

SUPPORT VECTOR MACHINE IN CHAOTIC HYDROLOGICAL

TIME SERIES FORECASTING

YU XINYING

NATIONAL UNIVERSITY OF SINGAPORE

2004

SUPPORT VECTOR MACHINE IN CHAOTIC HYDROLOGICAL TIME

SERIES FORECASTING

YU XINYING

(M. SC., UNESCO-IHE, DISTINCTION)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF CIVIL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2004

ACKNOWLEDGEMENTS

I wish to express my sincerer and deep gratitude to my supervisor, Assoc. Prof.

Liong Shie-Yui, for his inspiration and supervision during my PhD study at The

National University of Singapore. Uncounted number of discussions leads to the

various techniques shown in this thesis. His invaluable advices, suggestions, guidance

and encouragement are highly appreciated. His great supervisions undoubtedly make

my PhD study fruitful and an enjoyable experience.

I am grateful to my co-supervisor, Dr. Vladan Babovic, for sharing his ideas

throughout the study period.

I also wish to thank Assoc. Prof. Phoon Kok Kwang for his concerns, comments

and discussions.

I am grateful to Prof. M. B. Abbott for his genuine concerns on my study and

well-being during this study period.

I would like to thank the examiners for their valuable corrections, suggestions,

and comments.

Thanks are extended to Assoc. Prof. S. Sathiya Keerthi for his great Neural

Networks course. Many thanks also to laboratory technician of Hydraulics Lab, Mr.

Krishna, for his assistance.

I would also like to thank my friends together with whom I had a wonderful time

in Singapore. They are: Hu Guiping, Yang Shufang and Zhao Ying. Thanks are also

extended to Lin Xiaohan, Zhang Xiaoli, Li Ying, Chen Jian, Ma Peifeng, He

Jiangcheng, Doan Chi Dung, Dulakshi Karunasingha, Anuja, Sivapragasam, and all

colleagues in Hydraulic Lab in NUS. In addition, I am grateful to Xu Min, Qin Zhen

 i

and Nguyen Huu Hai for their valuable suggestions on some implementation of

techniques in C or FORTRAN under Windows.

Heartfelt thanks to my dear parents and my family in China, who continuously

support me with their love. Special thanks to my friends He Hai, Zhao Hongli, Wang

Ping, You Aiju for their forever friendship.

I would like to thank to all persons who have contributed to the success of this

study. Finally I would like to acknowledge my appreciation to National University of

Singapore for the financial support received through the NUS research scholarship. In

addition, the great library and digital library facilities deserve some special mention.

 ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

TABLE OF CONTENTS iii

SUMMARY vii

NOMENCLATURE ix

LIST OF FIGURES xii

LIST OF TABLES xv

CHAPTER 1 INTRODUCTION 1

1.1 Background 1

1.2 Need for the present study 3

1.2.1 Support vector machine for phase space reconstruction 4

1.2.2 Handling large chaotic data sets efficiently 5

1.2.3 Automatic parameter calibration 6

1.3 Objectives of the present study 7

1.4 Thesis organization 8

CHAPTER 2 LITERATURE REVIEW 10

2.1 Introduction 10

2.2 Chaotic theory and chaotic techniques 10

2.2.1 Introduction 10

2.2.2 Standard chaotic techniques 14

2.2.3 Inverse approach 18

2.2.4 Approximation techniques 20

 iii

2.2.5 Phase space reconstruction 21

2.2.6 Summary 23

2.3 Support vector machine (SVM) 24

2.3.1 Introduction 24

2.3.2 Architecture of SVM for regression 26

2.3.3 Superiority of SVM over MLP and RBF Neural Networks 30

2.3.4 Issues related to model parameters 31

2.3.5 SVM for dynamics reconstruction of chaotic system 32

2.3.6 Summary 33

2.4 Conclusions 34

CHAPTER 3 SVM FOR PHASE SPACE RECONSTRUCTION 37

3.1 Introduction 37

3.2 Proposed SVM for dynamics reconstruction 38

3.2.1 Dynamics reconstruction with SVM 38

3.2.2 Calibration of SVM parameters 39

3.3 Proposed SVM for phase space and dynamics reconstructions 41

3.3.1 Motivations 41

3.3.2 Proposed method 42

3.4 Handling of large data record with SVM 43

3.4.1 Decomposition method 45

3.4.2 Linear ridge regression in approximated feature space 51

3.5 Summary and conclusion 59

 iv

CHAPTER 4 PARAMETER CALIBRATION WITH EVOLUTIONARY

ALGORITHM 71

4.1 Introduction 71

4.2 Evolutionary algorithms for optimization 72

4.2.1 Introduction 72

4.2.2 Shuffled Complex Evolution 74

4.3 EC-SVM I: SVM with decomposition algorithm 79

4.3.1 Introduction 80

4.3.2 Calibration parameters 82

4.3.3 Parameter range 82

4.3.4 Implementation 85

4.4 EC-SVM II: SVM with linear ridge regression 87

4.4.1 Calibration parameters 87

4.4.2 Implementation 90

4.5 Summary 93

CHAPTER 5 APPLICATIONS OF EC-SVM APPROACHES 108

5.1 Introduction 108

5.2 Daily runoff time series 108

5.2.1 Tryggevælde catchment runoff 108

5.2.2 Mississippi river flow 109

5.3 Applications of EC-SVM I on daily runoff time series 111

5.3.1 EC-SVM I on Tryggevælde catchment runoff 111

5.3.2 EC-SVM I on Mississippi river flow 114

5.3.3 Summary 115

 v

5.4 Applications of EC-SVM II on daily runoff time series 116

5.4.1 EC-SVM II on Tryggevælde catchment runoff 117

5.4.2 EC-SVM II on Mississippi river flow 118

5.5 Comparison between EC-SVM I and EC-SVM II 119

5.5.1 Accuracy 119

5.5.2 Computational time 119

5.5.3 Overall performances 120

5.6 Summary 121

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 145

6.1 Conclusions 145

6.1.1 SVM applied in phase space reconstruction 146

6.1.2 Handling large data sets effectively 146

6.1.3 Evolutionary algorithm for parameters optimization 147

6.1.4 High computational performances 148

6.2 Recommendations for future study 148

REFERENCES 151

LIST OF PUBLICATIONS 162

 vi

SUMMARY

This research attempts to demonstrate the promising applications of a relatively

new machine learning tool, support vector machine, on chaotic hydrological time

series forecasting. The ability to achieve high prediction accuracy of any model is one

of the central problems in water resources management. In this study, the high

effectiveness and efficiency of the model is achieved based on the following three

major contributions.

1. Forecasting with Support Vector Machine applied to data in reconstructed

phase space. K nearest neighbours (KNN) is the most basic lazy instance–based

learning algorithm and has been the most widely used approach in chaotic

techniques due to its simplicity (local search). Analysis of chaotic time series,

however, requires handling of large data sets which in many instances poses

problems to most learning algorithms. Other machine learning techniques such as

artificial neural network (ANN) and radial basis function (RBF) network, which

are competitive to lazy instance-based learning, have been rarely applied to

chaotic problems. In this study, a novel approach is proposed. The proposed

approach implements Support Vector Machine (SVM) for the learning task in the

reconstructed phase space and for finding the optimal embedding structure

parameters based on the minimum prediction error. SVM is based on statistical

learning theory. It has shown good performances on unseen data. SVM achieves

a unique optimal solution by solving a quadratic problem and, moreover, SVM

has the capability to filter out noise resulting from an ε-insensitive loss function.

These special features lead SVM to be a better learning method than KNN

 vii

algorithm. SVM is able to capture the underlying relationship between

forecasting and lag vectors more effectively.

2. Handling large chaotic data sets effectively. In the learning process, the

forecasting task is a function of lag vectors. For cases with numerous training

samples, such as in chaotic time series, the commonly used optimization

technique in SVM for quadratic programming becomes intractable both in

memory and in time requirement. To overcome the considerable computing

requirements in large chaotic hydrological data sets effectively, two algorithms

are employed: (1) Decomposition method of quadratic programming; and (2)

Linear ridge regression applied directly in approximated feature space. Both

schemes successfully deal with large training data sets efficiently. The memory

requirement is only about 2% of that of the presently common techniques.

3. Automatic parameter optimization with evolutionary algorithm. SVM

performs at its best when model parameters are well calibrated. The embedding

structure and SVM parameters are simultaneously calibrated automatically with

an evolutionary algorithm, Shuffled Complex Evolution (SCE).

In this study a proposed scheme, EC-SVM, is developed. EC-SVM is a

forecasting SVM tool operating in the Chaos inspired phase space; the scheme

incorporates an Evolutionary algorithm to optimally determine various SVM and

embedding structure parameters. The performance of EC-SVM is tested on daily

runoff data of Tryggevælde catchment and daily flow of Mississippi river.

Significantly higher prediction accuracies with EC-SVM are achieved than other

existing techniques. In addition, the training speed is very much faster as well.

 viii

NOMENCLATURE

τ time delay

d embedding dimension

k number of nearest neighbours

X state vector in chaotic dynamical system

y lag vector in reconstructed phase space

F(Xn) the evolution from Xn to Xn+1

d2 correlation dimension

U(⋅) unit step function

y observation time series

y lag vector for reconstructed phase space

I(τ) average mutual information function

l lead time for prediction

x input vector

y target variable

yo observation value

N training data size

n dimension of input x

f (x) estimation function

ϕ(x) feature vector corresponds to input x

w weight vector for SVM

Eguarant(w) guaranteed risk

CI the confidence interval

h VC dimension

 ix

Lε ε-insensitive loss function

ε ε-insensitive parameter

ξ(′) slack variables

J() Lagrangian function

α(′) Lagrange multiplier

K(x, xi) inner-product kernel

K Kernel matrix

σ width of Gaussian kernel function

C trade off between empirical error and complexity of model

yt input vector

yt+l l lead prediction

β variable in standard quadratic programming of dual problem

βs working set

βF fixed variables

λ Lagrange multiplier of standard quadratic programming

φj eigenfunction of the integral equation

λj eigenvalue of the integral equation

q number of sub-samples

C′ ridge regression parameter

p(x) probability density function in input space x

K(q) kernel matrix of q sample

Ui eigenvector matrix K(q).

λi
(q) eigenvalue of matrix K(q)

HR quadratic Renyi entropy

P number of complexes

 x

m number of points in a complex

q number of points in a sub-complex

pmin minimum number of complexes required in population

α number of consecutive offspring generated by a sub-complex

β number of evolution steps taken by a complex

B range of output data

Q(t) runoff time series

P(t) rainfall time series

 xi

LIST OF FIGURES

Figure 2.1 Illustration of data conversion from reconstructed phase space to feature
space 35

Figure 2.2 Illustration of structural risk minimization 35

Figure 2.3 ε-insensitive loss function 36

Figure 2.4 Architecture of Support Vector Machine (SVM) 36

Figure 3.1 Reconstructed phase space data set with (τ =1, d=2, l=1) 61

Figure 3.2 Architecture of local model for dynamics reconstruction 61

Figure 3.3 Architecture of SVM for dynamics reconstruction 62

Figure 3.4 Diagram of dynamics reconstruction of chaotic time series 62

Figure 3.5 Schematic diagram of proposed SVM parameter set selection 63

Figure 3.6 Average mutual information (AMI) and time lag selection 64

Figure 3.7 Parameters determination and task performances with differences
techniques: Standard, Inverse, and SVM approaches 64

Figure 3.8 Schematic diagram of SVM for phase space and dynamics reconstruction

 65

Figure 3.9 Illustration of memory requirement for quadratic programming before and

after decomposition scheme 66

Figure 3.10 SVM decomposition optimization problem with working set of 2

variables 66

Figure 3.11 Illustration of decomposition method in SVM quadratic programming 67

Figure 3.12 Illustration of shrinking process (reducing number of variables) in
decomposition algorithm 68

Figure 3.13 Illustration of quadratic Renyi entropy function and scatter 69

Figure 3.14 Schematic diagram of ridge regression in feature space 70

Figure 4.1 Schematic diagram of Evolutionary Algorithms (EAs) 94

Figure 4.2 Search algorithm of Shuffled Complex Evolutions (SCE) 95

 xii

Figure 4.3 Basic processes in Competitive Complex Evolution (CCE): reflection and
contraction 96

Figure 4.4 Proposed algorithm of EC-SVM I 96

Figure 4.5 Effect of varying C value on training time and test error: EC-SVM I 97

Figure 4.6 Effect of varying C value close to the output variable range B on training
time and test error: EC-SVM I 98

Figure 4.7 Sensitivity of varying Kernel widths σ 99

Figure 4.8 Operational diagram of EC-SVM I 100

Figure 4.9 Distinction between unbiased distribution with large variance estimation
(w) and biased distribution with small variance estimation (wb) 101

Figure 4.10 Effect of varying C′ value on training time and test error: EC-SVM II 102

Figure 4.11 Effect of varying number of dimensions (q) of approximated features on
training time and test and training errors: EC-SVM II 103

Figure 4.12 Effect of number of dimensions (q) on training time and test error: EC-

SVM II 104

Figure 4.13 Operational diagram of EC-SVM II 105

Figure 4.14 Flow chart of the sub-modules in EC-SVM II 106

Figure 5.1 Location of Tryggevælde catchment, Denmark 122

Figure 5.2 Daily runoff time series of Tryggevælde catchment plotted in different
time scales 123

Figure 5.3 Fourier transform and correlation dimension of daily Tryggevælde

catchment runoff time series 124

Figure 5.4 Determination of time lag and embedding dimension: Tryggevælde

catchment runoff time series 125

Figure 5.5 Location of Mississippi river, U.S.A. and runoff gauging station 126

Figure 5.6 Daily time series of Mississippi river flow plotted in different time scales
 126

Figure 5.7 Fourier transform and correlation dimension of daily Mississippi river

flow time series 128

Figure 5.8 Determination of time lag and embedding dimension: Mississippi river

time series 129

 xiii

Figure 5.9 Effect of C-range on number of iterations and training time: Tryggevælde

catchment runoff time series 130

Figure 5.10 Computational convergence of EC-SVM I: Tryggevælde catchment

runoff 130

Figure 5.11 Comparison between observed and predicted hydrographs using dQ time

series in training: validation set of Tryggevælde catchment runoff 131

Figure 5.12 Effect of C range on number of iterations and training time of EC-SVM I:

Mississippi rive flow 131

Figure 5.13 Computational convergence of EC-SVM I: Mississippi river flow 132

Figure 5.14 Comparison between observed and predicted hydrographs using dQ time
series in training: validation set of Mississippi river flow 132

Figure 5.15 Scatter plot of EC-SVM II prediction accuracy using dQ time series:

Tryggevælde catchment runoff 133

Figure 5.16 Scatter plot of EC-SVM II prediction accuracy using dQ time series:

Mississippi river flow 133

Figure 5.17 Comparison between prediction accuracies resulting from EC-SVM I and

EC-SVM II 134

Figure 5.19 Prediction accuracy and training time with dQ time series used in training:

Tryggevælde catchment runoff 136

Figure 5.20 Prediction accuracy and training time with dQ time series used in training:

Mississippi river flow 137

 xiv

LIST OF TABLES

Table 4.1 Recommended SCE control parameters 107

Table 5.1 Range of parameters: EC-SVM I 138

Table 5.2 Training time and test error of EC-SVM I: Tryggevælde catchment runoff
 138

Table 5.3 Optimal parameter set of EC-SVM I: Tryggevælde catchment runoff 138

Table 5.4 Prediction accuracy resulting from various techniques: Tryggevælde
catchment runoff 139

Table 5.5 Training time and test error of EC-SVM I: Mississippi river flow 139

Table 5.6 Optimal parameter set of EC-SVM I: Mississippi river flow 140

Table 5.7 Prediction accuracy resulting from various techniques: Mississippi river
flow 140

Table 5.8 Range of the parameters: EC-SVM II 141

Table 5.9 Training time and test error of EC-SVM II: Tryggevælde catchment
runoff 141

Table 5.10 Optimal parameter set of EC-SVM II: Tryggevælde catchment runoff 141

Table 5.11 Prediction accuracy resulting from various techniques: Tryggevælde
catchment runoff 142

Table 5.12 Training time and test error of EC-SVM II: Mississippi river flow 142

Table 5.13 Optimal parameter set of EC-SVM II: Mississippi river flow 143

Table 5.14 Prediction accuracy resulting from various techniques: Mississippi
river flow 143

Table 5.15 Prediction accuracy of EC-SVM I and EC-SVM II 144

Table 5.16 Computation time of EC-SVM I and EC-SVM II 144

 xv

CHAPTER 1

INTRODUCTION

1.1 Background

Nature has been in observation for a very long time. From observations, we hope to

better understand its system and the governing laws. Since physicists started research

into the laws of nature, disorder, turbulent fluctuations, oscillation and ‘irregularity’ in

nature have attracted the attention of many scientists. These ‘irregularity’ phenomena

have simply been characterised as ‘noise’. The recent discovery of chaos theory

changes our understanding and sheds new light on this type of nature study.

The first true experimenter in chaos was Lorenz, a meteorologist at MIT. In 1961

Lorenz derived the three ordinary differential equations describing thermal convection

in a low atmosphere. He discovered that ever so tiny changes in climate could bring

about enormous and volatile changes in weather. Calling it the Butterfly Effect, Lorenz

pointed out that if a butterfly flapped its wings in Brazil, it could well produce a

tornado in Texas (Hilborn, 1994).

Study on chaos has rapidly spread to various disciplines. It ranges from a flag

snapping back and forth in the wind, the shape of the cloud and of a path of lighting,

stock price rise and fall, microscopic blood vessel intertwining, to turbulence in the sea.

Studies of chaotic applications on hydraulics and hydrology, however, started about 15

years or so ago and have shown promising findings.

Chaotic systems are deterministic in principle, e.g. a set of differential equations

could describe the system under consideration. The system may display irregular time

series. This irregularity of the system may, however, be mainly due to outside

 1

turbulence and yet, at the same time, the system is intrinsically dynamic. The system is

very sensitive to the initial conditions, known as the butterfly effect. Initial conditions

with any subtle difference will evolve into a totally different status as time progresses;

therefore, a satisfactory prediction for a long lead-time is practically impossible for any

such system. However, a good short-term prediction for the system is feasible.

Chaotic techniques analyse these irregular and sensitive systems. The embedding

theory provides a means to transform the irregular time series into a regular system.

The transformation is achieved when the original system is presented in the

reconstructed phase space. The reconstructed phase space has a one-to-one relationship

with the original system. A famous theorem is the Taken’s theorem, which provides

the lag vector approach to analyse the nonlinear dynamic system.

In the approach, two parameters (the time lag τ and the embedding dimension d)

are to be determined. Various studies have been conducted in this domain. The

commonly used techniques are the average mutual information (AMI), the false

nearest neighbours (FNN), and the local model. The time lag τ can be determined by

the AMI technique. The embedding dimension d is then determined after eliminating

the false nearest neighbours using FNN technique.

The local model is commonly used for prediction. The local model typically

adopts k nearest neighbours in the reconstructed phase space for interpolation to yield

its prediction. Although it may be linear locally, globally it may be nonlinear.

For real time series, the embedding parameters obtained by these commonly used

embedding techniques (AMI, FNN) may, as a matter of fact, not provide good

prediction accuracy. This has triggered a series of studies (Casdagli, 1989; Casdagli et

al., 1991; Gibson et al., 1992; Babovic et al., 2000a; Phoon et al., 2002; Liong et al.,

2002) in the search for a more optimal set of τ and d. The studies showed that a search

 2

process through a set of combinations of τ and d provides better results than the

standard chaotic technique.

In practice, prediction accuracy is often the most important objective. Using the

prediction accuracy as a yardstick, Phoon et al. (2002) introduced an Inverse Approach

whereby the optimal (d, τ, k) is first determined from forecasting and only then

checked via the existence of the chaotic behaviour of the obtained embedding structure

parameters, the (d, τ) set. The inverse approach was shown to yield higher prediction

accuracy than the traditional approach. Most recently, Liong et al. (2002) replaced the

brute force search engine in Phoon et al. (2002) with an evolutionary search engine,

genetic algorithm (GA). Liong et al. (2002) showed that GA search engines not only

allow a much more refined search in the given search space but also requires much less

computational effort to yield the optimal (d, τ, k).

It should be noted that chaotic techniques are limited to the k nearest neighbour

(KNN) learning algorithm to approximate the relationship between the lag vectors and

the forecast variables. The restriction imposed to a limited k number of neighbours is

to allow KNN be implemented in a large data record of chaotic time series. KNN

algorithm is one of the oldest machine learning algorithms (Cover and Hart, 1967;

Duda and Hart, 1973). A few new learning algorithms have been developed since then.

These algorithms are very competitive and more powerful than KNN machine learning.

The exploration of newly developed machine learning algorithms is still not widely

implemented partly due to their difficulties in efficiently handling large data records.

1.2 Need for the present study

Other machine learning techniques such as artificial neural network (ANN) and radial

basis function (RBF) network are competitors to the lazy instance-based learning KNN

 3

technique. However, they have been rarely explored and the exploration is limited to

the dynamics reconstruction only. The phase space reconstruction techniques are still

limited to the AMI and FNN traditional technique or KNN technique.

1.2.1 Support vector machine for phase space reconstruction

Support Vector Machine (SVM) is a relatively new machine learning tool (Vapnik,

1992). It is based on statistical learning and it is an approximate implementation of

structural risk minimization which tolerates generalization on data not encountered

during learning. It was first developed for classification problem and recently it has

been successfully implemented in the regression problem (Vapnik et al., 1997).

SVM has several fundamental superiorities over ANN and RBF. First of all, one

serious shortcomings of ANN is that the architecture of ANN has to be determined a

priori or modified by some heuristic ways. The resulting structures of ANN are hence

not optimal. The architecture of SVM, in contrast, does not need to be pre-specified

before the training. Secondly, ANNs suffer the over-fitting problems. The way to

overcome the over-fitting problem is rather limited. SVM is based on the structural

risk minimization principle and the derivation is more profound. It considers both

training error and confidence interval (capacity of the system). As a result, SVM has a

good generalization capability (better performance on unseen data). Thirdly, ANNs

can not avoid the risk of getting trapped in local minima while training due to its

inherent formulation. SVM, on the other hand, solves a quadratic programming which

has a unique optimal solution. Due to these attractive properties, SVM is regarded as

one of the most well developed machine learning algorithms. Its applications are

exceedingly encouraging in various areas.

So far, there has been no investigation on SVM applied to data in phase space

reconstruction. Applying SVM on data mapped to the reconstructed phase space,

 4

where transformed data show clearer pattern, allows a technique such as SVM to

perform a better forecasting task.

1.2.2 Handling large chaotic data sets efficiently

Chaotic time series analysis requires the efficient handling of a large data set. For

most learning machine algorithms large data records require long computational times.

KNN used as local model is dominant in chaotic techniques due to its simplicity.

However, improvement in its prediction accuracy is desirable. Developing a SVM

approach equipped with effective and efficient scheme to deal with large scale data

sets is definitely much desirable for phase space reconstruction and forecasting.

The learning task approximates the forecast variables which is a function of lag

vectors. When the number of training examples is large, say 7000, the currently used

optimization technique for quadratic programming in SVM will become intractable

both in memory and computational time requirement.

SVM’s primal problem formulation is transformed into its dual problem in which

Lagrange multipliers are the variables to be optimized. SVM solves the quadratic

programming of 2N variables, where N is the size of training data set. The common

technique of solving quadratic programming requires Hessian matrix, O(N2), to be

stored in the memory. Chaotic time series analysis commonly requires large training

data size N. The memory requirement is tremendously large and common PCs cannot

afford such requirement. Moreover, the computational time is extremely expensive.

Existing publications on SVM applications for hydrological time series (Babovic

et al., 2000b; Dibike et al., 2001; Liong and Sivapragasam, 2002) and dynamics

reconstruction of chaotic time series analysis (Muller et al., 1997; Matterra and Haykin,

1999) revolve around those common techniques, e.g. Newton method, to solve the

quadratic optimization problem. Small training set of about thousand records was used

 5

due to computational difficulty with Newton methods, e.g. 500 records in the work of

Babovic et al. (2000b), 5 years daily data in Dibike et al. (2001), 3 years daily data in

Liong and Sivapragasam (2002), 2,000 records in Muller et al. (1997). Only Matterra

and Haykin (1999) investigated the impacts of different training sizes, up to 20,000

records, with supercomputers on prediction accuracy. Many hydrological daily time

series come with 20-30 years or even longer records. The constraints posed thus far are

the techniques used are not able to deal with large records efficiently. Thus, SVM

equipped with the special algorithm which could effectively and efficiently deal with

large scale data sets is highly desirable for phase space reconstruction and forecasting.

Only such SVM can possibly provide high prediction accuracy in short computational

time as well.

Recently there are some development of the special SVM scheme to deal large

data size. The advanced SVM has not been noticed in areas of chaotic time series

analysis and hydrological time series analysis. The exploration of the special SVM in

chaotic hydrological time series analysis is extremely desirable.

1.2.3 Automatic parameter calibration

There are several parameters (C, ε, σ) in SVM which requires a thorough calibration.

Parameter C controls the trade-off between the training error and the model complexity.

Parameter ε is a parameter in the ε-insensitive loss function for empirical error

estimation. The other parameter σ is a measure of the spread of the Gaussian kernel

which influences the complexity of the model. Gaussian Kernel is a commonly

employed Kernel in SVM and has been reported (Muller et al., 1997; Dibike et al.,

2001; Liong and Sivapragasam, 2002) to generally provide good performances.

Currently there is no analytical way to determine the optimal values of these

parameters. Only some rough guides are available in the literatures. The users are

 6

required to adjust the suggested parameter values. Adjustment task can be very time

consuming. Thus, an automatic parameter calibration scheme is very much desirable.

1.3 Objectives of the present study

SVM is based on statistical learning theory and good performances on unseen data

have been widely demonstrated. SVM achieves the unique optimal solution by solving

a quadratic problem and, moreover, SVM has the capability to filter out noise resulting

from ε-insensitive loss function. These special features of SVM lead to better learning

than that of KNN algorithm. SVM is able to capture the underlying relationship

between the forecast variables and the lag vectors more effectively.

This study focuses on establishing a novel framework with a relatively new

powerful machine learning technique (SVM) to do forecasting on chaotic time series.

This study first takes a close look at the possible applicability of SVM for chaotic data

analysis. Combining its strength with the special feature of reconstructed phase space

(mapping seemingly disorderly data into an orderly pattern) should be a more robust

and yield higher prediction accuracy than traditional chaotic techniques.

Since there is a series of parameters (partially originating from SVM while others

describing the system characteristics) required to be determined, a robust and efficient

optimisation scheme such as Evolutionary Algorithms (EA) is considered to further

enhance the proposed chaos based SVM scheme.

The objectives of this study can be specifically stated as follows:

1. To assess the performance and superiority of SVM over other traditional

techniques in the analysis of chaotic time series;

2. To propose SVM regression model to the phase space reconstruction derived

from the inverse approach;

 7

3. To develop and implement advanced SVM equipped with effective and efficient

scheme in handling large chaotic hydrological data sets;

4. To propose and implement an Evolutionary Algorithm to search for the optimal

set for both the SVM and the embedding structure parameters;

5. To demonstrate the applications of the developed schemes on real hydrological

time series and assess its performances. The performance of the proposed

schemes will be compared with those of, for example, naïve forecasting, ARIMA,

and other currently used chaotic techniques.

1.4 Thesis organization

Chapter 2 gives a brief overview of chaos theory, chaotic techniques and relevant

optimisation schemes to derive the optimal embedding parameters. It also reviews

Support Vector Machine and its applications in various disciplines.

Chapter 3 demonstrates how SVM in this study is applied to chaotic time series.

It elaborates the proposed SVM approach applied in dynamics reconstruction and in

phase space reconstruction. It also illustrates special schemes of SVM, introduced in

this study, in handling large scale data sets. The proposed schemes require much less

computational time and memory requirement.

