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Summary 

Due to the globalization of manufacturing and product development activities, 

rapid product development in distributed engineering design environments has become 

more prevalent.  Such practices can greatly shorten the product development cycle and 

lower costs.  Product design is an activity where collaboration is of vital importance.  

Therefore, Collaborative Design and Engineering has become a major issue in 

manufacturing industry where people from different fields of expertise and research 

backgrounds strongly need to co-operate.  State-of-the-art computer technologies have 

enabled the product design process to be undertaken across distributed teams in different 

locations.  Given this development, Distributed and Collaborative Design and 

Engineering Systems have been invented to support geographically separated users to 

conduct design activities synchronously, asynchronously and cooperatively.  Meanwhile, 

it is a research challenge to seamlessly integrate robust three-dimensional solid geometric 

modeling functionalities into the distributed and collaborative design software systems to 

facilitate Computer Aided Design (CAD) process and prepare geometric data for 

numerical solutions in Computer Aided Engineering (CAE). 

 In this thesis, the architecture of a distributed and collaborative design and 

engineering system, CoCADE, is proposed to address a growing industrial concern as 

evidenced from the thorough survey of current geometric modeling and distributed 

computing technologies.  Based on .NET technology, the system takes advantages of 

object-oriented method throughout its software development lifecycle.  This architecture 

adopts a three-tiered client/server model.  The client side provides the essential geometric 

modeling functionalities as well as interactive visualization tools for display or 
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modification of sophisticated geometric models and large-scale simulation results.  The 

server side offers the functions of collaborative session management, multi-client 

communication mechanism, engineering simulation and optimization. 

 It is demonstrated that the CoCADE system presented in this thesis can 

effectively support advanced product development by integrating robust geometric 

modeling functions into the distributed and collaborative environment.  The outcome of 

this research indicates that applications built on CoCADE can effectively support the 

distributed product design and innovation, engineering numerical solutions and 

engineering visualization. 

 

Keywords: geometric modeling, distributed computing, CAD/CAE, collaborative design, 

scientific data presentation. 
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1.  Introduction 

1.1 Background 

1.1.1 Introduction to Geometric and Solid Modeling 

Traditional geometric modeling identifies a body of techniques that can model certain 

classes of shape of piecewise parametric surfaces, which is followed by its development 

as a separate field in several industries, including automobile and aerospace [1].  Today, 

most of its applications stem from Computer-Aided Design (CAD)/Computer-Aided 

Manufacturing (CAM), robotics, computer graphics and so on [11]. Hoffmann [1] 

provided a view that the streams of geometric and solid modeling are converging because 

the former modeling contemplates building complete solid representations from surface 

patches and the latter strives to extend the geometric coverage.  Solid modeling began in 

the late 1960s and 1970s.  But it only gains more and more popularity and is adapted as 

primary technique to define 3-dimensional (3D) geometry by major commercial 

CAD/CAE/CAM software vendors since the 1990s. 

 Solid modeling is a method by which various solid objects are combined into a 

single 3D part design.  The real advantage of a solid modeling application is how it can 

create the desired resulting part designs by joining, intersecting and subtracting the solid 

objects from one another.  Recent solid modelers are based on solid objects being created 

by sweeping, rotating and extruding 2-dimensional wire-frame or sketch geometry.  Prior 

to this, these solid objects were formed by a variety of primitive shapes such as a block, 
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sphere, cone, cylinder, etc.  Today more and more solid modelers have abandoned the 

primitive shapes in favor of the predefined solid object library. 

 There are various ways of defining the shape of an object in digital form to a 

computer such as wire frame, boundary representation, set-theoretic, polyhedral model, 

and so on.  Each of the representation methods has its own specific strength over the 

others in terms of applicability and elegance.  However, in the commercial world of exact 

geometric modelers, virtually all CAD/CAE/CAM software products have used boundary 

representation (B-Rep) approach exclusively for solid modeling.  In B-Rep, every solid 

model is defined and stored by its boundary, which consists of vertices, edges, faces and 

explicit boundary, and includes the topology for each face. 

 The two predominant commercial solid modeling engines in the market are the 

Parasolid® and the ACIS®.  The standard file formats are .x_t and .x_b for Parasolid 

files and .SAT for ACIS files. 

1.1.2 Introduction to Distributed and Collaborative Design 

Computer Aided Engineering Design is an enabling technology that leverages on the 

powerful computer systems to support product design process and to shorten the product 

development cycle.  Over the years, substantial progress has been made in the 

development of major computer aided engineering design systems.  These systems 

typically include CAD, CAE, and design optimization modules.  Figure 1.1 outlines the 

relationship between them. 

 CAD was first introduced by Ivan Sutherland’s Sketchpad at MIT and the DAC-1 

project at General Motors in the early 1960s.  Different industries developed their own 

CAD applications, delivered on multi-user mainframes, in the 1960s and 1970s.  Unlike 
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the bundled hardware and software systems in the 1980s, hardware and software 

components are separated in current CAD implementations.  As a result, CAD software 

most often executes locally on powerful UNIX or Windows-Intel workstations in a 

distributed environment [2].   

 

 

 

 

 

 

 

 

 

 

Figure 1-1 CAD/CAE Process Outline 

Since 1990s, solid modeler based CAD/CAE/CAM software has been widely 

used for product design, simulation, analysis and manufacturing.  The solid modeling 

technology facilitates product design engineers with a variety of modeling functions like 

creation of solid primitive shapes, performing of Boolean operations on solid, sheet or 

wire models, etc.  Apart from the above modeling capabilities, solid modeling provides 

product manufacturers a much more complete and accurate component description than 

the traditional blueprint or IGES file.  Recent advancement in solid modeling systems 
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provides the capability of input and output of solid models in different file formats, thus 

facilitating data exchange with major computer aided design and manufacturing systems. 

CAE generally relies on 3D geometric models, which defines the shapes of real-

world objects, description of component attributes and physical conditions, and uses 

advanced numerical techniques such as finite element method (FEM), finite difference 

method (FDM) or boundary element method (BEM).  Over the years, CAE software 

developers have implemented numerous systems in which engineers are able to design, 

analyze, simulate and visualize the performance of even the most complicated products.  

A variety of CAE software such as ANSYS���ADAMS� and ANSOFT��have enabled 

manufacturing companies to greatly shorten the product design and development cycle, 

improve product quality and lower costs. 

One of the typical characters in CAE is the extremely large amount of result data 

generated during geometric modeling and product analysis stages.  How to efficiently 

handle the result data with the currently limited network bandwidth and computer 

performance has become of imperative concern for CAE solution researchers.  In this 

situation, data streaming is one of the efficient techniques used to distribute visualization 

task onto heterogeneous computer systems and thus to reduce network load. 

In conclusion, major manufacturing companies in fields are increasingly investing 

in distributed CAD, CAE or CAM systems so as to remain competitive in the global 

market. 
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1.2 Main Issues in Distributed Systems 

1.2.1 The Client-Server Model 

The client-server model is an approach to organize distributed systems.  In this model, a 

client requests a service from a server by sending it a request while a server implements a 

specific service.  Communication between a client and a server can be implemented by a 

simple connectionless or reliable connection-oriented protocol.  This client-server 

communication is shown in Figure 1.2. 

 

 

 

 

 

 

 

 

Figure 1-2 Communication between the Clients and a Server 

Together, the two groups  form a complete computing system with a distinction of 

responsibilities.  The client is responsible for directly interfacing with the user, such as 

modeling and display management.  The server typically contains the core applications to 

provide client-server communication, coordinate different design sessions and assure data 

consistency.  From the perspective of physically distributing client-server application 

across several computers, there are two types of computers: a client computer containing 
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the programs that implement user-interface and a server computer containing the 

programs that implement the processing applications and database.  However, modern 

multi-tiered client-server architectures often distribute the programs in the processing 

applications across different computers, leading to what is referred to as physically two-

tiered architecture.  A server may sometimes need to act as a client, leading to physically 

three-tiered architecture.  Finally, when the clients are distributed as well, we may have 

the case where there is no server at all.  In such a case, it is often referred to as a peer-to-

peer architecture.   

When applying the distributed model and technology in the CAD/CAE systems, 

we can have three major types of distributed CAD/CAE systems that are of particular 

interest to researchers. 

