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Summary 
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Summary 

 

Based on the multiphasic mixture theories, a multiphysical mathematical 

model, called the multi-effect-coupling electric-stimulus (MECe) model, has been 

developed in this dissertation to simulate the responsive behaviors of 

electric-sensitive hydrogels when they are immersed into a bath solution subjected 

to an externally applied electric field. With consideration of 

chemo-electro-mechanical coupling effects, the MECe model consists of a set of 

nonlinear partial differential governing equations, including the Nernst-Plank 

equations for the diffusive ionic species, Poisson equation for the electric potential 

and continuum equations for the mechanical deformations of hydrogels. In order 

to solve the complicated MECe model, a novel meshless technique, termed 

Hermite-Cloud method, is employed in the present numerical simulations. The 

developed MECe model is examined by comparisons of numerically computed 

results with experimental data extracted from open literature, in which very good 

agreements are achieved. Then one-dimensional steady-state and transient 

simulations are carried out for analyses of equilibrium and kinetics of the 

electric-stimulus responsive hydrogels, respectively. Simulations are also 

conducted for the distributions of ionic concentrations, electric potential and 

hydrogel displacement. The influences of key physical parameters on the 

responsive behaviors of electric-sensitive hydrogels are discussed in details, 

including the externally applied electric field, fixed-charge density and bath 
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solution concentration. According to the present studies and discussions, several 

significant conclusions are drawn and they provide useful information for 

researchers and designers in the bio-micro-electro-mechanical systems 

(BioMEMS) field. 
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Nomenclature 

 

A cross section area 

Bw  coupling coefficient 

fc  fixed-charge density 

fc0  fixed-charge density at reference configuration 

kc  concentration of ion k 

*c  initial ion concentration of bath solution 

Dk  diffusive coefficient of ion k 

E elasticity modulus 

E  elastic strain vector of the solid phase 

αf  body force per unit mass of phase α  

αβf  diffusive drag coefficient between α and β phases 

F  Helmholtz energy function  

αF density of Helmholtz energy of phase α  

sF  deformation gradient tensor 

Fc  Faraday constant 

G shear modulus 

I inertia moment 

ks shear correction coefficient 

K kinetic energy 

kM molar weight of ion k 
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p pressure 
αq  heat flux vector of phase α  

Q heat transferring into the system 

R  universal gas constant 

S  entropy 

αt  drag force applied on the surface of phase α  

T  absolute temperature 

CT  chemical-expansion stress  

U  internal energy  

αv  velocity of phase α 

v  external normal on the surface 

V  mixture volume 

V0 mixture volume at reference configuration 

Ve externally applied voltage 

αV  true volume of phase α 

w deflection 

W total work 

We work done by external force 

Wp work done by pressure 

fz  valence of fixed-charge groups 
kz  valance of ion k 

θ  rotation 
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αγ  rate of heat generation per unit mass of phaseα  

kγ  activity coefficient of ion k 

ε  dielectric constant 

0ε  permittivity of free space 

αη  entropy per unit mass of phase α 

sλ , sµ  Lame coefficients of solid matrix 

αµ0  chemical potentials of phase α at reference configuration 

αµ  chemical potential of phase α  

s
0φ  volume fraction of solid phase at reference configuration 

w
0φ  volume fraction of water phase at reference configuration 

αφ  volume fraction of phase α 

kΦ  osmotic coefficient of ion k  
αΠ  diffusive momentum exchange among different phases 
αρ  apparent mass density of phase α 

αρT  true mass density of phase α 

ασ  stress tensor of phase α   

σ  total stress tensor of hydrogel mixture 
s
Eσ  Cauchy stress tensor  

s
Eτ  Piola-Kirchhoff stress tensor 

ψ  electric potential
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Chapter 1 

 

Introduction 
 

 In this chapter, a concise introduction is given for the dissertation. The 

definition of hydrogels and their application for this research area are presented. 

Then the working objective and scope and a literature survey are described. Lastly, 

the layout of the dissertation is provided. 

 

1.1 Background 

Hydrogels are defined as the three-dimensional hydrophilic polymer-based 

network that is capable of assimilating abundant interstitial water or biological 

fluid. Generally, the cross-linked polymer chains attach some positive or negative 

charged groups, which are called fixed-charges because their mobility is much 

less than that of the freely mobile ions in the interstitial water. Therefore, as 

shown in Figure 1.1 for the microscopic structure of the charged hydrogel, the 

hydrogels are the multiphasic mixture, consisting of solid phase 

(polymeric-network matrix with fixed-charges), water phase (interstitial fluid) and 

ion phase (mobile ionic species). 

 As well known, there is a large variety of hydrogels, depending on the 

preparations. Some of them are able to be sensitive to different environmental 

stimuli, including the electric field (Tanaka et al., 1982; Kwon et al., 1991; Osada 
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et al., 1992), pH (Tanaka, 1978, 1980; Siegel, 1988), temperature (Chen and 

Hoffman, 1995; Yoshida, 1995), and chemicals (Kokufuta et al., 1991; Kataoka et 

al., 1998). They make fast changes from a hydrophilic state to a hydrophobic one 

with the small variation of environment, and usually the volume changes of 

hydrogels are also reversible when the external stimuli disappear. With good 

biostability and biocompatibility, high ionic conductivity and sensitivity similar to 

biopolymers, hydrogels have considerable promise in biological and medicine 

applications (Jeong and Gutowska, 2002; Galaev and Mattiasson 1999), such as 

artificial muscle, drug delivery and biomimetic actuators/sensors in BioMEMS 

(Beebe et al., 2000). 

 

1.2 Objective and scope 

It is noted that although big progresses have been made in the study of 

hydrogels, most studies done are experimental-based. Few theoretical analyses 

and numerically modeling work on the responsive mechanism of hydrogels were 

done in the past decades due to their complicated multiphasic structures. As such, 

the main objective of this dissertation is to formulate a mathematical model to 

provide more accurate simulations of the responsive behaviors of hydrogels, 

including the mechanical deformation and the distributions of diffusive ions and 

electric potential. 

As mentioned above, since the hydrogels can be responsive to many 

environmental triggers, it is difficult to develop a single theoretical model to 
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include all these external stimuli. As a result, this dissertation focuses on the 

stimulus of electric field only. Based on the classical multiphasic mixture theory 

(Lai et al., 1991), a novel mathematical model, termed multi-effect-coupling 

electric-stimulus (MECe) model (Li et al., 2004), is developed to simulate the 

equilibrium and kinetic responsive behaviors of electric-sensitive hydrogels 

immersed into a bath solution under an externally applied electric field.  

With consideration of chemo-electro-mechanical coupling effects and the 

multiphasic interactions between the interstitial fluid, ionic species and polymeric 

matrix, the developed MECe model is a set of nonlinear coupling partial 

differential governing equations, consisting of the Nernst-Plank equations to 

describe the diffusive ionic species, Poisson equation for the electric potential and 

the continuum equations for the mechanical deformation of hydrogel mixture. In 

addition, for development of the MECe model, several assumptions are made as 

follows, 

− the fixed-charge groups remain unchanged; 

− incompressibility for all three phases; 

− infinitesimal deformation; 

− material isotropy; 

− ideal bath solution. 

There are two main contributions of the dissertation. One contribution is the 

formulation of the MECe model. The other one is the employment of a novel 

meshless technique, called Hermite-Cloud method (HCM), in the numerical 
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simulations. 

Compared with previous published work, the present MECe model holds 

several advantages: (a) the computational domain of the MECe model covers both 

the hydrogels and surrounding solution, and the model is able to provide the full 

responses of geometric deformation and distributions of ionic concentrations and 

electric potential in both the domains; (b) the model can directly simulate the 

responsive distributions of electric potential, instead of the use of 

electro-neutrality condition; and (c) the MECe model presents an explicit 

expression for the hydrogel transient displacement. 

In this dissertation, the Hermite-Cloud method (HCM) (Li et al., 2003), a 

recently developed meshless technique, is used for all simulations to solve the 

complicated coupled nonlinear partial differential equations of the MECe model. 

In comparison with other classical reproducing kernel particle methods (RKPM), 

the HCM constructs the approximate solutions of both the unknown functions and 

their first-order derivatives. Thus the HCM gives a high computational accuracy 

not only for the approximate solutions, but for their first-order derivatives. It is 

very useful for the numerical simulations of the MECe model since the first-order 

derivatives of the main physical variables here, such as the ion concentrations, 

electrical potential and hydrogel displacement, have significant influence on the 

computational accuracy due to the localized high gradient of distributions of ionic 

concentrations and electric potential. 
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1.3 Literature survey 

In order to understand deeply the electric-responsive hydrogels and the 

relevant research work, it is necessary to do a literature survey on this research 

area and give a brief review on previous modeling work. 

Over the past decades, numerous efforts were made to develop the model for 

simulations of the responsive behaviors of hydrogels and hydrogel-like biological 

tissues with the effect of external stimuli. The early work includes the biphasic 

model for articular cartilage by Mow and co-workers (1980), in which the tissue is 

defined as a mixture of two phases based on the mixture theory, i.e. a solid phase 

for the charged polymeric matrix and a fluid phase for the interstitial fluid. In their 

work, several experimental parameters were obtained and used to simulate 

numerically the material properties of the tissues. 

However, it should be noted that the charged nature of hydrogel-like tissues 

was not considered in the biphasic theory, which took into account the mechanical 

property only. Thus it is difficult for the biphasic model to simulate the 

physiochemical and electrochemical phenomena in the tissues, such as the 

diffusive ions, chemical expansion of solid matrix and the fixed-charge effect on 

ion distributions. In order to incorporate such behaviors in the models, several 

constitutive models were developed. They include the swelling thermo-analog 

theory by Myers et al. (1984), the bicomponent theory by Lanir (1987) and the 

electromechanical theory by Eisenberg and Grodzinsky (1987). Although 

physiochemical and electrochemical effects were considered in these theories to 
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some extent, some important variables, such as the fixed-charge density and 

diffusive ionic concentrations, were not expressed explicitly in the constitutive 

equations. 

To overcome the drawbacks mentioned above, Lai et al. (1991) proposed a 

triphasic mechano-electrochemical theory for the responsive behavior of 

hydrogel-like tissues. In comparison with the biphasic theory, an additional ionic 

phase was included in the triphasic theory besides the solid and fluid phases. As a 

result, the triphasic model employs the continuum theory for the mixture of solid 

and fluid phases, and the physico-chemical theory deriving from the laws of 

thermodynamics for the ionic phase. By introducing the chemical potential, whose 

gradients were the driving force for the movement of fluid and ions, Lai and his 

co-workers built theoretically a bridge between physico-chemical and continuum 

mixture theories. It represented a significant progression in the modeling 

development for the hydrogel and hydrogel-like tissues. 

Many other investigators also made their contributions in the theoretical 

development. Siegel (1990) and Chu et al. (1995) tried to use the thermodynamic 

models to describe the equilibrium deformation of hydrogels, in which it was hard 

to obtain accurately some parameters required as the input of models due to 

special assumptions made in the models. Based on the classical Flory’s theory and 

Donnan assumption, Doi et al. (1992) developed a semiquntitative model to 

investigate the deformation of hydrogels subject to an applied electric field. 

However, this model was incomplete because the motions of water and hydrogel 
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were not considered. In addition, Grimshaw et al. (1990) and Shahinpoor (1994, 

1995) employed a macroscopic theory to explain the dynamic response of 

hydrogels with chemical/electrical triggers.  

Recently, more attentions were paid on the analysis of hydrogels by theories 

and these modeling works include: an extension of Lai’s triphasic model done by 

Gu et al. (1998, 1999) and the numerical models developed by Wallmersperger et 

al. (2001) and Zhou et al. (2002), respectively. In Gu’s mixture model, the 

hydrogel-like tissues are placed in the multi-electrolyte solution so that the 

mixture is composed of (n+2) constituents. Compared with triphasic model in 

which the simple 1:1 salt solution is considered only, the new mixture model is 

more complete and takes into account the effect of other quantitatively minor ions 

on the responsive behaviors of tissues. Moreover, Wallmersperger et al. (2001) 

and Zhou et al. (2002) proposed their models respectively to simulate the 

deformation of hydrogels under the external electric field, and they achieved good 

agreement between the experimental data and simulation results. 

However, it is found that most works are based on experiments in the study of 

responsive hydrogels. They have significant influences on the theoretical 

development, in which most notable experiments include the work done by Kim 

and Shin (1999), Homma et al. (2000, 2001), Sun et al. (2001), Wallmersperger et 

al. (2001) and Fei et al. (2002) for the swelling, shrinking and bending behaviors 

of the hydrogels under externally applied electric field. 

Despite the progress achieved in the modeling development of the hydrogels, 
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they still have limited applications. For example, the Gu’s model is unable to 

simulate the effect of external electric field. It is difficult to do transient analysis 

of hydrogel deformation by Wallmerperger’s model. In Zhou’s model, the 

computational domain covers the hydrogel only. Therefore, it is evidently 

necessary to develop a more robust mathematical model for better understanding 

of the response mechanism of hydrogels to the external stimuli. By developing the 

present MECe model, this dissertation simulates the responsive behaviors of the 

hydrogels with the chemo-electro-mechanical coupling effect when the hydrogels 

are immersed into a bath solution under an externally applied electric field.  

 

1.4 Layout of dissertation 

This dissertation is divided into six chapters, and each of them consists of 

several subsections respectively to make the dissertation more systematic. 

Chapter 1, Introduction, is divided into four sections. The first section, 

Background, gives a concise definition of hydrogels and their wide range 

applications in the biotechnology and bioengineering. The second section, 

Objective and scope, describes the purpose of this dissertation and its application 

scope. The third section, Literature survey, presents a complete review on the 

publication in the hydrogels area. The forth section, Layout of dissertation, 

describes the layout of this dissertation. 

Chapter 2,  Development of Multi-Effect-Coupling Electric-Stimulus 

(MECe) Model for Electric-Sensitive Hydrogels, is divided into four sections. In 
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the first section, a brief survey on the existing mathematical models for the 

hydrogels is given. In the second section, the governing equations of the 

developed MECe model are formulated in detail. The third section summarizes the 

boundary and initial conditions applied in the governing equations. In the fourth 

section, the non-dimensional implementation is introduced. 

Chapter 3, Meshless Hermite-Cloud Numerical Method, is divided into three 

sections. The first section gives a short review for the meshless methods. The 

second section presents the full development of the Hermite-Cloud method, 

including the theoretical formulation, computational implementation as well as 

numerical validations. The third section applies Hermite-Cloud method for the 

nonlinear fluid-structure analysis of submarine pipelines. 

Chapter 4, One-Dimensional Steady-State Simulations for Equilibrium of 

Electric-Sensitive Hydrogels, is divided into four sections. In the first section, the 

studied problem, a hydrogel strip immersed into a bath solution subject to an 

applied electric field, is described. In the second section, the discretization of 

reduced 1-D governing equations for the steady-state analysis is conducted. In the 

third section, a comparison is made between the simulated results and 

experimental data. In the fourth section, the influences of several parameters are 

studied on the responsive behaviors of the hydrogels, including the external 

electric field, fixed-charge density, concentrations of bath solution and ionic 

valences. 

Chapter 5, One-dimensional Transient Simulations for Kinetics of 
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Electric-Sensitive Hydrogels, is divided into three sections. The first section 

proposes the discretization of reduced 1-D governing equations for the transient 

simulations. The second section gives an experimental comparison to validate 

numerically the model. The third section presents the transient studies on 

distributions of several important parameters, i.e. ionic concentrations, electric 

potential, hydrogel displacement and average curvature.  

