 1× 0..
h2

2
− 1

)∗

are zeros.

2. when h2 is odd but w2 is even.
The intersecting entries of the rows indexed by

T ′ ⊕
(

0..w2 − 1× 0..
h2 − 1

2
− 1

)∗
∪ T ′ ⊕

(
0..

w2

2
− 1× h2 − 1

2

)∗

and the column indexed by

T ′′ ⊕
(

0..w2 − 1× 0..
h2 − 1

2
− 1

)∗
∪ T ′′ ⊕

(
0..

w2

2
− 1× h2 − 1

2

)∗

are zeros.

3. when h2 and w2 are both odd.
The intersecting entries of the rows indexed by

T ′ ⊕
(

0..w2 − 1× 0..
h2 − 1

2
− 1

)∗
∪ T ′ ⊕

(
0..

w2 + 1
2

− 1× h2 − 1
2

)∗

and the columns indexed by

T ′′ ⊕
(

0..w2 − 1× 0..
h2 − 1

2
− 1

)∗
∪ T ′′ ⊕

(
0..

w2 − 1
2

− 1× h2 − 1
2

)∗

are zeros.

Theorem 19 If w1 < w2 ≤ 2w1, h1 ≥ 2h2, then

1. when w2 is even.
The intersecting entries of the rows indexed by

T ′ ⊕
(

0..
w2

2
− 1× 0..h2 − 1

)∗

and the columns indexed by

T ′′ ⊕
(

0..
w2

2
− 1× 0..h2 − 1

)∗

are zeros.
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2. when w2 is odd but h2 is even.
The intersecting entries of the rows indexed by

T ′ ⊕
(

0..
w2 − 1

2
− 1× 0..h2 − 1

)∗
∪ T ′ ⊕

(
w2 − 1

2
× 0..

h2

2
− 1

)∗

and the column indexed by

T ′′ ⊕
(

0..
w2 − 1

2
− 1× 0..h2 − 1

)∗
∪ T ′′ ⊕

(
w2 − 1

2
× 0..

h2

2
− 1

)∗

are zeros.

3. when w2 and h2 are both odd.
The intersecting entries of the rows indexed by

T ′ ⊕
(

0..
w2 − 1

2
− 1× 0..h2 − 1

)∗
∪ T ′ ⊕

(
w2 − 1

2
× 0..

h2 + 1
2

− 1
)∗

and the columns indexed by

T ′′ ⊕
(

0..
w2 − 1

2
− 1× 0..h2 − 1

)∗
∪ T ′′ ⊕

(
w2 − 1

2
× 0..

h2 − 1
2

− 1
)∗

are zeros.

Theorem 20 If w2 ≥ 2w1, h2 < h1 ≤ 2h2, then

1. when h1 is even.
The intersecting entries of the rows indexed by

T ′ ⊕
(

0..w1 − 1× 0..
h1

2
− 1

)∗

and the columns indexed by

T ′′ ⊕
(

0..w1 − 1× 0..
h1

2
− 1

)∗

are zeros.

2. when h1 is odd but w1 is even.
The intersecting entries of the rows indexed by

T ′ ⊕
(

0..w1 − 1× 0..
h1 − 1

2
− 1

)∗
∪ T ′ ⊕

(
0..

w1

2
− 1× h1 − 1

2

)∗

and the column indexed by

T ′′ ⊕
(

0..w1 − 1× 0..
h1 − 1

2
− 1

)∗
∪ T ′′ ⊕

(
0..

w1

2
− 1× h1 − 1

2

)∗

are zeros.
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3. when h1 and w1 are both odd.
The intersecting entries of the rows indexed by

T ′ ⊕
(

0..w1 − 1× 0..
h1 − 1

2
− 1

)∗
∪ T ′ ⊕

(
0..

w1 + 1
2

− 1× h1 − 1
2

)∗

and the columns indexed by

T ′′ ⊕
(

0..w1 − 1× 0..
h1 − 1

2
− 1

)∗
∪ T ′′ ⊕

(
0..

w1 − 1
2

− 1× h1 − 1
2

)∗

are zeros.

Theorem 21 If w2 < w1 ≤ 2w2, h2 ≥ 2h1, then the rows together with the columns given in
Theorem 17 generate the extraneous factor Bε with B = (x1, y1, x2, y2, x3, y3). The other three
cases hold the similar properties.

Proof

Since w2 < w1 ≤ 2w2, h2 ≥ 2h1, we get w2h2 ≥ w1h1. So ε = w1h1.

