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SUMMARY 

 

This research attempts to demonstrate the promising applications of a relatively 

new machine learning tool, support vector machine, on chaotic hydrological time 

series forecasting. The ability to achieve high prediction accuracy of any model is one 

of the central problems in water resources management. In this study, the high 

effectiveness and efficiency of the model is achieved based on the following three 

major contributions.  

1. Forecasting with Support Vector Machine applied to data in reconstructed 

phase space. K nearest neighbours (KNN) is the most basic lazy instance–based 

learning algorithm and has been the most widely used approach in chaotic 

techniques due to its simplicity (local search). Analysis of chaotic time series, 

however, requires handling of large data sets which in many instances poses 

problems to most learning algorithms. Other machine learning techniques such as 

artificial neural network (ANN) and radial basis function (RBF) network, which 

are competitive to lazy instance-based learning, have been rarely applied to 

chaotic problems. In this study, a novel approach is proposed. The proposed 

approach implements Support Vector Machine (SVM) for the learning task in the 

reconstructed phase space and for finding the optimal embedding structure 

parameters based on the minimum prediction error. SVM is based on statistical 

learning theory.  It has shown good performances on unseen data. SVM achieves 

a unique optimal solution by solving a quadratic problem and, moreover, SVM 

has the capability to filter out noise resulting from an ε-insensitive loss function. 

These special features lead SVM to be a better learning method than KNN 
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algorithm. SVM is able to capture the underlying relationship between 

forecasting and lag vectors more effectively. 

2. Handling large chaotic data sets effectively. In the learning process, the 

forecasting task is a function of lag vectors. For cases with numerous training 

samples, such as in chaotic time series, the commonly used optimization 

technique in SVM for quadratic programming becomes intractable both in 

memory and in time requirement. To overcome the considerable computing 

requirements in large chaotic hydrological data sets effectively, two algorithms 

are employed: (1) Decomposition method of quadratic programming; and (2) 

Linear ridge regression applied directly in approximated feature space. Both 

schemes successfully deal with large training data sets efficiently. The memory 

requirement is only about 2% of that of the presently common techniques.     

3. Automatic parameter optimization with evolutionary algorithm. SVM 

performs at its best when model parameters are well calibrated. The embedding 

structure and SVM parameters are simultaneously calibrated automatically with 

an evolutionary algorithm, Shuffled Complex Evolution (SCE).   

In this study a proposed scheme, EC-SVM, is developed. EC-SVM is a 

forecasting SVM tool operating in the Chaos inspired phase space; the scheme 

incorporates an Evolutionary algorithm to optimally determine various SVM and 

embedding structure parameters. The performance of EC-SVM is tested on daily 

runoff data of Tryggevælde catchment and daily flow of Mississippi river. 

Significantly higher prediction accuracies with EC-SVM are achieved than other 

existing techniques. In addition, the training speed is very much faster as well. 
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NOMENCLATURE  

 
τ  time delay 

d  embedding dimension  

k  number of nearest neighbours 

X  state vector in chaotic dynamical system 

y  lag vector in reconstructed phase space 

F(Xn)  the evolution from Xn to Xn+1

d2  correlation dimension 

U(⋅)   unit step function 

y  observation time series  

y  lag vector for reconstructed phase space 

I(τ)  average mutual information function 

l   lead time for prediction  

x  input vector 

y  target variable 

yo  observation value 

N  training data size 

n  dimension of input x 

f (x)  estimation function 

ϕ(x)   feature vector corresponds to input x  

w  weight vector for SVM 

Eguarant(w) guaranteed risk 

CI  the confidence interval 

h  VC dimension  
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Lε  ε-insensitive loss function 

ε  ε-insensitive parameter 

ξ(′)  slack variables 

J(   )  Lagrangian function 

α(′)  Lagrange multiplier  

K(x, xi) inner-product kernel 

K  Kernel matrix 

σ  width of Gaussian kernel function 

C  trade off between empirical error and complexity of model 

yt   input vector   

yt+l   l lead prediction  

β  variable in standard quadratic programming  of dual problem 

βs  working set  

βF  fixed variables 

λ  Lagrange multiplier of standard quadratic programming   

φj   eigenfunction of the integral equation   

λj   eigenvalue of the integral equation 

q  number of sub-samples  

C′  ridge regression parameter 

p(x)  probability density function in input space x 

K(q)  kernel matrix of q sample  

Ui   eigenvector matrix K(q). 

λi
(q)   eigenvalue of matrix  K(q)

HR  quadratic Renyi entropy  

P  number of complexes 
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m  number of points in a complex 

q  number of points in a sub-complex 

pmin   minimum number of complexes required in population 

α  number of consecutive offspring generated by a sub-complex 

β  number of evolution steps taken by a complex 

B  range of output data 

Q(t)  runoff time series 

P(t)  rainfall time series 
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CHAPTER 1  

INTRODUCTION  

 

1.1 Background  

Nature has been in observation for a very long time. From observations, we hope to 

better understand its system and the governing laws. Since physicists started research 

into the laws of nature, disorder, turbulent fluctuations, oscillation and ‘irregularity’ in 

nature have attracted the attention of many scientists. These ‘irregularity’ phenomena 

have simply been characterised as ‘noise’. The recent discovery of chaos theory 

changes our understanding and sheds new light on this type of nature study. 

The first true experimenter in chaos was Lorenz, a meteorologist at MIT. In 1961 

Lorenz derived the three ordinary differential equations describing thermal convection 

in a low atmosphere. He discovered that ever so tiny changes in climate could bring 

about enormous and volatile changes in weather. Calling it the Butterfly Effect, Lorenz 

pointed out that if a butterfly flapped its wings in Brazil, it could well produce a 

tornado in Texas (Hilborn, 1994). 

Study on chaos has rapidly spread to various disciplines. It ranges from a flag 

snapping back and forth in the wind, the shape of the cloud and of a path of lighting, 

stock price rise and fall, microscopic blood vessel intertwining, to turbulence in the sea. 

Studies of chaotic applications on hydraulics and hydrology, however, started about 15 

years or so ago and have shown promising findings.   

Chaotic systems are deterministic in principle, e.g. a set of differential equations 

could describe the system under consideration.  The system may display irregular time 

series. This irregularity of the system may, however, be mainly due to outside 
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turbulence and yet, at the same time, the system is intrinsically dynamic. The system is 

very sensitive to the initial conditions, known as the butterfly effect. Initial conditions 

with any subtle difference will evolve into a totally different status as time progresses; 

therefore, a satisfactory prediction for a long lead-time is practically impossible for any 

such system. However, a good short-term prediction for the system is feasible.  

Chaotic techniques analyse these irregular and sensitive systems. The embedding 

theory provides a means to transform the irregular time series into a regular system. 

The transformation is achieved when the original system is presented in the 

reconstructed phase space. The reconstructed phase space has a one-to-one relationship 

with the original system. A famous theorem is the Taken’s theorem, which provides 

the lag vector approach to analyse the nonlinear dynamic system.  

In the approach, two parameters (the time lag τ and the embedding dimension d) 

are to be determined. Various studies have been conducted in this domain. The 

commonly used techniques are the average mutual information (AMI), the false 

nearest neighbours (FNN), and the local model. The time lag τ can be determined by 

the AMI technique. The embedding dimension d is then determined after eliminating 

the false nearest neighbours using FNN technique.  

The local model is commonly used for prediction. The local model typically 

adopts k nearest neighbours in the reconstructed phase space for interpolation to yield 

its prediction. Although it may be linear locally, globally it may be nonlinear.   

For real time series, the embedding parameters obtained by these commonly used 

embedding techniques (AMI, FNN) may, as a matter of fact, not provide good 

prediction accuracy. This has triggered a series of studies (Casdagli, 1989; Casdagli et 

al., 1991; Gibson et al., 1992; Babovic et al., 2000a; Phoon et al., 2002; Liong et al., 

2002) in the search for a more optimal set of τ and d.  The studies showed that a search 
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process through a set of combinations of τ and d provides better results than the 

standard chaotic technique.  

In practice, prediction accuracy is often the most important objective. Using the 

prediction accuracy as a yardstick, Phoon et al. (2002) introduced an Inverse Approach 

whereby the optimal (d, τ, k) is first determined from forecasting and only then 

checked via the existence of the chaotic behaviour of the obtained embedding structure 

parameters, the (d, τ) set. The inverse approach was shown to yield higher prediction 

accuracy than the traditional approach. Most recently, Liong et al. (2002) replaced the 

brute force search engine in Phoon et al. (2002) with an evolutionary search engine, 

genetic algorithm (GA). Liong et al. (2002) showed that GA search engines not only 

allow a much more refined search in the given search space but also requires much less 

computational effort to yield the optimal (d, τ, k).  

It should be noted that chaotic techniques are limited to the k nearest neighbour 

(KNN) learning algorithm to approximate the relationship between the lag vectors and 

the forecast variables. The restriction imposed to a limited k number of neighbours is 

to allow KNN be implemented in a large data record of chaotic time series. KNN 

algorithm is one of the oldest machine learning algorithms (Cover and Hart, 1967; 

Duda and Hart, 1973). A few new learning algorithms have been developed since then. 

These algorithms are very competitive and more powerful than KNN machine learning. 

The exploration of newly developed machine learning algorithms is still not widely 

implemented partly due to their difficulties in efficiently handling large data records.  

1.2 Need for the present study  

Other machine learning techniques such as artificial neural network (ANN) and radial 

basis function (RBF) network are competitors to the lazy instance-based learning KNN 
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technique. However, they have been rarely explored and the exploration is limited to 

the dynamics reconstruction only. The phase space reconstruction techniques are still 

limited to the AMI and FNN traditional technique or KNN technique.  

1.2.1 Support vector machine for phase space reconstruction 

Support Vector Machine (SVM) is a relatively new machine learning tool (Vapnik, 

1992). It is based on statistical learning and it is an approximate implementation of 

structural risk minimization which tolerates generalization on data not encountered 

during learning. It was first developed for classification problem and recently it has 

been successfully implemented in the regression problem (Vapnik et al., 1997). 

SVM has several fundamental superiorities over ANN and RBF. First of all, one 

serious shortcomings of ANN is that the architecture of ANN has to be determined a 

priori or modified by some heuristic ways. The resulting structures of ANN are hence 

not optimal. The architecture of SVM, in contrast, does not need to be pre-specified 

before the training. Secondly, ANNs suffer the over-fitting problems. The way to 

overcome the over-fitting problem is rather limited.  SVM is based on the structural 

risk minimization principle and the derivation is more profound. It considers both 

training error and confidence interval (capacity of the system). As a result, SVM has a 

good generalization capability (better performance on unseen data). Thirdly, ANNs 

can not avoid the risk of getting trapped in local minima while training due to its 

inherent formulation. SVM, on the other hand, solves a quadratic programming which 

has a unique optimal solution. Due to these attractive properties, SVM is regarded as 

one of the most well developed machine learning algorithms. Its applications are 

exceedingly encouraging in various areas.  

So far, there has been no investigation on SVM applied to data in phase space 

reconstruction. Applying SVM on data mapped to the reconstructed phase space, 
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where transformed data show clearer pattern, allows a technique such as SVM to 

perform a better forecasting task.    

1.2.2 Handling large chaotic data sets efficiently  

Chaotic time series analysis requires the efficient handling of a large data set.  For 

most learning machine algorithms large data records require long computational times. 

KNN used as local model is dominant in chaotic techniques due to its simplicity. 

However, improvement in its prediction accuracy is desirable. Developing a SVM 

approach equipped with effective and efficient scheme to deal with large scale data 

sets is definitely much desirable for phase space reconstruction and forecasting.   

The learning task approximates the forecast variables which is a function of lag 

vectors. When the number of training examples is large, say 7000, the currently used 

optimization technique for quadratic programming in SVM will become intractable 

both in memory and computational time requirement.  

SVM’s primal problem formulation is transformed into its dual problem in which 

Lagrange multipliers are the variables to be optimized.  SVM solves the quadratic 

programming of 2N variables, where N is the size of training data set. The common 

technique of solving quadratic programming requires Hessian matrix, O(N2), to be 

stored in the memory. Chaotic time series analysis commonly requires large training 

data size N. The memory requirement is tremendously large and common PCs cannot 

afford such requirement. Moreover, the computational time is extremely expensive.  

Existing publications on SVM applications for hydrological time series (Babovic 

et al., 2000b; Dibike et al., 2001; Liong and Sivapragasam, 2002) and dynamics 

reconstruction of chaotic time series analysis (Muller et al., 1997; Matterra and Haykin, 

1999) revolve around those common techniques, e.g. Newton method, to solve the 

quadratic optimization problem. Small training set of about thousand records was used 
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due to computational difficulty with Newton methods, e.g. 500 records in the work of 

Babovic et al. (2000b), 5 years daily data in Dibike et al. (2001), 3 years daily data in 

Liong and Sivapragasam (2002), 2,000 records in Muller et al. (1997). Only Matterra 

and Haykin (1999) investigated the impacts of different training sizes, up to 20,000 

records, with supercomputers on prediction accuracy. Many hydrological daily time 

series come with 20-30 years or even longer records. The constraints posed thus far are 

the techniques used are not able to deal with large records efficiently. Thus, SVM 

equipped with the special algorithm which could effectively and efficiently deal with 

large scale data sets is highly desirable for phase space reconstruction and forecasting. 

Only such SVM can possibly provide high prediction accuracy in short computational 

time as well.  

Recently there are some development of the special SVM scheme to deal large 

data size. The advanced SVM has not been noticed in areas of chaotic time series 

analysis and hydrological time series analysis. The exploration of the special SVM in 

chaotic hydrological time series analysis is extremely desirable.  

1.2.3 Automatic parameter calibration  

There are several parameters (C, ε, σ) in SVM which requires a thorough calibration. 

Parameter C controls the trade-off between the training error and the model complexity. 

Parameter ε is a parameter in the ε-insensitive loss function for empirical error 

estimation. The other parameter σ is a measure of the spread of the Gaussian kernel 

which influences the complexity of the model. Gaussian Kernel is a commonly 

employed Kernel in SVM and has been reported (Muller et al., 1997; Dibike et al., 

2001; Liong and Sivapragasam, 2002) to generally provide good performances.  

Currently there is no analytical way to determine the optimal values of these 

parameters. Only some rough guides are available in the literatures. The users are 
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required to adjust the suggested parameter values. Adjustment task can be very time 

consuming. Thus, an automatic parameter calibration scheme is very much desirable.  

1.3 Objectives of the present study  

SVM is based on statistical learning theory and good performances on unseen data 

have been widely demonstrated. SVM achieves the unique optimal solution by solving 

a quadratic problem and, moreover, SVM has the capability to filter out noise resulting 

from ε-insensitive loss function. These special features of SVM lead to better learning 

than that of KNN algorithm. SVM is able to capture the underlying relationship 

between the forecast variables and the lag vectors more effectively.   

This study focuses on establishing a novel framework with a relatively new 

powerful machine learning technique (SVM) to do forecasting on chaotic time series. 

This study first takes a close look at the possible applicability of SVM for chaotic data 

analysis.  Combining its strength with the special feature of reconstructed phase space 

(mapping seemingly disorderly data into an orderly pattern) should be a more robust 

and yield higher prediction accuracy than traditional chaotic techniques.  

Since there is a series of parameters (partially originating from SVM while others 

describing the system characteristics) required to be determined, a robust and efficient 

optimisation scheme such as Evolutionary Algorithms (EA) is considered to further 

enhance the proposed chaos based SVM scheme.  

The objectives of this study can be specifically stated as follows:  

1. To assess the performance and superiority of SVM over other traditional 

techniques in the analysis of chaotic time series; 

2. To propose SVM regression model to the phase space reconstruction derived 

from the inverse approach;  
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3. To develop and implement advanced SVM equipped with effective and efficient 

scheme in handling large chaotic hydrological data sets; 

4. To propose and implement an Evolutionary Algorithm to search for the optimal 

set for both the SVM and the embedding structure parameters; 

5. To demonstrate the applications of the developed schemes on real hydrological 

time series and assess its performances. The performance of the proposed 

schemes will be compared with those of, for example, naïve forecasting, ARIMA, 

and other currently used chaotic techniques. 

1.4 Thesis organization  

Chapter 2 gives a brief overview of chaos theory, chaotic techniques and relevant 

optimisation schemes to derive the optimal embedding parameters. It also reviews 

Support Vector Machine and its applications in various disciplines.  

Chapter 3 demonstrates how SVM in this study is applied to chaotic time series. 

It elaborates the proposed SVM approach applied in dynamics reconstruction and in 

phase space reconstruction. It also illustrates special schemes of SVM, introduced in 

this study, in handling large scale data sets.  The proposed schemes require much less 

computational time and memory requirement. 

Chapter 4 discusses the evolutionary algorithm (EA) used for parameters tuning. 

The basic idea of EA is described and the proposed schemes, EC-SVM I and EC-SVM 

II, are then demonstrated. Detailed implementations of EC-SVM I and EC-SVM II are 

presented.  

Chapter 5 shows the applications of the proposed EC-SVM on daily Tryggevæld 

catchment runoff time series and Mississippi river flow time series. The prediction 
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accuracy from the proposed EC-SVM I and EC-SVM II are compared with naive 

forecasting, ARIMA, and other currently used chaotic techniques.  

Chapter 6 draws conclusions resulting from the current study and gives a number 

of recommendations for further research.  
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Introduction  

Chaotic systems are not a rare phenomenon. Studies have shown that they exist widely 

in science, engineering and finance. In hydraulics, a good example of chaos is 

turbulence. Turbulent flow is irregular; however, for each flow particle we can write its 

governing equations, namely the Navier-Stokes equations and the mass conservation 

equation. Other examples of chaotic fluid motion are the weakly turbulent Couette-

Taylor flow, Rayleigh-Benard convection. Similarly, chaotic phenomena have been 

observed in various hydrologic time series.  

This chapter first reviews the basic ideas of chaos and chaotic techniques.  In 

addition, more recent approaches in forecasting chaotic time series are reviewed. 

Review of Support Vector Machine (SVM), a relatively new machine learning tool 

(Vapnik, 1992; Vapnik et al., 1997), and its applications will follow.  

2.2 Chaotic theory and chaotic techniques 

2.2.1 Introduction 

The precise definition of a chaotic system is shown in this subsection while the 

common identification of correlation dimension and embedding theorem are described 

in the following subsections.  
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(1) Definition of Chaos  

Chaos refers to the irregular, unpredictable behaviour observed in a dynamic system 

that is extremely sensitive to small variations in initial conditions, known as the 

butterfly effect (Lorenz, 1963).  It is a deterministic system but with complex 

behaviour.  

A dynamic system is a system which continuously evolves with time and can be 

determined by knowledge of its past history. Mathematically, the time evolution of 

state variables is expressed as: 

)(1 nn XFX =+  (2.1) 

There are three major issues in the description of a dynamical system: (1) the phase 

space; (2) the dynamical rule; and (3) the initial value. The phase space or state space, 

with its coordinates, describes the dynamical state.  An orbit (or trajectory) is the path 

of a solution in the space. A dynamical rule specifies the immediate future trend of all 

state variables, e.g. Eq. (2.1) describes the evolution from Xn to Xn+1. For a given 

initial condition the solution of a chaotic system is unique. This is in contrast to the 

‘stochastic’ or ‘random’ system where more than one consequence is possible.  

The sensitivity of chaotic system to its initial condition can be expressed in the 

following way:  

For any ε > 0, and for some r > 0, for each X0 in the set S, there is a X′0 such that 

ε<− 00 'XX  provides rnn >− 'XX  after some n steps evolution.  

For a fixed distance r, no matter how precise one specifies an initial condition, there 

are points nearby this initial state that will be separated by a distance away after n steps. 

This means that, as time goes on, any tiny difference will grow rapidly and become 

significant.  
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Another characteristic of chaotic systems is its irregularity and unpredictability. 

The irregularity is the intrinsic property of a dynamic system and it is not originated 

from outside influences. As a consequence of the long-term unpredictability, time 

series generated from chaotic systems may appear to be irregular and disordered. 

However, chaos is not completely disordered and is feasible for short-term prediction. 

Chaotic time series typically provide a low value dimension even though they 

appear quite irregular and have a broad band power spectrum. Usually, the chaos 

attractor is fractal. The fractal dimensions characterise the geometric figure of the 

attractor. Fractal has come to mean any system that displays the attribute of self-

similarity. No matter how closely you look at a fractal, there is, so to say, no straight 

line in it.  

The dimension of the attractor is one of the measures to distinguish the chaotic 

time series from the stochastic time series. Box counting dimension is one of the ways 

for computing the fractal dimensions. If the phase space is covered with small k-

dimension cubes with edge ε, the orbit is visiting each of these cubes in turn. The 

fractal dimension can be defined as:   

)/1ln(
)(ln

lim
0 ε

ε
ε

MD
→

=   (2.2)  

where M(ε) : minimum number of such cubes needed to cover the set.  

 
 (2) Identifications  

There are three major characterisations of chaotic system: (1) Lyapunov exponents 

characterise the stretching properties of the trajectory under the process of evolution 

(e.g., Wolf et al., 1985; Eckmann et al., 1986); (2) the fractal dimensions characterise 

the geometric figure of the attractor (e.g., Grassberger and Procaccia, 1983a, b; 

Termonia and Alexandrowicz, 1983; Theiler, 1987); (3) the Kolmogorov entropy 
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characterises the complexity of the trajectory structure (e.g., Grassberger and Procaccia, 

1983c).  

Chaotic systems do not necessarily require the existence of a positive Lyapunov 

exponent. A positive Lyapunov exponent is observed for random processes 

(Rodriguez-Iturbe et al., 1989; Jayawardena and Lai, 1994).  

The correlation dimension (D2) can be easily determined from the experimental 

data and is commonly used for identification of the chaotic system. The basic idea was 

suggested by Grassberger and Procaccia (1983a, b). For a given data set on the 

attractor: z1, z2, …, zn ,  

⎥⎦
⎤

⎢⎣
⎡

∑∑ −−=
= =∞→

n

j

n

i
jin

U
n

C
1 1

2 )(1lim)(ˆ zzεε  (2.3a) 

where U(⋅) is unit step function, i.e. U(x) =1, x>0; and U(x)=0, x≤0. Correlation 

dimension D2 is then can be calculated as:  

⎥
⎦

⎤
⎢
⎣

⎡
=

→ ε
ε

ε ln
)(ˆlnlim

02
CD  (2.3b) 

(3) Embedding theory 

Embedding theory (Takens, 1981; Sauer et al., 1991) provides a theoretic foundation to 

chaotic analysis from experimental data. With observation data, it is possible to detect 

the evolution of the system and to reconstruct the chaotic attractor on the basis of the 

embedding technique.  

Theorem 1 (Whitney Embedding Existence Theorem) Let A be a compact smooth 

manifold of dimension d in Rk. Almost every smooth map Rk → R2d+1 is an embedding 

of A. m > 2d can be regarded as the necessary condition for F(A) not to intersect with 

itself.  

 13



   
    

 

Theorem 2 (Fractal Whitney Embedding Prevalence Theorem): Let A be a compact 

subset of Rk of box counting dimension D0, and n an integer such that n>2D0. For 

almost every smooth map F: Rk →R n, 

1. F is one-to-one on A 

2. F is an immersion on each compact subset C of a smooth manifold contained in A.  
 

The famous Taken’s time delay-embedding theorem is as follows:  

Given a delay time τ, a time lag vector y of d dimensions can be defined as: 

( )ττ )1(,...,, −−−= dtttt yyyy  (2.4) 

If d is large enough, then the mapping between lag vector (y) and state variable (X) is 

smooth and invertible. The study of observation y is also the study of the solutions X 

of the underlying dynamic system. 

2.2.2 Standard chaotic techniques 

A time series is often characterised as chaotic time series, typically with low value 

correlation dimension and a broad band spectrum from Fourier transform. Two major 

reconstructions are involved, i.e. phase space reconstruction in normal Euclidian space 

and dynamics reconstruction. The phase space reconstruction determines the 

appropriate time delay and embedding dimension.  Several standard chaotic techniques 

can be used to select time lag and embedding dimension. The forecasting can be 

subsequently carried out by fitting a function relating the lag vectors and the predicted 

variables.  
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(1) Time lag selection 

Mees et al. (1987) suggested a time lag at which the autocorrelation function first 

crosses zero. Other approaches consider a delay time at which the autocorrelation 

function attains a certain value; say 0.1 (Tsonis and Elsner, 1988), or 0.5 (Schuster, 

1988). Fraser and Swinney (1986) suggested using average mutual information (AMI) 

as a nonlinear correlation function to determine the required time lag. For a set of 

measurements, y(n), the mutual information between  y(n) and y(n+τ) is defined by:  

( )∑ ⎥
⎦

⎤
⎢
⎣

⎡
+
+

+=
+ )();(

2 ))(())((
))(),((log)(),()(

τ τ
τ

ττ
nyny nyPnyP

nynyPnynyPI  (2.5) 

P(y(n)) is an individual probability and P((y(n), y(n+τ)) is a joint probability. It can be 

seen that I(τ) is greater than zero. As τ gets significantly large, the chaotic signals y(n) 

and y(n+τ) become independent from each other.  The joint probability becomes the 

product of the individual probabilities as shown in Eq. (2.6a):  

( ) ( ) ( );)()()(),( ττ +=+ nyPnyPnynyP  (2.6a) 

log21 = 0 (2.6b) 

Thus, I(τ) tends to go to zero as τ gets large. The τ-value at the first minimum of I(τ)  

is commonly suggested to be chosen as the time lag. Abarbanel (1996) proposed a 

method to form histogram from the sample data to estimate I(τ).  

