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Summary 

 

The partial-response maximum-likelihood (PRML) receiver is the indispensable signal 

detection technique for high-performance digital magnetic recording systems.  

Currently, perpendicular recording is receiving increasing interest, as it promises to 

achieve much higher storage densities than the commercially used longitudinal 

recording technology.  The receiver design strategies need to be re-investigated for 

perpendicular recording, since its channel response is different from that of 

longitudinal recording.  In this thesis, we focus on the design of PRML detection 

strategy for perpendicular recording channel at high densities. 

To optimize the performance of PRML systems, the partial-response (PR) target 

should be well designed to reduce noise enhancement at the input of Viterbi detector 

(VD).  The minimum mean square error (MMSE) and noise-predictive maximum-

likelihood (NPML) approaches are widely used for designing generalized PR (GPR) 

target.  However, the MMSE criterion does not account for the noise correlation that 

can badly degrade the performance of VD, and the performance of NPML system may 

be limited if the primary target in system is not well optimized. 

In this thesis, we design GPR target by maximizing the effective detection signal-

to-noise ratio (SNReff), which is an equivalent measure of the bit-error-rate (BER) 

performance of VD.  Hence, it is reasonable to claim that the target designed by the 

SNReff criterion achieves the optimum performance of VD.  In this thesis, we develop a 



 vi

novel approach for finding the optimum targets based on SNReff and show that all these 

optimum targets take the same magnetic frequency response.  This thesis is the first to 

report closed-form analytical solutions for optimum targets based on SNReff and the 

characterization of the performance surface of SNReff.  Numerical and simulation 

results are provided to corroborate the analytical results. 

We also investigate the target design problem with emphasis on combating media 

noise, which is data-dependant and highly correlated.  There have been a few methods 

proposed to adjust the branch metrics of VD according to the data-dependent 

correlation, variance and/or mean of media noise.  In this thesis, we propose to tune 

VD to the targets designed by the modified SNReff criterion, which incorporates the 

noise statistics conditioned on each data pattern.  Simulation results show that in the 

channel with high media noise, this approach yields a gain of about 0.5 dB at a BER of 

10-4 over the existing approaches that aim to deal with media noise. 
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Chapter 1 

Introduction 

 

In this chapter, we first give a description of the overall magnetic recording system, 

and briefly introduce perpendicular recording technology and characteristics of noises 

in magnetic recording systems.  Then, a survey of the existing literature on detection 

techniques for magnetic recording systems is presented.   Thereafter, the motivation 

and summary of the work reported in this thesis are given.   Finally, the organization of 

the thesis is outlined. 

 

1.1 Magnetic Recording System 

 
The advent of digital computer spurred the development of magnetic data storage 

systems (for example, hard disk drives) capable of storing large amounts of digital 

information.  To accommodate the growing demand for the storage of digital data, 

improvements in storage density and data transfer rate capabilities are continuously 

being done since the beginning of magnetic recording technology.  As a result, this 

technology has been making progress in leaps and bounds.  Over the past five decades, 

breakthroughs in head and media technologies have been the major contributing 
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factors to the spectacular growth in storage capacity.  However, signal processing and 

coding techniques are recognized as important and cost-efficient means for supporting 

as well as enhancing the storage capacity of a given head-medium combination [1].  

Hence, the field of coding and signal processing has been playing an important role in 

modern magnetic storage systems. 

 

 Figure 1.1 depicts the block diagram of a general digital magnetic recording 

system.  The binary information bits (i.e. user data) are first fed to a two-stage channel 

encoder.  The ECC (error control coding) encoding introduces error detection and 

correction capability, while the modulation coding on the second stage helps to 

maintain channel linearity and sufficient excitation for the control loops (e.g. gain, 

timing recovery) at the receiver.  Following the channel encoder, the write circuit 

converts the coded data into a rectangular current waveform (write current) by NRZI 

(non-return-to-zero inverse) modulation technique [2].  The write current then drives 

the write head to magnetize the storage medium to saturation in the direction, which is 

determined by the polarity of the write current waveform in each bit interval.  In the 

readback process, the read head converts the magnetic flux to a voltage output signal, 

Figure 1.1: Block diagram of a digital magnetic recording system. 
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which reflects the transitions in the pattern of magnetization stored on the medium.  

Usually, the read head circuit is embedded with a preamplifier that magnifies the read 

voltage by several hundred times.  The front-end circuits in general consist of a low-

pass filter for band-limiting the readback signal, a sampler, timing recovery and gain 

control circuits, and an equalizer for shaping the channel response to facilitate better 

detection of the data bits.  The detector recovers the encoded data and passes them to 

the decoder for recovering the original information bits. 

 The signal path starting from the input of write circuit to the output of read head in 

Figure 1.1 is called the magnetic recording channel.  This channel represents the main 

features of the read/write process in any recording system.  The readback voltage pulse 

corresponding to an isolated transition in the data pattern stored on the medium is 

usually referred to as the isolated transition response or just transition response.  

Successive transition responses along the recording track alternate in polarity and 

partly cancel each other when spaced closely.  Under reasonable recording conditions, 

the readback signal (noiseless) can be modeled as linear superposition of transition 

responses.  Since the bit response of the channel (i.e. response to an isolated bit at the 

input) is linearly related to transition response, we can say that the magnetic recording 

channel resembles a base-band digital communication channel with pulse-amplitude-

modulation (PAM). 

 Retrieving the stored data from magnetic recording systems would be effortless if 

the output of the recording channel were clean signals as the input.  Unfortunately, the 

readback signals are always corrupted by channel noises, interferences and non-linear 

distortions, all of which particularly increase with recording density. The main purpose 

of detector is to combat these corruptions, and recover the stored data with a very 

stringent level of reliability. During the past decade, several digital detection 
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techniques were developed for disk drives to improve the reliability in view of the ever 

increasing density.  In particular, the partial-response maximum-likelihood (PRML) 

detection [3], which was introduced in early 1990s in place of analog peak detection, 

significantly raised storage density capability and paved the way for applications of 

advanced coding and signal processing in disk drives.  Extensive research work has 

been done in designing detection strategies for longitudinal recording, since 

commercial disk drives use this recording technology.  In recent years, perpendicular 

recording has attracted increasing interest, as it promises to achieve much higher 

recording densities than the longitudinal one [4, 5].  Consequently, the detection 

strategies need to be re-investigated for perpendicular recording channels, whose 

transition response is much different from that of longitudinal recording channels.  

Further, most detection techniques that have been developed so far assume that the 

channel noise is an additive white Gaussian random process.  However, this 

assumption is not true on high-density recording channels, because the media noise, 

which is a correlated, data-dependent and non-Gaussian random process, becomes the 

dominant noise source at high densities [6].  In this thesis, we focus on PRML 

detection strategy for perpendicular recording at high densities, with and without 

emphasis on combating media noise. 

 

1.2 Introduction to Perpendicular Recording 

 
In magnetic recording systems, most of the gain in areal density (number of bits per 

square inch) has been achieved by proportionally reducing all physical dimensions 

relevant to the recording process, including head size, bit length and the thickness of 

granular medium.  Meanwhile, the refining of the medium microstructure, in 
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Figure 1.2: Demagnetizing fields in perpendicular and longitudinal recording media. 
The ‘dark solid’ arrows indicate the magnetization of each bit bell and the ‘grey’ 
arrows indicate the demagnetizing fields. 

 

particular, reducing the size of ferromagnetic grains in the media, is of paramount 

importance to support the required “magnetic” resolution and to suppress noises.  In 

the current longitudinal magnetic recording media, use of scaling to achieve even 

smaller bits and grain sizes, however, may cause serious thermal instability [7], 

thereby limiting the achievable areal density.  However, perpendicular recording 

proposed by Iwasaki and Nakamura [4] is expected to extend the super-paramagnetic 

limit to a further point because of the intrinsic merits of this recording approach. 

 

 

 

 

 

 

 

 

 

 Due to the vertical magnetization pattern in perpendicular recording, the magnetic 

‘charges’, which are the effective sources of demagnetizing fields, are distributed on 

the top and bottom of the medium layer (see Figure 1.2).  In contrast, in longitudinal 

recording where the medium is magnetized horizontally along the track, the magnetic 

‘charges’ are concentrated at the transitions of magnetization.  As a result, the 

demagnetizing fields drop to zero at transitions in perpendicular recording, while they 

reach maxima right at the transitions in longitudinal recording.  In addition, as shown 

in Figure 1.2, the demagnetizing fields work to reduce the strength of head-on 

magnetization at the transitions in longitudinal recording, thereby resulting in decrease 
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of output signal amplitude.  In contrast to this, in perpendicular recording the 

demagnetizing fields assist to enhance neighboring magnetization coupling with each 

other at the transitions.  Hence, perpendicular recording may use thicker medium than 

longitudinal one to realize similar recording resolution.  The operation with thicker 

media can be translated into ‘relaxed’ thermal stability requirement [7].  Further, in 

perpendicular recording, the magnetization stability favored by demagnetizing fields 

increases with storage density, while longitudinal recording shows fatal thermal decay 

of written signals with repulsive demagnetization forces, especially at high densities.  

Therefore, perpendicular magnetic recording technology is considered to promote 

ultra-high density recording.  

 Besides promising ultra-high densities, perpendicular recording has other 

advantages, including strong head fields, sharp transitions and track edges, short 

wavelengths etc., as summarized in [8].  Along with these advantages, however, are 

also the challenges to the medium, read/write heads and signal processing for realizing 

perpendicular recording. 

 Although the storage industry has not started making products using perpendicular 

recording, the recent demonstrations of this technology boasted areal densities of about 

100 Gbits/inch2 [9, 10] by Seagate Technology and 146 Gbits/inch2 by Read-Rite (now 

bankrupt) in November 2002 [10, 11].  These densities are comparable with or even 

higher than the highest densities reported for longitudinal recording [10, 12]. With 

further study and improvement in media and read/write head combinations, ultra-high 

areal densities in perpendicular recording can be expected [13]. 
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1.3 Characteristics of Noises, Interferences and Non-

linear Distortions in Magnetic Recording 

 
The signals read from the magnetic recording channel are inevitably hampered by 

interferences, non-linear distortions and noises.  In order to achieve as high recording 

densities as possible with acceptable reliability in signal detection, we first need to 

know the characteristics of noises, interferences and distortions in magnetic recording.   

 Interferences correspond to the presence of signals other than those intended in the 

readback signal.  In magnetic recording systems, except for extremely low linear 

densities (number of bits per inch along the track), the isolated transition response 

spans several bits adjacent to the bit at the transition.  This leads to overlapping of the 

successive transition responses along the recording track.  The resulting interference is 

known as inter-symbol interference (ISI).  At high linear densities, the transition 

response becomes even 'wider' with respect to a single bit period, and thereby results in 

more severe ISI.  Nevertheless, this interference is deterministic, and in principle, may 

be reduced to an arbitrarily small level by proper design of detection strategy.  The 

residual ISI (i.e. ISI that cannot be eliminated) adds to the noises in the magnetic 

recording systems. 

 Nonlinear distortions in magnetic recording systems refer to the phenomena that 

violate the linear superposition principle used to reconstruct the readback signal.  As 

density increases, closely spaced magnetic transitions start to interact, and result in 

significant nonlinear effects, including transition shifts, transition broadening, partial 

erasure, overwrite etc [14].  The shift in transition positions is an important 

manifestation of nonlinearities.  Nonlinear transition shift (NLTS) occurs when the 

write head field is influenced by the demagnetizing field from the previous transitions.  
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Another type of transition shift is called hard transition shift (HTS).  In longitudinal 

recording, the cause of HTS is the demagnetizing field of the secondary transition, 

which is instantaneously formed at the leading edge of the head field opposing the 

residual media magnetization therein.  In perpendicular recording, HTS is caused by 

the demagnetizing field at the leading side of the head that results from the background 

magnetization, irrespective of whether it is for or against the head field.  Besides the 

effect of transition shift, the transition is broadened simultaneously if the influencing 

demagnetizing field is adverse to the head field.  The broadening of transition results in 

a transition response with reduced amplitude and larger width.  Overwrite effect refers 

to the nonlinear distortion caused by erasing old data on the medium with direct 

overwrite of new data.  The residual magnetization left from previously stored data 

causes HTS in the transitions recorded for new data, which is the main manifestation 

of the overwrite effect.  Another form of nonlinearities is partial erasure of adjacent 

transitions when they approach very close to each other at high linear densities.  In the 

readback signal, this effect appears as a sudden reduction of the signal amplitude.  

Nonlinear distortions are deterministic and data dependant.  Therefore, it is possible to 

control and minimize nonlinearities.  In practice, the transition shift can be minimized 

to a large extent by using appropriate “write pre-compensation” techniques [15].  The 

partial erasure can be mitigated to a certain extent by using appropriate constrained 

codes, such as maximum transition run (MTR) codes that limit the maximum number 

of consecutive transitions, and write pre-compensation schemes [16]. 

 Unlike interferences and nonlinear distortions, noises arise from the uncertainties 

in physical phenomena and need to be treated statistically.  Noise in a digital magnetic 

recording system is a combination of thermal noise generated in the preamplifier, head 

noise, and media noise. In general, these three noise sources are mutually uncorrelated.  
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Head noise and thermal noise, which are the sources of electronics noise in magnetic 

recording, are well modeled as additive white Gaussian random processes.  Media 

noise, which arises from irregularities and imperfections of the medium, is another 

major noise source in magnetic recording.  In advanced disks using thin-film medium, 

media noise can be classified into modulation noise and transition noise [13, 17].  The 

former is generally due to unfavorably reversed magnetization domains at regions in 

between transitions.  Full saturation of the medium throughout the bit-cells is 

necessary to reduce the modulation noise.  This noise is independent of transitions, and 

tends to decrease with increasing densities because there are less non-transition areas 

at higher densities.  The latter, i.e. the transition noise, comes from disordered 

transitions due to large magnetic domains and their size distribution, or due to easily 

moving domain walls.  The transition noise is non-stationary in nature because it 

depends on the recording data pattern, and strictly speaking, cannot be modeled as 

additive noise.  A simple, yet fairly general, model for transition noise is obtained by 

introducing random position jitter and width variation to the readback transition pulses 

[18]1.  It is indicated that, both in longitudinal and perpendicular recording, transition 

noise increases with recording density [19, 20], and becomes the dominant noise in 

high-density recording. 

 Thus far, considerable research has been done to investigate signal processing 

techniques for combating interferences, nonlinear distortions and noises in magnetic 

recording systems.  Since nonlinear distortions can be effectively controlled during the 

writing process, we emphasize in this thesis on the detection methods applied to the 

magnetic recording channels corrupted by ISI, electronics noise and media noise.  A 

brief review of the existing techniques in this area is provided in the next section. 
                                                 
1  The work done in [18] was originally for longitudinal magnetic recording.  However, the general 
model of transition noise proposed by [18] is also widely applied to perpendicular magnetic recording 
now, as the mechanisms of transition noise in both recording media are similar. 
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1.4 Literature Survey 

 
The detectors that have been considered for digital recording systems can be classified 

into symbol-by-symbol (SBS) detector and sequence detector.  The SBS detectors 

simply map the multilevel outputs of the channel into binary detected bits, usually with 

aid of suitable precoding and equalization as described in [21].  The sequence detectors 

make a symbol decision based on observation of channel outputs over many symbol 

intervals.  In spite of their inherent decision delay and relatively high complexity, the 

sequence detectors are desirable because they significantly outperform SBS detectors 

in combating signal interferences.  The prominent example of sequence detectors is the 

maximum-likelihood sequence detector (MLSD), which yields the optimum detection 

quality in the presence of ISI [22].  When the channel noise is additive and white 

Gaussian, MLSD can be efficiently implemented by using the Viterbi algorithm (VA) 

based on Euclidean distance metrics [22, 23, 24].  In practice, the VA detector is 

preceded by a partial-response (PR) equalizer that reduces the span of ISI.  This 

technique is called partial-response maximum-likelihood (PRML) detection.  In this 

section, we briefly survey the existing PRML detection strategies for digital magnetic 

recording channels.  The review first focuses on typical PRML schemes developed 

with no regard to the data-dependence of noise.  Thereafter, the review focuses on 

PRML detection techniques that take into account the data-dependence of media noise. 

 

1.4.1  Typical PRML Detection Techniques 

 
PRML detection is currently the predominant signal processing technique used in 

high-performance digital recording systems.  The PR equalization typically uses a 

linear filter to shape the original channel bit response into a pre-determined PR target 
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response of reasonably short length.  Following the equalizer, the VA detector tuned to 

this PR target performs sequence detection of the stored data bits.  The key design 

problem in PRML scheme is about the choice of a suitable PR target, which is required 

to be a good match to the natural channel response to avoid mis-equalization and noise 

enhancement.  More importantly, since the assumption of additive white Gaussian 

noise (AWGN) at the detector input is essential for the VA detector to be optimum (in 

the sense of maximum-likelihood) [22], the target design should particularly aim to 

minimize noise correlation at PR equalizer output. 

 Conventional PRML schemes, as proposed in [3, 25], employ standard PR targets 

with integer coefficients, which are chosen by simple inspection of their match to the 

natural channel response.  The well-known example of targets for longitudinal 

recording is PR Class 4 (PR4) targets in the form of ( )( )1 1 nD D− + , where D  denotes 

the 1-bit delay operator and n  is a positive integer.  With the recent interest in 

perpendicular recording, several studies have been carried out investigating the PR 

targets, for instance, PR2 and MEPR2, whose characteristics are similar to those of 

perpendicular magnetic recording channels [26, 27].  Although several standard PR 

targets have been investigated and proposed, these targets are quite different from the 

natural channel responses due to the integer constraint, especially at high linear 

densities.  Therefore, the performances of standard PR targets based PRML systems 

may be quite limited. 

 At the cost of a minor increase in the complexity of VA detector, the generalized 

PR (GPR) targets with real-valued coefficients can provide close match to the natural 

channel, and thereby, achieve good performance. Several approaches have been 

considered to design GPR targets with finite length.  The most widely used method is 

to jointly optimize the target and equalizer by the minimum mean square error 
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(MMSE) criterion, which minimizes the total power of residual ISI and noises at the 

output of the equalizer [28, 29, 30, 31].  To avoid trivial solutions, a constraint needs 

to be imposed on the target in the MMSE approach.  Among the different constraints 

investigated for MMSE approach, the monic constraint, which restricts the first tap of 

target to be unity, outperforms other constraints [31].  In addition, the monic 

constrained MMSE criterion results in target and equalizer equivalent to the solutions 

of forward and backward filters in MMSE based decision feedback equalization 

(MMSE-DFE) system.  In fact, the DFE system [32, 33] can be viewed as a special 

case of PRML receiver using a one-state VA detector with a minimum phase GPR 

target.  It should be remarked that the MMSE method does not consider noise 

correlation at the equalizer output that may significantly impair the performance of VA 

detector.  To whiten the correlated noise, a noise predictor may be used at the output of 

PR equalizer, which gives rise to noise-predictive maximum-likelihood (NPML) 

method [34].  NPML system is also a special case of PRML receiver, in which the VA 

detector is tuned to an effective GPR target that is obtained as the convolution of the 

primary PR target and the noise prediction-error filter.  The performance of NPML 

may be limited as well, if the primary PR target used in the system is not well 

optimized. 

 Another method proposed to design GPR target is by minimizing the probability 

of the dominant error event in VA detector [31, 35], which is proportional to the bit-

error-rate (BER) of PRML systems at medium-to-high signal-to-noise ratios (SNRs). 

As reported in [31], however, numerical search for optimum targets based on this 

approach costs large computational load, and whether the search leads to global optima 

is not clear.  Further, to make the receiver structure more practical, adaptive algorithms 
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for optimizing the coefficients of target and equalizer are proposed in [29, 36, 45], 

since the channel characteristics are often unknown or slowly varying. 

