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Summary 

The purpose of this dissertation is to develop a fast knowledge-driven algorithm to 

identify and segment the central sulcus (CS) from human brain magnetic resonance 

(MR) volumetric images automatically. The CS is an important landmark in the 

human brain since it demarcates the primary motor and somatosensory areas of the 

cortex. 

The dataset is reformatted first along the anterior commissure (AC) and posterior 

commissure (PC) plane. Then, the skull is removed and the mask of the brain tissues 

is obtained through classification and morphological processing. The 

three-dimensional (3D) region within two coronal planes passing through the AC and 

PC is defined as the region of interest (ROI) to search for all sulci. The CS is the 

sulcus with the largest volume within the ROI. Together with the sulci, grey matter 

(GM) is included for region growing in order to deal with the partial volume effect. 

Most GM is later removed through skeletonization while some GM component is kept 

to maintain the connectivity of the sulci. The cerebrospinal fluid (CSF) voxels based 

on thresholding which are connected to the skeleton are added to the skeleton to yield 

the final CS. An algorithm is proposed to remove over-segmentation due to leakage 

through limiting the increase in number of sulcal voxels of neighboring axial slices. 

With the help of this algorithm and a 3D boundary look-up table, over-segmentation 

of sulci is controlled. The algorithm has been tested against 18 T1-weighted phantom 

datasets with different noise levels (0-9%) and inhomogeneity levels (0-40%) and 4 

 VII



patient-specific datasets. The CSs in 16 out of 18 phantom datasets and all 4 

patient-specific datasets were identified and segmented. 

The main advantage of our approach is that it is fully automatic compared to previous 

approaches and can deal with the partial volume effect by growing GM together with 

sulci and skeletonization. It is also robust to the noise and inhomogeneity. The 

combination of anatomical knowledge and the image processing techniques are the 

keys to resolving the problems. The 3D representation (maximum sulcal volume 

within the ROI) proves to be an efficient way to present the sulci.  
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Chapter 1 

Introduction 

1.1 Background 

1.1.1 MRI Technology 

Magnetic resonance imaging (MRI) has become the primary technique in the routine 

diagnosis of many disease processes, replacing and sometimes surpassing computed 

tomography (CT), (Altshuler et al., 2000 and Hauser et al., 2000).  MRI has 

particular advantages in that it is non-invasive, using non-ionising radiation, and has a 

high soft-tissue resolution and discrimination in any imaging plane.  

The advantages of MRI include: excellent brain tissue contrast, multi-planar imaging, 

acquisition in any orientation, sensitivity to blood flow, lack of ionizing radiation, 

indication of structure, function, vasculature, pathology and so on. There are a large 

number of pulse sequences, including T1-weighted (spin lattice relaxation), 

T2-weighted (spin spin relaxation), SPGR, PD-weighted. 

Since the resultant MR image is based on multiple tissue parameters and can modify 

tissue contrast, MRI technology is suitable for imaging the human brain. 

1.1.2 Human Brain 

The study of the human brain, especially the cortex, is challenging due to its highly 

complex, convoluted folding pattern. Ridges of the folds, called gyri, and the spaces 
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between the folds, called sulci, define location on the cortical surface and provide a 

parcellation of the cortex into functionally distinct areas. The gyri and sulci are 

depicted in Fig 1.1: 

  

                (a)                                (b) 

Fig 1.1 Gyri and sulci depicted in (a) schematic drawing, (b) MR image. 

 

Geometrically, the cerebral cortex is a thin folded sheet of grey matter (GM) that lies 

inside the cerebrospinal fluid (CSF) and outside the white matter (WM) of the human 

brain. Fig 1.2 shows the different components (CSF, GM, WM) in the sulci and gyri: 

 

Fig 1.2 The different components (CSF, GM, WM) in the sulci and gyri. 

 

Fig 1.3 shows the segmentation results of the 3 components: (a) WM, (b) GM and (c) 

CSF. 
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         (a)                    (b)                    (c) 

Fig 1.3 Segmentation of different components: (a) WM, (b) GM, (c) CSF. 

 

1.1.3 Central Sulcus (CS) 

The brain is divided into various lobes by fissures. One of the prominent fissures is 

the central sulcus (CS). It separates the parietal from the frontal lobes. Fig 1.4 shows 

the location of the CS: 

 

Fig 1.4 The location of the CS and frontal lobe. 

 

Anatomy: 
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The CS starts in or near the superomedial border slightly behind the midpoint between 

the frontal and occipital poles (Naidich 1991, Naidich and Brightbill 1996). It runs 

sinuously downwards and forwards for about 8 to 10 cm to end slightly above the 

posterior ramus of the lateral sulcus, from which it is always separated by an arched 

gyrus. Its general direction makes an angle of about 70 degrees with the median plane. 

It demarcates the primary motor and somatosensory areas of the cortex. 

When the sulcus is opened up, its opposed walls are seen to be marked by small gyri, 

which alternate like gears in a mesh, hence termed interlocking gyri. About the middle 

of the sulcus its walls are usually connected by a transverse gyrus which is due to the 

mode of development of the central sulcus. When it appears in the sixth month, it is in 

the superior and inferior parts, at first separated by a transverse gyrus connecting the 

precentral to postcentral gyrus, shown in Fig 1.5. The two occasionally remain 

separate but usually coalesce, the transverse gyrus being buried as the deep 

transitional gyrus. 

 

Fig 1.5 The precentral and postcentral gyrus. 

 

Radiology: 
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Radiologically the CS is an important landmark. It separates the frontal from the 

parietal lobes and is a landmark to consider when localizing brain lesions (Naidich 

1991, Naidich and Brightbill 1996).  

On MRI the sulcus appears either dark (T1WI, SPGR) or bright (T2WI) due to the 

presence of CSF on its surface. There are various shapes of the CS. The most common 

patterns have been described as “omega” shaped, shown in Fig 1.6 (a), or “lambda” 

shaped, shown in Fig 1.6 (b). These shapes are not so common and the pattern may 

vary so much that it is almost impossible to have any certainty in identifying the CS 

based purely on these patterns. 

   

                  (a)                            (b) 

Fig 1.6 The shapes of the CSs: (a) “omega” shaped CS; (b) “lambda” shaped CS. 

 

The CS is the only sulcus that divides the brain at its superior surface (Naidich and 

Brightbill 1996). Thus, it is the only sulcus that lies in the coronal plane that runs from 

the lateral part of the brain to the midline. This feature may be exploited in the 

identification of the CS. 
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1.2 Motivation 

The CS is one of the most important anatomical landmarks of the cerebral cortex. Its 

significance lies in its proximity to the pre- and post-central gyri, which contain 

structures responsible for motor and sensory control. Many other anatomical 

landmarks in the brain are described in relation to the CS, which must be defined first 

when a functional representation, an anatomical landmark, or a pathological entity 

needs to be localized anatomically. 

The CS is the major sulcus on the medical aspect of the occipital lobe. Its localization 

is important as it separates the sensory from the motor areas, whose identification is 

of primary importance in neurosurgery. For example, the identification of the CS is 

required for safe treatment of brain lesions near the sensorimotor cortex; it is also 

important for epilepsy surgery to avoid postoperative functional deficits in children 

with medically intractable extratemporal lobe epilepsy. 

Lesions in the frontal lobe are serious since they may cause disturbance of motor 

function (loss of fine movements and strength, poor voluntary eye gaze and corollary 

discharge), environmental control of behavior (risk taking and rule breaking), loss of 

divergent thinking, poor temporal memory and altered sexual behavior. 