(2) Embedding dimension selection 

According to the embedding theorem of Takens (1981), to characterize a dynamic 

system with an attractor dimension d2, a d ≥ 2d2+1 dimensional phase space is 

adequate to undo the overlaps. Abarbanel et al. (1990), however, suggested that an 

embedding dimension just greater than the attractor dimension is sufficient. Kennel et 
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al. (1992) developed the False Nearest Neighbour (FNN) method to choose embedding 

dimension.  

The basic idea is that if the embedding dimension is d, then the neighbour points 

in Ρd are also the neighbour points in Ρd+1. If this is not the case these points are then 

called false neighbour points. If the number of the false neighbour points is negligible 

then this d can be chosen as the embedding dimension.  

A lag vector yt in d dimensions has its nearest neighbour point yt
′
.  The Euclidean 

distance Rd(t) can be used as a measure of the distance  between these two  points:   

[
2

1

2 ))1(('))1(()( ∑ −−−−−=
=

d

n
d ntyntytR ττ ]  (2.7) 

If the dimension increases by one, to d+1 dimension, the lag vector is: 

)](),)1((),...,(),([1 τττ dtydtytytyy d
t −−−−=+  (2.8) 

The Euclidean distance Rd+1(t) between the points yt and yt´ is:  

[ ]
21

1

2
1 ))1(('))1(()( ∑ −−−−−=

+

=
+

d

n
d ntyntytR ττ  

= 22 )(')()( ττ ×−−×−+ dtydtytRd  (2.9) 
 

Empirically, if the additional distance )(')( ττ ×−−×− dtydty  relative to the 

Euclidean distance Rd(t)  

)(
)(')(

tR
dtydty

d

ττ ×−−×−
 (2.10) 

is greater than a threshold value of approximately 15, these two points are false 

neighbours. This number of 15 is an experimental value. It may change due to the 

nature of the sample data set.  
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(3) Prediction 

The popularly used delay coordinates reconstruction technique reproduces the set of 

dynamical states of a system, using the lag vector, from the measured time series. 

Prediction is one of the applications of dynamics reconstruction. The lag vector has a 

one-to-one mapping to the state variable of the dynamic system and the evolution of 

the lag vector follows that of the state variable (Farmer and Sidorowich, 1987). The 

evolution of y of can be written as: 

y(t+1)  =  F (y(t)) (2.11) 

The local model considers a local function fL for each local region. Usually each region 

covers several nearest neighbour points in the data set. This set of fL builds up the 

approximation of the F for the whole domain. The first component of the above 

equation is what we need for the prediction of y(t+1) :  

y(t+1)  =  F1(y(t))  (2.12) 

K number of nearest neighbours of y(t) in the reconstruction space, i.e. points with the 

smallest Euclidean space in Rd, denoted as yi′(t), i=1,2,…,k is required. This is 

followed by the construction of a local predictor fL1 in the region of these k nearest 

neighbours. A linear interpolation is carried out, which results in the following 

predictor:  

∑ −−+=+
=

d

n
n ntyty

1
0 ))1(()1( ταα  (2.13) 

For k = d+1, this is equivalent to a linear interpolation and sufficient to determine the 

coefficients α0, α1,…, αd. It is often suggested to use k > d+1 to ensure the stability. It 

has been shown that zero-th order and first order interpolation provide a reasonably 
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good fitting. Higher order polynomials may not provide significantly better results than 

polynomial of first order (Farmer and Sidorowich, 1987; Zaldívar et al., 2000).  

Many studies on chaos in meteorological and hydrological time series follow the 

above standard chaotic techniques. (e.g., Nicolis and Nicolis, 1984; Fraedrich, 1986, 

1987; Grassberger, 1986; Essex et al., 1987; Hense, 1987; Tsonis and Elsner, 1988; 

Rodriguez-Iturbe et al., 1989; Sharifi et al., 1990; Islam et al., 1993; Jayawardena and 

Lai, 1994; Porporato and Ridolfi, 1996, 1997, Sivakumar et al., 1998; Zaldívar et al., 

2000) 

2.2.3 Inverse approach  

Casdagli (1989) first proposed an inverse approach to construct a robust predictive 

model directly from time series data. The study showed the effect of embedding 

dimension using brute force search while the other two prediction parameters (time 

delay and the number of nearest neighbours) were selected following some 

recommendations. The author studied different theoretical time series from low to high 

dimensional chaos. Casdagli et al. (1991) conducted a detailed study on state space 

reconstruction in the presence of noise for predicting time series.  Gibson et al. (1992) 

focused on the advantage of using prediction accuracy as a useful criterion for practical 

state space reconstruction.  

Babovic et al. (2000a) implemented an inverse approach to produce prediction 

parameters from a wide range of values of the embedding dimension, the delay time 

and the number of nearest neighbours. A Genetic Algorithm (GA) was employed to 

search for the optimal values of the embedding parameters (d, τ, k). They divided the 

data into two sets, state space reconstruction set and the production set. The values of 

the parameter set (d, τ, k) are optimal when the prediction error is minimum. A local 

model is used in the study to do a l-lead day prediction. Thus, the set (d, τ, k) which 

 18



   
    

yields the least l-lead day prediction error is the optimal set. They applied the proposed 

approach on water level prediction of Venice Lagoon, Italy. The study shows that the 

prediction accuracy, on the production set, is improved by 20% to 35% compared to 

that resulting from the standard approach.  

Phoon et al. (2002) also searched for the optimal embedding parameters which 

yield the highest prediction accuracy. Phoon et al. (2002) dealt also with two other 

issues: (1) would the resulting optimal parameter set (d,τ, k) be dependent on the 

lengths of both state space reconstruction and calibration sets?; and (2) would the 

resulting optimal set (d, τ, k) demonstrate the chaotic behaviour?  In their approach, 

the time series is divided into three subsets, i.e. state space reconstruction set, 

calibration set, and production set. The calibration set is used to check the performance 

of the embedding structure parameter set proposed from the state space reconstruction 

set. The resulting (d, τ) set is then checked whether the set demonstrates the chaotic 

behaviour. A brute force search engine is used in their study.  With the range and 

incremental step of each of the parameters considered, a total number of 4104 

evaluations are required. They applied the approach first on a noise-free Mackey-Glass 

time series and then on a daily runoff of Tryggevaelde catchment.  Higher prediction 

accuracy was achieved by the inverse approach than the standard approach.  

Liong et al. (2002) analyzed the same problem as that in Phoon et al. (2002) with, 

however, two main differences: (1) a genetic algorithm (GA) search engine is 

employed; and (2) a constant and smallest incremental step of 1 is adopted for each of 

the parameters considered. The study shows that GA search engine not only yields 

higher prediction accuracy but also with a much less number of evaluations.  Their 

prediction accuracy is higher than that of Phoon et al. (2002). 
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2.2.4 Approximation techniques  

The most conceptually easily accepted approximation algorithm is the polynomial 

predictor. It fits Fl using an m-th order polynomial in d dimensions.  Thus, it deals with 

a polynomial with ( )dm+
m ≡(m+d)!/(m!d!) ≅ d m  parameters. As the range of m and d 

values increase, the number of free parameters gets larger as well. Also when the 

training size is large, it causes a storage problem. There is no solid guideline to select 

appropriate polynomial order. It is known that polynomials of high orders tend to yield 

undesirable oscillation. 

K nearest neighbours (KNN) is the most basic instance-based learning method. It 

is widely used in chaotic techniques due to its simplicity for the learning algorithm on 

large data sets.  The main requirement is that the data set must be very dense at every 

point and the number of neighbour points at least be d+1 so that the local coefficients 

can be estimated as given in Eq. (2.13). For real world data it may be too demanding. 

Moreover, a local model is discontinuous from neighbourhood to neighbourhood.   

Artificial Neural Networks (ANNs) have shown powerful approximation abilities, 

in particular, after the discovery of the back propagation training algorithm in the mid-

1980s. Casdagli (1989) proposed the Artificial Neural Network (ANN) and Radial 

basis functions (RBF) to approximate the chaotic system. RBF is another type of 

instance learning and global interpolation technique with good localization properties. 

The ‘optimal’ structure of ANN and RBF, i.e. number of the hidden layers, number of 

hidden neurons, and the centres of the RBFs, has to be determined by the user through 

a trial-and-error approach.  It should be noted that the resulting ‘optimal’ set may not 

be the global optimum.  
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Support Vector Machine (SVM) is a relatively new learning algorithm (Vapnik, 

1992; Vapnik, et al., 1997). Muller et al. (1997) employed SVM for chaotic time series 

forecasting. They proposed to use SVM on artificial noise mixed Makey-Glass and 

Santa Fe time series prediction. Since SVM obtains its optimal structure itself during 

training, it does not suffer from the ‘optimal’ structure selection. SVM improves the 

results, obtained from the neural network, by 29% with ε-insensitive loss function.  A 

satisfactory performance was shown. Mattera and Haykin (1999) employed SVM on 

dynamics reconstruction of a chaotic system. They applied SVM on noise-free and 

noisy Lorenz time series reconstruction. The results showed the effectiveness of SVM 

in performing the nonlinear reconstruction. SVM is largely insensitive to measurement 

noise.   

2.2.5 Phase space reconstruction 

The concept of lag vector is not only used in chaotic time series.  On the contrary, the 

popularly used ARMA models also use the lag vector; and most of the ANN 

applications also use time lag as input layer. Auto-Regressive and Moving Average 

(ARMA) is the most traditional technique for time series analysis. It describes the time 

series as a linear function of p previous data and q previous white noise process, i.e. 

ARMA (p, q):  

11101 ... +−−+ ++++= pptpttt axaxaxax qqt tt
bbb −− ++++ ηηη ...110  (2.14) 

ARMA expresses the future rainfall/runoff, for example, as a linear function of past 

data in hydrological time series analysis. The selections of the proper order of p, q are 

mainly based on  empirical identification of  the ‘cut off’ or ‘dying down’ pattern of 

the sample autocorrelation function, and sample partial autocorrelation function 
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respectively. There are two major questions: (1) The future rainfall/runoff may be not a 

linear function of the past data; (2) The dependence on the previous data could be of 

other possibilities instead of time lag of 1 only (such as that shown in Eq. (2.14), i.e. 

each of the following time lags of 2, 3, 4, etc. could be a possibility.  

Recently there have been several nonlinear regression models developed for time 

series analysis. Neural network is one of most popular techniques in dealing with the 

nonlinear relationship. For runoff forecasting, the input layer mainly contains previous 

data of rainfall, temperature, and runoff, for example, of a ‘window size’ d 

(Karunanithi et al., 1994; Zealand et al., 1999; Toth et al., 2000; Anctil et al., 2004). 

Recently Support Vector Machine (SVM) application for hydrological time series 

forecasting also follows the above approach (Babovic et al., 2000b; Dibike et al., 2001; 

Liong and Sivapragasam, 2002). Almost all ANN and SVM applications on rainfall or 

runoff forecasting fixed their selected time lag at 1 and did not investigate other time 

lags. Some studies also fixed the window size d.  

In chaotic technique, the future rainfall/runoff is a function of the lag vectors. 

The proper lag vector is chosen among various different time lags and embedding 

dimensions. i.e.: 

),...,( )1(1 ττ −−−+ = dtttt xxxfx  (2.15) 

As it can be seen from Eq. (2.15), that the above description includes the ARMA and 

the existing ANN applications. In ARMA, the time lag is fixed at 1 and the embedding 

dimension is p; the resulting model is fitted by a linear function. In ANN applications, 

the time lag is fixed as 1 and the embedding dimension is the ‘window size’.  

Most of the chaotic applications show that the optimal time lag could be other 

values besides a time lag of 1. Optimal time lags for rainfall/runoff time series reported 
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have been 1, 2, 3, 40 (Phoon et al., 2002); and 3, 6, 9 (Doan et al., 2003) for daily 

runoff time series.  

 The regression ANN model can be viewed as a multivariate embedding 

technique. Similarly, proper time lag and embedding dimension should be optimally 

determined.  

2.2.6 Summary 

The discovery of chaos theory and accurate short-term predictions in many seemingly 

irregular natural and physical processes has triggered a series of research works in the 

field of water resources, especially in hydrology. 

The concept of phase space reconstruction is a very valuable contribution to the 

time series analysis. The information obtained would render better choice of input 

neurons in ANN, for example.   

In the AMI method, choosing the time delay τ when I(τ) arrives at its first 

minimum is suggested.  It should be noted that there is no strong theoretical support to 

this prescription.  In addition, the proposed time delay gives no guarantee of good 

forecasting results. A Similar problem occurs in the false nearest neighbour approach 

in determining the embedding dimension d. A threshold value to determine whether 

the considered points are false nearest neighbours is empirically derived for some 

chaotic systems. It is thus not to be expected that all real time series will follow that 

empirically selected threshold value.  A change in the threshold value will affect the 

embedding dimension, d.  

Recently a series of attempts (Casdagli, 1989; Casdagli et al., 1991; Gibson et 

al.,1992; Babovic et al., 2000a; Phoon et al., 2002; Liong et al., 2002) using the inverse 

approach has been offered.  There the objective is to find the optimal (d, τ, k) set which 
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gives the minimum prediction error.  Results showed that their prediction accuracy is, 

as expected, much higher than that resulting from the traditional chaotic techniques. 

 Local models are widely used in traditional chaotic techniques due to their 

simplicity in the learning algorithm for large data sets. This simplicity renders the local 

model superior over other existing learning techniques prior to the arrival of SVM.  It 

is therefore of interest to thoroughly explore the performance of SVM in chaotic time 

series and compare its performance with its forerunners.    

2.3 Support vector machine (SVM)  

Support Vector Machine (SVM) is a relatively new machine learning tool. It is 

regarded as one of the most elegant and promising learning techniques developed thus 

far. It is an approximate implementation of structural risk minimization which tolerates 

generalization on data not encountered during learning. Recently, SVM has attracted 

the attention of many researchers. It has been successfully implemented in the 

regression problem and its performances are quite encouraging (e.g. Müller et al., 1997; 

Liong and Sivapragasam, 2002). 

2.3.1 Introduction 

The SVM algorithm has been developed over the last three decades. In its present form, 

however, SVM was only recently developed at AT&T Bell Laboratories by Vapnik 

and co-workers first for classification problems (1992) and later for regression 

problems (1997). It is grounded in the framework of statistical learning theory, or VC 

theory. SVM has become competitive with the best available learning machine 

algorithms shortly after it was developed.  
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Let’s consider a training data set (xi, yoi), i = 1, 2, …, N  where x is the input 

vector with dimension n, and yo is the corresponding output with dimension of 1. The 

regression model is to estimate f (x):   

vfyo += )(x  (2.16) 

f(x) is the conditional expectation E[D|x] with D as the random variable and a 

realization of yo.  v is the adaptive noise term. The estimation of yo is denoted by y. In 

SVM, the input space x is transformed to a higher dimension space ϕ(x), Fig. 2.1. 

{ϕj(x)} refers to the hidden space or feature space. These nonlinear basis functions 

{ϕj(x)} convert the original non-linear complex function f(x) into a linear equation in 

the feature space so that y can be linearly described: 

∑= =
m
i iiwy 0 )(xϕ =wTϕ (x) (2.17) 

A small training error does not, however, guarantee that a small error will result 

in unseen data. The performance on the unseen data is termed “generalization”. 

Structural risk minimization principle (SRM) considers the fundamental issue of how 

to control the generalization ability mathematically, Fig. 2.2. According to SRM, the 

generalization error is lower than a guaranteed risk defined as:  

),()()( hNCIEE trainguarant += ww  (2.18) 

CI is the confidence interval which is a function of training size and VC dimension h. 

VC dimension is a purely combinatorial concept that has no connection with the 

geometric dimension and is a measure of the capacity of the learning machine. For 

example,  

bxwy m
i ii +∑= =1  (2.19) 
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has a VC dimension of (m+1). The training error decreases as the capacity or h 

increases while the confidence interval increases. The method of the structure 

minimization is to find the best compromise between the training error and the 

confidence interval (i.e. complexity of the approximation function). 

2.3.2 Architecture of SVM for regression  

A quadratic loss function is popularly used in neural networks, i.e. in multilayer 

perceptrons and radial-basis function networks due to its computational convenience.  

However, it is quite sensitive to the presence of the outliers.  It performs poorly when 

the underlying distribution of the additive noise has a long tail. To overcome this 

limitation, SVM adopts an ε-insensitive loss function. This would allow the model to 

become more robust, i.e. insensitive to small changes. 

 

Figure 2.3 illustrates the dependence of Lε (yo, y) on the error (yo - y). If the 

deviation is less than ε, Lε (yo, y) is equal to zero. Only when the deviation is larger 

than ε, the error is considered. The model can filter noisy data with respect to an ε-

deviation. The issue then revolves around the following optimal problem:  

Minimizing the empirical risk: ∑= =
N
i iioemp yyL

N
R 1 ),(1

ε   (2.21a) 

Subject to the inequality        :   0
2 c≤w  (2.21b) 

The constraint in Eq. (2.21b) reflects the complexity degree of the model. The 

higher 2w  is, the more complex is the model. As always, a less complex model is 

preferred. Introducing the following slack varibles, ξi, ξi
′ ( Fig. 2.3), defined as:  

Lε (yo, y)  =  
ε−− yyo ,      for    ε≥− yyo  

(2.20)
    0                  otherwise 
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if ,ε≥− yyo       0',0 =≥−−= ξεξ yyo  (2.22a) 

if ,ε−≤− yyo     0,0' =≥−−= ξεξ oyy  (2.22b) 

the ε-insensitive loss function can then be reformulated as:  

−ioy wTϕ (xi) iξε +≤  (2.23a) 

wTϕ (xi) ioy−  'iξε +≤  (2.23b) 

0≥iξ , 0'≥iξ , i =1, 2,…, N (2.23c)  

The constrained optimization problem in Eq. (2.21) can be viewed as a cost 

minimization function problem:  

( ) www TN
i iiC

2
1)'()',,( 1 +∑ +=Φ = ξξξξ  (2.24) 

subject to the constrains in Eq. (2.23). The constant C is a user specified parameter. 

The Lagrangian function can now be defined as:  

∑−+∑ += ==
N
i i
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i iiCJ 11 [

2
1)'()',,',,',,( αξξγγααξξ www wTϕ (xi) ]iioy ξε ++−   

                                w−∑− =
N
i ioi y1 ['α Tϕ (xi)  (2.25) ∑ +−++ =

N
i iiiii 1 )''(]' ξγξγξε

The saddle points of Eq. (2.25) can be obtained by setting differential of J equal to zero:  
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 (2.26) 

which in turn will yield:  

∑ −= =
N
i ii1 )'( ααw ϕ (xi), ii C αγ −= , '' ii C αγ −=   (2.27) 

Introducing Eq. (2.27) into Eq. (2.25) poses a newly formulated optimization problem:  

Maximize:      

                                        

∑ +−∑ −= ==
N
i ii

N
i iiioyQ 11 )'()'()',( ααεαααα

∑ −∑ −− = =
N
i jijj

N
i ii ,K1 1 )()'()'(

2
xxαααα1  (2.28a) 
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Subject to :     (2.28b) 0)'(1 =∑ −=
N
i ii αα

             Ci ≤≤α0 , Ci ≤≤ '0 α , i =1, 2,…, N  (2.28c) 

where K(xi,xj) = ϕ(xi) T ϕ(xj) is the inner-product kernel. The objective is to solve the 

dual problem by maximizing the Q(α,α′) as stated in Eq. (2.28). The dual problem is a 

quadratic programming which involves maximization of a quadratic function subject to 

a linear constraint. After finding the optimal Lagrangian multipliers, the weights are 

then determined through Eq. (2.27). Only those data points with αi ≠ αi′ are the support 

vectors. The number of the support vectors (N′) is usually much smaller than the 

sample size N originally given. The regression function f is:  

y = f(x) = wTϕ(x)=  (2.29) ∑ −=
N
i iii K(1 ),)'( xxαα

It should be noted that an inner product kernel function chosen for SVM, K(x, xi), must 

satisfy Mercer’s theorem (Mercer, 1908; Courant and Hilbert, 1970).  

Mercer’s Theorem: Let K(x, x′) be a continuous symmetric kernel that is defined in 

the closed interval a ≤ x ≤ b and a ≤ x′ ≤ b, i.e. 

∫= c dK xxxxx )()',()'( φλφ , (2.30) 

K(x, x′) can be expanded as a series:  

∑= ∞
=1 )'()()',( i iiiK xxxx φφλ  (2.31) 

with positive coefficients, λi > 0.  For this expansion to be valid and to converge 

absolutely and uniformly, it is necessary and sufficient that K(x, x′) is positive definite, 

i.e.:  

                   (2.32) 0')'()()',( ≥∫ ∫ xxxxxx ddffKa
b

a
b

holds for all )(⋅f that .  ∫ ∞<xx dfb
a )(2
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Mercer’s theorem can only verify whether a proposed kernel is actually an inner-

product kernel. Several kernel functions which satisfy the Mercer’s theorem are 

available.  They are, for example,   

1. Dot product kernel function: K(x, x′) = x Tx′ 

2. Polynomial kernel function: K(x, x′) = (x Tx′+1)p

3. Gaussian kernel function: ⎟
⎠
⎞

⎜
⎝
⎛ −−= 2

2 '
2

1exp)',( xxxx
σ

K  

4. Sigmoid kernel function: tanh(β0 xTx′+β1 ) only for some values of β0 and β1.  

As indicated, sigmoid kernel function is somewhat restricted. In the case of dot 

product, the feature space is actually the original variable and it may not be sufficient 

for real time series application with nonlinear relationship. The power of the dot 

product kernel function is far too limited. Polynomial kernel is more powerful than dot 

product kernel. However, polynomials of high degree have undesirable oscillation. 

Many studies (Babovic et al., 2000b; Dibike et al., 2001; Liong and Sivapragasm, 2002) 

have shown that Gaussian kernel has demonstrated a good performance in hydrology. 

This is actually to be expected since the dimension of the feature space of Gaussian 

kernel is infinite and it has a powerful feature to approximate nonlinear relationships. 

The parameter σ controls the complexity of the model. The smaller the σ value is, the 

more powerful the Gaussian kernel is.  

As shown in Fig. 2.4, SVM has a very similar structure to that of a radial basis 

neural network function. It can be viewed as a one-layer machine. For an input vector 

x with n dimensions, there are N′ support vectors for the machine, the structure of the 

machine can be represented as in Fig. 2.4.  
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2.3.3 Superiority of SVM over MLP and RBF Neural Networks 

SVM is an elegant and highly principled learning method. Its derivation follows the 

principle of structural risk minimization which makes the derivation more profound. 

Multilayer Perceptron (MLP) and radial basis function (RBF) networks are probably 

the most popular nonlinear estimation techniques. Both MLP networks and RBF 

networks have several known major drawbacks such as:  

1. The architecture of MLP, i.e. the number of hidden layers and hidden neurons, 

has to be determined a priori or modified while training by some heuristic ways.  

RBF networks have to choose the number of RBF functions and the centres of 

those RBFs. The resulting structures from these heuristic approaches on both 

MLP and RBF are not necessarily optimal. SVM can be viewed as one layer 

machine. The architecture of SVM does not need to be specified before training. 

During training, SVM determines the support vectors itself and those support 

vectors act as neurons. Therefore SVM, unlike MLP and RBF, does not suffer the 

architecture determination problem.   

2. In order to fit the training data from a nonlinear system, the learning machine 

must be powerful enough to detect those nonlinear complex relationships. 

Therefore the over-fitting problem can not be avoided. ANNs suffer from the 

over- fitting problem and the way to overcome the over-fitting problem is rather 

limited. An early stopping approach even before obtaining its minimum and 

network pruning techniques are some of the indirect ways of controlling the over-

fitting problem. SVM considers both training error and confidence interval 

(capacity of the system). The technique implemented in SVM controls these two 

items effectively. As a result, SVM possess a good generalization feature (better 

performance on unseen data). 
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3. ANNs can not avoid the risk of getting trapped in local minima while training, 

due to its formulation. SVM instead solves a quadratic programming problem, 

which has a unique optimal solution.  

4. SVM uses the ε-insensitive loss function which filters noise of ε level. This 

provides SVM the robustness in dealing with real world noisy mixed time series. 

Other techniques do not have this feature.  

2.3.4 Issues related to model parameters 

Though SVM has various advantages as listed above, the parameter calibration 

remains an open issue. The parameters involved and selected by the user are:   

1. Parameter C (Eq. (2.24) ) controls the trade-off between the training error and the 

model complexity. Since SVM maps data into high dimensional feature space, C 

is sensitive to the model performance. Only a good choice of C can provide a 

good result. 