1. Two-tiered distributed CAD/CAE systems 

 In a typical two-tiered distributed CAE/CAE system, we often make a distinction 

between only two kinds of machines: clients and servers.  The programs in the 

application logic can be distributed in the client or the server, or across both machines.  

One possible arrangement is to have only the data presentation on the client machine and 

the applications in the server having remote control over the presentation of data, as 

shown in Figure 1.3.  In this scenario, Remote Procedure Call (RPC) provides an 

effective mechanism for the client to communicate with the applications residing at the 

server. 
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Figure 1-3 Typical Two-tiered Client-Server Architecture 

 During a RPC process, the client stub usually makes a call by bundling the 

parameters into a message and requesting that the message be sent to the server.  The 

server stub in the server machine unpacks the parameters from the message and pushes 

them into a local stack.  Then it calls the server procedures to perform its work and obtain 

the results.  Finally, the retuned results are sent back to the caller.  To define the 

interfaces in the RPC procedures, a special interface definition language (IDL) is adopted 

to map these interfaces to the programming language used in developing the applications.  

 Continuing along the above client-server organization, we may also move the 

application logic to run on the client machines.  This arrangement is particular popular in 

the case where the client machine is a workstation, connected through a network to a 

distributed file system or database.  The server is in charge of all the operation on files or 

database entries while the client’s local disk may contain part of the data.  For example, a 

client browsing the Web can accumulate a huge data cache of most recent accessed Web 

pages [2]. 
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2. Three-tiered distributed CAD/CAE systems 

In the previous section on two-tiered client-server architecture, we distinguish 

between only clients and servers.  However, the server may sometimes play a role as a 

client, as shown in Figure 1.4, leading to a three-tiered architecture.  A typical example of 

where this model is used is in transaction processing.  In this case, a separate transaction 

monitoring process coordinates all transactions across possibly different data servers [2].  

The application logic is separated from the data presentation layer and database layer.  

The programs in the application logic layer usually reside on a separate server but they 

may additionally be partly distributed across the client and server machines, making this 

model more flexible than the two-tiered one.  Furthermore, decoupling the application 

logic from the data allows data from multiple sources to be used in a single transaction. 

Major features of the three-tiered architecture include multiple operating systems, one or 

more programming languages, local and remote databases, inter-program 

communications and message routing etc. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-4 Three-tiered Client-Server Architecture 

 



 

   9 

3. Peer-to-peer distributed CAD/CAE systems 

Although less apparent, clients can be distributed as well, as shown in Figure 1.5.  

For simple collaborative applications, we may even have the case where there is no 

server at all.  For example, a client seeks contact with another client, after which both 

clients launch the same application for starting a session.  A third client may contact 

either one of the two, and subsequently launch the same application software [2].   

The recent wide spread use of peer-to-peer applications such as SETI, Napster, 

and Gnutella indicates that there are many potential benefits to fully distributed peer-to-

peer systems.  The characteristic of peer-to-peer distributed system is that every client in 

the network is an autonomous system.  And two applications can communicate via 

sockets to collaborate over network, which usually adopts TCP socket programming 

paradigm.  One of the shortcomings of TCP socket programming is that programmers 

must describe the complicated socket connection process, after which a procedure can be 

called to set up connection, listen for and accept connections, bind to available port 

number, and so on. 

 

 

 

 

 

 

 

Figure 1-5 Peer-to-peer Distributed Architecture 
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1.2.2 Distributed Objects and .NET Remoting Technology 

1. Distributed Objects 

A key characteristic of an object is its separation between data (often called the 

“state”) and operations (often called the “methods”) on those data.  The process can 

manipulate the state of an object by invoking an object’s methods, which is made 

possible through an object’s interface.  When the notion of an object is applied in 

distributed computing, distributed objects are formed to facilitate clients’ access of 

services and resources.  The separation between an interface and its object allows us to 

deploy an interface at one machine while its object is placed at another machine, leading 

to what is referred to as a remote object.  The state itself can be physically distributed 

across multiple machines as well [2].   In such an environment, distribution transparency 

is achieved by remote access of objects because the distributed objects can be virtually 

anywhere on the network.  When a client requests access to a remote object’s methods, a 

proxy (similar to the stub in RPC) implementing the interface is loaded into the client’s 

address space first to marshal the request into messages.  The skeleton (similar to the 

server stub) un-marshals the incoming messages to invoke the requested methods in the 

object at the server and passes the reply message to the client’s proxy. 

 As a first example, we take a look at one of the major distributed object 

paradigms – CORBA.  CORBA is the acronym of Common Object Request Broker 

Architecture.  This distributed object-based system and its specifications have been 

designed by a nonprofit organization called Object Management Group (OMG).  One of 

the major goals of this system is to provide a mechanism so as to solve many of the 

interoperability problems between various applications resided across the network.  
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CORBA uses the remote-object model that we discussed previously.  CORBA is a typical 

example illustrating that making a distributed systems is a somewhat difficult task. 

 

  

 
 
 
 
 
 
 
 
 

 

 

Figure 1-6 General Architecture of CORBA [2] 

 
 As shown in Figure 1.6 [2], the Object Request Broker (ORB) is the foundation of 

any CORBA distributed systems.  It acts as a low-level object bus that is responsible for 

the communication between remote server objects and their distributed clients, ensuring 

that an object invocation is sent to server and its reply returned to the client.  Internet 

Inter-ORB Protocol (IIOP) is the implementation of General Inter-ORB Protocol (GIOP) 

on top of TCP, which enables interoperability between clients and object servers from 

different CORBA system manufacturers.  Interface Definition Language (IDL) specifies 

the objects and their services.  To request a service, a client sends an invocation request 

message comprising an object reference, the method’s name and all input parameters to 

CORBA object server.  A CORBA server object interacts with ORB either through the 

ORB interface or Object Adapter.  When the ORB in the object server receives the 
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request, it looks for the implementation of the requested method and passes the 

parameters to it.  Finally, a reply message containing the returned values and output 

parameters is sent back to the client.   

 Another paradigm of distributed object-based system is the Distributed Common 

Object Model (DCOM) growing out from Microsoft’s Common Object Model (COM), 

which is the core technology in Windows operating systems. 

 It is sometimes hard to make a distinction between COM, COM+ and DCOM.  

COM+ can be viewed as a superset of COM consisting of various services that were 

previously offered as add-ons to COM.  In particular, COM+ includes facilities for a 

server that can efficiently handle a large number of objects.  DCOM can be viewed as an 

extension to the architecture of COM.    However, the features supporting a process to 

communicate with components placed on another machine are often the same for both 

COM and DCOM.  DCOM also adopts the remote-object model as most of other object-

based systems.  Both synchronous and asynchronous communications are supported in 

DCOM, which means that a client invoking an object may not necessarily be blocked 

until a reply is received.  In contrast to CORBA’s language-specific interfaces, each 

server object in DCOM supports and implements multiple interfaces in the language-

independent binary form, which allows these server components to be written in a variety 

of programming language like Java, C++, Visual Basic, and Delphi.  Meanwhile, 

Microsoft Interface Definition Language (MSIDL) can generate these interfaces each 

implementing different functions of the object.   
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Figure 1-7 General Organization of DCOM 

 

As shown in Figure 1.7, the communication in DCOM is supported through the 

mechanism of Object Remote Procedure Call (ORPC).  On the client side, a process sets 

up a binding to a remote object by accessing the Service Control Manager (SCM), which 

is responsible for activating objects, and the registry.  The client proxy is responsible for 

marshaling (or un-marshaling) the invocation and sending a request to (or receiving a 

reply from) the remote object.  The client object can invoke the exposed methods of the 

server object by the interface pointer as if the object is resided in local address space.  On 

the server side, the object stub is responsible for processing the invocation from the 

client.  To instantiate a new object with a Class Identifier (CLSID) for a client, the SCM 

receives this CLSID and looks it up in its local registry to find the relevant file so as to 

load the class object.  To facilitate this process in the server, DCOM provides just-in-time 

(JIT) activation to efficiently activate and destroy objects. 
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2. NET Remoting Technology 

Coming with many powerful yet simple features, the .NET Remoting is a new 

framework developed by Microsoft to replace DCOM discussed in the previous section.  