Segmentation and identification of the CS is, therefore, crucial.  
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1.3 Objective of Research 

The aim of this project is to design and develop an algorithm (system) to segment and 

identify the CS without any human intervention. This system can reformat the dataset, 

remove the skull and other non-brain tissues in order to get a mask of the brain tissues, 

classify the different brain tissues, get the reference slice and 3D boundary look-up 

table, segment all the sulci in the region of interest (ROI), identify the CS, remove the 

over-segmentation and skeletonize the CS in order to remove the unnecessary GM. 

Through this algorithm we are able to study the relation of the location between the 

majority of the CS and the anterior and posterior commissures (AC, PC); analyze the 

3D volume information of the CS compared to the other major sulci; and test the 

influence of noise and inhomogeneity.  

Some phantom and actual 3D brain MRI datasets have been tested and results are 

rendered both in 2D slices and 3D model. 

 

1.4 Thesis Outline 

In this dissertation, Chapter One briefly presents an overview of the subject of the 

research under investigation. It also includes the motivation to carry out the 

investigation and the goals of the research.  

Chapter Two introduces the domain knowledge about the anatomy and radiology of 

the CS, and the MRI techniques are briefly described. It also reviews the trends and 

recent development of the methods and the history of the identification of the CS in 
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different medical imaging techniques. 

Chapter Three describes the methods of our research and related techniques. The 

problems of this project are introduced first. Then, the main idea of the algorithm for 

the whole system and the anatomic knowledge which is useful in our approach is 

summarized. Third, the detailed method, including tissues classification, region 

growing, and morphological extraction is presented. 

Chapter Four focuses on the pre-processing for the whole approach done in 3 steps: 

data reformatting, removing the skull and getting the 3D mask of the brain tissues 

with the help of histogram and morphological processing. 

Chapter Five describes the key processes of our approach, including the definition of 

the desirable ROI, 3D region growing with both CSF and GM, calculation and 

comparison of the 3D volume of the sulci, setting reference axial slice and 3D 

boundary look-up table, skeletonization using Hilditch’s method and the algorithm to 

remove the over-segmentation due to the leakage. 

Chapter Six presents the results of the experiments, discussion, conclusion and future 

study. 
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Chapter 2 

Literature Review 

2.1 Identification of the CS from Medical Images 

The CS can be identified by examining axial slices. Looking at a normalized brain 

(Talairach and Tournoux 1988), the CS is the easiest to spot on an axial slice with a 

Z-coordinate (superior –inferior) around 60 mm above the AC-PC plane (Naidich and 

Brightbill 1996). At this position the superior frontal sulcus can be seen transecting the 

precentral sulcus (PreCS), and the intraparietal sulcus (IPS) can often be seen to 

connect with the postcentral sulcus (PoCS). The CS looks more crooked than the 

flanking PreCS and PoCS - it often contains an 'inverted omega' shape - which is the 

landmark for the precentral gyrus's motor-hand area. The precentral gyrus is usually 

larger than the postcentral gyrus. Furthermore, at this slice, the central sulcus is 

usually deeper and more continuous than either the PreCS or PoCS. Identifying the 

PreCS, CS and PoCS is useful, as these areas indicate the location of the primary 

motor cortex. The precentral gyrus (the gyrus between PreCS and CS) is involved 

with motor control (e.g. reaching) and the postcentral gyrus (between CS and PoCS) 

is involved with sensation (e.g. touch). For example, stimulating the motor hand area 

with a transcranial magnetic stimulation (TMS) wand will cause the hand to flinch.  

There are certain anatomical features that describe the CS. Some of them are 

summarized here: 
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Fig 2.1 Some anatomical features. 

 

1. Superior frontal sulcus (PreCS sign): The posterior end of the superior frontal 

sulcus joins the precentral sulcus in 85%, shown in Fig 2.1. 

2. Sigmoid “Hook”: Hook like configuration of the posterior surface of the 

precentral gyrus. The “hook” corresponds to the motor hand area and is well seen on 

CT (89%) and MRI (98%), shown in Fig 2.1. 

3. Pars bracket sign: The paired pars marginalis form a “bracket” to each side of 

the interhemispheric fissure at or behind the CS (96%), shown in Fig 2.1. 

4. Bifid post-CS sign: The post-CS is bifid (85%). The bifid post-CS encloses 

the lateral end of the pars marginalis (88%), shown in Fig 2.1. 
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5. Thin post-CG sign: The postcentral gyrus is thinner than the precentral gyrus 

(98%), shown in Fig 2.1. 

6. Intraparietal sulcus (IPS) and the post-CS: In axial MRI, the IPS intersects 

the post-CS (99%), shown in Fig 2.1. 

7. Midline sulcus sign: The most prominent convexity sulcus that reaches the 

midline interhemispheric fissure is the CS (70%), shown is Fig 2.2: 

 

Fig 2.2 Midline sulcus sign. 

 

2.1.1 The Surface Arrangement / Landmarks of the Sulci 

Some studies were based on the surface arrangement or landmarks of the sulci. 

A lateral axial method is proposed in which the superior frontal sulcus is identified 

first (Kido et al 1980; Sobel et al 1993). This sulcus forms a right angle with the 
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precentral sulcus, which is identified next. The sulcus just behind the precentral sulcus 

is the CS. On images where the CS is difficult to identify because of the difficulty in 

visualizing the right angle formed by the superior frontal sulcus and precentral sulcus, 

the right angle formed by the superior frontal gyrus and the precentral gyrus is used as 

described by Iwasaki  et al 1991, on the basis of the pattern of the medullary 

branches of cerebral white matter.  

Another medial axial method, the marginal ramus of the cingulate sulcus is identified 

first. The sulcus located anterior to it is the CS (Sobel et al 1993). 

However, the methods using the surface arrangement or anatomical landmarks are not 

reliable in cases of brain tumors that compress the CS or other space-occupying 

lesions. In addition, the variability of sulci and gyri can complicate the identification 

of the CS considerably. 

2.1.2 Pattern Recognition and Statistical Model 

Recently, pattern recognition and other techniques have also been applied in this field. 

Behnke et al 2003 proposed a nearest-neighbor approach, in which a sulcal region is 

classified as being in the same class as the sulcus from a set of training data which has 

the nearest pattern of anatomical features (e.g. supramarginal gyrus, cuneus, etc.). 

Tao, et al 2001, 2002 built statistical models to extract the sulci. Statistical 

information of local properties of the sulci, such as curvature and depth, are 

embedded in these models. 

Intraoperative direct cortical mapping is also considered to be a method for 

 12



identification of the motor cortex (Berger et al 1997). 

2.1.3 Other Medical Modalities 

Some other researchers focus on studying the CS by magnetoencephalography (MEG), 

functional magnetic resonance imaging (fMRI) or somatosensory evoked fields 

(SEFs). 

Chitoku et al. 2000 identify the CS by MEG. In their method, the CS was estimated 

anterior to the gyrus located somatosensory evoked magnetic field (SEMF) on the 

surface rendering patient’s MR image. Inoue et al. 1999 defined the CS as the nearest 

sulcus to the N20m for the median nerve stimulus.  

Some researchers used fMRI to identify the CS (Cosgrove et al. 1996; Shimizu et al. 

1997; Pujol et al. 1998; Inoue et al 1999). In Inoue’s approach, the CS is defined as 

the nearest sulcus to the highest activation spots that were determined by elevating 

correlation coefficient threshold. Yousry et al. 1996 utilized the central sulcal vein as a 

landmark for identification of the CS. 

