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Summary 

 
The vehicle routing problem (VRP) is an important class of combinatorial problems. 

Its economic importance is marked by its presence in many areas of the manufacturing 

and service industries. The VRP is NP-hard, and therefore, it is unlikely to be solved 

by a polynomially optimal algorithm. The objective of this thesis is to develop some 

efficient heuristics for solving the VRP. 

In this study, a local search method, called the assignment-based local search (ABLS) 

method is proposed to solve the capacitated VRP (CVRP) and some of its variants. 

The ABLS algorithm is a multi-route improvement algorithm that can operate on 

several routes at a time. In ABLS algorithm, the inserting of nodes into routes at each 

step is based on the solution of an assignment problem. Several types of local search 

methods and strategies that can be incorporated into the ABLS procedures are 

presented and some composite procedures consisting of the ABLS and other heuristics, 

such as search space smoothing and simulated annealing, are proposed in this study. 

To evaluate the performance of the proposed methods, extensive computational 

experiments on the various proposed algorithms applied to a set of benchmark 

problems are carried out. The results show that the proposed methods, especially the 

composite procedures, are able to generate some good solutions to the problems tested 

compared with other efficient heuristics proposed in the literature. 

Another proposed method, generalized crossing (GC) method, is also introduced to 

solve the VRPs. The algorithm proposed in this study is an extension of the normal 

string crossing method. In this method, more combination of the strings and the order 

of each string are considered. That is, the new routes are constructed not only by 

combining the strings in their original direction but also combining the strings with 

opposite direction in the GC method. Computational results show that its SA 

 v



implementation combined with a new improvement procedure, middle improvement 

procedure, outperforms other SA implementations and is comparable with some other 

meta-heuristic implementations reported in the literature. 

To illustrate the effectiveness of the two proposed methods, an application of the two 

methods to a real-world soft drinks distribution problem is carried out in this study. 

The objective function of this problem is to minimize the total number of vehicles 

used. In the application of this study, a bin packing composite procedure is applied to 

solve a number of problem instances obtained from a soft drinks distribution company. 

The computational results show that better solutions can be obtained for the proposed 

methods than other approaches proposed in the literature. For some problem instances 

tested, the improvement can be more than 40%. 
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Nomenclature 

 
di  Demand for customer i 

gij  The least cost increment when inserting node i to route j  

l Number of fully loaded vehicles when serving the customer whose 

demand is greater than vehicle capacity 

m  Number of vehicles available 

M  A very big positive value  

n  Number of customers 

Q           Capacity for each vehicle 

R  Number of all feasible routes 

sij          Cost increment when node i is inserted into edge j in a TSP tour 

T  Current temperature for simulated annealing algorithm 

T0  Initial temperature for simulated annealing algorithm 

Tf  Final temperature for simulated annealing algorithm 

Tr  Remaining time for vehicle r 

Wi  Weight of item i of a bin packing problem 

⎣ ⎦x   The greatest integer smaller than or equal to x 

⎡ ⎤x   The smallest integer greater than or equal to x 

VRP  Vehicle routing problem 

TSP  Traveling salesman problem 

ABLS  Assignment-based local search 

GC  Generalized crossing method 

ABLS&SA ABLS and simulated annealing composite method 

GC&SA GC and simulated annealing composite method 
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ABLS&BP ABLS and bin packing composite method 

GC&BP GC and bin packing composite method 
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Chapter 1                                                                                                        Introduction 

Chapter 1 

Introduction 

This thesis focuses on the design and analysis of algorithms for solving the vehicle 

routing problem (VRP). Two new local search methods, the assignment-based local 

search (ABLS) algorithm and generalized crossing (GC) method, are proposed and an 

extensive evaluation and comparison of the two proposed methods with some other 

algorithms proposed in the literature are conducted. This chapter presents some 

background information and basic knowledge of the VRP. It concludes by presenting 

the purpose of this thesis as well as its organization. 

 

1.1 Background 

The traveling salesman problem (TSP) can be defined on a complete directed or 

undirected graph G=(V, A), where V is a set of n vertices and A is a set of arcs or 

edges. C=(cij) is a distance (or cost) matrix associated with A.  Its objective is to 

determine a minimum distance circuit passing through each vertex once and only once 

(Christofides et al., 1979 and Laporte, 1992). 

The vehicle routing problem (VRP) is a generalization of the TSP.  Its purpose is to 

determine a set of routes with minimum total costs on the condition that the following 

criteria are satisfied: 

• The route starts and ends at a depot; 

• The total demand of any route does not exceed the vehicle capacity, Q; 

• The total length of any route does not exceed a preset bound L. 
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In most practical cases, it is only necessary to consider the cases whose cost function is 

a metric, i.e., it satisfies: , 0≥ijc jiij cc =  and the triangle inequality, 

 . Vkjiccc ijkjik ∈≥+ ,,,

The VRP was introduced by Dantzig and Ramser in 1959. In their paper, a real-world 

application concerning the delivery of gasoline to service stations was described and 

then a mathematical programming model was formulated. They were followed by 

Clarke and Wright who proposed an effective heuristic to improve the Dantzig-Ramser 

approach in 1964. After that, hundreds of models and algorithms were proposed to 

solve many types of VRPs and many successful applications were reported in the 

literature. 

The last 40 years has seen rapid progress made in many aspects of the VRP, such as 

theory, practice, computer hardware and software, so that the VRP has become one of 

the greatest success stories of operations research. The successful implementation of 

vehicle routing software has been aided by the rapid developments in computer 

science, such as, the development of the geographic information system and interface 

software which has enabled customers to integrate routing with other key functions 

such as inventory tracking, forecasting, and so on. Moreover, vehicle routing software 

can be integrated directly with enterprise resource planning (ERP). It can be seen, for 

example, that the routing software of one company can interface with the sales and 

distribution module of Systems Analysis and Program Development (SAP)’s 

transportation planning system to access information on orders, carriers, geography 

and transportation requirements (Baker, 2002). 

Many applications of the VRP have been proposed in the literature on operations 

research in recent years. The applications span a wide variety of industries and involve 

the commercial distribution of many products that range from newspapers (Picard and 
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Brody, 1997) to soft drinks (Cheong et al. 2002); and from groceries (Carter et al., 

1996) to milk (Basnet et al., 1996), on a daily basis. In addition, the applications also 

involve waste collection, street sweeping and delivery of mail. Most of these 

applications not only possess the characteristics of the basic VRP model, such as 

vehicle route and route duration, but also involve many complicated issues, such as 

time windows and periodic or multi-deliveries to customers. 

 

1.2 Characteristics of the VRP 

The typical characteristics (Toth and Vigo, 2002b) of customers in the VRP include: 

• The vertex of the graph which denotes where the customer is located; 

• The amount of goods (demand) which must be delivered or collected; 

• The periods of the time (time windows) during which the customer can be 

served;  

• The times needed to serve customers (loading and unloading times); and 

• The subset of the available vehicles that can be used to serve the customer 

because of the possible access limitations or some other requirements. 

The typical characteristics of vehicles include: 

• The subset of arcs on the graph which can be traversed by the vehicle; 

• The costs associated with the utilization of the vehicle; 

• The capacity of the vehicle, expressed as the maximum weight or volume the 

vehicle can load; 

• The devices available for the loading and unloading operations; and 

• The possible subdivision of the vehicle into compartments, each characterized 

by its capacity and by the types of goods that can be carried. 
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Moreover, all routes must satisfy some operational constraints, such as the nature of 

the transported goods and the quality of service. Drivers must also satisfy the 

constraints imposed by the company and customers, such as the maximum working 

time, the number and duration of breaks during the service and the maximum duration 

of driving periods, and so on.  

The typical objectives of the VRP are: 

• To minimize the total transportation costs which are dependent on the distance 

traveled and the fixed costs associated with the vehicles used and the 

corresponding number of drivers; 

• To minimize the number of vehicles used to serve the customers; 

• To balance the routes with respect to the travel time and the vehicle load; 

• To minimize the penalties; or 

• Any combination of the above objectives. 

There has been a steady evolution in the design of solution methodologies, resulting in 

exact and approximate methods for the VRP, since it was introduced by Dantzig and 

Ramser in 1959. Several researchers (Golden et al., 1998 and Naddef and Rinaldi, 

2002) have noted that no known exact algorithm is capable of consistently finding 

optimal solutions for the problems with more than 50 customers. Hence, in practice, 

heuristics are used in most cases. 

 

1.3 Basic Types of VRPs  

The VRP can be classified into the capacitated VRP (CVRP), the distance-constrained 

and capacitated VRP (DCVRP), the VRP with time windows (VRPTW), the VRP with 

 4



Chapter 1                                                                                                        Introduction 

backhauls (VRPB), the VRP with pickup and delivery (VRPPD), and some 

combination cases, such as the VRPB with time windows (VRPBTW) and VRPPD 

with time windows (VRPPDTW). A summary of these problems and the relation 

between them is shown in Figure 1.1. 

 

 

     
 
 
 
 
                        

 

 

 

 

 

 

Backhauling 

Time 
Windows

Route length 

Mixed service 

VRPPDTW 

VRPPD VRPTWVRPB 

CVRP DCVRP 

VRPBTW 

Figure 1.1 Basic types of VRPs and their relations 
             

1.3.1 Capacitated VRP and Distance-Constrained VRP  

The capacitated VRP is the simplest and most studied member of the family of VRPs. 

In this problem, all the customers and demands are deterministic, i.e. known in 

advance and may not be split. For the CVRP, it is assumed that there is only one depot, 

all the vehicles are identical and the only constraint imposed is the capacity constraint. 

The objective of this problem is to design a set of vehicle routes at minimum total 

costs with all routes starting from and ending at the depot, such that each customer is 
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visited once and the total capacity for each route does not exceed the vehicle’s 

capacity, Q.                                                                                                                                                 

The minimum number of vehicles needed may be determined by solving the bin 

packing problem (BPP).  In the BPP, the objective is to determine the minimum 

number of bins, each with identical capacity, Q, to load all items with nonnegative 

weights. In the implementation of the BPP to the CVRP, vehicles are bins, customers 

are items and the demands of customers are the weights of the items. Although the 

BPP is a NP-hard problem (Martello and Toth, 1990), instances involving hundreds of 

items can be solved to optimality very effectively.  

 The CVRP is known to be NP-hard (Achuthan et al., 1998).  Normally, the CVRP can 

be classified into two categories: the symmetric and the asymmetric CVRP. If costs are 

symmetric, it is known as a symmetric CVRP (SCVRP); otherwise, it is known as an 

asymmetric or directed CVRP (ACVRP).  

An extensive survey on the exact methods of the VRP was conducted by Laporte and 

Nobert in 1992. Many other researchers, such as Christofides et al. (1979), Bodin et al. 

(1983), and Christofides (1985), have formulated numerous heuristic methods to solve 

the CVRP. 

One of the variants of the CVRP is the distance-constrained VRP (DVRP), where for 

each route, the capacity constraint is replaced by a maximum route length (or time) 

constraint. In the case where the vehicle capacity and the maximum distance 

constraints are present, it is called the distance-constrained CVRP.  

 

1.3.2 VRP with Time Windows 

The VRP with time windows is an extension of the CVRP in which capacity 

constraints are imposed and each customer i is associated with a service time interval 
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[ai, bi], called time window. In this problem, the customers have to be served by a fleet 

of vehicles initially located at the depot. Each customer has a load that must be picked 

up, and the customer specifies a period of time, called the time window, in which this 

pick up must occur. The objective is to find a set of routes for the vehicles to serve a 

set of customers without violating the capacity and time window constraints, while 

minimizing the total distance traveled by the vehicles (Bramel and Simchi-Levi, 1996; 

Cordeau et al., 2001). 

In the VRPTW, soft time windows can be violated at a cost, while hard time windows 

do not allow a visit to the customer outside the desired time windows. VRPTW is NP-

hard, and even finding a feasible solution to the VRPTW with a fixed fleet size is itself 

an NP-complete problem (Savelsbergh, 1985). 

 

1.3.3 VRP with Backhauls 

The VRP with backhauls is another extension of the VRP. In this problem, the 

customer set is partitioned into two subsets: the first subset, L, contains p linehaul 

customers, each requiring a given number of products to be delivered; while the 

second part, B, contains q backhaul customers, from whom a certain number of 

inbound goods must be picked up.  This problem is frequently encountered in practice. 

In the grocery industry, for example, the supermarkets and shops are the linehaul 

customers and the grocery suppliers are the backhaul customers.  

In the VRPB, a precedence constraint between linehaul and backhaul exists, i.e., when 

the route needs to serve the two types of customers, it must first serve all the linehaul 

customers before any backhaul customer may be served.  

The VRPB can be classified into the symmetric and asymmetric categories. In the 

symmetric VRPBs, the distance between each pair of locations is the same in the two 
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directions, while in the asymmetric VRPB (AVRPB) the symmetric assumption does 

not hold. 

The objective of the VRPB is to find the minimum costs for a collection of vehicle 

routes such that each route visits the depot and each customer is served exactly once, 

provided that the sum of the demands of the linehaul and backhaul customers visited 

by one route does not exceed the vehicle capacity, and that the linehaul customers 

precede the backhaul customers. 

Let KL and KB denote the minimum number of vehicles needed to serve all the linehaul 

and backhaul customers, respectively. KL and KB can be calculated by solving the bin 

packing problem. The number of vehicles needed to serve all the customers cannot be 

smaller than the maximum number between KL and KB.

The VRPB and AVRPB are both NP-hard since they generalize the basic version of 

SCVRP and ACVRP when the subsets of backhaul customers are empty (Toth and 

Vigo, 1999). 

 

1.3.4 VRP with Pickup and Delivery 

In the VRP with pickup and delivery, each customer i is associated with two quantities 

di and pi, representing the demands of homogeneous commodities to be delivered and 

picked up, respectively, at customer i. In this problem, it is assumed that the delivery is 

performed before the pickup for each customer location, and therefore, the current load 

of the vehicle before arriving at a given location can be calculated by the initial load 

minus all the demands already delivered plus all the demands already picked up. 

The objective of the VRPPD is to minimize the total traveling costs without violating 

the capacity constraints and precedence constraints between pick up and delivery for 

each customer location. 
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In the VRPPD, a heterogeneous vehicle fleet based on multiple terminals must satisfy 

a set of transportation requirements. Each requirement is defined by a pickup point, a 

corresponding delivery point, and a demand to be transported between these locations. 

The required transport could involve goods and persons. The latter case is called dial-

a-ride. It was first investigated by Wilson et al. in 1971.   

The VRPPDTW is a generalization of the VRPTW and has a variety of applications, 

including the sealift and airlift of cargo and troops.  Many researchers, such as 

Solomon and Desrosiers (1988) as well as Savelsbergh and Sol (1995), have 

highlighted the perspectives of this growing field. It is noted that both the VRPPD and 

VRPPDTW are NP-hard. 

 

1.4 Purpose of this Thesis 

The purpose of this study is to develop new local search methods to solve the VRP.  It 

is well known that the VRP is NP-hard. Therefore, it is unlikely that a polynomially-

bound optimal algorithm for solving the VRP exists. As a result, many researchers 

have focused on developing heuristics to solve the VRP. Among the well known 

algorithms are the savings method of Clarke and Wright (1964); the generalized 

assignment problem algorithm of Fisher and Jaikumar (1981); the sweep algorithm of 

Gillett and Miller (1974); Lin’s (1965) λ-opt mechanism; the sequential insertion of 

the Mole and Jameson (1976) heuristics, and so on. Most of these heuristics can result 

in relatively good solutions within a reasonable amount of computational time. 

This thesis is concerned with the development of heuristics for solving the CVRP. In 

particular, two local search methods, the ABLS algorithm and the GC method, are 

proposed to solve this problem. To evaluate the performance of the proposed 
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algorithms, computational experiments are carried out to compare the algorithms 

against several algorithms described in the literature. The results of the comparisons 

demonstrate that the proposed algorithms, especially GC method, are able to generate 

good solutions to the problems tested. It can be matched with the results obtained by 

other algorithms reported in the literature. 

To illustrate the effectiveness of the proposed algorithms, the two proposed algorithms 

are applied to a real-world soft drinks distribution problem. Computational results 

show that these algorithms are able to provide better solutions than the existing 

method. 

 

1.5 Organization of this Thesis 

This thesis focuses on the design and analysis of heuristics for solving the VRP. 

 In Chapter 2, a literature survey of the methods used to solve the different varieties of 

VRPs is presented.  

In Chapter 3, the first proposed ABLS algorithm, strategies that can be incorporated in 

the ABLS procedure, and some composite procedures consisting of the ABLS and 

other heuristics are described in detail. In addition, computational results and analysis 

are also proposed and presented. 

The second GC method is presented in Chapter 4. A new improvement procedure, 

middle improvement procedure, is presented. This is followed by a more thorough 

analysis of computational results and comparison with other heuristic methods. 

An application of the two proposed algorithm to a real-world soft drinks distribution 

problem is presented in Chapter 5. In this problem, the objective is to minimize the 

total number of vehicles used. A bin packing composite procedure is applied to solve a 
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number of problem instances obtained from the soft drinks distribution company. 

Computational results show that this composite algorithm can improve the existing 

approaches effectively. It can be seen that for some of the problem instances tested, the 

improvement can be more than 40%.  