This rich and extensible framework enables objects residing in different application 

domains, in different processes or in different machines to interact with each other 

seamlessly, which is made possible and supported through its runtime and programming 

model.   

The .NET Remoting framework supports the functions such as object activation, 

lifetime management, distributed identities as well as communication channels.  There 

are two main object activation models, client-activated objects model and server-

activated objects model, to manage the lifetime of remote objects under the support of 

.NET framework.  In the case of a client-activated objects model, a lease-based lifetime 

manager controls these objects to ensure that the objects are garbage collected when its 

lease expires.  In the case of a server-activated objects model, the programmer can choose 

“single call” or “singleton” to manage the lifetime of the objects. 

Figure 1.8 shows an example of a client calling a remote object where the called 

methods are implemented.  In order to invoke the methods of the remote object running 

inside a different machine or process, the client creates an object proxy called 

TransparentProxy.  For the client, this Object Proxy looks like a local object with the 

public methods.  When the methods of the remote object are called, an IMessage with the 

call parameters will be created and forwarded to a RealProxy class.  The message is 

serialized into a stream of bytes using a Serialization Formatter and then is sent into a 

Client Channel that is responsible for communicating with the server. 
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Figure 1-8 An Example of Calling a Remote Object in .NET Remoting Framework 

 

 The client channel communicates with the server channel to transfer the message 

across the network.  After receiving the message, the sever channel passes it to the De-

serialization Formatter for de-serialization so that the called methods can be sent to the 

remote object.  The remote object must be implemented in a class derived from 

System.MarshalByRefObject that has methods to manage lifetime service, and it is only 

confined to the application domain where it is created. 

 The two main channels used to transport messages to and from remote objects are 

HTTP channel and TCP channel.  HTTP uses the Simple Object Access Protocol (SOAP) 

to communicate with remote objects.  In this case, all messages are changed into XML 

and serialized by SOAP formatter first and then a required SOAP is added to the message 

stream.  Finally, the stream is transferred to the target server by HTTP protocol.  Similary 

in the situation of transporting a message using TCP channel, a binary formatter is used 
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to serialize all messages to a binary stream and transferred to target server by TCP 

protocol. 

 In conclusion, the .NET framework provides an almost perfect paradigm that 

meets the requirements of most distributed applications.  It provides a powerful, 

extensible and language-independent framework to develop robust and scalable 

distributed systems.  This is also why .NET remoting is chosen in this research to support 

and implement the distributed functionalities in CoCADE. 

 

1.2.3 Data Streaming for Distributed Collaborative CAE 

In most cases, the raw engineering design data from large 3D solid models and 

engineering simulation results are relatively large.  Traditionally, the data could not be 

displayed before the entire data sets are received.  In a distributed design environment, 

especially in a real-time collaborative design process, it creates a bottleneck for 

efficiently and effectively sharing geometric information of large 3D solid models.  

Streaming technology is one of the key technologies for efficient transmission and 

visualization of high volume data.  Although this technology has already being applied to 

audio and video transmission, it is still a research challenge to develop a strategy for the 

effective transmission and visualization of engineering data.  Engel et al. [4] introduced a 

web-based visualization approach to enable the remote control of a visualization 

application by image streaming and CORBA (Common Object Request Broker 

Architecture) techniques.  This approach is only applicable in some basic visualization 

functions.  It shows limitations, e.g. level of user interactivity, multi-user capabilities, and 

rendering synchronization.  The use of CORBA technique also exposes security problem 
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because it requires the configuration of network firewall.  Mahovsky et al. [5] have 

developed a Java-based system for real-time distributed visualization by using a cluster of 

conventional PCs.  This system adopts an extensible and object-oriented model that 

accommodates a variety of rendering algorithms and data sets.  However, collaborative 

visualization function for multiple users to operate on a shared data set is not supported in 

this system.  The system is not feasible to be deployed on the Internet so as to provide 

remote real-time visualization facilities. 

In this thesis, the CoCADE framework is a distributed system that supports real-

time collaborative visualization of complex engineering geometric models and simulation 

results.  Multiple users can conduct engineering design activities such as real-time co-

modeling, simultaneous 3D view and mark-up, text-chatting etc.  Data streaming 

technology is utilized in the scenario where data sets are to be re-ordered according to the 

clients’ perspective before transmitted.  In addition, simplified mesh approximation of the 

geometry of each individual part may also need to be created and downloaded in a 

hierarchical order, therefore, each part can be delivered incrementally.  An open standard 

stream-able format for exchanging of visualization data between disparate applications, 

HOOPS Stream File, is employed in this system and will be extended to support varied 

custom types of engineering data.  

 

1.3 Main Modules in CAE Systems 

The CAD/CAE process of a product usually involves intensive interactions between 

different groups of designers.  Current existing computer-based systems have been 

greatly enhanced to support such interaction by facilitating the iteration process between 
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computer aided design and engineering analysis and vice versa.  The major design 

activity iteration process is shown in Figure 1.9. 

 

 

 

 

 

 

 

 

 

Figure 1-9 Product Design Process 

 As discussed in the above, the model design and engineering analysis of a product 

is an iteration process involving different modules of CAD and CAE systems.  First of 

all, the part designers use the computer aided design systems to construct the geometric 

design models.  After being assigned physical attributes, these part models are assembled 

to form a complete product design model in order to test its performance in CAE stage 

(Figure 1.9).  Subsequently, the product design models are sent to CAE engineers for 

realistically simulating the functioning of the design models in real life.  The CAE 

engineers analyze, simulate and visualize the performance of the design models.  Based 

on the simulation feedbacks, some optimization approaches may be applied to achieve 

better product performance in a holistic way.  If the simulation results are satisfactory, the 
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validated product design models will be passed for manufacturing, otherwise revisions 

will be communicated to the CAD engineers to modify the design models. 
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Figure 1-10 Different Modules in CAD/CAE Systems 

 As illustrated in Figure 1.10, there are three major modules, namely geometric 

design module, engineering analysis module and visualization module, in a typical CAD 

or CAE system. 

1.3.1 Geometric Design Module 

The geometric design module usually provides the designers with a graphical user-

friendly interface where they can have easy and quick access to the geometric data.  It 

means the user interface should not be only suitable for seasoned designers, but also for 

inexperienced designers who are beginners. 

 The common attributes in the geometric design module might include 1) 

capabilities to allow more and more geometric operations to be performed on the design 
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model, 2) support for data filtering of huge amount of information, 3) view, print and 

interrogate capabilities for design models in a variety of file formats, 4) portability across 

major operating systems such as UNIX and Windows [3].  To meet these requirements, 

the classes used to represent a geometric object in typical CAE applications usually 

comprise the geometric data and topology information.  These data information must be 

able to be saved to and restored from a save file such as ACIS’ SAT file.  The geometric 

data generated by this module can be saved as a variety of file formats such as SAT, 

IGES, HSF, VRML, etc.   

 One of the important steps in geometric design process is mesh generation so as to 

prepare the geometric model for engineering simulation and analysis.  Mesh generation is 

a process that breaks up a physical domain into smaller sub-domains (elements) in order 

to facilitate the numerical solution of a partial differential equation [6].  The surface or 

2D domain of the geometric model can be subdivided into triangular, quadrilateral or 

hexagonal elements while the 3D volume can be subdivided into tetrahedral or hexahedra 

elements.  In recent decades, finite element methods are increasingly used as principle 

numerical solutions to simulate industrial engineering designs and physical processes.  

The accuracy of finite elements method depends heavily on the number of the elements.  

Generally, the finer the elements, the better the simulation.  However, one should realize 

that the computation time for numerical solution also increases dramatically when the 

number of elements increases.  So one should be acutely aware of the balance between 

the number of elements and computation time. 
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1.3.2 Engineering Analysis Module 

The engineering analysis module has been improved substantially in recent years to 

incorporate various engineering tools for more efficient and realistic simulation of the 

product performance.  Appropriate computational means such as finite element methods 

(FEM) and boundary element method (BEM) are used to facilitate the simulation process.  

FEM required that the input data be 2D or 3D mesh comprising numerous structured or 

unstructured mesh elements such as triangle, tetrahedron, hexahedra, quadrilateral, etc. 