2. Another parameter is ε from the ε-insensitive loss function. ε can be related  to 

the noise of the training data. However the noise of the real world data is usually 

unknown. 

3. Another parameter is σ, the width of the Gaussian kernel. It controls the 

complexity of the model. The smaller σ is, the more powerful SVM can 

approximate. The dimension of the feature space of Gaussian kernel is infinitely 

large. The results of SVM are implicitly provided from the feature space by using 

the kernel method.  

These three major free parameters need to be calibrated before SVM can be utilized to 

its fullest. These parameters must be tuned simultaneously. It is a quite difficult 

problem for regression and there is, however, no good and efficient method available. 

 31



   
    

It is reported in SVM applications that tuning these parameters is largely a trial and 

error process (e.g. Vapnik et al., 1997; Muller et al., 1997; Dibike et al., 2001; Liong 

and Sivapragasam, 2002). 

2.3.5 SVM for dynamics reconstruction of chaotic system 

Müller et al. (1997) employed SVM for chaotic time series forecasting. The 

embedding parameter was found by the method of Liebert et al. (1991). They proposed 

to use SVM on artificial noise mixed Mackey-Glass and Santa Fe time series. The 

training data were categorized into several segments with each segment containing 

shorter records of about 300 patterns. A good performance was shown, better than 

MLP and RBF networks. They pointed out that the choice of the parameters (C, ε, σ) is 

suboptimal. They did not, however, explicitly indicate the difficulty of SVM in 

handling large training samples, which is a typical case for chaotic time series. It 

should be noted that there was still no efficient way to solve the quadratic 

programming problem of SVM for large data sets when Müller et al. published their 

papers in 1997.  

Mattera and Haykin (1999) employed SVM on dynamics reconstruction of 

chaotic systems. Data used were the Lorenz time series. In their study, some empirical 

suggestions in choosing the parameters of SVM were given.  

The ε-value shapes the actual loss function and affects the approximation error, 

training time, and complexity of the solution. The training time and complexity depend 

on the number of support vectors. The number of support vectors is a decreasing 

function of ε. Large ε-values can be utilized to reduce the training time and network 

complexity. Mattera and Haykin (1999) proposed to choose ε-value when the number 

of support vectors is about 50% of the whole training set.  
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C is proposed to be chosen as about equal to the range of the target variable 

(Mattera and Haykin, 1999). From Eq. (2.29), the following can be derived:  

∑ −≤ =
'
1 ),()'(N

i iii Ky xxαα   

          '),(),(' '
1

'
1 NCKCK N

i i
N
i iii ×≤∑≤∑ −≤ == xxxxαα   (2.33) 

 
where N′ is the number of the support vectors. Denoting B = max | y |, set C ≥ B will 

satisfy any case with different number of support vectors. If C is very large compared 

to B, this will increase the linear coefficients (α - α′) and may give rise to numerical 

instability and cost unpleasantly long training time.  

The difficulties in dealing with large chaotic time series were addressed in 

Mattera and Haykin (1999) as a ‘formidable’ problem. The QP solver used in the study 

was Minos 5.4 which implements quasi-Newton approximation and stores the Hessian 

matrix of the size of O(N2) where N is the sample size of the training data. There was, 

however, still no efficient scheme to handle large data sets for regression problems at 

the time of their investigation in 1999. 

2.3.6 Summary  

SVM is a newly developed learning machine. It has been shown that SVM may 

provide better performance than common neural networks since SVM is based on the 

principle of structural risk minimization. During training, SVM finds the support 

vectors automatically. It therefore does not suffer from the structure determination 

problems. Since SVM has a unique optimal solution, it avoids the risk of getting 

trapped in local minima. SVM uses ε-insensitive loss function to filter out noises.  This 

feature makes SVM more robust on real world’s noisy data.  

Besides all the advantages described above, SVM has its own limitations. The 

parameters values selection remains an issue. As the training data size gets very large, 
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quadratic programming is difficult to be solved by common techniques due to the 

tremendously large memory requirement and long computational time.  

SVM has been employed to the dynamics reconstruction and forecasting; good 

performances have been demonstrated. Investigations of SVM applied for phase space 

reconstruction have, however, not been explored, partly because chaotic time series 

involve a large data set, and partly because SVM is a quite newly developed tool.  

2.4 Conclusions   

Some fundamental principles relating to Chaos and Chaotic theory were discussed. A 

detailed review on standard chaotic techniques and inverse approach for phase space 

reconstruction was conducted. It was demonstrated that in practice inverse approach is 

superior over the standard techniques. A brief discussion on approximation techniques 

involved in SVM is made. A detailed review on support vector machine together with 

its advantages and disadvantages was also provided.  

This review pointed out the need: (1) to thoroughly explore the performance 

capability of SVM in chaotic time series; (2) for SVM to find an efficient scheme to 

deal with large data records; and (3) for SVM to find an efficient scheme to calibrate 

model parameters. The following chapters present schemes addressing the above issues. 
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Figure 2.1 Illustration of data conversion from reconstructed phase space to feature 

space 
 

 

 

 

 

 
Figure 2.2 Illustration of structural risk minimization 
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Figure 2.3 ε-insensitive loss function 

 

 

 

 

 

 

Figure 2.4 Architecture of Support Vector Machine (SVM) 
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CHAPTER 3 

SVM FOR PHASE SPACE RECONSTRUCTION 

 

3.1 Introduction  

In this chapter SVM, used as an approximation engine, is applied first to reconstruct 

the phase space, with the least prediction error as the objective function, and then to do 

forecasting.  

The analysis of chaotic time series is always associated with large scale data sets 

which pose serious difficulties to approximation techniques. This is the main reason 

why many studies favoured the local model due to its simplicity, although it is not so 

powerful as others. When SVM solves the quadratic programming, the Hessian matrix 

of size O(N2) needs to be stored in memory all the time during the training task. As the 

training data size N is large, which is a common case for chaotic time series, the 

memory requirement is tremendously large and poses serious problem to common PCs. 

Hence an effective algorithm, which can deal with large scale data sets, is required in 

the analysis of chaotic time series.  

In this chapter, the proposed application of SVM in the phase space 

reconstruction, and then for prediction, is first described. The implementation of 

special algorithms to deal with the inevitably large data set, required in the analysis of 

chaotic time series, then follows.  This special algorithm is of utmost importance to 

make SVM of practical usage.  
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3.2 Proposed SVM for dynamics reconstruction  

After the phase space reconstruction, the prediction problem is solved in normal 

Euclidean space. SVM, with its generalization capability, is very powerful to 

approximate nonlinear relationships. Using the lag vector as the input variable and the 

prediction variable as the target function, SVM can detect, on the basis of statistical 

learning, the underlying relationship effectively. In this section, the generalization 

capability of SVM will be explored. 

3.2.1 Dynamics reconstruction with SVM 

Dynamics reconstruction is operated in the reconstructed phase space. For a given time 

series, y1, y2, …, yN, with a known time delay (τ), and embedding dimension (d), the 

lag vector input and the corresponding l-lead time output can be easily assembled and 

used for training, for example. Figure 3.1 shows a simple conversion example with τ = 

1, d = 2, and l = 1.  

After the embedding structure parameter set (d, τ) is determined by the standard 

approach such as AMI, and FNN, or by other techniques, for a given training data set, 

y1, y2,…, yN, the input vector yt and the output vector yt+l are set up. The length of the 

data set for training is N′ = N - (d -1) × τ - l.  The essential task in the prediction is to 

fit the relationship between the predicted variable and the lag vector:  

),...,,()( )1( ττ −−−+ =+= dtttt
d

lt yyyfvfy y   (3.1) 

A widely used technique is the local model to fit this relationship using the local linear 

model as illustrated in Fig. 3.2. The local model finds a number of nearest neighbours 

among the training data and the prediction follows the pattern of these evolutions of 

the nearest neighbours.  
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This regression problem is carried out in the reconstructed phase space y. Instead 

of using a local model, the following model structure is proposed in this study: (1) the 

lag vector is used as the input; (2) a l-lead time prediction is the desired output; and (3) 

SVM is used for the regression problem, as given in Eq. (3.1).  SVM is able to find a 

very good fit for complex nonlinear functions. SVM replaces the K nearest neighbour 

prediction engine, a local linear method. Figure 3.3 depicts a schematic diagram of 

how SVM is combined with chaos based techniques.   

For a given parameter set of embedding structure of a time series, the training 

samples, {yi, y(t+1)oi} where i = 1, 2, …, N, provide the lag vector and the 

corresponding predicted vector to establish their relationship.  Mathematically, the 

problem deals with an optimization of the following quadratic programming problem:  

Maximize:  ∑ +−∑ −= == +
N
i ii

N
i iioltyQ 11 )( )'()'()',( ααεαααα

i

                           ∑ −∑ −− = =
N
j jijj

N
i ii ,K1 1 )()'()'(

2
1 yyαααα  (3.2a) 

Subject to:  (3.2b) 0)'(1 =∑ −=
N
i ii αα

         Ci ≤≤α0 , Ci ≤≤ '0 α , i =1, 2,…, N (3.2c) 

After finding the optimal Lagrange multipliers, the weights are then determined.  

The regression function f now becomes:  

∑ −= =+
N
i iiilt K(y 1 ),)'( yyαα  (3.3) 

The flowchart of the forecasting task of chaotic system is given in Fig. 3.4.  

3.2.2 Calibration of SVM parameters 

SVM has several parameters which require calibration prior to its applications. There 

are some suggestions available in the literature.  However, these suggestions are 
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empirical and should be used as a guideline only.  In this study, these parameters are 

calibrated with the least prediction error used as the objective function. The set of 

parameters, with which SVM provides best prediction on unseen data set, is chosen as 

the optimal set and will be used for the prediction task. 

 The data set is divided into three sets: (1) training set; (2) test set; and (3) 

validation set. Once the embedding structure parameter set is given, the lag vector can 

be constructed for the time series.  The training set is used to select the SVM’s support 

vectors and to solve the quadratic programming problem in obtaining the Lagrange 

coefficients, α and α′. The test set is used to select the optimal SVM parameters with 

the least prediction error used as the objective function. The root mean square error is 

used as criteria:  

'/)))()(('
1

2 NltyltyError N
i ioiptest ∑ +−+= =  (3.4) 

The validation set is then used to validate the performance of the optimal SVM 

parameters determined from the use of training and test data sets.   

The kernel used in this study is the Gaussian kernel. It has been reported in 

various publications that the Gaussian kernel provides better performance than the dot 

product kernel, polynomial kernel, and sigmoid kernel. Since the Gaussian parameter σ 

influences the complexity of SVM, a proper selection of σ is of utmost important.  

There are three parameters in SVM: C, ε, and σ. The selection of these 

parameters has been the focus of many research works. C controls the trade-off 

between complexity of the machine and the empirical error. The higher the C value is, 

the more emphasis is placed on the empirical error. ε is the parameter in the ε-

insensitive function and depends on the noise level of the original data set. The lower 

the ε value is, the lower level the noise is allowed, i.e., the higher the empirical error is. 
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σ2 is the width of the radial basis function. The lower the σ value is, the more powerful 

the Kernel is, i.e., the more complicated the function it can approximate.  

Figure 3.5 illustrates the selection procedure of the SVM parameters based on the 

prediction accuracy. Once the embedding structure parameter set is proposed, the best 

parameter set (C, ε, σ) will be chosen from the minimum test error of the test set.  

3.3 Proposed SVM for phase space and dynamics reconstructions 

Applying SVM first for phase space reconstruction and then for dynamics 

reconstruction is proposed in this study. The embedding structure parameter set is the 

corner stone in the phase space reconstruction. Figures 3.3 and 3.5 show how the 

choice of the embedding structure parameter set affects the prediction accuracy.   

3.3.1 Motivations 

Techniques commonly used to select the embedding structure parameters are AMI and 

FNN. In AMI, the proposed time lag is chosen when the first minimum of the mutual 

information arrives. AMI is related closely with entropy which characterizes the 

chaotic system. However, it is a known fact that there is no very strong theoretical 

ground in the choice of the exact value of time lag.  It has been shown widely that time 

lag chosen from the proposed guideline does not necessarily provide good prediction 

for real time series. Moreover, for real time series the first minimum of the average 

mutual information is not very distinct. Figure 3.6 shows an example of a time series 

which displays broad band Fourier transform and low correlation dimension. The 

‘first’ minimum of AMI may be taken at time lag of 12.  The AMI value decreases 

very gradually already at time lag greater than 8 or so and the ‘first’ minimum of AMI 

value is really not significantly different from the values nearby.  The choice therefore 
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could be rather wide. Only after a ‘proper’ time lag has been selected, the selection of 

a proper embedding dimension with FNN can be conducted. 

In the FNN method, the selection of the proper embedding dimension is 

completed once the false nearest neighbours have been eliminated. However, 

definition of false nearest neighbours is quite ambiguous. There is no strong theoretical 

ground to judge whether two points are false nearest neighbour. An empirical threshold 

value, 15, is used instead to decide if two points are false nearest neighbours. In 

principle, if the additional Euclidean distance with the increasing dimension exceeds 

the threshold value 15, then the ‘neighbours’ under consideration are identified as false 

nearest neighbours. A change in the threshold value will obviously affect the false 

nearest neighbours decision making. 

Since the embedding parameters resulting from these commonly used embedding 

techniques do not guarantee ‘optimal’ prediction accuracy, the choice for the least 

prediction error as the objective function adopted in this study seems to be a 

reasonable proposal.   

3.3.2 Proposed method 

SVM will be used in this study to find the optimal embedding structure and SVM 

parameters with which the prediction error is the minimum. Figure 3.7 shows the basic 

idea of this novel method. 

SVM functions as a regression engine in this study for chaotic time series 

analysis. Unlike the algorithm shown in Fig. 3.3, SVM is now used for both the phase 

space and dynamics reconstructions as illustrated in Fig. 3.7.    

The data set is divided into three sets: (1) training set; (2) test set; and (3) 

validation set. A parameter set of embedding structure is first selected. Lag vectors are 

then constructed. The training set is used for SVM model to select the support vectors 
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and to obtain the Lagrange coefficients, α and α′. The test set is used to select the 

optimal parameter set of embedding structure and the corresponding SVM model 

parameters based on the least performance error. The validation set is finally used to 

validate the performance of the optimal parameter set.  

There are five parameters to be determined in this approach.  They are: the time 

delay τ, the embedding dimension d, and the 3 parameters in SVM C, ε, σ. These five 

parameters have to be determined simultaneously. Figure 3.8 illustrates the procedures 

of the proposed approach.   

It should be noted that an efficient technique able to deal with large training data 

set is highly essential for the success of this proposed method. Only when SVM 

powered with a fast and effective scheme for large data sets can the proposed SVM be 

competitive with or more superior over other already widely used techniques for 

chaotic time series analysis.  

3.4 Handling of large data record with SVM 

The dual problem of SVM deals with optimization of a quadratic objective function 

expressed in αi, αi′. A linear constraint accompanies the dual problem as given in Eq. 

(3.2). The objective function in Eq. (3.2a) is not in the standard form of qudratic 

programing and it can be converted to standard qudratic function as:  f(x) = 1/2 xTHx + 

cTx, where H is the Hessian matrix. With 
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the dual problem, as given in Eq. (3.2), can be converted to the standard quadratic 

programming form as follows: 

Minimize: bββKββ TTQ −= ~)( 2
1  (3.7a) 

Subject to:  (3.7b) 0=1βT

                  Cii ≤≤ βδ0 , i = 1, 2, …, 2N (3.7c) 

δi =1 for 1 ≤ i ≤ N  and δi = -1 for N+1 ≤ i ≤ 2N.  SVM deals with a quadratic 

programming with one linear constraint and bound constraints. Even though this type 

of optimisation problem is well understood and algorithms are well developed, a 

serious obstacle is faced when it deals with a large training data set. The Hessian 

matrix, Eq. (3.8), becomes tremendously large with increasing training sample size: 
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For instance, a 20 years daily flow time series has about 7,300 records. The 

Hessian matrix has the size of square of 2 times the sample size, i.e. 213,160,000. If 

each element of the Hessian matrix is stored as an 8-byte double precision number, the 

total memory capacity required is 1,705 Megabyte. Common PCs have a RAM of size 

256 Megabyte. Since the Hessian matrix is required to be stored, this requirement 

poses a serious problem for SVM.  
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3.4.1 Decomposition method  

Most recently a decomposition method was developed to overcome the above 

mentioned problem. This allows SVM to deal with large data record problem. For 

classification problems, Platt (1999) developed sequential minimal optimisation (SMO) 

and Joachims (1999) developed SVMlight.  For regression problem, Collobert and 

Bengio (2001) successfully implemented the decomposition method in SVMlight. Its 

ability to handle large data sets was demonstrated on the regression problems as robot 

arm moving as a function of 32 variables like joint position, twist angle etc. with 6192 

training examples, yearly average sunspot as a function of 12 previous yearly averages 

with 40,000 training samples.  In this study, the scheme is introduced to the chaotic 

time series analysis.  

3.4.1.1 Introduction  

The basic idea of the decomposition method is to decompose the quadratic 

programming problem into a series of small quadratic programming problem of only 2 

selected variables while the remaining variables are fixed. The memory requirement is 

then significantly decreased into O(m×N), where m is a small value integer. Since a 

quadratic programming with 2 variables can be solved analytically, the whole 

algorithm becomes very efficient. The basic algorithm is as follows: 

[1] Set an initial value β0 for all β; 

[2] Select 2 working variables among 2N variables, e.g. β1, β2, among β; 

[3] Solve the quadratic programming having only 2 variables analytically. Q(βk+1) 

<Q(βk) is guaranteed; 

[4] Check the optimal conditions. If the KKT conditions are met, the optimum has 

been achieved; otherwise, go to step [2] and repeat the remaining steps. 
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The decomposition method splits the variables into a fixed set F and a working set S. 

Denoting: 
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βs contains 2 variables, e.g. β1, β2, which are selected as the working variables among 

β. The objective function, given in Eq. (3.7a), becomes a minimization problem of: 
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Denoting , it is equivalent to the following standard quadratic 

programming form:  

FSFs βKbh ~−=

Minimize: hββKββ T
S

T
s ssssQ −= ~

2
1)(  (3.11a) 

Subject to:             (3.11b) 1β1β T
F

T
S −=

                   Cii ≤≤ βδ0 , i = 1, 2, …, 2N (3.11c) 

Only and  are required to be stored in the memory, i.e. 2 rows, corresponding 

to the 2 selected working variables, of the 

SFK~ SSK~

K~ matrix, as shown in Fig. 3.9 (b). The rest 

rows, , are not required. The memory requirement is decreased from the square of 

2 times the sample size, 4N

FFK~

 2, to 4 times the sample size, 4N, as shown in Fig. 3.9. 
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3.4.1.2 Brief description of technique  

The decomposition technique used here adopts 2 working variables and the selection 

of the 2 working variables is based on the feasible direction method. The stopping 

criteria are the Karush-Khun-Tucker (KKT) conditions. 

(1) Two working variables 

βs contains only 2 variables: β1, β2.  The optimization problem can be expressed as 

follows. With 

⎥
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Equation (3.11) becomes: 
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Subject to: ζββ =+ 21  (3.13b) 

                 C≤≤ 2211 ,0 βδβδ  (3.13c) 

With 12 βζβ −= , the above objective function becomes:  

Minimize: 1212212
2

12212112
1

1 ])[()2()( βζββ hhkkkkkQ −−−++−=  (3.14a) 

This is a simple quadratic program with one variable as the standard form:  

f(x) = 1/2 ax2+bx.  (3.14b) 

 a = k11-2k12+k22 > 0 always holds for Gaussian kernel. The function has a unique 

minimum when β1 = a/b. The solution depends on the bound constraints of β1. If a/b is 

within the bound constraints, a/b is the solution. Otherwise, the solution is one of the 
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boundary points as shown in Fig. 3.10. Once one of the working variable, β1, is solved, 

the other working variable, β2, can be easily obtained from β2= ζ- β1.  

(2) Selection of 2 working variables  

There are a number of choices to select 2 working variables among 2N variables. The 

total number of choices is:  

)!22(
)!2(

2
1

2
1 2

2 −
=

N
NC N    (3.15) 

Choosing a good working set is highly essential to ensure a rapid convergence. Thus, 

an efficient and effective selection method is the key to the minimization of the 

objective function Q(β). The strategy is based on Zoutendijk’s feasible direction 

method (FDM) for constrained optimisation problem (Zoutendijk, 1970). Steepest 

feasible descent strategy is used to choose a good pair of working variables and 

guarantees that the variables selected have the largest potential to minimize the 

objective function.  

Figure 3.11(a) shows how the optimisation of the decomposition method 

progresses. β is varying within the feasible region as β approaches to the optimum. At 

an iteration k, for example, βk = ( βk
1, βk

2, βk
3, …, βk

2N) and only βk
1 and  βk

2 are chosen 

as the working variables.  Thus, only βk
1 and βk

2 become βk+1
1 and βk+1

2 at the iteration 

(k+1) while the rest βk
3, βk

4, …, βk
2N  remain unchanged, i.e. βk+1 = ( βk+1

1, βk+1
2, 

βk
3, …, βk

2N). Denoting d as the difference between βk+1 and βk: 

kk ββd −= +1             (3.16) 
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d has only 2 nonzero components, i.e. d = (d1, d2, 0, …, 0 ). Since the linear constraint 

βT1 = 0 must hold, (βk+1- βk)T1 = 0 is true, i.e. dT1 = 0 or d1 +d2 = 0. When the problem 

is projected on β1β2 space, the feasible region is a line of tangent equal to –1 (β1+β2 = 

constant, as in Eq. (3.12b)) and there are only 2 possible directions the solution points 

can move as illustrated in Fig. 3.11 (b). 

To choose a good set of working variables, steepest feasible descent strategy is 

employed. The less the dot product of the gradient ∇Q(β) and d is, the closer d is to 

the negative gradient; this means that the working variables will reduce further the 

objective function Q(β). For instance, direction 2 in Fig. 3.11 (b) will be chosen among 

the four possible directions. A good working set can be found by solving: 

Minimize: ddβ /)( kQ∇             (3.17) 

Since d has only two nonzero components and d1 + d2 = 0, the above problem is 

reduced to: 

Minimize: 2/)''(
21

kk QQ
ββ

−             (3.18) 

This translates to a problem finding the minimum (Q′β1 - Q′β2). Therefore, the two 

working variables should be as such that one variable (β1) has the smallest first order 

derivative Q′β1, among the total 2N variables, while the other variable (β2) has largest 

first order derivative Q′β2. 

(3) Checking of KKT condition 

 Since SVM solves a quadratic programming, there is a unique optimal solution to this 

quadratic programming. The Karush-Khun-Tucker (KKT) condition is the necessary 
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and sufficient condition for the optimal solution. Thus, the KKT condition is used for 

checking whether the algorithm has achieved the optimal solution. 

For optimization problem stated in Eq. (3.2), KKT condition holds at the optimal 

point:  
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Therefore λeq can be estimated by those , i.e. λC
i
<< )('0 α i

up=λi
low = 0. Noting:  

A={i, 0 ≤ αi  ≤ C},      B={i, 0 ≤  α′i   ≤ C} 

Applying λi
up=λi

low =0, as in Eq. (3.20c), to Eq. (3.19a), λeq may then be estimated by:  
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When λi
up > 0 as in Eq(3.20a), λi

low > 0 as in Eq(3.20b), and λi
up/low = 0 as in Eq.(3.20c), 

are verified, i.e.:  

δ i βi    = C ,      if  (3.22a) endi
equp Qi εδλλ −≥+−= ))',('( αα
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the optimal solution for the quadratic programming of Eq. (3.2) of the dual problem in 

SVM is achieved. When εend = 0, the above conditions are as strictly the same as Eq. 

(3.20). For numerical calculation, it is hardly to achieve εend = 0. Normally εend = 0.01 

is set and setting a higher accuracy level will lead to a considerable longer training 

time. 

3.4.1.3 Implementation  

The decomposition method illustrated here is highly effective and efficient for large 

scale training set.  Two key strategies employed in the algorithm: 2 working variables 

and the steepest feasible direction to select the 2 working variables. The algorithm 

converts the problem into a series of quadratic programming problems each having 

only two variables and one linear constraint.  

Another technique attempts to speed up the training is the shrinking technique. 

For α=0, λlow can be estimated; if λlow >0 strictly holds for a long time, then it may be 

removed from the problem, as shown in Fig. 3.12. The algorithm converges when 

working size is equal to 2 and without shrinking. Shrinking is a heuristic and it will 

speed up the algorithm, but no convergence proof is available.  

As described above, SVM equipped with a decomposition method could easily 

deal with large data record requirement. The software used in this study is SVMTorch 

written in C programming and running on Linux platform. There are three remaining 

parameters as described before, C, ε, σ, which will be calibrated together with the 

embedding structure parameters (τ, d).  

