

GEOMETRIC MODELING FOR CO-MODELING AND

CO-SIMULATION IN COLLABORATIVE PRODUCT

DEVELOPMENT

RUAN LIWEI

NATIONAL UNIVERSITY OF SINGAPORE

2004

GEOMETRIC MODELING FOR CO-MODELING AND

CO-SIMULATION IN COLLABORATIVE PRODUCT

DEVELOPMENT

Ruan, Liwei
(B. Eng. (Hons). Zhejiang University)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT

NATIONAL UNIVERSITY OF SINGAPORE

2004

 i

Acknowledgement

First of all, I would like to express my appreciation to my supervisor, Dr. Zhejie

Liu from the Data Storage Institute (Singapore), for his supervision and guidance, strong

support and great patience during the period of my candidature. No endeavor is

accomplished alone. And I would like to thank all the other members of EDM group of

Data Storage Institute for their help and assistance.

I would also like to thank my parents, Ruan Yongxian & Wang Feizhi and my

sister, Ruan Lishun, for giving me all kinds of supports in my life.

 ii

Summary

Due to the globalization of manufacturing and product development activities,

rapid product development in distributed engineering design environments has become

more prevalent. Such practices can greatly shorten the product development cycle and

lower costs. Product design is an activity where collaboration is of vital importance.

Therefore, Collaborative Design and Engineering has become a major issue in

manufacturing industry where people from different fields of expertise and research

backgrounds strongly need to co-operate. State-of-the-art computer technologies have

enabled the product design process to be undertaken across distributed teams in different

locations. Given this development, Distributed and Collaborative Design and

Engineering Systems have been invented to support geographically separated users to

conduct design activities synchronously, asynchronously and cooperatively. Meanwhile,

it is a research challenge to seamlessly integrate robust three-dimensional solid geometric

modeling functionalities into the distributed and collaborative design software systems to

facilitate Computer Aided Design (CAD) process and prepare geometric data for

numerical solutions in Computer Aided Engineering (CAE).

 In this thesis, the architecture of a distributed and collaborative design and

engineering system, CoCADE, is proposed to address a growing industrial concern as

evidenced from the thorough survey of current geometric modeling and distributed

computing technologies. Based on .NET technology, the system takes advantages of

object-oriented method throughout its software development lifecycle. This architecture

adopts a three-tiered client/server model. The client side provides the essential geometric

modeling functionalities as well as interactive visualization tools for display or

 iii

modification of sophisticated geometric models and large-scale simulation results. The

server side offers the functions of collaborative session management, multi-client

communication mechanism, engineering simulation and optimization.

 It is demonstrated that the CoCADE system presented in this thesis can

effectively support advanced product development by integrating robust geometric

modeling functions into the distributed and collaborative environment. The outcome of

this research indicates that applications built on CoCADE can effectively support the

distributed product design and innovation, engineering numerical solutions and

engineering visualization.

Keywords: geometric modeling, distributed computing, CAD/CAE, collaborative design,

scientific data presentation.

 iv

Table of Contents

Acknowledgement……………………………………………………………………..…..i

Summary…………………………………………………………………………………..ii

Table of Contents……………………………………………………………………........iv

List of Figures……………………………………………………………………………vii

1. Introduction... 1

1.1 Background ... 1

1.1.1 Introduction to Geometric and Solid Modeling ... 1

1.1.2 Introduction to Distributed and Collaborative Design....................................... 2

1.2 Main Issues in Distributed Systems.. 5

1.2.1 The Client-Server Model ... 5

1.2.2 Distributed Objects and .NET Remoting Technology..................................... 10

1.2.3 Data Streaming for Distributed Collaborative CAE .. 16

1.3 Main Modules in CAE Systems.. 17

1.3.1 Geometric Design Module ... 19

1.3.2 Engineering Analysis Module.. 21

1.3.3 Visualization Module... 21

1.4 Voronoi Diagrams or Tessellations .. 21

1.4.1 Brief History and Applications .. 22

1.4.2 Theory and Basic Properties .. 24

1.5 Objective of This Study .. 26

1.6 Dissertation Outline .. 28

 v

2. CoCADE: A Framework for Collaborative Modeling and Simulation in Product

Development ... 29

2.1 System Architecture of Collaborative CAE Framework .. 29

2.2 User Case View of CoCADE System... 31

2.3 Data Streaming View of CoCADE System .. 33

2.4 Static Class View of CoCADE System .. 36

3. Client Interface and Geometry Processing Module .. 41

3.1 Overview... 41

3.2 Design Details of Graphical User Interface .. 41

3.2.1 Interactive Functionalities Supported .. 44

3.2.2 Implementation Class Hierarchy.. 48

3.3 Data Collaboration .. 50

3.3.1 Geometric Data Structure .. 50

3.3.2 Geometric Data Transmission.. 51

3.4 Geometry Processing .. 57

3.4.1 Overview.. 57

3.4.2 Definition of Data .. 58

3.4.3 Voronoi Diagrams.. 64

3.4.4 File Format Converting.. 69

3.5 Visualization of Simulation Results.. 70

3.5.1 Data Streaming for Co-Modeling and Co-Simulation 70

3.5.2 Visualization of Simulation Results... 74

3.6 Summary... 78

 vi

4. Case Study Using CoCADE ... 79

4.1 Introduction to Product Development... 79

4.2 Collaborative Modeling Function in CoCADE .. 81

4.3 Design and Analysis of Magnetic Recording Media .. 85

4.3.1 Introduction.. 85

4.3.2 Design and Processing of Magnetic Recording Media.................................... 85

4.3.3 Visualization and Analysis of Simulation Results... 89

5. Conclusions... 92

References... 94

Appendix A. Recent Publications ... 98

Appendix B. Overall Structure of Sweep Line Algorithm for Voronoi Diagrams[11] 99

 vii

List of Figures

Figure 1-1 CAD/CAE Process Outline ... 3

Figure 1-2 Communication between the Clients and a Server ... 5

Figure 1-3 Typical Two-tiered Client-Server Architecture .. 7

Figure 1-4 Three-tiered Client-Server Architecture ... 8

Figure 1-5 Peer-to-peer Distributed Architecture ... 9

Figure 1-6 General Architecture of CORBA [2] .. 11

Figure 1-7 General Organization of DCOM... 13

Figure 1-8 An Example of Calling a Remote Object in .NET Remoting Framework...... 15

Figure 1-9 Product Design Process... 18

Figure 1-10 Different Modules in CAD/CAE Systems .. 19

Figure 1-11 A Solar System Consisting of Vortices... 23

Figure 1-12 Voronoi Diagrams as a Planar Subdivision with Straight Edges.................. 25

Figure 1-13 General Architecture of CoCADE .. 27

Figure 2-1 Software Architecture for Distributed and Collaborative Design and

Engineering ... 30

Figure 2-2 Users Case Diagram of CoCADE System .. 33

Figure 2-3 Data Streaming View of CoCADE System .. 35

Figure 2-4 Static Class View of CoCADE System... 38

Figure 3-1 Snapshot of CoCADE Client Interface in a Collaborative Design Session.... 42

Figure 3-2 Snapshot of CoCADE Web-based Workflow Client 43

Figure 3-3 Sequential Responses to Mouse Click Events .. 45

Figure 3-4 Implementation Class Hierarchy of CoCADE.. 49

 viii

Figure 3-5 Model Object Decomposition Data Structure ... 50

Figure 3-6 An Example of Collaborative Solid Model Creation...................................... 52

Figure 3-7 Different Stages in the Process of Geometric Processing............................... 58

Figure 3-8 An example of Geometrical Parameters Definition .. 59

Figure 3-9 An Example of Seeds File Format .. 60

Figure 3-10 An Example of Voronoi Diagrams File Format.. 61

Figure 3-11 An Example of Mesh Generation File Format .. 62

Figure 3-12 Input File Format for FEA Analysis ... 63

Figure 3-13 Voronoi Diagrams for 10 Randomly Selected Sites in a Square 64

Figure 3-14 Implementation Structure of Data Streaming for Co-Modeling and Co-

Simulation ... 71

Figure 3-15 Comparisons Between HSF and other Mainstream Graphical Formats 72

Figure 4-1 A Generic Product Development Process ... 80

Figure 4-2 The General Diagram of the Co-Modeling and Co-Simulation Environment 83

Figure 4-3 Boolean Operation Example One: Subtraction ... 84

Figure 4-4 Boolean Operation Example Two: Intersection.. 84

Figure 4-5 Magnetic Recording Media Finite Element Model with Voronoi Algorithm. 86

Figure 4-6 An Example of Magnetic Recoding Media Design and Processing 87

Figure 4-7 An Example of Extrduing the Voronoi Diagrams in a Certain Direction....... 88

Figure 4-8 An Example of Tetrahedral Mesh Generation .. 89

Figure 4-9 Visualization of Simulation Results.. 90

Figure 4-10 An Example of Simulation Results Visualization with Cutting Plane.......... 91

 1

1. Introduction

1.1 Background

1.1.1 Introduction to Geometric and Solid Modeling

Traditional geometric modeling identifies a body of techniques that can model certain

classes of shape of piecewise parametric surfaces, which is followed by its development

as a separate field in several industries, including automobile and aerospace [1]. Today,

most of its applications stem from Computer-Aided Design (CAD)/Computer-Aided

Manufacturing (CAM), robotics, computer graphics and so on [11]. Hoffmann [1]

provided a view that the streams of geometric and solid modeling are converging because

the former modeling contemplates building complete solid representations from surface

patches and the latter strives to extend the geometric coverage. Solid modeling began in

the late 1960s and 1970s. But it only gains more and more popularity and is adapted as

primary technique to define 3-dimensional (3D) geometry by major commercial

CAD/CAE/CAM software vendors since the 1990s.

 Solid modeling is a method by which various solid objects are combined into a

single 3D part design. The real advantage of a solid modeling application is how it can

create the desired resulting part designs by joining, intersecting and subtracting the solid

objects from one another. Recent solid modelers are based on solid objects being created

by sweeping, rotating and extruding 2-dimensional wire-frame or sketch geometry. Prior

to this, these solid objects were formed by a variety of primitive shapes such as a block,

 2

sphere, cone, cylinder, etc. Today more and more solid modelers have abandoned the

primitive shapes in favor of the predefined solid object library.

 There are various ways of defining the shape of an object in digital form to a

computer such as wire frame, boundary representation, set-theoretic, polyhedral model,

and so on. Each of the representation methods has its own specific strength over the

others in terms of applicability and elegance. However, in the commercial world of exact

geometric modelers, virtually all CAD/CAE/CAM software products have used boundary

representation (B-Rep) approach exclusively for solid modeling. In B-Rep, every solid

model is defined and stored by its boundary, which consists of vertices, edges, faces and

explicit boundary, and includes the topology for each face.

 The two predominant commercial solid modeling engines in the market are the

Parasolid® and the ACIS®. The standard file formats are .x_t and .x_b for Parasolid

files and .SAT for ACIS files.

1.1.2 Introduction to Distributed and Collaborative Design

Computer Aided Engineering Design is an enabling technology that leverages on the

powerful computer systems to support product design process and to shorten the product

development cycle. Over the years, substantial progress has been made in the

development of major computer aided engineering design systems. These systems

typically include CAD, CAE, and design optimization modules. Figure 1.1 outlines the

relationship between them.

 CAD was first introduced by Ivan Sutherland’s Sketchpad at MIT and the DAC-1

project at General Motors in the early 1960s. Different industries developed their own

CAD applications, delivered on multi-user mainframes, in the 1960s and 1970s. Unlike

 3

the bundled hardware and software systems in the 1980s, hardware and software

components are separated in current CAD implementations. As a result, CAD software

most often executes locally on powerful UNIX or Windows-Intel workstations in a

distributed environment [2].

Figure 1-1 CAD/CAE Process Outline

Since 1990s, solid modeler based CAD/CAE/CAM software has been widely

used for product design, simulation, analysis and manufacturing. The solid modeling

technology facilitates product design engineers with a variety of modeling functions like

creation of solid primitive shapes, performing of Boolean operations on solid, sheet or

wire models, etc. Apart from the above modeling capabilities, solid modeling provides

product manufacturers a much more complete and accurate component description than

the traditional blueprint or IGES file. Recent advancement in solid modeling systems

 4

provides the capability of input and output of solid models in different file formats, thus

facilitating data exchange with major computer aided design and manufacturing systems.

CAE generally relies on 3D geometric models, which defines the shapes of real-

world objects, description of component attributes and physical conditions, and uses

advanced numerical techniques such as finite element method (FEM), finite difference

method (FDM) or boundary element method (BEM). Over the years, CAE software

developers have implemented numerous systems in which engineers are able to design,

analyze, simulate and visualize the performance of even the most complicated products.

A variety of CAE software such as ANSYS���ADAMS� and ANSOFT��have enabled

manufacturing companies to greatly shorten the product design and development cycle,

improve product quality and lower costs.