1.3.3 Visualization Module 

Advances in the development of CAE visualization module provide designers with 

visualization interface to view in high resolution the large amount of result data from 

different viewing modes such as the orthographical and perspective views.  This module 

is usually coupled to the raw data source.  In common commercial post process 

applications, markup tools and rendering modes are available for designers to manipulate 

simulation results.  Designers will further post process the designed model if the 

performance is not satisfactory according to industrial standards. 

 

1.4 Voronoi Diagrams or Tessellations 

The Voronoi Diagrams or tessellation is a method to construct randomly sized and 

shaped subdivisions or “cells” (polygons) of space [7].  Its application in this thesis is to 

emulate the realistic physical microstructure of perpendicular recording media.  Voronoi 

Diagrams are part of an encompassing field of Computational Geometry, which emerged 

from the field of algorithms design and analysis in the late 1970s and has grown into a 
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successful research discipline.  The Voronoi Diagrams and its graph theory dual, 

Delaunay Tessellation or Triangulation, and the numerical solution of partial differential 

equations have recently become the major applications of computational geometry.  

 With the advent of more powerful and efficient computer technology (hardware 

and algorithms), Voronoi Diagrams have been widely used in various research fields, 

particularly in the area of micro-magnetic modeling and simulation of magnetic recording 

media.  How to build a mathematical model to accurately describe the physical 

characteristics of magnetic recording media is very essential in micro-magnetic media 

simulation.   

In recent years, much attention [8][9][10] has been attracted to the study of 

microstructure of the magnetic recording media, which composes of grains that vary in 

both shape and size.  However, these approaches are mostly based on uniform hexagonal 

grains shapes.  Therefore, the effect of irregular grains shapes, which result from 

variations in the media fabrication process, is not taken into account.  In this model, 

irregular grain shapes are created to emulate the realistic physical microstructure of 

perpendicular recording media. 

1.4.1 Brief History and Applications 

As a great antiquity, the formal Voronoi diagram method can be historically traced back 

and credited to mathematicians around the turn of the century, G. L. Dirichlet (1850) and  

G. F. Voronoi (1908).  Descartes in his The Principles of Philosophy (1644) used 

Voronoi-like diagrams to show a solar system consisting of vortices, as shown in Figure 

1.11.  A star is at the center and a convex region of influence surrounds it.  
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 During the late 19th and early 20th centuries, Voronoi diagrams had been re-

invented many times.  As a result many synonyms have been used to describe basically 

the same techniques such as Direchlet domain, proximal polygon, S cell and tile.  Okabe 

and John D. Rogers et al report that, during the early 1970’s, many algorithms had been 

developed to construct Voronoi diagrams in two and three dimensions primarily 

stimulated by the developments in the computer science fields.  The concept of Voronoi 

diagrams and the associated algorithms, computer implementation, and applications have 

proliferated over the next twenty years.  Its use to construct the structures of different 

materials continues to help understanding of complex distributed behavior of the 

materials.  What is of interest here is the recent application of Voronoi Diagrams to the 

random arrangement of recording media grains and the application of Voronoi Diagrams 

to automatic mesh generation in numerical solution of partial differential equations 

(Taniguchi, Arakawa, and Kobayashi 1991; LaBarre 1992). 

 

 

 

 

 

 

 

Figure 1-11 A Solar System Consisting of Vortices 
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1.4.2 Theory and Basic Properties 

The concept of Voronoi Diagrams is simple and can be easily defined.  A reduced 

introduction is given here taken with reference to [11].  Firstly, the distance between two 

points p and q is denoted dist (p, q).  In the plane, dist (p, q) is given by: 

22 )()(:),( yyxx qpqpqpdist −+−=  

Let  }p ,...,p ,{p :P n21= be a set of n distinct points in the plane; these points are 

the cells (or sites).  The Voronoi diagram is defined as the subdivision of P into n cells, 

one for each site in P.  A point q belongs to a cell pi (corresponding to site pi) if and only 

if ),(),( ji pqdistpqdist <  for each ijPp j ≠∈ , .  The Voronoi diagram P is denoted 

Vor(P).  The cell of Vor(P) that corresponds to a site pi is denoted V(pi).  In other words, 

V(pi), as a subset of Vor(P), is the locus of points q such that each point in V(pi) is nearer 

to pi  than is any point not in V(pi) (Brostow, Dussalt, and Fox 1978).  Secondly, the 

structure of a single cell is described as follows.  For two points p and q in the plane, its 

bisector is defined as the perpendicular bisector of the line segment pq .  This bisector 

splits the plane into two half-planes.  The open half-plane that contains p is denoted 

),( qph and the open half-plane that contains q is denoted ),( pqh .  Notice that 

),( qphr ∈ if and only if ),(),( qrdistprdist < .  Therefore, V(pi) can be defined as: 

),()( ,1 jiijnj pphpiV ≠≤≤= Ι  

 Thus, V(pi) is the intersection of n-1 half-planes and an open convex polygonal 

region bounded by at most n-1 vertices and at most n-1 edges, as illustrated in Figure 

1.12. 
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Figure 1-12 Voronoi Diagrams as a Planar Subdivision with Straight Edges 

 

A generalized Voronoi diagram is defined as follows. 

 
Definition 1. The Generalized Voronoi Diagram in d dimensional Euclidean space, Ed, is 

a set of unique convex regions or cells called Voronoi Polyhedrons (Vi).  These 

polyhedrons contain only one nucleus (Pi) (not necessarily centered within the 

polyhedron) of a set of nuclei distributed within a larger space.  The polygons under 

discussion bound or enclose a subset of space closer to a specific nucleus (Pi) than to any 

other nucleus (Pj).  More formally: 

},...2,1),,(),(:{:)( njPxdPxdExPV jii =≤∈=  

 In this thesis, the 2D planar case is of primary concern.  Some of the Voronoi 

diagram properties are listed below [12][13][14]. 

 
Property 1. The Voronoi Diagram is a unique tessellation of the set of distinct points of P where 

)2(},...,,{ 2
21 ∞≤≤⊂= nEpppP n  
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Property 2. Let P be a set of n point sites in the plane.  If all the sites are collinear then 

Vor(P) consists of n-1 parallel lines.  Otherwise, Vor(P) is connected and its edges are 

either segments or half-planes. 

 
Property 3. For 3≥n , the number of vertices in the Voronoi diagram of a set of n point 

sites in the plane is at most 2n-5 and the number of edges is at most 3n-6. 

 
Property 4. The average number of Voronoi edges per Voronoi Polygon does not exceed 

six.  The maximum number of Voronoi vertices in a 2D Voronoi diagram is 2n-5. 

 

1.5 Objective of This Study 

Distributed and Collaborative Design and Engineering has become a major industrial 

issue.  From the previous discussion, it can be seen that a substantial amount of research 

work has been done in the field of distributed and collaborative CAD/CAE systems based 

on CORBA, DCOM or Java RMI technologies.  Most of these systems are suitable for 

deployment only within the Intranet.  For example, DCOM has its limit when the system 

is deployed over the Internet because it tends to communicate over a range of ports that 

are typically blocked by the network firewall.  The .NET Remoting technology from 

Microsoft has been tailored to solve this problem.  However, how to integrate robust 3D 

geometric modeling functionalities into a distributed and collaborative environment so as 

to better prepare the geometric models for engineering simulation and analysis remains a 

critical problem to be solved. 

 Therefore, this thesis proposes a three-tier architecture called CoCADE 

(Collaborative Computer Aided Design and Engineering) to facilitate the development of 
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an open distributed and collaborative CAD/CAE system based on .NET Remoting 

technology.  Robust 3D geometric modeling functionalities are integrated into the system 

to allow users to conveniently browse and manipulate a product model as well as process 

the model for numerical solution by leveraging on powerful CAD stations.  Necessary 

design coordination mechanisms are also provided to guarantee an effective collaborative 

session without generating conflicts.  Meanwhile, scientific data presentation tools with 

rich features are provided to give intuitive and vivid visualization of engineering 

simulation results.  The general structure of CoCADE is shown in Figure 1.13. 

 

 

 

 

 

 

 

Figure 1-13 General Architecture of CoCADE 

 The fat client side consists of several modules such as Model Construction, 

Geometric Data Processing, Geometric Data Transmission and Scientific Data 

Presentation.  The server side comprises five components.  The coordination Server is 

responsible for managing design sessions and facilitating client-server communication.  