3.4.2 Linear ridge regression in approximated feature space  

The solid convergence of decomposition method to deal with large data sets has been 

demonstrated and proven (Collobert and Bengio, 2000). However, the iterative scheme 
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employed in the decomposition method may not be efficient and hence yield a slow 

convergence. For example, different time series of the same length may have very 

different training times.  

Most recently, Suykens et al. (2002) demonstrated that dual problem with kernel 

trick is suitable for large dimensional input space, while the feature space problem is 

more suitable for large data sets. They demonstrated the scheme on the Sinc function, a 

benchmark SVM regression problem, with 20,000 examples. In this study, this scheme 

is introduced to the chaotic time series analysis to deal with its large data sets problem. 

The scheme performs linear ridge regression between the target function and the 

features directly. It is known that the Gaussian kernel has infinitive dimension. The 

scheme offers a meaningful and effective approach to approximate its appropriate 

features. It approximates the eigenfunctions and eigenvalues, according to Mercer’s 

theorem, with the use of a set of sample from the input space.  

3.4.2.1 Brief description of technique   

(1) Eigenfunctions and Eigenvalues approximation 

Recently, Williams and Seeger (2000, 2001) pointed out that for learning task there is 

a probability density function in input space, p(x), which should be included in the 

integral equation in Mercer’s theorem:  

∫= xxxxxx dpK )()()',()'( φλφ             (3.23) 

The eigenfunctions φj are orthonormal with respect to p(x), i.e.,  

ijji dp δφφ =∫ xxxx )()()(             (3.24) 

δij = 1 when i = j and δij=0 when i ≠ j. The kernel function used in SVM must be 

positive definite, i.e. for all functions f(x) ∈ Λ2, ( ), ∞<∫ xx df )(2

∞<∫ ∫ ')'()()',( xxxxxx ddffK . (3.25) 
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 K(x, x′) can be expanded into a uniformly convergent series with eigenvalue λj and 

eigenfunction φj.  The expansion is as follows:  
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j
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1
)'()()',( xxxx φφλ             (3.26) 

where NF≤∞  is the number of positive eigenvalues. The following relationship holds 

between the features and the eigenvalues and eigenfunctions:  

)()( xx jjj φλϕ =            (3.27) 

The approximation of the features, ϕj, can be obtained by approximating the 

eigenvalue λj and the eigenfunction φj. Given a random sample {x1, x2, …, xq} from 

p(x), the empirical estimation holds for p(x),  

qp /1)( ≅x                  (3.28) 

Introducing Eq. (3.28) into Eq. (3.24) and the integral in Eq. (3.23) yields:  
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Equation (3.23) now becomes: 
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Introducing the sample xj for x into Eq. (3.30) results in: 
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If λi and φi (xk) can be estimated as node points, φi (x) can then be interpolated as: 

 53



   
   

∑≅
=

q

k
kik

i
i K

q 1
)(),(1)( xxxx φ

λ
φ             (3.32) 

The eigenvalues and eigenfunctions can be estimated as related to the eigen 

decomposition of the kernel matrix of the sample points. The kernel matrix of these q 

sample, K(q),  can be written as:
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The eigen decomposition of matrix K(q) is expressed as follows:  
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where Ui is the eigenvector and λi
(q) is the eigenvalue of matrix  K(q). Equation (3.34) 

and Eq. (3.31) match with each other.  The following approximation is made:  
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In Eq. (3.35b), a term q  appears before Uji, due to the need for φi to meet the same 

requirement as that in Eq. (3.29a). Introducing Eq. (3.35) in Eq. (3.32) and then in Eq. 

(3.27), the estimated feature space can be computed through:  
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(2) Quadratic Renyi entropy for selection of the subset 

The random sample {x1, x2, …, xq} should be a subset of the entire sample. The 

memory requirement to store the features of all the training records is N×q×8byte. For 

example, for N = 7300 and q = 500, the memory requirement is 29MB. Like any good 

sampled points, the chosen q points should be a good representation of the whole 

sample points. The selection of these q points from the training data set can be made 

based on the quadratic Renyi entropy defined as:  

xx dpH R
2)(log ∫−=             (3.37) 

For Gaussian kernel,  can be estimated (Girolami, 2002) by the sample 

points {x

xx dp 2)(∫

1, x2,…,xq} as:  
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Thus, the quadratic Renyi entropy can be estimated as:  
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The quadratic Renyi entropy can be used as the criterion to choose a good set of 

S={x1, x2, …, xq}, which provides larger entropy, HR. A subset with larger value of 

Renyi entropy is more scattered and therefore it represents the whole data set better. 
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{ } decreases as { } increases as shown in Fig. 3.13(a). A 

subset with large value of entropy means that this subset has a relatively low value of 

{ }. From Eq. (3.38), this implies that the average of the kernel matrix is 

smaller. For instance when q=2, i.e. only two points are selected. Equation (3.38) 

becomes:  

xx dp 2)(log ∫− xx dp 2)(∫

xx dp 2)(∫

( ) 121222112 5.05.02
2
1 KKKK +=++  (3.40) 

K12 is equal to 0.2 and 0.6 respectively for cases A and B in Fig.3.13 (a). Figure 3.13 

(b) shows the corresponding situation of cases A and B. The higher the entropy is, the 

larger the distance of the selected points. For situations in which q > 2, the same reason 

is applicable as that given for the case when q=2.  Selecting the subset with largest 

entropy means selecting points that are most scattered and therefore should represent 

the whole data set best.  

(3) Ridge linear regression  

Ridge regression reduces the effective number of parameters. This results in a less 

sensitive model and hence a less overfitted model. For a given sample set {xi,yo(i+l)}, 

where i=1, 2,…, N, the ridge regression, between the forecasting variable yo(i+l) and the 

approximated features {ϕj(xi)},where j = 1, 2, …, q, minimizes the following cost 

function: 
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Denoting  
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Equation (3.43) can now be expressed as:  

yHwHwH TT C =+ '   (3.45) 

with solution as : 

yHIHHw TT C 1)'( −+=             (3.46) 

The inverse may not exist in some matrices. In order to guarantee the scheme to 

be stable and reliable, the pseudo-inverse of (HTH+C′I) is used instead of the inverse.  

3.4.2.3 Implementation  

There are three major steps in SVM equipped with the linear regression in the 

approximated feature space, as illustrated in Fig. 3.14 as well,  

Step I Select a good data subset, with the largest entropy, from the whole training 

set; 

Step II Approximate the features by using the eigenvalues and engenfunctions of the 

kernel matrix from the selected subset; 

Step III Apply ridge linear regression to fit the relationship of the target variable and 

the features. 

In the selection of a good subset with largest entropy (Step I), the algorithm is as 

follows:  

(1) Choose an initial working set of q points randomly, and calculate its entropy, HR;     
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(2) Randomly select a sample x* from the working set and also randomly select a 

sample xt* from the whole training set, however, excluding the working set.  

Calculate the entropy HR′ of these new q points, with xt* replacing x*. If the entropy 

increases, i.e., HR′> HR, replace the working set x* by xt*; 

(3) Stop when the difference between HR′ and HR is small after a sufficiently large 

number of iterations, e.g. 100 iterations, otherwise repeat step 2.  

In approximating the appropriate features (Step II), the required measures are: 

(1) Eigen-decomposition of the matrix Kq×q to determine both the eigenvalues and 

eigenvectors; and 

(2) Features estimation of the whole sample points resulting from Eq. (3.36).  

The accuracy of the eigenvalue and eigenvector of matrix Kq×q highly influences the 

accuracy of the features estimation and therefore influences the final estimation. To 

avoid numerical instabilities of the eigendecomposition, it is a common practice to use 

a jitter factor α, e.g. α = 2, which is a small positive constant. Eigen-decomposition is 

applied on {Kq×q + αI} instead of on Kq×q directly. The eigenvectors of Kq×q are the 

same as that of {Kq×q+αI}. The relationship between eigenvalues of Kq×q, λj , and 

eigenvalues of {Kq×q+αI}, λj′, is as follows: 

qjj /)'( αλλ −=  (3.47) 

Those λs with very small value, i.e. λ<1.0 e-10 including zeros, are neglected in 

calculating the features with the use of Eq. (3.36) to avoid any numerical instabilities.  

In ridge linear regression (Step III), the objective is to obtain the value of the w 

by the matrices calculation of the right hand side of Eq. (3.46). The essential part of 

this step is to use pseudo-inverse of (HTH+C′I) to avoid instabilities. The pseudo-
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inverse, A+, of a matrix A can be obtained by the singular value decomposition of A. 

Any real matrix Am×n can be expresses as:  

A(m×n) = U(m×m)  Σ (m×n)V(n×n)
T 

                    = [u1, u2, …, um] × diag (σ1, σ2, …, σm) × [v1, v2,…, vn]T (3.48) 

where U and V are  orthogonal matrices and Σ is a diagonal matrix.  

The pseudo-inverse A+ can then be obtained as:  

A+ (n×m) = V(n×n) Σ+
(n×m) U(m×m)

T            (3.49) 

where Σ+ = diag (1/σ1, 1/σ2, …, 1/σr, 0). 

There are three parameters of this scheme: (1) σ, the width of the Gaussian kernel; 

(2) q, the number of good representative points or the number of dimension of the 

approximated features; and (3) C′, ridge regression coefficient. These three parameters 

will be calibrated together with the embedding structure parameters (τ, d) with the 

minimum prediction error used as the objective function.  

The linear regression applied to the target variable and the approximated features 

is theoretical based and its algorithm is reliable. The approximation is based on the 

eigenvalue and eigenfuntion of the eigenvalue problem of the Mercer’s theorem. The 

selection of points for the features approximation is based on the entropy which 

suggests most representative points. Linear regression is a very simple and fast 

operation. Therefore the computation time of this scheme can be sure to be short for 

chaotic time series analysis with large data record.  

3.5 Summary and conclusion  

In this Chapter, SVM has been proposed to be applied in the phase space and in the 

dynamics reconstructions. Applying SVM as a regression engine, the parameters of 
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embedding structure and SVM are calibrated with minimum prediction error as the 

objective function.  

Computational difficulty with large data records faced by SVM was discussed. 

Effective and efficient techniques to overcome this are called for. Two techniques are 

offered. These techniques are separately coupled with SVM to make SVM of practical 

value in analysing chaotic time series. One of the techniques is the decomposition 

method, which decomposes the quadratic programming problem of a large number of 

variables into a series of small quadratic programming problems each with 2 variables 

at a time. The other technique is a linear ridge regression carried out directly between 

the target variable and the features. 

Parameter calibration is required.  There are altogether 5 calibration parameters.  

Two are from the embedding structure while three are from SVM with the selected 

kernel. Like any other models the proposed SVM will perform best when the 

parameters are well calibrated.  In this study, the calibration is done automatically with 

an evolutionary algorithm. 
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Figure 3.1 Reconstructed phase space data set with (τ =1, d=2, l=1) 

 

 

 

 

 

 

 
Figure 3.2 Architecture of local model for dynamics reconstruction 
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Chaotic time series  

Phase space reconstruction:  
Target: achieve proper (τ, d) 
Techniques:  
(a) Standard Approach: AMI (τ), FNN (d) 
(b) Inverse Approach: optimal (τ,d) with 
      minimum prediction error by  using  
      local model  

Dynamics reconstruction: 
Application: forecasting task  
Technique:   
   K nearest neighbour local linear model

Dynamics reconstruction: 
Application: forecasting task  
Technique:   
    Support vector machine   

 

Figure 3.3 Architecture of SVM for dynamics reconstruction 
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Figure 3.4 Diagram of dynamics reconstruction of chaotic time series 
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Figure 3.5 Schematic diagram of proposed SVM parameter set selection 
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Figure 3.6 Average mutual information (AMI) and time lag selection 

 

 

 

 

 

Chaotic time series  

Phase space reconstruction:  

 
Figure 3.7  Parameters determination and task performances with differences 

techniques: Standard, Inverse, and SVM approaches

Target: determine (τ, d) 
Techniques:  
(a) Standard Approach: AMI (τ), FNN (d) 
(b) Inverse Approach:  optimal (τ,d) with 
      minimum prediction error by using  
      local model 

Dynamics reconstruction: 
Application: forecasting task  
Techniques:   
       K nearest neighbour local linear model 

Phase space reconstruction:  
Target: determine (τ, d) 
Techniques:  
  Support vector machine with  
   minimum prediction error   

Dynamics reconstruction: 
Application: forecasting task  
Techniques:   
       Support vector machine 
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Figure 3.8 Schematic diagram of SVM for phase space and dynamics reconstruction 
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   (a) Before: (2N×2N) matrix                                                 (b) After: (2×2N) matrix
 

Figure 3.9 Illustration of memory requirement for quadratic programming before and 
after decomposition scheme 
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Figure 3.10 SVM decomposition optimization problem with working set of 2 
variables 
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Figure 3.11 Illustration of decomposition method in SVM quadratic programming  
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Figure 3.12  Illustration of shrinking process (reducing number of variables) in 
decomposition algorithm 
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Figure 3.13 Illustration of quadratic Renyi entropy function and scatter 
 
 

 

 69



   
   

Step I 
Step II 

φi

φ1

φ1(xk) 

Step III 

φq

y 

ϕ(x) 
 

Figure 3.14 Schematic diagram of ridge regression in feature space 
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CHAPTER 4  

PARAMETER CALIBRATION WITH EVOLUTIONARY ALGORITHM 

 

4.1 Introduction  

The need for an effective and efficient optimization scheme to calibrate the SVM 

parameters and the embedding structure parameters was discussed in chapter 3. There 

are a total of five parameters to be determined in this approach. They are: the time 

delay (τ), the embedding dimension (d), and the three SVM parameters (C, ε, σ) for 

the decomposition method and (C′, q, σ) for the ridge regression method.  

The range of these five parameters may be as follows: τ from 1 to 20 (with 

increment 1), d from 2 to 21 (with increment 1), C′ from 0.1 to10 (with increment 0.1), 

q from 20 to 100 (with increment 1), and σ from 0.1 to 0.9 (with increment 0.01). 

There are a total of 256×106 (= 20×20×100×80×80) possible combinations. A brute-

force search method is certainly not efficient.  Instead, an efficient evolutionary 

algorithm is of interest for exploration.   

Evolutionary Algorithms have been reported to effectively and efficiently yield the 

optimal solution within the search range. The proposed approach, EC-SVM, which 

couples SVM with an Evolutionary algorithm applied to Chaos based reconstructed 

phase space is described in this chapter. In addition, EC-SVM, as described in Chapter 

3, is a SVM equipped with the decomposition method or the linear ridge regression to 

deal with large data size.   
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4.2 Evolutionary algorithms for optimization  

4.2.1 Introduction 

Evolutionary Algorithms (EAs) are the common term used for algorithms based on 

principles of nature (evolution, genetic). Evolutionary Algorithms cover genetic 

algorithms, evolution strategies, evolutionary programming and genetic programming. 

Different evolutionary algorithms evolved during the last 35 years: genetic algorithms 

developed by Holland (1975), evolutionary strategies developed by Rechenberg (1973) 

and Schwefel (1981), and evolutionary programming by Fogel, et al. (1966).  

Unlike classical optimization techniques, evolutionary algorithm is a population-

based stochastic search and optimization technique. Most classical optimization 

methods generate a deterministic sequence of iterative solutions based on the gradient 

or high order statistics of the cost function. In EAs, it is not necessary to require 

gradient or other auxiliary information; only an objective function or multi objective 

functions are required.  

Moreover, most of the classical technique often ends up at local optimal solution. 

EAs work with a population of points instead of a single point. EAs have been shown 

to outperform classical methods and can tackle difficult optimization tasks of the real 

world problems where classical techniques are not applicable or fail to provide 

satisfactory solutions.  

A collection of solutions called current population is updated by replacing part of 

the population by offspring. There are various types of genetic representation of 

solutions to the problem, binary encoding or real number encoding.  The population 

evolves into next generation by a series of processes such as selection, reproduction, 

and mutation.  The fitness function value is a criterion to judge if a solution is a good 

individual.   
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An initial population is first randomly generated. The algorithm evolves through 

fitness evaluation, selection, reproduction, mutation, etc. which are likely to create 

even better individuals for the next generation. The selection chance of each individual 

depends on its fitness. The fitter the individual is, the higher it is to be selected and, 

thus, its genes will be passed on to the next generation.  If the optimization criteria are 

met, the final solution is the best solution among the population. The process is 

illustrated in Fig. 4.1. 

Selection process is inspired by the role of natural selection in evolution ⎯ an 

evolutionary algorithm performs a selection process in which the fittest members of 

the population survive, and the least fit members are eliminated. In a constrained 

optimization problem, the notion of fitness depends partly on whether a solution is 

feasible (i.e. whether it satisfies all of the constraints), and partly on its objective 

function value.  

The selection process is the step that guides the evolutionary algorithm towards 

ever-better solutions. Selection determines which individuals are chosen for mating 

(recombination) and how many offspring each selected individual produces. The first 

step is fitness assignment, e.g. by proportional fitness assignment. The actual selection 

is performed in the next step. Parents are selected according to their fitness values by 

means of one of the following algorithms, e.g. roulette-wheel selection, or tournament 

selection. 

Reproduction is the process to generate offspring from the last generation and is 

accomplished through transfer of the genes. There are various types of reproduction 

such as crossover for binary code or recombination for real code. The new offspring 

created from this process form a part of the population in the next generation. 
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 In mutation process the genes of one or more members of the current population 

are mutated to yield a new population. The new solution may be better or worse than 

the population member whose genes are mutated. Its main purpose is to maintain 

diversity within the population and inhibit premature convergence. Mutation alone 

induces a random walk through the search space.    

Since EAs are stochastic in nature in its search for optimal solution, it is difficult 

to specify exactly the convergence criteria. A common practice is to stop GA after a 

fixed number of generations or if the performances of the best solutions insignificantly 

different.   

For the parameters calibration problem in this study, the optimal set of (τ, d, C, ε, 

σ) or (τ, d, C′, q, σ)  is the set which yields the least prediction error when applied on 

the test data set. It should be noted that the search values of τ, d, q are integers while 

those of C, C′, ε, σ are real numbers.   

4.2.2 Shuffled Complex Evolution  

The parameter search scheme used in this study is the Shuffled Complex Evolution 

(SCE) algorithm. The SCE method was developed at the University of Arizona (Duan 

et al., 1992). It is a hybridisation of several salient features of several optimisation 

techniques and has been demonstrated in various studies to be a robust and efficient 

technique. 

4.2.2.1 Description of algorithm 

The SCE algorithm is based on the synthesis of four concepts:  

(1) Combination of probabilistic and deterministic approaches: using probability to 

determine survivability; 
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(2) Clustering: the shuffling of complexes and sharing of information in each 

complex; 

(3) Systematic evolution: to ensure global improvement; and 

(4) Competitive evolution: to ensure the competitiveness of the fittest.   

The SCE optimisation method combines the best features of complex shuffling 

and evolution and attempts to locate the global optimum, using the strength of the local 

optimisation simplex procedure (Nelder and Mead, 1965) with the idea of a controlled 

random search and complex shuffling (Duan et al., 1992). 

The method begins with a population of points sampled from the feasible space.  

The population can be partitioned into one or more communities.  Each community 

evolves based on a statistical ‘reproduction’ process that uses the ‘simplex’ geometric 

shape to direct the search in the correct direction.  At periodic stages in the evolution, 

the entire population is shuffled and points are reassigned to communities to ensure 

information sharing.  As the search progresses, the entire population tends to converge 

toward the neighbourhood of the global optimum, provided the initial population size 

is large (Duan et al. 1992). 

In essence, the SCE algorithm is a search algorithm for the global optimum. It 

directs its search in a principled manner as described in detail below. 

(1) Generate sample – sample s points in the feasible parameter space and compute the 

objective function or criterion value for each point. The samples are generated 

randomly within the search range; 

(2) Rank points – sort the s points in order of increasing criterion value so that the first 

point represents the smallest criterion value and the last point represents the largest 

criterion value (the goal is to minimise the criterion value);  
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(3) Partition into complexes – partition the s points into p complexes, each containing 

m points.  The complexes are partitioned such that the first complex contains every 

p(k–1)+1 ranked point, the second complex contains every p(k–1)+2 ranked point, 

and so on, where k = 1, 2, …, m; 

(4) Evolve each complex – evolve each complex according to the competitive complex 

evolution (CCE) algorithm, which will be elaborated later in this section; 

(5) Shuffle complexes – combine the points in the evolved complexes into a single 

sample population at a defined stage of the evolution; sort the sample population in 

order of increasing criterion value; shuffle (i.e. re-partition) the sample population 

into p complexes according to the procedure specified in Step (3); 

(6) Check stopping criteria – if any of the stopping criteria are satisfied, stop; 

otherwise continue.  The search will cease when the stopping criteria is satisfied, it 

would continue otherwise; 

(7) Check the reduction in the number of complexes – if the minimum number of 

complexes required in the population, pmin, is less than p, remove the complex with 

the lowest ranked points; set p = p–1 and s = p × m; return to step (4). If pmin = p, 

return to step (4). 

The initial sampling of the parameter space provides the potential for locating the 

global optimum without being biased by the pre-specified starting points. The partition 

of the population into several communities facilitates a freer and more extensive 

exploration of the feasible space in different directions, thereby allowing the 

possibility that the problem has more than one region of attraction. The shuffling of 

communities enhances the survivability by sharing of the information (about the search 

space) gained independently by each community. The SCE search algorithm is 

summarised in Fig. 4.2. 
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4.2.2.2 Competitive Complex Evolution  

The key component of the SCE method is the competitive complex evolution (CCE) 

algorithm.  This algorithm is based on the Simplex Downhill Search scheme of Nelder 

and Mead (1965). Each evolution on the complex generates a new offspring by using 

the operations of selection, reflection, contraction and mutation.  

Selection is based on the fitness and individuals with high fitness values have 

higher probabilities to be chosen. The offspring generated replaces the worst points in 

the complex. If the offspring generated by reflection is failed to be better than the 

worst individual, then a contraction process is used to generate an offspring. If the 

offspring generated fails to perform better than the worst individual, an offspring is 

randomly generated.  

Figure 4.3 illustrates the basic processes of reflection and contraction in two 

dimensions. For minimization problem, G is the worst point, i.e. fG > fM> fS. The 

centriod of the points X, excluded the worst point G, can be calculated from: 

X= (M+S)/2, (4.1) 

For general cases with q points, Ui, i=1, 2, …, q, in the complex and in high dimension, 

∑
−

= −
=

1
11

1 q
i iq

UX  (4.2) 

For the reflection point R, X is the centre point of R and G, i.e. X = (R + G) / 2. R can 

be calculated as:  

R = 2X - G (4.3) 

The contraction point C is the centre point of X and G, i.e. 

C = (X + G) / 2 (4.4) 

The scheme is as follows: 
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(1) Construct a sub-complex by randomly selecting q points from the complex 

according to a triangular probability distribution. The probability distribution is 

specified such that the best point has the highest chance of being chosen to form 

the sub-complex, and the worst point has the least chance. 

(2) Identify the worst point of the sub-complex and compute the centroid of the sub-

complex without the inclusion of the worst point. 

(3) Do a reflection step by reflecting the worst point through the centroid.  If the newly 

generated point is within the feasible space, go to Step (4); otherwise, go to Step 

(5). 

(4) If the newly generated point is better than the worst point, replace the worst point 

by the new point.  Go to Step (7).  Otherwise, go to Step (5). 

(5) Do a contraction step by computing a point halfway between the centroid and the 

worst point.  If the contraction point is better than the worst point, replace the worst 

point by the contraction point and go to Step (7).  Otherwise, go to Step (6). 

(6) Randomly generate a point within the feasible space.  Replace the worst point by 

the randomly generated point. 

(7) Repeat Steps (2) –  (6) α times, where α ≥ 1 is the number of consecutive offspring 

generated by each sub-complex. 

(8) Repeat Steps (1) – (7) β times, where β ≥ 1 and β is the number of evolution steps 

taken by each complex. 

4.2.2.3 Control parameters and stopping criteria 

The SCE method contains many probabilistic and deterministic components that are 

controlled by some control parameters.  The control parameters are:  

(1) p, the number of complexes; 
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(2) m, the number of points in a complex; 

(3) q, the number of points in a sub-complex; 

(4) pmin, the minimum number of complexes required in the population;  

(5) α, the number of consecutive offspring generated by each sub-complex; and 

(6) β, the number of evolution steps taken by each complex. 

The number of the initial randomly generated sampling points, s, is a product of 

the number of complexes and number of points in a complex (= m × p). It was 

recommended by Duan et al. (1992) that the chosen m value should be such that m = 

2n+1. n is the number of parameters to be optimised. The number of calibration 

parameters in this study is 5. The values for the control parameters stemmed from the 

recommended values by Duan et al. (1992), are summarised in Table 4.1. 

The stopping criteria for the search algorithm are: 

(1) The population has converged to pre-specified value of the original parameter 

space; 

(2) The relative change in the objective function within the last k shuffling loops has 

not changed more than a pre-specified percentage; and 

(3) The total number of evaluations has exceeded a pre-defined value. 