 Other than the widely used linear PR equalization, nonlinear equalization by 

means of neural networks combined with VA detector has been proposed [37, 38] to 

mitigate the problems caused by non-additive transition noise and nonlinear 

distortions.  The principle behind this approach is to use neural network as a nonlinear 

function approximator.  The neural network is trained to minimize the output mean 

squared error. 

 

1.4.2 PRML Detection with Modified VA Detector 

 
At high recording densities, highly correlated and signal-dependant media noise 

becomes substantial, and it badly degrades the performance of VA detector designed 

for channels with AWGN [39, 40, 41].  Recently, researchers have attempted to 

remedy this problem by modifying the Euclidian distance metric computations in the 

VA to account for the correlation and data-dependence of media noise [42, 43, 44, 45, 

58].  By modeling media noise as a finite-order Markov process [42], the branch 

metrics in VA are computed using the conditional second-order noise statistics, and 

result in a signal-dependent and correlation-sensitive MLSD.  The same detector 

structure has been derived in [43] from the viewpoint of linear prediction of noise, by 

using the same noise model as in [42].  Regardless of the noise correlation, some 

studies have proposed to modify the branch metrics in VA according to the data-

dependant power and/or mean of the noise, as described in [44, 58] and [45, 46], 

respectively.  In short, these approaches address the signal-dependent nature of media 

noise by allowing each branch in VA to independently account for the noise associated 

with the corresponding state transition.  The resulting VA in each case either requires 
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more states and branches or utilizes feedback to reduce the number of states required.  

In particular, the complexity of signal-dependent VA exponentially increases with the 

length of data pattern considered in the design.  An advantage of these schemes is that 

they assume the usual PR equalization, and hence they can be easily integrated into 

existing PRML systems. 

 It has also been proposed to use a modified adaptive random access memory DFE 

(RAM-DFE) to compensate for the channel nonlinearities caused by media noise, 

which cannot be accurately anticipated or eliminated in a fixed design.  In RAM-DFE, 

the usual linear feedback path is replaced by a look-up-table or RAM as described in 

[48].  The proposed method [47] is to implicitly adjust the threshold of the RAM-DFE 

by adding a constant to each memory location in RAM.  This constant is automatically 

determined by the adaptive algorithm proposed in [48].   

 

1.5 Motivation and Summary of the Present Work 

 
In this thesis, we propose a novel analytical approach for designing optimum GPR 

targets for high-density perpendicular recording channels, based on the cost function 

that is closely related to the BER performance of PRML systems.  We also propose the 

approach for designing targets to combat media noise.  The motivation and summary 

of the current work reported in this thesis are briefly presented in two parts.  The first 

part is about designing optimum GPR targets for PRML systems using the 

conventional VA detector.  The second part is about designing optimum GPR targets 

that account for the data-dependence of media noise, and subsequently developing a 

modified VA with the proposed data-dependent targets. 
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1.5.1  Design of Data-Independent Optimum GPR Target 

 
PRML detection is widely used in modern magnetic recording systems.  Design of PR 

target is critical to the performance of PRML scheme.  The target should well match 

the natural channel response so as to reduce mis-equalization, noise enhancement and 

noise coloration, which impair the performance of VA detector.  On the other hand, the 

target should help to increase the noise immunity of VA detector by enhancing the 

minimum Euclidean distance between any two distinct noiseless signal sequences at 

the output of PR equalized channel [49].  Most of the existing approaches for 

designing target do not take all of these factors into account.   

 In this thesis, we design GPR target by maximizing effective detection SNR 

( effSNR ), which is an equivalent measure of the BER performance of VA detector at 

medium-to-high channel SNRs.  Therefore, it is reasonable to expect the optimum 

target based on the effSNR  criterion to achieve the optimum BER performance in 

PRML receivers.  This criterion was investigated in [31] and [35].  However, the 

complete analytical solution of the optimum target based on this criterion is not yet 

available and the characterization of the stationary points of effSNR  has not been 

reported so far.  In this thesis, we propose a novel approach for designing optimum 

targets based on the effSNR  criterion.  Using a frequency-domain approach, we first 

show that the optimum target that maximizes effSNR  is unique in its magnitude 

frequency response.  Then, we derive closed-form analytical solutions for the optimum 

magnitude frequency response of the GPR target.  Using our analytical approach, we 

clarify that all the optima of effSNR  are global optima and take the same magnitude 

frequency response.  These analytical results are corroborated by the numerical results 
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obtained through an iterative algorithm that we developed to search for the maximum 

of effSNR . 

 We evaluate the BER performance of PRML systems for perpendicular magnetic 

recording channels using the optimum GPR target designed by our approach, and 

compare with targets from existing approaches.  Simulation results show that our 

approach achieves the best performance compared to the rest.  In addition, our 

investigation of the performances of different targets shows that noise correlation is the 

major cause for the degradation of performance in PRML systems. 

 

1.5.2  Design of Data-Dependent Optimum GPR Target 

 
In order to better combat media noise, which is highly correlated and data-dependent, 

the detector needs to be data-dependant too.  There have been a few methods proposed 

to modify the branch metrics of VA detector with emphasis on data-dependent 

correlation, variance or mean of the noise.  However, these statistics of noise do not 

fully govern the performance of VA detector.  In this thesis, we derive a modified 

effSNR  criterion for target design by incorporating the conditional correlation of media 

noise.  Therefore, the resulting target accounts for the data-dependent nature of media 

noise, and is expected to produce the optimum performance for any particular data 

pattern.  We also propose to compute the branch metrics of VA detector with the data-

dependent target designed by the modified effSNR  criterion.  Note that media noise is 

highly correlated, and thus its conditional statistics depend on a large span of the input 

data.  For the sake of convenience and practical implementation, we have to restrict to 

a short span of data pattern when designing the target based on the modified effSNR  

criterion.  We also note that longer span of data pattern leads to more accurate 
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estimation of the noise statistics, which may improve the performance of the proposed 

target.  However, the size of VA trellis (or, complexity of VA) increases with the 

length of data pattern.  A compromising approach that allows the use of long span of 

data patterns is to use the data bits from the survivor paths in the VA trellis.  

Simulation results show that the proposed modified VA detector yields performance 

gains when applied to the perpendicular recording channels with media noise. 

 

1.6 Organization of the Thesis 

 
The rest of the thesis is organized as follows.  Chapter 2 presents a detailed description 

of magnetic recording channel models and PRML detection technique.  Chapter 3 

gives the development of the proposed approaches for designing optimum targets 

based on the SNReff criterion.  Performance comparison of the proposed approach with 

existing approaches is also presented in this chapter.  Chapter 4 is devoted to the 

characterization of the performance surface defined by SNReff.  In Chapter 5, the 

method of designing optimum target to deal with data-dependant media noise is 

proposed.  Finally, Chapter 6 concludes the work reported in this thesis and lists some 

possible directions of future work.  
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Chapter 2 

Background on Signal Processing for Digital 

Magnetic Recording 

 

As we have introduced in Chapter 1, PRML approach is currently the most widely 

used technique for signal detection in high-performance digital magnetic recording 

systems.  To further improve the performance of PRML receiver in magnetic recording 

channels, we first need to have good understanding of the two blocks that constitute a 

PRML receiver: PR equalizer and Viterbi algorithm (VA) detector.  In this Chapter, 

the model of digital magnetic recording channel with electronics noise and media noise 

is described in Section 2.1.  Subsequently, Viterbi algorithm and typical linear PR 

equalization methods are detailed in Sections 2.2 and 2.3, respectively. 

 

2.1 Digital Magnetic Recording Channel Model 

 
In this section, we introduce a widely used approach of modeling digital magnetic 

read/write processes.  Then, we describe the equivalent discrete-time models of the 

digital magnetic recording channel with and without media noise. 
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2.1.1 Magnetic Recording Channel with Electronics Noise 

 
Figure 2.1 depicts the functional schematic of the read/write process in a conventional 

digital magnetic recording system, which consists of write-circuit, write-

head/medium/read-head assembly and associated pre-processing circuitry.  We start to 

mathematically develop a model of the magnetic read/write process in the presence of 

electronics noise only.  Electronics noise is usually considered as AWGN.  The 

modeling of media noise will be detailed in Section 2.1.2. 

 

 As shown in Figure 2.1, a binary data sequence { }1, 1ka ∈ + −  is first fed into the 

write circuit at the rate of 1 T  (T  denotes the channel bit period).  The write circuit is 

a linear pulse modulator, and its impulse response is given by an ideal rectangular 

pulse of duration T and amplitude 1.0.  Consequently, it converts the bit sequence ka  

into a rectangular current waveform ( )s t , whose amplitude swings between 1+  and 

1− , corresponding to the bit sequence ka .  This current waveform drives the write 

write  
circuit 

storage 
medium 

write 
head 

read 
head 

ka  ( )s t ( )c t

Figure 2.2: Continuous-time model of digital magnetic recording channel. 

ka  

AWGN
( )v t

( )h t
( )c t   

Figure 2.1: Functional schematic of the magnetic read/write process. 
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head to magnetize the bit-cell in the storage medium to saturation in a certain direction 

when ( ) 1s t = +  and in the reverse direction when ( ) 1s t = − .  Clearly, the 

magnetization directions in the medium reflect the data sequence ka . 

 In the readback process, the read head, either an inductive head or a magneto-

resistive (MR) head, performs the flux-to-voltage conversion.  The read head responds 

to the magnetic flux emanating from the transitions of magnetization in the medium.  

For an isolated magnetization transition corresponding to the data transition from 1−  

to 1+ , the read head produces a voltage pulse, ( )f t , while for an inverse transition it 

outputs ( )f t− .  This readback voltage pulse ( )f t , which is usually referred to as 

isolated transition response, is a low-pass type of response due to the combined effect 

of (head) gap loss, (thin-film) thickness loss, and write-process loss [50].  Assuming 

that the linearity of channel is maintained in the course of read/write process, the 

readback signal can be reconstructed by the superposition of all transition responses 

resulting from the stored data pattern.  We may introduce a sequence { }1,0, 1kb ∈ + −  

where ‘ 1+ ’ and ‘ 1− ’ indicate the presence of positive and negative transitions, 

respectively, and ‘ 0 ’ indicates the absence of transition.  Therefore, the noiseless 

readback signal can be expressed as ( ) ( )k
k

d t b f t kT= −∑ .  Noting that electronics 

noise is added at the output of the read head, the readback waveform is modeled as  

   ( ) ( ) ( ) ( ) ( )k
k

c t d t v t b f t kT v t= + = − +∑ ,   (2.1) 

where ( )v t  represents the electronics noise.  It is easy to find that 

   ( )1 2k k kb a a −= − .      (2.2) 

Therefore, the readback waveform may be re-written as 

   ( ) ( ) ( )k
k

c t a h t kT v t= − +∑ ,     (2.3) 



CHAPTER 2.  BACKGROUND ON SIGNAL PROCESSING FOR DIGITAL MAGNETIC RECORDING 

 21

where ( ) ( ) ( )[ ]1
2h t f t f t T= − −  is bit response or pulse response or dibit response.  

Eqn. (2.3) shows that the overall read/write process is mathematically modeled as a 

pulse-amplitude modulated channel with input data sequence ka , effective symbol 

response ( )h t , and additive noise ( )v t .  Figure 2.2 depicts the channel model 

represented by (2.3). 

 Based on experimental data, the isolated transition response in longitudinal 

recording is well modeled by the Lorentzian pulse given by [17, 50] 

    ( )
( )2

50

2
21

pVf t
t

T

=
+

,     (2.4) 

where pV  is half of the base-to-peak amplitude, and 50T  refers to the temporal width of 

the pulse at its 50% amplitude level.  In perpendicular recording channel, where giant 

MR read head and double-layered medium are employed, the isolated transition 

response is widely approximated either by an arctangent function [27, 30] defined as 

    ( ) ( )
50

2 2arctanpV tf t Tπ= ,              (2.5a) 

or by a hyperbolic tangent function [26, 51] defined as 

    ( ) ( )
50

ln 3tanhpf t V tT= .             (2.5b) 

Different from its definition in Lorentzian function, 50T  used in (2.5a) and (2.5b) refers 

to the time duration required for ( )f t  to rise from 2pV−  to 2pV .  We may take 50T  

as a measure of the channel linear density by defining the normalized linear density as 

50cK T T= .  Denoting the duration of user input data1 bit by uT , the quantity defined 

as 50u uK T T=  is called the normalized user density, which is a measure of the linear 

                                                 
1 The data bits before and after channel encoding (see Figure 1.1) are called user data and channel data, 
respectively. 
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density from the user’s point of view.  Assuming cR  to be the code-rate of the channel 

encoder, we have c uT R T= , and consequently c u cK K R= .  Hence, the use of channel 

code will cause increase in linear density.  This increase in the density, though 

unavoidable, is undesirable since detection becomes difficult as density increases. 

 To obtain the digital information from the continuous-time readback signal ( )c t , 

a matched filter ( )h t−  and a symbol-rate sampler can be employed at the channel 

output, as shown in Figure 2.3(a).  It is well known that when the channel noise is 

AWGN, the matched filter is information lossless as its sampled outputs are a set of 

sufficient statistics for estimation of the input data bits [22].  In practice, it is common 

to replace the matched filter with a low-pass filter (LPF) that does not require the 

knowledge of channel response (Figure 2.3(b)).  For a perfectly band-limited channel 

wherein all of the signal energy is confined within 1 2f T≤ , a low-pass front-end 

filter also provides sufficient statistics [50].  To accommodate channels with 

Figure 2.3: Extracting sufficient statistics.  (a) application of the matched filter, (b) 
application of low-pass filter and over-sampling with over-sampling factor Ls. 
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bandwidths wider than 1 2T , the configuration shown in Figure 2.3(b) can be used.  

The over-sampling factor Ls is chosen large enough so that the LPF bandwidth is 

greater or equal to the channel bandwidth.  Therefore, the equalizer that follows the 

over-sampler in Figure 2.3(b) should have its taps spaced at sT L  (i.e. fractionally 

spaced equalizer).  We may also remark that the noise power at the sampler is 

proportional to the bandwidth of the LPF.  At high linear densities, the energy of the 

channel bit response ( )h t  beyond the bandwidth 1 2T  will be negligible.  Therefore, 

over-sampling is not necessary (i.e. 1sL = ) at high densities. 

 Let ( )n t  and ( )r t  denote the filtered versions of noise ( )v t  and channel bit 

response ( )h t , respectively, with the filter being either matched filter or LPF.  Then, a 

convenient discrete-time model arises from Figures 2.3(a) and 2.3(b) by observing that 

(assuming 1sL = , i.e. high densities) 

 
( ) ( ) ( ) ( ) ( )

,

k i i
i it kT

i i k k k k k
i

z z kT a r t iT n t a r kT iT n kT

a r n a r n
=

−

= − + = − +

= + = ⊗ +

∑ ∑

∑  (2.6)
 

where ⊗  denotes the convolution operator, ( )kn n kT=  and ( )kr r kT= .  Let ( )q t  be 

the impulse response of the filter (either matched filter or LPF) before the sampler.  

Then, kr  and kn  are given by  

( ) ( )kr h q kT dτ τ τ
+∞

−∞
= −∫       (2.7) 

and 

( ) ( )kn v q kT dτ τ τ
+∞

−∞
= −∫ ,     (2.8) 

respectively.  In the case where the recording channel is perfectly band-limited and an 

ideal ‘brick-wall’ LPF is assumed, kr can be directly obtained as 
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( ) ( )k t kTr h t h kT
=

= =       (2.9) 

and the resulting sampled noise kn  is a discrete-time AWGN if ( )v t  is AWGN.  

Figure 2.4 gives a block diagram of the equivalent discrete-time model of a magnetic 

recording channel, where the transfer function ( )R D  is the D transform of { }kr . 

 In the discrete-time channel model given by (2.6), the noise is additive due to the 

nature of electronics noise.  Unlike electronics noise, media noise is correlated, non-

stationary, and causes nonlinear distortions.  In the next subsection, we introduce 

media noise into the magnetic recording channel model. 

 

2.1.2 Media Noise Model 

 
Media noise is one of the dominant noise sources, especially at high linear densities, in 

magnetic recording channel.  The major effect of media can be decomposed into two 

orthogonal noise modes: transition position jitter and transition pulse width variation 

[18].  Based on the linear channel model presented in (2.1), a simple and accurate 

nonlinear model of the magnetic recording channel including media noise effect is 

provided as 

   ( ) ( ) ( )50,k k k
k

c t b f t kT T v tϖ= +∆ − + +∑ ,           (2.10) 

( )
kr

R D

ka  

noise 
kn  

kz

Figure 2.4: Equivalent discrete-time model of a magnetic recording channel. 
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where ( )50,f t T  is the nominal isolated transition response given by (2.4) or (2.5), k∆  

and kϖ  are the random variables representing the amounts of position jitter and 

variation in 50T , respectively, and ( )v t  is the electronics noise.  The two types of 

jitters, k∆  and kϖ  are usually assumed independent from each other. 

  For the sake of convenience in doing linear equalization and performance 

analysis, a first-order derivative model of position jitter and width variation is 

proposed in [52, 53].  From (2.1) and (2.10), the media noise ( )m t  in the readback 

signal is obtained as 

  ( ) ( ) ( )50 50, ,k k k k
k k

m t b f t kT T b f t kT Tϖ= − +∆ + − −∑ ∑ .           (2.11) 

With small enough position jitter k∆  and width jitter kϖ , the distorted isolated 

transition response can be approximated using first-order Taylor’s series expansion as 

  ( ) ( ) ( ) ( )50 50, , p w
k k k kf t T f t T f t f tϖ ϖ+∆ + ≈ + ∆ + ,           (2.12) 

where ( ) ( )50,p f t Tf t t
∂=

∂
 and ( ) ( )50

50

 ,w f t Tf t T
∂=

∂
.  Substituting (2.12) into (2.11), we 

get an approximate model of media noise as 

   ( ) ( ) ( )p w
k k k k

k k
m t b f t kT b f t kTϖ= ∆ − + −∑ ∑ .           (2.15) 

Consequently, an approximate linear model of magnetic recording channel with media 

noise and electronics noise is obtained as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )k k
k k

c t b f t kT v t m t a h t kT v t m t= − + + = − + +∑ ∑ ,           (2.16) 

where ( )c t  is the approximate readback waveform.  (Note that in (2.15) and (2.16) the 

variable 50T  is not explicitly indicated as an argument of the functions ( )f • , ( )pf •  

and ( )wf • , since it is considered as a constant.)  The first-order model presented in 

(2.15) clearly indicates the data-dependence and correlation features of media noise.  
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Digital information is extracted from the channel readback waveform by passing ( )c t  

through a front-end filter ( )q t  (either a matched filter or a LPF2) and a symbol-rate 

sampler.  Similar to the derivation in Section 2.1.1, the equivalent discrete-time model 

of the channel is obtained as  

    k k k k kz a r n t= ⊗ + + ,              (2.17) 

where kz  is the output of the sampler, kr  represents the sampled bit response of the 

channel as given by (2.7), kn  denotes the electronics noise as in (2.8), and kt  

represents the sampled version of media noise filtered by ( )q t .  From (2.15), it is easy 

to find that 

   p w
k k i k i i k i k i i

i i
t b f b fϖ− − − −= ∆ +∑ ∑ ,             (2.18) 

where ( ) ( )p p
kf f q kT dτ τ τ

+∞

−∞
= −∫  and ( ) ( )w w

kf f q kT dτ τ τ
+∞

−∞
= −∫ .  Figure 2.5 

gives a block diagram of the equivalent discrete-time model of a magnetic recording 
                                                 
2 Strictly speaking, the matched filter or LPF is not an optimum front-end filter for the channel under 
consideration because media noise is not AWGN. 