Chapter 6, Conclusions and Future Works, is divided into two sections. In the 

first section, conclusions are drawn based on the present simulations and 

discussions. In the second section, several further research topics are 

recommended for the future. 
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Figure 1.1 Microscopic structure of the charged hydrogel. 
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Chapter 2 

 

Development of Multi-Effect-Coupling Electric- 

Stimulus (MECe) Model for Electric-Sensitive 

Hydrogels 
 

 In this chapter, two previously developed mathematical models are 

summarized for the responsive hydrogels. This is followed by full development of 

the present MECe model, in which four main governing equations are formulated 

to describe the ion concentrations, electric potential, fluid pressure and hydrogel 

deformation. Then the boundary and initial conditions for the governing equations 

are proposed and the non-dimensional implementation for the governing equations 

is also carried out. 

 

2.1 Survey of existing mathematical models 

As is well known, when a hydrogel is immersed a bath solution with an 

externally applied electric field, the fixed-charge attached on the polymer chains 

attracts the electro-opposite ions from the surrounding solution to maintain the 

electro-neutrality. Meanwhile, the external electric field also drives the ions 

diffusing to electro-opposite electrodes. These two effects result in the difference 

of ion concentrations between the hydrogel and surrounding solution and induce 

the fluid pressure. As the main driving force, the fluid pressure makes the 
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hydrogel deform, and the deformation of the hydrogel will cause the redistribution 

of the fixed-charge groups. Then the mobile ions in the solution will diffuse and 

redistribute again due to the change of fixed-charges and a new cycle of the above 

process will follow until the hydrogel mixture reaches equilibrium. 

For simulation of the responsive behaviors of hydrogels under an applied 

electric field, several mathematical models have been developed recently, as 

mentioned in the literature survey of Chapter 1. Two of them are selected here to 

provide the basis for developing the present MECe model.  

The first model is called the triphasic model given by Hon and his co-workers 

(1999, 2002). Based on the triphasic mixture theory of Lai et al. (1991), Hon 

develops a set of governing equations from the generalized law of 

thermodynamics for an irreversible thermodynamical system, in which several 

disadvantages are found. For example, the computational domain of this model is 

limited in the interior hydrogel, excluding the external bath solution, since the 

governing equations are totally obtained from the classical thermodynamics, 

whose scope mainly focuses on the mixture. Thus it can not provide the complete 

distribution of ionic concentrations. In addition, the electro-neutrality condition is 

required and the electric potential is not a variable in the governing equation, 

therefore the distribution of electric potential along the whole solution can not be 

simulated. 

The second model is the multi-field formulation proposed by Wallmersperger 

and his co-workers (2001). In this formulation, the convection-diffusion equations, 
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Poisson equation and motion equation are adopted to describe the chemical field, 

electric field as well as mechanical field respectively. Although the computations 

of chemical and electric field are carried out in the full domain covering the 

hydrogel and surrounding solution, it should be noted that the motion equation for 

the mechanical field is just a general expression of Newton’s second law and far 

from the truly complicated mechanical behavior of hydrogels. 

 

2.2 Formulation of MECe governing equations 

In order to overcome the limits of the above models, a novel mathematical 

model, called Multi-Effect-Coupling Electric-Stimulus (MECe) model is 

developed in this dissertation, based on the work done by Hon et al. (1999). 

Compared with the triphasic model, the MECe model provides a computational 

domain covering both the hydrogel and surrounding solution. The electric 

potential is also considered in the governing equations. Over the multi-field 

formulation, the MECe model includes a more accurate expression of the 

mechanical deformation of hydrogels. In addition, the displacement of hydrogel in 

the present MECe model is expressed explicitly in the governing equations, so 

that it is very convenient for transient simulations. As such, the developed MECe 

model is a fully multiphasic and mathematically precise formulation, which can 

give more reliable simulated results. 

In the MECe model, the mixture is assumed to consist of the solid phase 

denoted by superscript s, interstitial water phase by w and ion phase by k 
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( fnk L,2,1= , here fn is the total number of mobile species). Let αφ  (α = s, w, 

k) represent the volume fraction of the phase α and it is defined as 

dV
dV α

αφ =  (α = s, w, k)      (2.1) 

where αV  is the true volume of the phase α, V is the mixture volume. Then the 

saturation condition of the mixture can be expressed 

1
,,

=∑
= kwsα

αφ         (2.2) 

When infinitesimal deformation of the mixture is considered, the apparent 

volume ratio of the solid phase is given by 

)(1
10

EtrdV
dVJ

+
==        (2.3) 

in which V0 is the mixture volume at reference configuration, and E the elastic 

strain vector of the solid phase. The volume fraction of the solid phase is thus 

written as 

))(1(
0

0
0

0 Etr
J

dV
dV

dV
dV

dV
dV s

s
ss

s

+
==⋅==

φφφ     (2.4) 

where s
0φ  is the volume fraction of the solid phase at reference configuration. 

Due to the very small volume of the ion phase, kφ  is reasonably assumed zero in 

comparison with sφ  and wφ . Therefore one has the expression of the volume 

fraction of the water phase as 

))(1(
11 0

Etr

s
sw

+
−=−=

φφφ        (2.5) 

 If chemical reactions are neglected, each phase must follow the law of mass 

conservation as 
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0)( =⋅∇+
∂
∂ αα

α

ρρ v
t

 (α = s, w, k)    (2.6) 

where αv (α = s, w, k) is the velocity of the phase α, and αρ (α = s, w, k) the 

apparent mass density of the phase α. It is noted that the apparent mass density 

αρ  can be expressed by its respective true mass density αρT , i.e. ααα φρρ T= (α 

= s, w, k). Meanwhile, on the basis of incompressibility restriction, αρT  is 

reasonably assumed to be constant, and then Equation (2.6) is rewritten as 

0)( =⋅∇+
∂
∂ αα

α

φφ v
t

  (α = s, w, k)    (2.7) 

By combining Equations (2.2) and (2.7), the continuity condition for the mixture 

is given as 

0)(
,,

=⋅∇ ∑
= kwsα

ααφ v        (2.8) 

By the tensor analysis, one has 

αααααααααα φφφφφ ∇⋅+∇=∇⋅+⋅∇=⋅∇ vvvvv :)( Ι   (2.9) 

Thus Equation (2.8) is rewritten as 

∑
=

=∇⋅+∇
kws ,,

0):(
α

αααα φφ vvΙ      (2.10) 

 The rate of kinetic energy K& of the mixture is given by 

∫ ∑∑
==

⋅==
V

kwskws
dVKK

,,,,
)(

α

ααα

α

α ρvv &&&      (2.11) 

The internal energy of the mixture, U, can be expressed by the Helmholtz 

energy function F as 

TSFU +=         (2.12) 

The rate of internal energyU& is obtained as 

∫ ∑
=

++=++=
V

kws
dVTTSTSTFU α

α

ααα ρηη
,,

)()( &&&&&&& F    (2.13) 
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where T is the absolute temperature, S the entropy of the system, αF and αη are 

the density of Helmholtz energy and entropy per unit mass of the phase α 

respectively. 

  It is noted that both the internal energy U and Helmholtz energy F are state 

functions depending on their state variables, which include the following 

parameters of the multiphasic mixture, the thermal parameter T for the absolute 

temperature, the mechanical parameter E for the elastic strain tensor, the chemical 

parameters αρ  for the apparent densities and the electrochemical parameter fc  

for the fixed-charge density. With such constitutive consideration, the Helmholtz 

energy density is expressed by 

),,,,,( fkws cT ρρραα EFF =  (α = s, w, k)    (2.14) 

Thus the rate of Helmholtz energy density is derived as 

f
f c

c
T

T
&&&&&

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

= ∑
=

α
β

β
β

ααα
α ρ

ρ
FFFF

F
ks,w,

E
E

 (α = s, w, k)  (2.15) 

From Equation (2.9) one can know 

ββ
β

β ρρρ v∇−=≡ :Ι
Dt

D
&        (2.16) 

and with the fact that sJJ v⋅∇−=& , we have 

sff Jcc v∇−= :0 Ι&        (2.17) 

Noting the relation sTs FvFE s ⋅∇⋅= )(& , one can get 

ss vF
E

FFvF
E

E
E

∇⋅
∂
∂
⋅=⋅∇⋅

∂
∂

=
∂
∂ :))(())((:: TsssTs

ααα FFF &  (2.18) 

where sF and Ts )(F are the deformation gradient tensor and its transpose, 

respectively. 
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With substitution of Equations (2.16)-(2.18) into Equation (2.15), we obtain 

β

β
β

α
β

ααα
α

ρ
ρ vvF

E
F ∇

∂
∂

−∇
∂
∂

−⋅
∂
∂
⋅+

∂
∂

= ∑
=

::))((
,,

0 ΙΙ
kws

s
f

fTss

c
JcT

T
FFFF &&F (2.19) 

Substituting Equation (2.19) into (2.13), we have 

dVTT

c
JcT
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U

kws

s

V
kws

f
fTss

αααβ

β
β

α
β

α

ααα

ρηη
ρ

ρ ):

:)(((
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,,
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&&

&&

++∇
∂
∂
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−∇
∂
∂

−⋅
∂
∂
⋅+

∂
∂

=

∑

∫ ∑

=

=

v

vF
E

F

Ι

Ι)

F

FFF

  (2.20) 

The total rate of work W&  consists of two parts, the rate of work done by 

external forces eW&  and rate of work done by pressure pW& , i.e. 

pe WWW &&& +=         (2.21) 

The rate of work done by external forces eW&  is defined as 

∑ ∫ ∫
=

⋅+⋅=
kws

V Se dSdVW
,,

)(
α

αααααρ vtvf&     (2.22) 

where αf  is the body force per unit mass of the phase α , v⋅= αα σt  is the 

drag force applied on the surface, ασ  the stress tensor of the phase α  and v the 

external normal on the surface. Based on the symmetry of stress tensor and 

Gaussian gradient formula, we have the following transformation 

∫ ∫ ∫ ∫ ∇+⋅⋅∇=⋅⋅∇=⋅⋅=⋅
S S V V

dVdVdSdS ):)(()()( αααααααααα vσvσvσvσvt v (2.23) 

Thus Equation (2.22) can be rewritten as 

∑ ∫
=

∇+⋅⋅∇+=
kws

Ve dVW
,,

):)((
α

ααααααρ vσvσf&   (2.24) 

The rate of work done by pressure pW&  is defined as 

VpWp
&& −=         (2.25) 

Considering that, in the incompressible case 0=V& , the continuity equation (2.10) 

is adopted, one can get 
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∫ ∑
=

∇⋅+∇−=
V

kws
p dVpW

,,
):(

α

αααα φφ vvΙ&     (2.26) 

Substituting Equations (2.24) and (2.26) into (2.21), we obtain 

∑ ∫
=

∇−+⋅∇−⋅∇+=
kws

V
dVppW

,,
):)()((

α

αααααααα φφρ vσvσ If&  (2.27) 

The rate of heat transferred into the mixture is defined as 

)(
,,

∑ ∫ ∫
=

⋅−=
kws

V S
dSdVQ

α

αααγρ vq&      (2.28) 

where αγ  is the rate of heat generation per unit mass of phaseα , and αq  the 

heat flux vector. Similarly, with the Gaussian gradient formula we have  

∑ ∫
=

−⋅∇−=
kws

V
dVQ

,,
)(

α

ααα γρq&      (2.29) 

The rate of energy dissipation D&  is defined as 

∑ ∫
=

⋅Π=
kws

V
dVD

,,α

αα v&       (2.30) 

In the above Equation (2.30), αΠ  is the diffusive momentum exchange among 

different phases, and it is a physical parameter indicating the diffusive resistance 

to the relative flow between two phases. αΠ  can be expressed by their relative 

velocities as 

∑
=

−=Π
kws
f

,,
)(

β

αβ
αβ

α vv       (2.31) 

where αβf  is the diffusive drag coefficient between α and β phases (or 

constituents) and βααβ ff = . Evidently, αΠ  satisfies the following condition 

0
,,

=Π∑
= kwsα

α         (2.32) 

Based on the first law of thermodynamics, we have the following energy 

conservation relation for the irreversible thermodynamical system 

QWDUK &&&&& +=−+        (2.33) 

With substitution of Equations (2.11), (2.20), (2.27), (2.29) and (2.30) into (2.33), 
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we obtain 

∫ ∑ ∫ ∑
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(2.34) 

The chemical potential is defined as 

α
α

ρ
µ

∂
∂

=
F         (2.35) 

Then the chemical term of Equation (2.34) becomes 

αα
α
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α
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,, kws

   (2.36) 

The mechanical term in Equation (2.34) can be expressed by the second 

Piola-Kirchhoff stress tensor s
Eτ  and Cauchy stress tensor s

Eσ , which are 

defined respectively as 

∑
= ∂

∂
=

∂
∂

=
kws

s
E

,,α

α

EE
τ FF        (2.37) 

Tss
E

ss
E )(FτFσ ⋅⋅=        (2.38) 

In order to simplify Equation (2.34), the chemical-expansion stress CT  is 

introduced to replace the complicated expression, i.e. 

)(
,,

0 ∑
= ∂

∂
=

kws

f
C JcT

α
α

α
α

ρ
ρ F       (2.39) 

By substituting Equations (2.36), (2.38) and (2.39) into (2.34), a more complete 

expression for Equation (2.33) is obtained as 
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∫ ∑ ∫ ∑
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(2.40) 

Due to the independence of the variables αv , αv∇  and T& , in order to 

satisfy Equation (2.40), the following equations are derived 

Momentum equations 

0=∇+Π+−+⋅∇ ααααααα φρρ pvσ &f  (α = s, w, k)   (2.41) 

Constitutive equations 

ΙΙΙ C
sss

E
ss Tp −−+−= µρφ σσ     (2.42) 

ΙΙ αααα µρφ −−= pσ  (α = w, k)    (2.43) 

Heat transfer equation 

0=−+⋅∇ ααααα γρηρ &Tq  (α = s, w, k)    (2.44) 

By summation of Equation (2.41), the momentum equation for the multiphasic 

mixture is written as 

0=−+⋅∇ vσ &ρρf       (2.45) 

in which ∑
=

=
kws ,,α

ασσ , ρρ
α

αα /)(
,,

∑
=

=
kws

ff  and ρρ
α

αα /)(
,,

∑
=

=
kws

vv . In present 

studies, the body force f and inertial force v&ρ  are neglected and then Equation 

(2.45) is simplified to 

0=⋅∇ σ        (2.46) 

It is noted that for an osmotic process at constant temperature, the relation 

between the chemical potential and osmotic pressure osmp  can be derived by the 

Gibbs-Duhem equation as  
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∑
=

=
kws

osm ddp
,,α

αα µρ        (2.47) 

Integrating Equation (2.47) we have 

∑
=

−=
kws

osmp
,,

0 )(
α

ααα µµρ        (2.48) 

In summation of Equations (2.42) and (2.43), the constitutive equation for the 

mixture stress tensor is given as 

Ι+−= )( C
s
E Tpσσ        (2.49) 

where the total pressure p includes osmotic pressure osmp . As mentioned above, 

the chemical-expansion stress CT  is not considered here. With the assumption of 

isotropic elastic material, s
Eσ  is written by 

EEσ ss
s
E tr µλ 2)( +Ι=       (2.50) 

in which sλ  and sµ  are Lame coefficients of solid matrix. Therefore, Equation 

(2.49) is rewritten as 

EEσ sstrp µλ 2)( ++−= ΙΙ       (2.51) 

Without consideration of body force and inertial forces, by combining 

Equations (2.41) and (2.43), the momentum equations of water and ion phase in 

terms of their chemical potential are obtained as 

0=Π−∇ ααα µρ  (α = w, k)    (2.52) 

Substituting Equation (2.31) into (2.52), one can get the momentum equations 

in terms of the chemical potential and velocity as follows 

0)()(
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=−+−+∇− ∑
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ws
ws

ww ff vvvvµρ    (2.53) 
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kk fff
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0)()()( vvvvvvµρ   (2.54) 
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Based on the work of Lai et al. (1991), we obtain the following constitutive 

equation for the chemical potential for water and ion phases 

))((1
1

0 EB trcRTp w

n

k

kk
w
T

ww
f

+Φ−+= ∑
=ρ

µµ    (2.55) 

k
c

k
k

kk
kk

M
Fzc

M
RT ψγµµ ++= )ln(0      (2.56) 

where αµ0 (α = w, k) are the chemical potentials of the phase α at reference 

configuration, R is the universal gas constant, Fc Faraday constant, Bw the 

coupling coefficient, ψ electric potential, kΦ  osmotic coefficient of ion k, kc  

concentration of ion k, kγ  the activity coefficient of ion k, kM  the molar 

weight of ion k, kz  valance of the kth ion.  