One of the typical characters in CAE is the extremely large amount of result data

generated during geometric modeling and product analysis stages. How to efficiently

handle the result data with the currently limited network bandwidth and computer

performance has become of imperative concern for CAE solution researchers. In this

situation, data streaming is one of the efficient techniques used to distribute visualization

task onto heterogeneous computer systems and thus to reduce network load.

In conclusion, major manufacturing companies in fields are increasingly investing

in distributed CAD, CAE or CAM systems so as to remain competitive in the global

market.

 5

1.2 Main Issues in Distributed Systems

1.2.1 The Client-Server Model

The client-server model is an approach to organize distributed systems. In this model, a

client requests a service from a server by sending it a request while a server implements a

specific service. Communication between a client and a server can be implemented by a

simple connectionless or reliable connection-oriented protocol. This client-server

communication is shown in Figure 1.2.

Figure 1-2 Communication between the Clients and a Server

Together, the two groups form a complete computing system with a distinction of

responsibilities. The client is responsible for directly interfacing with the user, such as

modeling and display management. The server typically contains the core applications to

provide client-server communication, coordinate different design sessions and assure data

consistency. From the perspective of physically distributing client-server application

across several computers, there are two types of computers: a client computer containing

 6

the programs that implement user-interface and a server computer containing the

programs that implement the processing applications and database. However, modern

multi-tiered client-server architectures often distribute the programs in the processing

applications across different computers, leading to what is referred to as physically two-

tiered architecture. A server may sometimes need to act as a client, leading to physically

three-tiered architecture. Finally, when the clients are distributed as well, we may have

the case where there is no server at all. In such a case, it is often referred to as a peer-to-

peer architecture.

When applying the distributed model and technology in the CAD/CAE systems,

we can have three major types of distributed CAD/CAE systems that are of particular

interest to researchers.

1. Two-tiered distributed CAD/CAE systems

 In a typical two-tiered distributed CAE/CAE system, we often make a distinction

between only two kinds of machines: clients and servers. The programs in the

application logic can be distributed in the client or the server, or across both machines.

One possible arrangement is to have only the data presentation on the client machine and

the applications in the server having remote control over the presentation of data, as

shown in Figure 1.3. In this scenario, Remote Procedure Call (RPC) provides an

effective mechanism for the client to communicate with the applications residing at the

server.

 7

Figure 1-3 Typical Two-tiered Client-Server Architecture

 During a RPC process, the client stub usually makes a call by bundling the

parameters into a message and requesting that the message be sent to the server. The

server stub in the server machine unpacks the parameters from the message and pushes

them into a local stack. Then it calls the server procedures to perform its work and obtain

the results. Finally, the retuned results are sent back to the caller. To define the

interfaces in the RPC procedures, a special interface definition language (IDL) is adopted

to map these interfaces to the programming language used in developing the applications.

 Continuing along the above client-server organization, we may also move the

application logic to run on the client machines. This arrangement is particular popular in

the case where the client machine is a workstation, connected through a network to a

distributed file system or database. The server is in charge of all the operation on files or

database entries while the client’s local disk may contain part of the data. For example, a

client browsing the Web can accumulate a huge data cache of most recent accessed Web

pages [2].

 8

2. Three-tiered distributed CAD/CAE systems

In the previous section on two-tiered client-server architecture, we distinguish

between only clients and servers. However, the server may sometimes play a role as a

client, as shown in Figure 1.4, leading to a three-tiered architecture. A typical example of

where this model is used is in transaction processing. In this case, a separate transaction

monitoring process coordinates all transactions across possibly different data servers [2].

The application logic is separated from the data presentation layer and database layer.

The programs in the application logic layer usually reside on a separate server but they

may additionally be partly distributed across the client and server machines, making this

model more flexible than the two-tiered one. Furthermore, decoupling the application

logic from the data allows data from multiple sources to be used in a single transaction.

Major features of the three-tiered architecture include multiple operating systems, one or

more programming languages, local and remote databases, inter-program

communications and message routing etc.

Figure 1-4 Three-tiered Client-Server Architecture

 9

3. Peer-to-peer distributed CAD/CAE systems

Although less apparent, clients can be distributed as well, as shown in Figure 1.5.

For simple collaborative applications, we may even have the case where there is no

server at all. For example, a client seeks contact with another client, after which both

clients launch the same application for starting a session. A third client may contact

either one of the two, and subsequently launch the same application software [2].

The recent wide spread use of peer-to-peer applications such as SETI, Napster,

and Gnutella indicates that there are many potential benefits to fully distributed peer-to-

peer systems. The characteristic of peer-to-peer distributed system is that every client in

the network is an autonomous system. And two applications can communicate via

sockets to collaborate over network, which usually adopts TCP socket programming

paradigm. One of the shortcomings of TCP socket programming is that programmers

must describe the complicated socket connection process, after which a procedure can be

called to set up connection, listen for and accept connections, bind to available port

number, and so on.

Figure 1-5 Peer-to-peer Distributed Architecture

 10

1.2.2 Distributed Objects and .NET Remoting Technology

1. Distributed Objects

A key characteristic of an object is its separation between data (often called the

“state”) and operations (often called the “methods”) on those data. The process can

manipulate the state of an object by invoking an object’s methods, which is made

possible through an object’s interface. When the notion of an object is applied in

distributed computing, distributed objects are formed to facilitate clients’ access of

services and resources. The separation between an interface and its object allows us to

deploy an interface at one machine while its object is placed at another machine, leading

to what is referred to as a remote object. The state itself can be physically distributed

across multiple machines as well [2]. In such an environment, distribution transparency

is achieved by remote access of objects because the distributed objects can be virtually

anywhere on the network. When a client requests access to a remote object’s methods, a

proxy (similar to the stub in RPC) implementing the interface is loaded into the client’s

address space first to marshal the request into messages. The skeleton (similar to the

server stub) un-marshals the incoming messages to invoke the requested methods in the

object at the server and passes the reply message to the client’s proxy.

 As a first example, we take a look at one of the major distributed object

paradigms – CORBA. CORBA is the acronym of Common Object Request Broker

Architecture. This distributed object-based system and its specifications have been

designed by a nonprofit organization called Object Management Group (OMG). One of

the major goals of this system is to provide a mechanism so as to solve many of the

interoperability problems between various applications resided across the network.

 11

CORBA uses the remote-object model that we discussed previously. CORBA is a typical

example illustrating that making a distributed systems is a somewhat difficult task.

Figure 1-6 General Architecture of CORBA [2]

 As shown in Figure 1.6 [2], the Object Request Broker (ORB) is the foundation of

any CORBA distributed systems. It acts as a low-level object bus that is responsible for

the communication between remote server objects and their distributed clients, ensuring

that an object invocation is sent to server and its reply returned to the client. Internet

Inter-ORB Protocol (IIOP) is the implementation of General Inter-ORB Protocol (GIOP)

on top of TCP, which enables interoperability between clients and object servers from

different CORBA system manufacturers. Interface Definition Language (IDL) specifies

the objects and their services. To request a service, a client sends an invocation request

message comprising an object reference, the method’s name and all input parameters to

CORBA object server. A CORBA server object interacts with ORB either through the

ORB interface or Object Adapter. When the ORB in the object server receives the

 12

request, it looks for the implementation of the requested method and passes the

parameters to it. Finally, a reply message containing the returned values and output

parameters is sent back to the client.

 Another paradigm of distributed object-based system is the Distributed Common

Object Model (DCOM) growing out from Microsoft’s Common Object Model (COM),

which is the core technology in Windows operating systems.

 It is sometimes hard to make a distinction between COM, COM+ and DCOM.

COM+ can be viewed as a superset of COM consisting of various services that were

previously offered as add-ons to COM. In particular, COM+ includes facilities for a

server that can efficiently handle a large number of objects. DCOM can be viewed as an

extension to the architecture of COM. However, the features supporting a process to

communicate with components placed on another machine are often the same for both

COM and DCOM. DCOM also adopts the remote-object model as most of other object-

based systems. Both synchronous and asynchronous communications are supported in

DCOM, which means that a client invoking an object may not necessarily be blocked

until a reply is received. In contrast to CORBA’s language-specific interfaces, each

server object in DCOM supports and implements multiple interfaces in the language-

independent binary form, which allows these server components to be written in a variety

of programming language like Java, C++, Visual Basic, and Delphi. Meanwhile,

Microsoft Interface Definition Language (MSIDL) can generate these interfaces each

implementing different functions of the object.

 13

Figure 1-7 General Organization of DCOM

As shown in Figure 1.7, the communication in DCOM is supported through the

mechanism of Object Remote Procedure Call (ORPC). On the client side, a process sets

up a binding to a remote object by accessing the Service Control Manager (SCM), which

is responsible for activating objects, and the registry. The client proxy is responsible for

marshaling (or un-marshaling) the invocation and sending a request to (or receiving a

reply from) the remote object. The client object can invoke the exposed methods of the

server object by the interface pointer as if the object is resided in local address space. On

the server side, the object stub is responsible for processing the invocation from the

client. To instantiate a new object with a Class Identifier (CLSID) for a client, the SCM

receives this CLSID and looks it up in its local registry to find the relevant file so as to

load the class object. To facilitate this process in the server, DCOM provides just-in-time

(JIT) activation to efficiently activate and destroy objects.

 14

2. NET Remoting Technology

Coming with many powerful yet simple features, the .NET Remoting is a new

framework developed by Microsoft to replace DCOM discussed in the previous section.

This rich and extensible framework enables objects residing in different application

domains, in different processes or in different machines to interact with each other

seamlessly, which is made possible and supported through its runtime and programming

model.

The .NET Remoting framework supports the functions such as object activation,

lifetime management, distributed identities as well as communication channels. There

are two main object activation models, client-activated objects model and server-

activated objects model, to manage the lifetime of remote objects under the support of

.NET framework. In the case of a client-activated objects model, a lease-based lifetime

manager controls these objects to ensure that the objects are garbage collected when its

lease expires. In the case of a server-activated objects model, the programmer can choose

“single call” or “singleton” to manage the lifetime of the objects.

Figure 1.8 shows an example of a client calling a remote object where the called

methods are implemented. In order to invoke the methods of the remote object running

inside a different machine or process, the client creates an object proxy called

TransparentProxy. For the client, this Object Proxy looks like a local object with the

public methods. When the methods of the remote object are called, an IMessage with the

call parameters will be created and forwarded to a RealProxy class. The message is

serialized into a stream of bytes using a Serialization Formatter and then is sent into a

Client Channel that is responsible for communicating with the server.

 15

Figure 1-8 An Example of Calling a Remote Object in .NET Remoting Framework

 The client channel communicates with the server channel to transfer the message

across the network. After receiving the message, the sever channel passes it to the De-

serialization Formatter for de-serialization so that the called methods can be sent to the

remote object. The remote object must be implemented in a class derived from

System.MarshalByRefObject that has methods to manage lifetime service, and it is only

confined to the application domain where it is created.

 The two main channels used to transport messages to and from remote objects are

HTTP channel and TCP channel. HTTP uses the Simple Object Access Protocol (SOAP)

to communicate with remote objects. In this case, all messages are changed into XML

and serialized by SOAP formatter first and then a required SOAP is added to the message

stream. Finally, the stream is transferred to the target server by HTTP protocol. Similary

in the situation of transporting a message using TCP channel, a binary formatter is used

 16

to serialize all messages to a binary stream and transferred to target server by TCP

protocol.

 In conclusion, the .NET framework provides an almost perfect paradigm that

meets the requirements of most distributed applications. It provides a powerful,

extensible and language-independent framework to develop robust and scalable

distributed systems. This is also why .NET remoting is chosen in this research to support

and implement the distributed functionalities in CoCADE.

1.2.3 Data Streaming for Distributed Collaborative CAE

In most cases, the raw engineering design data from large 3D solid models and

engineering simulation results are relatively large. Traditionally, the data could not be

displayed before the entire data sets are received. In a distributed design environment,

especially in a real-time collaborative design process, it creates a bottleneck for

efficiently and effectively sharing geometric information of large 3D solid models.

Streaming technology is one of the key technologies for efficient transmission and

visualization of high volume data. Although this technology has already being applied to

audio and video transmission, it is still a research challenge to develop a strategy for the

effective transmission and visualization of engineering data. Engel et al. [4] introduced a

web-based visualization approach to enable the remote control of a visualization

application by image streaming and CORBA (Common Object Request Broker

Architecture) techniques. This approach is only applicable in some basic visualization

functions. It shows limitations, e.g. level of user interactivity, multi-user capabilities, and

rendering synchronization. The use of CORBA technique also exposes security problem

 17

because it requires the configuration of network firewall. Mahovsky et al. [5] have

developed a Java-based system for real-time distributed visualization by using a cluster of

conventional PCs. This system adopts an extensible and object-oriented model that

accommodates a variety of rendering algorithms and data sets. However, collaborative

visualization function for multiple users to operate on a shared data set is not supported in

this system. The system is not feasible to be deployed on the Internet so as to provide

remote real-time visualization facilities.

