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Summary 

Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier modulation 

technique relying on the use of multiple orthogonal sub-carriers for high data-rate 

transmissions over frequency selective channels at low complexity. The presence of a 

carrier frequency offset between the transmitter and receiver destroys this orthogonality 

among the sub-carriers, resulting in inter-carrier interference (ICI), causing severe 

degradation in the bit error rate performance. Hence, effective elimination of the carrier 

frequency offset is of paramount importance in OFDM and is the focus of this thesis. A 

flexible OFDM framework is considered where the placement of the activated sub-

carriers is arbitrary and may vary from one OFDM symbol to another. The effects of ICI 

in relation to sub-carrier placement were examined and the maximum likelihood estimate 

(MLE) of the carrier frequency offset was formulated based on a block of received 

OFDM symbols. The MLE is found by searching for the offset that minimises the total 

energy of the null sub-carriers and may become ambiguous in the presence of channel 

nulls. Using our framework, the criterion to avoid this ambiguity through the judicious 

placement of the null sub-carriers was derived. The criterion is more generalized as 

compared to previous work. In addition to this, the mean squared error of the estimator 

was also derived using small perturbation analysis. Simulations carried out verified the 

theoretical results obtained. Furthermore, we proposed a random sub-carrier placement 

strategy coupled with deterministic hopping to cope with the ambiguity problem and 

examined its performance. Lastly, we explored the various search schemes for finding the 

MLE. In particular we found that transforming the problem of minima search to root 

search can reduce the number of search iterations.  
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Chapter 1 

Introduction 

 
 
1.1 Background   

 
The increasing demand for wireless multimedia and future-generation mobile 

communication systems has led to intense interest on modulation techniques that can 

provide broadband transmission over wireless channels. Bandwidth efficiency is one 

of the most important criteria in the design of a communication system. The designer 

must decide how to efficiently utilise the available channel bandwidth in order to 

transmit the information reliably within the transmission power and receiver 

complexity constraints. 

 

For high-speed data transmission over mobile radio channels, multipath propagation 

is predominant and it causes Inter-Symbol Interference (ISI). This is a major obstacle 

to overcome as it causes bit errors at the receiver and results in the degradation in 

performance of a communication system. The degree of degradation is dependent on 

the frequency response characteristics of the channel.  
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For communication in a mobile radio channel, one approach is to employ a single 

carrier system in which the information sequence is transmitted serially at some 

specified rate. In such a channel, the time dispersion is generally much greater than 

the symbol rate, resulting in ISI. In this case, an equaliser, at the cost of increased 

receiver complexity, is necessary to compensate for the channel distortion,  

 

An alternate approach is multicarrier modulation, which is based on the concept of 

channel partitioning. Channel partitioning methods divide a wideband, frequency 

selective channel into a number of parallel narrowband sub channels. The bandwidth 

of each sub channel is set sufficiently small so that the channel frequency response is 

almost constant within the sub channel. Instead of having a single carrier being 

modulated by a single data stream, multiple carriers, each simultaneously modulated 

by a data stream, are employed in a multicarrier system. Equalisation is no longer 

necessary to remove the ISI, as it is negligible. Theoretically speaking, multicarrier 

techniques can yield transmission rates close to the channel capacity [1]. 

 

1.2 Orthogonal Frequency Division Multiplexing 

 

1.2.1 Introduction  

Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation 

technique whose fundamental principle originates from Chang [2] and over the years 

a number of researchers have investigated this technique [3, 4, 5, 6].  
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In contrast with the conventional Frequency Division Multiplexing (FDM), the 

spectrums of the individual carriers in an OFDM symbols are allowed to mutually 

overlap, therefore giving optimum spectrum efficiency. The individual sub-carriers 

Figure 1.1 shows typical spectrums of a OFDM and a FDM signal.  
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Figure 1.1 Typical OFDM (a) and FDM (b) sub-carrier spectrums 

 

In order to maintain orthogonality of the carriers on a symbol interval, the carriers 

must be synthesised in a manner such that they are spaced in frequency at exactly the 

reciprocal of the symbol interval, i.e. 1/Ts. Such synthesis can be accomplished 

perfectly in principle by using the discrete fourier transform (DFT). In such a scheme, 

the serial data stream is first spilt into N streams via a serial to parallel converter. An 

N-point IDFT is then performed to generate the baseband samples to be transmitted. A 

basic cyclic prefix, DFT based OFDM system setup is shown in Figure 1.2.  

 
 

Figure 1.2 - Basic Cyclic Prefix Based OFDM system 
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1.2.2 Applications of OFDM  

The recent evolution of integrated circuit digital signal processing chips has made it 

practical to implement OFDM for high-speed data transfer applications.  The recent 

successful applications in OFDM include: 

 

i. Digital Audio Broadcasting (DAB) 

Standardized by European Technical Standards Institute (ETSI) in 1995, Digital Audio 

Broadcasting (DAB) was the first standard to use OFDM. DAB makes a single 

frequency network and the efficient handling of multipath delay spread resulting in 

improved CD quality sound, new data services, and higher spectrum efficiency. 

 
ii. Terrestrial Digital Video Broadcasting 

A personal area network (pan) broadcasting industry group created Digital Video 

Broadcasting (DVB) in 1993. DVB produced a set of specifications for the delivery of 

digital television over cable, DSL and satellite. In 1997 the terrestrial network, Digital 

Terrestrial Television Broadcasting (DTTB), was standardized. DTTB utilizes OFDM 

in the 2,000 and 8,000 sub-carrier modes. 

 

iii. Magic WAND 

The Magic Wireless ATM Network Demonstrator (WAND) was a result of the 

European Advanced Communications Technology and Server (ACTS) program. A 

prototype of a wireless OFDM-based ATM network was implemented by Magic 

WAND. This prototype largely impacted standards activities in the 5GHz band as a 

result of employing OFDM-based modems and gaining acceptance for OFDM in 

high-rate wireless communications and forming the basis for HiperLAN2. 
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iv. IEEE 802.11a/HiperLAN2 and MMAC Wireless LAN 

OFDM in the new 5GHz band is comprised of 802.11a, HiperLAN2, and WLAN 

standards. In July 1998, IEEE selected OFDM as the basis for the new 802.11a 5GHz 

standard in the U.S. targeting a range of data rates up to 54 Mbps. In Europe, ETSI 

project Broadband Radio Access Networks (BRAN) is now working on three 

extensions for OFDM in the HiperLAN standard: (i) HiperLAN2, a wireless indoor 

LAN with a QoS provision; (ii) HiperLink, a wireless indoor backbone; and (iii) 

HiperAccess, an outdoor, fixed wireless network providing access to a wired 

infrastructure. In Japan, consumer electronics companies and service providers are 

cooperating in the MMAC project to define new wireless standards similar to those of 

IEEE and ETSI BRAN. 

 

1.2.3 Advantages and disadvantages of OFDM 

i. Advantages 

In an OFDM system, orthogonality between the sub-carriers results in high spectral 

efficiency. With its parallel transmission scheme, a wide-band high data rate stream is 

converted into multiple narrow-band, lower bit rate streams. In high data rate serial 

transmission, a deep fade in a mobile channel causes burst errors. In contrast, each 

OFDM symbol generally has a duration that is much longer than the coherence time 

of the channel. As a result, there is only slight distortion to the many data symbols 

which are time interleaved in an OFDM symbol. Hence, the data symbols may still be 

correctly demodulated. The multi-carrier nature of OFDM also allows transmission of 

the same information-bearing signal in many different carriers, permitting frequency 

diversity [7,8].  
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In addition to this, the availability of inexpensive DSP and VLSI technologies has 

made implementation of OFDM systems practical and flexible. 

 

ii. Disadvantages 

Before demodulation of sub-carriers can take place, an OFDM receiver has to perform 

at least 2 synchronization tasks. Firstly, the symbol timing boundaries have to be 

determined to minimise the effects of ISI. Secondly, it has to estimate and correct for 

the carrier frequency offset of the received signal with respect to the receiver because 

such an offset will destroy the orthogonality between the sub-carriers and introduces 

inter carrier interference (ICI). A related problem is phase noise, since a practical 

oscillator produces a carrier that is phase modulated by random phase jitter. As a 

result, the frequency, which is the time derivative of the phase, is never perfectly 

constant, thereby causing ICI in an OFDM receiver. For single carrier systems, phase 

noise and frequency offsets only give degradation in the received signal-to-noise ratio 

(SNR), rather than introducing interference. This is the reason that the sensitivity to 

phase noise and frequency offset are often mentioned as disadvantages of OFDM 

relative to single carrier systems. An OFDM signal consists of a number of 

independently modulated sub-carriers that can result in a large peak-to average power 

ratio (PAPR) when added up coherently. When Ns signals are added with the same 

phase, they produce a peak power that is Ns times the average power. High PAPR is 

also a major problem in OFDM as a large PAPR increases the complexity of the 

analogue-to-digital and digital-to-analogue converters and reduces the efficiency of 

the RF power amplifier employed in the system. 
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1.3 Estimation of Carrier Frequency Offset in OFDM  

 

In OFDM, the presence of a carrier frequency offset causes a loss of orthogonality 

among the sub-carriers and introduces inter-carrier interference [9], causing a 

reduction in SIR and degradation in system performance [10]. Hence estimation and 

removal of the carrier frequency offset is of paramount importance in an OFDM 

system and this has received considerable attention in recent years. 

 

The extensive literature on carrier frequency offset estimation for OFDM can be 

categorised as data-aided [11,12] schemes or non-data-aided (blind) [9, 13-15, 17, 18, 

19, 20] schemes that only rely on the received OFDM symbols. In [11], a training 

method based on the transmission of an OFDM symbol with identical halves was 

proposed and its acquisition range was extended in [12] by using one training symbol 

with more than 2 identical parts. On the other hand, a blind technique was proposed in 

[9] and is based on the maximum likelihood estimate of 2 consecutive and identical 

received blocks.  For this technique, the estimation range is restricted to less than half 

the sub-carrier spacing. In addition to this, carrier frequency offset estimators that 

exploit the cyclic prefix are also presented in [21], which include a minimum variance 

unbiased carrier frequency offset estimator. 

 

Although the ease in handling frequency selective channels constitutes OFDM’s 

primary success factor, most blind carrier frequency offset estimators deal with 

frequency non-selective channels [14, 15, 21]. The generalisation of cyclic carrier 

frequency offset estimators to frequency selective channels is given in [17]. 
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Subspace based approaches relying on the insertion of null sub-carriers at the 

transmitter are derived in [15, 18,19] but did not address the performance of the 

estimators in a frequency selective channel. The consistency of these estimators, as 

well as those proposed in [16, 22], are not assured in the presence of channel nulls, 

which can occur in a frequency selective channel.  

 

The approach in [13] also relies on the insertion of null sub-carriers and the offset 

estimate is found by finding the frequency offset that minimises the total energy of the 

null sub-carriers. To overcome the inherent problem of channel nulls in a frequency 

selective channel, the sub-carriers are deterministically hopped over the block of 

OFDM symbols used for estimation. The estimation range is restricted to the sub-

carrier spacing. In [23], the maximum likelihood estimate based on the received time 

domain samples of the received OFDM symbol is formulated and is found to coincide 

with the estimate in [13]. The criteria that determine if a particular sub-carrier 

placement will cause the inconsistency of the estimator when applied in a frequency 

selective estimate are also derived.  

 

In this thesis, the maximal likelihood approach in [13, 23] was adopted as it is semi-

blind where only the placement of the activated sub-carriers of the transmitted OFDM 

symbol needs to be known to the receiver. 
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1.4 Thesis organisation 

The organisation of this thesis is as follows: 

Chapter 1 - The concept of OFDM is introduced together with the critical problem of 

carrier frequency offset estimation. A review of the available techniques follows and 

an account of the thesis outline and contribution is given. 

 

Chapter 2- The signal model for a general and flexible OFDM system used in this 

thesis is formulated and the effect of a carrier frequency offset is discussed with 

respect to the placement of the activated sub-carriers. 