Figure 2.5: Equivalent discrete-time model of a magnetic recording channel with 
electronics noise and media noise. 
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channel with electronics noise and media noise as presented in (2.17).  In the figure, 

the input data sequence { }ka  passes through a differentiator ( )1 2D−  to form the 

transition data sequence { }kb ; ( )pF D  and ( )wF D  are the D  transforms of { }p
kf  and 

{ }w
kf , respectively. 

 From (2.4), (2.5a) and (2.5b), we see that with increase in normalized linear 

density cK , the duration of the channel bit response ( )h t  increases as well, which 

results in a long span of ISI.  Therefore, the magnetic recording channel at high linear 

densities is subject to severe ISI, and a detector that is powerful enough to deal with 

large ISI is required at high densities. 

 

2.2 Viterbi Algorithm 

 
It is well known that maximum-likelihood sequence detection (MSLD) provides 

optimum performance for channels with ISI [22].  It is also known that the Viterbi 

algorithm (VA) is an efficient implementation of MLSD when the channel noise is 

AWGN [23].  In this section, we present a brief description of MLSD and VA.  For 

this, we consider the linear channel model shown in Figure 2.4.  We wish to design a 

signal detector that makes a decision on input data sequence [ ]1 2, , , ,k k ka a a− −=a  

based on the channel output sequence [ ]1 2, , , ,k k kz z z− −=z  such that the probability 

of correct decision is maximized.  This goal leads to a decision rule based on the 

computation of the posterior probabilities defined as  

( )|rP a z , ∈Λa  

where Λ  is the set of all possible input data patterns or sequences.  The data pattern 

belonging to Λ  is taken as the detected output â  if it maximizes the posterior 
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probability ( )|rP a z  over all ∈Λa .  This decision criterion is called the maximum a 

posteriori probability (MAP) criterion [54].  Using Bayes’ rule, the posterior 

probabilities can be expressed as 

    ( ) ( ) ( )
( )| r r

r
r

p PP p= z | a aa z z ,             (2.19) 

where ( )rp z | a  is the joint probability function (PDF) of z  conditioned on a , ( )rp z  

represents the joint PDF of z , and ( )rP a  denotes the ‘prior probability’ that the data 

pattern a  is sent into the channel.   

 Note that the denominator in (2.19) is independent of which data sequence a  is 

under consideration, and thus it can be omitted while comparing the posterior 

probabilities.  Further simplification can be achieved for the MAP criterion when all 

the possible input data patterns have equal prior probabilities.  Then, the sequence 

detection rule based on the MAP criterion is equivalent to estimating the input data 

sequence that maximizes ( )rp z | a , i.e. 

    â ( ){ }arg max rp
∈Λ

=
a

z | a .             (2.20) 

The conditional PDF ( )rp z | a  is usually referred to as likelihood function, and the 

decision criterion given by (2.20) is called the maximum-likelihood (ML) criterion.  

Sequence detection based on the ML criterion is referred to as maximum-likelihood 

sequence detection (MLSD). 

 As shown in Figure 2.4, the channel output is given by 

k k k k k i i k
i

z a r n a r n−= ⊗ + = +∑ . (2.21) 

Assuming that the noise kn  in (2.21) is AWGN with zero mean and variance 2σ , the 

likelihood function can be computed as 
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( ) ( )

( )( )

( )
1

2 2
2

2 2
2

|

1  exp 2
2

1  exp 2
2

r k
k

k k
k

L

k k
k

p p z

d z

d z

σ
πσ

σ
πσ

=

= − −

⎛ ⎞ ⎛ ⎞= − −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∏

∏

∑

z | a a

,            (2.22)
 

where 1L  is the number of samples in the vector z  and k k k k i ii
d a r a r−= ⊗ =∑  

represents the noiseless signal at channel output for the given input data pattern a .  

Since 2σ  is independent of a , we can see from (2.20) and (2.22) that the ML detection 

criterion in AWGN channel is equivalent to 

  ( ){ } 2
2ˆ arg min arg mink k k k i i

k k i
z d z a r−

∈Λ ∈Λ

⎧ ⎫⎛ ⎞= − = −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∑ ∑ ∑a a
a .          (2.23) 

The quantity defined by ( )2
k kk

z d−∑  is actually the squared Euclidean distance 

between the received channel output sequence z  and the noiseless signal sequence 

[ ]1 2, , ,k k kd d d− −=d  for the given data pattern a . 

 It is almost impossible to implement MLSD in its original form given by (2.23).  

For L  bits binary input sequence a  under consideration, one must search over 2L 

possible input data sequences by computing 2L Euclidean distances required by (2.23).  

The underlying computational load exponentially grows with L  and becomes 

impractically large even for moderate values of L . 

 The Viterbi algorithm (VA) is an efficient implementation of the search implied 

by (2.23).  Assuming that the channel bit response is causal and given by { }0 1, , , Mr r r , 

we may rewrite (2.21) as 

0
0 1

M M

k k i i k k k i i k
i i

z a r n a r a r n− −
= =

= + = + +∑ ∑ .            (2.24) 

Since the channel has a memory (or, ISI) of M  bits, the VA forms a trellis with 2M 

states per bit interval.  At instant k , for example, the 2M states represent 2M possible 
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patterns of M  data bits { }1 2, , ,k k k Ma a a− − − .  Clearly, the bits that were sent into the 

channel during the instants { }1, 2, ,k k k M− − −  will be one among these 2M 

possibilities.  A branch connecting a state at instant k  and a state at instant 1k +  

represents the data bit ka  that results in the state transition.  For binary input, each 

state has two incoming and two outgoing branches.  Any path composed by a sequence 

of branches from the beginning to the end of the trellis represents a possible input data 

sequence.  An example of a 4-state trellis is illustrated in Figure 2.6.  The four states at 

any instant k are given by 1 1, 1S = − − , 2 1, 1S = − + , 3 1, 1S = + − , and 4 1, 1S = + + , 

which represent the four possible patterns of the input data bits { }2 1,k ka a− − . 

 Assume that L  bits binary data { }1 2, , , La a a  were sent into the channel (i.e. 

stored on the medium) during the instants { }1, 2, , L .  Therefore, there are 2L possible 

paths through the trellis.  Let [ ],1 ,2 ,, , ,l l l l La a a=a  denote the data sequence 

corresponding to the lth (1 2Ll≤ ≤ ) path in the trellis and [ ]2,1 ,2 ,, , ,l l l l Ld d d=d , where 

1k = 3k = 4k =  2k = 5k =

{ }1 0,a a−  { }0 1,a a { }1 2,a a { }2 3,a a  { }3 4,a a

1 1, 1S = − −
1−  1−

1+  

1+

1−

1+
2 1, 1S = − +

3 1, 1S = + −

4 1, 1S = + +

Figure 2.6: The trellis for a channel with memory of 2 bits. 
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, ,0

M
l k l k i ii

d a r−=
=∑  and 2L L M= + , denote the noiseless signal sequence at the channel 

output for the given input data sequence la .  Further, let [ ]21 2, , , Lz z z=z  denote the 

received channel output sequences, where kz  is given by (2.24).  The Euclidean 

distance between z  and ld  can be computed as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

2

2 2

1
2 2 2

, , ,
1 1

1 1 ,

L L

l i l i i l i L l L
i i

L

L l L l k l i l
i k

PM z d z d z d

PM BM PM BM

−

= =

− −
=

= − = − + −

= + = +

∑ ∑

∑

a

a a a a
 

where ( ) ( )2 2
,1

L
l k l kk

PM z d
=

= −∑a  is usually referred to as the path metric associated 

with the l th path, ( ) ( )2
,1

k
k l l i ii

PM d z
=

= −∑a  (for 21 k L≤ < ) is the partial path metric 

for the partial data path [ ],1 ,2 ,, , ,l l l ka a a , and ( ) ( )2
,k l k l kBM z d= −a  is known as the 

branch metric associated with the state transition at instant k on the l th path.  Assume 

that the paths ma  and la  ( m l≠ ) pass through the same state S  at instant 1k − , i.e. the 

partial paths [ ],1 ,2 , 1, , ,l l l ka a a −  and [ ],1 ,2 , 1, , ,m m m ka a a −  both end at that state.  If 

( ) ( )1 1k l k mPM PM− −<a a , then we can find that 

( ) ( ) ( )

( ) ( ) ( )

2

2

1

1 ,

L
m k m i mi k

L
k l i m ni k

PM PM BM

PM BM PM

− =

− =

= +

> + =

∑
∑

a a a

a a a
 

where [ ]2,1 ,2 , 1 , , 1 ,, , , , , , ,n l l l k m k m k m La a a a a a− +=a  ( n m≠a a ) is also a path in the trellis 

passing through the state S .  Cleary, all those paths in the trellis that have 

[ ],1 ,2 , 1, , ,m m m ka a a −  as the first 1k −  bits cannot be the solution to the ML criterion in 

(2.23), and hence these paths can be dropped.  Extending this, we can conclude the 

following.  Among all the partial paths ending at the state S  at instant 1k − , we only 

need to keep the one that results in the smallest partial path metric.  The other partial 

paths, and consequently, all the paths having any of these partial paths as the first 1k −  
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bits can be dropped.  This retained partial path is called the survivor path and the 

corresponding partial path metric is called the survivor metric associated with the state 

S  at instant 1k − .  Doing this for every state throughout the trellis, we find that only 

one survivor path needs to be retained for each state at any instant.  Further, the 

survivor path and metric for any state at instant k  can be determined by finding which 

of the partial paths ending at that state has the smallest partial path metric.  These 

candidate partial paths are obtained by extending the survivor paths at instant 1k −  

with all possible branch transitions to that state at instant k .  At the end, the solution to 

the ML solution in (2.23) at any instant is given by the survivor path associated with 

the state having minimum survivor metric at that instant.  The above described ‘path 

dropping’ mechanism results in halving the total number of paths at every instant.  

This leads to significant saving in storage and computational requirements. 

 Note that the Viterbi algorithm described above performs MLSD only if the 

channel noise is AWGN.  Once this assumption is violated, the performance of VA 

detector will no longer be optimum, or may be badly degraded.  From Figure 2.6, we 

can see that the complexity of VA trellis grows exponentially with the channel length.  

Since the magnetic recording channel is usually long and not causal, PR equalization 

techniques are widely employed to shorten the channel response and make it causal, so 

that the complexity of VA detector based on the equalized channel is practically 

affordable. 

 

2.3 Linear Partial-Response Equalization 

 
The technique of equalization is used for mitigating ISI and channel noise.  Partial-

response (PR) equalization typically uses a filter to transform a long channel response 
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into the desired PR characteristics that only contains a few bits of ISI.  The transfer 

function that defines the desired PR characteristics is referred to as the PR target 

response.  Ideally, the equalizer should be designed to minimize the probability of 

decision error.  However, such ideal design is usually hampered by mathematical 

difficulties and therefore simpler criteria are used instead.  In this section, we briefly 

introduce the typical linear PR equalization by means of zero forcing and by the 

minimum mean square error criteria.  The linear equalizer can be an analog (i.e. 

continuous-time) filter, a digital (i.e. discrete-time) filter, or a mixture of the two.  In 

this thesis, we consider digital equalizer that is placed at the output of the sampler in 

Figure 2.3(b).  Since our focus is detection techniques for high-density recording 

channels that are almost band-limited, hereafter we assume the over-sampling factor 

1sL =  in Figure 2.3(b).  As a result, the equalizer that follows the sampler has its taps 

spaced T seconds apart.  Figure 2.4 shows the resulting discrete-time channel model.   

 

2.3.1 Zero-Forcing PR Equalization 

 
Figure 2.7 depicts the system model using zero-forcing (ZF) equalizer.  The discrete-

time channel with transfer function ( )R D  shown in Figure 2.4 is equalized into a 

target response ( )G D .  The ZF criterion requires that transmission be distortion-less, 

i.e. the undesirable ISI is forced to zero.  In order to achieve this objective, the linear 

ZF equalizer ( )W D  should have the characteristics given by 

    ( ) ( )
( )

2
2

2

j
j

j
G e

W e
R e

π
π

π

Ω
Ω

Ω= ,              (2.25)  

where Ω  is the frequency normalized by the bit rate 1 T , and ( )2jW e πΩ , ( )2jG e πΩ  and 

( )2jR e πΩ  are the discrete-time Fourier transforms of the equalizer kw , PR target kg  
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and the original channel kr , respectively.  Note that the equalizer characterized by 

(2.25) is in general a recursive (infinite impulse response – IIR) filter.   

 To assess the performance of the ZF equalizer in terms of noise enhancement, we 

compute the noise power at the equalizer output as 

   ( ) ( )
( )

220.5 2
220.5

j
j

ZF n j

G e
e d

R e

π
π

π
ξ

Ω
Ω

Ω−
Ρ Ω∫ ,             (2.26) 

where ( )2j
n e πΩΡ  is the power spectral density (PSD) of the channel noise kn .  When 

( )2jG e πΩ  is well selected to be small wherever ( )2jR e πΩ  is small, the ratio 

( ) ( )2 2j jG e R eπ πΩ Ω  will not be unreasonably large, and thus ZFξ  will be reduced.  The 

smallest noise enhancement accrues if ( )2jG e πΩ  is selected such that the ratio 

( ) ( )2 2j jG e R eπ πΩ Ω  is independent of frequency.  In a magnetic recording channel 

having infinitely long response, this is, in general, not possible if the target is of finite 

length.  Thus, noise enhancement is inevitable.  In addition, we see from (2.24) that 

channel instabilities are amplified where ( )2jR e πΩ  is small while ( )2jG e πΩ  is not.  

Even worse, the ZF PR equalizer may not exist if ( )R D  has spectral zeros.   

 

( )
kr

R D
 

noise kn  

( ) ( )
( )

kw
G DW D R D=

 
ka  kz ky  

desired channel response 
kg , ( )G D  

Figure 2.7: Zero-forcing PR linear equalizer operating on the output of a discrete-time 
channel with additive noise. 
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2.3.2 Minimum Mean Square Error Criterion 

 
To minimize noise enhancement, we need to drop the strict requirement that all the 

undesired ISI be completely eliminated.  Instead, we could demand that the total power 

of noise and residual ISI (mis-equalization) at equalizer output be minimized.  This 

requirement is called the minimum mean square error (MMSE) criterion.  The 

equalizer designed by the MMSE criterion results in small noise enhancement because 

the noise is included in the criterion.  Also, the existence of MMSE equalizer is 

assured since noise is always present in the channel. 

 In this section, the formulation of MMSE criterion and the derivation of MMSE 

equalizer solution are described.  For this development, we first assume that the 

equalizer is a finite impulse response (FIR) filter.  As shown in Figure 2.8, the total 

noise at the equalizer output, including the filtered channel noise and residual ISI, is 

equivalent to the estimation error ke  given by k k ke y d= − , where ky  is the equalizer 

output and kd  is the desired noiseless output based on the target response.  Hence, the 

total noise power at equalizer output can be computed as the mean of the squared 

estimation error, i.e. 

   [ ] ( )22
MMSE k k kE e E y dξ ⎡ ⎤= −⎣ ⎦ ,             (2.27) 

Figure 2.8: Block diagram of channel equalization based on the MMSE criterion. 
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where [ ]E i  denotes expectation over the data ka  and noise kn  ensembles.  With wN -

tap equalizer and N -tap target response, we get   

1

0

Nw
T

k k i i k
i

y z w
−

−
=

= =∑ w z  and 0 0

1

0

N
T

k k k i i k k
i

d a g
−

− − −
=

= =∑ g a , 

where the superscript T  denotes the transpose operator, the column vectors 

[ ]0 1 1, , , w

T
Nw w w −=w  and [ ]0 1 1, , , T

Ng g g −=g  represent the tap-weight vectors of the 

equalizer and target response, respectively, [ ]1 1, , , w

T
k k k k Nz z z− − +=z  and 

[ ]1 1, , , T
k k k k Na a a− − +=a  denote the equalizer input vector and channel input vector, 

respectively, and 0k  is the delay from channel input to equalizer output.  Then, we 

have 

( )0

2 2T T T T T
MMSE k k k aa za zzEξ −⎡ ⎤= − = − +⎣ ⎦w z g a g R g w R g w R w , (2.28) 

where [ ]0 0
T

aa k k k kE − −=R a a , [ ]T
zz k kE=R z z , and [ ]0

T
za k k kE −=R z a .  Eqn. (2.28) is a 

quadratic function of the equalizer tap-weight vector w  with a single minimum3, and 

the optimum solution of equalizer that minimizes MMSEξ  is obtained as 

   1
o zz za

−=w R R g .                (2.29) 

The FIR filter with tap weights given by (2.29) is the so-called MMSE PR equalizer. 

 Now we consider the equalizer having infinitely long response, and derive the 

expression for optimum equalizer based on the MMSE criterion.  Using Parseval’s 

principle, we may rewrite (2.27) as 

( )0
0.5 22 2
0.5

j k
MMSE n aW RW Ge dπξ −

−
= Ρ + Ρ − Ω∫ ,             (2.30) 

where aΡ  represents the PSD of the channel input ka .  (For notational convenience we 

omit the argument ( )2je πΩ  from the discrete-time Fourier transforms and PSDs in 

                                                 
3  zzR  is the autocorrelation matrix of the random process kz , and hence it is a positive definite matrix. 
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(2.30) and hereafter.)  To find the optimum equalizer oW  that minimizes ,MMSEξ  we use 

a technique known as calculus of variations [55].  Let the equalizer variable be 

,oW W Vµ= +  where V  is an arbitrary complex-valued variation and µ  is a real 

scalar.  Since MMSEξ  is a quadratic function of the equalizer with unique minimum, the 

gradient of MMSEξ  must approach to zero when W  approaches oW  along any arbitrary 

direction defined by V .  That is, for all ,V  we must have 

 ( )0
0.5 22

0
0.5

| 2Re 0j k
MMSE a a n oV R Ge R W dπ

µξµ
∗ ∗ −

=
−

∂ ⎡ ⎤= Ρ − Ρ + Ρ Ω =⎣ ⎦∂ ∫ ,           (2.31) 

where the superscript ∗  denotes the complex conjugation operator.  In order to satisfy 

(2.31) for all ,V  the quantity in the square brackets should vanish for all Ω , which 

implies that oW  should have the characteristics as 

   
02

2

j k
a

o
n a

R eW G
R

π∗ − ΩΡ=
Ρ + Ρ

.              (2.32) 

The IIR filter defined by (2.31) is referred to as unconstrained MMSE PR equalizer.  

Substituting (2.32) in (2.30), we obtain the minimum mean square error (MMSE) as 

   
20.5

,min 20.5

n a
MMSE

n a

G d
R

ξ
−

Ρ Ρ= Ω
Ρ + Ρ∫ .            (2.33) 

 Note that the integrand of (2.33) is actually the PSD of the total noise at the output 

of the unconstrained MMSE PR equalizer.  From (2.33), we see that the spectra of the 

target response should be well designed to avoid enhancing the noise components at 

the frequencies where ( )2
n a RΡ Ρ +  is small.  If G  is selected such that the integrand 

of (2.33) is independent of frequency, the noise at the unconstrained PR equalizer 

output is white.  Since the channel input SNR (the ratio of input signal power to the 

channel noise power) is normally much higher than 0 dB, the quantity defined by 

( )2
n a RΡ Ρ +  almost resembles 2R , where R  is the original channel response.  Thus, 
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similar to the discussion about the performance of ZF PR equalizer in Section 2.3.1, in 

magnetic recording channels, the noise enhancement and noise correlation (i.e. non-

white noise resulting at equalizer output) cannot be avoided with a finitely long target 

response. 