 So far the previous works done by Hon et al. (1999) and Lai et al. (1991) are 

summarized. On the basis of their work, the MECe model is developed as follows. 

With the reasonable assumption that skf  and kjf  are neglected in comparison 

with wsf  and wkf , by Equations (2.53) and (2.54), the simplified formulation for 

the momentum equation of fluid phase is given as 

α

α

α µρ ∇=− ∑
= kw

ws
wsf

,
)( vv       (2.57) 

Substituting the constitutive relations of the mixture and each phase expressed 

by Equations (2.51), (2.55) and (2.56) into the momentum equations (2.46) and 

(2.57), we have 

0)2)(( =++−⋅∇ EE sstrp µλ ΙΙ       (2.58) 

)()1(()( E)Bvv w trczFcRTpf
k

kk
c

k

kkwws
ws ∇+∇+Φ−∇+∇=− ∑∑ ψφ  (2.59) 

With the assumption that kφ  is equal to zero, combining Equations (2.2) and 
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(2.8), one can write 

swsw vvv ⋅∇=−⋅∇ ))((φ       (2.60) 

By using Equation (2.60), Equation (2.59) is rewritten as 
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∂
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∇ ∑∑ ψφ  (2.61) 

where u is the displacement of the solid phase. 

As is well known, the pressure is caused by the ionic concentration difference 

between the hydrogel and surrounding solution. In the MECe model, the ionic 

concentration is determined by a Nernst-Planck equation as follows 

i
k

i
k

k
kck

iki ccDz
RT
FcDJ v+−−= ,, ψ   (k = 1, 2, … fn )  (2.62) 

where i denotes the spatial direction xi, the subscript i after a comma indicates 

partial differentiation with respect to the variable xi, and Dk is the diffusive 

coefficient of ion k. The diffusion equation of the ionic species k is 

kii

k

rJ
t

c
+−=

∂
∂

,   (k = 1, 2, … fn )    (2.63) 

in which rk is the source term resulting from the chemical conversion of the 

molecules. 

 By combining Equations (2.62) and (2.63), the following 

convection-diffusion equations are obtained as 
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k
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c
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k
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ccD
RT

zFcD ,,,,, )()()( v+
∂
∂

=+ ψ  (k = 1, 2, … fn )  (2.64) 

where rk is neglected due to the ideal solution assumption. 

 In addition, in the MECe model, the externally applied electric field is an 

important factor for the deformation of hydrogels and it is expressed by the 
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Poisson equation as 

∑
=

+−=∇
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ffkkc czczF
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2 )(
εε

ψ       (2.65) 

in which the fixed-charge density fc is given by 

)/)(1())(1( 0

000
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EE +
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+
=     (2.66) 

where ε  is the dielectric constant, 0ε  the permittivity of free space, fz the 

valence of the fixed-charge groups, fc0  the fixed-charge density at the reference 

configuration and w
0φ  the volume fraction of the water phase at the reference 

configuration. 

The full formulation of the MECe model is thus far completed. The model 

consists of the Nernst-Planck type convection-diffusion equations (2.64) for the 

ionic concentrations, Poisson equation (2.65) for the electric potential, the mixture 

continuity equation (2.61) for the fluid pressure and the mixture momentum 

equation (2.58) for the hydrogel displacement. They are a set of coupled nonlinear 

partial differential equations and numerically solved here by a hierarchical 

iteration technique. As shown in Figure 2.1 for the flow chart of the computation, 

in the inner iteration, the ionic concentrations and electric potential are computed 

simultaneously by solving Equations (2.64) and (2.65). Then substituting the 

computed results into the outer iteration, the fluid pressure and hydrogel 

displacement are obtained respectively by Equations (2.61) and (2.58). 

Additionally, wφ  and cf required in solving these equations are calculated by 

Equations (2.5) and (2.66). The developed MECe model can be used for both 
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transient and steady-state simulations of the electric-sensitive hydrogels. 

 

2.3 Boundary and initial conditions 

In this dissertation, only one-dimensional simulations are conducted, and two 

kinds of boundary conditions are required at the solution ends (electrodes) and the 

hydrogel-solution interfaces, respectively. The first is the Dirichlet boundary 

conditions for the ionic concentrations and electric potential applied at two ends of 

the solution, which are expressed as follows 

*|| ccc CathodeAnode ==        (2.67) 

eAnode V5.0| =ψ   and  eCathode V5.0| −=ψ     (2.68) 

where *c  is the initial ion concentration of the bath solution and eV  the 

externally applied voltage. 

The second kind of boundary conditions is to assign the values of the fluid 

pressure and hydrogel displacement at the hydrogel-solution interfaces. Based on 

the assumption that, at equilibrium state, the chemical potentials of water and ion 

phase within the hydrogels must be equal to those outside the hydrogels, the 

boundary conditions of the fluid pressure at the hydrogel-solution interfaces are 

given as 

0
1

interfaceoutinterfaceininterface )( pccRTp
fn

k

kk −−= ∑
=

−−    (2.69)  

where kc interfacein− are the ion concentrations within the hydrogels near the interfaces, 

kc interfaceout− the ion concentrations within exterior solution near the interfaces, 

and 0p denotes the fluid pressure at reference configuration. Due to the zero stress 
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of the mixture phase on the hydrogel-solution interface, the boundary conditions 

of displacement of the hydrogels on the hydrogel-solution interface are written as 

ΙΙ interfaceinterfacenterface 2)( ptr ss =+ EEi µλ       (2.70) 

The boundary conditions mentioned above are available for both steady-state 

and transient simulations. However, in the implementation of the transient 

computations for kinetic study of hydrogels, additional initial conditions are 

required. It is assumed that the hydrogel is initially in the equilibrium state only 

under the effect of bath solution without the externally applied electric field. 

Corresponding to this equilibrium state taken as the initial state for transient 

analysis, the steady-state simulations are carried out, and then the computed 

results of all four variables are used as the initial values for the initial conditions 

of transient analysis. They are 

steady
v

transient
initial cc 0==         (2.71) 

steady
v

transient
initial 0==ψψ         (2.72) 

steady
v

transient
initial pp 0==         (2.73) 

steady
v

transient
initial uu 0==         (2.74) 

where steady
vc 0= , steady

v 0=ψ , steady
vp 0=  and steady

vu 0=  denote the steady-state computed 

results without the externally applied electric field. 

 

2.4 Non-dimensional implementation 

For convenience of coding and computing, a non-dimensional formulation for 

the computed variables are defined as 
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refL
ζζ =  

refL
uu =       (2.75) 

ref

k
k c

cc =  
ref

f
f c

c
c =       (2.76) 

RT
F

ref α
ψ

ψ
ψψ ==         (2.77) 

RTc
p

p
pp

refref β
==        (2.78) 

where ζ  denotes the spatial coordinate variable, and α, β are non-dimensional 

adjusting parameters. 

Thus, the non-dimensional form of the partial differential governing equations 

of the MECe model can be obtained as follows 

ii
k

ref
k

refii
k

k
k

ii
k

k cL
t

cLcDzcD ,
2

,,,, )()()( v+
∂
∂

=+ ψα    (2.79) 

∑
=

+−=∇
fn

k

ffkkrefrefc czcz
RT

cLF

10

22
2 )(

αεε
ψ      (2.80) 

)2)((( EE ssref trpRTc µλβ +∇=⋅∇ ΙΙ)      (2.81) 

)])(1

)1(()([
22

EBw tr
RTc
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cRTp
ft
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RTc
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refk
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kk

ws

w

ref

ref

∇+∇+
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∂
∂

∇
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∑

ψα

βφ

   (2.82) 
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Figure 2.1 Computational flow chart of the developed MECe model. 
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Chapter 3 

 

Meshless Hermite-Cloud Numerical Method 
 

 In this chapter, a meshless numerical technique, called Hermite-Cloud 

Method (HCM), is introduced in detail, which will be employed for the present 

numerical simulations. After a brief overview of meshless numerical methods, the 

development of HCM is fully presented, including the theoretical formulation, 

computational implementation and numerical validations. An engineering 

application of HCM is also addressed for the nonlinear fluid-structure analysis of 

submarine pipelines. 

 

3.1 A brief overview of meshless methods 

For decades the finite element method (FEM) has been a dominant numerical 

tool for modeling and simulation of wide-range engineering problems. However, 

for some cutting-edge technologies, such as bio-micro-electro-mechanical systems 

(BioMEMS), which require the multiphysical and multiscale studies commonly, 

FEM exposes certain disadvantageous features, including the iterative remeshing 

to track dynamic processes in large deformation problems and the requirement for 

large storage and memory due to the large number of element nodes involved in 

FEM discretization. In order to overcome these deficiencies resulting from FEM, 

various meshless numerical techniques are recently developed (Liu GR, 2003). 
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According to the use of integration or not, these meshless methods can be 

classified into two groups. One is based on the strong-form of partial differential 

equations (PDEs), and it includes the finite point method (Onate et al., 1996) and 

smooth particle hydrodynamics (SPH) (Lucy, 1977). The other is based on the 

weak-form of PDEs, and it includes the element-free Galerkin method (EFG) 

(Belytschko et al., 1994) and diffuse element method (Nayroles et al., 1992). It 

should be noted that in the field of meshless technique development, Liu GR and 

his coworkers have made significant contributions by developing several efficient 

approaches, including the point interpolation method (PIM) (Liu GR and Gu, 

2001), the meshless Petrov-Galerkin method (MLPG) (Liu GR et al., 2001) and 

local point interpolation method (LPIM) (Liu GR and Gu, 2001). 

For solution of the presently developed MECe mathematical model, the new 

meshless HCM is used to solve the complex nonlinear coupled partial differential 

governing equations. Based on the Hermite interpolation theorem and point 

collocation as well as reproducing kernels techniques, the HCM is developed as a 

strong-form truly meshless technique. It employs the Hermite theorem to 

construct the interpolation functions, where the shape functions are constructed to 

correspond respectively to the unknown functions and their first-order derivatives. 

It is formulated on the basis of the classical RKPM but the fixed kernels are used 

here instead as the kernel function (Aluru and Li, 2001). Furthermore, for a given 

set of PDEs with the Dirichlet and/or Neumann boundary conditions, certain 

differential-type auxiliary conditions are derived with the Hermite theorem to 
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generate a complete set of partial differential boundary value (PDBV) problem. 

By scattering a set of points in the computational domain and its edges, the point 

collocation technique is applied for the PDBV discretization. The approximate 

solutions of both the unknown functions and their first-order derivatives are 

expressed in terms of the shape functions and unknown point values, resulting in a 

complete set of discrete algebraic equations. Finally, they are solved with respect 

to the unknown point values and the numerical solutions of the PDBV problem 

can be computed in a straightforward manner. 

 

3.2 Development of Hermite-Cloud method 

3.2.1 Theoretical formulation 

As one of mathematical operators, which can reproduce a function by 

integration transform over a computational domain, the reproducing kernel 

method for a 2-D real function ),( yxf  in a domain Ω is expressed as follows 

∫
Ω

−−Φ= dpdqqpfqypxyxf ),(),(),(       (3.1) 

where ),( yxΦ  is a real window function. According to the definition of the 

reproducing kernel method, the ideal window functions should be orthogonal, and 

its integration over Ω should be unity, so as to reproduce ),( yxf  exactly. 

Corresponding to various reproducing kernel methods, the selection of window 

functions is different. However, it is not often easy to select suitable functions 

because the window functions must satisfy both the conditions to exactly 

reproduce the unknown function )(xf . In the classical RKPM (Liu et al., 1995), 
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an approximate solution is constructed by introducing a window function ),( yxΦ  

as the product of a correction function ),,,( qpyxC  and a kernel function 

),( yxK , that is 

),(),,,(),( qypxKqpyxCqypx −−=−−Φ      (3.2) 

Substituting Equation (3.2) into Equation (3.1), the approximation ),(~ yxf  of the 

unknown function ),( yxf  can be rewritten as follows  

∫
Ω

−−= dpdqqpfqypxKqpyxCyxf ),(),(),,,(),(~      (3.3) 

Further to that mentioned above, the selection of kernel functions also 

differentiates the various reproducing kernel methods. If the fixed kernel is used 

as the present kernel function ),( yxK , Equation (3.3) can be represented as 

∫
Ω

−−= dpdqqpfqypxKqpyxCyxf kk ),(),(),,,(),(~     (3.4) 

in which the point ),( kk yx  is the center point of the fixed kernel corresponding 

to the kernel function ),( qypxK kk −− . It should be addressed that, for different 

PDBV problems, the kernel function may be constructed by different forms of 

weighted window functions, such as the Gaussian functions, spline functions or 

radial basis functions. In the present HCM, a cubic spline function is employed to 

construct the kernel function as 

)/()/)(()/)((),( ** yxyqyWxpxWqypxK kkkk ∆∆∆−∆−=−−   (3.5) 

where )(* zW is a cubic-spline window function and is defined as 
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where xpxz k ∆−= /)(  for the x-component and yqyz k ∆−= /)(  for the 

y-component. ∆x and ∆y denote the cloud size of the fixed kernel with the center 

point ),( kk yx  in x- and y- directions respectively. These parameters are adjusted 

depending on the point distribution and accuracy requirement, due to the 

consistency conditions, of the reproducing kernel approach. 

It is well-known in mathematics that a continuous function can be 

expressed as a sum of the linearly independent functions. As a result, the 

correction function ),,,( qpyxC  in Equation (3.4) may be given by  

TcccqpbqpbqpbyxqpqpyxC },,,)}{,(,),,(),,({),(),(),,,( 2121
*

ββ LL== CB  (3.7) 

where ),(* yxC  is a βth-order column coefficient vector and ),( qpB  a βth-order 

row basis-function vector, in which ),( qpbi  (i=1, 2, …, β) are linearly 

independent basis functions (β denotes the degree of the polynomials of the basis 

function). Usually the selection of basic functions depends on the PDBV problems 

to be solved. For example, for the one- or two-dimensional PDE system, the 

basis-function vector is defined as respectively 

 },,,1{)( 12 −= βpppp LB        (3.8) 

},,,,,1{)},(,),,(),,({),( 22
21 qpqpqpqpbqpbqpbqp == βKB  (β=6) (3.9) 

 The coefficients ic  (i=1, 2, …, β) in the coefficient vector 

),(* yxTC = },,,{ 21 βccc L  of Equation (3.7) are unknown and can be determined 

by the following consistency conditions of the reproducing kernel techniques 

),...,2,1(),(),(),,,(),( β=−−= ∫
Ω

idpdqqpbqypxKqpyxCyxb ikki  (3.10) 

 If a set of points is distributed arbitrarily in the integral domain Ω and along 
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its edges, the point collocation technique can be applied for PDBV discretization. 

By substituting Equation (3.7) into Equation (3.10), the consistency conditions 

(3.10), is represented in discrete form as 

∑

∑

=

=

∆−−=

∆−−=

T

T

N

n
nnninknknn

N

n
nnninknknni

SqpbqypxKyxqp

SqpbqypxKqpyxCyxb

1

*

1

),(),(),(),(

),(),(),,,(),(

CB
(i=1,2,…, β) (3.11) 

where NT is the total number of scattered points covering the interior domain Ω 

and the surrounding edges. The subscript n represents the nth scattered point. nS∆  

denotes the cloud area of the nth point. It is seen that Equation (3.11) is a set of 

linear algebraic equations with respect to the coefficients ic (i=1, 2, …, β). 