4.3 EC-SVM I: SVM with decomposition algorithm  

EC-SVM I is SVM equipped with the decomposition algorithm to solve large data sets 

in analysis of chaotic time series.  SVM is applied in phase space reconstruction and in 

dynamics reconstruction.  A quadratic programming problem with large variables is 

transformed into a series of quadratic programming problem each with 2 variables only.  

The parameters of the embedding structure (τ, d) and the SVM parameters (C, ε, σ) are 
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calibrated automatically with shuffled complex evolution. The optimal set for these 5 

parameters is the set which yields the least prediction error. 

4.3.1 Introduction  

Much have been described (in chapter 2) about various ways, AMI and FNN for 

examples, to derive ‘reasonable’ values for the parameters of the embedding structure 

(τ, d).  The associated problems with the derived (τ, d) values have also been discussed 

in chapter 2.   In this section focus is placed on methods/recommendations, suggested 

in literatures, to select the SVM parameters (C, ε, σ).  Selection of SVM parameters 

remains a difficult task and some recommended methods are summarized in the 

following: 

(1) Since SVM model complexity strongly depends on the number of support vectors, 

Schölkopf et al. (1998) suggest to use another control parameter ν (which 

represents a fraction of support vectors instead of ε. In this approach, parameter ν 

has to be user-defined. Similarly, Mattera and Haykin (1999) proposed to choose 

ε-value so that the number of support vectors is around 50% of the number of 

samples. Many problems show that optimal generalization performance is 

achieved when the number of support vectors is significantly different from 50%. 

(2) Smola et al. (1998a) and Kwok (2001) proposed that the optimal ε-value is 

asymptotically proportional to the noise variance. The higher the noise variance 

is, the higher value ε should be. The pitfall result is that their practical value is 

limited only to cases when the noise level is known or can be estimated. 

However, noise variance is rather difficult to be satisfactorily estimated in real 

data. There us, however, no practical guideline as to how to estimate noise level 

satisfactorily for real world time series. 

 80



   
   
 
(3) Mattera and Haykin (1999) proposed to choose to select parameter C about equal 

to the range of output values. The suggestion is only good to avoid numerical 

instability. However, case studies show that when C is significantly larger or 

smaller than the range of output data it outperforms the situation when C is set as 

the range of the output value.  

(4) Use of cross-validation for parameter selection. As illustrated in the Section 4.1, 

this is very computation and data-intensive and the scheme is feasible only for a 

limited number of values. 

(5) Cherkassky and Ma (2004) provided statistical motivated approach to the 

selection of C as 3 times the standard variance and ε depends on the record 

length and variance. σ is as 0.2-0.5 of the range of the input data. However, the 

empirical formula of ε include another empirical coefficient which needs be 

assigned. The suggested value is not a set of unique value. Users still need to 

adjust the parameters from a certain suggested region which, however, does not 

guarantee that the best selection resides in this region.  

Even though there are a number of methods proposed by various researchers as 

summarized above, the parameter selection still remains a difficult problem unsolved. 

None of the above methods is perfect and guarantees a good performance for real 

world problems. As it can be seen, these methods are empirical in nature. Moreover, 

the choices could not be a single set of parameter and tuning task of selecting the 

parameters still remains.  
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4.3.2 Calibration parameters  

SCE is the search engine used in this study to find the optimal parameters representing 

the embedding structure and SVM equipped with decomposition method. There are 5 

calibration parameters.  They are: 

(1) τ: time lag; 

(2) d: embedding dimension; 

(3) C: trade-off between complexity of the machine and the empirical error; 

(4) ε: Insensitive zone in the SVM transformation; and  

(5) σ: kernel parameter in the Gaussian kernel. 

The objective function used is the mean squared error (MSE) of the test data set. 

A flow chart of the suggested search scheme is presented in Fig. 4.4. 

The search is stopped if any of the following criteria is met. Meeting one of the 

criteria implies the convergence of the evolutionary algorithm. 

(1) Population is converged into a small zone, e.g. 0.001 of the search space;  

(2) Change of objective function value is negligible, e.g. less than 0.001 in the last 5 

generations, for example. 

In this study the total number of evaluations is set at a very large value, 2000. 

This large number of evaluations prevents the search from stopping before one of the 

above listed criteria is achieved.  

4.3.3 Parameter range 

Setting the range of each parameter is quite crucial in the search for optimal set.  A 

wide range will take the search engine longer time to arrive at the optimal set.  A small 

range, on the other hand, may risk missing the actual optimal value.  Hence, a delicate 

balance in the choice of parameter range is required.  
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The ‘optimal’ value should not reside at the boundary of the parameter range.  

Should it, however, be the case, it implies that the real optimal may lie outside of the 

earlier defined range.  Thus a new study with wider parameter range has to be 

conducted.    

4.3.3.1 Parameters range of embedding structure 

The average mutual information, AMI, is used as a guide for setting the upper limit of 

the time lag (τ) range.  In this study the range for time lag is set at [1, 20]. It should be 

noted that the upper limit is higher than the value resulting from AMI.  

The value of the embedding dimension (d) is traditionally suggested by the 

following studies: 

(1) Takens Theorem (1981): d = 2d2 + 1 where d2 is the correlation dimension;  

(2) Aberbanel et al. (1990); d = d2 + 1; and 

(3) Kennel et al. (1992) proposed the false nearest neighbour (FNN).    

Similarly, the range of embedding dimension may start from 2 to a value reasonably 

higher than the value resulting from the above techniques. The range of the embedding 

dimension is set at [2, 20] in this study.  

4.3.3.2 Parameter range of C in SVM 

C yields a good trade off between the empirical error and model complexity. When 

Gaussian kernel (whose dimension is infinitely large) is used, C is particularly useful 

in balancing the complexity of the model and, at the same time, preventing the over 

fitting problem.  

It is known that if C is chosen to be a very big value than the range of the output 

data, B, the numerical instability will occur as shown in Eq. (2.33) and Section 2.3.5. 

As to the decomposition method, a high C value may cause the method oscillation in 
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the training and hence long computational time particularly when the kernel trick is 

employed for the SVM formulization.  

Figure 4.5 demonstrates the effect of varying C values (with different other 

parameters) on the training time and on the test error. The forecasting variable is 

normalized into the range at [0 1]. The training time increases with increasing C value. 

The minimum test error, 310.85m3/s, occurs when C=13.69 which is a value not so 

close to the upper bound (1) of the target data.  Test error also varies with varying C 

values as shown in Fig. 4.5.  

C is set slightly higher than the B value to avoid possible numerical instability.  

As it is shown in Fig. 4.6, the upper bound of training time is about 300 seconds, i.e. 5 

minutes, which is much faster to converge than the case shown in Fig. 4.5. The 

minimum test error is 323.21m3/s, as shown in Fig. 4.6(b). This test error is higher than 

that in Fig. 4.5. Thus, lower C value can provide short training time but the test error 

may be higher since fundamentally C does not have any restrictions.         

4.3.3.3 Parameter range of ε in SVM 

ε parameter is associated with the ε-insensitive loss function. ε value is proportional to 

the noise variance. The noise variance of real time series is difficult to be correctly 

estimated. ε can start from zero, where the noise level is quite low or clean data, to a 

high value where the data is noisy. In this study, the upper bound of ε is set at 10% of 

B, the upper bound of the target variable. The range of ε is at [0, 0.1B]. 

4.3.3.4 Parameter range of σ of Gaussian Kernel 

Gaussian kernel function is defined as:  

⎟
⎠
⎞

⎜
⎝
⎛ −−= 2

2 '
2

1exp)',( xxxx
σ

K  (4.5) 
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Figure 4.7 displays a graph of Gaussian Kernel for different σ values when ||x-x′|| 

is at a range [0, 1.2]. If the input data is ranged from [0, 1], ||x-x′|| is range from [0,1]. 

Figure 4.7 shows the decreasing pattern for varying σ values. It shows that σ ranging 

from 0.1 to 0.8 is more favourable than σ outside of this range. K decreases drastically 

fast as σ is less than around 0.1; this may lead SVM to over fit the data including the 

noise portion.  K value, however, decreases very gradually as σ is larger than about 0.8; 

this may cause SVM powerless to detect the nonlinear relationship in the data set. In 

this study, the range of the Kernel width σ is therefore set at 0.1 - 0.8 of the input data 

range. It should be noted that this range is slightly wider than that proposed by 

Cherkassky and Ma (2004). 

4.3.4 Implementation  

In EC-SVM I there are three major modules: (1) SCE evolutionary algorithm written in 

FORTRAN; (2) SVM decomposition method (SVM Torch II) for regression problem 

of large data sets, written in C language running on Linux system; (3) linking part of 

these two modules: SCE and SVM, organized with a Shell scripts file. 

Figure 4.8 shows the diagram of the implementation scheme of EC-SVM I. The 

whole algorithm of EC-SVM I is running on Linux operation system. The 

implementation of EC-SVM I is as follows:  

(1) SCE acts as an outside loop and is the main program since it gives instructions to 

execute various iterations automatically, for example, about 1000 iterations of 

different chromosomes.  

(2) For each chromosome, its fitness is calculated.  Prior to fitness evaluation there 

are several measures to be taken.  They are:  

(a) Create lag vector and the corresponding l-lead day forecasting vector; 
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(b) Train SVM with the decomposition method;  

(c) Apply the trained SVM to the test data set to compute prediction error; 

(d) Convert the prediction error to the fitness function.  

(3) From a given chromosome till calculating the fitness function, the task is 

organized in a shell scripts file. Shell provides an easier interface to execute 

commands. A Shell file is very similar to a DOS .BAT file, except that the shell 

scripts have more available functions. The Shell file reads the chromosome that 

is generated in SCE, and use this set of parameters (τ, d, ε, C, σ) to solve the 

SVM by decomposition method. The trained SVM is then applied on the test data 

set to obtain the prediction error which is converted to the fitness value in SCE 

algorithm.   

(4) Another C-language file is formed to create a data file containing lag vectors and 

the corresponding forecast vector.  This data file is used for SVM regression.   

(5) SCE follows the evolutionary algorithm by creating chromosomes. The 

chromosomes evolve based on the fitness function values. After new 

chromosomes are generated, SCE sends the command to the shell scripts file 

which in turn sends the command to the respective procedures in various C files 

and data files.   

(6) SCE evolves till the stopping criteria are met.  The optimal solution is the one 

which yields the least prediction error. The whole algorithm of EC-SVM I is run 

on Linux operation system.  

Evolutionary algorithm helps to fulfil the search automatically, effectively and 

efficiently within the specified range.   
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4.4 EC-SVM II: SVM with linear ridge regression  

Since the decomposition method in EC-SVM I is an iterative algorithm, the training 

time may be to long.  A ridge regression, applied directly in the kernel feature space is 

introduced in Section 3.4.2.  Ridge regression requires no iterative scheme to solve the 

dual quadratic programming and the problem is solved in its original prime 

formulation.  

Similar to EC-SMV I, the objective function is the mean squared error (MSE) 

resulting from the test data set. A flow chart of the scheme is illustrated in Fig. 4.4.  

The main framework of EC-SVM II is basically the same as that described in Section 

4.3. The differences are illustrated in the following subsections.  

4.4.1 Calibration parameters   

There are five parameters required to be calibrated simultaneously for EC-SVM II:  

(1) τ: Time lag; 

(2) d: Embedding dimension; 

(3) σ: kernel parameter for the Gaussian kernel; 

(4) q: number of dimension of approximated feature space; and  

(5) C′: ridge coefficient in ridge regression.  

The first three parameters (τ, d and σ) are the same as that in EC-SVM I; the 

same search ranges are also used in EC-SMV II.  The remaining two parameters, q and 

C′, will be discussed in the following sections.   

4.4.1.1 Parameter C′ 

C′ is a ridge regression coefficient. The formalization of SVM regression 

problem shown in Eq. (2.24) stems from the ridge regression problem shown in Eq. 
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(3.41). It is a means to control the balance between bias and variance, which are two 

measures of the effectiveness of the approximated prediction function. Geman et al. 

(1992) highlighted the bias and variance issues.  

Bias represents the inability of the approximated prediction function to estimate 

the exact function. If on the average, the model result differs from to the regression 

function, the model is then said to be biased. An unbiased estimator may, however, 

still have a large error if the variance is large.  

When an estimator has a small bias and is substantially more precise than the 

unbiased estimator, it is a more preferred estimator since it has a larger probability of 

being close to the true parameter value. As shown in Fig. 4.9, estimator w is unbiased 

but imprecise; estimator wb, however, has a small bias but is much more precise. The 

probability that wb falls near the true value is much greater than that for w. Thus, wb is 

much preferred than w.   

A good approximated forecasting function should be accurate and not sensitive. 

Deliberately introducing bias is equivalent to restricting the range of the function for 

which a model can account. The resulting loss of flexibility makes the model less 

sensitive. In ridge regression, its aim is to minimize the cost function as in Eq. (4.5); 

this penalises large weights, i.e. to restrict the flexibility. In general, finding the 

‘flattest’ linear function translates to the following: 

 Minimize  (4.6) ∑+∑ ∑−= == =
q
i i

N
j j
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The regularisation parameter C′ controls the balance between fitting the data and 

avoiding the penalty. Small C′ means that the data can fit tightly without causing a 

large penalty. The introduced bias favours solution involving small weights; the effect 
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is to smooth the output since large weights are usually required to produce a highly 

variable output.  

Ridge regression is carried out in the approximated feature space with finite 

number of dimensions. Any C′ value does not cause the numerical instability problem, 

unlike the scheme when kernel trick is used. C′ parameter in ridge regression is much 

less sensitive than in the decomposition method; it does not have the instability 

restrictions. 

 Figure 4.10 demonstrates the effect of varying C′ values on the training time and 

test error. Training time is not as significantly influenced by C′ value as that in EC-

SVM I as shown in Figs. 4.5 and 4.6.  

4.4.1.2 Parameter q 

q is the number of points selected from the training data set to estimate eigenvalues 

and eigenfunctions. The number of the dimensions of the approximated features may 

be slightly lower than q value; reason being some eigenvalues, very close to zeros, are 

eliminated to avoid numerical instability. 

The higher the value q is set, the larger are the computational time and the 

memory space required. High value of q causes large kernel matrix and high feature 

dimensions. It should be noted that high value of q does not necessarily translate to 

better prediction accuracy in the test data set although it results in lower error in 

training data set. Test error may increase when q is larger than a certain value; this 

happens in over fitting cases.    

Training time is highly dependent on the number of the dimensions of the 

approximated features. Computational time is one of the factors used to judge the 

performance of an algorithm. Another important factor will be the prediction accuracy. 
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It is quite clear that if the q value is low, it is unlikely that the prediction accuracy can 

be satisfactory. As q value is further increased, however, the prediction accuracy 

reduces and the resulting computational time increases significantly. Therefore, it is 

important to select an appropriate q value which will yield a good model performance.  

 Figure 4.11 depicts the above scenarios. Training set error decreases as q 

increases till about q=70; the accuracy then decreases gradually when q is further 

increased. Test set error also decreases as q increases till about q=70; the error then 

increases particularly when q is greater than 100. The training time increases 

monotonously as q increases and it increases very rapidly particularly when q is larger 

than 100. From the above observations, the search range for q can be varied from 10 to 

slightly larger than 100, say 105 or 110.   

Figure 4.12 shows an example that q has a range set at [10, 105]. The test error is 

sufficiently small and the training time is fast. This shows that the proposed range is 

quite reasonable.  

4.4.2 Implementation  

There are two modules in EC-SVM II: (1) SCE evolutionary algorithm which is 

written in FORTRAN; (2) Linear ridge regression in approximated feature space. The 

linear ridge regression is a very newly developed algorithm and only exists in 

MATLAB code, partly from LS-SVM lab (2002). The basic implementation strategy is 

the same as in Section 4.3.4. SCE acts as an outside loop and is the main program. It 

gives instructions to execute various iterations automatically about 1000 iterations of 

different chromosomes.  

However, calling MATLAB application from FORTRAN for 1000 iterations is 

not very efficient and, at the same time, difficult for implementation; reasons are: 
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(1) In principle, MATLAB is good for developing the first stage of computational 

algorithm since it contains various packed functions. However, from the 

computational speed viewpoint, MATLAB is not as efficient as FORTRAN or C 

language, especially for applications containing several loops. It is common to use 

models written in C or FORTRAN; and MATLAB for the whole progress 

organization. To achieve higher computational performance, algorithms 

implemented in C or FORTRAN language are more efficient.  

(2) Even though MATLAB has certain compatibilities with C or FORTRAN, these 

compatibilities are rather limited. Calling MATLAB from C or FORTRAN is 

complicated and not efficient. Since C and FORTRAN are much more fundamental 

computer languages, C and FORTRAN applications can be used freely and 

efficiently by other applications, or each other. Stand-alone applications, i.e. the 

executable files, can be run much easily and efficiently.  

(3) MATLAB Compiler can convert some MATLAB applications to stand-alone C 

and C++ code. Special cares must be given to MATLAB files writing. Failures in 

such conversion are often encountered. Moreover, the C files converted from 

MATLAB are not very readable and it is difficult to make changes to suit to the 

applications.  

(4) MATLAB engine library is a set of routines that make it possible to call MATLAB 

from other programs such as C or FORTRAN. There is a library of functions 

provided in MATLAB that allows starting and ending with MATLAB process, 

sending data to and from MATLAB, and sending commands to be processed in 

MATLAB. However, if the algorithm requires calling this piece of MATLAB 

application about 1000 times, relying on the engine library is not an efficient way. 

Time is spent mainly for this middle process instead of for computation.  
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Therefore, in this study the linear ridge regression with approximated features is 

firstly implemented in C and FORTRAN to suit the EC-SVM II algorithm. SCE, 

written in FORTRAN, calls this stand alone executable module. The scheme is shown 

in Fig. 4.13. The linear ridge regression should be stable and of high performance since 

it will be repeatedly called for about 1000 iterations. Its high quality must therefore be 

essential for the whole process.  

In this study, there are mainly three steps, as shown in Fig. 4.14, for the 

implementation of the linear ridge regression with C or FORTRAN in the 

approximated feature space. The steps are:   

(1) Select a good subset from the whole training set having the largest entropy. This 

is an easy implemented step. The algorithm is relatively simple; 

(2) Approximate the feature space by using the eigenvalue and engenfunction of the 

kernel matrix from the selected subset. This step contains two procedures:  

(a) Eigendecomposion of the matrix Kq×q to obtain its eigenvalue and 

eigenvectors; and  

(b) Feature estimation of the whole sample points. This can be fulfilled by 

using a loop going through all the training points.  

(3) Apply ridge linear regression to fit the relationship between the target variable 

and the features. The essential part of this step is the pseudo-inverse operation, 

which can be calculated through singular value decomposition.  

The eigendecomposition and singular value decomposition are the linear algebra 

operation. LAPACK, Linear Algebra PACKage, is written in Fortran77 and provides 

routines for solving eigenvalue problems, singular value problems, etc. LAPACK is 

also one of the FORTRAN libraries of MATLAB. MATLAB contains C code for 

linear algebra operations. Since they are packed and separated into several places in 
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MATLAB, it is not very convenient to abstract a small pack typically for a certain 

linear algebra operation as singular decomposition. The source codes for real matrices 

with double precision in FORTRAN are directly from LAPACK which is well 

implemented and has stable performances.  

Thus, the linear regression in approximated feature space scheme implemented in 

C or FORTRAN in this study can be guaranteed a stable scheme, and, furthermore, 

EC-SVM II developed in this study can be guaranteed to be stable and yield high 

performance accuracy for large data sets in chaotic hydrological time series.  

4.5 Summary  

An evolutionary algorithm, SCE, is proposed to efficiently and systemically calibrate 

the parameters involved in a chaos based SVM technique. The SCE algorithm is first 

described followed by the implementation of this technique.  

The novel approaches EC-SVM I and EC-SVM II are demonstrated in detail in 

this Chapter. Detailed implementation is elaborated for both decomposition method 

and linear ridge regression to overcome the large data sets problem. The search range 

selection of each parameter is demonstrated in detail.   

Further, the performance of the proposed EC-SVM I and EC-SVM II will be 

demonstrated in two daily runoff time series.  The performance will be conducted in 

the next chapter. 
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Figure 4.1 Schematic diagram of Evolutionary Algorithms (EAs) 
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Figure 4.3 Basic processes in Competitive Complex Evolution (CCE): reflection and 
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 Figure 4.5 Effect of varying C value on training time and test error: EC-SVM I 
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Figure 4.6  Effect of varying C value close to the output variable range B on training 

time and test error: EC-SVM I 
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Figure 4.8 Operational diagram of EC-SVM I 
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Figure 4.10  Effect of varying C′ value on training time and test error: EC-SVM II 
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Figure 4.11  Effect of varying number of dimensions (q) of approximated features on 
training time and test and training errors: EC-SVM II 
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Figure 4.12  Effect of number of dimensions (q) on training time and test error: EC-
SVM II 

 104



   
   
 

Data flow 

 
Figure 4.13 Operational diagram of EC-SVM II 
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Table 4.1 Recommended SCE control parameters 

Parameter Description Range Recommended

pmin No. of minimum required 
complexes in the population 

pp ≤≤ min1  n**

m No. of points in each complex 2≥m  2n+1*

q No. of points in a sub-complex mq ≤≤2  n+1*

α No. of offsprings generated by 
each sub-complex 

1≥α  1*

β No. of evolution steps taken by 
each complex before shuffling 

1≥β  2n+1*

*   Recommended by Duan et al., (1992)  
** Recommended by Kuzcera (1997) 
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CHAPTER 5  

APPLICATIONS OF EC-SVM APPROACHES 

 

5.1 Introduction   

In Chapter 4 the proposed EC-SVM was elaborated in detail. In this chapter, EC-SVM 

I and EC-SVM II will be applied to two real time series, the runoff of Tryggevælde 

catchment, Denmark, and the Mississippi river flow at Vicksburg, USA. Their 

performance, measured in terms of effectiveness and efficiency, are analysed and 

discussed.  

5.2 Daily runoff time series   

Two daily runoff time series are applied in this study: daily runoff time series of 

Tryggevælde catchment and the daily Mississippi river flow. The former is 

characterized with a small average flow of 1 m3/s while the latter is of totally different 

orders of magnitude larger, viz.17,000m3/s.  

5.2.1 Tryggevælde catchment runoff 

The daily runoff time series of the runoff Tryggevælde catchment covers the period 

from January 01, 1975 to December 31, 1993. Tryggevælde catchment is situated in 

the eastern part of sea land, north of the village Karise, Denmark. It is a small 

catchment with an area of 130km2 (Fig. 5.1). The soils in the catchment are 

predominated by clay and a flow is very flashy, a typical runoff time series. The basic 

statistics of runoff time series of Tryggevælde catchment are: (1) mean flow = 0.98 

m3/s; (2) standard deviation = 1.37 m3/s; (3) maximum flow = 11.07 m3/s; and (4) 

minimum flow = 0.014 m3/s. 
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A sample of the time series is shown in Fig. 5.2 in different time scales. It can be 

seen from the figure that there are distinct wet and dry periods in each year. The slow 

changes of runoff, low to high or high to low, indicate that the flow is highly correlated. 

Time series is divided into three segments. The first, second and third segments 

are known as training set, test set, and validation set. Of the total of 19 years from 

1975 to 1993, the first 15 years data are used as training set, the next 2 years as test set, 

and the last 2 years as validation set. Thus, the daily data from 1975 to 1991 are used 

to characterize the system in the standard approach and to optimize the embedding 

structure parameter set (τ, d) in EC-SVM approach. 15 years daily time series is 

equivalent to about 5500 records. 

The Fourier transform shows a very broad band power spectrum while the 

correlation dimension shows a low dimension of around 2, as shown in Fig. 5.3.  The 

time lag used for the correlation dimension calculation is obtained from the AMI 

method. 

The time lag and embedding dimension resulting from AMI and FNN are shown 

in Fig. 5.4. The first minimum of the average mutual information occurs when time lag 

is about 12 while the minimum FNN occurs when the dimension is 5. Therefore, the 

embedding structure obtained from AMI and FNN is (τ=12, d=5).  

5.2.2 Mississippi river flow 

Mississippi river is one of the world's greatest river systems.  It originates as a tiny 

outlet stream from Lake Itasca in northern Minnesota, draining through about 31 states 

of U.S.A. and finally reaches the Gulf of Mexico with a length of 3,705 kilometres. 

The area of the Mississippi river basin is around 3.2 million square kilometres. 

Average amount of water discharged to the Gulf is about 17,000 m3/s. The whole 
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Mississippi river basin consists of six major sub-basins: Missouri, Upper Mississippi, 

Ohio, Tennessee, Arkansas-Red-White and Lower Mississippi. 

The spring floodwaters cause very costly flooding. Although billions have been 

spent to reduce flood damages, recent floods have cost billions of dollars and 

significant loss of life. Further understanding of the river flow behaviours and patterns 

is one of the most fundamental issues for the understanding of the complex ecosystem 

and protection strategy.  

The daily time series under consideration in this study is the Mississippi river 

flow measured at Vicksburg, Station No. 07289000 (Hydrologic Region 08 of USGS). 