 

2.4 Conclusion 

 
In this chapter, we have introduced a discrete-time model of digital magnetic recording 

channel at high densities.  Based on this discrete-time channel model, we described the 

VA detector based on Euclidean distance metrics and the PR equalizers designed by 

means of the ZF and MMSE criteria.  If a VA detector is used to perform sequence 

detection on the output of the PR equalized channel, the overall system is called 

PRML system.  It should be especially noted that the noise at PR equalized channel 

output is usually non-white, which violates the basic AWGN assumption required to 

make VA optimum.  Therefore, the performance of VA detector in PRML system is 

sub-optimum compared to MLSD.  As indicated in the above discussion, target 

response is the key factor that controls the noise characteristics at the output of the PR 

equalizer.  Hence, target response critically influences the performance of PRML 

system.  In the next chapter, we provide detailed discussion on target design. 
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Chapter 3 

Novel Analytical Approach for Optimum 

Target Design 

 

In this chapter, we propose a novel analytical approach for designing optimum 

generalized PR target response for the PRML receiver, for application perpendicular 

recording channels at high densities.  We start with Section 3.1 by addressing the 

problem of target design.  Section 3.2 presents the performance analysis for the Viterbi 

algorithm (VA) detector, and then introduces a cost function for designing the target, 

which is closely related to the performance of VA detector.  Thereafter, the proposed 

analytical approach for finding the optimum target based on this cost function is 

developed in Section 3.3.  In Section 3.4, we investigate by simulations the 

performance of the targets designed by our approach and compare the performance 

with other target design approaches. 

 

3.1 Problem of Target Design 

 
As indicated in Chapter 2,  in order to reduce noise enhancement,  the partial-response  
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(PR) target for PRML detection strategy should be well designed to match the natural 

channel response.  Standard PR targets with integer coefficients, for example the PR4 

target, are conventionally considered for PRML systems.  Standard PR targets are 

selected by inspecting the match between the target and the natural channel response, 

either in time domain or frequency domain.  But, the search space for integer-valued 

tap weights becomes infinitely large to guarantee optimum BER performance.  In other 

words, due to the integer constraint, the standard PR target usually cannot satisfactorily 

match the natural channel response, and thus its performance is limited.  At the cost of 

a minor increase in the complexity of VA detector, generalized PR (GPR) targets with 

real-valued coefficients can provide better match to the recording channel response, 

and thus result in significant performance gain.  In this thesis, our discussion on target 

design focuses on GPR targets. 

 The most widely used method of designing GPR target is to jointly optimize target 

and PR equalizer based on the MMSE criterion [28, 29, 30, 31].  In the system model 

shown in Figure 3.1, the mean squared error (MSE) at the equalizer output is given by 

(2.28), i.e. 

  [ ]2 2T T T
MMSE k aa za zzE eξ = = − +g R g w R g w R w , 

Figure 3.1: PRML system using MMSE PR equalizer and VA detector. 
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where [ ]0 1 1, , , w

T
Nw w w −=w  and [ ]0 1 1, , , T

Ng g g −=g  denote the tap-weight vectors of 

Nw−tap equalizer and N−tap target response, respectively.  As introduced in Chapter 2, 

the optimum equalizer minimizing MMSEξ  is given by 1
o zz za

−=w R R g .  Substituting ow  

into (2.28) yields 

  ( )  1T T T
MMSE aa za zz za nξ −= − =g R R R R g g R g ,   (3.1) 

where   1 .T
n aa za zz za

−= −R R R R R   Since MMSEξ  is always positive for any non-zero target 

(Note: that MMSEξ  is the total power of noise and residual ISI at equalizer output), nR  

is a positive definite matrix.  We may denote the eigenvalues of nR  and corresponding 

orthonormal eigenvectors as { }1 2, , , Nλ λ λ  ( 1 2 0Nλ λ λ≥ ≥ ≥ > ) and { }1 2, , , Nq q q , 

respectively.  To avoid the trivial solution =g 0 , we need to impose a constraint on g  

when solving the optimization problem (3.1).  With unit energy constraint (i.e. 

1T =g g ), the MMSE solution of g  is simply the eigenvector Nq  of nR , and the 

resulting minimum MSE, which we denote as En
minξ , is equal to the minimum 

eigenvalue Nλ  of nR  [29].  If the monic constraint (i.e. 0 1g = ) is used, the MMSE 

solution of target g  and the resulting minimum MSE are obtained as  

( ) ( )monic 1 1T
o n n

− −=g R c c R c    and   ( )monic 1
min 1 T

nξ −= c R c ,  

respectively, where [1,0, ,0]T=c  [31]. 

 To investigate the effectiveness of monic constraint as compared to unit-energy 

constraint, we normalize monic
og  to having unit energy, i.e. ( )monic 1 2T

o n n
− −=g R c c R c , 

and get the resulting minimum MSE as 

( ) ( )
1

monic 2 2 2
min 2

1 1

N NT
n

i i i iT
n i i

v vξ λ λ
−

−
= =

⎛ ⎞ ⎛ ⎞= = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑c R c

c R c
, 
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where iv  is the first element of the eigenvector iq  ( 1, 2, ,i N= ).  Since Nλ  is the 

minimum eigenvalue of nR , we have 2 2 2
1 1

1N N
i i i ii iN

v vλ λλ= =
≤∑ ∑ , and thus 

monic 2 2 2 En
min min

1 1

N N

i i i i N
i i

v vξ λ λ λ ξ
= =

⎛ ⎞ ⎛ ⎞= ≥ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑ . (3.2) 

As mentioned earlier, the MSE represents the total power of the noises, including 

channel noise and residual ISI, at the detector input.  Hence, from the inequality (3.2), 

we may draw the conclusion that unit-energy constrained MMSE target results in 

better performance than the monic constrained MMSE target in the sense of 

suppressing noise power (i.e. MSE).  Nevertheless, as indicated by existing literature, 

such as [31], simulation results show that the latter target always outperforms the 

former in terms of bit-error-rate (BER).  This contradiction indicates that MSE is not a 

good measure of the performance of PRML systems.  This is mainly because MMSE 

design aims to minimize MSE but puts no specific demand on how the noise 

correlation should be at the VA input.  As a result, the direct MMSE approach may 

badly degrade the performance of VA detector.  Clearly, in order to design optimum 

target leading to the best system performance, we need to find a good cost function 

that is closely related to the performance of VA detector. 

 

3.2 Cost Function for Optimum Target Design 

 
The most important step in the design of optimum GPR target for a PRML system is to 

find a cost function that incorporates the effect of noise enhancement, noise correlation 

and other factors that influence the performance of VA detector.  For this purpose, we 
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analyze the error probability of VA detector based on the channel model shown in 

Figure 3.1, by following the development proposed in [55, 56]. 

 Let [ ]1, , ,k n k ka a a− −=a  be the data sequence actually input to the channel, 

which can be considered as the correct data path in the VA trellis for this channel.  

Then, let [ ], , , ,k n k ka a a−′ ′ ′ ′=a  be another data sequence, corresponding to a wrong 

data path (i.e. ′ ≠a a ) in the VA trellis.  The VA detector makes the wrong decision of 

′a  as the input data sequence instead of a  if 

   0 0

2 21 1

0 0

N N

k i k i k k i k i k
k i k i

y g a y g a
− −

− − − −
= =

⎛ ⎞ ⎛ ⎞′− < −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ ,  (3.3) 

where ky  is the input to the VA detector (see Figure 3.1).  Since ky  can be written as 

0

1

0

N
k k i k i ki

y e g a−
− −=

= + ∑ , we may rewrite (3.3) as 

  ( ) ( )0 0 0 0

21 1

0 0

1 02

N N

i k i k k i k k i k i k k i k
k i k i

g a a e g a a
− −

− − − − − − − −
= =

⎛ ⎞ ⎛ ⎞′ ′− + − <⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ . 

We describe the difference between the correct path a  and the wrong path ′a  by 

defining an error sequence [ ]1 1, , , , T
k k k Nεε ε ε+ + −′= − =ε a a .  For binary input, 

{ }2, 2,0k iε + ∈ + − .  The error vector [ ]1 1, , , T
k k k k Nεε ε ε+ + −=ε  is said to be an error event 

of length Nε  if it satisfies the following conditions.   

1. 0kε ≠  and 1 0k Nεε + − ≠ . 

2. 0k iε + =  for 1 0N i− + < <  and 2N i N Nε ε≤ ≤ + − .   

3. The length of strings of zeros, if any, in ε  must not exceed 1N − . 

The quantity ‘ 1N − ’ is called the ‘error-free interval’.  If the noise at the detector input 

is not white, then the error-free interval required to separate two error events must be 

larger than 1N −  so as to account for the increase in channel memory induced by the 

noise correlation. 
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 Assuming that the error sequence ε  contains only one error event kε  given above, 

we can derive the probability of this error event ε  (Note: since ε  and kε  are 

equivalent here, we drop the index ‘k’ from kε ) conditioned on the underlying data 

path a  as 

( )

( )

0 0

0 0

0 0

0

22 1 2 1

0 0

2 2
2 2

0 0

1 02

1 10 0 ,2 2

N N k N N N k N

r r i k i k j k j i k i k j
j k i j k i

N N N N

r k j k j k k j r k
j j

P P g e g

P e P d u

ε ε

ε ε

ε ε

ε ε

+ − + − + − + −

− − + + − − +
= = = =

+ − + −

+ + + +
= =

⎛ ⎞⎛ ⎞ ⎛ ⎞= + <⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞= + < = + <⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ε

ε a a

a a
 

where 1

0

N
k i k ii

gε ε−
−=

=∑ , 22 2
0

N N
k ii

d ε ε+ −
+=

=∑ε  and 0

2

0

N N
k k j k k jj

u eε ε+ −
+ + +=

=∑ .  We assume 

that the estimation error ke  is a stationary Gaussian random process with zero mean1, 

Consequently, ku  is zero-mean random variable with conditional variance 

[ ] ( )2 22 2
, 0 0

N N N N
u k k j k i ei j

E u r j iε εσ ε ε+ − + −
+ += =

= = −∑ ∑ε aa  where ( ) [ ]e k k mr m E e e +=a a  is the 

conditional autocorrelation of ke .  Therefore, we get 

( ) ( )2

,2r
u

dP Q σ= ε

ε
ε a , (3.4) 

where ( ) 2 21
2

xQ e dx
β

β π
+∞

−∫  denotes the tail integral of the Gaussian density function. 

 The probability of the error event ε  can be predicted by averaging (3.4) over all 

possible data paths that support this error event pattern.  If no coding scheme is used, 

we get this probability as [55] 

   ( ) ( )
{ }

( ) ( ) ( )2

,
2 2

HW
r r r

u

dP P P Q σ
−= =∑ ε ε

εa
ε ε a a ,    (3.5) 

where ( )HW ε  indicates the number of the non-zero elements of ε .  Let Ψ  denote the 

set of all possible error events.   An  upper  bound for the BER of  VA detector is given  

                                                 
1 It is safe to make this assumption because the non-Gaussian distributed residual ISI present in the ek is 
rather a small quantity compared to channel noises, which are usually modeled as Gaussian random 
processes.  
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by summing up the probability of every error event belonging to ,Ψ  i.e. 

   ( ) ( ) ( )2

,
2 2

HW
b H

u

dP W Q σ
−

∈Ψ
≤ ∑ ε ε

εε
ε . 

This bound becomes tight at medium-to-high channel SNRs, and thus we have 

    ( ) ( ) ( )2

,
2 2

HW
b H

u

dP W Q σ
−

∈Ψ
≈ ∑ ε ε

εε
ε .    (3.6) 

 Let eeR  denote the ( ) ( )1 1N N N Nε ε+ − × + −  autocorrelation matrix of ke  with 

element ( ) ( ), ,ee eR i j r i j= −  and the column vector [ ]1 2, , , T
k k k N Nεε ε ε+ + + −=ε  

represent the error event ε  filtered by the target, where 1

0

N
k i k j ii

gε ε−
+ −=

=∑ .  Then, we 

may express (3.6) using matrix notation as 

   ( ) ( )2
2

H
T

W
b H T

ee

P W Q−

∈Ψ

⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

∑ ε

ε

ε εε
ε R ε

, 

since 2 Td =ε ε ε  and 2
,

T
u eeσ =ε ε R ε .  As the ( )Q i  function exponentially decreases with 

its argument, at media-to-high channel SNRs, the bit-error-rate can be estimated by 

   ( ) ( ) ( )
( )

12
2

d
H

Td d
W d

b H Td d
ee

P W Q−
⎛ ⎞
⎜ ⎟≈
⎜ ⎟
⎝ ⎠

ε ε εε
ε R ε

,   (3.7) 

where dε  and its sample-by-sample reversed version, d−ε  are the pair of the dominant 

error events that minimize the argument of ( )Q i  function in (3.6), and dε  is obtained 

by filtering dε  by the target.  Without loss of generality, we set the first error bit of dε  

to be positive. 

 With the BER prediction given by (3.7), we can define the squared argument of 

the ( )Q i  function in (3.7) as the cost function for target design, i.e.  

   
( )( )
( )

2

1
4

Td d

eff Td d
ee

SNR =
ε ε

ε R ε
.              (3.8) 

The quantity defined by (3.8) is usually referred to as the ‘effective detection SNR’  
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( effSNR ) for VA detector, which is an equivalent measure of the BER performance of 

PRML systems.  Different from mean squared error, effSNR  accounts for noise 

correlation and the noise power in its denominator, while its numerator reflects the 

effective signal energy felt by the VA detector from the error event dε .  It is natural to 

expect that the GPR target that maximizes effSNR  can achieve the optimum 

performance of the PRML system.  However, this cost function is so complicated that 

directly deriving the optimum solution for the target response does not seem possible.  

One may search the optimum target based on (3.8) by numerical methods, which, as 

indicated in [31], is a very expensive computational effort.  Further, since effSNR  is not 

a quadratic function of the target, whether the search will result in a global optimum is 

not clear. 

 In the next section, we will propose a novel analytical approach for finding the 

optimum GPR target based on the effSNR  criterion. 

 

3.3 Novel Analytical Approach for Designing 

Optimum Target of Finite Length 

 
In this section, we develop an analytical approach for designing GPR target based on 

the effective detection SNR criterion.  An early attempt to solve this optimization 

problem by a frequency-domain approach was reported in [35], but the complete 

analytical solution was not provided.  In this thesis, we derive the closed-form 

analytical solution of the optimum magnitude frequency response of target of finite 

length based on the SNReff criterion.  We also discuss the necessary constraints to 

ensure that the optimized target response have real coefficients. 
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3.3.1 Optimization in Frequency Domain 

 
As mentioned in Section 3.2, effective detection SNR defined by (3.8) can be used as a 

cost function for designing optimum GPR target.  The equivalent expression of effSNR  

in frequency domain is given by 

( )
( )0

20.5 2

0.5
0.5 2 22 2
0.5

1
4

d

eff
d j k

n a

GE d
SNR

GE W WR Ge dπ

−

− Ω

−

Ω
=

Ρ +Ρ − Ω

∫
∫

,  (3.9) 

where Ω  is the frequency normalized by bit rate, ,G  ,dE  R  and W  represent the 

Fourier transforms of the target response ,kg  dominant error event dε  channel bit 

response kr  and equalizer ,kw  respectively, 0k  is the delay from channel input to 

equalizer output, and aΡ and nΡ  denote the PSDs of the input data ka  and overall 

channel noise ,ke  respectively.  In the case where channel noise is not actually 

stationary due to the presence of media noise, we estimate an effective PSD of channel 

noise by time averaging (i.e. we ignore the non-stationary induced by the data-

dependence of media noise).  However, when the first-order approximation of media 

noise shown in Figure 2.5 is valid (i.e. for sufficiently small transition jitter and pulse 

variation), the expression for the overall noise PSD can be obtained as 

   [ ] [ ] [ ]( ) [ ]2 22 2 2 2p w
n k k k kE b E F E F E nϖΡ = ∆ + + ,  

where k∆  and kϖ  denote the random transition position jitter and the transition pulse 

width variation, respectively, kn  represents the electronics noise, wF  and pF  are the 

Fourier transforms of first-order jitter path and pulse width variation path, respectively, 

as shown in Figure 2.5, and { }kb  represents the transition data sequence. 

 For a given dominant error event ,dE  the equalizer W  is only related to the 

denominator in (3.9).  Equivalently by minimizing the denominator, we can obtain the 
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optimum solution of W  that maximizes effSNR .  Since dGE  cannot have region(s) of 

continuous zeros in frequncy domain when dominant error event and target are of 

finite length, the denominator of (3.9) is essentially a quadratic function of W  with a 

unique minimum.  Using the method of calculus of variations introduced in Section 

2.3.2, we obtain the optimum solution of W  as 

    
02

2

j k
a

o
n a

R eW G
R

π∗ − ΩΡ=
Ρ + Ρ

.              (3.10) 

From (3.10) and (2.32), we see that the optimum equalizer based on the effSNR  

criterion is same as the solution of unconstrained MMSE equalizer.   

 Substituting (3.10) in (3.9) yields 

  
( )

( )

20.5 22

0.5
0.5 24 2

0.5

1
4

d

eff
d

a n n a

G E d
SNR

G E R d
−

−

Ω
=

⎡ ⎤Ρ Ρ Ρ +Ρ Ω⎣ ⎦

∫
∫

.            (3.11) 

Eqn. (3.11) shows that the optimal effective detection SNR is determined by 2G  

instead of G .  In other words, the performance of PRML system in terms of effSNR  is 

related only to the magnitude frequency response of target and is independent of its 

phase response.  This observation agrees with the fact that the path metrics in VA 

detector do not depend on target phase.  To simplify the fourth power optimization 

problem given by (3.11), we define 2X G  and change (3.11) into a function of X  

given by 

  ( )
( )

( )

20.5 2

0.5
0.5 2 22
0.5

1
4

d

d
a n n a

X E d
J X

X E R d
−

−

Ω
=

⎡ ⎤Ρ Ρ Ρ +Ρ Ω⎣ ⎦

∫
∫

.            (3.12) 

The numerator and denominator of (3.12) are both quadratic functions of X .  The 

analytical solution for the optimum X that maximizes ( )J X  can be derived. 
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 Since 2X G= , the inverse Fourier transform of X  is the correlation function of 

the target.  For N−tap GPR target ( ) 1
0 1 1

N
NG D g g D g D −
−= + + +  ( ig  is real-valued), 

the expression for X  can be given as 

  ( ) ( )
1 1

2
0 0

01 1
2 cos 2 1 2 cos 2

N N
i

i
i i

xX G x x i x ixπ π
− −

= =

⎛ ⎞= = + Ω = + Ω⎜ ⎟
⎝ ⎠

∑ ∑ ,         (3.13) 

where i i ix g g−= ⊗  and i ix x−=  (⊗  denotes convolution operator) for 0,1 , 1i N= − .  

We see from (3.12) and (3.13) that ( )J X  is only determined by the ratios 0ix x .  

Hence, without loss of generality, we may set 0 1x = , i.e. normalize the energy of target 

to unity, when optimizing ( )J X  given by (3.12).  Then, we can rewrite (3.12) as a 

function of [ ]1 1, , T
Nx x −=x …  given by 

( ) ( )
2
0 0

0

4 41
4 4 4

T T

T T
p pJ X J t
+ +≡ =
+ +

x p x Bxx x t x Ux
,            (3.14) 

where [ ]1 1, , ,T
Np p −=p …  [ ]1 1, , ,T

Nt t −=t …  ( )
0.5 2

0.5
cos 2d

ip E i dπ
−

= Ω Ω∫  and 

( ) ( )
0.5 2 2

0.5
cos 2d

i a n n at E R i dπ
−

⎡ ⎤= Ρ Ρ Ρ +Ρ Ω Ω⎣ ⎦∫  for 0,1, , 1,i N= −  ,T=B pp  and U  

is a ( ) ( )1 1N N− × −  matrix with element ( ),
1
2i j i j i jU t t+ −= +  for , 1, 2, , 1i j N= − . 