The localization accuracy for the CS using the SEFs due to median nerve stimulus has 

been reported to be highly accurate (Roberts et al. 1995; Kawamura et al. 1996). 

In Inoue et al’s approach in 1999, the results from the fMRI were accurate in locating 

the CS in normal cases. However, in some patients’ cases, fMRI was not reliable due 

to venous flow changes by tumor compression and/or compensational activity by 

brain tissues surrounding the primary sensorimotor cortex. 
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2.2 Segmentation of the Sulcus/Sulci from MR Images 

There are some work on automatic segmentation of sulci on segmentation of the CS. 

Lohmann and Cramon (2000) proposed to segment the sulcal basins which were the 

union of all the sulci and GM. Rettmann et al. (2002) used watersheds to segment the 

sulcal regions which were essentially the union of sulci and GM as well. Mangin et al. 

(1995) used k-means to find the union of sulci and GM.  Renault et al. (2000) 

proposed curve tracking for sulci detection. Lohmann (1998) proposed to extract 

sulcal lines. All these methods could not find any specific sulcus and the CS due to 

the partial volume effect of the MR images.  

Manceaux-Demiau et al. (1998) proposed to quantify the CS through probabilistic 

geometric features like curvature through training provided that the segmentation is 

available. 

There is no method identifying and localizing the CS from MR images automatically. 

 

2.3 Summary 

There have been many approaches published to segment the sulcus and identify the 

CS, since the CS is one of the most important anatomical landmarks of the cerebral 

cortex.  

However, the current approaches suffer from the following limitations: 

 Automation problem. The identification of the CS in previous work was either 

manually by experts, or by other imaging modalities (fMRI, MEG, SEF, brain 
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mapping etc.). The automatic identification of the CS hasn’t been achieved in 

MRI before. 

 Lack of attention on the 3D information of the sulci. The previous analysis of the 

sulci was mainly focused on 2D features, for example length or area, while the 3D 

features, such as 3D volume was often ignored.  

 Noise and inhomogeneity. The noise and inhomogeneity are inherent features of 

MRI study and can not be ignored. Many studies have addressed these issues but 

have not given enough analysis under different noise and inhomogeity levels. 

We proposed a new knowledge-driven algorithm to identify and segment the CS 

automatically from MR images to overcome these limitations.  
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Chapter 3 

Method 

3.1 Overview of the Algorithm 

Our method is based on the following anatomic facts: (1) the majority of the CS is 

located between the coronal planes passing AC and PC; (2) the CS has the largest 3D 

volume among all the sulci in the ROI. These are the basic idea to identify the CS in 

our approach. Region growing (2D/3D) is the key technique in segmentation of the 

CS. 

The classification of the brain tissues is mainly based on the OTSU (Otsu, 1979) 

method (which is a thresholding method) and the constrained OTSU method (Hu and 

Nowinski, 2004). This unsupervised method provides a fast clustering for the voxels 

in the MR images, and the result can meet the requirement for segmentation. 

The main difficulty in segmenting the CS is how to deal with the broken part of the 

sulci. Due to partial volume effect, noise and inhomogeneity, the sulci are often 

unconnected in MR images. Our solution is to combine GM into the growing of CSF 

(sulci) to connect the broken parts, and to apply skeletonization to remove 

unnecessary GM component. The final CS result includes the skeleton and the CSF 

component which is connected to the skeleton. Only the necessary component of GM 

remains to keep the connectivity of the sulci. 

The processing steps of our algorithm are diagrammed in Fig 3.1. 
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Load and reformat image data 

Remove the skull and background 
Get the mask of the brain tissues 

Get the reference slice and 3D 
boundary look-up table  

Define region of interest (ROI) 
Boundary 
control in 

region 
growing 

Tissues classification

CSF+GM
 

3D region growing of the 
sulci by CSF and GM 

Yes Remove 
over-segmen

tation 

Leakage occurred?
CSF 

No 

Calculate the 3D volume of the 
sulci and select the largest one

The coarse CS

2D region growing of the coarse CS

Skeletonization of the coarse CS

Combine the skeleton and the 
CSF connected to the skeleton 

The CS 

End 
 

Fig 3.1 The main flowchart of our algorithm. 
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The boundary look-up table, together with an over-segmentation-removal algorithm 

we designed is applied to constrain the region growing to prevent the 

over-segmentation. The skull and background voxels are removed and the mask of the 

brain tissues is obtained through morphological processing.  

 

3.2 Anatomic Knowledge 

This is a knowledge-driven approach, so anatomic knowledge of the human brain is 

an indispensable part of the algorithm. Applying the right knowledge of the human 

brain features helps to find effective solution and achieve better results. 

3.2.1 The Spatial Relationship between the CS and AC-PC 

The AC and PC are important landmarks of the brain, shown in Fig 3.2. 

 

Fig 3.2 The location of the AC and the PC ( AC: shown on the left) ; PC: shown on 

the right). 
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The location of the CS has a close relationship with the AC and PC. The majority of 

the CS is between the coronal planes passing through the AC and PC (Talairach and 

Tournoux 1988). Fig 3.3 shows examples which demonstrate the location of the CS 

between the coronal planes passing through the AC and PC. 

  

                (a)                                  (b) 

Fig 3.3 Examples demonstrating the location of the majority of the CS between 

coronal planes passing through the AC and PC: (a) Top view; (b) Lateral view. 

 

Using the normalized proportional grid system, the statistical location of the CS were 

obtained for 20 cases of brains stereotactically localized (Talairach and Tournoux 

1988) as shown in Fig 3.4. That is to say, the majority of the CS is located between 

the coronal planes passing through the AC and PC in most cases. Thus, the location of 

the CS can be confined by the coronal planes passing through the AC and PC.  

The volume between the coronal planes passing through the AC and PC can be 

defined as the region of interest (ROI) for subsequent processing. Since the statistical 

study shows that some part of some CSs will be posterior to the PC, the ROI may be 

expanded so that some region posterior to the PC will be included.  
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Fig 3.4 The statistical location of the CS for 20 cases. 

 

3.2.2 The 3D Volume of the Sulci 

The study of the 3D volume information of the sulci is a contribution of this project.  

There are 14 major sulci in human brain. Main sulci are formed early in development, 

and fissures are really deep sulci. In the ROI defined above, the main sulci include the 

CS, PreCS and PoCS as shown in Fig 3.5.  

The CS has the largest 3D volume among all the sulci in the ROI defined above, 

because 

1. The CS is a prominent fissure which separates the frontal from the parietal lobes. It 

is very deep. 

2. The CS is a generally continuous sulcus, which increases its volume while the PrCS 

and PoCS are discontinuous sulci (Ono et al. 1990). 
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3. The majority of the CS locates within the ROI above, while only a part of the PrCS 

and PoCS is within this ROI. 

Our tests on different data sets has proved that the 3D volume of the CS is the largest 

among all the sulci in the ROI we defined, which can be an effective method to 

automatically identify the CS from MR brain images. The detailed testing results of 

this method will be presented in the next chapter. 

  

Fig 3.5 Some main sulci: the CS (red), the PoCS (blue) and the PreCS (green) 
  

3.3 Region growing (2D/3D) 

Region growing is the key technique in segmentation of the CS in our approach. This 

is a procedure that groups pixels or sub-regions into larger regions. The simplest 

region growing starts with a set of “seed” points and from these grows regions by 

appending to each seed point those neighboring pixels that have similar properties 

(gray level in our approach).  