Therefore, it can be rewritten in the following matrix form with respect to the 

coefficient vector },,,{),( 21
*

βcccyxT
L=C  

),(),(),( * yxyxyx kk
T CAB =        (3.12) 

From Equation (3.12), we obtain 

),(),(),( 1* yxyxyx T
kk BAC −=       (3.13) 

where ),( kk yxA is a symmetric constant matrix at the fixed-cloud center point 

),( kk yx  

∑
=

∆−−=
TN

n
nnnjnknknnikkij SqpbqypxKqpbyxA

1

),(),(),(),( ( β,,2,1, L=ji ) (3.14) 

By substituting Equations (3.5), (3.7) and (3.13) into Equation (3.4), the 

approximate expression ),(~ yxf of the unknown real function ),( yxf can be 

obtained as 
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dpdqqpfqypxKyxyxqp

dpdqqpfqypxKyxqpyxf

kk
T

kk

kk

),(),(),(),(),(

),(),(),(),(),(~

1 −−=

−−=

∫

∫

Ω

−

Ω

∗

BAB

CB
 (3.15) 

which can further be discretized as 

n

N

n
nn

N

n
nnknk

T
kknn fyxNfSqypxKyxyxqpyxf

TT

∑∑
==

− =∆−−=
11

1 ),()),(),(),(),((),(~ BAB  

(3.16) 

where nf  is defined as the point value of the nth point. ),( yxNn  are the shape 

functions that consist of the basis functions and are simply polynomials in x and y. 

Thus, any derivative of the shape functions can be easily obtained by the 

differentiation of basis function vector ),( yxB . Furthermore, it is obvious that 

the present shape functions ),( yxNn  satisfy the consistency conditions (3.10) or 

(3.11) for all independent basis functions ),( yxbi (i=1, 2, …, β). In particular, 

when 0.1),(1 =yxb  (i=1), xyxb =),(2  (i=2) and yyxb =),(3  (i=3) are taken 

for the discretized consistency conditions (3.11), we have 

∑
=

=
TN

n
n yxN

1

),(0.1 ,  ∑
=

=
TN

n
nn xyxNx

1

),( , ∑
=

=
TN

n
nn yyxNy

1

),(   (3.17) 

According to the Hermite theorem, the first-order derivatives of the unknown real 

function ),( yxf with respect to the variables x and y are defined as 

x
yxfyxg x ∂

∂
=

),(),( ,  
y

yxfyxg y ∂
∂

=
),(),(      (3.18) 

When they are discretized by imposing Equation (3.16) in a similar manner, their 

approximate expression can be written as 

∑
=

=
SN

m
xmmx gyxMyxg

1
),(),(~       (3.19) 



Chapter 3: Meshless Hermite-Cloud Numerical Method 

 37

∑
=

=
SN

m
ymmy gyxMyxg

1
),(),(~       (3.20) 

where )( TS NN ≤  is the total number of scattered points, and xmg  and ymg  are 

the unknown point values for the mth point. ),( yxM m  are the shape functions 

corresponding to the unknown first-order differential functions ),( yxg x  and 

),( yxg y , but their basis functions are now 1),( −∈ βRyxBg . 

Based on the Hermite interpolation theorem, a true meshless 

approximation ),(~ yxf of the unknown real function ),( yxf  can now be finally 

constructed in the following form 

∑ ∑

∑ ∑∑

= =

= ==

−+

+−+=

S T

S TT

N

m
ymm

N

n
nn

N

m
xmm

N

n
nn

N

n
nn

gyxMyyxNy

gyxMxyxNxfyxNyxf

1 1

1 11

),()),((

),()),((),(),(~

  (3.21) 

It is noted that there are many computational advantages in the presently 

constructed Hermite-based interpolation approximation. Most notably, the 

computational accuracy at scattered discrete points in the domain is much refined 

not only for the approximate functions, but also for their first-order derivatives. 

This is clearly demonstrated in the subsequently formulated equations 

(3.30)-(3.33), in which the final unknown vector of the set of the algebraic 

governing equations is derived by the discretized partial differential governing 

equations, and consists of all three unknown point-value vectors 
TNnf ×1}{ , 

SNxmg ×1}{ and 
SNymg ×1}{ corresponding to the approximate solutions of both the 

unknown functions and their first-order derivatives, which can thus be computed 

directly. In addition, the Hermite-based interpolation approximation (3.21) is also 
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used for construction of the following necessary auxiliary conditions. 

Due to the inclusion of additional unknown functions ),( yxg x and 

),( yxg y , certain auxiliary conditions are required to generate a complete set of 

PDBV equations. Based on Equation (3.18) for the defined ),( yxg x and ),( yxg y , 

the following auxiliary conditions are developed naturally with consideration of 

Equations (3.17) and (3.19)-(3.21) 

0),())),(((

),())),(((),(

1 1
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  (3.23) 

where the variable in the subscript after a comma indicates partial differentiation 

with respect to that variable. These auxiliary conditions are a necessary 

requirement in the implementation of the proposed HCM. 

Hence, the above formulation defines the HCM. In summary, on the basis 

of the Hermite interpolation theorem, HCM consists of the approximation 

),(~ yxf  of the unknown function ),( yxf , the approximations ),(~ yxgx  and 

),(~ yxg y  of the first-order derivatives ),( yxg x  and ),( yxg y , and further 

combines the necessary auxiliary conditions. 

 

3.2.2 Computational implementation 

In general, engineering PDBV problems can be written as 
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),(),( yxPyxf =L  PDEs in interior domain Ω    (3.24) 

),(),( yxQyxf =  Dirichlet boundary condition on DΓ   (3.25) 

),(),( yxR
n

yxf
=

∂
∂  Neumann boundary condition on NΓ   (3.26) 

where L is a differential operator and ),( yxf  an unknown real function. By the 

point collocation technique and taking ),(~ yxf  as the approximation of ),( yxf , 

the problem is discretized and expressed approximately by 

),(),(~
iiii yxPyxf =L   i=1,2,…, NΩ     (3.27) 

),(),(~
iiii yxQyxf =   i=1,2,…, ND     (3.28) 

),(),(~
ii

ii yxR
n

yxf
=

∂
∂   i=1,2,…, NN      (3.29) 

where NΩ, ND and NN are the numbers of scattered points in the interior domain, 

and along the Dirichlet and Neumann edges, respectively, and the total number of 

scattered points is thus NT=(NΩ+ND+NN). 

With the substitution of the approximations (3.19)-(3.21) into Equations 

(3.27)-(3.29), and further combining the auxiliary conditions (3.22) and (3.23), 

followed by rearrangement of the resulting equations, a set of discrete algebraic 

governing equations with respect to the unknown point values if , xig and yig , is 

derived and expressed in the following matrix form as 

1)2(1)2()2()2( }{}{][ ×+×++×+ =
STSTSTST NNiNNiNNNNij dFH     (3.30) 

where }{ id  and }{ iF  are )2( ST NN + -order column vectors, with 

T
NyiNxiNiNNi SSTST

ggfF }}{,}{,}{{}{ 1111)2( ××××+ =     (3.31) 

T
NNiiNiiNiiNNi SNDST

yxRyxQyxPd }}0{,)},({,)},({,)},({{}{ 211111)2( ×××××+ Ω
=  (3.32) 

and ][ ijH  is a )2()2( STST NNNN +×+  coefficient square matrix 
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(3.33) 

By solving numerically the complete set of linear algebraic equations, equation 

(3.30), )2( ST NN +  point values }{ iF  are obtained, consisting of the TN  point 

values }{ if  and SN2  point values }{ xig  and }{ yig . The approximate solution 

),(~ yxf  and the first-order derivatives ),(~ yxgx  and ),(~ yxg y  of the PDBV 

problem can be computed through Equations (3.21), (3.19) and (3.20) 

respectively. 

 

3.2.3 Numerical validations 

In order to examine the numerical stability and accuracy of the present HCM, 

numerical comparisons are made here for several 2-D plane-stress elasticity 

problems, including a higher-order patch subjected to a uniform unit-intensity 

unidirectional stress by comparison with exact solutions, cantilever beams 

subjected to linearly varying axial loads or shear end loads by comparison with 

the meshless hM-DOR method (Ng et al., 2003), and a 2-D thermo-elasticity 

analysis by comparison with the meshless Finite Cloud method (Aluru and Li, 

2001). These comparisons indicate that the computational accuracy of the present 

HCM at scattered discrete points in the domain is much refined not only for the 

approximate solutions, but also for the first-order derivatives of these solutions (Li 
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et al., 2003). To measure the numerical accuracy of the present HCM, a refined 

global error ξ is defined for the numerical comparison 

∑
=

−=
TN

i
ii

T

ff
Nf 1

2

max

)~(11ξ        (3.34) 

 

3.2.3.1 Higher-order patch 

For an isotropic higher-order patch subjected to uniform unidirectional stress 

of unit magnitude, as shown in Figure 3.1, the plane-stress equilibrium governing 

equations are given in terms of the displacements u and v as follows 
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where E is the elastic modulus and µ the Poisson’s ratio. Xx and Xy denote the 

body forces in the x and y directions, respectively. 

When the material constants are taken as E=1 and µ=0.25, the exact solution 

of this problem is  

xyxu =),( ,  yyxv 25.0),( −=       (3.37) 

By implementation of presently developed HCM, the displacements u and v are 

obtained numerically, as shown in Figures 3.2(a) and 3.2(b). It is observed that, 

for a point distribution 5×3, the global errors are ξ=3.19×10-7 for the displacement 

u, and ξ=3.32×10-7 for the displacement v when the numerical solution is 

compared with the exact one. It is evident that the present HCM can achieve 

almost exact results at the scattered discrete points even with a coarse 5×3 point 
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distribution for the present patch test problem. This example clearly indicates that 

the efficiency and ease of implementation of the present HCM are much improved 

over that of existing generic meshless techniques, such as the EFG method, since 

the HCM does not require a mesh background and has better consistency 

characteristics in the construction of the shape functions. 

 

3.2.3.2 Cantilever beam subjected to various loadings 

With the same equilibrium governing equations as Equations (3.35) and 

(3.36), a 2-D plane-stress cantilever beam is studied here. It is subjected to a 

linearly varying axial end load and a shear end load as shown in Figure 3.3 and 

Figure 3.5, respectively. 

The exact solution for the case shown in Figure 3.3 is given by 

xyyxu =),( , 8/)4(),( 22 yxyxv +−=      (3.38) 

With the application of the HCM for this elastic analysis, the numerical 

displacements u and v are computed and plotted in Figures 3.4(a) and 3.4(b). It is 

again noted that, for the same coarse 5×3 point distribution, comparison with the 

exact solution reveals the global errors ξ=1.61×10-6 for the displacement u and 

ξ=3.86×10-6 for the displacement v. 

In addition, the exact solution for the cantilever beam subjected to a shear end 

load, as shown in Figure 3.5, is given by 

)]2)(2()36[(
6

)5.0(),( 2 DyyxxL
EI

DyPyxu −++−
−

−= µ    (3.39) 

])3()25.11())(5.02(3[
6

),( 2222 xxLxDxLDDyy
EI
Pyxv −+++−+−= µµ (3.40) 
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where 12/3DI =  and D and L are respectively the height and length of the 

cantilever beam. 

 The displacement fields are solved numerically by the HCM, and the 

computed displacement profiles are illustrated in Figures 3.6(a) and 3.6(b). 

Further, in order to examine the present HCM convergence, the convergence 

comparison between the HCM and the meshless hM-DOR method (Ng et al., 2003) 

is made in Table 3.1. It is observed from the table that the HCM global errors of 

both the displacement u and first-order derivative u,x decrease monotonically with 

increasing the scattered points, and the HCM global errors are smaller than those 

of the hM-DOR method (Ng et al., 2003). These numerical results thus verify the 

HCM advantages mentioned above, that is, the HCM computational accuracy at 

scattered discrete points in the domain is much refined not only for the 

approximate solutions, but also for the first-order derivatives of these solutions.  

 

3.2.3.3 Coupled thermo-elasticity 

A plane-stress analysis of coupled thermo-elasticity is conducted here by the 

developed HCM, as shown in Figure 3.7. The partial differential governing 

equations in terms of the displacements u and v and temperature T consist of the 

heat conduction equation and the generic thermo-stress elastic equations as 

follows 

h
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            (3.41) 
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where h is the heat source, T0 the initial reference temperature and α the 

coefficient of thermal expansion. The considered boundary conditions are 

0),( =yxu ,  0),( =yxxyσ , 0),(, =yxT x ,  at x=0 and 1  (3.44) 

0),( =yxv ,  0),( =yxxyσ , 0),( =yxT ,  at y=0   (3.45) 

0),( =yxxyσ , 0),( =yxyyσ , 0),( =yxT ,  at y=1   (3.46) 

If we take 00 =T , 20=h , 7100.3 ×=E , 001.0=α  and 25.0=µ , the 

exact solutions of this coupled thermo-elasticity problem are 

210),( yyxT = , 0),( =yxu , 3/0125.03/)1(10),( 33 yyyxv =+= µα  (3.47) 

Again the computations are carried out with the developed HCM, and the 

variable fields ),( yxT , ),( yxu  and ),( yxv  and their first-order derivatives are 

obtained numerically, with a regular 5×5 point distribution. The numerical results 

demonstrate that the standard error of the displacement u is of the order of 10-11 

and the global error of the temperature ),( yxT  is less than 1.0×10-7. A probable 

reason for the excellent results is that the exact solutions of u and T can be found 

in the basis functions. However, this explanation is not applicable for the 

numerical results of the displacement v because its exact cubic solution does not 

exist in any of the basis functions. In comparison with the exact solution, Figure 

3.8 presents the accuracy variation of the displacement v with the increase of the 

regularly scattered points, for TN  (total point number) = 25 (5×5), 121 (11×11) 
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and 441 (21×21). It is evident that the computed accuracy of displacement v is 

significantly refined with increasing the scattered points. Figure 3.9 compares the 

convergence characteristics of the present displacement ),( yxv  and the 

first-derivatives ),(, yxv y  with those obtained by the meshless Finite Cloud 

method (Aluru and Li, 2001). Present HCM convergence rates are 2.12 for 

),( yxv  and 1.89 for ),(, yxv y while those of the Finite Cloud method are 2.2 for 

),( yxv  and 1.95 for ),(, yxv y . Therefore, it is convinced that the present HCM 

can achieve better computational accuracy for both the field-variable solution and 

the first-order derivative than the Finite Cloud method. 

 

3.3 An application for nonlinear fluid-structure analysis of 

submarine pipelines 

As an application of the present HCM in submarine engineering, a nonlinear 

fluid-structure interaction of near-bed submarine pipelines under a current is 

studied (Li et al., 2004) in this section. As is well known, if a submarine pipeline 

is placed near the seabed, the horizontal current is not symmetrical to the pipeline 

because of the influence of seabed. As such, a downward external load is 

produced and applied on the pipeline, resulting in the deformation of pipeline. 

This problem can be simplified as a beam with various boundary supporting 

conditions. In a previously published work, Lam et al. (2002) simplified the 

pipeline as a Bernoulli-Euler beam by the assumption that there is no transverse 

shear strain, and they studied the static behavior of the pipeline under a static 
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nonlinear external load. However, the assumption is not applicable for some 

problems, such as the case when the ratio of length to diameter of the pipeline is 

not very large, and then the effect of shear deformation can not be neglected. In 

order to overcome the limit, the Timoshenko beam theory (Reddy, 1993) is 

introduced here to include the effect of transverse shear deformation. 