Chapter 4 discusses the evolutionary algorithm (EA) used for parameters tuning.

The basic idea of EA is described and the proposed schemes, EC-SVM I and EC-SVM

II, are then demonstrated. Detailed implementations of EC-SVM I and EC-SVM II are

presented.

Chapter 5 shows the applications of the proposed EC-SVM on daily Tryggevæld

catchment runoff time series and Mississippi river flow time series. The prediction

 8

accuracy from the proposed EC-SVM I and EC-SVM II are compared with naive

forecasting, ARIMA, and other currently used chaotic techniques.

Chapter 6 draws conclusions resulting from the current study and gives a number

of recommendations for further research.

 9

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Chaotic systems are not a rare phenomenon. Studies have shown that they exist widely

in science, engineering and finance. In hydraulics, a good example of chaos is

turbulence. Turbulent flow is irregular; however, for each flow particle we can write its

governing equations, namely the Navier-Stokes equations and the mass conservation

equation. Other examples of chaotic fluid motion are the weakly turbulent Couette-

Taylor flow, Rayleigh-Benard convection. Similarly, chaotic phenomena have been

observed in various hydrologic time series.

This chapter first reviews the basic ideas of chaos and chaotic techniques. In

addition, more recent approaches in forecasting chaotic time series are reviewed.

Review of Support Vector Machine (SVM), a relatively new machine learning tool

(Vapnik, 1992; Vapnik et al., 1997), and its applications will follow.

2.2 Chaotic theory and chaotic techniques

2.2.1 Introduction

The precise definition of a chaotic system is shown in this subsection while the

common identification of correlation dimension and embedding theorem are described

in the following subsections.

 10

(1) Definition of Chaos

Chaos refers to the irregular, unpredictable behaviour observed in a dynamic system

that is extremely sensitive to small variations in initial conditions, known as the

butterfly effect (Lorenz, 1963). It is a deterministic system but with complex

behaviour.

A dynamic system is a system which continuously evolves with time and can be

determined by knowledge of its past history. Mathematically, the time evolution of

state variables is expressed as:

)(1 nn XFX =+ (2.1)

There are three major issues in the description of a dynamical system: (1) the phase

space; (2) the dynamical rule; and (3) the initial value. The phase space or state space,

with its coordinates, describes the dynamical state. An orbit (or trajectory) is the path

of a solution in the space. A dynamical rule specifies the immediate future trend of all

state variables, e.g. Eq. (2.1) describes the evolution from Xn to Xn+1. For a given

initial condition the solution of a chaotic system is unique. This is in contrast to the

‘stochastic’ or ‘random’ system where more than one consequence is possible.

The sensitivity of chaotic system to its initial condition can be expressed in the

following way:

For any ε > 0, and for some r > 0, for each X0 in the set S, there is a X′0 such that

ε<− 00 'XX provides rnn >− 'XX after some n steps evolution.

For a fixed distance r, no matter how precise one specifies an initial condition, there

are points nearby this initial state that will be separated by a distance away after n steps.

This means that, as time goes on, any tiny difference will grow rapidly and become

significant.

 11

Another characteristic of chaotic systems is its irregularity and unpredictability.

The irregularity is the intrinsic property of a dynamic system and it is not originated

from outside influences. As a consequence of the long-term unpredictability, time

series generated from chaotic systems may appear to be irregular and disordered.

However, chaos is not completely disordered and is feasible for short-term prediction.

Chaotic time series typically provide a low value dimension even though they

appear quite irregular and have a broad band power spectrum. Usually, the chaos

attractor is fractal. The fractal dimensions characterise the geometric figure of the

attractor. Fractal has come to mean any system that displays the attribute of self-

similarity. No matter how closely you look at a fractal, there is, so to say, no straight

line in it.

The dimension of the attractor is one of the measures to distinguish the chaotic

time series from the stochastic time series. Box counting dimension is one of the ways

for computing the fractal dimensions. If the phase space is covered with small k-

dimension cubes with edge ε, the orbit is visiting each of these cubes in turn. The

fractal dimension can be defined as:

)/1ln(
)(ln

lim
0 ε

ε
ε

MD
→

= (2.2)

where M(ε) : minimum number of such cubes needed to cover the set.

 (2) Identifications

There are three major characterisations of chaotic system: (1) Lyapunov exponents

characterise the stretching properties of the trajectory under the process of evolution

(e.g., Wolf et al., 1985; Eckmann et al., 1986); (2) the fractal dimensions characterise

the geometric figure of the attractor (e.g., Grassberger and Procaccia, 1983a, b;

Termonia and Alexandrowicz, 1983; Theiler, 1987); (3) the Kolmogorov entropy

 12

characterises the complexity of the trajectory structure (e.g., Grassberger and Procaccia,

1983c).

Chaotic systems do not necessarily require the existence of a positive Lyapunov

exponent. A positive Lyapunov exponent is observed for random processes

(Rodriguez-Iturbe et al., 1989; Jayawardena and Lai, 1994).

The correlation dimension (D2) can be easily determined from the experimental

data and is commonly used for identification of the chaotic system. The basic idea was

suggested by Grassberger and Procaccia (1983a, b). For a given data set on the

attractor: z1, z2, …, zn ,

⎥⎦
⎤

⎢⎣
⎡

∑∑ −−=
= =∞→

n

j

n

i
jin

U
n

C
1 1

2)(1lim)(ˆ zzεε (2.3a)

where U(⋅) is unit step function, i.e. U(x) =1, x>0; and U(x)=0, x≤0. Correlation

dimension D2 is then can be calculated as:

⎥
⎦

⎤
⎢
⎣

⎡
=

→ ε
ε

ε ln
)(ˆlnlim

02
CD (2.3b)

(3) Embedding theory

Embedding theory (Takens, 1981; Sauer et al., 1991) provides a theoretic foundation to

chaotic analysis from experimental data. With observation data, it is possible to detect

the evolution of the system and to reconstruct the chaotic attractor on the basis of the

embedding technique.

Theorem 1 (Whitney Embedding Existence Theorem) Let A be a compact smooth

manifold of dimension d in Rk. Almost every smooth map Rk → R2d+1 is an embedding

of A. m > 2d can be regarded as the necessary condition for F(A) not to intersect with

itself.

 13

Theorem 2 (Fractal Whitney Embedding Prevalence Theorem): Let A be a compact

subset of Rk of box counting dimension D0, and n an integer such that n>2D0. For

almost every smooth map F: Rk →R n,

1. F is one-to-one on A

2. F is an immersion on each compact subset C of a smooth manifold contained in A.

The famous Taken’s time delay-embedding theorem is as follows:

Given a delay time τ, a time lag vector y of d dimensions can be defined as:

()ττ)1(,...,, −−−= dtttt yyyy (2.4)

If d is large enough, then the mapping between lag vector (y) and state variable (X) is

smooth and invertible. The study of observation y is also the study of the solutions X

of the underlying dynamic system.

2.2.2 Standard chaotic techniques

A time series is often characterised as chaotic time series, typically with low value

correlation dimension and a broad band spectrum from Fourier transform. Two major

reconstructions are involved, i.e. phase space reconstruction in normal Euclidian space

and dynamics reconstruction. The phase space reconstruction determines the

appropriate time delay and embedding dimension. Several standard chaotic techniques

can be used to select time lag and embedding dimension. The forecasting can be

subsequently carried out by fitting a function relating the lag vectors and the predicted

variables.

 14

(1) Time lag selection

Mees et al. (1987) suggested a time lag at which the autocorrelation function first

crosses zero. Other approaches consider a delay time at which the autocorrelation

function attains a certain value; say 0.1 (Tsonis and Elsner, 1988), or 0.5 (Schuster,

1988). Fraser and Swinney (1986) suggested using average mutual information (AMI)

as a nonlinear correlation function to determine the required time lag. For a set of

measurements, y(n), the mutual information between y(n) and y(n+τ) is defined by:

()∑ ⎥
⎦

⎤
⎢
⎣

⎡
+
+

+=
+)();(

2))(())((
))(),((log)(),()(

τ τ
τ

ττ
nyny nyPnyP

nynyPnynyPI (2.5)

P(y(n)) is an individual probability and P((y(n), y(n+τ)) is a joint probability. It can be

seen that I(τ) is greater than zero. As τ gets significantly large, the chaotic signals y(n)

and y(n+τ) become independent from each other. The joint probability becomes the

product of the individual probabilities as shown in Eq. (2.6a):

() () ();)()()(),(ττ +=+ nyPnyPnynyP (2.6a)

log21 = 0 (2.6b)

Thus, I(τ) tends to go to zero as τ gets large. The τ-value at the first minimum of I(τ)

is commonly suggested to be chosen as the time lag. Abarbanel (1996) proposed a

method to form histogram from the sample data to estimate I(τ).

(2) Embedding dimension selection

According to the embedding theorem of Takens (1981), to characterize a dynamic

system with an attractor dimension d2, a d ≥ 2d2+1 dimensional phase space is

adequate to undo the overlaps. Abarbanel et al. (1990), however, suggested that an

embedding dimension just greater than the attractor dimension is sufficient. Kennel et

 15

al. (1992) developed the False Nearest Neighbour (FNN) method to choose embedding

dimension.

The basic idea is that if the embedding dimension is d, then the neighbour points

in Ρd are also the neighbour points in Ρd+1. If this is not the case these points are then

called false neighbour points. If the number of the false neighbour points is negligible

then this d can be chosen as the embedding dimension.

A lag vector yt in d dimensions has its nearest neighbour point yt
′
. The Euclidean

distance Rd(t) can be used as a measure of the distance between these two points:

[
2

1

2))1(('))1(()(∑ −−−−−=
=

d

n
d ntyntytR ττ] (2.7)

If the dimension increases by one, to d+1 dimension, the lag vector is:

)](),)1((),...,(),([1 τττ dtydtytytyy d
t −−−−=+ (2.8)

The Euclidean distance Rd+1(t) between the points yt and yt´ is:

[]
21

1

2
1))1(('))1(()(∑ −−−−−=

+

=
+

d

n
d ntyntytR ττ

= 22)(')()(ττ ×−−×−+ dtydtytRd (2.9)

Empirically, if the additional distance)(')(ττ ×−−×− dtydty relative to the

Euclidean distance Rd(t)

)(
)(')(

tR
dtydty

d

ττ ×−−×−
 (2.10)

is greater than a threshold value of approximately 15, these two points are false

neighbours. This number of 15 is an experimental value. It may change due to the

nature of the sample data set.

 16

(3) Prediction

The popularly used delay coordinates reconstruction technique reproduces the set of

dynamical states of a system, using the lag vector, from the measured time series.

Prediction is one of the applications of dynamics reconstruction. The lag vector has a

one-to-one mapping to the state variable of the dynamic system and the evolution of

the lag vector follows that of the state variable (Farmer and Sidorowich, 1987). The

evolution of y of can be written as:

y(t+1) = F (y(t)) (2.11)

The local model considers a local function fL for each local region. Usually each region

covers several nearest neighbour points in the data set. This set of fL builds up the

approximation of the F for the whole domain. The first component of the above

equation is what we need for the prediction of y(t+1) :

y(t+1) = F1(y(t)) (2.12)

K number of nearest neighbours of y(t) in the reconstruction space, i.e. points with the

smallest Euclidean space in Rd, denoted as yi′(t), i=1,2,…,k is required. This is

followed by the construction of a local predictor fL1 in the region of these k nearest

neighbours. A linear interpolation is carried out, which results in the following

predictor:

∑ −−+=+
=

d

n
n ntyty

1
0))1(()1(ταα (2.13)

For k = d+1, this is equivalent to a linear interpolation and sufficient to determine the

coefficients α0, α1,…, αd. It is often suggested to use k > d+1 to ensure the stability. It

has been shown that zero-th order and first order interpolation provide a reasonably

 17

good fitting. Higher order polynomials may not provide significantly better results than

polynomial of first order (Farmer and Sidorowich, 1987; Zaldívar et al., 2000).

Many studies on chaos in meteorological and hydrological time series follow the

above standard chaotic techniques. (e.g., Nicolis and Nicolis, 1984; Fraedrich, 1986,

1987; Grassberger, 1986; Essex et al., 1987; Hense, 1987; Tsonis and Elsner, 1988;

Rodriguez-Iturbe et al., 1989; Sharifi et al., 1990; Islam et al., 1993; Jayawardena and

Lai, 1994; Porporato and Ridolfi, 1996, 1997, Sivakumar et al., 1998; Zaldívar et al.,

2000)

2.2.3 Inverse approach

Casdagli (1989) first proposed an inverse approach to construct a robust predictive

model directly from time series data. The study showed the effect of embedding

dimension using brute force search while the other two prediction parameters (time

delay and the number of nearest neighbours) were selected following some

recommendations. The author studied different theoretical time series from low to high

dimensional chaos. Casdagli et al. (1991) conducted a detailed study on state space

reconstruction in the presence of noise for predicting time series. Gibson et al. (1992)

focused on the advantage of using prediction accuracy as a useful criterion for practical

state space reconstruction.

Babovic et al. (2000a) implemented an inverse approach to produce prediction

parameters from a wide range of values of the embedding dimension, the delay time

and the number of nearest neighbours. A Genetic Algorithm (GA) was employed to

search for the optimal values of the embedding parameters (d, τ, k). They divided the

data into two sets, state space reconstruction set and the production set. The values of

the parameter set (d, τ, k) are optimal when the prediction error is minimum. A local

model is used in the study to do a l-lead day prediction. Thus, the set (d, τ, k) which

 18

yields the least l-lead day prediction error is the optimal set. They applied the proposed

approach on water level prediction of Venice Lagoon, Italy. The study shows that the

prediction accuracy, on the production set, is improved by 20% to 35% compared to

that resulting from the standard approach.

Phoon et al. (2002) also searched for the optimal embedding parameters which

yield the highest prediction accuracy. Phoon et al. (2002) dealt also with two other

issues: (1) would the resulting optimal parameter set (d,τ, k) be dependent on the

lengths of both state space reconstruction and calibration sets?; and (2) would the

resulting optimal set (d, τ, k) demonstrate the chaotic behaviour? In their approach,

the time series is divided into three subsets, i.e. state space reconstruction set,

calibration set, and production set. The calibration set is used to check the performance

of the embedding structure parameter set proposed from the state space reconstruction

set. The resulting (d, τ) set is then checked whether the set demonstrates the chaotic

behaviour. A brute force search engine is used in their study. With the range and

incremental step of each of the parameters considered, a total number of 4104

evaluations are required. They applied the approach first on a noise-free Mackey-Glass

time series and then on a daily runoff of Tryggevaelde catchment. Higher prediction

accuracy was achieved by the inverse approach than the standard approach.

Liong et al. (2002) analyzed the same problem as that in Phoon et al. (2002) with,

however, two main differences: (1) a genetic algorithm (GA) search engine is

employed; and (2) a constant and smallest incremental step of 1 is adopted for each of

the parameters considered. The study shows that GA search engine not only yields

higher prediction accuracy but also with a much less number of evaluations. Their

prediction accuracy is higher than that of Phoon et al. (2002).

 19

2.2.4 Approximation techniques

The most conceptually easily accepted approximation algorithm is the polynomial

predictor. It fits Fl using an m-th order polynomial in d dimensions. Thus, it deals with

a polynomial with ()dm+
m ≡(m+d)!/(m!d!) ≅ d m parameters. As the range of m and d

values increase, the number of free parameters gets larger as well. Also when the

training size is large, it causes a storage problem. There is no solid guideline to select

appropriate polynomial order. It is known that polynomials of high orders tend to yield

undesirable oscillation.

K nearest neighbours (KNN) is the most basic instance-based learning method. It

is widely used in chaotic techniques due to its simplicity for the learning algorithm on

large data sets. The main requirement is that the data set must be very dense at every

point and the number of neighbour points at least be d+1 so that the local coefficients

can be estimated as given in Eq. (2.13). For real world data it may be too demanding.

Moreover, a local model is discontinuous from neighbourhood to neighbourhood.

Artificial Neural Networks (ANNs) have shown powerful approximation abilities,

in particular, after the discovery of the back propagation training algorithm in the mid-

1980s. Casdagli (1989) proposed the Artificial Neural Network (ANN) and Radial

basis functions (RBF) to approximate the chaotic system. RBF is another type of

instance learning and global interpolation technique with good localization properties.

The ‘optimal’ structure of ANN and RBF, i.e. number of the hidden layers, number of

hidden neurons, and the centres of the RBFs, has to be determined by the user through

a trial-and-error approach. It should be noted that the resulting ‘optimal’ set may not

be the global optimum.

 20

Support Vector Machine (SVM) is a relatively new learning algorithm (Vapnik,

1992; Vapnik, et al., 1997). Muller et al. (1997) employed SVM for chaotic time series

forecasting. They proposed to use SVM on artificial noise mixed Makey-Glass and

Santa Fe time series prediction. Since SVM obtains its optimal structure itself during

training, it does not suffer from the ‘optimal’ structure selection. SVM improves the

results, obtained from the neural network, by 29% with ε-insensitive loss function. A

satisfactory performance was shown. Mattera and Haykin (1999) employed SVM on

dynamics reconstruction of a chaotic system. They applied SVM on noise-free and

noisy Lorenz time series reconstruction. The results showed the effectiveness of SVM

in performing the nonlinear reconstruction. SVM is largely insensitive to measurement

noise.

2.2.5 Phase space reconstruction

The concept of lag vector is not only used in chaotic time series. On the contrary, the

popularly used ARMA models also use the lag vector; and most of the ANN

applications also use time lag as input layer. Auto-Regressive and Moving Average

(ARMA) is the most traditional technique for time series analysis. It describes the time

series as a linear function of p previous data and q previous white noise process, i.e.

ARMA (p, q):

11101 ... +−−+ ++++= pptpttt axaxaxax qqt tt
bbb −− ++++ ηηη ...110 (2.14)

ARMA expresses the future rainfall/runoff, for example, as a linear function of past

data in hydrological time series analysis. The selections of the proper order of p, q are

mainly based on empirical identification of the ‘cut off’ or ‘dying down’ pattern of

the sample autocorrelation function, and sample partial autocorrelation function

 21

respectively. There are two major questions: (1) The future rainfall/runoff may be not a

linear function of the past data; (2) The dependence on the previous data could be of

other possibilities instead of time lag of 1 only (such as that shown in Eq. (2.14), i.e.

each of the following time lags of 2, 3, 4, etc. could be a possibility.

Recently there have been several nonlinear regression models developed for time

series analysis. Neural network is one of most popular techniques in dealing with the

nonlinear relationship. For runoff forecasting, the input layer mainly contains previous

data of rainfall, temperature, and runoff, for example, of a ‘window size’ d

(Karunanithi et al., 1994; Zealand et al., 1999; Toth et al., 2000; Anctil et al., 2004).

Recently Support Vector Machine (SVM) application for hydrological time series

forecasting also follows the above approach (Babovic et al., 2000b; Dibike et al., 2001;

Liong and Sivapragasam, 2002). Almost all ANN and SVM applications on rainfall or

runoff forecasting fixed their selected time lag at 1 and did not investigate other time

lags. Some studies also fixed the window size d.

In chaotic technique, the future rainfall/runoff is a function of the lag vectors.

The proper lag vector is chosen among various different time lags and embedding

dimensions. i.e.:

),...,()1(1 ττ −−−+ = dtttt xxxfx (2.15)

As it can be seen from Eq. (2.15), that the above description includes the ARMA and

the existing ANN applications. In ARMA, the time lag is fixed at 1 and the embedding

dimension is p; the resulting model is fitted by a linear function. In ANN applications,

the time lag is fixed as 1 and the embedding dimension is the ‘window size’.

Most of the chaotic applications show that the optimal time lag could be other

values besides a time lag of 1. Optimal time lags for rainfall/runoff time series reported

 22

have been 1, 2, 3, 40 (Phoon et al., 2002); and 3, 6, 9 (Doan et al., 2003) for daily

runoff time series.

 The regression ANN model can be viewed as a multivariate embedding

technique. Similarly, proper time lag and embedding dimension should be optimally

determined.

2.2.6 Summary

The discovery of chaos theory and accurate short-term predictions in many seemingly

irregular natural and physical processes has triggered a series of research works in the

field of water resources, especially in hydrology.

The concept of phase space reconstruction is a very valuable contribution to the

time series analysis. The information obtained would render better choice of input

neurons in ANN, for example.

In the AMI method, choosing the time delay τ when I(τ) arrives at its first

minimum is suggested. It should be noted that there is no strong theoretical support to

this prescription. In addition, the proposed time delay gives no guarantee of good

forecasting results. A Similar problem occurs in the false nearest neighbour approach

in determining the embedding dimension d. A threshold value to determine whether

the considered points are false nearest neighbours is empirically derived for some

chaotic systems. It is thus not to be expected that all real time series will follow that

empirically selected threshold value. A change in the threshold value will affect the

embedding dimension, d.

Recently a series of attempts (Casdagli, 1989; Casdagli et al., 1991; Gibson et

al.,1992; Babovic et al., 2000a; Phoon et al., 2002; Liong et al., 2002) using the inverse

approach has been offered. There the objective is to find the optimal (d, τ, k) set which

 23

gives the minimum prediction error. Results showed that their prediction accuracy is,

as expected, much higher than that resulting from the traditional chaotic techniques.

 Local models are widely used in traditional chaotic techniques due to their

simplicity in the learning algorithm for large data sets. This simplicity renders the local

model superior over other existing learning techniques prior to the arrival of SVM. It

is therefore of interest to thoroughly explore the performance of SVM in chaotic time

series and compare its performance with its forerunners.

2.3 Support vector machine (SVM)

Support Vector Machine (SVM) is a relatively new machine learning tool. It is

regarded as one of the most elegant and promising learning techniques developed thus

far. It is an approximate implementation of structural risk minimization which tolerates

generalization on data not encountered during learning. Recently, SVM has attracted

the attention of many researchers. It has been successfully implemented in the

regression problem and its performances are quite encouraging (e.g. Müller et al., 1997;

Liong and Sivapragasam, 2002).

2.3.1 Introduction

The SVM algorithm has been developed over the last three decades. In its present form,

however, SVM was only recently developed at AT&T Bell Laboratories by Vapnik

and co-workers first for classification problems (1992) and later for regression

problems (1997). It is grounded in the framework of statistical learning theory, or VC

theory. SVM has become competitive with the best available learning machine

algorithms shortly after it was developed.

 24

Let’s consider a training data set (xi, yoi), i = 1, 2, …, N where x is the input

vector with dimension n, and yo is the corresponding output with dimension of 1. The

regression model is to estimate f (x):

vfyo +=)(x (2.16)

f(x) is the conditional expectation E[D|x] with D as the random variable and a

realization of yo. v is the adaptive noise term. The estimation of yo is denoted by y. In

SVM, the input space x is transformed to a higher dimension space ϕ(x), Fig. 2.1.

{ϕj(x)} refers to the hidden space or feature space. These nonlinear basis functions

{ϕj(x)} convert the original non-linear complex function f(x) into a linear equation in

the feature space so that y can be linearly described:

∑= =
m
i iiwy 0)(xϕ =wTϕ (x) (2.17)

A small training error does not, however, guarantee that a small error will result

in unseen data. The performance on the unseen data is termed “generalization”.

Structural risk minimization principle (SRM) considers the fundamental issue of how

to control the generalization ability mathematically, Fig. 2.2. According to SRM, the

generalization error is lower than a guaranteed risk defined as:

),()()(hNCIEE trainguarant += ww (2.18)

CI is the confidence interval which is a function of training size and VC dimension h.

VC dimension is a purely combinatorial concept that has no connection with the

geometric dimension and is a measure of the capacity of the learning machine. For

example,

bxwy m
i ii +∑= =1 (2.19)

 25

has a VC dimension of (m+1). The training error decreases as the capacity or h

increases while the confidence interval increases. The method of the structure

minimization is to find the best compromise between the training error and the

confidence interval (i.e. complexity of the approximation function).

2.3.2 Architecture of SVM for regression

A quadratic loss function is popularly used in neural networks, i.e. in multilayer

perceptrons and radial-basis function networks due to its computational convenience.

However, it is quite sensitive to the presence of the outliers. It performs poorly when

the underlying distribution of the additive noise has a long tail. To overcome this

limitation, SVM adopts an ε-insensitive loss function. This would allow the model to

become more robust, i.e. insensitive to small changes.

Figure 2.3 illustrates the dependence of Lε (yo, y) on the error (yo - y). If the

deviation is less than ε, Lε (yo, y) is equal to zero. Only when the deviation is larger

than ε, the error is considered. The model can filter noisy data with respect to an ε-

deviation. The issue then revolves around the following optimal problem:

Minimizing the empirical risk: ∑= =
N
i iioemp yyL

N
R 1),(1

ε (2.21a)

Subject to the inequality : 0
2 c≤w (2.21b)

The constraint in Eq. (2.21b) reflects the complexity degree of the model. The

higher 2w is, the more complex is the model. As always, a less complex model is

preferred. Introducing the following slack varibles, ξi, ξi
′ (Fig. 2.3), defined as:

Lε (yo, y) =
ε−− yyo , for ε≥− yyo

(2.20)
 0 otherwise

 26

if ,ε≥− yyo 0',0 =≥−−= ξεξ yyo (2.22a)

if ,ε−≤− yyo 0,0' =≥−−= ξεξ oyy (2.22b)

the ε-insensitive loss function can then be reformulated as:

−ioy wTϕ (xi) iξε +≤ (2.23a)

wTϕ (xi) ioy− 'iξε +≤ (2.23b)

0≥iξ , 0'≥iξ , i =1, 2,…, N (2.23c)

The constrained optimization problem in Eq. (2.21) can be viewed as a cost

minimization function problem:

() www TN
i iiC

2
1)'()',,(1 +∑ +=Φ = ξξξξ (2.24)

subject to the constrains in Eq. (2.23). The constant C is a user specified parameter.

The Lagrangian function can now be defined as:

∑−+∑ += ==
N
i i

TN
i iiCJ 11 [

2
1)'()',,',,',,(αξξγγααξξ www wTϕ (xi)]iioy ξε ++−

 w−∑− =
N
i ioi y1 ['α Tϕ (xi) (2.25) ∑ +−++ =

N
i iiiii 1)''(]' ξγξγξε

The saddle points of Eq. (2.25) can be obtained by setting differential of J equal to zero:

0=
∂
∂
w
J , 0=

∂
∂

i

J
ξ

, 0
'
=

∂
∂

i

J
ξ

 (2.26)

which in turn will yield:

∑ −= =
N
i ii1)'(ααw ϕ (xi), ii C αγ −= , '' ii C αγ −= (2.27)

Introducing Eq. (2.27) into Eq. (2.25) poses a newly formulated optimization problem:

Maximize:

∑ +−∑ −= ==
N
i ii

N
i iiioyQ 11)'()'()',(ααεαααα

∑ −∑ −− = =
N
i jijj

N
i ii ,K1 1)()'()'(

2
xxαααα1 (2.28a)

 27

Subject to : (2.28b) 0)'(1 =∑ −=
N
i ii αα

 Ci ≤≤α0 , Ci ≤≤ '0 α , i =1, 2,…, N (2.28c)

where K(xi,xj) = ϕ(xi) T ϕ(xj) is the inner-product kernel. The objective is to solve the

dual problem by maximizing the Q(α,α′) as stated in Eq. (2.28). The dual problem is a

quadratic programming which involves maximization of a quadratic function subject to

a linear constraint. After finding the optimal Lagrangian multipliers, the weights are

then determined through Eq. (2.27). Only those data points with αi ≠ αi′ are the support

vectors. The number of the support vectors (N′) is usually much smaller than the

sample size N originally given. The regression function f is:

y = f(x) = wTϕ(x)= (2.29) ∑ −=
N
i iii K(1),)'(xxαα

It should be noted that an inner product kernel function chosen for SVM, K(x, xi), must

satisfy Mercer’s theorem (Mercer, 1908; Courant and Hilbert, 1970).