Finally, in Chapter 6, some concluding remarks and suggestions for future research 

work are provided. 

 11



Chapter 2                                                                                              Literature Survey 

Chapter 2 

Literature Survey 

 
The vehicle routing problem (VRP) is an important type of combinatorial problem and 

has been the focus of operations researchers and combinatorial analysts for many 

years.  Many exact and approximate methods have been proposed to solve the VRP in 

recent years. In this chapter, a review of the various methods proposed for solving the 

TSP and the VRP in the literature is provided. 

 

2.1 Approaches for Solving the TSP                                                                                                       

The TSP is a VRP in its simplest form. To date, it remains one of the most challenging 

combinatorial optimization problems. The problem’s statement is simple and the 

objective is to determine a minimal cost cycle that passes through each node or 

customer location exactly once. It can be classified into two broad categories, i.e., the 

symmetric TSP and the asymmetric TSP, depending on whether the costs between two 

locations are dependent on the direction of travel or not. A symmetric TSP is one 

where the traveling cost does not depend on the direction of the travel. Otherwise, it is 

defined as an asymmetric TSP. 

Hundreds of articles have been published to solve the TSP. A comprehensive survey of 

the TSP can be found in Bodin et al. (1983), Laporte (1992) as well as Johnson and 

Mcgeoch (1997). Some exact and heuristic algorithms are reviewed in the following 

section.  
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2.1.1 Exact Methods for the TSP 

Many exact algorithms have been proposed in the literature to solve the TSP. In this 

section, some commonly used methods, such as the integer linear programming 

formulations and the branch and bound methods, are reviewed. 

 

Integer linear programming formulations 

Dantzig et al. presented one of the earliest formulations of TSP in 1954. In their 

formulation, +∞=iic  for ni …= 2, 1,  , where n denotes the number of vertices.  

The integer linear programming problem can be formulated as follows: 

 Minimize ∑∑       (2.1) 
= =

=
n

i

n

j
ijij xcZ

1 1

subject to 

,,...,2,1for1
1

nix
n

j
ij ==∑

=

      (2.2) 

      (2.3) ,,...,2,1for1
1

njx
n

i
ij ==∑

=

      (2.4) ,2||2,1||
,

−≤≤−≤∑
∈

nSSx
Sji

ij

.
otherwise0

tonodefromdirectlytravelssalesmanif1

⎩
⎨
⎧

=
ji

xij   (2.5) 

 

In the above formulation, S is a subset of the set of n vertices, i.e., . Constraints 

(2.2) and (2.3) specify that every vertex is entered exactly once and left exactly once. 

Constraint (2.4) is a subtour elimination constraint, i.e., it can prohibit the formation of 

a subtour. If there is a subtour on a subset S, it should contains |S| arcs. Then constraint 

VS ⊂
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(2.4) is violated because |S| is not less than or equal to |S| -1. Constraint (2.4) has some 

alternative equivalent forms, such as: 

 2||2,1 −≤≤≥∑∑
∈ ∈

nSx
Si Sj

ij   (2.4’) 

where SVS \= . Constraint (2.4’) can be derived from (2.4). 

Several alternative formulations, such as that of Miller et al. (1960), have been 

proposed and compared since the first formulation proposed by Dantzig et al. in 1954. 

However, Langevin et al. (1990) showed that none of these alternative formulations 

had a stronger linear relaxation than the method formulated by Dantzig et al. (1954).  

The above formulations can provide insights into the complexity of the TSP and its 

relationship to other routing problems. Moreover, they can also suggest some 

algorithms that are obtained by dualizing with respect to certain constraints (Bodin et 

al., 1983). 

 

Branch and bound algorithms 

Branch and bound algorithms are commonly used to solve the TSP.  The idea is to 

relax some of the problem constraints first and then regain feasibility through an 

enumerative process. The quality of a branch and bound algorithm is directly related to 

the quality of the bound provided by the relaxation (Laporte, 1992). In the branch and 

bound algorithms for solving the TSP, many relaxations, such as the assignment 

problem relaxation, the shortest spanning tree relaxation and 2-matching relaxation, 

can be used. To date, several branch and bound algorithms based on assignment 

problem relaxation have been proposed for the TSP, such as the algorithms by 

Carpaneto and Toth (1980), Balas and Christofides (1981) and Miller and Pekny 

(1991). Christofides (1970) proposed the first branch and bound algorithm based on 

the shortest spanning tree relaxation to solve the TSP. Since then, improvements and 
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refinements were also provided by some researchers, such as Volgenant and Jonker 

(1982) and Carpaneto et al. (1989). Some algorithms based on 2-matching relaxation 

have been proposed by Padberg and Rinaldi (1990) and some other researchers. 

 

Branch and cut algorithms 

There are some drawbacks for the branch and bound method, such as some new 

information cannot be exploited during the enumeration phase because the cutting 

plane phase and the enumeration phase are completely separated and the enumeration 

process has to be repeated from scratch if the branch and bound algorithm terminates 

with a sub-tour solution (Padberg and Rinaldi, 1991). To overcome the drawbacks, the 

branch and cut method was provided by Padberg and Rinaldi in 1987.  Padberg and 

Rinaldi (1987) reported a branch-and-cut algorithm for solving symmetric traveling 

salesman problem. This algorithm consists of four major components: a heuristic 

procedure, a linear program solver, a constraint or cut generator and a branch and 

bound procedure. The 532-city symmetric TSP problem was solved by this algorithm 

with 358 minutes of computing time on the CYBER 502 Supercomputer. Two real-

world problems, 1002-city and 2392-city problems are solved on the same computer 

with 438 minutes and 1640 minutes respectively. Padber and Rinaldi (1991) presented 

another branch-and-cut algorithm for solving the TSP problem. The core of their 

algorithm is a polyhedral cutting-plane procedure that exploits a subset of the system 

of linear inequalities defining the convex hull of the incidence vectors of the 

hamiltonian cycles of a complete graph. Whenever the cutting-plane procedure does 

not terminate with an optimal solution the algorithm uses a tree-search strategy that 

keeps on producing cuts after branching. Fischetti et al. (1997) proposed another exact 

algorithm which partitions the customer nodes into clusters and the salesman has to 
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visit at least one node for each clusters. Exact and heuristic separation procedures from 

some classes of facet-defining inequalities are used within the branch-and-cut 

algorithm for the proposed algorithm. One branch-and-cut algorithm is proposed by 

Fischetti and Toth to solve the asymmetric TSP problem, in which new separation 

algorithm for some classes of facet-defining cuts and new variable-prices techniques 

for dealing with highly degenerate primal linear programming problem are proposed 

and applied. The computational analysis on several random and real-world problem 

instances demonstrates that the algorithm outperforms the best assignment problem 

based algorithms from the literature. Applegate et al. (2003) introduced an algorithm 

for solving very large scale TSP instance. In their algorithm, separation algorithms are 

devised for subtour inequalities. Methods for adjusting cutting planes to respond to 

changes in the optimal LP solution are also designed. The computational tests show 

that the algorithm is quite effective to solve the TSP problem. 

 

2.1.2 Heuristic Methods for the TSP 

Karp (1972) showed that TSP is NP-complete. Therefore, it is unlikely that the TSP 

can be solved by a polynomially optimal algorithm. As a result, it is natural to tackle it 

by means of heuristic algorithms.   

Broadly speaking, heuristic methods can be classified into three categories: 

construction heuristics, improvement heuristics and composite heuristics. Construction 

heuristics are meant to involve the gradual building of a solution by adding a new 

vertex at each step. Improvement methods attempt to improve any initial solution by 

exchanging edges or nodes. Composite algorithms combine the features of tour 

construction procedures and improvement procedures. 
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Construction algorithms 

Construction heuristics are algorithms that gradually build a feasible solution while 

keeping an eye on solution costs (Laporte and Semet, 2002).  

 

The nearest-neighbor algorithm (Rosenkrantz et al., 1977) 

The nearest-neighbor algorithm is a greedy one because it considers the nearest node at 

each step of augmenting the incomplete tour. The basic steps of the algorithm are as 

follows: 

Step 1.  Select an arbitrary node as a starting point. 

Step 2. Find the nearest node to the last selected node and include it in the tour. 

Repeat Step 2 until all the nodes are included in the tour. 

Step 3. Connect the last node to the first one. 

 

The complexity of this procedure is O(n2) if cij is metric. The worst case bound for 

nearest-neighbor algorithm is: 

 ⎡ ⎤ ,
2
1)lg(

2
1

 touroptimal oflength 
ourneighbor tnearestoflength

+≤ n-  

where lg denotes the logarithm of base 2, ⎡ ⎤x  denotes the smallest integer equal to or 

greater than x, and n is the number of nodes. 

 

Insertion algorithm (Rosenkrantz et al., 1977; Stewart, 1977; Norback and Love, 

1977) 

The procedures for insertion algorithms are as follows: 

Step 1. Construct a first tour consisting of two vertices. 

Step 2. Select a chosen node which is not in the current tour and insert it into the 
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tour with respect to one of the following criteria: 

• The node resulting in the least distance increment 

• The node nearest to the current tour 

• The node farthest from the current tour 

• The node forming the largest angle with two consecutive nodes of the tour. 

The complexity of the insertion algorithm varies between O(n2) and O(n2lgn) 

depending on the given criterion. 

 

Savings algorithm (Clarke and Wright, 1964) 

The basic idea of the Clarke and Wright algorithm is to calculate the savings and rank 

them from the largest to the smallest to form a larger subtour until a tour is formed. 

The procedure is: 

Step 1. Select an arbitrary node, denoted as node 0, as the central depot. 

Step 2. Compute savings ijjiij cccS −+= 00  for i, j =1, 2, 3…, n-1. 

Step 3. Rank the savings from largest to smallest in a savings list. 

Step 4. Starting from the top of the savings list, form larger subtours by linking 

the selected nodes i and j.  Repeat until a tour is formed. 

The complexity of this algorithm is O(n2). 

 

Improvement algorithms 

Improvement algorithms can be used to improve an initial solution, which is generated 

randomly or constructed by construction algorithms. It can be classified into two 

categories: local search methods and meta-heuristics.  
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Local search methods 

Lin (1965)’s r-opt algorithm is one of the most famous local search methods. 

r-opt algorithm (Lin, 1965) 

Step 1. Construct an initial tour. 

Step 2.   Replace r arcs by another r arcs such that a shorter tour can be obtained. 

Repeat Step 2 until no further improvement can be achieved. 

The major drawback of an r-opt algorithm is that the value of r must be specified in 

advance. It is difficult to decide which r can give a good balance between solution 

quality and computational running time. To overcome this drawback, Lin and 

Kernighan (1973) presented another method to improve the r-opt algorithm, known as 

the variable r-opt method. The computational results show that the variable r-opt 

method is one of the best algorithms for solving the TSP.  

In the last fifteen years, several meta-heuristics have been developed to solve the TSP. 

The outstanding feature of these methods is that it allows deterioration and even 

infeasible intermediate solutions in the exploration of the solution space. The popular 

methods include simulated annealing, tabu search, genetic algorithm, ant system 

algorithm, space smoothing algorithm and so on.     

 

Simulated annealing  

Simulated annealing (SA) was introduced by Kirkpatrick et al. in 1983. It is a 

technique that first became popular about a decade ago and has since proved itself as 

an effective approach to a large number of problems. It works by searching the set of 

all possible solutions, thus reducing the chance of getting stuck in a poor local 

optimum by allowing moves to inferior solutions under the control of a randomized 

scheme. Specifically, if a move from one solution  to another neighboring but 0s
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inferior solution s results in a change in objective function value δ, the move to s can 

be accepted if  

 at <− )/exp( δ ,     

where t is a control parameter, and ]1,0[∈a  is a uniformly distributed random 

number. The parameter t is initialize to be large hence allowing many inferior moves 

to be accepted, and is slowly reduced to a small value where inferior moves are nearly 

always rejected. There is a close analogy between this approach and the 

thermodynamic process of annealing in physics; it was this analogy that originally 

motivated the development of the method. 

This approach can be regarded as a variant of the well-known heuristic technique of 

local search, in which a subset of the feasible solutions is explored by repeatedly 

moving from the current solution to a neighboring solution. In a local search, the main 

disadvantage of this method is the likelihood of it finding a local, rather than global 

optimum. By allowing some uphill moves in a controlled manner, SA offer a way of 

alleviating this problem.  

 

Some components of SA 

Initial temperature:  The process must start in such a way that most if not all moves 

can be accepted, that is, the initial temperature, t0, must be ‘high’. In practice, this may 

require some knowledge of the magnitude of neighboring solutions. What is meant by 

a ‘suitably high’ acceptance rate will vary from one situation to another, but some 

literature shows that an acceptance rate of between 40% and 60% seems to give good 

results (Dowsland, 1993).  

Cooling schedule: Perhaps the most important factor in practical application is the 

cooling schedule. Here it should be noted that there are basically two types of 
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schedules, each having analogies to homogeneous and inhomogeneous Markov chains, 

respectively. In the homogeneous case, annealing is carried out at a fixed temperature 

until ‘equilibrium’ is reached. In the inhomogeneous case, the temperature is reduced 

after every move. This is less complicated than the homogeneous case, and is the one 

more commonly used in practice. 

In either case, one has to decide on the ‘shape’ of the cooling curve. Two methods are 

popular. The first one is a geometric schedule: 

  ,tt ×←α  

where α is a constant close to 1 (typically in the range 0.9 to 0.99). The other method 

is 

  ,
1 t

tt
β+

←  

where β is a constant near to zero. 

Final temperature: In theory the procedure should be continued until the final 

temperature tf is zero, but in practice it is sufficient to stop when the chance of 

accepting an uphill move has become negligible. To some extent, this is problem-

dependent. Literature suggests stopping when 

  ,
]/)1|ln[(| θ

ε
−

≤
S

t  

where S is the solution space. This is designed to produce a solution which is within ε 

of the optimum with a probability of θ. 

Number of iterations: It should be noted that the number of iterations Nit is effectively 

fixed by the above three choices. In the homogeneous case, it also depends on how 

equilibrium is detected at each state, but in the inhomogeneous case α, β and Nit are 

related by  
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respectively. 

The acceptance function is usually assumed to be exponential: 

  at <− )/exp( δ  

It has been pointed out that calculating this function is comparatively expensive on a 

digital computer. Approximating by t/1 δ−  often saves computer time at little cost in 

effectiveness. 

Re-annealing is a concept that has been used successfully. It involves recording the 

temperature at which the best solution is found during the time of carrying out an 

initial SA pass.  Then the process is reheated and a lengthier search is carried out at 

this temperature until some stopping condition is satisfied. 

SA has been applied to solve the TSP by several researchers, such as Golden and 

Skiscim (1986) and Rossier et al. (1986). The computational results of Laarhoven 

(1988) show that SA outperforms some local search methods, such as the 2-opt 

algorithm. However, the algorithm formulated by Lin and Kernighan (1973) can 

generate better solutions than the SA. 

 

Tabu search 

The tabu search (TS) method was proposed by Glover in 1986 and became one of the 

most popular local search methods for combinatorial optimization problems. The basic 

idea is that it prevents the process from cycling over a sequence of solutions when 

moving from one solution to the best neighboring solution.  One way is to forbid the 
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process from going back to previously encountered solutions, but the disadvantage is 

that it requires excessive bookkeeping. Another method is to register some attributes of 

past solutions, in such a way that any solution possessing these attributes may not be 

considered for a given number of iterations. This mechanism is called short-term 

memory. Long-term memory, often referred to as diversification, is often 

implemented.  The purpose of diversification is to ensure that the search process will 

not be restricted to a limited portion of the solution. It keeps track of the past solutions 

and penalizes frequently performed moves. Contrary to diversification, intensification 

strategies are based on modifying choice rules to encourage move combinations and 

solution features historically found to be good. They may initiate a return to attractive 

regions to search them more thoroughly. 

 

Some components of TS 

Move: A move characterizes the process of generating a feasible solution to the 

problem that is related to the current solution (i.e. a move is a procedure by which a 

new solution is generated from the current one). 

Aspiration Condition: These are rules that override tabu restrictions. In other words, if 

a certain move is forbidden by tabu restrictions, then the aspiration criteria, when 

satisfied, can make this move allowable. 

Tabu list: In order to prevent a return to the local optimum just visited, the reverse 

move that is detrimental to achieve the optimum solution must be forbidden. This is 

done by storing this move in a tabu list, in which the attributes of some moves made 

are recorded. The elements of the tabu list are called tabu moves. The reverse moves 

are restricted from regions that the search explored. The condition for a move to be a 
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tabu move or not can be problem specific. For instance, a move may be tabu if it leads 

to a solution that has already been considered in the last few iterations. 

Shigeru and Evans (1998) investigated the effect of the tabu list in TS for the TSP and 

showed that the best tabu list size is about n/4 for 2-opt based TS and in the range of 

n/16 to n/8 for the 3-opt based TS where n is the total number of nodes in the TSP. 

Knox (1994) showed that the TS which incorporates the 2-opt outperforms the 2-opt 

and 3-opt algorithms in most cases, especially for large-size problems.  