 According to the Timoshenko beam theory, the governing equations of the 

pipeline are generally written as 

0)()]([ =++
∂
∂

∂
∂ xf

x
wGAk

x s θ       (3.48) 
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EI

x s       (3.49) 

where w is the pipeline deflection, θ  the rotation, G the shear modulus, A the 

cross section area, ks the shear correction coefficient, E the elasticity modulus and 

I the inertia moment. The corresponding boundary conditions are generally given 

as 

wxw =)( 0 , on wΓ        (3.50) 

θθ =)( 0x , on θΓ        (3.51) 

M
x

EIxM xx =
∂
∂

= = 0
)( 0

θ ,  on MΓ      (3.52) 

V
x
wGAkxV xxs =
∂
∂

+= = 0
)()( 0 θ , on VΓ     (3.53) 

in which wΓ , θΓ , MΓ and VΓ are the boundaries where w, θ , M and V are 

satisfied, respectively. With the fully fixed boundary conditions of the present 

study, w andθ are equal to zero. 

 In the governing equation (3.48), f(x) is the fluid load caused by the difference 

of current pressure. Because the analytical solution of f(x) converges slowly, Lam 
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et al. (2002) constructed the approximation of the exact solution by the boundary 

element method (BEM) to speed up the computation. The numerical results match 

well with the analytical solution of Lai et al. (2002). Thus, the expression of fluid 

load f(x) is given as 

)(
2
1)( 2

0 dcAUxf ρ=        (3.54) 

where ρ is the mass density, U0 the current velocity, c and d are dimensionless 

coefficients and they are defined by the following relation 

ddd
dddc

02.044.077.0
02.054.1223.2)( 23

2

++
++

=      (3.55) 

in which d is defined as )2/())(( 0 ss RRxwDd −−= , and D0 is the distance 

between the seabed and the central line of pipeline at initial stage, and Rs the pipe 

outer radius.  

 It is observed from Equations (3.54) and (3.55) that the fluid load f(x) is a 

nonlinear variable related to the deflection w(x). The governing equations (3.48) 

and (3.49) for the pipeline deformation are thus a set of coupled nonlinear 

equations. It is also noted that, when the material and dimension of pipelines are 

given, the fluid load f(x) is a function of both the current velocity U0 and the gap 

D0. This means that the deformation behaviors of the near-bed submarine 

pipelines are greatly affected by these two parameters. 

 Several simulations are carried out here for a circular steel pipeline placed 

near the seabed under a static current, as shown in Figure 3.10. The relevant 

physical and material parameters given are the pipeline length L=10(m), 

Rs=0.5(m), the thickness of steel pipeline ts=0.02(m), D0=0.7(m), 
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E=2.11 1110× (N/m2), Poisson ratioν =0.3, sρ =7800(kg/m3), steel yield stress 

Ys=2.5 810× (N/m2), and the allowable deflection/span ratio Yw=0.004. It is seen 

that the ratio L/Rs is not very large. As such, the pipeline should be simplified as a 

thick beam fixed at two ends. By the Timosheko beam theory and meshless 

Hermite-Cloud method, numerical simulations are conducted and then discussions 

are presented subsequently. 

 The variation of mid-point deflection 2/Lw with the current velocity U0 is 

illustrated in Figure 3.11. It is observed that, the deflection enlarges with the 

increase of current velocity U0 until a critical value Ucb. If the velocity U0 is under 

the critical value Ucb, the computed deflection converges well with the iterations 

and the pipeline reaches the stable equilibrium. However, when the velocity U0 is 

larger than the critical one Ucb, the computed deflection does not converge, which 

is defined as the instability, and then the pipeline will fall into the seabed. This is 

the first failure pattern of pipelines, termed the instability failure. 

 Figure 3.12 reveals the influence of the distance D0 on the critical current 

velocities Ucb caused by instability failure. It is shown that Ucb is a monotonically 

increasing function of D0. As indicated in Equations (3.54)-(3.55), when other 

variables are given, the fluid load f(x) decreases with the enlargement of D0, and 

increases with increasing U0. Therefore, in order to attain the same critical fluid 

force causing the pipeline to lose the stability, it is reasonable to require a higher 

critical velocity Ucb corresponding to an increasing D0 . It is also expected that the 

critical velocity Ucb becomes infinite when the gap grows to be infinite, since the 
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effect of seabed on the current is then zero and the flow keeps the symmetry. 

 Sometimes failure due to the material properties happens before the instability 

failure, thus it is necessary to discuss the material failure here. The distribution of 

stress along the pipeline is plotted in Figure 3.13. Although the presently observed 

curve is similar to that of a fully fixed beam under the uniform load, their essential 

characteristics are different. For the full-fixed beam subject to uniform load, the 

maximal absolute value of stresses or moments along the beam occurs at the 

middle point, while the present maximal absolute value of stresses or moments 

appears at the end points, as shown in Figure 3.13. This phenomenon results from 

the different external load distribution. In this discussed problem, the fluid load f(x) 

is coupled with the pipeline deflection w(x) as a decreasing function. Since the 

deflections at two ends due to the fully fixed boundary conditions are equal to 

zero and thus are always smaller than that of middle point, it is known by 

Equations (3.54) and (3.55) that the fluid load f(x) at two ends is larger than that at 

middle point. Therefore, the characteristic of the beam when the load is 

independently imposed on the beam is totally different from that coupled with the 

deflection of pipeline. 

 Figure 3.14 presents the critical velocities caused respectively by the two 

types of material failures − the strength failure and the deflection failure. As 

mentioned above, the stress at end points and the deflection at the middle point 

firstly reach the respective critical values along the whole pipeline. Thus it is 

reasonable to define their corresponding critical current velocities as the critical 
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values of the whole pipeline system. It is seen from Figures 3.14(a) and 3.14(b) 

that, with the increase of current velocity U0, both the stress at end point and 

deflection at middle point increase. When they reach the yield stress and 

allowable deflection respectively, the corresponding critical velocities Ucs and Ucw 

are obtained. 

 Similarly, for analysis of the influence of the distance 0D  between the 

pipeline and seabed on the critical velocities of different failure patterns, the 

variations of respective critical velocities including Ucb due to instability failure, 

Ucs due to strength failure and Ucw due to deflection failure, with the gap D0 are 

synthetically plotted in Figure 3.15. It is found from the figure that bifurcations 

occur at both points A and B. It means that, beyond point A, the pipeline will not 

break down because of the stability loss, since the strength failure always appears 

before the instability failure. The present results agree well with Lam’s work 

(2002), in which the pipeline is simplified as a Bernoulli-Euler beam. 
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Table 3.1  Numerical comparisons between the present Hermite-Cloud method 

and the hM-DOR method for a cantilever beam subjected to a shear end load 

(E=3.0×107, D=1, L=8 and µ=0.25). 

Global Error (ξ) for u Global Error (ξ) for u,x Points 

Distribution 

(Nx×Ny) 
hM-DOR Hermite-Cloud hM-DOR Hermite-Cloud

5×11 35.9% 35.9% 30.9% 30.9% 

11×11 17.9% 17.7% 15.0% 14.9% 

21×11 6.16% 5.92% 5.38% 5.19% 

65×11 4.28% 1.95% 3.92% 2.13% 

81×11 4.01% 0.384% 3.90% 1.92% 
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Figure 3.1 Geometry and point distribution for the higher-order patch subjected 

to a uniform unidirectional stress of unit magnitude. 
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Figure 3.2(a)  Numerical comparison of displacement u for the higher-order 

patch subjected to a uniform unidirectional stress of unit magnitude. 
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Figure 3.2(b)  Numerical comparison of displacement v for the higher-order 

patch subjected to a uniform unidirectional stress of unit magnitude. 

 

 

 

Figure 3.3 Geometry and point distribution for a cantilever beam subjected to a

linearly varying axial load at the end of the beam. 
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Figure 3.4(a) Numerical comparison of displacement u for the cantilever beam 

subjected to a linearly varying axial load at the end of the beam. 
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Figure 3.4(b) Numerical comparison of displacement v for the cantilever beam 

subjected to a linearly varying axial load at the end of the beam. 
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Figure 3.5 Geometry and point distribution for a cantilever beam subjected to a 

shear load at the end of the beam. 
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Figure 3.6(a) Numerical comparison of displacement u for the cantilever beam 

subjected to a shear load at the end of the beam. 
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Figure 3.6(b) Numerical comparison of displacement v for the cantilever beam 

subjected to a shear load at the end of the beam. 

 

Figure 3.7 Geometry of the 2-D thermoelasticity problem. 
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Figure 3.8 Variation of the numerical displacement v with the point distribution 

density for the thermo-elasticity case. 
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Figure 3.9 Convergence comparison between the present Hermite-Cloud method 

and Finite-Cloud method for the thermo-elasticity case  

(ξ− global error, h − point distance). 
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Figure 3.10 Schematic diagram of a submarine pipeline and its deformation  

under a current. 
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Figure 3.11 Variation of the deflection at the mid-point of pipeline with respect to 

the current velocity U0 (when D0 =0.7m). 
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Figure 3.12 Effect of the gap D0 on the critical velocities Ucb of  

the instability failure. 
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Figure 3.13 Distribution of the stress along the pipeline  

(when U0 =10m/s and D0 =0.7m). 
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Figure 3.14(a) Critical velocities of strength failure (when D0 =0.7m). 
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Figure 3.14(b) Critical velocities of deflection failure (when D0 =0.7m). 
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Figure 3.15 Comparison of distributions of respective critical velocities with 

respect to the gap D0 in various failure patterns. 
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Chapter 4 

 

One-dimensional Steady-State Simulations for 

Equilibrium of Electric-Sensitive Hydrogels 
 

In this chapter, the simplified one-dimensional model of a hydrogel strip is 

firstly described. It is followed by the steady-state formulations of the reduced 

governing equations and corresponding discretizations. After validation of the 

developed MECe model by comparison with experiments, several studies of the 

physical parameters are carried out in detail. 

 

4.1 A reduced 1-D study on hydrogel strip subject to applied 

electric field 

As shown in Figure 4.1, a hydrogel strip is immersed into a bath solution 

subject to an externally applied electric field. With the coupling effects of the 

chemical and electric fields, the hydrogel strip is expected to bend towards either 

the cathode or anode direction, depending on the electric distribution of 

fixed-charges in hydrogels. It is noted that, in this dissertation, only the 

one-dimensional studies for hydrogels are made in both the steady-state and 

transient simulations. Thus only the deformation of hydrogels along the x 

direction is computed. It is also assumed that one of the middle points of hydrogel 

thickness b is fixed and its displacement is thus equal to zero. Further, although 
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the MECe model is applicable for the multi-electrolyte bath solution, this 

dissertation mainly focuses on the study associated with the simple solution 

consisting of two ionic species, such as NaCl solution. 

 

4.2 Discretization of steady-state MECe governing equations 

For the one-dimensional steady-state simulations, the reduced governing 

equations of the MECe model can be derived from Equations (2.79)-(2.82) 

Convection-diffusion equations (2.79) for the ion concentration kc is reduced to 
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Poisson equation for the electric potential ψ  
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Continuity equation of the mixture for the pressure p 
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in which 1=Φ=Φ −+  is assumed for an ideal solution without chemical reaction, 

and the assumption 0=wB  is also adopted since its value is very small when 

)(EBwtr  is compared with the pressure p. 

Momentum equation for the hydrogel displacement u 
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where isotropic strain is assumed for the hydrogel strip, namely 
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)/(33)( 11 xuetr ∂∂==E  (Here 11e  is the x-component of strain vector E ). With 

this assumption, the boundary condition (2.68) is simplified as 

interface
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∂
+       (4.5) 

In order to discretize the reduced governing equations, the discrete form of 

the variables are employed as 
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Based on the Hermite-Cloud method, the disretizations of the 1-D steady-state 

MECe governing equations and auxiliary conditions are obtained as follows 
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where np is the number of scattered points in the whole domain covering the 

hydrogel and surrounding solution, and npGel is that within the hydrogel domain 

only. 

 

4.3 Experimental comparison 

To validate the presently developed MECe model, a simulation is carried out 

and the computed results are compared with the experimental data for a specified 

hydrogel strip with positive fixed charges ( fz =+1). The parameters used in the 

simulation are taken from experimental data (Zhou et al., 2002) as 



Chapter 4: 1-D Steady-State Simulations for Equilibrium of Hydrogels 

 66

R=9.648×104(J/mol⋅K), F=9.648×104(C/mol), T=278(K), ,8.00 =wφ  

,80=ε ),/NmC(10854.8 2212
0

−×=ε ),Pa(102.123 5×=+ µλ  )mol/m(5.5 3* =c , 

fc0 =20 (mol/ 3m ), the 1-D computational domain L=20(mm), the thickness of 

hydrogel strip in the computing direction h=1(mm). The comparisons are 

presented in Figure 4.2, where the average curvature Ka, as a physical parameter 

measuring the extent of hydrogel deformation, is defined at the middle point of 

hydrogel thickness and ))2(/()(2 2121 eeheeKa ++−=  ( 1e  and 2e  are the 

hydrogel strains at the two ends of the strip thickness). It is observed from Figure 

4.2 that, with increasing applied voltage eV , the average curvature Ka increases 

quasi-linearly. The simulated results agree well with the experimental data under 5 

(V) applied electric field, in which their relative errors at eV =1 and 3 (V) are 

2.6% and 4.1%, respectively. However, they seem to have different trends above 5 

(V), in which their relative errors at eV =5, 7 and 9 (V) are 10.5%, 6.0% and 8.1%, 

respectively. The reasons may be that the bending deformation of the present 

electric-sensitive hydrogels depends directly on many parameters, including the 

voltage of applied electric field, electrolyte composition, fixed-charge, chemical 

reactions, temperature, heat conduction, ionic diffusion and convection. As a 

preliminary work with isotropy assumption, the influences of chemical reactions, 

heat conduction and temperature have not been included in the presently 

developed mathematical MECe model. The simplifications are feasible under low 

voltage (such as 5V) of the applied electric field. However, with the increase of 

the applied electric voltage, these nonlinear effects become more and more 
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significant and they should thus be considered. Probably, these are the main 

reasons for the different trends above 5V between the experimental data and the 

numerical results. Anyway, the present comparisons achieve very good 

agreements between the simulated results and experimental data. 

 

4.4 Parameters studies 

In the simulations for influences of physical parameters on the responsive 

behaviors of electric-sensitive hydrogels, the parameters used as input include 

T=298(K), F=9.648×104(C/mol), R=9.648×104(J/mol⋅K), ,8.00 =wφ ,80=ε  

),Pa(102.123 5×=+ µλ  ),/NmC(10854.8 2212
0

−×=ε  )m(105.1 2−×=L  fz =−1, 

and )m(105 3−×=h . As shown in Figure 4.3, a preliminary study is made before 

the parameter influences are discussed, where the distributions of ion 

concentrations and electric potential in both the hydrogel and exterior solution, 

and the displacement field of hydrogel strip are presented with ),mol/m(1 3* =c  

)mol/m(10 3
0 =fc  and )V(2.0=eV . It is observed from Figure 4.3(a) that, in the 

surrounding bath solution, the concentration of diffusive Na+ is equal to that of the 

diffusive −Cl . The ionic concentrations near the cathode increases with the 

distance away from the cathode while the ionic concentrations near the anode 

decreases with the distance away from the anode. However, within the hydrogel, 

there is a concentration difference between the diffusive Na+ and −Cl  due to the 

effect of fixed-charge, and both the ion concentrations decrease with the distance 

away from the cathode. It is also noted that, on the hydrogel-solution interface, 
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there is an evident difference between the ionic concentrations in the interior of 

the hydrogels and the surrounding solution, which results in the pressure to drive 

the hydrogels deform. In Figure 4.3(b), it is seen that, due to the influence of the 

fixed-charge groups, the distribution of electric potential is no longer linear in the 

whole computational domain, which collapses within the hydrogel domain. Due to 

the higher conductivity of the mobile ions within the hydrogels, the gradient of 

electric potential distributed in the hydrogels is smaller than that in the 

surrounding solution, which is compensated by a smaller step of the distributed 

electric potential on hydrogel-solution interface near the cathode in comparison 

with that near the anode. These simulated results are in a good agreement with the 

FEM results completed by Wallmersperger et al. (2001). In Figure 4.3(c), it is 

shown that the hydrogel displacement increases with the coordinate x, and it 

results from the non-uniform distributions of ionic concentrations and electric 

potential. 