Mercer’s Theorem: Let K(x, x′) be a continuous symmetric kernel that is defined in

the closed interval a ≤ x ≤ b and a ≤ x′ ≤ b, i.e.

∫= c dK xxxxx)()',()'(φλφ , (2.30)

K(x, x′) can be expanded as a series:

∑= ∞
=1)'()()',(i iiiK xxxx φφλ (2.31)

with positive coefficients, λi > 0. For this expansion to be valid and to converge

absolutely and uniformly, it is necessary and sufficient that K(x, x′) is positive definite,

i.e.:

 (2.32) 0')'()()',(≥∫ ∫ xxxxxx ddffKa
b

a
b

holds for all)(⋅f that . ∫ ∞<xx dfb
a)(2

 28

Mercer’s theorem can only verify whether a proposed kernel is actually an inner-

product kernel. Several kernel functions which satisfy the Mercer’s theorem are

available. They are, for example,

1. Dot product kernel function: K(x, x′) = x Tx′

2. Polynomial kernel function: K(x, x′) = (x Tx′+1)p

3. Gaussian kernel function: ⎟
⎠
⎞

⎜
⎝
⎛ −−= 2

2 '
2

1exp)',(xxxx
σ

K

4. Sigmoid kernel function: tanh(β0 xTx′+β1) only for some values of β0 and β1.

As indicated, sigmoid kernel function is somewhat restricted. In the case of dot

product, the feature space is actually the original variable and it may not be sufficient

for real time series application with nonlinear relationship. The power of the dot

product kernel function is far too limited. Polynomial kernel is more powerful than dot

product kernel. However, polynomials of high degree have undesirable oscillation.

Many studies (Babovic et al., 2000b; Dibike et al., 2001; Liong and Sivapragasm, 2002)

have shown that Gaussian kernel has demonstrated a good performance in hydrology.

This is actually to be expected since the dimension of the feature space of Gaussian

kernel is infinite and it has a powerful feature to approximate nonlinear relationships.

The parameter σ controls the complexity of the model. The smaller the σ value is, the

more powerful the Gaussian kernel is.

As shown in Fig. 2.4, SVM has a very similar structure to that of a radial basis

neural network function. It can be viewed as a one-layer machine. For an input vector

x with n dimensions, there are N′ support vectors for the machine, the structure of the

machine can be represented as in Fig. 2.4.

 29

2.3.3 Superiority of SVM over MLP and RBF Neural Networks

SVM is an elegant and highly principled learning method. Its derivation follows the

principle of structural risk minimization which makes the derivation more profound.

Multilayer Perceptron (MLP) and radial basis function (RBF) networks are probably

the most popular nonlinear estimation techniques. Both MLP networks and RBF

networks have several known major drawbacks such as:

1. The architecture of MLP, i.e. the number of hidden layers and hidden neurons,

has to be determined a priori or modified while training by some heuristic ways.

RBF networks have to choose the number of RBF functions and the centres of

those RBFs. The resulting structures from these heuristic approaches on both

MLP and RBF are not necessarily optimal. SVM can be viewed as one layer

machine. The architecture of SVM does not need to be specified before training.

During training, SVM determines the support vectors itself and those support

vectors act as neurons. Therefore SVM, unlike MLP and RBF, does not suffer the

architecture determination problem.

2. In order to fit the training data from a nonlinear system, the learning machine

must be powerful enough to detect those nonlinear complex relationships.

Therefore the over-fitting problem can not be avoided. ANNs suffer from the

over- fitting problem and the way to overcome the over-fitting problem is rather

limited. An early stopping approach even before obtaining its minimum and

network pruning techniques are some of the indirect ways of controlling the over-

fitting problem. SVM considers both training error and confidence interval

(capacity of the system). The technique implemented in SVM controls these two

items effectively. As a result, SVM possess a good generalization feature (better

performance on unseen data).

 30

3. ANNs can not avoid the risk of getting trapped in local minima while training,

due to its formulation. SVM instead solves a quadratic programming problem,

which has a unique optimal solution.

4. SVM uses the ε-insensitive loss function which filters noise of ε level. This

provides SVM the robustness in dealing with real world noisy mixed time series.

Other techniques do not have this feature.

2.3.4 Issues related to model parameters

Though SVM has various advantages as listed above, the parameter calibration

remains an open issue. The parameters involved and selected by the user are:

1. Parameter C (Eq. (2.24)) controls the trade-off between the training error and the

model complexity. Since SVM maps data into high dimensional feature space, C

is sensitive to the model performance. Only a good choice of C can provide a

good result.

2. Another parameter is ε from the ε-insensitive loss function. ε can be related to

the noise of the training data. However the noise of the real world data is usually

unknown.

3. Another parameter is σ, the width of the Gaussian kernel. It controls the

complexity of the model. The smaller σ is, the more powerful SVM can

approximate. The dimension of the feature space of Gaussian kernel is infinitely

large. The results of SVM are implicitly provided from the feature space by using

the kernel method.

These three major free parameters need to be calibrated before SVM can be utilized to

its fullest. These parameters must be tuned simultaneously. It is a quite difficult

problem for regression and there is, however, no good and efficient method available.

 31

It is reported in SVM applications that tuning these parameters is largely a trial and

error process (e.g. Vapnik et al., 1997; Muller et al., 1997; Dibike et al., 2001; Liong

and Sivapragasam, 2002).

2.3.5 SVM for dynamics reconstruction of chaotic system

Müller et al. (1997) employed SVM for chaotic time series forecasting. The

embedding parameter was found by the method of Liebert et al. (1991). They proposed

to use SVM on artificial noise mixed Mackey-Glass and Santa Fe time series. The

training data were categorized into several segments with each segment containing

shorter records of about 300 patterns. A good performance was shown, better than

MLP and RBF networks. They pointed out that the choice of the parameters (C, ε, σ) is

suboptimal. They did not, however, explicitly indicate the difficulty of SVM in

handling large training samples, which is a typical case for chaotic time series. It

should be noted that there was still no efficient way to solve the quadratic

programming problem of SVM for large data sets when Müller et al. published their

papers in 1997.

Mattera and Haykin (1999) employed SVM on dynamics reconstruction of

chaotic systems. Data used were the Lorenz time series. In their study, some empirical

suggestions in choosing the parameters of SVM were given.

The ε-value shapes the actual loss function and affects the approximation error,

training time, and complexity of the solution. The training time and complexity depend

on the number of support vectors. The number of support vectors is a decreasing

function of ε. Large ε-values can be utilized to reduce the training time and network

complexity. Mattera and Haykin (1999) proposed to choose ε-value when the number

of support vectors is about 50% of the whole training set.

 32

C is proposed to be chosen as about equal to the range of the target variable

(Mattera and Haykin, 1999). From Eq. (2.29), the following can be derived:

∑ −≤ =
'
1),()'(N

i iii Ky xxαα

 '),(),(' '
1

'
1 NCKCK N

i i
N
i iii ×≤∑≤∑ −≤ == xxxxαα (2.33)

where N′ is the number of the support vectors. Denoting B = max | y |, set C ≥ B will

satisfy any case with different number of support vectors. If C is very large compared

to B, this will increase the linear coefficients (α - α′) and may give rise to numerical

instability and cost unpleasantly long training time.

The difficulties in dealing with large chaotic time series were addressed in

Mattera and Haykin (1999) as a ‘formidable’ problem. The QP solver used in the study

was Minos 5.4 which implements quasi-Newton approximation and stores the Hessian

matrix of the size of O(N2) where N is the sample size of the training data. There was,

however, still no efficient scheme to handle large data sets for regression problems at

the time of their investigation in 1999.

2.3.6 Summary

SVM is a newly developed learning machine. It has been shown that SVM may

provide better performance than common neural networks since SVM is based on the

principle of structural risk minimization. During training, SVM finds the support

vectors automatically. It therefore does not suffer from the structure determination

problems. Since SVM has a unique optimal solution, it avoids the risk of getting

trapped in local minima. SVM uses ε-insensitive loss function to filter out noises. This

feature makes SVM more robust on real world’s noisy data.

Besides all the advantages described above, SVM has its own limitations. The

parameters values selection remains an issue. As the training data size gets very large,

 33

quadratic programming is difficult to be solved by common techniques due to the

tremendously large memory requirement and long computational time.

SVM has been employed to the dynamics reconstruction and forecasting; good

performances have been demonstrated. Investigations of SVM applied for phase space

reconstruction have, however, not been explored, partly because chaotic time series

involve a large data set, and partly because SVM is a quite newly developed tool.

2.4 Conclusions

Some fundamental principles relating to Chaos and Chaotic theory were discussed. A

detailed review on standard chaotic techniques and inverse approach for phase space

reconstruction was conducted. It was demonstrated that in practice inverse approach is

superior over the standard techniques. A brief discussion on approximation techniques

involved in SVM is made. A detailed review on support vector machine together with

its advantages and disadvantages was also provided.

This review pointed out the need: (1) to thoroughly explore the performance

capability of SVM in chaotic time series; (2) for SVM to find an efficient scheme to

deal with large data records; and (3) for SVM to find an efficient scheme to calibrate

model parameters. The following chapters present schemes addressing the above issues.

 34

Data x in phase space
ϕ (x) in feature space with d dimensions
with m dimensions, m>>d

Figure 2.1 Illustration of data conversion from reconstructed phase space to feature

space

Figure 2.2 Illustration of structural risk minimization

VC dimension

E
rr

or

Guaranteed risk

Training error

Confidence interval

 f(x)

 y = wTϕ (x)

ϕ (⋅)

 35

y
Lε(yo,y)

ξ

 yo - yϕ(x) -ε 0 ε

 (a) Data and best fit function in feature space (b) Penalty function

Figure 2.3 ε-insensitive loss function

Figure 2.4 Architecture of Support Vector Machine (SVM)

Input
vector

x

x1 K(x,x1)

x2

xn

K(x,x2)

K(x,xN′)

y

Output

 36

CHAPTER 3

SVM FOR PHASE SPACE RECONSTRUCTION

3.1 Introduction

In this chapter SVM, used as an approximation engine, is applied first to reconstruct

the phase space, with the least prediction error as the objective function, and then to do

forecasting.

The analysis of chaotic time series is always associated with large scale data sets

which pose serious difficulties to approximation techniques. This is the main reason

why many studies favoured the local model due to its simplicity, although it is not so

powerful as others. When SVM solves the quadratic programming, the Hessian matrix

of size O(N2) needs to be stored in memory all the time during the training task. As the

training data size N is large, which is a common case for chaotic time series, the

memory requirement is tremendously large and poses serious problem to common PCs.

Hence an effective algorithm, which can deal with large scale data sets, is required in

the analysis of chaotic time series.

In this chapter, the proposed application of SVM in the phase space

reconstruction, and then for prediction, is first described. The implementation of

special algorithms to deal with the inevitably large data set, required in the analysis of

chaotic time series, then follows. This special algorithm is of utmost importance to

make SVM of practical usage.

 37

3.2 Proposed SVM for dynamics reconstruction

After the phase space reconstruction, the prediction problem is solved in normal

Euclidean space. SVM, with its generalization capability, is very powerful to

approximate nonlinear relationships. Using the lag vector as the input variable and the

prediction variable as the target function, SVM can detect, on the basis of statistical

learning, the underlying relationship effectively. In this section, the generalization

capability of SVM will be explored.

3.2.1 Dynamics reconstruction with SVM

Dynamics reconstruction is operated in the reconstructed phase space. For a given time

series, y1, y2, …, yN, with a known time delay (τ), and embedding dimension (d), the

lag vector input and the corresponding l-lead time output can be easily assembled and

used for training, for example. Figure 3.1 shows a simple conversion example with τ =

1, d = 2, and l = 1.

After the embedding structure parameter set (d, τ) is determined by the standard

approach such as AMI, and FNN, or by other techniques, for a given training data set,

y1, y2,…, yN, the input vector yt and the output vector yt+l are set up. The length of the

data set for training is N′ = N - (d -1) × τ - l. The essential task in the prediction is to

fit the relationship between the predicted variable and the lag vector:

),...,,()()1(ττ −−−+ =+= dtttt
d

lt yyyfvfy y (3.1)

A widely used technique is the local model to fit this relationship using the local linear

model as illustrated in Fig. 3.2. The local model finds a number of nearest neighbours

among the training data and the prediction follows the pattern of these evolutions of

the nearest neighbours.

 38

This regression problem is carried out in the reconstructed phase space y. Instead

of using a local model, the following model structure is proposed in this study: (1) the

lag vector is used as the input; (2) a l-lead time prediction is the desired output; and (3)

SVM is used for the regression problem, as given in Eq. (3.1). SVM is able to find a

very good fit for complex nonlinear functions. SVM replaces the K nearest neighbour

prediction engine, a local linear method. Figure 3.3 depicts a schematic diagram of

how SVM is combined with chaos based techniques.

For a given parameter set of embedding structure of a time series, the training

samples, {yi, y(t+1)oi} where i = 1, 2, …, N, provide the lag vector and the

corresponding predicted vector to establish their relationship. Mathematically, the

problem deals with an optimization of the following quadratic programming problem:

Maximize: ∑ +−∑ −= == +
N
i ii

N
i iioltyQ 11)()'()'()',(ααεαααα

i

 ∑ −∑ −− = =
N
j jijj

N
i ii ,K1 1)()'()'(

2
1 yyαααα (3.2a)

Subject to: (3.2b) 0)'(1 =∑ −=
N
i ii αα

 Ci ≤≤α0 , Ci ≤≤ '0 α , i =1, 2,…, N (3.2c)

After finding the optimal Lagrange multipliers, the weights are then determined.

The regression function f now becomes:

∑ −= =+
N
i iiilt K(y 1),)'(yyαα (3.3)

The flowchart of the forecasting task of chaotic system is given in Fig. 3.4.

3.2.2 Calibration of SVM parameters

SVM has several parameters which require calibration prior to its applications. There

are some suggestions available in the literature. However, these suggestions are

 39

empirical and should be used as a guideline only. In this study, these parameters are

calibrated with the least prediction error used as the objective function. The set of

parameters, with which SVM provides best prediction on unseen data set, is chosen as

the optimal set and will be used for the prediction task.

 The data set is divided into three sets: (1) training set; (2) test set; and (3)

validation set. Once the embedding structure parameter set is given, the lag vector can

be constructed for the time series. The training set is used to select the SVM’s support

vectors and to solve the quadratic programming problem in obtaining the Lagrange

coefficients, α and α′. The test set is used to select the optimal SVM parameters with

the least prediction error used as the objective function. The root mean square error is

used as criteria:

'/)))()(('
1

2 NltyltyError N
i ioiptest ∑ +−+= = (3.4)

The validation set is then used to validate the performance of the optimal SVM

parameters determined from the use of training and test data sets.

The kernel used in this study is the Gaussian kernel. It has been reported in

various publications that the Gaussian kernel provides better performance than the dot

product kernel, polynomial kernel, and sigmoid kernel. Since the Gaussian parameter σ

influences the complexity of SVM, a proper selection of σ is of utmost important.

There are three parameters in SVM: C, ε, and σ. The selection of these

parameters has been the focus of many research works. C controls the trade-off

between complexity of the machine and the empirical error. The higher the C value is,

the more emphasis is placed on the empirical error. ε is the parameter in the ε-

insensitive function and depends on the noise level of the original data set. The lower

the ε value is, the lower level the noise is allowed, i.e., the higher the empirical error is.

 40

σ2 is the width of the radial basis function. The lower the σ value is, the more powerful

the Kernel is, i.e., the more complicated the function it can approximate.

Figure 3.5 illustrates the selection procedure of the SVM parameters based on the

prediction accuracy. Once the embedding structure parameter set is proposed, the best

parameter set (C, ε, σ) will be chosen from the minimum test error of the test set.

3.3 Proposed SVM for phase space and dynamics reconstructions

Applying SVM first for phase space reconstruction and then for dynamics

reconstruction is proposed in this study. The embedding structure parameter set is the

corner stone in the phase space reconstruction. Figures 3.3 and 3.5 show how the

choice of the embedding structure parameter set affects the prediction accuracy.

3.3.1 Motivations

Techniques commonly used to select the embedding structure parameters are AMI and

FNN. In AMI, the proposed time lag is chosen when the first minimum of the mutual

information arrives. AMI is related closely with entropy which characterizes the

chaotic system. However, it is a known fact that there is no very strong theoretical

ground in the choice of the exact value of time lag. It has been shown widely that time

lag chosen from the proposed guideline does not necessarily provide good prediction

for real time series. Moreover, for real time series the first minimum of the average

mutual information is not very distinct. Figure 3.6 shows an example of a time series

which displays broad band Fourier transform and low correlation dimension. The

‘first’ minimum of AMI may be taken at time lag of 12. The AMI value decreases

very gradually already at time lag greater than 8 or so and the ‘first’ minimum of AMI

value is really not significantly different from the values nearby. The choice therefore

 41

could be rather wide. Only after a ‘proper’ time lag has been selected, the selection of

a proper embedding dimension with FNN can be conducted.

In the FNN method, the selection of the proper embedding dimension is

completed once the false nearest neighbours have been eliminated. However,

definition of false nearest neighbours is quite ambiguous. There is no strong theoretical

ground to judge whether two points are false nearest neighbour. An empirical threshold

value, 15, is used instead to decide if two points are false nearest neighbours. In

principle, if the additional Euclidean distance with the increasing dimension exceeds

the threshold value 15, then the ‘neighbours’ under consideration are identified as false

nearest neighbours. A change in the threshold value will obviously affect the false

nearest neighbours decision making.

Since the embedding parameters resulting from these commonly used embedding

techniques do not guarantee ‘optimal’ prediction accuracy, the choice for the least

prediction error as the objective function adopted in this study seems to be a

reasonable proposal.

3.3.2 Proposed method

SVM will be used in this study to find the optimal embedding structure and SVM

parameters with which the prediction error is the minimum. Figure 3.7 shows the basic

idea of this novel method.

SVM functions as a regression engine in this study for chaotic time series

analysis. Unlike the algorithm shown in Fig. 3.3, SVM is now used for both the phase

space and dynamics reconstructions as illustrated in Fig. 3.7.

The data set is divided into three sets: (1) training set; (2) test set; and (3)

validation set. A parameter set of embedding structure is first selected. Lag vectors are

then constructed. The training set is used for SVM model to select the support vectors

 42

and to obtain the Lagrange coefficients, α and α′. The test set is used to select the

optimal parameter set of embedding structure and the corresponding SVM model

parameters based on the least performance error. The validation set is finally used to

validate the performance of the optimal parameter set.

There are five parameters to be determined in this approach. They are: the time

delay τ, the embedding dimension d, and the 3 parameters in SVM C, ε, σ. These five

parameters have to be determined simultaneously. Figure 3.8 illustrates the procedures

of the proposed approach.

It should be noted that an efficient technique able to deal with large training data

set is highly essential for the success of this proposed method. Only when SVM

powered with a fast and effective scheme for large data sets can the proposed SVM be

competitive with or more superior over other already widely used techniques for

chaotic time series analysis.

3.4 Handling of large data record with SVM

The dual problem of SVM deals with optimization of a quadratic objective function

expressed in αi, αi′. A linear constraint accompanies the dual problem as given in Eq.

(3.2). The objective function in Eq. (3.2a) is not in the standard form of qudratic

programing and it can be converted to standard qudratic function as: f(x) = 1/2 xTHx +

cTx, where H is the Hessian matrix. With

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

Nα

α
α

...
1

1

α (3.5)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

'

'
2

'
1

...
'

Nα

α
α

α
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

),(...),(),(
............

),(...),(),(
),(...),(),(

21

22212

12111

NNNN

N

N

kkk

kkk
kkk

yyyyyy

yyyyyy
yyyyyy

K

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

oN

o

o

y

y
y

...
2

1

Y

 43

and (3.6) ⎥
⎦

⎤
⎢
⎣

⎡
−

=
'α

α
β ⎥

⎦

⎤
⎢
⎣

⎡
=

KK
KK

K~ ⎥
⎦

⎤
⎢
⎣

⎡
+−
−−

=
ε
ε

1Y
1Y

b

the dual problem, as given in Eq. (3.2), can be converted to the standard quadratic

programming form as follows:

Minimize: bββKββ TTQ −= ~)(2
1 (3.7a)

Subject to: (3.7b) 0=1βT

 Cii ≤≤ βδ0 , i = 1, 2, …, 2N (3.7c)

δi =1 for 1 ≤ i ≤ N and δi = -1 for N+1 ≤ i ≤ 2N. SVM deals with a quadratic

programming with one linear constraint and bound constraints. Even though this type

of optimisation problem is well understood and algorithms are well developed, a

serious obstacle is faced when it deals with a large training data set. The Hessian

matrix, Eq. (3.8), becomes tremendously large with increasing training sample size:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
=

),(...),(),(...),(
..................

),(...),(),(...),(
),(...),(),(...),(

..................
),(...),(),(...),(

~

11

111111

11

111111

NNNNNN

NN

NNNNNN

NN

kkkk

kkkk
kkkk

kkkk

yyyyyyyy

yyyyyyyy
yyyyyyyy

yyyyyyyy

KK
KK

K (3.8)

For instance, a 20 years daily flow time series has about 7,300 records. The

Hessian matrix has the size of square of 2 times the sample size, i.e. 213,160,000. If

each element of the Hessian matrix is stored as an 8-byte double precision number, the

total memory capacity required is 1,705 Megabyte. Common PCs have a RAM of size

256 Megabyte. Since the Hessian matrix is required to be stored, this requirement

poses a serious problem for SVM.

 44

3.4.1 Decomposition method

Most recently a decomposition method was developed to overcome the above

mentioned problem. This allows SVM to deal with large data record problem. For

classification problems, Platt (1999) developed sequential minimal optimisation (SMO)

and Joachims (1999) developed SVMlight. For regression problem, Collobert and

Bengio (2001) successfully implemented the decomposition method in SVMlight. Its

ability to handle large data sets was demonstrated on the regression problems as robot

arm moving as a function of 32 variables like joint position, twist angle etc. with 6192

training examples, yearly average sunspot as a function of 12 previous yearly averages

with 40,000 training samples. In this study, the scheme is introduced to the chaotic

time series analysis.

3.4.1.1 Introduction

The basic idea of the decomposition method is to decompose the quadratic

programming problem into a series of small quadratic programming problem of only 2

selected variables while the remaining variables are fixed. The memory requirement is

then significantly decreased into O(m×N), where m is a small value integer. Since a

quadratic programming with 2 variables can be solved analytically, the whole

algorithm becomes very efficient. The basic algorithm is as follows:

[1] Set an initial value β0 for all β;

[2] Select 2 working variables among 2N variables, e.g. β1, β2, among β;

[3] Solve the quadratic programming having only 2 variables analytically. Q(βk+1)

<Q(βk) is guaranteed;

[4] Check the optimal conditions. If the KKT conditions are met, the optimum has

been achieved; otherwise, go to step [2] and repeat the remaining steps.

 45

The decomposition method splits the variables into a fixed set F and a working set S.

Denoting:

⎥
⎦

⎤
⎢
⎣

⎡
=

F

s
β
β

β ⎥
⎦

⎤
⎢
⎣

⎡
=

FFFS

SFss
KK
KKK ~~
~~

~ (3.9) ⎥
⎦

⎤
⎢
⎣

⎡
=

F

s
b
b

b

βs contains 2 variables, e.g. β1, β2, which are selected as the working variables among

β. The objective function, given in Eq. (3.7a), becomes a minimization problem of:

bββKββ TTQ −= ~
2
1)([] [] ⎥

⎦

⎤
⎢
⎣

⎡
×−⎥

⎦

⎤
⎢
⎣

⎡
×⎥
⎦

⎤
⎢
⎣

⎡
×=

F

T
F

T
S

FFFFS

SFT
F

T
S

ssss
b
b

ββ
β
β

KK
KK

ββ ~~
~~

2
1

[] ()F
T
F

T
S

F
FF

T
FSF

T
SFS

T
F

T
S s

s
ss bβbβ

β
β

KβKβKβKβ +−⎥
⎦

⎤
⎢
⎣

⎡
×++= ~~~~

2
1

() ()F
T
F

T
SFFF

T
FFSF

T
SFS

T
F

T
S sssss bβbββKββKββKββKβ +−+++= ~~~~

2
1

F
T
FFFF

T
FFSF

T
S

T
S ssss bββKββKbββKβ −+−−= ~

2
1)~(~

2
1 (3.10)

Denoting , it is equivalent to the following standard quadratic

programming form:

FSFs βKbh ~−=

Minimize: hββKββ T
S

T
s ssssQ −= ~

2
1)((3.11a)

Subject to: (3.11b) 1β1β T
F

T
S −=

 Cii ≤≤ βδ0 , i = 1, 2, …, 2N (3.11c)

Only and are required to be stored in the memory, i.e. 2 rows, corresponding

to the 2 selected working variables, of the

SFK~ SSK~

K~ matrix, as shown in Fig. 3.9 (b). The rest

rows, , are not required. The memory requirement is decreased from the square of

2 times the sample size, 4N

FFK~

 2, to 4 times the sample size, 4N, as shown in Fig. 3.9.

 46

3.4.1.2 Brief description of technique

The decomposition technique used here adopts 2 working variables and the selection

of the 2 working variables is based on the feasible direction method. The stopping

criteria are the Karush-Khun-Tucker (KKT) conditions.

(1) Two working variables

βs contains only 2 variables: β1, β2. The optimization problem can be expressed as

follows. With

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

β
β

sβ (3.12) ⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211~
kk
kk

ssK 1βT
F−=ζ

Equation (3.11) becomes:

Minimize: [] [] ⎥
⎦

⎤
⎢
⎣

⎡
×−⎥

⎦

⎤
⎢
⎣

⎡
×⎥
⎦

⎤
⎢
⎣

⎡
×=

2

1
21

2

1

2221

1211
212

1
21),(

h
h

kk
kk

Q ββ
β
β

ββββ (3.13a)

Subject to: ζββ =+ 21 (3.13b)

 C≤≤ 2211 ,0 βδβδ (3.13c)

With 12 βζβ −= , the above objective function becomes:

Minimize: 1212212
2

12212112
1

1])[()2()(βζββ hhkkkkkQ −−−++−= (3.14a)

This is a simple quadratic program with one variable as the standard form:

f(x) = 1/2 ax2+bx. (3.14b)

 a = k11-2k12+k22 > 0 always holds for Gaussian kernel. The function has a unique

minimum when β1 = a/b. The solution depends on the bound constraints of β1. If a/b is

within the bound constraints, a/b is the solution. Otherwise, the solution is one of the

 47

boundary points as shown in Fig. 3.10. Once one of the working variable, β1, is solved,

the other working variable, β2, can be easily obtained from β2= ζ- β1.

(2) Selection of 2 working variables

There are a number of choices to select 2 working variables among 2N variables. The

total number of choices is:

)!22(
)!2(

2
1

2
1 2

2 −
=

N
NC N (3.15)

Choosing a good working set is highly essential to ensure a rapid convergence. Thus,

an efficient and effective selection method is the key to the minimization of the

objective function Q(β). The strategy is based on Zoutendijk’s feasible direction

method (FDM) for constrained optimisation problem (Zoutendijk, 1970). Steepest

feasible descent strategy is used to choose a good pair of working variables and

guarantees that the variables selected have the largest potential to minimize the

objective function.