When w1 is even, since w1
2 ≤ w2 = min(w1, w2) and h1 ≤ min(h1, h2), by Theorem 16, we have

the rows indexed by

T ′ ⊕
(

0..
w1

2
− 1× 0..h1 − 1

)∗
(5.56)

generate a factor B
w1h1

2 and the columns indexed by

T ′′ ⊕
(

0..
w1

2
− 1× 0..h1 − 1

)∗
(5.57)

also generate a factor B
w1h1

2 . Moreover, by Theorem 17, we know that the intersecting entries of

these rows and these columns are zero. So we can conclude that the the determinant of the Dixon

matrix has a factor

B2
w1h1

2 = Bw1h1 . (5.58)

When w1 is odd and h1 is even, by Theorems 16 and 17, similarly we can conclude that |D| has

a extraneous factor

B2(
w1−1

2
h1+

h1
2

) = Bw1h1 . (5.59)

When w1 and h1 are both odd, by Theorems 16 and 17, we have

B2
w1−1

2
h1+

h1−1

2
+

h1+1

2 = Bw1h1 . (5.60)

In any one of three situations, we can get the expected extraneous factor Bw1h1 = Bε.

Similar arguments apply for the rest three cases.

Q.E.D
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Example 22 Consider the monomial support A ⊆ A9,8:

t t t
t t t

t t t t t t
t t t t t t
t t t
t t t

t t t t t t t
t t t t t t
t t t t t t

0, 0 9, 0

0, 8 9, 8

There are three exposed points at the bottom left corner: (0, 6), (4, 2), (7, 0). By definition, the
w1, h1, w2, h2 associated with this corner can be calculated:

w1 = 4, h1 = 2, w2 = 7− 4 = 3, h2 = 6− 2 = 4.

By Theorem 12, ε0,0 = min(8, 12) = 8.
Since h2 = 2h1, w2 < w1 ≤ 2w2 and w1 = 4 is even, by Theorem 21, we know that the rows

indexed by

{(0, 6), (4, 2), (7, 0)} ⊕ (0..1× 0..1) ∩R

together with the columns indexed by the same set points can generate the factor 0642708.
Similarly, there are three exposed points at the top right corner: (9, 3), (6, 6), (5, 8). By definition,

the w1, h1, w2, h2 associated with this corner can be calculated:

w1 = 9− 6 = 3, h1 = 8− 6 = 2, w2 = 6− 5 = 1, h2 = 6− 3 = 3.

By Theorem 12, ε9,8 = min(6, 3) = 3.
Since w1 ≥ 2w2, h1 < h2 ≤ 2h1 and w2, h2 are both odd, by Theorem 21, we know that the rows

indexed by

{(8, 10), (5, 13), (4, 15), (8, 9), (5, 12), (4, 14)} = {(9, 3), (6, 6), (5, 8)} ⊕ (−1, 7)⊕ (0×−1..0) ∩R

together with the columns indexed by

{(17, 2), (14, 5), (13, 7)} = {(9, 3), (6, 6), (5, 8)} ⊕ (8,−1) ∩ C

generate the factor 9366583. ut



Chapter 6

Conjectures

In this chapter, two conjectures are presented. We propose an algorithm for finding the rows or

columns generating the desired extraneous factors when a corner has exactly three exposed points.

The other conjecture concerns the linear independence of these rows or columns.

6.1 Algorithm for Finding the Rows or Columns Generating Ex-
pected Extraneous Factors for Corners with Three Exposed
Points

Conjecture 3 Let wmin and hmin be the corresponding width and height that produces extraneous
factor degree ε = wminhmin.

Suppose Q′
i be the first quadrant associated with the exposed points (x′i, y

′
i):

Q′
i = (x′i, y

′
i)⊕ (Z≥0 × Z≥0)∗, i = 1, 2, 3 (6.1)

Initial Step: Let the sets of indexing points be:

T ′i = (x′i, y
′
i)⊕ (0..wmin − 1× 0..hmin − 1)∗ ∩R, i = 1, 2, 3 (6.2)

while true

if (σ, τ) ∈ T ′i ∩Q′
j, i 6= j then

T ′k = T ′k ∪ {(σ, τ)ª (x′j , y
′
j)⊕ (x′k, y

′
k)} ∩ R, k = 1, 2, 3;

until no new points are added to T ′1, T ′2, T ′3.
As a result, the rows indexed by the points in T ′1∪T ′2∪T ′3 will generate the factor (x1, y1, x2, y2, x3, y3)ε.

A similar algorithm applies for finding the columns generating the expected extraneous factors.

Remark 2 The two cases examined in Section 5.2.1 do not execute the while loop. The other four
cases given in Section 5.2.2 are the “expand-once” cases since for each condition it only occurs once
that T ′i ∩Q′

j 6= ∅ for i 6= j.