 In the case where the single-bit error event dominates the BER performance of the 

VA detector (i.e. 2dE  is a constant, and thus =p 0  and =B 0 ), the numerator of 

(3.14) becomes the constant 2
0p .  Hence, the optimum solution of x  that maximizes 

(3.14) can be obtained by simply minimizing its denominator.  Since U  is a symmetric 

positive definite matrix due to its definition (unless 0X ≡ , the denominator of (3.12) 

is always positive for any X ), we can easily find the optimum solution of x  as 

   [ ] 1
,1 ,2 , 1

1, , , 2
T

o o o o Nx x x −
−= = −x U t .             (3.15) 
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 In the case where a multi-bit error event is the dominant event, the square matrix 

B  in the numerator of (3.14) is non-zero.  There must exist a unitary matrix 

[ ]1 1, , N −=Q q q…  such that ( )2, 0. 0T
ddiag λ=QBQ …  where 1

T
dλ = p q  ( 0dλ ≠ ).  Then, 

defining [ ], TT Ty= =y z Q x  yields 

  ( ) ( ) ( )22

2
0 1

, ,4 4 4 8 4
d

T T T
y cJ J y t s y ay y

λ +≡ =
+ + + + +

x z v z α z z Az
           (3.16) 

where 0
2 d

pc λ= , 1 Ts⎡ ⎤= =⎢ ⎥⎣ ⎦
s Q tv  and ( )T

Ta= =αS Q UQα A .  Note that A  is a positive 

definite matrix, since U  is positive definite.  Apparently, ( ),J y z  given by (3.16) 

reaches its zero-valued minimum when y c= − .  Hence, by setting the derivative of 

( ),J y z  with respect to y and every element of z  to zero, and disregarding the solution 

,y c= −  we obtain the optimum solution that maximizes ( ),J y z  as 

( ) ( )
( ) ( )

1 1
0 1

1 1
1

2
4 2

T T

o T T
t c sy c a s

− −

− −

− − −
=

− − −
v A v α A v
α A α α A v  and ( )11 2 .2o oy−= − +z A v α   With 

[ ],  ,TT
o o oy=y z  the optimum solution of x  is obtained as 
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v A v α A v
α A α α A v

x Q
v A v α A vA v αα A α α A v

. (3.17) 

Consequently, the optimum X  is formed as ( )1
,1

1 2 cos 2N
o o ii

X x i π−

=
= + Ω∑ . 

 Having found the optimum oX , the corresponding optimum target G  can be 

obtained by spectral factorization, i.e. 

   ( ) ( ) ( )X D G D G D∗ −∗= ,     

where ( )X D  is the D  transform of X  given by ( ) 1

1

N i
iN

X D x D−

− +
=∑ .  The spectral 

factorization will result in ( )G D  with real coefficients, if all the complex-valued zeros 
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of ( )X D  appear in groups as { }1
0 0 0 0, , ,D D D D∗ − −∗  and all the real-valued zeros of ( )X D  

are in pairs as { }10 0,D D− .  In our problem, since the coefficients of ( )X D  are 

symmetric (i.e. i ix x−= ) and real-valued, if 0D  is a zero of ( )X D , then 0,D∗  0D−∗  and 

1
0D−  must be the zeros of ( )X D  too.  Hence, as long as ( )X D  has no zeros on the 

unit circle 1D =  or its zeros on the unit circle are evenly repeated, the target ( )G D  

obtained by spectral factorization has real-valued coefficients, i.e. the de-convolution 

of x  into a valid target response g  is guaranteed.  Unfortunately, this is not naturally 

guaranteed by the optimum solution ox  given by (3.15) or (3.17).  Consequently, the 

target response obtained by spectral factorization may have complex-valued 

coefficients, which is not permissible.  This problem arises because we do not account 

for the fact that x  is the auto-correlation of the target g  while deriving (3.15) and 

(3.17).  In the next sub-section, we will discuss the region of feasible x, which 

guarantees x to be de-convoluted into valid target response with real-valued 

coefficients. 

 

3.3.2 Characterization of the Region of Feasible Solutions 

 
For ( )X D  with real-valued and symmetric coefficients (i.e. i ix x−= ), spectral 

factorization of ( )X D  results in target ( )G D  with real-valued coefficients only if 

( )X D  has no odd times repeated zeros on the unit circle.  This is equivalent to 

requiring that ( )1

1
1 2 cos 2 0N

ii
X x i π−

=
= + Ω ≥∑ , or 

   
[ ]

( ){ }
0,0.5

min , 0.5F
Ω∈

Ω ≥ −x ,             (3.18) 

where ( ) ( )1

1
, cos 2N

ii
F x i π−

=
Ω = Ω∑x .   In this section, we present a characterization of  
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the feasible region R  of x  that satisfies (3.18). 

 Obviously, the origin [ ]0,0, ,0 T=x  lies inside the region  .R   Let 

[ ]1 2 1, , , T
Nx x x −=x  change along a radial direction defined by [ ]1 2 1, , , T

Nk k k −=k  

( ≠k 0 ), i.e. 1 1 2 2 1 1,  , ,  N Nx k t x k t x k t− −= = =  for [ )0,t∈ +∞ .  When =x k , i.e. 1t = , let 

ρ  ( 0ρ < ) be the minimum value of ( ),F Ωk  over all Ω.  Therefore, we get 

  
{ }

( ){ }
10.5     0 2min ,    10.5     2

t
F t t

t
ρρ

ρ
Ω

⎧≥ − ≤ ≤ −⎪Ω = ⎨
< − > −⎪
⎩

k  

which implies that the region R  is continuous along any given radial direction k  with 

a bound specified by ( )1 2t ρ≤ − .  Since this must be true for all possible k , we can 

conclude that R  is a continuous region.  In addition, as ρ  continuously changes with 

k , the boundary of R  is also continuous.  Furthermore, it also follows that the X  

formed from a point x  on the boundary of R  will have zero-valued global minimum 

(minima), i.e. 0X =  for some Ω and 0X >  elsewhere.  Note that any zero-valued 

global minimum of X  in frequency domain must correspond to an evenly repeated 

zero of ( )X D  on the unit circle; otherwise it would be a saddle point of X . 

 Let ax  and bx  represent any two distinct points on the boundary of R .  Then, the 

line segment ab  joining ax  and bx  can be expressed as 

( ) ( ) ( )1 1 1 1 2 2 2 2 1 1 1 1,   , ,  a b b a b b a b b
N N N Nx x x t x x x x t x x x x t x− − − −= − + = − + = − + ,   [ ]0,  1t∈ . 

It is found that all the points on ab  belong to the region R , because 
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( )[ ] ( )

( ) ( ) ( )
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for 0 1t≤ ≤ .  Hence, R  is a continuous and convex region.   

 Figure 3.2 illustrates examples of the region R  of x  satisfying (3.18) based on 3-

tap and 4-tap targets having unit energy. 

 

3.3.3 Approach for Finding Feasible Optimum Solution 

 
The region R  defines the feasible space of solution for the underlying optimization 

problem of ( )J x  given by (3.14).  That is, 

    ( )effSNR J≡ x    for R∈x . 

In Section 3.3.1, we showed that ( )J x  given by (3.14) has a unique maximum given 

by (3.15) or (3.17).  Further, the analysis in Section 3.3.2 shows that the region R  of 

feasible x  is continuous and convex.  From these facts, we can conclude that if the 

solution given by (3.15) or (3.17) lies outside the region R , then the feasible solution 

Figure 3.2: Region R  in which x can be de-convoluted into real-valued target response. 
(a) example with 3-tap unit-energy target, (b) example with 4-tap unit-energy target. 

 

 (a)   (b)  

x0=1 x0=1 
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x  that maximizes effSNR  must be located on the boundary of R  and it is unique2.  To 

find such a solution that lies on the boundary of R , we may use the constraint that X  

formed from the solution x  must be non-negative and has spectral zero(s), when 

optimizing (3.14).  This constraint is equivalent to making the global minimum 

(minima) of X  to be zero. 

 Let us assume that the optimum 2
o oX G=  based on effSNR  has M  zero-valued 

global minima at frequencies { }1, , ,MΩ Ω…  i.e. ( )1

1
cos 2 0.5N

i ji
x i π−

=
Ω = −∑  for 

1, 2, , .j M= . Then, we have M  ‘zero-constraints’ given by 

   [ ]   
′⎡ ⎤′ ′′ ′ ′ ′′ ′′= = + =⎢ ⎥′′⎣ ⎦

x
C x C  C C x C x l

x
, 

or equivalently, 

   ( ) ( )1  −′ ′ ′′ ′′ ′′= − = +x C l C x γ Px ,             (3.19) 

where C  is a ( )1M N× −  matrix whose elements are given by ( ), cos 2i j iC j π= Ω  for 

, 1, 2, , ,i j M=  [ ]0.5, , 0.5 T= − −l  is a 1M ×  vector, [ ]1 2, , , ,T
Mx x x′ =x  

[ ]1 2 1, , , T
M M Nx x x+ + −′′ =x , ′C  and ′′C  are the matrices given by 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

M

M

M M M M

C C C
C C C

C C C

⎡ ⎤
⎢ ⎥
⎢ ⎥′ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

C   and  

1, 1 1, 2 1, 1

2, 1 2, 2 2, 1

, 1 , 2 , 1

M M N

M M N

M M M M M N

C C C
C C C

C C C

+ + −

+ + −

+ + −

⎡ ⎤
⎢ ⎥
⎢ ⎥′′ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

C

,

 

respectively, ( ) 1 −′=γ C l , and ( ) 1 −′ ′′= −P C C . 

 We now partition the vectors p  and t , and matrix U  in (3.14) as  

   ′⎡ ⎤= ′′⎢ ⎥⎣ ⎦
pp p ,  ′⎡ ⎤= ′′⎢ ⎥⎣ ⎦

tt t ,  and  
T′⎡ ⎤= ′′⎢ ⎥⎣ ⎦

U VU V U , 

                                                 
2  A rigorous analysis on the uniqueness issue is presented in Chapter 5. 
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respectively, where ′p  and ′t  are 1M ×  vectors, ′U  is a M M×  matrix, and ′′U  is a 

( ) ( )1 1N M N M− − × − −  matrix.  Note that ′U  and ′′U  are both symmetric and 

positive definite, since U  is symmetric and positive definite.  Then, substituting (3.19) 

and the above forms of p , t  and U  into (3.14), we have 

( ) ( )
2

0 0

0

4 4
4 4  

T T

c c T T
p pJ J

t
′′ ′′ ′′+ +′′= =

′′ ′′ ′′+ +
x p x Bxx x

x t x U x ,            (3.20) 

where ( ) ,  
TT T

c ⎡ ⎤′′ ′′= +⎣ ⎦x γ Px x  represents x  subject to the ‘zero-constraints’ (3.19), 

0 0 2 ,Tp p ′= + γ p ,T′′ ′= +p p P p  0 0 4 4 ,T Tt t ′ ′= + +γ t γ U γ  ( )2 ,T T′′ ′ ′= + + +t t P t V P U γ  

T=B pp , and .T T T′ ′′= + + +U P U P U VP P V   Note that matrix U  is symmetric and 

positive definite too. 

 Observing the similarity between (3.20) and (3.14) we can find the optimum 

solution o′′x  that maximizes (3.20) by following the same procedure in deriving the 

optimum solution for (3.14).  If =p 0 , we have the solution that maximizes ( )cJ ′′x  as 

    11
2o

−′′ = −x U t ,               (3.21) 

If ≠p 0  the solution o′′x  is obtained as  

  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1
0 1

1 1
1

1 1
0 11

1 1
1

2
4 2

21 22 4 2

T T

T T

o T T

T T

t c s
c a s

t c s
c a s

− −

− −

− −
−

− −

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥′′ =
⎢ ⎥− − −⎛ ⎞
− +⎢ ⎥⎜ ⎟− − −⎣ ⎝ ⎠⎦

v A v α A v
α A α α A v

x Q
v A v α A v

A v α
α A α α A v

,           (3.22) 

where Q  is a unitary eigenvector matrix of B , dλ  is the non-zero eigenvalue of B  

(Note: B  is a rank-1 matrix), 0

2 d

pc
λ

= , 1T s⎡ ⎤= ⎢ ⎥⎣ ⎦
Q t v  and ( )T

T a= αQ UQ α A .  Having 

obtained o′′x , we can obtain o o′ ′′= +x γ Px .  Then, the optimum solution subject to ‘zero-

constraints’ is given by [ ], ,  TT T
c o o oo′ ′′=x x x . 
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 Note the constrained optimum solution ,c ox  derived above is dependent on the 

assumed frequencies { }1, , MΩ Ω…  at which the optimum 2
oG ( oX= ) reaches its zero-

valued global minima.  However, we do not actually know the values of { }1, , MΩ Ω… .  

We can perform a linear search over the M-dimensional space where {0 0.5i≤Ω ≤  for 

}1,2, ,i M=  to determine these frequencies as { }1, , M′ ′Ω Ω…  such that the X formed 

from the resulting ,c ox  has its zero-valued global minima at { }1, , M′ ′Ω Ω… .  Note that 

we also need to determine M, the number of the zero-constraints.  Considering the 

performance loss due to constraints, we should use as few constraints as possible.  

Therefore, we may start the search for the number of zero-constraints with 0M = , and 

increase M, if necessary, until we find suitable values of { }1, , MΩ Ω… .  In addition, it 

is noticed that the unconstrained (i.e. 0M = ) solution given by (3.15) or (3.17) is 

usually quite close to the valid optimum in R  even though the former may be outside 

the feasible region R .  We may use this unconstrained solution, when it is invalid for 

de-convolution, to obtain a good initial point for searching the zero-valued global 

minima of the optimum 2
o oX G= , and thus significantly reduce the computations 

required to determine M and the values of { }1, , MΩ Ω… .  The approach for determining 

the feasible optimum solution based on the SNReff criterion is concluded as a flow chart 

shown in Figure 3.3. 

 Finally, we need to check if the dominant error event assumed in the computation 

of the optimum target based on SNReff really dominates the bit error probability with 

the resulting target.  Generally, we need to investigate over all the possible error 

events.  However, we see from (3.7) that the BER is predicted by the error event 

probability weighted by the quantity ( ) ( )12 ,HW
HW − εε  which exponentially decreases 
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with the Hamming weight of the error event.  Hence, it is sufficient to determine the 

dominant error event over the set of the error events having small Hamming weights. 

 

3.4 Optimum Target of Infinite Length 

 
In this section, we derive the optimum magnitude frequency response of infinitely long 

target that maximizes the SNReff given by (3.11).  Similar to the approach for finding 

the optimum target of finite length, we first derive the optimum oX  of infinite length 

that maximizes ( )J X  given by (3.12), and then check whether oX  is a feasible 

solution that corresponds to the squared magnitude frequency response of a target G  

of infinite length. 

Find the solution given by 
(3.15) or (3.17)  ( M=0 ). 

Is the solution valid 
for de-convolution? 

Add one more ‘zero-constraint’. 
( M ← M + 1) 

No

End 

Yes

Start

Find the solution by (3.21) or 
(3.22) 

Find the optimum target by 
spectral factorization. reference 

Figure 3.3: Approach for finding the optimum target based on the SNReff criterion. 
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 The analysis in Section 3.3.1 indicates that ( )J X  given by (3.12) has a unique 

maximizer oX  whose coefficients are uniquely determined by (3.15) or (3.17).  This is 

also true when the number of the coefficients of X  approaches infinity.  Due to the 

uniqueness of the optimum oX  that maximizes ( )J X , we can find oX  of infinite 

length by using the technique of calculus of variations.  Further, we see from (3.12) 

that ( ) 0J X =  if 
0.5 2

0.5
0dX E d

−
Ω =∫ , otherwise ( ) 0J X > .  Let oX X Vµ= + , where 

V  is an arbitrary complex-valued variation and µ  is a real scalar.  Setting 

( ) 0| 0J X µµ =
∂ =
∂

 and disregarding the case of 
0.5 2

0.5
0dX E d

−
Ω =∫ , we obtain 

[ ]

[ ]

0.5 0.52 2

0.5 0.5

0.5 0.52 22

0.5 0.5

Re

                                       Re 0

d d
o

d d
o

V E X d X E d

V E d X E d

− −

− −

Ζ Ω Ω

− Ω Ζ Ω =

∫ ∫
∫ ∫

,       (3.23) 

where ( )2
a n n aZ R= Ρ Ρ Ρ + Ρ .  We may rewrite (3.23) as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 20.5 0.52 2 2 2 2 2

0.5 0.5

20.5 2 2 2 2

0.5

Re

                                                 0

j d j j j j d j
o o

j d j j
o

V e E e X e e X e E e d

X e E e e d d

π π π π π π

π π π

Ω Ω Ω Ω Θ Θ

− −

Θ Θ Θ

−

⎡⎡ ⎤ Ζ Θ⎣ ⎦ ⎢⎣
⎤− Ζ Θ Ω =⎥⎦

∫ ∫

∫  (3.24)
 

where the frequencies Ω  and Θ  are independent of each other.  Since V  is arbitrary 

and the dominant error event dE  does not have continuous region of zeros, in order to 

satisfy (3.24), the quantity in the square brackets should vanish for all Ω .  This implies 

that the optimum oX  should have the characteristics given by 

  ( ) ( )
( ) ( )
( ) ( )

20.5 2 2 2
2 0.5

20.52 2 2

0.5

1
j d j

oj
o j j d j

o

X e E e d
X e

e X e E e d

π π
π

π π π

Θ Θ

Ω −
Ω Θ Θ

−

Ζ Θ
=
Ζ Θ

∫
∫

.           (3.25) 

Eqn. (3.25) shows that the optimum oX  is non-negative and real-valued over all Ω , 

and thus oX  is the squared magnitude frequency response of a valid infinitely long 
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target that maximizes SNReff.  Note that the quantity 
0.5 0.52 22

0.5 0.5

d d
o oX E d X E d

− −
Ζ Θ Θ∫ ∫  

in (3.25) is independent of Ω .  Hence, we obtain the optimum solution of infinitely 

long target ,infoG  that maximizes effSNR  as   

    
2

2
,inf

1
o

a n

RG ϕ
⎛ ⎞

= +⎜ ⎟Ρ Ρ⎝ ⎠
,             (3.26) 

where ϕ  is an arbitrary positive constant. 

 We see from (3.26) that the optimum squared magnitude spectral response of 

infinitely long target is independent of the assumed dominant error event pattern.  This 

can be explained by examining eΡ , the PSD of the estimation error ke  at equalizer 

output.  Using the optimum equalizer oW  given by (3.10), i.e. 
02

,inf2

j k
a

o o
n a

R eW G
R

π∗ − ΩΡ=
Ρ +Ρ

, 

we get 

   
( )

0 22 2
,inf

2 2
,inf .

j k
e n o a o o

o a n n a

W W R G e

G R

π

ϕ

− ΩΡ = Ρ + Ρ −

= Ρ Ρ Ρ + Ρ =             (3.27) 

Thus, we find that the infinitely long optimum target that maximizes effSNR  results in 

whitening the error ke  (i.e. the total noise) at the output of PR equalizer.  Since we 

assumed ke  to be Gaussian distributed, the whitened { }ke  becomes an AWGN process.  

Thus, the VA detector, tuned to the optimum infinitely long target becomes optimum 

in sense of MLSD, which yields optimum detection quality in ISI channels.  Therefore, 

the optimum target of infinite length should be independent of the error event pattern. 

