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SUMMARY 

 

In this work, we address two major problems in pharmaceutical supply chains. One is 

the planning problem that involves outsourcing and new product introductions. The 

other is the scheduling problem of operating multipurpose plants.  

A pharmaceutical plant repeatedly needs to resolve whether it can or should 

undertake to produce a new intermediate or product, or should outsource some tasks to 

enable it to do so. We present a multi-period, continuous-time, mixed-integer linear 

program (MILP) model that addresses this important problem for a pharmaceutical 

plant using multiple parallel production lines in campaign mode, and producing 

products with multiple intermediates. Given a set of due dates, demands of products at 

these due dates, several operational, and cleaning requirements, the aim is to decide the 

optimal production levels of various intermediates (new and old) or the optimal 

outsourcing policy to maximize the overall gross profit for the plant, while considering 

in detail the sequencing and timing of campaigns and material inventories. The effects 

of new product introductions on plant production plans, the benefits of outsourcing, 

and the ability to react to sudden plant/demand changes are illustrated using few 

examples. 

Scheduling of multipurpose batch plants like pharmaceutical plants is a 

challenging problem for which several formulations exist in the literature. In this work, 

we present a new, simpler, more efficient, and potentially tighter, MILP formulation 

using a continuous-time representation with synchronous slots and a novel idea of 

several balances (time, mass, resource, etc.). The model uses no big-M constraints, and 

is equally effective for both maximizing profit and minimizing makespan. Using 

extensive, rigorous numerical evaluations on a variety of test problems, we show that 
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  Summary 

in contrast to the best model in the literature, our model does not decouple tasks and 

units, but still has fewer binary variables, constraints, and nonzeros, and is faster. In 

addition, we propose some minimal criteria for any model comparison exercise. 

Finally, we conclude and propose some recommendations for future work. 
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Chapter 1 

INTRODUCTION 

Global competition requires every pharmaceutical company to enhance its economic 

performance. These companies are undergoing major retrofits in their business practice 

in order to survive the new challenges of the modern economy. The globalization of 

the business, the variety and complexity of new drugs, and the shortening patent 

protections are some of the factors driving these changes. Usually, pharmaceutical 

companies produce several high-profit, low-volume products. Of these, only 

flagship/dominant products under patent protections are the major contributors to the 

growth of these companies. Hence, high product turnover is crucial to the continued 

economic survival and growth of a pharmaceutical company.  

Pharmaceutical companies often have several facilities, which are 

geographically distributed.  These companies tend to have their Research and 

Development (R&D) in some location and production facilities in some other 

locations. Such distributions of facilities are based on several global factors like market 

demands, economies of scale, logistics and so on. Mostly, the business activities in 

different locations are not sufficiently integrated to achieve the best possible solutions.  

The pharmaceutical industry is distinctive from many other industries in the 

amount of attention paid to it by the regulatory authorities. Since these industries 

produce health care products, stringent work practices like Good Manufacturing 

Practice (GMP), Good Laboratory Practice (GLP), and Good Clinical Practice (GCP) 

and so on are followed in the production sites. Most of the operations in 

pharmaceutical production are batch, and hence quality check must be performed by 

keeping track of each batch. In addition, thorough cleaning must be performed 

whenever product changeover occurs. This is mainly to avoid cross contamination of 
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products during the changeovers. All these work practices, which are inevitable, lessen 

the overall productivity. Hence, these companies are under great pressure to utilize 

their production resources efficiently. 

Pharmaceutical companies aspire to introduce new products in order to revive 

their business with the early profits. The time to market and the quick reap of the 

profits from the new products before their shortened life cycles are the keys to the 

success of these companies.  Hence, a lot of money and time are invested on the 

research and development of new products.  

1.1  Life Cycle of a Pharmaceutical Product 

A pharmaceutical product has four different phases in its life cycle as shown in Figure 

1.1. In the Birth phase, an active molecule with a curative effect on a target disease 

group is discovered. Then, several studies are performed to enhance its efficacy. As a 

result, the most active molecule is structured, which is then tested for toxicological 

results in rats or mice. If no worrisome toxic endpoints are observed, then this 

molecule becomes a candidate for further development. 

In the Development phase, the candidate undergoes a series of processes such 

as sampling, testing, patenting etc. Enormous amounts of money and resources are 

invested in these tedious processes. In addition, process costs and durations, their 

success probabilities, and their potential revenues are not known with confidence in the 

initial stage of this phase. If a process fails, all work on that candidate is halted, and the 

investment in previous processes may be futile. Hence, risk levels are high in these 

development processes. If the candidate does succeed out of these complex processes, 

then it is approved for the commercial production under a patent coverage. 
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BIRTH DEVELOPMENT PRODUCTION DEATH 

Figure 1.1: Life cycle of a typical pharmaceutical product. 

 

In the Production/Launch phase, promising markets are identified for a 

successful launch of the new product. The launch strategy could be either forecast-

driven or response-based. In either case, if the new product succeeds technically as 

well as financially, then it may survive actively in the market, until its patent expires. 

The product is no longer new, when it reaches the Death phase. The patent has 

expired, and the target markets are now open to generics. Hence, the demand of the 

product either stagnates or declines. If the product is no more fruitful, then its 

production is stopped. 

Of the four phases of the product’s life cycle, Development (conceptualization, 

design, promotion, and pricing) and Production/Launch (physical positioning in the 

market via commercial production) are the major ones. The product launch phase 

consumes a significant amount of costs, often exceeding the combined expenditures in 

all previous development stages (Beard and Easingwood, 1996). Launch phase 

includes identifying the right place to market, right production site to produce, and 

optimizing the planning and scheduling of the production of new products. Mistakes, 

miscalculations, and oversights in any of these product launch activities can become 

fatal obstacles to new product success. Hence, the optimal planning of new product 

introductions into the appropriate production sites so as to target the right market is of 

paramount importance to any pharmaceutical company.  
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1.2  Pharmaceutical Supply Chain 

Most pharmaceutical products undergo two levels of production (Bennett and Cole, 

2003): primary and secondary. While the primary production involves making the 

basic molecules called the active ingredients (AI) or active pharmaceutical ingredients 

(API), the secondary production involves formulating them into final drugs and 

supplying them to various customers. Figure 1.2 shows the different layers in a typical 

pharmaceutical supply chain. 

The first layer comprises suppliers that provide raw materials and/or 

intermediates to the primary and/or secondary production sites. It also includes third 

party contractors who may supply some intermediates or even APIs.  

The second layer includes the primary production facilities that perform 

various chemical synthesis steps and downstream separations in the case of traditional 

pharmaceuticals, and fermentation, product recovery, and purification in the case of 

biopharmaceuticals. Production of an API typically requires complex chemistry 

involving multiple stages or intermediates. The stringent requirements for cleaning and 

the need for avoiding cross contamination result in long transition times during product 

changeovers, which necessitate long campaigns for effective utilization of plant 

equipment. If the existing production facilities cannot meet all the demands, a 

company may even outsource some intermediates from third party contractors. 

A primary production site is driven mainly by the medium- and long-term 

forecasts and is less responsive to the changes in the demands of end/finished products. 

It holds inventories of AIs to ensure good service levels and to maintain smooth 

operation at the downstream production sites. Thus, anticipatory logistics (or “push” 

process) dominates the primary production, and primary production is often the rate-

limiting step in pharmaceutical supply chains. 
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Layer 1
Suppliers

 

The third layer includes the secondary production sites that add inert materials 

such as fillers, coloring agents, sweeteners, etc. to the AIs, and formulate and package 

them to produce finished products such as tablets, capsules, syrups etc. Their 

processing steps include milling, granulation, compression (to form pills), coating, 

packaging etc. Relatively short campaigns or batches of huge size are common in the 

secondary production sites. Formalized cleaning is also a requirement, and outsourcing 

Outsourced 
Intermediates 

Layer 4 

Layer 3 

Layer 2 

 Primary Production 

Outsourced Raw 
AIs Materials

Active 
Ingredients 

 Secondary Production

Finished 
Products

 Warehouses / 
Wholesalers / 

Retailers / End-Users 

Figure 1.2: A typical pharmaceutical supply chain. 
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of AIs from external contractors is common. Most often secondary production sites 

outnumber the primary ones, are geographically separate from the latter ones, and are 

closer to the markets. A response-based logistics (or “pull” process) based on customer 

orders dominates the secondary production, and this layer is more responsive to the 

market fluctuations. 

The fourth layer includes the various customer nodes such as distribution 

warehouses, wholesalers, retailers, and end-users. These nodes are normally 

geographically distributed, and separate from the production sites. 

Pharmaceutical companies have long been looked as the laggards of supply 

chain practice. Given their huge profits from proprietary blockbuster drugs, these 

companies have always made product availability a greater priority than supply chain 

efficiency. In the past, pharmaceutical companies have neglected supply chain 

management because its costs are insignificant compared to sales and marketing or 

R&D. But now, a number of factors like (a) increased competition from generics, (b) 

shorter patent life cycle, (c) increased pressure to reduce health care costs, (d) 

consolidation of industries and proliferation of products and so on are putting pressure 

on pharmaceutical companies to change their traditional ways of doing business.  

1.3  Planning and Scheduling 

Both planning and scheduling aim at the optimal performance of an industry. 

However, they do differ mainly in terms of the time frames involved and the level of 

decisions taken. Planning normally has longer time horizon (order of months/years) 

and includes higher level management objectives, policies, etc. besides immediate 

production requirements. It represents aggregated objectives and usually does not 

include more details. Accordingly, the models used are either abstract or take 

simplifying assumptions making them more conceptual. If the assumptions 
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overestimate the facility performance giving very little allowances, the resultant plan 

can become unrealistic. On the other hand, if assumptions underestimate the plant's 

efficiency, the plan thus obtained might lead to under-utilized production capacities. 

Therefore, for planning operations, one has to include the key detailed constraints and 

their interdependencies in order to get an optimal plan and hence a sound basis for 

undertaking further scheduling.  On the other hand, scheduling is the link between the 

production and the customer. The issues addressed by the scheduling vary with the 

characteristics of the production process and the nature of market served. Hence, 

scheduling can be formally defined as the specification of what each stage of 

production is supposed to do over short scheduling horizon ranging from several shifts 

to weeks. The objective of scheduling is to implement the plan, subject to the 

variability that occurs in the real world. This variability can be in raw materials 

supplies, product quality, production process, customer requirements or logistics.  

Planning and Scheduling play a vital role in the pharmaceutical supply chain. 

Optimal plan is required in both primary and secondary production sites of the 

pharmaceutical plants. Mostly, primary and secondary sites exercise own production 

plan for the reasons discussed in the previous section. Hence, a plan that does not 

address the key issues of the plants may often lead to suboptimal or infeasible 

schedule. In addition, planning is very important while introducing new products in a 

plant. One has to consider several global issues before launching new products for 

commercial production. Moreover, the development stages of the new product 

candidates also require the scheduling of various testing tasks that involve high levels 

of uncertainty. 

The objective of the planning is mostly based on economic criteria like 

maximizing the net profit or revenue, minimizing the cost and so on. Some of the 
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factors that drive planning in pharmaceutical plants are: 

1. Meeting the forecasted demand fully. 

2. Optimal introduction of new products in the production facilities. 

3. Keeping low tie-up of Working capital (minimal inventory). 

4. Meeting demands even during planned shutdowns of the plants. 

The objective of scheduling is often based on operational criteria like 

minimizing the makespan, maximizing the production, minimizing the 

tardiness/earliness and so on. The factors that drive scheduling in pharmaceutical 

plants are: 

1. Meeting the demands in the face of high volatility. 

2. Reacting to the uncertainties in plants. 

3. Better utilization of resources (production units, utilities, manpower and so on) 

in plants. 

4. Maintaining the safe inventory levels.  

1.4 Research Objective  

It is clear from the above discussion that planning and scheduling play an important 

role in pharmaceutical plants. The optimal plan and schedule of production activities 

can tremendously improve the economic performance of these plants. Planning and 

scheduling can find their application in R&D, facility expansion, production and so on. 

However, the objective of this work is to present the optimization models for the 

optimal planning and scheduling of production in pharmaceutical plants. 

 The planning model should provide decision support for the plant management 

in selecting which existing products to produce in what quantities so that new 

products, if any, can be produced in the plant. As the pharmaceutical industry focuses 

more on the discovery and development activities, outsourcing of some of its testing or 
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production tasks to the external contractors is becoming growingly important. 

However, the decision to outsource requires several considerations. A production 

facility may consider outsourcing an intermediate, when it is unable to meet the 

demands of its products with the existing facility. It may also consider outsourcing, 

when it is more profitable to use the facility to produce a new product rather than a 

nearly off-patent product. Hence, the planning model should also address the above 

issues in outsourcing. 

 The scheduling model is expected to resolve the problems that could arise due 

to dynamic demands of products in pharmaceutical plants. Since the available units in 

a plant are limited, the optimal scheduling is required to better utilize these units in 

order to meet the demands of several products. Scheduling model considers many real-

life operational and supply constraints. 

1.5 Outline of the Thesis 

This thesis consists of two major sections. The first (Chapters 3-4) and second 

(Chapters 5-6) sections respectively deal with the planning and scheduling of 

production activities in pharmaceutical plants. In Chapter 3, we develop a 

mathematical model for the planning of production in pharmaceutical plants. The 

planning model also includes scheduling aspects to make the plan realistic. Though we 

develop the model for planning primary production, we discuss its flexibility to 

address the planning in secondary production as well. In Chapter 4, we evaluate the 

performance of the proposed planning model using few examples. Here, we study 

various business practices like outsourcing, new product introduction and so on using 

our model. 

In Chapter 5, we present a novel mathematical formulation for scheduling in 

pharmaceutical plants. In Chapter 6, we assess the performance of our scheduling 
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model using several scenarios of three examples. We also compare the performance of 

our model with those of two other scheduling models existing in the literature. Here, 

we present some required minimal criteria for the comparison works.  

In Chapter 7, we summarize the conclusions of our work, and then provide 

some recommendations for its potential extensions. 
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Chapter 2 

LITERATURE SURVEY 

The industries producing specialty chemicals such as pharmaceuticals, cosmetics, 

polymers, food products, and electronic materials produce several products, and often 

introduce new products. However, the pharmaceutical industry has the longest product 

development period of all. A lot of money and time is invested in the development of 

pharmaceutical products. If a new product fails at any stage of its development, then 

all the remaining work on that product is halted and the investment in the previous 

tests is wasted. Hence, the scheduling of these highly uncertain development activities 

is increasingly receiving attention. 

2.1 New Product Development 

Pharmaceutical plants routinely introduce new products in order to revive their 

business with the early profits. The need for introducing new products early to the 

market and the uncertainties inherent with the development processes necessitated 

much research to focus on the portfolio selection a priori to development and 

scheduling of product development tasks. Schmidt and Grossmann (1996) address the 

problem of scheduling testing tasks in new product development. They assume that 

unlimited resources are available for the testing tasks. In reality, these testing tasks 

often tend to be resource-constrained, and may involve outsourcing of some tests. 

Hence, Jain and Grossmann (1999) extend the above work and develop a MILP model 

that performs the sequencing and scheduling of testing tasks for new product 

development under resource constraints. Blau et al. (2000) use probabilistic network 

models to capture all the testing activities and their uncertainties involved in the 

development of new products. They address the issue of managing risk in the selection 

of new product candidates. Following this work, Bose and Blau (2000) use graph-
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theoretic techniques to translate a probabilistic network model of a sequence of process 

activities into a spreadsheet model. 

           Subramanian et al. (2000) present an integrated simulation-optimization 

framework, sim-opt, that combines mathematical programming and discrete event 

system simulation to evaluate the uncertainty and control the risk present in the R&D 

pipeline. Mockus et al. (2000) propose a two-level approach to address the problem of 

planning and scheduling in a pharmaceutical pilot plant. They decompose the above 

problem into long-term planning of resources and short-term scheduling of operations. 

Mockus et al. (2002) extend the previous work (Mockus et al., 2000) and explore the 

techniques for combining the production plan and daily operation schedule in a single 

model. Maravelias and Grossmann (2001) propose an MILP model that integrates the 

scheduling of testing tasks with the design and production planning decisions. A 

common assumption in all the above works is that the resources are constantly 

available throughout the testing period. In practice, the existing resources may not be 

sufficient to launch the new products in a timely fashion. Hence, the company may 

often prefer outsourcing of tests at a high cost. To address these issues, Maravelias and 

Grossmann (2003) present an MILP model that optimizes the overall costs. 

2.2 Planning in Pharmaceutical Supply Chains 

Chemical manufacturing processes can be broadly classified into two types based on 

their modes of operation: batch and continuous. A continuous process or unit is the one 

which produces the product incessantly, whereas a batch unit or process is the one that 

produces in discrete batches. A semicontinuous unit is a continuous unit that runs 

intermittently with starts and stops. Continuous process, in most cases, is dedicated to 

produce a fixed product with little or no flexibility to produce another. In contrast, 

batch processes are flexible to produce multiple products and are best suited for 
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producing low-volume, high value products requiring similar processing paths and/or 

complex synthesis procedures as in the case of specialty chemicals such as 

pharmaceuticals, cosmetics, polymers, food products, electronic materials etc. The 

latter is also referred as multipurpose batch processes in the literature.  

Batch plants operate in either batch or campaign mode. Many pharmaceutical 

plants producing large amounts of active pharmaceutical ingredients (APIs) employ 

either multiproduct or multiplant structure (use production lines) and operate in 

campaign mode. The APIs serve as feeds to the downstream or secondary processing 

facilities producing final drugs. As long as a plant employs long, single-product 

campaigns of identical batches, one can model its operation in a manner similar to that 

of a semicontinuous plant producing products such as polymers, papers, etc., in large 

quantities. Therefore, the research on batch plants as well as semicontinuous plants is 

of interest. In the campaign mode of operation, timings and durations of campaigns 

and their allocation to various production lines over a relatively long period (several 

months) are the major operational decisions, so the operation management problem 

falls in the category of planning rather than scheduling. 

The early work on campaign planning in general has addressed the production 

planning of a single facility with one or more noncontinuous production lines or 

multiple distributed facilities. While Sahinidis and Grossmann (1991) assumed cyclic 

campaigns in an infinite horizon, the most recent works (McDonald and Karimi, 1997; 

Karimi and McDonald, 1997; Ierapetritou and Floudas, 1999; Gupta and Maranas, 

1999; Gupta and Maranas, 2000; Oh and Karimi, 2001a; Oh and Karimi, 2001b; 

Lamba and Karimi, 2002a; Lamba and Karimi, 2002b; Lim and Karimi, 2003b; 

Jackson and Grossmann, 2003) have focused on acyclic campaigns in a finite horizon. 

The latter works are more realistic from a practical viewpoint and more suitable for 

 13



 
 Chapter 2: Literature Survey 

time-varying demand scenarios. Furthermore, they subsume the extremely unlikely 

scenario that the optimal solution involves cyclic campaigns. 

McDonald and Karimi (1997) presented a realistic mid-term planning model 

for parallel semicontinuous processors. Although they incorporated minimum 

campaign length constraints in their formulation, they did not consider the detailed 

timings of campaigns. However, in their second paper, Karimi and McDonald (1997) 

presented two novel multi-period continuous-time formulations for the detailed timings 

of campaigns using time slots. In both works, the product demands were due at the end 

of each period. Ierapetritou and Floudas (1999) applied their event-point based 

formulation on this problem, but the recent works (Sivanandam, 2004; Balla, 2004) 

reveal that several issues in their comparison are unpersuasive. Gupta and Maranas 

(1999) develop an efficient decomposition procedure for solving the same problem 

based on Lagrangean relaxation. In their subsequent work (Gupta and Maranas, 2000), 

they proposed a two-stage stochastic programming approach to incorporate demand 

uncertainty.  

Recently, Oh and Karimi (2001a, 2001b) addressed the production planning of 

a single processor with sequence-dependent setups and given finite horizon. Later, 

Lamba and Karimi (2002a, 2002b) and Lim and Karimi (2003b) addressed the 

campaign planning of multiple parallel processors with shared resource constraints. 

While Lamba and Karimi (2002a, 2002b) used synchronous time slots to satisfy shared 

resource constraints, Lim and Karimi (2003b) showed improvement by using 

asynchronous slots. 

Some recent work has also addressed some supply chain management issues 

related to the production planning and product distribution of multiple facilities. 

Jackson and Grossmann (2003) proposed spatial and temporal decomposition methods 

 14



 
 Chapter 2: Literature Survey 

to solve the multi-period nonlinear programming model. Singhvi et al. (2003) used 

pinch analysis for aggregate planning in supply chains. 

It is clear from the above review that the optimal planning of campaigns in 

general has received some attention in the literature. However, the same is not true, 

when it comes to the pharmaceutical industry. As Shah (2003) remarked, the research 

that directly addresses the issues faced by the pharmaceutical sector is scant and the 

optimal planning of campaigns within the context of pharmaceutical supply chain has 

not received due attention. The majority of the work (see section 2.1) has attended to 

the product pipeline management problem arising in the new product development 

phase of the life cycle (see Figure 1.1) of pharmaceutical products.  However, there is 

a paucity of research that addresses the planning issues related to new product 

introductions. Gjendrum et al. (2001) presented a simulation approach to foresee the 

supply chain dynamics in pharmaceutical plants after the introduction of new products. 

Papageorgiou et al. (2001) applied mathematical programming techniques to facilitate 

the strategic supply chain decision-making process in the pharmaceutical industry. 

They presented an approach to allocate investment and facilities to new products. They 

used an aggregate approach for decisions such as which products to develop, where to 

introduce them, and so on. However, their work did not consider outsourcing as an 

option, and did not account for the impact of new product introductions on the existing 

products at a facility in detail. In particular, the disruption in the existing production 

plan resulting from the introduction of a new product at a facility, and the effect on the 

customer service and production levels of existing products remained unaddressed. 

Whether it is feasible or even profitable to introduce a new product at a given facility 

is a very important issue facing many pharmaceutical plants, and this has received little 

attention so far in the literature. 
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2.3 Scheduling in General Multipurpose Plants 

Scheduling of multipurpose batch plants has received considerable attention in the last 

decade. Early attempts (Kondili et al., 1993, Shah et al., 1993) used MILP formulations 

based on the uniform discrete-time representation. However, as the advantages of 

alternate representations such as non-uniform discrete-time (Mockus and Reklaitis, 

1994; Lee et al., 2001) and continuous-time became clear, the recent trend (Ierapetritou 

and Floudas, 1998; Castro et al., 2001; Giannelos and Georgiadis, 2002; Maravelias 

and Grossmann, 2003a) has favored continuous-time representations. 

The research efforts using continuous-time representation in batch process 

scheduling have opted to tag themselves with two flavors. The so called slot-based 

formulations (Karimi & McDonald, 1997) represent time in terms of ordered blocks of 

unknown variable lengths. The so called event-based formulations (Ierapetritou and 

Floudas, 1998; Giannelos and Georgiadis, 2002) use unknown points in time at which 

events such as starts of tasks may occur. Maravelias and Grossmann (2003a) recently 

attempted to rationalize the different types of time representation. 

Both slot-based and event-based representations can be further classified into 

two types: synchronous (or common) and asynchronous (or uncommon). In the 

synchronous representation (Lamba & Karimi, 2002a; Lamba & Karimi, 2002b; 

Giannelos and Georgiadis, 2002; Maravelias and Grossmann, 2003a), slots (or event 

points) are synchronized or identical or common across all units (or sometimes 

resource) in a plant, while in the asynchronous (full or partial) representation (Karimi 

and McDonald, 1997; Ierapetritou and Floudas, 1998; Lim and Karimi, 2003b), they 

differ from one unit (or resource) to another. Although both representations can in 

principle handle shared resources such as materials, it is more natural and easier for the 

former. As shown by Giannelos and Georgiadis (2002) and Maravelias and Grossmann 
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(2003a), some asynchronous representations may possess errors in (for example) mass 

balances. Karimi and McDonald (1997) and Lamba and Karimi (2002a, 2002b) had 

long recognized this pitfall of asynchronous slots for handling shared resources, 

however Lim and Karimi (2003b) showed that they can still be used successfully and 

can sometimes be advantageous. To avoid the discrepancy of mass balance in the 

asynchronous event-based formulation of Ierapetritou and Floudas (1998), Giannelos 

and Georgiadis (2002) used synchronous event points with some extra 

timing/sequencing constraints and a concept of buffer time. However, their approach 

leads to suboptimal solutions, as it seems to hinder the optimal timings of tasks. 

Recently, Maravelias and Grossmann (2003a) used synchronous time points in their 

formulation for multipurpose batch plant scheduling and avoided the extra 

timing/sequencing constraints that Ierapetritou and Floudas (1998, 1999) and 

Giannelos and Georgiadis (2002) used explicitly. 

It is obvious from the above review on scheduling in multipurpose batch plants 

that there is a need for an efficient model that can generate schedules for the 

production in multipurpose batch plants like pharmaceutical plants.  

2.4 Research Focus 

As seen from the above survey, none of the works address the planning problems 

involving both new product introductions and outsourcing practices in pharmaceutical 

plants. In addition, no existing scheduling model can efficiently solve the scheduling 

problems in these plants. In this work, we focus on these two major problems in 

pharmaceutical plants. 

 Whether it is profitable or even feasible to introduce a new product at a given 

facility is a routine but crucial decision for a pharmaceutical company. To address this, 

we consider pharmaceutical plants operating in campaign mode. We develop a 
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planning model to evaluate in detail the operational and financial effects of new 

product introductions at such plants. We also address how outsourcing of existing 

products can lessen these effects and thus make the introduction of high-margin new 

products more attractive. In other words, we specifically address the supply chain 

dynamics at the plant level as they relate to the new product introductions in a 

pharmaceutical plant, and optimize the production, inventory, and outsourcing 

decisions to maximize gross profit. Here, we focus on the planning of one primary 

multiplant production site that consumes raw materials, produces and/or outsources 

intermediates and active ingredients (AIs), maintains necessary inventories, and 

supplies AIs to secondary production sites. Given a set of due dates, demands of 

products at these due dates, several operational and cleaning requirements, the aim is 

to decide the optimal production levels of various intermediates (new and old) and the 

optimal outsourcing policy to maximize the overall gross profit for the plant, while 

considering in detail the sequencing and timing of campaigns and material inventories. 

For scheduling in pharmaceutical plants, we present a new, simpler and more 

efficient continuous-time MILP formulation using synchronous slots.  We divide the 

scheduling horizon into a number of variable length slots. To handle the sharing of 

production units easily and ensure the material balance at any point in horizon, we 

synchronize the slots on all units. 
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Chapter 3 

PLANNING IN PHARMACEUTICAL PLANTS 

In this chapter, we address some important aspects of planning in pharmaceutical 

supply chains. As discussed in the introduction, pharmaceutical plants are often 

situated at different geographical locations. These plants face dynamic demands of 

several end products. Which product to produce in which plant, how much of each 

product to produce in each plant, which plant should produce the new product(s) and in 

what quantity are some of the major challenging decisions faced by the pharmaceutical 

industry. In addition, since the production of primary manufacturing plants is in 

campaign mode, much of working capital is usually tied up in the inventories of active 

ingredients. Hence, a proper planning model that can account for several, if possible 

all, of the above issues is in great demand. Furthermore, Pharmaceutical Outsourcing 

Management Association (POMA) suggests that the practice of outsourcing can 

greatly enhance the performance of pharmaceutical supply chains. It is clear from the 

above discussion that a planning model that can handle the production, inventory, 

distribution, and outsourcing issues effectively would be a significant contribution to 

the economic performance of pharmaceutical industry. In what follows, we describe 

the scope of the planning problem, then develop the formulation and finally present 

some remarks on the planning model. 

3.1 Problem Description 

We focus on a primary multiplant production site F that consumes raw materials, 

produces and/or outsources intermediates and active ingredients, maintains necessary 

inventories, and supplies AIs to the secondary production sites. We use recipe 

diagrams to describe the manufacturing processes in F. A recipe diagram (RD) is 

simply a directed graph in which nodes represent the recipe tasks, arcs represent the 
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various materials with unique properties, and arc directions represent the task 

precedence. Here, the term material refers to a unique material-state combination. In 

other words, a chemical A at 60 C is a different material from A at 90 C. Similarly, a 

task performed on two different materials also means two different tasks. For instance, 

heating A from 60 C to 90 C is one task, and heating B from 60 C to 90 C is another, 

although the plant may perform both in the same unit but at two different times. By 

using different types of arcs to denote different resources, and defining equipment, 

labor, material, utility, etc. all as resources of various types, we can easily generalize 

RD (Generalized Recipe Diagram or GRD) to depict resource (like utilities, manpower 

etc.) utilization too. 

80%

 

 

Figure 3.1 shows the recipe diagram for an example facility producing two AIs 

through six tasks. In this example, m1 (same as m = 1) and m5 are the raw materials; m2, 

m3, m6, and m7 are intermediates; m4 and m8 are the products (AIs); and m9 is a waste 

material associated with the production of m8. Tasks 3 and 6 share one intermediate 

m7. Hence, the production of m4 requires three intermediates and m8 requires two 

 

 Task 2Task 1 Task 3
m1 m2 m3 m4

20%

m7

90% Task 5 Task 6Task 4 

10%

(Waste) 

m8m6m5

m9

Figure 3.1: Recipe diagram for an example facility producing two products.
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intermediates. As we can see, the recipe diagram in Figure 3.1 does provide an 

unambiguous representation of the recipe without the need to use separate nodes for 

states. Alternate forms and further discussion of the RDs can be seen in Chapter 5. 