This theorem may look a little complicated. We use a simple example to illustrate the idea:

54
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Example 23 Consider the following monomial support A ⊆ A5,3:

t t t
t t t

t t t t t
t t t t t t

0, 0 5, 0

0, 3 5, 3

By definition, we have w1 = 1, h1 = 2, w2 = 2, h1 = 1 and (x1, y1) = (0, 3), (x2, y2) =
(1, 2), (x3, y3) = (3, 0). Since w1h1 = w2h2. Without loss of generality, we take wmin = 1, hmin = 2.
So initially we have the following indexing points in the set ∪i=1,2,3T

′
i ⊂ R:

t t
t t

t t t t
t t t t t
t t t t t
t t t t t

f
f

f
v

f
f

Since the point (1, 3) ∈ Q′
1∩T ′2, and (1, 3)ª (0, 3) = (1, 0), two more points (1, 0)⊕ (1, 2) = (2, 2)

and (1, 0)⊕ (3, 0) = (4, 0) should be added to T ′2 and T ′3 respectively:

t t
t t

t t t t
t t t t t
t t t t t
t t t t t

f
f

f
v

f
f

f

f

Since (2, 2) and (4, 0) are only lying in their own quadrants, thus these rows indexed by the eight
points marked with bigger radius circle generate the factor 0312302. ut

Note that the above example is a demonstration of “expand-once” conditions.

6.2 Maximal Minors

Conjecture 4 The rows found to generate extraneous factors for the four corners given by Con-
jecture 3 are linearly independent. And the columns found to generate extraneous factors for the
four corners given by Conjecture 3 are also linearly independent.

Remark 3 If these rows or columns are linearly independent, then it can be shown that the Dixon
matrix is indeed the maximal minor using the irreducibility property of the sparse resultant and
BKK bound.
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Example 24 Consider the monomial support A ⊆ A2,6:

t

t
t
t

t
t
t
t
t
t
t

0, 0 2, 0

0, 6 2, 6 t
t
t
t
t
t

t
t
t
t
t
t
t
t

f
f

f
f

t
t
t
t
t
t

t
t

t
t
t
t
t
t

f
f

f
f

A R C

There are three exposed points at bottom left corner: (0,6),(1,4),(2,0).
By definition, we have

w1 = 1, h1 = 4, w2 = 1, h2 = 2. (6.3)

Take w = 1, h = 2.
It can be checked that the rows indexed by

{(0, 6), (1, 4), (2, 0)} ⊕ (0× 0..1) ∩R = (0, 6), (0, 7), (2, 4), (2, 5) (6.4)

are linearly independent. Because the rows indexed by (0, 6), (0, 7), (2, 4), (2, 5) and the columns
indexed by (1, 4), (1, 5), (2, 2), (2, 3) form a 4 × 4 a lower triangular submatrix with all diagonals
equal to the bracket 061420.

Similarly, it can be checked that the columns indexed by

{(0, 6), (1, 4), (2, 0)} ⊕ (0× 0..1) ∩ C = (1, 4), (1, 5), (2, 0), (2, 1) (6.5)

are linearly independent. Because the columns indexed by (1,4),(1,5),(2,0),(2,1) and the rows in-
dexed by (0, 8), (0, 9), (1, 4), (1, 5) form a 4 × 4 lower triangular submatrix with all diagonals equal
to the bracket 061420. ut



Chapter 7

Conclusion

In this thesis we used four loose entry formulas to explore the extraneous factors incurred when

using the Dixon method to construct sparse resultants for bi-degree monomial supports with three

exposed points at any of the four corners. The results are derived in parallel for the corners with

some simple presentation conventions. By imposing certain constraints, we are able to identify the

extraneous factor generating rows (only), columns (only), or both rows and columns intersecting at

zero entries. The technique of reduction is used to explain why they produce these factors. These

constraints account for at least 72% of all the possible cases.

To completely solve the sparse resultant problem with the Dixon method for bi-degree monomial

supports with three exposed points at the corners, the following has to be achieved:

• To establish that the Dixon matrix is maximal. This is stated as Conjecture 4.

• To prove that the rows and columns identified in Conjecture 3 are responsible for the extra-

neous factors in the remaining 28% of the possibilities. This also raises an open problem: is

the method of reduction or are other methods needed to show that these rows and columns

indeed produce the expected extraneous factors?

• With the method of reduction, (1) a near exposed point row or column is reduced using all

preceding reduced rows or reduced columns near the three exposed points, and (2) a bracket

factor is generated from three reduced rows or reduced columns near the three exposed points.

Thus another open problem is: when one of the three rows or columns near an exposed point

degenerates to a zero row or column, will the remaining two rows or columns near the other

two exposed points still generate the expected extraneous factor and how this affects the

reduction of other rows and columns?
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