 If we restrict the optimum target in (3.26) to have minimum phase, the optimum 

target and the corresponding equalizer are same as the solution of the optimum 

infinitely long backward and forward filters in the DFE system based on the MMSE 

criterion [55].  It is already known that the optimum infinitely long forward and 

backward filters in DFE based on the zero-forcing criterion are also the optimum 
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equalizer and target, respectively, for VA detector [55].  But, our derivation above 

shows that the optimum DFE filters based on the MMSE criterion are also the 

optimum for VA detector if the mis-equalization error contained in ke  can be assumed 

to be Gaussian distributed. 

 

3.5 Simulation Results and Discussion 

 
In this section, we evaluate the performance of our proposed target design approach in 

high-density perpendicular recording channels in terms of effective detection SNRs 

and BER.  We also compare the performance of the targets designed by our approach 

with existing approaches, including MMSE with unit-energy constraint, MMSE with 

unit-tap constraint (the position of unit tap is chosen to minimize the mean square 

error), MMSE with monic constraint (equivalent to finite-length MMSE-DFE) and the 

PR target taking the form of ( ) 11 ND −+ , where N  is the length of target.  For the sake 

of convenience, we use the abbreviations effSNR , MMSE Unit-En, MMSE Unit-Tap, 

MMSE Monic and standard PR, respectively, to refer to these approaches in the rest of 

this section.   

 Before we proceed further, we would like to clarify the following.  Recall that the 

contribution of this chapter is an analytical approach to find the optimum GPR target 

for VA detector based on the SNReff criterion.  In other words, we are not claiming any 

kind of performance improvement by virtue of our analytical design approach.  

Therefore, the purpose of the simulation studies reported here is to assess how good 

the SNReff criterion is, compared to other criteria, for designing the GPR target.   
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3.5.1 Channel Model used in Simulations 

 
The channel model used in simulation is shown in Figure 3.4.  Un-coded data are used, 

i.e. ( )2 1j
a e πΩΡ =  for all Ω .  The isolated transition response of the perpendicular 

recording channel is modeled by arctangent function given by (2.5a): 

    ( ) ( )
50

2 2arctanpV tf t Tπ= . 

We refer to the quantity defined by 50cK T T=  as channel linear density, where T  is 

the channel bit period.  Since we are considering high-density recording channels, the 

natural channel bit response shown in Figure 3.4 can be directly obtained by  

    ( ) ( )
2k

f kT f kT Tr − −= , 

as stated in (2.9).  As shown in Figure 3.4, we only consider the effect of position jitter  

Figure 3.4: Channel model with electronics noise and media noise, and PRML 
receiver. 
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to model media noise.  The position jitter k∆  is considered as a white random process, 

and each k∆  is a truncated Gaussian random variable with zero mean and variance 2
tσ  

such that k∆  does not exceed 2T .  The electronics noise is modeled as AWGN with 

power 2
nσ  within the bandwidth of 1 2T .  In this section and hereafter, we define the 

channel SNR (with respect to electronics noise only) as ( )2 2
1010 log p nV σ , and specify 

media noise in terms of the percentage jitter defined  

by ( )100 %t Tσ .   

 Three noise conditions, namely, electronics noise together with 0% jitter, 3% jitter 

and 6% jitter, respectively, are used in the investigation.  Considering the practical 

complexity of VA detector, we restrict our investigation to targets of short lengths 

(N=3, 4, 5 and 6), while the linear PR equalizer contains 12 taps.  High linear densities 

( 1.5 4.0cK = ∼ ) are considered in the simulations.  The channel SNR with respect to 

electronics noise is set at 27 dB for all the cases.   

 

3.5.2 Performance Investigation 

 
The computed effective detection SNRs for different target lengths and different 

channel conditions are plotted in Figure 3.5, while the BER simulation results are 

plotted in Figure 3.6.  Figures 3.5 and 3.6 imply that the BER results correlate well 

with the trends in SNReff.  In other words, the simulation results show that the effective 

detection SNR is an equivalent measure of BER performance under the channel 

conditions investigated.  

 Form Figure 3.5, it can be seen that the target designed by the effSNR  approach 

outperforms the other approaches in terms of effective detection SNR for all the 
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channel conditions considered here.  Even though this is expected to happen, we must 

bear in mind that the conclusion from Figure 3.5 is that the BER performance of all the 

non-SNReff approaches are going to be worse compared to the SNReff approach.  In 

some sense, the target based on effSNR  approach results in a reasonable upper bound 

for the performance of PRML systems using VA detector.  The effSNR  approach 

shows evident performance gap over MMSE Unit-En, MMSE Unit-Tap and standard 

PR.  However, its advantage over the MMSE Monic approach is considerably small, 

with the gain no greater than 0.024 dB over all the cases investigated.  The reason for 

this is investigated in the next subsection. 

 We also observe from Figure 3.5 that the performances of effSNR  and MMSE 

Monic approaches improve with target length in all the cases investigated, especially at 

high densities.  At Kc=4.0, for instance, the 6-tap target outperforms the 3-tap target by 

about 2dB gain in effSNR  with electronics noise only, and by nearly 1 dB with 6% 

jitter.  In contrast to this, the performance of MMSE Unit-En approach worsens with 

target length, especially in the media noise environment.  This is because for the 

perpendicular recording channel that is low-pass in nature, the MMSE Unit-En 

approach results in a target resembling a low-pass eigen-filter, whose characteristics 

remain almost unchanged under various channel conditions.  Hence, although it is a 

GPR target, MMSE Unit-En target has minimum flexibility to match the natural 

channel, and thereby results in poor performance. 

 

3.5.3 Analysis of Noise Correlation 

 
We know that the correlation of noise at the VA detector input has significant effect on 

its detection performance.  Therefore, to further illustrate the effectiveness of the 



CHAPTER 3.  NOVEL ANALYTICAL APPROACH FOR OPTIMUM TARGET DESIGN 

 64

targets designed by different approaches, we plot, in Figure 3.7, the PSDs of total noise 

(i.e. the estimation error ek), filtered overall channel noises (i.e. electronics noise and 

media noise) and the residual ISI at the equalizer output.  The channel parameters are 

selected to result in channel SNR of 27dB, 3% jitter and linear density of 2.5.  From 

Figures 3.7(a) and 3.7(b), we see that the MMSE Unit-En target and the standard PR 

target ( )41 D+  result in low power of the total noise and good suppression of the 

residual ISI at the cost of high noise correlation.  On the other hand, as shown in 

Figures 3.7(c) and 3.7(d), even though the MMSE Monic target and the target designed 

by the effSNR  approach result in considerable residual ISI components at high 

frequencies and larger power of total noise, but the PSD of the total noise turns out to 

be rather flat.  Figures 3.8(a) and 3.8(b) illustrate the PSDs of total noise at the VA 

detector input for 5-tap, 8-tap and 15-tap targets from MMSE Monic and effSNR  

approaches, respectively, with the channel conditions same as that in Figure 3.7.  The 

results plotted in Figures 3.8(a) and 3.8(b) show that the PSD of the total noise 

approaches to a flat spectrum as the target length increases.  With reference to the BER 

performances shown in Figure 3.6, we see from Figure 3.7 that noise correlation 

degrades the performance of PRML systems more significantly than noise power and 

residual ISI.  The reason that MMSE-monic target produces near optimum 

performance is that MMSE-monic approach is equivalent to MMSE-DFE approach.  In 

MMSE-DFE system, the forward equalizer tends to be an all-pass phase filter, and thus 

avoid increasing noise correlation and noise enhancement. 
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3.6 Conclusion 

 
 In this chapter, we presented a novel analytical approach for finding the optimum 

GPR target based on the effective detection SNR, i.e. effSNR  criterion, and derived the 

closed-form analytical solutions of the optimum targets with and without length 

constraint.  Simulation studies show that the target from our SNReff approach results in 

maximum effective detection SNR, and thus produce the best BER performance, 

compared to the targets from MMSE based approaches and standard PR targets.  

Simulation studies also show that noise correlation influences the performance of VA 

detector more significantly than noise power and mis-equalization.  In the next chapter, 

we are going to reinforce the analytical work of this chapter with much more extensive 

analysis on the global optimality of the target that maximizes effSNR . 
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(a) electronics noise at SNR of 27 dB with 0% jitter.

(b) electronics noise at SNR of 27 dB and 3% jitter. 

(c) electronics noise at SNR of 27 dB with 6% jitter.

Figure 3.5:  Effective detection SNRs for different target design approaches. 
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(c) electronics noise at SNR of 27 dB with 6% jitter. 

(b) electronics noise at SNR of 27 dB with 3% jitter.

(a) electronics noise at SNR of 27 dB and 0% jitter. 

Figure 3.6: BER performances for different target design approaches. 
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Figure 3.7: Power spectral densities of noises resulting from different targets for 
perpendicular recording channel at density 2.5 with electronics noise at SNR of 27dB and 
3% jitter.  All the targets have 5 taps and are normalized to having unit energy.  (a) 
standard PR target (1+D)4, (b) unit-energy constrained MMSE, (c) monic constrained 
MMSE, and (d) SNReff approach. 

(a) (b) 

(c) (d)

Figure 3.8: Power spectral densities of total noise resulting from 5-tap, 8-tap and 15-tap 
targets with unit energy for perpendicular recording channel at density 2.5 with 
electronics noise at SNR of 27dB and 3% jitter.  (a) monic constrained MMSE and (b) 
SNReff approach. 

(a) (b) 
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Chapter 4 

Characterization of the Performance 

Surface of Effective Detection SNR 

 

In the last chapter, we proposed an analytical approach for finding the optimum GPR 

target based on effective detection SNR (SNReff).  Compared to the conventional 

MMSE criterion that is essentially a quadratic cost function of target, the performance 

surface defined by effSNR  is quite complicated, and may contain many optima.  

Furthermore, the dominant error event used in computing effSNR  is not really fixed, 

unlike our assumption of a fixed dominant error event in Chapter 3.  Instead, dominant 

error event pattern is an implicit function dependent on the target.  In this chapter, we 

provide the characterization of the performance surface of effSNR  by using the 

analytical approach presented in Chapter 3.  In Section 4.1, we provide clarification of 

the global optima of effSNR  for a given dominant error event.  In Section 4.2, we 

discuss the issue of multiple dominant error events and characterize the performance 

surface of effSNR  by taking into account the fact that the dominant error event may 

change depending on the choice of the target.  Finally, the results of numerical search 
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for optimum target based on effSNR  are presented in Section 4.3.  We show that these 

results corroborate the findings of our analytical characterization work. 

 

4.1 Clarification of the Global Optima 

 
In the development of the proposed analytical approach for optimum target design in 

Chapter 3, we used the effective detection SNR as the cost function.  We found that the 

optimum equalizer that maximizes SNReff is the same as the solution of unconstrained 

MMSE equalizer.  With this optimum equalizer, the SNReff can be expressed as (see 

3.11)) 
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,           (3.11) 

where ,G , dE  and R  are the Fourier transforms of target, assumed dominant error 

event and natural channel bit response, respectively, aΡ  is the PSD of input data and 

nΡ  is the PSD of overall channel noise (i.e. electronics noise and medium noise) at 

equalizer input.  As was shown in (3.11), the SNReff is related to 2G  instead of G .  

This motivated us to design optimum magnitude frequency response 2
oG  of the target 

based on effSNR .  To solve this optimization problem, we replaced 2G  with 

( )1

1
1 2 cos  2N

ii
X x i π−

=
= + Ω∑  ( N  is the length of target response) resulting in (see 

(3.12)) 
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We may refer to the space of all possible vectors [ ]1 2 1, , , T
Nx x x −=x  as X -domain.   

It was found in Chapter 3 that ( )J X  has a single maximum at oX X= , which is 

uniquely determined by (3.15) (if dE  is a single-bit error event) or (3.17) (if dE  is 

multi-bit error event).  The performance surface of effSNR  is part of the surface of 

( )J X  over the feasible region R  (in X  domain) wherein the x  can be de-convoluted 

into target response g  with real-valued coefficients, i.e. X  can be spectral factorized 

into a valid target response1 G.  If the unique maximizer oX  of ( )J X  lies inside the 

feasible region R , then clearly, oX  is also the unique optimum solution that 

maximizes effSNR , i.e. 2
o oG X= .  If oX  is outside R , then the optimum solution 

2
oG  of effSNR  must be located on the boundary of R .  In this case, it is not clear 

whether the optimum solution 2
oG  of SNReff is unique or not. 

 In this section, using proof by contradiction, we show the uniqueness of the 

optimum 2
oG  that maximizes effSNR  given by (3.11).  In the development of the 

proof, we need to use the equations and inequalities listed below. 

1. If b d
a c=   with , , , 0a b c d > , then  b d b d bd

a c a c ac
+= = =
+

.            (4.1a) 

2. If b d
a c≤   with , , , 0a b c d > , then  b b d d

a a c c
+≤ ≤
+

.             (4.1b) 

3. ( ) ( )( ) ( )[ ] ( )[ ]
2

2 2b b b

a a a
f x g x dx f x dx g x dx≤∫ ∫ ∫   for real-valued functions 

( )f x  and ( )g x .                 (4.1c) 

                                                 
1 Since x and X are uniquely related, henceforth, we shall use x and X interchangeably, and also g and G, 
and ε and E.  Further, in this chapter, we strictly refer to the notation G as a target response with real-
valued coefficients, and thus 2G  is inside the region R . 
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It is easy to verify (4.1a) and (4.1b).  And (4.1c) is the well-known Schwartz 

inequality, where the equality holds only when ( ) ( )f x g xϕ=  for [ ],x a b∈  where ϕ  

is an arbitrary real-valued constant. 

 Now, let us suppose that there exist two distinct and equivalent global optima, 

2
,1oG  and 2

,2oG  ( 2 2
,1 ,2o oG G≠ ), for effSNR  such that  

  ( ) ( )
{ }

( )( )2

2 2 2
,1 ,2 maxeff o eff o eff

G
M SNR G SNR G SNR G= = .  (4.2) 

Hence, by using (4.1a), we can obtain the following from (4.2) and (3.11): 
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,   (4.3) 

where ( )2 24 d
a n n aH E R= Ρ Ρ Ρ +Ρ  and k  is an arbitrary positive constant.  

According to (4.1c), we have the inequality given by 

  
0.5 0.5 0.52 2 4 4
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Different from (4.1c), a strict inequality is used in (4.3), because we supposed that 

2 2
,1 ,2o oG G≠  (thus, 2 2

,1 ,2o oG H G H≠ ).  Applying (4.4) to (4.3), we find that  
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   (4.5)

 

Then, with (4.1b) and (4.5), we reach the inequity given by 
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,   (4.6) 

where ( ) ( )2 2 2
,1 ,2 1o o oG G k G k′ = + +  is also a squared magnitude frequency response 

of a target response with unit energy, and it corresponds to a point in between 2
,1oG  

and 2
,2oG  in X  domain, since 0k > .  Obviously, the derived inequality shown in 

(4.6) contradicts with the assumption that 2
,1oG  and 2

,2oG  are equivalent and distinct 

global optima that maximize effSNR .  Thus, the uniqueness of the global optimum 

2
oG  based on effSNR  is proved.   

In a similar way, we can also prove that for an arbitrary 2G′  different from the 

global optimum 2
oG  of effSNR  (i.e. ( ) ( )2 2

eff eff oSNR G SNR G≤ ), any point in between 

2G′  and 2
oG  in X  domain results in a value of effSNR  greater than ( )2

effSNR G′ .  

This indicates that there are no local optima on the performance surface of effSNR , and 

effSNR  has a single maximum at 2 2
oG G= .  It also follows that the performance 

surface of effSNR  is a concave surface. 

 Although 2
oG , the optimum magnitude frequency response of target based of 

effSNR  is found unique, there are usually more than one target responses obtained by 

spectral factorization, with different phases but having the same optimum magnitude 

frequency response 2
oG .  Further, if we have optimum target og  then o−g  is also an 

optimum target for the same PRML system.  All the target responses corresponding to 

2
oG  are global optimizers of effSNR , since they result in the same maximum effective 

detection SNR.  Figure 4.1(a) illustrates an example where there are four global 
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optimizers given by [ ],1 0.6172, 0.7021, 0.3551 T
o =g , [ ],2 0.3551, 0.7021, 0.6173 T

o =g , 

,3 ,1o o= −g g  and ,4 ,2o o= −g g .  Unique pair of optimum target responses { },o o−g g  based 

on effSNR  is found if all the zeros of the D  transform of 2
oG  are on the unit circle.  

See the example illustrated in Figure 4.1(b), where there is a pair of global optimum 

target responses given by [ ],1 0.5278, 0.6655, 0.5278 T
o =g  and ,2 ,1o o= −g g .  The above 

findings imply that numerical search for optimum target response based on effSNR  can 

always lead to a global optimum, no matter which point the search starts with. 

 

4.2 Discussion on Dominant Error Event 

 
Throughout the above discussion on the uniqueness of the optimum target based on 

effective detection SNR, we assumed that the dominant error event dE  remains 

Figure 4.1: Performance surface of effective detection SNR with 3-tap target, [g0, g1, g2] 
over the region where the error event [+2 –2] dominates the bit error probability.  The 
target energy is normalized to be unity and linear density is 2.5.  (a) perpendicular 
recording channel modeled by arctangent function in (2.5a) with electronics noise at 
SNR of 27dB and 0% jitter, (b) perpendicular recording channel modeled by hyperbolic 
tangent function in (2.5b) with electronics noise at SNR of 30 dB and 3% jitter. 
 
 

(a) (b) 



CHAPTER 4. CHARACTERIZATON OF TARGET PERFORMANCE SURFACE 

 75

unchanged with target.  In fact, however, different targets may result in different 

dominant error events.  Further, we may find that with a certain choice of target, there 

are multiple error events dominating the bit error probability.  Hence, it would be 

better that we design optimum target based on an overall effective detection SNR 

defined by 

( ) { } ( )( )2 2mineff EE
SNR G S G

∈Ψ
= ,    (4.7) 

where Ψ  is the set of all possible patterns of error event E  and ES  given by  

( ) ( )
( )
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. 

Note that the error event E  used in ES  is independent of the target G.  If we change 

notation E  to be dE , then dES  is exactly the effSNR  given by (3.11).  In this section, 

we determined the dominant error event as { } ( )( )2arg mind
EEE S G∈Ψ= .  Apparently, 

dE  changes depending upon which target G is used for evaluating effSNR .  Thus far, 

an explicit function reflecting the relationship between target and dominant error event 

has not yet been reported.  Therefore, analytical approach for optimizing effSNR  given 

by (4.7) will be impeded by great mathematical difficulty.  In this section, we discuss 

the effectiveness of target design based on effSNR  that accounts for only a single 

dominant error event. 

 Since the data sequence input to magnetic recording channel is binary, the 

elements of the error event pattern are constrained to be ternary { }2, 2,0+ − .  Hence, the 

dominant error event does not continuously change with target G.  In other words, we 

can divide the target coefficient domain into continuous regions 1 2, , , nr r r  such that all 

the targets inside the region ir  result in the same dominant error event iE  
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( 1, 2, ,i n= ), i.e. { } ( )arg mini EEE S∈Ψ=  for g ir∈ .  Mapping 1 2, , , nr r r  into X−

domain, we get corresponding regions 1 2, , , nR R R , which are continuous too.  Note 

that 1 2 nR R R R= ∪ ∪ ∪  is the region of all possible 2G  (squared magnitude 

frequency responses of targets) in X−domain.  Having all the possible dominant error 

events 1 2, , , nE E E  for given channel conditions, we may rewrite (4.7) as 

   ( ) { } ( )( )
1 2

2 2

, , ,
min

n
eff EE E E E

SNR G S G
∈

= ,  

or equivalently, 

( ) ( )2 2
ieff ESNR G S G=  for 2

iG R∈ , 1, 2, ,i n= . 