In this thesis, the CoCADE framework is a distributed system that supports real-

time collaborative visualization of complex engineering geometric models and simulation

results. Multiple users can conduct engineering design activities such as real-time co-

modeling, simultaneous 3D view and mark-up, text-chatting etc. Data streaming

technology is utilized in the scenario where data sets are to be re-ordered according to the

clients’ perspective before transmitted. In addition, simplified mesh approximation of the

geometry of each individual part may also need to be created and downloaded in a

hierarchical order, therefore, each part can be delivered incrementally. An open standard

stream-able format for exchanging of visualization data between disparate applications,

HOOPS Stream File, is employed in this system and will be extended to support varied

custom types of engineering data.

1.3 Main Modules in CAE Systems

The CAD/CAE process of a product usually involves intensive interactions between

different groups of designers. Current existing computer-based systems have been

greatly enhanced to support such interaction by facilitating the iteration process between

 18

computer aided design and engineering analysis and vice versa. The major design

activity iteration process is shown in Figure 1.9.

Figure 1-9 Product Design Process

 As discussed in the above, the model design and engineering analysis of a product

is an iteration process involving different modules of CAD and CAE systems. First of

all, the part designers use the computer aided design systems to construct the geometric

design models. After being assigned physical attributes, these part models are assembled

to form a complete product design model in order to test its performance in CAE stage

(Figure 1.9). Subsequently, the product design models are sent to CAE engineers for

realistically simulating the functioning of the design models in real life. The CAE

engineers analyze, simulate and visualize the performance of the design models. Based

on the simulation feedbacks, some optimization approaches may be applied to achieve

better product performance in a holistic way. If the simulation results are satisfactory, the

 19

validated product design models will be passed for manufacturing, otherwise revisions

will be communicated to the CAD engineers to modify the design models.

Geometric
Design

Engineering
AnalysisVisualization

Geometric
Operations

Model Creation

Attributes
Assignment

Mesh Generation

Finite Element
Analysis

Visibility

Boundary
Element Method

Finite Different
Method

Optimization
Techniques

Marking up

Perspective/
Orthographic

Rendering
Options

Figure 1-10 Different Modules in CAD/CAE Systems

 As illustrated in Figure 1.10, there are three major modules, namely geometric

design module, engineering analysis module and visualization module, in a typical CAD

or CAE system.

1.3.1 Geometric Design Module

The geometric design module usually provides the designers with a graphical user-

friendly interface where they can have easy and quick access to the geometric data. It

means the user interface should not be only suitable for seasoned designers, but also for

inexperienced designers who are beginners.

 The common attributes in the geometric design module might include 1)

capabilities to allow more and more geometric operations to be performed on the design

 20

model, 2) support for data filtering of huge amount of information, 3) view, print and

interrogate capabilities for design models in a variety of file formats, 4) portability across

major operating systems such as UNIX and Windows [3]. To meet these requirements,

the classes used to represent a geometric object in typical CAE applications usually

comprise the geometric data and topology information. These data information must be

able to be saved to and restored from a save file such as ACIS’ SAT file. The geometric

data generated by this module can be saved as a variety of file formats such as SAT,

IGES, HSF, VRML, etc.

 One of the important steps in geometric design process is mesh generation so as to

prepare the geometric model for engineering simulation and analysis. Mesh generation is

a process that breaks up a physical domain into smaller sub-domains (elements) in order

to facilitate the numerical solution of a partial differential equation [6]. The surface or

2D domain of the geometric model can be subdivided into triangular, quadrilateral or

hexagonal elements while the 3D volume can be subdivided into tetrahedral or hexahedra

elements. In recent decades, finite element methods are increasingly used as principle

numerical solutions to simulate industrial engineering designs and physical processes.

The accuracy of finite elements method depends heavily on the number of the elements.

Generally, the finer the elements, the better the simulation. However, one should realize

that the computation time for numerical solution also increases dramatically when the

number of elements increases. So one should be acutely aware of the balance between

the number of elements and computation time.

 21

1.3.2 Engineering Analysis Module

The engineering analysis module has been improved substantially in recent years to

incorporate various engineering tools for more efficient and realistic simulation of the

product performance. Appropriate computational means such as finite element methods

(FEM) and boundary element method (BEM) are used to facilitate the simulation process.

FEM required that the input data be 2D or 3D mesh comprising numerous structured or

unstructured mesh elements such as triangle, tetrahedron, hexahedra, quadrilateral, etc.

1.3.3 Visualization Module

Advances in the development of CAE visualization module provide designers with

visualization interface to view in high resolution the large amount of result data from

different viewing modes such as the orthographical and perspective views. This module

is usually coupled to the raw data source. In common commercial post process

applications, markup tools and rendering modes are available for designers to manipulate

simulation results. Designers will further post process the designed model if the

performance is not satisfactory according to industrial standards.

1.4 Voronoi Diagrams or Tessellations

The Voronoi Diagrams or tessellation is a method to construct randomly sized and

shaped subdivisions or “cells” (polygons) of space [7]. Its application in this thesis is to

emulate the realistic physical microstructure of perpendicular recording media. Voronoi

Diagrams are part of an encompassing field of Computational Geometry, which emerged

from the field of algorithms design and analysis in the late 1970s and has grown into a

 22

successful research discipline. The Voronoi Diagrams and its graph theory dual,

Delaunay Tessellation or Triangulation, and the numerical solution of partial differential

equations have recently become the major applications of computational geometry.

 With the advent of more powerful and efficient computer technology (hardware

and algorithms), Voronoi Diagrams have been widely used in various research fields,

particularly in the area of micro-magnetic modeling and simulation of magnetic recording

media. How to build a mathematical model to accurately describe the physical

characteristics of magnetic recording media is very essential in micro-magnetic media

simulation.

In recent years, much attention [8][9][10] has been attracted to the study of

microstructure of the magnetic recording media, which composes of grains that vary in

both shape and size. However, these approaches are mostly based on uniform hexagonal

grains shapes. Therefore, the effect of irregular grains shapes, which result from

variations in the media fabrication process, is not taken into account. In this model,

irregular grain shapes are created to emulate the realistic physical microstructure of

perpendicular recording media.

1.4.1 Brief History and Applications

As a great antiquity, the formal Voronoi diagram method can be historically traced back

and credited to mathematicians around the turn of the century, G. L. Dirichlet (1850) and

G. F. Voronoi (1908). Descartes in his The Principles of Philosophy (1644) used

Voronoi-like diagrams to show a solar system consisting of vortices, as shown in Figure

1.11. A star is at the center and a convex region of influence surrounds it.

 23

 During the late 19th and early 20th centuries, Voronoi diagrams had been re-

invented many times. As a result many synonyms have been used to describe basically

the same techniques such as Direchlet domain, proximal polygon, S cell and tile. Okabe

and John D. Rogers et al report that, during the early 1970’s, many algorithms had been

developed to construct Voronoi diagrams in two and three dimensions primarily

stimulated by the developments in the computer science fields. The concept of Voronoi

diagrams and the associated algorithms, computer implementation, and applications have

proliferated over the next twenty years. Its use to construct the structures of different

materials continues to help understanding of complex distributed behavior of the

materials. What is of interest here is the recent application of Voronoi Diagrams to the

random arrangement of recording media grains and the application of Voronoi Diagrams

to automatic mesh generation in numerical solution of partial differential equations

(Taniguchi, Arakawa, and Kobayashi 1991; LaBarre 1992).

Figure 1-11 A Solar System Consisting of Vortices

 24

1.4.2 Theory and Basic Properties

The concept of Voronoi Diagrams is simple and can be easily defined. A reduced

introduction is given here taken with reference to [11]. Firstly, the distance between two

points p and q is denoted dist (p, q). In the plane, dist (p, q) is given by:

22)()(:),(yyxx qpqpqpdist −+−=

Let }p ,...,p ,{p :P n21= be a set of n distinct points in the plane; these points are

the cells (or sites). The Voronoi diagram is defined as the subdivision of P into n cells,

one for each site in P. A point q belongs to a cell pi (corresponding to site pi) if and only

if),(),(ji pqdistpqdist < for each ijPp j ≠∈ , . The Voronoi diagram P is denoted

Vor(P). The cell of Vor(P) that corresponds to a site pi is denoted V(pi). In other words,

V(pi), as a subset of Vor(P), is the locus of points q such that each point in V(pi) is nearer

to pi than is any point not in V(pi) (Brostow, Dussalt, and Fox 1978). Secondly, the

structure of a single cell is described as follows. For two points p and q in the plane, its

bisector is defined as the perpendicular bisector of the line segment pq . This bisector

splits the plane into two half-planes. The open half-plane that contains p is denoted

),(qph and the open half-plane that contains q is denoted),(pqh . Notice that

),(qphr ∈ if and only if),(),(qrdistprdist < . Therefore, V(pi) can be defined as:

),()(,1 jiijnj pphpiV ≠≤≤= Ι

 Thus, V(pi) is the intersection of n-1 half-planes and an open convex polygonal

region bounded by at most n-1 vertices and at most n-1 edges, as illustrated in Figure

1.12.

 25

Figure 1-12 Voronoi Diagrams as a Planar Subdivision with Straight Edges

A generalized Voronoi diagram is defined as follows.

Definition 1. The Generalized Voronoi Diagram in d dimensional Euclidean space, Ed, is

a set of unique convex regions or cells called Voronoi Polyhedrons (Vi). These

polyhedrons contain only one nucleus (Pi) (not necessarily centered within the

polyhedron) of a set of nuclei distributed within a larger space. The polygons under

discussion bound or enclose a subset of space closer to a specific nucleus (Pi) than to any

other nucleus (Pj). More formally:

},...2,1),,(),(:{:)(njPxdPxdExPV jii =≤∈=

 In this thesis, the 2D planar case is of primary concern. Some of the Voronoi

diagram properties are listed below [12][13][14].

Property 1. The Voronoi Diagram is a unique tessellation of the set of distinct points of P where

)2(},...,,{ 2
21 ∞≤≤⊂= nEpppP n

 26

Property 2. Let P be a set of n point sites in the plane. If all the sites are collinear then

Vor(P) consists of n-1 parallel lines. Otherwise, Vor(P) is connected and its edges are

either segments or half-planes.

Property 3. For 3≥n , the number of vertices in the Voronoi diagram of a set of n point

sites in the plane is at most 2n-5 and the number of edges is at most 3n-6.

Property 4. The average number of Voronoi edges per Voronoi Polygon does not exceed

six. The maximum number of Voronoi vertices in a 2D Voronoi diagram is 2n-5.

1.5 Objective of This Study

Distributed and Collaborative Design and Engineering has become a major industrial

issue. From the previous discussion, it can be seen that a substantial amount of research

work has been done in the field of distributed and collaborative CAD/CAE systems based

on CORBA, DCOM or Java RMI technologies. Most of these systems are suitable for

deployment only within the Intranet. For example, DCOM has its limit when the system

is deployed over the Internet because it tends to communicate over a range of ports that

are typically blocked by the network firewall. The .NET Remoting technology from

Microsoft has been tailored to solve this problem. However, how to integrate robust 3D

geometric modeling functionalities into a distributed and collaborative environment so as

to better prepare the geometric models for engineering simulation and analysis remains a

critical problem to be solved.

 Therefore, this thesis proposes a three-tier architecture called CoCADE

(Collaborative Computer Aided Design and Engineering) to facilitate the development of

 27

an open distributed and collaborative CAD/CAE system based on .NET Remoting

technology. Robust 3D geometric modeling functionalities are integrated into the system

to allow users to conveniently browse and manipulate a product model as well as process

the model for numerical solution by leveraging on powerful CAD stations. Necessary

design coordination mechanisms are also provided to guarantee an effective collaborative

session without generating conflicts. Meanwhile, scientific data presentation tools with

rich features are provided to give intuitive and vivid visualization of engineering

simulation results. The general structure of CoCADE is shown in Figure 1.13.

Figure 1-13 General Architecture of CoCADE

 The fat client side consists of several modules such as Model Construction,

Geometric Data Processing, Geometric Data Transmission and Scientific Data

Presentation. The server side comprises five components. The coordination Server is

responsible for managing design sessions and facilitating client-server communication.

The CAD Server is used for geometric model construction and the CAE Server for CAE

tasks. The Data Manager handles database and file system transactions to ensure data

consistency.