The facility F employs L production lines (l = 1, 2, …, L). Each production line 

l comprises multiple stages of noncontinuous equipment and can perform a set Il of 

tasks in the recipe diagram using long, single-product campaigns. We use i for tasks 

and m for materials. Each task i consumes or produces some materials.  Let Mi denotes 

the set of materials (m ∈ Mi) that task i consumes or produces. Note that Mi includes 

all the different states of raw materials, intermediates, final products, and even waste 

materials associated with task i. For each task i, we write the mass balance as, 

(Material ) 0
i

mi
m

mσ
∈

=∑
M

 

where, σmi is analogous to the stoichiometric coefficient of a species in a chemical 

reaction except that it is in kg/kg units instead of mol/mol. Thus, σmi < 0, if task i 

consumes material m ∈ Mi and σmi > 0, if it produces m ∈ Mi. Furthermore, for each 

task i, we designate a primary material µi, with respect to which we define the 

productivity of a line for task i. 

Quality controls are highly stringent in pharmaceutical plants. Due to 

contamination concerns, thorough flushing/cleaning of production lines during the 

transition from one intermediate to another is mandatory. Moreover, hardware/process 

changes may also be required between the campaigns of different tasks. Thus, every 

change of campaign on l may require a considerable changeover time. 

Given the above details, our goal is to determine the tasks that each production 

line should perform, the start/end timings of each task, and the inventory profiles of 

materials over the planning horizon. The planning objective is to maximize the gross 

profit of F. To this end, we assume the following. 
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1. Each single-product campaign is sufficiently long with a stipulated minimum 

campaign length MCLil for task i on line l. Therefore, we can treat each production 

line as semicontinuous with a variable production rate (kg or mu/day, where mu 

stands for mass unit). Let L
ilR  and U

ilR  respectively denote the lower and upper 

limits on the rate at which line l produces (> 0) or consumes (< 0) the primary 

material µi of task i. 

2. All intermediate materials are stable. 

3. Inventory costs for raw materials are negligible, as the plant procures them as and 

when needed. F has limited capacity for storing the intermediates and final 

products. 

4. All material demands are prespecified point demands. The planning horizon H has 

NT discrete, distributed due dates (DDt, t = 1, 2, …, NT) as shown in Figure 3.2 

with DD0 = 0 and DDNT = H. In other words, although the production can occur at 

any time between due dates, the product shipments occur only at the due dates. 

5. Campaign changeover times are sequence-independent, but task-dependent and 

line-dependent. Thus, we use CTil to denote the time required to begin a campaign 

of task i on line l. 

We now develop a continuous-time MILP formulation for the above planning 

problem. 

3.2 Formulation 

We view the planning horizon H to consist of NT periods, where we define the interval 

[DD(t–1), DDt] as period t. We use a separate local time-axis for each period, so DD(t–1) 

in real time corresponds to time zero for period t, while DDt to time DDt–DD(t–1). Let 

Hlt denote the total available production time on line l during period t. We break this 

production time in each period on line l into NKl = |Il| slots of variable lengths, where 
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|Il| is the cardinality of Il. For instance, line 1 can perform four different tasks in Figure 

3.2, so NK1 = 4. Similarly, NK2 = 2 and NK3 = 3. Thus, each period has NKl slots on 

line l, and a line can have at most one campaign for a task during a period. This is 

mainly to minimize the time wasted during campaign transitions, but it may also result 

in higher inventory costs. The profit boost due to the former may outweigh the loss due 

to the latter. We number the slots in each period as k = 1, 2, …, NKl as shown in Figure 

3.2 and define  and  respectively as the start and end times of slot k during 

period t on line l. Note that the slots within a period are not identical across production 

lines. 

S
kltT E

kltT

DD1 DDNTDD2 DDt

DDNT–DD(NT–1)0 DD2–DD1 0 0 DDt–DD(t–1)  0 

H

t = 1                  t = 2    t = t t = NT 

DD1

   k = 1           k = 2                k = 3                 k = 4 

        k = 1                       k = 2                       k = 3             

               Line 2 k = 1                                       k = 2                     

Line 1 

Line 3 

Figure 3.2: Schematic of time periods and slots within a time period.  

The supply chain planning model features two classes of constraints: intra-

facility and inter-facility. The former deal with the assignment and sequencing of tasks 
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on lines and their timings, while the latter deal with the flow of materials in and out of 

the facility, material stocks, and demand fulfillment. Unless otherwise stated, we write 

each constraint for all the valid values of its defining indexes. 

3.2.1 Intra-Facility Constraints 

The first block of constraints in this class assigns tasks to slots. 

3.2.1.1 Task Assignments and Campaign Lengths. To assign tasks to slots, we use 

the following binary variable: 

1 if line performs task  in slot of period 
0 otherwiseiklt

l i k t
Y ⎧

= ⎨
⎩

 

 A slot cannot have more than one task, so, 

1
l

iklt
i

Y
∈

≤∑
I

 (3.1) 

Defining NCilt as the number of campaigns of task i on line l in period t, we write, 

1

lNK

ilt iklt
k

NC Y
=

=∑  i ∈ Il (3.2) 

As we allow at most one campaign per task in a period, we need NCilt ≤ 1. 

Let CLklt denote the length of slot k on line l in period t, and CLiklt denote the 

time that we devote to task i within that slot length. Since the sum of such times must 

equal the slot length, we have, 

l

klt iklt
i

CL CL
∈

=∑
I

 (3.3) 

Similarly, if a task i does not occur in a slot k of period t on line l, then we set its start 

time  and time usage CLS
ikltT iklt in that slot to zero. Therefore, 

1( )S
iklt iklt t t ikltT CL DD DD Y−+ ≤ −  i ∈ Il (3.4) 

Slot length represents the actual time for which a task uses a line, so the sum of slot 

lengths must not exceed the total available production time on each line. In other 
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words, 

1

lNK

klt lt
k

CL H
=

≤∑  (3.5) 

As discussed earlier, long campaign lengths are desirable in practice to avoid 

lengthy and costly changeovers in pharmaceutical plants. When a period has several 

campaigns, a campaign may have continued from the previous period, or a campaign 

may continue into the next. To model the continuation of the last campaign in a period 

into the next period, we define the following continuous 0-1 variable: 

1 if task  on line  continues across
0 otherwise

t
ilt

i l D
YS ⎧

= ⎨
⎩

D

]

−

 

A campaign can spill over a DDt, only if it is the last in period t and the first in (t+1). 

In other words, 

ilt ikltYS Y≤  i ∈ Il, k = NKl (3.6) 

1 ( 1)ilt i l tYS Y +≤  i ∈ Il (3.7) 

However, at most one task per line may spill over at any period. Hence, 

1
l

ilt
i

YS
∈

≤∑
I

 (3.8) 

Now, to ensure minimum campaign lengths, we demand, 

( 1)[iklt il iklt il t iltCL MCL Y YS YS−≥ − −  i ∈ Il (3.9) 

Note that the above constraint relaxes as desired, if the task campaign continues from 

the previous period or into the next period. If this does happen, then we force the sum 

of the two consecutive campaign lengths for that task to exceed the minimum length as 

follows: 

( 1) 1 ( 1)ikl t i lt il il tCL CL MCL YS− + ≥  i ∈ Il, k = NKl (3.10) 

We assume that if a campaign spans more than two periods, then its length would 
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automatically exceed the minimum and we do not impose an extension of eq. 3.9 to 

more than two campaigns. 

3.2.1.2 Timing and Precedence. A production plan devoid of timing considerations 

could be unrealistic. Hence, we must impose constraints on the exact timings (  and 

) of the campaigns as well. Firstly, we relate the start time of a slot k of period t on 

line l to the start times of individual tasks by, 

S
kltT

E
kltT

l

S
klt iklt

i
T T

∈

=∑
I

S

′ ′

 (3.11) 

If a task i does not take place in slot k, then eq. 3.4 will make  zero, so eq. 3.11 will 

pick up only the nonzero start time. Secondly, we relate the start and end times of 

campaigns by, 

S
ikltT

E S
klt klt kltT T CL= +  (3.12) 

Thirdly, a campaign cannot start on a line, until the preceding one has ended, so, 

( 1)
S E
k lt kltT T+ ≥  k < NKl (3.13) 

An important timing consideration involves the precedence relationships 

among various tasks in the recipe diagram. If a task i precedes another task i′ in the 

recipe diagram, then the latter cannot start until the former has produced sufficient 

amounts of intermediates that the latter needs. When the latter occurs in a period later 

than the former’s period, we ensure this by means of inventory constraints discussed 

later. However, if the two occur in the same period, then we need constraints to ensure 

that the latter starts and ends after the former. In order to impose these task orderings, 

we demand that the start (end) time of task i on any line l precede the start (end) time 

of i′ on the same or any other line l′ by some amount dii′. Therefore, 

1 1
( 1)

l lNK NK
S S

ii ilt i l t iklt i kl t
k k

d NC NC T T′ ′ ′
= =

+ − + ≤∑ ∑  i ∈ Il, i′∈ Il′ (3.14) 
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1 1
( 1) ( ) (

l lNK NK
S S

ii ilt i l t iklt iklt i kl t i kl t
k k

d NC NC T CL T CL′ ′ ′ ′ ′
= =

+ − + + ≤ +∑ ∑ )′ ′  i ∈ Il, i′∈ Il′ (3.15) 

3.2.1.3 Production Amounts. The campaign lengths CLiklt include the changeover 

times, which are usually significant in pharmaceutical plants. To compute the useful 

production time of task i, we must subtract the changeover times from the campaign 

lengths. To this end, we define PTilt as the actual time for which task i produces on line 

l during period t: 

( 1)
1

( )
lNK

ilt iklt il ilt il t
k

PT CL CT NC YS −
=

= − −∑  i ∈ Il (3.16) 

where CTil denotes the changeover time required for task i on line l. Note that the 

assumption of at most one campaign per task is pivotal to the above constraint. 

Furthermore, the constraint assumes that changeovers cannot split between periods. 

Although we can remedy this assumption, we would need to double the binary 

variables. For a planning problem, this seems excessive detail, as the scheduling 

problem will fix the actual campaign timings precisely. Now, the amount PQmlt of 

material m produced or consumed by task i on line l during period t is: 

,
[

i l i

Lmi
mlt il ilt ilt

i m i i

PQ R PT DQ
µ

]σ
σ∋ ∈ ∈

= ∑
M I

+   (3.17) 

( )U L
ilt il il iltDQ R R PT≤ −  i ∈ Il (3.18) 

3.2.1.4 Validation Time. In practice, when a pharmaceutical plant introduces a new 

product, it must undergo a scale-up phase of 2 to 3 months before it can begin 

commercial production of that product. During this period, the plant personnel tune the 

tasks of the new product to achieve the desired quality targets. Once this scale-up is 

completed, the plant must produce 4 to 5 batches of the new product to get a regulatory 

approval for commercial production. The material produced during this validation 

period cannot be sold to the customers. Hence, this time resembles a changeover time 
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and we must subtract it from the campaign length to get the actual production time. Let 

QTil be this validation time required for task i on line l. To account for this time in 

computing the actual production time, we introduce a continuous 0-1 variable as 

follows: 

1 if line  performes task  for the first time in slot  of period 
0 otherwiseiklt

l i k
Z ⎧

= ⎨
⎩

t

∑

 

Now, eq. 3.16 becomes, 

( 1)
1 1

( )
l lNK NK

ilt iklt il ilt il t il iklt
k k

PT CL CT NC YS QT Z−
= =

= − − −∑  i ∈ Il (3.16a) 

The validation run for a task i can occur at most once on each line, so 

1

1
lNK

iklt
t k

Z
=

≤∑∑  i ∈ Il (3.19) 

Furthermore, it should occur in the very first period that task i occurs and never again. 

Therefore, 

1

lNK

iklt iklt ik lt
t t k

Z Y Z ′ ′
′ ′< =

≥ −∑∑  i ∈ Il (3.20) 

This completes the intra-facility constraints in our model. We now discuss the inter-

facility constraints. 

3.2.2 Inter-facility Constraints 

If Imt denotes the inventory of material m at the end of period t, then 

( 1)mt m t mt mlt mct
l c

I I OQ PQ SQ−= + + −∑ ∑  (3.21) 

where, OQmt is the amount of m outsourced during t and SQmct is the amount of m 

supplied to customer c during t. Note that the inventory position is after the shipment 

of material. 

If the plant cannot meet the demand of a material m in any period t, then it 

carries this shortage over to the next period, i.e., 

 28



 
 Chapter 3: Planning in Pharmaceutical Plants 

( 1)mct mc t mct mctI I D SQ− −
−≥ + −  (3.22) 

where, Dmct is the demand of material m by customer c during period t and mctI −  is the 

shortfall in supply of m to customer c during t. Furthermore, supply from a current 

period can fulfill the demand from previous periods, but the cumulative supply up to a 

period should not exceed the total demand until that period plus the initial backlog. 

Hence, 

0mct mct mc
t t t t

SQ D I −
′ ′

′ ′≤ ≤

≤ +∑ ∑  (3.23) 

Plants usually keep some safety stocks for most materials, especially the raw materials 

and final products, as a buffer against unforeseen circumstances. Let *
mtI  denotes the 

safety stock for material m during period t. In order to maintain the safety stock target, 

we penalize the deviations of inventory below the safety stock target. We obtain these 

deviations by using,  

*
mt mt mtI I I∆ ≥ −  (3.24) 

In the development so far, eqs. 3.1-3.20 deal with production tasks, whereas 

eqs. 3.21-3.24 deal with materials. The inventory balance of eq. 3.21 links these two 

sets of constraints. We have bounds on several variables such as inventory, backlog, 

supply, and slot start/end times. These are as follows: 

mt mI ST≤   (3.25) 

0mct mct mc
t t

I D I−
′

′≤

≤ +∑ −   (3.26) 

0mct mct mc
t t

SQ D I −
′

′≤

≤ +∑   (3.27) 

( 1)
S

klt t tT DD DD −≤ −   (3.28) 

( 1)
E

klt t tT DD DD −≤ −   (3.29) 
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3.2.3 Planning Objective 

Maximization of gross profit (revenue – costs) is normally the preferred objective of 

plant management, as it lets the management produce the most profitable products. 

The facility F derives its revenue by selling the APIs or intermediates, while its costs 

arise from changeovers, purchase of materials, production, inventory, material 

transportation, and penalties for supply and target level shortages. 

Let CCil denotes the changeover cost for starting a campaign of task i on line l. 

We can estimate this from the time, labor, and materials required to clean/flush the 

lines and units. In addition, it would also include the cost of waste disposal. For the 

purchase of materials, we assume a fixed price pm for material m. This includes the 

purchase, transport, and insurance costs. Let pcml denotes the cost of producing a unit 

of material m on line l. We do not use exact time-averaged inventory, as it results in a 

nonlinear objective function. Instead, we approximate the inventory costs by a linear 

function. Let hcmt denotes the cost of holding a unit amount of material m for the entire 

length of period t. We compute the inventory cost at the end of a period t based on the 

amount present at the period’s start, and that produced during the period. We assess the 

penalty for the inventory shortfall from target levels at the end of period t as mt mta I ∆ . In 

addition, we take the supply shortage cost of a product as the revenue of that product 

gmc. With this, the objective of our planning model is: 

 Maximize GP =  – Cost (3.30) 
, ,

mc mct
m c t

g SQ∑

( 1)
, , , , ,

( 1)
, , , , , ,

Cost ( ) ( )

/ 2
l

il ilt il t m ml mlt m mt
i l t m l t m t

mc mct mlt mt m t mt mt mt
m c t m l t m t m t

CC NC YS p pc PQ p OQ

g I PQ hc hc I a I

−
∈

− ∆
+

= − + + +

+ + + +

∑ ∑

∑ ∑ ∑ ∑
I

∑
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This completes our formulation for the supply chain planning in 

pharmaceutical plants. It comprises the objective function (eq. 3.30), constraints (eqs. 

3.1-3.24), and bounds (eqs. 3.25-3.29).  

3.3. Remarks 

Though we assume that our model is deterministic in nature, it can handle unexpected 

events during a planning horizon by means of a rolling horizon strategy. These events 

may include line failures, unexpected requests for testing/launching of new products, 

extreme changes in the demand forecasts, and so on. A new product is quite likely to 

face a situation when its demand may go up or down suddenly. In either extremity, the 

current production plan would need a revision. Such revisions could minimize the 

costs arising from a failure or high backlog of a new product. In order to revise the 

production plan, we redefine periods from the current time onwards and simply update 

the model with the current status of the facility. This includes initial inventory levels 

(Im0), initial backlogs ( 0mcI − ) to various customers, campaign lengths (CLikl0) of the 

tasks that currently spill over to next periods, and initial values of spill-over binaries 

(YSil0). This updating ensures the continuity of production activities in the new plan. 

With slight modifications, we can apply our model to several extensions. So 

far, we focused on primary production alone. Secondary production involves mostly 

semicontinuous operations such as coating, granulation, packaging etc. As discussed 

earlier, the production is largely order-driven, so transitions are more frequent, but 

easier. We can assume the campaign mode of operation in the secondary production as 

well except that the period and campaign lengths will generally be shorter than those in 

the primary production will. The minimum campaign lengths may also be shorter. 

However, with appropriate data, our model can easily address the secondary 

production as well. 
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We also assumed that the scale-up procedures are complete before a new 

product enters facility F for commercial production. Hence, we incorporated only the 

validation times explicitly in our model. However, the scale-up of a new product may 

also accompany its introduction. Our model can easily include such scale-up tasks as 

well. In this case, the lines would perform the new tasks to meet the scale-up targets 

instead of customer needs. 
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Chapter 4 

PLANNING - MODEL EVALUATION 

In this chapter, we present three examples to evaluate the performance and illustrate 

the application of our planning model that we developed in the previous chapter. 

Example 1 demonstrates the impact of a new product introduction on the operation of a 

facility. Example 2 highlights the benefits of outsourcing an intermediate, when a 

facility is overloaded. Lastly, Example 3 shows the results for the re-run model that 

accounts for the current state of the facility. 

4.1 Examples 

The following are common for all three examples: 

(i) Minimum production rate L
ilR  of task i on line l is U

ilR /4. 

(ii) Penalty amt for violating target inventory is twice the holding cost hcmt. 

(iii) Only one secondary production site exists, so all the active ingredients are shipped 

to only one site. Hence, index c is redundant. 

(iv) Raw materials are available as and when required, so the inventory cost for storing 

the raw materials is not important. 

(v) Gross profits reported are those for the entire horizon 

We display the production plans in the examples via Gantt charts with the following 

format. The rectangles in the Gantt charts represent time slots. The label within each 

rectangle denotes the material produced in that slot. The slot start/end times are shown 

underneath each rectangle. The start/end times are with respect to the start of period as 

time zero. If a task on a line continues across DDt, then the last slot in period t and the 

first slot in (t+1) on that line are merged to show the continuity of production across 

DDt. 
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We used GAMS (Brooke et al., 1998)/CPLEX 7.5 on a Dell PWS650 

workstation with Windows 2000 to solve the three examples. Table 4.4 lists the model 

and solution statistics. All solutions are optimal solutions with 0% gap. All solution 

times are within 50 s. The runs that involve new product introductions take 

substantially more CPU times than those without the introductions. 

 
Table 4.1: Maximum production rates, minimum campaign lengths, changeover times, 

changeover costs, and qualification times of tasks on various lines for the examples. 
 

Task
i

Line
l

R U
il

(h)
MCL il

(h)
QT il

(h)
CT il

(h)
CC il

(h)
1 1 20 100 - 2.0 40
2 2 15 110 - 2.0 50
3 3 25 140 - 3.0 70
4 1 15 110 - 3.0 50
5 2 10 120 - 3.0 60
6 3 20 130 - 2.0 65
7 2 20 100 15 2.0 55
8 3 25 125 10 3.0 80

1 1 20 - - - -
2 2 8 - - 2.0 50

3 7 - - 1.5 45
3 4 15 - - 3.0 70
4 2 5 - - 2.0 40

3 5 - - 2.0 40
5 4 20 - - 3.0 80

1 1 20 - - 3.0 45
2 2 16 - - 2.0 50

3 7 - - 1.5 45
3 4 15 - - 3.0 70
4 2 10 - - 2.0 40

3 5 - - 2.0 40
5 4 20 - - 3.0 80
6 1 20 - 10 3.0 50
7 2 16 - 12 2.0 45

3 7 - 12 1.5 50
8 4 15 - 15 3.0 90

Example 1

Example 2

Example 3
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Table 4.2: Available production times in periods, and demands, revenues and 
safety stock targets for products in the examples. 

 

1 2 3 4
4 2000 1500 6000 5000 1.2 1500
8 1000 1500 6000 2500 0.8 1000

12 1000 1000 1200 1500 2.3 1000

4 1000 1500 6000 2500 1.2 1500
6 2000 1500 6000 5000 0.8 1000

4 1500 6000 2500 - 1.2 1500
6 1500 6000 5000 - 0.8 1000
11 1000 1500 2000 - 2.3 1000

Example 3

Available production times in periods are H l 1 = 360 h, H l 2 = 
360 h, H l 3 = 720 h, and H l 4 = 720 h for all lines except that H 13 

= 600 h for Example 3.

Demand (mu) in period t
Example 1

Example 2

Material
m

Revenue
($/mu)

Safety Stock
Target (mu)

 
 

Table 4.3: Holding costs, storage capacities, and initial inventories of materials 
in the examples. 

 

Material
m

Storage
Capacity

(mu)

Holding
Cost

(k$/mu/day)

Storage
Capacity

(mu)

Holding
Cost

(k$/mu/day)

Initial 
Inventory

(mu)

Storage
Capacity

(mu)

Holding
Cost

(k$/mu/day)
1 AA 0.00 AA 0.00 AA AA 0.00
2 3500 1.30 3500 1.30 1276.4 3500 1.30
3 3000 1.23 3000 1.23 233.5 3000 1.23
4 UL 1.76 UL 1.76 0.0 UL 1.76
5 AA 0.00 4000 1.36 0.0 4000 1.36
6 4000 1.60 UL 1.60 352.0 UL 1.60
7 5000 1.40 3000 1.40 261.0 3000 1.40
8 UL 1.82 - - AA AA 0.00
9 3000 1.50 - - 0.0 3500 1.35
10 AA 0.00 - - 0.0 4000 1.28
11 3000 1.28 - - 0.0 UL 1.80
12 UL 1.90 - - - - -

Example 1 Example 2 Example 3

UL = Unlimited, AA = Available as and when required. Delays required between task 
pairs in Examples 2 and 3 are d 12 = d 14 = 4 h, d 23 = 2 h, d 43 = d 45 = 3 h, d 67 = 4 h, and 
d 78 = 3 h.
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4.1.1 Example 1 

This example illustrates the impact of a new product introduction on the production of 

an existing facility. We consider the facility in Figure 3.1 (see previous chapter) that 

produces two active ingredients using six production tasks. F has three production 

lines, and cannot treat more than a certain amount of the waste material m9 in each 

period. The planning horizon is one quarter (2160 h) and comprises four periods. The 

first two periods are 15 days (360 h) each, and the last two are 30 days (720 h) each. 

Thus, DD1 = 360 h, DD2 = 720 h, DD3 = 1440 h, and DD4 = 2160 h. Tables 4.1-4.3 list 

the required data. In this example, we take minimum campaign lengths to be line-

dependent and assume dii′ = 0. In addition, we assume that the initial inventories of all 

materials other than the raw materials (m = 1 and 5) are zero. 

m1075%

 
Figure 4.1: Recipe diagram for Example 1 with new product m12. 
 

Task 4 Task 5 Task 6 90% 

10%

(Waste) 

m5
 

m6

m7

m8

m9

Task 2 Task 3 Task 1 

20%

80% 
m1

 
m2 m3 m4

Task 7 Task 8 
m11

25%
m2 m12

 
(New Product)
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Figure 4.2(a) shows the current production plan for F with a gross profit of 

$20108.1 (Example 1a in Table 4.4). A new product m12 is under consideration for 

production at F. Figure 4.1 shows the recipe diagram for F including m12. The 

production of m12 requires two new tasks i = 7 and 8. Note that line 2 is fully utilized 

in Figure 4.2(a), so line 2 has no room to produce m11. Therefore, it is clear that F must 

sacrifice the production of some existing products to accommodate m12. Therefore, the 

plant management faces several questions: (1) Is it profitable to produce m12, and if so 

how much to produce? (2) How should the production levels of other products reduce 

to accommodate m12? (3) What will be the new production plan? Thus, the goal of our 

model is to decide the optimal combination of products to produce, which will 

naturally determine if F should or should not produce m12. 

In practice, the safety stock level usually depends on the importance of a 

product and the volatility of its demand. For the flagship/dominant products with well-

established markets and high service levels (required), these would be high. However, 

the same is not true for new products. A new product is highly susceptible to 

technical/financial failures in spite of the warm welcome assured by the market 

intelligence. Thus, in spite of their importance to any organization, one must consider 

the high cost of inventory reclamation in case of new product failures, and cannot risk 

maintaining high inventories during the initial launch periods. Bowersox et al. (1999) 

studied the so-called lean-launch strategies based on response-based logistics. They 

suggested that a lean-launch could cut losses in launch failures by reducing the 

inventory exposure. Because primary production is the slowest responsive part of the 

entire pharmaceutical supply chain, it cannot exercise response-based logistics. Hence, 

a proper combination of the response-based inventory and that required for demand 

volatility is a better inventory scheme for new products. 

   37



 
 Chapter 4: Planning - Model Evaluation 

(a) Before the introduction of m12

148

220 487 517

Line 1
323

220

360

m6

302498

487 451

66 451

m2 m2 m6 m2

m7 m3 m7 m3

m8 m4 m4 m4m8

357 504

220

537

720 1440 21600

t =1

m6

m7 m3

m8

t =2 t =3 t =4

m6

m3 m7

m4 m8

220

220 130 136

Line 2

Line 3

112

658

167 149 415 203

268

167

m6

32775617

406 75

72 75

m2 m2 m6

m7 m3 m3 m7 m3

m8 m4m8

44

287

307 406 517

m4 m4

220 451

360 720 1440 21600

m11

m12

m6

m7

m8

m11

m12

287

44

669

451

t =1 t =2 t =3 t =4

m2 m6 m2

m3 m7

m4 m8

220

220

86 658

Line 1

Line 2

Line 3

(b) After the introduction of m12

Figure 4.2: Production plans before and after the introduction of m12 in Example 1.
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To effect a lean-launch, we set the inventory target for m12 as the minimum of 

all target inventories as discussed later in the remarks section. Figure 4.2(b) shows the 

revised production plan for F after the introduction of m12. The shaded slots represent 

the new tasks (i = 7 and 8) for m12. Because F performs the new tasks for the first time 

in period 1, it has to validate them, but in period 1 only. The black color in Figure 

4.2(b) highlights these validation times. The gross profit for the new production plan is 

$25068.9 (Example 1b in Table 4.4), thus the introduction of m12 at F can boost profit 

by 25% ($4960.8). Expectedly, the productions of m4 and m8 suffer. Their backlogs 

increase and inventories decrease (see Table 4.5). m12 is so lucrative that the new plan 

meets its demands in each period at the expense of m4 and m8. Clearly, this represents a 

compelling reason for the management to accommodate m12 at F. 

 
Table 4.4: Model and solution statistics for the examples. 

1a 0.5 129 2745 21066.6 20108.1 48 872 1047 2163
1b 28.9 4149 199545 26739.0 25068.9 88 919 1061 3987
2a 1.2 206 7287 17986.0 13688.8 52 605 761 2613
2b 1.5 153 8057 21158.9 16573.4 52 605 761 2617
2c 1.6 213 9388 21864.6 20729.3 52 605 761 2617
2d 1.6 140 8679 21864.6 20729.3 52 605 761 2621
2e 2.0 192 12709 21841.2 20473.2 52 605 761 2621
3 47.7 4816 280687 30400.1 28646.8 93 872 1047 4131

Example CPU 
Time (s)

Nodes Iterations Constraints NonzerosRMILP 
($)

MILP 
($)

Binary
Variables

Continuous
Variables

 

 

4.1.2 Example 2 

This example highlights the value of outsourcing under suitable conditions. We 

consider a facility similar to that in Example 1, but with some changes in the 

production recipe as shown in Figure 4.3. The facility in this case produces two 
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products using five tasks. It employs four production lines. Tables 4.1-4.3 also list the 

data for this example. As in Example 1, we use DD1 = 360 h, DD2 = 720 h, DD3 = 

1440 h, DD4 = 2160 h, identical minimum campaign lengths for all tasks, and zero 

initial inventories for all but the raw materials. However, we do consider nonzero 

delays dii′ (see Table 4.3) for a task i preceding i′ in the RD in a given period. 

 
Table 4.5: Inventory and backlog details for the examples. 