In our implementation, we designed an algorithm using the linked list class (in Java) 

to realize the region growing process as the following: 
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create an empty linked list; 

add the seed point (pixel or voxel) into the linked list; 

while (the linked list is not empty)  

{ 

  remove and return the first element of the list, denoted as ThisPoint; 

try {  

label ThisPoint as segmented; 

for (every neighbor point of ThisPoint, denoted as NP) 

{  

if ((NP is unlabeled)&&(NP meet the criteria required, gray level etc.)) 

append NP to the end of this list;  

} 

catch (exception) 

} 

Since there is only 2D point class defined in Java, we construct a 3D point class 

(denoted as Point3D) in order to process 3D region growing: 

class Point3D { 
     public int xx; 
     public int yy; 
     public int zz; 
     public Point3D() { 
    } 
           
     public Point3D(int x0,int y0,int z0) { 
        xx = x0; 
        yy = y0; 
        zz = z0; 
    } 
     } 
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3.4 OTSU Method 

3.4.1 Traditional OTSU 

OTSU is a nonparametric and unsupervised method of automatic threshold selection 

(Otsu, 1979). Optimal threshold(s) are to be selected by the discriminant criterion so 

as to maximize the separability of the resultant classes in gray levels. 

Assume that the pixels are represented in L gray levels [1, 2, …, L]. The number of 

pixels at level i is denoted by  and the total number of pixels by 

. The gray-level histogram is normalized and regarded as a 

probability distribution: 

in
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The between-class variance of levels is defined as  
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Then，  the optimal thresholds ,  are chosen such that the variance is 
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3.4.2 Constrained OTSU 

In some subsequent processes of the our approach, the constrained OTSU (Hu and 

Nowinski, 2004) is applied in order to get more accurate threshold for CSF. 

The constrained OTSU is a knowledge-based method. In certain region, the 

proportion of the each component can be approximated. Thus, in a estimated range of 

gray levels (for example, from 1% to 20%), applying the standard OTSU method can 

get more accurate threshold between 2 classes (for example above, CSF and GM) in 

order to get a more desirable segmentation result. 

 

3.5 Morphology 

3.5.1 Dilation and Erosion 

Dilation of the set A by set B, denoted by BA⊕ , is defined as 

                                     (3.7) 

Where A and B are sets in Z. This definition is also known as ‘Minkowski Addition’. 
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This equation simply means that B is moved over A and the intersection of B reflected 

and translated with A is found. Usually A will be the signal or image being operated 

on and B will be the structuring element (SE). Equation 1 is used to process binary 

sets of data. 

∧

B denotes the reflection of B i.e., ,{ bxxB −==
∧

for }Bb∈  and denotes the 

translation of B by i.e.,

xB)(

),( 21 xxx = ,x{)( bccB x +==  for }Bb∈ .. Thus, dilation of 

A by B expands the boundary of A.  

The opposite of dilation is known as erosion. This is defined as: 

                                         (3.8) 

This definition is also known as ‘Minkowski Subtraction’. The equation simply says, 

erosion of A by B is the set of points x such that B translated by x is contained in A. 

However (2) essentially says that for the output to be a one, all of the inputs must be 

the same as the structuring element. Thus, erosion will remove runs of ones that are 

shorter than the SE. 

3.5.2 Opening and Closing 

Opening generally smooths the contour of an image, breaks narrow isthmuses, and 

eliminates thin protrusions. Closing also tends to smooth sections of contours but, as 

opposed to opening, it generally fuses narrow breaks and long thin gulfs, eliminates 

small holes, and fill gaps in the contour. 

The opening of set A by structuring element B, denote AoB, is defined as  
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ABA (=o Θ                                               (3.9) 
∧

⊕ BB)

The closing of set A by struturing element B, denoted BA• , is defined as  

)( BABA ⊕=• Θ
∧

B                                              (3.10) 

The erosion operation will be applied to expand the CSF component (which is the 

dark component), so that the CS can be found and extracted more easily. 

The opening and the closing are the powerful tools in removing the skull, getting the 

mask of the brain tissues and getting the boundary look-up table. 

 26



Chapter 4 

Removal of the Skull and Other Non-Brain 

Tissues 

4.1 Introduction 

The disconnection of brain from skull and other head tissues is always a tough process, 

especially in real MRI data sets. The process is based on the assumption that the brain 

tissue is the largest connected component in the head image volume. 

The pre-processing of the MRI data sets includes 3 steps: data reformatting, removing 

the skull, and getting the mask of the brain tissues. 

4.2 Data Reformatting 

The reasons and advantages for data reformatting include: 

 To standardize the volume data set (1 mm×1 mm×1 mm) in order to simplify 

subsequent calculation and processing 

 To make the midsagittal plane (MSP) parallel to the Y-Z plane (shown in Fig 4.1) 

in the new coordinates system. Thus, finding left or right neighbor points will only 

need to change the X coordinates  (shown in Fig 4.1) of the points. The effect of 

the reformation on MSP is shown in Fig 4.1.  
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                 (a)                                (b) 

Fig 4.1 The difference of the MSP due to data reformatting: the MSP in the original 

data (a) and in the reformatted data (b). 

 

 To make AC and PC in the same horizontal axial slice so that the CS can be easily 

located, otherwise, the AC-PC line is not perpendicular to the Z direction in the 

new coordinates system. The ROI between the coronal planes passing through the 

AC and PC can be described by only Y coordinates of the vertical planes (parallel 

to the X-Z plane). Fig 4.2 shows the AC-PC line in the same horizontal axial slice 

after data reformatting and the ROI defined by the Y coordinates of the AC and 

PC 
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Fig 4.2 The AC-PC line in the same horizontal axial slice after data reformatting and 

the ROI defined by the Z coordinates of the AC and PC.  

 

After loading a 3D MR volumetric images, the location of the MSP (Hu and Nowinski, 

2003), and the coordinates of the AC and PC (Nowinski and Thirunavuukarasuu, 2000) 

can be determined by our previously developed methods.  

1. To normalize the data. Recalculate the new voxels’ number (with the size of 1 

mm×1 mm×1 mm) in each dimension, according to the actual length of the each 

dimension respectively. Then, the gray level of each new voxel is determined by the 

3D linear interpolation of the gray levels of its 8 neighbor voxels in the original data 

set. As Fig 4.3 shown, Assume that B1 is the gray level of an interpolated voxel in the 

new coordinate system and A1, A2, …, A8 are the gray levels of its neighbor voxels 

in the original coordinate system. LX, LY and LZ represent the 3D size of the original 

voxel in x, y, z dimension respectively. Then, B1 could be determined as: 

 

1B  = [ ( 2))((1))()( AzLZyLYxAzLZyLYxLX •−−•+•−−−  
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4)()(3)( AzLZyxLXAzLZyx •−••−+•−••+  

6)(5))(( AzyLYxAzyLYxLX ••−•+••−−+  

8)(7 AzyxLXAzyx •••−+•••+ ] )( LZLYLX ••                     (4.1) 

 

A1 x LX-x A2 X’ 

y 
z 

LY-y 
A3 

A4 B1 

LZ-z 

LYA5 A6 
Y’

LY
A7A8 

LX

Z’ 

Fig 4.3 The linear interpolation in 3D. 

 

2. Construct the direction vectors for the new coordinate system according to the 

coordinates of AC-PC and the equation of the MSP, and get the transformation matrix. 