 

Chapter 3 - The maximum likelihood estimator of the carrier frequency offset, the 

criterion to avoid the ambiguity of this estimator in the presence of channel nulls as 

applied to our general OFDM system, is derived. This is followed by a physical 

interpretation of the criterion  

 

Chapter 4 – The theoretical derivation for the mean squared error of the estimator is 

derived using small perturbation analysis. Simulation studies for an AWGN channel 

and Rayleigh channel are presented and compared to the theoretical results. A random 

placement of sub-carrier coupled with deterministic hopping is proposed and its 

performance is analysed. 

 

Chapter 5- The techniques to search the frequency offset estimate efficiently are 

explored and a comparison of their performances made.       

 

Chapter 6- Concludes the findings in this thesis 
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1.5 Contribution of Thesis  

 

We have adopted a flexible OFDM system where the sub-carrier placement is 

arbitrary and is allowed to vary from one OFDM symbol to another. The signal model 

formulated and the derivations are based on this general model and are more 

generalised when compared to those in [13] where the carrier placement follows a 

regulated pattern and [23] where the carrier placement is the same for all OFDM 

symbols used in estimation of the carrier frequency offset. We also noted that the sub-

carrier placements that minimise the average intercarrier interference coincide with  

those that minimise the estimator’s mean squared error.    

 

In [23], a criterion was derived to determine if a particular carrier placement can 

avoid estimator ambiguity in the presence of channel nulls. However, this criterion 

was derived for a system where the sub-carrier placement was fixed for all OFDM 

symbol used for estimation. We derived a more general criterion for our system that 

can be used to explain explicitly how deterministic hopping in [13] can also help to 

cope with the ambiguity of the estimate due to the channel nulls. Furthermore, despite 

addressing the problem of channel nulls, there has been little experimental evidence to 

suggest that such channel nulls would indeed pose a significant problem when the 

estimator is applied to a Rayleigh channel. We show via simulations, the probability 

of such occurrences, and that the occurrence of large estimate errors coincides with 

the channel null occurrence predicted by the derived criterion. Moreover though [13] 

suggests the use of deterministic hopping to combat the channel null problem, the 

periodic placement of the activated sub-carriers meant that the estimation range is 

restricted unless all carriers are placed consecutively and then deterministically 
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hopped. We propose an alternate placement strategy, where the placement of the sub-

carriers is made pseudo-randomly and then the allocation pattern is deterministically 

hopped from symbol to symbol. We compare the performance of the proposed 

strategy to that in [13]. 

 

Finding the frequency offset estimate involves searching for the global minimum of a 

cost function that contains multiple minima. The number of local minima is typically 

the number of sub-carriers in the system. Little has been mentioned on how this 

global minimum can be searched efficiently. The gradient descent method proposed in 

[13] is only suitable for frequency estimation within a sub-carrier spacing and its rate 

of convergence is very sensitive to the descent step. In our work, we explore the 

search techniques that are more efficient than uniform exhaustive search and do not 

require the setting a weight parameter that affects the convergence rate. In particular, 

we suggest transforming the problem of minima search to that of root search by taking 

the 1st and 2nd derivative of the cost function. This is practically feasible because these 

derivatives can be implemented in a FFT like manner. We found that the number of 

iterations required to reach convergence is the best among the schemes considered. 
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Chapter 2 

Signal model and the effect of a carrier 

frequency offset 

 

In this chapter, we first describe the details of the OFDM system that will be 

considered for the estimation of the carrier frequency offset. We introduce the 

notation used and discuss the generation of the OFDM signal samples for 

transmission, the impairments to this signal due to channel effects like multipath 

propagation, additive noise and frequency offset, and how the correction of the 

frequency offset at the receiver is performed. Then we examine the effects of a carrier 

frequency offset on the system performance. 

  

2.1 Signal Model   

 

The system considered in this thesis is general as we consider a partially loaded 

system, with some sub-carriers being modulated by data symbols while other sub-

carriers are unmodulated, termed as activated and null sub-carriers respectively. The 

placement of the activated and null carriers are considered to be arbitrary and can vary 

from one OFDM symbol to another. 
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Figure 2.1 shows the basic system structure of an OFDM system with a total of N sub-

carriers. Carrier frequency offset estimation is performed using Nb OFDM symbols 

observed at the receiver.   

 

The set of AN activated and NN  null sub-carriers for the mth OFDM symbol will be 

denoted by mA,Ω  and mN ,Ω  respectively, where { }1,...,1,0 −∈ bNm , NNN NA =+ . 

The data symbol used to modulate the kth sub-carrier, mAk ,Ω∈ , is denoted by [ ]kSm . 

We use the equivalence that [ ] 0=kSm for mAk ,Ω∉  for the null carriers. Modulation 

is assumed to be of the PSK type.  

 

Denoting OFDM symbol period (excluding cyclic prefix) to be T, the sampling 

interval is given by 
N
T . The tth transmitted baseband signal sample, corresponds to 

the nth sample of the mth OFDM symbol in the pth estimation block. It is obtained by 

performing a N-pt IDFT operation on the data symbols, and then appending a cyclic 

prefix of length L at the start of the IDFT output samples, yielding    

 [ ] [ ]∑
Ω∈

=
mA

N

k

knj
mpmp ekS

N
nx

,

2

 1
,,

π

      (2.1) 

for 1 ..., ,...,0 ,1 −+−= NLn , { }1...1,0 −∈ bNm , { }∞∞−∈ ,...p  

 

After passing through the channel and experiencing a carrier frequency offset, the 

received baseband samples, in the absence of AWGN can be expressed as  

[ ] [ ] [ ]∑
∞

−∞=

−=
τ

tν
N
πj

p,mp,m
oeτtcτxny

2

     (2.2) 

for 1 ..., ,...,0 ,1 −+−= NLn , { }1...,,1,0 −∈ bNm , { }∞∞−∈ ,...p  
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where  

( )( ) nLNmpNt b +++=  ,  

( )( ) ''' nLNmNp b +++=τ , { }∞∞−∈ ,...'p , { }1,...0' −∈ bNm , { }1,...' −−∈ NLn  

[ ] [ ] [ ] [ ]tgthtgtc RT ∗∗= , is the baseband channel impulse response between 

the receiver and transmitter;  

f∆  is the actual carrier frequency offset 

fTvo ∆= , is defined as the relative frequency offset, ov  lies in the full 

acquisition range of –N/2 to N/2. 

 

Substituting (2.1) into (2.2), we obtain, for n=-L, …, N-1, 

[ ] [ ] [ ]

[ ]

( ) ( )( )( ) ( )[ ] t
N

b

p

N

Ln k

knj
mp

N

m

τ

tν
N
πj

k

knj
mpp,m

o

mA

N
b

o

mA

N

nnLNmmNppc

ekS
N

eτtcekS
N

ny

νπ

π

π

2j

'

1

'

'
','

1

0'

2
'

','

e'''.

   1

 1

',

2

',

2

−++−+−

=

−=

∑ ∑ ∑∑

∑ ∑
∞

−∞=

−

−= Ω∈

−

=

∞

−∞= Ω∈

    

          (2.3) 

 

In this thesis, we assume the channel to have a finite duration impulse response of 

order L, i.e. [ ] 0=nc  for Lnn >< ,0 . As depicted in Figure 2.2, ISI occurs only to 

received samples for n=-L to -1.  
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At the receiver end, the cyclic prefix is removed. Hence, for n = 0, 1…N-1, the 

received samples, [ ]ny mp, , are independent of all transmitted OFDM symbols, other 

than the corresponding mth OFDM symbol in the pth estimation block transmitted. 

Hence, (2.3) can be further simplified to yield 

[ ] [ ] [ ]∑∑
−

−=Ω∈

−=
1

'

'
2

j

,

2

',

' e 1 N

Ln

knj

k

t
N

mpp,m
N

mA

o ennckS
N

ny
πν

π

   (2.4) 

 

Replacing 'nnr −= , and using the properties that [ ] krj Nerc
π2− is periodic with N and 

[ ] 0=nc  for Lnn >< ,0    

[ ]
( )

[ ] ( )

[ ]

[ ]kCe

erce

ercennc

knj

L

r

krjknj

rnkj
Nn

Lnr

kn
N

jN

Ln

N

NN

N

π

ππ

π
π

2

22

2

0

1'21

'

 

  '  

=

=

=−

∑

∑∑

=

−

−
−−

+=

−

−=

    (2.5) 

ISI is confined within 
cyclic prefix 

By Superposition Theorem, 

t 
cyclic  
prefix 

*

t 

t 

*

*

x[n] y[n] c[n]

 
Figure 2.2 – Diagram depicting channel effects 

Channel duration 
shorter than  
cyclic prefix 
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where [ ]kC  is the N-point DFT of the channel impulse response, [ ]nc . This results in 

the simple expression given by.  

[ ] [ ] [ ] t
N

k
mpp,m

o

mA

kCkS
N

ny
νπ2j

, e 1

',

∑
Ω∈

=      (2.6)  

 

Hence, by appending a cyclic prefix of length greater than the channel impulse 

response at the start of the transmitted OFDM symbol and removing the cyclic prefix 

at the receiver end, ISI is effectively removed.  

We assume the signal is received in the presence of AWGN, [ ],p mw n ,  which is 

complex noise with its real and complex components being uncorrelated (hence 

independent) and have equal variance of 2

2
1

Wσ . Hence the received signal samples are 

given by 

 [ ] [ ] [ ]nwnynr p,mp,mp,m +=       (2.6a) 

 

The effects of a carrier frequency offset is corrected by multiplying the received time 

domain OFDM symbol with a frequency offset correction term thus we have, 

[ ] [ ] tν
N
π-j

mpp,m
cenrnz

2

,  =       (2.7) 

For demodulation of the OFDM symbol, a N-pt DFT is applied to (2.7) and this gives 

[ ] [ ] [ ]kWkYkZ p,mp,mp,m +=       (2.8a) 

where 

[ ] [ ] ( )( )[ ] kn
N
π-jN

n

LNmpNbnν
N
π-j

p,mp,m eenykY c
21

0

2

∑
−

=

+++
=

 
   (2.8b) 

[ ] [ ] ( )( )[ ] kn
N
π-jLNmpNbnν

N
π-jN

n
p,mp,m  e enwkW c

221

0

+++−

=
∑=     (2.8c) 
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Due to the circular symmetry of the complex AWGN, the statistics of [ ],p mW k  is 

unaffected by the frequency offset correction cν  with [ ], 0p mE W k  =   and 

[ ] 2 2
,p m wE W k Nσ  =  

. 

 

From (2.5) and (2.8b), we can see that in the absence of a frequency offset, and 

consequently the frequency offset correction, the demodulated symbols are given by 

[ ] [ ] [ ] [ ], , ,p m p m p mZ k C k S k W k= +      (2.9) 

Hence, provided that the channel impulse response is shorter than the cyclic prefix, 

the demodulated data symbol is simply the data symbol multiplied by the channel 

frequency response coefficient (evaluated at the sub-carrier frequency) corrupted by 

additive noise.   

 
 

 
2.2 Effect of Frequency Offset 
 
 
In this sub section, we examine the effect of a frequency offset to an OFDM system. 

We consider only a single block of Nb OFDM symbols by setting p=0 and omitting it 

in subsequent notation. In the scenario where no frequency offset correction is 

performed (vc = 0), after DFT demodulation of (2.6), we obtain the signal component 

as, 

[ ] ( )[ ] [ ] [ ]

( ) [ ] [ ] ( )∑

∑ ∑

Ω∈

+

−

= ∈

++

−+=











=

mA

o

mA

o

k
om

LNmν
N
πj

N

n

nk
N
π-j

Ωk

nk
N
πj

m

mLNnν
N
πj

m

kkvdirckSkCe
N

eek'Sk'Ce
N

kY

,

,

'

2

1

0

2

'

'22

.' .''1

1

 

(2.10a) 
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where 

( ) ( )
( )xN

N
πjN

n

xn
N
πj

e
Nx

xexdirc
11

0

2

/sin
sin −−

=








== ∑ π

π     (2.10b) 

Eq (2.10b) is obtained using the property of Geometric progression. 