 

Period Before After Period Before After Period Before After

4 1 587.5 217.5 - - - - - -
- 2 1500.0 0.0 - - - - - -
8 1 487.3 76.85 2 0.0 99.4 4 1310.0 3596.0
- 2 506.0 0.0 3 1945.0 3556.0 - - -

4 2 1546.4 3112.7 1 - 278.2 - - -
6 1 352.0 569 2 1148.0 931.0 4 3548.3 1335.0
- - - - 3 2970.3 757.0 - - -

4 1 0.0 305.7 - - - - - -
- 2 1546.4 1886 - - - - - -
- 3 0.0 727 - - - - - -
6 1 352.0 2500 2 1148.0 0.0 4 3548.3 0.0
- 2 0.0 1000 3 2970.3 0.0 - - -
- 3 0.0 11 - - - - - -

4 2 1546.4 1771.7 - - - - - -
6 1 352.0 1252 2 1148.0 0.0 4 3548.3 0.0
- - - - 3 2970.3 0.0 - - -

4 1 480.0 - 2 1764.8 - 3 2030.2 -
6 - - - 1 181.4 - 3 2235.6 -
- - - - 2 1715.0 - - - -

Example 3 (Inventory and backlog profiles)

Backlog (mu)

Example 1a,b (before & after introdution of m 12)

Inventory (mu)

Example 2c,d (before and after outsourcing m 5 only or both m 3 and m 5)

Example 2a,b (before and after outsourcing m 3 only)

Example 2e (before and after outsourcing unlimited m 3 and limited m 5 )

Material 
m

 

 
Figure 4.4(a) shows the current production plan with no outsourcing. The plan 

has a gross profit of $13688.8 (Example 2a in Table 4.4). In the current plan, lines 2 
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and 3 are the bottlenecks and make it impossible to meet the demand of m6 in periods 

2, 3 and 4 (see Table 4.5). By outsourcing m3 or m5 or both, it should be possible to 

increase the production of m6, for which line 4 has unused capacity. The plant 

management faces the decision of which intermediates to outsource and in what 

amounts. Given the choices of outsourcing, our model can identify the optimal 

decision including which intermediates should be outsourced, when and in what 

amounts. However, to study the impact of outsourcing each intermediate or all of them 

at a time, we consider three scenarios. In the first scenario, F can outsource only m3, in 

the second, it can outsource only m5, and in the last, it can outsource both. In all three 

cases, the optimal outsourcing quantity is the one that gives the maximum gross profit. 

Hence, we impose no upper limit on the outsourcing quantity. For these studies, we use 

a price of $0.5 per mu (mass unit) for both m3 and m5. 

80%
Task 3 Task 2 

m4m2 m3

20% 

Task 1 
m1 m5

90% Task 4 Task 5 
m6m2

10% 

m7

(Waste) 

Figure 4.3: Recipe diagram for Example 2.
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(a) Before outsourcing m5
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(b) After outsourcing m5

Figure 4.4: Production plans before and after outsourcing m5 for Example 2.
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In the first case, where F can outsource m3 only, backlogs (see Table 4.5) of m6 

in periods 2, 3, and 4 reduce to 931, 757, and 1335 mu respectively. However, period 1 

still shows a backlog of 278.2 mu for m4. Although outsourcing m3 does not eliminate 

the backlogs fully, it does reduce them. The quantities of m3 outsourced in periods 1 

and 2 are 389 and 3825 mu respectively, while the gross profit for this scenario 

increases by roughly 21% to $16573.4 (Example 2b in Table 4.4).  

In the second case, where F can outsource m5 only, the backlogs (see Table 4.5) 

of both m4 and m6 disappear in all periods. The outsourced quantities of m5 are 2652 

and 1246 mu in periods 1 and 3 respectively. The gross profit of F increases by 

roughly 50% to $20729.3 (Example 2c in Table 4.4). This is roughly 25% higher than 

the first case, so outsourcing m5 is more profitable than outsourcing m3. Figure 4.4(b) 

shows the resulting production plan after outsourcing m5. In the optimal plan, the 

campaign of m6 on line 4 starts immediately after that of m4 in period 2. However, 

because the campaign length of m6 is just 3 h in period 2, this portion of the campaign 

is invisible in period 2. However, the same campaign continues with a discontinuity 

due to the delay time required between m5 and m6 in period 3. This delay is 

inconsequential as far as the actual production schedule is concerned and one can 

suitably eliminate this while doing detailed production scheduling. 

In the third case, F can outsource any or both m3 and m5, but the optimal 

outsourcing solution (Example 2d in Table 4.4) is identical to that in the second case. 

Given the options of outsourcing both m3 and m5, the model outsources m5 only and no 

m3. Because both m4 and m6 share m5 (see Figure 4.3), outsourcing m5 elevates the 

production levels of both m4 and m6. 

If F can outsource only a limited amount of m5 but unlimited amount of m3, 

then one may want to know the amounts of backlogs that F can avoid. To study this 
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case, we impose a maximum limit of 1000 mu per period on m5. In this case, F 

outsources 1000 mu of m5 in periods 1, 2, and 3, and 642 mu in period 4. Moreover, it 

outsources 592 mu of m3 in period 2. Interestingly, this eliminates the entire backlog of 

m6 (see Table 4.5). The gross profit in this case is $20473.2 (Example 2e in Table 4.4), 

which although comparable to cases 2 and 3 is still less. We expected this, as the 

optimal solution is the one in cases 2 and 3.  

The decision to outsource requires several considerations. A facility may 

consider outsourcing an intermediate, when it is unable to meet the demands of its 

products with the existing equipment. It may also consider outsourcing, when it is 

more profitable to use the facility to produce a new product rather than a nearly off-

patent product. However, at times, it may not be acceptable to outsource some 

intermediates due to business reasons. In any case, only the intermediates produced by 

the bottleneck lines are the potential candidates for outsourcing. 

4.1.3 Example 3 

In this example, we consider several plant changes that force a revision of the 

production plan. We consider a facility very similar to the one in Example 2. At the 

end of period 1, we assume that the following changes occur in the facility: 

(i) The plant wishes to introduce a new product m11 as shown in Figure 4.5. 

(ii) The capacity of line 2 doubles due to a retrofit project. 

(iii) 120 h are required near the end of period 3 on line 1 to test a new product. Hence, 

the available production time on line 1 in period 3 is 600 h instead of 720 h. 

The end of period 1 or t = 360 h now becomes the start of the scheduling horizon, and 

the state of the facility at this point (see Figure 4.4a) becomes current state. Thus, 

period 2 becomes period 1, period 3 becomes period 2, and so on. Tables 4.1-4.3 

provide the remaining data. 
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Figure 4.5: Recipe diagram for Example 3 with new product m11. 

Figure 4.6: Production plan for Example 3.
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Figure 4.6 shows the revised production plan that incorporates the above 

changes in the facility. The slots with slanted line-pattern represent the new tasks 

related to m11, while those filled with black represent the validation times. The gaps 

that occur in the performance of new tasks across the DD2 are due to the delay times 

(dii′) required between successive tasks in a recipe, when they take place in a given 

period. Based on the available inventories of the intermediates, the plant operation can 

remove these gaps easily during scheduling. Again, as in Example 1, the new product 

is highly lucrative, and its production is at the expense of existing products. The 

backlogs of m4 and m6 occur in all periods as shown in Table 4.5. However, the gross 

profit still increases to $28646.8 (Example 3 in Table 4.4) as compared to $13688.8. 

Thus, it is profitable for the plant to accommodate m11. 

4.2 Conclusion 

We have addressed an important and common supply chain planning problem to assess 

the feasibility as well as profitability of introducing new active ingredients or 

intermediates in a given pharmaceutical plant. In the previous chapter, we developed a 

single-plant-centric, multi-period, MILP model that allows complex API-recipes with 

multiple intermediates, outsourcing of existing intermediates, material movement 

among different production/supply/demand facilities, validation times for new tasks, 

minimum campaign lengths, line-dependent cleaning, and so on, and considers 

explicitly the details of campaign sequencing and timing on individual production lines 

in a pharmaceutical plant. In this chapter, we tested its efficacy on three examples that 

feature many of the real-life issues of a pharmaceutical plant. It is clear from the 

evaluation that our model gives reasonably quick solutions (< 50 s) for three examples 

(see Table 4.4) involving up to twelve materials (intermediates, products, wastes, etc.), 

four production lines, and up to three months of planning horizon. Hence, we conclude 
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that our planning model can assist in quick, optimal assessments of new product 

introduction and outsourcing in a pharmaceutical plant. 
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Chapter 5 

SCHEDULING IN PHARMACEUTICAL PLANTS 

It is common in pharmaceutical industry that the demands of products in a particular 

primary/secondary site vary quite often. In such cases, the operation management may 

not prefer the campaign mode of operation, instead it would resort to a batch mode of 

operation as the latter can effectively respond to the variable demands. Hence, the 

decision level lowers from planning to scheduling, where scheduling is more accurate 

as it accounts for the realistic constraints in the plants. Normally, the scheduling 

horizon is about few days to few weeks, whereas planning horizon could go up to few 

years. Now, the short-term demands of products dictate the operations in a plant, and 

much competition arises among different products. Since the pharmaceutical plants are 

multipurpose in nature, the major challenges that the plant management faces are how 

to utilize the available production units very efficiently, which products to produce 

from when to when so that the customer demands are met satisfactorily and so on. In 

this chapter, we describe an important scheduling problem for the pharmaceutical 

plants, present the motivation behind our scheduling work, develop a novel 

formulation for addressing this important problem, and present some remarks on the 

proposed formulation. 

5.1 Motivation 

Some recent attempts (Ierapetritou & Floudas, 1998, 1999; Giannelos & Georgiadis, 

2002; Maravelias & Grossmann, 2003a) at scheduling multipurpose batch plants base 

their MILP formulations on the idea of decoupling tasks from units, which entails 

replacing the key 3-index binary assignment variables (task on unit at event point or 

slot) into two sets of 2-index binary variables involving task to event point/slot or unit 

to event point/slot assignment decisions. The motivation for this decoupling is that it 
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appears to reduce the total number of binary variables in the formulation which in turn 

may reduce overall solution time. 

Although reducing the number of binary variables in a formulation is generally 

a desirable modeling objective, it is well known that this does not guarantee improved 

solution times. The ultimate proof in any specific case still lies in the hard evidence of 

computational performance. Furthermore, the following analysis shows that this type 

of decoupling strategy does not actually lead to the binary variable reduction that is 

intended. 

Consider an arbitrary (multipurpose or otherwise) batch plant with I tasks (i = 

1, 2, …, I) and J units. Whether one uses slots or events in a continuous-time 

formulation, a key scheduling decision is to assign tasks to units at various slots or 

events. One approach to model this decision is to directly use the following 

straightforward 3-index binary variables: 

1 if task  begins on unit  at event point
( , , )

0 otherwise
i j

y i j n
⎧

= ⎨
⎩

n
 

Under the decoupling strategy, the same decision is modeled using the following two 

2-index binary variables: 

1 if task  begins at event point 
( , )

0 otherwise
i n

w i n
⎧

= ⎨
⎩

 

1 if unit  begins a task at event point 
( , )

0 otherwise
j n

v j n
⎧

= ⎨
⎩

 

Let us refer to the above two approaches as non-decoupling and decoupling 

approaches respectively. Since the latter allows one to eliminate the v-variables from 

the formulation, it may be argued that it uses fewer binary variables. The justification 

is that the w-variables have only two indexes, hence their number is of O(I) per event 

point. In contrast, the y-variables have three indexes and hence their number is of 
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O(I×J) per event point, which is expected to be much higher. However, the key 

assumption that the decoupling approach uses to decouple tasks from units is that each 

task is performed by a unique unit. If several units can perform a task, then the 

decoupling approach replaces that task by several tasks that represent unique task-unit 

combinations. For instance, if units 1 and 2 can perform a task A, then the decoupling 

approach must define two tasks A-1 and A-2, which are nothing but A-performed-on-

unit-1 and A-performed-on-unit-2 respectively. 

Now, let Ji denote the set of units that can perform task i. The decoupling 

approach would replace each task i by |Ji| new tasks, where |Ji| is the cardinality of set 

Ji. Therefore, the total number of tasks in this approach would not be I, but |J1| + |J2| + 

… + |JI| and the number of w-variables required would be |J1| + |J2| + … + |JI| per 

event point. The non-decoupling approach would define one binary per event point for 

each unit that can perform a task i. So, the non-decoupling approach would require |J1| 

+ |J2| + … + |JI| y-variables per event point. Clearly, the number of binary variables is 

the same in both approaches. 

When we assume a unique unit for each task, the index j becomes fixed as soon 

as we fix i. Then, y(i, j, n) in fact becomes y[i, j(i), n], which is fully equivalent to the 

2-index binary variable w(i, n). As we saw earlier, the assumption of a unique unit for 

each task increases the number of actual tasks to that of O(I×J), hence the number of 

w-variables is still the same as the O(I×J) of y-variables. Another way of viewing this 

is that since any given plant operation has some inherent degrees of freedom for 

assigning tasks to units and event points, any complete formulation cannot reduce this 

inherent freedom. If a formulation were to do so, it may lead to suboptimal solutions. 

The only difference between the 3-index y-variables and the 2-index w-variables is that 

the former display the unit information explicitly in terms of j, while the latter hide the 
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same behind i. The number of binary variables per event point must be the same; 

otherwise the formulation cannot give the optimal solution. The decoupling of tasks 

from units increases the number of binaries by increasing the number of tasks, and at 

the same time decreases them by eliminating the v-variables, but the net effect of these 

two actions is zero in terms of the number of binary variables. 

The aim of this work is to propose a simple and novel formulation that does not 

decouple tasks from units and uses a slot-based continuous-time formulation for 

scheduling multipurpose batch plants. As we show later conclusively, in spite of using 

3-index binary assignment variables, our formulation requires fewer variables, uses 

fewer constraints and nonzeros, solves significantly faster, and has the potential to 

yield tighter relaxed objective than any other existing model (even-based or 

otherwise). Furthermore, it should not have any problems in addressing several key 

features of resource-constrained multipurpose batch plants. 

5.2 Problem Description 

We consider a pharmaceutical batch plant F that produces multiple products using a 

number of shared production units that constrain the plant operation. We use recipe 

diagrams (RDs) to describe the production in F, which we feel are a more 

straightforward extension of Process Flow Diagram (PFD) concept to a batch process. 

In chapter 3, we discussed about the representation of RD with an example. Here, we 

use an alternate representation of RD, which provides unit information in addition to 

the task sequence. In a RD, nodes represent the tasks, arcs represent the various 

materials, and arc directions represent the task precedence. Hence, RD uses only one 

set of nodes that denote tasks and obviates the need for using a second set to represent 

material states. In this sense, RD is a simpler and unambiguous depiction of recipes 

using only task nodes. A plant in general may involve one or more disjoint RDs. 
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Figure 5.1 shows the RD for an example pharmaceutical plant producing one product 

that requires two intermediates. In the figure, D denotes the final product, B and C 

intermediates, and A the raw material. Each rectangle represents a task and shows 

information about the suitable units that can process the task. As mentioned above, we 

use arrows and their directions to represent the materials and task precedence 

respectively as shown in the figure. Further discussion on RDs appears in the examples 

section of the next chapter. 

A B C D 
(m=2) (m=3) (m=4)(m=1) 

Task 1 
(i=1) 

J1 = {Unit 1, 

Unit 2} 

Task 3 
(i=3) 

J3 = {Unit 4, 

Unit 5} 

Task 2 
(i=2) 

J2 = {Unit 3} 

 

  
Figure 5.1: Recipe diagram for the motivating example. Ji denotes the set of 

units that can perform task i.

 
The facility F houses J (j = 1, 2, …, J) units and performs I (i = 1, 2, …, I) 

tasks. Each unit j can perform a set Ij of tasks in the RD. Similarly, a set Ji of units can 

perform a task i. We use index m to represent materials in the RD. Let Mi denote the 

set of materials (m ∈ Mi) that a task i consumes or produces. Mi includes all the 

different states of raw materials, intermediates, and final products associated with task 

i.  We use the general mass balance for each task i as, 

(Material ) 0
i

mi
m

mσ
∈

=∑
M

 (5.0) 

where, σmi is analogous to the stoichiometric coefficient of a species in a chemical 

reaction except that it can be in kg/kg units instead of mol/mol. Thus, σmi < 0, if task i 

consumes material m ∈ Mi and σmi > 0, if it produces m ∈ Mi. Furthermore, for each 

task i, we designate a primary material µi, with respect to which we define the extent 
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of task i. The batch size of a task i is defined as the amount of the primary material µi 

that task i consumes or produces in a batch. 

For the short-term scheduling of such a multipurpose batch plant, we need to 

determine: 

(i) the optimal sequence and schedule of different tasks on each unit 

(ii) the batch size of each batch of each task on each unit at various times 

using: 

(a) RD for the plant with material and unit requirements 

(b) Suitability of units (processing and storage) for tasks, their capacity limits, and 

batch processing time information 

(c) Time horizon H for profit maximization or fixed product demands Dm for 

makespan minimization 

(d) Final product revenues, net or otherwise 

Although, we consider only two scheduling objectives (maximizing the profit/revenue 

from the sales of finished products and minimizing the makespan) in this work, other 

objectives such as minimizing inventory, production, or setup costs and even 

minimizing the tardiness or earliness can readily be accommodated in the proposed 

formulation with minor modifications. 

 We assume the following for the scheduling formulation. 

1. Transfer and setup times are lumped into batch processing times of tasks. 

2. The batch processing time of task i on unit j is either a constant (τij) or varies 

linearly with its batch size as αij + βij(Batch size), where αij and βij respectively are 

known. 

3. Product revenues have accounted for various production costs. 
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We now develop a continuous-time MILP formulation for the above scheduling 

problem. 

5.3 Formulation 

In multipurpose batch plants, it is quite common that multiple tasks share a limited 

number of production units and resources. Therefore, we need a time representation 

that can handle the shared resources effectively. Although it is possible to use a 

representation using asynchronous slots (Lim and Karimi, 2003b) to handle shared 

resources, we use synchronous slots in this work because they simplify the treatment 

of shared resources. However, note that the former approach generally requires fewer 

slots than the latter for a given problem. In this chapter, we present a basic formulation 

for scheduling multipurpose plants, in which all units are batch units, and no resources 

other than materials and equipment are required for tasks. 

We divide the horizon H into K (k = 1, 2, …, K) slots of variable lengths SLk as 

in Figure 5.2, with k = 0 denoting the slot prior to time zero. The slots are common to 

or synchronized on all units (j = 1, 2, …, J), and we fix K a priori or gradually increase 

K until we have adequate slots. We denote Tk as the time at which slot k ends. T0 = 0 

represents the start of the horizon, while TK ≤ H may occur before H. Normally, each 

Tk corresponds to the start of a task on one or more units, but this need not be so. A 

task beginning at Tk can end before, at, or after T(k+1) as shown in Figure 5.2. Since a 

slot k runs from T(k–1) to Tk, we get, 

Tk = Tk–1 + SLk (5.1) 

Also, the sum of all slot lengths must not exceed the given horizon H. Hence, 

1

K

k
k

SL
=
∑ ≤ H (5.2) 
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The start of every new task on any unit triggers a slot. However, a new slot 

may begin, even without a task start. Similarly, several tasks may start at the same time 

on different units. This type of representation allows us to accommodate extra, 

redundant slots, when we overestimate K. Furthermore, we define a zero task (i = 0) to 

model the idling of units and to occupy extra, redundant slots. Thus, we have I+1 tasks 

in our formulation, I real (i = 1, 2, …, I) and one idle (i = 0).  

 

1

Task 1

2

Task 3

Task 4

Task 2

3

Task 1

Task 3

K

Task 2

Slot

Unit 1

Unit 2

Unit J

T 2 T (K -1) T KT 3

H

T 0 T 1

 

Figure 5.2: Schematic of slots and time points. 
 

With this preamble, we proceed with our primary aim of deciding which tasks 

to begin/end at what times, on which units, and in how much amounts.  

5.3.1 Task Assignments and Slot Lengths 

First, we define a binary variable for the start of a task as follows: 

1 if unit  begins task  at time 
0 otherwise

k
ijk

j i T
Y

⎧
= ⎨
⎩

 i ∈ Ij, 0 ≤ k < K 

If a task i merely continues on unit j at Tk, then Yijk = 0. Based on the binary Yijk, we 

define a continuous 0-1 variable Zjk to know if a unit j begins a new task at Tk: 
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1 if unit  begins a task (including  = 0) at time 
0 otherwise

k
jk

j i T
Z

⎧
= ⎨
⎩

 0 ≤ k ≤ K 

If Zjk = 0, then the current task on unit j at Tk continues. Since at most one task can start 

on a unit j at any Tk, we can write, 

Zjk =  0 ≤ k < K (5.3) 
j

ijk
i

Y
∈
∑

I

We assume that all tasks must end at or before TK, and imagine that a new task will 

start on all units at TK, i.e. ZjK = 1 for all j in our formulation. 

Having modeled the starts of tasks, we now model their sizes and timings. Let 

Bijk (i ∈ Ij, 0 ≤ k < K) be the batch size of task i that unit j begins at Tk. This refers to 

the actual amount of primary material µi involved in the batch starting at Tk on unit j. If 

task i does not start at Tk, then Bijk = 0, and vice versa. Therefore, we have, 

L
ijB Yijk ≤ Bijk ≤ U

ijB Yijk i > 0 (5.4) 

where, U
ijB and L

ijB  respectively are the maximum and minimum batch sizes of task i 

on unit j. 

5.3.2 Different Balances 

Now, our formulation revolves mainly around four balances involving unit, 

time, and material inventories in units and storage: 

1. Status of a processing unit  

2. Processing time of a task in a unit 

3. Amount of batch material residing in a unit 

4. Inventory in each material storage 

We begin with the balance on the use of a processing unit. 

5.3.2.1 Balance on Units. We define the following 0-1 continuous variables: 

1 if unit  is continuing to perform task at time 
0 otherwise

k
ijk

j i T
y

⎧
= ⎨
⎩

 i ∈ Ij,0 ≤ k ≤ K  
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1 if unit  ends task  and releases its batch at time 
0 otherwise

k
ijk

j i T
YE

⎧
= ⎨
⎩

 i ∈ Ij, 0 ≤ k ≤ K 

A balance on the status of unit j simply means, 

yijk = yij(k–1) + Yij(k–1) – YEijk 0 < k < K (5.5) 

Note that yijk is zero, when task i is not precisely under progress in unit j at Tk. It is 

zero, when a task begins, ends or is not at all taking place. It becomes one, only after a 

task has begun, and becomes zero exactly when the task ends. In our formulation, we 

set yijK = 0, so no task can continue beyond the last slot K. Similarly, for an empty 

plant at the start, we set yij0 = YEij0 = 0. 

It is clear that unit j cannot start a new task, unless it ends the previous task. 

Since we have idle tasks, we assume that a new task always starts on a unit at the end 

of each task, that is, 

Zjk =  0 < k < K (5.6) 
j

ijk
i

YE
∈
∑

I

Note that since ZjK = 1 and YEij0 = 0, we do not enforce the above for k = K and k = 0. 

However, if a task i on unit j must discharge its batch at TK, then YEijK will be one, as 

that would favor the objective. Similarly, a unit j can start a new task only if it is not 

continuing any task, so 

j

ijk
i

y
∈
∑

I

 + Zjk = 1 0 < k < K (5.7) 

Again, we do not enforce the above for k = K and k = 0, since ZjK = 1, and yijK = yij0 = 

0. Lastly, a unit may end a task i and start the same at the same time, but it cannot 

continue and end or continue and start at the same time. We write these as, 

yijk + Yijk ≤ 1 0 < k < K (5.8a) 

yijk + YEijk ≤ 1 0 < k < K (5.8b) 
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Eqs. 5.3, 5.5, 5.6, 5.7, and 5.8 force yijk and YEijk to be 0 or 1 only (even though we 

treat them as continuous 0-1), as long as Yijk are binary. In fact, it is easy to see that 

eqs. 5.3, 5.6, and 5.7 make eqs. 5.8a-b redundant. Also, with eq. 5.5 in effect, one of 

eqs. 5.3, 5.6, and 5.7 is redundant. We discuss the impact of eqs. 5.6 and 5.7 on model 

performance in the discussion section of the next chapter. 

5.3.2.2 Balance on Processing Times. Here, we keep track of the duration of a task in 

progress on a unit. Let tjk denote the time remaining at Tk to complete the task that was 

in progress during slot k on unit j. As we move from Tk to Tk+1, this time will either 

remain constant (task not in progress during slot k) or decrease (task in progress) by an 

amount equal to the slot length. Thus, a time balance at Tk+1 gives, 

tj(k+1) ≥ tjk + – SL( )
j

ij ijk ij ijk
i

Y Bα β
∈

+∑
I

(k+1) k < K (5.9) 

The inequality allows a task to continue in a unit even after its completion. Unless a 

task is in progress at time zero, we set tj0 = 0. Also, if we do not allow a unit to 

continue processing beyond slot K, we also set tjK = 0. Whenever, a task completes its 

required duration on a unit, tjk must be zero. We could enforce this simply by using tjk 

≤ H(1–Zjk), but this results in a loose formulation. To get a tighter formulation, we 

need the third balance. 

5.3.2.3 Balance on Batch Amounts. Let bijk be the amount of primary material µi 

(batch size) that resides in unit j just before Tk and BEijk is the amount that task i 

discharges at its completion at Tk. A simple mass balance around unit j gives, 

bijk = bij(k–1) + Bij(k–1) – BEijk i > 0, k > 0 (5.10) 

If unit j is empty at time zero, then bij0 = BEij0 = 0. At TK, we want all units to be 

empty, so bijK = 0. Similarly, whenever a unit j is not performing a task i at Tk, bijk must 

be zero, and vice versa. In other words,  

L
ijB yijk ≤ bijk ≤ U

ijB yijk i > 0, 0 < k < K (5.11) 
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Furthermore, a unit can release a batch at Tk only if its task ends, i.e. YEijk = 1, and vice 

versa. In other words, 

L
ijB YEijk ≤ BEijk ≤ U

ijB YEijk i > 0, 0 < k < K (5.12) 

Finally, tjk can be nonzero only when both yijk and bijk are so. Therefore, 

tjk ≤ ( )  0 < k < K (5.13) 
j

ij ijk ij ijk
i

y bα β
∈

+∑
I

Note that the above equation does not violate the maximum value possible for tjk, 

which is the batch processing time of the task in progress on unit j. Furthermore, it 

ensures that a task batch does not end, until its duration is over. As mentioned earlier, 

eq. 5.13 affects the tightness of our formulation considerably. 

5.3.2.4 Balance on Material Inventory. Execution of a task will consume and 

produce materials. We assume that (1) all materials are stored in a storage facility 

(imaginary or real), (2) the time to transfer to or from this storage is negligible or 

included in the processing time, (3) a task at its start withdraws the required materials 

from storage, and (4) a task at its end transfers product materials to storage. Then, the 

inventory balance for a material m at Tk is, 

Imk = Im(k–1) + 
, 0 , 0m i m ii i

mi mi
ijk ijk

i i j i i j
BE

µ µ

Bσ σ
σ σ∈ ≠ ∈ ∈ ≠ ∈

+∑ ∑ ∑ ∑
OI J II J

 (5.14) 

where, Imk is the inventory of material m at Tk, OIm is the set of tasks that produce 

material m, IIm is the set of tasks that consume material m, and σmi is the stoichiometric 

yield coefficient of material m in the mass balance of task i, which is negative for the 

raw materials of task i and positive for its products. Eq. 5.14 ensures that a task is 

never performed, unless the required raw materials are present in their respective 

inventories. Indirectly, it also governs the precedence of tasks on various units. 
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Finally, imposing good upper and lower bounds on all variables in the 

formulation reduces the nodes in the branch & bound solution of MILPs. Therefore, 

we use the following upper bounds on SLk, tjk, Imk, and others. 

SLk ≤  (5.15) (max max
j

U
ij ij ijj i

Bα β
∈

⎡ +⎢⎣ ⎦I
)⎤⎥

tjk ≤ ( )max
j

U
ij ij iji I

Bα β
∈

+  (5.16) 

Imk ≤ U
mI  (5.17) 

Bijk, bijk, BEijk ≤ U
ijB  (5.18) 

where, U
mI  is the maximum storage capacity for material m. In addition, all continuous 

variables are nonnegative, 

Zjk, yijk, YEijk, SLk, tjk, Bijk, bijk, BEijk, Imk ≥ 0 (5.19) 

In addition to the bounds (eqs. 5.15-5.19), eqs. 5.2-5.6 and 5.9-5.14 are all the 

constraints that we need for our scheduling problem. To complete our formulation, we 

need a suitable scheduling objective. 

5.3.3 Scheduling Objective  

Existing literature has used two scheduling objectives. One is the maximization of total 

revenue, net or otherwise, while the other is the minimization of makespan (Maravelias 

& Grossmann, 2003b; Shah et al., 1993). In most scheduling problems, the latter seems 

to be the more difficult objective (Lamba & Karimi, 2002a; Lamba & Karimi, 2002b; 

Maravelias & Grossmann, 2003a). 

Assuming that the plant can sell all the products that it produces, the net 

revenue or profit from selling the final product inventories at the end of the horizon is, 

P =  (5.20) m mK
m

g I∑

 60



 
 Chapter 5: Scheduling in Pharmaceutical Plants 

where, gm is the net revenue or profit per kg or mu (mass unit) of product. For this 

objective, our formulation for maximizing sales or net profit comprises eqs. 5.2-5.6, 

5.9-5.14, 5.20, and the bounds (eqs. 5.15-5.19). 

For minimizing the makespan, we modify the formulation slightly. Now, H 

ceases to be a given parameter. Instead, the plant must satisfy some minimum demands 

of products. If Dm denotes the demand for material m, then we have, 

ImK ≥ Dm (5.21) 

Furthermore, we do not need eq. 5.2. Instead, we minimize the makespan given by, 

MS =  (5.22) 
1

NK

k
k

SL
=
∑

Thus, the complete model for minimizing the makespan comprises eqs. 5.3-5.6, 5.9-

5.14, 5.21, 5.22, and the bounds (eqs. 5.15-5.19). 

5.4 Remarks 

Some features of our above formulation are noteworthy and distinct from the previous 

work. 