In the new coordinate system: the X axis has the same direction as that of the normal 

vector of the MSP; Y axis has the same direction as that of the line connecting the AC 

and PC; and Z axis has the same direction as the cross product of the new X and Y 

axes, shown in Fig 4.4: 
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o 

Fig 4.4 The original and new coordinate system of the data set. 

 

Then, the transformation matrix is formed by these 3 directions to transform the 

coordinates of each voxel in the new coordinate system.  

Assume that the MSP equation is as following: 

0=+++ DCzByAx

1222 =++ CBA

 (parameter A, B, C and D are normalized with 

)                                                  (4.2) 

Assume the unit direction vector of AC-PC line is (X1 , Y1 , Z1 ) 

Then, the transformation matrix M is as following: 

 

o’

AC 

y 
z 

PC

MSP 

x 

x’ 
( nv  of MSP) 

y’ z’ 
(x’×y’)(AC-PC) 
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M=                             (4.3) 
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3. Transform the coordinates of each point into the new coordinate system using the 

transformation matrix M. 

For each voxel P (x , y , z ), it can be projected to voxel P '  (x ' , y ' , z ' ) in the 

new coordinate system by 

P P P P P P

P '  (x ' , y ' , z ' ) = P (x , y , z )M                                   (4.4) P P P P P P

4. Calculate the length of each dimension of the new coordinate system. This length is 

set as the maximum distance among the all the voxels in corresponding dimension. 

5. Calculate the gray level for each voxel by 3D interpolation and the inverse matrix 

of M. Assume the M  is the inverse matrix of M, then for each point P '  in the new 

coordinate system, its projected location P in the original coordinate system can be 

got through 

1−

P (x , y , z ) = P '  (x ' , y ' , z ' ) M −                                  (4.5) P P P P P P
1

Since x , y , z  are always not integers, the gray level of each new voxel must be 

calculated in the original coordinate system, using the 3D interpolation of its 8 

neighbor original points, which is similar to the procedure above. 

P P P

For those new voxels, whose original locations are beyond the original data size, set 

their gray levels as 0. 

 

4.3 Removal of the Skull 

In our approach, we need to remove the skull and get the mask of the brain tissues. 
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The OTSU method is applied first to roughly classify all the voxels in the data into 

three assumed classes: background, CSF and GM, WM and skull (bones). Of course 

the two thresholds are not exact for pure purpose of tissue classification, but it is 

accurate enough to remove the skull. 

First select a reference axial slice to start. In our work, the axial slice passing AC-PC 

is selected. The skull has highest gray level in T1-weighted MR images. So starting 

from the middle of the left or right edge of the image (the reason to start from this 

location is that the skull here is the thickest and has least possibility to be broken, 

shown as Fig 4.5 (a)), scan along the X direction, until find a seed whose gray level 

belongs to the range of skull/WM, as well as its neighbor points, in order to 

counteract the effect of noise. Then, perform a 3D region growing from this seed, with 

the criterion that all the grown voxels have the gray level within the range of 

skull/WM. Of course, these grown voxels should be above the AC-PC axial slice, 

because there is no or little CS component below this axial slice. 

Thus, a 3D hemisphere of the skull is got, although there may be some part broken 

somewhere, which means the skull we got may not be closed, as shown in Fig 4.5 (a). 

For this frequent situation, we used 2 methods to counteract it: 

The first one is the morphologicalal method. Using a large SE, for example  

or  or even larger, let it go through all the voxels and take the closing 

operation. Then, the original skull is expanded and the broken part is closed, shown in 

Fig 4.5 (b).  

555 ××

777 ××

Since this closed skull is expanded, an opening operation with the same SE used 
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above is followed on this expanded skull. Then, the final skull is got, shown as Fig 

4.5 (c), which is the closed skull at almost the same size as the original one. Its shape 

is a hemisphere, from the AC-PC axial plane to the top slice with the tissues. 

 

          (a)                     (b)                     (c)  

Fig 4.5 The morphologicalal procedure to close the skull: (a) Original grown skull 

with broken part; (b) Skull after closing operation; (c) Skull after opening operation. 

 

If the final skull is closed, the skull removal is simpler: we only need to keep the 

voxels inside the skull and remove the skull and the voxels outside of it (background). 

But if in case the broken part is large enough and unclosed after morphologicalal 

processing, another method is designed, followed after the opening operation. 

This second method is based on multiple directions tracing. 

As shown in Fig 4.6, for each voxel inside the skull we extracted (whose shape is like 

a hemisphere), the skull can be traced in 5 directions: left, right, front, back and up, if 

the skull is fully closed. But for any non-skull voxel, if the skull can be traced in only 

3 out of all these 5 directions, this voxel can still be asserted to be inside of this 

hemisphere skull. So we just need to trace the skull in 5 directions, if the skull can be 
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reached in any 3 of them, set this point inside of the skull; otherwise, it is outside. 

Thus, even though the skull is unclosed in some parts, the non-skull voxels can still be 

judged if they are inside or outside the skull. 

Up Skull 

Front

Right Left 

Back 
 

Fig 4.6 The five tracing direction of inside of the skull. 

 

This method has been tested with many data sets successfully. 

 

4.4 Getting the Mask of the Brain Tissues 

Getting the mask of the brain tissues is a very important step for our approach. The 

proper mask can prevent the over-segmentation and calculate the 3D volume of the 

CS accurately in the following process. Furthermore, the 3D mask of the brain tissues 

can tell the number of the first top axial slice which contains the brain tissues, which 

can help a lot in defining the reference slice number mentioned in next chapter. The 
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proper mask should include the WM and some component of GM and CSF.  

Before getting the mask, the OTSU method is applied on the voxels inside the skull, 

to get the more accurate thresholds for the CSF (including some air between the brain 

tissues and the skull), GM and WM. 

In our previous work, we tried to use the WM and GM to form the tissue structure to 

get the mask, shown as Fig 4.7. But later some problems arose by using this mask. 

The region growing of the CS (growing CSF component) is aided by growing the GM 

at the same time in order to counteract the partial volume effect of MRI. If the mask is 

constructed by both WM and GM, the contour of the final mask will be surrounded by 

the GM. So in such a mask, the growing of the CS will easily make the leakage occur, 

in other words over-segmentation, especially at the contour of the mask. The growing 

of CSF and GM will often include other sulci such as pre-central sulcus or 

post-central sulcus since their GM components are connected at the contour. 

 

Fig 4.7 Mask construction in previous attempt: (a) WM and GM; (b) The closing 

result of the structure; (c) The final mask after opening. 

 

So finally only WM is used to get the structure, and the mask is constructed by 
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applying morphological processing on such a structure. There are two reasons to do 

so: 

1. The brain tissues form the largest connected component in the head image volume 

and WM is the more reliable structure compared to the other brain tissues. 

2. The mask constructed by the WM only will have much less GM on its contour, the 

CSF and GM components will all be between the gyri formed by the WM. 

Growing the sulcus in such a mask will not include other sulci, which will prevent 

the over-segmentation effectively. The calculation of the 3D volume of the CS 

will be much more accurate by using this mask. 