 We now show that the performance surface of ( )2
effSNR G  is concave over the 

region R  for all possible 2G  and has a unique optimum.  To begin with, observe the 

similarity between ES  and effSNR  given by (3.11).  Therefore, based on the analysis 

on characterization of effSNR  in Section 4.1, we can conclude that ES  with any error 

event E is a concave surface over the region R  in X-domain.  Let 2
1G  and 2

2G  

denote any two distinct squared magnitude frequency responses of targets that result in 

the same value of effSNR , i.e. 2 2
1 2G G≠  and ( ) ( )2 2

1 2eff effSNR G SNR G M= .  Since 

( ) ( ) ( ) ( )( )1 2

2 2 2 2min , , , ,neff E E ESNR G S G S G S G=  we get ( )2
1iES G M≥  and 

( )2
2iES G M≥  for 1,2, ,i n= .  Hence, for any point 2G′  in between 2

1G  and 2
2G , 

we have 

( ) ( ) ( )1 2

2 2 2,   , , nE E ES G M S G M S G M′ ′ ′> > > , 

because 1 2, , , nE E ES S S  are all concave surfaces over the region R  in X-domain.  As a 

result, ( ) ( ) ( ) ( )( )1 2

2 2 2 2min , , , .neff E E ESNR G S G S G S G M′ ′ ′ ′= >   Based on the 
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above analysis, we can conclude that effSNR  is also a concave surface over the region 

R .  Consequently, effSNR  has a unique optimum 2
oG  (i.e. maximum). 

 Let 2 2 2
,1 ,2 ,, , ,o o o nG G G  denote the optimizers (i.e. maximizers) of 

1 2, , , nE E ES S S , respectively, and 2
oG  denote the optimizer of effSNR .  If the 

optimizer 2
,o kG  of kES  lies inside the region kR  where keff ESNR S=  for 2

kG R∈ , then 

obviously, the optimizer 2
,o kG  is also the optimum solution for effSNR  (i.e. 

2 2
,o o kG G= ).  In such case, there must be no other optimizer 2

,o iG  ( 2 2
, ,o i o kG G≠ ) for 

iES  to be located inside the corresponding region iR  where ieff ESNR S= , since effSNR  

has a unique optimum.  As 2 2
,o o kG G= , optimizing effSNR is equivalent to optimizing 

kES  based on the single error event kE .  Having the dominant error event d
kE E= , we 

can obtain the optimum solution 2
,o kG  of kES , i.e. the optimum solution 2

oG  of 

effSNR , by the analytical approach developed in Chapter 3.  Furthermore, in Chapter 3, 

we also obtained the optimum solution (3.26) for infinitely long target based on 

effSNR , that is ( )2 2
,inf ,o n a a nG Rϕ= Ρ + Ρ Ρ Ρ  which is independent of error event 

pattern.  This implies that 2
,infoG  is also the optimum solution for effSNR  with 

infinitely long target, because all the ES  with different error events are maximized by 

2
,infoG .  The optimized effSNR  with 2

,infoG  is given by 

( ) { }

2
0.52 2

,inf 0.5

1 1min
4

eff o E
a n

R
SNR G E d

−∈Ψ

⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ + ⎟ Ω

⎜ ⎟⎜ ⎟Ρ Ρ⎝ ⎠⎝ ⎠
∫ .   (4.8) 

The dominant error event dE  is the error pattern that minimizes the argument of 

( )min i  function in (4.8).  Since the dominant error event pattern is not sensitive to 

minor changes in target response, dominant error event for the infinitely long optimum 
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solution ,infoG  is usually also the dominant error event for the optimum 2
oG  of finite-

length target, whose spectral characteristics are similar to that of ,infoG .  Use of (4.8) 

to find dominant error event dE , or at least the candidates most likely to be dE , 

facilitates our approach for designing the optimum target based on the effSNR  

criterion. 

 If every iES  ( 1, 2, ,i n= ) has its optimizer outside the region iR  over which iE  

is the resulting dominant event, then the maximum of each sub-surface 

( ) ( )2 2
ieff ESNR G S G=  for 2

iG R∈  must appear on the boundary of iR  joining with 

other region(s) adjacent to iR .  Consequently, the optimizer 2
oG  that maximizes 

effSNR  must be located on a joint boundary of two or more adjacent regions, for 

example, I II L, , ,R R R  that correspond to the dominant error events I II L, , ,E E E , 

respectively.  That is,  

( ) ( ) ( )I II L

2 2 2
,eff o E o E o E oSNR S G S G S G= = = = .   (4.9) 

We see from (4.9) that 2
oG  results in multiple dominant error events I II L, , ,E E E  

from the viewpoint of effSNR  criterion.  Defining ( )I II Lmin , , ,E E ES S S S=  and 

I II LR R R R′ = ∪ ∪ ∪ , we have ( ) ( )2 2
effSNR G S G=  for 2G R′∈ .  Similar to the 

analysis in the last paragraph, it can be verified that S  is a concave surface with its 

unique optimizer inside the region R′ , which is also the optimizer 2
oG  of .effSNR   In 

such a case, optimizing effSNR  is equivalent to optimizing S  based on much fewer 

error events, namely, I II L, , ,E E E .  The candidates of these multiple dominant error 

events I II L, , ,E E E  can be found by making use of (4.8).  We may also use numerical 

search methods to find the optimum 2
oG  that maximizes S  (and equivalently 
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maximizes effSNR ), since S  is characterized as a concave surface with a unique 

maximum.  On the other hand, as concluded in the last paragraph, the optimizer 2
oG  

of effSNR  and the optimizers of I II L, , ,E E ES S S  approach closer to each other with 

increase in target length, and become the same solution as 2
,infoG  given by (3.26) 

when the target length approach infinity.  Therefore, with reasonably long target 

length, the optimizers 2 2
,I ,II, , ,o oG G  2

,LoG  of I II L, , ,E E ES S S , respectively, are close 

enough to 2
oG  such that 

( ) ( ) ( ) ( )I I II II L L

2 2 2 2
, , , ,eff o o E o E o E oSNR S G S G S G S G= ≈ ≈ ≈ ≈ .           (4.10) 

Eqn. (4.10) shows that any of the optimizers 2 2 2
,I ,II ,L, , ,o o oG G G , which can be 

obtained by the analytical approach developed in Section 3, will result in almost 

equivalent optimum performance in terms of effSNR .   

 In Figure 4.2(a), we plot several performance surfaces of effSNR  based on 

different assumed dominant error events.  As shown in Figure 4.2(b), the pattern of 

dominant error event changes over different regions in X -domain.  However, as 

shown in Figure 4.2(a), every effSNR  with different assumed dominant error event 

reaches its maximum within the same region where the error event [ ]2 2+ −  is the 

resulting dominant error event (see the dark shaded area in Figure 4.2(b)).  In Figure 

4.3, we illustrate the performance surface of the effSNR  defined by (4.7) (for the same 

channel conditions as in Figure 4.1(b)).  As can be observed from Figure 4.3, the 

global optimum of the effSNR  occurs within the region where the error event [ ]2 2+ −  

is the dominant error event, and there are no local optima.   
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Figure 4.2: Comparison of SNReff with 3-tap unit-energy target based on different 
assumed dominant error events for the perpendicular recording channel with electronics 
noise only at SNR of 27dB and channel linear density of 2.5.  a) SNReff based on 
different assumed dominant error events in X-domain, b) regions in X-domain where a 
certain error event dominates BER.  (Error event patterns: 1 → [+2 –2], 2 → [+2 +2], 3 
→ [+2], 4 → [+2 –2 +2] and 5 → [+2 -2 +2 -2 +2 ].) 

 

(a) (b) 

Figure 4.3: Performance surface of effSNR  with 3-tap unit-energy target. 
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4.3 Numerical Search Results 

 
In this section, we conduct numerical search for finding optimum targets based on the 

effSNR  criterion with a given dominant error event.  To verify the effectiveness of the 

effSNR  criterion, we also perform the numerical search based on the theoretical 

expression for BER, which takes into account several error event patterns.  The 

numerical search results obtained from these search approaches corroborate the 

characterization of the performance surface of effSNR  we provided in the previous two 

sections.  The channel used for this study is perpendicular recording channel at linear 

density of 2.5. 

 

4.3.1 Search Based on Effective Detection SNR 

 

The cost function of effSNR  used in the numerical search is defined by (3.8), i.e. 

    
( )( )
( )( )

2

1
4

Td d

eff Td d
ee

SNR =
ε ε

ε R ε
,    (3.8) 

where dε  is obtained by filtering the dominant error event dε  by the target g , and 

eeR  is the autocorrelation matrix of the total noise at equalizer output.  We use the 

conventional steepest descent (SD) algorithm [57] to update the tap weights of target 

and equalizer (the length of equalizer is set long enough) in each iteration of the 

search.  The SNReff employed in the search practice is computed based on the error 

event [ ]2 2+ − .  BER simulations are also conducted using the targets obtained from 

the numerical search. 

  It is known that the numerical search using  SD method may lead to local optima.   
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In order to find the global optimum, we may repeat the numerical search by SD with 

different starting points to see whether each search converges to the same optimum.  In 

the case of effSNR  based search, we find that different starting points usually result in 

(a) (b) 

Figure 4.4: Starting points and ending points in the numerical searches for optimum 
target based on SNReff in the perpendicular recording channel at linear density of 2.5 and 
channel SNR of 27dB with (a) 0% jitter, and (b) with 3% jitter.     

 
 

(a) (b)

Figure 4.5: Magnitude frequency responses of the optimum targets obtained in the 
numerical searches based on SNReff in the perpendicular recording channel at linear 
density of 2.5 and channel SNR of 27dB with (a) 0% jitter, and (b) 3% jitter.     
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different optimum targets.  However, these different optimum targets produce similar 

BER performances in simulations.  Figures 4.4(a) and 4.4(b) illustrate the search 

results in the absence and presence of media noise, respectively.  The SNR with 

respect to electronics noise is set to be 27 dB.  The broken lines with marks represent 

the three different starting targets used in the search.  As indicated, these starting 

targets are given by the standard PR target [1 2 3 2 1], monic constrained MMSE 

target, and unit-energy constrained MMSE target, respectively.  The equalizers for 

these three cases are initialized with the solutions of MMSE PR equalizers given by 

(2.29) based on these three targets, respectively.  The search interations from the three 

different starting points lead to quite different optimum target responses, which are 

indicated by the solid lines in Figures 4.4(a) and 4.4(b).  All the searched target 

responses resulted in similar BER performances (not shown here): in the order of 510−  

without media noise and 410−  with media noise.  Further, as shown in Figure 4.5, these 

different optimum targets obtained by numerical search have almost equal magnitude 

frequency responses.  These results corroborate our analytical results given in Section 

4.1 that the optimum targets based on the effSNR  criterion for a given dominant error 

event are global optimizers of effSNR  and all these optimum targets have the same 

magnitude frequency response. 

 

4.3.2 Search Based on BER Expression 

 
The numerical results in Section 4.3.1 are based on a single dominant error event.  In 

order to account for the fact that dominant error event is dependent on target, we may 

consider the numerical search based on the overall effSNR  criterion given by (4.7).  
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However, in order to use the simple SD algorithm, here, we conduct the numerical 

search based on the tight upper bound of BER given by (3.6), i.e. 

   ( ) ( )2
2

H
T

W
b H T

ee

P W Q−

∈Ψ

⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

∑ ε

ε

ε εε
ε R ε

,    (3.6) 

where Ψ  denotes the set of all possible error events, ε  is error event ε  filtered by the 

target, and ( )HW ε  is the Hamming weight of ε .  At medium-to-high channel SNRs, 

bP  gives a reasonably accurate prediction of the BER performance of VA detector.  As 

the ( )Q i  function exponentially decreases with its argument, the cost function given 

by (3.6) is almost equivalent to effSNR  given by (4.7).  Since the quantity 

( ) ( )2 HW
HW − εε  exponentially decreases with ( )HW ε , we can limit Ψ  in (3.6) to the set 

of error events having small Hamming weights. 

 Table 4.1 lists the numerical search results obtained from effSNR  based search and 

BER prediction based search with SNR of 27 dB and 0%, 3% and 6% jitter, 

Table 4.1: Targets obtained by numerical search and BER simulation results (SNR=27 dB). 
 

Cost function: SNReff Cost function: BER prediction 

Jitter 

Searched target response 
BER 

(simu.) 
×10-4 

Searched target response 
BER 

(simu.) 
×10-4 

0% [0.186, 0.301, 0.703, 0.591, 0.178] 0.567 [0.186, 0.304, 0.706, 0.587, 0.175] 0.604 

3% [0.172, 0.309, 0.738, 0.557, 0.141] 1.33 [0.172, 0.307, 0.737, 0.559, 0.143] 1.39 

6% [0.100, 0.393, 0.819, 0.392, 0.104] 8.83 [0.106, 0.392, 0.818, 0.396, 0.100] 8.11 
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respectively.  Under these channel conditions, single dominant error [+2 −2] is found.  

The results shown in Table 4.1 correspond to the search that starts with the standard 

target [1 2 3 2 1] and the MMSE PR equalizer obtained for this target.  As observed 

from the tabulated data, the searches for optimum target based on the two cost 

functions, effSNR  and BER, lead to quite similar results, in terms of target coefficients 

and the BER performances with the searched targets.  Table 4.2 lists the search results 

with SNR of 30.5 dB and 8% jitter such that there exist two dominant error events [+2 

−2] and [+2 −2 +2].  The searches start with the target and PR equalizer designed by 

the monic constrained MMSE criterion.  As shown in the table, the results (i.e. the 

searched target coefficients and the BER performances with the searched targets) from 

effSNR  based searches with error event [+2 −2] only and with error event [+2 −2 +2] 

only are quite similar to the results from BER prediction based search that takes into 

account multiple error events.  These numerical results corroborate our analytical 

results given in Section 4.2 that optimizing effSNR  with the dominant error event 

Table 4.2: Targets obtained by numerical search and BER simulation results (SNR=30.5 dB 
and 8% jitter). 

 

Cost function Searched target response BER (simu.) 
×10-4 

SNReff with error event [2 −2] [0.6554, 0.6984, 0.2844, 0.0424, −0.0047] 3.356 

SNReff with error event [2 −2 2] [0.6560, 0.6977, 0.2823, 0.0425, -0.0038] 3.337 

BER prediction [0.6559, 0.6984, 0.2834, 0.0417, −0.0045] 3.347 
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dependent on the target (or equivalently, the BER expression we used here) is 

equivalent to optimizing effSNR  with a single dominant error event. 

 

4.4 Conclusion 

 
In this Chapter, we proved the uniqueness of the optimum magnitude frequency 

response of target based on the SNReff criterion, with and without the consideration of 

the dependence of the dominant error event on the target.  Results from numerical 

approach corroborated with the findings based on our analysis work.  Throughout the 

analysis in Chapters 3 and 4, we considered that channel noises to be stationary and 

Gaussian distributed.  However, the media noise, which becomes the dominant noise 

source on high-density recording channels, is actually data-dependent and thus, non-

stationary and non-Gaussian.  In the next chapter, we are going to modify the SNReff 

criterion that takes into account the data-dependence of media noise. 
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Chapter 5 

Optimum Target Design to Combat Media 

Noise 

 

In this chapter, we investigate the target design problem with emphasis on combating 

media noise, which is the dominant noise source in high-density magnetic recording 

channels.  Since media noise is not only correlated but also data-dependent, the 

detector needs to become data-dependant too.  Proposals for modifying the branch 

metrics of VA detector according to the data-dependent correlation, variance and/or 

mean of media noise have been reported in [42, 43, 44, 45, 46, 58].  In this chapter, we 

propose to compute the branch metrics of VA detector with data-dependent GPR target 

designed by a modified effective detection SNR criterion that accounts for the data-

dependence of media noise.  We start Section 5.1 with formulation of the modified 

SNReff criterion that incorporates the data-dependence nature of media noise.  In 

Section 5.2, we develop the approach for finding the data-dependent optimum target 

based on this modified SNReff criterion.  The modified VA detector tuned to the 

designed data-dependent optimum targets is described in Section 5.3.  Finally, we 

present in Section 5.4 the simulation results that illustrate the performance of our 

approach. 
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5.1 Modified Effective Detection SNR Criterion 

 
In Chapters 3 and 4, we designed the optimum target based on the effective detection 

SNR criterion given by (3.8).  This criterion is developed based on the assumption that 

the noise at VA detector input is stationary and Gaussian distributed.  However, this 

assumption will be violated in the presence of media noise, since media noise is 

significantly data-dependent.  In order to modify the effective detection SNR criterion 

to account for the data-dependence of media noise, we need to re-investigate the error 

analysis based on the underlying input data path =a [ ]1 1, , , ,k k ka a a+ − , as stated in 

Chapter 3, i.e. 
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⎝ ⎠
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ε
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ε

ε a a

a

a
    

(5.1) 

In the absence of media noise, the data path a  affects only the error sequence ε , while 

the noise ke  at VA detector input is independent of a .  On the other hand, in the 

presence of media noise, the noise ke  also becomes dependent on a .  Consequently, 

the random quantity 0

2

0

N N
k k j k k jj

u eε ε+ −
+ + +=

=∑  becomes even more data-dependent.  To 

emphasize this data-dependence, we change the notation of the variance of ku  from 

2
,uσ ε  to ( )2

,uσ ε a , where ( ) [ ]2 2
, |u kE uσ =ε a a .  Further, ( ) ( )( )( )2

,2r uP Q d σ= ε εε a a  

becomes dependent on the assumed input data pattern.  By averaging ( )rP ε a  over all 

possible data patterns supporting ε , we have the probability of a single error event as 

   ( ) ( ) ( )
2

,2r r
u

dP P Q σ∈Λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠∑

ε

ε

εa
ε a a ,    (5.2) 
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where Λε  denotes the set of all the possible data patterns supporting the error event ε  

and ( )rP a  represents the probability that the data pattern a  is transmitted/recorded.  

Consequently, at medium-to-high channel SNRs the BER performance can be 

predicted as  

   ( ) ( ) ( )
2

,2
d

d
d

d
b H r

u

dP W P Q σ∈Λ

⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

∑
ε

ε

εa
ε a a ,   (5.3) 

where dε  is the dominant error event that minimizes the argument of the ( )Q i  

function in (5.2).  

 We now define the squared argument of the ( )Q i  function in (5.3) as the 

modified effective detection SNR, which is given by  

( ) ( )
4

2
,4

d

d

m
eff

u

dSNR
σ

= ε

ε
a a ,   for ∈Λεa .    (5.4) 

Clearly, the modified effSNR  incorporates the data-dependent nature of media noise.  

The target optimized based on ( )m
effSNR a  is expected to well combat media noise and 

produce the optimum BER performance for the particular input data pattern a .  Using 

the data-dependent optimum target designed by the modified effSNR  criterion, the 

BER predicted by (5.3) is minimized as well. 

 

5.2 Optimization Approach based on the Modified 

Criterion  

 
Since the data-dependence of media noise is under consideration, we can no longer 

derive the expression of the modified effSNR  in frequency domain by using the PSD of 

the noise alone.  To find an analytical solution of the optimum target based on the 



CHAPTER 5.  OPTIMUM TARGET DESIGN TO COMBAT MEDIA NOISE 

 90

m
effSNR  criterion, we first need to rewrite the criterion given by (5.4) as an explicit 

function of the target. 

 Figure 5.1 illustrates a PRML channel model where the media noise is 

approximated by first-order transition jitter model1.  As shown in Figure 5.1, there are 

two types of channel noises.  One is the media noise kt  given by 

  ( )1
1
2

p p
k k i k i i k i k i k i i

i i
t b f a a f− − − − − −= ∆ = − ∆∑ ∑ ,  (5.5) 

where p
kf  denotes the first-order derivative jitter path and k∆  is the random transition 

jitter that is modeled as a white Gasussian random variable with zero mean and 

variance 2
tσ .  Eqn. (5.5) indicates that the media noise has Gaussian distribution when 

conditioned on the input data pattern.  Another channel noise is electronics noise kn , 

which is modeled as an AWGN with variance 2
nσ .  The estimation error ke , which 

                                                 
1 This figure is the same as Figure 3.4 and it is repeated here for the sake of convenience. 

Figure 5.1: VA detector based magnetic recording channel with electronics noise and 
media noise. 
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represents the total noise at VA detector input, includes media noise kt , electronics 

noise kn  and residual ISI, i.e. 