First, in contrast to all the existing continuous-time models of Ierapetritou & 

Floudas (1998), Giannelos & Georgiadis (2002), and Maravelias and Grossmann 

(2003a), our formulation has absolutely no big-M constraints. We believe that this is 

significant, because our experience shows that eliminating the big-M constraints 

generally improves MILP formulations. In general, event-based formulations in the 

literature have profusely used big-M constraints. Maravelias and Grossmann (2003a) 

require several big-M constraints in modeling the duration, finish-time, and time-

matching constraints. As in their case, the use of disjunctive programming also results 

in big-M constraints. In contrast, our formulation needs no ideas such as disjunctive 

programming or convex-hull reformulations. We believe that the lack of big-M 
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constraints gives our model a computational edge, as we show later in performance 

evaluation. 

Second, our model is much simpler than previous models. As we see in the 

examples of next chapter, it has substantially fewer constraints and nonzeros. It also 

uses fewer binary variables. For instance, Maravelias & Grossmann (2003a) use binary 

variables for the start, end, and continuation of tasks, while we use them only for the 

starts of tasks. All these contribute significantly to the computational superiority of our 

model. 
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Chapter 6 

SCHEDULING - MODEL ASSESSMENT 

In this chapter, we assess the performance of our scheduling model, proposed in the 

previous chapter, comparing it with two other models (Maravelias and Grossmann, 

2003a; Giannelos and Georgiadis, 2002) in the literature. Firstly, we solve several 

example scenarios for different objectives to make an unambiguous conclusion. Then, 

we discuss some miscellaneous aspects of our model, and present some basic criteria 

required for any model comparison task. Finally, we make some concluding remarks. 

6.1 Examples 

For the sake of a fair comparison, we implemented our model and those of Maravelias 

& Grossmann (2003a) and Giannelos & Georgiadis (2002) in GAMS (Brooke et al., 

1998). We solved several examples using the three models on DELL GX 270 (Pentium 

IV 2.8 GHz CPU with 1 GB of RAM) running Cplex 8.1.0 in GAMS 21.2. We 

evaluate the three models for both scheduling objectives (profit maximization and 

makespan minimization) to get a better idea of which model is fundamentally better. 

Moreover, we compare them on several scenarios of each example to get a robust 

comparison. Furthermore, we compare them for the special case of constant batch 

processing times, as this case has appeared in the literature. While Table 6.1 gives the 

task and unit information for all the examples, Table 6.2 gives the material 

information. We begin with the first objective of profit maximization, and then 

consider the second of makespan minimization. For each case, we discuss each 

example individually. 
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Table 6.1: Limits on batch sizes of tasks and coefficients in the expressions for 
processing times in the examples. 

 
Recipe
Task

Label
i

Unit Label
j

τ ij α ij β ij
B L

ij

(mu)
B U

ij

(mu)

Task 1 1 Unit 1 Unit1 2.0 1.3330 0.013330 - 100
Unit 2 Unit2 2.0 1.3330 0.013330 - 150

Task 2 2 Unit 3 Unit3 1.5 1.0000 0.005000 - 200
Task 3 3 Unit 4 Unit4 1.0 0.6670 0.004450 - 150

Unit 5 Unit5 1.0 0.6670 0.004450 - 150

Heating H Heater HR 1.0 0.6670 0.006670 - 100
Reaction-1 R1 Reactor 1 RR1 2.0 1.3340 0.026640 - 50

Reactor 2 RR2 2.0 1.3340 0.016650 - 80
Reaction-2 R2 Reactor 1 RR1 2.0 1.3340 0.026640 - 50

Reactor 2 RR2 2.0 1.3340 0.016650 - 80
Reaction-3 R3 Reactor 1 RR1 1.0 0.6670 0.013320 - 50

Reactor 2 RR2 1.0 0.6670 0.008325 80
Separation S Separator SR 2.0 1.3342 0.006660 - 200

Heating-1 H1 Heater HR 1.0 0.6670 0.006670 - 100
Heating-2 H2 Heater HR 1.5 1.0000 0.010000 - 100
Reaction-1 R1 Reactor 1 RR1 2.0 1.3330 0.013330 - 100

Reactor 2 RR2 2.0 1.3330 0.008890 - 150
Reaction-2 R2 Reactor 1 RR1 1.0 0.6670 0.006670 - 100

Reactor 2 RR2 1.0 0.6670 0.004450 - 150
Reaction-3 R3 Reactor 1 RR1 2.0 1.3330 0.013300 - 100

Reactor 2 RR2 2.0 1.3330 0.008890 - 150
Separation S Separator SR 3.0 2.0000 0.006670 - 300

Mixing M Mixer 1 MR1 2.0 1.3330 0.006670 20 200
Mixer 2 MR2 2.0 1.3330 0.006670 20 200

Example 2

Example 3

Example 1

 
 

6.1.1 Profit Maximization 

The objective of the scheduling model is to maximize the profit or net revenue of the 

pharmaceutical plant. Here, the batch processing times are variable with the batch sizes 

of the tasks. Table 6.3 summarizes the model and solution statistics for various 

scenarios of all three test problems under profit maximization. 
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Table 6.2: Storage capacities, initial inventories, and revenues of materials in the 
examples. 

 

Material
m

Storage
Capacity

(mu)

Initial 
Inventory

(mu)

Revenue
($/mu)

Storage
Capacity

(mu)

Initial 
Inventory

(mu)

Revenue
($/mu)

Storage
Capacity

(mu)

Initial 
Inventory

(mu)

Revenue
($/mu)

1 UL AA 0 UL AA 0 UL AA 0
2 200 0 0 UL AA 0 UL AA 0
3 250 0 0 UL AA 0 100 0 0
4 UL 0 5 100 0 0 100 0 0
5 - - - 200 0 0 300 0 0
6 - - - 150 0 0 150 50 0
7 - - - 200 0 0 150 50 0
8 - - - UL - 10 UL AA 0
9 - - - UL - 10 150 0 0

10 - - - - - - 150 0 0
11 - - - - - - UL AA 0
12 - - - - - - UL 0 5
13 - - - - - - UL 0 5

UL = Unlimited; AA = Available as and when required

Example 1 Example 3Example 2

 
 

1 (100)

1 (100 )

1

3  (150 )

3  (50 )

2  (20 0 )

1 (8 4 .017)

1 (8 4 .017)

2 3

3  (84 .0 17)

3  (84 .0 17)

2  (168 .0 35)

4

0 1 2 3 4 5 6 7 8

Slo t

Unit  1

Unit  2

Unit  3

Unit  4

Unit  5

Time (h)

2 .66 6 5.119 6 .959

6 .4 54

4 .666

6 .0 09

 

Figure 6.1: Maximum-profit schedule for Example 1 with H = 8 h, K = 4, and variable 
batch processing times. The numbers within the parentheses denote the batch sizes 

(mu) of corresponding tasks. 
 

6.1.1.1 Example 1. We used the motivating example in Figure 5.1 (see chapter 5) as 

the first test example. We solved it for three scenarios. In the first scenario (call it 

Example 1a), we considered H = 8 h. Increasing K from 4 to 5 did not improve the 
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MILP objective, so we assumed the solution from K = 4 as the optimal. We will do the 

same for determining the minimum K in all examples. Note that although all the 

existing formulations in the literature have assumed this for this example, there is no 

way to generally guarantee that K = 6 and beyond will not give a better solution. 

Figure 6.1 shows the (presumably) optimal schedule from our model. In each figure 

displaying a schedule in this chapter, we show a separate row of slots that form the 

basis for each schedule. As mentioned earlier, these slots are common to or 

synchronized on all units. We use a rectangle to denote each slot. A batch may require 

more than one slot for its completion. Therefore, we merge these slots into one 

rectangle that represents the entire task duration. The label within each rectangle 

denotes the task that the unit performs and the number within the parentheses denotes 

the batch size (mu) of that task. Moreover, if a task ends before its last slot ends, then 

we show its exact end underneath the rectangle. Note that the RMILP and MILP 

objectives (see Table 6.3) are identical for all three models. In addition, the solution 

time is also almost the same for all three models. This is expected for a simple example 

such as this. In our opinion, it is foolhardy to claim computational superiority of a 

model over others based on such trivial examples, which incidentally has occurred 

commonly in the literature. One should compare models only on difficult problems. 

Therefore, we cannot conclude from Example 1a that all three models perform equally 

well. 

To make this trivial problem more difficult, we increased H. Thus, in the 

second scenario (call it Example 1b), we used H = 12 h. Our model required K = 8, 

whereas the M&G (Maravelias and Grossmann, 2003a) and G&G (Giannelos and 

Georgiadis, 2002) models required N = 9 and N = 6 (event points) respectively. Our 

model and the M&G model require almost the same order of solution times. However, 
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Table 6.3: Model and solution statistics for the maximum-profit examples with 
variable batch processing times. 

 

Our 4 0.06 12 2000.0 1840.2 40 216 192 643
M&G 5 0.09 1 2000.0 1840.2 50 221 613 1798
G&G 4 0.08 0 2000.0 1840.2 20 81 141 393

Our 8 23.50 22850 4481.0 3463.6 80 416 408 1359
M&G 9 34.05 28469 4563.8 3463.6 90 397 1089 3884
G&G 6 0.08 19 3890.0 3301.6 30 119 207 593

Our 11 4434.44 2655537 6312.6 5038.1 110 566 570 1896
M&G 12 39746.54 18868920 6332.8 5038.1 120 529 1446 5816
G&G 11 3.61 7339 6236.0 4840.9 55 214 372 1093

Our 4 0.11 5 1730.9 1498.6 48 291 251 930
M&G 5 0.17 11 1730.9 1498.6 80 421 988 3106
G&G 4 0.09 14 1812.1 1498.6 32 142 271 893

Our 7 112.86 72406 2690.6 1962.7 84 489 458 1686
M&G 8 381.76 137320 2690.6 1962.7 128 673 1567 5665
G&G 6 1.05 2443 3078.4 1860.7 48 208 399 1349

Our 6 1.22 524 3002.5 2610.1 72 423 389 1434
M&G 7 3.31 1232 3002.5 2610.1 112 589 1374 4756
G&G 6 0.36 517 3190.5 2564.6 48 208 399 1349

Our 5 37.19 49765 2100.0 1283.1 85 502 597 1816
M&G 6 84.94 71626 2100.0 1283.1 132 691 1627 5432
G&G 4 0.05 0 1571.9 1150.0 44 198 376 1183

Our 6 500.98 318290 2560.6 1583.4 102 606 629 2099
M&G 7 588.34 237565 2560.6 1583.4 154 806 1880 6617
G&G 5 0.38 600 2100.0 1274.5 55 244 465 1488

Our 7 32974.27 13638920 2712.1 1583.4 119 688 859 2598
M&G 8 67156.93 18515053 2712.1 1583.4 176 921 2159 7909
G&G 6 4.33 9057 2809.4 1274.5 66 290 554 1793

Our 7 139.85 42013 3464.0 2867.2 119 688 859 2598
M&G 8 461.77 75195 3464.0 2867.2 176 921 2159 7909
G&G 7 28.56 298927 3465.6 2443.2 77 336 643 2098

Example 2c (H = 12, Suboptimal K / N )

Example 3a (H = 8)

Example 3b (H = 12, Suboptimal K / N )

M&G = Maravelias & Grossmann (2003a), G&G = Giannelos & Georgiadis (2002)

Example 3a (H = 8)

Example 3a (H = 8)

Example 1a (H = 8)

Example 1b (H = 12)

Example 2a (H = 8)

Example 2b (H = 10)

Example 1c (H = 16, Suboptimal K / N )

Model CPU 
Time (s)

Nodes RMILP 
($)

K /
N

NonzerosMILP 
($)

Binary
Variables

Continuous
Variables

Constraints
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our model gives a better RMILP objective ($4481.0 vs. $4563.8) and requires fewer 

nodes (22850 vs. 28469) than the latter. This suggests that our model has the potential 

to be tighter. Although, the G&G model seems much faster than the other two and 

gives a better RMILP objective, it gives a suboptimal solution ($3301.6 vs. $3463.6). 

We observed no improvement in the objective from the G&G model even for N = 8. 

Throughout this numerical comparison, we do such confirmation, whenever the G&G 

model gives an objective inferior to the other two, except when we use suboptimal N 

deliberately. As we discuss later, suboptimal solutions are a serious flaw in the G&G 

model. Figure 6.2 shows the maximum-profit schedule from our model for this 

scenario. It matches the one obtained by M&G. 

1

1 (100 )

1 (150 )

3  (150 )

3  (97.327)

2  (157.226 )

2

1 (100 )

1 (150 )

3

1 (47.327)

1 (96 .362 )

3  (150 )

3  (150 )

2  (192 .774 )

4

1 (4 9 .035)

2  (197.327)

5

3  (72 .699 )

3  (72 .699 )

2  (145.397)

6 7 8

0 1 2 3 4 5 6 7 8 9 10 11 1

Slot

Unit 1

Unit 2

Unit 3

Unit 4

Unit 5

Time (h)

3 .332 6 .6657.296 9 .2835.332 11.009

8 .63

2

1

2 .666

5.118

8 .396

10 .618

10 .618

 
Figure 6.2: Maximum-profit schedule for Example 1 with H = 12 h, K = 8, and 

variable batch processing times. The numbers within the parentheses denote the batch 
sizes (mu) of corresponding tasks. 

 

To make the problem even more difficult, we used a third scenario (call it 

Example 1c) with H = 16 h. However, we did not pursue its solution to the best 

possible, so we use K = 11 (suboptimal) for our model, N = 12 (suboptimal) for the 

M&G, and N = 11 (suboptimal) for the G&G. The longer H resulting in increased 
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solution difficulty brings about further resolution between three models, and our model 

proves clearly faster than the M&G model by almost one order of magnitude (4434 s 

vs. 39747 s) and uses far fewer nodes (2,655,537 vs. 18,868,920). In addition, as 

observed earlier, our model gives tighter RMILP objective than the M&G ($6312.6 vs. 

$6332.8). The G&G model is again faster, but gives a suboptimal schedule ($4840.9 

vs. $5038.1). 

For all three scenarios (1a, 1b & 1c) of this example, our model uses fewer 

binary variables (40 vs. 50, 80 vs. 90, 110 vs. 120), and has fewer constraints (192 vs. 

613, 408 vs. 1089, 570 vs. 1446) and nonzeros (643 vs. 1798, 1359 vs. 3884, 1896 vs. 

5816) than the M&G model. All these result in a faster performance by our model for 

this example. For reasons discussed at the end of previous chapter, our model requires 

fewer binary variables than the M&G model. Although this example, as used in the 

literature, is trivial, we made it difficult enough to conclude reliably that our model 

outperforms the other two models. 

6.1.1.2 Example 2. We now consider the example from Kondili et al. (1993), which 

has been used extensively in the literature. Figure 6.3 shows the RD for that example 

unambiguously without resorting to the state nodes as in the STN representation 

(Kondili et al., 1993). Note that we use a storage task to model the mixing or splitting 

of the same material streams. However, this storage task does not appear in the 

formulation, as it has a dedicated unit assigned for the entire horizon, and it has no 

specified task time. To differentiate this storage task from the normal processing task 

in the formulation, we use dashed rectangles for the storage tasks. However, we do 

assume that the transfer times to and from this storage unit are negligible, just as those 

between any two processing tasks. 
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Product 1
(m=8) 40% 

 

Much fuss exists in the literature about the differences in the objective

arising from minor numerical round-offs in problem data with some re

claiming superiority of their models based on such minute differences. Hence

exactly the same parameter values that Maravelias & Grossmann (2003a) use

paper to make our comparison fair and reliable. As in Example 1, we conside

scenarios for this example. In first scenario (Example 2a), we used H = 8 h a

Further increase in K did not improve the objective, so we took K = 4 as the 
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required. Figure 6.4 shows the optimal schedule for this scenario. All three models 

perform equally well for this scenario. In fact, G&G seems to be the best in terms of 

the RMILP objective. Again, we refrain from drawing any conclusion based on this 

trivial scenario. The statistics of the M&G and G&G models reported in Table 6.3 are 

different from those reported by Maravelias and Grossmann (2003a) and Giannelos 

and Georgiadis (2002). Since we implemented their models, there are some differences 

in the model and solution statistics. For this scenario, Giannelos and Georgiadis (2002) 

reported an MILP objective of $1480.06 (RMILP $1804.35), whereas we get $1498.60 

(RMILP $1812.10). This is due to the round-off errors in parameters αij and βij. To 

confirm this, we also used the same values of αij and βij as reported by them. 

Expectedly, we obtained the same MILP and RMILP values ($1480.06 & $1804.35 

respectively) as reported in Giannelos and Georgiadis (2002). 

R1 (64 .812 )

R1 (40 .50 7)

1

H (70 .213 )

S (88 .494 )

R2  (72 .6 10 )

R2  (4 5.3 81)

2

R3  (54 .458 )

R3  (34 .0 36 )

3

R2  (35.40 9 )

R2  (2 2 .13 1)

4

0 1 2 3 4 5 6 7

Slo t

HR

RR1

RR2

SR

Time (h)

 2 .413 4 .956  6 .076

1.135

8

 

 
Figure 6.4: Maximum-profit schedule for Example 2 with H = 8 h, K = 4, and variable 

batch processing times. The numbers within the parentheses denote the batch sizes 
(mu) of tasks. 

 

For the second scenario (Example 2b), we took H = 10 h. To get an optimal 

solution, our model needed K = 7 and the M&G needed N = 8, whereas the G&G 
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required N = 6 only. Our model is faster (113 s vs. 382 s) than the M&G. Again, in 

spite of being faster, the G&G model gives an inferior solution. In fact, it is reasonable 

to say that it is faster because it gives a suboptimal solution. Figure 6.5 shows our 

schedule for this scenario. 

1

H (49.803)

R1 (50)

R1 (80)

2

R2 (47.887)

R2 (76.620)

S (43.380)

3
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6 7

0 1 2 3 4 5 6 7 8 9
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HR

RR1

RR2

SR

Time (h)

2.666 6.521  7.24 7.855.276 8.144

3.5790.999

9.874

10

 
Figure 6.5. Maximum-profit schedule for Example 2 with H = 10 h, K = 7, and 

variable batch processing times. The numbers within the parentheses denote the batch 
sizes (mu) of tasks. 

 

For the third scenario (Example 2c), we used H = 12 h, K = 6 for our model, 

and N = 7 and 6 for the M&G and G&G respectively. Maravelias & Grossmann 

(2003a) used this scenario to show the impact of their tightening constraints. Note that 

our formulation needed no additional tightening constraints. For this scenario, our 

model performs better than the M&G in terms of both solution time (1.22 s vs. 3.31 s) 

and model statistics (72 vs. 112 binary variables, 389 vs. 1374 constraints, and 1434 

vs. 4756 nonzeros). Again, the G&G model gives inferior RMILP and MILP 

objectives. Note that the statistics reported in Table 6.3 for this scenario differ from 
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those reported by Maravelias and Grossmann (2003a) again due to our own 

implementation of their model. 

From the above three scenarios of this widely studied example, we have 

demonstrated that our model is superior to the best existing model. However, to 

reinforce our claim, we take another more complex example (Figure 6.6).  
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Figure 6.6: Recipe diagram for Example 3. Ji denotes the set of units
can perform task i.
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6.1.1.3 Example 3. This example is more complex and comprehensive than that of 

Kondili et al. (1993), because it involves more units (J = 6), tasks (I = 7), and materials 

(M = 13). It considers the most common characteristics of a multipurpose plant, 

namely (1) a unit can perform multiple tasks (2) a task can be performed in multiple 

units (3) several tasks suitable for a set of units and (4) only one task suitable for a 

unit. In addition, we assume nonzero initial inventories for some intermediates with I60 

= I70 = 50 mu. It also requires a storage task to imitate the mixing of material Int 2 

recycled from task S and produced by task R1. As discussed in Example 2, we assume 

the transfer times to and from this storage task to be negligible. 

For this example, we consider two scenarios. As this is a new example, we 

present the model and solution statistics for various values of K for the first scenario 

(Example 3a). We used H = 8 h for this scenario. We solved our model for K = 5, K = 

6, and K = 7, and observed that the objective did not improve from K = 6 to K = 7. 

However, as observed by Castro et al. (2001), the same objective value for two 

successive Ks does not mean optimality. Hence, we tried K = 8 and K = 9 and observed 

that the objective value did not improve. Thus, we can safely take the schedule in 

Figure 6.7 for K = 6 as the maximum-profit schedule. The solution statistics is almost 

the same for both the M&G and our model for K = 6. But, note that when we increase 

K to 7, our model is almost twice as fast as the M&G (32974 s vs. 67157 s). The G&G 

model again gives a suboptimal solution. 

In the second scenario (Example 3b), we solved the three models for H = 12 h, 

and used K = 7 in our model and N = 8 and 7 for the M&G and G&G models 

respectively. Our model is almost three times faster (140 s vs. 462 s) than the M&G 

model. Again, the G&G model gives poor RMILP and MILP values. This example 
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also demonstrates that our model handles the more complex problems better than the 

other literature models. 
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Figure 6.7: Maximum-profit schedule for Example 3 with H = 8 h, K = 6, and variable 

batch processing times. The numbers within the parentheses denote the batch sizes 
(mu) of tasks. 

 

Having seen the performance of our model on the maximum-profit problems, 

we now consider the minimum-makespan problems. 

6.1.2 Makespan Minimization 

Maravelias and Grossmann (2003a) noted that the solution efficiency of their 

formulation deteriorated significantly while minimizing the makespan as compared to 

maximizing the profit. Recently, they (Maravelias and Grossmann, 2003b) addressed 

separately the minimization of makespan for multipurpose batch plants assuming 

constant processing times. They modified the discrete-time formulation of Shah et al. 

(1993), and used assignment binary variables without decoupling, i.e. 3-index binary 
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variables. They proposed an algorithm that can solve problems of medium size and 

complexity. As we see now, our model seems to maintain its efficiency even for the 

makespan problems with variable processing times, and can solve moderate-size 

problems much faster than the model of Maravelias & Grossmann (2003a). 
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Figure 6.8: Minimum-makespan schedule for Example 1 with K = 12. The numbers 
within the parentheses denote the batch sizes (mu) of tasks. 

 

To evaluate our model for minimizing the makespan, we compared it with 

those of Maravelias and Grossmann (2003a) and Giannelos and Georgiadis (2002) 

using the same three examples discussed earlier. All example data are same, except 

that fixed demands are now imposed, and H is no longer a parameter for our model. 

We solved each example for two demand scenarios. Table 6.4 summarizes the results 

of all the scenarios for all three models, while Figures 6.8-6.10 show the minimum-

makespan schedules of our model for the first scenario of each example. The statistics 

   76



 
 Chapter 6: Scheduling - Model Assessment 

for the second scenario of each example shown in Table 6.4 belong to the first feasible 

solution. 

Table 6.4: Model and solution statistics for the minimum-makespan examples with 
variable batch processing times. 

 

Our 12 - 1.00 217 27.13 29.77 120 616 627 2078
M&G 13 50 4.94 1237 27.13 29.77 130 574 1569 6641
G&G 12 50 0.08 0 27.13 29.77 60 234 409 1202

Our 22 - 94.16 22648 51.36 56.43 220 1116 1167 3868
M&G 23 100 16034.27 2000283 51.36 56.43 230 1014 2759 15786
G&G 22 100 0.17 0 51.36 56.43 110 424 739 2202

Our 8 - 14.20 5593 18.69 19.79 96 555 535 1945
M&G 9 50 23.08 5204 18.69 19.79 144 758 1769 6735
G&G 8 50 1.97 2982 12.56 19.79 64 275 536 1821

Our 22 - 136.13 4060 48.78 50.13 264 1479 1501 5473
M&G 23 100 798.90 6860 48.78 50.25 368 1934 4471 26279
G&G 22 100 5000.00 2555997 26.38 49.72 176 737 1432 5013

Our 7 - 1.09 439 12.40 14.37 119 688 871 2609
M&G 8 50 4.02 1203 12.40 14.37 176 922 2172 8053
G&G 7 50 1.47 2095 11.07 14.70 77 337 656 2121

Our 10 - 3042.17 337408 15.21 17.71 170 967 1264 3782
M&G 11 100 5000.00 316800 15.21 17.79 242 1267 2970 12427
G&G 10 100 27.19 30428 12.87 19.84 110 475 923 3036

NonzerosH

Example 1a (D 4 = 2000 mu)

1Relative gaps: Our = 2.69%, M&G = 2.92%, G&G = 24.16%

Example 1b (D 4 = 4000 mu, First feasible K / N )

RMIL
P (h)

MILP 
(h)

Binary
Variables

Continuous
Variables

Model K /
N

CPU 
Time (s)

Nodes Constraints

Example 2a (D 8 = D 9 = 200 mu)

Example 2b ( D 8 = 500 mu, D 9 = 400 mu, First feasible K / N )1

Example 3a (D 12 = 100 mu, D 13 =  200 mu)

Example 3b (D 12 = D 13 = 250 mu, First feasible K / N )2

M&G = Maravelias & Grossmann (2003a), G&G = Giannelos & Georgiadis (2002)

2Relative gaps: Our = 2.99%, M&G = 3.75%, G&G = 2.99%  
 

6.1.2.1 Example 1. In the motivating example, we first assume D4 = 2000 mu. For this 

trivial case, all three models perform equally well (see Table 6.4). However, when we 

increase the demand to 4000 mu, the M&G model performs very poorly (16034 s), 

whereas our model requires only 94.2 s for an optimal solution. The G&G model again 
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seems to be the fastest, but cannot guarantee an optimal solution, as we will again see 

in Example 3. 

R1 (80)

R1 (50)

H (48)

1

S (172.222)
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R2 (80)

R3 (50)
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3
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R2 (80)

4
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H (100)

5

R3 (75.24)

R2 (50)

6
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R3(50)

8

R2 (50)

0 2 4 6 8 10 12 14 16 18 2

Slot

HR

RR1

RR2

SR

Time (h)

2.66 5.33 7.99 10.66 13.33 14.62 17.12 19.78

0.987 4.000 6.666

6.665 15.95

16.93 18.78

0

 

 
Figure 6.9: Minimum-makespan schedule for Example 2 with K = 8. The numbers 

within the parentheses denote the batch sizes (mu) of tasks. 
 

6.1.2.2 Example 2. In the first scenario, we set D8 = D9 = 200 mu. Again, the M&G 

model is inferior to the other two in solution time (23.1 s vs. 14.2 s & 1.97 s). Note that 

the G&G model gives a poor RMILP objective for this case. In the second scenario, we 

take D8 = 500 mu and D9 = 400 mu, as Maravelias and Grossmann (2003b) did. 

However, they solved this scenario for constant processing times. Instead, we use 

variable processing times to evaluate our model for this more difficult scenario. We set 

the termination criteria as 3% gap and 5000 s for all three models uniformly. 

Interestingly, our model performs much faster (136 s for 2.69% gap) than the other two 

models. The M&G model shows a gap of 2.92% after 799 s, while the G&G model 
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performs very poorly (5000 s for a gap of 24.16%). For the latter, even RMILP 

objective is inferior to those of the other two models. Again, our model outperforms 

the other two models convincingly. 

21
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R1 (25.006)

R1 (37.49)

R1 (37.5)

R2 (125)
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M (100)
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R3 (40.063)

R3 (49.85) R3 59.937)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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SR

MR1

MR2

Time (h)

1.66 3.66 6.5 8.5 10.5 12.5 14.36
6

1.33 5.66

9.0

14.33

2.88 5.88 12.27

3.49 4.83

 

 
Figure 6.10: Minimum-makespan schedule for Example 3 with K = 7. The numbers 

within the parentheses denote the batch sizes (mu) of tasks. 
 

6.1.2.3 Example 3. For the first scenario of D12 = 100 mu and D13 = 200 mu, the 

solution statistics of all three models are similar. However, the G&G model fails to 

give an optimal solution. For the second scenario of D12 = D13 = 250 mu, we set the 

same termination criteria as in the second scenario of Example 2. The same story 

repeats even for this scenario. This time, the G&G model even gives an inferior 

RMILP objective. Our model is again faster than the M&G model. Our model shows a 

gap of 2.99% after 3042 s, while the M&G model requires 5000 s for a gap of 3.75%. 
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The G&G model requires only 27.2 s for a gap of 2.99%, but the objective is again 

inferior. 

From the above examples, it is clear that our model solves the makespan 

problems with variable processing times equally efficiently and optimally. Its 

performance does not seem to deteriorate in comparison to the profit objective. Unlike 

any other existing formulation, our model solves moderate-size problems quite 

effectively. Moreover, our model has no big-M constraints, so is not susceptible to the 

influences of parameter M on solution times. The other two models use big-M 

constraints and require some numerical value of the same. Hence, we conclude that our 

model is superior to the other two models. We now consider the case of constant 

processing times, as this has received attention in the literature. 

6.1.3 Constant Batch Processing Times 

The assumption of constant processing times should make the problems easier to solve. 

However, we do consider larger horizons to keep raise the difficulty.  Table 6.1 gives 

the constant processing times (τij) for all three examples. Table 6.5 summarizes the 

model and solution statistics, and Figures 6.11-6.13 show the maximum-profit 

schedules from our model for the first scenario of each example. For the first scenario 

(H = 12) of Example 1, all three models perform equally well as it is a trivial problem. 