 

4.4.1 Influence of external electric field 

In the present study on the electric-sensitive hydrogel, the influence of 

external electric field on the responsive behaviors of the hydrogels is discussed in 

this section. Figure 4.4 shows the influences on the distributions of ionic 

concentrations, electric potential and hydrogel displacement, and Figures 4.5 to 

4.7 show the influences on the variations of the average curvature Ka with various 

physical parameters including the fixed-charge density fc0 , bath solution 
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concentration c* and hydrogel strip thickness h.  

In Figures 4.4(a) and (b), ),mol/m(2 3
0 =fc  ),mol/m(1 3* =c  and 02.0=eV , 

0.04, 0.08, 0.16(V), with ψ=+0.01, +0.02, +0.04 and +0.08(V) at the anode, 

ψ=−0.01, −0.02, -0.04 and −0.08(V) at the cathode respectively. It is observed 

from the figure that, with the increment of the applied voltage Ve, the variations of 

Na+ and −Cl  concentrations on the hydrogel-solution interface near the anode 

are always smaller than those near the cathode, and the distributed gradients of 

Na+ and −Cl  concentrations within the hydrogels increase. Figure 4.4(c) shows 

that, when the applied voltage increases, the gradient of distributed electric 

potential increases in both the hydrogels and surrounding solution. Figure 4.4(d) 

demonstrates that, with the increase of applied voltage, the ionic concentration 

difference on the hydrogel-solution interface increases, and the hydrogel 

displacement increases as well. 

Figure 4.5 presents the influence of the externally applied electric field Ve on 

the variation of average curvature Ka with the fixed-charge density fc0 , where 

c*=1(mol/m3), Ve=0.02, 0.1 and 0.2(V), respectively. It is seen that, for a given 

applied voltage Ve, the average curvature Ka increases with the fixed-charge 

density fc0 . The presently simulated phenomena are validated by the experiment 

(Homma et al., 2000). Furthermore, in order to investigate the influence of the 

externally applied electric field Ve on the variation of average curvature Ka with 

the bath solution concentration c*, Figure 4.6 is depicted when 100 =fc (mol/m3), 

and Ve=0.02, 0.1 and 0.2(V), respectively. It is observed that an optimal c* value 
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appears when the hydrogel strip reaches the largest bending deformation. This 

means, when the bath solution concentration c* is larger than the computed 

optimal value, the bending deformation of hydrogel strip decreases with 

increasing c*. The present simulations agree well with the experimental 

phenomena (Homma et al., 2000, 2001; Sun et al, 2001; Fei et al., 2002). 

Figure 4.7 shows the relation between the average curvature Ka and the 

thickness h of hydrogel strip under various externally applied electric fields, 

Ve=0.02, 0.1 and 0.2(V) respectively, where 10=f
oc (mol/m3) and c*=1(mol/m3). 

It is predicted that the average curvature Ka of the hydrogel strip decreases rapidly 

with increasing the strip thickness h, which is in consistence with the experiment 

(Homma et al., 2000, 2001). 

 

4.4.2 Influence of fixed-charge density 

For the ionized hydrogels with capability of responding to electric stimulus, 

the fixed-charge density has significant influences on the responsive behavior of 

the hydrogels subject to externally applied electric field. Figure 4.8 demonstrates 

the influence of fixed-charge density fc0  on the distributions of diffusive ionic 

concentrations, electric potential and hydrogel displacement, where 

),mol/m(1 3* =c  )V(2.0=eV  and ,20 =fc ,4 )mol/m(8 3  respectively. It is 

illustrated in Figure 4.8(a) that the ionic Na+ concentration within the hydrogels 

increases with the fixed-charge density fc0 . This phenomenon results from that 

the present anion fixed-charge groups ( fz =−1) attached on the polymeric network 
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chains of the hydrogels attract the mobile cations Na+ to compensate the electric 

potential. Furthermore, it is seen from the Figure 4.8(b) that, the influence of the 

fixed-charge density fc0  on the distribution of −Cl  concentration is relatively 

small due to the anion fixed-charge groups. Figure 4.8(c) is plotted for the fc0  

effect on the distributed electric potential. With the increase of fixed-charge 

density fc0 , the more mobile ions diffuse into the hydrogels, the higher 

conductivity the hydrogels achieve. This results in the smaller gradient of electric 

potential distributed in hydrogels, compared with that in the surrounding solution. 

Figure 4.8(d) indicates that, with the increase of fixed-charge density fc0 , the 

ionic concentration difference increases on the solution-hydrogel interfaces, which 

leads to the larger deformation of the hydrogels. 

Figure 4.9 is presented to study the mechanical deformation of the hydrogel 

strip with h=5×10 3− (m) and c*=1(mol/m3), where the variations of the average 

curvature Ka against the externally applied electric field Ve are illustrated for 

different fixed-charge densities fc0 =1, 5 and 10(mol/m3). It is observed that, with 

the increase of the externally applied electric voltage Ve, the differences of both 

ionic concentrations and electric potential increase between the hydrogel strip and 

the surrounding bath solution. As such, the average curvature Ka increases rapidly 

with the applied electric voltage, and the bending deformation becomes larger, 

which are in a good match with the experimental phenomena (Homma et al., 2000; 

Sun et al, 2001; Fei et al., 2002). 
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4.4.3 Influence of concentrations of bath solution  

The effect of bath solution concentration *c on the distributions of diffusive 

ionic concentrations, electric potential and hydrogel displacement are shown in 

Figure 4.10, where ),mol/m(2 3
0 =fc  )V(2.0=eV  and ,1* =c ,2 ,4 )mol/m(8 3 , 

respectively. Figures 4.10(a) and 4.10(b) show that the increment of bath solution 

concentration *c  makes the diffusive Na+ and −Cl  concentrations increase in 

both the hydrogels and surrounding solution. It is also found in Figure 4.10(c) that, 

when the bath solution concentration *c  reaches a certain value much larger than 

the fixed-charge density fc0 , the concentration change of diffusive ions due to the 

attractive effect of fixed-charge may be neglected if compared with the 

distribution of bath solution concentration *c . Then the conductivity of hydrogels 

is almost equal to that of surrounding solutions, which makes the electric potential 

quasi-linearly distribute in whole computational domain. In Figure 4.10(d), it is 

observed that, with the increase of *c , the ionic concentration difference on the 

hydrogel-solution interfaces decreases, and then the hydrogel displacement 

decreases as well. 

 

4.4.4 Influence of ionic valences 

Figure 4.11 is plotted for discussion of the effect on ionic valence zk on the 

distributions of ionic concentrations, electric potential and hydrogel displacement, 

where ),mol/m(2 3
0 =fc  ),mol/m(1 3* =c  )V(2.0=eV  and kz =1, 2, 3 

respectively. It is observed from Figure 4.11(a) that, when the ionic valence kz  
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increases, the cation concentration decreases clearly within the hydrogels. The 

corresponding concentration distribution in the surrounding solution has an 

obvious variation near the anode while there is little variation near the cathode. 

Figure 4.11(b) shows that, with increasing kz , the corresponding anion 

concentration within the hydrogels grows. In the surrounding solutions, the 

distribution of anion concentration is almost equal to that of cation concentration. 

It is also found from Figures 4.11(c) and (d) that, when kz  varies from 1 to 2, 

the changes of the electric potential and hydrogel displacement are much more 

distinct than those when kz  varies from 2 to 3. 
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Figure 4.1 Schematic diagram of a hydrogel strip immersed in a bath solution 

under an externally applied electric field. 
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Figure 4.2 Comparison of numerically simulated results with experimental data. 
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Figure 4.3(a) Distribution of ion concentrations. 
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Figure 4.3(b) Distribution of electric potential. 

 



Chapter 4: 1-D Steady-State Simulations for Equilibrium of Hydrogels 

 76

 

 

 

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

D
is

pl
ac

em
en

t u
(m

m
)

Coordinate X(mm)

Figure 4.3(c) Distribution of hydrogel displacement. 
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Figure 4.4(a) Effect of externally applied electric field on the variation of Na+ 

concentration. 
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Figure 4.4(b) Effect of externally applied electric field on the variation 

of −Cl concentration. 
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Figure 4.4(c) Effect of externally applied electric field on the variation of electric 

potential. 

 



Chapter 4: 1-D Steady-State Simulations for Equilibrium of Hydrogels 

 80

 

 

0 1 2 3 4 5
-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 

 

D
is

pl
ac

em
en

t u
(m

m
)

Coordinate X(mm)

 Ve=0.02(V)
 Ve=0.04(V)
 Ve=0.08(V)
 Ve=0.16(V)

Figure 4.4(d) Effect of externally applied electric field on the variation of 

displacement. 
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Figure 4.5 Effect of externally applied electric field on the variation of  

average curvature Ka against fixed charge density. 
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Figure 4.6 Effect of externally applied electric field on the variation of average 

curvature Ka against bath solution concentration. 
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Figure 4.7 Effect of externally applied electric field on the variation of average 

curvature Ka against the thickness of hydrogel strip. 
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Figure 4.8(a) Effect of fixed charge density on the variation of Na+ concentration. 
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Figure 4.8(b) Effect of fixed charge density on the variation of −Cl concentration. 
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Figure 4.8(c) Effect of fixed charge density on the variation of electric potential 
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Figure 4.8(d) Effect of fixed charge density on the variation of displacement. 
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Figure 4.9 Effect of fixed charge on the variation of average curvature Ka 

against externally applied electric field. 
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Figure 4.10(b) Effect of exterior solution concentration on the variation 

of −Cl concentration. 
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Figure 4.10(c) Effect of exterior solution concentration on the variation of electric 

potential. 
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Figure 4.10(d) Effect of exterior solution concentration on the variation of 

displacement. 
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Figure 4.11(a) Effect of valence on the variation of cation concentration. 
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Figure 4.11(b) Effect of valence on the variation of anion concentration. 
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Figure 4.11(c) Effect of valence on the variation of electric potential. 
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Figure 4.11(d) Effect of valence on the variation of displacement. 
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Chapter 5 

 

One-dimensional Transient Simulations for 

Kinetics of Electric-Sensitive Hydrogels 
 

In this chapter, the transient simulations for the kinetics of electric-stimulus 

responsive hydrogels are conducted by the developed MECe model. After the 

discretization of the MECe governing equations, a numerical comparison is made 

between the presently simulated results and experimental data extracted from the 

open literature. It is followed by the detailed discussions of the kinetic variations 

of several important parameters.  

 

5.1 Discretization of the 1-D transient MECe governing equations 

For transient analysis of the electric-sensitive hydrogels, the time term is 

required in the MECe transient governing equations. Corresponding to the 

non-dimensional nonlinear partial differential governing equations of the MECe 

model expressed by Equations (2.79)-(2.82), 1-D non-dimensional MECe 

transient governing equations can be written as 
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in which all non-dimensional parameters and variables are defined in Equations 

(2.75)-(2.78). 

According to the θ-weighted numerical finite-difference scheme (0.5<θ <1.0), 

Equation (5.1) can be discretized in time domain as follows 

)])(1(

)([

2
)(

2

)(
)()(

2
)(

2

2
)1(

2

)1(
)1()1(

2
)1(

2

2)()1(

x
cz

xx
c

z
x
c

x
cz

xx
c

z
x
c

L
tDcc

nk
n

kn
k
nk

k
n

nk
n

kn
k
nk

k
n

ref

kk
n

k
n

∂

∂
+

∂

∂

∂

∂
+

∂

∂
−+

+
∂

∂
+

∂

∂

∂

∂
+

∂

∂∆
=− +

+
+++

+

ψ
α

ψ
αθ

ψ
α

ψ
αθ

(5.5) 

where the subscript (n) and (n+1) denote time variable at t = tn and at subsequent 

time t = tn+1 respectively and ∆t = tn+1 − tn is the time step. 

By the meshless Hermite-Cloud method, the governing equation (5.5) is 

further discretized in spatial domain as follows 

})(])())(()([

)()()({)1(

)())(()(

}])())(()([)(

)()()({

)())(()(

1
)(

1 1 1
)()(

1
)(

1
)(

1
)(2

1 1
)(

1
)(

1 1 1
)1()1(

1
)1(

1
)1(

1 1
)1()1(2

1 1
)1(

1
)1(

∑∑ ∑ ∑

∑∑∑

∑ ∑∑

∑ ∑ ∑∑

∑∑ ∑

∑ ∑∑

== = =

===

= ==

= = =
++

=
+

=
+

= =
++

= =
+

=
+

−−+

++
−∆

+

+−−=

=−−+

++
∆

−

−−−

np

j
njijxx

np

j

np

m

np

j
nmximjiji

k
njij

k

np

m
nmxim

np

m

k
nmxim

k
np

j

k
njijxx

ref

k

np

m

np

j
nmximjiji

np

j

k
njij

np

j

np

m

np

j
nmximjiji

k
njij

np

j
njijxx

k

np

m
nmxim

np

j

np

m

k
nmxim

kk
njijxx

ref

k

np

m

np

j
nmximjiji

np

j

k
njij

xNcxMxxNxcxNz

xMcxMzcxN
L

tD

cxMxxNxcxN

cxMxxNxcxNxNz

xMcxMzcxN
L
tD

cxMxxNxcxN

ψα

ψαθ

ψα

ψαθ

 

(5.6) 

Similarly, the other three governing equations (5.2) to (5.4) can also be 
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discretized to 
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Additionally, based on the Hermite theorem, the following auxiliary equations 

are required 
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5.2 Experimental validation 

In the experimental aspect of the kinetic responsive behaviors of 

electric-sensitive hydrogels subject to an externally applied electric field, 

extensive search of the literature has thus far yielded only one published work 

done by Shiga et al. (1990), who measured the endpoint displacement D of 

hydrogel strip in a convenient observation manner in the experiments, as shown in 

Figure 4.1, instead of the displacement u at the edge point a of the hydrogel 

domain between points a and b along x axis in the present 1-D simulations. Thus a 

relationship is required between these two displacements to compare the simulated 

results with experimental data. The experimental data (Shiga et al., 1990) 

employed as the input data for the present numerical computation include 

T=298(K), Fc=9.648×104(C/mol), R=8.314(J/mol⋅K), ,8.00 =wφ )m(100.5 2−×=L , 

)/NmC(10854.8 2212
0

−×=ε , ,80=ε  Ve = 3.0(V), h = 5.0×10-3 (m), 
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)mol/m(3.35 3
0 =fc , c* = 35.3 (mol/m3), fz =−1, and )Pa(108.123 4×=+ µλ  (It 

is adjusted for determination of a reference configuration. In fact, as described by 

Lai et al. (1991), “any configuration may serve a reference”. As such, the 

reference configuration is defined here to establish easily the relationship between 

the displacements u and D only). The computed displacement u and 

experimentally measured displacement D are tabulated in Table 5.1, at time t=1, 2, 

3, 4 and 5 (min), respectively. For construction of the relationship between the 

displacements u and D, the least square method is applied to both the 

displacements u and D at time t=1, 3 and 5 (min) with best-fitting, based on the 

data in Table 5.1, and thus the relationship between the displacements u and D is 

developed as  

247.093.058.1 uuD ++=        (5.14) 

Subsequently, substituting the displacements u and D at time t=2 and 4 (min) into 

Equation (5.14), the relative discrepancies are computed and then they are 

generally found to be smaller than 6%, which validates the relationship (5.14) 

between the displacements u and D acceptable. 