The procedure is as following. For the original MRI data set, shown as Fig 4.8 (a), 

extract the voxels inside the skull, shown as Fig 4.8 (b). A line parallel to the MSP in 

an axial slice with a certain distance (5-15 mm) to the MSP will have several 

intersections with the voxels whose gray levels belong to the WM. In this way seeds 

of the WM can be found as the intersected voxels. Perform a 3D region growing with 

the voxels whose gray levels belong to WM from these seeds. Choose the component 

with the largest 3D volume as the WM, shown as Fig 4.8 (c). 3D spherical SE were 

constructed. With the help of these structuring elements, we applied 3D closing on the 

WM followed by opening with the same SE. The final result is the mask of the WM 

with the sulci (the CS included) and GM, shown as Fig 4.8 (d). The CSF and GM 

components are all between the gyri of the WM. 
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                   (a)                                     (b) 

 

                  (c)                                      (d) 

Fig 4.8 The procedure to get the mask of the brain tissues by the structure using WM 

only: (a) Original data; (b) The brain tissues inside the skull extracted from 

morphologicalal processing; (c) The WM segmented by 3D region growing; (d) The 

mask of the brain tissues after closing and opening (WM, GM and sulci are included). 
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After getting the mask, the voxels within this final mask should be classified again. 

This time all the voxels are almost purely the CSF, GM and WM. Apply the OTSU 

method again and classify these voxels into three classes. 

The thresholds differ from those of the first time. They are more accurate for the CSF, 

GM and WM. Fig 4.9 shows the comparison of the results of the two classification 

procedures in the same phantom dataset. Fig 4.9 (a) is the original data set and Fig 

4.9 (b) is the brain tissues inside the mask. Fig 4.9 (c) and Fig 4.9 (d) show the 

histograms of the objects in Fig 4.9 (a) and Fig 4.9 (b), respectively. The  are 

the thresholds. The thresholds in Fig 4.9 (c) are accurate enough to remove the 

background and the skull (classify the skull and the WM as the same class); while the 

thresholds in Fig 4.9 (d) are much more accurate to classify the brain tissues into the 

WM, GM and CSF, which is very helpful to achieve the exact segmentation result in 

the subsequent processing. 

 

21,kk

              

           (a)                                  (b) 
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                (c)                                    (d) 

Fig 4.9 Histogram of the 3D phantom data and the thresholds ( ) selected by 

OTSU method. (a) The original dataset; (b) The brain tissues segmented (inside the 

mask); (c) The histogram of the original dataset shown in (a); (d) The histogram of the 

brain tissues shown in (b). 

21 , kk

 

4.5 Summary 

Reformatting the data sets is the initial step of the whole approach, which will 

normalize and adjust the original data in order to facilitate subsequent procedures. 

After data reformatting, each voxel will have the unit size of 1 mm×1 mm×1 mm, 

and the AC and PC will be located in the same axial slice. 

Removing the skull and getting the mask of the brain tissues is a very important step. 

The proper mask we get can prevent the over-segmentation and calculate the 3D 

volume of the CS accurately in the following process. In addition, the 3D mask of the 

brain tissues can tell the number of the first top axial slice which contains the brain 

tissues, which can help in defining the reference slice number mentioned in next 
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chapter. In short, the mask will influence the final segmentation result of the CS. 

In our approach, we adjust the standard data reformatting procedure (in which the AC 

and PC are not located in the same axial slice after reformatting) to facilitate our 

subsequent processing and improve the process of removing the skull and getting the 

mask, by applying the morphological processing, multiple directions tracing and 

recalculating the thresholds. 
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Chapter 5 

Identification and Segmentation of the CS 

5.1 Introduction 

Since the majority of the CS is between the coronal planes passing through the AC 

and PC, we define our ROI as the 3D region between these two coronal planes. Our 

approach is to find all the sulci within this ROI and calculate the 3D volume of each. 

The sulcus with the largest 3D volume is the CS.  

A primary problem in segmentation of the CS is that the partial volume effect may 

result the broken part of the sulci, which hinders the sulci segmentation using region 

growing, shown as Fig 5.1. 

  

Fig 5.1 The partial volume effect of the MR images: (a) The high-resolution image; (b) 

The low- resolution image. 

 

Because of the individual variance, sometimes the pre-central gyrus and post-central 

gyrus is too close, there may be no CSF component in CS. So the CS is a structure 

 42



filled with liquid, not a tissue. 

 

5.2 Reference Slice and ROI 

In order to find all the sulci in the ROI, a reference slice to initiate the 3D region 

growing has to be selected. In the desirable reference slice, the CS should be near the 

MSP and easily traced.  

The 3D mask of the brain tissues can tell the top slice containing the brain tissues. 

Assume that  is the slice number of the axial slice passing through the AC 

and PC,  is the slice number of the top axial slice of brain tissue. Based on 

the experience of testing a set of images, the number of the axial reference slice could 

be selected around slice N, where 

PCACN −

TopTissueN

N=
6
1 *NAC-PC + 

6
5 *NTopTissue                                         (5.1) 

In such a reference slice, the CS can be easily traced in the parallel line to the MSP 

with a distance of 20 mm from it. The experience of selection of the reference slice is 

got from statistical results based on 20 data sets. 

The ROI to segment the CS is the region between the AC-PC coronal planes (in order 

to include more component of the CS, we usually define y coordinate of ROI between 

[AC, PC+30mm], which is got from the experience by testing more than 20 data sets), 

and from the AC-PC axial slice to the top axial slice with brain tissue. Fig 5.2 shows 

the ROI we defined (within the black contour) and the location of the CS (indicated in 

red) in the ROI in several axial slices. 

 43



 

Fig 5.2 The ROI (within the black contour) and the location of the CS (indicated in 

red) in the ROI in several axial slices. 

 

5.3 3D Look-up Table of the Boundary Voxels 

Due to the partial volume effect, sulci may be broken in MR images, so GM is used to 

aid the segmentation of sulci. To avoid over-segmentation due to GM, we set a 3D 

look-up table [Hu et al 2001] of the boundary voxels of the brain tissue in order to 

control the region growing. 

A morphological binary opening was applied to the brain tissue mask using a 3D 

spherical SE with a radius of one voxel ( 333 ×× ) to find boundary voxels. In other 

words, for any voxel which is within the 3D mask, only if all its 26 neighbor voxels 

are all within the 3D mask too, this voxel is not the boundary one. Otherwise, it is 

labeled as a boundary voxel. 

In order to reduce calculation, the 3D look-up table is set as a 3D binary matrix in 

coding, the elements corresponding to the boundary voxels are labeled as different. 

Thus, the 3D region growing of the sulci can be within the mask. The boundary 

voxels can not be grown so that the GM component on the boundary is controlled not 
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to connected to the other sulci in the same axial slice or sulci in the neighbor axial 

slice. 

 

5.4 3D Region Growing of the Sulci in ROI 

3D region growing was applied to find all the voxels for each sulcus so that its 

volume can be obtained. The volume of each sulcus is the number of voxels of the 

sulcus. The CS is the sulcus with the largest volume. 

Assume that  is the equation of the MSP. In the reference slice we select 2 

reference lines  and 

MSPXx =

1= MSPXx 20+ 202 −= MSPXx , which are the 2 parallel lines to 

the MSP with a distance of 20 mm to it. Such a distance is obtained from the 

statistical study of 26 phantom and real datasets. In the reference slice we defined 

above, the parallel line with such a distance to the MSP will definitely intersect with 

the CS.  

There are several intersected voxels with the reference lines and the sulci within the 

region between (and near) the AC and PC. Set these intersected voxels as the seeds for 

the 3D region growing. There is a restricting area that constrains the 3D region 

growing: the region between 10−MSPX  and 10+MSPX . So the lines x=  

and x=  are the restriction lines. The region growing of the CSs in both 

hemispheres can not grow in the region between these two lines, otherwise, the space 

between the two hemispheres is easily connect to the CS in the top slices and the 

leakage of growing the sulci may occur. 