Figure 3.11(a) shows how the optimisation of the decomposition method

progresses. β is varying within the feasible region as β approaches to the optimum. At

an iteration k, for example, βk = (βk
1, βk

2, βk
3, …, βk

2N) and only βk
1 and βk

2 are chosen

as the working variables. Thus, only βk
1 and βk

2 become βk+1
1 and βk+1

2 at the iteration

(k+1) while the rest βk
3, βk

4, …, βk
2N remain unchanged, i.e. βk+1 = (βk+1

1, βk+1
2,

βk
3, …, βk

2N). Denoting d as the difference between βk+1 and βk:

kk ββd −= +1 (3.16)

 48

d has only 2 nonzero components, i.e. d = (d1, d2, 0, …, 0). Since the linear constraint

βT1 = 0 must hold, (βk+1- βk)T1 = 0 is true, i.e. dT1 = 0 or d1 +d2 = 0. When the problem

is projected on β1β2 space, the feasible region is a line of tangent equal to –1 (β1+β2 =

constant, as in Eq. (3.12b)) and there are only 2 possible directions the solution points

can move as illustrated in Fig. 3.11 (b).

To choose a good set of working variables, steepest feasible descent strategy is

employed. The less the dot product of the gradient ∇Q(β) and d is, the closer d is to

the negative gradient; this means that the working variables will reduce further the

objective function Q(β). For instance, direction 2 in Fig. 3.11 (b) will be chosen among

the four possible directions. A good working set can be found by solving:

Minimize: ddβ /)(kQ∇ (3.17)

Since d has only two nonzero components and d1 + d2 = 0, the above problem is

reduced to:

Minimize: 2/)''(
21

kk QQ
ββ

− (3.18)

This translates to a problem finding the minimum (Q′β1 - Q′β2). Therefore, the two

working variables should be as such that one variable (β1) has the smallest first order

derivative Q′β1, among the total 2N variables, while the other variable (β2) has largest

first order derivative Q′β2.

(3) Checking of KKT condition

 Since SVM solves a quadratic programming, there is a unique optimal solution to this

quadratic programming. The Karush-Khun-Tucker (KKT) condition is the necessary

 49

and sufficient condition for the optimal solution. Thus, the KKT condition is used for

checking whether the algorithm has achieved the optimal solution.

For optimization problem stated in Eq. (3.2), KKT condition holds at the optimal

point:

0λλ
1

1
αα =+−⎥

⎦

⎤
⎢
⎣

⎡
−

+ uploweqQ λ)',(' (3.19a)

0)(' =
i

low
i αλ ; (3.19b)

0)()(' =−C
i

up
i αλ (3.19c)

Equations (3.19b) and (3.19c) imply that:

0,0,)(' >=⇒= up
i

low
iC

i
λλα ; (3.20a)

0,0,0)(' >=⇒= low
i

up
ii

λλα ; (3.20b)

0,0)(' ==⇒<< low
i

up
iC

i
λλα (3.20c)

Therefore λeq can be estimated by those , i.e. λC
i
<<)('0 α i

up=λi
low = 0. Noting:

A={i, 0 ≤ αi ≤ C}, B={i, 0 ≤ α′i ≤ C}

Applying λi
up=λi

low =0, as in Eq. (3.20c), to Eq. (3.19a), λeq may then be estimated by:

⎟
⎠
⎞⎜

⎝
⎛ ∑∑ −

∪
=

∈∈
+

Ai
i

Bi
li

eq QQ
BA

)',()',(1ˆ '' ααααλ (3.21)

When λi
up > 0 as in Eq(3.20a), λi

low > 0 as in Eq(3.20b), and λi
up/low = 0 as in Eq.(3.20c),

are verified, i.e.:

δ i βi = C , if (3.22a) endi
equp Qi εδλλ −≥+−=))',('(αα

βi = 0, if (3.22b) endi
eqlow Qi εδλλ −≥+=))',('(αα

0 < δ i βi < C, if endi
eqlowup

i Q εδλλ <+=)',('/ αα (3.22c)

 50

the optimal solution for the quadratic programming of Eq. (3.2) of the dual problem in

SVM is achieved. When εend = 0, the above conditions are as strictly the same as Eq.

(3.20). For numerical calculation, it is hardly to achieve εend = 0. Normally εend = 0.01

is set and setting a higher accuracy level will lead to a considerable longer training

time.

3.4.1.3 Implementation

The decomposition method illustrated here is highly effective and efficient for large

scale training set. Two key strategies employed in the algorithm: 2 working variables

and the steepest feasible direction to select the 2 working variables. The algorithm

converts the problem into a series of quadratic programming problems each having

only two variables and one linear constraint.

Another technique attempts to speed up the training is the shrinking technique.

For α=0, λlow can be estimated; if λlow >0 strictly holds for a long time, then it may be

removed from the problem, as shown in Fig. 3.12. The algorithm converges when

working size is equal to 2 and without shrinking. Shrinking is a heuristic and it will

speed up the algorithm, but no convergence proof is available.

As described above, SVM equipped with a decomposition method could easily

deal with large data record requirement. The software used in this study is SVMTorch

written in C programming and running on Linux platform. There are three remaining

parameters as described before, C, ε, σ, which will be calibrated together with the

embedding structure parameters (τ, d).

3.4.2 Linear ridge regression in approximated feature space

The solid convergence of decomposition method to deal with large data sets has been

demonstrated and proven (Collobert and Bengio, 2000). However, the iterative scheme

 51

employed in the decomposition method may not be efficient and hence yield a slow

convergence. For example, different time series of the same length may have very

different training times.

Most recently, Suykens et al. (2002) demonstrated that dual problem with kernel

trick is suitable for large dimensional input space, while the feature space problem is

more suitable for large data sets. They demonstrated the scheme on the Sinc function, a

benchmark SVM regression problem, with 20,000 examples. In this study, this scheme

is introduced to the chaotic time series analysis to deal with its large data sets problem.

The scheme performs linear ridge regression between the target function and the

features directly. It is known that the Gaussian kernel has infinitive dimension. The

scheme offers a meaningful and effective approach to approximate its appropriate

features. It approximates the eigenfunctions and eigenvalues, according to Mercer’s

theorem, with the use of a set of sample from the input space.

3.4.2.1 Brief description of technique

(1) Eigenfunctions and Eigenvalues approximation

Recently, Williams and Seeger (2000, 2001) pointed out that for learning task there is

a probability density function in input space, p(x), which should be included in the

integral equation in Mercer’s theorem:

∫= xxxxxx dpK)()()',()'(φλφ (3.23)

The eigenfunctions φj are orthonormal with respect to p(x), i.e.,

ijji dp δφφ =∫ xxxx)()()((3.24)

δij = 1 when i = j and δij=0 when i ≠ j. The kernel function used in SVM must be

positive definite, i.e. for all functions f(x) ∈ Λ2, (), ∞<∫ xx df)(2

∞<∫ ∫ ')'()()',(xxxxxx ddffK . (3.25)

 52

 K(x, x′) can be expanded into a uniformly convergent series with eigenvalue λj and

eigenfunction φj. The expansion is as follows:

∑=
=

FN

j
jjjK

1
)'()()',(xxxx φφλ (3.26)

where NF≤∞ is the number of positive eigenvalues. The following relationship holds

between the features and the eigenvalues and eigenfunctions:

)()(xx jjj φλϕ = (3.27)

The approximation of the features, ϕj, can be obtained by approximating the

eigenvalue λj and the eigenfunction φj. Given a random sample {x1, x2, …, xq} from

p(x), the empirical estimation holds for p(x),

qp /1)(≅x (3.28)

Introducing Eq. (3.28) into Eq. (3.24) and the integral in Eq. (3.23) yields:

ij
q
i jiqji dp δφφφφ =∑≅∫ =1

1)()()()()(xxxxxx (3.29a)

∑≅∫
=

q

k
kikq KdpK

1

1)(),()()(),(xxxyyxyx φφ (3.29b)

Equation (3.23) now becomes:

)()(),(1
1

xxxx ii

q

k
kikK

q
φλφ∑ ≅

=
 (3.30)

Introducing the sample xj for x into Eq. (3.30) results in:

)()(),(1
1

jii

q

k
kikjK

q
xxxx φλφ∑ ≅

=
 (3.31)

If λi and φi (xk) can be estimated as node points, φi (x) can then be interpolated as:

 53

∑≅
=

q

k
kik

i
i K

q 1
)(),(1)(xxxx φ

λ
φ (3.32)

The eigenvalues and eigenfunctions can be estimated as related to the eigen

decomposition of the kernel matrix of the sample points. The kernel matrix of these q

sample, K(q), can be written as:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

qqqq

q

q

q

KKK

KKK
KKK

...
............

...

...

21

22221

11211

)(K (3.33)

The eigen decomposition of matrix K(q) is expressed as follows:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

q
qqq

q

q

qqqq

q

q

UUU

UUU
UUU

KKK

KKK
KKK

...
............

...

...

...
............

...

...

21

2
2
2

1
2

1
2

1
1
1

21

22221

11211

or (3.34)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)(

)(
2

)(
1

21

2
2
2

1
2

1
2

1
1
1

...
...

............
...
...

q
q

q

q

q
qqq

q

q

UUU

UUU
UUU

λ

λ
λ

)()()()(qqqq ΛUUK =

where Ui is the eigenvector and λi
(q) is the eigenvalue of matrix K(q). Equation (3.34)

and Eq. (3.31) match with each other. The following approximation is made:

)(1 q
ii q

λλ ≅ (3.35a)

)(
,)(q
ij

i
jji UqUq =≅xφ (3.35b)

 54

In Eq. (3.35b), a term q appears before Uji, due to the need for φi to meet the same

requirement as that in Eq. (3.29a). Introducing Eq. (3.35) in Eq. (3.32) and then in Eq.

(3.27), the estimated feature space can be computed through:

∑=
=

q

k

q
ikkq

i

i UK
1

)(
,)(

),(1)(xxx
λ

ϕ (3.36)

(2) Quadratic Renyi entropy for selection of the subset

The random sample {x1, x2, …, xq} should be a subset of the entire sample. The

memory requirement to store the features of all the training records is N×q×8byte. For

example, for N = 7300 and q = 500, the memory requirement is 29MB. Like any good

sampled points, the chosen q points should be a good representation of the whole

sample points. The selection of these q points from the training data set can be made

based on the quadratic Renyi entropy defined as:

xx dpH R
2)(log ∫−= (3.37)

For Gaussian kernel, can be estimated (Girolami, 2002) by the sample

points {x

xx dp 2)(∫

1, x2,…,xq} as:

∑ ∑=∫
= =

q

i

q

j
jiK

q
dp

1 1
2

2),(1)(xxxx (3.38)

Thus, the quadratic Renyi entropy can be estimated as:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑ ∑−=
= =

q

i

q

j
jiR K

q
H

1 1
2),(1log xx (3.39)

The quadratic Renyi entropy can be used as the criterion to choose a good set of

S={x1, x2, …, xq}, which provides larger entropy, HR. A subset with larger value of

Renyi entropy is more scattered and therefore it represents the whole data set better.

 55

{ } decreases as { } increases as shown in Fig. 3.13(a). A

subset with large value of entropy means that this subset has a relatively low value of

{ }. From Eq. (3.38), this implies that the average of the kernel matrix is

smaller. For instance when q=2, i.e. only two points are selected. Equation (3.38)

becomes:

xx dp 2)(log ∫− xx dp 2)(∫

xx dp 2)(∫

() 121222112 5.05.02
2
1 KKKK +=++ (3.40)

K12 is equal to 0.2 and 0.6 respectively for cases A and B in Fig.3.13 (a). Figure 3.13

(b) shows the corresponding situation of cases A and B. The higher the entropy is, the

larger the distance of the selected points. For situations in which q > 2, the same reason

is applicable as that given for the case when q=2. Selecting the subset with largest

entropy means selecting points that are most scattered and therefore should represent

the whole data set best.

(3) Ridge linear regression

Ridge regression reduces the effective number of parameters. This results in a less

sensitive model and hence a less overfitted model. For a given sample set {xi,yo(i+l)},

where i=1, 2,…, N, the ridge regression, between the forecasting variable yo(i+l) and the

approximated features {ϕj(xi)},where j = 1, 2, …, q, minimizes the following cost

function:

Minimize (3.41) ∑+∑ ∑−= == =+
q
i i

N
j j

q
i iiljo wCwyL 1

2
1

2
1)(')(()(xw ϕ

The solution occurs when their derivatives with respect to wi are equal to zero, i.e.,

0'2))())(((2 1 1)(=+∑ −∑−=
∂
∂

= =+ i
N
j jij

q
i iiljo

i

wCwy
w
L xx ϕϕ (3.42)

∑=+∑ ∑ = += =
N
j jiljoijij

N
j

q
i ii ywCw 1)(1 1)(')())((xxx ϕϕϕ , i=1, 2, …, q (3.43)

 56

Denoting

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)(...)()(
...
...

...

...
...
...

...

...
)(...)()(
)(...)()(

21

22221

11211

NqNN

q

q

xxx

xxx
xxx

H

ϕϕϕ

ϕϕϕ
ϕϕϕ

 (3.44)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

qw

w
w

..
2

1

w

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+

+

+

)(

)2(

)1(

...

...

lNo

lo

lo

y

y
y

y

Equation (3.43) can now be expressed as:

yHwHwH TT C =+ ' (3.45)

with solution as :

yHIHHw TT C 1)'(−+= (3.46)

The inverse may not exist in some matrices. In order to guarantee the scheme to

be stable and reliable, the pseudo-inverse of (HTH+C′I) is used instead of the inverse.

3.4.2.3 Implementation

There are three major steps in SVM equipped with the linear regression in the

approximated feature space, as illustrated in Fig. 3.14 as well,

Step I Select a good data subset, with the largest entropy, from the whole training

set;

Step II Approximate the features by using the eigenvalues and engenfunctions of the

kernel matrix from the selected subset;

Step III Apply ridge linear regression to fit the relationship of the target variable and

the features.

In the selection of a good subset with largest entropy (Step I), the algorithm is as

follows:

(1) Choose an initial working set of q points randomly, and calculate its entropy, HR;

 57

(2) Randomly select a sample x* from the working set and also randomly select a

sample xt* from the whole training set, however, excluding the working set.

Calculate the entropy HR′ of these new q points, with xt* replacing x*. If the entropy

increases, i.e., HR′> HR, replace the working set x* by xt*;

(3) Stop when the difference between HR′ and HR is small after a sufficiently large

number of iterations, e.g. 100 iterations, otherwise repeat step 2.

In approximating the appropriate features (Step II), the required measures are:

(1) Eigen-decomposition of the matrix Kq×q to determine both the eigenvalues and

eigenvectors; and

(2) Features estimation of the whole sample points resulting from Eq. (3.36).

The accuracy of the eigenvalue and eigenvector of matrix Kq×q highly influences the

accuracy of the features estimation and therefore influences the final estimation. To

avoid numerical instabilities of the eigendecomposition, it is a common practice to use

a jitter factor α, e.g. α = 2, which is a small positive constant. Eigen-decomposition is

applied on {Kq×q + αI} instead of on Kq×q directly. The eigenvectors of Kq×q are the

same as that of {Kq×q+αI}. The relationship between eigenvalues of Kq×q, λj , and

eigenvalues of {Kq×q+αI}, λj′, is as follows:

qjj /)'(αλλ −= (3.47)

Those λs with very small value, i.e. λ<1.0 e-10 including zeros, are neglected in

calculating the features with the use of Eq. (3.36) to avoid any numerical instabilities.

In ridge linear regression (Step III), the objective is to obtain the value of the w

by the matrices calculation of the right hand side of Eq. (3.46). The essential part of

this step is to use pseudo-inverse of (HTH+C′I) to avoid instabilities. The pseudo-

 58

inverse, A+, of a matrix A can be obtained by the singular value decomposition of A.

Any real matrix Am×n can be expresses as:

A(m×n) = U(m×m) Σ (m×n)V(n×n)
T

 = [u1, u2, …, um] × diag (σ1, σ2, …, σm) × [v1, v2,…, vn]T (3.48)

where U and V are orthogonal matrices and Σ is a diagonal matrix.

The pseudo-inverse A+ can then be obtained as:

A+ (n×m) = V(n×n) Σ+
(n×m) U(m×m)

T (3.49)

where Σ+ = diag (1/σ1, 1/σ2, …, 1/σr, 0).

There are three parameters of this scheme: (1) σ, the width of the Gaussian kernel;

(2) q, the number of good representative points or the number of dimension of the

approximated features; and (3) C′, ridge regression coefficient. These three parameters

will be calibrated together with the embedding structure parameters (τ, d) with the

minimum prediction error used as the objective function.

The linear regression applied to the target variable and the approximated features

is theoretical based and its algorithm is reliable. The approximation is based on the

eigenvalue and eigenfuntion of the eigenvalue problem of the Mercer’s theorem. The

selection of points for the features approximation is based on the entropy which

suggests most representative points. Linear regression is a very simple and fast

operation. Therefore the computation time of this scheme can be sure to be short for

chaotic time series analysis with large data record.

3.5 Summary and conclusion

In this Chapter, SVM has been proposed to be applied in the phase space and in the

dynamics reconstructions. Applying SVM as a regression engine, the parameters of

 59

embedding structure and SVM are calibrated with minimum prediction error as the

objective function.

Computational difficulty with large data records faced by SVM was discussed.

Effective and efficient techniques to overcome this are called for. Two techniques are

offered. These techniques are separately coupled with SVM to make SVM of practical

value in analysing chaotic time series. One of the techniques is the decomposition

method, which decomposes the quadratic programming problem of a large number of

variables into a series of small quadratic programming problems each with 2 variables

at a time. The other technique is a linear ridge regression carried out directly between

the target variable and the features.

Parameter calibration is required. There are altogether 5 calibration parameters.

Two are from the embedding structure while three are from SVM with the selected

kernel. Like any other models the proposed SVM will perform best when the

parameters are well calibrated. In this study, the calibration is done automatically with

an evolutionary algorithm.

 60

 Original training data Lag vector l-lead time prediction

y1
y2

Figure 3.1 Reconstructed phase space data set with (τ =1, d=2, l=1)

Figure 3.2 Architecture of local model for dynamics reconstruction

Local
Linear
Model

y(t)
y(t-τ)

y(t-d-1)×τ)

y(t+l)

y3
.

y1 = (y1, y2)

.

.
yN

y2 = (y2, y3)
 .
 .
yN ' = (yN-2,yN-1)

y3
y4
.
.
yN

 61

Chaotic time series

Phase space reconstruction:
Target: achieve proper (τ, d)
Techniques:
(a) Standard Approach: AMI (τ), FNN (d)
(b) Inverse Approach: optimal (τ,d) with
 minimum prediction error by using
 local model

Dynamics reconstruction:
Application: forecasting task
Technique:
 K nearest neighbour local linear model

Dynamics reconstruction:
Application: forecasting task
Technique:
 Support vector machine

Figure 3.3 Architecture of SVM for dynamics reconstruction

Input SVM output

Figure 3.4 Diagram of dynamics reconstruction of chaotic time series

lag vector
y

K(y,y1) yt

yt-τ

yt-(d-1)τ

K(y,y2)

K(y,yn)

yt+1

 62

For a given embedding structure
parameter set (d, τ)

Propose a set of (C, ε, σ) value

Figure 3.5 Schematic diagram of proposed SVM parameter set selection

Support
Vector

Machine

y(t)
y(t-τ)

y(t-d-1)×τ)
y(t+l)

Support
Vector

Machine

y(t)
y(t-τ)

y(t-d-1)×τ)
y(t+l)

Optimal (C, ε, σ) yields minimum Errortest

Errortest(C, ε,σ) = ()∑ +−+=
'
1

2 '/)()(N
t oiip Nltylty

Training set: {yi, ypi}, i = 1, 2, …, N
Quadratic programming:

Support vectors

Test set: {yi}, i = 1, 2, …, N′

Obtain l lead foresting results on validation set

 63

0

2

4

6

8

10

12

0 5 10 15 20 25
Time lag

I(T
)

Time lag I(T)
8 1.68008
9 1.60418
10 1.50057
11 1.44219
12 1.33023
13 1.27403
14 1.28134
15 1.2665
16 1.17871
17 1.07548

Figure 3.6 Average mutual information (AMI) and time lag selection

Chaotic time series

Phase space reconstruction:

Figure 3.7 Parameters determination and task performances with differences

techniques: Standard, Inverse, and SVM approaches

Target: determine (τ, d)
Techniques:
(a) Standard Approach: AMI (τ), FNN (d)
(b) Inverse Approach: optimal (τ,d) with
 minimum prediction error by using
 local model

Dynamics reconstruction:
Application: forecasting task
Techniques:
 K nearest neighbour local linear model

Phase space reconstruction:
Target: determine (τ, d)
Techniques:
 Support vector machine with
 minimum prediction error

Dynamics reconstruction:
Application: forecasting task
Techniques:
 Support vector machine

 64

Figure 3.8 Schematic diagram of SVM for phase space and dynamics reconstruction

Support
Vector

Machine

y(t)
y(t-τ)

y(t-d-1)×τ)

Chaotic time series

 Propose a set of (d, τ, C, ε, σ) value

y(t+l)

Optimal (d, τ, C, ε, σ) yields minimum Errortest

Errortest (d, τ, C, ε,σ) = ()∑ +−+=
'
1

2 '/)()(N
t oiip Nltylty

Training set: {yi, ypi}, i = 1, 2, …, N
Quadratic programming:

Support vectors

Test set: {yi}, i = 1, 2, …, N′

y(t) Support
Vector

Machine
y(t-τ)

 y(t+l)
y(t-d-1)×τ)

Obtain l lead foresting results on validation set

 65

 (a) Before: (2N×2N) matrix (b) After: (2×2N) matrix

Figure 3.9 Illustration of memory requirement for quadratic programming before and
after decomposition scheme

A

B
D

E

C

Q(β1)

β1

Figure 3.10 SVM decomposition optimization problem with working set of 2
variables

 66

Feasible region βT1=0
∇Q(βk)

 βk

Figure 3.11 Illustration of decomposition method in SVM quadratic programming

Q(β)

Optimum

βk+1

(a) Progression of decomposition algorithm

β2 β4

(Q′β1, Q′β2)
(Q′β3, Q′β4)

3
1

βk
βk

42

β1 β3

(b) Selection of working variables

 67

Variables
Working variables

Figure 3.12 Illustration of shrinking process (reducing number of variables) in
decomposition algorithm

1st
…

i-th
…
…
…

Iteration No.:

 68

xx dp 2)(∫

x
x

d
p

2)
(

lo
g
∫

− A

B

(a) Renyi entropy function

σ =0.5, q=2

K
er

ne
l f

un
ct

io
n

K
(x

1-
x 2

)

B

A

Absolute distance ||x1-x2||

(b) Kernel function

Figure 3.13 Illustration of quadratic Renyi entropy function and scatter

 69

Step I
Step II

φi

φ1

φ1(xk)

Step III

φq

y

ϕ(x)

Figure 3.14 Schematic diagram of ridge regression in feature space

 70

CHAPTER 4

PARAMETER CALIBRATION WITH EVOLUTIONARY ALGORITHM

4.1 Introduction

The need for an effective and efficient optimization scheme to calibrate the SVM

parameters and the embedding structure parameters was discussed in chapter 3. There

are a total of five parameters to be determined in this approach. They are: the time

delay (τ), the embedding dimension (d), and the three SVM parameters (C, ε, σ) for

the decomposition method and (C′, q, σ) for the ridge regression method.

The range of these five parameters may be as follows: τ from 1 to 20 (with

increment 1), d from 2 to 21 (with increment 1), C′ from 0.1 to10 (with increment 0.1),

q from 20 to 100 (with increment 1), and σ from 0.1 to 0.9 (with increment 0.01).

There are a total of 256×106 (= 20×20×100×80×80) possible combinations. A brute-

force search method is certainly not efficient. Instead, an efficient evolutionary

algorithm is of interest for exploration.

Evolutionary Algorithms have been reported to effectively and efficiently yield the

optimal solution within the search range. The proposed approach, EC-SVM, which

couples SVM with an Evolutionary algorithm applied to Chaos based reconstructed

phase space is described in this chapter. In addition, EC-SVM, as described in Chapter

3, is a SVM equipped with the decomposition method or the linear ridge regression to

deal with large data size.

 71

4.2 Evolutionary algorithms for optimization

4.2.1 Introduction

Evolutionary Algorithms (EAs) are the common term used for algorithms based on

principles of nature (evolution, genetic). Evolutionary Algorithms cover genetic

algorithms, evolution strategies, evolutionary programming and genetic programming.

Different evolutionary algorithms evolved during the last 35 years: genetic algorithms

developed by Holland (1975), evolutionary strategies developed by Rechenberg (1973)

and Schwefel (1981), and evolutionary programming by Fogel, et al. (1966).

Unlike classical optimization techniques, evolutionary algorithm is a population-

based stochastic search and optimization technique. Most classical optimization

methods generate a deterministic sequence of iterative solutions based on the gradient

or high order statistics of the cost function. In EAs, it is not necessary to require

gradient or other auxiliary information; only an objective function or multi objective

functions are required.

Moreover, most of the classical technique often ends up at local optimal solution.

EAs work with a population of points instead of a single point. EAs have been shown

to outperform classical methods and can tackle difficult optimization tasks of the real

world problems where classical techniques are not applicable or fail to provide

satisfactory solutions.

A collection of solutions called current population is updated by replacing part of

the population by offspring. There are various types of genetic representation of

solutions to the problem, binary encoding or real number encoding. The population

evolves into next generation by a series of processes such as selection, reproduction,

and mutation. The fitness function value is a criterion to judge if a solution is a good

individual.

 72

An initial population is first randomly generated. The algorithm evolves through

fitness evaluation, selection, reproduction, mutation, etc. which are likely to create

even better individuals for the next generation. The selection chance of each individual

depends on its fitness. The fitter the individual is, the higher it is to be selected and,

thus, its genes will be passed on to the next generation. If the optimization criteria are

met, the final solution is the best solution among the population. The process is

illustrated in Fig. 4.1.

Selection process is inspired by the role of natural selection in evolution ⎯ an

evolutionary algorithm performs a selection process in which the fittest members of

the population survive, and the least fit members are eliminated. In a constrained

optimization problem, the notion of fitness depends partly on whether a solution is

feasible (i.e. whether it satisfies all of the constraints), and partly on its objective

function value.

The selection process is the step that guides the evolutionary algorithm towards

ever-better solutions. Selection determines which individuals are chosen for mating

(recombination) and how many offspring each selected individual produces. The first

step is fitness assignment, e.g. by proportional fitness assignment. The actual selection

is performed in the next step. Parents are selected according to their fitness values by

means of one of the following algorithms, e.g. roulette-wheel selection, or tournament

selection.

Reproduction is the process to generate offspring from the last generation and is

accomplished through transfer of the genes. There are various types of reproduction

such as crossover for binary code or recombination for real code. The new offspring

created from this process form a part of the population in the next generation.

 73

 In mutation process the genes of one or more members of the current population

are mutated to yield a new population. The new solution may be better or worse than

the population member whose genes are mutated. Its main purpose is to maintain

diversity within the population and inhibit premature convergence. Mutation alone

induces a random walk through the search space.

Since EAs are stochastic in nature in its search for optimal solution, it is difficult

to specify exactly the convergence criteria. A common practice is to stop GA after a

fixed number of generations or if the performances of the best solutions insignificantly

different.

For the parameters calibration problem in this study, the optimal set of (τ, d, C, ε,

σ) or (τ, d, C′, q, σ) is the set which yields the least prediction error when applied on

the test data set. It should be noted that the search values of τ, d, q are integers while

those of C, C′, ε, σ are real numbers.

4.2.2 Shuffled Complex Evolution

The parameter search scheme used in this study is the Shuffled Complex Evolution

(SCE) algorithm. The SCE method was developed at the University of Arizona (Duan

et al., 1992). It is a hybridisation of several salient features of several optimisation

techniques and has been demonstrated in various studies to be a robust and efficient

technique.

4.2.2.1 Description of algorithm

The SCE algorithm is based on the synthesis of four concepts:

(1) Combination of probabilistic and deterministic approaches: using probability to

determine survivability;

 74

(2) Clustering: the shuffling of complexes and sharing of information in each

complex;

(3) Systematic evolution: to ensure global improvement; and

(4) Competitive evolution: to ensure the competitiveness of the fittest.