Figure 5.1 shows the comparison of the experimental endpoint displacement 

with the corresponding simulated endpoint displacement computed by Equation 

(5.14), where a very good agreement is achieved due to the acceptable relative 

errors being 1.0%, 5.8%, 1.0%, 2.9% and 1.0% at time t=1, 2, 3, 4 and 5 (min), 

respectively. This confirms that the presently developed MECe model is suitable 

for the kinetic analysis of electric-stimulus responsive hydrogels. 
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5.3 Kinetic studies of parameters 

In the previous steady-state analysis of the electric-sensitive hydrogels, the 

efforts are put into studying the influences of different physical parameters on the 

responsive steady-state behaviors of the hydrogels, including the distributions of 

diffusive ionic concentrations, electric potential and hydrogel displacement. In the 

present transient analysis, the variations of these parameter distributions with time 

are focused and discussed in detail. In the following numerical simulations, 

several parameters taken are ,8.00 =wφ T=298(K), Fc=9.648×104(C/mol), 

R=8.314(J/mol⋅K), L=1.5×10-2(m), ),/NmC(10854.8 2212
0

−×=ε ,80=ε  

),Pa(102.123 5×=+ µλ  fz =−1, )m(105 3−×=h , fws = 7.0×10-16(Ns/m4) and Dk 

= 1.0×10-7(m2/s). 

 

5.3.1 Variation of ionic concentration distributions with time 

Figures 5.2 to 5.15 present the variations of ionic concentration distributions 

with time under different combinations of the electric fields, fixed-charge 

densities and bath solution concentrations. These figures depict the kinetics of the 

electric-stimulus responsive hydrogels and the kinetic performance of ionic 

diffusion and convection. It is observed that, at initial time t=0, the external 

electric field is not imposed and then the distributions of ionic concentrations in 

whole computational domain are symmetric, resulting from the steady-state 

simulations without the external electric field. Once the electric field is applied on 
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the system, the distributions of diffusive ionic concentrations are no longer 

symmetric. With the increase of time, the diffusive ions redistribute continuously 

in both the hydrogel and bath solution, and the ionic concentration differences 

near the hydrogel-solution interfaces become larger and larger. It is expected that 

the ionic diffusion and convection will reach the equilibrium state after a specific 

time, which is dependent on various parameters and conditions, including the 

electric field, fixed-charge density and bath solution concentration. In general, the 

kinetic trends of ionic concentration distributions in Figures 5.2 to 5.15 are in 

good agreement with the FEM results carried out by Wallmersperger et al. (2001). 

It is also observed from Figures 5.2 to 5.4 and 5.9 to 5.11 that, if other 

parameters are fixed at a given time, the peak values of ionic concentrations on 

the hydrogel-solution interface near the cathode increase with the enlargement of 

the applied electric-field voltage, while those near the anode decrease. This means 

that, at a given time, the ionic concentration difference between the two 

hydrogel-solution interfaces increase with the applied electric field. The present 

transient simulations are consistent with those in steady-state studies, where the 

ionic concentration difference in equilibrium state becomes larger as well with the 

increment of the applied voltage. 

Variations of ionic concentration distributions with time under different 

fixed-charge densities are shown in Figures 5.2, 5.5, 5.6, 5.9, 5.12 and 5.13. They 

have similar characteristics to the steady-state simulations, where, with the change 

of fixed-charge densities, the changes of the cation Na+ distributions at a given 
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time are significant, while those of the anion Cl- distributions are small. Probably 

this results from the negative valence of fixed-charge groups. By comparing 

Figures 5.2, 5.7 to 5.9, 5.14 and 5.15, it is obviously found that, as the bath 

solution concentration increases, the kinetic gradient of ion concentration within 

the hydrogels increases. 

 

5.3.2 Variation of electric potential distributions with time 

Figures 5.16 to 5.22 show the kinetic variations of electric potential 

distributions under different environmental conditions. It is presented that, 

generally the downward step of the electric potential distributions within 

hydrogels becomes larger with the increase of time. After time about 100(s), the 

step changes gradually. Furthermore, it is found from Figures 5.16 to 5.18 that, 

with the increase of externally applied electric voltage, the step of electric 

potential distributions on the hydrogel-solution interface near the cathode 

diminishes gradually, while that near the anode increases. It is also seen from 

Figures 5.16, 5.19 and 5.20 that, with the increase of fixed-charge density, the 

variation of electric potential distributions with time becomes small. Probably the 

reason is that a higher fixed-charge density attracts more mobile ions into 

hydrogels and thus makes the conductivity within hydrogels close to that of the 

surrounding bath solution. 

 

5.3.3 Variation of hydrogel displacement distributions with time 
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Figures 5.23 to 5.29 present the variations of hydrogel displacement 

distributions with time. The trend of hydrogel displacement distributions is 

generally similar to that of electric potential distributions, namely, the 

displacement increases with time, in which the displacement initially increases 

rapidly, and then increases gradually. It is also note from these figures that the 

distributions of hydrogel displacement are nonlinear under externally applied 

electric field. The hydrogel displacement is linearly distributed along the x 

coordinate before the external electric field is applied. Once the electric field is 

loaded, there is the coupling effect of chemical and electric field in the considered 

system, where the hydrogel displacement immediately demonstrates the nonlinear 

distribution. It is evidently observed from Figures 5.23 to 5.29 that the curves are 

linear at t=0, and subsequently nonlinear. 

 

5.3.4 Variation of average curvatures with time 

As an important physical parameter measuring the extent of hydrogel 

deformation, the average curvature Ka defined by ))2(/()(2 2121 eeheeKa ++−=   

in section 4.3 is also discussed in details. It is seen from Figure 5.30 that for a 

given voltage, the average curvature Ka initially increases rapidly with time and 

then approaches the stable value after a critical time, which varies with the change 

of applied voltages. The critical time decreases with the increase of voltage. It 

may be explained that, the higher is the electric-field voltage, the larger is the drag 

force applied on the diffusive ions, which leads to reaching the equilibrium state 
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shortly. Based on the discussion of Figure 5.30, it is concluded that at a given time, 

the high voltage makes a larger average curvature. It is reasonable because a 

strong electric field can result in a higher ionic concentration difference, which 

will induce the larger deformation of hydrogels. 

 Figure 5.31 shows the effect of fixed-charge density on the distributions of 

average curvature with time, in which a critical time is also observed in the 

variation of average curvature, and the critical time decreases with increasing the 

fixed-charge density. A possible reason is that the fixed-charge is another driving 

source for ionic diffusion besides the electric field. It is found that at a given time, 

the average curvature increases with the increase of fixed-charge density. This is 

consistent with the previous steady-state studies, where the increase of 

fixed-charge density makes a larger deformation of hydrogel. 

 Figure 5.32 demonstrates the influence of bath solution concentrations on the 

variation of average curvature with time. It is seen that the critical time changes 

slightly with the bath solution concentration, which implies that the influence of 

the bath solution concentrations on the critical time is not significant in 

comparison with the effects of electric field and fixed-charge density. It is also 

illustrated in Figure 5.32 that, at a given time, the average curvature decreases as 

the bath solution concentration increases. This is consistent with the previous 

studies in the section 4.4.3, namely, the variation of diffusive ionic concentrations 

because of the effect of fixed-charge groups is negligibly small if the bath solution 

concentration is much larger than the fixed-charge density. 
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 By comparing Figures 5.30 to 5.32, it is observed that, in general, the average 

curvature Ka initially increases rapidly, and then increases gradually. It reveals 

that the electric-sensitive hydrogels have capability of responding very fast to the 

externally electric triggers, which is a very important feature of the hydrogels and 

makes them very suitable for BioMEMS application as biosensors/bioactuators. 
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Table 5.1 Measured displacement D and computed displacement u. 

Time (min) 1 2 3 4 5 

Displacement D† (mm) 2.1 3.1 4.1 5.0 6.1 

Displacement u‡ (mm) 0.45 0.97 1.54 1.94 2.27 

† Displacement D is measured experimentally at the endpoint of hydrogel strip, as 

shown in Figure 4.1. 

‡ Displacement u is simulated numerically at the edge point a of the 1-D 

computational domain, as shown in Figure 4.1. 
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Figure 5.1 Comparison between the transient simulated results for hydrogel 

displacement and experimental data. 
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Figure 5.2 Variation of cation Na+ concentration with time for Ve = 0.2(V), fc0 = 

2(mol/m3) and c* = 1(mol/m3). 
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Figure 5.3 Variation of cation Na+ concentration with time for Ve = 0.3(V), fc0 = 

2(mol/m3) and c* = 1(mol/m3). 
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Figure 5.4 Variation of cation Na+ concentration with time for Ve = 0.4(V), fc0 = 

2(mol/m3) and c* = 1(mol/m3). 
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Figure 5.5 Variation of cation Na+ concentration with time for Ve = 0.2(V), fc0 = 

4(mol/m3) and c* = 1(mol/m3). 
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Figure 5.6 Variation of cation Na+ concentration with time for Ve = 0.2(V), fc0 = 

8(mol/m3) and c* = 1(mol/m3). 
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Figure 5.7 Variation of cation Na+ concentration with time for Ve = 0.2(V), fc0 = 

2(mol/m3) and c* = 2(mol/m3). 
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Figure 5.8 Variation of cation Na+ concentration with time for Ve = 0.2(V), fc0 = 

2(mol/m3) and c* = 8(mol/m3). 
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Figure 5.9 Variation of anion Cl- concentration with time for Ve = 0.2(V), fc0 = 

2(mol/m3) and c* = 1(mol/m3). 
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Figure 5.10 Variation of anion Cl- concentration with time for Ve = 0.3(V), fc0 = 

2(mol/m3) and c* = 1(mol/m3). 
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Figure 5.11 Variation of anion Cl- concentration with time for Ve = 0.4(V), fc0 = 

2(mol/m3) and c* = 1(mol/m3). 
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Figure 5.12 Variation of anion Cl- concentration with time for Ve = 0.2(V), fc0 = 

4(mol/m3) and c* = 1(mol/m3). 
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Figure 5.13 Variation of anion Cl- concentration with time for Ve = 0.2(V), fc0 = 

8(mol/m3) and c* = 1(mol/m3). 
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Figure 5.14 Variation of anion Cl- concentration with time for Ve = 0.2(V), fc0 = 

2(mol/m3) and c* = 2(mol/m3). 
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Figure 5.15 Variation of anion Cl- concentration with time for Ve = 0.2(V), fc0 = 

2(mol/m3) and c* = 8(mol/m3). 
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Figure 5.16 Variation of electric potential with time for Ve = 0.2(V), fc0 = 

2(mol/m3) and c* = 1(mol/m3). 
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Figure 5.17 Variation of electric potential with time for Ve = 0.3(V), fc0 = 

2(mol/m3) and c* = 1(mol/m3). 
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Figure 5.18 Variation of electric potential with time for Ve = 0.4(V), fc0 = 

2(mol/m3) and c* = 1(mol/m3). 

 

 



Chapter 5: 1-D Transient Simulations for Kinetics of Hydrogels 

 127

 

 

0 2 4 6 8 10 12 14

-0.10

-0.05

0.00

0.05

0.10

 

 

El
ec

tri
c 

P
ot

en
tia

l ψ
 (V

)

Coordinate X(mm)

 2(s)
 20(s)
 50(s)
 100(s)
 200(s)
 800(s)

Figure 5.19 Variation of electric potential with time for Ve = 0.2(V), fc0 = 

4(mol/m3) and c* = 1(mol/m3). 
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Figure 5.20 Variation of electric potential with time for Ve = 0.2(V), fc0 = 

8(mol/m3) and c* = 1(mol/m3). 
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Figure 5.21 Variation of electric potential with time for Ve = 0.2(V), fc0 = 

2(mol/m3) and c* = 2(mol/m3). 
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Figure 5.22 Variation of electric potential with time for Ve = 0.2(V), fc0 = 

2(mol/m3) and c* = 8(mol/m3). 
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Figure 5.23 Variation of hydrogel displacement with time for Ve = 0.2(V), fc0 = 

2(mol/m3) and c* = 1(mol/m3). 
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Figure 5.24 Variation of hydrogel displacement with time for Ve = 0.3(V), fc0 = 

2(mol/m3) and c* = 1(mol/m3). 
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Figure 5.25 Variation of hydrogel displacement with time for Ve = 0.4(V), fc0 = 

2(mol/m3) and c* = 1(mol/m3). 
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Figure 5.26 Variation of hydrogel displacement with time for Ve = 0.2(V), fc0 = 

4(mol/m3) and c* = 1(mol/m3). 
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Figure 5.27 Variation of hydrogel displacement with time for Ve = 0.2(V), fc0 = 

8(mol/m3) and c* = 1(mol/m3). 
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Figure 5.28 Variation of hydrogel displacement with time for Ve = 0.2(V), fc0 = 

2(mol/m3) and c* = 2(mol/m3). 
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Figure 5.29 Variation of hydrogel displacement with time for Ve = 0.2(V), fc0 = 

2(mol/m3) and c* = 8(mol/m3). 
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Figure 5.30 Effect of externally applied electric field Ve on the variation of 

average curvature Ka distributions with time. 
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Figure 5.31 Effect of fixed-charged density fc0 on the variation of average 

curvature Ka distributions with time. 
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Figure 5.32 Effect of bath solution concentration c* on the variation of average 

curvature Ka distributions with time. 
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Chapter 6  

 

Conclusions and Future Works 
 

Based on the previous studies and discussions, a few important conclusions 

are drawn in this chapter. This is followed by recommendation of several future 

works. 

 

6.1 Conclusions 

This dissertation focuses on the study of the responsive behaviors of 

electric-sensitive hydrogels immersed a bath solution under an externally applied 

electric field. A novel mathematical model, termed Multi-Effect-Coupling 

Electric-Stimulus (MECe) model, has been developed with considerations of 

chemo-electro-mechanical coupling effects. For numerical solution of the MECe 

model consisting of nonlinear partial differential governing equations, a newly 

developed meshless technique, called the Hermite-Cloud method, has been 

employed in the present computations and validated to improve computational 

accuracy of both unknown functions and corresponding first-order derivatives. 

After examination of MECe model through comparison with experimental data 

extracted from open literature, the numerical simulations are carried out for the 

swelling equilibrium and kinetics of electric-stimulus responsive hydrogels. 

Discussions are also made in detail for influence of several important physical 
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parameters on ionic diffusion, electric potential and hydrogel deformation. 

 As the key external stimulus to the electric-sensitive hydrogels, the externally 

applied electric field is found to play a critical role in the responses of hydrogels. 

Due to the drag force of electric field, the mobile ions in the bath solution diffuse 

into the hydrogels and thus produce an ionic concentration difference near the 

hydrogel-solution interfaces, which makes the hydrogel deform. When the applied 

voltage is fixed, the ionic concentration difference increases with time, and the 

hydrogel mixture finally reaches the equilibrium state after a sometime called 

critical time. It is also concluded that, as the applied voltage increases, the critical 

time decreases and the deformation of hydrogels becomes larger. This reveals a 

significant influence of externally applied electric field on the responsive 

behaviors of hydrogels. 

 The fixed-charge attached onto the chains of the polymeric matrix of 

hydrogels is another key parameter. The fixed-charge groups with negative 

valence will attract the mobile cations into the hydrogel mixture from the bath 

solution, resulting in a fluid pressure and inducing the hydrogel to deform. With 

the increase of fixed-charge density, the concentration of cations within the 

hydrogels has a dramatic variation while that of anions only changes slightly. The 

critical time of the kinetic response of hydrogels decreases with increasing 

fixed-charge density since the attracting effect of the fixed-charge on mobile ions 

is strengthened. 