10−MSPX

10+MSPX
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Besides the restriction lines mentioned above, the criteria for region growing also 

include: (1) the gray level of the voxel must be within the range of the gray level of 

CSF or GM; (2) the z coordinate of the voxel should not go beyond the range from the 

z coordinate of the AC-PC to the top axial slice of the brain tissue; (3) the y value of 

the voxel must be in the range from the  to ACy α  mm posterior to  ( y , 

 refer to the y coordinates of the AC and PC respectively, 

PCy AC

PCy α  is a statistical 

parameter which is determined through testing more than 20 data sets, set as 30 in our 

approach); and (4) the voxel should not go beyond the region defined by the boundary 

look-up table. 

Since the GM is combined with the growing of the CSF, the problems of broken part 

of the sulci are well resolved. That is because the CSF is always surrounded by the 

GM and the GM is seldom unconnected. Thus, our method got the completeness of 

the sulci so that the calculation of the 3D volume can be carried out. 

 

5.5 Removal of Over-segmentation Component 

As GM is used in region growing of CSF to counteract the broken sulci due to partial 

volume effect, over-segmentation may occur when there is noise and/or 

inhomogenieity. There are two cases of over-segmentation per hemisphere on axial 

slices: 1) there are more than two segments of the CS (due to 3D region growing), for 

example shown in Fig 5.3 (a); and 2) a single segment of the CS exists, but it contains 

much more component than the CS itself, for example as shown in Fig 5.3 (b). 
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A suitable initial slice is assumed as: 1) there is only a single segment of the CS per 

hemisphere in this slice and its adjacent slices; and 2) the difference in the area (the 

number of the voxels) of the CS segmented per hemisphere between this slice and 

each of its adjacent slices will not exceed a certain value β  (which is set as 

β =30% in our approach).  

Hence, the processing is as follows. Starting from the initial slice M, set adjacent slice 

N (N=M-1 or N=M+1). Calculate the number of the segment(s) of the CS per 

hemisphere in slice N: 

  

Case 1) there is only a single segment of the CS per hemisphere in slice N:  

calculate the difference in the area of the CS between slice M and N.  

if      (the difference is not greater than β ) 

There is no over-segmentation in slice N.  

else if  (the difference is greater than β ) 

dilate the CS in slice M using a SE with a radius of one voxel and 

process “and” operation between this dilated area and the CS in slice N; 

take the matching part as the final segmented CS in slice N 

Case 2) there are more than one segment of the CS per hemisphere in slice N: 

       Perform “and” operation between the CS in slice M and N, find and take 

the segment in slice N which matches the CS in slice M most. Then, process as 

shown in Case 1 above to get the final CS for slice N. 

After detecting and removing the over-segmented component in slice N, set N as the 
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reference slice and process its adjacent slice(s) in a similar way. 

Two examples of over-segmentation are shown on the right hemisphere in Fig 5.3 (a) 

(b), and their corrections are presented in Fig 5.3 (c) (d), respectively. 

            

                (a)                                 (c) 

            

                (b)                                 (d) 

Fig 5.3 Removal of over-segmentation: (a) Over-segmentation with multiple 

segments (indicated by the arrow). (b) Over-segmentation with a single segment 

(indicated by the arrow). (c) Removal result of over-segmentation of (a). (d) Removal 

result of over-segmentation of (b). 

 

This method aims to detect and remove the obvious over-segmentation resulted from 

region growing. It has been tested on more than 20 data sets and proves to be effective. 
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The limitation of this method is that it can not detect the tiny over-segmentation due 

to a thresholding problem.  

 

5.6 Identification of the CS 

We tried to identify the CS by its geometrical feature: the CS is the most nearest 

sulcus to the MSP in certain reference axial slices. After quantitative testing on 

various data sets, we found that the location of those reference axial slices differs a lot 

among different data sets. For example, the distance from the reference slice to the top 

tissue slice is about 15 mm among MRI data acquired in Singapore, while this value is 

about 30 mm among MRI data acquired in Japan. 

So now we use a robust feature of the CS to identify it: to compare the 3D volume of 

the sulci. Among all the sulci within the ROI, the CS has the largest 3D volume. So 

we just need to calculate the 3D volume (the number of the voxels) of all the sulci in 

ROI, choose the one with largest 3D volume as the coarse CS and process the 

following steps. 

 

5.7 2D Region Growing of the Sulci 

Although the 3D mask and 3D look-up table of boundary of the brain tissues are 

helpful in avoiding over-segmentation in 3D, they bring some undesirable effect that 

excludes some voxels which should belong to the sulci, shown in Fig 5.4 (a). 2D 
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region growing in each axial slice is applied after over-segmentation removal to 

overcome this shortcoming.  

      

                 (a)                               (b) 

Fig 5.4 The effect of the 2D region growing: the coarse CSs before (a) and after (b) 

and 2D region growing. 

 

A dilation using a SE with a radius of one voxel is applied to the original mask. A 2D 

boundary look-up table can be obtained for each axial slice within the dilated mask in 

a similar way mentioned before. The sulci component segmented above is used as the 

seeds, which is grown in 2D with the similar criteria used in previous 3D region 

growing. After applying the algorithm for over-segmentation removal again, the 

coarse sulci which including some GM are achieved, shown in Fig 5.4 (b), which is 

more exact than those before the 2D region growing which are shown in Fig 5.4 (a). 

 

5.8 Skeletonization of the Sulci 

The GM grown together with the CSF helps to keep the completeness of the sulci, but 
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among all the GM in the coarse CS, only some should be kept to connect the CS while 

the other should be removed. Skeletonization is applied, using Hilditch’s algorithm 

(Hilditch 1969), to remove the GM from the coarse CS to get the final CS. 

The Hildtch’s algorithm is described as follows: 

Consider the  window around a “black” pixel labeled  and label its eight 

neighbors in a clockwise spiral fashion as illustrated in Fig 5.5. Let  denote 

the number of 01 patterns encountered in the ,…, , . Let  denote the 

number of non-zero neighbors of . Then, at each pass in which we remove (in 

parallel) the outer layer of pixels we remove each pixel that satisfies the following 

four conditions: 

33× 1p

)( 1pA

)1p2p 9p 2p (B

1p

1)  6)(2 1 ≤≤ pB

2)  1)( 1 =pA

3)  or 0842 =•• ppp 1)( 2 ≠pA  

4)  or 0642 =•• ppp 1)( 4 ≠pA  

The algorithm stops when there are no pixels changed during a pass.  

p

9p 3p2p

8p 1p 4p

7p 6p 5

   

Fig 5.5 The matrix used in the Hilditch’s algorithm. 
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Explanation of the procedure: 

1) The condition 6( )1 ≤pB  ensures that  is on the boundary of P. 1p

2) The condition  ensures we keep isolated points as well as 

skeleton tips. 

)(2 1pB≤

3) The condition 1)( 1 =pA  ensures we do not fragment the skeleton. 

4) Condition 3) and 4) ensure we do not change the connectivity of “lines” 

that are two pixels thick. 

By applying the skeletonization method, the skeleton of the CS (shown as Fig 5.6 (c)) 

is obtained to achieve the final CS result. 

 

5.9 Getting the Final CS 

The CSF voxels based on thresholding connected to the skeleton are added to the 

skeleton to yield the final CS. 