 28

1.6 Dissertation Outline

A brief dissertation outline is given as follows. Chapter 1 introduces the research

background related to co-design and co-simulation in collaborative product development

and some key technologies used to build distributed systems. The three-tiered software

architecture of Collaborative Computer Aided Design and Engineering system

(CoCADE) is discussed in Chapter 2. In Chapter 3, the detailed implementation of

geometric modeling functionalities to support co-modeling and co-simulation in

distributed design is presented. Chapter 4 focuses on the implementation of collaboration

functions in CoCADE. In Chapter 5, a case study based on CoCADE is given to

demonstrate its feasibility and effectiveness. Finally, conclusions and future work are

discussed in Chapter 6.

 29

2. CoCADE: A Framework for Collaborative

Modeling and Simulation in Product

Development

2.1 System Architecture of Collaborative CAE Framework

A framework for distributed and collaborative computer aided design and engineering,

CoCADE, employs a three-tiered Client/Server architecture as shown in Figure 2.1.

Different modules of a distributed system spread across the network with care taken in

maintaining network load balance and maximizing the utilization of the client machine’s

performance. Applications are divided between client side software and server side

software. The fat client method is adopted while developing the client software to offer

full local design and interactive functions efficiently. HTTP, TCP/IP and FTP protocols

are supported to fulfill the communication between client and server.

It is aimed to offer the following facilities for distributed and collaborative design

and engineering: (1) an integrated CAD/CAE environment for multiple users to browse

and operate on a shared solid model over the Intranet/Internet synchronously, (2)

effective geometric data processing functionalities to facilitate numerical solutions for

engineering simulation, (3) graphical visualization tools for large-scale engineering

simulation results, (4) an infrastructure to enable users to access workflow services.

 30

Figure 2-1 Software Architecture for Distributed and Collaborative Design and

Engineering

 As shown in Figure 2.1, the three-tiered software system can be deployed on

either Intranet or Internet. The presentation tier is usually a stand-alone Window-based

application with rich CAD/CAE /Collaboration functions. In addition, a thin Web-based

workflow client that is embedded into a browser can be used to enable the users to access

workflow services. The workflow client comes with workflow editing functions. The

 31

business logic tier, which consists of multiple functional modules, is the central

coordination part of CoCADE. The workflow engine as the core of the workflow model

is responsible for explaining and executing the messages from Web-based client. The

workflow can communicate with the other modules of the server side via Coordination

server to keep itself updated about the collaborative sessions activities. The messages

transferred between them can be in XML format. The data tier is a data depository used

to provide persistent storage and maintain product data consistency.

2.2 User Case View of CoCADE System

From an application user’s point of view, a qualified CoCADE system must meet the

following general requirements:

� The users should be provided with a friendly GUI with 3D modeling, mouse-

clicking and dialog-based tools.

� Major industry-recognized CAD/CAE file formats can be loaded into the GUI for

viewing and editing. General geometric modeling and operation functions should

be available.

� An effective user management mechanism should be devised to grant team

members different privileges according to their roles in the team.

� A coordination mechanism should be devised to ensure that collaboration between

members would not result in conflict. Shared data consistency should be

guaranteed.

� Collaboration tools such as text-chat or audio/video tools should be available to

ease communication process among team members.

 32

� Any changes such as marking up or highlighting made by a team member on a

shared model should be reflected on the screen to other members.

To better describe these domain-dependent requirements, the schematic diagram

is used to show the use case for the online session as in Figure 2.2. A team of designers

with different industrial expertise usually performs the product development work

together. Therefore, the CoCADE system must provide an effective mechanism to

manage the team member’s privilege according to their roles and positions in the design

team. From the perspective of a team manager, there are four role types of members

who have access to the application; they are the leader or initiator, CAD member, CAE

member and workflow planner. The leader or initiator is the only one who has the

privilege to create/terminate a collaboration session. Meanwhile, the leader can approve

or reject the other members’ application to join or leave the session. CAD and CAE

members are granted the status according to their expertise so they can use the CAD or

CAE functions with minimum external support. Any member who has the privilege to

collaboration functions can discuss with each other throughout the whole design session.

The workflow planner plans and harmonizes the whole product development process.

All the CAE or CAE members must follow the pre-defined workflow and perform

product design activities accordingly.

 33

Figure 2-2 Users Case Diagram of CoCADE System

2.3 Data Streaming View of CoCADE System

As the development of product design advances, the amount of raw product design data

such as large 3D solid models and engineering simulation result, is increasing speedily.

Visualization of the product data provides benefits in helping detect and resolve problem

early in the product development cycle, thus saving time and cost. Traditionally, these

 34

raw data could not be visualized before the entire data sets are entirely received. In a

distributed design environment like CoCADE, especially in a real-time collaborative

design process, it creates a bottleneck for updating effectively so as to keep the clients’

information consistent with the server.

Streaming technology is one of the key technologies for efficient transmission and

visualization of high volume data. Although this technology has already being applied to

audio and video transmission, it is still a research challenge to develop a strategy for the

effective transmission and visualization of engineering data. Engel et al. introduced a

web-based visualization approach to enable the remote control of a visualization

application by image streaming and CORBA (Common Object Request Broker

Architecture) techniques [2]. This approach is only applicable in some basic

visualization functions. It shows limitations, e.g. level of user interactivity, multi-user

capabilities, rendering synchronization. The use of CORBA technique also exposes

security problem because it requires the configuration of network firewall. Mahovsky et

al. have developed a Java-based system for real-time distributed visualization by using a

cluster of conventional PCs [3]. This system adopts an extensible and object-oriented

model that accommodates a variety of rendering algorithms and data sets. However,

collaborative visualization function for multiple users to operate on a shared data set is

not supported in this system. The system is not feasible to be deployed on the Internet so

as to provide remote real-time visualization facilities.

In this research, we describe a sub-system of CoCADE that supports real-time

collaborative visualization of complex engineering geometric models and simulation

results. Multiple users can conduct engineering design activities such as real-time co-

 35

modeling, simultaneous 3D view and mark-up, text-chatting etc. Data streaming

technology is utilized in the scenario where data sets are to be re-ordered according to the

clients’ perspective before transmitted. In addition, simplified mesh approximation of the

geometry of each individual part may also need to be created and downloaded in a

hierarchical order, therefore, each part can be delivered incrementally. An open standard

stream-able format for exchanging of visualization data between disparate applications,

HSF, is employed in this platform and will be extended to support varied custom types of

engineering data.

From the perspective of visualization data flow, Figure 2.3 shows the architectural

modules of CoCADE as a real-time collaborative design system, which includes

engineering simulation module, data streaming server module and interactive

visualization module. The system is developed on the basis of the object-oriented design

concept.

Figure 2-3 Data Streaming View of CoCADE System

 36

Firstly, the CAE simulation module takes in input data the geometric models with

various attributes such as material properties, center of gravity etc. The CAE simulation

module uses appropriate computational means like FEM or BEM to carry out the

engineering simulation process. As a result, large-scale raw data sets are generated

during this phase. Sequentially, these raw data sets are post processed by efficient data

extraction algorithms in the streaming server. The streaming server module delivers

highly elegant 3D scene graphs in streaming file formats (HSF Format) to represent the

characteristics of simulation results. Finally, the 3D scene graphs are sequentially

streamed to the distributed real-time interactive visualization system and displayed to

clients.

2.4 Static Class View of CoCADE System

 The UML static class view of CoCADE system is shown in Figure 2.4. On the

client side, the MFC Document/View application architecture is adopted which includes

CoCADEApp, CoCADEDoc, CoCADEView and CoCADEFrm (CoCADEChildFrm).

The other classes developed to accomplish functional modules are centered on the

classes.

The CoCADEDoc class provides the basic functionalities for user to access

geometric data. Standard operations are supported, such as creating a geometric model,

loading and saving. The file can be loaded and saved locally on client machine or

remotely on server machine, depending on whether the file resides on client or server

machine. The above mentioned functions are implemented in the methods of

OnOpenDocument(), OnNewDocument() and OnSaveDocument().

 37

 The CoCADEView class associated with CoCADEDoc class is the interface

through which the user can interact with the geometric data. The fundamental CAD/CAE

visualization and operation tools like zoom, rotation, wire-frame, markup, Boolean

operation and sweeping etc, are all contained in this view class. In addition, this class is

characterized by providing rich features for three-dimensional visualization of large-scale

CAE simulation result data sets. For example, the popular tetrahedral mesh suitable for

numerical solution can be displayed and evaluated before sending to the FEM solver.

After simulation is carried out, simulation results can be displayed, for example, by

colored arrows that represent 3D vectors at the nodes in the spalce of the solution

domain. Another issue of concern while developing distributed system is how to keep

the volume of geometric data transmitted across network to the minimum level and, in

the meantime, give user a satisfactory visual effect of geometric data. Data streaming

technology discussed in the next chapter is used to solve this problem.

 38

Figure 2-4 Static Class View of CoCADE System

The class NetworkDialog encapsulates all the response functions that a user may

need to communicate with a server. The method OnCreateSession() is used by the

leader/initiator to initialize a collaboration session. After that, other team members can

 39

join the session by providing #SessionName, #SessionPassword and other information

like server address or URL address, and invoking the method OnJoinSession() and

OnConnectServer().

In a distributed and collaborative design system, the design process highly

depends on the effective communication among the multiple clients as well as between

the clients and the server. On the server side, MessageHandler is responsible for

managing the collaborative design process between clients. This class provides the

method of ConferToken() to grant a team member a token so that he will have the

privilege to modify the geometric data in a collaborative session. Only one member in a

design team can hold the token in a design session. This is to eliminate the possible

conflict of concurrent multiple modifications and ensure data consistency. A team

member can be forced to release the token to other members by the leader/initiator. Also,

when a shared geometric data is modified, the change must be immediately broadcast to

all other members in the same team. This task is accomplished via the method of

UpdateData().

Another issue of concern is the session management in the collaborative design

process. The collaborative activities can occur synchronously or asynchronously, where

the team members contribute to a product design session with their expertise. In the

asynchronous scenario, the designer may carry out different sessions simultaneously

depending on whether or not these sessions are independent on each other. In the

synchronous scenario, some team members can carry out the same design task

collaboratively in real-time mode. SessionManager class is devised to handle both the

synchronous and asynchronous collaborative sessions.

 40

The ErrorHandler class is used to safeguard the design sessions according to

computer resources such as memory, CPU usage etc. Each session has a pre-defined

maximum number of members who can collaborate simultaneously. Error message

would be returned if this max number were reached. This is to ensure the design session

would not be suspended due to overuse of computer resources.

 41

3. Client Interface and Geometry Processing

Module

3.1 Overview

The client side in CoCADE, called CoClient, is presented as a Graphical User Interface

(GUI) for users to input data and output results. It is designed as a multi-window

interface that supports a variety of geometric modeling functionalities. Moreover,

different clients in different locations can conduct real-time collaborative design activities

like co-modeling, co-viewing, co-simulation, and text-chat discussion. After constructing

geometric models and assigning geometrical parameters and properties to them, the

geometric models are further processed to generate irregular grain shapes to emulate

magnetic recording media models. The goal is to prepare the geometric models suitable

for engineering numerical solution. The grain generation algorithm is based on the

concept of the Voronoi algorithm.

This chapter first discusses the graphical user interface and interactive

functionalities in CoClient, followed by study of data collaboration for geometric model

construction and discretization of the design model for engineering numerical solution.

Finally, visualization of engineering simulation results is given.

3.2 Design Details of Graphical User Interface

In CoCADE, the client module is designed as a multi-window user interface that supports

various modeling functionalities such as creation of solid primitive models, viewing and

 42

marking up of solid/mesh parts, Boolean operations, file formats conversion, engineering

simulation result display and so on.

The “fat client” mode is employed in the client-side programming to provide

powerful functionalities for CAD/CAE usage so the client-side program can be used as a

stand-alone tool for product design when the user is working in asynchronous mode. The

web-based approach often leads to restriction on client side functionality and may

compromise efficiency. As a result, the CoClient is deployed as a stand-alone MFC

application in an EXE file to fully utilize client computer resources and reduce network

load, while the workflow editor is deployed as a browser-based application downloaded

from server-side because it is a data intensive application as compared to computation

intensive applications and a thin client approach is well suited. This deployment scheme,

however, requires the installation of software modules on the client-side before it can be

used.

Figure 3-1 Snapshot of CoCADE Client Interface in a Collaborative Design Session

 43

Figure 3-1 is a snapshot of the client interface in a collaborative design session.

On the right hand side of the interface, the collaboration information is shown, which

includes session and client names, client status (leader or team member), and real-time

network connection messages. As shown in Figure 3-2, the web-based workflow client is

developed to help coordinate the product design process. The workflow planner

predefines the design and simulation sequence by using workflow charts and diagrams.

These charts and diagrams are saved in XML files on the server side and can be

downloaded to the client’s browser. This is to ensure that all the members in a same team

will follow the pre-defined design process and be kept updated about the design process

immediately once a design task is finished.