 

Genetic algorithm 

The genetic algorithm (GA) is another type of well-known modern heuristics. It can 

also be viewed as a form of neighborhood search, although its original inspiration 

comes from population genetics. Unlike SA and TS, GA makes use of a population of 

solutions, from which, using selective breeding and recombination strategies, better 

and better solutions can be produced. Simple genetic ‘operators’ such as crossover and 

mutations are used to construct new solutions from pieces of old ones, in such a way 

that for many problems, the population steadily improves. 

GA is an iterative algorithm that maintains a pool of solutions at each iteration 

(Reeves, 1993). Initially, the pool of solutions is generated randomly and at each 

iteration, a new pool of solutions is formed by genetic operators that mimic the 

principles of evolution and heredity. Each solution is evaluated with an objective 

function, and this process is repeated until some form of convergence is achieved.     

 

Some components for GA 

Crossover: All the individuals that have been selected for reproduction are randomly 

paired. For each pair, a crossover point is randomly chosen. The crossover point is the 
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point where the string representing an individual is split into two parts. Two new 

individuals are created by swapping the second parts of the pair. 

The crossover operators include the single point crossover, two point crossover, 

uniform crossover, partially matched crossover operator (PMX), order crossover (OX) 

and cycle crossover (CX), and so on. 

Gene: The basic unit of an individual which is represented as a string over a finite 

alphabet. 

Mutation: A mutation provides the opportunity to reach parts of the search space 

which perhaps cannot be reached by a crossover alone. Each gene of a string is 

examined in turn, and with a small probability, its current allele is changed. 

Fitness function: The fitness function can be a performance measure or reward 

function, or a critic, or anything at all that can be framed as an optimization problem. 

Selection strategy: It is usually randomized, with the probability of selection 

proportional to the fitness. For instance, if individual X scores twice as high as 

individual Y on the fitness function, then X is twice more likely to be selected for 

reproduction than Y. 

Reproduction: A process in which individuals are copied according to their fitness 

values. The fitter an individual, the more copies it has. This operator is an artificial 

version of natural selection.  

The basic idea of GA was initially proposed by Holland in 1975, but it was only fully 

recognized in the research community 10 years later. Jog et al. (1989) as well as 

Schmitt and Amini (1998) showed that GAs with large population size could result in 

good quality TSP solutions, but at the expense of running time. Chatterjee et al. (1996) 

obtained a near optimal solution for some sample problems of TSP. 
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Ant system algorithm 

The ant system algorithm (AS) is inspired by an analogy related to real ants which are 

capable of finding the shortest path from a food source to the nest without visual cues 

(Colorni, 1991). In other words, they are capable of adapting to changes in the 

environment, e.g. finding a new shortest path once the old one is no longer feasible due 

to a new obstacle.  

Ant algorithm was first proposed by Colorni et al. in 1991. Then Dorigo et al. (1996) 

and Dorigo and Gambardella (1997) refined the method and then applied it to solve the 

TSP. In these applications, the artificial ants got three ideas from natural ant behavior:  

(1) The ants had a preference for paths with a high pheromone level; 

(2) There was a higher rate of growth of the amount of pheromone on the shorter 

paths; and  

(3) The trail mediated communication among ants.  

The artificial ants were also given a few capabilities which were not found in their 

natural counterparts, but which were observed to be well suited to the TSP application, 

i.e., artificial ants can determine how far away cities are, and they are endowed with a 

working memory used to memorize cities already visited. The working memory is 

emptied at the beginning of each new tour, and is updated after each time step by 

adding the newly visited city. 

The following figures show the procedure of adapting behavior.  

 

 
Food (A) Nest 
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Figure 2.1 Procedure of adapting behavior for ants 

Obstacle 

Food (D) Nest 

 

It is well known that the primary means for ants to form and maintain a line is a 

pheromone trail. Ants deposit a certain amount of pheromone while walking, and each 

ant probabilistically prefers to follow a direction rich in pheromone. This elementary 

behavior of real ants can be used to explain how they can find the shortest path that 

reconnects a broken line after the sudden appearance of an unexpected obstacle has 

interrupted the initial path. In Figure 2.1 (A), ants are moving on a straight line that 

connects a food source to their nest.  In Figure 2.1 (B), once an obstacle has appeared, 

those ants which are just in front of the obstacle cannot continue to follow the 

pheromone trail and therefore they have to choose between turning right or left. In this 

situation, about half the ants choose to turn right and the other half choose to turn left. 

In Figure 2.1 (C), it is interesting to note that the number of ants which choose the 

shorter path around the obstacle will increase, because it can reconstitute the 
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interrupted pheromone trail more rapidly, compared to those who choose the longer 

path. Thus, the shorter path will receive a greater amount of pheromone per time unit 

and in turn a larger number of ants will choose the shorter path (Figure 2.1 (D)).  

Figure 2.1 shows that although all ants move at approximately the same speed and 

deposit a pheromone trail at approximately the same rate, it is a fact that it is more 

difficult to make the pheromone trail accumulate quickly on the longer side than the 

shorter one. Therefore, ants prefer the shorter path because of its higher pheromone 

trail.  

 

Search space smoothing method 

The local search method is effective for combinatorial optimization problems. 

However, it often gets stuck at a local optimum. A local search method, when coupled 

with some search space smoothing techniques, can smooth the rugged terrain surface 

of the search space, and hence it may be able to escape from a local optimum to find a 

good solution. One of the first heuristics to use data smoothing was developed by Gu 

 

and Huang in 1994. This method tries to avoid being stuck in a poor local optimum by 

using smoothed distance value instead of the original one. Their computational 

experiments showed that this method worked well when applied to the TSP. The 

smoothing function is as follows: 

• GH (Gu and Huang, 1994) 

The smoothing function is defined as: 
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where d is the average intercity distance.  is the normalized intercity distance and ijd

α  is the smoothing factor.  

In Gu and Huang’s search space smoothing method, the schedule for the smoothing 

factor α is 1,2,3,4,5=α . The smoothing factor is set to 5 for the first step, smooth the 

distances according to the above smoothing function. Then improve the TSP based on 

the smoothed distances, followed by updating the smoothing factors 4, 3, 2, 1 to 

smooth the distance, and improve the TSP solution using the smoothed distance. 

Repeat it until the value of α is 1. When 1 =α , the distance is original according to the 

smoothing function. 

The space smoothing search algorithm of Gu and Huang can be described as follows: 

Step 1. Let the distance from city i to city j. Normalize all distances so that 

 Specify the schedule for the smoothing factor (α) from 5 to 1. 

=ijd

.10 ≤≤ ijd

Step 2. Generate a random starting tour. 

Step 3. Set α to the next value in the smoothing schedule and then smooth the 

distances according to the following function: 
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where d is the average distance. 

Step 4. If α = 1, stop. The current tour is the final tour. Otherwise, using the 

current tour, go to Step 3. 

 

Gu and Huang (1994) showed that the search space smoothing method can improve 

the conventional local search algorithm effectively. Schneider et al. extended the work 

of Gu and Huang in 1997 by providing four other smoothing functions (exponential, 
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hyperbolic, sigmoidal, and logarithmic) to solve the TSP. Subsequently, Coy et al. 

(1999) extended the results of Gu and Huang and proposed three other smoothing 

functions to improve the algorithm.  

Coy’s functions are defined as follows: 

• The concave method (Coy et al. 1999) 

The smoothing function is: 

.)( /1 αα ijij dd =  

• The convex method (Coy et al. 1999) 

The smoothing function is: 

.)( ijij dd =α  

• The sequential method (Coy et al. 1999) 

This sequential method is a combination of concave and convex heuristics. Firstly, the 

distances between customers are smoothed with a convex function and then the local 

search heuristics are applied. Secondly, the distances are smoothed with a concave 

function and then the local search heuristics are applied. 

Among the smoothing heuristics proposed by Gu and Huang (1994), Schneider et al. 

(1997) and Coy et al. (1999), the computational study of Coy et al. (1999) showed that 

the sequential smoothing method generated the least-cost tours for the TSP.  In 

addition, the sequential smoothing method can avoid getting trapped in poor local 

minima by alternating between concave smoothing and convex smoothing. 

 

Composite algorithms  

A composite algorithm is the combination of the construction algorithm and the 

improvement algorithm. It constructs one initial solution using some construction 

algorithms and then improves it by adding one or more improvement procedures. In 
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recent years, several composite algorithms have been developed. Some effective 

methods, such as the GENIUS algorithm by Gendreau et al. (1992) and the nested 

partitions algorithm by Shi et al. (1999) are reviewed in this section. 

 

The GENIUS algorithm (Gendreau et al., 1992) 

Gendreau et al. proposed the GENIUS algorithm in 1992. The GENIUS algorithm 

consists of two parts: a generalized insertion phase and a post-optimization phase. 

After the insertion phase, a post-optimization algorithm known as Unstring and 

Stringing is used to remove and insert nodes to the tour.  

Gendreau et al. (1992) showed that excellent solutions are obtained when the GENIUS 

algorithm is used to solve the TSP.  For some sample problems, GENIUS is even able 

to find the optimal solutions. 

 

The nested partitions algorithm (Shi et al., 1999) 

The nested partitions algorithm was presented by Shi et al. in 1999.  The basic idea of 

the nested partitions algorithm is to identify good regions of the solution space and 

concentrate the search effort in these regions to find good solutions.  

The computational results show that the nested partitions algorithm outperforms 2-opt 

and 3-opt algorithms in solution quality and running time, and in some cases, it can 

obtain near optimal solutions. 

 

2.2 Approaches for Solving the VRP                                                                                                     

2.2.1 Exact Methods for the VRP  

Exact algorithms for solving the VRP proposed in the literature, such as set covering 

based algorithms, branch and bound methods and branch and cut algorithms are 
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reviewed in this section. Most of these exact algorithms are to solve the CVRP, 

because CVRP is the simplest and most studied type of the VRP family. 

 

Set covering based algorithms  

One of the exact methods for solving the VRP is based on a set covering formulation 

of the problem. Let the index set of all feasible routes be {1, 2, …, R} and let cr be the 

length of route r. Let 
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In the set covering formulation of the VRP, the objective is to select a minimum cost 

set of feasible routes such that each customer is included in some routes. The problem 

can be formulated as follows: 
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This formulation was first used successfully by Cullen et al. (1981) to design heuristic 

methods for the VRP. Desrochers et al. (1992) applied it in conjunction with a branch 

and bound method to find optimal or near optimal solutions to the VRP. 

The set of all feasible routes is extremely large and one cannot expect to generate it 

completely. To solve the linear relaxation of Problem S without enumerating all the 

routes, Desrochers et al. (1992) used the celebrated column generation technique. The 
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general idea is as follows: a portion of all possible routes is enumerated, and the 

resulting linear relaxation with this partial route set is solved. The solution to this 

linear program is then used to determine if there are any routes that are not included, 

which can reduce the objective function value.  Using the values of the optimal dual 

variables (with respect to the partial route set), a new route is generated and the linear 

relaxation is resolved. This process is continued until one can show that an optimal 

solution to the linear program is optimal for the complete route set. This method can be 

combined with a polyhedral approach that generates an optimal or near-optimal 

solution to the VRP. 

 

Branch and bound algorithms 

The branch and bound algorithm has been the most effective method for the VRP in 

the last few decades (Toth and Vigo, 2002a). Up to the end of the last decade, most of 

the branch and bound methods used basic relaxations such as the assignment problem 

and the shortest spanning tree. In recent years, problems of larger sizes have been 

solved to optimality by using more sophisticated bounds based on Lagrangian 

relaxations or the additive approach. Among the methods, only a few algorithms were 

proposed to solve the ACVRP. They included an algorithm whose lower bound was 

based on the assignment problem by Laporte and Nobert (1986); and an algorithm 

whose lower bound was based on the additive approach by Fischetti et al. (1994). 

Normally, the basic combinatorial relaxations can be used to solve for the optimal 

solution of the problem with small size only. To improve the bounding technique, 

some researchers, such as Fisher (1994) and Miller (1995), proposed to strengthen the 

basic relaxation by dualizing some of the relaxed constraints. An exact algorithm is 

proposed by Fisher (1994) to solve the CVRP problem. The CVRP can be modeled as 
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the problem of finding a minimum cost K-tree (K is equal to number of vehicles) with 

two K edges incident on the depot and subject to some side constraints that impose 

vehicle capacity and the requirement that each customer be visited exactly once. The 

side constraints are dualized to obtain a Lagrangian problem that provides lower 

bounds in a branch-and-bound algorithm. The author’s computational results show that 

the exact algorithm has produced proven optimization solutions for a number of 

difficult problem in the literature and server real problems with 25-71 customers. 

Miller (1995) presented another branch-and-bound CVRP algorithm. The lower 

bounds are derived by relaxing the subtour elimination and vehicle capacity constraints 

to yield a perfect b-matching problem. The subtour elimination and vehicle capacity 

constraints are expressed by a single family of inequalities called generalized subtour 

elimination constraints. Bounds are strengthened by using Lagrange multipliers to 

enforce subtour elimination and capacity constraints. This method can increase the size 

of the instances solvable by branch and bound effectively. 

 

Branch and cut algorithms 

The branch and cut algorithm has been extremely successful in finding optimal 

solutions for large-size TSPs, while its application to the CVRP is still in the initial 

stages of its development (Naddef and Rinaldi, 2002). A better understanding of the 

underlying polytope as well as further effort in designing efficient separation routines 

are needed to provide better solutions for the CVRP. Many researchers are working on 

this approach for solving the VRPs, and some of them have been successful in solving 

VRPs of certain sizes. Cornuejols and Harche (1993), for example, studied the facial 

structure of a set of feasible solutions and suggested a branch and cut procedure. 
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Augerat et al. (1995) implemented a branch and cut algorithm to solve some large 

problems which have never been solved before.                

                                                             

2.2.2 Heuristic Methods for the VRP 

Heuristic Methods for the VRP can be classified into three categories: construction 

heuristics, improvement heuristics and composite heuristics (Laporte and Semet, 

2002). The construction heuristics are used to build a feasible solution while keeping 

an eye on solution costs. Improvement methods attempt to improve any feasible 

solution by exchanging edges or nodes within or between vehicle routes. Composite 

heuristics are divided into two classes: cluster-first, route-second methods and route-

first, cluster-second methods (Laporte and Semet, 2002). In the first case, vertices are 

divided into feasible clusters and then a route in each cluster is constructed. In the 

second one, a route visiting all the customers is constructed first and then segmented 

into feasible vehicle routes.  

 

Construction algorithms 

Generally, two techniques have been used on constructive methods, i.e., merging 

existing routes using a savings criterion and assigning vertices to vehicle routes using 

insertion costs. 

The Clarke and Wright (1964) algorithm can be used to solve not only the TSP (See 

Section 2.1.2) but also the VRP. Its basic idea is to calculate the savings and rank them 

from the largest to smallest, to form a larger sub-tour. The only difference between 

these two implementations is that the vehicle capacity should be considered in the 

implementation of the VRP. 
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The savings methods of Clarke and Wright produces good routes at the beginning but 

less interesting routes are likely to be produced towards the end. To improve on it, 

Yellow (1970) proposed a generalized savings formula: ijjiij CCCS λ−+= 00 , where 

λ  is a route shape parameter. It was found that the larger theλ , the more emphasis 

was put on the distance between the vertices to be connected. 

Mole and Jameson (1976) proposed one type of sequential insertion heuristics. Their 

algorithm uses two parameters λ  and µ  to expand a route under construction: 

ijkjik CCCjki λα −+=),,(   

),,(),,( 0 jkiCjki k αµβ −=                                                                       

For each un-routed vertex k, construct an emerging route (0, k, 0) and then compute the 

feasible insertion cost )},,(min{),,(* skrjki kk αα =  for all adjacent vertices r and s 

of the emerging route, where ik and jk are the two vertices yielding *α . If the insertion 

is feasible, the best vertex k* to insert into the emerging route is the vertex yielding 

)},,(max{()*,,(* ** kkkk jkijki ββ =  over all un-routed vertices k that can be feasibly 

inserted. Insert k* between ik* and jk* . Improve the current route by means of a 3-opt 

procedure (Lin, 1965). 

 

Procedure of the sequential insertion algorithm: 

Step 1.  

 

If all vertices belong to a route, stop. Otherwise, construct an emerging route 

(0, k, 0), where k is any un-routed vertex. 

Step 2.  Compute for each un-routed vertex k, the feasible insertion 

cost =),,(* kk jkiα )},,(min{ skrα  for all adjacent vertices r and s of the 

emerging route, where ik and jk are the two vertices yielding *α . If no 

insertion is feasible, go to Step 1. Otherwise, the best vertex k* to insert into 
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the emerging route is the vertex yielding 

)},,(max{()*,,(* ** kkkk jkijki ββ =  over all un-routed vertices k that can 

be feasibly inserted. Insert k* between ik* and jk*. 

Step 3.  Optimize the current route by means of a 3-opt procedure (Lin, 1965) and 

go to Step 2. 

 

Christofides et al. (1979) developed a more sophisticated two-phase insertion that also 

used controlled parameters: λ  and µ . The computational results showed that it 

performed better than the sequential insertion method of Mole and Jameson (1976). 

 

Improvement algorithms 

Improvement algorithms can be used on vehicle routes that are taken separately or 

where several routes are taken at a time.  

Thompson and Psaraftis (1993) proposed a multi-route improvement algorithm. This is 

a general b-cyclic, k-transfer scheme in which a circular permutation of b routes is 

considered and k customers from each route are shifted to the next route of the cyclic 

permutation. 