The SCE optimisation method combines the best features of complex shuffling

and evolution and attempts to locate the global optimum, using the strength of the local

optimisation simplex procedure (Nelder and Mead, 1965) with the idea of a controlled

random search and complex shuffling (Duan et al., 1992).

The method begins with a population of points sampled from the feasible space.

The population can be partitioned into one or more communities. Each community

evolves based on a statistical ‘reproduction’ process that uses the ‘simplex’ geometric

shape to direct the search in the correct direction. At periodic stages in the evolution,

the entire population is shuffled and points are reassigned to communities to ensure

information sharing. As the search progresses, the entire population tends to converge

toward the neighbourhood of the global optimum, provided the initial population size

is large (Duan et al. 1992).

In essence, the SCE algorithm is a search algorithm for the global optimum. It

directs its search in a principled manner as described in detail below.

(1) Generate sample – sample s points in the feasible parameter space and compute the

objective function or criterion value for each point. The samples are generated

randomly within the search range;

(2) Rank points – sort the s points in order of increasing criterion value so that the first

point represents the smallest criterion value and the last point represents the largest

criterion value (the goal is to minimise the criterion value);

 75

(3) Partition into complexes – partition the s points into p complexes, each containing

m points. The complexes are partitioned such that the first complex contains every

p(k–1)+1 ranked point, the second complex contains every p(k–1)+2 ranked point,

and so on, where k = 1, 2, …, m;

(4) Evolve each complex – evolve each complex according to the competitive complex

evolution (CCE) algorithm, which will be elaborated later in this section;

(5) Shuffle complexes – combine the points in the evolved complexes into a single

sample population at a defined stage of the evolution; sort the sample population in

order of increasing criterion value; shuffle (i.e. re-partition) the sample population

into p complexes according to the procedure specified in Step (3);

(6) Check stopping criteria – if any of the stopping criteria are satisfied, stop;

otherwise continue. The search will cease when the stopping criteria is satisfied, it

would continue otherwise;

(7) Check the reduction in the number of complexes – if the minimum number of

complexes required in the population, pmin, is less than p, remove the complex with

the lowest ranked points; set p = p–1 and s = p × m; return to step (4). If pmin = p,

return to step (4).

The initial sampling of the parameter space provides the potential for locating the

global optimum without being biased by the pre-specified starting points. The partition

of the population into several communities facilitates a freer and more extensive

exploration of the feasible space in different directions, thereby allowing the

possibility that the problem has more than one region of attraction. The shuffling of

communities enhances the survivability by sharing of the information (about the search

space) gained independently by each community. The SCE search algorithm is

summarised in Fig. 4.2.

 76

4.2.2.2 Competitive Complex Evolution

The key component of the SCE method is the competitive complex evolution (CCE)

algorithm. This algorithm is based on the Simplex Downhill Search scheme of Nelder

and Mead (1965). Each evolution on the complex generates a new offspring by using

the operations of selection, reflection, contraction and mutation.

Selection is based on the fitness and individuals with high fitness values have

higher probabilities to be chosen. The offspring generated replaces the worst points in

the complex. If the offspring generated by reflection is failed to be better than the

worst individual, then a contraction process is used to generate an offspring. If the

offspring generated fails to perform better than the worst individual, an offspring is

randomly generated.

Figure 4.3 illustrates the basic processes of reflection and contraction in two

dimensions. For minimization problem, G is the worst point, i.e. fG > fM> fS. The

centriod of the points X, excluded the worst point G, can be calculated from:

X= (M+S)/2, (4.1)

For general cases with q points, Ui, i=1, 2, …, q, in the complex and in high dimension,

∑
−

= −
=

1
11

1 q
i iq

UX (4.2)

For the reflection point R, X is the centre point of R and G, i.e. X = (R + G) / 2. R can

be calculated as:

R = 2X - G (4.3)

The contraction point C is the centre point of X and G, i.e.

C = (X + G) / 2 (4.4)

The scheme is as follows:

 77

(1) Construct a sub-complex by randomly selecting q points from the complex

according to a triangular probability distribution. The probability distribution is

specified such that the best point has the highest chance of being chosen to form

the sub-complex, and the worst point has the least chance.

(2) Identify the worst point of the sub-complex and compute the centroid of the sub-

complex without the inclusion of the worst point.

(3) Do a reflection step by reflecting the worst point through the centroid. If the newly

generated point is within the feasible space, go to Step (4); otherwise, go to Step

(5).

(4) If the newly generated point is better than the worst point, replace the worst point

by the new point. Go to Step (7). Otherwise, go to Step (5).

(5) Do a contraction step by computing a point halfway between the centroid and the

worst point. If the contraction point is better than the worst point, replace the worst

point by the contraction point and go to Step (7). Otherwise, go to Step (6).

(6) Randomly generate a point within the feasible space. Replace the worst point by

the randomly generated point.

(7) Repeat Steps (2) – (6) α times, where α ≥ 1 is the number of consecutive offspring

generated by each sub-complex.

(8) Repeat Steps (1) – (7) β times, where β ≥ 1 and β is the number of evolution steps

taken by each complex.

4.2.2.3 Control parameters and stopping criteria

The SCE method contains many probabilistic and deterministic components that are

controlled by some control parameters. The control parameters are:

(1) p, the number of complexes;

 78

(2) m, the number of points in a complex;

(3) q, the number of points in a sub-complex;

(4) pmin, the minimum number of complexes required in the population;

(5) α, the number of consecutive offspring generated by each sub-complex; and

(6) β, the number of evolution steps taken by each complex.

The number of the initial randomly generated sampling points, s, is a product of

the number of complexes and number of points in a complex (= m × p). It was

recommended by Duan et al. (1992) that the chosen m value should be such that m =

2n+1. n is the number of parameters to be optimised. The number of calibration

parameters in this study is 5. The values for the control parameters stemmed from the

recommended values by Duan et al. (1992), are summarised in Table 4.1.

The stopping criteria for the search algorithm are:

(1) The population has converged to pre-specified value of the original parameter

space;

(2) The relative change in the objective function within the last k shuffling loops has

not changed more than a pre-specified percentage; and

(3) The total number of evaluations has exceeded a pre-defined value.

4.3 EC-SVM I: SVM with decomposition algorithm

EC-SVM I is SVM equipped with the decomposition algorithm to solve large data sets

in analysis of chaotic time series. SVM is applied in phase space reconstruction and in

dynamics reconstruction. A quadratic programming problem with large variables is

transformed into a series of quadratic programming problem each with 2 variables only.

The parameters of the embedding structure (τ, d) and the SVM parameters (C, ε, σ) are

 79

calibrated automatically with shuffled complex evolution. The optimal set for these 5

parameters is the set which yields the least prediction error.

4.3.1 Introduction

Much have been described (in chapter 2) about various ways, AMI and FNN for

examples, to derive ‘reasonable’ values for the parameters of the embedding structure

(τ, d). The associated problems with the derived (τ, d) values have also been discussed

in chapter 2. In this section focus is placed on methods/recommendations, suggested

in literatures, to select the SVM parameters (C, ε, σ). Selection of SVM parameters

remains a difficult task and some recommended methods are summarized in the

following:

(1) Since SVM model complexity strongly depends on the number of support vectors,

Schölkopf et al. (1998) suggest to use another control parameter ν (which

represents a fraction of support vectors instead of ε. In this approach, parameter ν

has to be user-defined. Similarly, Mattera and Haykin (1999) proposed to choose

ε-value so that the number of support vectors is around 50% of the number of

samples. Many problems show that optimal generalization performance is

achieved when the number of support vectors is significantly different from 50%.

(2) Smola et al. (1998a) and Kwok (2001) proposed that the optimal ε-value is

asymptotically proportional to the noise variance. The higher the noise variance

is, the higher value ε should be. The pitfall result is that their practical value is

limited only to cases when the noise level is known or can be estimated.

However, noise variance is rather difficult to be satisfactorily estimated in real

data. There us, however, no practical guideline as to how to estimate noise level

satisfactorily for real world time series.

 80

(3) Mattera and Haykin (1999) proposed to choose to select parameter C about equal

to the range of output values. The suggestion is only good to avoid numerical

instability. However, case studies show that when C is significantly larger or

smaller than the range of output data it outperforms the situation when C is set as

the range of the output value.

(4) Use of cross-validation for parameter selection. As illustrated in the Section 4.1,

this is very computation and data-intensive and the scheme is feasible only for a

limited number of values.

(5) Cherkassky and Ma (2004) provided statistical motivated approach to the

selection of C as 3 times the standard variance and ε depends on the record

length and variance. σ is as 0.2-0.5 of the range of the input data. However, the

empirical formula of ε include another empirical coefficient which needs be

assigned. The suggested value is not a set of unique value. Users still need to

adjust the parameters from a certain suggested region which, however, does not

guarantee that the best selection resides in this region.

Even though there are a number of methods proposed by various researchers as

summarized above, the parameter selection still remains a difficult problem unsolved.

None of the above methods is perfect and guarantees a good performance for real

world problems. As it can be seen, these methods are empirical in nature. Moreover,

the choices could not be a single set of parameter and tuning task of selecting the

parameters still remains.

 81

4.3.2 Calibration parameters

SCE is the search engine used in this study to find the optimal parameters representing

the embedding structure and SVM equipped with decomposition method. There are 5

calibration parameters. They are:

(1) τ: time lag;

(2) d: embedding dimension;

(3) C: trade-off between complexity of the machine and the empirical error;

(4) ε: Insensitive zone in the SVM transformation; and

(5) σ: kernel parameter in the Gaussian kernel.

The objective function used is the mean squared error (MSE) of the test data set.

A flow chart of the suggested search scheme is presented in Fig. 4.4.

The search is stopped if any of the following criteria is met. Meeting one of the

criteria implies the convergence of the evolutionary algorithm.

(1) Population is converged into a small zone, e.g. 0.001 of the search space;

(2) Change of objective function value is negligible, e.g. less than 0.001 in the last 5

generations, for example.

In this study the total number of evaluations is set at a very large value, 2000.

This large number of evaluations prevents the search from stopping before one of the

above listed criteria is achieved.

4.3.3 Parameter range

Setting the range of each parameter is quite crucial in the search for optimal set. A

wide range will take the search engine longer time to arrive at the optimal set. A small

range, on the other hand, may risk missing the actual optimal value. Hence, a delicate

balance in the choice of parameter range is required.

 82

The ‘optimal’ value should not reside at the boundary of the parameter range.

Should it, however, be the case, it implies that the real optimal may lie outside of the

earlier defined range. Thus a new study with wider parameter range has to be

conducted.

4.3.3.1 Parameters range of embedding structure

The average mutual information, AMI, is used as a guide for setting the upper limit of

the time lag (τ) range. In this study the range for time lag is set at [1, 20]. It should be

noted that the upper limit is higher than the value resulting from AMI.

The value of the embedding dimension (d) is traditionally suggested by the

following studies:

(1) Takens Theorem (1981): d = 2d2 + 1 where d2 is the correlation dimension;

(2) Aberbanel et al. (1990); d = d2 + 1; and

(3) Kennel et al. (1992) proposed the false nearest neighbour (FNN).

Similarly, the range of embedding dimension may start from 2 to a value reasonably

higher than the value resulting from the above techniques. The range of the embedding

dimension is set at [2, 20] in this study.

4.3.3.2 Parameter range of C in SVM

C yields a good trade off between the empirical error and model complexity. When

Gaussian kernel (whose dimension is infinitely large) is used, C is particularly useful

in balancing the complexity of the model and, at the same time, preventing the over

fitting problem.

It is known that if C is chosen to be a very big value than the range of the output

data, B, the numerical instability will occur as shown in Eq. (2.33) and Section 2.3.5.

As to the decomposition method, a high C value may cause the method oscillation in

 83

the training and hence long computational time particularly when the kernel trick is

employed for the SVM formulization.

Figure 4.5 demonstrates the effect of varying C values (with different other

parameters) on the training time and on the test error. The forecasting variable is

normalized into the range at [0 1]. The training time increases with increasing C value.

The minimum test error, 310.85m3/s, occurs when C=13.69 which is a value not so

close to the upper bound (1) of the target data. Test error also varies with varying C

values as shown in Fig. 4.5.

C is set slightly higher than the B value to avoid possible numerical instability.

As it is shown in Fig. 4.6, the upper bound of training time is about 300 seconds, i.e. 5

minutes, which is much faster to converge than the case shown in Fig. 4.5. The

minimum test error is 323.21m3/s, as shown in Fig. 4.6(b). This test error is higher than

that in Fig. 4.5. Thus, lower C value can provide short training time but the test error

may be higher since fundamentally C does not have any restrictions.

4.3.3.3 Parameter range of ε in SVM

ε parameter is associated with the ε-insensitive loss function. ε value is proportional to

the noise variance. The noise variance of real time series is difficult to be correctly

estimated. ε can start from zero, where the noise level is quite low or clean data, to a

high value where the data is noisy. In this study, the upper bound of ε is set at 10% of

B, the upper bound of the target variable. The range of ε is at [0, 0.1B].

4.3.3.4 Parameter range of σ of Gaussian Kernel

Gaussian kernel function is defined as:

⎟
⎠
⎞

⎜
⎝
⎛ −−= 2

2 '
2

1exp)',(xxxx
σ

K (4.5)

 84

Figure 4.7 displays a graph of Gaussian Kernel for different σ values when ||x-x′||

is at a range [0, 1.2]. If the input data is ranged from [0, 1], ||x-x′|| is range from [0,1].

Figure 4.7 shows the decreasing pattern for varying σ values. It shows that σ ranging

from 0.1 to 0.8 is more favourable than σ outside of this range. K decreases drastically

fast as σ is less than around 0.1; this may lead SVM to over fit the data including the

noise portion. K value, however, decreases very gradually as σ is larger than about 0.8;

this may cause SVM powerless to detect the nonlinear relationship in the data set. In

this study, the range of the Kernel width σ is therefore set at 0.1 - 0.8 of the input data

range. It should be noted that this range is slightly wider than that proposed by

Cherkassky and Ma (2004).

4.3.4 Implementation

In EC-SVM I there are three major modules: (1) SCE evolutionary algorithm written in

FORTRAN; (2) SVM decomposition method (SVM Torch II) for regression problem

of large data sets, written in C language running on Linux system; (3) linking part of

these two modules: SCE and SVM, organized with a Shell scripts file.

Figure 4.8 shows the diagram of the implementation scheme of EC-SVM I. The

whole algorithm of EC-SVM I is running on Linux operation system. The

implementation of EC-SVM I is as follows:

(1) SCE acts as an outside loop and is the main program since it gives instructions to

execute various iterations automatically, for example, about 1000 iterations of

different chromosomes.

(2) For each chromosome, its fitness is calculated. Prior to fitness evaluation there

are several measures to be taken. They are:

(a) Create lag vector and the corresponding l-lead day forecasting vector;

 85

(b) Train SVM with the decomposition method;

(c) Apply the trained SVM to the test data set to compute prediction error;

(d) Convert the prediction error to the fitness function.

(3) From a given chromosome till calculating the fitness function, the task is

organized in a shell scripts file. Shell provides an easier interface to execute

commands. A Shell file is very similar to a DOS .BAT file, except that the shell

scripts have more available functions. The Shell file reads the chromosome that

is generated in SCE, and use this set of parameters (τ, d, ε, C, σ) to solve the

SVM by decomposition method. The trained SVM is then applied on the test data

set to obtain the prediction error which is converted to the fitness value in SCE

algorithm.

(4) Another C-language file is formed to create a data file containing lag vectors and

the corresponding forecast vector. This data file is used for SVM regression.

(5) SCE follows the evolutionary algorithm by creating chromosomes. The

chromosomes evolve based on the fitness function values. After new

chromosomes are generated, SCE sends the command to the shell scripts file

which in turn sends the command to the respective procedures in various C files

and data files.

(6) SCE evolves till the stopping criteria are met. The optimal solution is the one

which yields the least prediction error. The whole algorithm of EC-SVM I is run

on Linux operation system.

Evolutionary algorithm helps to fulfil the search automatically, effectively and

efficiently within the specified range.

 86

4.4 EC-SVM II: SVM with linear ridge regression

Since the decomposition method in EC-SVM I is an iterative algorithm, the training

time may be to long. A ridge regression, applied directly in the kernel feature space is

introduced in Section 3.4.2. Ridge regression requires no iterative scheme to solve the

dual quadratic programming and the problem is solved in its original prime

formulation.

Similar to EC-SMV I, the objective function is the mean squared error (MSE)

resulting from the test data set. A flow chart of the scheme is illustrated in Fig. 4.4.

The main framework of EC-SVM II is basically the same as that described in Section

4.3. The differences are illustrated in the following subsections.

4.4.1 Calibration parameters

There are five parameters required to be calibrated simultaneously for EC-SVM II:

(1) τ: Time lag;

(2) d: Embedding dimension;

(3) σ: kernel parameter for the Gaussian kernel;

(4) q: number of dimension of approximated feature space; and

(5) C′: ridge coefficient in ridge regression.

The first three parameters (τ, d and σ) are the same as that in EC-SVM I; the

same search ranges are also used in EC-SMV II. The remaining two parameters, q and

C′, will be discussed in the following sections.

4.4.1.1 Parameter C′

C′ is a ridge regression coefficient. The formalization of SVM regression

problem shown in Eq. (2.24) stems from the ridge regression problem shown in Eq.

 87

(3.41). It is a means to control the balance between bias and variance, which are two

measures of the effectiveness of the approximated prediction function. Geman et al.

(1992) highlighted the bias and variance issues.

Bias represents the inability of the approximated prediction function to estimate

the exact function. If on the average, the model result differs from to the regression

function, the model is then said to be biased. An unbiased estimator may, however,

still have a large error if the variance is large.

When an estimator has a small bias and is substantially more precise than the

unbiased estimator, it is a more preferred estimator since it has a larger probability of

being close to the true parameter value. As shown in Fig. 4.9, estimator w is unbiased

but imprecise; estimator wb, however, has a small bias but is much more precise. The

probability that wb falls near the true value is much greater than that for w. Thus, wb is

much preferred than w.

A good approximated forecasting function should be accurate and not sensitive.

Deliberately introducing bias is equivalent to restricting the range of the function for

which a model can account. The resulting loss of flexibility makes the model less

sensitive. In ridge regression, its aim is to minimize the cost function as in Eq. (4.5);

this penalises large weights, i.e. to restrict the flexibility. In general, finding the

‘flattest’ linear function translates to the following:

 Minimize (4.6) ∑+∑ ∑−= == =
q
i i

N
j j

q
i iijo wChwyL 1

2
1

2
1 ')(()(xw

The regularisation parameter C′ controls the balance between fitting the data and

avoiding the penalty. Small C′ means that the data can fit tightly without causing a

large penalty. The introduced bias favours solution involving small weights; the effect

 88

is to smooth the output since large weights are usually required to produce a highly

variable output.

Ridge regression is carried out in the approximated feature space with finite

number of dimensions. Any C′ value does not cause the numerical instability problem,

unlike the scheme when kernel trick is used. C′ parameter in ridge regression is much

less sensitive than in the decomposition method; it does not have the instability

restrictions.

 Figure 4.10 demonstrates the effect of varying C′ values on the training time and

test error. Training time is not as significantly influenced by C′ value as that in EC-

SVM I as shown in Figs. 4.5 and 4.6.

4.4.1.2 Parameter q

q is the number of points selected from the training data set to estimate eigenvalues

and eigenfunctions. The number of the dimensions of the approximated features may

be slightly lower than q value; reason being some eigenvalues, very close to zeros, are

eliminated to avoid numerical instability.

The higher the value q is set, the larger are the computational time and the

memory space required. High value of q causes large kernel matrix and high feature

dimensions. It should be noted that high value of q does not necessarily translate to

better prediction accuracy in the test data set although it results in lower error in

training data set. Test error may increase when q is larger than a certain value; this

happens in over fitting cases.

Training time is highly dependent on the number of the dimensions of the

approximated features. Computational time is one of the factors used to judge the

performance of an algorithm. Another important factor will be the prediction accuracy.

 89

It is quite clear that if the q value is low, it is unlikely that the prediction accuracy can

be satisfactory. As q value is further increased, however, the prediction accuracy

reduces and the resulting computational time increases significantly. Therefore, it is

important to select an appropriate q value which will yield a good model performance.

 Figure 4.11 depicts the above scenarios. Training set error decreases as q

increases till about q=70; the accuracy then decreases gradually when q is further

increased. Test set error also decreases as q increases till about q=70; the error then

increases particularly when q is greater than 100. The training time increases

monotonously as q increases and it increases very rapidly particularly when q is larger

than 100. From the above observations, the search range for q can be varied from 10 to

slightly larger than 100, say 105 or 110.

Figure 4.12 shows an example that q has a range set at [10, 105]. The test error is

sufficiently small and the training time is fast. This shows that the proposed range is

quite reasonable.

4.4.2 Implementation

There are two modules in EC-SVM II: (1) SCE evolutionary algorithm which is

written in FORTRAN; (2) Linear ridge regression in approximated feature space. The

linear ridge regression is a very newly developed algorithm and only exists in

MATLAB code, partly from LS-SVM lab (2002). The basic implementation strategy is

the same as in Section 4.3.4. SCE acts as an outside loop and is the main program. It

gives instructions to execute various iterations automatically about 1000 iterations of

different chromosomes.

However, calling MATLAB application from FORTRAN for 1000 iterations is

not very efficient and, at the same time, difficult for implementation; reasons are:

 90

(1) In principle, MATLAB is good for developing the first stage of computational

algorithm since it contains various packed functions. However, from the

computational speed viewpoint, MATLAB is not as efficient as FORTRAN or C

language, especially for applications containing several loops. It is common to use

models written in C or FORTRAN; and MATLAB for the whole progress

organization. To achieve higher computational performance, algorithms

implemented in C or FORTRAN language are more efficient.

(2) Even though MATLAB has certain compatibilities with C or FORTRAN, these

compatibilities are rather limited. Calling MATLAB from C or FORTRAN is

complicated and not efficient. Since C and FORTRAN are much more fundamental

computer languages, C and FORTRAN applications can be used freely and

efficiently by other applications, or each other. Stand-alone applications, i.e. the

executable files, can be run much easily and efficiently.

(3) MATLAB Compiler can convert some MATLAB applications to stand-alone C

and C++ code. Special cares must be given to MATLAB files writing. Failures in

such conversion are often encountered. Moreover, the C files converted from

MATLAB are not very readable and it is difficult to make changes to suit to the

applications.

(4) MATLAB engine library is a set of routines that make it possible to call MATLAB

from other programs such as C or FORTRAN. There is a library of functions

provided in MATLAB that allows starting and ending with MATLAB process,

sending data to and from MATLAB, and sending commands to be processed in

MATLAB. However, if the algorithm requires calling this piece of MATLAB

application about 1000 times, relying on the engine library is not an efficient way.

Time is spent mainly for this middle process instead of for computation.

 91

Therefore, in this study the linear ridge regression with approximated features is

firstly implemented in C and FORTRAN to suit the EC-SVM II algorithm. SCE,

written in FORTRAN, calls this stand alone executable module. The scheme is shown

in Fig. 4.13. The linear ridge regression should be stable and of high performance since

it will be repeatedly called for about 1000 iterations. Its high quality must therefore be

essential for the whole process.

In this study, there are mainly three steps, as shown in Fig. 4.14, for the

implementation of the linear ridge regression with C or FORTRAN in the

approximated feature space. The steps are:

(1) Select a good subset from the whole training set having the largest entropy. This

is an easy implemented step. The algorithm is relatively simple;

(2) Approximate the feature space by using the eigenvalue and engenfunction of the

kernel matrix from the selected subset. This step contains two procedures:

(a) Eigendecomposion of the matrix Kq×q to obtain its eigenvalue and

eigenvectors; and

(b) Feature estimation of the whole sample points. This can be fulfilled by

using a loop going through all the training points.

(3) Apply ridge linear regression to fit the relationship between the target variable

and the features. The essential part of this step is the pseudo-inverse operation,

which can be calculated through singular value decomposition.

The eigendecomposition and singular value decomposition are the linear algebra

operation. LAPACK, Linear Algebra PACKage, is written in Fortran77 and provides

routines for solving eigenvalue problems, singular value problems, etc. LAPACK is

also one of the FORTRAN libraries of MATLAB. MATLAB contains C code for

linear algebra operations. Since they are packed and separated into several places in

 92

MATLAB, it is not very convenient to abstract a small pack typically for a certain

linear algebra operation as singular decomposition. The source codes for real matrices

with double precision in FORTRAN are directly from LAPACK which is well

implemented and has stable performances.

Thus, the linear regression in approximated feature space scheme implemented in

C or FORTRAN in this study can be guaranteed a stable scheme, and, furthermore,

EC-SVM II developed in this study can be guaranteed to be stable and yield high

performance accuracy for large data sets in chaotic hydrological time series.

4.5 Summary

An evolutionary algorithm, SCE, is proposed to efficiently and systemically calibrate

the parameters involved in a chaos based SVM technique. The SCE algorithm is first

described followed by the implementation of this technique.

The novel approaches EC-SVM I and EC-SVM II are demonstrated in detail in

this Chapter. Detailed implementation is elaborated for both decomposition method

and linear ridge regression to overcome the large data sets problem. The search range

selection of each parameter is demonstrated in detail.

Further, the performance of the proposed EC-SVM I and EC-SVM II will be

demonstrated in two daily runoff time series. The performance will be conducted in

the next chapter.

 93

Figure 4.1 Schematic diagram of Evolutionary Algorithms (EAs)

Initial
population

Optimization
criteria met?

Yes Evaluate objective
function

Best
individual
obtained

No

Selection operation

Reproduction

Mutation

Generate new
population End Start

 94

Start

Input: n = number of dimensions
 p = number of complexes,
 m = number of points in each complex
sample size: s = p × m

Randomly sample s points in solution space
and compute the function value at each point

Sort s points in order of increasing function
value (store them in D).

Partition D into p complexes of m points
i.e., D = {Ak, k = 1, …, p}

Figure 4.2 Search algorithm of Shuffled Complex Evolutions (SCE)

Evolve each complex Ak, k = 1, …, p

Replace Ak, k = 1, …, m into D

Convergence
criteria met?

CCE
algorithm

No

Yes

Stop

 95

M

R (Reflection)

X (Centroid)

Figure 4.3 Basic processes in Competitive Complex Evolution (CCE): reflection and

contraction

Figure 4.4 Proposed algorithm of EC-SVM I

Yes

Parameters from combined approaches:
 Time lag, τ
 Embedding dimension, d
 Width of error pipe, ε
 Trade-off, C
 Standard deviation, σ (Gaussian Kernel)

SCE
Evolutionary

algorithm

Stopping

criteria met?
Prediction
error (RMSE)

Stop

Actual runoff

Run SVM with decomposition method
on training data in phase space
reconstruction

Predicted runoff Application on
test data set

No

Start

C (Contraction) G
(worst point)

S

 96

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Trade-off parameter (C Value)

Tr
ai

ni
ng

 ti
m

e
(s

)

(a) Training time

300

310

320

330

340

350

360

370

380

390

400

0 5 10 15 20
Trade-off parameter (C Value)

Te
st

 e
rr

or
 (m

3/
s)

(b) Test error

 Figure 4.5 Effect of varying C value on training time and test error: EC-SVM I

 97

(a) Training time

0

50

100

150

200

250

300

350

400

450

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Trade-off parameter (C Value)

Tr
ai

ni
ng

 ti
m

e
(s

)

300

310

320

330

340

350

360

370

380

390

400

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Trade-off parameter (C Value)

Te
st

 e
rr

or
 (m

3/
s)

(b) Test error

Figure 4.6 Effect of varying C value close to the output variable range B on training

time and test error: EC-SVM I

 98

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

K
er

ne
l f

un
ct

io
n

K
(x

-x
′)

σ =1.0

σ =0.8

Figure 4.7 Sensitivity of varying Kernel widths σ

Absolute distance ||x-x′||

σ =0.01
σ =0.1

σ =0.5
σ =0.2

 99

Figure 4.8 Operational diagram of EC-SVM I

SCE evolutionary algorithm
FORTRAN:

……..