Figure 3-2 Snapshot of CoCADE Web-based Workflow Client

 44

3.2.1 Interactive Functionalities Supported

In CoClient, extensive interaction functionalities for CAD modeling and CAE analysis

are supported. This interaction module resides on the client side. It takes advantage of

the ample functions typically provided in a Window-based environment. A full range of

interactive functionalities is implemented to facilitate the modeling process, e.g. mouse

clicking, dialog-based, and keyboard input etc.

 The classical concept of Object-Oriented (OO) analysis is used to effectively

design and implement different functions in the interaction module. Each modeling

function is encapsulated in a class. The class controls the behaviors of mouse click and

keyboard input and invokes the relevant method in the class to respond. For example,

Figure 3-3 illustrates the sequence of respective response to the event of mouse clicks

when a user creates a block and a cylinder and then intersects both primitives by invoking

the Boolean Operation method.

 The block and cylinder creation requires user to specify two and three vertex

coordinates respectively. For the block, they are the coordinates of two ends of its

diagonal. For the cylinder, they are the two coordinates for two ends of its circle

diameter and the coordinate for its height. To create a block and a cylinder with mouse

clicks, a user first clicks the mouse to specify the first position of each primitive. After

the first position is specified, the geometric toolkit provides a “rubber band” tool to draw

a virtual frame of the block or the cylinder circle until the user specifies the second

position. Then the virtual frame disappears. For the cylinder, the virtual frame

disappears when coordinates of the third point is defined.

 45

Figure 3-3 Sequential Responses to Mouse Click Events

Each primitive is treated as an object in CoClient. Before carrying out a Boolean

operation, the user needs to select the first object called “tool” object and the second

object called “blank” object. The “blank” object will be returned as the resulting object

of the Boolean operation. The following code shows the details of how the Boolean

operation is implemented.

int HOpBooleanSelect::OnRButtonUp(HEventInfo &event)

{

 BooleanOperation m_pBO=GetBooleanOperation();

 if (m_pBO!= none) //m_pBO is the pointer to selected objects

 46

 {

HSelectionSet * m_Selection=(HSelectionSet *) m_pView->GetSelection();

int iSelCount=m_Selection->GetSize(); //number of selected items

 if (iSelCount<=1)

{

 m_Selection->DeSelectAll();

 SetBooleanOperation(none);

 }

 else{

 ENTITY * tool=0;

 ENTITY * blank=0;

 ENTITY * result=0;

 outcome o;

 BOOL_TYPE bp;

 HC_KEY hc_tool, hc_blank;

 int iBlank=1;

 hc_tool=m_Selection->GetAt(0);

 tool=HA_Compute_Entity_Pointer(hc_tool,BODY_TYPE);

 ((HSolidModel *)m_pView->GetModel())->DeleteAcisEntity(tool);

 o=api_initialize_booleans();

 assert(o.ok());

 switch (m_pBO)

{

 case unite:

 bp=UNION;

 break;

 case subtract:

 47

 bp=SUBTRACTION;

 break;

 case intersect:

 bp=INTERSECTION;

 break;

 }

 while(iSelCount!=iBlank){

 hc_blank=m_Selection->GetAt(iBlank);

 blank=HA_Compute_Entity_Pointer(hc_blank);

 ((HSolidModel *)m_pView->GetModel())->DeleteAcisEntity(blank);

 //Carry out the operation by using API provided by ACIS kernel

o=api_boolean((BODY*)tool,(BODY*)blank,bp,

NDBOOL_KEEP_NEITHER,(BODY*&)result);

 assert(o.ok());

 tool=blank;

 blank=0;

 iBlank++;

 }

 HC_Open_Segment_By_Key(m_pView->GetModel()-

>GetModelKey());

// Put each entity in a separate segment so that we can easily apply

// transformations to separately created entities

 HC_Open_Segment("");

 HA_Render_Entity((ENTITY*)tool);

 ((HSolidModel *)m_pView->GetModel())->AddAcisEntity(tool);

 HC_Update_Display();

 o=api_terminate_booleans();

 assert(o.ok());

 HC_Close_Segment();

 48

 m_Selection->DeSelectAll();

 }

 }

 SetBooleanOperation(none);

 return(HOP_READY);

}

3.2.2 Implementation Class Hierarchy

As CoClient is mainly designed to run on Microsoft’s Windows platform, it naturally

adopts the Document/View application architecture of Microsoft Foundation Classes

(MFC) and HOOPS/ACIS interface for MFC as development tools. HOOPS toolkit

provides an application wizard to create the application skeleton of CoCADE and connect

this skeleton to MFC. Figure 3-4 illustrates the implementation class hierarchy of

CoCADE.

In CoClient, the concepts of object, class, polymorphism and inheritance from OO

analysis are used as main development approaches to build the system. The advantage of

the object-oriented design includes early identification of system requirements and

application of a consistent approach throughout the entire software development life

cycle. It also facilitates reusability and maintenance of the software source codes.

 49

Figure 3-4 Implementation Class Hierarchy of CoCADE

 50

3.3 Data Collaboration

3.3.1 Geometric Data Structure

In CoCADE, the ACIS geometric kernel is used to construct design models. This

geometric kernel uses Boundary Representations (B-rep) data structure to describe

models of arbitrary complexity. An entity is the most basic ACIS object that is

implemented in C++ class ENTITY. All other geometric and higher model objects are

derived from the ENTITY class.

Figure 3-5 Model Object Decomposition Data Structure

 51

Figure 3-5 shows the model object decomposition structure. Different entity

classes like the solid, sheet, wire and mixed classes can be decomposed into the above

classes by following the structure from top to bottom. There are two types of class:

geometry class and topology class. The topology class contains pointers to the

corresponding geometry class. These classes provide the data and methods that are

tailored to support the operations of a solid modeler. The arrows show the hierarchical

relationship between different classes and the data structure traversal direction to search a

specific entity. All these geometric data are assembled into a central class called

ENTITY_LIST that has variable length. The contents of ENTITY_LIST are hashed so

that they can be located relatively quickly.

3.3.2 Geometric Data Transmission

Product development process requires people from different fields of expertise and

research backgrounds to collaborate. The design model construction or modification

operations incurred by a team member must be displayable on the other members’

screens. Therefore, an effective geometric data transmission mechanism should be

devised to meet this requirement.

As discussed in the previous chapter, there are two types of clients in a

collaborative design session: leader/initiator and team member. There can be only one

leader/initiator who creates the design session and leads the design activities while there

can be multiple team members (CAD members or CAE members) who undertake the

design activities. A token will be circulated around team members in the online

collaboration session. Only the one who holds the token has access to modify the

 52

original data. The member who holds the token is not necessarily the same member who

holds the original data.

The leader/initiator designates one team member to hold the original copy of

design data in ACIS format. Each of the other members has a local copy of the design

data for visualization in HSF format. The creation or modification of a design model

must be applied on the original data. The design data of other members’ sites are updated

immediately after a modification takes place. Figure 3-6 shows the flowchart of creating

a solid cylinder in a stand-alone mode or collaboration mode.

Figure 3-6 An Example of Collaborative Solid Model Creation

The program decides whether the client is in collaboration mode according to the

variable m_pClientDlgBar. If the client is not in a collaborative session, then the method

CreateSolidCylinder() will be simply invoked to create the model locally without

 53

transmitting geometric data to the other clients. Otherwise, if the client is in a

collaborative session and holding a token, the program will look at its ClientID variable.

If the ClientID is not zero, which means the client holding the token does not have the

original design model residing in its machine, the input geometric parameters will be

transmitted as instructions to the client who holds the original design model. The results

will be broadcast to the other clients to update their models. If the ClientID is zero,

which means the client has the original design model residing in its machine, it is not

necessary to transmit the geometric parameters as commands to the other clients. The

modification will be directly applied on the original data residing in its machine. Only

the result information is transmitted to the other clients for visualization. The

transmitting message is tagged with either “O_OPERATION_CREATE_CYLINDER” or

“V_VIEW_CREATE_CYLINDER” to indicate whether it is a modification operation or a

visualization update operation. For the client where the original data resides, the

entity_list_class.add() method adds an entity to the list. The list can be saved as .SAT or

.SAB files.

 The following codes illustrate how the creation of a solid cylinder model is

implemented.

void CoCADEView::OnSolidmodelSolidcylinder()

{

CCoCADSolidCylinder * m_CreateSolidCylinderDlg=new CCoCADSolidCylinder();

if (m_CreateSolidCylinderDlg->DoModal() == IDOK){

if (m_CreateSolidCylinderDlg->cyl_r==0 || m_CreateSolidCylinderDlg->cyl_h ==0){

 AfxMessageBox("Please specify the radius or height!");

 return;

}

 54

 char operationData[1024];

 sprintf(operationData,"%f %f %f %f %f", m_CreateSolidCylinderDlg->cyl_x,

 m_CreateSolidCylinderDlg->cyl_y, m_CreateSolidCylinderDlg->cyl_z,

 m_CreateSolidCylinderDlg->cyl_r, m_CreateSolidCylinderDlg->cyl_h);

 CString tempString=operationData;

 if (m_pClientDlgBar){

 if (m_pClientDlgBar->m_hasToken){

 if (m_pClientDlgBar->m_pNetInfor->clientID!=0){

 Cstring operationString="O_OPERATION_CREATE_CYLINDER " +tempString;

 m_pClientDlgBar->UpdateDisplayInformation(operationString,true);

 return;

}

 }else{

 AfxMessageBox("You don't own control right currently.\n");

 return;

}

 }

 CreateSolidCylinder(operationData,tempString.GetLength());

 }

}

void CoCADEView::CreateSolidCylinder(const char *in_data,int data_length)

{…

 ENTITY_LIST entity_list_class;

 BODY* cyl_body;

 memcpy(data, in_data, data_length); data[data_length] = '\0';

 sscanf(data, "%f %f %f %f %f", &btm_ctr.x, &btm_ctr.y, &btm_ctr.z,

 &cyl_radius, &cyl_height);

…

 outcome o;

 o=api_solid_cylinder_cone (bottom_center,top_center, cyl_radius, cyl_radius,

cyl_radius,NULL, cyl_body);

 55

 assert(o.ok());

 HA_Render_Entity((ENTITY*)cyl_body);

 ((HCoCADEModel *)m_pHView->GetModel())->AddAcisEntity(cyl_body);

 entity_list_class.add(cyl_body);

 …

 if (m_pClientDlgBar)

 if (m_pClientDlgBar->m_pNetInfor->clientID==0){

…

HUtility::URIencode("cylinders", (int) strlen("cylinders"), encoded_segment_name);

sprintf(message, "V_VIEW_CREATE_CYLINDER %s %f %f %f %f %f %d %f %f %f

%f %f %f", encoded_segment_name, btm_ctr.x, btm_ctr.y, btm_ctr.z,

 cyl_radius, cyl_height, num_sides, pos.x, pos.y, pos.z, up.x, up.y,

up.z);

 CString messageString=message;

 m_pClientDlgBar->UpdateDisplayInformation(messageString,false);

…

}

}

 The implementation codes for creating a geometric model from message are

shown in the next page. This method is invoked on the clients who do not possess the

token/control right over the design model. Unlike the original solid models constructed

by ACIS APIs, the models residing in these non-token holders’ machines are constructed

by HOOPS APIs and for viewing only. The HOOPS API HC_Insert_Cylinder() is used

to insert a cylinder that is specified with two points and a radius plus an option string to

specify which of the end caps are to be drawn. The advantage here is that only a few

 56

geometric parameters are transmitted as text message over network instead of

transmitting the whole files, which often leads to heavy network load and low-efficient

rendering.

void CoCADEView::CreateCylinderFromMessage(const char *in_data, unsigned int

data_length)

{

char data[8192];

HPoint cyl_center, pos, up;

int num_sides;

float cyl_radius, cyl_height;

…

 memcpy(data, in_data, data_length);

 data[data_length] = '\0';

 sscanf(data, "%s %f %f %f %f %f %d %f %f %f %f %f %f",

encoded_segment_name,

&cyl_center.x, &cyl_center.y, &cyl_center.z, &cyl_radius, &cyl_height, &num_sides,

&pos.x, &pos.y, &pos.z, &up.x, &up.y, &up.z);

 unsigned long n;

 HUtility::URIdecode((const char *)encoded_segment_name, segment, &n);

…

 HPoint top, bottom;

bottom = cyl_center;

 top.x=bottom.x; top.y = bottom.y + cyl_height; top.z = bottom.z;

 HC_Insert_Cylinder (&bottom, &top, cyl_radius, "both");

…

}

 57

3.4 Geometry Processing

3.4.1 Overview

This section discusses the processing of the geometric models constructed by CoClient.

Processing geometric models for finite element analysis is a major factor in the time

required to develop and optimize a design [15]. More specifically, the term of geometry

processing in this thesis refers to two processes: Voronoi Diagrams generation and

Tetrahedral mesh generation. The Voronoi Diagram generation with a given set of seeds

is implemented in combination with the tetrahedral mesh generation scheme that follows

in order to achieve adaptive mesh generation. Furthermore, in this particular research,

the Voronoi diagram generation is also used to create the cells modeling the grain

structure of magnetic recording media.