It has been almost 40 years since the publication of the savings heuristic for the VRP, 

and during this period, many classical heuristics have been proposed. Some 

comparisons show that the solution quality of the classical heuristics based on simple 

construction and local descent improvement techniques do not compete with the best 

meta-heuristic implementations. Thus, as there was little room left for significant 

improvement in the area of classical heuristics, researchers next turned their attention 

to some other methods, such as the meta-heuristic methods. 
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Simulated annealing 

Two known methods using SA to solve the CVRP have emerged in recent years:  One 

is based on Osman’s (1993) λ-interchange method. The λ-interchange method can be 

described thus: two routes, route p and route q, are first selected from the current 

solution. Then subsets of customers Sp and Sq satisfying λ≤|| pS and λ≤|| qS are 

chosen, one from each route. The customers in Sp and the customers in Sq are swapped 

as long as the solution remains feasible.  In his implementation, Osman used the λ-

interchange (λ=2) local search method, allowing for a mix of single and double vertex 

moves, and single and double vertex swaps between vehicle routes.  

 The other method is based on Breedam’s (1995) string cross, string exchange and 

string relocation methods. Breedam classified the improvement operations as ‘string 

cross’, ‘string exchange’, ‘string relocation’, and ‘string mix’, which could all be 

viewed as special cases of 2-cyclic exchanges of the Thompson and Psaraftis (1993) 

cyclic transfer algorithm. A string cross is one in which two strings of vertices are 

exchanged by crossing the edges of two different routes. The string exchange attempts 

to improve the VRP solution by exchanging customers or strings of customers between 

every two routes.  String relocation is used to insert a customer or a string of customers 

from one route into another route. A string mix is a mix of string cross, string 

relocation and string exchange procedures and this procedure tries to cross, exchange 

or relocate customers or strings of customers, depending on which yields the greatest 

savings. The computational analysis on some test problems was also provided in this 

study. 
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Tabu search 

Over the last 10 years or more, tabu search has been applied to the CVRP by several 

researchers. Some of the earliest tabu implementations did not yield impressive results, 

while subsequent implementations were much more successful (Gendreau et al., 

2002). 

Pureza and França (1991) defined the neighbors of a solution by moving one node to 

another route or swapping the nodes between two routes while preserving feasibility. 

One of the most successful methods was presented by Osman in 1993. In this 

implementation, the λ-interchange (λ=2) local search method was used and two 

strategies for selecting a neighbor solution were proposed. One strategy, known as 

‘best improve’(BI), means that the best non-tabu solution is selected. In the second 

strategy, known as ‘first improve’ (FI), the first admissible improving solution is 

selected if one exists, otherwise, the best admissible solution is retained. The 

computational results showed that the FI is slight better than BI in solution quality. 

Gendreau et al. also presented an implementation of tabu search for solving the CVRP 

in 1994. The neighbor solutions were obtained by moving a vertex from its current 

route to another route containing one of its closest neighbors. The route inserted was 

performed concurrently with a local re-optimization using the GENI mechanism for 

the TSP (Gendreau et al., 1992). Taillard’s (1993) tabu method shares some features of 

Gendreau’s method, such as the diversification strategy. However, in Gendreau’s 

algorithm, Osman’s λ-interchange mechanism was used to generate neighbors, and 

standard insertions, rather than using the insertions with GENI, were used to reduce 

running time.   

One important concept, the adaptive memory procedure (AMP) was presented by 

Rochat and Taillard in 1995. An adaptive memory is a pool of good solutions that is 
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updated throughout the search process. The basic idea of this procedure is that some 

elements of these solutions are extracted from the pool and combined to produce new 

good solutions. The procedure is mostly used in tabu search, but its applicability is not 

limited to this type of meta-heuristics. Another promising concept, the granular tabu 

search, was proposed by Toth and Vigo in 1998. The basic idea is that longer edges do 

not belong to the optimal solution for most cases. The unpromising solutions are not 

considered by eliminating the edges whose length exceeds a threshold. 

Xu and Kelly (1996) and Rego and Roucairol (1996) applied more sophisticated 

neighborhood structures to tabu search to solve the VRP. Computational experience 

shows that tabu search is the best heuristic for the CVRP to date (Gendreau et al., 

2002). Its success is due to some key implementation ideas. These include the 

allowance of infeasible solutions during the search procedure, the use of self-adjusting 

parameters, diversification and intensification, and so on. These ideas have contributed 

to both the success of improving the quality of solution and the saving of running time. 

 

Genetic algorithm 

 Breedam (1996) made a comparison of a GA with some SA and TS algorithms on 

some types of CVRPs. In the local search of the GA, he used the local search descent 

operator based on four different types of exchange moves and applied it only to the 

best solutions in the current solution pool. The computational results showed that the 

solution produced by the GA is comparable to the solutions obtained by the SA and 

TS.  

Cases and applications of the GA are rather limited, and most research is focused on 

solving TSPs and VRPTWs. In fact, some very effective implementations of the GA to 

VRPTWs were reported by Potvin and Bengio (1996) and some other researchers. 
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Ant system algorithm 

Only a few papers have been presented on the application of the AS to solve the VRP. 

In 1998, Kawamura et al. proposed one complex hybrid variant of AS that involved 2-

opt improvement procedures and probabilistic acceptance. Bullnheimer et al.  (1998, 

1999) provided two applications of the AS to the VRP. In these applications, they 

developed two hybrid ant systems in which each vehicle route produced in a given 

iteration was improved by the 2-opt heuristic before the trail update. In their 

procedure, they used a number of ‘elitist ants’ to account for the best solutions. The 

results of the above methods were encouraging. 

Overall, meta-heuristic methods can produce some excellent solutions, sometimes 

optimal solutions, to the instances with a few hundred customers. Among them, TS has 

given the best performance to date. The performances of the GA and AS have not been 

competitive with other methods, but they could be improved in the future because 

these two methods have not been fully exploited. 

 

Composite algorithms 

Generally, there are two types of composite methods: the cluster-first, route-second 

method and the route-first, cluster-second method. Most of the methods belong to the 

first type.  

The cluster-first, route-second method 

Gillett and Miller (1974) proposed one cluster-first, route-second method, known as 

the sweep algorithm. In this method, the locations that are used to make up each route 

are determined according to the polar-coordinate angle for each location. Assume that 

each vertex i is represented by its polar coordinates ( iθ , iρ ), where iθ is the angle and 

iρ  is the ray length. Assign a value 0* =iθ to an arbitrary vertex i* and compute the 
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remaining angles from (0, i*). Rank the vertices in increasing order of their iθ and then 

assign vertices to an unused vehicle, from the un-routed vertex having the smallest 

angle, as long as its capacity or the maximal route length is not exceeded. In other 

words, feasible clusters are formed by rotating a ray centered at the depot. Then 

improve each vehicle route by solving the TSP.  

 

Procedure of the Gillett and Miller sweep algorithm 

Step 1. Choose an unused vehicle k. 

Step 2. Starting from the un-routed vertex having the smallest angle, assign 

vertices to vehicle k as long as its capacity or the maximal route length is 

not exceeded. 

Step 3. Optimize each vehicle route separately. 

The algorithm of Fisher and Jaikumar (1981) is one of the most famous cluster-first, 

route-second methods. In this method, they used a generalized assignment problem 

(GAP) to form clusters. The cost matrix for the GAP can be calculated by       

            )(},min{ 000000 kkkkkk jjiijjjjiiik CCCCCCCCd +−++++=  

where jk are the seed vertices in V to initialize each cluster k,  dik is the cost of 

allocating each customer i to each cluster k.  

 

Procedure of the Fisher and Jaikumar GAP algorithm 

Step 1. Choose seed vertices jk to initialize each cluster k. 

Step 2. Compute the cost dik of allocating each customer i to each cluster k as 

).(},min{ 000000 kkkkkk jjiijjjjiiik CCCCCCCCd +−++++=  

Step 3. Solve the GAP with cost dik. 

   Step 4. Solve a TSP for each cluster corresponding to the GAP solution. 
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Bramel and Simchi-Levi (1995) proposed a two-phase composite algorithm in which 

the seeds are determined by solving a capacitated location problem and the remaining 

vertices are gradually included into their allotted route in the second stage. In this 

method, first locate k seeds, known as concentrators, from the n customer locations to 

minimize the total distance of customers to their closest seed. Then vehicle routes are 

constructed by inserting the customer that is assigned to that route seed and has the 

least insertion cost at each step.  

It is assumed that the number of vehicles is a fixed number in the Fisher and Jaikumar 

GAP algorithm and in the method by Bramel and Simchi-Levi (1995). 

 
The route-first, cluster-second method  

 
In the route-first, cluster-second method, a giant TSP tour is constructed in the first 

phase, disregarding side constraints, and then this tour is decomposed into feasible 

vehicle routes in the second phase. Normally, this idea is applied to the problem with 

an unlimited number of vehicles. However, some researchers, such as Dijkstra (1959) 

as well as Bertsimas and Simchi-Levi (1996), when discussing this type of algorithm, 

found from their computational experiences that route-first, cluster-second heuristics 

are not competitive with other approaches. 

 

2.3 Stochastic Vehicle Routing Problem 

The stochastic vehicle routing problem (SVRP) is a generalization of the deterministic 

VRP. The SVRP differs from the VRP in the introduction of some element of 

variability within the system in question (Hadjiconstantinou and Roberts, 2002). For 

the SVRP, the following modifications to the VRP are required (Bodin et al., 1983): 

• Customer demand must be a random variable with a known probability 

distribution;                                   
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• Routes must be designed before the actual demands become known; and 

• Other costs might be considered when calculating the expected travel distance. 

There are two basic types of SVRPs: the SVRPs with stochastic traveling times 

(VRPST) and the SVRPs with stochastic demands (VRPSD) (Hadjiconstantinou and 

Roberts, 2002). A comprehensive review of SVRPs can be found in Gendreau et al. 

(1996). 

Kao (1978) presented two heuristic methods to solve the VRPST: one is based on 

dynamic programming and the other on implicit enumeration. Sniedovich (1981) and 

Carraway et al. (1989) continued to improve Kao’s (1978) dynamic programming 

method. Laporte and Loubeaus (1993) developed an integer L-shaped method that can 

give exact results for the VRPST with 20 customers. 

Tillman (1969) developed an algorithm that was adapted from the Clarke and Wright 

(1964) algorithm to solve the VRPSD. Following that, Teodorović and Pavković 

(1992) presented a simulated annealing heuristics and Gendreau et al. (1994) proposed 

a tabu search algorithm to solve the VRPSD.  A comparative study of meta-heuristics, 

including simulated annealing, tabu search and threshold accepting, was conducted by 

Teng et al. in 2003. The computational results show that the solution quality of tabu 

search outperforms the other heuristics for the sample of the tested VRPSD. 

 44



Chapter 3                                                        Assignment-Based Local Search Method 

Chapter 3 

Assignment-Based Local Search Method 

 
In this chapter, a new local search method called the assignment-based local search 

(ABLS) is proposed. This algorithm is thus named because the inserting of nodes into 

routes at each step is based on the solution of an assignment problem. The basic idea, 

classification, parameter setting and computational experiments for the proposed 

ABLS algorithm are discussed in detail in this chapter. 

 

3.1 Introduction to the ABLS Method  

An improvement algorithm tries to improve a feasible solution by performing a 

sequence of edge or vertex exchanges within or between vehicle routes for the VRP. It 

can operate on each vehicle route taken separately or on several routes at a time. For 

single route improvement, all improvement algorithms developed to solve the TSP can 

be applied.  To date, neighborhood search algorithms for the VRP and other 

scheduling problems have focused almost exclusively on single-route problems. The 

most popular algorithm for improving the single route is Lin’s (1965) λ-opt heuristic. 

Besides this, Croes (1958), Lin and Kernighan (1973) and Stewart (1987) also 

proposed some algorithms for the single route improvement problem. By contrast, only 

a few researchers have focused on multi-route improvement. Thompson and Psaraftis 

(1993) presented a general ‘b-cyclic, k-transfer’ scheme in which a circular 

permutation of b routes is considered and k customers from each route are shifted to 

the next route of the cyclic permutation. Breedam (1995) classified the improvement 

operations as ‘string cross’, ‘string exchange’, ‘string relocation’ and ‘string mix’.  

And all of these operations can be viewed as the special cases of ‘2-cyclic’ exchanges. 
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Kinderwater and Savelsbergh (1997) defined similar operations and performed 

experiments mostly in the context of the VRP with time windows.  

However, both Thompson and Psaraftis (1993)’s ‘b-cyclic, k-transfer’ scheme and 

Breedam (1995)’s ‘string cross’, ‘string exchange’, ‘string relocation’, ‘string mix’ 

operations just relocate the chosen nodes randomly. To improve the performance of 

the multi-route improvement algorithm, a local search method, ABLS algorithm, is 

proposed. In this section, the ABLS algorithm, which can operate on several routes at a 

time, will be discussed in detail. 

 

3.1.1 Basic idea of the ABLS Method 

The basic idea of the ABLS method is to exchange or move several nodes to other 

routes. In other words, for any feasible initial solution, choose a certain number of 

nodes and delete them from the current routes. Then try to insert back the chosen 

nodes by solving an assignment problem whose corresponding cost matrix is obtained 

by some insertion procedure. It is noted that the number of nodes chosen should be less 

than or equal to the number of routes to guarantee that the chosen nodes can be 

inserted into the vehicle routes. 

 

Assignment problem  

The assignment problem is a special type of linear programming problem, in which, 

the objective is to determine how to assign assignees to perform tasks to minimize the 

total costs needed while the following assumptions are satisfied: 

• The number of assignees is equal to the number of tasks; 

• Each assignee is to be assigned to exactly one task; 

• Each task is to be performed by exactly one assignee; and  
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• There is a cost cij associated with assignee i performing task j. 

When the number of assignees is not equal to the number of tasks, dummy assignees 

and dummy tasks will be added to construct one assignment problem. Then the 

corresponding cost in the cost matrix is set to zero to avoid this assignment in the 

optimal solution. 

Let v denote the number of tasks.  

Then let . 
⎩
⎨
⎧

=
otherwise0

taskperformsassigneeif1 ji
xij

The assignment problem can be formulated as a linear programming problem as 

follows (Hillier and Lieberman, 1995): 
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The cost matrix for the assignment problem of the VRP can be calculated by some 

insertion procedures, such as the nearest insertion, cheapest insertion, arbitrary 

insertion, farthest insertion and the greatest angle insertion. With regard to the CVRP 

case, the cheapest insertion is applied because of its efficiency of computation of 

insertion cost. The basic idea of the cheapest insertion procedure is to try to insert one 

node between two adjacent nodes that can result in the least increment in distance. For 
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instance, suppose three nodes are deleted from four routes, and attempts are made to 

insert them back to these routes. The cost matrix of the associated assignment problem 

is shown in Table 3.1. The value of each cell, gij, is the least cost increment, if node i is 

to be inserted into the route j. If it is infeasible to insert node i into route j, the gij is set 

to a very large positive number, M. For the CVRP, if the demand of the node is greater 

than the remaining capacity of the current route, the corresponding cost in the cost 

matrix should be set to be M.  In the case where the node to be inserted is a dummy 

node, gij is set to zero. 

Table 3.1 Cost matrix of the assignment problem 

 Route 1 Route 2 Route 3 Route 4 
Assignee 1  g11 g12 g13 g14
Assignee 2  g21 g22 g23 g24
Assignee 3  M M g33 g34
Assignee 4 (Dummy) 0 0 0 0 

 

The assignment problem can be solved by the well known Hungarian algorithm (Kuhn, 

1955) or some other methods. In this thesis, the shortest augmenting path algorithm by 

Jonker and Volgenant (1987) is used because it has been shown to be more efficient 

than Hungarian algorithm. 

 

3.1.2 An Example of the ABLS Method 

An illustration on how the ABLS algorithm can be used to solve the VRP is given in 

the following example.  

Assume that there are 10 customers whose demands are to be served by 3 identical 

vehicles. The capacity for each vehicle is 3500. The demands and coordinates of each 

customer are given in Table 3.2.  
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Table 3.2 Demands and coordinates of customers for the CVRP example 

Index of Customer x-coordinate y-coordinate Demand 
0 145 215 0 
1 151 264 1100 
2 159 261 700 
3 130 254 800 
4 128 252 1400 
5 163 247 2100 
6 146 246 400 
7 161 242 800 
8 142 239 100 
9 163 236 500 

10 148 232 600 
Note: Customer 0 denotes the depot. 

 

Step 1. Suppose that the initial or current solution is given as shown in Figure 3.1.  In 

the solution, there are 3 routes, and each of them begins and ends at depot, 0: 

Route 1: 0-9-2-1-6-8-10-0, Remaining capacity is 100 and distance is 114.7. 

Route 2: 0-7-3-4-0, Remaining capacity is 500 and distance is 108.2. 

Route 3: 0-5-0, Remaining capacity is 1400 and distance is 73.4. 

Total distance is 296.3. 

Step 2. Choose some nodes and delete them from the current solution. In this 

instance, assume that node 9 is deleted from route 1, while no node is chosen 

from route 2 and node 5 is chosen from route 3. The solution after deleting 

nodes 9 and 5 is shown in Figure 3.2. The routes after deletion are as follows: 

Route 1: 0-2-1-6-8-10-0, Remaining capacity is 600 and distance is 109.9. 