We doubled the horizon for the second scenario (H = 24). Our model is an order of 

magnitude faster than the M&G model (440 s vs. 7572 s) whereas, the G&G results in 

an inferior objective though being attractive in terms of the statistics. For both 

scenarios (H = 12 and H = 16) of Example 2, our model is faster than the M&G model 

(0.38 s vs. 1.36 s and 81.3 s vs. 837 s) and the G&G model gives poor RMILP and 

MIP objectives. Finally, we solved Example 3 for H = 12. For this scenario, all models 

perform equally well. However, the G&G model fails to give an optimal solution. 
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Figure 6.11: Maximum-profit schedule for Example 1 with H = 12 h, K = 7, and 

constant batch processing times. The numbers within the parentheses denote the batch 
sizes (mu) of tasks. 
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Figure 6.12: Maximum-profit schedule for Example 2 with H = 12 h, K = 7, and 

constant batch processing times. The numbers within the parentheses denote the batch 
sizes (mu) of tasks. 
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Figure 6.13: Maximum-profit schedule for Example 3 with H = 12 h, K = 7, and 

constant batch processing times. The numbers within the parentheses denote the batch 
sizes (mu) of tasks. 

 

In summary, we conclude the following. Irrespective of the scheduling 

objective (makespan or profit), our model is faster than the other two models in the 

most difficult scenarios. In some scenarios, it provides tighter RMILP objectives. As 

compared to the other two models, the M&G model requires more constraints, 

variables, and nonzeroes. However, although computationally inferior, it is foolproof 

in that it does not give suboptimal solutions at all. The G&G model seems superior in 

model statistics and solution speed mainly because it uses explicit sequencing 

constraints as done by Ierapetritou & Floudas (1998), but it has some fundamental flaw 

that results in suboptimal solutions for some scenarios. In an attempt to ensure mass 
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balance, Giannelos and Georgiadis (2002) force the end or start times of tasks 

producing or consuming the same material to be equal. This can potentially restrict the 

freedom of task occurrences. The other two models (our & M&G) do not use such 

explicit sequencing constraints. 

Table 6.5: Model and solution statistics for the maximum-profit examples with 
constant batch processing times. 

 

Our 7 0.03 0 5000.0 5000.0 70 366 354 1115
M&G 8 0.05 0 5000.0 5000.0 80 353 970 3090
G&G 7 0.08 24 5000.0 5000.0 35 138 240 612

Our 15 440.41 145630 13000.0 12000.0 150 766 786 2467
M&G 16 7572.22 1373260 13000.0 12000.0 160 705 1922 8122
G&G 13 0.08 0 11000.0 11000.0 65 252 438 1140

Our 7 0.38 44 3799.4 3638.8 84 489 458 1582
M&G 8 1.36 252 3799.4 3638.8 128 673 1567 5313
G&G 7 0.25 370 3813.2 3638.8 56 241 463 1381

Our 10 81.27 16553 5586.7 5162.1 120 687 665 2290
M&G 11 837.42 118764 5586.7 5162.1 176 925 2146 8112
G&G 9 3.50 6532 5054.9 4937.1 72 307 591 1779

Our 7 5.25 2940 3465.6 3050.0 119 688 859 2455
M&G 8 9.53 3120 3465.6 3050.0 176 921 2159 7425
G&G 6 0.27 62 2871.9 2675.0 66 290 554 1583

Example 1b (H = 24)

Model K /
N

CPU 
Time (s)

Nodes Constraints Nonzeros

Example 1a (H = 12)

RMILP 
($)

MILP 
($)

Binary
Variables

Continuou
s

Example 2a (H = 12)

Example 3 (H = 12)

M&G = Maravelias & Grossmann (2003a), G&G = Giannelos & Georgiadis (2002)

Example 2b (H = 16)

 

 

Having evaluated our model rigorously, we now discuss miscellaneous aspects 

of our model.  

6.2 DISCUSSION 

Here, we discuss about the unique features of our model, the impact of alternate 

constraints on the solution times, fixing the number of slots in slot-based or event-

   83



 
 Chapter 6: Scheduling - Model Assessment 

based formulations, and the basic criteria required for any comparison works. 

Table 6.6: Remaining processing times of batches on units at various times in the 
examples. 

 

T 1 T 2 T 3 T 4 T 5 T 6

Unit 1 - 1.999(2.666) - 0.631(1.964) - -
Unit 2 0.666(3.332) - 1.333(3.332) - 1.987(2.618) -
Unit 3 - - - 0.631(1.964) - -

RR1 - - - 0.613(1.333) - 1.856(2.146)
RR2 - - 0.720(1.964) - 0.290(0.903) -
SR - - - 0.903(1.623) 0.290(1.623) -

HR - 0.905(1.812) - - - -
RR2 0.907(1.730) - - - - -
SR - - - 0.830(2.596) - -

SR - - - 2.000(3.000) - -

RR2 - - - - 0.500(2.000) -
SR - - 1.500(3.000) - 1.500(3.000) -

MR1 - - - - 0.500(2.000) -
The numbers in parentheses are the total batch processing times

Example 1b (H = 12 & K = 8)

Example 2b (H = 10 & K = 7)

Example 3a (H = 8 & K = 6)

Makespan minimization
Example 3a (D 12 = 100 mu, D 13 =  200 mu & K  = 7)

Constant batch processing times
Example 3 (H = 12 & K  = 7)

Remaining batch processing time t jk  on j at T k (h)Unit
j

Variable batch processing times

 
 

6.2.1 Remaining Batch Processing Times 

In contrast to all the previous models, our model uses the novel idea of balances. For 

instance, it does a balance on the remaining batch processing times and materials in 

each unit. Table 6.6 lists the values of tjk (the time remaining in completing the current 

batch on unit j at Tk) for various units and time points in the three examples. It shows 

only the units that continue their production at different Tk. The numbers in the 

parentheses denote the times remaining to complete the batches. Consider Unit 1 in 
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Example 1b. It starts a batch of Task 1 at T1 (see Figure 6.2) with a batch size of 100 

mu and continues its production at T2. It needs 2.665 h to complete this batch. 

However, the start of Task 1 on Unit 2 and that of Task 2 on Unit 3 triggers a new slot 

3 at T2. Hence, the remaining batch processing time on Unit 1 at T2 is 2.666 + 2.665 – 

3.332 = 1.999 h, where 2.666 h is the start time of the batch on Unit 1. Most tjk values 

in Table 6.6 are the exact remaining batch processing times on units. However, note 

that tj1 for RR2 in Example 3a (see Figure 6.7) is the sum of the remaining batch 

processing time and the unit idle time. The exact remaining batch processing time for 

this case is 0 + 1.73 – 0.965 = 0.765 h, but the reported value is 0.765 + 0.142 = 0.907 

h, where 0.142 h is the unit idle time on RR2 after that batch. In the optimal schedule 

of Figure 6.10 also, unit S (separator) shows a remaining time tjk of 2 h at T4 instead of 

0.5 h. This is because eq. 5.9 being an inequality constraint allows such slack for tjk 

without affecting the solution. Alternatively, it is possible to avoid this slack by 

making eq. 5.9 an equality as follows. 

tj(k+1) = tjk + – SL( )
j

ij ijk ij ijk
i

Y Bα β
∈

+∑
I

(k+1) k < K (6.1) 

However, this would force another slot to start at the end of each batch and the null 

task (i = 0) to take up any idle time. For eq. 6.1 to work, we must select α0j and β0j 

values carefully. In addition, one must properly set 0
U

jB , because SLk is common to all 

units and 0
U

jB  must exceed the maximum possible batch size of any task on a unit. 

Hence, 

0
U

jB  = ( )
,

max
j

U
iji I j

B
∈

 

However, we do not see any need for using eq. 6.1. In fact, we prefer eq. 5.9 instead of 

eq. 6.1, as the former should require fewer slots. 
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6.2.2 Alternate Constraints 

In proposed formulation (see previous chapter), eqs. 5.6 and 5.7 serve the same 

purpose. We may impose eq. 5.6 or 5.7 individually or both at the same time, and these 

options may affect the solution time. We observed that eq. 5.6 alone performs 

somewhat better in some scenarios, eq. 5.7 alone better in some scenarios, and both in 

some other scenarios. Consider Example 1b with H = 12 and K = 8 in Table 6.3. The 

solution time and nodes in Table 6.3 are for using eq. 5.6 alone. If we use eq. 5.7 

alone, then we get the solution in 26.75 s with 28431 nodes. If we use both eqs. 5.6 and 

5.7, we need 23153 nodes to find the optimal solution in 21.80 s. In most cases, 

however, eqs. 5.6 and 5.7 perform equally well, when used individually. We used eq. 

5.6 for all examples. 

6.2.3 Fixing the Number of Slots 

Previous work (Ierapetritou and Floudas, 1998) argued that the event-based models 

avoid the need for pre-fixing the numbers of slots as done by the slot-based models. 

For example, Ierapetritou and Floudas (1998) state: “The proposed formulation is 

based on a continuous-time representation that avoids the prepostulation of 

unnecessary time slots or intervals. It only requires the initial consideration of a 

necessary number of event points corresponding to either the initiation of a task or the 

beginning of unit utilization”. The difference between prepostulation and the initial 

consideration of a necessary number of event points is not obvious. The a priori 

selection of the number of time slots does not appear to be any less case-dependent 

than the initial consideration of a necessary number of event points. Indeed, there is no 

single, foolproof, general formula for prefixing the number event points in the event-

based formulations. The common approach has been to increase the number of event 

points one at a time, until the objective does not change any further. Even this 
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approach is not foolproof, as Castro et al. (2001) have shown that the objective may 

not change with an increment of one additional event point, but may change with an 

increment of two or more. It would seem therefore that in the event-based 

formulations, one can only estimate and conduct tests with varying numbers of N, the 

number of event points. It is also not clear whether it is better to prepostulate a 

generous value of N and solve the problem once, or solve the same problem repeatedly 

by varying N. Should not the computation time for the latter be the sum of the times 

for all repeated runs? Whatever the strategy used, it seems that the same strategy can 

also be used for fixing K (the number of slots) in the slot-based models. Most slot-

based models (e.g. Karimi and McDonald, 1997; Lim and Karimi, 2003b) have 

preferred to pre-postulate empirically a generous number of slots in order to avoid 

solving the problem repeatedly. Although not foolproof, heuristic formulas for fixing a 

priori the number of slots in slot-based formulations do exist and work reasonably well 

in many instances (Lim and Karimi, 2003a). However, as we have done in this paper, 

slot-based models can also use the same strategy of optimizing the number of slots by 

solving the problem repeatedly. 

In the case of profit maximization, we increase K gradually by one, until the 

solution does not change, even if we were to increase K by two or more. In the case of 

makespan problems, we increase K, until we first get a feasible solution. Then, we 

increase it further to get the optimal solution as in the profit problems. 

6.2.4 Effects of Computing Hardware and Software 

As discussed by Karimi et al. (2004), hardware and software can significantly affect 

the performance of different MILP formulations. Although they discuss this issue in 

more detail, we list here some minimum prerequisites to a sound comparison. 
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(i) Comparative model solution times must be based on the same version of the same 

solver/software. It is obvious that MIP solvers and software versions change 

rapidly, and it is not right to compare models based on different versions of a 

solver/software. For example, CPLEX and OSL will differ in solution times on the 

same problem. Moreover, different versions of the same solver may result in 

different solution statistics. Conclusions based on such times can never be reliable.  

(ii) Hardware, operating systems, and compilers have tremendous effects on the 

solution times of MILPs. In fact, as noted by Karimi et al. (2004), it is preferable to 

use multiple computing platforms to get a more robust evaluation of competing 

models. It is obvious that Random Access Memory (RAM) can play a vital role in 

computing speed. Moreover, the performance on a high-end workstation is 

normally better than that on a PC with the same CPU speed. It is even possible that 

machines of similar specifications but from different companies have different 

computing speeds. Clearly, attention to hardware and software details is must in 

comparing MILP models. 

(iii)Value of M in the Big-M constraints also has a notorious effect on MILP solution 

times as pointed by Gupta and Karimi (2003) and Lim and Karimi (2003a). Event-

based models use big-M constraints profusely. This is another factor conveniently 

ignored by the existing literature. For models involving the big-M constraints, one 

must average model performances over a range of M-values. 

In our opinion, comparisons made without due attention to any of the above 

basic criteria cannot be reliable. To reinforce the above discussion and to highlight the 

effects of software and hardware on solution times, we solved some scenarios of our 

examples using different hardware and software. Table 6.7 summarizes the results of 
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our, M&G and G&G models on different computers and with different versions of 

CPLEX. 

Table 6.7: Performance of models on different machines and with different CPLEX 
versions. 

 

CPLEX 7.5.0 CPLEX 8.1.0 Computer 2 Computer 3

Our 8 24.3 \ 21740 23.5 \ 22850 21.86 160.71
M&G 9 41.7 \ 34557 34.0 \ 28469 31.97 225.43
G&G 6 0.09 \ 24 0.08 \ 19 0.20 0.26

Our 6 205 \ 105130 501 \ 318290 461.66 3274.28
M&G 7 479 \ 169639 588 \ 237565 538.94 3784.09
G&G 5 0.30 \ 593 0.38 \ 600 0.41 1.95

Our 8 24.22 \ 9780 14.2 \ 5593 13.31 97.28
M&G 9 \ 50 105 \ 21822 23.1 \ 5204 21.44 152.14
G&G 8 \ 50 2.08 \ 3285 1.97 \ 2982 1.83 12.46

Our 7 0.61 \ 219 1.09 \ 439 1.09 7.20
M&G 8 \ 50 2.14 \ 650 4.02 \ 1203 3.89 27.56
G&G 7 \ 50 0.31 \ 238 1.47 \ 2095 1.42 8.69

Our 7 0.08 \ 23 0.03 \ 0 0.09 0.21
M&G 8 0.04 \ 120 0.05 \ 0 0.19 0.35
G&G 7 0.08 \ 36 0.08 \ 24 0.20 0.22

Our 10 149 \ 29902 81.3 \ 16553 74.92 560.17
M&G 11 1743 \ 263982 837 \ 118764 749.34 5532.46
G&G 9 3.27 \ 6667 3.50 \ 6532 3.02 22.50

CPU time (s) \ Nodesa

Variable batch processing times

Example 3b (H = 8)

Example 1b (H = 12)

Model K /N \ 
H Computer 1 CPLEX 8.1.0

Makespan minimization
Example 2a (D 8 = D 9 = 200 mu)

Example 3a (D 12 = 100 mu, D 13 =  200 mu)

Constant batch processing times

aThe number of nodes in Computer 2 and Computer 3 is same as that in Computer 1 
using CPLEX 8.1.0

Computer 2 = DELL PWS650 workstation (3.06 GHz CPU with 3.67GB of RAM)
Computer 3 = COMPAQ PC (Pentium III 448 MHz CPU with 256MB of RAM)

Example 1a (H = 12)

Example 2b (H = 16)

M&G = Maravelias & Grossmann (2003a), G&G = Giannelos & Georgiadis (2002)
Computer 1 = DELL GX 270 (Pentium IV 2.8 GHz CPU with 1GB of RAM)
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We considered the two objectives (maximum profit and minimum makespan) 

with variable processing times and two scenarios for maximum profit using constant 

processing times. We used three different computers (Computer 1 = the computer used 

in the last section; Computer 2 = DELL PWS650 workstation 3.06 GHz CPU with 

3.67 GB of RAM; Computer 3 = COMPAQ PC Pentium III 448 MHz CPU with 256 

MB of RAM) and two different versions of CPLEX (CPLEX 8.1.0 and CPLEX 7.5.0). 

Tables 6.3-6.5 also give the results for Computer 1 and CPLEX 8.1.0. We report only 

the solution statistics, as model statistics are the same as in those tables. In addition, 

the numbers of nodes do not change with the computers for the same version and 

operating system (e.g. Unix vs. Windows). Hence, we report the number of nodes only 

for the version comparison. 

In comparing the versions using Computer 1, we observe that CPLEX 7.5.0 

gives better solution statistics than CPLEX 8.1.0 for Example 3b (see Table 6.7) under 

profit maximization using variable batch processing times, Example 3a under 

makespan minimization, and Example 2b under profit maximization using constant 

batch processing times. For the remaining scenarios, CPLEX 8.1.0 performs better 

than CPLEX 7.5.0. Hence, it is clear from these results that the latest version need not 

always be faster. 

In comparing the hardware using CPLEX 8.1.0, we observe that Computer 1 

and Computer 2 perform almost the same. But, there is a significant difference in the 

solution time when we use Computer 3. Though it is obvious that workstation can 

easily outperform a PC, the difference in speed is appreciable. This clearly suggests 

that sufficient attention must be paid to the hardware used in comparing different 

models. 
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In light of the above, consider the numerical comparison of Ierapetritou and 

Floudas (1999) with the slot-based model of Karimi and McDonald (1997). The main 

point against their comparison and its subsequent conclusions is that they were based 

on the verbatim solution times reported by Karimi & McDonald (1997), and not on 

their own implementation of the model of Karimi & McDonald (1997). They 

compared the two models based on computations that used different hardware and 

software. While Karimi & McDonald (1997) used GAMS 2.25.087, Cplex 4.0, AIX 

operating system, and RS/6000P IBM workstation, Ierapetritou and Floudas (1999) 

used GAMS 2.25.??, Cplex 4.0.8, ?? operating system, and HP-C160 workstation. 

Firstly, it is quite likely that the two CPLEX versions differed in performance. 

Secondly, the difference due to the hardware, compilers, and operating systems can be 

substantial as we demonstrated above. Karimi et al. (2004) have shown that even the 

same version of CPLEX can perform quite differently on two different machines, 

compilers, or operating systems. In light of these basic flaws in their comparison, it is 

unclear how the differences in model solution times (0.72 s vs. 5.0 s, 0.31 s vs. 2.0 s, 

9.92 s vs. 15 s, and so on) used by Ierapetritou and Floudas (1999) can form the basis 

for fair and unambiguous conclusions. As seen earlier, such differences can easily 

arise, even when one solves the same model on different computers. Besides this 

aspect of their comparison, two aspects or results of their comparison further make 

their conclusions highly questionable. 

One aspect relates to the number of event points and also our discussion on 

fixing the number of slots. In their model, they adjusted and optimized the necessary 

number of event points. In contrast, the results reported by Karimi & McDonald (1997) 

assumed a fixed, generous number of slots without any optimization or adjustment. In 

other words, the results of Karimi & McDonald (1997) had some redundant slots, 
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which would not exist, if they had used the necessary number of slots. It is obvious 

that the number of slots affects the solution time significantly and a comparison based 

on disproportionate numbers of event points and slots would not lead to reliable 

conclusions. A fair comparison would be to use the optimized numbers for both event 

points and slots. 

The other aspect is the RMILP objective values of their model in comparison to 

those of Karimi and McDonald (1997). Their RMILP objective values were invariably 

and noticeably inferior (e.g. 3652 vs. 4292, 1287 vs. 3044, 1777 vs. 14233, and so on) 

for a minimization problem. Although, this does not necessarily imply that their model 

would be slower, it proves that the slot-based formulation of Karimi and McDonald 

(1997) is definitely tighter and could very well be a better formulation, if compared on 

an apple-to-apple basis. 

6.3 CONCLUSION 

The existing comparisons between the event-based and slot-based models lack 

thorough and rigorous analysis, thus the question of which is better still demands a 

convincing answer. We assessed the performance of our slot-based scheduling model 

in comparison with two other models (slot-based M&G and event-based G&G models) 

in the literature using three examples. From the assessment of three models, we 

conclude that our slot-based model can comfortably outperform the event-based G&G 

model and slot-based M&G model. In addition, we conclude that decoupling of tasks 

from units in a scheduling formulation cannot reduce the number of binary assignment 

variables. The novel continuous-time formulation presented in the last chapter uses 

synchronous slots and does not decouple tasks from units (i.e. uses 3-index binary 

assignment variables), but it still has fewer binary variables, constraints, and nonzeros, 

and at the same time it is simpler, more efficient, and potentially tighter than the best 
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models (event-based or otherwise) in the literature on short-term scheduling in 

multipurpose batch plants. In contrast to the existing models, it is equally efficient for 

both profit maximization and makespan minimization even with variable batch 

processing times, and has no big-M constraints. We believe that the latter may be a 

major contributor to our model’s better efficiency. Lastly, this work presents a novel 

idea of balances (time, mass, resource, etc.) in developing scheduling formulations, 

which can enable one to handle general resource-constrained scheduling problems 

using the proposed formulation. 
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Chapter 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

We addressed two common but important problems of planning and scheduling in 

pharmaceutical supply chains. Firstly, we addressed a supply chain planning problem 

to assess the feasibility or profitability of introducing new active ingredients or 

intermediates in a given pharmaceutical plant. We developed a single-plant-centric, 

multi-period, MILP model that allows complex production recipes with multiple 

intermediates, outsourcing of existing intermediates, material movement among 

different production/supply/demand facilities, validation times for new tasks, 

minimum campaign lengths, line-dependent cleaning, and so on, and considers 

explicitly the details of campaign sequencing and timing on individual production lines 

in a pharmaceutical plant. The planning model is able to give reasonably quick 

solutions for three examples involving twelve materials, four production lines, and up 

to three months of horizon. It can assist the plant management in making quick, 

optimal assessment of outsourcing and new product introductions in a pharmaceutical 

plant. Although we limited ourselves to only the primary production in the 

pharmaceutical supply chain, one can readily apply the proposed model to secondary 

production as well.  

Secondly, we addressed the scheduling problem in pharmaceutical supply 

chains. Here, we proved that decoupling of tasks from units in a scheduling 

formulation cannot reduce the number of binary assignment variables. In the literature, 

comparisons between the event-based and slot-based models lack thorough and 

rigorous analysis, thus the question of which is better still demands a convincing 

answer. We presented a novel continuous-time formulation that uses synchronous slots 
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and does not decouple tasks from units (i.e. uses 3-index binary assignment variables), 

but it still has fewer binary variables, constraints, and nonzeros, and at the same time it 

is simpler, more efficient, and potentially tighter than the best models (event-based or 

otherwise) in the literature on short-term scheduling in multipurpose batch plants. 

Moreover, we proposed a novel idea of balances (time, mass, resource, etc.) in 

developing scheduling formulations, which can enable one to handle general resource-

constrained scheduling problems using the proposed formulation. In contrast to the 

existing models, it is equally efficient for both profit maximization and makespan 

minimization even with variable batch processing times, and has no big-M constraints. 

We believe that the latter may be a major contributor to better efficiency of our model. 

Finally, our model is much simpler (almost one third reduction in binaries, two third 

reduction in constraints as well as nonzeros) and faster (almost an order of magnitude 

in most cases studied) than the most recent and the best model (Maravelias and 

Grossmann, 2003a) existing in the literature. 

7.2 Recommendations for Future Work 

The proposed planning model considers scheduling issues to make the plan realistic. 

However, we employed asynchronous slots to time campaigns in the production plan. 

From an assessment of the scheduling model, we anticipate that the use of 

synchronized slots accompanied with the novel balances could handle problems of 

large dimension. Hence, one can reformulate the proposed planning model using 

synchronized slots and compare its performance with the proposed model. 

As mentioned in Chapter 1, the productions in primary and secondary sites are 

characterized by their respective end demands. Primary production looks at the 

demands from only the secondary production whereas the secondary production caters 

the needs of the end customers. Hence, the latter is more flexible and responsive to the 
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varying demands of the end products. Moreover, secondary production acts as an 

opaque layer between the primary production and the end customers. As a result, the 

primary production becomes less responsive to the changes in supply chain. The 

overall performance of a supply chain is dependent on both primary and secondary 

productions.  Hence, future work can attempt to integrate these two production sites 

and present a more general planning and scheduling model. 

A major challenge facing the pharmaceutical industry is inventory 

management. To avoid the risk of running out of stock, pharmaceutical companies 

have historically created security cushions in the form of high inventory levels. Hence, 

a lot of working capital is tied up in the inventory of products. If one could devise an 

optimal inventory plan considering as much of the risk/uncertainty factors, then it will 

be useful for these companies. 

Another challenge facing the pharmaceutical industry is the process of 

selecting which new products to develop. R&D can deliver many new candidates. 

However, not all can be developed as each involves a lot of money and time. Hence, 

the management can invest on only selected potential candidates for further 

development processes.  Moreover, clinical trials or validation processes for the new 

products should co-ordinate with the production management. This clearly shows the 

need of models that can support a holistic approach to product portfolio management 

in the pharmaceutical industry. In addition, these models should also integrate 

production management, capacity management and trading structure. Hence, one can 

attempt to streamline the entire supply chain by integrating various corporate activities 

like R&D, production planning, new product introductions, outsourcing, validation, 

facility expansion, logistics etc. 
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APPENDIX A: Files for Chapter 4 

A.1 GAMS files for Examples 1-3 

A.1.1 Example 1 

A.1.1.1 Example 1a 

VARIABLES 
NC(i,l,t)  number of campaigns of i on l in t 
PQ(m,l,t) amount of m produced or consumed on l in t 
DQ(i,l,t) Differential production amount of i on l in t 
CL(i,k,l,t) campaign length of i in k of l in t 
PT(i,l,t) effective production time of i on l in t 
SL(k,l,t) length of k of l in t 
TS(k,l,t) starting time of k of l in t 
TE(k,l,t) ending time of k of l in t 
TTS(i,k,l,t) starting time of i in k of l in t 
INV(m,t) inventory of m at the end of t 
SQ(m,t) supply amount of m in t 
Ib(m,t) backlog amount of m in t 
Id(m,t) deviation below IL(m) in t 
Y(i,k,l,t) assignment variable 
YS(i,l,t) spill over variable 
GP net profit  ; 
POSITIVE VARIABLE DQ,CL,PT,NC,SL,TS,TE,TTS,INV,SQ,Ib,Id,YS ; 
BINARY VARIABLE  Y ; 
 
EQUATIONS 
Netprofit net profit to be maximized 
production(m,l,t)  amount of m produced or consumed on l in t 
effectcamp(i,l,t)    effective production time of i on l in t 
diffprod(i,l,t)      differential production amount of i on l in t 
camlength(i,k,l,t)   upper limit for campaign length of i in k of l in t 
ipers(k,l,t)         max no of i per k of l in t 
speri(i,l,t)         max no of k for i on l in t 
slotlen1(k,l,t)   length of slot k on l in t 
slotlen2(l,t)        sum of slot lengths 
numcamp(i,l,t)       number of campaigns of i on l in t 
relax1(i,k,l,t)      relaxation of mcl constraint-1 
relax2(i,k,l,t)      relaxation of mcl constraint-2 
spilla(i,k,l,t)      condition-1 for spill over 
spillb(i,*,l,t)      condition-2 for spill over 
maxspill(l,t)        constraint for the number of spill over per k of l in t 
startsame(k,l,t)     starting time of diff i on same l in t 
endsame(k,l,t)       ending time of diff i on same l in t 
starttask1(k,l,t)    starting time of task i assigned to slot k 