Shown as in Fig 5.6, Fig 5.6 (a) is the CSF component based on the thresholding, 

from which the broken part of the CS can be observed; Fig 5.6 (b) shows the coarse 

CS grown by both the CSF and GM, which keep the connectivity of the CS; Fig 5.6 (c) 

presents the skeleton of the coarse CS using the Hilditch’s method; Fig 5.6 (d) shows 

the final CS segmentation result, which combines the skeleton and the CSF 

component which is connected with the skeleton. Thus, the minimum component is 

kept in the CS to keep its connectivity and the segmentation result is most desirable. 
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                (a)                                 (b) 

 

                (c)                                (d) 

Fig 5.6 The final CS: (a) CSF from thresholding. (b) The coarse CS grown by CSF 

and GM. (c) The skeleton of the coarse CS. (d) The final CS combined by the 

skeleton and the CSF connected to the skeleton. 
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5.10 Summary 

A primary contribution of our approach is to combine the GM into the region growing 

of the CSF in order to counteract the broken part of the sulci due to partial volume 

effect, and the unnecessary GM component is removed through skeletonization while 

minimum GM is kept to maintain the connectivity of the sulci. So the final 

segmentation result of the CS is the most desirable while keeping the complete shape 

of it. 

The method to identify the CS by calculating and comparing the 3D volume of the 

sulci proves to be effective, which is more robust than the other previous methods 

using the geometrical features of the brain tissue arrangement. Our method can 

identify and segment the CS automatically and no manual intervention is required. 

The algorithm we designed to remove the obvious over-segmentation component also 

proves to be desirable after quantitative testing. It is especially effective in resolving 

the over-segmentation problems due to the leakage. Combining our algorithm and the 

3D boundary look-up table, the over-segmentation is controlled well to get the 

accurate calculation and segmentation. 
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Chapter 6 

Results, Conclusion and Prospects 

6.1 Results 

To evaluate our approach we use a set of T1-weighted phantom data 

(http://www.bic.mni.mcgill.ca/brainweb/) with noise (0, 1%, 3%, 5%, 7% and 9%) 

and inhomogeneity (0, 20% and 40%). The advantage of using the phantom data is 

that its CSF, WM, and GM are known which enables qualitative and quantitative 

evaluation of our approach. Among the 18 datasets, the CS is successfully identified 

and segmented from 16 datasets, while failed in 2. Our approach has also been applied 

on 4 patient-specific datasets. 

 

6.2 Visualization 

Fig 6.1 shows the final results of the CS identified and segmented. It shows that the 

CS is successfully identified and segmented. Compared with manual approaches, the 

result of our algorithm is visually correct as confirmed by brain anatomy experts.  
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Fig 6.1 The final results of the CS identified and segmented in several axial slices. 
 

In Fig 6.2, 3D renderings of the segmented CS ( 2 CSs from the same brain) are 

visualized from different view points: 

 

   

Fig 6.2 The 3D visualization of the segmented CS. 
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6.3 Discussion 

Among the 18 phantom datasets, the CS is successfully identified and segmented 

from 16 datasets; the 2 failed cases are all with high noise level (9%). For the 4 

patient-specific datasets, the CSs are also identified and segmented. 

26 real datasets have been studied in order to get statistical anatomical knowledge, 

which is indispensable to determine the value of some parameters in our approach (for 

example α  in 3.4). 

The quantification work is difficult to be applied on this approach, because there is 

too little CSF component in the CSs in the phantom datasets (sometimes the broken 

part has larger volume than the connected part), while the skeletonization add many 

voxels which do not exist in the original MRI datasets. Thus, the quantification work 

will have less meaning due to this problem which is not easy to avoid. 

The 3D volume of the sulci within ROI 

The calculation results show that the CS has the largest 3D volume within the ROI. 

Take the dataset with no noise and inhomogeneity for example, the biggest 3D 

volume of the sulci within the ROI on the left hemisphere is 6176  and that 

value on the right hemisphere is 5507 . Table 6.1 shows the 3D volume 

information of the sulci within the ROI of the 4 clinical data sets (the PoCS has a little 

component in the ROI and is not included): 

3mm

3mm
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Data set number: (1) (2) (3) (4) 

3D Volume of the PreCS ( ) 3mm 461 166 499 1497 

3D Volume of the CS ( ) 3mm 3548 3145 3166 3020 

Table 6.1 The 3D volume information of the sulci within the ROI. 

Sensitivity to noise 

When the noise level is smaller than 9%, it does not have any visible influence on the 

final result. However, when the noise level is 9%, over-segmentation occurs and the 

algorithm failed for the studied cases. 

Sensitivity to inhomogeneity 

The algorithm is quite insensitive to inhomogeneity. It can identify and segment the 

CS at the inhomogeneity levels of 0, 20% and 40% along with additional noise levels 

of 0, 1%, 3%, 5%, and 7%. 

Influence of GM 

GM plays a very important role in our algorithm. GM is helpful in region growing to 

counteract the broken sulci due to the partial volume effect. Although the GM may 

cause over-segmentation, its influence can be eliminated through employing the 

over-segmentation-removal algorithm we designed, skeletonization and 3D boundary 

look-up table. 

Running time 

For a normal 3D MR raw image data (181 181217××  for example), it takes less than 

15 minutes to run the whole algorithm with a P4 2.4GHz, 768M PC. 

Advantages 
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 fully automatic and no manual intervention is required  

 using GM and skeletonization to counteract the partial volume effect and keep the 

connectivity of the sulci 

 robust to the fair level of noise (no more than 7%) and inhomogeneity  

 combine the anatomical knowledge with image processing techniques 

As the algorithm is based on the combination of image processing techniques and 

anatomical knowledge, it may well be extended to other imaging sequences and other 

modalities. 

Limitation 

The complicated anatomy and high variability in several top axial slices of the brain 

tissues increases difficulty of segmentation. Our algorithm is sensitive to the high 

level of noise. 

 

6.4 Conclusion 

In this thesis we present a knowledge-driven method for identification and 

segmentation of the CS from human brain MR images through 3D region growing 

and calculating the volume of the sulci within the 3D region between the two coronal 

planes passing through the AC and PC. The experimental result shows that the sulci 

can be segmented through region growing of the CSF and GM to handle the partial 

volume effect, provided over-segmentation due to GM is removed by our proposed 

algorithm and 3D boundary look-up table and the unnecessary GM component is 
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removed by skeletonization, while minimum GM is kept to keep the connectivity of 

the CS. Comparing the 3D volume of the sulci in the well defined ROI proves to be an 

effective way to identify the CS. Experiments against 18 T1-weighted phantom 

datasets and 4 clinical datasets are encouraging showing that the algorithm is robust to 

inhomogeneity and fair noise level but sensitive to high noise level. 

The CS is a structure filled with liquid, rather than a tissue. There may be no CSF 

component in the CS. Although the GM and the skeletonization may bring 1~2- voxel 

wide mistake, for MR images, the purpose of the skeleton is to connect the broken 

part of the sulci, not to recover the original ideal image. The importance of the 

skeleton is to connect the broken sulcus and indicate the location of it, since the CS is 

rather a structure.  

 

6.5 Prospects 

Our algorithm provides a good starting point in automatically identifying and segment 

the CS from MR images. There are still some spaces left to be done in the future. 

The brain tissue arrangement in the top axial slices is complex. To deal well with the 

processing on this part will enhance the segmentation result on the whole. 

This algorithm needs to be further tested against more data, especially patient cases. 

And it is better if this algorithm can be applied in other pulse sequence MR image (T2) 

and other modalities (CT). 

A morphometric analysis and variability study of the CS, extension of this algorithm 
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to the PreCS and PoCS and extraction in the present of pathology may be another 

useful extension of this work. Furthermore, robustness to high level of noise is a 

direction to explore. 
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