Create chromosome

 Call shell file

Obtain the fitness function
…..

till optimal solution obtained

Output file (τ,d,ε,C, σ)

SVM with decomposition method
(SVM Torch II, C):

 SVM training

 SVM prediction

 Shell file:

 Create the record (y,yt+1)

 Train SVM Torch II with

training set

 Apply trained SVM Torch II

on test set,

C file:

Create time lag and the
corresponding
prediction for training,
testing, validation data

Linux Operation System

Data flow

Command flow

Inner loop

 100

Random variable w

P
ro

ba
bi

lit
y

w

Figure 4.9 Distinction between unbiased distribution with large variance estimation (w)

and biased distribution with small variance estimation (wb)

w
w
wb

w wb

 101

(a) Training time

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Trade-off parameter (C' value)

Tr
ai

ni
ng

 ti
m

e
(s

)

300

310

320

330

340

350

360

370

0 10 20 30 40 50 60
Trade-off parameter (C' value)

Te
st

 e
rr

or
 (m

3/
s)

(b) Test error

Figure 4.10 Effect of varying C′ value on training time and test error: EC-SVM II

 102

306

308

310

312

314

316

318

320

0 100 200 300 400 500
Number of dimensions (q value)

E
rro

r (
m

3/
s)

Test Error

Training Error

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500
Number of dimensions (q value)

Tr
ai

ni
ng

 ti
m

e
(s

)

(a) Training time

(b) Test error

Figure 4.11 Effect of varying number of dimensions (q) of approximated features on
training time and test and training errors: EC-SVM II

 103

(a) Training time

(b) Test error

300

310

320

330

340

350

360

370

0 20 40 60 80 100 120

Number of dimensions (q value)

Te
st

 e
rr

or
 (m

3/
s)

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Number of dimensions (q value)

Tr
ai

ni
ng

 ti
m

e
(s

)

Figure 4.12 Effect of number of dimensions (q) on training time and test error: EC-
SVM II

 104

Data flow

Figure 4.13 Operational diagram of EC-SVM II

Windows Operation System

SCE evolutionary algorithm Command flow
FORTRAN:

……..

Create chromosome Output file (τ,d, σ,q, C′)

 Call the executable file

Inner loop

Ridge regression:
Stand alone executable C or
FORTRAN

Obtain the fitness function
…..

till the optimal solution obtained

 Linear ridge regression on feature

space

 obtain w using training data set

 Application on test set to obtain

RMSE

 105

Input file (τ, d, σ, q, C)

SVM II C or FORTRAN

 Create the time lag and prediction
records {y,yt+1}

 Select q points based on the entropy

 Eigen
decomposition C Call Eigen decomposition

Figure 4.14 Flow chart of the sub-modules in EC-SVM II

 Approximated features

 Calculate (HTH+C′I)

 Obtain the singular decomposition of

(HTH+C′I)
Singular value
decomposition
FORTRAN

 Pseudo-inverse (HTH+C′I)+

 Calculate the regression coefficients w

Output: fitness function Apply on the testing set

 106

Table 4.1 Recommended SCE control parameters

Parameter Description Range Recommended

pmin No. of minimum required
complexes in the population

pp ≤≤ min1 n**

m No. of points in each complex 2≥m 2n+1*

q No. of points in a sub-complex mq ≤≤2 n+1*

α No. of offsprings generated by
each sub-complex

1≥α 1*

β No. of evolution steps taken by
each complex before shuffling

1≥β 2n+1*

* Recommended by Duan et al., (1992)
** Recommended by Kuzcera (1997)

 107

CHAPTER 5

APPLICATIONS OF EC-SVM APPROACHES

5.1 Introduction

In Chapter 4 the proposed EC-SVM was elaborated in detail. In this chapter, EC-SVM

I and EC-SVM II will be applied to two real time series, the runoff of Tryggevælde

catchment, Denmark, and the Mississippi river flow at Vicksburg, USA. Their

performance, measured in terms of effectiveness and efficiency, are analysed and

discussed.

5.2 Daily runoff time series

Two daily runoff time series are applied in this study: daily runoff time series of

Tryggevælde catchment and the daily Mississippi river flow. The former is

characterized with a small average flow of 1 m3/s while the latter is of totally different

orders of magnitude larger, viz.17,000m3/s.

5.2.1 Tryggevælde catchment runoff

The daily runoff time series of the runoff Tryggevælde catchment covers the period

from January 01, 1975 to December 31, 1993. Tryggevælde catchment is situated in

the eastern part of sea land, north of the village Karise, Denmark. It is a small

catchment with an area of 130km2 (Fig. 5.1). The soils in the catchment are

predominated by clay and a flow is very flashy, a typical runoff time series. The basic

statistics of runoff time series of Tryggevælde catchment are: (1) mean flow = 0.98

m3/s; (2) standard deviation = 1.37 m3/s; (3) maximum flow = 11.07 m3/s; and (4)

minimum flow = 0.014 m3/s.

 108

A sample of the time series is shown in Fig. 5.2 in different time scales. It can be

seen from the figure that there are distinct wet and dry periods in each year. The slow

changes of runoff, low to high or high to low, indicate that the flow is highly correlated.

Time series is divided into three segments. The first, second and third segments

are known as training set, test set, and validation set. Of the total of 19 years from

1975 to 1993, the first 15 years data are used as training set, the next 2 years as test set,

and the last 2 years as validation set. Thus, the daily data from 1975 to 1991 are used

to characterize the system in the standard approach and to optimize the embedding

structure parameter set (τ, d) in EC-SVM approach. 15 years daily time series is

equivalent to about 5500 records.

The Fourier transform shows a very broad band power spectrum while the

correlation dimension shows a low dimension of around 2, as shown in Fig. 5.3. The

time lag used for the correlation dimension calculation is obtained from the AMI

method.

The time lag and embedding dimension resulting from AMI and FNN are shown

in Fig. 5.4. The first minimum of the average mutual information occurs when time lag

is about 12 while the minimum FNN occurs when the dimension is 5. Therefore, the

embedding structure obtained from AMI and FNN is (τ=12, d=5).

5.2.2 Mississippi river flow

Mississippi river is one of the world's greatest river systems. It originates as a tiny

outlet stream from Lake Itasca in northern Minnesota, draining through about 31 states

of U.S.A. and finally reaches the Gulf of Mexico with a length of 3,705 kilometres.

The area of the Mississippi river basin is around 3.2 million square kilometres.

Average amount of water discharged to the Gulf is about 17,000 m3/s. The whole

 109

Mississippi river basin consists of six major sub-basins: Missouri, Upper Mississippi,

Ohio, Tennessee, Arkansas-Red-White and Lower Mississippi.

The spring floodwaters cause very costly flooding. Although billions have been

spent to reduce flood damages, recent floods have cost billions of dollars and

significant loss of life. Further understanding of the river flow behaviours and patterns

is one of the most fundamental issues for the understanding of the complex ecosystem

and protection strategy.

The daily time series under consideration in this study is the Mississippi river

flow measured at Vicksburg, Station No. 07289000 (Hydrologic Region 08 of USGS).

The daily runoff time series is downloaded from the USGS. The station is located close

to the entrance to the sea of Mississippi River, Fig. 5.5.

A sample of the time series is shown in Fig. 5.6 in different time scales. It can be

seen that the flow pattern is smoother than that of Tryggevælde catchment runoff.

The basic statistics of daily Mississippi river flow time series are: (1) mean flow

=18,456 m3/s; (2) standard deviation=9,727m3/s; (3) maximum flow = 52,103 m3/s;

and (4) minimum flow = 3,907 m3/s. The daily runoff time series of the Mississippi

rive flow covers the period from January 01, 1975 to December 31, 1993. The time

series is divided into three segments as well; the first 15 years data are used for

training set, the next 2 years for test set, and the last 2 years for validation set.

The Fourier transform also shows a very broad band power spectrum while the

correlation dimension displays a low dimension of around 6 as shown in Fig. 5.7. The

correlation dimension is slightly higher than that of the Tryggevælde catchment runoff.

The time lag and embedding dimension resulting from AMI and FNN are shown

in Fig. 5.8. The first minimum of average mutual information occurs when time lag is

 110

13 while the minimum FNN occurs when the dimension is 5. Therefore, the

embedding structure obtained from AMI and FNN is (τ=13, d=5).

5.3 Applications of EC-SVM I on daily runoff time series

The proposed EC-SVM first reconstructs the phase space (following Chaos analysis)

and then optimizes both the SVM and embedding structure parameters simultaneously

with an Evolutionary algorithm. There are two techniques, attached to EC-SVM, to

circumvent solving problem with large data record: one with decomposition method

(EC-SVM I) while the other is with linear ridge regression (EC-SVM II). The

applications of EC-VM I are demonstrated first in the following subsection while the

applications of EC-SVM II are demonstrated in Section 5.4.

5.3.1 EC-SVM I on Tryggevælde catchment runoff

The results provided by other techniques will be briefly shown first. Only training and

validation sets are required in these other techniques. Data from 1975 to 1991 serve for

chaotic behaviour detection and phase space reconstruction while data from 1992 to

1993 serve for validation. Using (d =4, τ =12, k =5), the root mean square error

(RMSE) for 1-lead day prediction used on the validation set is 0.647. Root mean

square error (RMSE) is defined as:

NyyRMSE N
i ii /))ˆ(1

2∑ −= = (5.1)

where yi is the observed value and is the predicted value. iŷ

Naive forecasting is a simple and yet often potentially effective time series

forecasting technique particularly for short lead times. The forecast at time (t+1), for

example, is assumed to be equal to the value observed at time t, i.e. yt+1 = yt. Using

naive forecasting, the RMSE for 1-lead day prediction, applied on the same validation

 111

set is 0.577. Thus, naive forecasting performs better than the traditional chaotic

technique.

ARIMA (p, d, q) model is a mixed autoregressive-moving average model of

order (p, q) on the d-th differences of the time series. The RMSE values for 1-lead day

prediction, for validation set, resulting from the first order ARIMA (1,0,1) and

ARIMA (1,1,1) are 0.535 and 0.543 respectively.

Phoon et al. (2002) and Liong et al. (2002) used the inverse approach on the

same data set grouped exactly into three subsets as that done in this study and

discussed in Section 5.2. The optimal (d, τ, k) set resulting from Phoon et al. (2002)

and Liong et al. (2002) are (3,1,10) and (2,1,11) respectively. The RMSE values

resulting from Phoon et al. (2002) and Liong et al. (2002), using their respective

optimal parameters set, for the validation set are 0.540 m3/s and 0.528m3/s,

respectively.

There are a total of 5 parameters in EC-SVM I, (τ, d, ε, σ, C). Once the ranges of

these parameters are selected, EC-SVM I will search for the best choice of

combination within these ranges. The parameter range set follows the suggestion given

in Section 4.3; they are listed in Table 5.1. Since the embedding structure parameters

obtained from AMI and FNN are (τ=13, d=5) as described in Section 5.3, it is

sufficient to set τ at [1, 20] and d at [2, 20]. Data are normalized into [0, 1] range;

runoff data Q under consideration is divided by the maximum runoff value, Qmax. It is

sufficient to set ε at [0, 0.1] and σ at [0.1, 0.9]. There is no limit for C since it is a trade

off between two items, empirical error and model complexity. There are different C

value sets considered in this experiment; one is at [0.2, 1.5] while the other at [0.2,

20.0].

The stopping criteria for the search algorithm are:

 112

(1) The population has converged to a pre-specified value, 0.0001, of the original

parameter space,

(2) The relative change in the objective function within the last 5 shuffling loops has

not changed more than a pre-specified percentage as 0.001 , and

(3) The total number of evaluations has exceeded a pre-defined value 1500.

The first difference of the time series is also considered in this study. The first

difference of the time series is a common technique to obtain a more stationary time

series. It is an attempt to further improve the prediction accuracy. The daily flow

difference, or the first difference, dQ(t), is expressed as:

)()1()(tQtQtdQ −+= (5.2)

The focus is now to predict the dQ(t) value. Similar to the Q time series, the phase

space of dQ time series is first reconstructed followed by a dynamics reconstruction.

The following function serves as the predictor of dQ(t):

),...,,()1(1 ττ −−−+ = dtttt dQdQdQfdQ (5.3)

The prediction, dQ, is first conducted. Its value is then substituted into Q(t+1) = Q(t) +

dQ(t).

The computational time and the prediction accuracy of EC-SVM I on

Tryggevælde catchment runoff are shown in Table 5.2 for both Q and dQ time series.

The results shown are based on the program running on LINUX Pentium II 333MHz.

The optimal parameter set is shown in Table 5.3. The minimum validation RMSE error

is 0.521 m3/s when dQ time series is used and the range of C is set at [0.2 20].

The training time increases as the upper bound of C range increases as shown in

Fig. 5.9. It can be seen that the training time for dQ time series is shorter than that for

Q time series. As the upper bound of C is increased to 50, the training time becomes

 113

very long due to numerical instability. The training time can be longer than one week

for an iteration number of about 1000.

Table 5.4 shows the results from Q and dQ time series, with various techniques,

of Tryggevælde catchment runoff. The result shows that EC-SVM I has a better

performance than other techniques as shown in Table 5.4. EC-SVM I scheme on Q

time series yields 19.3% improvement over the standard chaotic techniques. EC-SVM

I achieves further prediction improvement by the analysis conducted on dQ time series.

EC-SVM I on dQ time series provides the highest prediction accuracy with RMSE

value of 0.521m3/s.

The convergence of EC-SVM I on Tryggevælde catchment runoff is shown in

Fig. 5.10. Figure 5.11 shows the hydrograph comparison between EC-SVM I

simulated (based on dQ time series) and that observed.

5.3.2 EC-SVM I on Mississippi river flow

In this section the daily flow time series of Mississippi river at Vicksburg, Station No.

07289000 (Hydrological Region 08 of USGS), is considered. Similar to the approach

shown in Section 5.3.1, for traditional chaotic technique data are divided into two parts:

(1) 1975 to 1991 for phase space reconstruction; and (2) 1992 to 1993 for forecasting.

With (d = 6, τ =13, k = 7) the resulting RMSE from the forecasting set is 1738.95m3/s.

Liong et al. (2002) also analysed the same set of Mississippi river data and

divided them into training (1975-1989), test (1990 – 1991) and validation (1992- 1993)

sets. Liong et al. (2002) reported a RMSE value of 356.89m3/s, with an optimal

parameter set (d = 2, τ = 1, k = 5), for the validation set (1992 – 1993). Using naive

forecasting, the prediction yields a RMSE of 608.70m3/s.

The computational time and the prediction accuracy of EC-SVM I on daily

Mississippi rive flow are shown in Table 5.5 for both Q and dQ time series. The

 114

resulting optimal parameter sets are shown in Table 5.6. The minimum validation

RMSE error is 302.4 m3/s when dQ time series is used and the range of C is set at [0.2

1.5].

The training time for Mississippi river flow is longer than that for Tryggevælde

catchment runoff time series. The results shown are based on the program running on

LINUX Pentium II 333MHz. Similarly the training time increases as the upper bound

of C range increases as shown in Fig. 5.12. It can be seen that the training time for dQ

time series is less than that for Q time series. The training time increases significantly

as the upper bound of C range increases. The training time increases to 300 hours as C

values’ upper bound increases. The same is observed for dQ time series; however, it is

much less than its counterpart from Q time series.

Table 5.7 shows prediction accuracies resulting from Q and dQ time series, with

various techniques, of Mississippi river flow. EC-SVM I on dQ time series yields the

highest prediction accuracy with RMSE of 302.40m3/s. It can be seen that the EC-

SVM I approach on Q time series yields a significant improvement, 82.3%, over the

standard chaotic approach; 49.4% improvement over Naive approach; 29.2%

improvement over ARIMA (1, 0, 1) model; and 13.7% improvement over inverse

approach with local model. EC-SVM I applied on dQ time series yields a better

prediction performance than that of Q time series.

Figure 5.13 shows the evolutional convergence of EC-SVM I on Mississippi

river flow data. Figure 5.14 shows the hydrograph comparison between EC-SVM I

simulated (with dQ time series analysis) and that observed.

5.3.3 Summary

The proposed EC-SVM I, a forecasting tool with SVM operating in the Chaos inspired

phase space and optimised with an Evolutionary algorithm, has been applied to two

 115

real daily flow time series, runoff of Tryggevælde catchment and Mississippi river

flow. A recently developed decomposition method was seen to be suitable in chaos

time series analysis since the method is able to deal with large data records.

The study shows that the proposed EC-SVM I provides more accurate prediction

than the traditional chaos technique and naive forecasting. For Tryggevælde catchment

runoff, RMSE is decreased from 0.647m3/s to 0.521 m3/s; for Mississippi river flow,

the RMSE is significantly reduced from 1738.95m3/s to 302.40m3/s.

The study further suggests to apply the daily flow differences time series instead

of the flow time series since the computational speed is significantly much faster.

The application shows that the search can find the optimal solution within less

than 1000 iterations. It is very efficient to use the evolutionary algorithm as a search

engine to calibrate the parameters. The training time increases as C increases. As the

upper bound of C ranges to 20, the training time for Mississippi river flow is over 300

hours. The training time for Mississippi river flow time series is longer than that of

Tryggevælde catchment runoff.

5.4 Applications of EC-SVM II on daily runoff time series

The decomposition method is used in EC-SVM I to deal with large scale data sets.

Since it is an iterative algorithm, the computational time can be quite long. To

overcome the uncertainty with long computational simulation time, a linear ridge

regression method is therefore considered and included in EC-SVM II.

The applications of EC-VM II are demonstrated in the following subsection for

runoff of Tryggevaelde catchment and Mississippi river flow. The stopping criteria of

SCE are set as that given in Section 5.3. The range of C′ value in EC-SVM II is

 116

broader than that of C in EC-SVM I. Table 5.8 shows the range of the parameters in

EC-SVM II.

5.4.1 EC-SVM II on Tryggevælde catchment runoff

The computational time and the prediction accuracy of EC-SVM II on Tryggevælde

catchment runoff, on both Pentium II 333MHz and Pentium IV 2.4GHz, are shown in

Table 5.9 for both Q and dQ time series. The optimal parameter set is shown in Table

5.10. The minimum validation RMSE error is 0.500m3/s when dQ time series is used.

The difference between the training times of EC-SVM II applied to Q time series

and dQ time series of Tryggevælde catchment runoff are not as large as that of EC-

SVM I. EC-SVM II for dQ time series and Q time series is, however, significantly

faster than their counterparts with EC-SVM I. For Q time series, EC-SVM II is 2 times

faster than EC-SVM I with C range set at [0.2 1.5]; and 5 times faster than EC-SVM I

with C range set at [0.2 20.0]. The training time of EC-SVM II for Q time series is

only 5 hours and 25 minutes, for 824 iterations on PII 33MHz; only 1 hour and 24

minutes on P4 2.4GHZ. The training time of EC-SVM II for dQ time series is slightly

longer than that with Q time series since it performs more iterations, 1070 iterations.

Table 5.11 shows the results from Q and dQ time series, with various techniques,

of Tryggevælde catchment runoff. The result shows that EC-SVM II for dQ time series

has better prediction accuracy than other techniques as shown in Table 5.11. The

prediction accuracy of EC-SVM II is better than that of EC-SVM I.

EC-SVM II scheme on Q time series yields 22.6% improvement over the

standard chaotic techniques applied on Q time series. EC-SVM II achieves a slightly

higher improvement when it is applied on dQ time series. EC-SVM II on dQ time

series provides the highest prediction accuracy with RMSE value of 0.500m3/s. Figure

 117

5.15 shows the scatter plot of EC-SVM II on dQ time series analysis of Tryggevælde

catchment runoff.

5.4.2 EC-SVM II on Mississippi river flow

The computational time and the prediction accuracy of EC-SVM II on Mississippi

river flow, both on Pentium II 333MHz and Pentium IV 2.4GHz, are shown in Table

5.12 for both Q and dQ time series. The optimal parameter set is shown in Table 5.13.

The minimum validation RMSE error is 300.71m3/s when dQ time series is applied.

The difference between the training times of EC-SVM II applied to Q time series

and dQ time series of Mississippi river flow, is not as large as that of EC-SVM I. EC-

SVM II for dQ time series and Q time series are significantly faster than those of EC-

SVM I. For Q time series, EC-SVM II is 3 times faster than EC-SVM I with C range

set at [0.2 1.5], and 35 times faster than EC-SVM I with C range set at [0.2 20.0]. The

training time of EC-SVM II with Q time series is 8 hours and 40 minutes for 1214

iterations, on PII 333 Mhz; only 2 hours 14 minutes on P4 2.4 GHz PCs. The training

time of EC-SVM II on Mississippi river flow with dQ time series is shorter than that

with Q time series; dQ time series requires only 762 iterations.

Table 5.14 shows prediction accuracies resulting from both Q and dQ time series,

with various techniques, of Mississippi river flow. EC-SVM II on dQ time series yields

the highest prediction accuracy with RMSE of 300.71m3/s. It can be seen that the EC-

SVM II approach on Q time series yields a significant improvement, 81.6%, over the

standard chaotic approach; 47.3% improvement over Naive approach; 26.3%

improvement over ARIMA (1, 0, 1) model; and 10.2% improvement over inverse

approach with local model. EC-SVM II applied on dQ time series yields a better

prediction performance than that of Q time series. Figure 5.16 shows the scatter plot of

dQ time series analysis with EC-SVM II.

 118

5.5 Comparison between EC-SVM I and EC-SVM II

The EC-SVM novel approaches proposed in this study have shown a better, in some

cases significantly better, performance over other techniques, such as standard chaotic

techniques using AMI, FNN and KNN method, Naïve forecasting, ARIMA model, or

inverse approach with KNN method.

In the following subsections, comparison between EC-SVM I and EC-SVM II in

detail is conducted.

5.5.1 Accuracy

The prediction accuracies of EC-SVM I and EC-SVM II with either Q or dQ time

series of Tryggevælde catchment runoff and Mississippi river flow are shown in Table

5.15. The prediction accuracy of EC-SVM I listed in Table 5.15 is the higher one

among C range set at [0.2 1.5] and at [0.2 20]. Figure 5.17 shows results from both Q

and dQ time series.

EC-SVM II provides better prediction accuracy on Tryggevælde catchment

runoff for both Q and dQ time series; however, its performance for the Mississippi

river flow is better than EC-SVM I only for the dQ time series. The study shows that

analysis with EC-SVM II on dQ time series yields the highest prediction accuracy.

5.5.2 Computational time

The computational times required by EC-SVM I and EC-SVM II, when they are

applied to Tryggevælde catchment runoff and Mississippi river flow, are listed in

Table 5.16. The EC-SVM I results listed in Table 5.16 is with C range set at [0.2 1.5],

faster than that of C range set as [0.2 20]. Figure 5.18 illustrated them for both Q and

dQ time series.

 119

The computational time of EC-SVM II on all cases is shorter than that of EC-

SVM I. EC-SVM II is around 2 times faster than that of EC-SVM I with Q time series

of Tryggevælde catchment runoff and dQ time series of Mississippi river flow; 7%

faster with dQ time series of Tryggevælde catchment runoff; and about 3 times faster

with Q time series of Mississippi river flow.

5.5.3 Overall performances

Figure 5.19(a) shows detailed results of prediction accuracy, RMSE, on the validation

data set and training time of EC-SVM I, with C range set at [0.2 1.5], for dQ time

series of Tryggevæld catchment runoff. Similarly, Fig. 5.19(b) shows that of EC-SVM

II. Results from EC-SVM I are more scattered that those of EC-SVM II. The training

time and the prediction accuracy of EC-SVM I vary more than their counterparts in

EC-SVM II. The training times of EC-SVM I for different iterations vary from about 0

to 140 seconds while EC-SVM II from about 0 to 60 seconds. The prediction accuracy

varies from 0.5 to 0.75m3/s for EC-SVM I and from 0.49 to 0.58m3/s for EC-SVM II.

Figure 5.20(a) shows detailed results of prediction accuracy and training time for

the validation data set of EC-SVM I, with C range at [0.2 1.5], applied to dQ time

series of Mississippi river flow. Figure 5.20(b) shows results from EC-SVM II.

Results from EC-SVM I are more scattered that those of EC-SVM II. The training

times for various iterations vary from about 0 to 500 seconds for EC-SVM I while EC-

SVM II from about 0 to 60 seconds. The prediction accuracy varies from 300 to 490

m3/s for EC-SVM I while its counterpart, EC-SVM II from 297 to 340 m3/s. Better

performance of EC-SVM II is clearly demonstrated for Mississippi river flow when dQ

time series is used.

 120

5.6 Summary

The applications of the proposed EC-SVM I and EC-SVM II on Tryggevæld

catchment runoff time series and Mississippi river flow time series are demonstrated in

this chapter.

High prediction accuracies are obtained from the proposed EC-SVM I and EC-

SVM II methods for both data sets. The novel approaches provide better prediction

accuracy than traditional chaotic techniques, e.g. Naïve forecasting, ARIMA or inverse

approach with KNN method. The proposed approach applies SVM on data in the phase

space reconstruction and couples SVM with an evolutionary algorithm to calibrate

both the embedding structure parameters and the SVM parameters.

Between the two schemes, EC-SVM I and EC-SVM II, the performance of the

latter is more effective (higher accuracy degree) and more efficient (shorter

computational time). Regarding the data set, it is suggested to consider its first

difference, dQ time series, instead of the original Q time series.