 

The demodulated signal component (2.10a) can be expressed as a sum of the signal 

component, [ ]kX m , and an intercarrier interference (ICI) component, [ ]kI m , 

where 

[ ] [ ] [ ] ( ) ( )









=

+LNmν
N
πj

mm
oevdirc

N
kSkCkX

2

0
1

    (2.11a)
 

[ ] [ ] [ ] ( ) ( )LNmν
N
πj

kk
k

omm
o

mA

ekkνdirckSkC
N

kI
+

≠
Ω∈ 















−+= ∑

2

'
' ,

'.''1
  (2.11b) 

 

The demodulated signal in the presence of AWGN, (2.8a), can be therefore be written 

as the sum of the useful signal, ICI and AWGN components.  

[ ] [ ] [ ] [ ]kWkIkXkZ mmmm ++=      (2.12) 

 

From (2.11a), we see that the presence of a frequency offset reduces the useful signal 

amplitude and this reduction is independent of the position of the activated carriers. In 

addition, the loss of orthogonality between the OFDM carriers causes leakage from 

other activated sub-carriers to sub-carrier with index k, introducing ICI as given by 

(2.11b). 

 

Evaluating the statistical properties of [ ]kX m  and [ ]kI m , 
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[ ][ ] [ ] [ ][ ] ( ) 





= 2

02
22 1 vdirc

N
kSkCEkXE mm

    (2.13) 

[ ][ ] [ ] [ ] [ ] [ ][ ]

( )( ) ( )( )kkνdirckkν .dirc

kSkCkSkCE
N

kIE

oo

kk
k

kk
Ωk

*
m

*
mm

mA mA

−+−+

= ∑ ∑
≠
Ω∈

≠
∈

2
*

1

22112
2

.

1

1
,1

2
,2    

(2.14)
 

Assuming the data symbols are uncorrelated and have zero mean and variance 2
Sσ , 

i.e.  

 [ ] [ ][ ] 011 =kSkCE m        (2.15a) 

[ ] [ ] [ ] [ ][ ] [ ]21
22

2211 kkδσCkSkCkSkCE S
*
m

*
m −=     (2.15b) 

where  

 [ ][ ]22  kCEC =        (2.15c) 

Eq (2.14) can be simplified as  

[ ][ ] ( )( )















−+= ∑

≠
Ω∈
kk

k
oSm

mA

kk
N

kIE
'
'

2
2

222

,

 'dirc1C νσ    (2.16a)  

or equivalently 

[ ][ ] ( ) ( )( )















−+
= ∑

≠
Ω∈
kk

k o
oSm

mA
NkkN

kIE
'
'

22
2222

,
/'sin

11sinC
νπ

πνσ

 (2.16b)

 

using (2.10b) and ( )[ ] ( )oo kk πννπ 22 sin'sin =−+  

 

If the placement of the sub-carriers is arbitrary, then to minimise the average 

normalised ICI, the following needs to be minimised: 
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Define  

 ( )( )















−+= ∑∑

≠
Ω∈Ω∈
kk

k
o

kmA
mavg

mAmA

kkdirc
NN

ICI
'
'

2
2

,
,

,,

 '1 1 ν    (2.17) 

We examine the term in the summation in (2.17). Define 

( ) 2
2  1)( pdirc

N
pf o += ν   Ζp∈     (2.18) 

 

This represents the ICI contribution by one activated sub-carrier on another, with p 

being the distance between them. Figure 2.3 shows the plots of the f(p) for N=16, with 

vo= ±0.4. The function is periodic with N and decreases sharply (superlinearly) as p 

increases towards N/2 before increasing sharply as p increases towards N. 
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Figure 2.3 -  Plot of f(p) 
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Consider a system with N sub-carriers and 2 activated sub-carriers, labelled A and B, 

which are placed at carrier index k1 and k2 respectively. We assume that the carrier 

frequency offset is within half a sub-carrier spacing but is equally probable to be 

positive or negative.  

 

It is easy to see that the ICI power on A by B, |Im[k1]|2, is equal to the ICI power on B 

by A, |Im[k2]|2. The magnitude depends on the circular distance between the A and B, 

as given min[|k1 – k2| , N-|k1-k2| ]. ICIAvg,m is minimised when A and B are placed 

maximally apart at a distance of N/2 as shown in Figure 2.4a. 

Next, we consider the case where there are 3 activated carriers, A, B, C placed at 

equidistance d apart as shown in Figure 2.4b. Since f(d)- f(d+|δ|) < f(d-|δ|)- f(d), for 

|δ|< d  and d+|δ|< N/2, the penalty incurred in moving the sub-carrier A towards B by 

|δ| is higher than the reduction in penalty as sub-carrier A is being shifted away from 

the C by the same distance |δ|. Using this argument, and fixing the placement of C, 

shifting either A or B or both would result in the increment in the ICIavg,m.  

 

For example, shifting A and B towards C would increase the ICI power on C by A and 

B (and vice versa). This increment is larger than the decrement in the ICI power on A 

and B (and vice versa) as they are shifted away from each other. Hence, ICIavg,m is 

minimum when A, B and C are placed at equidistance apart as in the case of 2 sub-

carriers. 
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Figure 2.4 – Placement of activated sub-carriers to minimise ICI 

 

As Figure 2.2 shows that the ICI contributed by a consecutive activated sub-carrier is 

much higher than that at other positions, this suggests that ICIavg,m is maximum when 

all the activated sub-carriers are consecutively placed and is minimum when the 

activated sub-carriers are equally spaced, if possible. However, since the sub-carriers 

can only be placed at discrete positions, the following approach to minimise ICIavg,m is 

proposed. 

 

1) When the number of null sub-carriers exceeds the number of activated 

sub-carriers, the activated sub-carriers should be distributed at 

equidistance apart 

2) When the number of activated sub-carriers exceeds the number of null 

sub-carriers, the null sub-carriers should be distributed at equidistance 

apart. This will minimise the number of consecutive activated subcarriers. 

B

A 

B

CICIAvg,m is minimum when 
A and B are placed at 
equidistance apart 

(a) 

Moving A and B towards C 
increases ICI of C (and vice 
versa) on B. This is larger 
than the reduction of ICI on 
A and B by each other.

(b) 
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To test the validity of the approach, systems with N= 8 and 16, 17, 32 sub-carriers 

were considered. By varying the number of activated sub-carriers, NA,m,  from 1 to N  

and testing all possible combinations of activated sub-carriers placement using (2.16), 

the suggested approach was found to be valid and minimises ICIavg,m among all 

possible sub-carrier placement. 

 

In another simulation, a system with N=256, NA = 128 and NN =128 was considered. A 

group of NX consecutive activated sub-carriers is placed next to a group of NX 

consecutive null sub-carriers as shown in Figure 2.5. The values of NX= 1, 2, 4, 8, 16, 

32, 64 and 128 were tested.  

 

 
 

Figure 2.5 – Placement of sub-carriers for system with alternate 
clusters of activated and null sub-carriers 

 
 
Figure 2.6 shows the plot of ICIAvg,m averaged over mA,Ω , against NX for various 

frequency offsets, vo =0.1, 0.2, 0.3, 0.4 and 0.5. The solid line represents the 

theoretical values while the markers denote the simulated results. It can be seen that 

ICIAvg,m  is minimised when NX =1, that is, when the activated and the null carriers are 

alternately placed. As more and more activated sub-carriers are clustered together, 

ICIAvg,m increases. 

 

… 
× × × ×

…
… …

NX NX NX 
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Figure 2.6 – Plot of ICIAvg,m against Nx. 

 

Figure 2.7 shows the plot of variance of normalised E[|Im[k]|2] among the activated 

sub-carriers, for various frequency offsets, vo. = 0.2, 0.3, 0.4 and 0.5. The variance is 

minimum for NX =1 as there are no immediate neighbouring activated sub-carriers 

contributing significant ICI. For small values of Nx, the number of activated sub-

carriers contributing significant ICI is small, causing the ICI to vary much among the 

activated sub-carriers. As NX increases, the number of activated sub-carriers causing 

significant ICI increases and the averaging effect meant that this variation decreases 
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Figure 2.7 - Variance of normalised E[|Im[k]|]2 over mA,Ω  against NX 
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2.3 Theoretical Bound for Signal-to-Interference Ratio 

  

In [9], a numerical upper bound for [ ][ ]2kIE m  was determined for case where the 

activated carriers are consecutively placed, i.e. { }1... ,1 ,0 ,, −=Ω mAmA N by considering 

that the summation in (2.16b) is bounded as follows  

( )( ) ( )( )∑∑
≠
=

≠
= −+

≤
−+

1-N

'
0'

2

1-N

'
0'

2  /'sin
1

 /'sin
1mA,

kk
k o

kk
k o NkkNkk νπνπ

  (2.19)

 

 

For the general system considered in this thesis, we note that we can still apply the 

similar inequality that  

( )( ) ( )( )∑∑
≠
=

≠
Ω∈ −+

≤
−+

1-N

'
0'

2

'
'

2  
 /'sin

1 
 /'sin

1

,
kk

k o
kk

k o NkkNkk
mA

νπνπ
  (2.20) 

Using the property that ( ) /sin2 Nxπ is periodic with period N, the summation is 

shown to be independent of k, as seen below. 

( )( ) ( )( )

( )( )∑

∑∑

≠
=

+

≠
=

≠
=

+
=

+
=

−+

1

0
1

22

1

0

22

1

0
22
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11

/sin
11

sin
11
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p
p o

kN-

p
kp o
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kk
k o

 NpνN

 NpνN/Nkk'νπN

π

π

 (2.21)  

For this analysis, we restrict the frequency offset oν  to be within ±0.5 since exceeding 

this range, the correspondence between the demodulated sequence Zm[k] and the 

original sequence Xm[k] for each k will not be distinguishable.  
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The summation (2.21) is an even function w.r.t vo. and it has been numerically shown 

that the summation is monotonically increasing with |vo|. In addition, its variation with 

N is negligible for N≥256 (usually less than 10-6) [26]. By the numerical evaluation,   

( )( ) 5.0

1-N

1
220

5947.0
 /sin

113333.0
=

=
=

≤
+

≤ ∑
oo

p o NpN νν νπ   (2.22)
 

Hence 
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We define the average Signal to Interference Ratio as  
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Using the inequality (2.22), 
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(2.25) 

where the signal to noise ratio is defined as 22

22

ησN
sCSNR = .  

Figure 2.8 shows the simulated and the lower bound as given by (2.24) for a half 

loaded system with N=256, NA = 128 and activated sub-carriers being consecutively 

placed. The results were averaged over 100 trials.   
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Figure 2.8 – Plot of SIR against vo 
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Figure 2.9 – Plot of SIR against vo (for various NX) 
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Figure 2.9 shows the simulated and the lower bound as given by (2.25) for a half 

loaded system with N=256, NA = 128. The placement of the sub-carriers is as shown 

in Figure 2.4 where each cluster of NX = 1, 2 , 4, 8, 16, 32, 64 and 128 activated sub-

carriers alternates with the same number of null-sub-carriers. The results were 

averaged over 100 trials. As expected, the best SIR is achieved when the carriers are 

spaced equally apart. SIR decreases as the number of clustered activated sub-carriers, 

NX increases. This reduction in SIR (with the increase in NX) is less significant when 

NX large. 
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Chapter 3 

Estimation of carrier frequency offset  

 

 

In this chapter, we formulate the deterministic maximum likelihood estimate (MLE) of 

the carrier frequency offset based on a received block of Nb OFDM symbols. As 

described in Chapter 2, the placement of the activated and null-carriers are arbitrary 

and are allowed to vary for each OFDM symbol. The criterions to avoid the ambiguity 

in the estimate are derived based on this setup and a physical interpretation of the 

criteria was given. 