Route 2: 0-7-3-4-0, Remaining capacity is 500 and distance is 108.2. 

Route 3: Empty, Remaining capacity is 3500 and distance is 0.   

Total distance is 218.1. 

Step 3. Calculate the cost matrix for the assignment problem to reassign the nodes 

deleted into the routes. The cost matrix for this example is given in Table 3.3.  
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Step 4. Solve the assignment problem with the cost matrix shown in Table 3.3, and 

insert the nodes to the corresponding location of the route according to the 

solution. The optimal solution to the assignment problem is: node 9 is 

assigned to the location between the depot and node 7 in route 2, while node 

5 will be inserted back to route 3. The solution after the insertion is shown in 

Figure 3.3. Then the solution after insertion becomes: 

Route 1: 0-2-1-6-8-10-0, Remaining capacity is 600 and distance is 109.9. 

Route 2: 0-9-7-3-4-0, Remaining capacity is 0 and distance is 110.8. 

Route 3: 0-5-0, Remaining capacity is 1400 and distance is 73.4. 

Total distance is 294.1. 

 

After one iteration, it can be seen that the total distance is reduced from 296.3 to 294.1. 
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Figure 3.1 Current routes of the CVRP example 
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Figure 3.2 Routes after deletion of the CVRP example 
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Figure 3.3 Routes after reassignment of the CVRP example 
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Table 3.3 Cost matrix of the CVRP example 

 Route 1 Route 2 Route 3 
Assignee 1 (node 9) 4.89 2.59 55.31 
Assignee 2 (Dummy) 0 0 0 
Assignee 3 (node 5) M M 73.43 

 

 
3.1.3 Types of Problems That Can Be Solved by the ABLS 

The ABLS method can be applied to solve the CVRP as well as some variants of the 

CVRP, such as the DCVRP and the CVRP with multiple trips, and so on.  

For the CVRP, only one constraint, i.e., the capacity constraint, needs to be considered. 

In other words, only the capacity constraint is considered when calculating the cost 

matrix. In the cost matrix, the cost value should be set to M if the demand of the node 

is greater than the remaining capacity of the corresponding route. 

To solve the DCVRP, one more distance-limit constraint should be considered when 

calculating the cost matrix for the assignment problem. In the case where the demand 

of the node to be inserted is not greater than the remaining capacity of one particular 

route, but the length of the route after insertion will exceed the limit length for the 

route, the corresponding cost in the cost matrix is set to M to prevent the node from 

being inserted into the route. This guarantees the feasibility of the solution obtained. 

The CVRP with multiple trips is similar to the CVRP except that each vehicle is 

allowed to be used more than once. The ABLS algorithm can be used to solve a CVRP 

with multiple trips effectively because only routes in the solution, and not vehicles, are 

considered in the improvement procedure. Throughout the whole improvement 

procedure, one can simply disregard which vehicle is to be assigned to which route 

temporarily. 
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In case of the demand is greater than the capacity of vehicles, the demand can be split 

into two parts. The first part is served by vehicles with full loads until the remaining 

demand is not greater the capacity of the vehicle. The route with full loads will be 

untouched in the subsequent improvement procedure if the route contains exactly one 

customer.  

For other practical VRPs with different constraints, such as the case in which only a 

subset of vehicles can be used to serve some particular customers, the procedure of 

improvement, especially the cost matrix for the assignment problem, can be revised 

accordingly. 

 

3.2 Classifications of the ABLS Method  

In this section, the proposed ABLS algorithm is classified into two basic types 

depending on the way the nodes are chosen. They are:  

• Type A: Choose zero or one node from each route according to a preset 

probability, p. In other words, for each route a node is to be chosen randomly 

with probability, p and no node will be chosen with probability 1- p. 

To improve some solutions obtained further, Type A of ABLS algorithm is provided. 

The strength of this algorithm is that Type A of ABLS algorithm cannot result in 

worse solutions when only feasible solutions are allowed in the improvement 

procedure. Therefore, it is possible to improve the solutions when it is difficult to be 

improved using other algorithms. 

• Type B: Choose nodes regardless of which routes they belong to. In this case, a 

predetermined number of nodes are to be chosen randomly from the set of all 

customers. 
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To make the algorithm more flexible, the constraint of choosing nodes has been 

relaxed in Type B of the algorithm. The nodes can be chosen regardless of the routes 

they come from. That is, more than one node can be chosen from one route at a time. 

There are several variants for each type of ABLS algorithm, depending on which 

strategies are to be implemented. 

In this study, the following four strategies are proposed: 

Strategy 1: An infeasible solution is not allowed in the improvement procedure 

When using this strategy, infeasible solution is not allowed in the improvement 

procedure. The advantage of the implementation of this strategy to Type A is that it 

will never generate a solution that is worse than the current solution.  

Strategy 2: An infeasible solution is allowed in the improvement procedure 

This strategy can accept an infeasible solution in the improvement procedure. With 

this modification, the procedure may avoid getting stuck at a locally optimum solution, 

and hence the algorithm may be able to find a better solution. However, for the cases 

that result in infeasible solutions easily, such as for the case in which the remaining 

capacities of routes are quite small compared with the demands of most nodes, the 

algorithm with this strategy is not quite effective. 

Strategy 3: The best solution within a neighborhood of the current solution is selected 

In this strategy, the best improvement solution is implemented in the neighborhood 

search. In other words, only the move that can result in the best solution is accepted in 

the neighborhood. The weakness of this strategy is longer running time are needed. 

Strategy 4: The first improved solution in the neighborhood of the current solution is 

selected 
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The first improved solution found in the neighborhood of the current solution is 

adopted in Strategy 4. For the algorithm with this strategy, the running time needed is 

less than the algorithm with strategy 3 for most cases. 

The neighborhood structure for Strategies 3 and 4 can be defined as follows: given a 

current solution, its neighborhood can be considered as the set of solutions that can be 

obtained from the current solution by making one move. For the ABLS, the move 

consists of choosing and deleting some nodes from the current route and then inserting 

them into the deleted routes. For instance, for Type B of the ABLS, the neighborhood 

is the set of solutions that is obtained by choosing and deleting 3 nodes from the 

current solution and then inserting them into the deleted routes assuming that the 

number of nodes is preset to 3. The neighborhood size can be determined by 

experiments.  

By using different ways of choosing nodes and adopting different strategies in the 

improvement procedure, the following eight implementations of the ABLS method can 

be applied to solve several types of VRPs.  A summary of the classifications of the 

ABLS methods is given in Table 3.4. 

 

Table 3.4 Summary of classifications of the ABLS 

Type Strategy 1 Strategy 2 Strategy 3 Strategy 4 
Type A1 Y    
Type A2 Y  Y  
Type A3 Y   Y 
Type A4  Y   
Type A5  Y Y  
Type A6  Y  Y 
Type B1 Y    
Type B2 Y  Y  
Type B3 Y   Y 
Type B4  Y   
Type B5  Y Y  
Type B6  Y  Y 
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Composite algorithms 

In practice, either a simple type of algorithm or a combination of different types of 

algorithms can be used to solve the VRP. There are many combinations of the various 

types of algorithms and the most effective combination can be different for different 

problems.  

As an illustration, two composite algorithms are given below. 

Composite algorithm 1 

{ 
 Type A5; 

Type A1; 
} 

Composite algorithm 1 includes two parts: Type A5 and Type A1. It means that some 

nodes are chosen according to the preset probability, p1, and deleted from the routes. 

The assignment problem is solved with the cost matrix that is calculated by the 

cheapest insertion method. Then the nodes are inserted into the routes according to the 

solution of the assignment problem.  Normally, for Type A5, the preset probability, p1, 

is relatively large as Type A5 is the first part of the algorithm. Such a parameter setting 

can help to improve the initial solution quickly. For the neighborhood structure, only 

the move that can result in the best solution is adopted.  

In part 2, zero or one node from each route is chosen according to a preset probability, 

p2. Then the cost matrix is calculated and the chosen nodes are inserted into the 

corresponding routes according to the solution of the assignment problem. It is noted 

that p2 can be different from p1.  The values of the probabilities will be determined by 

experiments. 

Composite algorithm 2 

{ 
  Type B6; 

Type A1; 
 } 
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Composite algorithm 2 includes two parts: Type B6 and Type A1.  The first part is 

different from that of composite algorithm 1 while part 2 of both composite algorithms 

are similar. 

 In the first part, one node is chosen from some routes. Then they are inserted into the 

corresponding route according to the solution of the assignment problem. In the 

improvement procedure, Strategy 4 is used. In other words, for each neighborhood 

structure, the first solution that can improve the current solution is accepted. Infeasible 

solutions are allowed throughout the entire procedure. 

For most composite algorithms, Type A1 is always used as the last part of the whole 

algorithm because it cannot result in a worse solution than the current one.  

For each algorithm, the same type of algorithm can be used more than once with 

different parameters. For example, the number of nodes chosen can be changed, that is, 

the number of nodes is relatively large if it is at the beginning of the algorithm and the 

number is small if it is near the end of the algorithm. 

 

3.3 Computational Results and Analysis  

To evaluate the performance of the ABLS algorithm, extensive computational 

experiments on the proposed algorithms applied to a set of benchmark problems are 

carried out. The computation results and analysis for various implementations of the 

ABLS algorithms are presented in the following subsections.  

 

3.3.1 Test Instances and Initial Solution 

To evaluate the performance of ABLS algorithm, fourteen traditional test instances 

taken from literature (Christofides, and Eilon, 1969, Christofides et al., 1979) are used 

in the computational study. The test instances are all Euclidean SCVRP instances and 
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for all of the cases, the traveling times are assumed to be equal to the distances. The 

characteristics of the test problems are summarized in Table 3.5. 

Table 3.5 Characteristics of the test instances 

Problem Problem 
size 

No of 
vehicles 

Vehicle 
capacity 

Max total 
route length 

Service 
time 

Capacity 
ratio 

Reference 

Problem 1 50 5 160 Infinite  0 0.97 Christofides, and 
Eilon, 1969 

Problem 2 75 10 140 Infinite 0 0.97 Christofides, and 
Eilon, 1969 

Problem 3 100 8 200 Infinite 0 0.91 Christofides, and 
Eilon, 1969 

Problem 4 150 12 200 Infinite 0 0.93 Christofides, et 
al., 1979 

Problem 5 199 16 100 Infinite 0 0.98 Christofides, et 
al., 1979 

Problem 6 50 6 160 200 10 0.80 Christofides, and 
Eilon, 1969 

Problem 7 75 11 140 160 10 0.88 Christofides, and 
Eilon, 1969 

Problem 8 100 9 200 230 10 0.81 Christofides, and 
Eilon, 1969 

Problem 9 150 14 200 200 10 0.80 Christofides, et 
al., 1979 

Problem 10 199 18 200 200 10 0.88 Christofides, and 
Eilon, 1969 

Problem 11 120 7 200 Infinite 0 0.98 Christofides, et 
al., 1979 

Problem 12 100 10 200 Infinite 0 0.90 Christofides, et 
al., 1979 

Problem 13 120 11 200 720 50 0.62 Christofides, et 
al., 1979 

Problem 14 100 11 200 1040 90 0.82 Christofides, et 
al., 1979 

 

To compare the performances of various implementations of the ABLS algorithms, the 

same initial solution should be used for each ABLS algorithm. In this study, the initial 

solution inspired by Brandao and Mercer (1998) is used to carry out the comparison. 

This algorithm can be used to solve all of the above instances regardless of the 

customers has service time or not. In the initial solution, a vehicle is allowed to make 

more than one trip and the demands of some customers can be greater than the 

capacity of the vehicles.  

In the initial solution, the customers whose demands are greater than the capacity of 

the vehicle are preprocessed first. Each customer in this group will be visited 

 58



Chapter 3                                                        Assignment-Based Local Search Method 

⎥
⎦

⎥
⎢
⎣

⎢
=

capacityvehicle
demandscustomerl '  times by the fully loaded vehicle, where ⎣  denotes the 

greatest integer smaller than or equal to x. The demand of this customer is then reset to 

the remaining demand, i.e., the customer’s demand minus l times the vehicle capacity.  

The routes that serve this customer will be assigned to the same vehicle if possible; 

otherwise, it will be assigned to other vehicles with the largest remaining time. The 

fully loaded routes that serve only one customer should be untouched in the following 

improvement procedure.  

⎦x

After the preprocessing of the customers with demands larger than the vehicle 

capacity, the node that is farthest from the depot is chosen and assigned to the vehicles 

with the largest remaining time to construct the current route. This is followed by the 

insertion of the nodes that least increase the routing time among the un-routed 

customers that belong to the neighborhood of each customer in the route, provided the 

constraints are not violated. This step is repeated until no more nodes can be inserted 

and then a new route is started. The procedure is repeated until all the customers are 

visited. The neighborhood of one customer is defined to be the set of a number of 

customers that are nearest to the customer.  

In this method, the remaining time of each vehicle, Tr, will be used to determine which 

vehicle will be used. r is the index of vehicles.  The procedure of the initial solution is 

described as follows: 

Step 1. Initialization: set the remaining time of each vehicle, Tr. 

Step 2. Serving customers with demand larger than the vehicle capacity: 

Step 2.1. Select a customer i with demand di ≥  Q. If the remaining demands 

of all customers are less than Q, go to Step 3. 
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Step 2.2. Choose the vehicle which served customer i previously and whose 

remaining time is enough to serve customer i. Otherwise, another 

vehicle with the largest remaining time will be chosen. 

Step 2.3. Assign Q to the selected vehicle, then update the remaining time 

of the chosen vehicle and the remaining demand of the customer i. 

If , go to Step 2.2. Qdi ≥

Step 2.4. Go to Step 2.1 to select the next customer. 

Step 3. If all the customers have been served, stop; otherwise, choose a remaining 

customer that is farthest away from the depot. 

Step 4. Choose a vehicle with the largest remaining time and assign the customer 

selected in Step 3 to the vehicle. 

Step 5. Select the node that least increases the routing time among the un-routed 

customers that belong to the neighborhood of each customer in the route, and 

insert the selected node to the route if the constraints are not violated. 

Step 6. Repeat Step 5 until no other admissible nodes can be inserted. 

Step 7. Go to Step 3 and construct the next vehicle trip. 

 

The advantage of the assignment in Step 2 is that it can ensure that the driver is able to 

serve a group of customers that he is familiar with.  This can improve the relationship 

between the customers and the company, and hence improve the service level. 

 

3.3.2 Computational Results and Analysis of Type A of the ABLS Algorithm 

The basic idea of Type A of the ABLS is as follows: one node is chosen from some 

routes and no node is chosen from other routes. The nodes chosen are deleted from the 

current routes and inserted back to the routes according to the solution of the 
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assignment problem. For one particular node, the route it will be inserted into can be 

different from the route that the node comes from. The cost matrix for the assignment 

problem can be calculated by the cheapest insertion (Rosenkrantz et al., 1977). In other 

words, the value for each cell is the least distance increment for one particular node 

and one particular route. 

The parameters of Type A of the ABLS algorithm depend on: the probability of one 

node to be chosen from each route; whether an infeasible solution is allowed in the 

improvement procedure; whether the best improvement strategy or the first 

improvement strategy is used; the number of iterations, and so on. 

To compare the performance of the different combinations of Type-Strategy, all the 

combinations have been tested. The same number of iterations is set for each 

algorithm. For the figures of Type A of ABLS algorithm, the x-value is the probability 

of choosing one node from each route, and y-value is the average total distance of ten 

runs. 

 

Probability of one node being chosen from each route 

To study the effect of the different probabilities of one node being chosen from each 

route, computational runs on test instances with probabilities ranging from zero to one 

are carried out. The results for Problem1, Problem2 and Problem3 are illustrated in 

Figure 3.4, Figure 3.5 and Figure 3.6, respectively.  

As shown in Figures 3.4 to 3.6, the x-value is the probability of choosing one node 

from each route, and y-value is the average distance for ten runs. For the x-axis, the left 

point refers to the extreme case that no node is chosen from all the routes, that is, the 

initial solution is not changed. Therefore, the corresponding y-value is the distance for 

the initial solution because none of the nodes is chosen and hence no improvement is 
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obtained. Similarly, the right node of the x-axis refers to the extreme case when one 

node is chosen from each route in the solution.   

 

Analysis of results implemented with Strategy 1 (infeasible solution not allowed) 

As shown in Figures 3.4 to 3.6, two curves are plotted: one is labeled ‘infeasible 

solution not allowed’, the other is labeled ‘infeasible solution allowed’. The ‘infeasible 

solution not allowed’ label means that only feasible solutions are allowed in the 

improvement procedure, while the ‘infeasible solution allowed’ label means that 

feasible and infeasible solutions are both allowed in the improvement procedure, but 

that only the best feasible solutions are recorded.  
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Figure 3.4 Graph of solution values against probability of choosing one 
node for Problem1 (Type A) 
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Problem 1 (Type A, Strategy 1) 

As shown in Figure 3.4, in the curve labeled ‘infeasible solution not allowed’, the 

biggest distance value occurred at the left end of the x-axis. This is the case when none 

of the nodes is chosen for the improvement procedure, and hence no improvement is 

obtained. As the probability of choosing one node increases, the distance fluctuates 

within a certain range. The best solution is obtained when the probability is about 0.3. 