The daily runoff time series is downloaded from the USGS. The station is located close 

to the entrance to the sea of Mississippi River, Fig. 5.5.   

A sample of the time series is shown in Fig. 5.6 in different time scales. It can be 

seen that the flow pattern is smoother than that of Tryggevælde catchment runoff.  

The basic statistics of daily Mississippi river flow time series are: (1) mean flow 

=18,456 m3/s; (2) standard deviation=9,727m3/s; (3) maximum flow = 52,103 m3/s; 

and (4) minimum flow = 3,907 m3/s. The daily runoff time series of the Mississippi 

rive flow covers the period from January 01, 1975 to December 31, 1993.  The time 

series is divided into three segments as well; the first 15 years data are used for 

training set, the next 2 years for test set, and the last 2 years for validation set. 

The Fourier transform also shows a very broad band power spectrum while the 

correlation dimension displays a low dimension of around 6 as shown in Fig. 5.7. The 

correlation dimension is slightly higher than that of the Tryggevælde catchment runoff.  

The time lag and embedding dimension resulting from AMI and FNN are shown 

in Fig. 5.8. The first minimum of average mutual information occurs when time lag is 
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13 while the minimum FNN occurs when the dimension is 5. Therefore, the 

embedding structure obtained from AMI and FNN is (τ=13, d=5).  

5.3 Applications of EC-SVM I on daily runoff time series  

The proposed EC-SVM first reconstructs the phase space (following Chaos analysis) 

and then optimizes both the SVM and embedding structure parameters simultaneously 

with an Evolutionary algorithm.  There are two techniques, attached to EC-SVM, to 

circumvent solving problem with large data record: one with decomposition method 

(EC-SVM I) while the other is with linear ridge regression (EC-SVM II). The 

applications of EC-VM I are demonstrated first in the following subsection while the 

applications of EC-SVM II are demonstrated in Section 5.4.  

5.3.1 EC-SVM I on Tryggevælde catchment runoff 

The results provided by other techniques will be briefly shown first. Only training and 

validation sets are required in these other techniques. Data from 1975 to 1991 serve for 

chaotic behaviour detection and phase space reconstruction while data from 1992 to 

1993 serve for validation. Using (d =4, τ =12, k =5), the root mean square error 

(RMSE) for 1-lead day prediction used on the validation set is 0.647.  Root mean 

square error (RMSE) is defined as: 

NyyRMSE N
i ii /))ˆ(1

2∑ −= =   (5.1) 

where yi is the observed value and  is the predicted value. iŷ

Naive forecasting is a simple and yet often potentially effective time series 

forecasting technique particularly for short lead times. The forecast at time (t+1), for 

example, is assumed to be equal to the value observed at time t, i.e. yt+1 = yt. Using 

naive forecasting, the RMSE for 1-lead day prediction, applied on the same validation 
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set is 0.577.  Thus, naive forecasting performs better than the traditional chaotic 

technique. 

ARIMA (p, d, q) model is a mixed autoregressive-moving average model of 

order (p, q) on the d-th differences of the time series. The RMSE values for 1-lead day 

prediction, for validation set, resulting from the first order ARIMA (1,0,1) and 

ARIMA (1,1,1) are 0.535 and 0.543 respectively.  

Phoon et al. (2002) and Liong et al. (2002) used the inverse approach on the 

same data set grouped exactly into three subsets as that done in this study and 

discussed in Section 5.2.  The optimal (d, τ, k) set resulting from Phoon et al. (2002) 

and Liong et al. (2002) are (3,1,10) and (2,1,11) respectively. The RMSE values 

resulting from Phoon et al. (2002) and Liong et al. (2002), using their respective 

optimal parameters set, for the validation set are 0.540 m3/s and 0.528m3/s, 

respectively.  

There are a total of 5 parameters in EC-SVM I, (τ, d, ε, σ, C). Once the ranges of 

these parameters are selected, EC-SVM I will search for the best choice of 

combination within these ranges. The parameter range set follows the suggestion given 

in Section 4.3; they are listed in Table 5.1. Since the embedding structure parameters 

obtained from AMI and FNN are (τ=13, d=5) as described in Section 5.3, it is 

sufficient to set τ at [1, 20] and d at [2, 20]. Data are normalized into [0, 1] range; 

runoff data Q under consideration is divided by the maximum runoff value, Qmax. It is 

sufficient to set ε at [0, 0.1] and σ at [0.1, 0.9]. There is no limit for C since it is a trade 

off between two items, empirical error and model complexity. There are different C 

value sets considered in this experiment; one is at [0.2, 1.5] while the other at [0.2, 

20.0]. 

The stopping criteria for the search algorithm are: 
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(1) The population has converged to a pre-specified value, 0.0001, of the original 

parameter space, 

(2) The relative change in the objective function within the last 5 shuffling loops has 

not changed more than a pre-specified percentage as 0.001 , and 

(3) The total number of evaluations has exceeded a pre-defined value 1500. 

The first difference of the time series is also considered in this study. The first 

difference of the time series is a common technique to obtain a more stationary time 

series.  It is an attempt to further improve the prediction accuracy. The daily flow 

difference, or the first difference, dQ(t), is expressed as:  

)()1()( tQtQtdQ −+=  (5.2) 

The focus is now to predict the dQ(t) value. Similar to the Q time series, the phase 

space of dQ time series is first reconstructed followed by a dynamics reconstruction. 

The following function serves as the predictor of dQ(t):  

),...,,( )1(1 ττ −−−+ = dtttt dQdQdQfdQ  (5.3) 

The prediction, dQ, is first conducted.  Its value is then substituted into Q(t+1) = Q(t) + 

dQ(t).  

The computational time and the prediction accuracy of EC-SVM I on 

Tryggevælde catchment runoff are shown in Table 5.2 for both Q and dQ time series. 

The results shown are based on the program running on LINUX Pentium II 333MHz. 

The optimal parameter set is shown in Table 5.3. The minimum validation RMSE error 

is 0.521 m3/s when dQ time series is used and the range of C is set at [0.2 20].  

The training time increases as the upper bound of C range increases as shown in 

Fig. 5.9. It can be seen that the training time for dQ time series is shorter than that for 

Q time series. As the upper bound of C is increased to 50, the training time becomes 
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very long due to numerical instability. The training time can be longer than one week 

for an iteration number of about 1000.  

Table 5.4 shows the results from Q and dQ time series, with various techniques, 

of Tryggevælde catchment runoff. The result shows that EC-SVM I has a better 

performance than other techniques as shown in Table 5.4.  EC-SVM I scheme on Q 

time series yields 19.3% improvement over the standard chaotic techniques. EC-SVM 

I achieves further prediction improvement by the analysis conducted on dQ time series. 

EC-SVM I on dQ time series provides the highest prediction accuracy with RMSE 

value of 0.521m3/s.  

The convergence of EC-SVM I on Tryggevælde catchment runoff is shown in 

Fig. 5.10. Figure 5.11 shows the hydrograph comparison between EC-SVM I 

simulated (based on dQ time series) and that observed.  

5.3.2 EC-SVM I on Mississippi river flow  

In this section the daily flow time series of Mississippi river at Vicksburg, Station No. 

07289000 (Hydrological Region 08 of USGS), is considered. Similar to the approach 

shown in Section 5.3.1, for traditional chaotic technique data are divided into two parts: 

(1) 1975 to 1991 for phase space reconstruction; and (2) 1992 to 1993 for forecasting. 

With (d = 6, τ =13, k = 7) the resulting RMSE from the forecasting set is 1738.95m3/s.  

Liong et al. (2002) also analysed the same set of Mississippi river data and 

divided them into training (1975-1989), test (1990 – 1991) and validation (1992- 1993) 

sets. Liong et al. (2002) reported a RMSE value of 356.89m3/s, with an optimal 

parameter set (d = 2, τ = 1, k = 5), for the validation set (1992 – 1993). Using naive 

forecasting, the prediction yields a RMSE of 608.70m3/s.  

The computational time and the prediction accuracy of EC-SVM I on daily 

Mississippi rive flow are shown in Table 5.5 for both Q and dQ time series. The 
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resulting optimal parameter sets are shown in Table 5.6. The minimum validation 

RMSE error is 302.4 m3/s when dQ time series is used and the range of C is set at [0.2 

1.5].  

The training time for Mississippi river flow is longer than that for Tryggevælde 

catchment runoff time series. The results shown are based on the program running on 

LINUX Pentium II 333MHz. Similarly the training time increases as the upper bound 

of C range increases as shown in Fig. 5.12. It can be seen that the training time for dQ 

time series is less than that for Q time series. The training time increases significantly 

as the upper bound of C range increases. The training time increases to 300 hours as C 

values’ upper bound increases.  The same is observed for dQ time series; however, it is 

much less than its counterpart from Q time series.  

Table 5.7 shows prediction accuracies resulting from Q and dQ time series, with 

various techniques, of Mississippi river flow. EC-SVM I on dQ time series yields the 

highest prediction accuracy with RMSE of 302.40m3/s. It can be seen that the EC-

SVM I approach on Q time series yields a significant improvement, 82.3%, over the 

standard chaotic approach; 49.4% improvement over Naive approach; 29.2% 

improvement over ARIMA (1, 0, 1) model; and 13.7% improvement over inverse 

approach with local model.  EC-SVM I applied on dQ time series yields a better 

prediction performance than that of Q time series.  

Figure 5.13 shows the evolutional convergence of EC-SVM I on Mississippi 

river flow data. Figure 5.14 shows the hydrograph comparison between EC-SVM I 

simulated (with dQ time series analysis) and that observed. 

5.3.3 Summary  

The proposed EC-SVM I, a forecasting tool with SVM operating in the Chaos inspired 

phase space and optimised with an Evolutionary algorithm, has been applied to two 
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real daily flow time series, runoff of Tryggevælde catchment and Mississippi river 

flow. A recently developed decomposition method was seen to be suitable in chaos 

time series analysis since the method is able to deal with large data records.  

The study shows that the proposed EC-SVM I provides more accurate prediction 

than the traditional chaos technique and naive forecasting. For Tryggevælde catchment 

runoff, RMSE is decreased from 0.647m3/s to 0.521 m3/s; for Mississippi river flow, 

the RMSE is significantly reduced from 1738.95m3/s to 302.40m3/s.  

The study further suggests to apply the daily flow differences time series instead 

of the flow time series since the computational speed is significantly much faster.    

The application shows that the search can find the optimal solution within less 

than 1000 iterations. It is very efficient to use the evolutionary algorithm as a search 

engine to calibrate the parameters. The training time increases as C increases. As the 

upper bound of C ranges to 20, the training time for Mississippi river flow is over 300 

hours. The training time for Mississippi river flow time series is longer than that of 

Tryggevælde catchment runoff. 

5.4 Applications of EC-SVM II on daily runoff time series  

The decomposition method is used in EC-SVM I to deal with large scale data sets. 

Since it is an iterative algorithm, the computational time can be quite long. To 

overcome the uncertainty with long computational simulation time, a linear ridge 

regression method is therefore considered and included in EC-SVM II. 

The applications of EC-VM II are demonstrated in the following subsection for 

runoff of Tryggevaelde catchment and Mississippi river flow. The stopping criteria of 

SCE are set as that given in Section 5.3. The range of C′ value in EC-SVM II is 
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broader than that of C in EC-SVM I. Table 5.8 shows the range of the parameters in 

EC-SVM II.  

5.4.1 EC-SVM II on Tryggevælde catchment runoff 

The computational time and the prediction accuracy of EC-SVM II on Tryggevælde 

catchment runoff, on both Pentium II 333MHz and Pentium IV 2.4GHz, are shown in 

Table 5.9 for both Q and dQ time series. The optimal parameter set is shown in Table 

5.10. The minimum validation RMSE error is 0.500m3/s when dQ time series is used.  

The difference between the training times of EC-SVM II applied to Q time series 

and dQ time series of Tryggevælde catchment runoff are not as large as that of EC-

SVM I.  EC-SVM II for dQ time series and Q time series is, however, significantly 

faster than their counterparts with EC-SVM I. For Q time series, EC-SVM II is 2 times 

faster than EC-SVM I with C range set at [0.2 1.5]; and 5 times faster than EC-SVM I 

with C range set at [0.2 20.0]. The training time of EC-SVM II for Q time series is 

only 5 hours and 25 minutes, for 824 iterations on PII 33MHz; only 1 hour and 24 

minutes on P4 2.4GHZ. The training time of EC-SVM II for dQ time series is slightly 

longer than that with Q time series since it performs more iterations, 1070 iterations.  

Table 5.11 shows the results from Q and dQ time series, with various techniques, 

of Tryggevælde catchment runoff. The result shows that EC-SVM II for dQ time series 

has better prediction accuracy than other techniques as shown in Table 5.11. The 

prediction accuracy of EC-SVM II is better than that of EC-SVM I.  

EC-SVM II scheme on Q time series yields 22.6% improvement over the 

standard chaotic techniques applied on Q time series. EC-SVM II achieves a slightly 

higher improvement when it is applied on dQ time series. EC-SVM II on dQ time 

series provides the highest prediction accuracy with RMSE value of 0.500m3/s. Figure 
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5.15 shows the scatter plot of EC-SVM II on dQ time series analysis of Tryggevælde 

catchment runoff. 

5.4.2 EC-SVM II on Mississippi river flow  

The computational time and the prediction accuracy of EC-SVM II on Mississippi 

river flow, both on Pentium II 333MHz and Pentium IV 2.4GHz, are shown in Table 

5.12 for both Q and dQ time series. The optimal parameter set is shown in Table 5.13. 

The minimum validation RMSE error is 300.71m3/s when dQ time series is applied.  

The difference between the training times of EC-SVM II applied to Q time series 

and dQ time series of Mississippi river flow, is not as large as that of EC-SVM I.  EC-

SVM II for dQ time series and Q time series are significantly faster than those of EC-

SVM I. For Q time series, EC-SVM II is 3 times faster than EC-SVM I with C range  

set at [0.2 1.5], and 35 times faster than EC-SVM I with C range set at [0.2 20.0]. The 

training time of EC-SVM II with Q time series is 8 hours and 40 minutes for 1214 

iterations, on PII 333 Mhz; only 2 hours 14 minutes on P4 2.4 GHz PCs. The training 

time of EC-SVM II on Mississippi river flow with dQ time series is shorter than that 

with Q time series; dQ time series requires only 762 iterations.   

Table 5.14 shows prediction accuracies resulting from both Q and dQ time series, 

with various techniques, of Mississippi river flow. EC-SVM II on dQ time series yields 

the highest prediction accuracy with RMSE of 300.71m3/s. It can be seen that the EC-

SVM II approach on Q time series yields a significant improvement, 81.6%, over the 

standard chaotic approach; 47.3% improvement over Naive approach; 26.3% 

improvement over ARIMA (1, 0, 1) model; and 10.2% improvement over inverse 

approach with local model. EC-SVM II applied on dQ time series yields a better 

prediction performance than that of Q time series. Figure 5.16 shows the scatter plot of 

dQ time series analysis with EC-SVM II. 
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5.5 Comparison between EC-SVM I and EC-SVM II 

The EC-SVM novel approaches proposed in this study have shown a better, in some 

cases significantly better, performance over other techniques, such as standard chaotic 

techniques using AMI, FNN and KNN method, Naïve forecasting, ARIMA model, or 

inverse approach with KNN method.  

In the following subsections, comparison between EC-SVM I and EC-SVM II in 

detail is conducted.  

5.5.1 Accuracy  

The prediction accuracies of EC-SVM I and EC-SVM II with either Q or dQ time 

series of Tryggevælde catchment runoff and Mississippi river flow are shown in Table 

5.15. The prediction accuracy of EC-SVM I listed in Table 5.15 is the higher one 

among C range set at [0.2 1.5] and at [0.2 20]. Figure 5.17 shows results from both Q 

and dQ time series.  

EC-SVM II provides better prediction accuracy on Tryggevælde catchment 

runoff for both Q and dQ time series; however, its performance for the Mississippi 

river flow is better than EC-SVM I only for the dQ time series. The study shows that 

analysis with EC-SVM II on dQ time series yields the highest prediction accuracy. 

5.5.2 Computational time  

The computational times required by EC-SVM I and EC-SVM II, when they are 

applied to Tryggevælde catchment runoff and Mississippi river flow, are listed in 

Table 5.16. The EC-SVM I results listed in Table 5.16 is with C range set at [0.2 1.5], 

faster than that of C range set as [0.2 20]. Figure 5.18 illustrated them for both Q and 

dQ time series. 
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The computational time of EC-SVM II on all cases is shorter than that of EC-

SVM I.  EC-SVM II is around 2 times faster than that of EC-SVM I with Q time series 

of Tryggevælde catchment runoff and dQ time series of Mississippi river flow; 7% 

faster with dQ time series of Tryggevælde catchment runoff; and about 3 times faster 

with Q time series of Mississippi river flow.  

5.5.3 Overall performances   

Figure 5.19(a) shows detailed results of prediction accuracy, RMSE, on the validation 

data set and training time of EC-SVM I, with C range set at [0.2 1.5], for dQ time 

series of Tryggevæld catchment runoff. Similarly, Fig. 5.19(b) shows that of EC-SVM 

II.  Results from EC-SVM I are more scattered that those of EC-SVM II.  The training 

time and the prediction accuracy of EC-SVM I vary more than their counterparts in 

EC-SVM II. The training times of EC-SVM I for different iterations vary from about 0 

to 140 seconds while EC-SVM II from about 0 to 60 seconds. The prediction accuracy 

varies from 0.5 to 0.75m3/s for EC-SVM I and from 0.49 to 0.58m3/s for EC-SVM II.   

Figure 5.20(a) shows detailed results of prediction accuracy and training time for 

the validation data set of EC-SVM I, with C range at [0.2 1.5], applied to dQ time 

series of Mississippi river flow. Figure 5.20(b) shows results from EC-SVM II.  

Results from EC-SVM I are more scattered that those of EC-SVM II.  The training 

times for various iterations vary from about 0 to 500 seconds for EC-SVM I while EC-

SVM II from about 0 to 60 seconds. The prediction accuracy varies from 300 to 490 

m3/s for EC-SVM I while its counterpart, EC-SVM II from 297 to 340 m3/s. Better 

performance of EC-SVM II is clearly demonstrated for Mississippi river flow when dQ 

time series is used.  
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5.6 Summary  

The applications of the proposed EC-SVM I and EC-SVM II on Tryggevæld 

catchment runoff time series and Mississippi river flow time series are demonstrated in 

this chapter.  

High prediction accuracies are obtained from the proposed EC-SVM I and EC-

SVM II methods for both data sets. The novel approaches provide better prediction 

accuracy than traditional chaotic techniques, e.g. Naïve forecasting, ARIMA or inverse 

approach with KNN method. The proposed approach applies SVM on data in the phase 

space reconstruction and couples SVM with an evolutionary algorithm to calibrate 

both the embedding structure parameters and the SVM parameters.  

Between the two schemes, EC-SVM I and EC-SVM II, the performance of the 

latter is more effective (higher accuracy degree) and more efficient (shorter 

computational time).  Regarding the data set, it is suggested to consider its first 

difference, dQ time series, instead of the original Q time series.  
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Source: www.krak.dk 

 

Figure 5.1 Location of Tryggevælde catchment, Denmark 
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(a) Daily scale 

(b) Monthly scale 

(c) Yearly scale 
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Figure 5.2 Daily runoff time series of Tryggevælde catchment plotted in different time 
scales 
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(a) Fourier transform 
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Figure 5.3  Fourier transform and correlation dimension of daily Tryggevælde 
catchment runoff time series 
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(a) Average Mutual Information 
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Figure 5.4  Determination of time lag and embedding dimension: Tryggevælde 
catchment runoff time series  
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Vicksburg station 
Source: EPA 

 
 

   Figure 5.5 Location of Mississippi river, U.S.A. and runoff gauging station  
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(a) Daily scale 

(b) Monthly scale 

(c) Yearly scale 
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Figure 5.6 Daily time series of Mississippi river flow plotted in different time scales 
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Figure 5.7 Fourier transform and correlation dimension of daily Mississippi river flow 
time series  
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Figure 5.8  Determination of time lag and embedding dimension: Mississippi river time 
series 
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Figure 5.9 Effect of C-range on number of iterations and training time: Tryggevælde 

catchment runoff time series 
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Figure 5.10 Computational convergence of EC-SVM I: Tryggevælde catchment runoff 
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Figure 5.11  Comparison between observed and predicted hydrographs using dQ time 

series in training: validation set of Tryggevælde catchment runoff  
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Figure 5.12  Effect of C range on number of iterations and training time of EC-SVM I: 
Mississippi rive flow 
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Figure 5.13 Computational convergence of EC-SVM I: Mississippi river flow 
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Figure 5.14  Comparison between observed and predicted hydrographs using dQ time 

series in training: validation set of Mississippi river flow  
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Figure 5.15 Scatter plot of EC-SVM II prediction accuracy using dQ time series: 
Tryggevælde catchment runoff 
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Figure 5.16  Scatter plot of EC-SVM II prediction accuracy using dQ time series: 

Mississippi river flow  
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(a) Tryggvælde catchmet runoff 

(b) Mississippi river flow 
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Figure 5.17 Comparison between prediction accuracies resulting from EC-SVM I and 
EC-SVM II  
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(a) Training time 
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Figure 5.18  Comparison between computation time and iterations of EC-SVM I and 
EC-SVM II  
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Figure 5.19  Prediction accuracy and training time with dQ time series used in training: 
Tryggevælde catchment runoff 
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Figure 5.20  Prediction accuracy and training time with dQ time series used in training: 
Mississippi river flow 
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Table 5.1 Range of parameters: EC-SVM I  

 
 

 

 

 

 

Parameters Range 1 Range 2 

Delay time τ 1-20 1-20 

Embedding dimension d 2-20 2-20 

ε-insensitive loss function ε 0-0.1 0-0.1 

Gaussian kernel width σ 0.1-0.9 0.1-0.9 

Regularisation parameter C  0.2-20.0 0.2-1.5 

 

 

 

Table 5.2 Training time and test error of EC-SVM I: Tryggevælde catchment runoff 

RMSE (m3/s) 
C-range 

Time 
series 
used 

No. of 
Iterations

Total time 
(PII) Training 

set 
Test  
set 

Validation 
set 

Q 652 11h30m 0.500 0.587 0.522  
[0.2 - 1.5] dQ 649 6h53m 0.481 0.584 0.524 

Q 825 24h55m 0.500 0.587 0.522  
[0.2-20.0] dQ 916 16h55m 0.497 0.595 0.521 

 

 

 

Table 5.3 Optimal parameter set of EC-SVM I: Tryggevælde catchment runoff 

Parameters 
C-range 

Time 
series 
used τ d C ε σ 

Time(s) 

PII 

Q 1 3 1.003 0.003 0.62 104 
[0.2 - 1.5] dQ 1 6 0.370 0 0.38 62 

Q 1 3 2.170 0.011 0.80 37 
[0.2-20.0] dQ 1 5 5.540 0.016 0.55 48 
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Table 5.4 Prediction accuracy resulting from various techniques: Tryggevælde 
catchment runoff 

 
Time 
series 
used 

Approach RMSE 
(m3/s) NRMSE (d,τ) 

Standard chaos technique 0.647 0.444 (4,12) 

Naive 0.577 0.396 / 

ARIMA(1,0,1) 0.535 0.367 / 

Inverse approach * 0.527 0.361 (2,1) 

 

Q 

 

EC-SVM I 0.522 0.358 (3,1) 

Standard chaos technique 0.598 0.41 (4,8) 

ARIMA(1,1,1) 0.543 0.373 / 

 

dQ 

 EC-SVM I  0.521 0.357 (5,1) 
* Liong et al., 2002 

 

 

 

Table 5.5 Training time and test error of EC-SVM I: Mississippi river flow  

RMSE (m3/s) 
C-range 

Time 
series 
used 

No. of 
Iterations

Total time 
(PII) Training 

set 
Test  
set 

Validation 
set 

Q 680 25h12m 389.96 323.31 307.98 
[0.2 - 1.5] dQ 778 12h12m 355.91 304.74 302.41 

Q 1320 302h32m 377.47 310.85 305.81 
[0.2-20.0] dQ 1180 59h03m 358.45 304.45 304.09 
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Table 5.6 Optimal parameter set of EC-SVM I: Mississippi river flow 

Parameters  
C-range Time series 

used τ d C ε σ 

Time(s) 

PII 

Q 1 5 0.925 0 0.27 169 
[0.2 - 1.5] dQ 1 3 0.929 0.071 0.29 10 

Q 1 3 13.69 0.001 0.19 1097 
[0.2-20.0] dQ 1 3 4.26 0.034 1.00 94 

 

 

 

Table 5.7 Prediction accuracy resulting from various techniques: Mississippi river flow 
 

Time 
series 
used 

Approach RMSE 
(m3/s) NRMSE (d,τ) 

Standard chaos technique 1738.95 0.2064 (6,13) 

Naive 608.70 0.0771 / 

ARIMA(1,0,1) 435.00 0.0551 / 

Inverse approach* 356.89 0.0452 (2, 1) 

 

Q 

 