 Figure 3-7 shows the different stages starting from solid model construction to

mesh generation with output file from each stage. From the top of Figure 3-7, the models

produced by the solid modeling module can be either sent directly to generate mesh or to

generate seeds. The seeds generation is a prerequisite for Voronoi diagrams generation.

Following the seeds generation is the Voronoi diagrams generation that outputs .VOR

files. The geometrical parameters and properties will be then attached to .VOR files.

This is followed by passing the VOR files to the tetrahedra mesh generation module,

which outputs the .MESH files. Finally, the mesh files are converted into .INP file

format. INP files is the required file format for the finite element analysis module in

CoCADE.

 58

Figure 3-7 Different Stages in the Process of Geometric Processing

3.4.2 Definition of Data

The definition of data includes four types of file formats: (1) definition of seeds

generation results (.SED), (2) definition of Voronoi diagrams results (.VOR), (3)

 59

definition of mesh generation results (.MESH) and (4) definition of file format for Finite

Element Analysis (.INP).

Figure 3-8 An example of Geometrical Parameters Definition

1. Definition of seeds generation results

A geometric object can be defined with geometrical parameters, which can be

extracted from the solid model and can be stored in a text file when necessary. Figure 3-

8 shows an example of defining a block with parameters and its associated file. The “#”

symbol represents the number or the value.

Seeds generation is the first step in the process of Voronoi diagrams generation.

The grains of the Voronoi diagrams are generated from the seeds, which are defined in a

two-dimensional plane. For example, the plane can be the top surface of the block

defined above. Care must be taken to ensure there is a minimum distance between any

two seeds so that the seeds will not overlap with each other. The values of the distance

 60

between any two seeds comply with Gaussian distribution. Figure 3-9 shows the file

format of seeds generation results which can be saved in a text file with suffix “*.sed”.

Figure 3-9 An Example of Seeds File Format

2. Definition of Voronoi diagrams results

Given the seeds, the Voronoi diagram will be computed according to the

definition described in Section 1.4.2 and output to a text file with suffix “*.vor”. The

file format is shown in Figure 3-10.

 61

Figure 3-10 An Example of Voronoi Diagrams File Format

There are four components in a Voronoi diagrams file. The first component is the

coordinate information of sites, which correspond to the seeds information. Each seed is

equivalent to a site in the Voronoi diagrams. The second component is the perpendicular

bisector of the line segment between the two sites. As shown in the figure, the bisecting

line is an output in the form of a line formula. The third component is the vertex. As

 62

shown in the diagram, the vertex is where the two bisectors meet. The final component is

the edge representing the line segment by connecting two vertexes. As is known, each

site which is numbered in the Voronoi diagram may have several edges surrounding it.

The site number, to which the edge belongs, is given as the first value of the component,

followed by two vertex numbers as two ends of the edge.

3. Definition of mesh generation results

Figure 3-11 An Example of Mesh Generation File Format

The file format for the generated mesh is relatively simple as shown in Figure 3-

11. Each row in the file represents an element by specifying its element number and the

four vertexes forming the tetrahedral element. The file is output as a text file with the

suffix “*.mesh”.

4. Definition of file format for Finite Element Analysis

 63

The file format for Finite Element Analysis (FEA) is given as an ASCII file with

the file extension of “*.inp”. This file format can also be used to represent the FEA

results. Figure 3-12 shows the file format of “*.inp”.

Figure 3-12 Input File Format for FEA Analysis

One of the features of INP file format is that it is a time-dependent (multi-step)

file format. Relevant simulation results from a certain stage can be attached to the trail of

 64

the file. The geometric model’s material properties can also be reflected in the file by

specifying the material values.

3.4.3 Voronoi Diagrams

1. Seed generation

As discussed in the previous section, the Voronoi diagrams are based on

randomly generated seeds. Figure 3-13 illustrates a Voronoi diagram for 10 randomly

selected sites in a square [16]. The computation of the seeds is a Poisson point process.

Figure 3-13 Voronoi Diagrams for 10 Randomly Selected Sites in a Square

The detailed implementation codes are as given in Figure 3.17.

void CSolidHoopsView::OnVoronoitessellationSeadsgeneration()

{

double Ml, Mw, Gs, Md; //media length, width, grain size, mini-distance;

 65

int n, i, j, m, rseed = 11000; //generate for random()

FILE *outs;

 if ((outs = fopen("Seeds.sed", "wt")) == NULL) {

 fprintf(stderr, "Cannot open output file.\n");

 return ; }

. . .

 n = Ml*Mw/Gs;

// initialize the position of all seeds

 double S[1000][2];

for (i=0;i<n;i++){

 for (j=0;j<2;j++){ S[i][j]=0.0; }

}

 // generate seeds by random()

srand(rseed);

 for (i=0;i<n;i++)

 { S[i][0] = Ml * rand() / RAND_MAX;

S[i][1] = Mw * rand() / RAND_MAX;

if (i > 0){ m = 1; // sign for regenerate a seed

 for (j = 0; j < i; j++)

 { if (sqrt((S[i][0]-S[j][0])*(S[i][0]-S[j][0])+(S[i][1]-

S[j][1])*(S[i][1]-S[j][1]))<=Md){ m=m+1; }

 }

 if (m>1){ i=i-1; }

 else{ fprintf(outs,"%d %f %f\n",i,S[i][0],S[i][1]); }

 }

 }

}

 66

2. Computation of Voronoi diagrams

There are many algorithms and their variations that are proposed to construct

Voronoi diagrams. One of the classifications by Fortune [17] divides these into three

categories – incremental algorithms, divide-and-conquer algorithms and sweep-line

algorithms. The algorithm used in this study is the sweep-line algorithm adopted from

[11].

The sweep-line algorithm is efficient and popular. The algorithm computes the

Voronoi diagrams by sweeping the plane. When the sweep-line sweeps the plane, it

encounters the site (or seeds) for each grain before intersecting the geometric area. The

geometric area here refers the regions around the site (or seeds). Before the sweeping

line starts sweeping, the seeds are sorted in ascending order according to their values of

y-coordinate and x-coordinate.

A detailed discussion of the algorithm can be found in literature, e.g. textbook on

computational geometry books. Here, only the overall structure of the sweep-line

algorithm is given in the following code.

Input. A set }p ..., ,{p :P n1= of point sites in the plane

Output. The Voronoi diagram Vor (P) given inside a bounding box in a doubly

connected edge list D.

1. Initialize the event queue Q with all site events, initialize an empty status structure

T and an empty doubly connected edge list D.

2. while Q is not empty

3. do Remove the event with smallest y-coordinate from Q.

4. if the event is a site event, occurring at site pi

 67

5. then HANDLESITEEVENT(pi)

6. else HANDLECIRCLEEVENT(Y), where Y is the leaf of T

representing the arc that will disappear.

…

Refer to the Appendix B about the detailed process of this algorithm. The

algorithm runs in O(nlogn) time and it uses O(n) storage. The main part of the

implementation codes for the above algorithm, which is adapted from Steven Fortune’s

[18] program, is given in the following code.

voronoi(triangulate, nextsite)

{…

newsite = (*nextsite)();

while(1)

{

 if(!PQempty()) newintstar = PQ_min();

 if (newsite != (struct Site *)NULL && (PQempty()

 || newsite -> coord.y < newintstar.y

 || (newsite->coord.y == newintstar.y && newsite->coord.x <

newintstar.x)))

 {// new site is smallest

 out_site(newsite);

 lbnd = ELleftbnd(&(newsite->coord));

 rbnd = ELright(lbnd);

 bot = rightreg(lbnd);

 e = bisect(bot, newsite);

 bisector = HEcreate(e, le);

 ELinsert(lbnd, bisector);

 if ((p = intersect(lbnd, bisector)) != (struct Site *) NULL)

 68

 {

PQdelete(lbnd);

 PQinsert(lbnd, p, dist(p,newsite));

 };

 lbnd = bisector;

 bisector = HEcreate(e, re);

 ELinsert(lbnd, bisector);

 if ((p = intersect(bisector, rbnd)) != (struct Site *) NULL)

 {

PQinsert(bisector, p, dist(p,newsite));

 };

 newsite = (*nextsite)();

 }else if (!PQempty()) // intersection is smallest

 {

lbnd = PQextractmin();

 llbnd = ELleft(lbnd);

 rbnd = ELright(lbnd);

 rrbnd = ELright(rbnd);

 bot = leftreg(lbnd);

 top = rightreg(rbnd);

 out_triple(bot, top, rightreg(lbnd));

 v = lbnd->vertex;

 makevertex(v);

 endpoint(lbnd->ELedge,lbnd->ELpm,v);

 endpoint(rbnd->ELedge,rbnd->ELpm,v);

 ELdelete(lbnd);

 PQdelete(rbnd);

 ELdelete(rbnd);

 pm = le;

 if (bot->coord.y > top->coord.y)

 {

temp = bot; bot = top; top = temp; pm = re;}

 e = bisect(bot, top);

 bisector = HEcreate(e, pm);

 69

 ELinsert(llbnd, bisector);

 endpoint(e, re-pm, v);

 deref(v);

 if((p = intersect(llbnd, bisector)) != (struct Site *) NULL)

 {

PQdelete(llbnd);

 PQinsert(llbnd, p, dist(p,bot));

 };

 if ((p = intersect(bisector, rrbnd)) != (struct Site *) NULL)

 { PQinsert(bisector, p, dist(p,bot)); };

 }else break;

};

for(lbnd=ELright(ELleftend); lbnd != ELrightend; lbnd=ELright(lbnd))

 {

e = lbnd -> ELedge;

 out_ep(e);

};

}

3.4.4 File Format Converting

After computing the mesh for the solid models that are constructed by ACIS modeling

engine and saved in SAT file format, the mesh files may be passed to the file format

converter to create the file accessible by commercial FEM software tool to perform

simulation tasks. The file format converter can also be used to convert the mesh

generated by the commercial software package ANSYS to INP file format as the input

file for FEA simulation.

 70

3.5 Visualization of Simulation Results

3.5.1 Data Streaming for Co-Modeling and Co-Simulation

The product development activities could result in transmission of massive engineering

geometric and simulation data. Despite the continuous improvements in computing

hardware performance and network bandwidth, the visualization and analysis of these

large-scale data sets remains a challenging task for researchers. In this study, a client-

server software architecture is presented to support real-time collaborative design and

simulation tasks for product development purposes. The 3D objects generated by high-

performance server are transmitted to visualization clients using a highly compressed file

format, HOOPS Stream Files (HSF). Based on data streaming technology, the system

supports 3D interactive exploration of the complicated geometric models and simulation

results. Synchronous and asynchronous forms of collaboration such as real-time co-

modeling, simultaneous view and mark-up and CAE analysis interpretation are also

supported.

As discussed in the previous chapter, the implementation of CoCADE consists of

three major components: client, server and data depository. The client interface provides

functionalities such as 3D visualization, communication and interaction. The multiple

clients are run on conventional computers while the server is run on some high-

performance computer to fit the computing resource demand of engineering simulation.

The server supports collaborative design coordination, session control, 3D simulation

data generation and streaming data delivering. A file system is used as data depository

for geometric models (in SAT or HSF format) and simulation results. Figure 3-14 shows

 71

the implementation structure of data streaming for collaborative modeling and

simulation.

Figure 3-14 Implementation Structure of Data Streaming for Co-Modeling and Co-

Simulation

1. HSF data structure and 3D streaming data creation

In the data structure of HSF, the geometric data and properties are stored as a

hierarchical tree. The root of the tree is placed at the top. Each node in the tree is called

a “segment” containing geometry and attributes. The segment can have its own sub-

 72

segments. When exported, the HSF files are organized into three main sections,

including file header, data block and file termination. It is a highly compact file format

for data to be efficiently transmitted over Internet/intranet. Figure 3-15 shows the

comparison between HSF and other mainstream graphical formats.

Figure 3-15 Comparisons Between HSF and other Mainstream Graphical Formats

2. Streaming Process

The process of 3D scene graph streaming consists of two important steps: server

export phase and client import phase.

During a server export phase, the 3D streaming server generates data buffers that

contain the encoded, highly compressed, binary HSF files, which represent the 3D scene

graph objects or customized user data. These streaming files can be stored locally or sent

to a remote client as part of a message. Both HTTP and TCP/IP connections are

supported in the system. Similarly, during a client import phase, sequential 3D scene

 73

graph, which is to be parsed and inserted into appropriate data structures, are retrieved

from data buffers or remote server.

3. Connection Establishment and Session Control

Remote distributed clients send request commands to server using TCP/IP

protocol in intranet or HTTP protocol in Internet. The server validates the client request

before granting a connection to be established.