The CAD Server is used for geometric model construction and the CAE Server for CAE 

tasks.  The Data Manager handles database and file system transactions to ensure data 

consistency.  
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1.6 Dissertation Outline 

A brief dissertation outline is given as follows.  Chapter 1 introduces the research 

background related to co-design and co-simulation in collaborative product development 

and some key technologies used to build distributed systems.  The three-tiered software 

architecture of Collaborative Computer Aided Design and Engineering system 

(CoCADE) is discussed in Chapter 2.  In Chapter 3, the detailed implementation of 

geometric modeling functionalities to support co-modeling and co-simulation in 

distributed design is presented.  Chapter 4 focuses on the implementation of collaboration 

functions in CoCADE.  In Chapter 5, a case study based on CoCADE is given to 

demonstrate its feasibility and effectiveness.  Finally, conclusions and future work are 

discussed in Chapter 6. 
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2. CoCADE: A Framework for Collaborative 

Modeling and Simulation in Product 

Development 

2.1 System Architecture of Collaborative CAE Framework 

A framework for distributed and collaborative computer aided design and engineering, 

CoCADE, employs a three-tiered Client/Server architecture as shown in Figure 2.1.  

Different modules of a distributed system spread across the network with care taken in 

maintaining network load balance and maximizing the utilization of the client machine’s 

performance.  Applications are divided between client side software and server side 

software.  The fat client method is adopted while developing the client software to offer 

full local design and interactive functions efficiently.  HTTP, TCP/IP and FTP protocols 

are supported to fulfill the communication between client and server.   

It is aimed to offer the following facilities for distributed and collaborative design 

and engineering: (1) an integrated CAD/CAE environment for multiple users to browse 

and operate on a shared solid model over the Intranet/Internet synchronously, (2) 

effective geometric data processing functionalities to facilitate numerical solutions for 

engineering simulation, (3) graphical visualization tools for large-scale engineering 

simulation results, (4) an infrastructure to enable users to access workflow services. 
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Figure 2-1 Software Architecture for Distributed and Collaborative Design and 

Engineering 

 As shown in Figure 2.1, the three-tiered software system can be deployed on 

either Intranet or Internet.  The presentation tier is usually a stand-alone Window-based 

application with rich CAD/CAE /Collaboration functions.  In addition, a thin Web-based 

workflow client that is embedded into a browser can be used to enable the users to access 

workflow services.  The workflow client comes with workflow editing functions.  The 
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business logic tier, which consists of multiple functional modules, is the central 

coordination part of CoCADE.  The workflow engine as the core of the workflow model 

is responsible for explaining and executing the messages from Web-based client. The 

workflow can communicate with the other modules of the server side via Coordination 

server to keep itself updated about the collaborative sessions activities.  The messages 

transferred between them can be in XML format. The data tier is a data depository used 

to provide persistent storage and maintain product data consistency. 

2.2 User Case View of CoCADE System 

From an application user’s point of view, a qualified CoCADE system must meet the 

following general requirements: 

� The users should be provided with a friendly GUI with 3D modeling, mouse-

clicking and dialog-based tools. 

� Major industry-recognized CAD/CAE file formats can be loaded into the GUI for 

viewing and editing.  General geometric modeling and operation functions should 

be available. 

� An effective user management mechanism should be devised to grant team 

members different privileges according to their roles in the team. 

� A coordination mechanism should be devised to ensure that collaboration between 

members would not result in conflict.  Shared data consistency should be 

guaranteed. 

� Collaboration tools such as text-chat or audio/video tools should be available to 

ease communication process among team members.   



 

   32 

� Any changes such as marking up or highlighting made by a team member on a 

shared model should be reflected on the screen to other members. 

To better describe these domain-dependent requirements, the schematic diagram 

is used to show the use case for the online session as in Figure 2.2.  A team of designers 

with different industrial expertise usually performs the product development work 

together.  Therefore, the CoCADE system must provide an effective mechanism to 

manage the team member’s privilege according to their roles and positions in the design 

team.    From the perspective of a team manager, there are four role types of members 

who have access to the application; they are the leader or initiator, CAD member, CAE 

member and workflow planner.    The leader or initiator is the only one who has the 

privilege to create/terminate a collaboration session.  Meanwhile, the leader can approve 

or reject the other members’ application to join or leave the session.  CAD and CAE 

members are granted the status according to their expertise so they can use the CAD or 

CAE functions with minimum external support.  Any member who has the privilege to 

collaboration functions can discuss with each other throughout the whole design session.  

The workflow planner plans and harmonizes the whole product development process.  

All the CAE or CAE members must follow the pre-defined workflow and perform 

product design activities accordingly.  
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Figure 2-2 Users Case Diagram of CoCADE System 

 

2.3 Data Streaming View of CoCADE System 

As the development of product design advances, the amount of raw product design data 

such as large 3D solid models and engineering simulation result, is increasing speedily.  

Visualization of the product data provides benefits in helping detect and resolve problem 

early in the product development cycle, thus saving time and cost.  Traditionally, these 
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raw data could not be visualized before the entire data sets are entirely received.  In a 

distributed design environment like CoCADE, especially in a real-time collaborative 

design process, it creates a bottleneck for updating effectively so as to keep the clients’ 

information consistent with the server.   

Streaming technology is one of the key technologies for efficient transmission and 

visualization of high volume data.  Although this technology has already being applied to 

audio and video transmission, it is still a research challenge to develop a strategy for the 

effective transmission and visualization of engineering data.  Engel et al. introduced a 

web-based visualization approach to enable the remote control of a visualization 

application by image streaming and CORBA (Common Object Request Broker 

Architecture) techniques [2].  This approach is only applicable in some basic 

visualization functions.  It shows limitations, e.g. level of user interactivity, multi-user 

capabilities, rendering synchronization.  The use of CORBA technique also exposes 

security problem because it requires the configuration of network firewall.  Mahovsky et 

al. have developed a Java-based system for real-time distributed visualization by using a 

cluster of conventional PCs [3].  This system adopts an extensible and object-oriented 

model that accommodates a variety of rendering algorithms and data sets.  However, 

collaborative visualization function for multiple users to operate on a shared data set is 

not supported in this system.  The system is not feasible to be deployed on the Internet so 

as to provide remote real-time visualization facilities. 

In this research, we describe a sub-system of CoCADE that supports real-time 

collaborative visualization of complex engineering geometric models and simulation 

results.  Multiple users can conduct engineering design activities such as real-time co-
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modeling, simultaneous 3D view and mark-up, text-chatting etc.  Data streaming 

technology is utilized in the scenario where data sets are to be re-ordered according to the 

clients’ perspective before transmitted.  In addition, simplified mesh approximation of the 

geometry of each individual part may also need to be created and downloaded in a 

hierarchical order, therefore, each part can be delivered incrementally.  An open standard 

stream-able format for exchanging of visualization data between disparate applications, 

HSF, is employed in this platform and will be extended to support varied custom types of 

engineering data.  

From the perspective of visualization data flow, Figure 2.3 shows the architectural 

modules of CoCADE as a real-time collaborative design system, which includes 

engineering simulation module, data streaming server module and interactive 

visualization module.  The system is developed on the basis of the object-oriented design 

concept.  

 

 

 

 

 

 

 

 

Figure 2-3 Data Streaming View of CoCADE System 
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Firstly, the CAE simulation module takes in input data the geometric models with 

various attributes such as material properties, center of gravity etc.  The CAE simulation 

module uses appropriate computational means like FEM or BEM to carry out the 

engineering simulation process.  As a result, large-scale raw data sets are generated 

during this phase.  Sequentially, these raw data sets are post processed by efficient data 

extraction algorithms in the streaming server.  The streaming server module delivers 

highly elegant 3D scene graphs in streaming file formats (HSF Format) to represent the 

characteristics of simulation results. Finally, the 3D scene graphs are sequentially 

streamed to the distributed real-time interactive visualization system and displayed to 

clients.  

2.4 Static Class View of CoCADE System 

 The UML static class view of CoCADE system is shown in Figure 2.4.  On the 

client side, the MFC Document/View application architecture is adopted which includes 

CoCADEApp, CoCADEDoc, CoCADEView and CoCADEFrm (CoCADEChildFrm).  

The other classes developed to accomplish functional modules are centered on the 

classes.   