 

Problem 2 (Type A, Strategy 1) 

As shown in Figure 3.5, the ‘infeasible solution not allowed’ line is relatively flat in 

the range of 0.1 to 0.9 and the best value is obtained at 0.6. 
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Figure 3.5 Graph of solution values against probability of choosing one 
node for Problem 2 (Type A) 
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Figure 3.6 Graph of solution values against probability of choosing one 
node for Problem 3 (Type A) 

 
 

 
Problem 3 (Type A, Strategy 1) 

Figure 3.6 shows that the best solution can be obtained within a wide range, i.e., 

between 0.1 and 0.9. 

According to the analysis mentioned above, in most cases, the best solution for the 

ABLS with Strategy 1 is obtained at a probability between 0.1 and 0.9. A case with a 

probability that is either too low or too high, will not result in a good solution. 

 

Analysis of results implemented with Strategy 2 (infeasible solution allowed) 

Problem 1 (Type A, Strategy 2) 

As shown in Figure 3.4, the results for problem1 with Strategy 2 is similar to that of 

strategy 1.There is no obvious difference on the performances of these two strategies.  

 

Problem 2 (Type A, Strategy 2) 

In Figure 3.5, the performance of the algorithm in the infeasible solution allowed 

procedure is much worse than the case when only feasible solutions are allowed. How 
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is the difference explained? The procedure for the case when an infeasible solution is 

allowed is examined first. In the procedure, it is noted that most of the solutions 

obtained in the improvement procedure are infeasible. Why are so many infeasible 

solutions produced? To get the answer, the initial solution and the source data are 

checked. From the analysis of the initial solution, it is found that the remaining 

capacities of 9 out of 10 routes are less than 10. In other words, the remaining 

capacities of 90% of the total routes are less than 10. However, from the source data 

file, it can be seen that only 9 out of 75 demands are less than 10. In other words, 88% 

of the demands are greater than 10. This explains why so many infeasible solutions are 

produced and hence the performance of Strategy 2 is much worse than that of Strategy 

1 for Problem 2. 

 

Problem 3 (Type A, Strategy 2) 

As shown in Figure 3.6, it appears strange that when the probability is less than 0.6, 

there is not much difference between the two strategies. However, when the 

probability value is greater than 0.6, the performance of Strategy 2 becomes markedly 

worse. Almost no improvements can be obtained when the probability is larger than 

0.6. A possible reason for this result is that, when the probability is low, the number of 

nodes chosen is small, and hence there is little chance for an infeasible solution. 

However, when the probability becomes higher, more nodes can be chosen and hence 

the infeasible solutions are likely to occur more frequently. Although many infeasible 

solutions are produced, only the best feasible solution is recorded. This results in the 

solution becoming worse when the probability is higher than 0.6. 

Generally speaking, the performance of the algorithm with Strategy 1 (infeasible 

solution not allowed) is better than the algorithm with Strategy 2 (infeasible solution 

allowed) for the instances whose remaining capacity is relatively small; there are no 
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much difference when the remaining capacity is large compared with the demands of 

each nodes.  

 

Analysis of results implemented with Strategy 3 and Strategy 4 (best 

improvement and first improvement) 

The ABLS algorithm is an iterative improvement method and can be modified as a 

neighborhood search method. The neighborhood of a given solution can be defined as 

the subset of all neighbors generated by the ABLS algorithm. For instance, when Type 

A of the ABLS algorithm is used, the neighborhood of the current solution can be 

defined as the set of nodes that are chosen according to the preset probability. The size 

of a neighborhood can be determined by experiments. For the neighborhood structure, 

two selection strategies were proposed by Osman (1993): BI and FI strategies. In the 

BI strategy, all the possible solutions in the neighborhood are checked and then the one 

that can produce the best solution in the neighborhood is accepted. In the FI strategy, 

only the first neighborhood move that can improve the current solution is accepted. 

Computational experience shows that the performance of ABLS with Strategies 3 and 

4 is not much better than the performance of ABLS with Strategy 1 and Strategy 2.  

However, the running time for ABLS with Strategies 3 and 4 is much more than the 

algorithm with Strategies 1 and 2, especially the ABLS with Strategy 3.  

For Type A ABLS algorithm, the computational time increases with the probability of 

choosing one node from each route becomes bigger.  For example, when the Type A1 

algorithm is used to solve Problem 1, the running time is 6 seconds when the 

probability of choosing one node is 0.1; it increases to 32 seconds when the probability 

becomes 0.5; it reaches 69 when the probability is 1. 

There are no much difference between the computational time for the algorithms with 

Strategy 1 (infeasible solution not allowed) and Strategy 2 (infeasible solution 
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allowed).  The running time for the algorithm with Strategy 4 (first improvement) is 

less than the time for the algorithm with Strategy 3 (best improvement).   

 

3.3.3 Computational Results and Analysis of Type B of the ABLS Algorithm 

The basic idea of Type B of the ABLS is similar to that of Type A, the only difference 

between them is that it is not necessary to consider where the nodes come from. In 

other words, one can choose more than one node from one route as long as the total 

number of nodes is not greater than the total number of routes.  

For Type B of the ABLS algorithm, the factors which may affect the performance of 

the algorithm include the number of nodes chosen; whether an infeasible solution is 

allowed in the improvement procedure; whether the best improvement strategy or the 

first improvement strategy is used; the number of iterations, and so on. 

 

Number of nodes chosen 

In this study, it was observed that the most important factor to influence the behavior 

of Type B of the ABLS algorithm is the number of nodes chosen. If the number of 

nodes chosen is too small, the improvement in the solution is also marginal. On the 

other hand, if too many nodes are chosen, there is a higher chance of getting the 

infeasible solution in the improvement procedure, and hence there is little chance to 

get good solutions. Computational experience shows that most of the best solutions 

can be obtained when the number of nodes chosen is neither too large nor too small.  

 

Analysis of results implemented with strategies 1, 2, 3 and 4 

Computational experience also shows that the performance of Type B ABLS with 

Strategies 1 and 2 is not much different when the number of chosen nodes is relatively 

small. However, the performance of Strategy 2 is not good when infeasible solution is 
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easy to produce, such as for the case that most routes’ remaining capacity is relatively 

large compared with the demand of each node. Therefore, ABLS with Strategy 1 is 

more stable than with Strategy 2.  

It can be noted that the ‘FI’ strategy gives better results than the ‘BI’ strategy for Type 

B of the ABLS algorithm. Similarly to the Type A of ABLS algorithm, the running 

time for the algorithm with Strategy 4 (first improvement) is less than the time for the 

algorithm with Strategy 3 (best improvement).   

 

3.3.4 Summary of ABLS Algorithm and Composite Algorithm 

There are some drawbacks for some commonly used local search methods. For 

example, for insertion and swap moves, only a few nodes and a few locations which 

can be inserted are concerned in each iteration and the rearrangement of the chosen 

nodes is random. To overcome the drawbacks above, the ABLS algorithm is provided. 

The basic idea of the ABLS method is to exchange or move several nodes to other 

routes. Then try to insert back the chosen nodes by solving an assignment problem 

whose corresponding cost matrix is obtained by some insertion procedure. In the 

ABLS algorithm, more nodes and more locations are concerned for each iteration of 

the algorithm compared with some other local search method. Moreover, there is an 

optimization for each iteration, that is, the arrangement of the nodes selected is based 

on the solution of an assignment problem, instead of random arrangement. However, 

for some cases, more running time is needed because an assignment problem is solved 

for each iteration. 

The effectiveness of the different implementations of the ABLS algorithm depends on 

the characteristics of the data for each problem. For instance, if the remaining capacity 
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for most of the routes is very low in the current solution, it is more efficient to 

implement the Type A ABLS algorithm than the Type B ABLS algorithm.  

Both the basic Type A and Type B ABLS algorithms can be implemented separately. 

However, in most cases, better solutions are obtained using some composite 

algorithms that combine some other strategies and the ABLS algorithm. For example, 

the ABLS method is incorporated in the smoothing method by adding the following 

step between Steps 3 and 4 of the smoothing method described in Chapter 2: 

Step 3A. Apply the ABLS heuristic with the smoothed distance to produce the 

current tour. 

The computational experiments show that the implementation of this type of 

composite procedure can improve the results effectively. 

 

3.4 Implementation of SA to the ABLS Algorithm  

Generally, local search method will lead to a local optimum and the quality of the final 

solution depends on the quality of the initial solution. To overcome the shortcomings 

of the local search method, some meta-heuristics can be used on the local search 

method. In this section, the details of the implementation of SA to the ABLS algorithm 

(ABLS&SA) are presented.  

In the literature survey, two methods based on SA were used to solve the CVRP, i.e., 

Osman’s (1993) λ-interchange method, and Breedam’s (1995) string exchange and 

relocation method.  

In this section, one composite method, ABLS&SA, is presented and described in 

detail. 

The procedure of the ABLS&SA composite method can be described as follows: 

Step 1. Generate an initial solution. 
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Step 2. Select an initial temperature T0 and a final temperature Tf. Set the number of 

iterations at each temperature Iter_T, Reduction Factor Red_F, maximum 

number of reheat Max_R and the initial temperature for each reheat, Treh to 

some predetermined values. Set No_Iter = 0 and No_R = 0. 

Step 3. Choose some nodes from the current solution and delete them from the 

solution. Insert the nodes to the corresponding routes according to the 

solution of the assignment problem with the cost matrix calculated by the 

cheapest insertion method. 

Step 4. Check the feasibility of the solution. If it is infeasible, go to Step 3. 

Step 5. If the total distance of this solution is less than all the previous ones, set this 

as the best solution. Go to Step 7. 

Step 6. Calculate the difference δ between the current distance and the previous 

distance. If δ < 0 or )/exp( Tδ− is less than a random value , set this 

solution as the current solution. 

]1,0[∈a

Step 7. Set No_Iter = No_Iter+1. If  No_Iter < Iter_T, go to Step 3. 

Step 8. Set T = T × Red_F. 

Step 9. If the current temperature, T, is greater than the predetermined Tf, go to Step 

3. 

Step 10. Set No_R = No_R +1. If No_R < Max_R, T is set to be Treh and then go to 

Step 3. 

Step 11. Stop and return the best solution found. 

A flowchart for the above procedure is presented in Figure 3.7 
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In this study, the following parameters are used in the computational runs for the 

ABLS&SA composite algorithm.  

Initial temperature T0 = 300. 

Cooling rate, Red_F, is in the range from 0.8 to 0.9. 

Final temperature Tf  = 0.001. 

Maximum number of reheat, Max_R, = 3. 

Iterations for each temperature: Iter_T = 4000 

Table 3.6 Computational results of the ABLS(Type A)&SA and  
ABLS(Type B)&SA composite procedures 

 
ABLS(Type A)&SA ABLS(Type B)&SA Problem  

Value Time1 Value Time1

Problem 1 544 79 524 54 
Problem 2 866 226 841 278 
Problem 3 872 357 829 562 
Problem 4 1120 616 1042 863 
Problem 5 1490 1413 1429 996 
Problem 6 555 170 555 189 
Problem 7 943 512 914 443 
Problem 8 892 283 865 373 
Problem 9 1255 572 1169 641 
Problem 10 1485 744 1414 1533 
Problem 11 1202 904 1115 1187 
Problem 12 912 489 819 613 
Problem 13 1558 920 1556 264 
Problem 14 866 160 866 483 

 
1. Computation time in seconds based on a 2.1GHz Pentium IV computer 
 
As shown in Table 3.6, the performance of Type B is much better than Type A for the 

SA based ABLS algorithm.  

To compare the performance of the proposed SA based ABLS method, the algorithm 

has been applied to 14 CVRP instances. The results are compared against the Osman’s 

SA based algorithm (OSA) and The Breedam’s SA based algorithm (BSA). The 

computational results of these algorithms applied to 14 problem instances are 

summarized in Table 3.7. 
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Table 3.7 Comparison the ABLS&SA composite procedure  
with OSA and BSA methods 

 
Problem  OSA BSA ABLS(Type B)&SA 
Problem 1 528 521 524 
Problem 2 838 841 841 
Problem 3 829 830 829 
Problem 4 1058 1063 1042 
Problem 5 1378 1360 1429 
Problem 6 555 548 555 
Problem 7 909 920 914 
Problem 8 866 870 865 
Problem 9 1164 1197 1169 
Problem 10 1417 1462 1414 
Problem 11 1176 1042 1115 
Problem 12 826 821 819 
Problem 13 1545 1568 1556 
Problem 14 890 867 866 

 
From Table 3.7, OSA can result in 5 best solutions in the 14 problems, BSA finds 4 

best solutions and ABLS finds 6 best solutions of the 14 problems. The results show 

that the proposed ABLS&SA composite procedure is able to match the performances 

of the other two SA implementations on most of the problem instances tested. For 

some of the problem instances tested, the ABLS&SA composite procedure is able to 

match the performance of OSA and BSA. 

A further comparative study of the ABLS method against some other meta-heuristics is 

given and discussed in Chapter 4. 

 

3.5 Conclusions and Some Possible Applications of ABLS Methods 

In this chapter, we propose an ABLS method for solving the VRPs. The ABLS is an 

iterative algorithm. Given any feasible initial solution, the algorithms choose a certain 

number of nodes and delete them from the current routes and then try to insert them 

back according to the solution of an assignment problem. The ABLS can be used as a 

multi-route improvement algorithm that can operate on several routes at a time. 

Therefore, it can be used to solve the CVRP and some of its variants.  
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ABLS may also be used to solve some other types of problems. One possible 

application is to solve the CVRP consisting of various clusters of customers. In a 

CVRP, if some customers are distributed in various clusters, the problem can be 

simplified by treating the customers in each cluster as a big customer. The demand of 

the big customer is the sum of the demands of customers in each cluster. However, the 

distance inside the ‘big’ node must be considered when calculating the distance of the 

routes.  

An ABLS algorithm may also be applied to solve the TSP. The basic procedure of 

applying the ABLS algorithm to the TSP is as follows: choose some nodes and delete 

them from the current tour. Then calculate the insertion cost for each chosen node and 

each edge in the tour after deletion to obtain the cost matrix. Reassign the chosen 

nodes to the edges according to the solution of the assignment problem with regard to 

the cost matrix. To maintain the feasibility of the assignment problem, the number of 

nodes should be less than or equal to half of the total number of nodes. However, for 

Type B of the algorithm, there are not all the solution space will be considered, 

because the deleted nodes cannot be inserted as a neighbor to each other. 

 

 74



Chapter 4                                                                            Generalized Crossing Method 

Chapter 4 

Generalized Crossing Method 

 
In this chapter, we present a multi-route improvement local search called generalized 

crossing (GC) method for solving the VRPs. The generalized crossing mechanism, the 

local search method and the implementation with simulated annealing are described in 

detail in the subsequent sections of this chapter. 

 

4.1 Introduction to GC Method 

“String Cross” is an improvement method commonly used in local search procedure 

for solving VRPs. Among the various multi-route improvement methods proposed in 

the literature, two of them use string cross as a local search method. The first one was 

proposed by Breedam in 1994. The other string cross was proposed by Kinderwater 

and Savelbergh (1997). Although this idea is simple and easy to implement, the 

computational experiments show that it is not easy to produce good solutions. Based 

on the idea of string crossing, a generalized crossing method is proposed and tested. 

The generalized crossing method is a generalization of the normal string crossover 

operator proposed by Kinderwater and Savelbergh (1997). Their string crossing is 

conducted by crossing two edges of two different routes. For example, for the two 

following original routes shown in Figure 4.1, the two routes are cut into two parts. 

Route 1 is cut into two parts at the edge (i, i+1) and generates two strings: String 1 and 

String 2. Similarly, Route 2 is cut into String 3 and String 4 at edge (j, j+1). In String 1, 

is is the first node, and i is the last one. Similarly, i+1, js, j+1 are the first nodes, and if, j 

and jf are the last nodes of String 2, String 3 and String 4 respectively. The first node 
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and the last node can also refer to same node. In this case, there is only one node in the 

string.  

 

  
   

depot depot 

is i i+1 if

js j j+1 jf

String 2String 1 

 
 
 
 
 
 
 
 
 

String 3 String 4 
 

Figure 4.1 Original routes of the example 
 

According to the cross operator proposed by Kinderwater and Savelbergh (1997), node 

i will be connected with node j+1, and node j will connect with node i+1. Then the 

routes will become: 

 

depot depot 

is i i+1 if

js j j+1 jf

String 1 String 2

String 3 String 4

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 Routes after “String cross” of the example 
 
 
The generalized crossing algorithm proposed in this study is an extension of the string 

crossing method Kinderwater and Savelbergh (1997), in which more combination of 

the strings and the order of each string are considered.   In the GC method, the new 
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routes are constructed not only by combining the strings in their original direction but 

also combining the strings with opposite direction in the GC method. For example, for 

the 4 strings in Figure 4.1, there are three possible combinations to generate new routes: 

 Combination 1:   
⎩
⎨
⎧

4 String and 3 String:2 Route
2 String and 1 String:1 Route

 

 Combination 2:  
⎩
⎨
⎧

4 String and 2 String:2 Route
3 String and 1 String:1 Route

 

 Combination 3:  
⎩
⎨
⎧

3 String and 2 String:2 Route
4 String and 1 String: 1 Route

 

For each combination of two strings, 4 possible routes can be generated depend on the 

order of the two strings. For example, for Route 1 of Combination 3, node i can 

connect with j+1, but it can also connect with jf.  Then the 4 possible routes are as 

follows:   

 

Possible route 1: String 1 -> String 4 

 

 

depot depot 

is i j+1 jf

String 4String 1

 

 
 
 
 
 
Possible route 2: String 4 -> String 1 
 
 

depot depot 

j+1 jf is i 

String 1String 4
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Possible route 3: -String 1 -> String 4 
 
 

depot depot 

i is j+1 jf

String 4-String 1

 
 
 
 
 
 
 
where “-String1” denote the string of nodes in the opposite direction of String 1. 
 