 After validation, a design session is set up as an environment for collaborative

design and 3D visualization. In the system, a Centralized Session Management

mechanism (CSM) [19] is developed to ensure effective session control. Streaming data

transfer is bound by a session. The efficiency of large-amount of data transfer depends

on available bandwidth and client PCs performance.

4. Collaborative Visualization and Co-modeling

After the connection is established, the 3D scene graph is retrieved from server

and is displayed as soon as the clients are receiving it. It allows the clients to quickly

obtain the visual feedback and interact with the 3D objects while it is still being

transmitted. A public data depository is deployed to store all versions of data. Only one

client in a design session owns the initial data for editing and analysis. A simplified copy

of design data is passed to each client in current session for collaborative 3D

visualization. Only the client who holds the control token has access to modify the

design data.

 74

3.5.2 Visualization of Simulation Results

The goal of the visualization module in CoCADE is to provide a powerful CAE pre-

processing and post-processing tool, which embraces fast and high quality graphics, user

friendly interface and smart functionality. The post-processing tool supports various

functions for the three-dimensional and two-dimensional visualization of results from

various solvers.

The supported simulation results may include: node and element results, vector

values, mesh generation results, Voronoi diagram results, and other formats of complex

FEA simulation results. In this section, the implementation of visualization of simulation

results is discussed with emphasis on the use of data streaming technology in CoCADE to

support co-visualization.

1. Data structure of simulation results

The scientific representation of the simulation results requires an effective data

structure to read in the data and store it in the memory. Of concern are the node class and

the element class because the element is the basic unit in FEA process and the node is

used to construct the element. Moreover, computation results are usually reflected on the

nodes of the product design such as vectors starting from the nodes to show the magnetic

flux distribution. Therefore, two classes are designed to hold the information of

simulation results, as shown in the source code in the next page.

 75

struct element_info{

 int ele_index;

 int material_num;

 char ele_type[8];

 int ele_connectivity[4]; //Each element is formed by 4 nodes

};

struct node_info{

 float node_coordinate[3];//each node has X, Y, Z coordinate

 float M_coor[3];

 float divM;

 float u1;

 float u2;

 float u;

 float H_coor[3];

 float Hex_coor[3];

};

2. Dynamic memory allocation

The memory allocated to hold the information of simulation results can be

extremely huge that improper handling of memory allocation could cause the program to

crash. Therefore, the memory management is critical.

There are two types of dynamic memory allocation widely used throughout the

implementation of visualization of simulation results: dynamic memory allocation of a

certain class (e.g., the node class or the element class) and dynamic memory allocation of

two-dimensional arrays. For the dynamic memory allocation of a certain class, the C++

 76

STL vector class is used. Any dynamic class that is explicitly allocated should be

explicitly de-allocated. The advantage of this class is that it automatically cleans up the

memory it needed to allocate its own data.

The relatively more difficult part is how to dynamically allocate two-dimensional

arrays that hold the node information such as their coordinates. The conventional C++

static memory allocation fails to solve this problem. The static method requires the

programmer to decide the amount of memory for the array in programming time instead

of run time. The pre-allocated memory has its maximum limit depending on different

platforms. Therefore, to handle this problem, a class called Dynamic2DArray is specially

devised. Another reason could be that many APIs of the commercial visualization

toolkits required the node information to be passed by reference in a two-dimensional

array. The implementation of class Dynamic2DArray is shown in the code below.

#pragma once

#ifndef DYNAMIC_2D_ARRAY_H_HEADER_GUARD_

#define DYNAMIC_2D_ARRAY_H_HEADER_GUARD_

#include <cstdlib>

#include <vector>

template <class T>

class Dynamic2DArray

{

private:

 Dynamic2DArray& operator=(const Dynamic2DArray&);

 const int m_row;

 const int m_col;

 T* m_data;

public:

 Dynamic2DArray(void);

 77

 const T* DataPtr() const { return m_data; };

Dynamic2DArray(int row, int col) : m_row(row),

 m_col(col),

 m_data((row!=0&&col!=0)?new T[row*col]:NULL){};

Dynamic2DArray(const Dynamic2DArray&src) : m_row(src.m_row),

 m_col(src.m_col),

m_data((src.m_row!=0&&src.m_col!=0)?new T[src.m_row*src.m_col]:NULL)

 {

 for(int r=0; r<m_row; ++r)

for(int c=0;c<m_col;++c)

(*this)[r][c] = src[r][c]

 };

 ~Dynamic2DArray(){ if(m_data) delete []m_data; }

 inline T* operator[](int i) {

return (m_data + (m_col*i));

}

 inline T const*const operator[](int i) const

 {

return (m_data + (m_col*i));

}

};

#endif //!DYNAMIC_2D_ARRAY_H_HEADER_GUARD_

 78

3.6 Summary

In this chapter, the graphical user interface and geometry processing in CoCADE are

discussed. The user interface is characterized by various features to support modeling

functionalities and simulation results visualization. After geometric model construction

and assignment of geometrical parameters and properties, the design models are further

processed to generate irregular grain shapes to emulate magnetic recording media. The

goal is to prepare the geometric models suitable for engineering numerical solution by

FEA.

 79

4. Case Study Using CoCADE

This chapter presents the case study using CoCADE to demonstrate the use of CoCADE

framework for co-modeling and co-simulation in collaborative product development. In

the first section, a brief introduction of the product development process is given.

Secondly, a discussion of the collaborative modeling functions in CoCADE is given.

Finally, a case study about the design and analysis of magnetic recording media is

presented.

4.1 Introduction to Product Development

Product development is usually a complicated and iterative process of developing

new products to meet customers’ needs. This process may involve a group of designers

from multiple disciplines and different locations. The task of developing high-tech

products is difficult, time-consuming and costly. They often evolve over time through

countless hours of research, analysis, design studies, engineering and prototyping efforts,

and finally, testing, modification, and re-testing until the design is perfected.

 The new product development process may vary among companies. Regardless

of organizational differences, a methodical development effort with well-defined product

specifications and project goals is a must. Figure 4.1 illustrates a generic product

development process.

 80

Figure 4-1 A Generic Product Development Process

 The above figure shows the generic product development process with each block

representing a stage. The highlighted blocks are of particular concern to this study.

Good concept development is crucial. This stage provides the foundation for the

development effort. In the next stage, the system-level design is to be carried out to

define primary functional sub-systems and how these systems are arranged to work as a

unit. In the detailed product design (CAD) stage, the digitized form of the product is

created, followed by the simulation and analysis (CAE) stage where the product is

assigned various properties, and simulation activities carried out to assess the product’s

performance. Before the product is sent for manufacturing, it is tested and refinement

applied if necessary.

 81

 From the above discussion, it is obvious that solving the product design

specification conflicts and meeting the customers’ requirements in the early design stage

is important, resulting in the reduction of the development cycle and saving production

costs.

4.2 Collaborative Modeling Function in CoCADE

This section illustrates a scenario where designers from different locations and research

backgrounds conduct geometric modeling activities in a distributed and collaborative

modeling environment built with CoCADE. When conducting product co-modeling

activities in such an environment, the following requirements should be met:

(1) The system must have a 3D graphical user interface that supports geometric

model creation and basic solid modeling operation like Boolean operations and

sweeping, which are considered in the development of CoCADE. The interface

should support either mouse click or dialog-based operation or both. Currently,

the popular geometric modeling engines include ACIS, ParaSolid and

CASCADE. This study uses ACIS as its geometric engine, which is programmed

in C++ language.

(2) The system must have a 3D visualization system that supports geometric model

visualization and object selection. In CoCADE, these features are available.

Meanwhile, the display functions include orbiting, zooming, and panning. Both

select by click and by window are supported in the selection function. The

selection level includes vertex, edge, face and body. Rich rendering modes such

 82

as wire-frame, Gouraud shaded mode and hidden line mode are all supported in

the visualization system.

(3) The clients must be able to store the model’s geometry and topology in industry-

recognized standard file formats so that these models can be exchanged with

other commercial CAD software packages under heterogeneous platforms. In

CoCADE, the standard file formats like SAT, HSF, SAB are supported. The

Hoops development toolkit provides the bridge between mapping of SAT file and

HSF file format, facilitating the file transmitting process.

(4) Each client must be able to collaborate with the others. The modeling operation

by a client must be able to be reflected on the screen of the other clients

immediately. In CoCADE, a master client is used to coordinate the collaborative

session and central session control mechanism is devised to ensure that no

conflicts between clients occur.

Based on the above requirements, a scenario where designers from different

locations and backgrounds conduct a part modeling activity is developed and illustrated

in Figure 4.2. In this scenario, the designers can conduct collaborative modeling within

the Local Area Network (LAN) or across the Internet. In the case of collaborating within

LAN, TCP/IP protocol is used to boost communication efficiency. In the case of

collaborating across Internet, the HTTP protocol is used.

 83

Figure 4-2 The General Diagram of the Co-Modeling and Co-Simulation

Environment

 In particular, a Boolean operation during the modeling process is highlighted in

the following diagram to show the typical geometric modeling procedure in a

collaborative modeling environment. Figure 4.3 is an example of subtraction operation

being carried out in a design process. The design first creates a solid hub model

leveraging on the primitives creation functionalities supported in CoCADE. In the next

stage, a cylinder (highlighted in yellow color) is added to the hub model. To carry out

the subtraction operation, the designer must select a “blank” (the hub) object and a “tool”

object (the cylinder). The “blank” object will be returned as the operation result.

 84

Figure 4-3 Boolean Operation Example One: Subtraction

Figure 4-4 Boolean Operation Example Two: Intersection

 85

 Another example is shown in Figure 4.4. Here the Boolean operation is

intersection. The procedure is similar with the previous subtraction operation. Care must

be taken when selecting the object because the selection sequence may influence the final

returned result, depending on which operation is executed.

4.3 Design and Analysis of Magnetic Recording Media

4.3.1 Introduction

It is very essential to consider the realistic physical microstructure when building

the mathematical model for accurately predicting the magnetic properties of recording

media. The Voronoi model [20]-[25] is used in this research to generate grain size

distribution as it adequately represents the grain structure of the magnetic media. The

grain will build up at a finite number of initial nucleation sites randomly and grows until

the two neighboring grains touch each other.

4.3.2 Design and Processing of Magnetic Recording Media

Much research into the structural details of the magnetic patterns which strore

information in magnetic recording systems has been based on micro-magnetic models of

magnetic recording media [26]-[29]. Some extremely irregular and unrealistic shapes

may be generated based on a uniform triangular, hexagonal or square seed lattice. The

finite element models of the grain structure obtained form Voronoi construction and

subsequent meshing of the polyhedral region are proposed to yield a realistic

microstructure of recording media [30].

 86

As shown in Figure 4.5, the process begins from a randomly located seed points

from which the grains are assumed to grow with constant velocity in each direction.

Thereafter, the grains are surrounded by the Voronoi cells (Figure 4.5 b). According to

the algorithm of Voronoi construction, the Voronoi cell of seed point i contains all points

of space which are closer to seed point i than to any other seed point. It is expected to

subdivide the media model into cubic cells and choose one seed point within each cell at

random to avoid highly irregular shaped grains. Once the polyhedral grain structure is

obtained, the grains are further meshed into finite elements using tetrahedral elements

[12].

Figure 4-5 Magnetic Recording Media Finite Element Model with Voronoi

Algorithm

 87

For our case study, firstly a block representing the magnetic recording media is

constructed. Thereafter, one of the surfaces of the block is extracted from the block.

This surface is then sent to compute seeds. The result of seeds computation is shown in

Figure 4.6 (b). Finally, the 2D Voronoi diagrams of the media surface are to be

computed from the seeds and then extruded in a certain direction to construct the final

media model. Figure 4.6 shows an example of the case study before the Voronoi

diagrams are extruded in a certain direction.

Figure 4-6 An Example of Magnetic Recoding Media Design and Processing

 88

Figure 4.7 shows the result of extruding the Voronoi diagrams in a certain

direction of the space. Each of the grains can be viewed as a prism.

Figure 4-7 An Example of Extrduing the Voronoi Diagrams in a Certain

Direction

After each Voronoi diagram is built, the magnetic recording media model is

sent for mesh generation. Figure 4.8 shows the mesh generation result of a single

hexahedral-shape grain. The elements in the meshed grain are tetrahedral structures.

 89

Figure 4-8 An Example of Tetrahedral Mesh Generation

4.3.3 Visualization and Analysis of Simulation Results

 Till now, the model of magnetic recoding media is ready to be fed into

simulation solvers. The simulation task can be accomplished by leveraging on

commercial CAE software tools using Finite Element Analysis (FEA). A detailed

discussion of the FEA method is beyond the scope of this study. The simulation

results are presented in a 3D viewer to the designers for visualization and analysis. As

shown in Figure 4.9, the vectors show the direction of the magnetization in the internal

part of the grain.