EC-SVM I 307.98 0.0387 (5, 1) 

Standard chaos technique 365.26 0.0462 (4, 6) 

ARIMA(1,1,1) 322.69 0.0409 / 

 

dQ 

 EC-SVM I 302.40 0.0385 (3, 1) 
* Liong et al., 2002 
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Table 5.8 Range of the parameters: EC-SVM II 

 Parameters Range 

Delay time τ 1-20 

Embedding dimension d 2-20 

Dimension of approximated features q 5-105 

Gaussian kernel width σ 0.1-0.9 

Regularisation parameter C′ 0.1-50.0 

 

 

 

 

 

 

 

Table 5.9 Training time and test error of EC-SVM II: Tryggevælde catchment runoff 

 RMSE (m3/s) 
 Time 

series 
used 

No. of 
Iterations 

Total 
time 
(PII) 

Total 
time 
(PIV) Training 

set 
Test 
set 

Validation 
set 

Q 824 5h25m 1h24m 0.478 0.573 0.502 
dQ 1070 6h23m 1h38m 0.468 0.575 0.500 

 

 

 

Table 5.10 Optimal parameter set of EC-SVM II: Tryggevælde catchment runoff 

Parameters  Time 
series 
used τ d q σ C′ 

Time(s) 

(PII) 

Q 1 5 71 0.26 2.8 23 
dQ 1 6 97 0.13 1.8 42 
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Table 5.11 Prediction accuracy resulting from various techniques: Tryggevælde 

catchment runoff 
 

Time 
series 
used 

Approach RMSE 
(m3/s) NRMSE (d,τ) 

Standard chaos technique 0.647 0.444 (4,12) 

Naive 0.577 0.396 / 

ARIMA(1,0,1) 0.535 0.367 / 

Inverse approach * 0.527 0.361 (2,1) 

EC-SVM I 0.522 0.358 (3,1) 

Q 

EC-SVM II 0.501 0.344 (5,1) 

Standard chaos technique 0.598 0.41 (4,8) 

ARIMA(1,1,1) 0.543 0.373 / 

EC-SVM I  0.521 0.357 (5,1) 
dQ 

EC-SVM II  0.500 0.343 (6,1) 
* Liong et al., 2002 

 

 

 

Table 5.12 Training time and test error of EC-SVM II: Mississippi river flow 

 RMSE (m3/s) 
 Time 

series 
used 

No. of 
Iterations 

Total 
time 
(PII) 

Total 
time 
(PIV) Training 

set 
Test 
set 

Validation 
set 

Q 1214 8h40m 2h14m 402.68 332.21 320.44 
dQ 762 6h08m 1h37m 358.22 306.46 300.71 
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Table 5.13 Optimal parameter set of EC-SVM II: Mississippi river flow 

Parameter Time series 
used τ d q σ C′ 

Time (s)  
(PII)  

Q 1 4 57 0.55 0.6 15 
dQ 1 3 100 0.12 15.4 49 

 

 

 

Table 5.14 Prediction accuracy resulting from various techniques: Mississippi river 
flow 

 
Time 
series 
used 

Approach RMSE 
(m3/s) NRMSE (d,τ) 

Standard chaos technique 1738.95 0.2064 (6,13) 

Naive 608.70 0.0771 / 

ARIMA(1,0,1) 435.00 0.0551 / 

Inverse approach* 356.89 0.0452 (2, 1) 

EC-SVM I 307.98 0.0387 (5, 1) 

Q 

EC-SVM II 320.44 0.0406 (4, 1) 

Standard chaos technique 365.26 0.0462 (4, 6) 

ARIMA(1,1,1) 322.69 0.0409 / 

EC-SVM I 302.40 0.0383 (3, 1) 
dQ 

EC-SVM II 300.71 0.0381 (3, 1) 
* Liong et al., 2002 
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Table 5.15 Prediction accuracy of EC-SVM I and EC-SVM II  

RMSE (m3/s)  

Catchment 

Time 

series EC-SVM I EC-SVM II 

Q 0.522 0.502  

Tryggevælde 
dQ 0.521 0.500 

Q 305.81 320.44  

Mississippi 
dQ 302.40 300.71 

 

 

 

Table 5.16 Computation time of EC-SVM I and EC-SVM II 

EC-SVM I EC-SVM II 
 
 

Catchment Time 
series 

Iterations Time 
(PII) Iterations Time 

(PII) 
Time 
(PIV) 

Q 652 11h30m 824 5h25m 1h24m  

Tryggevælde dQ 649 6h53m 1070 6h23m 1h38m 

Q 680 25h12m 1214 8h40m 2h14m  

Mississippi dQ 778 12h12m 762 6h08m 1h37m 
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS  

 

6.1 Conclusions   

Forecasting of hydrological time series is one of the basic and important tasks in water 

resources management. Recently a number of studies have shown that hydrological 

time series have the characteristics of chaotic time series and possess a low correlation 

dimension. However, the applications of the chaotic techniques are very often limited 

to local linear learning machines due to the large amount of data required. This 

obstacle in analysing hydrological time series is now removed with the schemes 

proposed in this study, EC-SVM I and EC-SVM II.   

Both EC-SVM I and EC-SVM II share many commonalities.  Both schemes: (1) 

use one of latest learning machines, viz. Support Vector Machine (SVM); (2) operate 

SVM on the reconstructed phase space which is the space where Chaos analysis is 

commonly conducted; and (3) apply an Evolutionary algorithm to simultaneously 

optimize the embedding structure parameters and those of SVM.  Both schemes 

differentiate from each other only in the technique to resolve the large data size often 

required in chaos analysis.  EC-SVM I adopts a decomposition method while EC-SVM 

II applies the ridge regression method to circumvent the large data sample problem. 

Both schemes are demonstrated on the Tryggevaelde catchment runoff time 

series and the Mississippi river flow daily time series. Considerable improvements 

were obtained, certainly for the Mississippi case. 
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6.1.1 SVM applied in phase space reconstruction  

The present study is the first study that introduces the application of Support Vector 

Machine (SVM) in the phase space reconstruction. Previous work on applications of 

SVM in time series has been limited to dynamics reconstruction.  There it is inevitable 

that a unit time lag has to be assumed.  As is known from chaos theory, an order in 

disorder can be found only at a given embedding structure, i.e. with the correct 

embedding dimension and the correct time lag.   

Thus, this study suggests the applications of SVM in the phase space 

reconstruction instead of directly using the original time series.  The most appropriate 

embedding structure parameters (embedding dimensions and time lag) are derived 

based on the least prediction accuracy from an unseen data set. The proposed approach 

in deriving the values of the embedding structure parameters is recommended instead 

of using the traditional approach, average mutual information for time lag and then the 

false nearest neighbours for embedding dimensions. A guaranteed higher prediction 

accuracy resulting from the proposed approach is obvious since it uses the least 

prediction accuracy as its objective function. 

6.1.2 Handling large data sets effectively 

One of the most important abilities of any proposed scheme to analyse chaotic time 

series is its efficiency in dealing with large data sets. It is a norm that chaotic time 

series analysis requires large sets of data. Normal SVM can’t deal with large data sets. 

Practitioners opt to select a shorter data set at the expense of prediction accuracy of the 

trained model.  

Two efficient algorithms to handle large data records for SVM are introduced. 

One of them is the decomposition method while the other one is the linear regression 

with approximated features method.  
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The decomposition method decomposes the quadratic optimization programming 

of the dual problem of SVM into a series of quadratic problems each with only 2 

variables; this transformation makes the analysis quite straightforward. The 2 variables 

are selected through a feasible direction method which is based on the maximum 

gradient. The decomposition method used in this study is the most efficient algorithm 

of decomposition methods, known at present.   

The linear ridge regression, on the other hand, approximates the feature 

dimension at which the feature space of the original data is linearly related to the 

output variable. The approximation of features is based on the eigen function of the 

kernel of the Mercer’s theorem and the eigen decomposition of a square matrix. Good 

representative points are selected on the basis of the maximum entropy; this implies 

that the set of points are most scattered. Since the linear ridge regression involves no 

iterative scheme, as in the decomposition method, the speed is even faster and more 

reliable.  

6.1.3 Evolutionary algorithm for parameters optimization  

SVM has several parameters which need to be calibrated. SVM can provide good 

results only when a good set of values of the calibration parameters is chosen. In 

addition to the SVM parameters, two more parameters need to be calibrated.  They are 

the embedding structure parameters, i.e. the time lag and the embedding dimension.  

An evolutionary algorithm is applied to calibrate these parameters 

simultaneously and automatically. Evolutionary algorithm is a global optimization 

approach and is especially suitable for the very difficult task where deterministic 

sequence of iterative solutions based on the gradient or high order statistics of the cost 

function can not be generated. Evolutionary algorithm only requires the objective 

function and therefore it is very suitable for this sort of parameter tuning task. The 
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results from traditional methods help to set suitable parameter search range for 

evolutionary algorithm. The evolutionary algorithm used in this study is the Shuffled 

Complex Evolution (SCE) algorithm.  

EC-SVM I is with the decomposition method while EC-SVM II is with the linear 

ridge regression; both are equipped with SCE optimization scheme.  

6.1.4 High computational performances  

The novel approaches suggested in this study, EC-SVM, show both effectiveness (i.e. 

high prediction accuracy) and efficiency (i.e. high computational speed).  

The EC-SVM approaches are demonstrated on two real daily flow time series: 

Tryggevælde catchment runoff and Mississippi river flow time series. The results 

obtained by both EC-SVM I and EC-SVM II prove better than naïve forecasting, 

ARIMA, and other currently used chaotic techniques. Moreover, the study shows that 

the first difference runoff time series, dQ, should be seriously considered instead of the 

original Q time series; analysis with the dQ time series yields higher prediction 

accuracy.  

EC-SVM II (with linear ridge regression) is recommended over EC-SVM I (with 

decomposition method) particularly with respect to stable and fast computational speed. 

This is to be expected since the linear ridge regression does not involve any iterative 

algorithm. 

The speed of EC-SVM II is attractively fast. It takes about 1-2 hours on P4 

2.4GHz and yet yields very high prediction accuracy.  

6.2 Recommendations for future study  

Recommendations for future research and practical applications are suggested as 

follows:  
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(1) Multivariate analysis  

Most of the hydrological systems are complex nonlinear dynamical systems. If 

time series of other sensitive variables are available, e.g. precipitation (P) and 

temperature (T), the analysis should include these time series. This extra 

information may further increase the prediction accuracy of the runoff. In this 

study EC-SVM approaches are demonstrated only on univariate time series.  The 

approach is applicable to multivariate time series as well. The expression can be 

written as:   

           ,,...,,( )1(21 QQQQ dtttt QQQfQ τττ −−−−+ =

                           ,,...,, )1(2 PPPP dttt PPP τττ −−−−

                            (6.1) ),...,, )1(2 TTTT dttt TTT τττ −−−−

 

There are obviously more embedding structure parameters, (τQ, dQ, τP, dP, τT, dT) 

for the above example. SCE is a very efficient optimization scheme and hence can 

efficiently deal with 20 genes or more.  

 
(2) Multi-objective optimization  

The present study has solely used RMSE as a measure of goodness of fit. Other 

goodness-of-fit measures should be considered.  They are, for example, volume 

error, peak runoff error, percentage of false nearest neighbours, etc. Evolutionary 

algorithms for multi-objective optimization are available. Elitist non-dominated 

sorting genetic algorithm (NSGA II) by Deb (2001) is one of the well developed 

algorithms for multi-objective optimization problems. Applying NSGA II instead 

of SCE may fit the calibration task for this multi-objective problems.  
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(3) Gaussian kernel  

Gaussian kernel is one the most powerful kernels and a commonly used kernel. 

This study applies Gaussian kernel as well.  Other powerful kernels for regression 

such as spline kernel may be more suitable for some time series.  

 
(4) Uncertainty  

The current study uses RMSE of the test set as a goodness-of-fit measure. It should 

be noted that it is much more reasonable to use the test error, as a goodness-of-fit 

measure, than the training error. Nevertheless, this does not guarantee that the 

resulting ‘optimal’ model will yield best prediction accuracy on the validation data 

set.  This is perhaps caused by an overfitted model.  It is therefore suggested to 

create another test set for overfitting test.    

 

 150



   
  
 

 

REFERENCES 

 

1. Abarbanel, H. D. I., Brown, R. and Kadtke, J. B. Prediction in Chaotic Nonlinear 
Systems: Methods for Time Series with Broadband Fourier Spectra. Physical 
Review A, 41(4), pp. 1782-1807. 1990. 

 
2. Abarbanel, H. D. I. Analysis of Observed Chaotic Data. Springer-Verlag, NY. 

1996. 
 
3. Abbott, M. B. Introducing Hydroinformatics. Journal of Hydroinformatics, 1(1), 

pp. 3-19. 1999. 
 
4. Alligood, K., Sauer, T. and Yorke, J.A. CHAOS: An Introduction to Dynamical 

Systems. Springer-Verlag. 1997. 
 
5. Anctil, F., Michel, C., Perrin, C. and Andréassian, V. A Soil Moisture Index as 

an Auxiliary ANN input for Stream Flow Forecasting. Journal of Hydrology, 286, 
pp.155-167. 2004. 

 
6. Babovic, V. and Keijzer, M. Forecasting of River Discharges in the Presence of 

Chaos and Noise. In Coping with Flood. 1999. 
 
7. Babovic, V. Keijzer, M. and Stefasson, M. Optimal Embedding Using Evolution 

Algorithms. In Proc. 4th International Conference on Hydroinformatics, Iowa 
City, USA, July 2000a. 

 
8. Babovic, V., Keijzer, M. and Bundzel, M. From Global to Local Modelling: A 

Case Study in Error Correction of Deterministic Models. In Proc. 4th 
International Conference on Hydroinformatics, Iowa City, USA, 2000b.  

 
9. Backer, C. T. H. The Numeral Treatment of Integral Equations. Oxford: 

Clarendon Press. 1977. 
 
10. Brandstater, A. and Swinney, H. L. Strange Attractor in Weakly Turbulent 

Couette-Talay flow. Phys. Rev. A 35, pp. 2206. 1986. 
 
11. Boser, B. E., Guyon, I. M. and Vapnik, V. N. A Training Algorithm for Optimal 

Margin Classifiers. In Proc. 5th Annual ACM Workshop on Computational 
Learning Theory, ed by Haussler, D., pp. 144-152. Pittsburgh, PA, ACM Press. 
1992. 

 
12. Cao, L. Y., Mees, A. and Judd, K. Dynamics from Multivariate Time Series. 

Physica D, 121, pp.65-88. 1998. 
 
13. Cao, L. Y. Practical Method for Determining the Minimum Embedding 

Dimension of a Scalar Time Series. Physica D, 110, pp. 43-50. 1997. 

 151



   
   
 
 
14. Casdagli, M. Nonlinear Prediction of Chaotic Time Series. Physica D, 35, pp. 

335 - 356. 1989. 
 
15. Casdagli, M. Chaos and Deterministic versus Stochastic Non-linear Modelling. 

Journal of Royal Statistical Society B, 54(2), pp. 303-328. 1991. 
 
16. Casdagli, M., Eubank, S., Farmer, J. D. and Gibson, J. State Space 

Reconstruction in the Presence of Noise. Physica D, 51, pp. 52-98. 1991. 
 
17. Cherkassky, V. and Ma, Y. Practical Selection of SVM Parameters and Noise 

Estimation for SVM Regression. Neural Networks, 17(1), pp 113-126. 2004. 
 
18. Cherkassky, V. and Mulier, F. Learning from Data: Concepts, Theory and 

Methods. John Wiley and Sons. 1998. 
 
19. Collobert, R. and Bengio, S. On the Convergence of SVMTorch, an Algorithm 

for Large-Scale Regression Problems. Technical Report IDIAP-RR 00-24, IDIAP, 
Martigny, Switzerland. 2000. 

 
20. Collobert, R. and Bengio, S. SVMtorch: Support Vector Machines for Large-

Scale Regression Problems. Journal of Machine Learning Research, 1, pp 143-
160. 2001.  

 
21. Collobert, R., Bengio, S., and Bengio, Y., A Parallel Mixture of SVMs for Very 

Large Scale Problems. Neural Computation, 14(5) pp.1105-1114. 2002. 
 
22. Cover, T. and Hart, P. Nearest Neighbour Pattern Classification. IEEE 

Transactions on Information Theory, 13, pp.21-27. 1967. 
 
23. Doan, C. D., Liong, S. Y. and  Karunasingha, D. S. K. Deriving Effective and 

Efficient Data Set with Subtractive Clustering Method and Genetic Algorithm. 
Submitted to Journal of Hydroinformatics.  2003. 

 
24. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms. John 

Wiley &Sons. 2001. 
 
25. Dibike Y. B., Velickov S., Solomatine D. P. and Abbott M. B. Model Induction 

with Support Vector Machines: Introduction and Applications. Journal of 
Computing in Civil Engineering, American Society of Civil Engineers (ASCE), 
15(3), pp. 208-216. 2001.  

 
26. Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A. J. and Vapnik, V. Support 

vector regression machines. In: Advances in Neural Information Processing 
Systems, MIT Press, Cambridge M.A., pp.155-161. 1997. 

 
27. Duan, Q., Sorooshian, S. and Gupta, V. K. Effective and Efficient Global 

Optimization for Conceptual Rainfall-Runoff Models. Water Resour. Res. 28(4), 
pp.1015-1031. 1992. 

 

 152



   
   
 
28. Duda, R. O. and Hart, P. E. Pattern Classification and Scene Analysis. Wiley, 

New York. 1973. 
 
29. Eckmann, J. P., Kamphorst, S. O., Ruelle, D. and Ciliberto, S. Lyapunov 

Exponents from Time Series. Physical Review A, 34(6), pp. 4971-4979. 1986. 
 
30. Essex, C., Lookman, T. and Nerenberg, M. A. H. The Climate Attractor over 

Short Timescales. Nature, 326, pp. 64-66. 1987. 
 
31. Espinoza, M., Suykens, J. and De Moor, B. Least Squares Support Vector 

Machines and Primal Space Estimation. In Proc. IEEE 42nd Conference on 
Decision and Control, Maui, USA, 2003 December. 

 
32. Fan, J. D. and Sidorowich, J. J. Local Polynomial Modelling and its Applications. 

Chapman & Hall, London, UK. 1996. 
 
33. Farmer, J. D. and Sidorowich, J. J. Predicting Chaotic Time Series. Phys. Rev. 

Lett. 59, pp. 845-848. 1987.  
 
34. Fraedrich, K. Estimating the Dimensions of Weather and Climate Attractors. 

Journal of the Atmospheric Sciences, 43(5), pp. 419-432. 1986. 
 
35. Fraedrich, K. Estimating Weather and Climate Predictability on Attractors. 

Journal of the Atmospheric Sciences, 44 (4), pp. 722-728. 1987. 
 
36. Frazer, A. M. Reconstructing Attractors from Scalar Time series: A Comparison 

of Singular System and Redundancy Criteria. Physica D, 34, pp.391-404. 1989. 
 
37. Fogel, D. B. An Introduction to Simulated Evolutionary Optimization. IEEE 

Trans. Neural Networks, 5(1), pp. 3-14. 1994. 
 
38. Fogel, L. J., Owens, A. J. and Walsh, M. J. Artificial Intelligence through 

Simulated Evolution, New York: John Wiley. 1966. 
 
39. Fraser, A. and Swinney, H. Independent Coordinates for Strange Attractors from 

Mutual Information. Phys. Rev. A 33, pp. 1134-1140. 1986. 
 
40. Frison, T. Nonlinear Data Analysis Techniques. In: Trading on the Edge. Neural, 

Genetic and Fuzzy Systems for Chaotic Financial Markets, ed by Deboeck, G. J., 
pp. 280-296. John Wiley Inc., New York. 1994. 

 
41. Geman, S., Bienenstock, E. and Doursat, R. Neural Networks and the 

Bias/Variance Dilemma. Neural Computation 4, pp. 1-58. 1992. 
 
42. Gershenfeld N. and Weigend, A. The Future of Time Series: Learning and 

Understanding. In Time Series Prediction: Forecasting the Future and 
Understanding the Past, ed by Weigend, A. and Gershenfeld, N., pp.1-70. 
Addison Wesley. 1993. 

 

 153



   
   
 
43. Gibson, J. F., Farmer, J. D., Casdagli, M. and Eubank, S. An Analytical 

Approach to Practical State Space Reconstruction. Physica D, 57, pp. 1-30. 1992. 
 
44. Girolami, M. Orthogonal Series Density Estimation and the Kernel Eigenvalue 

Problem. Neural Computation, 14, pp. 669-688. 2002. 
 
45. Gleick, J. Chaos: Making a New Science. Viking Penguin, New York. 1987. 
 
46. Grassberger, P. and Procaccia, I. Characterization of Strange Attractors, Phys. 

Rev. Lett., 50, pp. 346. 1983a. 
 
47. Grassberger, P. and Procaccia, I. Measuring the Strangeness of Strange Attractors. 

Physica D, 9, pp.189-208. 1983b. 
 
48. Grassberger, P. and Procaccia, I. Estimation of the Kolmogorov Entropy from a 

Chaotic Signal. Physical Review A, 28, pp. 2591-2593. 1983c. 
 
49. Grassberger, P. Do Climatic Attractors Exist? Nature, 323, pp. 609-612. 1986. 
 
50. Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd edition. 

Prentice-Hall, New Jersey. 1999. 
 
51. Hense, A. On the Possible Existence of a Strange Attractor for the Southern 

Oscillation. Beitr. Phys. Atmosphere, 60(1), pp. 34-47. 1987. 
 
52. Hilborn, R.C. Chaos and Nonlinear Dynamics, pp. 40. Oxford University Press. 

1994.  
 
53. Holland, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor: The 

University of Michigan Press. 1975.  
 
54. Holzfuss, J. and Mayer-Kress, G. An Approach to Error-estimation in the 

Application of Dimension Algorithms. In Dimensions and Entropies in Chaotic 
Systems, ed by Mayer-Kress, G., pp. 114-122. Springer-Verlag, New York. 1986. 

 
55. Ikeguchi, T. and Aihara, K. Prediction of Chaotic Time Series with Noise. IEEE 

Transactions, Fundamentals, E78 (10), pp. 1291-1297. 1995. 
 
56. Islam, S., Bras, R. L. and Rodriguez-Iturbe, I. A Possible Explanation for Low 

Correlation Dimension Estimates for the Atmosphere. Journal of Applied 
Meteorology, 32, pp. 203-208. 1993. 

 
57. Izenman, A. J. Recent Developments in Nonparametric Density Estimation. 

Journal of the American Statistical Association, 86, pp. 205-224. 1991. 
 
58. Jayawardena, A. W. and Lai, F. Analysis and Prediction of Chaos in Rainfall and 

Stream Flow Time Series. Journal of Hydrology, 153, pp. 23-52. 1994. 
 

 154



   
   
 
59. Jayawardena, A. W. and Gurung A. B. Noise Reduction and Prediction of 

Hydrometeorological Time Series: Dynamical Systems Approach vs. Stochastic 
Approach. Journal of Hydrology, 228, pp. 242-264. 2000. 

 
60. Joachims, T. Making Large-Scale SVM Learning Practical. In: Advances in 

Kernel Methods - Support Vector Learning, ed by Schölkopf, B., Burges, C. and 
Smola A., pp. 169-183. MIT Press. 1999. 

 
61. Karunanithi, N., Grenney, W.J., Whitley, D. and Bovee, K. Neural Networks for 

River Flow Prediction. J. Comput. Civil Engng., 8(22), pp. 201-220. 1994. 
 
62. Kennel, M.B., Brown, R., and Abarbanel, H. D. I. Determining Embedding 

Dimension for Phase-Space Reconstruction Using a Geometrical Construction. 
Phys. Rev. A 45, pp. 3403-3411. 1992. 

 
63. Keerthi, S. S., Shevade, S. K., Bhattacharyya C. and Murthy, K. R. K. 

Improvements to Platt's SMO Algorithm for SVM Classifier Design. Neural 
Computation, 13, pp. 637-649. 2001. 

 
64. Keerthi, S. S. and Gilbert, E. G. Convergence of a Generalized SMO Algorithm 

for SVM Classifier Design. Machine Learning, 46, pp. 351-360. 2002. 
 
65. Krishnakumar, K. Micro-Genetic Algorithms for Stationary and Non-Stationary 

Function Optimization. SPIE: Intelligent Control and Adaptive Systems, 1196. 
Philadelphia, PA.  1989. 

 
66. Kuczera, G. Efficient Subspace Probabilistic Parameter Optimization for 

Catchment models. Water Resour. Res. 33(1), pp.177-185. 1997. 
 
67. Kugiumtzis, D., Lillekendlie, B. and Christophersen, N. Chaotic Time Series Part 

I: Estimation of Some Invariant Properties in State Space. Modeling, 
Identification & Control 15(4), pp. 205-224. 1995. 

 
68. Kwok, J. T. Linear Dependency between ε and the Input Noise in ε-Support 

Vector Regression. In: Proc. International Conference Artificial Neural Networks 
- ICANN 2001, ed by G. Dorffner, H. Bischof, K. Hornik, pp. 405-410. Lecture 
Notes in Computer Science 2130 Springer 2001, ISBN 3-540-42486-5.  