 121

Karise

Source: www.krak.dk

Figure 5.1 Location of Tryggevælde catchment, Denmark

 122

(a) Daily scale

(b) Monthly scale

(c) Yearly scale

0.00

2.00

4.00

6.00

8.00

12/30 1/9 1/19 1/29 2/8 2/18 2/28 3/10

R
un

of
f (

m
3/

s)

0.00

2.00

4.00

6.00

8.00

J F M A M J J A S O N D J

R
un

of
f (

m
3/

s)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

R
un

of
f (

m
3/

s)

Figure 5.2 Daily runoff time series of Tryggevælde catchment plotted in different time
scales

 123

(a) Fourier transform

-1

0

1

2

3

0 500 1000 1500 2000
Frequency

Lo
g1

0[
P

(f)
]

0

2

4

6

8

10

-2 -1.5 -1 -0.5 0
logr

sl
op

e

(b) Correlation dimension

Figure 5.3 Fourier transform and correlation dimension of daily Tryggevælde
catchment runoff time series

 124

(a) Average Mutual Information

0

2

4

6

8

10

12

0 5 10 15 20 25
Time lag

I(T
)

0

5

10

15

20

1 3 5 7 9 11 13 15
Dimension

FN
N

%

(b) False Nearest Neighbours

Figure 5.4 Determination of time lag and embedding dimension: Tryggevælde
catchment runoff time series

 125

a

Vicksburg station
Source: EPA

 Figure 5.5 Location of Mississippi river, U.S.A. and runoff gauging station

 126

(a) Daily scale

(b) Monthly scale

(c) Yearly scale

0

10,000

20,000

30,000

40,000

1/1 1/11 1/21 1/31 2/10 2/20 3/2 3/12

R
un

of
f (

m
3/

s)

0

10,000

20,000

30,000

40,000

50,000

60,000

J F M A M J J A S O N D

R
un

of
f (

m
3/

s)

0

10,000

20,000

30,000

40,000

50,000

60,000

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

R
un

of
f (

m
3/

s)

Figure 5.6 Daily time series of Mississippi river flow plotted in different time scales

 127

-3

-2

-1

0

1

2

3

0 500 1000 1500 2000

Frequency

Lo
g1

0[
H

]

 (a) Fourier transform

0

2

4

6

8

10

12

14

-2 -1.5 -1 -0.5 0
logr

sl
op

e

(b) Correlation dimension

Figure 5.7 Fourier transform and correlation dimension of daily Mississippi river flow
time series

 128

(a) Average Mutual Information

0

2

4

6

8

10

12

0 5 10 15 20 25
Time lag

I(T
)

0

5

10

15

20

1 3 5 7 9 11 13 15
Dimension

FN
N

%

(b) False Nearest Neighbours

Figure 5.8 Determination of time lag and embedding dimension: Mississippi river time
series

 129

0:00

4:48

9:36

14:24

19:12

24:00

28:48

C: 0.2-1.5 C: 0.2-20

Tr
ai

ni
ng

 ti
m

e
(h

h:
m

m
)

Q

dQ

0

200

400

600

800

1000

C: 0.2-1.5 C: 0.2-20

N
um

be
r o

f i
te

ra
tio

ns
Q

dQ

(a) Number of iterations (b) Training time

Figure 5.9 Effect of C-range on number of iterations and training time: Tryggevælde

catchment runoff time series

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500 600 700
Iterations

R
M

S
E

 (m
3/

s)

Validation

Test

Training

Figure 5.10 Computational convergence of EC-SVM I: Tryggevælde catchment runoff

 130

0

2

4

6

8

10

0 100 200 300 400 500 600 700
Time (days)

D
is

ch
ar

ge
 (m

3/
s)

EC-SVM I dQ

Observation

Figure 5.11 Comparison between observed and predicted hydrographs using dQ time

series in training: validation set of Tryggevælde catchment runoff

0:00

48:00

96:00

144:00

192:00

240:00

288:00

336:00

C: 0.2-1.5 C: 0.2-20

Tr
ai

ni
ng

 ti
m

e
(h

h:
m

m
)

Q

dQ

0

200

400

600

800

1000

1200

1400

C: 0.2-1.5 C: 0.2-20

N
um

be
r o

f i
te

ra
tio

ns

Q

dQ

(a) Number of Iterations (b) Training time

Figure 5.12 Effect of C range on number of iterations and training time of EC-SVM I:
Mississippi rive flow

 131

Figure 5.13 Computational convergence of EC-SVM I: Mississippi river flow

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

0 100 200 300 400 500 600 700

Time (days)

D
is

ch
ar

ge
 (m

3/
s)

Observed

EC-SVM I dQ

0

100

200

300

400

500

600

1 101 201 301 401 501 601 701 801
Iterations

R
M

S
E

 (m
3/

s)

Validation

Test

Training

Figure 5.14 Comparison between observed and predicted hydrographs using dQ time

series in training: validation set of Mississippi river flow

 132

0

2

4

6

8

10

12

0 2 4 6 8 10 1
Observed (m3/s)

P
re

di
ct

ed
 E

C
-S

V
M

 II
 (d

Q
) (

m
3/

s)

2

Figure 5.15 Scatter plot of EC-SVM II prediction accuracy using dQ time series:
Tryggevælde catchment runoff

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

0 10,000 20,000 30,000 40,000

Observed (m3/s)

P
re

di
ct

ed
 E

C
-S

V
M

 II
 d

Q
 (m

3/
s)

Figure 5.16 Scatter plot of EC-SVM II prediction accuracy using dQ time series:

Mississippi river flow

 133

(a) Tryggvælde catchmet runoff

(b) Mississippi river flow

0 0.1 0.2 0.3 0.4 0.5 0.6

Tryggevælde Q

Tryggevælde dQ

RMSE (m3/s)

EC-SVM I

EC-SVM II

0 50 100 150 200 250 300 350

Mississippi Q

Mississippi dQ

RMSE (m3/s)

Figure 5.17 Comparison between prediction accuracies resulting from EC-SVM I and
EC-SVM II

 134

(a) Training time

0:00

4:48

9:36

14:24

19:12

24:00

28:48

Tryggevælde Q Tryggevælde dQ Mississippi Q Mississippi dQ

Tr
ai

ni
ng

 ti
m

e
(h

h:
m

m
)

EC-SVM I (PII)

EC-SVM II (PII)

EC-SVM II (PIV)

0

200

400

600

800

1000

1200

1400

Tryggevælde Q Tryggevælde dQ Mississippi Q Mississippi dQ

N
um

be
r o

f i
te

ra
tio

ns

EC-SVM I

EC-SVM II

(b) Number of iterations

Figure 5.18 Comparison between computation time and iterations of EC-SVM I and
EC-SVM II

 135

(a) EC-SVM I

0

20

40

60

80

100

120

140

0.45 0.5 0.55 0.6 0.65 0.7 0.75

RMSE (m3/s)

Tr
ai

ni
ng

 ti
m

e
(s

)

0

20

40

60

80

100

120

140

0.45 0.5 0.55 0.6 0.65 0.7 0.75
RMSE (m3/s)

Tr
ai

ni
ng

 ti
m

e
(s

)

(b) EC-SVM II

Figure 5.19 Prediction accuracy and training time with dQ time series used in training:
Tryggevælde catchment runoff

 136

(a) EC-SVM I

0

100

200

300

400

500

290 340 390 440 490
RMSE (m3/s)

Tr
ai

ni
ng

 ti
m

e
(s

)

0

100

200

300

400

500

290 340 390 440 490
RMSE (m3/s)

Tr
ai

ni
ng

 ti
m

e
(s

)

(b) EC-SVM II

Figure 5.20 Prediction accuracy and training time with dQ time series used in training:
Mississippi river flow

 137

Table 5.1 Range of parameters: EC-SVM I

Parameters Range 1 Range 2

Delay time τ 1-20 1-20

Embedding dimension d 2-20 2-20

ε-insensitive loss function ε 0-0.1 0-0.1

Gaussian kernel width σ 0.1-0.9 0.1-0.9

Regularisation parameter C 0.2-20.0 0.2-1.5

Table 5.2 Training time and test error of EC-SVM I: Tryggevælde catchment runoff

RMSE (m3/s)
C-range

Time
series
used

No. of
Iterations

Total time
(PII) Training

set
Test
set

Validation
set

Q 652 11h30m 0.500 0.587 0.522
[0.2 - 1.5] dQ 649 6h53m 0.481 0.584 0.524

Q 825 24h55m 0.500 0.587 0.522
[0.2-20.0] dQ 916 16h55m 0.497 0.595 0.521

Table 5.3 Optimal parameter set of EC-SVM I: Tryggevælde catchment runoff

Parameters
C-range

Time
series
used τ d C ε σ

Time(s)

PII

Q 1 3 1.003 0.003 0.62 104
[0.2 - 1.5] dQ 1 6 0.370 0 0.38 62

Q 1 3 2.170 0.011 0.80 37
[0.2-20.0] dQ 1 5 5.540 0.016 0.55 48

 138

Table 5.4 Prediction accuracy resulting from various techniques: Tryggevælde
catchment runoff

Time
series
used

Approach RMSE
(m3/s) NRMSE (d,τ)

Standard chaos technique 0.647 0.444 (4,12)

Naive 0.577 0.396 /

ARIMA(1,0,1) 0.535 0.367 /

Inverse approach * 0.527 0.361 (2,1)

Q

EC-SVM I 0.522 0.358 (3,1)

Standard chaos technique 0.598 0.41 (4,8)

ARIMA(1,1,1) 0.543 0.373 /

dQ

 EC-SVM I 0.521 0.357 (5,1)
* Liong et al., 2002

Table 5.5 Training time and test error of EC-SVM I: Mississippi river flow

RMSE (m3/s)
C-range

Time
series
used

No. of
Iterations

Total time
(PII) Training

set
Test
set

Validation
set

Q 680 25h12m 389.96 323.31 307.98
[0.2 - 1.5] dQ 778 12h12m 355.91 304.74 302.41

Q 1320 302h32m 377.47 310.85 305.81
[0.2-20.0] dQ 1180 59h03m 358.45 304.45 304.09

 139

Table 5.6 Optimal parameter set of EC-SVM I: Mississippi river flow

Parameters
C-range Time series

used τ d C ε σ

Time(s)

PII

Q 1 5 0.925 0 0.27 169
[0.2 - 1.5] dQ 1 3 0.929 0.071 0.29 10

Q 1 3 13.69 0.001 0.19 1097
[0.2-20.0] dQ 1 3 4.26 0.034 1.00 94

Table 5.7 Prediction accuracy resulting from various techniques: Mississippi river flow

Time
series
used

Approach RMSE
(m3/s) NRMSE (d,τ)

Standard chaos technique 1738.95 0.2064 (6,13)

Naive 608.70 0.0771 /

ARIMA(1,0,1) 435.00 0.0551 /

Inverse approach* 356.89 0.0452 (2, 1)

Q

EC-SVM I 307.98 0.0387 (5, 1)

Standard chaos technique 365.26 0.0462 (4, 6)

ARIMA(1,1,1) 322.69 0.0409 /

dQ

 EC-SVM I 302.40 0.0385 (3, 1)
* Liong et al., 2002

 140

Table 5.8 Range of the parameters: EC-SVM II

 Parameters Range

Delay time τ 1-20

Embedding dimension d 2-20

Dimension of approximated features q 5-105

Gaussian kernel width σ 0.1-0.9

Regularisation parameter C′ 0.1-50.0

Table 5.9 Training time and test error of EC-SVM II: Tryggevælde catchment runoff

 RMSE (m3/s)
 Time

series
used

No. of
Iterations

Total
time
(PII)

Total
time
(PIV) Training

set
Test
set

Validation
set

Q 824 5h25m 1h24m 0.478 0.573 0.502
dQ 1070 6h23m 1h38m 0.468 0.575 0.500

Table 5.10 Optimal parameter set of EC-SVM II: Tryggevælde catchment runoff

Parameters Time
series
used τ d q σ C′

Time(s)

(PII)

Q 1 5 71 0.26 2.8 23
dQ 1 6 97 0.13 1.8 42

 141

Table 5.11 Prediction accuracy resulting from various techniques: Tryggevælde

catchment runoff

Time
series
used

Approach RMSE
(m3/s) NRMSE (d,τ)

Standard chaos technique 0.647 0.444 (4,12)

Naive 0.577 0.396 /

ARIMA(1,0,1) 0.535 0.367 /

Inverse approach * 0.527 0.361 (2,1)

EC-SVM I 0.522 0.358 (3,1)

Q

EC-SVM II 0.501 0.344 (5,1)

Standard chaos technique 0.598 0.41 (4,8)

ARIMA(1,1,1) 0.543 0.373 /

EC-SVM I 0.521 0.357 (5,1)
dQ

EC-SVM II 0.500 0.343 (6,1)
* Liong et al., 2002

Table 5.12 Training time and test error of EC-SVM II: Mississippi river flow

 RMSE (m3/s)
 Time

series
used

No. of
Iterations

Total
time
(PII)

Total
time
(PIV) Training

set
Test
set

Validation
set

Q 1214 8h40m 2h14m 402.68 332.21 320.44
dQ 762 6h08m 1h37m 358.22 306.46 300.71

 142

Table 5.13 Optimal parameter set of EC-SVM II: Mississippi river flow

Parameter Time series
used τ d q σ C′

Time (s)
(PII)

Q 1 4 57 0.55 0.6 15
dQ 1 3 100 0.12 15.4 49

Table 5.14 Prediction accuracy resulting from various techniques: Mississippi river
flow

Time
series
used

Approach RMSE
(m3/s) NRMSE (d,τ)

Standard chaos technique 1738.95 0.2064 (6,13)

Naive 608.70 0.0771 /

ARIMA(1,0,1) 435.00 0.0551 /

Inverse approach* 356.89 0.0452 (2, 1)

EC-SVM I 307.98 0.0387 (5, 1)

Q

EC-SVM II 320.44 0.0406 (4, 1)

Standard chaos technique 365.26 0.0462 (4, 6)

ARIMA(1,1,1) 322.69 0.0409 /

EC-SVM I 302.40 0.0383 (3, 1)
dQ

EC-SVM II 300.71 0.0381 (3, 1)
* Liong et al., 2002

 143

Table 5.15 Prediction accuracy of EC-SVM I and EC-SVM II

RMSE (m3/s)

Catchment

Time

series EC-SVM I EC-SVM II

Q 0.522 0.502

Tryggevælde
dQ 0.521 0.500

Q 305.81 320.44

Mississippi
dQ 302.40 300.71

Table 5.16 Computation time of EC-SVM I and EC-SVM II

EC-SVM I EC-SVM II

Catchment Time
series

Iterations Time
(PII) Iterations Time

(PII)
Time
(PIV)

Q 652 11h30m 824 5h25m 1h24m

Tryggevælde dQ 649 6h53m 1070 6h23m 1h38m

Q 680 25h12m 1214 8h40m 2h14m

Mississippi dQ 778 12h12m 762 6h08m 1h37m

 144

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Forecasting of hydrological time series is one of the basic and important tasks in water

resources management. Recently a number of studies have shown that hydrological

time series have the characteristics of chaotic time series and possess a low correlation

dimension. However, the applications of the chaotic techniques are very often limited

to local linear learning machines due to the large amount of data required. This

obstacle in analysing hydrological time series is now removed with the schemes

proposed in this study, EC-SVM I and EC-SVM II.

Both EC-SVM I and EC-SVM II share many commonalities. Both schemes: (1)

use one of latest learning machines, viz. Support Vector Machine (SVM); (2) operate

SVM on the reconstructed phase space which is the space where Chaos analysis is

commonly conducted; and (3) apply an Evolutionary algorithm to simultaneously

optimize the embedding structure parameters and those of SVM. Both schemes

differentiate from each other only in the technique to resolve the large data size often

required in chaos analysis. EC-SVM I adopts a decomposition method while EC-SVM

II applies the ridge regression method to circumvent the large data sample problem.

Both schemes are demonstrated on the Tryggevaelde catchment runoff time

series and the Mississippi river flow daily time series. Considerable improvements

were obtained, certainly for the Mississippi case.

 145

6.1.1 SVM applied in phase space reconstruction

The present study is the first study that introduces the application of Support Vector

Machine (SVM) in the phase space reconstruction. Previous work on applications of

SVM in time series has been limited to dynamics reconstruction. There it is inevitable

that a unit time lag has to be assumed. As is known from chaos theory, an order in

disorder can be found only at a given embedding structure, i.e. with the correct

embedding dimension and the correct time lag.

Thus, this study suggests the applications of SVM in the phase space

reconstruction instead of directly using the original time series. The most appropriate

embedding structure parameters (embedding dimensions and time lag) are derived

based on the least prediction accuracy from an unseen data set. The proposed approach

in deriving the values of the embedding structure parameters is recommended instead

of using the traditional approach, average mutual information for time lag and then the

false nearest neighbours for embedding dimensions. A guaranteed higher prediction

accuracy resulting from the proposed approach is obvious since it uses the least

prediction accuracy as its objective function.

6.1.2 Handling large data sets effectively

One of the most important abilities of any proposed scheme to analyse chaotic time

series is its efficiency in dealing with large data sets. It is a norm that chaotic time

series analysis requires large sets of data. Normal SVM can’t deal with large data sets.

Practitioners opt to select a shorter data set at the expense of prediction accuracy of the

trained model.

Two efficient algorithms to handle large data records for SVM are introduced.

One of them is the decomposition method while the other one is the linear regression

with approximated features method.

 146

The decomposition method decomposes the quadratic optimization programming

of the dual problem of SVM into a series of quadratic problems each with only 2

variables; this transformation makes the analysis quite straightforward. The 2 variables

are selected through a feasible direction method which is based on the maximum

gradient. The decomposition method used in this study is the most efficient algorithm

of decomposition methods, known at present.

The linear ridge regression, on the other hand, approximates the feature

dimension at which the feature space of the original data is linearly related to the

output variable. The approximation of features is based on the eigen function of the

kernel of the Mercer’s theorem and the eigen decomposition of a square matrix. Good

representative points are selected on the basis of the maximum entropy; this implies

that the set of points are most scattered. Since the linear ridge regression involves no

iterative scheme, as in the decomposition method, the speed is even faster and more

reliable.

6.1.3 Evolutionary algorithm for parameters optimization

SVM has several parameters which need to be calibrated. SVM can provide good

results only when a good set of values of the calibration parameters is chosen. In

addition to the SVM parameters, two more parameters need to be calibrated. They are

the embedding structure parameters, i.e. the time lag and the embedding dimension.

An evolutionary algorithm is applied to calibrate these parameters

simultaneously and automatically. Evolutionary algorithm is a global optimization

approach and is especially suitable for the very difficult task where deterministic

sequence of iterative solutions based on the gradient or high order statistics of the cost

function can not be generated. Evolutionary algorithm only requires the objective

function and therefore it is very suitable for this sort of parameter tuning task. The

 147

results from traditional methods help to set suitable parameter search range for

evolutionary algorithm. The evolutionary algorithm used in this study is the Shuffled

Complex Evolution (SCE) algorithm.

EC-SVM I is with the decomposition method while EC-SVM II is with the linear

ridge regression; both are equipped with SCE optimization scheme.

6.1.4 High computational performances

The novel approaches suggested in this study, EC-SVM, show both effectiveness (i.e.

high prediction accuracy) and efficiency (i.e. high computational speed).

The EC-SVM approaches are demonstrated on two real daily flow time series:

Tryggevælde catchment runoff and Mississippi river flow time series. The results

obtained by both EC-SVM I and EC-SVM II prove better than naïve forecasting,

ARIMA, and other currently used chaotic techniques. Moreover, the study shows that

the first difference runoff time series, dQ, should be seriously considered instead of the

original Q time series; analysis with the dQ time series yields higher prediction

accuracy.

EC-SVM II (with linear ridge regression) is recommended over EC-SVM I (with

decomposition method) particularly with respect to stable and fast computational speed.

This is to be expected since the linear ridge regression does not involve any iterative

algorithm.

The speed of EC-SVM II is attractively fast. It takes about 1-2 hours on P4

2.4GHz and yet yields very high prediction accuracy.

6.2 Recommendations for future study

Recommendations for future research and practical applications are suggested as

follows:

 148

(1) Multivariate analysis

Most of the hydrological systems are complex nonlinear dynamical systems. If

time series of other sensitive variables are available, e.g. precipitation (P) and

temperature (T), the analysis should include these time series. This extra

information may further increase the prediction accuracy of the runoff. In this

study EC-SVM approaches are demonstrated only on univariate time series. The

approach is applicable to multivariate time series as well. The expression can be

written as:

 ,,...,,()1(21 QQQQ dtttt QQQfQ τττ −−−−+ =

 ,,...,,)1(2 PPPP dttt PPP τττ −−−−

 (6.1)),...,,)1(2 TTTT dttt TTT τττ −−−−

There are obviously more embedding structure parameters, (τQ, dQ, τP, dP, τT, dT)

for the above example. SCE is a very efficient optimization scheme and hence can

efficiently deal with 20 genes or more.

(2) Multi-objective optimization

The present study has solely used RMSE as a measure of goodness of fit. Other

goodness-of-fit measures should be considered. They are, for example, volume

error, peak runoff error, percentage of false nearest neighbours, etc. Evolutionary

algorithms for multi-objective optimization are available. Elitist non-dominated

sorting genetic algorithm (NSGA II) by Deb (2001) is one of the well developed

algorithms for multi-objective optimization problems. Applying NSGA II instead

of SCE may fit the calibration task for this multi-objective problems.

 149

(3) Gaussian kernel

Gaussian kernel is one the most powerful kernels and a commonly used kernel.

This study applies Gaussian kernel as well. Other powerful kernels for regression

such as spline kernel may be more suitable for some time series.

(4) Uncertainty

The current study uses RMSE of the test set as a goodness-of-fit measure. It should

be noted that it is much more reasonable to use the test error, as a goodness-of-fit

measure, than the training error. Nevertheless, this does not guarantee that the

resulting ‘optimal’ model will yield best prediction accuracy on the validation data

set. This is perhaps caused by an overfitted model. It is therefore suggested to

create another test set for overfitting test.

 150

REFERENCES

1. Abarbanel, H. D. I., Brown, R. and Kadtke, J. B. Prediction in Chaotic Nonlinear
Systems: Methods for Time Series with Broadband Fourier Spectra. Physical
Review A, 41(4), pp. 1782-1807. 1990.

2. Abarbanel, H. D. I. Analysis of Observed Chaotic Data. Springer-Verlag, NY.

1996.

3. Abbott, M. B. Introducing Hydroinformatics. Journal of Hydroinformatics, 1(1),

pp. 3-19. 1999.

4. Alligood, K., Sauer, T. and Yorke, J.A. CHAOS: An Introduction to Dynamical

Systems. Springer-Verlag. 1997.

5. Anctil, F., Michel, C., Perrin, C. and Andréassian, V. A Soil Moisture Index as

an Auxiliary ANN input for Stream Flow Forecasting. Journal of Hydrology, 286,
pp.155-167. 2004.

6. Babovic, V. and Keijzer, M. Forecasting of River Discharges in the Presence of

Chaos and Noise. In Coping with Flood. 1999.

7. Babovic, V. Keijzer, M. and Stefasson, M. Optimal Embedding Using Evolution

Algorithms. In Proc. 4th International Conference on Hydroinformatics, Iowa
City, USA, July 2000a.

8. Babovic, V., Keijzer, M. and Bundzel, M. From Global to Local Modelling: A

Case Study in Error Correction of Deterministic Models. In Proc. 4th
International Conference on Hydroinformatics, Iowa City, USA, 2000b.

9. Backer, C. T. H. The Numeral Treatment of Integral Equations. Oxford:

Clarendon Press. 1977.

10. Brandstater, A. and Swinney, H. L. Strange Attractor in Weakly Turbulent

Couette-Talay flow. Phys. Rev. A 35, pp. 2206. 1986.

11. Boser, B. E., Guyon, I. M. and Vapnik, V. N. A Training Algorithm for Optimal

Margin Classifiers. In Proc. 5th Annual ACM Workshop on Computational
Learning Theory, ed by Haussler, D., pp. 144-152. Pittsburgh, PA, ACM Press.
1992.

12. Cao, L. Y., Mees, A. and Judd, K. Dynamics from Multivariate Time Series.

Physica D, 121, pp.65-88. 1998.

13. Cao, L. Y. Practical Method for Determining the Minimum Embedding

Dimension of a Scalar Time Series. Physica D, 110, pp. 43-50. 1997.

 151

14. Casdagli, M. Nonlinear Prediction of Chaotic Time Series. Physica D, 35, pp.

335 - 356. 1989.

15. Casdagli, M. Chaos and Deterministic versus Stochastic Non-linear Modelling.

Journal of Royal Statistical Society B, 54(2), pp. 303-328. 1991.

16. Casdagli, M., Eubank, S., Farmer, J. D. and Gibson, J. State Space

Reconstruction in the Presence of Noise. Physica D, 51, pp. 52-98. 1991.

17. Cherkassky, V. and Ma, Y. Practical Selection of SVM Parameters and Noise

Estimation for SVM Regression. Neural Networks, 17(1), pp 113-126. 2004.

18. Cherkassky, V. and Mulier, F. Learning from Data: Concepts, Theory and

Methods. John Wiley and Sons. 1998.

19. Collobert, R. and Bengio, S. On the Convergence of SVMTorch, an Algorithm

for Large-Scale Regression Problems. Technical Report IDIAP-RR 00-24, IDIAP,
Martigny, Switzerland. 2000.

20. Collobert, R. and Bengio, S. SVMtorch: Support Vector Machines for Large-

Scale Regression Problems. Journal of Machine Learning Research, 1, pp 143-
160. 2001.

21. Collobert, R., Bengio, S., and Bengio, Y., A Parallel Mixture of SVMs for Very

Large Scale Problems. Neural Computation, 14(5) pp.1105-1114. 2002.

22. Cover, T. and Hart, P. Nearest Neighbour Pattern Classification. IEEE

Transactions on Information Theory, 13, pp.21-27. 1967.

23. Doan, C. D., Liong, S. Y. and Karunasingha, D. S. K. Deriving Effective and

Efficient Data Set with Subtractive Clustering Method and Genetic Algorithm.
Submitted to Journal of Hydroinformatics. 2003.

24. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms. John

Wiley &Sons. 2001.

25. Dibike Y. B., Velickov S., Solomatine D. P. and Abbott M. B. Model Induction

with Support Vector Machines: Introduction and Applications. Journal of
Computing in Civil Engineering, American Society of Civil Engineers (ASCE),
15(3), pp. 208-216. 2001.

26. Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A. J. and Vapnik, V. Support

vector regression machines. In: Advances in Neural Information Processing
Systems, MIT Press, Cambridge M.A., pp.155-161. 1997.

27. Duan, Q., Sorooshian, S. and Gupta, V. K. Effective and Efficient Global

Optimization for Conceptual Rainfall-Runoff Models. Water Resour. Res. 28(4),
pp.1015-1031. 1992.

 152

28. Duda, R. O. and Hart, P. E. Pattern Classification and Scene Analysis. Wiley,

New York. 1973.

29. Eckmann, J. P., Kamphorst, S. O., Ruelle, D. and Ciliberto, S. Lyapunov

Exponents from Time Series. Physical Review A, 34(6), pp. 4971-4979. 1986.

30. Essex, C., Lookman, T. and Nerenberg, M. A. H. The Climate Attractor over

Short Timescales. Nature, 326, pp. 64-66. 1987.

31. Espinoza, M., Suykens, J. and De Moor, B. Least Squares Support Vector

Machines and Primal Space Estimation. In Proc. IEEE 42nd Conference on
Decision and Control, Maui, USA, 2003 December.

32. Fan, J. D. and Sidorowich, J. J. Local Polynomial Modelling and its Applications.

Chapman & Hall, London, UK. 1996.

33. Farmer, J. D. and Sidorowich, J. J. Predicting Chaotic Time Series. Phys. Rev.

Lett. 59, pp. 845-848. 1987.

34. Fraedrich, K. Estimating the Dimensions of Weather and Climate Attractors.

Journal of the Atmospheric Sciences, 43(5), pp. 419-432. 1986.

35. Fraedrich, K. Estimating Weather and Climate Predictability on Attractors.

Journal of the Atmospheric Sciences, 44 (4), pp. 722-728. 1987.

36. Frazer, A. M. Reconstructing Attractors from Scalar Time series: A Comparison

of Singular System and Redundancy Criteria. Physica D, 34, pp.391-404. 1989.

37. Fogel, D. B. An Introduction to Simulated Evolutionary Optimization. IEEE

Trans. Neural Networks, 5(1), pp. 3-14. 1994.

38. Fogel, L. J., Owens, A. J. and Walsh, M. J. Artificial Intelligence through

Simulated Evolution, New York: John Wiley. 1966.

39. Fraser, A. and Swinney, H. Independent Coordinates for Strange Attractors from

Mutual Information. Phys. Rev. A 33, pp. 1134-1140. 1986.

40. Frison, T. Nonlinear Data Analysis Techniques. In: Trading on the Edge. Neural,

Genetic and Fuzzy Systems for Chaotic Financial Markets, ed by Deboeck, G. J.,
pp. 280-296. John Wiley Inc., New York. 1994.

41. Geman, S., Bienenstock, E. and Doursat, R. Neural Networks and the

Bias/Variance Dilemma. Neural Computation 4, pp. 1-58. 1992.

42. Gershenfeld N. and Weigend, A. The Future of Time Series: Learning and

Understanding. In Time Series Prediction: Forecasting the Future and
Understanding the Past, ed by Weigend, A. and Gershenfeld, N., pp.1-70.
Addison Wesley. 1993.

 153

43. Gibson, J. F., Farmer, J. D., Casdagli, M. and Eubank, S. An Analytical

Approach to Practical State Space Reconstruction. Physica D, 57, pp. 1-30. 1992.

44. Girolami, M. Orthogonal Series Density Estimation and the Kernel Eigenvalue

Problem. Neural Computation, 14, pp. 669-688. 2002.

45. Gleick, J. Chaos: Making a New Science. Viking Penguin, New York. 1987.

46. Grassberger, P. and Procaccia, I. Characterization of Strange Attractors, Phys.

Rev. Lett., 50, pp. 346. 1983a.