   

 

3.1 Deterministic maximum likelihood estimation of carrier 
frequency offset 

 

The deterministic MLE approach was discussed in [23]. For our system where the 

activated and null sub-carriers are placed arbitrarily for each OFDM symbol, we follow 

the procedure in [24] to formulate the MLE of frequency offset, vo. 
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We consider the channel, symbols and frequency offset, vo, to be unknown but 

deterministic, and the pdf of received (observed) symbols is given by  
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Or in matrix notation for easier manipulation 
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. denotes the Frobenius Norm. 
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r contains the Nb observation vectors, each belonging to a OFDM symbol (time 

domain) with the cyclic prefix removed. We assume that the frequency offset, vo 

remains constant over the Nb symbols. The MLE of ν0 and kmp , , denoted by 0v̂  and 

kmp ,ˆ  respectively, mAk ,Ω∈ , would therefore be given by the values of νc and kmp ,  that 

maximises (3.2).  

 

This is equivalent to minimising the function 
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Note that for a given value of νc, the function is quadratic w.r.t kmp , . Hence, the 

minimum is obtained by finding the value of kmp , which causes the partial derivative to 

be zero. 
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Equating (3.4) to zero and finding mp . 
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where we use the property that ( ) ( )( ) ( ) IWWWθθW
N
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Finally, substituting (3.5) into (3.3), we obtain the MLE of the frequency offset, v0, as  

the value of νc that minimises 

( )( ) ( )( )

( )

( )

( ) ( )( )∑

∑

∑

∑

−

=

−

=

−

=

−

=







 −−=

=

=







−

1

0

2

1

0

1

0

1

0

2

1

1

b

b

b

b

N

m
m

HH
mm

H
m

N

m
m

HH
m

N

m

H

N

m
m

H
mmm

diagdiag
N

I

diagdiag
N

rθWWθr

ΛrΛr

ΓΓ

rWθWθr

    (3.6) 

where 

( )( ) ( )( ) m
H

mm diagdiag
N

I rWθWθΓ 













−=

1  

( ) ( )( )θWWθΛ −−= diagdiag
N

I H
mm

1  

Noting that ΛΛ =H , and using the fact that the matrix is idem-potent, i.e. ΛΛ =2 we 

obtain the MLE of ν0 as the value which minimises  
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or equivalently, 
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Let the first and second term in (3.8) be A and B respectively, i.e. 
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.  

A is independent of vc and B is always greater or equal to zero. The MLE of v0 can 

therefore be further simplified as  
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Rewriting (3.9a) and using the Parseval’s Relation,   
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Substituting (3.11) into (3.8), B will be eliminated and the MLE is equivalent to 
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Summary of Procedure for finding the MLE of vo 

1. First multiply the received samples, [ ]nrm  with 
( )[ ]nmLN

N
j ce

++− νπ2

, where νc is 

an estimate of the frequency offset, vo , to yield the sequence [ ]nzm  

2. Perform a N-pt DFT on the corrected received sequence to yield [ ]kZm . 

3. Conducting a search over vc, the MLE of vo is the value vc that  

a) maximises the sum of the energy of the activated sub-carriers as 

given by  ( )czA vJ ,  or equivalently 

b) minimises the sum of the energy of the null sub-carriers  as given by 

( )czN vJ , . 

where 
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The factor of 1/Nb is introduced to both (3.15a) and (3.15b) to 

normalise the cost function against the number of blocks used for 

estimation.  
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The equivalence in both MLE criterions is due to the fact that altering the frequency 

offset correct term simply introduces an evolving phase shift to the received samples. 

The energy of the received samples is unaltered by this evolving phase shift. The total 

energy of the received samples (in time domain) is the sum of the energy of the 

activated sub-carriers and the energy of the null sub-carriers (in frequency domain), 

scaled by a factor of N. Therefore, finding the value of vc which maximises the energy 

of the activated sub-carriers is equivalent to finding the value of vc which minimises 

the energy of the null sub-carriers.  

 

We note that the cost functions given by (3.15a) and (3.15b) can also be viewed as 

functions of ve defined as frequency offset estimate error, i.e. ve = vc - vo. Figure 3.1 

shows the normalised (by 2
Sσ ) cost functions as given by (3.15a) and (3.15b). The 

number of sub-carriers is N=64, the number of activated sub-carriers is NA=32. The 

activated sub-carriers are placed consecutively from index 0 to 31. The channel is ideal 

and there is no additive noise.  

 

It is obvious from the figures that the total null and activated sub-carrier energies add 

up to a constant (32) for all frequency offsets. 
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Figure 3.1 – Plot of cost functions based on total activated sub-carrier 

energy and total null-sub-carrier energy 
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Figure 3.2 – Plot of cost function based on null-sub-carrier energy from ve= 

-4 to 4 
 

Figure 3.2 shows a close-up of the cost function for the frequency offset from -4 to +4. 

It can be seen that when the frequency offset ve exceeds ±0.5, the cost function has 

multiple local minima, which poses a problem during the search for the global minima. 
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Since we allow the placement of the sub-carriers to be arbitrary, the general shape of 

the cost function would also vary depending on the placement of the null-sub-carriers. 

Figures 3.3 and 3.4 show 2 examples of the cost function for the same system with 

N=64, NA=32 and the activated sub-carriers placed in the manner as marked by the 

solid bars at the bottom of each figure. Note that the shapes of the cost function are 

drastically different. 
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Figure 3.3 – Plot of cost function based on null-sub-carrier energy for a 

regular sub-carrier placement 
 



Chapter 3 – Estimation of carrier frequency offset 

 39

-30 -20 -10 0 10 20 30
0

5

10

15

20

25

30

ve

no
rm

al
is

ed
 J

N
,Z

(v
e)

JN,Z(ve)

activated sub-carrier placement

 
Figure 3.4 – Plot of cost function based on null-sub-carrier energy for a 

irregular sub-carrier placement 
 
 

Since the cost function is the sum of all the energy that spills into the null sub-carriers, 

averaged over the Nb OFDM symbols, we examine the contribution of each null sub-

carrier to the cost function. Denote the energy of the null sub-carrier placed at the lth 

position, averaged over Nb blocks as  
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Expanding (3.16a) using (2.8a), (2.8b) and (2.6), we obtain 
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Based on the discussion in Chapter 2, it is expected that most of energy leakage would 

be in null sub-carriers that are positioned near the activated sub-carriers. Figure 3.5 

shows the distribution of ( )ezN vkE ,,  w.r.t to k at a frequency offset of ve = 0.4, for a 

system with N=256 sub-carriers, half loaded i.e. NA = 128, and the activated carriers are 

positioned at sub-carrier indices {0,1,…127} for all OFDM symbols. 
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Figure 3.5 – Plot of ( )ezN vkE ,,  against null sub-carrier index, k for 

different v 
 

For frequency offsets that are within a sub-carrier spacing, the contribution to the cost 

function decreases as the null sub-carriers become farther away from the activated sub-

carriers, a simpler cost function can be adopted by only considering null sub-carriers 

that are placed within distance p to the nearest activated carrier. This cost function is 

therefore no longer a MLE based on the observed OFDM symbol (time domain). 

Figure 3.6 illustrates the null sub-carriers that will be used in the computation of the 

modified cost function.  
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Note that when the distance between 2 activated sub-carriers is less than p, all null sub-

carriers (if they exist) in between the 2 activated sub-carriers would be used for the 

computation of the cost function. 

 

 

 

 

Figure 3.6 – Example of null sub-carriers used in computation of modified cost function  
 
Denote this modified cost function as. 
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where mN ,mod
Ω  is a subset of mN ,Ω . An element, k, in mN ,Ω  is also an element in 

mN ,mod
Ω  if min[ |k-l|, N-|k-l| ] ≤ p for at least one element l in mA,Ω . 

 

In the case of where the activated sub-carriers are placed from 0 to NA-1, the null sub-

carriers to be considered for the cost function would be NA, NA + 1… NA + p and NA + 

p, NA + p + 1, …, NA – 1 and the cost function would be given by 
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Figure 3.7 shows the sub-carriers that are being utilised for the cost function 

 

 

 
Figure 3.7 – null sub-carriers used in computation of ( )ezN vJ ,mod

 in the case where the 
activated sub-carriers are placed consecutively from 0 to NA –1 
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Figure 3.8 shows the plot of the modified cost function, ( )ezN vJ ,mod
 against frequency 

offset (within a sub-carrier spacing) for different values of p. The placement of the 

activated sub-carriers is consecutive in this case. Note that in this case, as p increases, 

the increment to the cost function becomes less significant. 
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Figure 3.8 - Plot of ( )ezN vJ ,mod

 for frequency offset within sub-carrier spacing 

 

Figure 3.9 shows the plot of ( )ezN vJ ,mod
 when the frequency offset is over the entire 

range for different values of p. Note that the modified cost function is different from 

that in Figure 3.1. The region where the modified cost function remains relatively 

constant corresponds to the frequency offsets where the activated sub-carriers are 

rotated into the bins of null sub-carriers that are not considered in the computation of 

the cost function. The modified cost function can still be used for offset estimation over 

the maximum range of ±N/2 in this case, since there is only one global minimum point 

corresponding to ve=0. 
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Figure 3.9 - Plot of ( )ezN vJ ,mod

 for frequency offsets over entire range of -N/2 to N/2 
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3.2 Cost Function Ambiguity Due to Channel Nulls 

In section 3.1, we formulated the MLE of vo as the frequency offset correction, vc, that 

maximises the energy of the activated sub-carriers or minimises the energy of the null 

sub-carriers. In this section, we discuss the ambiguity that may arise through the use of 

such energy cost functions. We adopt the same approach as in [23] for our general 

OFDM system, but use the null-carrier cost function instead of the activated carrier 

cost function that was used in [23]. The criteria we derived to avoid the cost function 

ambiguity are more generic and allows a greater degree of freedom in the placement of 

the activated sub-carriers within an OFDM symbol.  

 

3.2.1 Derivation of criterions to avoid Cost Function Ambiguity 

We consider the minimization of the cost function based on the null sub-carrier energy 

and examine the properties of ( )ezN vJ ,  in the absence of noise. Note that 
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Denoting the set of all integers as Z, we note that  

1) ( ) ) mod ( Nxdircxdirc =  

2) ( ) NxNdirc = ; Ζ∈x  

4) ( ) 0 =xdirc ;  Ζ∈x  and 0 N mod x ≠  

5) ( ) Nxdirc <<  0 ; Ζ∉x  
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The cost function is always greater or equal to zero. It is minimum (at zero) when the 

frequency offset estimate error is zero, i.e. the frequency offset estimate coincides with 

the actual frequency offset. When the error is non-integer in value, the cost function is 

greater than zero.  

 

However, in the case where the error is an integer, i.e. Ζ∈ev , it is possible that 

( ) ( ) 00,, == zNezN JvJ . This results in ambiguity in the cost function, since there are 

now multiple global minima. It is no longer possible to differentiate between the 

correct global minimum at ve=0 and the other erroneous global minima.  

 

To further investigate the occurrence of this problem, we use the property, 
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where 

 [ ] [ ] [ ]kSkCk mm =Ψ        (3.21b) 

  

At v=0, the cost function is zero because ( )[ ] 0N mod ' =− kkδ  as mAk ,Ω∈ , mNk ,' Ω∈  

are elements from disjoint sets, i.e. k –k’ ≠ 0. 

 

Ambiguity in the cost function arises when the cost function is zero for some non-zero 

integer value(s) of νe. Examining (3.21a) which involves a summation of terms, the 

ambiguity occurs when the product   
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This ambiguity is avoided if for at least one integer mAk ,Ω∈ , m = 0,1…Nb-1,    

  [ ] 0≠Ψ km ;     AND    (3.23a) 

  ( )[ ] 0N mod '
,'

≠−−∑
Ω∈ mNk

evkkδ ; Ζ∈∀ ev    (3.23b) 

 

(3.23a) is solely dependent on the location of the channel zeros, since 

[ ] [ ] [ ]kSkCk mm =Ψ ;   AND  

[ ] 0≠kSm ;   ∀ mAk ,Ω∈ , m = 0,1…Nb-1 
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For a FIR channel of order L, the discrete channel impulse response is given by 

[ ] [ ]∑
=

−=
L

n
n nlclc

0

δ        (3.24a) 

( ) n

zczC
L

n
n

−

∑
=

=
0        (3.24b) 

[ ] ( ) k
N

j
ez

zCkC π2

=
=        (3.24c) 

C(z) is a polynomial of order L and contains at most L zeros. Correspondingly the DFT 

of the channel impulse response, C[k] can contain at most L zeros coinciding with the 

centre of the DFT frequency bins.  