The CoCADEDoc class provides the basic functionalities for user to access 

geometric data.  Standard operations are supported, such as creating a geometric model, 

loading and saving.  The file can be loaded and saved locally on client machine or 

remotely on server machine, depending on whether the file resides on client or server 

machine.  The above mentioned functions are implemented in the methods of 

OnOpenDocument(), OnNewDocument() and OnSaveDocument().  
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 The CoCADEView class associated with CoCADEDoc class is the interface 

through which the user can interact with the geometric data.  The fundamental CAD/CAE 

visualization and operation tools like zoom, rotation, wire-frame, markup, Boolean 

operation and sweeping etc, are all contained in this view class.  In addition, this class is 

characterized by providing rich features for three-dimensional visualization of large-scale 

CAE simulation result data sets.  For example, the popular tetrahedral mesh suitable for 

numerical solution can be displayed and evaluated before sending to the FEM solver.  

After simulation is carried out, simulation results can be displayed, for example, by 

colored arrows that represent 3D vectors at the nodes in the spalce of the solution 

domain.  Another issue of concern while developing distributed system is how to keep 

the volume of geometric data transmitted across network to the minimum level and, in 

the meantime, give user a satisfactory visual effect of geometric data.  Data streaming 

technology discussed in the next chapter is used to solve this problem. 
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Figure 2-4 Static Class View of CoCADE System 

 
 
 

The class NetworkDialog encapsulates all the response functions that a user may 

need to communicate with a server.  The method OnCreateSession() is used by the 

leader/initiator to initialize a collaboration session.  After that, other team members can 
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join the session by providing #SessionName, #SessionPassword and other information 

like server address or URL address, and invoking the method OnJoinSession() and 

OnConnectServer(). 

In a distributed and collaborative design system, the design process highly 

depends on the effective communication among the multiple clients as well as between 

the clients and the server.  On the server side, MessageHandler is responsible for 

managing the collaborative design process between clients.  This class provides the 

method of ConferToken() to grant a team member a token so that he will have the 

privilege to modify the geometric data in a collaborative session.  Only one member in a 

design team can hold the token in a design session.  This is to eliminate the possible 

conflict of concurrent multiple modifications and ensure data consistency.  A team 

member can be forced to release the token to other members by the leader/initiator.  Also, 

when a shared geometric data is modified, the change must be immediately broadcast to 

all other members in the same team.  This task is accomplished via the method of 

UpdateData(). 

Another issue of concern is the session management in the collaborative design 

process.  The collaborative activities can occur synchronously or asynchronously, where 

the team members contribute to a product design session with their expertise.  In the 

asynchronous scenario, the designer may carry out different sessions simultaneously 

depending on whether or not these sessions are independent on each other.  In the 

synchronous scenario, some team members can carry out the same design task 

collaboratively in real-time mode.  SessionManager class is devised to handle both the 

synchronous and asynchronous collaborative sessions. 
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The ErrorHandler class is used to safeguard the design sessions according to 

computer resources such as memory, CPU usage etc.  Each session has a pre-defined 

maximum number of members who can collaborate simultaneously.  Error message 

would be returned if this max number were reached.  This is to ensure the design session 

would not be suspended due to overuse of computer resources. 
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3. Client Interface and Geometry Processing 

Module 

3.1 Overview 

The client side in CoCADE, called CoClient, is presented as a Graphical User Interface 

(GUI) for users to input data and output results.  It is designed as a multi-window 

interface that supports a variety of geometric modeling functionalities.  Moreover, 

different clients in different locations can conduct real-time collaborative design activities 

like co-modeling, co-viewing, co-simulation, and text-chat discussion.  After constructing 

geometric models and assigning geometrical parameters and properties to them, the 

geometric models are further processed to generate irregular grain shapes to emulate 

magnetic recording media models.  The goal is to prepare the geometric models suitable 

for engineering numerical solution.  The grain generation algorithm is based on the 

concept of the Voronoi algorithm. 

This chapter first discusses the graphical user interface and interactive 

functionalities in CoClient, followed by study of data collaboration for geometric model 

construction and discretization of the design model for engineering numerical solution.  

Finally, visualization of engineering simulation results is given. 

3.2 Design Details of Graphical User Interface 

In CoCADE, the client module is designed as a multi-window user interface that supports 

various modeling functionalities such as creation of solid primitive models, viewing and 



 

   42 

marking up of solid/mesh parts, Boolean operations, file formats conversion, engineering 

simulation result display and so on. 

The “fat client” mode is employed in the client-side programming to provide 

powerful functionalities for CAD/CAE usage so the client-side program can be used as a 

stand-alone tool for product design when the user is working in asynchronous mode.  The 

web-based approach often leads to restriction on client side functionality and may 

compromise efficiency.  As a result, the CoClient is deployed as a stand-alone MFC 

application in an EXE file to fully utilize client computer resources and reduce network 

load, while the workflow editor is deployed as a browser-based application downloaded 

from server-side because it is a data intensive application as compared to computation 

intensive applications and a thin client approach is well suited.  This deployment scheme, 

however, requires the installation of software modules on the client-side before it can be 

used.   

 

 

 

 

 

 

 

 

 

Figure 3-1 Snapshot of CoCADE Client Interface in a Collaborative Design Session 



 

   43 

Figure 3-1 is a snapshot of the client interface in a collaborative design session.  

On the right hand side of the interface, the collaboration information is shown, which 

includes session and client names, client status (leader or team member), and real-time 

network connection messages.  As shown in Figure 3-2, the web-based workflow client is 

developed to help coordinate the product design process.  The workflow planner 

predefines the design and simulation sequence by using workflow charts and diagrams.  

These charts and diagrams are saved in XML files on the server side and can be 

downloaded to the client’s browser.  This is to ensure that all the members in a same team 

will follow the pre-defined design process and be kept updated about the design process 

immediately once a design task is finished. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2 Snapshot of CoCADE Web-based Workflow Client 
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3.2.1 Interactive Functionalities Supported 

In CoClient, extensive interaction functionalities for CAD modeling and CAE analysis 

are supported.  This interaction module resides on the client side.  It takes advantage of 

the ample functions typically provided in a Window-based environment.  A full range of 

interactive functionalities is implemented to facilitate the modeling process, e.g. mouse 

clicking, dialog-based, and keyboard input etc.   

 The classical concept of Object-Oriented (OO) analysis is used to effectively 

design and implement different functions in the interaction module.  Each modeling 

function is encapsulated in a class.  The class controls the behaviors of mouse click and 

keyboard input and invokes the relevant method in the class to respond.  For example, 

Figure 3-3 illustrates the sequence of respective response to the event of mouse clicks 

when a user creates a block and a cylinder and then intersects both primitives by invoking 

the Boolean Operation method. 

 The block and cylinder creation requires user to specify two and three vertex 

coordinates respectively.  For the block, they are the coordinates of two ends of its 

diagonal.  For the cylinder, they are the two coordinates for two ends of its circle 

diameter and the coordinate for its height.  To create a block and a cylinder with mouse 

clicks, a user first clicks the mouse to specify the first position of each primitive.  After 

the first position is specified, the geometric toolkit provides a “rubber band” tool to draw 

a virtual frame of the block or the cylinder circle until the user specifies the second 

position.  Then the virtual frame disappears.  For the cylinder, the virtual frame 

disappears when coordinates of the third point is defined.   
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Figure 3-3 Sequential Responses to Mouse Click Events 

Each primitive is treated as an object in CoClient.  Before carrying out a Boolean 

operation, the user needs to select the first object called “tool” object and the second 

object called “blank” object.  The “blank” object will be returned as the resulting object 

of the Boolean operation.  The following code shows the details of how the Boolean 

operation is implemented.  