  103 



 
  Appendix A 

start2diff(*,*,l,ll,t)    starting time of task 2 on diff l in t 
start3diff(*,*,l,ll,t)    starting time of task 3 on diff l in t 
start33diff(*,*,l,ll,t)  starting time of task 3 on diff l in t 
start4diff(*,*,l,ll,t)    starting time of task 4 on diff l in t 
start5diff(*,*,l,ll,t)    starting time of task 5 on diff l in t 
end2diff(*,*,l,ll,t)     ending time of task 2 on diff l in t 
end3diff(*,*,l,ll,t)      ending time of task 3 on diff l in t 
end33diff(*,*,l,ll,t)    ending time of task 3 on diff l in t 
end4diff(*,*,l,ll,t)      ending time of task 4 on diff l in t 
end5diff(*,*,l,ll,t)      ending time of task 5 on diff l in t 
inventory(m,t)      inventory balance equation 
backlog(m,t)        backlogging equation 
supply(m,t)         supply of m in t 
dip(m,t)            dip below target level of m in t ; 
 
 
netprofit.. GP =e= sum((m,t), g(m)*SQ(m,t))- sum((m,t), ho1(m,t)*INV(m,t))-
sum((m,l,t), PQ(m,l,t)*ho2(m,t)/2)- sum((m,t), a(m,t)*Id(m,t))- sum((m,t), 
g(m)*Ib(m,t))- sum((l,t),sum(i$il1(i,l), cc(i,l)*(NC(i,l,t)-YS(i,l,t-1)))); 
effectcamp(i,l,t)$(il1(i,l)).. PT(i,l,t) =e= sum(k$(kl(k,l)),CL(i,k,l,t))-CT(i,l)*(NC(i,l,t)-
YS(i,l,t-1)); 
production(m,l,t).. PQ(m,l,t) =e= sum(i$il1(i,l), sigma(m,i)*(RL(i,l)* PT(i,l,t)+ 
DQ(i,l,t))/meu(i)); 
diffprod(i,l,t)$(il1(i,l)).. DQ(i,l,t) =l= (RU(i,l)-RL(i,l))* PT(i,l,t); 
camlength(i,k,l,t)$(il1(i,l) and kl(k,l)).. TTS(i,k,l,t)+ CL(i,k,l,t) =l= H(l,t)*Y(i,k,l,t); 
ipers(k,l,t)$kl(k,l).. sum(i$il1(i,l), Y(i,k,l,t)) =l= 1; 
speri(i,l,t)$il1(i,l).. sum(k$kl(k,l), Y(i,k,l,t)) =l= 1; 
slotlen1(k,l,t)$(kl(k,l)).. SL(k,l,t) =e= sum(i$il1(i,l), CL(i,k,l,t)); 
slotlen2(l,t).. sum(k$kl(k,l), SL(k,l,t))=l= H(l,t); 
numcamp(i,l,t)$(il1(i,l)).. NC(i,l,t) =e= sum(k$kl(k,l), Y(i,k,l,t)); 
relax1(i,k,l,t)$(il1(i,l)and kl(k,l)).. CL(i,k,l,t) =g= MCL(i,l)*Y(i,k,l,t)- 
MCL(i,l)*(YS(i,l,t)$(ord(k)=nk(l))+YS(i,l,t-1)$(ord(k)=1)); 
relax2(i,k,l,t)$(il1(i,l)and kl(k,l) and ord(k)=nk(l)).. CL(i,k,l,t-1)+ CL(i,'1',l,t) =g= 
MCL(i,l)*YS(i,l,t-1); 
spilla(i,k,l,t)$(il1(i,l) and kl(k,l) and ord(k)=nk(l)).. YS(i,l,t) =l= Y(i,k,l,t); 
spillb(i,'1',l,t)$(il1(i,l)and kl('1',l)).. YS(i,l,t-1) =l= Y(i,'1',l,t); 
maxspill(l,t).. sum(i$il1(i,l), YS(i,l,t)) =l= 1; 
startsame(k,l,t)$(kl(k,l) and ord(k)< nk(l)).. TS(k+1,l,t) =g= TE(k,l,t); 
endsame(k,l,t)$(kl(k,l)).. TE(k,l,t)   =e= TS(k,l,t) + SL(k,l,t); 
starttask1(k,l,t)$(kl(k,l)).. TS(k,l,t)   =e= sum(i$il1(i,l), TTS(i,k,l,t)); 
start2diff('1','2',l,ll,t)$(il1('2',l)and ill1('1',ll)).. sum(k$kl(k,l), TTS('2',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('1',kk,ll,t)) + dt('1','2')*(NC('2',l,t) + NC('1',ll,t)-1); 
start3diff('2','3',l,ll,t)$(il1('3',l)and ill1('2',ll)).. sum(k$kl(k,l), TTS('3',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('2',kk,ll,t)) + dt('2','3')*(NC('3',l,t) + NC('2',ll,t)-1); 
start33diff('5','3',l,ll,t)$(il1('3',l)and ill1('5',ll)).. sum(k$kl(k,l), TTS('3',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('5',kk,ll,t)) + dt('5','3')*(NC('3',l,t) + NC('5',ll,t)-1); 
start4diff('4','5',l,ll,t)$(il1('5',l)and ill1('4',ll)).. sum(k$kl(k,l), TTS('5',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('4',kk,ll,t)) + dt('4','5')*(NC('5',l,t) + NC('4',ll,t)-1); 
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start5diff('5','6',l,ll,t)$(il1('6',l)and ill1('5',ll)).. sum(k$kl(k,l), TTS('6',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('5',kk,ll,t)) + dt('5','6')*(NC('6',l,t) + NC('5',ll,t)-1); 
end2diff('1','2',l,ll,t)$(il1('2',l)and ill1('1',ll)).. sum(k$kl(k,l), TTS('2',k,l,t)+ 
CL('2',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('1',kk,ll,t)+ CL('1',kk,ll,t)) + 
dt('1','2')*(NC('2',l,t) + NC('1',ll,t)-1); 
end3diff('2','3',l,ll,t)$(il1('3',l)and ill1('2',ll)).. sum(k$kl(k,l), TTS('3',k,l,t)+ 
CL('3',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('2',kk,ll,t)+ CL('2',kk,ll,t)) + 
dt('2','3')*(NC('3',l,t) + NC('2',ll,t)-1); 
end33diff('5','3',l,ll,t)$(il1('3',l)and ill1('5',ll)).. sum(k$kl(k,l), TTS('3',k,l,t)+ 
CL('3',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('5',kk,ll,t)+ CL('5',kk,ll,t)) + 
dt('5','3')*(NC('3',l,t) + NC('5',ll,t)-1); 
end4diff('4','5',l,ll,t)$(il1('5',l)and ill1('4',ll)).. sum(k$kl(k,l), TTS('5',k,l,t)+ 
CL('5',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('4',kk,ll,t)+ CL('4',kk,ll,t)) + 
dt('4','5')*(NC('5',l,t) + NC('4',ll,t)-1); 
end5diff('5','6',l,ll,t)$(il1('6',l)and ill1('5',ll)).. sum(k$kl(k,l), TTS('6',k,l,t)+ 
CL('6',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('5',kk,ll,t)+ CL('5',kk,ll,t)) + 
dt('5','6')*(NC('6',l,t) + NC('5',ll,t)-1); 
inventory(m,t).. INV(m,t) =e= (I0(m))$(ord(t)=1)+(INV(m,t-1))$(ord(t)>1)+ sum(l, 
PQ(m,l,t))-SQ(m,t); 
backlog(m,t).. Ib(m,t) =g= Ib(m,t-1)$(ord(t)>1)+ D(m,t)-SQ(m,t); 
supply(m,t).. sum(tt$(ord(tt)<= ord(t)), SQ(m,tt)) =l= sum(tt, D(m,tt)); 
dip(m,t).. Id(m,t) =g= IL(m)- INV(m,t); 
 
CL.lo(i,k,l,t) = 0; 
PT.lo(i,l,t) = 0; 
SL.lo(k,l,t) = 0; 
TS.lo(k,l,t) = 0; 
TE.lo(k,l,t) = 0; 
TTS.lo(i,k,l,t) = 0; 
INV.lo(m,t) = 0; 
Ib.lo(m,t) = 0; 
Id.lo(m,t) = 0; 
NC.lo(i,l,t) = 0; 
CL.up(i,k,l,t) = H(l,t); 
PT.up(i,l,t) = H(l,t); 
SL.up(k,l,t) = H(l,t); 
TS.up(k,l,t) = H(l,t); 
TE.up(k,l,t) = H(l,t); 
TTS.up(i,k,l,t) = H(l,t); 
INV.up(m,t) = ST(m); 
SQ.up(m,t) = sum(tt$(ord(tt) <= ord(t)), D(m,tt)); 
Ib.up(m,t) = sum(tt$(ord(tt) <= ord(t)), D(m,tt)); 
Id.up(m,t) = IL(m); 
NC.up(i,l,t) = 1; 
 
OPTION 
SOLPRINT = OFF 
limrow = 120 
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optcr = 0 
reslim = 1000 
mip = cplex ; 
 
MODEL planning /all/ ; 
 
SOLVE  planning using mip maximizing GP ; 
 
DISPLAY GP.l,CL.l,PT.l,TS.l,TE.l,TTS.l,Y.l,YS.l,INV.l,PQ.l,Ib.l,Id.l,SQ.l; 

A.1.1.2 Example 1b 

VARIABLES 
NC(i,l,t)      number of campaigns of i on l in t 
PQ(m,l,t)      amount of m produced or consumed on l in t 
DQ(i,l,t)      differential production amount of i on l in t 
CL(i,k,l,t)    campaign length of i in k of l in t 
PT(i,l,t)      effective production time of i on l in t 
SL(k,l,t)      length of k of l in t 
TS(k,l,t)      starting time of k of l in t 
TE(k,l,t)      ending time of k of l in t 
TTS(i,k,l,t)   starting time of i in k of l in t 
INV(m,t)       inventory of m at the end of t 
SQ(m,t)        supply amount of m in t 
Ib(m,t)        backlog amount of m in t 
Id(m,t)        deviation below IL(m) in t 
Y(i,k,l,t)     assignment variable 
YS(i,l,t)      spill over variable 
Z(i,k,l,t)     scaleup variable 
GP             net profit  ; 
POSITIVE VARIABLE DQ,CL,PT,NC,SL,TS,TE,TTS,INV,SQ,Ib,Id,Z,YS ; 
BINARY VARIABLE  Y; 
 
EQUATIONS 
netprofit            net profit to be maximized 
production(m,l,t)    amount of m produced or consumed on l in t 
effectcamp(i,l,t)    effective production time of i on l in t 
diffprod(i,l,t)      differential production amount of i on l in t 
camlength(i,k,l,t)   upper limit for campaign length of i in k of l in t 
ipers(k,l,t)         max no of i per k of l in t 
speri(i,l,t)        max no of k for i on l in t 
slotlen1(k,l,t)      length of slot k on l in t 
slotlen2(l,t)        sum of slot lengths 
numcamp(i,l,t)       number of campaigns of i on l in t 
relax1(i,k,l,t)      relaxation of mcl constraint-1 
relax2(i,k,l,t)      relaxation of mcl constraint-2 
spilla(i,k,l,t)      condition-1 for spill over 
spillb(i,*,l,t)      condition-2 for spill over 
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maxspill(l,t)       constraint for the number of spill over per k of l in t 
scaleup1(i,k,l,t)       scaleup time required for i in k of l in t 
scaleup2(i,l)           scaleup time required for i on l in t 
startsame(k,l,t)     starting time of diff i on same l in t 
endsame(k,l,t)       ending time of diff i on same l in t 
starttask1(k,l,t)    starting time of task i assigned to slot k 
start2diff(*,*,l,ll,t)    starting time of task 2 on diff l in t 
start3diff(*,*,l,ll,t)    starting time of task 3 on diff l in t 
start33diff(*,*,l,ll,t)  starting time of task 3 on diff l in t 
start4diff(*,*,l,ll,t)    starting time of task 4 on diff l in t 
start5diff(*,*,l,ll,t)    starting time of task 5 on diff l in t 
start6diff(*,*,l,ll,t)    starting time of task 6 on diff l in t 
start7diff(*,*,l,ll,t)    starting time of task 7 on diff l in t 
end2diff(*,*,l,ll,t)      ending time of task 2 on diff l in t 
end3diff(*,*,l,ll,t)     ending time of task 3 on diff l in t 
end33diff(*,*,l,ll,t)    ending time of task 3 on diff l in t 
end4diff(*,*,l,ll,t)      ending time of task 4 on diff l in t 
end5diff(*,*,l,ll,t)      ending time of task 5 on diff l in t 
end6diff(*,*,l,ll,t)      ending time of task 6 on diff l in t 
end7diff(*,*,l,ll,t)      ending time of task 7 on diff l in t 
inventory(m,t)      inventory balance equation 
backlog(m,t)        backlogging equation 
supply(m,t)         supply of m in t 
dip(m,t)            dip below target level of m in t ; 
 
netprofit.. GP =e= sum((m,t), g(m)*SQ(m,t))- sum((m,t), ho1(m,t)*INV(m,t))-
sum((m,l,t), PQ(m,l,t)*ho2(m,t)/2)- sum((m,t), a(m,t)*Id(m,t))- sum((m,t), 
g(m)*Ib(m,t))- sum((l,t),sum(i$il1(i,l), cc(i,l)*(NC(i,l,t)-YS(i,l,t-1)))); 
effectcamp(i,l,t)$(il1(i,l)).. PT(i,l,t) =e= sum(k$(kl(k,l)),CL(i,k,l,t))-CT(i,l)*(NC(i,l,t)-
YS(i,l,t-1))- sum(k$kl(k,l), SUT(i,l)*Z(i,k,l,t)); 
production(m,l,t).. PQ(m,l,t) =e= sum(i$il1(i,l), sigma(m,i)*(RL(i,l)* PT(i,l,t)+ 
DQ(i,l,t))/meu(i)); 
diffprod(i,l,t)$(il1(i,l)).. DQ(i,l,t) =l= (RU(i,l)-RL(i,l))* PT(i,l,t); 
camlength(i,k,l,t)$(il1(i,l)and kl(k,l)).. TTS(i,k,l,t)+ CL(i,k,l,t) =l= H(l,t)*Y(i,k,l,t); 
ipers(k,l,t)$kl(k,l).. sum(i$il1(i,l), Y(i,k,l,t)) =l= 1; 
speri(i,l,t)$il1(i,l).. sum(k$kl(k,l), Y(i,k,l,t)) =l= 1; 
slotlen1(k,l,t)$(kl(k,l)).. SL(k,l,t) =e= sum(i$il1(i,l), CL(i,k,l,t)); 
slotlen2(l,t).. sum(k$kl(k,l), SL(k,l,t))=l= H(l,t); 
numcamp(i,l,t)$(il1(i,l)).. NC(i,l,t) =e= sum(k$kl(k,l), Y(i,k,l,t)); 
relax1(i,k,l,t)$(il1(i,l)and kl(k,l)).. CL(i,k,l,t) =g= MCL(i,l)*Y(i,k,l,t)- 
MCL(i,l)*(YS(i,l,t)$(ord(k)=nk(l))+YS(i,l,t-1)$(ord(k)=1)); 
relax2(i,k,l,t)$(il1(i,l)and kl(k,l) and ord(k)=nk(l)).. CL(i,k,l,t-1)+ CL(i,'1',l,t) =g= 
MCL(i,l)*YS(i,l,t-1); 
spilla(i,k,l,t)$(il1(i,l) and kl(k,l) and ord(k)=nk(l)).. YS(i,l,t) =l= Y(i,k,l,t); 
spillb(i,'1',l,t)$(il1(i,l)and kl('1',l)).. YS(i,l,t-1) =l= Y(i,'1',l,t); 
maxspill(l,t).. sum(i$il1(i,l), YS(i,l,t)) =l= 1; 
scaleup1(i,k,l,t)$(il1(i,l)and kl(k,l)).. Z(i,k,l,t) =g= Y(i,k,l,t)-
sum(tt$(ord(tt)<ord(t)),sum(kk,Z(i,kk,l,tt))); 
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scaleup2(i,l)$(il1(i,l)).. sum(t,sum(k$(kl(k,l)),Z(i,k,l,t))) =l= 1; 
startsame(k,l,t)$(kl(k,l)and ord(k)< nk(l)).. TS(k+1,l,t) =g= TE(k,l,t); 
endsame(k,l,t)$(kl(k,l)).. TE(k,l,t)   =e= TS(k,l,t) + SL(k,l,t); 
starttask1(k,l,t)$(kl(k,l)).. TS(k,l,t)   =e= sum(i$il1(i,l), TTS(i,k,l,t)); 
start2diff('1','2',l,ll,t)$(il1('2',l)and ill1('1',ll)).. sum(k$kl(k,l), TTS('2',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('1',kk,ll,t)) + dt('1','2')*(NC('2',l,t) + NC('1',ll,t)-1); 
start3diff('2','3',l,ll,t)$(il1('3',l)and ill1('2',ll)).. sum(k$kl(k,l), TTS('3',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('2',kk,ll,t)) + dt('2','3')*(NC('3',l,t) + NC('2',ll,t)-1); 
start33diff('5','3',l,ll,t)$(il1('3',l)and ill1('5',ll)).. sum(k$kl(k,l), TTS('3',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('5',kk,ll,t)) + dt('5','3')*(NC('3',l,t) + NC('5',ll,t)-1); 
start4diff('4','5',l,ll,t)$(il1('5',l)and ill1('4',ll)).. sum(k$kl(k,l), TTS('5',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('4',kk,ll,t)) + dt('4','5')*(NC('5',l,t) + NC('4',ll,t)-1); 
start5diff('5','6',l,ll,t)$(il1('6',l)and ill1('5',ll)).. sum(k$kl(k,l), TTS('6',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('5',kk,ll,t)) + dt('5','6')*(NC('6',l,t) + NC('5',ll,t)-1); 
start6diff('1','7',l,ll,t)$(il1('7',l)and ill1('1',ll)).. sum(k$kl(k,l), TTS('7',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('1',kk,ll,t)) + dt('1','7')*(NC('7',l,t) + NC('1',ll,t)-1); 
start7diff('7','8',l,ll,t)$(il1('8',l)and ill1('7',ll)).. sum(k$kl(k,l), TTS('8',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('7',kk,ll,t)) + dt('7','8')*(NC('8',l,t) + NC('7',ll,t)-1); 
end2diff('1','2',l,ll,t)$(il1('2',l)and ill1('1',ll)).. sum(k$kl(k,l), TTS('2',k,l,t)+ 
CL('2',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('1',kk,ll,t)+ CL('1',kk,ll,t)) + 
dt('1','2')*(NC('2',l,t) + NC('1',ll,t)-1); 
end3diff('2','3',l,ll,t)$(il1('3',l)and ill1('2',ll)).. sum(k$kl(k,l), TTS('3',k,l,t)+ 
CL('3',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('2',kk,ll,t)+ CL('2',kk,ll,t)) + 
dt('2','3')*(NC('3',l,t) + NC('2',ll,t)-1); 
end33diff('5','3',l,ll,t)$(il1('3',l)and ill1('5',ll)).. sum(k$kl(k,l), TTS('3',k,l,t)+ 
CL('3',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('5',kk,ll,t)+ CL('5',kk,ll,t)) + 
dt('5','3')*(NC('3',l,t) + NC('5',ll,t)-1); 
end4diff('4','5',l,ll,t)$(il1('5',l)and ill1('4',ll)).. sum(k$kl(k,l), TTS('5',k,l,t)+ 
CL('5',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('4',kk,ll,t)+ CL('4',kk,ll,t)) + 
dt('4','5')*(NC('5',l,t) + NC('4',ll,t)-1); 
end5diff('5','6',l,ll,t)$(il1('6',l)and ill1('5',ll)).. sum(k$kl(k,l), TTS('6',k,l,t)+ 
CL('6',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('5',kk,ll,t)+ CL('5',kk,ll,t)) + 
dt('5','6')*(NC('6',l,t) + NC('5',ll,t)-1); 
end6diff('1','7',l,ll,t)$(il1('7',l)and ill1('1',ll)).. sum(k$kl(k,l), TTS('7',k,l,t)+ 
CL('7',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('1',kk,ll,t)+ CL('1',kk,ll,t)) + 
dt('1','7')*(NC('7',l,t) + NC('1',ll,t)-1); 
end7diff('7','8',l,ll,t)$(il1('8',l)and ill1('7',ll)).. sum(k$kl(k,l), TTS('8',k,l,t)+ 
CL('8',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('7',kk,ll,t)+ CL('7',kk,ll,t)) + 
dt('7','8')*(NC('8',l,t) + NC('7',ll,t)-1); 
inventory(m,t).. INV(m,t) =e= (I0(m))$(ord(t)=1)+(INV(m,t-1))$(ord(t)>1)+ sum(l, 
PQ(m,l,t))-SQ(m,t); 
backlog(m,t).. Ib(m,t) =g= Ib(m,t-1)$(ord(t)>1)+ D(m,t)-SQ(m,t); 
supply(m,t).. sum(tt$(ord(tt)<= ord(t)), SQ(m,tt)) =l= sum(tt, D(m,tt)); 
dip(m,t).. Id(m,t) =g= IL(m)- INV(m,t); 
 
CL.lo(i,k,l,t) = 0; 
PT.lo(i,l,t) = 0; 
SL.lo(k,l,t) = 0; 

   108



 
  Appendix A 

TS.lo(k,l,t) = 0; 
TE.lo(k,l,t) = 0; 
TTS.lo(i,k,l,t) = 0; 
INV.lo(m,t) = 0; 
Ib.lo(m,t) = 0; 
Id.lo(m,t) = 0; 
NC.lo(i,l,t) = 0; 
Z.lo(i,k,l,t) = 0; 
YS.lo(i,l,t) = 0; 
 
CL.up(i,k,l,t) = H(l,t); 
PT.up(i,l,t) = H(l,t); 
SL.up(k,l,t) = H(l,t); 
TS.up(k,l,t) = H(l,t); 
TE.up(k,l,t) = H(l,t); 
TTS.up(i,k,l,t) = H(l,t); 
INV.up(m,t) = ST(m); 
SQ.up(m,t) = sum(tt$(ord(tt) <= ord(t)), D(m,tt)); 
Ib.up(m,t) = sum(tt$(ord(tt) <= ord(t)), D(m,tt)); 
Id.up(m,t) = IL(m); 
NC.up(i,l,t) = 1; 
Z.up(i,k,l,t) = 1; 
YS.up(i,l,t) = 1; 
 
OPTION 
SOLPRINT = OFF 
limrow = 60 
optcr = 0 
reslim = 10000 
mip = cplex ; 
 
MODEL planning /all/; 
 
SOLVE  planning using mip maximizing GP; 
 
DISPLAY       GP.l,CL.l,PT.l,TS.l,TE.l,TTS.l,Y.l,Z.l,YS.l,INV.l,PQ.l,Ib.l,Id.l,SQ.l; 

A.1.2 Example 2 

VARIABLES 
NC(i,l,t)      number of campaigns of i on l in t 
PQ(m,l,t)      amount of m produced or consumed on l in t 
DQ(i,l,t)      Differential production amount of i on l in t 
CL(i,k,l,t)    campaign length of i in k of l in t 
PT(i,l,t)      effective production time of i on l in t 
SL(k,l,t)      length of k of l in t 
TS(k,l,t)      starting time of k of l in t 
TE(k,l,t)      ending time of k of l in t 
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TTS(i,k,l,t)   starting time of i in k of l in t 
INV(m,t)       inventory of m at the end of t 
SQ(m,t)        supply amount of m in t 
OQ(m,t)        outsourcing amount of m in t 
Ib(m,t)        backlog amount of m in t 
Id(m,t)        deviation below IL(m) in t 
Y(i,k,l,t)     assignment variable 
YS(i,l,t)      spill over variable 
GP             net profit  ; 
POSITIVE VARIABLE DQ,CL,PT,NC,SL,TS,TE,TTS,INV,SQ,OQ,Ib,Id,YS ; 
BINARY VARIABLE Y ; 
 
EQUATIONS 
netprofit net profit to be maximized 
production(m,l,t)    amount of m produced or consumed on l in t 
effectcamp(i,l,t)    effective production time of i on l in t 
diffprod(i,l,t)      differential production amount of i on l in t 
camlength(i,k,l,t)   upper limit for campaign length of i in k of l in t 
ipers(k,l,t)         max no of i per k of l in t 
speri(i,l,t)         max no of k for i on l in t 
slotlen1(k,l,t)      length of slot k on l in t 
slotlen2(l,t)        sum of slot lengths 
numcamp(i,l,t)       number of campaigns of i on l in t 
relax1(i,k,l,t)      relaxation of mcl constraint-1 
relax2(i,k,l,t)      relaxation of mcl constraint-2 
spilla(i,k,l,t)      condition-1 for spill over 
spillb(i,*,l,t)      condition-2 for spill over 
maxspill(l,t)        constraint for the number of spill over per k of l in t 
startsame(k,l,t)     starting time of diff i on same l in t 
endsame(k,l,t)       ending time of diff i on same l in t 
starttask1(k,l,t)    starting time of task i assigned to slot k 
start2diff(*,*,l,ll,t)    starting time of task 2 on diff l in t 
start3diff(*,*,l,ll,t)    starting time of task 3 on diff l in t 
start33diff(*,*,l,ll,t)  starting time of task 3 on diff l in t 
start4diff(*,*,l,ll,t)    starting time of task 4 on diff l in t 
start5diff(*,*,l,ll,t)    starting time of task 5 on diff l in t 
end2diff(*,*,l,ll,t)      ending time of task 2 on diff l in t 
end3diff(*,*,l,ll,t)      ending time of task 3 on diff l in t 
end33diff(*,*,l,ll,t)    ending time of task 3 on diff l in t 
end4diff(*,*,l,ll,t)      ending time of task 4 on diff l in t 
end5diff(*,*,l,ll,t)      ending time of task 5 on diff l in t 
inventory(m,t)      inventory balance equation 
backlog(m,t)        backlogging equation 
supply(m,t)         supply of m in t 
dip(m,t)            dip below target level of m in t ; 
 
netprofit.. GP =e= sum((m,t), g(m)*SQ(m,t))- sum((m,t), ho1(m,t)*INV(m,t))-
sum((m,l,t), PQ(m,l,t)*ho2(m,t)/2)- sum((m,t), a(m,t)*Id(m,t))- sum((m,t), 
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g(m)*Ib(m,t))- sum((m,t), rc(m)* OQ(m,t))- sum((l,t),sum(i$il1(i,l), cc(i,l)*(NC(i,l,t)-
YS(i,l,t-1)))); 
effectcamp(i,l,t)$(il1(i,l)).. PT(i,l,t) =e= sum(k$(kl(k,l)),CL(i,k,l,t))-CT(i,l)*(NC(i,l,t)-
YS(i,l,t-1)); 
production(m,l,t).. PQ(m,l,t) =e= sum(i$il1(i,l), sigma(m,i)*(RL(i,l)* PT(i,l,t)+ 
DQ(i,l,t))/meu(i)); 
diffprod(i,l,t)$(il1(i,l)).. DQ(i,l,t) =l= (RU(i,l)-RL(i,l))* PT(i,l,t); 
camlength(i,k,l,t)$(il1(i,l) and kl(k,l)).. TTS(i,k,l,t)+ CL(i,k,l,t) =l= H(l,t)*Y(i,k,l,t); 
ipers(k,l,t)$kl(k,l).. sum(i$il1(i,l), Y(i,k,l,t)) =l= 1; 
speri(i,l,t)$il1(i,l).. sum(k$kl(k,l), Y(i,k,l,t)) =l= 1; 
slotlen1(k,l,t)$(kl(k,l)).. SL(k,l,t) =e= sum(i$il1(i,l), CL(i,k,l,t)); 
slotlen2(l,t).. sum(k$kl(k,l), SL(k,l,t))=l= H(l,t); 
numcamp(i,l,t)$(il1(i,l)).. NC(i,l,t) =e= sum(k$kl(k,l), Y(i,k,l,t)); 
relax1(i,k,l,t)$(il1(i,l)and kl(k,l)).. CL(i,k,l,t) =g= MCL*Y(i,k,l,t)- 
MCL*(YS(i,l,t)$(ord(k)=nk(l))+YS(i,l,t-1)$(ord(k)=1)); 
relax2(i,k,l,t)$(il1(i,l)and kl(k,l) and ord(k)=nk(l)).. CL(i,k,l,t-1)+ CL(i,'1',l,t) =g= 
MCL*YS(i,l,t-1); 
spilla(i,k,l,t)$(il1(i,l) and kl(k,l) and ord(k)=nk(l)).. YS(i,l,t) =l= Y(i,k,l,t); 
spillb(i,'1',l,t)$(il1(i,l)and kl('1',l)).. YS(i,l,t-1) =l= Y(i,'1',l,t); 
maxspill(l,t).. sum(i$il1(i,l), YS(i,l,t)) =l= 1; 
startsame(k,l,t)$(kl(k,l) and ord(k)< nk(l)).. TS(k+1,l,t) =g= TE(k,l,t); 
endsame(k,l,t)$(kl(k,l)).. TE(k,l,t)   =e= TS(k,l,t) + SL(k,l,t); 
starttask1(k,l,t)$(kl(k,l)).. TS(k,l,t)   =e= sum(i$il1(i,l), TTS(i,k,l,t)); 
start2diff('1','2',l,ll,t)$(il1('2',l)and ill1('1',ll)).. sum(k$kl(k,l), TTS('2',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('1',kk,ll,t)) + dt('1','2')*(NC('2',l,t) + NC('1',ll,t)-1); 
start3diff('2','3',l,ll,t)$(il1('3',l)and ill1('2',ll)).. sum(k$kl(k,l), TTS('3',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('2',kk,ll,t)) + dt('2','3')*(NC('3',l,t) + NC('2',ll,t)-1); 
start33diff('4','3',l,ll,t)$(il1('3',l)and ill1('4',ll)).. sum(k$kl(k,l), TTS('3',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('4',kk,ll,t)) + dt('4','3')*(NC('3',l,t) + NC('4',ll,t)-1); 
start4diff('4','5',l,ll,t)$(il1('5',l)and ill1('4',ll)).. sum(k$kl(k,l), TTS('5',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('4',kk,ll,t)) + dt('4','5')*(NC('5',l,t) + NC('4',ll,t)-1); 
start5diff('1','4',l,ll,t)$(il1('4',l)and ill1('1',ll)).. sum(k$kl(k,l), TTS('4',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('1',kk,ll,t)) + dt('1','4')*(NC('4',l,t) + NC('1',ll,t)-1); 
end2diff('1','2',l,ll,t)$(il1('2',l)and ill1('1',ll)).. sum(k$kl(k,l), TTS('2',k,l,t)+ 
CL('2',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('1',kk,ll,t)+ CL('1',kk,ll,t)) + 
dt('1','2')*(NC('2',l,t) + NC('1',ll,t)-1); 
end3diff('2','3',l,ll,t)$(il1('3',l)and ill1('2',ll)).. sum(k$kl(k,l), TTS('3',k,l,t)+ 
CL('3',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('2',kk,ll,t)+ CL('2',kk,ll,t)) + 
dt('2','3')*(NC('3',l,t) + NC('2',ll,t)-1); 
end33diff('4','3',l,ll,t)$(il1('3',l)and ill1('4',ll)).. sum(k$kl(k,l), TTS('3',k,l,t)+ 
CL('3',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('4',kk,ll,t)+ CL('4',kk,ll,t)) + 
dt('4','3')*(NC('3',l,t) + NC('4',ll,t)-1); 
end4diff('4','5',l,ll,t)$(il1('5',l)and ill1('4',ll)).. sum(k$kl(k,l), TTS('5',k,l,t)+ 
CL('5',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('4',kk,ll,t)+ CL('4',kk,ll,t)) + 
dt('4','5')*(NC('5',l,t) + NC('4',ll,t)-1); 
end5diff('1','4',l,ll,t)$(il1('4',l)and ill1('1',ll)).. sum(k$kl(k,l), TTS('4',k,l,t)+ 
CL('4',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('1',kk,ll,t)+ CL('1',kk,ll,t)) + 
dt('1','4')*(NC('4',l,t) + NC('1',ll,t)-1); 
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inventory(m,t).. INV(m,t) =e= (I0(m))$(ord(t)=1)+(INV(m,t-1))$(ord(t)>1)+ OQ(m,t)+ 
sum(l, PQ(m,l,t))-SQ(m,t); 
backlog(m,t).. Ib(m,t) =g= Ib(m,t-1)$(ord(t)>1)+ D(m,t)-SQ(m,t); 
supply(m,t).. sum(tt$(ord(tt)<= ord(t)), SQ(m,tt)) =l= sum(tt, D(m,tt)); 
dip(m,t).. Id(m,t) =g= IL(m)- INV(m,t); 
 