 
69. Laskov, P. An Improved Decomposition Algorithm for Regression Support 

Vector Machines. In Advances in Neural Information Processing Systems 12, ed 
by Solla, S.A., Leen, T.K. and Müller, K.-R., pp. 484-490. MIT Press. 2000. 

 
70. Laskov, P. Feasible Direction Decomposition Algorithms for Training Support 

Vector Machines. Machine Learning, Special Issue on Support Vector Machines. 
2001. 

 
71. Liebert, W., Pawelzik, K. and Schuster, H. G. Optimal Embeddings of Chaotic 

Attractors from Topological Considerations. Europhys. Lett., 14, pp. 521-526. 
1991.   

 

 155



   
   
 
72. Liong, S. Y., Chan, W. T. and Shreeram, J. Peak Flow Forecasting with Genetic 

Algorithm and SWMM. Journal of Hydraulic Engineering, ASCE, 121(8), pp. 
613-617. 1995. 

 
73. Liong, S. Y., Khu, S. T. and Chan, W. T. Derivation of Pareto Front with Genetic 

Algorithm and Neural Network? Journal of Hydrologic Engineering, ASCE, 6(1), 
pp. 56-61. 2001. 

 
74. Liong, S. Y., Lim, W. H., and Paudyal, G. Real Time River Stage Forecasting for 

Flood Stricken Bangladesh: Neural Network Approach. Journal of Computing in 
Civil Engineering, ASCE, 4(1), pp. 38-48. 1999. 

 
75. Liong, S. Y. and Sivapragasam, C. Flood Stage Forecasting with SVM. J. Am. 

Water Res. Assoc., 38(1), pp. 173-186. 2002. 
 
76. Liong, S. Y., Phoon, K. K., Pasha, M. F. K and Doan, C. D. A Robust and 

Efficient Scheme in Search for Optimal Prediction Parameters Set in Chaotic 
Time Series. First Asia Pacific DHI Software Conference, Bangkok, (keynote 
paper). 2002. 

 
77. Lorenz, E. N. Deterministic Nonperiodic Flow. J. Atmos. Sci., 20, pp.130-141. 

1963.   
 
78. MacKay, D. J. C. Introduction to Gaussian Processes. Extended Version of a 

Tutorial at ICANN'97, ftp://wol.ra.phy.cam.ac.uk/pub/mackay/gpB.ps.gz , 1997. 
 
79. Maidment, D. R. (ed). Handbook of Hydrology. U.S.A: McGraw-Hill, Inc. 1993. 
 
80. Matterra, D. and Haykin, S. Support Vector Machines for Dynamic 

Reconstruction of a Chaotic System. In: Advances in Kernel Methods, ed by 
Chölkopf, B., Burges, C. J. C and Smola, A. J., pp. 211-241. MIT Press. 1999. 

 
81. Mees, A. I., Rapp, P. E. and Jennings, L. S. Singular Value Decomposition and 

Embedding Dimension. Phys. Rev. A 36, pp. 340-346. 1987. 
 
82. Muller, K. R., Smola, A., Ratsch, G., Scholkopf, B., Kohlmorgen, J. and Vapnik, 

V. Predicting Time Series with Support Vector Machines. In Proc. International 
Conferenceon Artificial Neural Networks, pp.999. Springer Lecture Notes in 
Computer Science. 1997. 

 
83. Nelder, J. A. and Mead, R. A Simplex Method for Function Minimization. 

Comput. J. 7, pp.308-313. 1965. 
 
84. Neal, R. M. Regression and Classification Using Gaussian Process Priors (with 

discussion). In Bayesian Statistics 6, ed by Bernardo, J. M., Berger, J. O., Dawid, 
A. P. and Smith, A. F. M., pp. 475-501. Oxford University Press. 1999. 

 
85. Nicolis, C. and Nicolis, G. Is There a Climatic Attractor? Nature, 311, pp. 529-

532. 1984. 
 

 156

ftp://wol.ra.phy.cam.ac.uk/pub/mackay/gpB.ps.gz


   
   
 
86. Ogawa, H. and Oja, E. Can We Solve the Continuous Karhunen-Loeve 

Eigenproblem from Discrete Data? Trans. IECE Japan E69, pp. 1020-1029. 1986. 
 
87. Omohundro, S. M., Efficient Algorithms with Neural Network Behaviour. 

Complex system 1, pp. 273-347. 1987. 
 
88. Osborne, A. R. and Provenzale, A. Finite Correlation Dimension for Stochastic 

Systems with Power-law Spectra, Physica D, 35, pp. 357-381. 1989. 
 
89. Osuna, E., Freund, R. and Girosi, F. An Improved Training Algorithm for 

Support Vector Machines. In Neural Networks for Signal Processing VII — 
Proceedings of the 1997 IEEE Workshop, ed by Principe, J., Gile, L., Morgan, N. 
and Wilson, E., pp. 276-285. New York. 1997a. 

 
90. Osuna, E., Freund, R. and Girosi, F. Training Support Vector Machines: An 

Application to Face Detection. In Proc. Computer Vision and Pattern 
Recognition '97, pp. 130-136. 1997b. 

 
91. Ott, E., Sauer, T. and Yorke, J. Coping with Chaos. John Wiley & Sons, NY. 

1994. 
 
92. Packard, N. H., Crutchfield, J. P., Farmer, J. D. and Shaw, R. S. Geometry from a 

Time Series. Physical Review Letters, 45(9), pp. 712-716. 1980. 
 
93. Phoon, K. K., Islam, M. N., Liaw, C. Y. and Liong, S. Y. A Practical Inverse 

Approach for Forecasting Nonlinear Hydrological Time Series. Journal of 
Hydrologic Engineering, ASCE, 7 (2), pp. 116-128. 2002. 

 
94. Platt, J. C. Fast Training of Support Vector Machines Using Sequential Minimal 

Optimization. In: Advances in Kernel Methods - Support Vector Learning, ed by 
Schölkopf, B., Burges, C. and Smola, A., pp. 185-208. MIT Press, 1999. 

 
95. Porporato, A. and Ridolfi, L. Clues to the Existence of Deterministic Chaos in 

River Flow. Journal of Modern Physics B, 10(5), pp. 1821-1862. 1996. 
 
96. Porporato, A. and Ridolfi, L. Nonlinear Analysis of River Flow Time Sequences. 

Water Resources Research, 33(6), pp. 1353-1367. 1997. 
 
97. Prichard, D. and Theiler, J. Generalised Redundancies for Time Series Analysis. 

Physica D, 84, pp.476-493. 1995. 
 
98. Rechenberg, I. Evolutionsstrategie Optimierung technischer Systeme nach 

Prinzipien der biologischen Evolution. Stuttgart, Frommann-Holzboog. 1973. 
 
99. Rodriguez-Iturbe, I., De Power, B. F., Sharifi, M. B. and Georgakakos, K. P. 

Chaos in Rainfall. Water Resources Research, 25(7), pp. 1667-1775. 1989. 
 
100. Sangoyomi, T. B., Lall, U. and Abarbanel, H. D. I. Nonlinear Dynamics of the 

Great Salt Lake: Dimension Estimation. Water Resources Research, 32(1), pp. 
149-159. 1996. 

 157



   
   
 
 
101. Samet, H. The Quadtree and Related Hierarchical Data structures. Computing 

Surveys, 16(2). 1984. 
 
102. Sauer, T. Yorke, J. and Casdagli, M. Embedology. Journal of Statistical Physics, 

65(3/4), pp. 579-616. 1991. 
 
103. Sauer, T. A Noise Reduction Method for Signals from Nonlinear Systems. 

Physica D, 58, pp. 193- 201. 1992. 
 
104. Schölkopf, B., Smola, A. and Muller, K. R. Nonlinear Component Analysis as a 

Kernel Eigenvalue Problem. Neural Comp. 10, pp. 1299-1319. 1998a. 
 
105. Schölkopf, B., Bartlett, P., Smola, A. and Williamson, R. Support Vector 

Regression with Automatic Accuracy Control. In Proceedings of ICANN'98, 
Perspectives in Neural Computing, Berlin, ed by Niklasson, L., Bodén, M. and 
Ziemke, T., pp.111-116. Springer Verlag. 1998b. 

 
106. Schölkopf, B., Simard, P. Y., Smola, A. J. and Vapnik, V. N. Prior Knowledge in 

Support Vector Kernels. In Advances in Neural Information Processing Systems, 
Vol. 10, ed by Jordan, M. I., Kearns, M. J. and Solla, S. A., pp. 640-646. MIT 
Press, Cambridge, MA. 1998c.  

 
107. Schölkopf, B., Smola, A. and Müller, K.-R. Kernel Principal Component 

Analysis. In Advances in Kernel Methods - SV Learning, ed by Schölkopf, B., 
Burges, C. J. C. and Smola, A. J. , pp. 327-352. MIT Press. 1999a. 

 
108. Schölkopf, B., Mika, S., Burges, C.J.C., Knirsch, P., Müller, K.-R., Rätsch, G. 

and Smola, A. Input Space vs. Feature Space in Kernel-based Methods. IEEE 
Transactions on Neural Networks, 10(5), pp.1000-1017. 1999b. 

 
109. Schölkopf, B., Smola, A., Williamson, R. and Bartlett, P. L. New Support Vector 

Algorithm. Neural Computation, 12(5), pp.1207-1245. 2000.  
 
110. Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A. J. and Williamson, R. C. 

Estimating the Support of a High-dimensional Distribution. Neural Computation, 
13(7), pp. 1443-1472. 2001. 

 
111. Schölkopf, B. and Smola, A. Learning with Kernels. MIT Press. 2002. 
 
112. Schuster, H. G. Deterministic Chaos. VCH Weinheim, Germany. 1988. 
 
113. Schwefel, H.-P. Numerical Optimization of Computer Models. Chichester: Wiley 

& Sons. 1981. 
 
114. Sharifi, M. B., Georgakakos, K. P. and Rodriguez-Iturbe, I. Evidence of 

Deterministic Chaos in the Pulse of Storm Rainfall. Journal of the Atmospheric 
Sciences, 47(7), pp.888-893. 1990. 

 

 158



   
   
 
115. Shevade, S. K., Keerthi, S. S., Bhattacharyya, C. and Murthy, K. R. K. 

Improvements to the SMO Algorithm for SVM Regression. IEEE Transactions 
on Neural Networks, 11, pp.1188-1194.  2000. 

 
116. Sivakumar, B., Phoon, K.K., Liong, S.Y., and Liaw, C.Y., A Systematic 

Approach to Noise Reduction in Chaotic Hydrological Time Series. Journal of 
Hydrology, 219, pp.103-135. 1999. 

 
117. Sivakumar, B., Liong S.Y., and Liaw, C.Y. Evidence of Chaotic Behaviour in 

Singapore Rainfall, Journal of American Water Resources Association, 34(2), pp. 
301-310. 1998.  

 
118. Sivapragasam, C. Multi-Objective Evolutionary Techniques in Defining Optimal 

Policies for Real Time Operation of Reservoir Systems. PhD thesis, National 
University of Singapore. 2003.  

 
119. Smola, A. J., Murata, N., Schölkopf, B. and Müller, K. Asymptotically Optimal 

Choice of ε-loss for Support Vector Machines. In: Proc. 8th International 
Conference on Artificial Neural Networks, pp. 105-110. Springer-Verlag. 1998a. 

 
120. Smola, A. J. Learning with Kernels. PhD thesis, Technische Universität Berlin. 

1998b.  
 
121. Smola, A. J. and Schölkopf, B. From Regularization Operators to Support Vector 

Kernels. In Advances in Neural information processings systems 10, San Mateo, 
CA, pp. 343-349. 1998c.  

 
122. Smola, A. J., Frieß, T. and Schölkopf, B. Semiparametric Support Vector and 

Linear Programming Machines. In Advances in Neural Information Processing 
Systems, 11. MIT Press. 1998d.  

 
123. Smola, A. J., Schölkopf, B. and Müller, K.-R. The Connection between 

Regularization Operators and Support Vector Kernels. Neural Networks, 11, 
pp.637-649. 1998e.  

 
124. Sugihara, G. and May, R.M. Nonlinear Forecasting as a Way of Distinguishing 

Chaos from Measurement Error in Time Series, Nature, 344, pp.734-741. 1990. 
 
125. Suykens J. A. K., Lukas L., Van Dooren P., De Moor B. and Vandewalle J. Least 

Squares Support Vector Machine Classifiers: a Large Scale Algorithm. In Proc. 
of the European Conference on Circuit Theory and Design (ECCTD'99), Stresa, 
Italy, Sep. 1999, pp. 839-842. 

 
126. Suykens, J. A. K., Gestel, T. Van, Brabanter, J. De, Moor, B. De and Vandewalle, 

J. Least Squares Support Vector Machines. World Scientific Pub. Co., Singapore. 
2002. 

 
127. Takens, F. In: Dynamical Systems and Turbulence, Vol. 898 of Lecture Notes in 

Mathematics (Warwick), ed by Rand A. and Young L.S., p366. Springer. 1981.   
 

 159



   
   
 
128. Termonia, Y. and Alexandrovicz, Z. Fractal Dimension of Strange Attractors 

from Radius versus Size of Arbitrary Clusters. Physical Review Letters, 51, pp. 
1265-1268. 1983. 

 
129. Theiler, J. Efficient Algorithm for Estimating the Correlation Dimension from a 

Set of Discrete Points. Physical Review A, 36(9), pp. 4456- 4462. 1987. 
 
130. Tsonis, A. A. and Elsner, J. B. The Weather Attractor over Very Short Time 

Scales. Nature, 333, pp. 545-547. 1988. 
 
131. Tsonis, A. A. and Elsner, J. B. Nonlinear Prediction as a way of Distinguishing 

Chaos from Random Fractal Sequences. Nature, 358, pp. 217-220. 1992. 
 
132. Toth, E., Brath, A. and Montanari, A. Comparison of Short-term Rainfall 

Prediction Models for Real-time Flood Forecasting. Journal of Hydrology, 239, 
pp. 132-147.  2000. 

 
133. Vapnik, V. N. Principle of Risk Minimization for Learning Theory. Advances in 

Neural Information Processing System 4, San Meteo, CA, pp. 831-838. 1992. 
 
134. Vapnik, V., Golowich, S. and Smola, A. Support Vector Method for Function 

Approximation, Regression Estimation, and Signal processing. In Advances in 
Neural Information Processing Systems 9, Cambridge, MA, ed by Mozer, M., 
Jordan, M. and Petsche, T., pp.281-287. MIT Press. 1997. 

 
135. Vapnik, V. Statistical Learning Theory. Wiley, NY. 1998. 
 
136. Weigend, A. S. and Gershenfeld, N. A. The Future of Time Series: Learning and 

Understanding. In Time Series Prediction: Forecasting the Future and 
Understanding the Past: Proc. NATO Advanced Research Workshop on 
Comparative Time Series Analysis, 1994. ed by Weigend A. S. and Gershenfeld, 
N. A..  

 
137. Williams, C. K. I. Prediction with Gaussian Processes: From Linear Regression 

to Linear Prediction and Beyond. In Learning in Graphical Models, ed by Jordan, 
M. I., pp. 599-621. Kluwer Academic. 1998.  

 
138. Williams, C. K. I. and Barber, D. Bayesian Classification with Gaussian 

Processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
20(12), pp.1342-1351. 1998. 

 
139. Williams, C. K. I. and Seeger, M. The Effect of the Input Density Distribution on 

Kernel-based Classifiers. In Proceedings of the Seventeenth International 
Conference on Machine Learning. 2000.  

 
140. Williams, C., K., I., and Seeger, M. Using the Nystrom Methods to Speed Up 

Kernel Machines. In: Advances in Neural information Processing Systems, 13, 
pp.682-688. MIT Press. 2001. 

 

 160



   
   
 
141. Wolf, A., Swift, J. B., Swinney, H. L. and Vastano, A. Determining Lyapunov 

Exponents from a Time Series. Physica D, 16, pp. 285-317. 1985. 
 
142. Zealand, C. M., Burn D. H. and Simonovic, S. P. Short Term Streamflow 

Forecasting Using Artificial Neural Networks, Journal of Hydrology, 214, pp. 
32-48. 1999. 

 
143. Zaldivart, J. M., Gutierrez, E., Galvan, I. M., Strozzi, F. and Tomasin, A. 

Forecasting High Water Level at Venice Lagoon Using Chaotic Time Series 
Analysis and Nonlinear Neural Network. Journal of Hydroinformatics, 2, pp. 61-
84. 2000. 

 
144. Zhu, H., Williams, C. K. I., Rohwer, R. J. and Morciniec. M. Gaussian 

Regression and Optimal Finite Dimensional Linear Models. In Neural Networks 
and Machine Learning, ed by Bishop, C. M., Springer-Verlag, Berlin. 1998. 

 
145. Zoutendijk, G. Methods of Feasible Directions: a Study in Linear and Non-linear 

Programming. Elsevier. 1970. 
 
146. EPA (U.S. Environmental Protection Agency), http://www.epa.gov/.  
 
147. Krak, http://www.krak.dk/ 
 
148. Kernel machine web page, http://www.kernel-machines.org/. 
 
149. LAPACK, http://www.netlib.org/lapack/.  
 
150. LS-SVMlab, http://www.esat.kuleuven.ac.be/sista/lssvmlab/.  
 
151. SVM Torch II, http://www.idiap.ch/learning/SVMTorch.html.  
 
152. USGS (U.S. Geological Survey), http://www.usgs.gov/ 
 
 

 161

http://www.epa.gov/
http://www.kernel-machines.org/
http://www.netlib.org/lapack/
http://www.esat.kuleuven.ac.be/sista/lssvmlab/
http://www.usgs.gov/


   
   
 

LIST OF PUBLICATIONS 
 

Part of this thesis have been published in or submitted for possible publication to the 

following international Journals or conferences:  

Keynote Paper 

Liong, S. Y. and Yu, X. Y. Support Vector Machine in Chaotic Time Series 

Forecasting. 28-th International Hydrology and Water Resources Symposium, 

Australia, 10 – 13 November 2003. 

International Journals 

 Yu, X. Y., Liong, S. Y., and Babovic, V. EC-SVM Approach For Real Time 

Hydrologic Forecasting. Journal of Hydroinformatics, V6 (3), pp 209-223. 2004. 

 Yu, X. Y. and Liong, S. Y. Forecasting of Hydrologic Time Series with Ridge 

Regression in Feature space of Gaussian Kernel. Submitted for possible publication 

in Journal of Hydrology. 2004. 

 Liong, S. Y., MD. Atiquzzaman and Yu, X. Y. Alternative Decision Making in 

Water Distribution Network with NSGA-II. Submitted for Possible Publication in 

Journal of Water Resources Planning and Management, ASCE. 2004.  

International Conferences 

 Liong, S. Y., Sivapragasam, C., Muttil, N., Doan, C. D., and Yu, X. Y. Efficient 

Water Management Techniques for Rapidly Urbanizing Countries. In Proceedings 

of Symposium on Innovative Approaches for Hydrology and Water Resources 

Management in the Monsoon Asia, University of Tokyo, pp. 71-78. 2001. 

 Yu, X. Y., Liong, S. Y. and Babovic, V. Hydrologic Forecasting with Support 

Vector Machine Combined with Chaos-inspired Approach. In Proceedings of 5th 

 162



   
   
 

International Conference on Hydroinformatics, Cardiff University, Cardiff, Wales, 

U.K., pp. 764-769. 2002. 

 Yu, X. Y., Liong, S. Y., and Babovic, V. An Approach Combining Chaos-

Theoretic Approach and Support Vector Machine: Case Study in Hydrologic 

Forecasting. In Proceedings of the 13th APD-IAHR Congress, Singapore. pp. 690-

695. 2002. 

 Yu, X. Y. and Liong, S. Y. Forecasting of Chaotic Hydrological Time Series with 

Ridge Linear Regression in Feature Space. In Proceedings of 6th International 

Conference on Hydroinformatics, Singapore, pp. 1581-1588. 2004. 

 Liong, S. Y., MD. Atiquzzaman and Yu, X. Y. Multi-objective Algorithm to 

Enhance Decision Making Process in Water Distribution Network Problems. In 

Proceedings of 2nd APHW Conference, Singapore, pp. 138-146.2004. 

 Yu, X. Y. and Liong, S. Y. Enhanced Support Vector Machine for hydrological 

time series forecasting. 14th APD-IAHR Congress, 15 - 18, December 2004, Hong 

Kong (Accepted for publication).  

 

 

 

 
 
 
 

  

 

 163


	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	SUMMARY
	NOMENCLATURE
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 �INTRODUCTION
	1.1 Background
	1.2 Need for the present study
	1.2.1 Support vector machine for phase space reconstruction
	1.2.2 Handling large chaotic data sets efficiently
	1.2.3 Automatic parameter calibration

	1.3 Objectives of the present study
	1.4 Thesis organization

	CHAPTER 2 �LITERATURE REVIEW
	2.1 Introduction
	2.2 Chaotic theory and chaotic techniques
	2.2.1 Introduction
	(1) Definition of Chaos
	(2) Identifications

	2.2.2 Standard chaotic techniques
	(1) Time lag selection
	(2) Embedding dimension selection
	(3) Prediction

	2.2.3 Inverse approach
	2.2.4 Approximation techniques
	2.2.5 Phase space reconstruction
	2.2.6 Summary

	2.3 Support vector machine (SVM)
	2.3.1 Introduction
	2.3.2 Architecture of SVM for regression
	2.3.3 Superiority of SVM over MLP and RBF Neural Networks
	2.3.4 Issues related to model parameters
	2.3.5 SVM for dynamics reconstruction of chaotic system
	2.3.6 Summary

	2.4 Conclusions

	CHAPTER 3�SVM FOR PHASE SPACE RECONSTRUCTION
	3.1 Introduction
	3.2 Proposed SVM for dynamics reconstruction
	3.2.1 Dynamics reconstruction with SVM
	3.2.2 Calibration of SVM parameters

	3.3 Proposed SVM for phase space and dynamics reconstruction
	3.3.1 Motivations
	3.3.2 Proposed method

	3.4 Handling of large data record with SVM
	3.4.1 Decomposition method
	3.4.1.1 Introduction
	3.4.1.2 Brief description of technique
	(1) Two working variables
	(2) Selection of 2 working variables
	(3) Checking of KKT condition

	3.4.1.3 Implementation

	3.4.2 Linear ridge regression in approximated feature space
	3.4.2.1 Brief description of technique
	(1) Eigenfunctions and Eigenvalues approximation
	(2) Quadratic Renyi entropy for selection of the subset
	(3) Ridge linear regression

	3.4.2.3 Implementation


	3.5 Summary and conclusion

	CHAPTER 4 �PARAMETER CALIBRATION WITH EVOLUTIONARY ALGORITHM
	4.1 Introduction
	4.2 Evolutionary algorithms for optimization
	4.2.1 Introduction
	4.2.2 Shuffled Complex Evolution
	4.2.2.1 Description of algorithm
	4.2.2.2 Competitive Complex Evolution
	4.2.2.3 Control parameters and stopping criteria


	4.3 EC-SVM I: SVM with decomposition algorithm
	4.3.1 Introduction
	4.3.2 Calibration parameters
	4.3.3 Parameter range
	Parameters range of embedding structure
	4.3.3.2 Parameter range of C in SVM
	Parameter range of ( in SVM
	Parameter range of ( of Gaussian Kernel

	4.3.4 Implementation

	4.4 EC-SVM II: SVM with linear ridge regression
	4.4.1 Calibration parameters
	4.4.1.1 Parameter C(
	Parameter q

	4.4.2 Implementation

	4.5 Summary

	CHAPTER 5 �APPLICATIONS OF EC-SVM APPROACHES
	5.1 Introduction
	5.2 Daily runoff time series
	5.2.1 Tryggevælde catchment runoff
	5.2.2 Mississippi river flow

	5.3 Applications of EC-SVM I on daily runoff time series
	5.3.1 EC-SVM I on Tryggevælde catchment runoff
	5.3.2 EC-SVM I on Mississippi river flow
	5.3.3 Summary

	5.4 Applications of EC-SVM II on daily runoff time series
	5.4.1 EC-SVM II on Tryggevælde catchment runoff
	5.4.2 EC-SVM II on Mississippi river flow

	5.5 Comparison between EC-SVM I and EC-SVM II
	5.5.1 Accuracy
	5.5.2 Computational time
	5.5.3 Overall performances

	5.6 Summary

	CHAPTER 6 �CONCLUSIONS AND RECOMMENDATIONS
	6.1 Conclusions
	6.1.1 SVM applied in phase space reconstruction
	6.1.2 Handling large data sets effectively
	6.1.3 Evolutionary algorithm for parameters optimization
	6.1.4 High computational performances

	6.2 Recommendations for future study
	(1) Multivariate analysis
	(2) Multi-objective optimization
	(3) Gaussian kernel
	(4) Uncertainty



	REFERENCES
	LIST OF PUBLICATIONS