 

int HOpBooleanSelect::OnRButtonUp(HEventInfo &event) 

{ 

 BooleanOperation m_pBO=GetBooleanOperation(); 

 if ( m_pBO!= none)  //m_pBO is the pointer to selected objects 
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 { 

HSelectionSet * m_Selection=(HSelectionSet *) m_pView->GetSelection(); 

  

int iSelCount=m_Selection->GetSize(); //number of selected items 

 if (iSelCount<=1) 

{  

   m_Selection->DeSelectAll(); 

   SetBooleanOperation(none); 

 } 

 else{ 

   ENTITY * tool=0;  

   ENTITY * blank=0; 

   ENTITY * result=0; 

   outcome o; 

   BOOL_TYPE bp; 

   HC_KEY hc_tool, hc_blank; 

  

   int iBlank=1; 

    

   hc_tool=m_Selection->GetAt(0); 

   tool=HA_Compute_Entity_Pointer(hc_tool,BODY_TYPE);  

 ((HSolidModel *)m_pView->GetModel())->DeleteAcisEntity(tool); 

 

   o=api_initialize_booleans(); 

   assert(o.ok()); 

  switch (m_pBO) 

{ 

    case  unite: 

        

     bp=UNION; 

     break; 

 

    case  subtract:  
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     bp=SUBTRACTION; 

     break; 

 

    case  intersect: 

        

     bp=INTERSECTION; 

     break; 

  } 

  while(iSelCount!=iBlank){  

   hc_blank=m_Selection->GetAt(iBlank); 

   blank=HA_Compute_Entity_Pointer(hc_blank);  

 ((HSolidModel *)m_pView->GetModel())->DeleteAcisEntity(blank);  

 //Carry out the operation by using API provided by ACIS kernel 

o=api_boolean((BODY*)tool,(BODY*)blank,bp, 

NDBOOL_KEEP_NEITHER,(BODY*&)result); 

    assert(o.ok()); 

    tool=blank; 

    blank=0; 

    iBlank++; 

   }  

   HC_Open_Segment_By_Key(m_pView->GetModel()-

>GetModelKey()); 

// Put each entity in a separate segment so that we can easily apply 

// transformations to separately created entities  

 

   HC_Open_Segment(""); 

   HA_Render_Entity((ENTITY*)tool); 

 ((HSolidModel *)m_pView->GetModel())->AddAcisEntity(tool); 

   HC_Update_Display(); 

 

   o=api_terminate_booleans(); 

   assert(o.ok()); 

 

   HC_Close_Segment(); 
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   m_Selection->DeSelectAll(); 

  } 

 } 

 SetBooleanOperation(none); 

 return(HOP_READY);  

} 

 

3.2.2 Implementation Class Hierarchy 

As CoClient is mainly designed to run on Microsoft’s Windows platform, it naturally 

adopts the Document/View application architecture of Microsoft Foundation Classes 

(MFC) and HOOPS/ACIS interface for MFC as development tools.  HOOPS toolkit 

provides an application wizard to create the application skeleton of CoCADE and connect 

this skeleton to MFC.  Figure 3-4 illustrates the implementation class hierarchy of 

CoCADE.  

In CoClient, the concepts of object, class, polymorphism and inheritance from OO 

analysis are used as main development approaches to build the system.  The advantage of 

the object-oriented design includes early identification of system requirements and 

application of a consistent approach throughout the entire software development life 

cycle.  It also facilitates reusability and maintenance of the software source codes. 
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Figure 3-4 Implementation Class Hierarchy of CoCADE 
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3.3 Data Collaboration 

3.3.1 Geometric Data Structure 

In CoCADE, the ACIS geometric kernel is used to construct design models.  This 

geometric kernel uses Boundary Representations (B-rep) data structure to describe 

models of arbitrary complexity.  An entity is the most basic ACIS object that is 

implemented in C++ class ENTITY.  All other geometric and higher model objects are 

derived from the ENTITY class.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5 Model Object Decomposition Data Structure 
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Figure 3-5 shows the model object decomposition structure.  Different entity 

classes like the solid, sheet, wire and mixed classes can be decomposed into the above 

classes by following the structure from top to bottom.  There are two types of class: 

geometry class and topology class.  The topology class contains pointers to the 

corresponding geometry class.  These classes provide the data and methods that are 

tailored to support the operations of a solid modeler.  The arrows show the hierarchical 

relationship between different classes and the data structure traversal direction to search a 

specific entity.  All these geometric data are assembled into a central class called 

ENTITY_LIST that has variable length.  The contents of ENTITY_LIST are hashed so 

that they can be located relatively quickly. 

3.3.2 Geometric Data Transmission 

Product development process requires people from different fields of expertise and 

research backgrounds to collaborate.  The design model construction or modification 

operations incurred by a team member must be displayable on the other members’ 

screens.  Therefore, an effective geometric data transmission mechanism should be 

devised to meet this requirement. 

As discussed in the previous chapter, there are two types of clients in a 

collaborative design session: leader/initiator and team member.  There can be only one 

leader/initiator who creates the design session and leads the design activities while there 

can be multiple team members (CAD members or CAE members) who undertake the 

design activities.  A token will be circulated around team members in the online 

collaboration session.  Only the one who holds the token has access to modify the 
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original data.  The member who holds the token is not necessarily the same member who 

holds the original data.   

The leader/initiator designates one team member to hold the original copy of 

design data in ACIS format.  Each of the other members has a local copy of the design 

data for visualization in HSF format.  The creation or modification of a design model 

must be applied on the original data.  The design data of other members’ sites are updated 

immediately after a modification takes place.  Figure 3-6 shows the flowchart of creating 

a solid cylinder in a stand-alone mode or collaboration mode. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6 An Example of Collaborative Solid Model Creation 
 

The program decides whether the client is in collaboration mode according to the 

variable m_pClientDlgBar.  If the client is not in a collaborative session, then the method 

CreateSolidCylinder() will be simply invoked to create the model locally without 
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transmitting geometric data to the other clients.  Otherwise, if the client is in a 

collaborative session and holding a token, the program will look at its ClientID variable.  

If the ClientID is not zero, which means the client holding the token does not have the 

original design model residing in its machine, the input geometric parameters will be 

transmitted as instructions to the client who holds the original design model.  The results 

will be broadcast to the other clients to update their models.  If the ClientID is zero, 

which means the client has the original design model residing in its machine, it is not 

necessary to transmit the geometric parameters as commands to the other clients.  The 

modification will be directly applied on the original data residing in its machine.  Only 

the result information is transmitted to the other clients for visualization.  The 

transmitting message is tagged with either “O_OPERATION_CREATE_CYLINDER” or 

“V_VIEW_CREATE_CYLINDER” to indicate whether it is a modification operation or a 

visualization update operation.  For the client where the original data resides, the 

entity_list_class.add() method adds an entity to the list.  The list can be saved as .SAT or 

.SAB files. 

 The following codes illustrate how the creation of a solid cylinder model is 

implemented.   

 
void CoCADEView::OnSolidmodelSolidcylinder() 

{ 

CCoCADSolidCylinder * m_CreateSolidCylinderDlg=new CCoCADSolidCylinder(); 

   

if (m_CreateSolidCylinderDlg->DoModal() == IDOK){ 

if (m_CreateSolidCylinderDlg->cyl_r==0 || m_CreateSolidCylinderDlg->cyl_h ==0){ 

   AfxMessageBox("Please specify the radius or height!"); 

   return;  

} 
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 char operationData[1024]; 

 sprintf(operationData,"%f %f %f %f %f", m_CreateSolidCylinderDlg->cyl_x, 

  m_CreateSolidCylinderDlg->cyl_y, m_CreateSolidCylinderDlg->cyl_z, 

  m_CreateSolidCylinderDlg->cyl_r, m_CreateSolidCylinderDlg->cyl_h); 

 

  CString tempString=operationData; 

 

  if (m_pClientDlgBar){ 

   if (m_pClientDlgBar->m_hasToken){ 

    if (m_pClientDlgBar->m_pNetInfor->clientID!=0){ 

 Cstring operationString="O_OPERATION_CREATE_CYLINDER " +tempString; 

  m_pClientDlgBar->UpdateDisplayInformation(operationString,true); 

     return; 

} 

   }else{ 

   AfxMessageBox("You don't own control right currently.\n"); 

    return; 

} 

  } 

  CreateSolidCylinder(operationData,tempString.GetLength()); 

 } 

} 

 

void CoCADEView::CreateSolidCylinder(const char *in_data,int data_length) 

{… 

 ENTITY_LIST entity_list_class; 

    BODY* cyl_body; 

    memcpy(data, in_data, data_length);    data[data_length] = '\0'; 

    sscanf(data, "%f %f %f %f %f", &btm_ctr.x, &btm_ctr.y, &btm_ctr.z,  

     &cyl_radius, &cyl_height); 