 
Possible route 4: String 1 -> -String 4 
 
 

depot depot 

is i jf j+1 

-String4String1

 
 
 
 
 
 
 

Figure 4.3 Possible routes for Route 1 of Combination 3 of the example 
 

 
Therefore, there are 16 possible cases for one combination and up to 48 possible 

solutions can be generated from the original two routes shown in Figure 4.1. 

Some swap procedure can also be used in the procedure to enlarge the neighborhood of 

the current solution. For example, swap node i and node j to get new solution. Our 

computational experiments show that this can improve the performance of GC 

algorithm further. 

 

4.2 GC Local Search Method 

In this study, we use the most widely known heuristic method, Clarke and Wright 

method (1964) to construct the initial solution. In the Clarke and Wright algorithm, 

calculate the savings and rank them from the largest to the smallest to form a larger 

subtour until a tour is formed. 
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In this section, some descent implementations of this local search method are 

considered. It is a systematic search method. The pseudo-code of the first improvement 

local search method is as follows: 

 

First improvement local search procedure 

begin 
STARTLOOP 
for Route1:=1 to No_Route do 

for i1:=1 to #(Route1) do 
for Route2 := 1 to No_Route and Route 1≠Route 2 do  

 for i2:=1 to #(Route2) do 
begin  

Rnew=move () 
if cost(Rnew)<cost (R) 

begin 
R= Rnew 
go to STARTLOOP 

   end 
  end 

next  
next  

next  
next 

end 
 
 
The above method is a first improvement method, that is, the systematic search will 

start from the beginning if an improved solution is found. It is noted that the solution 

Rnew is the solution that is obtained by carrying out the best move among the 48 

combination. Similarly, Osman (1993)’s best improve strategy can also be 

implemented. In this case, the pseudo-code is as follows: 

 

Best improvement local search procedure 

begin 
STARTLOOP 
for Route1:=1 to No_Route do (Loop 4) 

for i1:=1 to #(Route1) do (Loop 3) 
for Route2 := 1 to No_Route and Route 1≠Route 2 do (Loop 2) 
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 for i2:=1 to #(Route2) do (Loop 1) 
begin  

Rnew=move ()     
if cost(Rnew)<cost (Rbest) 
begin 

Rbest= Rnew 
end 

end 
Location 1 

next (end of Loop 1) 
Location 2 

next (end of Loop 2) 
Location 3 

next (end of Loop 3) 
Location 4 

next (end of Loop 4) 
Location 5 
begin 

if cost(Rbest)<cost (R) 
begin 
     R= Rbest 
     go to STARTLOOP
end 

end 
end 
 

It is noted that there are 4 loops in the procedure. The first improvement and best 

improvement are two special cases. In the first improvement procedure, if a better 

solution is found, the best solution is updated in the Loop 1. That is, if any improved 

solution is found, it is updated immediately.  In the best improvement solution case, 

the best solution is updated after running Loop 4. That is, the best solution found in the 

4 loops is chosen and the current solution is then updated to this best solution. Beside 

the above two special cases, we can also consider other cases. That is, the following 

update procedure: 

 

Update procedure 

begin 
if cost(Rbest)<cost (R) 
begin 
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     R= Rbest 
     go to STARTLOOP
end 

end 
 
can be implemented at Location 2, Location 3 or Location 4. We call such procedure 

as middle improvement procedure. To test the effectiveness of middle improvement 

strategy, the three middle improvement procedures, the first improvement and best 

improvement procedure are run for the 14 test instances and the computational results 

are given in Table 4.1. 

 
Table 4.1 Computational results for the middle improvement strategies for GC local 

search method 
 

Problem Initial 
solution 

First 
improvement 

Middle 
improvement 
(Location 2) 

Middle 
improvement 
(Location 3) 

Middle 
improvement 
(Location 4) 

Best 
improvement 

Problem 1 584 572 572 572 572 572 
Problem 2 900 886 886 886 886 886 
Problem 3 889 885 885 885 885 885 
Problem 4 1140 1135 1135 1135 1135 1135 
Problem 5 1395 1393 1393 1393 1393 1393 
Problem 6 618 618 618 618 618 618 
Problem 7 975 972 972 972 972 972 
Problem 8 973 973 973 973 973 973 
Problem 9 1287 1286 1286 1286 1286 1286 
Problem 10 1538 1535 1535 1535 1535 1535 
Problem 11 1068 1068 1068 1068 1068 1068 
Problem 12 833 829 829 829 830 830 
Problem 13 1592 1591 1589 1589 1585 1585 
Problem 14 875 873 873 873 873 873 

 
 

All the tests are running on a Pentium IV( 2.1G Hz) computer and the running time for 

each instance is less than 0.02 seconds. The computational results show that the local 

search methods are not sensitive to improvement procedure being implemented; there 

is no much difference on either the solution in quality or computational time taken by 

for the five improvement methods.  
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4.3 SA Based GC Method 

It is possible that the search may be trapped at local optima in local search. To improve 

it further, some meta-heuristics can be applied to this method. For example, the 

simulated annealing can escape poor quality local optimum effectively because it has 

different randomized search and can accept non-improved solution. In this section, the 

implementation of SA to the GC is discussed.  

The pseudo-code of the implementation of SA to the GC algorithm (GC&SA) is as 

follows.  

GC&SA procedure 
 

begin 
Set the initial values to the parameters 
repeat 

repeat  
begin 

Rbest=R 
No_Iter = No_Iter+1 
for Route1:=1 to No_Route do (Loop 4) 

Initialize  Rbest_move to be a very poor solution 
for i1:=1 to #(Route1) do (Loop 3) 

for Route 2:=1 to No_Route and Route 1≠Route 2 do (Loop 2) 
for i2:=1 to #(Route2) do (Loop 1) 

begin  
Rnew=move () 

    if cost(Rnew)<cost (Rbest_move) 
begin 

Rbest_move= Rnew 
end 

end 
Location 1 

next (end of Loop 1) 
Location 2 

next (end of Loop 2) 
Location 3 

next (end of Loop 3) 
Location 4 

next (end of Loop 4) 
Location5 
begin 

δ=cost(Rbest_move)-cost (R) 
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if (δ<0) 
begin 

R= Rbest_move 
Update tabu list 
i1= M; i2=M; Route2=M 

end 
if cost(R) <cost(Rbest) Rbest=R 
else if( )/exp( Tδ− < random number ]1,0[∈a ) then 

begin 
R= Rbest_move 
Update tabu list 
i1= M; i2=M; Route2=M  

end 
end 

end 
until (No_Iter >Iter_T ) 
T = T * Red_F 
No_Iter=0 

until(T < Tf) 
end 
 

It is noted that the solution Rnew is the solution that is obtained by carrying out the best 

move among the 47 combinations to prevent returning to the original solution. The 

combination 1 with the original direction for the four strings 1 to 4 is discarded.   

The value M in the above procedure denotes a very large positive number. It is noted 

that the best improvement strategy is implemented in the above procedure. 

Similarly, we can also employ other improvement strategies by implementing the 

solution update procedure at Location 1, 2, 3 or 4.  

In the tabu list, we record Route 1, Route 2 and the locations in the routes of crossing. 

The tabu list is used to prevent the solutions reversing in following several iterations. 

Therefore, it is possible that the current solution is worse than the previous one. The 

best solutions are recorded throughout the whole search procedure,  

The computational experience shows that the tabu list size can be set based on the 

following formula:   

Tabu_List_Size=3 × No_Route + Random (-No_Route /2, No_Route /2), 
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where Random (-No_Route /2, No_Route /2) is the random integer value between 

 -No_Route /2 and No_Route /2. 

To compare the Middle improvement strategies for the SA based GC method, 

comprehensive computational experiments are carried out and the 14 instances are 

tested and summarized in Table 4.2. 

The parameter setting for the SA algorithm is given below: 

Parameter setting 

Initial temperature T0 = 15. 

Cooling rate Red_F = 0.85 

Final temperature Tf  = 0.001. 

Maximum number of reheat, Max_R, = 3. 

Iterations for each temperature: Iter_T = 4000. 

 

Table 4.2 Computational results for the middle improvement strategies for the GC&SA 
method 

 
Problem Best 

improvement 
(Location 5) 

Middle 
improvement 
(Location 4) 

Middle 
improvement 
(Location 3) 

Middle 
improvement 
(Location 2) 

First 
improvement 
(Location 1) 

Problem1 527(302) 524(237) 524(171) 524(113) 524(96) 
Problem2 840(766) 835(572) 835(463) 835(276) 848(276) 
Problem3 836(1286) 826(1019) 827(508) 827(305) 829(211) 
Problem4 1049(2962) 1033(2271) 1042(926) 1045(472) 1046(362) 
Problem5 1316(4838) 1308(5171) 1325(1737) 1320(863) 1318(632) 
Problem6 561(454) 555(469) 560(224) 560(150) 558(150) 
Problem7 910(1088) 909(1092) 913(688) 911(443) 912(459) 
Problem8 875(1883) 865(1895) 865(803) 865(543) 874(518) 
Problem9 1176(3999) 1169(3990) 1204(1322) 1205(788) 1201(822) 
Problem10 1416(6674) 1409(6248) 1429(2251) 1419(1412) 1423(1424) 
Problem11 1042(1582) 1042(1557) 1046(571) 1046(309) 1046(185) 
Problem12 819(1770) 819(1748) 819(895) 821(524) 819(347) 
Problem13 1543(3049) 1545(3019) 1567(1401) 1567(894) 1567(767) 
Problem14 866(1987) 866(1936) 867(1056) 867(641) 867(475) 
 

In Table 4.2, the first number in each cell is the total distance and the number in 

bracket indicates the computation time in second taken by a Pentium IV (2.1G Hz) 

computer.  
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The computational results show that the running time of first improvement method is 

the fastest method, the next one is the middle improvement at Location 2, the third one 

is the middle improvement at Location 3 strategy. The best improvement is most time-

consuming one. In terms of solution quality, the middle improvement at Location 4 

outperforms the other 4 methods. 

4.4 Computational Results and Comparison 

To evaluate the performance of the proposed SA based GC method (GC&SA), the 

algorithm has been applied to solve the 14 CVRP instances. The results and 

comparison with Osman’s (1993) SA based λ -interchange method, and Breedam’s 

(1995) SA based string exchange and string relocation method are summarized in 

Table 4.3.  

 

Table 4.3 Computational results of GC&SA and the Osman and Breedam methods 
 

Problem  OSA BSA GC&SA 
Problem 1 528 521 524 
Problem 2 838 841 835 
Problem 3 829 830 826 
Problem 4 1058 1063 1033 
Problem 5 1378 1360 1308 
Problem 6 555 548 555 
Problem 7 909 920 909 
Problem 8 866 870 865 
Problem 9 1164 1197 1169 
Problem 10 1417 1462 1409 
Problem 11 1176 1042 1042 
Problem 12 826 821 819 
Problem 13 1545 1568 1545 
Problem 14 890 867 866 

 

Table 4.3 shows that the GC&SA is able to find 11 SA best solutions out of the 14 

instances tested. Therefore, the performance of the GC&SA is comparable with or 

better than the other two SA methods.  
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To test the performance of the GC&SA further, comprehensive computational 

experiment is carried out to compare the performance of the GC&SA method with 

several good VRP heuristics in the literature. OTS is a tabu search method with 

interchange mechanism proposed by Osman in 1993. TTS (Tailand, 1993) is another 

tabu search method in which interchange mechanism is used. Both PF (Pureza and 

França, 1991) and GHL (Gendreau et al., 1994) implemented the mechanism similar to 

the string relocation and string exchange to the tabu search. 

In the comparison, Osman and Salhi (1997)’s measures are used: 

1) Relative average percentage deviation over the best solution is defined by 

  RAPD=  /number of 
test problems × 100. 

]knownsolutiont known)/Bessolution Best  - [(Solution∑

 
2)  Number of best solutions found against the instances tested (NBSF). 

The comparison of GC&SA with some other heuristics is summarized as follows: 

 
Table 4.4 Comparison GC&SA with other meta-heuristic methods 

 
Problem Best 

Solution 
Known 

OSA OTS TTS PF GHL BSA ABLS&SA GC&SA 

Problem 1 521 528 524 524 536 524 521 524 524 
Problem 2 835 838 844 835 842 835 841 841 835 
Problem 3 826 829 835 826 851 826 830 829 826 
Problem 4 1028 1058 1044 1028 1081 1031 1063 1042 1033 
Problem 5 1291 1378 1334 1298 ------ 1311 1360 1429 1308 
Problem 6 548 555 555 555 560 555 548 555 555 
Problem 7 909 909 911 909 929 909 920 914 909 
Problem 8 865 866 866 865 887 865 870 865 865 
Problem 9 1162 1164 1184 1162 1227 1162 1197 1169 1169 
Problem 10 1395 1417 1422 1397 ------ 1404 1462 1414 1409 
Problem 11 1042 1176 1042 1042 1049 1042 1042 1115 1042 
Problem 12 819 826 819 819 826 819 821 819 819 
Problem 13 1541 1545 1545 1541 1631 1545 1568 1556 1545 
Problem 14 866 890 866 866 866 866 867 866 866 
RAPD  2.26 0.95 0.18 2.65 0.33 1.55 1.82 0.40 
NBSF  1 3 10 1 8 3 3 7 

 

As shown in Table 4.4, ABLS&SA outperforms OSA and BSA when RAPD is 

considered. When NBSF is concerned, ABLS&SA can match the performance of 
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OSA, OTS, PF, BSA. GC&SA is ranked third among the 8 algorithms compared when 

the either RAPD or NBSF is concerned.  

 

4.5 Conclusions 

In this chapter, a local search method called generalized crossing method, is proposed. 

The generalized crossing is a generalization of the normal string cross operator. In this 

method, new routes are constructed not only by combining the strings in their original 

direction but also combining the strings with opposite direction. Several improvement 

strategies have also been proposed and incorporated into the proposed GC method. 

Computational result show that the SA implementation of the GC method combined 

with the middle improvement procedure outperforms some other SA implementations 

and is comparable with some other meta-heuristic methods, such as tabu search 

method. 
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Chapter 5 

An Application Study of Proposed Methods  

 
In recent years, it can be seen that an increasing number of companies are paying more 

attention to their core activities and are contracting their product delivery activities to 

some third-party logistics (3PL) companies. This has led to the rapid growth of 3PLs. 

In this chapter, an application study of the proposed algorithms to a company to solve 

its soft drinks distribution problem is presented. 

A description of the soft drinks distribution company (SDC) problem is given in 

Section 5.1. An overview of some procedures for solving the problem is presented in 

Section 5.2. In Section 5.3, a procedure for solving the problem is proposed. The 

computational results for the proposed method are discussed in Section 5.4. Finally, 

some concluding remarks are given in Section 5.5. 

 

5.1 Description of the SDC Problem 

The problem addressed in this application study arises from a transportation company 

providing product delivery services for some manufacturing companies in Singapore. 

The company has a fleet of vehicles with different capacities to serve a pre-specified 

set of customers with known delivery demands. Each vehicle starts from the depot, and 

after serving some customers, it is allowed to return to the depot for replenishment. 

This would allow the vehicle to run several trips in a day as long as the total time taken 

is within a certain number of hours. The time taken by each vehicle includes travel 

time, loading and unloading times, as well as the time for the vehicle driver’s meal 

break. 

 88



Chapter 5                                                     An Application Study of Proposed Methods 

A key requirement of the SDC is that vehicles are to be assigned to serve a fixed set of 

districts. Currently, customers are aggregated into districts based on the postal code 

classification. The purpose of this requirement is to allow each driver to know his 

district well enough and to establish a good relationship with the customers assigned to 

him. Furthermore, fixed assignment of vehicles to serve customers within each district 

will make it easier for the company to keep track of each vehicle’s delivery activities. 

The main objective of the SDC is to determine a minimum vehicle fleet size and a 

schedule of vehicles that would be able to serve its customers on a daily basis. 

 

5.2 Procedures for Solving the SDC VRP 

In this section, two procedures to solve the SDC VRP in the literature are described. 

The first procedure is the approach used by the SDC while the second procedure is an 

improved approach proposed by Cheong et al. (2002). 

In the SDC approach, the customers are aggregated into districts based on postal codes. 