 In addition, one should pay attention to the characteristics of the surrounding 
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bath solutions, including the concentration and composition of ionic species in the 

bath solutions. The effect of bath solution concentrations is chiefly revealed by the 

counteractive function to the fixed-charge density. With the increment of bath 

solution concentrations, the attracting effect of the fixed-charge groups on the 

diffusive mobile ions becomes more insignificant and the conductivity of bath 

solutions in the whole computational domain remains almost identical. This 

results in a quasi-linear distribution of the electric potential and a decrease in the 

critical time of the kinetic response of hydrogels. On the other hand, the valence 

of bath ions can also affect the hydrogel deformation. A bath solution with higher 

ionic valence will cause a larger difference of ion concentrations and larger 

displacement of the hydrogels. 

 Finally, it should be noted that, in general, the response time of the 

electric-sensitive hydrogels to the externally applied electric-field trigger is 

always very short, normally shorter than 4 minutes in the present simulations. The 

simulated results agree well with the experimental findings and validate the great 

promise of the electric-sensitive hydrogels in further applications of 

biotechnology and bioengineering. 

 

6.2 Future Works 

As mentioned previously, the numerical studies and discussions in this 

dissertation are based on the one-dimensional simulations. However the 3-D 

hydrogel strip actually deforms in all three directions. Therefore, in order to obtain 
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more accurate simulations and deeper understanding of the responsive behaviors 

of electric-sensitive hydrogels, it is necessary for the future work to make the 

two-dimensional or three-dimensional analyses. 

In addition, due to the variety and complexity of environmental stimuli, the 

studies in this dissertation are limited only in the stimulus of externally applied 

electric field, excluding other stimuli, such as the solution pH, temperature and 

chemical reactions etc., which actually are important triggers for the responsive 

behaviors of bio-stimuli polymeric hydrogels. Therefore, incorporation of these 

environmental stimuli is recommended for the future work.



References 

 145

References 
 
Aluru, N.R. and G. Li. Finite cloud method: a true meshless technique based on a 
fixed reproducing kernel approximation, International Journal for Numerical 
Methods in Engineering, 50, pp. 2373-2410. 2001. 
 
Beebe, D.J., Moore, J., Bauer, J.M., Yu, Q., Liu, R.H., Devadoss, C. and B-H. Jo. 
Functional structures for autonomous flow control inside micro-fluidic channels, 
Nature, 404, pp. 588-590. 2000. 
 
Belytschko, T., Lu, Y.Y. and L. Gu. Element free Galerkin methods, International 
Journal for Numerical Methods in Engineering, 37, pp. 229-256. 1994. 
 
Chen, G. and A.S. Hoffman. Graft copolymers that exhibit temperature-induced 
phase transitions over a wide range of pH, Nature, 373, pp. 49-52. 1995. 
 
Chu, Y., Varanasi, P.P., McGlade, M.J. and S. Varanasi. Ph-induced swelling 
kinetics of polyelectrolyte hydrogels, Journal of Applied Polymer Science, 58, pp. 
2161-2176. 1995. 
 
Doi, M., Matsumoto, M. and Y. Hirose. Deformation of ionic polymer gels by 
electric fields, Macromolecules, 25, pp. 5504-5511. 1992. 
 
Eisenberg, S.R. and A.J. Grodzinsky. The kinetics of chemically induced 
nonequilibrium swelling of articular cartilage and corneal stroma, ASME Journal 
of Biomechanical Engineering, 109, pp. 79-89. 1987. 
 
Fei, J.Q., Zhang, Z.P. and L.X. Gu. Bending behavior of electroresponsive 
poly(vinyl alcohol) /poly(acrylic acid) semi-interpenetrating network hydrogel 
fibers under an electric stimulus, Polymer International, 51, pp. 502-509. 2002. 
 
Galaev, I.Y. and B. Mattiasson. ‘Smart’ polymers and what they could do in 
biotechnology and medicine, Trend in Biotechnology, 17, pp, 335-340. 1999. 
 
Grimshaw, P.E., Nussbaum, J.H. Grodzinsky, A.J. and M.L. Yarmush. Kinetics of 
electrically and chemically induced swelling in polyelectrolyte gels, Journal of 
Chemical Physics, 93, pp. 4462-4472. 1990. 
 
Gu, W.Y., Lai, W.M. and V.C. Mow. A mixture theory for charged-hydrated soft 
tissues containing multi-electrolytes: passive transport and swelling behaviors, 
Journal of Biomechanical Engineering, 120, pp. 169-181. 1998. 
 
Gu, W.Y., Lai, W.M. and V.C. Mow. Transport of multi-electrolytes in charged 



References 

 146

hydrated biological soft tissues, Transport in Porous Media, 34, pp. 143-157. 
1999. 
 
Homma, M., Seida, Y. and Y. Nakano. Evaluation of optimum condition for 
designing high performance electro-driven polymer hydrogel systems, Journal of 
Applied Polymer Science, 75, pp. 111-118. 2000. 
 
Homma, M., Seida, Y. and Y. Nakano. Effect of ions on the dynamic behavior of 
an electrodriven ionic polymer hydrogel membrane, Journal of Applied Polymer 
Science, 82, pp. 76-80. 2001. 
 
Hon, Y.C., Lu, M.W., Xue, W.M. and X. Zhou. A new formulation and 
computation of the triphasic model for mechano-electrochemical mixtures, 
Computational Mechanics, 24(3), pp. 155-165. 1999. 
 
Jeong, B. and A. Gutowska. Lessons from nature: stimuli-responsive polymers 
and their biomedical applications, Trends in Biotechnology, 20(7), pp. 305-311. 
2002. 
 
Kataoka, K., Miyazaki, H., Bunya, M., Okano, T. and Y. Sakurai. Totally 
synthetic polymer gels responding to external glucose concentration: their 
preparation and application to on-off regulation of insulin release, Journal of 
American Chemical Society, 120, pp. 12694-12695. 1998. 
 
Kim, S.Y. and H.S. Shin. Properties of electroresponsive 
poly(vinglalcohol)/poly(acrylic acid) IPN hydrogels under an electric stimulus, 
Journal of Applied Polymer Science, 73, pp. 1675–1683. 1999. 
 
Kokufuta, E., Zhang, Y.Q. and T. Tanaka. Saccharide-sensitive phase transition of 
a lectin-loaded gel, Nature, 351, pp. 302-304. 1991. 
 
Kwon, I.C., Bae, Y.H. and S.W. Kim. Electrically erodible polymer gel for 
controlled release of drugs, Nature, 354, pp. 291-293. 1991. 
 
Lai, W.M., Hou, J.S. and V.C. Mow. A triphasic theory for the swelling and 
deformation behaviors of articular cartilage, ASME Journal of Biomechanical 
Engineering, 113, pp. 245-258. 1991. 
 
Lam, K.Y., Wang, Q.X. and Z. Zong. A nonlinear fluid-structure interaction 
analysis of a near-bed submarine pipeline in a current, Journal of Fluids and 
Structures, 16, pp. 1177-1191. 2002. 
 
Lanir, Y. Biorheology and fluid flux in swelling tissues. I. biocomponent theory 
for small deformations, including concentration effects, Biorheology, 23, pp. 



References 

 147

173-188. 1987. 
 
Li, H., Chen, J. and K.Y. Lam. Multiphysic modeling and meshless simulation of 
electric-sensitive hydrogels, Journal of Polymer Science Part B: Polymer Physics, 
42, pp. 1514-1531. 2004. 
 
Li, H., Cheng, J.Q., Ng, T.Y., Chen, J. and K.Y. Lam. A meshless Hermite-Cloud 
method for nonlinear fluid structure analysis of near-bed submarine pipelines 
under current, Engineering Structures, 26, pp. 531-542. 2004. 
 
Li, H., Ng, T. Y., Cheng, J. Q. and Lam, K.Y. Hermite-Cloud: a novel true 
meshless method, Computational Mechanics, 33, pp. 30-41. 2003. 
 
Li, H., Yuan, Z., Lam, K.Y., Lee, H.P., Chen, J., Hanes, J. and J. Fu. Model 
development and numerical simulation of electric-stimulus-responsive hydrogels 
subject to an externally applied electric field, Biosensors and Bioelectronics, 19, 
pp. 1097-1107. 2004. 
 
Liu, G.R. Mesh Free Methods: Moving beyond the Finite Element Method. pp. 
9-27, Florida: CRC Press. 2003. 
 
Liu, G.R. and Y.T. Gu. A point interpolation method for two-dimenional solids, 
International Journal for Numerical Methods in Engineering, 50, pp. 937-951. 
2001. 
 
Liu, G.R. and Y.T. Gu. A local radial point interpolation method for stress analysis 
of two-dimensional solids, Structural Engineering and Mechanics, 11(2), pp. 
221-236. 2001. 
 
Liu, G.R., Wu, Y.L. and Y.T. Gu. Application of meshless local Petrov-Galerkin 
(MLPG) approach to fluid flow problem. In Proc. First Asian-Pacific Congress on 
Computational Mechanics, November 2001, Sydney, Australia, pp. 20-23. 
 
Liu, W.K., Chen, Y., Jun. S., Chen, J.S., Belytschko, T., Pan, C., Uras, R.A. and 
C.T. Chang. Overview and applications of the reproducing kernel particle 
methods, Archives of Computational Methods in Engineering: State of the Art 
Reviews, 3, pp. 3-80. 1996. 
 
Liu, W.K., Jun, S., Li, S., Adde, J. and T. Belytschko. Reproducing kernel particle 
methods for structural dynamics, International Journal for Numerical Methods in 
Fluids, 38, pp. 1665-1679. 1995. 
 
Liu, W.K., Jun, S. and Y.F. Zhang. Reproducing kernel particle methods, 
International Journal for Numerical Methods in Engineering, 20, pp. 1081-1106. 



References 

 148

1995. 
 
Lucy, L. A numerical approach to testing the fission hypothesis, Astronomical 
Journal, 82, pp. 1013-1024. 1977. 
 
Mow, V.C., Kuei, S.C., Lai, W.M. and C.G. Armstrong. Biphasic creep and stress 
relaxation of articular cartilage in compression: theory and experiments, ASME 
Journal of Biomechanical Engineering, 102, pp. 73-84. 1980. 
 
Myers, E.R., Lai, W.M. and V.C. Mow. A continuum theory and an experiment for 
the ion-induced swelling behavior of articular cartilage, ASME Journal of 
Biomechanical Engineering, 106, pp. 151-158. 1984. 
 
Nayroles, B., Touzot, G. and P. Villon. Generalizing the finite element method: 
diffuse approximation and diffuse elements, Computational Mechanics, 10, pp. 
307-318. 1992. 
 
Ng, T.Y., Li, H., Cheng, J.Q. and K.Y. Lam. A new hybrid meshless-differential 
order reduction (hM-DOR) method with applications to shape control of smart 
structures via distributed sensors/actuators, Engineering Structures, 25, pp. 
141-154. 2003. 
 
Onate, E., Idelsohn, S., Zienkiewicz, O.C. and R.L. Taylor. A finite point method 
in computational mechanics. Applications to convective transport and fluid flow, 
International Journal for Numerical Methods in Engineering, 39, pp. 3839-3866. 
1996. 
 
Osada, Y., Okuzaki, H. and H. Hori. A polymer gel with electrically driven 
motility, Nature, 355, pp. 242-244. 1992. 
 
Reddy, J.N. An introduction to the finite element method. pp. 177-187, New York: 
McGraw-Hill. 1993. 
 
Shahiinpoor, M. Continuum electromechanics of ionic polymer gels as artificial 
muscles for robotic applications, Smart Materials and Structures, 3, pp. 367-372. 
1994. 
 
Shahinpoor, M. Micro-electro-mechanics of ionic polymer gels as electrically 
controlled artificially muscles, Journal of Intelligent Material and Systems 
Structures, 6, pp. 307-314. 1995. 
 
Shiga, T and T. Karauchi. Deformation of polyelectrolyte gels under the influence 
of electric field, Journal of Applied Polymer Science, 39, pp. 2305-2320. 1990. 
 



References 

 149

Siegel, R.A. pH sensitive gels: swelling equilibria, kinetics and application for 
drug delivery. Pulsed and Self-Regulated Drug Delivery, pp. 129-155. Florida: 
CRC Press. 1990. 
 
Siegel, R.A. and B.A. Firestone. pH-dependent equilibrium swelling properties of 
hydrophobic polyelectrolyte copolymer gels, Macromolecules, 21, pp. 3254-3259. 
1988. 
 
Sun, S and A.F.T. Mak. The dynamical response of a hydrogel fiber to 
electrochemical stimulation, Journal of Polymer Science part B: Polymer Physics, 
39, pp. 236-246. 2001. 
 
Tanaka, T. Collapse of gels and the critical endpoint, Physical Review Letters, 40, 
pp. 820-823. 1978. 
 
Tanaka, T., Fillmore, D., Sun, S-T., Nishio, I., Swislow, G. and A. Shah. Phase 
transitions in ionic gels, Physical Review Letters, 45, pp. 1636-1639. 1980. 
 
Tanaka, T., Nishio, I., Sun, S.T. and S. Ueno-Nishio. Collapse of gels in an 
electric field, Science, 218, pp. 467-469. 1982. 
 
Wallmersperger, T. and B. Kroeplin. Modeling and analysis of the chemistry and 
electromechanics. Electroactive Polymer Actuators as Artificial Muscles, ed by 
B-C. Yoseph, pp. 285-307. Washington: SPIE Press. 2001. 
 
Wallmersperger, T., Kroplin, B., Holdenried, J. and R.W. Gulch. A coupled 
multi-field formulation for ionic gels in electric fields. In Proc. SPIE 8th Annual 
International Symposium on Smart Structure and Materials, March 2001, Newport 
Beach, CA, USA, 4329, pp. 264-275. 2001. 
 
Yoshida, R., Uchida, K., Kaneko, Y., Sakai, K., Kikuchi, A., Sakurai, Y. and T. 
Okano. Comb-type grafted hydrogels with rapid de-swelling response to 
temperature changes, Nature, 374, pp. 240-242. 1995. 
 
Zhou, X., Hon, Y.C., Sun, S. and A.F.T. Mak. Numerical simulation of the 
steady-state deformation of a smart hydrogel under an external electric field, 
Smart Materials and Structures, 11, 459-467. 2002. 



Publications Arising From Thesis 

 150

Publications Arising From Thesis 

 
Li, H., Chen, J. and K.Y. Lam. Multiphysic modeling and meshless simulation of 
electric-sensitive hydrogels, Journal of Polymer Science Part B: Polymer Physics, 
42, pp. 1514-1531. 2004. 
 
Li, H., Cheng, J.Q., Ng, T.Y., Chen, J. and K.Y. Lam. A meshless Hermite-Cloud 
method for nonlinear fluid structure analysis of near-bed submarine pipelines 
under current, Engineering Structures, 26, pp. 531-542. 2004. 
 
Li, H., Yuan, Z., Lam, K.Y., Lee, H.P., Chen, J., Hanes, J. and J. Fu. Model 
development and numerical simulation of electric-stimulus-responsive hydrogels 
subject to an externally applied electric field, Biosensors and Bioelectronics, 19, 
pp. 1097-1107. 2004. 
 
Chen, J., Li, H. and K.Y. Lam. Transient Simulation for Kinetic Responsive 
Behaviors of Electric-sensitive Hydrogels. In Proc. 2004 Europe Material 
Research Society Spring Meeting, 24-28 May 2004, Strasbourg, France. 
 
Yuan, Z., Li, H., Ng, T.Y. and J. Chen. A Coupled Multi-Field Formulation for 
Stimuli-Responsive Hydrogel Subject to Electric Field. In Proc. International 
Conference on Scientific and Engineering Computation (IC-SEC 2002) 3-5 
December 2002, Singapore, pp. 884-887. 
 