  ( )k k k k k ke n t w a η= + ⊗ + ⊗ ,     (5.6) 

where ⊗  denotes the convolution operator, { }iw  are the equalizer tap weights, k ka η⊗  

represents the residual ISI, and { }kη  denote the coefficients of the transfer function 

given by ( ) ( ) ( ) ( ) 0kD R D W D G D DΙ = − , i.e. the residual ISI channel.  Here, we 

consider the equalizer to be the unconstrained MMSE PR equalizer given by 

02

2

j k
a

n a

R eW G VG
R

π∗ −Ρ= =
Ρ + Ρ

,     (5.7) 

where ( ) ( )0 22j k
a n aV R e Rπ∗ −= Ρ Ρ + Ρ , [ ] 22 2 2 p

n n k tE b Fσ σΡ = +  denotes the effective 

PSD of the overall channel noise at equalizer input, aΡ  is the PSD of input data 

sequence.  Letting { }kv  denote the coefficients of ,V  we may rewrite (5.6) as 

   ( )( )k k k k k k ke n t v a gη′= + ⊗ + ⊗ ⊗ ,     

where { }kη′  are the coefficients of the transfer function given by ( ) ( ) ( )D R D V D′Ι = −  

0kD .  Consequently, the output of the equalizer can be expressed as  

 ( )0 0k k k k k k k k k k k k k ky a g e a n v t v a gη− − ′= ⊗ + = + ⊗ + ⊗ + ⊗ ⊗ .  (5.8) 

We also note that the random quantity ku  in (5.1) is given by 

   0
d

k k k k ku e gε+ − −= ⊗ ⊗ ,      (5.9) 

where { }kiε  are the elements of the dominant error event dε .  By incorporating (5.8) 

and (5.9) in Figure 5.1, a channel model equivalent to (5.8) results as shown in Figure 

5.2, where ( )dE D  is the D transform of the dominant error event dε  and ‘*’ denotes 

complex conjugation. 
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 From the channel model shown in Figure 5.2, the effective estimation error ke′  is 

expressed as 

   ( )0 0 0
d

k k k k k k k k ke n t aε η+ + − +′ ′ ′= + ⊗ + ⊗ , 

where ( )1
1 ,2

p p
k k i k i i k i k i k i ii i

t b f a a f− − − − − −′ ′ ′= ∆ = − ∆∑ ∑    k k k k i ii
n n v n v−′ = ⊗ =∑    ( kn′  is 

independent of data pattern), { }kη  denote the coefficients of an effective residual ISI 

channel whose transfer function is given by ( ) ( ) ( )( ) ( )0k dD R D V D D E D∗ −∗Ι = − , and 

.p p
kk kf f v′ = ⊗   Letting p p d p d

k k kk k kf f f vε ε− −′= ⊗ = ⊗ ⊗  and d
k k kw v ε−= ⊗ , we have 

( )1
1
2

d p
k k k k i k i k i ii

t t a a fε− − − − −′′ ′= ⊗ = − ∆∑ , d
k k k k k k i ii

n n n w n wε− −′′ ′= ⊗ = ⊗ =∑  and 

0 0 0k k k k k k k ke n t a η+ + +′ ′′ ′′= + + ⊗ .  Then, the conditional autocorrelation function of ke′  can 

be computed as 

Figure 5.2: Channel model equivalent to the model given by (5.5). 
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since the input data, transition jitter shift k∆  and electronics noise kn  are independent 

of each other, and kn  and k∆  are white Gaussian processes with variances 2
nσ  and 2

tσ , 

respectively.  Apparently, ( ) ( ), , , ,e er k m r m k′ ′=a a .  

 With N −tap target, the random quantity ku  shown in Figure 5.2 is then given by 

   ( ) ( )
1 1

0
1 1

N N

k i i k i k i k i k i
i N i

u g g e x e x e e
− −

− − − +
=− + =

′ ′ ′ ′= ⊗ = + +∑ ∑ , 

where k k kx g g−= ⊗  for 1 1N k N− + ≤ ≤ −  and k kx x−= .  With the given dominant 

error event dε , the variance of ku  conditioned on input data pattern a  that supports dε  

is computed as 
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ε a a
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where [ ]1 2 1, , , ,T
Nx x x −=x  ( ) ( ) ( )( )1 , , , ,2i e er k k i r k k iτ ′ ′= − + +a a a  for 0 1,i N≤ ≤ −  

( ) ( ) ( ) ( ) ( )[ ], , , , , , , , 4ij e e e er k i k j r k i k j r k i k j r k i k j′ ′ ′ ′Τ = − − + − + + + − + + +a a a a a  for 

1 , 1i j N≤ ≤ − , ( ) ( ) ( ) ( )[ ]1 2 1
1 , , , ,2

T
Nτ τ τ −=τ a a a a  and ( )Τ a  is a (N−1)×(N−1) 

matrix with ( )ijΤ a  being its ( ),i j th element for 1 , 1i j N≤ ≤ − .  Clearly, ( )Τ a  is a 

symmetric matrix.  It is also a positive definite matrix, since ( )2
, duσ ε a  in (5.10) is the 
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conditional variance of the random variable ku .  In addition, the numerator of (5.4) is 

also a function of x , i.e. 

   4 2
0 04 4d

T Td p p= + +ε x p x Bx ,                          (5.11) 

where ( )
0.5 2

0.5
cos 2d

ip E i dπ
−

= Ω Ω∫  for 0 1i N≤ ≤ − , [ ]1 1, , T
Np p −=p …  and T=B pp . 

 With (5.10) and (5.11), we change the modified SNReff defined by (5.4) into  

   ( ) ( ) ( ) ( )
2
0 0

0

4 41
4 4 4

T T

T T
p pJ

τ
+ += ⋅
+ +a

x p x Bxx a x τ a x Τ a x ,            (5.12) 

which is an explicit function of auto-correlated target coefficient vector x . When the 

convolution feature of x  is kept, ( )Ja x  given by (5.12) is equivalent to the modified 

effSNR  defined by (5.4).  Due to the similarity between (5.12) and (3.14), the analytical 

approach developed in Chapter 3 can be directly applied for solving the optimization 

problem given by the modified SNReff.  Certainly, by this approach, we obtain the data-

dependent optimum magnitude frequency response of target based on the modified 

effSNR . 

 

5.3 Proposed Detector 

 

In this section, we develop a modified VA detector to combat media noise.  The branch 

metric of the modified VA detector is computed with the data-dependent optimum 

target based on the modified effSNR  criterion.  Since the modified effSNR  criterion 

only defines the optimum magnitude frequency response of target, we select the 

minimum-phase target having this optimum magnitude frequency response to compute 

the VA branch metrics.  In order to emphasize the data-dependence of the selected 
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optimum target, we denote its tap weights and D transform as ( ){ },o ig a  and ( )G Da , 

respectively, where a  represents the data pattern under consideration.   

 

5.3.1 Modified VA Detector 

 
In the approach for designing optimum target based on the modified effSNR  criterion, 

the equalizer is obtained as the unconstrained MMSE PR equalizer for the data-

dependent optimum target, i.e. 

   
02

2

j k
a

n a

R eW G VG
R

π∗ −Ρ= =
Ρ + Ρ

a a a . 

Here, the equalizer ( )W Da  is data-dependent since the target ( )G Da  is data-

dependent.  The straightforward way to implement the data-dependent PR equalizer is 

illustrated in Figure 5.3, where { 1a , 2,a , }La  denote the data patterns under 

consideration.   

Figure 5.3: PRML system using data-dependent equalizer and data-dependent target 
designed by the modified SNReff criterion. 
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We propose to modify the VA detector by adjusting its branch metrics 

computation to incorporate the data-dependent optimum target.  For a normal full-state 

VA detector, for example, a branch metric at instant k is computed as 

   0

2

k i k i k
i

y g a − −
⎛ ⎞−⎜ ⎟
⎝ ⎠∑ , 

where ky  is the equalizer output and { }kg  denote the target tap weights.  Different 

from the normal VA detector, the modified VA detector computes its branch metric as 

   ( ) ( ) 0

2

,
nn nk o i k i k

i
y g a − −

⎛ ⎞−⎜ ⎟
⎝ ⎠∑a a , 

where { }nka  are the data from the data pattern na , ( ){ }, no ig a  are the tap weights of the 

optimum target ( )nG Da , and ( )nky a  is the output of the equalizer obtained for the 

target ( )nG Da ,. 

 If the first tap of ( )G Da  is normalized to unity, we may re-express the 

computation of the modified branch metric as 

( ) ( ) ( ) ( )

( ) ( ) ( )( )
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a a a a

a a
  
(5.13)

 

where ky  is the output of ( )V D  and k k ke y a= − .  The RHS of the last equation in 

(5.13) resembles the branch metric computation in the data-dependent NPML system 

given in [58], with the primary target2 as ( ) ( ),0 1r oG D g= =a  and the data-dependent 

noise predictor as ( )1 G D− a , and ke  is the estimation error at the output of the 

equalizer obtained for the primary target.  Actually, the transfer function ( )V D  

                                                 
2 An approach that has been widely used for designing GPR target is to choose the overall target as the 
cascade of a primary target and secondary target.  The primary target is usually chosen from a set of 
conventionally used targets and the equalizer is designed to shape the channel to the primary target.  
Thereafter, the secondary target is designed to achieve noise whitening at the VA detector input.  The 
NPML scheme is an example of this approach 
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happens to be the MMSE equalizer for the target ( )rG D .  Hence, we have an 

alternative way to implement the system shown in Figure 5.2 like a NPML system that 

embeds the data-dependent noise predictor ( )1 G D− a  in the VA trellis.  The difference 

between our approach and the data-dependent NPML system proposed in [58] is that 

the latter designs the data-dependent noise predictor based on the MMSE criterion 

while we use the modified SNReff criterion.  The resulting NPML-type implementation 

of our approach is shown in Figure 5.4. 

 

5.3.2 Estimation of Noise Correlation 

 
To compute the modified SNReff given by (5.4), we need the knowledge of the noise 

correlation conditioned on the data pattern.  For the media noise modeled by (5.5): 

   ( )1
1
2

p p
k k i k i i k i k i k i i

i i
t b f a a f− − − − − −= ∆ = − ∆∑ ∑ , 

its autocorrelation is computed as 
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data-dependent 
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equalizer 
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A: past noise estimates from history paths. 
 
B: current noise estimates. 

 

 

Figure 5.4: Alternative NPML-type implementation of the system using data-dependent 
equalizer and target designed by the modified SNReff criterion. 
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  ( ) [ ] ( )
2

1

2 2
1, , 4

I m k
p pt

t k m k i k i i i m k
i I

r k m E t t a a f fσ − +

− − − + −
=−

= −∑a a ,           (5.14) 

where 1I  and ( 2 1I + ) are the number of anti-causal and causal taps, respectively, of the 

jitter path ( )PF D .  As indicated in (5.14), the calculation of ( ), ,tr k m a  depends on the 

input data over the span of ( 1 2 2I I+ + ) bits.  This span is usually quite large, and hence 

calculation of ( ), ,tr k m a  over all possible data patterns a  becomes a very tedious 

computational task.  Further, the fact that the span includes future data bits (i.e. 

11 2, , ,k k k Ia a a+ + + ) makes branch metric computations impractical in VA detector.  

Hence, we have to restrict to a shorter span of the data pattern, which accounts for the 

significant part of the data-dependence.  Keeping this in mind and noting that the VA 

branch metrics computation at instant k involves the data bits 

{ }0 0 0 01 2 1, , , ,k k N k k N k k k ka a a a− − + − − + − − −  (N is the target length), we may estimate the 

conditional noise correlation at instant k based on the input data from instant 

0 1ak k N− − +  ( aN N≤ ) to instant 0 bk k N− −  ( 0bN ≥ ), i.e. 

   ( ) ( )[ ]0 0
0 01 1, , , ,b b

a a
k k N k k N

t tk k N k k Nr k m E r k m− − − −
− − + − − +a a a ,            (5.15) 

where 0
0 1

b
a

k k N
k k N
− −
− − +a = [ ]0 01, ,a bk k N k k Na a− − + − −  denotes the shortened data pattern and the 

expectation [ ]E i  is taken over the data excluded by 0
0 1

b
a

k k N
k k N
− −
− − +a .  If we use longer data 

patterns, for example, 0
0 1

b
a

k k N
k k N
− −
− − +a  with aN N>  and/ or 0bN < , the estimation given by 

(5.15) can be more accurate.  To implement the design with longer data patterns, we 

can either increase the number of states in VA detector, or use the data bits from the 

survivor paths [58].  The former approach results in exponential increase in the 

complexity, and the latter results in error propagation.  Therefore, we need to find an 

acceptable trade-off between implementation complexity and accuracy when 

determining the span of data pattern used in (5.15).   
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5.4 Simulation Results 

 
Simulations are conducted to investigate the performance of our proposed approach 

based on the channel model shown in Figure 5.1.  Uncoded input data and the 

perpendicular recording channels at linear density of 2.5 with 3% jitter and 6% jitter, 

respectively, are used for our studies in this section.  Under the same channel 

conditions, we also investigate the performance of other approaches designed based on 

stationary noise environment and those designed for combating media noise.  They are 

normal SNReff approach and NPML with data-dependent predictor.  To make the 

complexity of VA detector for all the approaches, we consider 5-tap targets for normal 

and modified SNReff approaches, respectively, PR2 target ( )21 D+  with 2-tap noise 

predictor, and 3-tap monic constrained MMSE target with 2-tap noise predictor.  For 

the sake of convenience, we use abbreviations SNReff, modified SNReff, PR2NP2 and 

GPR3NP2 to refer to these approaches in the rest of this section.  To avoid error 

propagation due to the use of local decision feedback, we set the VA detector to have 

4-bit states, and short spans of the data patterns ( 2,3aN =  and 0bN = ).  The channel 

used in this study is perpendicular recording channel at linear density of 2.5. 

 From the BER plots shown in Figure 5.5, we see that the proposed modified SNReff 

conditioned on 3-bit data pattern outperforms other data-dependent designs by 0.5 dB 

at BER of 10-4 with 3% jitter and 6% jitter, respectively, although some of them use 

longer data patterns.  Since the modified SNReff approach aims to deal with data-

dependent media noise, it does not show advantage over normal SNReff approach with 

low media noise, i.e. 3% jitter (see Figure 5.5(a)).  However, as shown in Figure 

5.5(b), when media noise increases to 6% jitter, the modified SNReff approach achieves 

about 0.2 dB performance gain over the normal SNReff approach at BER of 10-4.  It is 
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also observed from Figure 5.5(b) that the performance of the modified SNReff approach 

is improved by increasing the span of the data patterns from 2 bits to 3 bits.  

Intuitively, if we use long enough data pattern, the modified SNReff approach will 

achieve even more significant performance improvement, but the implementation 

complexity will increase significantly too. 

 

5.5 Conclusion 

 
In this chapter, we proposed a modified SNReff criterion that takes into account the 

data-dependence nature of media noise, and designed data-dependent GPR targets 

based on the modified SNReff criterion.  We also proposed modified VA detector that 

employs the data-dependent GPR targets.  Simulation results show that our modified 

SNReff approach achieves performance gain compared to the existing approaches that 

have been developed to combat media noise. 
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(a) 

(b) 

Figure 5.5:  BER performances of different detection approaches for the perpendicular 
recording channel at linear density of 2.5 with media noise.  (a) 3% jitter, and (b) 6% 
jitter. 
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Chapter 6 

Conclusions and Future Work 

 
In this thesis, we investigated the partial-response maximum-likelihood (PRML) 

detection strategy for perpendicular magnetic recording channels at high recording 

densities.  In particular, we developed a novel analytical approach to design optimum 

generalized partial-response (PR) target response for PRML systems.  We also 

proposed an approach to design target for combating media noise. 

 The thesis can be divided into three parts.  The first part includes Chapters 1 and 

2, where we briefly surveyed the existing techniques on the related topics and 

introduced background knowledge of modeling magnetic recording channel, linear PR 

equalization and Viterbi algorithm detection.  In the second part, which consists of 

Chapters 3 and 4, we developed a novel analytical approach for finding optimum target 

based on a cost function that is closely related to the performance of Viterbi detector 

(VD), and then characterized the performance surface of this cost function.  In the last 

part, which is Chapter 5, we proposed the method of designing target to deal with data-

dependant media noise.  The work reported in Parts 2 and 3 are elaborated below. 

 The effective detection signal-to-noise ratio (SNReff) is an equivalent measure of 

the bit-error-rate (BER) performance of VD.  Hence, it is reasonable to claim that the 

target designed by the SNReff criterion can achieve the optimum performance of VD.  
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However, compared to the mean square error (MSE) criterion that is the widely used 

cost function for target design, SNReff appears so complicated that its optimum target 

solution is not yet available.  On recognizing that the SNReff is related to the magnitude 

frequency response of the target and is independent of the target phase, a novel 

approach is proposed in this thesis (Chapter 3) for finding analytical solution of the 

optimum magnitude frequency response of the target that maximizes SNReff.  Besides 

the analytical approach, this thesis (Chapter 4) is also the first to report the 

characterization of the performance surface of SNReff.  The characterization indicates 

that all the optima of SNReff are global optima and take the same magnitude frequency 

response, which is uniquely provided by our analytical solution.  Numerical search 

results corroborate the analytical results.  Further, simulation results show that the 

BER results correlate well with the trends in SNReff, Simulation results also show that 

the targets based on the SNReff criterion achieves the best performance compared to the 

targets from non-SNReff approaches.  With 6-tap target, for example, the SNReff 

approach results in gains of at least 1 dB in terms of effective detection SNR at high 

channel densities over most of the existing approaches, and maximum 0.024 dB over 

the monic constrained MMSE approach.  In some sense, the SNReff approach produces 

a reasonable upper bound for the performance of PRML systems using VD, and the 

monic constrained MMSE approach achieves the near-optimum performance. 

In order to combat media noise that bears significant data-dependence nature, a 

modified SNReff criterion is proposed in Chapter 5 by incorporating noise statistics 

conditioned on data patterns.  Consequently, the VD that uses these GPR targets 

designed by the modified SNReff criterion is expected to result in the optimum 

performance for all the data patterns.  Simulation results show that in media noise 

environment, our approach of using VD tuned to the proposed data-dependent GPR 
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target yields a gain of about 0.5 dB at a BER of 10-4 over the existing approaches that 

aim to deal with media noise, and 0.2 dB over the normal SNReff approach. 

 

Directions for Future Work 

 
There are several issues that remain to be solved to make the reported work more 

complete and effective for signal detection in high-density perpendicular recording 

channels.  The issues concerning the problems attempted in this thesis, are listed as 

below. 

• Development of an efficient adaptive algorithm to implement the target design 

based on the SNReff criterion without requiring the knowledge of channel 

characteristics. 

• Development of a more accurate model of media noise that can accommodate 

large percentages of transition jitter. 

• Development of a more accurate algorithm for estimating the data-dependent 

noise statistics. 

• Investigation of the PRML detection strategy with timing recovery for channels 

with media noise. 

• Investigating the equalizer and target design that exploits the modulation code 

properties. 

• Investigating the application of the proposed approach in other type of 

channels, for example, optical recording channels. 

We believe that serious attempts on the issues listed above will help to make our work 

more useful and extend it to address the problem of signal detection in recording 

channels in a holistic manner. 
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