 

We assume that the channel to be unvarying over the Nb OFDM symbols. A FIR 

channel of order L would result in [ ]kmΨ  being zero for at most L distinct values of k, 

m =0, 1,… , Nb-1. Hence, to satisfy condition (3.23a), there must be at least L+1 

distinct sub-carriers activated over the Nb OFDM symbols. 

 

Condition (3.23b) is solely dependent on the allocation of the null and activated sub-

carriers mNk ,' Ω∈  and mAk ,Ω∈  respectively for m = 0, 1…Nb-1. It is obvious that 

without even taking the allocation of the null sub-carriers into consideration, the 

maximum possible acquisition range is 




−∈

2
,

2
NNve because of the modulus 

operation. This is consistent with the periodicity of the DFT operation. 

 

When there are no channel zeros, i.e. (3.23a) is satisfied, ambiguity in the cost function 

would still arise, when for some integer value ν within the desired acquisition range, 

  ( ) mNe Nvk , mod  ' Ω∈+  ;  mNk ,' Ω∈  , 1 ..., ,1 ,0 −= bNm  (3.25) 
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Note that there is no ambiguity in the cost function if condition (3.23a) and (3.23b) are 

both satisfied for at least one integer value of k. As shown earlier, it is possible to have 

a maximum of L channel zeros. In the scenario where the positions of the L channel 

zeros are unknown, ambiguity in the cost function can still be avoided by  

(i) ensuring that the number of distinct activated sub-carriers over the Nb 

OFDM symbols is greater than L (satisfying (3.23a) ); and  

(ii) For all ve within the desired acquisition range, ( ]MMve ,−∈ , 

( )[ ] 0N mod '
, ,'

≠−−∑ ∑
Ω∈ Ω∈mA mNk k

evkkδ  for at least L+1 distinct integer values of 

k, m=0, 1,… ,Nb-1 

Note that condition (i) would hold true if condition (ii) is satisfied. By further 

inspecting condition ii, the overall condition to avoid cost function ambiguity can be 

viewed and summarised in the following manner: 

 

We denote the set of OFDM symbol indices where the kth carrier is activated as kΛ . 

For example, if the 8th sub-carrier is activated only in the 0th, 3rd, 5th and 27th OFDM 

symbols within the block of Nb symbols, { }27,5,3,08 =Λ . 

 

For a FIR channel of order L, cost function ambiguity can be avoided if  

there are more than L values of k, ∪
1

0
,

−

=

Ω∈
bN

m
mAk , such that, for each k, one 

or more integer values of k’, ∪
'

,'
km

mNk
Λ∈

Ω∈ , is found to satisfy the equality 

( ) 0N mod ' =−− evkk , ( ]MMve ,−∈ . 
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For the special case where the set of the activated sub-carriers is the same for each 

OFDM symbol as in [23], and denoting it by NΩ , we can further simplify the criterion 

to: 

 

∀ ( ]MMve ,−∈ , the desired acquisition range, ( ) 0N mod ' =−− evkk  

for at least L+1 integer values of Nk Ω∉  for ∀ Nk Ω∈'  

 

This criterion is equivalent to the criterion as developed in [23], which is based on 

maximising the energy of the activated sub-carriers. In a practical scenario, we would 

expect the system to have more activated sub-carriers than null sub-carriers. From a 

computational point of view, the criterion developed based on the cost function of null 

sub-carriers is less computational intensive than the criterion based on the cost function 

of activated sub-carriers.  
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3.2.2 Physical interpretation of the cost function ambiguity criterion 

 

(i) Cost function ambiguity due to sub-carrier placement 

In this section, we attempt to explain with illustrations, the physical interpretation of 

the criterion. We consider the case where the carrier placement is fixed for all Nb 

symbols used for estimation. 

 

First we consider cost function ambiguity due to sub-carrier placement alone, i.e. the 

channel frequency response is constant. Ambiguity occurs when the placement of the 

activated and null sub-carriers is periodic with q, where q is an integer greater than one. 

For such placements, a rotation introduced due to an integer frequency offset causes 

both the original and rotated sub-carrier allocation pattern to be “identical” w.r.t the 

DFT bins.  

 

An example is shown in Figure 3.10. Each black circle with a number indicates an 

activated sub-carrier and its corresponding index. Each white circle with a number 

indicates a null sub-carrier. The numbers within the big circle marks the DFT bins.  

The DFT bins that are shaded in grey mark the bins that will be used for the 

computation of the cost function.  

As shown in the figure, an integer shirt of ±4 and ±8 will result in ambiguity in the cost 

function. This is further illustrated in Figure 3.11 where it can be seen that there are 4 

global minima in the cost function. 
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Figure 3.10 – Diagram illustrating the occurrence of cost function ambiguity due to 

periodicity in sub-carrier placement.  
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Figure 3.11 – Plot of cost function showing the presence of multiple global 

minima due to periodicity in sub-carrier placement 
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(ii) Cost function ambiguity due to channel nulls 

 

Next we consider the cost function ambiguity due to the channel nulls. As an example, 

in a half loaded system with 8 sub-carriers where the null sub-carriers are placed 

consecutively, no ambiguity in cost function can possibly occur since carrier placement 

is not periodic. However, cost function ambiguity would occur when a channel null is 

present at activated sub-carrier index 0 for a frequency offset error of ve=1, as shown in 

Figure 3.12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.12 – Diagram illustrating the occurrence of cost function ambiguity 

due to channel nulls  
 
Note: In the absence of noise, cost function ambiguity will still occur when activated sub-carrier index 0 
is hit by a channel null. As illustrated in c, the computed cost function will be zero despite a frequency 
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Figure 3.13 shows the cost function in a frequency selective channel with zero AWGN. 

The channel amplitude response is shown in Figure 3.14. As illustrated, the channel 

null at sub-carrier index 0 causes the cost function to have multiple global minima at 

ve=0 and 1 respectively, causing cost function ambiguity. 
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Figure 3.13 – Plot of cost function showing presence of multiple global 

minima due to channel null 
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Figure 3.14 – Plot of Channel Amplitude Response, |C[k]|, cost function showing 

presence of multiple minima due to channel null 
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From Figure 3.12, the following can be concluded for a system with more than L 

activated sub-carriers placed consecutively from index i to i + NA -1. Cost function 

ambiguity will occur for a FIR channel of order L, if and only if there is a channel null 

at index i, or i + NA -1, or both.   

 

Proof: 

The set of activated sub-carriers is given by  

 ΩA  = {i mod N, (i+1) mod N …(i+NA-1) mod N }   and  

whereas the set of null-sub-carriers is given by  

ΩN  ={ (i+NA) mod N,  (i+NA +1) mod N …(i+N-1) mod N } 

In this specific case, the cost function in (3.21) is re-expressed as: 

 [ ] ( )[ ]  N mod '1)(
,'

2
1

0
, 










−−Ψ= ∑∑∑

Ω∈Ω∈

−

= mNA

b

k
e

k
m

N

mb
eZN vkkk

N
vJ δ   (3.26) 

Note that 

 [ ] 0=Ψ km  if [ ] 0=kC   }1 ..., ,2 ,1 ,0{ −= bNm    (3.27) 

Denote the subset of elements in ΩA that become elements in ΩN, after a rotation of 

integer ve (due to the frequency offset error) as AΩ~ . 

For ve =0,   

AΩ~  = {φ}         (3.28a) 

For v =1,2… N/2-1, 

AΩ~  = {i mod N, (i+1) mod N, …, (i+ve-1) mod N}   (3.28b) 

For v =-1-,2… N/2, 

 AΩ~  = {(i+NA-1) mod N, (i+NA) mod N, …(i+NA-ve-1) mod N}  

(3.28c) 
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Hence the cost function (3.25) can be further simplified as  

[ ] [ ]    1)(
~

22
1

0
, ∑∑

Ω∈

−

=

=
A

b

k
m

N

mb
eZN kCkS

N
vJ    (3.29) 

If [ ] 0mod ≠= NikC  and ( )[ ] 0mod1 ≠−+= NNikC A , then cost function ambiguity 

is avoided because Nik mod=  or ( ) NNik Act mod1−+=  are elements of AΩ~ . 

Conversely, if cost function ambiguity is avoided, then there must be at least one 

element in k∈ AΩ~  such that C[k]≠0. Note that for ve=1 and -1, the only element in AΩ~  

are i mod N and (i+NA-1) mod N respectively. As the magnitude of ve increases, more 

elements are added into the set. Hence if cost function ambiguity is avoided, 

[ ] 0mod ≠= NikC  and ( )[ ] 0mod1 ≠−+= NNikC A . 

 

Now we consider the more general case where the sub-carrier placement is allowed to 

vary over the Nb symbols. As an example, we consider the carrier placement in [13], 

where all activated sub-carriers are deterministically hopped by the same factor from 

one OFDM symbol to another.  

 

We use the following example, depicted in Figure 3.15 to explain explicitly how 

hopping can cope with the cost function ambiguity problem. Consider the simple case 

where Nb=2 and the placement of the sub-carriers are from index 0 to 7 for the first 

OFDM symbol and 1 to 8 for the second symbol. Theoretically, the occurrence of a 

channel null at index 0 does not cause ambiguity to the cost function at a frequency 

offset error, ve=1. This is because the activated sub-carrier with index 1 for the 2nd 

symbol will coincide with the DFT bin 0 used for the computation of the cost function.  
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Hence the cost function is non-zero in this case. To create cost function ambiguity, 

consecutive channel nulls have to occur at index 0 and 1 or at 7 and 8. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.15 – Diagram illustrating why cost function ambiguity will not occur 
due to channel nulls when hopping is used  

 
Note: In the absence of noise, cost function ambiguity will not occur in this case though activated sub-
carrier index 0 of the 1st OFDM symbol is hit by a channel null. As illustrated in (c), the computed cost 
function will be zero because of the activated sub-carrier index 1 of the 2nd OFDM symbol coincides 
with the DFT bin 0 which is used for computation of the cost function 

 

0 
1 

2

3

4

5

6

7 

10

8 
9

11

12

13

14

15

0 
1 

2 

3

4

5

6 
7 

10

8 
9

11

12

13

14

15

14

15 0 
1 

13

12

11

10
9 

8 7 
6 

5 

4 

3 

2 

14 

15 
0 

1 

13 

12 

11 

10 

9 
8 7 

6 

5 

4 

3 

2 

Channel null 2nd OFDM symbol 
used in estimation 

0 
1

2

3

4

5

6

7 

10 

8 
9 

11 

12 

13 

14 

15 

0 
1 

2

3

4

5

6
7 

10 

8 
9 

11 

12 

13 

14 

15 

14 

15 0 
1 

13 

12 

11 

10 
9 

8 7 
6 

5 

4 

3 

2 

14 

15 
0 

1 

13 

12 

11 

10 

9 
8 7 

6 

5 

4 

3 

2 

1st OFDM symbol 
used in estimation 

(a) (b) 

14 

15 0 
1 

13 

12

11

10
9 

8 7 
6 

5 

4 

3 

2 

0
1

2

3

4

5

6

7

10
8

9

11

12 

13 

14 

15
0

1 2

3

4

5

6

7

10 8
9

11

12

13

14

15
14 

15 
0 

1 

13 

12 

11 

10 

9 
8 7 

6 

5 

4 

3 

2 

ve=1 

(c) 



Chapter 3 – Estimation of carrier frequency offset 

 57

 

Using the above example, it can be seen that deterministically hopping the sub-carriers 

over the Nb OFDM symbols will provide additional robustness against the effects of 

channel nulls and prevent the cost function ambiguity as discussed.  
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Chapter 4 

Performance of frequency offset estimator 

In this chapter, the theoretical mean squared error of the maximum likelihood estimate 

of the frequency offset, vo, is derived. The performance of the estimator is then tested 

under a AWGN and Rayleigh channel with an exponential power profile respectively 

and the results obtained are discussed.  