OQ.lo(m,t) = 0; 
CL.lo(i,k,l,t) = 0; 
PT.lo(i,l,t) = 0; 
SL.lo(k,l,t) = 0; 
TS.lo(k,l,t) = 0; 
TE.lo(k,l,t) = 0; 
TTS.lo(i,k,l,t) = 0; 
INV.lo(m,t) = 0; 
Ib.lo(m,t) = 0; 
Id.lo(m,t) = 0; 
NC.lo(i,l,t) = 0; 
YS.lo(i,l,t) = 0; 
 
OQ.up(m,t) = out(m); 
CL.up(i,k,l,t) = H(l,t); 
PT.up(i,l,t) = H(l,t); 
SL.up(k,l,t) = H(l,t); 
TS.up(k,l,t) = H(l,t); 
TE.up(k,l,t) = H(l,t); 
TTS.up(i,k,l,t) = H(l,t); 
INV.up(m,t) = ST(m); 
SQ.up(m,t) = sum(tt$(ord(tt) <= ord(t)), D(m,tt)); 
Ib.up(m,t) = sum(tt$(ord(tt) <= ord(t)), D(m,tt)); 
Id.up(m,t) = IL(m); 
NC.up(i,l,t) = 1; 
YS.up(i,l,t) = 1; 
 
OPTION 
SOLPRINT = OFF 
limrow = 40 
optcr = 0 
reslim = 1000 
mip = cplex ; 
 
MODEL planning /all/ ; 
 
SOLVE  planning using mip maximizing GP ; 
 
DISPLAY GP.l,CL.l,PT.l,TS.l,TE.l,TTS.l,Y.l,YS.l,INV.l,PQ.l,Ib.l,Id.l,SQ.l; 
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A.1.3 Example 3 

VARIABLES 
NC(i,l,t)      number of campaigns of i on l in t 
PQ(m,l,t)      mount of m produced or consumed on l in t 
DQ(i,l,t)      differential production amount of i on l in t 
CL(i,k,l,t)    campaign length of i in k of l in t 
PT(i,l,t)      effective production time of i on l in t 
SL(k,l,t)      ength of k of l in t 
TS(k,l,t)      starting time of k of l in t 
TE(k,l,t)      ending time of k of l in t 
TTS(i,k,l,t)   starting time of i in k of l in t 
INV(m,t)       inventory of m at the end of t 
SQ(m,t)        supply amount of m in t 
OQ(m,t)        outsourcing amount of m in t 
Ib(m,t)       backlog amount of m in t 
Id(m,t)        deviation below IL(m) in t 
Y(i,k,l,t)     assignment variable 
YS(i,l,t)      spill over variable 
Z(i,k,l,t)     scaleup variable 
GP            net profit  ; 
POSITIVE VARIABLE DQ,CL,PT,NC,SL,TS,TE,TTS,INV,SQ,OQ,Ib,Id,Z,YS ; 
BINARY VARIABLE Y ; 
 
EQUATIONS 
netprofit            net profit to be maximized 
production(m,l,t)    amount of m produced or consumed on l in t 
effectcamp(i,l,t)    effective production time of i on l in t 
diffprod(i,l,t)      differential production amount of i on l in t 
camlength(i,k,l,t)   upper limit for campaign length of i in k of l in t 
ipers(k,l,t)         max no of i per k of l in t 
speri(i,l,t)         max no of k for i on l in t 
slotlen1(k,l,t)      length of slot k on l in t 
slotlen2(l,t)       sum of slot lengths 
numcamp(i,l,t)       number of campaigns of i on l in t 
relax1(i,k,l,t)      relaxation of mcl constraint-1 
relax2(i,k,l,t)      relaxation of mcl constraint-2 
spilla(i,k,l,t)      condition-1 for spill over 
spillb(i,*,l,t)      condition-2 for spill over 
maxspill(l,t)        constraint for the number of spill over per k of l in t 
scaleup1(i,k,l,t)   scaleup time required for i in k of l in t 
scaleup2(i,l)        scaleup time required for i on l in t 
startsame(k,l,t)     starting time of diff i on same l in t 
endsame(k,l,t)       ending time of diff i on same l in t 
starttask1(k,l,t)    starting time of task i assigned to slot k 
start2diff(*,*,l,ll,t)    starting time of task 2 on diff l in t 
start3diff(*,*,l,ll,t)    starting time of task 3 on diff l in t 
start33diff(*,*,l,ll,t)  starting time of task 3 on diff l in t 

   113



 
  Appendix A 

start4diff(*,*,l,ll,t)    starting time of task 4 on diff l in t 
start5diff(*,*,l,ll,t)    starting time of task 5 on diff l in t 
start6diff(*,*,l,ll,t)    starting time of task 4 on diff l in t 
start7diff(*,*,l,ll,t)    starting time of task 5 on diff l in t 
end2diff(*,*,l,ll,t)      ending time of task 2 on diff l in t 
end3diff(*,*,l,ll,t)      ending time of task 3 on diff l in t 
end33diff(*,*,l,ll,t)    ending time of task 3 on diff l in t 
end4diff(*,*,l,ll,t)      ending time of task 4 on diff l in t 
end5diff(*,*,l,ll,t)      ending time of task 5 on diff l in t 
end6diff(*,*,l,ll,t)      ending time of task 4 on diff l in t 
end7diff(*,*,l,ll,t)      ending time of task 5 on diff l in t 
inventory(m,t)      inventory balance equation 
backlog(m,t)        backlogging equation 
supply(m,t)         supply of m in t 
dip(m,t)            dip below target level of m in t ; 
 
netprofit.. GP =e= sum((m,t), g(m)*SQ(m,t))- sum((m,t), ho1(m,t)*INV(m,t))-
sum((m,l,t), PQ(m,l,t)*ho2(m,t)/2)- sum((m,t), a(m,t)*Id(m,t))- sum((m,t), 
g(m)*Ib(m,t))- sum((l,t),sum(i$il1(i,l), cc(i,l)*(NC(i,l,t)-YS(i,l,t-1)$(ord(t)>1)-
YS0(i,l)$(ord(t)=1)))); 
effectcamp(i,l,t)$(il1(i,l)).. PT(i,l,t) =e= sum(k$(kl(k,l)),CL(i,k,l,t))-CT(i,l)*(NC(i,l,t)-
YS(i,l,t-1)$(ord(t)>1)-YS0(i,l)$(ord(t)=1))- sum(k$kl(k,l), SUT(i,l)*Z(i,k,l,t)); 
production(m,l,t).. PQ(m,l,t) =e= sum(i$il1(i,l), sigma(m,i)*(RL(i,l)* PT(i,l,t)+ 
DQ(i,l,t))/meu(i)); 
diffprod(i,l,t)$(il1(i,l)).. DQ(i,l,t) =l= (RU(i,l)-RL(i,l))* PT(i,l,t); 
camlength(i,k,l,t)$(il1(i,l)and kl(k,l)).. TTS(i,k,l,t)+ CL(i,k,l,t) =l= H(l,t)*Y(i,k,l,t); 
ipers(k,l,t)$kl(k,l).. sum(i$il1(i,l), Y(i,k,l,t)) =l= 1; 
speri(i,l,t)$il1(i,l).. sum(k$kl(k,l), Y(i,k,l,t)) =l= 1; 
slotlen1(k,l,t)$(kl(k,l)).. SL(k,l,t) =e= sum(i$il1(i,l), CL(i,k,l,t)); 
slotlen2(l,t).. sum(k$kl(k,l), SL(k,l,t))=l= H(l,t); 
numcamp(i,l,t)$(il1(i,l)).. NC(i,l,t) =e= sum(k$kl(k,l), Y(i,k,l,t)); 
relax1(i,k,l,t)$(il1(i,l)and kl(k,l)).. CL(i,k,l,t) =g= MCL*Y(i,k,l,t)- 
MCL*(YS(i,l,t)$(ord(k)=nk(l))+YS(i,l,t-1)$(ord(k)=1 and 
ord(t)>1)+YS0(i,l)$(ord(k)=1 and ord(t)=1)); 
relax2(i,k,l,t)$(il1(i,l)and kl(k,l)and ord(k)=nk(l)).. CL(i,'1',l,t) =g= MCL*(YS(i,l,t-
1)$(ord(t)>1)+YS0(i,l)$(ord(t)=1))-CL(i,k,l,t-1)$(ord(t)>1)-CL0(i,l)$(ord(t)=1); 
spilla(i,k,l,t)$(il1(i,l) and kl(k,l) and ord(k)=nk(l)).. YS(i,l,t) =l= Y(i,k,l,t); 
spillb(i,'1',l,t)$(il1(i,l)and kl('1',l)).. Y(i,'1',l,t) =g= YS(i,l,t-
1)$(ord(t)>1)+YS0(i,l)$(ord(t)=1); 
maxspill(l,t).. sum(i$il1(i,l), YS(i,l,t)) =l= 1; 
scaleup1(i,k,l,t)$(il1(i,l)and kl(k,l)).. Z(i,k,l,t) =g= Y(i,k,l,t)-
sum(tt$(ord(tt)<ord(t)),sum(kk,Z(i,kk,l,tt))); 
scaleup2(i,l)$(il1(i,l)).. sum(t,sum(k$(kl(k,l)),Z(i,k,l,t))) =l= 1; 
startsame(k,l,t)$(kl(k,l)and ord(k)< nk(l)).. TS(k+1,l,t) =g= TE(k,l,t); 
endsame(k,l,t)$(kl(k,l)).. TE(k,l,t)   =e= TS(k,l,t) + SL(k,l,t); 
starttask1(k,l,t)$(kl(k,l)).. TS(k,l,t)   =e= sum(i$il1(i,l), TTS(i,k,l,t)); 
start2diff('1','2',l,ll,t)$(il1('2',l)and ill1('1',ll)).. sum(k$kl(k,l), TTS('2',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('1',kk,ll,t)) + dt('1','2')*(NC('2',l,t) + NC('1',ll,t)-1); 
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start3diff('2','3',l,ll,t)$(il1('3',l)and ill1('2',ll)).. sum(k$kl(k,l), TTS('3',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('2',kk,ll,t)) + dt('2','3')*(NC('3',l,t) + NC('2',ll,t)-1); 
start33diff('4','3',l,ll,t)$(il1('3',l)and ill1('4',ll)).. sum(k$kl(k,l), TTS('3',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('4',kk,ll,t)) + dt('4','3')*(NC('3',l,t) + NC('4',ll,t)-1); 
start4diff('4','5',l,ll,t)$(il1('5',l)and ill1('4',ll)).. sum(k$kl(k,l), TTS('5',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('4',kk,ll,t)) + dt('4','5')*(NC('5',l,t) + NC('4',ll,t)-1); 
start5diff('1','4',l,ll,t)$(il1('4',l)and ill1('1',ll)).. sum(k$kl(k,l), TTS('4',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('1',kk,ll,t)) + dt('1','4')*(NC('4',l,t) + NC('1',ll,t)-1); 
start6diff('6','7',l,ll,t)$(il1('7',l)and ill1('6',ll)).. sum(k$kl(k,l), TTS('7',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('6',kk,ll,t)) + dt('6','7')*(NC('7',l,t) + NC('6',ll,t)-1); 
start7diff('7','8',l,ll,t)$(il1('8',l)and ill1('7',ll)).. sum(k$kl(k,l), TTS('8',k,l,t)) =g= 
sum(kk$kkll(kk,ll), TTS('7',kk,ll,t)) + dt('7','8')*(NC('8',l,t) + NC('7',ll,t)-1); 
end2diff('1','2',l,ll,t)$(il1('2',l)and ill1('1',ll)).. sum(k$kl(k,l), TTS('2',k,l,t)+ 
CL('2',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('1',kk,ll,t)+ CL('1',kk,ll,t)) + 
dt('1','2')*(NC('2',l,t) + NC('1',ll,t)-1); 
end3diff('2','3',l,ll,t)$(il1('3',l)and ill1('2',ll)).. sum(k$kl(k,l), TTS('3',k,l,t)+ 
CL('3',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('2',kk,ll,t)+ CL('2',kk,ll,t)) + 
dt('2','3')*(NC('3',l,t) + NC('2',ll,t)-1); 
end33diff('4','3',l,ll,t)$(il1('3',l)and ill1('4',ll)).. sum(k$kl(k,l), TTS('3',k,l,t)+ 
CL('3',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('4',kk,ll,t)+ CL('4',kk,ll,t)) + 
dt('4','3')*(NC('3',l,t) + NC('4',ll,t)-1); 
end4diff('4','5',l,ll,t)$(il1('5',l)and ill1('4',ll)).. sum(k$kl(k,l), TTS('5',k,l,t)+ 
CL('5',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('4',kk,ll,t)+ CL('4',kk,ll,t)) + 
dt('4','5')*(NC('5',l,t) + NC('4',ll,t)-1); 
end5diff('1','4',l,ll,t)$(il1('4',l)and ill1('1',ll)).. sum(k$kl(k,l), TTS('4',k,l,t)+ 
CL('4',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('1',kk,ll,t)+ CL('1',kk,ll,t)) + 
dt('1','4')*(NC('4',l,t) + NC('1',ll,t)-1); 
end6diff('6','7',l,ll,t)$(il1('7',l)and ill1('6',ll)).. sum(k$kl(k,l), TTS('7',k,l,t)+ 
CL('7',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('6',kk,ll,t)+ CL('6',kk,ll,t)) + 
dt('6','7')*(NC('7',l,t) + NC('6',ll,t)-1); 
end7diff('7','8',l,ll,t)$(il1('8',l)and ill1('7',ll)).. sum(k$kl(k,l), TTS('8',k,l,t)+ 
CL('8',k,l,t)) =g= sum(kk$kkll(kk,ll), TTS('7',kk,ll,t)+ CL('7',kk,ll,t)) + 
dt('7','8')*(NC('8',l,t) + NC('7',ll,t)-1); 
inventory(m,t).. INV(m,t) =e= (I0(m))$(ord(t)=1)+(INV(m,t-1))$(ord(t)>1)+ sum(l, 
PQ(m,l,t))-SQ(m,t); 
backlog(m,t).. Ib(m,t) =g=  Ib0(m)$(ord(t)=1)+Ib(m,t-1)$(ord(t)>1)+ D(m,t)-SQ(m,t); 
supply(m,t).. sum(tt$(ord(tt)<= ord(t)), SQ(m,tt)) =l= sum(tt, D(m,tt))+Ib0(m); 
dip(m,t).. Id(m,t) =g= IL(m)- INV(m,t); 
 
CL.lo(i,k,l,t) = 0; 
PT.lo(i,l,t) = 0; 
SL.lo(k,l,t) = 0; 
TS.lo(k,l,t) = 0; 
TE.lo(k,l,t) = 0; 
TTS.lo(i,k,l,t) = 0; 
INV.lo(m,t) = 0; 
Ib.lo(m,t) = 0; 
Id.lo(m,t) = 0; 

   115



 
  Appendix A 

NC.lo(i,l,t) = 0; 
YS.lo(i,l,t) = 0; 
Z.lo(i,k,l,t) = 0; 
 
CL.up(i,k,l,t) = H(l,t); 
PT.up(i,l,t) = H(l,t); 
SL.up(k,l,t) = H(l,t); 
TS.up(k,l,t) = H(l,t); 
TE.up(k,l,t) = H(l,t); 
TTS.up(i,k,l,t) = H(l,t); 
INV.up(m,t) = ST(m); 
SQ.up(m,t) = sum(tt$(ord(tt) <= ord(t)), D(m,tt))+Ib0(m); 
Ib.up(m,t) = sum(tt$(ord(tt) <= ord(t)), D(m,tt))+Ib0(m); 
Id.up(m,t) = IL(m); 
NC.up(i,l,t) = 1; 
YS.up(i,l,t) = 1; 
Z.up(i,k,l,t) = 1; 
 
OPTION 
SOLPRINT = OFF 
limrow = 40 
optcr = 0 
reslim = 10000 
mip = cplex ; 
 
MODEL planning /all/; 
 
SOLVE  planning using mip maximizing GP; 
 
DISPLAY GP.l,CL.l,PT.l,TS.l,TE.l,TTS.l,Y.l,YS.l,INV.l,PQ.l,Ib.l,Id.l,SQ.l; 
 

A.2 DATA files for Examples 1-3 

A.2.1 Example 1 

A.2.1.1 Example 1a 

SETS 
m materials /1*9/ 
i tasks /1*6/ 
k slots /1*2/ 
l lines /1*3/ 
t time periods /1*4/ 
il1(i,l) suitability of tasks to lines /(1,4).1,(2,5).2,(3,6).3/ 
kl(k,l)  slots on lines /(1,2).1,(1,2).2,(1,2).3/ 
ALIAS   (i,ii),(k,kk),(l,ll),(t,tt); 
SETS 
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iil1(ii,l)   suitability of tasks to lines /(1,4).1,(2,5).2,(3,6).3/ 
ill1(i,ll)   suitability of tasks to lines /(1,4).1,(2,5).2,(3,6).3/ 
iill1(ii,ll) suitability of tasks to lines /(1,4).1,(2,5).2,(3,6).3/ 
kkl(kk,l)    slots on lines /(1,2).1,(1,2).2,(1,2).3/ 
kll(k,ll)    slots on lines /(1,2).1,(1,2).2,(1,2).3/ 
kkll(kk,ll)  slots on lines /(1,2).1,(1,2).2,(1,2).3/ 
 
PARAMETERS 
I0(m) initial inventory of m 
/1 1000000,2 0,3 0,4 0,5 1000000,6 0,7 0,8 0,9 0/ 
IL(m) target level of m 
/1 0,2 0,3 0,4 1500,5 0,6 0,7 0,8 1000,9 0/ 
ST(m) storage limit of m 
/1 1000000,2 3500,3 3000,4 1000000,5 1000000,6 4000,7 5000,8 1000000,9 3000/ 
g(m)  revenue per unit of m 
/1 0,2 0,3 0,4 1.2,5 0,6 0,7 0,8 0.8,9 0/ 
period(t) time length of t in hrs 
/1 360,2 360,3 720,4 720/ 
nk(l) total number of slots on l 
/1 2,2 2,3 2/ 
meu(i) primary material of i 
/1*5 1,6 0.9/ ; 
 
TABLE 
dt(i,ii)  batch processing time of i on l 
        1*6 
1*6  0   ; 
TABLE 
ct(i,l)  changeover time of i on l 
      1    2    3 
1    2 
2         2 
3              3 
4    3 
5         3 
6              2    ; 
TABLE 
sigma(m,i) mass balance coefficient of m to i 
        1     2     3    4    5    6 
1     -1     0     0    0    0    0 
2      1    -1     0    0    0    0 
3      0     1    -0.8  0    0    0 
4      0     0     1    0    0    0 
5      0     0     0   -1    0    0 
6      0     0     0    1   -1    0 
7      0     0    -0.2  0    1   -1 
8      0     0     0    0    0    0.9 
9      0     0     0    0    0    0.1   ; 
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TABLE 
D(m,t) demand for m in t 
        1        2         3         4 
4     2000   1500   6000   5000 
8     1000   1500   6000   2500 ; 
TABLE 
H(l,t) uptime of l in t(in hrs) 
     1      2      3      4 
1   360  360  720  720 
2   360  360  720  720 
3   360  360  720  720  ; 
TABLE 
RU(i,l) max rate of production for i on l 
 
     1    2    3 
1    20 
2         15 
3              25 
4    15 
5         10 
6              10  ; 
TABLE 
MCL(i,l) max rate of production for i on l 
 
     1    2    3 
1    100 
2         110 
3              140 
4    110 
5         120 
6              130 ; 
TABLE 
cc(i,l) changeover cost of i on l 
      1    2    3 
1    40 
2         50 
3              70 
4    50 
5         60 
6              65    ; 
TABLE 
hc(m,t)  holding cost of m per 1000 per day 
      1*4 
1    0 
2    1.30 
3    1.23 
4    1.76 
5    0 
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6    1.60 
7    1.40 
8    1.82 
9    1.50; 
 
PARAMETER 
RL(i,l) min rate of production for i on l; 
RL(i,l) = RU(i,l)/4; 
PARAMETER 
ho1(m,t)   holding cost of m during t+1; 
ho1(m,t)  = hc(m,t)* period(t+1)/(1000*24); 
PARAMETER 
ho2(m,t)   holding cost of m during t; 
ho2(m,t)  = hc(m,t)* period(t)/(1000*24); 
PARAMETER 
a(m,t) penalty cost of m for dipping below IL(m) in t ; 
a(m,t)= 2*ho1(m,t) ; 
 
A.2.1.2 Example 1b 

SETS 
m materials /1*12/ 
i tasks /1*8/ 
k slots /1*3/ 
l lines /1*3/ 
t time periods /1*4/ 
il1(i,l) suitability of tasks to lines /(1,4).1,(2,5,7).2,(3,6,8).3/ 
kl(k,l)  slots on lines /(1,2).1,(1,2,3).2,(1,2,3).3/ 
ALIAS   (i,ii),(k,kk),(l,ll),(t,tt); 
SETS 
iil1(ii,l)   suitability of tasks to lines /(1,4).1,(2,5,7).2,(3,6,8).3/ 
ill1(i,ll)   suitability of tasks to lines /(1,4).1,(2,5,7).2,(3,6,8).3/ 
iill1(ii,ll) suitability of tasks to lines /(1,4).1,(2,5,7).2,(3,6,8).3/ 
kkl(kk,l)    slots on lines /(1,2).1,(1,2,3).2,(1,2,3).3/ 
kll(k,ll)    slots on lines /(1,2).1,(1,2,3).2,(1,2,3).3/ 
kkll(kk,ll)  slots on lines /(1,2).1,(1,2,3).2,(1,2,3).3/ 
 
PARAMETERS 
I0(m) initial inventory of m 
/1 1000000,2 0,3 0,4 0,5 1000000,6 0,7 0,8 0,9 0,10 1000000,11 0,12 0/ 
IL(m) target level of m 
/1 0,2 0,3 0,4 1500,5 0,6 0,7 0,8 1000,9 0,10 0,11 0,12 1000/ 
ST(m) storage limit of m 
/1 1000000,2 3500,3 3000,4 1000000,5 1000000,6 4000,7 5000,8 1000000,9 3000,10 
1000000,11 3000,12 1000000/ 
g(m)  revenue per unit of m 
/1 0,2 0,3 0,4 1.2,5 0,6 0,7 0,8 0.8,9 0,10 0,11 0,12 2.3/ 
period(t) time length of t in hrs 
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/1 360,2 360,3 720,4 720/ 
nk(l) total number of slots on l 
/1 2,2 3,3 3/ 
meu(i) primary material of i 
/1*5 1,6 0.9,7*8 1/  ; 
 
TABLE 
dt(i,ii)  batch processing time of i on l 
       1*8 
1*8  0   ; 
TABLE 
ct(i,l)  changeover time of i on l 
      1    2    3 
1    2 
2         2 
3              3 
4    3 
5         3 
6              2 
7         2 
8              3   ; 
TABLE 
SUT(i,l)  changeover time of i on l 
     1    2    3 
7         15 
8              10   ; 
TABLE 
sigma(m,i) mass balance coefficient of m to i 
        1     2     3    4    5    6     7     8 
1     -1     0     0    0    0    0     0     0 
2      1    -1     0    0    0    0    -0.25  0 
3      0     1    -0.8  0    0    0     0     0 
4      0     0     1    0    0    0     0     0 
5      0     0     0   -1    0    0     0     0 
6      0     0     0    1   -1    0     0     0 
7      0     0    -0.2  0    1   -1     0     0 
8      0     0     0    0    0    0.9   0     0 
9      0     0     0    0    0    0.1   0     0 
10     0     0     0    0    0    0    -0.75  0 
11     0     0     0    0    0    0     1    -1 
12     0     0     0    0    0    0     0     1  ; 
TABLE 
D(m,t) demand for m in t 
       1         2         3         4 
4     2000   1500   6000   5000 
8     1000   1500   6000   2500 
12    1000   1000   1200   1500   ; 
TABLE 
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H(l,t) uptime of l in t(in hrs) 
     1      2      3      4  
1   360  360  720  720 
2   360  360  720  720 
3   360  360  720  720  ; 
TABLE 
RU(i,l) max rate of production for i on l 
      1    2    3 
1    20 
2         15 
3              25 
4    15 
5         10 
6              10 
7         20 
8              25; 
TABLE 
MCL(i,l) max rate of production for i on l 
      1    2    3 
1    100 
2         110 
3              140 
4    110 
5         120 
6              130 
7         100 
8              125  ; 
TABLE 
cc(i,l) changeover cost of i on l 
      1    2    3 
1    40 
2         50 
3              70 
4    50 
5         60 
6              65 
7         55 
8              80  ; 
TABLE 
hc(m,t)  holding cost of m per 1000 per day 
      1*4 
2    1.30 
3    1.23 
4    1.76 
6    1.60 
7    1.40 
8    1.82 
9    1.50 
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11   1.28 
12   1.90  ; 
 
PARAMETER 
RL(i,l) min rate of production for i on l; 
RL(i,l) = RU(i,l)/4; 
PARAMETER 
ho1(m,t)   holding cost of m during t+1; 
ho1(m,t)  = hc(m,t)* period(t+1)/(1000*24); 
PARAMETER 
ho2(m,t)   holding cost of m during t; 
ho2(m,t)  = hc(m,t)* period(t)/(1000*24); 
PARAMETER 
a(m,t) penalty cost of m for dipping below IL(m) in t ; 
a(m,t)= 2*ho1(m,t) ; 
 
A.2.2 Example 2 

SETS 
m materials /1*7/ 
i tasks /1*5/ 
k slots /1*2/ 
l lines /1*4/ 
t time periods /1*4/ 
il1(i,l) suitability of tasks to lines /1.1,(2,4).(2,3),(3,5).4/ 
kl(k,l)  slots on lines /1.1,(1,2).(2,3),(1,2).4/ 
ALIAS    (i,ii),(k,kk),(l,ll),(t,tt); 
SETS 
iil1(ii,l)   suitability of tasks to lines /1.1,(2,4).(2,3),(3,5).4/ 
ill1(i,ll)   suitability of tasks to lines /1.1,(2,4).(2,3),(3,5).4/ 
iill1(ii,ll) suitability of tasks to lines /1.1,(2,4).(2,3),(3,5).4/ 
kkl(kk,l)    slots on lines /1.1,(1,2).(2,3),(1,2).4/ 
kll(k,ll)    slots on lines /1.1,(1,2).(2,3),(1,2).4/ 
kkll(kk,ll)  slots on lines /1.1,(1,2).(2,3),(1,2).4/ 
 
PARAMETERS 
I0(m) initial inventory of m 
/1 1000000,2 0,3 0,4 0,5 0,6 0,7 0/ 
IL(m) target level of m 
/1 0,2 0,3 0,4 1500,5 0,6 1000,7 0/ 
ST(m) storage limit of m 
/1 1000000,2 3500,3 3000,4 1000000,5 4000,6 1000000,7 3000/ 
out(m) outsourcing amount of m 
/1*4 0,5 0,6*7 0/ 
*/1*2 0,3 1000000,4*7 0/ 
*/1*4 0,5 1000000,6*7 0/ 
*/1*2 0,3 1000000,4 0,5 1000000,6*7 0/ 
*/1*2 0,3 1000000,4 0,5 1000,6*7 0/ 
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rc(m) purchase cost per unit of m 
/1*4 0,5 0,6*7 0/ 
g(m)  revenue per unit of m 
/1 0,2 0,3 0,4 1.2,5 0,6 0.8,7 0/ 
period(t) time length of t in hrs 
/1 360,2 360,3 720,4 720/ 
nk(l) total number of slots on l 
/1 1,2*4 2/ 
meu(i) primary material of i 
/1*4 1,5 0.9/ ; 
 
TABLE 
dt(i,ii)  batch processing time of i on l 
     1    2    3    4    5 
1         4         4 
2              2 
3 
4              3         3 
5                            ; 
TABLE 
ct(i,l)  changeover time of i on l 
     1    2    3    4 
1 
2         2    1.5 
3                     3 
4         2    2 
5                     3   ; 
TABLE 
sigma(m,i) mass balance coefficient of m to i 
        1     2     3    4    5 
1     -1     0     0    0    0 
2      1    -1     0   -1    0 
3      0     1    -0.8  0    0 
4      0     0     1    0    0 
5      0     0    -0.2  1   -1 
6      0     0     0    0    0.9 
7      0     0     0    0    0.1   ; 
TABLE 
D(m,t) demand for m in t 
       1         2         3         4 
4     1000   1500   6000   2500 
6     2000   1500   6000   5000 ; 
TABLE 
H(l,t) uptime of l in t(in hrs) 
     1      2      3      4 
1   360  360  720  720 
2   360  360  720  720 
3   360  360  720  720 
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4   360  360  720  720 ; 
TABLE 
RU(i,l) max rate of production for i on l 
     1    2    3    4 
1    20 
2         8    7 
3                   15 
4         5    5 
5                   20        ; 
TABLE 
cc(i,l) changeover cost of i on l 
     1    2     3    4 
1 
2         50   45 
3                     70 
4         40   40 
5                     80        ; 
TABLE 
hc(m,t)  holding cost of m per 1000 per day 
      1*4 
2    1.30 
3    1.23 
4    1.76 
5    1.36 
6    1.60 
7    1.40 ; 
 