47. Grassberger, P. and Procaccia, I. Measuring the Strangeness of Strange Attractors.

Physica D, 9, pp.189-208. 1983b.

48. Grassberger, P. and Procaccia, I. Estimation of the Kolmogorov Entropy from a

Chaotic Signal. Physical Review A, 28, pp. 2591-2593. 1983c.

49. Grassberger, P. Do Climatic Attractors Exist? Nature, 323, pp. 609-612. 1986.

50. Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd edition.

Prentice-Hall, New Jersey. 1999.

51. Hense, A. On the Possible Existence of a Strange Attractor for the Southern

Oscillation. Beitr. Phys. Atmosphere, 60(1), pp. 34-47. 1987.

52. Hilborn, R.C. Chaos and Nonlinear Dynamics, pp. 40. Oxford University Press.

1994.

53. Holland, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor: The

University of Michigan Press. 1975.

54. Holzfuss, J. and Mayer-Kress, G. An Approach to Error-estimation in the

Application of Dimension Algorithms. In Dimensions and Entropies in Chaotic
Systems, ed by Mayer-Kress, G., pp. 114-122. Springer-Verlag, New York. 1986.

55. Ikeguchi, T. and Aihara, K. Prediction of Chaotic Time Series with Noise. IEEE

Transactions, Fundamentals, E78 (10), pp. 1291-1297. 1995.

56. Islam, S., Bras, R. L. and Rodriguez-Iturbe, I. A Possible Explanation for Low

Correlation Dimension Estimates for the Atmosphere. Journal of Applied
Meteorology, 32, pp. 203-208. 1993.

57. Izenman, A. J. Recent Developments in Nonparametric Density Estimation.

Journal of the American Statistical Association, 86, pp. 205-224. 1991.

58. Jayawardena, A. W. and Lai, F. Analysis and Prediction of Chaos in Rainfall and

Stream Flow Time Series. Journal of Hydrology, 153, pp. 23-52. 1994.

 154

59. Jayawardena, A. W. and Gurung A. B. Noise Reduction and Prediction of

Hydrometeorological Time Series: Dynamical Systems Approach vs. Stochastic
Approach. Journal of Hydrology, 228, pp. 242-264. 2000.

60. Joachims, T. Making Large-Scale SVM Learning Practical. In: Advances in

Kernel Methods - Support Vector Learning, ed by Schölkopf, B., Burges, C. and
Smola A., pp. 169-183. MIT Press. 1999.

61. Karunanithi, N., Grenney, W.J., Whitley, D. and Bovee, K. Neural Networks for

River Flow Prediction. J. Comput. Civil Engng., 8(22), pp. 201-220. 1994.

62. Kennel, M.B., Brown, R., and Abarbanel, H. D. I. Determining Embedding

Dimension for Phase-Space Reconstruction Using a Geometrical Construction.
Phys. Rev. A 45, pp. 3403-3411. 1992.

63. Keerthi, S. S., Shevade, S. K., Bhattacharyya C. and Murthy, K. R. K.

Improvements to Platt's SMO Algorithm for SVM Classifier Design. Neural
Computation, 13, pp. 637-649. 2001.

64. Keerthi, S. S. and Gilbert, E. G. Convergence of a Generalized SMO Algorithm

for SVM Classifier Design. Machine Learning, 46, pp. 351-360. 2002.

65. Krishnakumar, K. Micro-Genetic Algorithms for Stationary and Non-Stationary

Function Optimization. SPIE: Intelligent Control and Adaptive Systems, 1196.
Philadelphia, PA. 1989.

66. Kuczera, G. Efficient Subspace Probabilistic Parameter Optimization for

Catchment models. Water Resour. Res. 33(1), pp.177-185. 1997.

67. Kugiumtzis, D., Lillekendlie, B. and Christophersen, N. Chaotic Time Series Part

I: Estimation of Some Invariant Properties in State Space. Modeling,
Identification & Control 15(4), pp. 205-224. 1995.

68. Kwok, J. T. Linear Dependency between ε and the Input Noise in ε-Support

Vector Regression. In: Proc. International Conference Artificial Neural Networks
- ICANN 2001, ed by G. Dorffner, H. Bischof, K. Hornik, pp. 405-410. Lecture
Notes in Computer Science 2130 Springer 2001, ISBN 3-540-42486-5.

69. Laskov, P. An Improved Decomposition Algorithm for Regression Support

Vector Machines. In Advances in Neural Information Processing Systems 12, ed
by Solla, S.A., Leen, T.K. and Müller, K.-R., pp. 484-490. MIT Press. 2000.

70. Laskov, P. Feasible Direction Decomposition Algorithms for Training Support

Vector Machines. Machine Learning, Special Issue on Support Vector Machines.
2001.

71. Liebert, W., Pawelzik, K. and Schuster, H. G. Optimal Embeddings of Chaotic

Attractors from Topological Considerations. Europhys. Lett., 14, pp. 521-526.
1991.

 155

72. Liong, S. Y., Chan, W. T. and Shreeram, J. Peak Flow Forecasting with Genetic

Algorithm and SWMM. Journal of Hydraulic Engineering, ASCE, 121(8), pp.
613-617. 1995.

73. Liong, S. Y., Khu, S. T. and Chan, W. T. Derivation of Pareto Front with Genetic

Algorithm and Neural Network? Journal of Hydrologic Engineering, ASCE, 6(1),
pp. 56-61. 2001.

74. Liong, S. Y., Lim, W. H., and Paudyal, G. Real Time River Stage Forecasting for

Flood Stricken Bangladesh: Neural Network Approach. Journal of Computing in
Civil Engineering, ASCE, 4(1), pp. 38-48. 1999.

75. Liong, S. Y. and Sivapragasam, C. Flood Stage Forecasting with SVM. J. Am.

Water Res. Assoc., 38(1), pp. 173-186. 2002.

76. Liong, S. Y., Phoon, K. K., Pasha, M. F. K and Doan, C. D. A Robust and

Efficient Scheme in Search for Optimal Prediction Parameters Set in Chaotic
Time Series. First Asia Pacific DHI Software Conference, Bangkok, (keynote
paper). 2002.

77. Lorenz, E. N. Deterministic Nonperiodic Flow. J. Atmos. Sci., 20, pp.130-141.

1963.

78. MacKay, D. J. C. Introduction to Gaussian Processes. Extended Version of a

Tutorial at ICANN'97, ftp://wol.ra.phy.cam.ac.uk/pub/mackay/gpB.ps.gz , 1997.

79. Maidment, D. R. (ed). Handbook of Hydrology. U.S.A: McGraw-Hill, Inc. 1993.

80. Matterra, D. and Haykin, S. Support Vector Machines for Dynamic

Reconstruction of a Chaotic System. In: Advances in Kernel Methods, ed by
Chölkopf, B., Burges, C. J. C and Smola, A. J., pp. 211-241. MIT Press. 1999.

81. Mees, A. I., Rapp, P. E. and Jennings, L. S. Singular Value Decomposition and

Embedding Dimension. Phys. Rev. A 36, pp. 340-346. 1987.

82. Muller, K. R., Smola, A., Ratsch, G., Scholkopf, B., Kohlmorgen, J. and Vapnik,

V. Predicting Time Series with Support Vector Machines. In Proc. International
Conferenceon Artificial Neural Networks, pp.999. Springer Lecture Notes in
Computer Science. 1997.

83. Nelder, J. A. and Mead, R. A Simplex Method for Function Minimization.

Comput. J. 7, pp.308-313. 1965.

84. Neal, R. M. Regression and Classification Using Gaussian Process Priors (with

discussion). In Bayesian Statistics 6, ed by Bernardo, J. M., Berger, J. O., Dawid,
A. P. and Smith, A. F. M., pp. 475-501. Oxford University Press. 1999.

85. Nicolis, C. and Nicolis, G. Is There a Climatic Attractor? Nature, 311, pp. 529-

532. 1984.

 156

ftp://wol.ra.phy.cam.ac.uk/pub/mackay/gpB.ps.gz

86. Ogawa, H. and Oja, E. Can We Solve the Continuous Karhunen-Loeve

Eigenproblem from Discrete Data? Trans. IECE Japan E69, pp. 1020-1029. 1986.

87. Omohundro, S. M., Efficient Algorithms with Neural Network Behaviour.

Complex system 1, pp. 273-347. 1987.

88. Osborne, A. R. and Provenzale, A. Finite Correlation Dimension for Stochastic

Systems with Power-law Spectra, Physica D, 35, pp. 357-381. 1989.

89. Osuna, E., Freund, R. and Girosi, F. An Improved Training Algorithm for

Support Vector Machines. In Neural Networks for Signal Processing VII —
Proceedings of the 1997 IEEE Workshop, ed by Principe, J., Gile, L., Morgan, N.
and Wilson, E., pp. 276-285. New York. 1997a.

90. Osuna, E., Freund, R. and Girosi, F. Training Support Vector Machines: An

Application to Face Detection. In Proc. Computer Vision and Pattern
Recognition '97, pp. 130-136. 1997b.

91. Ott, E., Sauer, T. and Yorke, J. Coping with Chaos. John Wiley & Sons, NY.

1994.

92. Packard, N. H., Crutchfield, J. P., Farmer, J. D. and Shaw, R. S. Geometry from a

Time Series. Physical Review Letters, 45(9), pp. 712-716. 1980.

93. Phoon, K. K., Islam, M. N., Liaw, C. Y. and Liong, S. Y. A Practical Inverse

Approach for Forecasting Nonlinear Hydrological Time Series. Journal of
Hydrologic Engineering, ASCE, 7 (2), pp. 116-128. 2002.

94. Platt, J. C. Fast Training of Support Vector Machines Using Sequential Minimal

Optimization. In: Advances in Kernel Methods - Support Vector Learning, ed by
Schölkopf, B., Burges, C. and Smola, A., pp. 185-208. MIT Press, 1999.

95. Porporato, A. and Ridolfi, L. Clues to the Existence of Deterministic Chaos in

River Flow. Journal of Modern Physics B, 10(5), pp. 1821-1862. 1996.

96. Porporato, A. and Ridolfi, L. Nonlinear Analysis of River Flow Time Sequences.

Water Resources Research, 33(6), pp. 1353-1367. 1997.

97. Prichard, D. and Theiler, J. Generalised Redundancies for Time Series Analysis.

Physica D, 84, pp.476-493. 1995.

98. Rechenberg, I. Evolutionsstrategie Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. Stuttgart, Frommann-Holzboog. 1973.

99. Rodriguez-Iturbe, I., De Power, B. F., Sharifi, M. B. and Georgakakos, K. P.

Chaos in Rainfall. Water Resources Research, 25(7), pp. 1667-1775. 1989.

100. Sangoyomi, T. B., Lall, U. and Abarbanel, H. D. I. Nonlinear Dynamics of the

Great Salt Lake: Dimension Estimation. Water Resources Research, 32(1), pp.
149-159. 1996.

 157

101. Samet, H. The Quadtree and Related Hierarchical Data structures. Computing

Surveys, 16(2). 1984.

102. Sauer, T. Yorke, J. and Casdagli, M. Embedology. Journal of Statistical Physics,

65(3/4), pp. 579-616. 1991.

103. Sauer, T. A Noise Reduction Method for Signals from Nonlinear Systems.

Physica D, 58, pp. 193- 201. 1992.

104. Schölkopf, B., Smola, A. and Muller, K. R. Nonlinear Component Analysis as a

Kernel Eigenvalue Problem. Neural Comp. 10, pp. 1299-1319. 1998a.

105. Schölkopf, B., Bartlett, P., Smola, A. and Williamson, R. Support Vector

Regression with Automatic Accuracy Control. In Proceedings of ICANN'98,
Perspectives in Neural Computing, Berlin, ed by Niklasson, L., Bodén, M. and
Ziemke, T., pp.111-116. Springer Verlag. 1998b.

106. Schölkopf, B., Simard, P. Y., Smola, A. J. and Vapnik, V. N. Prior Knowledge in

Support Vector Kernels. In Advances in Neural Information Processing Systems,
Vol. 10, ed by Jordan, M. I., Kearns, M. J. and Solla, S. A., pp. 640-646. MIT
Press, Cambridge, MA. 1998c.

107. Schölkopf, B., Smola, A. and Müller, K.-R. Kernel Principal Component

Analysis. In Advances in Kernel Methods - SV Learning, ed by Schölkopf, B.,
Burges, C. J. C. and Smola, A. J. , pp. 327-352. MIT Press. 1999a.

108. Schölkopf, B., Mika, S., Burges, C.J.C., Knirsch, P., Müller, K.-R., Rätsch, G.

and Smola, A. Input Space vs. Feature Space in Kernel-based Methods. IEEE
Transactions on Neural Networks, 10(5), pp.1000-1017. 1999b.

109. Schölkopf, B., Smola, A., Williamson, R. and Bartlett, P. L. New Support Vector

Algorithm. Neural Computation, 12(5), pp.1207-1245. 2000.

110. Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A. J. and Williamson, R. C.

Estimating the Support of a High-dimensional Distribution. Neural Computation,
13(7), pp. 1443-1472. 2001.

111. Schölkopf, B. and Smola, A. Learning with Kernels. MIT Press. 2002.

112. Schuster, H. G. Deterministic Chaos. VCH Weinheim, Germany. 1988.

113. Schwefel, H.-P. Numerical Optimization of Computer Models. Chichester: Wiley

& Sons. 1981.

114. Sharifi, M. B., Georgakakos, K. P. and Rodriguez-Iturbe, I. Evidence of

Deterministic Chaos in the Pulse of Storm Rainfall. Journal of the Atmospheric
Sciences, 47(7), pp.888-893. 1990.

 158

115. Shevade, S. K., Keerthi, S. S., Bhattacharyya, C. and Murthy, K. R. K.

Improvements to the SMO Algorithm for SVM Regression. IEEE Transactions
on Neural Networks, 11, pp.1188-1194. 2000.

116. Sivakumar, B., Phoon, K.K., Liong, S.Y., and Liaw, C.Y., A Systematic

Approach to Noise Reduction in Chaotic Hydrological Time Series. Journal of
Hydrology, 219, pp.103-135. 1999.

117. Sivakumar, B., Liong S.Y., and Liaw, C.Y. Evidence of Chaotic Behaviour in

Singapore Rainfall, Journal of American Water Resources Association, 34(2), pp.
301-310. 1998.

118. Sivapragasam, C. Multi-Objective Evolutionary Techniques in Defining Optimal

Policies for Real Time Operation of Reservoir Systems. PhD thesis, National
University of Singapore. 2003.

119. Smola, A. J., Murata, N., Schölkopf, B. and Müller, K. Asymptotically Optimal

Choice of ε-loss for Support Vector Machines. In: Proc. 8th International
Conference on Artificial Neural Networks, pp. 105-110. Springer-Verlag. 1998a.

120. Smola, A. J. Learning with Kernels. PhD thesis, Technische Universität Berlin.

1998b.

121. Smola, A. J. and Schölkopf, B. From Regularization Operators to Support Vector

Kernels. In Advances in Neural information processings systems 10, San Mateo,
CA, pp. 343-349. 1998c.

122. Smola, A. J., Frieß, T. and Schölkopf, B. Semiparametric Support Vector and

Linear Programming Machines. In Advances in Neural Information Processing
Systems, 11. MIT Press. 1998d.

123. Smola, A. J., Schölkopf, B. and Müller, K.-R. The Connection between

Regularization Operators and Support Vector Kernels. Neural Networks, 11,
pp.637-649. 1998e.

124. Sugihara, G. and May, R.M. Nonlinear Forecasting as a Way of Distinguishing

Chaos from Measurement Error in Time Series, Nature, 344, pp.734-741. 1990.

125. Suykens J. A. K., Lukas L., Van Dooren P., De Moor B. and Vandewalle J. Least

Squares Support Vector Machine Classifiers: a Large Scale Algorithm. In Proc.
of the European Conference on Circuit Theory and Design (ECCTD'99), Stresa,
Italy, Sep. 1999, pp. 839-842.

126. Suykens, J. A. K., Gestel, T. Van, Brabanter, J. De, Moor, B. De and Vandewalle,

J. Least Squares Support Vector Machines. World Scientific Pub. Co., Singapore.
2002.

127. Takens, F. In: Dynamical Systems and Turbulence, Vol. 898 of Lecture Notes in

Mathematics (Warwick), ed by Rand A. and Young L.S., p366. Springer. 1981.

 159

128. Termonia, Y. and Alexandrovicz, Z. Fractal Dimension of Strange Attractors

from Radius versus Size of Arbitrary Clusters. Physical Review Letters, 51, pp.
1265-1268. 1983.

129. Theiler, J. Efficient Algorithm for Estimating the Correlation Dimension from a

Set of Discrete Points. Physical Review A, 36(9), pp. 4456- 4462. 1987.

130. Tsonis, A. A. and Elsner, J. B. The Weather Attractor over Very Short Time

Scales. Nature, 333, pp. 545-547. 1988.

131. Tsonis, A. A. and Elsner, J. B. Nonlinear Prediction as a way of Distinguishing

Chaos from Random Fractal Sequences. Nature, 358, pp. 217-220. 1992.

132. Toth, E., Brath, A. and Montanari, A. Comparison of Short-term Rainfall

Prediction Models for Real-time Flood Forecasting. Journal of Hydrology, 239,
pp. 132-147. 2000.

133. Vapnik, V. N. Principle of Risk Minimization for Learning Theory. Advances in

Neural Information Processing System 4, San Meteo, CA, pp. 831-838. 1992.

134. Vapnik, V., Golowich, S. and Smola, A. Support Vector Method for Function

Approximation, Regression Estimation, and Signal processing. In Advances in
Neural Information Processing Systems 9, Cambridge, MA, ed by Mozer, M.,
Jordan, M. and Petsche, T., pp.281-287. MIT Press. 1997.

135. Vapnik, V. Statistical Learning Theory. Wiley, NY. 1998.

136. Weigend, A. S. and Gershenfeld, N. A. The Future of Time Series: Learning and

Understanding. In Time Series Prediction: Forecasting the Future and
Understanding the Past: Proc. NATO Advanced Research Workshop on
Comparative Time Series Analysis, 1994. ed by Weigend A. S. and Gershenfeld,
N. A..

137. Williams, C. K. I. Prediction with Gaussian Processes: From Linear Regression

to Linear Prediction and Beyond. In Learning in Graphical Models, ed by Jordan,
M. I., pp. 599-621. Kluwer Academic. 1998.

138. Williams, C. K. I. and Barber, D. Bayesian Classification with Gaussian

Processes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(12), pp.1342-1351. 1998.

139. Williams, C. K. I. and Seeger, M. The Effect of the Input Density Distribution on

Kernel-based Classifiers. In Proceedings of the Seventeenth International
Conference on Machine Learning. 2000.

140. Williams, C., K., I., and Seeger, M. Using the Nystrom Methods to Speed Up

Kernel Machines. In: Advances in Neural information Processing Systems, 13,
pp.682-688. MIT Press. 2001.

 160

141. Wolf, A., Swift, J. B., Swinney, H. L. and Vastano, A. Determining Lyapunov

Exponents from a Time Series. Physica D, 16, pp. 285-317. 1985.

142. Zealand, C. M., Burn D. H. and Simonovic, S. P. Short Term Streamflow

Forecasting Using Artificial Neural Networks, Journal of Hydrology, 214, pp.
32-48. 1999.

143. Zaldivart, J. M., Gutierrez, E., Galvan, I. M., Strozzi, F. and Tomasin, A.

Forecasting High Water Level at Venice Lagoon Using Chaotic Time Series
Analysis and Nonlinear Neural Network. Journal of Hydroinformatics, 2, pp. 61-
84. 2000.

144. Zhu, H., Williams, C. K. I., Rohwer, R. J. and Morciniec. M. Gaussian

Regression and Optimal Finite Dimensional Linear Models. In Neural Networks
and Machine Learning, ed by Bishop, C. M., Springer-Verlag, Berlin. 1998.

145. Zoutendijk, G. Methods of Feasible Directions: a Study in Linear and Non-linear

Programming. Elsevier. 1970.

146. EPA (U.S. Environmental Protection Agency), http://www.epa.gov/.

147. Krak, http://www.krak.dk/

148. Kernel machine web page, http://www.kernel-machines.org/.

149. LAPACK, http://www.netlib.org/lapack/.

150. LS-SVMlab, http://www.esat.kuleuven.ac.be/sista/lssvmlab/.

151. SVM Torch II, http://www.idiap.ch/learning/SVMTorch.html.

152. USGS (U.S. Geological Survey), http://www.usgs.gov/

 161

http://www.epa.gov/
http://www.kernel-machines.org/
http://www.netlib.org/lapack/
http://www.esat.kuleuven.ac.be/sista/lssvmlab/
http://www.usgs.gov/

LIST OF PUBLICATIONS

Part of this thesis have been published in or submitted for possible publication to the

following international Journals or conferences:

Keynote Paper

Liong, S. Y. and Yu, X. Y. Support Vector Machine in Chaotic Time Series

Forecasting. 28-th International Hydrology and Water Resources Symposium,

Australia, 10 – 13 November 2003.

International Journals

 Yu, X. Y., Liong, S. Y., and Babovic, V. EC-SVM Approach For Real Time

Hydrologic Forecasting. Journal of Hydroinformatics, V6 (3), pp 209-223. 2004.

 Yu, X. Y. and Liong, S. Y. Forecasting of Hydrologic Time Series with Ridge

Regression in Feature space of Gaussian Kernel. Submitted for possible publication

in Journal of Hydrology. 2004.

 Liong, S. Y., MD. Atiquzzaman and Yu, X. Y. Alternative Decision Making in

Water Distribution Network with NSGA-II. Submitted for Possible Publication in

Journal of Water Resources Planning and Management, ASCE. 2004.

International Conferences

 Liong, S. Y., Sivapragasam, C., Muttil, N., Doan, C. D., and Yu, X. Y. Efficient

Water Management Techniques for Rapidly Urbanizing Countries. In Proceedings

of Symposium on Innovative Approaches for Hydrology and Water Resources

Management in the Monsoon Asia, University of Tokyo, pp. 71-78. 2001.

 Yu, X. Y., Liong, S. Y. and Babovic, V. Hydrologic Forecasting with Support

Vector Machine Combined with Chaos-inspired Approach. In Proceedings of 5th

 162

International Conference on Hydroinformatics, Cardiff University, Cardiff, Wales,

U.K., pp. 764-769. 2002.

 Yu, X. Y., Liong, S. Y., and Babovic, V. An Approach Combining Chaos-

Theoretic Approach and Support Vector Machine: Case Study in Hydrologic

Forecasting. In Proceedings of the 13th APD-IAHR Congress, Singapore. pp. 690-

695. 2002.

 Yu, X. Y. and Liong, S. Y. Forecasting of Chaotic Hydrological Time Series with

Ridge Linear Regression in Feature Space. In Proceedings of 6th International

Conference on Hydroinformatics, Singapore, pp. 1581-1588. 2004.

 Liong, S. Y., MD. Atiquzzaman and Yu, X. Y. Multi-objective Algorithm to

Enhance Decision Making Process in Water Distribution Network Problems. In

Proceedings of 2nd APHW Conference, Singapore, pp. 138-146.2004.

 Yu, X. Y. and Liong, S. Y. Enhanced Support Vector Machine for hydrological

time series forecasting. 14th APD-IAHR Congress, 15 - 18, December 2004, Hong

Kong (Accepted for publication).

 163

	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	SUMMARY
	NOMENCLATURE
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 �INTRODUCTION
	1.1 Background
	1.2 Need for the present study
	1.2.1 Support vector machine for phase space reconstruction
	1.2.2 Handling large chaotic data sets efficiently
	1.2.3 Automatic parameter calibration

	1.3 Objectives of the present study
	1.4 Thesis organization

	CHAPTER 2 �LITERATURE REVIEW
	2.1 Introduction
	2.2 Chaotic theory and chaotic techniques
	2.2.1 Introduction
	(1) Definition of Chaos
	(2) Identifications

	2.2.2 Standard chaotic techniques
	(1) Time lag selection
	(2) Embedding dimension selection
	(3) Prediction

	2.2.3 Inverse approach
	2.2.4 Approximation techniques
	2.2.5 Phase space reconstruction
	2.2.6 Summary

	2.3 Support vector machine (SVM)
	2.3.1 Introduction
	2.3.2 Architecture of SVM for regression
	2.3.3 Superiority of SVM over MLP and RBF Neural Networks
	2.3.4 Issues related to model parameters
	2.3.5 SVM for dynamics reconstruction of chaotic system
	2.3.6 Summary

	2.4 Conclusions

	CHAPTER 3�SVM FOR PHASE SPACE RECONSTRUCTION
	3.1 Introduction
	3.2 Proposed SVM for dynamics reconstruction
	3.2.1 Dynamics reconstruction with SVM
	3.2.2 Calibration of SVM parameters

	3.3 Proposed SVM for phase space and dynamics reconstruction
	3.3.1 Motivations
	3.3.2 Proposed method

	3.4 Handling of large data record with SVM
	3.4.1 Decomposition method
	3.4.1.1 Introduction
	3.4.1.2 Brief description of technique
	(1) Two working variables
	(2) Selection of 2 working variables
	(3) Checking of KKT condition

	3.4.1.3 Implementation

	3.4.2 Linear ridge regression in approximated feature space
	3.4.2.1 Brief description of technique
	(1) Eigenfunctions and Eigenvalues approximation
	(2) Quadratic Renyi entropy for selection of the subset
	(3) Ridge linear regression

	3.4.2.3 Implementation

	3.5 Summary and conclusion

	CHAPTER 4 �PARAMETER CALIBRATION WITH EVOLUTIONARY ALGORITHM
	4.1 Introduction
	4.2 Evolutionary algorithms for optimization
	4.2.1 Introduction
	4.2.2 Shuffled Complex Evolution
	4.2.2.1 Description of algorithm
	4.2.2.2 Competitive Complex Evolution
	4.2.2.3 Control parameters and stopping criteria

	4.3 EC-SVM I: SVM with decomposition algorithm
	4.3.1 Introduction
	4.3.2 Calibration parameters
	4.3.3 Parameter range
	Parameters range of embedding structure
	4.3.3.2 Parameter range of C in SVM
	Parameter range of (in SVM
	Parameter range of (of Gaussian Kernel

	4.3.4 Implementation

	4.4 EC-SVM II: SVM with linear ridge regression
	4.4.1 Calibration parameters
	4.4.1.1 Parameter C(
	Parameter q

	4.4.2 Implementation

	4.5 Summary

	CHAPTER 5 �APPLICATIONS OF EC-SVM APPROACHES
	5.1 Introduction
	5.2 Daily runoff time series
	5.2.1 Tryggevælde catchment runoff
	5.2.2 Mississippi river flow

	5.3 Applications of EC-SVM I on daily runoff time series
	5.3.1 EC-SVM I on Tryggevælde catchment runoff
	5.3.2 EC-SVM I on Mississippi river flow
	5.3.3 Summary

	5.4 Applications of EC-SVM II on daily runoff time series
	5.4.1 EC-SVM II on Tryggevælde catchment runoff
	5.4.2 EC-SVM II on Mississippi river flow

	5.5 Comparison between EC-SVM I and EC-SVM II
	5.5.1 Accuracy
	5.5.2 Computational time
	5.5.3 Overall performances

	5.6 Summary

	CHAPTER 6 �CONCLUSIONS AND RECOMMENDATIONS
	6.1 Conclusions
	6.1.1 SVM applied in phase space reconstruction
	6.1.2 Handling large data sets effectively
	6.1.3 Evolutionary algorithm for parameters optimization
	6.1.4 High computational performances

	6.2 Recommendations for future study
	(1) Multivariate analysis
	(2) Multi-objective optimization
	(3) Gaussian kernel
	(4) Uncertainty

	REFERENCES
	LIST OF PUBLICATIONS