 

4.1 Mean squared error of estimator  

As shown in Chapter 3, the maximisation of the energy of the activated sub-carriers or 

the minimisation of the null sub-carriers proved to be equivalent using the Parseval’s 

relation, would yield the same mean squared error (MSE). Hence, to determine the 

MSE of the estimator, we only need to examine the minimisation of the null sub-

carrier energy, whose cost function is given by 

( ) [ ]∑ ∑
−

= Ω∈










=

1

0

2
,

,

 1 b

mN

N

m k
m

b
eZN kZ

N
vJ

     (4.1)
 

where ve is the frequency offset error, 0vvc − ,   
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The derivation that follows is done using the small perturbation approach as in [13]. 

Here, we adopt a more general scenario where the arrangement of the activated and 

null sub-carriers is arbitrary. For the purpose of analysis, we denote the cost function 

in the absence of noise as 

( ) [ ]∑ ∑
−

= Ω∈










=

1

0

2

,
,

1 b

mN

N

m k
m

b
eYN kY

N
vJ

     (4.2)
 

and the perturbation in the cost function due to noise as   

( ) ( ) ( )eYNeZNeZN vJvJvJ ,,, −=∆      (4.3) 

 

The true minimum point of the cost function in the absence of noise, ( )eYN vJ ,  is 

0=ev , or equivalently, when the frequency offset estimate is equal to the actual 

frequency offset 0v . 

 

However, in the presence of noise, the cost function will be perturbed by ( )eZN vJ ,∆ , 

which in turn perturbs the minimum point of the cost function. Denoting the mean 

squared error of the normalised frequency offset as [ ]2
evE  and considering the case 

where SNR is high, and the perturbation is small, and that we have localised the 

correct minima.   

 

We rewrite the cost function in the presence of noise as the sum of the cost function in 

the absence of noise and the perturbation due to noise, i.e. 

( ) ( ) ( )eZNeYNeZN vJvJvJ ,,, ∆+=      (4.4) 
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Using Taylor’s expansion, we obtain  

( )

( ) ( ) ( ) ( )
......

0
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,
2

0

,

0
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,
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0

,

,

+∆
∆
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∆

+∆+=

∆
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∆=

e

ve

eZN

ve

eZN
e

ve

eYN

ve

eYN

vve

eZN

v
dv

vJd
dv

vJd
v

dv
vJd

dv
vdJ

dv
vdJ

eeee

ee

          (4.5) 

Since the derivative of the cost function (1st term on R.H.S) and ignoring the 2nd order 

perturbation term, the 4th term on the R.H.S, we have 

 

 

( ) ( )
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== 0
2

,
2

0

,

ee ve

eYN

ve

eZN
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   (4.6) 

Since 

( ) [ ] [ ]∑ ∑
−

= Ω∈
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1

0
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,

,

 1 b

mN

N

m k
mm

b
eZN kWkY

N
vJ

    (4.7a)
 

( ) [ ]∑ ∑
= Ω∈
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N

m k
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eYN kY

N
vJ

1
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,

1

     (4.7b)
 

( ) [ ] [ ]{ } [ ]∑ ∑
−

= Ω∈
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1
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,

Re21 b

mN

N

m k
mmm
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eZN kWkWkY

N
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  (4.7c)
 

Expanding and ignoring 2nd order noise contributions, we obtain  

  ( ) [ ] [ ]{ }∑ ∑
−

= Ω∈










≈∆

1

0

*
,

,

Re21 b

mN

N

m k
mm

b
eZN kWkY

N
vJ

   (4.8)
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Expanding (4.8) using (2.6),  
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         (4.9a) 

where
 

[ ] [ ] tν
N
πj

mm nyn 0
2-

e=ρ        (4.9b) 

[ ] [ ] tν
N
πj

mm nwn 0
2-

e=γ        (4.9c) 

Differentiating (4.9a) 
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Evaluating at the true minimum pt, we obtain 
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          (4.10b) 

Taking the magnitude of (4.10b), squaring it and taking expectation, and after  

expansion, we obtain
 



Chapter 4 -  Performance of frequency offset estimator 

 62
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(4.11) 

Because of the circularity of the complex AWGN, the 2nd term and 3rd term in the 

expectation is equal to zero. i.e. 

[ ] [ ][ ] 041 21
=nnE mm γγ         (4.12a) 

[ ] [ ][ ] 03
*

2
*

21 =nnE mm γγ       (4.12b) 
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Interchanging m1 & m2, k1 & k2 and replacing n3 with n2, n1 with n4, the 1st term in the 

sum is observed to be equivalent to the 2nd term. 

 

In addition, we assume the signal and noise components, [ ]nmρ  and [ ]nmγ  are 

assumed to be uncorrelated. Therefore  
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And  
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Combining the results (4.14c) and (4.14b) and substituting into (4.13) 
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After rearranging the terms, 
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Proceeding in a similar approach, the cost function in the absence of noise is given by 
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          (4.17) 

And doing a double differentiation on (4.17), we obtain  
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         (4.18) 

Evaluating (4.18) at v=0, taking magnitude, squaring it and finally taking expectation 

yields 
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          (4.19) 

And after much simplification,  
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          (4.20) 

Dividing (4.16) with (4.20), and some further simplification, we obtain, 
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Using the relation 
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We can express (4.21) as  
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         (4.23) 

We note that the MSE of the estimator is dependent on the number of blocks used for 

the estimator and for a fixed sub-carrier allocation, the MSE is inversely proportional 

to the number of OFDM symbols used in estimation. i.e. 
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 where ΩA and ΩN are the set of activated and null sub-carriers respectively. 



Chapter 4 -  Performance of frequency offset estimator 

 67

 
4.2 Performance of estimator in a AWGN Channel 
 

Simulations were carried out to test the performance of estimator in an AWGN 

channel and the experimental and theoretical results obtained were compared. Trends 

observed are highlighted. In the experiments, the SNR is defined as 2

22

ησ
σ SAN . 

 

4.2.1 MSE against SNR  

In this simulation, a system with N=64, NA=32, with different estimation block sizes, 

Nb=1, 4, 16 and 64 was tested for an AWGN channel. The activated sub-carriers are 

placed consecutively. Figure 4.1 shows the plot of the MSE of vc against SNR. The 

solid lines show the experimental curves while the dashed lines show the theoretical 

curves for the experiment conducted over 1600 trials. 
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Figure 4.1 -  Plot of the MSE of vc against SNR (dB) for a AWGN channel  
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As shown in the figure, the theoretical curves fit the experimental curves well when 

the SNR is high. This is an assumption used in the theoretical derivation of the 

estimator. Note that as the number of blocks, Nb, used for estimation increases, the 

experimental result starts to fit the theoretical result at a lower SNR.   

 

4.2.2 MSE against NA  

In the next simulation, a system with N=64, Nb=64 was tested for various number of 

activated sub-carriers, NA=1, 8, 16, 32, 48, 56, 63 for a AWGN channel. The 

placement of the activated sub-carriers is consecutive. Figure 4.2 shows the plot of the 

MSE of vc against NA. The simulation was conducted at an SNR of 15dB over 1600 

trials. Solid lines and dashed lines depict the experimental and theoretical results 

respectively. 
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Figure 4.2 -  Plot of the MSE of vc against NA for a AWGN channel  
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As shown in the figure, the plot is symmetrical about NA =N/2=32. Hence applying 

the estimator in 2 systems with NA and N-NA activated sub-carriers respectively would 

yield the same MSE. Furthermore, we observe that MSE decreases as NA increases and 

is minimised when the system is half loaded. The MSE then increases as NA increases 

to N-1. We note that the estimator cannot be applied in an unloaded or fully loaded 

system.  This is because the energy of the null sub-carriers or the activated sub-

carriers is constant for both systems at all frequency offsets. 

 

4.2.3 MSE of modified cost function against P  

As given by (3.17), the use of a modified cost function which sums the total energy of 

all null sub-carriers placed at circular distance of less than or equal to P was 

discussed. A simulation was carried out to verify the theoretical MSE result for a 

system with N=64, Nb=64, NA=32. The placement of the activated sub-carriers is 

consecutive. Figure 4.3 shows the experimental and theoretical results indicated by 

solid and dashed lines respectively. 

 

The figure shows that as P increases, the MSE decreases and is minimum when all 

null sub-carriers are used for the cost function. This meant that the use of the modified 

cost function causes a loss in performance in terms of MSE. Hence, depending on the 

required accuracy of the estimator, the modified cost function can be used instead of 

the original cost function to reduce the number of computations required. 
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Figure 4.3 - Plot of the MSE of vc against P using modified cost function for a 

AWGN channel  
 

 

4.2.4 MSE  against NX 

 

In Section 2.2 (Figure 2.5) a simulation was conducted for a system with parameters 

N=64, Nb=64, NA=32 where the subcarriers were placed in a manner such that there 

were alternating clusters of NX activated and NX null sub-carriers (depicted in Figure 

2.4). The average ICI power was found to be minimum when NX =1, i.e. when the 

activated sub-carriers were equally spaced apart.  
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We note a similar trend was in the MSE of the estimator. As shown in Figure 4.4, the 

MSE is also minimum when NX=1, where the activated sub-carriers are placed 

maximally apart and is maximum when NX=32, where the activated sub-carriers are 

placed consecutively. 
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Figure 4.4 - Plot of the MSE of vc against SNR with various NX for a 

AWGN channel  
 



Chapter 4 -  Performance of frequency offset estimator 

 72

4.3 Performance of estimator in a Rayleigh Channel 
 

Simulations were carried out to test the performance of estimator in a Rayleigh 

channel with a normalised exponential power profile, i.e. 
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112 , n= 0, 1,…8 and L =8. Using the same SNR 

definition as in the AWGN only case, experimental and theoretical results obtained 

were compared. The issue of the cost function ambiguity is highlighted and a random 

carrier placement strategy, coupled with deterministic frequency hopping is proposed 

and compared with the performance of the deterministic hopping strategy in [13]. 

 

4.3.1 MSE against NX 

A simulation over 1600 trials was carried out with the parameters N=64, Nb=64 

NA=32 and the carrier placement is such that clusters of NX=4, 8, 16, 32 activated sub-

carriers alternates with the clusters of the same number of null sub-carriers (Figure 

2.4).  Figure 4.5 depicts the experimental results for both the AWGN and the Rayleigh 

channel with channel order L=8. We note that due to the periodicity in the 

arrangement of the sub-carriers, the maximum acquisition range is only ± NX/2  
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Figure 4.5 – MSE of estimator in Rayleigh Channel with NX=4, 8, 16, 32 
 
From the figure, there is degradation in MSE when the estimator is used in a Rayleigh 

channel. This degradation is most severe when the maximum number of activated 

sub-carriers are clustered together, i.e. NX=32 and becomes less significant with the 

reduction of NX. At NX =1, where the activated sub-carriers are equally spaced, there is 

little difference in the MSE between the AWGN and Rayleigh channel. Hence it is 

observed that spacing the activated sub-carriers apart provide robustness against the 

channel nulls. However, periodicity in the arrangement of the sub-carriers means that 

the acquisition range is reduced. 

 

Figure 4.6 shows an example where the estimate error, v, exceeds the sub-carrier 

spacing for the case of NX=32 at SNR=15dB.  In this case, the presence of channel 

nulls in the region corresponding to DFT bin indices k=0 to 5 causes a ‘false’ local 

minimum to have a lower cost than the ‘true’ global minimum. 
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b) Channel Amplitude Response 

Figure 4.6 - Simulation example showing the problem of ‘channel nulls’ 
 

In [23], the problem of cost function ambiguity is highlighted, but little experimental 

evidence has been provided to substantiate the claim. In a practical situation, it is 

unlikely that the channel null, if it does occur, will coincide exactly with the centre of 
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a DFT bin. Hence, the presence of AWGN, which perturbs the cost function, 

determines if the problem of cost function ambiguity does become significant.  

Simulations were done to support the claim that ‘channel nulls’ does pose a problem, 

especially at low SNR and is a major cause for the degradation in MSE of the 

estimator for a Rayleigh channel.  