PARAMETER 
RL(i,l) min rate of production for i on l; 
RL(i,l) = RU(i,l)/4; 
PARAMETER 
ho1(m,t)   holding cost of m during t+1; 
ho1(m,t)  = hc(m,t)* period(t+1)/(1000*24); 
PARAMETER 
ho2(m,t)   holding cost of m during t; 
ho2(m,t)  = hc(m,t)* period(t)/(1000*24); 
PARAMETER 
a(m,t) penalty cost of m for dipping below IL(m) in t ; 
a(m,t)= 2*ho1(m,t) ; 
SCALAR MCL  minimum campaign length in hrs /100/ ; 
 
A.2.3 Example 3 
 
SETS 
m materials /1*11/ 
i tasks /1*8/ 
k slots /1*3/ 
l lines /1*4/ 
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t time periods /1*3/ 
il1(i,l) suitability of tasks to lines /(1,6).1,(2,4,7).(2,3),(3,5,8).4/ 
kl(k,l)  slots on lines  /(1,2).1,(1,2,3).(2,3,4)/ 
ALIAS (i,ii),(k,kk),(l,ll),(t,tt); 
SETS 
iil1(ii,l)   suitability of tasks to lines /(1,6).1,(2,4,7).(2,3),(3,5,8).4/ 
ill1(i,ll)   suitability of tasks to lines /(1,6).1,(2,4,7).(2,3),(3,5,8).4/ 
iill1(ii,ll) suitability of tasks to lines /(1,6).1,(2,4,7).(2,3),(3,5,8).4/ 
kkl(kk,l)    slots on lines  /(1,2).1,(1,2,3).(2,3,4)/ 
kll(k,ll)    slots on lines  /(1,2).1,(1,2,3).(2,3,4)/ 
kkll(kk,ll)  slots on lines  /(1,2).1,(1,2,3).(2,3,4)/ 
 
PARAMETERS 
I0(m) initial inventory of m 
/1 994876.778,2 1276.389,3 233.5,4*5 0,6 352,7 261.333,8 1000000,9*11 0/ 
IL(m) target level of m 
/1 0,2 0,3 0,4 1500,5 0,6 1000,7 0,8*10 0,11 1000/ 
ST(m) storage limit of m 
/1 1000000,2 3500,3 3000,4 1000000,5 4000,6 1000000,7 3000,8 1000000,9 3500,10 
4000,11 1000000/ 
g(m)  revenue per unit of m 
/1 0,2 0,3 0,4 1.2,5 0,6 0.8,7 0,8*10 0,11 2.3/ 
period(t) time length of t in hrs 
/1 360,2 720,3 720/ 
nk(l) total number of slots on l 
/1 2,2*4 3/ 
Ib0(m) initial backlog of m 
/1*11 0/ 
meu(i) primary material of i 
/1*4 1,5 0.9,6*8 1/ ; 
 
TABLE 
dt(i,ii)  batch processing time of i on l 
     1    2    3    4    5    6    7    8 
1         4         4 
2              2 
3 
4              3         3 
5 
6                                  4 
7                                       3 
8                                           ; 
TABLE 
ct(i,l)  changeover time of i on l 
     1    2    3    4 
1    3 
2         2    1.5 
3                   3 
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4         2    2 
5                   3 
6    3 
7         2    1.5 
8                   3   ; 
TABLE 
SUT(i,l)  changeover time of i on l 
      1    2    3    4 
6    10 
7         12   12 
8                     15   ; 
TABLE 
sigma(m,i) mass balance coefficient of m to i 
        1     2     3     4    5     6     7     8 
1     -1     0     0     0    0     0     0     0 
2      1    -1     0    -1    0     0     0     0 
3      0     1    -0.8   0    0     0     0     0 
4      0     0     1     0    0     0     0     0 
5      0     0    -0.2   1   -1     0     0     0 
6      0     0     0     0    0.9   0     0     0 
7      0     0     0     0    0.1   0     0     0 
8      0     0     0     0    0    -1     0     0 
9      0     0     0     0    0     1    -1     0 
10     0     0     0     0    0     0     1    -1 
11     0     0     0     0    0     0     0     1    ; 
TABLE 
D(m,t) demand for m in t 
     1         2         3 
4   1500   6000   2500 
6   1500   6000   5000 
11  1500   3500   4500  ; 
TABLE 
H(l,t) uptime of l in t(in hrs) 
    1      2      3 
1  360  720  600 
2  360  720  720 
3  360  720  720 
4  360  720  720  ; 
TABLE 
RU(i,l) max rate of production for i on l 
      1    2    3    4 
1    20 
2         16   7 
3                   15 
4         10   5 
5                   20 
6    20 
7         16   7 
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8                   15   ; 
TABLE 
cc(i,l) changeover cost of i on l 
      1    2    3   4 
1    45 
2         50   45 
3                    70 
4         40   40 
5                    80 
6    50 
7         45   50 
8                    90    ; 
TABLE 
CL0(i,l) initial campaign length of i in final slot of l in t 
       1*4 
1*8  0    ; 
TABLE 
YS0(i,l) initial spillover of i in final slot of l in t 
       1*4 
1*8  0    ; 
TABLE 
hc(m,t)  holding cost of m per 1000 per day 
      1*3 
2    1.30 
3    1.23 
4    1.76 
5    1.36 
6    1.60 
7    1.40 
9    1.35 
10   1.28 
11   1.80    ; 
 
PARAMETER 
RL(i,l) min rate of production for i on l; 
RL(i,l) = RU(i,l)/4; 
PARAMETER 
ho1(m,t)   holding cost of m during t+1; 
ho1(m,t)  = hc(m,t)* period(t+1)/(1000*24); 
PARAMETER 
ho2(m,t)   holding cost of m during t; 
ho2(m,t)  = hc(m,t)* period(t)/(1000*24); 
PARAMETER 
a(m,t) penalty cost of m for dipping below IL(m) in t ; 
a(m,t)= 2*ho1(m,t) ; 
SCALAR 
MCL  minimum campaign length in hrs /100/  ; 
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APPENDIX B: Files for Chapter 6 

B.1 GAMS files for Examples 1-3 

B.1.1 Profit Maximization 

VARIABLES 
P              profit 
DB(i,j,k)       amount that i consumed on j at Tk 
b(i,j,k)      residual amount of task i on j at Tk 
BE(i,j,k)     amount of batch discharged by task i on j at Tk 
SL(k)          slot length 
T(j,k)        remaining time on j at Tk 
INV(m,k)        inventory of m at Tk 
Y(i,j,k)       task assignment variable 1 
Z(j,k)         task assignment variable 2 
YR(i,j,k)      residual binary 
YE(i,j,k)      ending binary       ; 
POSITIVE VARIABLE DB,b,BE,SL,T,INV,Z,YR,YE ; 
BINARY VARIABLE Y ; 
 
EQUATIONS 
profit               profit to be maximized 
allocate1(j,k)       allocation constraint 1 
endj2(j,k)           ending time constraint 2 
endj3(j,k)           ending time constraint 3 
inventory(m,k)       inventory constraint 2 
residual1(i,j,k)     residual 1 
residual22(j,k)       residual 22 
material1(i,j,k)     material constraint 1 
material2(i,j,k)     material constraint 2 
material3(i,j,k)     material constraint 3 
material4(i,j,k)    material constraint 2 
sumslot              sum of slot lengths     ; 
 
profit.. P =e= sum((m,k)$(ord(k)=NK), g(m)*INV(m,k))  ; 
allocate1(j,k)$(ord(k) < NK).. sum(i$(ij1(i,j)), Y(i,j,k)) =e= Z(j,k); 
endj2(j,k)$(ord(k) > 1 and ord(k) < NK ).. T(j,k) =l= sum(i$(ij1(i,j)),alpha(i,j)* 
YR(i,j,k)) + sum(i$(ij1(i,j)), beta(i,j)*b(i,j,k)); 
endj3(j,k) $(ord(k) < NK).. T(j,k+1) =g= T(j,k)+ 
sum(i$(ij1(i,j)),alpha(i,j)*Y(i,j,k)+beta(i,j)*DB(i,j,k))-SL(k+1); 
inventory(m,k).. INV(m,k)  =e= (INV(m,k-1)$(ord(k)>1)+I0(m)$(ord(k)=1))+ 
sum(i$(OI(m,i) and ord(i) < NI), (sigma(m,i)/meu(i))* 
sum(j$ij1(i,j),BE(i,j,k)))+sum(i$(II(m,i) and ord(i) < NI), (sigma(m,i)/meu(i))* 
sum(j$ij1(i,j),DB(i,j,k))); 
residual1(i,j,k)$(ij1(i,j) and ord(k) > 1 and ord(k) < NK).. YR(i,j,k) =e= YR(i,j,k-1) + 
Y(i,j,k-1) - YE(i,j,k); 
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residual22(j,k)$(ord(k) > 1 and ord(k) < NK).. sum(i$ij1(i,j), YE(i,j,k)) =e= Z(j,k); 
material1(i,j,k)$(ij1(i,j) and ord(i) < NI and ord(k) gt 1).. b(i,j,k) =e= b(i,j,k-1) + 
DB(i,j,k-1) -  BE(i,j,k); 
material2(i,j,k) $( ij1(i,j) and ord(i) < NI and ord(k) gt 1 and ord(k) lt NK).. BE(i,j,k) 
=l= bmax(j)* YE(i,j,k); 
material3(i,j,k) $( ij1(i,j) and  ord(i) < NI and ord(k) lt NK).. DB(i,j,k) =l= 
bmax(j)*Y(i,j,k); 
material4(i,j,k)$(ij1(i,j) and ord(i) < NI and ord(k) > 1 and ord(k) < NK).. b(i,j,k) =l= 
bmax(j)* YR(i,j,k); 
sumslot.. sum(k, SL(k)) =l= H; 
 
DB.lo(i,j,k) = 0; 
DB.up(i,j,k) = bmax(j); 
DB.fx(i,j,klast) = 0; 
BE.lo(i,j,k) = 0; 
BE.up(i,j,k) = bmax(j); 
BE.fx(izero,j,k) = 0; 
BE.fx(i,j,kzero) = 0; 
b.lo(i,j,k) = 0; 
b.up(i,j,k) = bmax(j); 
b.fx(i,j,kzero) = 0; 
b.fx(i,j,klast) = 0; 
b.fx(izero,j,k) = 0; 
SL.lo(k) = 0; 
SL.up(k) = smax((i,j)$(ij1(i,j)and ord(i) < NI), alpha(i,j)+beta(i,j)*bmax(j)); 
T.lo(j,k) = 0; 
T.up(j,k) = smax(i$(ij1(i,j)and ord(i) < NI), alpha(i,j)+beta(i,j)*bmax(j)); 
T.fx(j,klast) = 0; 
T.fx(j,kzero) = 0; 
INV.lo(m,k) = 0; 
INV.up(m,k) = IL(m); 
Z.lo(j,k) = 0; 
Z.up(j,k) = 1; 
z.fx(j,klast) = 1; 
YR.lo(i,j,k) = 0; 
YR.up(i,j,k) = 1; 
YR.fx(i,j,kzero) = 0; 
YR.fx(i,j,klast) = 0; 
YE.lo(i,j,k) = 0; 
YE.up(i,j,k) = 1; 
YE.fx(i,j,kzero) = 0; 
 
OPTION 
SOLPRINT = OFF 
limrow = 20 
limcol = 10 
optcr = 0 
reslim = 10000 
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mip = cplex ; 
 
MODEL planning /all/ ; 
 
SOLVE  planning using mip maximizing P ; 
 
DISPLAY P.l,SL.l,T.l,Y.l,Z.l,YR.l, YE.l,DB.l,b.l,BE.l,INV.l ; 
 
B.1.2 Makespan Minimization 

VARIABLES 
MS             makespan 
DB(i,j,k)      amount that i consumed on j at Tk 
b(i,j,k)       residual amount of task i on j at Tk 
BE(i,j,k)     amount of batch discharged by task i on j at Tk 
SL(k)          slot length 
T(j,k)        remaining time on j at Tk 
INV(m,k)        inventory of m at Tk 
Y(i,j,k)       task assignment variable 1 
Z(j,k)         task assignment variable 2 
YR(i,j,k)      residual binary 
YE(i,j,k)      ending binary     ; 
POSITIVE VARIABLE DB,b,BE,SL,T,INV,Z,YR,YE ; 
BINARY VARIABLE Y ; 
 
EQUATIONS 
makespan             profit to be minimized 
allocate1(j,k)       allocation constraint 1 
endj2(j,k)           ending time constraint 2 
endj3(j,k)           ending time constraint 3 
inventory(m,k)       inventory constraint 2 
residual1(i,j,k)     residual 1 
residual22(j,k)      residual 22 
material1(i,j,k)     material constraint 1 
material2(i,j,k)     material constraint 2 
material3(i,j,k)     material constraint 3 
material4(i,j,k)     material constraint 2 
demand(m,k)          demand constraint        ; 
 
makespan.. MS =e= sum(k, SL(k))  ; 
allocate1(j,k)$(ord(k) < NK).. sum(i$(ij1(i,j)), Y(i,j,k)) =e= Z(j,k); 
endj2(j,k)$(ord(k) > 1 and ord(k) < NK ).. T(j,k) =l= sum(i$(ij1(i,j)),alpha(i,j)* 
YR(i,j,k)) + sum(i$(ij1(i,j)), beta(i,j)*b(i,j,k)); 
endj3(j,k) $(ord(k) < NK).. T(j,k+1) =g= T(j,k)+ 
sum(i$(ij1(i,j)),alpha(i,j)*Y(i,j,k)+beta(i,j)*DB(i,j,k))-SL(k+1); 
inventory(m,k).. INV(m,k)  =e= (INV(m,k-1)$(ord(k)>1)+I0(m)$(ord(k)=1))+ 
sum(i$(OI(m,i) and ord(i) < NI), (sigma(m,i)/meu(i))* 
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sum(j$ij1(i,j),BE(i,j,k)))+sum(i$(II(m,i) and ord(i) < NI), (sigma(m,i)/meu(i))* 
sum(j$ij1(i,j),DB(i,j,k))); 
residual1(i,j,k)$(ij1(i,j) and ord(k) > 1 and ord(k) < NK).. YR(i,j,k) =e= YR(i,j,k-1) + 
Y(i,j,k-1) - YE(i,j,k); 
residual22(j,k)$(ord(k) > 1 and ord(k) < NK).. sum(i$ij1(i,j), YE(i,j,k)) =e= Z(j,k); 
material1(i,j,k)$(ij1(i,j) and ord(i) < NI and ord(k) gt 1).. b(i,j,k) =e= b(i,j,k-1) + 
DB(i,j,k-1) -  BE(i,j,k); 
material2(i,j,k) $( ij1(i,j) and ord(i) < NI and ord(k) gt 1 and ord(k) lt NK).. BE(i,j,k) 
=l= bmax(j)* YE(i,j,k); 
material3(i,j,k) $( ij1(i,j) and  ord(i) < NI and ord(k) lt NK).. DB(i,j,k) =l= 
bmax(j)*Y(i,j,k); 
material4(i,j,k)$(ij1(i,j) and ord(i) < NI and ord(k) > 1 and ord(k) < NK).. b(i,j,k) =l= 
bmax(j)* YR(i,j,k); 
demand(m,k)$(ord(k)=NK).. INV(m,k) =g= dem(m); 
 
DB.lo(i,j,k) = 0; 
DB.up(i,j,k) = bmax(j); 
DB.fx(i,j,klast) = 0; 
BE.lo(i,j,k) = 0; 
BE.up(i,j,k) = bmax(j); 
BE.fx(izero,j,k) = 0; 
BE.fx(i,j,kzero) = 0; 
b.lo(i,j,k) = 0; 
b.up(i,j,k) = bmax(j); 
b.fx(i,j,kzero) = 0; 
b.fx(i,j,klast) = 0; 
b.fx(izero,j,k) = 0; 
SL.lo(k) = 0; 
SL.up(k) = smax((i,j)$(ij1(i,j)and ord(i) < NI), alpha(i,j)+beta(i,j)*bmax(j)); 
T.lo(j,k) = 0; 
T.up(j,k) = smax(i$(ij1(i,j)and ord(i) < NI), alpha(i,j)+beta(i,j)*bmax(j)); 
T.fx(j,klast) = 0; 
T.fx(j,kzero) = 0; 
INV.lo(m,k) = 0; 
INV.up(m,k) = IL(m); 
Z.lo(j,k) = 0; 
Z.up(j,k) = 1; 
z.fx(j,klast) = 1; 
YR.lo(i,j,k) = 0; 
YR.up(i,j,k) = 1; 
YR.fx(i,j,kzero) = 0; 
YR.fx(i,j,klast) = 0; 
YE.lo(i,j,k) = 0; 
YE.up(i,j,k) = 1; 
YE.fx(i,j,kzero) = 0; 
 
OPTION 
SOLPRINT = OFF 
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limrow = 20 
limcol = 10 
optcr = 0 
reslim = 200000 
mip = cplex ; 
 
MODEL planning /all/ ; 
 
SOLVE  planning using mip minimizing MS ; 
 
DISPLAY MS.l,SL.l,T.l,Y.l,Z.l,YR.l, YE.l,DB.l,b.l,BE.l,INV.l ; 
 
B.1.3 Constant Batch Processing Times 

VARIABLES 
P              profit 
DB(i,j,k)      amount that i consumed on j at k 
b(i,j,k)       residual amount of task i on j at k 
BE(i,j,k)     amount of batch discharged by task i on j at k 
SL(k)          slot length 
T(j,k)        remaining time on j in k 
INV(m,k)        inventory of m at k 
Y(i,j,k)       task assignment variable 1 
Z(j,k)         task assignment variable 2 
YR(i,j,k)      residual binary 
YE(i,j,k)      ending binary       ; 
POSITIVE VARIABLE DB,b,BE,SL,T,INV,Z,YR,YE ; 
BINARY VARIABLE Y ; 
 
EQUATIONS 
profit               profit to be maximized 
allocate1(j,k)       allocation constraint 1 
endj2(j,k)           ending time constraint 2 
endj3(j,k)           ending time constraint 3 
inventory(m,k)       inventory constraint 2 
residual1(i,j,k)     residual 1 
residual22(j,k)       residual 22 
material1(i,j,k)     material constraint 1 
material2(i,j,k)     material constraint 2 
material3(i,j,k)    material constraint 3 
material4(i,j,k)    material constraint 2 
sumslot              sum of slot lengths    ; 
 
profit.. P =e= sum((m,k)$(ord(k)=NK), g(m)*INV(m,k))  ; 
allocate1(j,k)$(ord(k) < NK).. sum(i$(ij1(i,j)), Y(i,j,k)) =e= Z(j,k); 
endj2(j,k)$(ord(k) > 1 and ord(k) < NK ).. T(j,k) =l= sum(i$(ij1(i,j)),tau(i,j)* YR(i,j,k)) 
; 
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endj3(j,k) $(ord(k) < NK).. T(j,k+1) =g= T(j,k)+ sum(i$(ij1(i,j)),tau(i,j)*Y(i,j,k))-
SL(k+1); 
inventory(m,k).. INV(m,k)  =e= (INV(m,k-1)$(ord(k)>1)+I0(m)$(ord(k)=1))+ 
sum(i$(OI(m,i) and ord(i) < NI), (sigma(m,i)/meu(i))* 
sum(j$ij1(i,j),BE(i,j,k)))+sum(i$(II(m,i) and ord(i) < NI), (sigma(m,i)/meu(i))* 
sum(j$ij1(i,j),DB(i,j,k))); 
residual1(i,j,k)$(ij1(i,j) and ord(k) > 1 and ord(k) < NK).. YR(i,j,k) =e= YR(i,j,k-1) + 
Y(i,j,k-1) - YE(i,j,k); 
residual22(j,k)$(ord(k) > 1 and ord(k) < NK).. sum(i$ij1(i,j), YE(i,j,k)) =e= Z(j,k); 
material1(i,j,k)$(ij1(i,j) and ord(i) < NI and ord(k) gt 1).. b(i,j,k) =e= b(i,j,k-1) + 
DB(i,j,k-1) -  BE(i,j,k); 
material2(i,j,k) $( ij1(i,j) and ord(i) < NI and ord(k) gt 1 and ord(k) lt NK).. BE(i,j,k) 
=l= bmax(j)* YE(i,j,k); 
material3(i,j,k) $( ij1(i,j) and  ord(i) < NI and ord(k) lt NK).. DB(i,j,k) =l= 
bmax(j)*Y(i,j,k); 
material4(i,j,k)$(ij1(i,j) and ord(i) < NI and ord(k) > 1 and ord(k) < NK).. b(i,j,k) =l= 
bmax(j)* YR(i,j,k); 
sumslot.. sum(k, SL(k)) =l= H; 
 
DB.lo(i,j,k) = 0; 
DB.up(i,j,k) = bmax(j); 
DB.fx(i,j,klast) = 0; 
BE.lo(i,j,k) = 0; 
BE.up(i,j,k) = bmax(j); 
BE.fx(izero,j,k) = 0; 
BE.fx(i,j,kzero) = 0; 
b.lo(i,j,k) = 0; 
b.up(i,j,k) = bmax(j); 
b.fx(i,j,kzero) = 0; 
b.fx(i,j,klast) = 0; 
b.fx(izero,j,k) = 0; 
SL.lo(k) = 0; 
SL.up(k) = smax((i,j)$(ij1(i,j)and ord(i) < NI), tau(i,j)); 
T.lo(j,k) = 0; 
T.up(j,k) = smax(i$(ij1(i,j)and ord(i) < NI), tau(i,j)); 
T.fx(j,klast) = 0; 
T.fx(j,kzero) = 0; 
INV.lo(m,k) = 0; 
INV.up(m,k) = IL(m); 
Z.lo(j,k) = 0; 
Z.up(j,k) = 1; 
z.fx(j,klast) = 1; 
YR.lo(i,j,k) = 0; 
YR.up(i,j,k) = 1; 
YR.fx(i,j,kzero) = 0; 
YR.fx(i,j,klast) = 0; 
YE.lo(i,j,k) = 0; 
YE.up(i,j,k) = 1; 
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YE.fx(i,j,kzero) = 0; 
 
OPTION 
SOLPRINT = OFF 
limrow = 20 
limcol = 10 
optcr = 0 
reslim = 200000 
mip = cplex ; 
 
MODEL planning /all/ ; 
 
SOLVE  planning using mip maximizing P ; 
 
DISPLAY P.l,SL.l,T.l,Y.l,Z.l,YR.l, YE.l,DB.l,b.l,BE.l,INV.l ; 
 

B.2 DATA files for Examples 1-3 

B.2.1 Profit Maximization 

* We provide the data file for Example 1 only. However, the data for Examples 2-3 
can be inputted using the following file 
 
SETS 
m materials /1*4/ 
i tasks /1*4/ 
j units /1*5/ 
k slots /k0*k8/ 
ij1(i,j) suitability of tasks to units /1.(1,2), 2.3, 3.(4,5)/    
OI(m,i)  tasks that produce materials /2.1, 3.2, 4.3/ 
II(m,i)  tasks that consume materials /1.1, 2.2, 3.3/   ; 
ALIAS    (k,kk) ; 
SCALAR 
H    scheduling horizon in hrs /12/ 
NK   total number of k(including k0) per unit /9/ 
NI   total number of tasks /4/                 ; 
SET kzero(k), klast(k),izero(i); 
kzero(k) $(ord(k) eq 1) = yes; 
klast(k) $(ord(k) eq card(k)) = yes; 
izero(i) $(ord(i) eq ni) = yes; 
ij1(izero,j) = yes; 
 
PARAMETERS 
I0(m) initial inventory of m 
/1 1000000, 2*4 0/ 
IL(m) storage limit of m 
/1 1000000, 2 200, 3 250, 4 1000000/ 
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g(m)   revenue per unit of m 
/1*3 0, 4 5/ 
bmax(j) max capacity of j 
/1 100, 2 150, 3 200, 4*5 150/  
meu(i) primary material of task i 
/1*3 1/ ; 
 
TABLE 
sigma(m,i) mass balance coefficient of m to i 
       1     2     3 
1    -1 
2     1    -1 
3            1    -1 
4                   1     ; 
TABLE 
alpha(i,j) constant production term 
        1         2        3    4         5 
1      1.333  1.333 
2                           1 
3                                 0.667  0.667     ; 
TABLE 
beta(i,j) constant production term 
       1              2            3        4             5 
1      0.01333  0.01333 
2                                   0.005 
3                                             0.00445  0.00445     ; 
 
 
B.2.2 Makespan Minimization 

* We provide the data file for Example 2 only. However, the data for Examples 1 & 3 
can be inputted using the following file 
 
SETS 
m materials /1*9/ 
i tasks /1*6/ 
j units /1*4/ 
k slots /k0*k8/ 
ij1(i,j) suitability of tasks to units /1.1,(2,3,4).(2,3),5.4/  
OI(m,i)  tasks that produce materials /4.1, 5.(3,5), 6.2, 7.4, 8.3, 9.5/ 
II(m,i)  tasks that consume materials /1.1, 2.2, 3.(2,4), 4.3, 5.4, 6.3, 7.5/  ; 
ALIAS (k,kk) ; 
SCALAR 
NK   total number of k(including k0) per unit /9/ 
NI   total number of tasks /6/                 ; 
SET kzero(k), klast(k),izero(i) ; 
kzero(k) $(ord(k) eq 1) = yes; 
klast(k) $(ord(k) eq card(k)) = yes; 
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izero(i) $(ord(i) eq ni) = yes; 
ij1(izero,j) = yes; 
 
PARAMETERS 
I0(m) initial inventory of m 
/1*3 1000000, 4*9 0/ 
IL(m) storage limit of m 
/1*3 1000000, 4 100, 5 200, 6 150, 7 200, 8*9 1000000/ 
g(m)  revenue per unit of m 
/1*7 0, 8*9 10/ 
dem(m) demand of m 
/1*7 0, 8*9 200/ 
bmax(j) max capacity of j 
/1 100, 2 50, 3 80, 4 200/        
meu(i) primary material of task i 
/1*5 1/        ; 
 
TABLE 
sigma(m,i) mass balance coefficient of m to i 
        1     2     3      4       5 
1     -1 
2          -0.5 
3          -0.5          -0.2 
4      1         -0.4 
5                  0.6   -0.8    0.1 
6           1    -0.6 
7                           1      -1 
8                  0.4 
9                                    0.9     ; 
TABLE 
alpha(i,j) constant production term 
        1        2          3        4 
1      0.667 
2                1.334  1.334 
3                1.334  1.334 
4                0.667  0.667 
5                                     1.3342       ; 
TABLE 
beta(i,j) constant production term 
        1             2               3            4 
1      0.00667 
2                     0.02664   0.01665 
3                    0.02664   0.01665 
4                    0.01332   0.008325 
5                                                    0.00666           ; 
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B.2.3 Constant Batch Processing Times 

* We provide the data file for Example 3 only. However, the data for Examples 1-2 
can be inputted using the following file 
 
SETS 
m materials /1*13/ 
i tasks /1*8/ 
j units /1*6/ 
k slots /k0*k7/ 
ij1(i,j) suitability of tasks to units /(1,5).1, (2,3,7).(2,3), 4.4, 6.(5,6)/  
OI(m,i)  tasks that produce materials /3.1, 4.(2,4), 5.3, 6.4, 7.4, 9.5, 10.7, 12.6, 13.7/ 
II(m,i)  tasks that consume materials /1.1, 2.2, 3.3, 4.3, 5.4, 6.5, 7.6, 8.5, 9.7, 10.6, 
11.6/  ; 
ALIAS (k,kk) ; 
SCALAR 
H    scheduling horizon in hrs /12/ 
NK   total number of k(including k0) per unit /8/ 
NI   total number of tasks /8/                 ; 
SET kzero(k), klast(k),izero(i) ; 
kzero(k) $(ord(k) eq 1) = yes; 
klast(k) $(ord(k) eq card(k)) = yes; 
izero(i) $(ord(i) eq ni) = yes; 
ij1(izero,j) = yes; 
 
PARAMETERS 
I0(m) initial inventory of m 
/1*2 1000000, 3*4 0,5 0,6*7 50, 8 1000000, 9*10 0, 11 1000000, 12*13 0/ 
IL(m) storage limit of m 
/1*2 1000000, 3*4 100, 5 300, 6*7 150, 8 1000000, 9*10 150, 11*13 1000000/ 
g(m)  revenue per unit of m 
/1*11 0, 12 5, 13 5/ 
bmin(j) min capacity of j 
/1 0, 2*4 0, 5*6 20/ 
bmax(j) max capacity of j 
/1 100, 2 100, 3 150, 4 300, 5*6 200/              
meu(i) primary material of task i 
/1*7 1/        ; 
 
TABLE 
sigma(m,i) mass balance coefficient of m to i 
        1    2    3    4        5         6         7 
1     -1 
2          -1 
3      1       -0.5 
4           1  -0.5   0.1 
5                1      -1 
6                        0.4    -0.25 
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7                        0.5              -0.4 
8                                 -0.75 
9                                  1                  -1 
10                                         -0.4      0.6 
11                                         -0.2 
12                                          1 
13                                                     0.4       ; 
TABLE 
tau(i,j) constant production term 
       1     2      3      4      5      6 
1      1 
2            2      2 
3            1      1 
4                          3 
5      1.5 
6                                 2      2 
7            2      2                                   ; 
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