The highest customer demand that occurs in each district obtained from historical data 

is used to estimate the demand for that district to determine the fleet size. Based on 

these estimates, an approximate fleet of vehicles is assigned to serve the customers in 

various districts. As there are quite a number of customers in each district and their 

demands change from day to day, the assignments made on the previous day might not 

be applicable for the following day. To overcome the dynamic changes in customers 

and their demands, the SDC provides a small number of standby vehicles to serve the 

customers that cannot be served on a daily basis by the fixed fleet of vehicles. 

The SDC problem can be formulated as a fleet size and mixed vehicle routing problem 

(FSMVRP) in the literature. Cheong et al. (2002) re-examined the fixed assignment 

used by the SDC and proposed a way to model and solve it. It is a two-phase method. 
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Phase I is used to determine the vehicle fleet size and their assignments to districts on a 

long-term basis. Phase II is used to solve the VRP related to individual customers in 

each district on a daily basis.  

The core of Phase I is to formulate the problem as a set-covering type of problem. All 

feasible patterns and routes are generated as columns and then solved by the column 

generation algorithm. The procedures used to generate the solutions of Phase I are 

contained in four steps. The first step is to merge districts. As mentioned earlier, each 

district is treated as one customer, with the demand of each district varying from day to 

day. Therefore, to simplify the problem further and reduce the variance of demands 

estimated, the districts with coefficients of variations that are higher than a certain 

limit can be merged with other districts in order to reduce the coefficient of variation. 

The districts to be merged are those close to each other, i.e., the distance between two 

centers of districts is less than 3 km. The second step is to estimate the demand for 

each district. The last two steps are to generate all the feasible routes for each vehicle 

and then obtain the solution by the column generation algorithm.  

Based on the results of Phase I, Phase II is used to solve the daily VRP.  The purpose 

of Phase II is to reroute some helper vehicles to serve problem districts.  The demand 

for each district varies from day to day, and as a result, some vehicles assigned to a 

certain district cannot serve all the customers on certain days or some vehicles are 

underutilized on certain days. The districts where all customers cannot be served are 

called problem districts. To solve such problems, Phase II is used to reroute these 

vehicles to satisfy all the customers. In this phase, three assignment procedures were 

presented by Cheong et al. (2002). These three procedures are independent from one 

another and each can be used separately. The basic idea of these three procedures is to 

identify the helper vehicles and problem districts first, and then try to utilize the helper 
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vehicles to serve the districts that need help. The helper vehicles are those vehicles 

whose spare time is greater than a certain value. Each of these three assignment 

procedures consists of three stages: (1) Use the helper vehicle assignment procedure to 

reassign any problem districts to helper vehicles; (2) If this help procedure cannot 

serve all of them, spare vehicles will be used until all of them are reassigned; (3) 

Finally, the possibility of releasing any underutilized vehicles from the fleet is 

checked. In this context, the problem districts refer to those districts whose spare time 

is less than 0.  

The first assignment procedure (M1) selects the helper vehicle by calculating 

additional time. One disadvantage is that it merely guarantees that the problem district 

will be served with the least amount of additional time incurred, but it provides no 

information on whether the helper vehicle has enough time to serve the problem 

district.  

To overcome the shortcomings of the first method, the second method (M2) was 

proposed. The second method’s assignment strategy is based on Pk which measures the 

proportion of spare time spent by vehicle k in order to serve the problem district. If Pk 

is less than or equal to 1, the vehicle k can serve the problem district completely, so 

that no other helper vehicles are needed. 

In the third method (M3), helper vehicles are assigned to problem districts by 

computing opportunity cost.  Through the use of opportunity cost, priority is given to 

certain helper vehicles to serve the problem districts. Some problem districts are better 

served by only certain helper vehicles because of their capacity and interactions 

between the locations of surrounding problem districts and helper vehicles.  
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5.3 Description of a Bin Packing Composite Method 

The computational results show that the three methods proposed by Cheong et al. can 

improve the SDC method effectively. However, the two-phase procedure is 

complicated, especially for daily operations. To simplify the daily operations and 

improve the solution further, a bin packing composite method is proposed. 

 

Bin packing composite method 

In the bin packing composite method, two bin packing problems are implemented in 

the procedure of the composite algorithm, one at the start, and the other at the end of 

the procedure. The first bin packing problem is solved when the initial solution is 

formed. For the first bin packing problem, only the demand constraint is considered, 

while, the maximum time constraint is ignored. Therefore, the initial solution may not 

be feasible as it is possible that the maximum time constraint is violated. Thus, the 

initial solution is improved by using the proposed methods. If a certain route of the 

current solution is not feasible, i.e., the total time needed for the customers is longer 

than the time constraint, this route will be cut into several parts in such a way that each 

of them satisfies the time constraint. The current solution will be improved again if 

necessary before the second bin packing problem is used. In the second bin packing 

problem, only the time needed to serve the customers for each route will be 

considered. The number of vehicles to be used can be determined by solving this bin 

packing problem.  

The bin packing problem approach for solving the VRP has also been used by other 

researchers in the literature. For instance, Fleischmann (1990) used the bin packing 

problem in the final part of the algorithm for the VRP with multiple trips.  Taillard et 

al. (1996) also applied the bin packing problem to their algorithm. 
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Procedure for the bin packing composite method 

Step 1. Determine the number of routes by solving it as a bin packing problem.  

Step 1.1. For the customers whose demands are greater than the vehicle 

capacity, assign routes to the customers until their remaining 

capacity is less than the vehicle capacity. Record the number of 

vehicles with full capacity. 

Step 1.2. Assign the customers to the routes by solving the bin packing 

problem. 

Step 2. Improve the initial routes obtained in Step 1 by using the proposed algorithm. 

In this improved procedure, the feasibility of the capacity must be maintained 

for each route. 

Step 3. Check the feasibility of the distance for each route. 

Step 3.1. Calculate the total time taken for each route.  

Step 3.2. For those routes which violate the time constraint, cut them into 

several parts by means of some route cutting procedures.  

Step 4. Repeat Steps 2 and 3 until the solution is feasible and no further improvement 

can be made. 

Step 5. Assign these routes to the vehicles by solving the bin packing problem to 

determine the number of vehicles needed. In this bin packing procedure, only 

the time needed to serve the customers assigned to each route is considered. 

 

In Step 2, any proposed procedures can be used. Because bin packing problem is a NP-

hard problem, some simple and effective heuristic methods, such as First-fit decreasing 

and Best-fit decreasing methods (Coffman et al., 1995), are recommended to be used 

in the bin packing composite method. In the two heuristic methods, the items are 

sorted first and then are placed to the bins according some rules.  In First-fit decreasing 
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method, each item is placed in the lowest indexed bin which has enough capacity to 

contain it. In the Best-fit decreasing method, each item is placed in the bin with largest 

current content but can contain it. 

 

Route cutting procedure 

In Step 3.2 of the bin packing composite procedure, some routes are still longer than 

the maximum time constraint. In this case, these long routes will have to be cut into 

several parts. Let (0, n1, n2, …, nr, 0) be a long route to be cut into several parts. The 

cutting procedure can be described as follows: 

Step 1. Start from a current route (0, n1, 0) consisting of the first node only. 

Step 2. Check whether the next node, nj, on the long route can be added to the current 

route without violating the time limit constraint. If not, go to Step 3; 

otherwise, add node nj to the current route and go to Step 4. 

Step 3. Cut the long route at the point between node nj-1 and nj. Start a new current 

route (0, nj, 0) consisting of the node nj only. Go to Step 2. 

Step 4. Add node nj to the current route. If nj is the last node on the long route, stop; 

otherwise go to Step 2 to examine the next node. 

 

An illustration of the bin packing composite method 

A simple example is used to illustrate the application of the bin packing composite 

method in which ABLS is used as the improvement method. Assume that there are 10 

customers in the example. All vehicles are identical and each vehicle’s capacity is 10. 

The maximum time constraint for each vehicle is 8 hours. The average speed of each 

vehicle is 40 km per hour, i.e., the maximum distance each vehicle can travel is 8×40 = 

320 km. The coordinates and demands for each of the 10 customers are given in Table 

5.1.  
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Table 5.1 Demands and coordinates of customers for the bin packing composite 
example 

 
No. of Customer x-coordinate y-coordinate Demand 

0 0 0 0 
1 9 16 5 
2 40 2 8 
3 73 -53 3 
4 62 75 5 
5 5 2 2 
6 94 -29 7 
7 119 -7 6 
8 139 -49 1 
9 -90 95 6 
10 -97 87 3 

 

In Step 1, the following routes are constructed: 

Route 1: 0-1-4-0, Remaining capacity is 0 and distance is 194.9. 

Route 2: 0-7-0, Remaining capacity is 4 and distance is 238.4. 

Route 3: 0-9-3-8-0, Remaining capacity is 0 and distance is 564.5. 

Route 4: 0-6-10-0; Remaining capacity is 0 and distance is 452.1. 

Route 5: 0-2-5-0; Remaining capacity is 0 and distance is 80.4. 

In Step 2, the routes constructed in Step 1 are improved by the ABLS algorithm. The 5 

routes formed after the improvement are given below: 

Route 1: 0-1-4-0, Remaining capacity is 0 and distance is 194.9. 

Route 2: 0-3-8-7-0, Remaining capacity is 0 and distance is 322.0. 

Route 3: 0-10-9-0, Remaining capacity is 1 and distance is 271.7. 

Route 4: 0-6-0, Remaining capacity is 3 and distance is 196.7. 

Route 5: 0-2-5-0, Remaining capacity is 0 and distance is 80.4. 

The distance of Route 2 is greater than the maximum distance 320. Therefore it should 

be cut by the cutting procedure in Step 3 into the following parts: 

Route 2a: 0-3-8-0, Remaining capacity is 6 and distance is 303.7. 
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Route 2b: 0-7-0, Remaining capacity is 4 and distance is 238.4. 

Next, the number of vehicles to be used is determined by solving the bin packing 

problem. There are 6 items in the bin packing problem, and their weights are: 194.9, 

303.7, 238.4, 271.7, 196.7 and 80.4, respectively. The size of each bin is 320. The 

solution of the bin packing problem shows that 5 vehicles are needed to serve all 

customers. 

 

5.4 Computational Results and Analysis 

To evaluate the performance of the proposed bin packing method, 14 problem 

instances of customer demand data collected by the SDC over a certain period are used 

in the computational study. For each of the problem instances, the information on 

customer demands as well as their locations in (x, y) coordinates are obtained from the 

SDC. Approximations of the distances traveled are based on the Euclidean distance. In 

addition, the vehicles are assumed to be identical, i.e., the capacity and the maximum 

time constraints are identical for all vehicles.  

The computational results of the three methods, M1, M2, and M3 proposed by Cheong 

et al. (2002) and the bin packing methods implemented with the two proposed methods 

in this thesis, the ABLS&BP method and the GC&BP method, are summarized in 

Table 5.2. 
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Table 5.2 Computational results of the Cheong et al. method (2002) and the bin 
packing method 

 
No. of vehicles required Problem 

instance 
Total 

customer 
demands 

Cheong’s 
method 
(M1) 

Cheong’s 
method 
(M2) 

Cheong’s 
method 
(M3) 

ABLS&BP GC&BP 

1 197396 40 40 40 32 31 
2 179874 36 36 35 28 26 
3 223168 41 41 41 33 32 
4 192241 37 37 37 24 22 
5 196717 40 40 40 27 26 
6 154069 37 36 36 21 21 
7 308339 42 42 42 36 34 
8 178436 30 30 30 22 21 
9 225722 40 40 40 27 27 
10 254774 42 41 41 32 31 
11 199028 33 33 33 22 22 
12 308339 42 42 42 30 30 
13 281432 41 41 41 21 21 
14 258612 42 42 42 31 29 

 

In the ABLS&BP method, Type B of the ABLS algorithm is used for improvement. 

The parameter settings are as follows: 

Initial temperature T0 = 200. 

Cooling rate Red_F = 0.85 

Final temperature Tf  = 0.001. 

Maximum number of reheat, Max_R, = 3. 

Iterations for each temperature: Iter_T = 4000 

 

Computational experience shows that the number of chosen nodes cannot be too large 

in the ABLS&BP method. For most of the cases tested, good results are obtained when 

the numbers of nodes chosen are set to about 10% of the total routes. 

 

In the GC&BP method, the parameter settings are as follows: 

Initial temperature T0 = 15. 
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Cooling rate Red_F = 0.85 

Final temperature Tf  = 0.1. 

Maximum number of reheat, Max_R, = 3. 

Iterations for each temperature: Iter_T = 4000 

The results of the comparison show that the proposed bin packing method can produce 

a significantly better solution than those obtained by other methods for the 14 

instances tested. In some instances, the solution can be improved by more than 40%. 

 

5.5 Conclusions 

In this chapter, an application of the proposed algorithms, the ABLS method and the 

GC method, to a real-world soft drinks distribution problem is presented. A bin 

packing composite algorithm is applied to solve the problem. The results show that it 

can obtain better solutions than other approaches proposed in the literature. In fact, for 

some problem instances, the improvement can be more than 40%. 
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Chapter 6 

Summary and Conclusions 

It is well known that the VRP is an NP-hard problem, which means that a 

polynomially-bound optimal algorithm is unlikely to exist for it.  Therefore, many 

heuristic algorithms have been proposed to deal with this hard combinatorial problem 

in the literature.  In this thesis, an ABLS method and a GC method for solving several 

types of VRPs is proposed. The performance of the proposed algorithms is compared 

against several algorithms proposed in the literature. In addition, an application study 

of the proposed algorithms to a real-world soft drinks distribution problem is provided. 

The computational experiments show that the proposed algorithms together with the 

bin packing composite algorithm are able to obtain very good solutions to this 

problem. 

 

6.1 Summary and Conclusions 

In Chapter 1, the background of this study is described briefly and the definition of the 

VRP is introduced. In this chapter, the characteristics and the basic classifications of 

VRPs are introduced. The VRPs can be classified into 4 main problems: capacitated 

VRPs and distance-constrained VRPs; VRPs with time windows; VRPs with 

backhauls; and VRPs with pickup and delivery. 

 The literature review of the approaches for the VRPs proposed by various researchers 

is given in Chapter 2. The approaches described include exact algorithms, classical 

heuristics and meta-heuristics.   

In Chapter 3, the proposed ABLS method is introduced. The basic idea, classification 

of the ABLS algorithm, computational tests and analysis are described in detail. In 
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addition, some possible applications of the ABLS method are discussed. Comparisons 

with other existing algorithms, such as Osman (1993) and Breedam (1995)’s SA 

implementations, are also presented in this chapter.  

Another proposed method, the GC method, is introduced in Chapter 4. Computational 

results show that its SA implementation combined with a new improvement procedure, 

middle improvement procedure, performs better than other SA implementations and is 

comparable with some other tabu search implementations reported in the literature. 

In Chapter 5, the proposed bin packing composite algorithm is applied to solve a real-

world soft drinks distribution problem. The computational results show that this 

composite algorithm is able to obtain good solutions to this problem. The following 

conclusions can be drawn in this study: 

(1) The proposed ABLS algorithm is an effective local search method for solving 

the VRP. Its performance can match some other algorithms proposed in the 

literature. 

(2) The effectiveness of different implementations of the ABLS algorithm depends 

on the characteristics of the data for each problem. For instance, if the 

remaining capacity for most of the routes is very low in the current solution, it 

is more efficient to implement the Type A ABLS algorithm than the Type B 

ABLS algorithm.  

(3) The second proposed algorithm, the GC method, is also an effective algorithm 

for solving the VRP. Its SA implementation combined with the middle 

improvement procedure performs much better than several SA and tabu search 

methods. 

(4) The bin packing composite method is an effective method for solving some 

real-world problems, especially for the VRP with multiple trips.  
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6.2 Main Contributions of this Study 

The main contributions of this study are briefly summarized as follows: 

(1) Two local search methods for VRPs, the ABLS method and the GC 

method, are proposed for solving the CVRP and some of its variants. 

(2) Some composite algorithms consisting of the proposed ABLS and other 

local search procedures are proposed for solving various types of CVRPs. 

(3) A new effective improvement procedure, middle improvement procedure, 

is proposed. For some problem instances, this improvement procedure is 

able to generate better solutions to the problem.  

(4) An extensive computational study on the performance of the two proposed 

algorithms, the ABLS and the GC, and some composite procedures is 

conducted. The computational results show that these procedures are either 

comparable with or superior to some other efficient heuristics proposed in 

the literature. 

(5) An application study of the two proposed methods to a real-world soft 

drinks distribution problem is conducted. A bin packing composite 

procedure is developed to solve this problem. The computational results 

show that the bin packing procedure is able to obtain better solutions than 

other approaches proposed in the literature. For some problem instances 

tested, the improvement can be more than 40%. 
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6.3 Suggestions for Future Research 

The VRP has generated practical interest and has gained the attention of many 

researchers to develop various solution procedures. The two proposed methods, the 

ABLS method and the GC method, and some composite methods are able to solve 

several types of VRPs. Some suggestions for future research are: 

(1) To explore the application of the ABLS method and the GC method to 

solve other types of VRPs, such as the VRPs with time windows 

constraints; 

(2) To apply the ABLS method and the GC method to solve the stochastic 

VRPs; 

(3) To design other ABLS composite procedures for solving the various types 

of VRPs; and 

(4) To implement the middle improvement procedure to other algorithms; and 

(5) To apply the basic ideas of the ABLS and GC methods to other types of 

combinatorial optimization problems. 
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