 

Specifically, we consider a system with N=64, Nb=64, NA=32, 62. The activated sub-

carriers are placed consecutively from sub-carrier index k=6 onwards. The number of 

occurrences where the absolute estimate error, |ve| >1 were recorded. Figure 4.7 shows 

the plot of the probability of such an event against SNR. 
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Figure 4.7 – Plot showing the probability of occurrence of absolute normalised 

estimate error exceeds 1, against SNR/dB 
 

From the figure, it is observed that the frequency of occurrence is much higher for 

NA=62 (near full load) than for NA=32 (half load).  
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In addition, the frequency response for each occurrence of such an event was recorded 

for the case of NA=32. The amplitude responses collected were then divided into 2 

categories, |C[6]|>|C[37]| and |C[6]|≤ |C[37]| respectively and the mean was computed 

for the various SNR. Figure 4.8 shows the plot of the mean amplitude response.  
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a) Category A - |C[6]|> |C[37]| 
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b) Category B - |C[6]|≤ |C[37]| 

 
Figure 4.8 –  Plot of mean amplitude response for occurrences where the absolute 

normalised estimate error exceeds 1  
 
 

As shown in the figure, sharp notches in the amplitude responses were observed for 

the DFT bins, k=6 or k=37. This gives supporting experimental evidence to the 

discussion in Section 3.2.2 (ii), where the presence of “channel nulls” at the starting or 

ending index of the activated sub-carriers results in cost function ambiguity.  
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4.3.2 Random placement of sub-carriers coupled with deterministic hopping 
over blocks 

 

In [13], deterministic hopping is used to combat the effects of the channel nulls. 

Specifically the activated sub-carriers are placed in a periodic manner as described by 

Figure 2.4. The sub-carrier placement of each OFDM symbol is the placement for the 

previous symbol rotated by 1. This provides robustness against the channel nulls but 

reduces the maximum possible estimation range, except in the case where NX=32 as 

discussed previously. Hence we propose a random placement of the sub-carriers on a 

OFDM symbol and this placement is deterministically hopped over the Nb OFDM 

symbols as in [13]. For a system with a total of N sub-carriers and NA sub-carriers 

activated, the indices of the activated sub-carriers in the first OFDM symbol are 

chosen in the following manner: 

1. Choose N numbers from a uniform distribution on the interval [0, 1]. 
 
2. The N numbers are sorted in ascending order with their indices. 

 
3. Select the first NA indices from the sorted array as the activated carriers. 

 
 

 The random placement of the sub-carriers tends to spread the activated sub-carriers 

among the sub-carriers. This is desirable as it provides robustness against the channel 

nulls and MSE is minimised when the activated sub-carriers/null sub-carriers are 

spaced equally apart. Moreover, the probability of a random carrier placement being 

periodic is also very small. This allows full estimation range. We note that the 

proposed random placement alone does not provide much robustness against the 

channel nulls when the system becomes heavily loaded. For example, in the case 

where N=64, NA=63, random placement of the sub-carriers would still result in 

consecutive placement of the activated carriers. Hence coupling random placement 

with deterministic hopping over the Nb OFDM symbols will handle such scenarios. 
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Simulations were carried out to evaluate the performance of the proposed strategy. 

Figures 4.9-4.12 show the MSE against SNR curves for:  

i) Random placement of sub-carriers in an AWGN channel (dashed line); 

ii) Deterministic hopping [13] with consecutive activated sub-carrier 

placement in a Rayleigh channel (solid line); 

iii)  Random placement without deterministic hopping in a Rayleigh channel 

(solid line with square markers); and 

iv) Random placement coupled with deterministic hopping in a Rayleigh 

channel (solid line with diamond markers).  

 

The system parameters are N=64, Nb=64. NA=10 (Figure 4.9), NA=32 (Figure 

4.10), NAct= 60 (Figure 4.11) and NA= 63 (Figure 4.12)    

 

It is observed that random placement alone can cope with the channel nulls in a 

Rayleigh channel and shows a general better performance than deterministic hopping 

with consecutive activated sub-carrier placement. Exceptions occur when the system 

becomes nearly fully loaded, i.e. NA =60, 63. In such cases, random placement fails 

unless coupled with deterministic hopping.  
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Figure 4.9 - Plot of MSE against SNR for NA=10 
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Figure 4.10 - Plot of MSE against SNR for NA=32 
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Figure 4.11 - Plot of MSE against SNR for NA=60 
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Figure 4.12 - Plot of MSE against SNR for NA=63 
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CHAPTER 5 

Search schemes for finding global cost function 

minimum 

 

As discussed in Chapter 3, the shape of the cost function varies with the placement of 

the activated sub-carriers. It typically contains multiple local maxima and minima, 

among which the global minimum (for ( )cZN vJ , , the cost function involving the total 

energy of the null sub-carriers) or global maximum (for ( )cZA vJ , , the cost function 

involving the total energy of the activated sub-carriers) has to be found to yield the 

MLE of the carrier frequency offset. 

  

In this section, we suggest and compare a number of techniques for finding the global 

minimum/maximum point of the cost function without having to resort to exhaustive 

search. The techniques proposed do not require setting of a weight parameter as in 

Gradient Descent that directly affects its convergence rate. Convergence is 

guaranteed. We restrict our discussion to search schemes to find the global minimum 

of the cost function, ( )cZN vJ , . Nonetheless, the same schemes could be applied to 

finding the global maximum of the cost function, ( )cZA vJ , . 
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In many scenarios, offset estimation is required over a range greater than sub-carrier 

spacing. Intuitively, this suggests sampling the cost function at integer values of vc. A 

fine search could then be conducted at the sub-carrier interval about the integer, vc,n 

that yielded the least cost function. However, we have found empirically that this does 

result in the selection of the wrong interval, even in an ideal channel, as depicted in 

Figure 5.1. In this case, sampling ( )cZN vJ ,  at integer intervals yields the lowest cost at 

vc = –2, inferring a fine search over the interval [-2.5, -1.5] for the global minimum. 

However, the correct interval to be searched should have been [-0.5, 0.5]. Further 

complications arise as the shape of the cost function varies for different sub-carrier 

placement.  

Hence, we adopt the more conventional approach of determining the local minima 

before finding the global minimum, which is the local minimum with the lowest cost 

function   
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Figure 5.1 – Incorrect search interval when ( )cZN vJ ,  is sampled at integer 

intervals and fine search is conducted over integer interval that 
yielded the lowest cost  
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5.1 Direct Search of global minimum using cost function 

In this sub-section, we discuss the direct search of global minima using the cost 

function ( )cZN vJ , . 

 

5.1.1 Initial Bracketing of Local Minima Using Cost Function 

The approach is simple. The global minimum must be a turning point as the cost 

function is non-negative, continuous and wraps around N. The cost function typically 

consists of a series of local minima and maxima, and exhibits some regularity. Hence, 

general global minimisation algorithms such as Simulated Annealing or Genetic 

Algorithms, usually intended for more complicated cost functions, are not required.  

The first task is to locate or bracket the local minima. This can be accomplished by 

searching for turning points within the desired acquisition range. The separation 

between 2 neighbouring minima is approximately around 1 carrier spacing. Hence, 

the cost function is first coarsely sampled at intervals of α and using this sequence of 

samples, detection of turning points is then conducted to determine the bracketing 

intervals of the local minima.  

 

This may seem to be computationally prohibitive since the cost function needs to be 

evaluated at intervals of α and the number computations increases linearly with the 

acquisition range. For the full acquisition range, this would mean N/α cost function 

evaluations. However, upon inspection of the cost function, we note that frequency 

offset correction and N-pt DFT need not be performed for N/α values of vc, by 

considering the following property: 
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Denote the integer and fractional components of vc as vc,i and vc,f respectively,  i.e. 

fcicc vvv ,, +=          
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Using this property, only 1/α N-pt DFTs have to be carried out and the cost function 

can be evaluated using the following expression 
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This drastically reduces the number of the DFTs and the ‘trial’ offset corrections that 

are required, especially when the offset range is over the maximum possible range of 

±0.5N, which is usually large.  

 

The next step involves detecting the presence of local minima. We use the fact that a 

local minima is bracketed by the interval [a, c] if there exists an offset b such that 

a<b<c such that ( )aJ ZN ,  > ( )bJ ZN ,  and ( )bJ ZN ,  < ( )cJ ZN , .  
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Hence, the set of coarse sample points are arranged in ascending order of vc, as 

denoted by {vc,1, vc,2, … , vc,n, … vc,N/α }. A local minimum is present in the interval 

[vc,n-1, vc,n+1] if  

( )1,, −ncZN vJ  > ( )ncZN vJ ,,       (5.3a)  

( )ncZN vJ ,,  < ( )1,, +ncZN vJ ,       (5.3b) 

 

The triplet of co-ordinates ( )( )1,,1, , −− ncZNnc vJv , ( )( )ncZNnc vJv ,,, ,  and ( )( )1,,1, , ++ ncZNnc vJv  

are retained for fine estimation of the local minimum. Figure 5.2 shows a typical 

result of the local minima extracted. In this figure, each triplet of squares indicates the 

bracketing interval containing a local minimum. Following this, many search 

algorithms [25] can be applied and are discussed as follows 
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Figure 5.2 – The bracketing intervals containing the local minima 

extracted from ( )cZN vJ ,   
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5.1.2 Finding a Local Minimum from a Bracketing Interval 

Upon the extraction of the bracketing intervals for the local minima, the next step is to 

conduct a fine search for the local minimum within each bracketing interval. The 

methods adopted are as discussed below: 

 

5.1.2.1 Golden Search 

Golden Search uses the successive bracketing of a minimum of a cost function to 

provide an improving estimate of the true minimum value of the function. 

Convergence is guaranteed provided that the initial bracketing interval is correct.  

Given a bracketing triplet of co-ordinates ( )( )1,,1, , −− ncZNnc vJv , ( )( )ncZNnc vJv ,,, ,  and 

( )( )1,,1, , ++ ncZNnc vJv  respectively, the cost function is evaluated at a new point, vc,new 

within the larger of the two intervals, [vc,n-1, vc,n] and [vc,n, vc,n+1]. If 

( ) ( )ncZNnewcZN vJvJ ,,,, < , then vc,n is set the value of vc,new. vc,n-1 and vc,n+1 are replaced, 

if necessary, with closest points to the left and right of vc,n respectively. Otherwise, 

vc,n-1  or vc,n+1, (the one which is closer to vc,new) is set the value of vc,new. The process 

repeats until |vc,new-vc.n|<ε, where ε is the required precision. Figure 5.3 shows an 

iteration example. 

 

 

 

 

 

 Figure 5.3 - An iteration of Golden Search 

Note: In the Golden Section method, given a triplet [vc,n-1, vc,n, vc,n+1], a new point is chosen in the 
bigger of the 2 intervals as shown. The new triplet after the iteration is [vc,n-1, vc,new, vc,n].  
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It can be easily shown that the point vc,new should be chosen at distance ( )535.0 − , 

known as the Golden Ratio, denoted by G, that of the larger interval, from vc,n, so that 

the width of new bracketing interval is the same, regardless of whether vc,n is being 

replaced by vc,new. This is indicated in Figure 5.3.  

Convergence is guaranteed since the cost function given by is well behaved and the 

bracketing intervals have been determined from Section 5.1. The required number of 

iterations to reach a precision of ε is given by  

 ( ) 





≈ −− ε
ε0

1 1log
G

n        (5.4) 

where ε0 is the initial bracketing interval and is equal to 2α based on Section 5.1. 

 

5.1.2.2 Parabolic Interpolation 

Although golden search guarantees convergence, it is slow since it does not take into 

account the properties of the cost function. Since the cost function near each local 

minimum is convex and can be approximated to be parabolic, it may be more efficient 

to fit the triplet of co-ordinates to a parabola and determine the minimum using the 

fitted curve, Using the bracketing triplet of points found in Section 5.1.1, a curve fit is 

done using  

( )cZN vJ ,  ≈ w2vc
 2+ w1vc+ w0      (5.5) 

 

A linear system of equations is formed using the triplet of co-ordinates obtained from 

Section 5.1 as given by  
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Solving for the coefficients w1, w2 and w0, the interpolated minimum point is given by 

–w1/w2 and can be evaluated using (5.7)
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      (5.7) 

Evaluating the cost function at the interpolated minimum, vc,new, and comparing the 

costs at original 3 points used for interpolation, the 3 co-ordinates that yield the least 

cost are used for parabolic interpolation at the next iteration. This is as shown in 

Figure 5.4. 