 90

Figure 4-9 Visualization of Simulation Results

 91

Figure 4.10 shows another example of visualization of simulation results where

the designer can cut into the interior part of the model and analyze the results. The

implementation of a cutting plane tool allows the user to take a cut-away view of the

product. As such the detailed distribution of the flux vectors inside the model can be

visualized.

Figure 4-10 An Example of Simulation Results Visualization with Cutting Plane

 92

5. Conclusions

 The state-of-the-art innovation in computer technologies has enabled product

development activities to be undertaken across distributed teams in various

organizations. A team of engineers with different expertise and backgrounds

collaborates to achieve a common goal: the development of a product that can be used

and sold. In this context the collaboration must be organized to allow a better

communication among designers [31]. Given this development, collaborative

modeling and simulation systems are emerging to support geographically separated

engineers to conduct design activities synchronously, asynchronously and

cooperatively.

 In this thesis, a framework called CoCADE is introduced to support

collaborative product development activities among geographically dispersed

organizations. The architecture of CoCADE has been described from different

perspectives such as user case view, data streaming view and static class view. This

architecture adopts a three-tiered client-server structure. The client side provides the

essential geometric modeling functionalities as well as interactive visualization tools

for analysis of sophisticated geometric models and large-scale simulation results. The

server side offers the functions of collaborative session management, multi-client

communication mechanism, engineering simulation and optimization.

The functionalities of the client interface as well as the methodology of the

geometry processing have been fully discussed and implemented. The proposed

 93

distribution of modeling functionalities is reasonably well balanced while leveraging

on the powerful CAD workstation. The powerful features of geometric processing and

simulation results visualization characterize the client side software while the server

side offers the functionalities of session management, simulation and data

coordination.

The effectiveness of the system is demonstrated through the development of

two applications: a collaborative modeling application and a CAE application

concerned with design and analysis of magnetic recording media.

In conclusion, this research focuses on geometric modeling in distributed

environment to support collaborative CAD and CAE activities. It is a research

challenge to implement a collaborative product development system based on .NET

technology [34] for distributed computing and HOOPS streaming technology for 3D

scientific data presentation. This research attempts to meet such technological

challenge. Moreover, this research has special reference to the product development

process related to magnetic recording devices. The design and realization of such

product generally involve the effective collaboration among key component

manufacturers in data storage industry. The implementation of Voronoi diagram

generation emulates the realistic irregular grain structure of magnetic recoding media,

avoiding the shortcoming of unphysical anisotropic properties yielded by regular

microstructure. Finally, the visualization of large-scale simulation results using data

streaming technology provides a useful tool for engineering analysis and optimization.

Effective methods were presented in this research to further develop co-

modeling and co-simulation in collaborative product development.

 94

References

[1] Hoffmann, C.M. Geometric and Solid Modeling. Morgan Kaufmann Publishers

Inc, 1989.

[2] Tanenbaum, A.S. and M.V. Steen. Distributed Systems, Principles and

Paradigms. pp. 494-542, Prentice Hall, 2002.

[3] Regli, W.C. Internet-enabled Computer Aided Design. IEEE Internet

Computing1(1), pp. 39 – 50, 1997.

[4] Sommer, K.O., C. Ernst and T. Ertl. Remote 3D Visualization using Image-

Streaming Techniques. International Symposium on Intelligent Multimedia and

Distance Education, 1999.

[5] Mahovsky, J. and L. Benedicenti. An Architecture for Java-based Real-time

Distributed Visualization. IEEE Transactions on Visualization and Computer

Graphics, Vol. 9, No. 4, 2003.

[6] Oven, S. http://www.andrew.cmu.edu/user/sowen/mintro.html. Mesh Research

Corner.

[7] Rogers, J.D. Modeling HFM Contractors for Systems with Interfacial

Reactions using Voronoi Tessellations: Fundamental Rigorous Models and

Simpler. Dissertation, pp.387, 1996.

[8] Kanai, Y. and S. H. Charap. Simulation of Magnetic Aftereffect in Particulate

Recording Media. IEEE Trans. Magn., Vol. 27, No. 6, pp.4972-4974, 1990.

[9] Alex, M. and D. Wachenschwanz. Thermal Effects and Recording Performance

at High Recording Densities. IEEE Trans. Magn., in press.

 95

[10] Sharrock, M.P. Time-Dependent Magnetic Phenomena and Particle-Size Effects

in Recording Media. IEEE Trans. Magn., Vol. 26, No. 1, pp. 193.

[11] Berg, M. de, M. Van Kreveld, M. Overmars and O. Schwarzkopf. Comptutational

Geometry: Algorithms and Applications, 2nd edition. pp. 2, 147-162, Springer,

2000.

[12] LaBarre, R.E. Computational Geometry Techniques for 2D and 3D Unstructured

Mesh Generation with Application to the Solution of Divergence from Partial

Differential Equations. Ph. D. dissertation, University of Connecticut, 1992.

[13] Okabe, A., B. Boots and K. Sugihara. Spatial Tessellations Concepts and

Applications of Voronoi Diagram. John Wiley & Sons.

[14] Preparata, F.P. and M.I. Shamos. Computational Geometry: An Introduction, New

York: Springer-Verlag.

[15] Armstrong, C.G., R.M. McKeag, H. Ou and M.A. Price. Geometric Processing for

Analysis. Geometric Modeling and Processing, 10 – 12 April, 2000, Hong Kong,

China.

[16] Gunzburger, M. Centroidal Voronoi Tessellations. CCS-2/CNLS Seminar, Los

Alamos National Lab, 14 May, 2003.

[17] Fortune, S. A Sweep-line Algorithm for Voronoi Diagrams. Algorithmica 2, pp.

153 – 174.

[18] S. Fortune, http://cm.bell-labs.com/who/sjf/

[19] Sun, D.W., L.W. Ruan, Z.J. Liu, J.M. Zhao, W.F. Lu and X.G. Ming.

Concurrency in a Distributed Collaborative CAD/CAE Environment. The

 96

11th ISPE International Conference on Concurrent Engineering: Research and

Applications, Jul. 2004.

[20] Zhen, J., M. Doerner and H.N. Bertram. A Growth Model for Polycrystalline Thin

Film Media: Comparison of Bicrystal and Unicrystal Grain Structures. IEEE

Trans. Magn., Vol. 36, pp. 2294-2296, 2000.

[21] Miles, J.J., M. Wdowin, J. Oakley and B.K. Middleton. The effect of cluster size

on thin film media noise. IEEE Trans. Magn., Vol. 31, pp.1013-1023, 1995.

[22] Porter, D.G. et al. Irregular Grain Structure in Micromagnetic Simulation. Journal

of Applied Physics, Vol. 79, pp. 4695-4697, 1996.

[23] Xue, J. and R.H. Victoria. Micromagnetic Calculation for Superlattice Magnetic

Recording Media. Journal of Applied Physics, Vol. 87, pp. 6361-6363, 2000.

[24] Walmsley, N.S. et al. Comparison of the Effects of Regular and Irregular Physical

Structure on the Magnetic Microstructure of Longitudinal Thin Films. J. Magn.

Magn. Mater., Vol. 170, pp. 81-94, 1997.

[25] Schrefl, T., J. Filder, and Kronmüller. Remanence and Coercivity in Isotropic

Manocrystalline Permanent Magnets. Phys. Rev. B., Vol. 49, pp. 6100-6110,

1994.

[26] Hughes, G.F. J. Appl. Phys. pp. 54, 5306, 1983.

[27] Zhu, J.G. and H.N. Bertram. J. Appl. Phys. pp. 63, 3248, 1998.

[28] Mansuripur, M. and R. Giles. Comput. Phys. pp. 4, 291, 1991.

[29] Miles, J.J. and B.K. Middleton. J. Magn. Magn. Mater. pp. 95, 99, 1991.

 97

[30] Chantrell, R.W., J. Fidler, T. Schrefl, and M. Wongsam. Micromagnetics: Finite

Element Approach. Encyclopedia of Materials: Science and Technology, pp.

5651-5661, 2001.

[31] Porter, D.G., E. Glavinas, P. Dhagat, J.A. O'Sullivan, R. S. Indeck and M. W.

Muller. Irregular Grain Structure in Micromagnetic Simulation. Journal of

Applied Physics, 1996.

[32] HOOPS Help Document, Tech Soft America.

[33] ACIS Help Document, Spatial Inc. http://www.spatial.com.

[34] Microsoft .NET Developer Center, http://msdn.microsoft.com/netframework/.

 98

Appendix A. Recent Publications

[1] X. K. Gao, Q. H. Liu, L. W. Ruan, and Z. J. Liu, “Sensitivity Analysis and Design

Optimization for Head Interconnect”, Asia-Pacific Magnetic Recording

Conference 2004 (APMRC ’04), HD02, 16 - 19 August, 2004, Seoul, Korea.

[2] L. W. Ruan, D. W. Sun, H. H. Long, Z. J. Liu, “Data Streaming for Real-Time

Collaborative Design”, International Conference on Scientific and Engineering

Computation (IC-SEC), 30 June – 02 July, 2004, Singapore.

[3] D. W. Sun, L. W. Ruan, Z. J. Liu, J. M. Zhao, W. F. Lu and X. G. Ming,

“Concurrency in a Distributed Collaborative CAD/CAE Environment”, the 11th

ISPE International Conference on Concurrent Engineering: Research and

Applications, 26 – 30 July, 2004, Beijing, P. R. China.

[4] D. W. Sun, X. H. Xiong, L. W. Ruan, Z. J. Liu, J. M. Zhao, Y. S. Wong,

“Workflow-driven Collaborative Session Management in Product Lifecycle

Management”, to be presented on the International Engineering Management

Conference (IEMC 2004), 18 – 21 October, 2004, Singapore.

 99

Appendix B. Overall Structure of Sweep Line

Algorithm for Voronoi Diagrams[11]

Algorithm VORONOIDIAGRAM(P)

Input. A set }p ..., ,{p :P n1= of point sites in the plane

Output. The Voronoi diagram Vor (P) given inside a bounding box in a doubly

connected edge list D.

1. Initialize the event queue Q with all site events, initialize an empty status

structure T and an empty doubly connected edge list D.

2. while Q is not empty

3. do Remove the event with smallest y-coordinate from Q.

4. if the event is a site event, occurring at site pi

5. then HANDLESITEEVENT(pi)

6. else HANDLECIRCLEEVENT(Y), where Y is the leaf of T

representing the arc that will disappear.

7. The internal nodes still present in T correspond to the half-infinite edges of the

Voronoi diagram. Compute a bounding box that contains all vertices of the

Voronoi diagram in its interior, and attach the half-infinite edges to the

bounding bsx by updating the doubly connected edge list appropriately.

8. Traverse the half-edges of the doubly connected edge list to add the cell records

and the pointers to and from them.

 100

The procedures to handle the events are defined as follows.

HNADLESITEEVENT(pi)

1. If T is empty, insert pi into it (so that T consists of a single leaf storing pi) and

return. Otherwise, continue with steps 2-5.

2. Search in T for the arc α vertically above pi. If the leaf representing α has a

pointer to a circle event in Q, then this circle event is a false alarm and it must

be deleted from Q.

3. Replace the leaf of T that represents α with a sub-tree having three leaves. The

middle leaf stores the new site pi and the other two leaves store the site pj that

was originally stored with α. Store the tuples <pi, pj> and <pj, pi>

representing the new breakpoints at the two new internal nodes. Perform

rebalancing operations on T if necessary.

4. Create new half-edge records in the Voronoi diagram structure for the edge

separating V(pi) and V(pj), which will be traced out by the two new

breakpoints.

5. Check the triple of consecutives arcs where the new arc for pi is the left arc to

see if the breakpoints converge. If so, insert the circle event into Q and add

pointers between the node in T and the node in Q. Do the same for the triple

where the new arc is the new arc is the right arc.

HANDLECIRCLEEVENT(Y)

1. Delete the leaf Y that represents the disappearing arc α from T. Update the

tuples representing the breakpoints at the internal nodes. Perform rebalancing

operations on T if necessary. Delete all circle events involving α from Q; these

 101

can be found using the pointers from the predecessor and the successor of Y in

T. (The circle event where α is the middle arc is currently being handled, and

has already been deleted from Q.)

2. Add the center of the circle causing the event as a vertex record to the doubly

connected edge list D storing the Voronoi diagram under construction. Create

two half-edge records corresponding to the new breakpoints of the beach line.

Set the pointers between them appropriately. Attach the three new records to

the half-edge records that end that the vertex.

3. Check the new triple of consecutive arcs that has the former lef neighbor of α

as its middle arc to see if the two breakpoints of the triple converge. If so,

insert the corresponding circle event into Q, and set pointers between the new

circle event in Q and the corresponding leaf of T. Do the same for the triple

where the former right neighbor is the middle arc.