 

 

 

 

 

  Figure 5.4 – Iteration of Parabolic Interpolation 

 

Parabolic interpolation, however, does not guarantee convergence, and this could 

occur due to misfit. To ensure convergence, we maintain and update the bracketing 

triplet [a, b, c], a<b<c, such that ( ) ( )bJaJ ZNZN ,, >  and ( ) ( )cJbJ ZNZN ,, >  whenever 

possible, after each iteration.  
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If the interpolated minimum, vc,new, lies outside of this bracketing interval [a, c] or the 

evaluated cost at vc,new is higher than each of the 3 points used for parabolic fitting, an 

iteration of golden search is applied, which ensures progressive convergence. In the 

worst-case scenario, the number of iterations would be twice that of golden search.   

 

 

5.2 Transforming problem of minima search to root search 

The previous methods discussed adopt the approach of direct cost function 

minimisation. The problem of finding the global minima however, can be transformed 

to one of searching for roots of the derivative of the cost function as depicted in 

Figure 5.5.   
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Figure 5.5 – Derivative of ( )cZN vJ ,  
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The attractiveness of this method is due to the fact that partial derivative of the cost 

function w.r.t. vc,new can be evaluated directly without the need for numerical 

differences approximation methods and is given by: 
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The property described by (5.8a), also holds for its derivative (5.8b). Upon obtaining 

the roots, the cost function has to be evaluated at the roots to determine which of the 

roots coincides with the global minima. It is easily seen that (5.8b) can also be 

implemented in a efficient FFT-like manner. 

 

5.2.1 Bracketing of Local Minima using Derivative 

The bracketing of the local minima can also be accomplished using the derivative of 

the cost function instead of Section 5.1. A local minima is determined to be bracketed 

within an interval [ ]1,, , +ncnc vv  if  
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Similar to Section 5.1, the derivatives are first evaluated at coarse intervals of α and 

any pair of consecutive samples is deemed to bracket a local minimum based on the 
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above criterion. As compared to the method for detection of local minima using the 

cost function, the initial bracketing interval is α, which is half that using the cost 

function as in Section 5.1. 

 

5.2.2 Locating roots of cost function derivative  

As in the case of root search, the next step is to conduct a fine search to locate the root 

within each bracketing interval. 

 

5.2.2.1 Bisection 

Bisection is a sure but slow method of refining the estimate of the root. For a bracketing 

interval, [vc,n vc,n+1] and the derivatives at 
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respectively, the derivative at the midpoint, vc,new=0.5(vc,n+vc,n+1) is evaluated. If  

( )
0

,

, >
∂

∂

= newcc vvc

cZN

v
vJ

, then  vc,n+1= vc,new, else vc,n= vc,new. The process is repeated until 

|vc,new-vc,n|<ε, where ε is the desired precision.  

 

Linear interpolation could also be utilized and this may speed up the process. Instead 

of evaluating the midpoint as in Bisection, the derivative is evaluated at 
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for updating the bracketing interval is the same as normal bisection. 
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 Figure 5.6 – One iteration of Bisection 
 

 

5.2.2.2 Newton Raphson Method 

 

Using Taylor’s expansion, the derivative of the cost function can be further 

approximated using (5.10), ignoring terms containing 3rd derivative and above, 
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where ( )ncnc vv ,1, −+  is assumed to be small. Hence, if ncv ,  is the previous estimate 

close to the root, the next estimate where the root lies, denoted by 1, +ncv is obtained by 

setting L.H.S of (14) to zero and rearranging the terms to give 
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The 2nd partial derivative of the cost function, can be evaluated directly like 1st partial 

derivative, as given by 
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where, 

vo,new  

= vo,n + (vo,n+1-vo,n+1) ∆d1/(∆d1+∆d2) 
vc,n vc,n+1 

∆d1 

∆d2 vo 

vc,n vc,n+1 

vc,new 

= 0.5(vc,n+vc,n+1) 
 

vo 

a. Bisection 
b. Bisection with linear 

Interpolation 
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A reasonable starting point could be obtained using the bisection method. This 

method of approximation, popularly known as the Newton Raphson method is 

powerful as its rate of convergence is quadratic. To ensure convergence, the 

bracketing interval is updated at each iteration and bisection is used if iteration causes 

the estimate to fall outside of the bracketing interval.  

 
 
5.3 Further Reduction of Computational Load 

 

If carrier offset estimation is required over the maximum range, ν∈ (-N/2, N/2], 

searching for all local minima before determining which is the global minima can still 

require many computations when the number of sub-carriers in the system is large. 

The computational workload could be alleviated by searching for the local minima 

only within bracketing intervals that are likely to contain the global minimum. From 

Section 5.1, the set of bracketing triplets has been found. If [vm-1, vm, vm+1] is the 

bracketing triplet such that ( )mZN vJ ,  is the minimum among the coarse sample points, 

A fine search is only performed using the bracketing triplet [vn-1, vn, vn+1], if 

 JN,Z(vm) + β((0.5(JN,Z (vm-1)+ JN,Z (vm+1))- JN,Z (vm)) > JN,Z (vn) (5.12)  
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5.4 Simulation results 

Simulations were conducted to test the performance of the techniques mentioned 

above. The total number of subcarriers, N, is 64, and the number of activated carriers 

is 32. Activated sub-carriers are arranged in a consecutive manner. The Rayleigh 

fading channel with an exponential power delay profile is modelled using a FIR filter 

with 5 taps, i.e. L=4.  

For the initial bracketing, a suitable value for the coarse sampling interval, α, to detect 

all local minima is required. The values of 0.1, 0.2, 0.25, 0.3 and 0.5 were tested. For 

each α setting, the bracketing intervals were verified against those obtained when α is 

set to a very small value of 0.01. Over 1000 trials, we found that α=0.2 to be able to 

extract all the bracketing intervals.   

 

Table 1 shows the number of iterations to estimate each local minimum to the 

prescribed precision, ε0=10-5. The initial bracketing interval is set to 0.2. Simulations 

with SNR from 0 to 30dB in steps of 5dB over 100 trials each indicated that the 

number required does not vary with SNR. Newton Raphson method requires the least 

number of iterations, followed by parabolic fitting, bisection with linear interpolation, 

bisection and golden search being the slowest. 

 

Table 1 – Average number of iterations required to estimate local minimum  
Method Golden 

Search 
Parabolic 
Interpolation

Bisection Bisection 
with 
interpolation 

Newton 
Raphson

No. of Iterations 
 

22.51 5.69 15 7.68 3.78 
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Simulations were also carried out to determine the number of errors that arose from 

using the approach in Section 5.3. An error is deemed to have occurred when the 

global minimum obtained by searching all the local minima is different from that 

using the approach in Section 5.3. Figure 5.7 shows the error rate over 10000 trials 

with different values of β at a poor SNR of 0dB and a single block for estimation 

while Figure 5.8 shows the average number of bracketing intervals that has to be 

evaluated.  The average total number of local minima for this experiment setting is 52 

per trial. When β is set to 1, no errors occurred over 10000 trials with the average 

number of bracketing intervals evaluated being 2.02. 
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Figure 5.7 - Plot of error rate against β  
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Fig 5.8 - Plot of mean number of bracketing intervals evaluated against β 



 

 96

 

 

 

 

Chapter 6  

Conclusions and future topics 

 
 
6.1 Conclusions  

 
In this thesis, we have established a more general and flexible OFDM system (in 

comparison to [13,23]) that allows the activated sub-carriers to be arbitrarily placed 

over each of the Nb OFDM symbols used in the estimation of the carrier frequency 

offset. The signal model for such a system is formulated in Chapter 2 and the effects 

of intercarrier interference due to a carrier frequency offset was also examined. We 

suggested and provided an explanation that spacing the activated sub-carriers equally 

apart when the system is at less than half load and spacing the null sub-carriers 

equally apart when the system is at more than half load yields the least average inter-

carrier interference among all sub-carrier placement strategies. We have validated this 

claim via computer simulations for systems with less than or equal to 20 sub-carriers. 

Correspondingly the SIR ratio would also be highest using such a carrier placement 

strategy. 

   



Chapter 6 – Conclusions and future topics 

 97

In Chapter 3, we formulated the maximum likelihood estimator (MLE) of the carrier 

frequency offset based on our flexible OFDM system. The MLE is the frequency 

offset correction that yields the least total energy in the DFT bins assigned to the null 

sub-carriers. We provided a detailed proof, using the Parseval’s relation, to explain 

why this is equivalent to finding the frequency offset that maximizes the total energy 

in the DFT bins assigned to the activated sub-carriers.  

 

More significantly, applying the approach in [23], we have derived a more general 

criterion to avoid cost function ambiguity due to the channel nulls through judicious 

placement of the sub-carriers over the Nb OFDM symbols used in estimation.. 

Providing a physical interpretation of the criterion, we have also shown that 

deterministic hopping of the sub-carriers, which was first introduced in [13], can 

avoid cost function ambiguity. 

 

Chapter 4 presented a derivation of the NMSE of the estimator using the small 

perturbation analysis adopted in [13] for our flexible system. We note an error in the 

expression given in [13] and that this derivation is not applicable when channel nulls 

causes ambiguity in the cost function. Subsequently, we showed that the experimental 

results match well with the theoretical predictions in an AWGN channel. 

 

Simulations were also carried out for a Rayleigh channel with an exponential power 

delay profile. Experimental evidence showed that occurrences of large estimate errors 

corresponded to instances where the channel nulls occurred at locations predicted by 

the criterion derived earlier. We suggested a random carrier placement scheme that 

tends to space the activated sub-carriers among the entire set of sub-carriers and gives 
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a low probability of occurrence of a periodic carrier placement. This allows maximum 

carrier estimation range and provides resilience to the channel null problem. The 

performance of this scheme was compared against [13]   

 

In Chapter 5, we explored minima search techniques which are more efficient than 

uniform exhaustive search, and ensures convergence without the need to set a 

appropriate weight parameter as required by gradient descent methods, In addition, by 

taking the 1st and 2nd derivatives of the cost function, which can be evaluated directly 

in a FFT like manner, we propose transforming the problem of minima search to one 

of root search. The fast Newton Raphson approach can then be used to accelerate the 

search. Finally, we proposed a criterion to narrow the scope of search and reduce 

computations. The performance of the search schemes were compared and the 

Newton Raphson technique is the most efficient (in terms of the iterations required to 

reach convergence) while the proposed criterion is effective. 
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6.2 Suggestions for further works  

The estimation of carrier frequency offset remains a challenging problem in the 

implementation of OFDM systems. This work examines the use of the MLE, which is 

semi-blind, requiring knowledge of the null sub-carrier placement but not the  

transmitted data symbols. 

 

Further studies can be done on the incorporation of pilot symbols into the system. A 

cost function and the criteria for avoiding cost function ambiguity can be developed 

using an approach similar to this work. The introduction of pilot symbols is likely to 

improve the performance of the carrier frequency offset estimator. In this thesis, we 

analyzed the effect of the placement of the null sub-carriers on ICI and the estimate’s 

MSE. Future work can include the analysis of how positioning of the pilot symbols in 

the system can affect the estimator’s performance. Furthermore, since pilot symbols 

can be used in channel estimation, a joint estimate of the carrier frequency offset and 

the channel can be developed. In an OFDM system, some sub-carriers may be 

affected by the presence of channel nulls, rendering the sub-carrier unsuitable for data 

transmission. If information about the channel can be fed back to the transmitter, the 

placement of sub-carriers can be made adaptive so as to maximize the overall system 

performance, which includes minimizing both the channel and the frequency offset 

estimation error.    

 

Last but not least, the estimation of carrier frequency offset in a multi-user system 

presents a difficult task as each user has a different carrier frequency offset w.r.t to the 

base station. However, the deployment of such a multi-user system is highly desirable 

and this presents a potential research topic. 
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