… 

 outcome o; 

 o=api_solid_cylinder_cone (bottom_center,top_center, cyl_radius, cyl_radius, 

cyl_radius,NULL, cyl_body);  
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 assert(o.ok()); 

 

 HA_Render_Entity((ENTITY*)cyl_body); 

 ((HCoCADEModel *)m_pHView->GetModel())->AddAcisEntity(cyl_body); 

  

 entity_list_class.add(cyl_body); 

 … 

 if (m_pClientDlgBar) 

  if (m_pClientDlgBar->m_pNetInfor->clientID==0){ 

… 

HUtility::URIencode("cylinders", (int) strlen("cylinders"), encoded_segment_name); 

 

sprintf(message, "V_VIEW_CREATE_CYLINDER %s %f %f %f %f %f %d %f %f %f 

%f %f %f",   encoded_segment_name, btm_ctr.x, btm_ctr.y, btm_ctr.z,  

      cyl_radius, cyl_height, num_sides, pos.x, pos.y, pos.z, up.x, up.y, 

up.z); 

 

  CString messageString=message; 

  m_pClientDlgBar->UpdateDisplayInformation(messageString,false); 

…  

} 

} 

 

 The implementation codes for creating a geometric model from message are 

shown in the next page.  This method is invoked on the clients who do not possess the 

token/control right over the design model.  Unlike the original solid models constructed 

by ACIS APIs, the models residing in these non-token holders’ machines are constructed 

by HOOPS APIs and for viewing only.  The HOOPS API HC_Insert_Cylinder() is used 

to insert a cylinder that is specified with two points and a radius plus an option string to 

specify which of the end caps are to be drawn.  The advantage here is that only a few 
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geometric parameters are transmitted as text message over network instead of 

transmitting the whole files, which often leads to heavy network load and low-efficient 

rendering. 

 

void CoCADEView::CreateCylinderFromMessage(const char *in_data, unsigned int 

data_length) 

{ 

char data[8192]; 

HPoint cyl_center, pos, up; 

int num_sides; 

float cyl_radius, cyl_height; 

…     

    memcpy(data, in_data, data_length); 

    data[data_length] = '\0'; 

 

    sscanf(data, "%s %f %f %f %f %f %d %f %f %f %f %f %f", 

encoded_segment_name,  

&cyl_center.x, &cyl_center.y, &cyl_center.z, &cyl_radius, &cyl_height, &num_sides, 

&pos.x, &pos.y, &pos.z, &up.x, &up.y, &up.z); 

 

    unsigned long n; 

    HUtility::URIdecode((const char *)encoded_segment_name, segment, &n); 

… 

 HPoint top, bottom; 

bottom = cyl_center; 

 top.x=bottom.x; top.y = bottom.y + cyl_height; top.z = bottom.z; 

    

 HC_Insert_Cylinder (&bottom, &top, cyl_radius, "both"); 

… 

} 
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3.4 Geometry Processing 

3.4.1 Overview 

This section discusses the processing of the geometric models constructed by CoClient.  

Processing geometric models for finite element analysis is a major factor in the time 

required to develop and optimize a design [15].  More specifically, the term of geometry 

processing in this thesis refers to two processes: Voronoi Diagrams generation and 

Tetrahedral mesh generation.  The Voronoi Diagram generation with a given set of seeds 

is implemented in combination with the tetrahedral mesh generation scheme that follows 

in order to achieve adaptive mesh generation.  Furthermore, in this particular research, 

the Voronoi diagram generation is also used to create the cells modeling the grain 

structure of magnetic recording media. 

 Figure 3-7 shows the different stages starting from solid model construction to 

mesh generation with output file from each stage.  From the top of Figure 3-7, the models 

produced by the solid modeling module can be either sent directly to generate mesh or to 

generate seeds.  The seeds generation is a prerequisite for Voronoi diagrams generation.  

Following the seeds generation is the Voronoi diagrams generation that outputs .VOR 

files.  The geometrical parameters and properties will be then attached to .VOR files.  

This is followed by passing the VOR files to the tetrahedra mesh generation module, 

which outputs the .MESH files.  Finally, the mesh files are converted into .INP file 

format.  INP files is the required file format for the finite element analysis module in 

CoCADE. 
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Figure 3-7 Different Stages in the Process of Geometric Processing 

 
 

3.4.2 Definition of Data 

The definition of data includes four types of file formats: (1) definition of seeds 

generation results (.SED), (2) definition of Voronoi diagrams results (.VOR), (3) 
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definition of mesh generation results (.MESH) and (4) definition of file format for Finite 

Element Analysis (.INP). 

 

 

 

 

 

 

 

 

 

Figure 3-8 An example of Geometrical Parameters Definition 
 

1. Definition of seeds generation results 

A geometric object can be defined with geometrical parameters, which can be 

extracted from the solid model and can be stored in a text file when necessary.  Figure 3-

8 shows an example of defining a block with parameters and its associated file.  The “#” 

symbol represents the number or the value. 

Seeds generation is the first step in the process of Voronoi diagrams generation.  

The grains of the Voronoi diagrams are generated from the seeds, which are defined in a 

two-dimensional plane.  For example, the plane can be the top surface of the block 

defined above.  Care must be taken to ensure there is a minimum distance between any 

two seeds so that the seeds will not overlap with each other.  The values of the distance 
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between any two seeds comply with Gaussian distribution.  Figure 3-9 shows the file 

format of seeds generation results which can be saved in a text file with suffix “*.sed”. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

Figure 3-9 An Example of Seeds File Format 

 
 

2. Definition of Voronoi diagrams results 

Given the seeds, the Voronoi diagram will be computed according to the 

definition described in Section 1.4.2 and output to a text file with suffix “*.vor”.  The 

file format is shown in Figure 3-10. 
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Figure 3-10 An Example of Voronoi Diagrams File Format 

 
 

There are four components in a Voronoi diagrams file.  The first component is the 

coordinate information of sites, which correspond to the seeds information.  Each seed is 

equivalent to a site in the Voronoi diagrams.  The second component is the perpendicular 

bisector of the line segment between the two sites.  As shown in the figure, the bisecting 

line is an output in the form of a line formula.  The third component is the vertex.  As 
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shown in the diagram, the vertex is where the two bisectors meet.  The final component is 

the edge representing the line segment by connecting two vertexes.  As is known, each 

site which is numbered in the Voronoi diagram may have several edges surrounding it.  

The site number, to which the edge belongs, is given as the first value of the component, 

followed by two vertex numbers as two ends of the edge. 

3. Definition of mesh generation results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-11 An Example of Mesh Generation File Format 

 
 

The file format for the generated mesh is relatively simple as shown in Figure 3-

11.  Each row in the file represents an element by specifying its element number and the 

four vertexes forming the tetrahedral element.  The file is output as a text file with the 

suffix “*.mesh”. 

4. Definition of file format for Finite Element Analysis 
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The file format for Finite Element Analysis (FEA) is given as an ASCII file with 

the file extension of “*.inp”.  This file format can also be used to represent the FEA 

results.  Figure 3-12 shows the file format of “*.inp”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-12 Input File Format for FEA Analysis 

One of the features of INP file format is that it is a time-dependent (multi-step) 

file format.  Relevant simulation results from a certain stage can be attached to the trail of 
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the file.  The geometric model’s material properties can also be reflected in the file by 

specifying the material values.  

3.4.3 Voronoi Diagrams 

1. Seed generation 

As discussed in the previous section, the Voronoi diagrams are based on 

randomly generated seeds.  Figure 3-13 illustrates a Voronoi diagram for 10 randomly 

selected sites in a square [16].  The computation of the seeds is a Poisson point process.   

 

 

 

 

 

 

 

 

 

 

Figure 3-13 Voronoi Diagrams for 10 Randomly Selected Sites in a Square 

The detailed implementation codes are as given in Figure 3.17. 

 

void CSolidHoopsView::OnVoronoitessellationSeadsgeneration() 

{ 

double Ml, Mw, Gs, Md; //media length, width, grain size, mini-distance; 
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int n, i, j, m, rseed = 11000; //generate for random() 

FILE *outs; 

 if ((outs = fopen("Seeds.sed", "wt")) == NULL) { 

      fprintf(stderr, "Cannot open output file.\n");  

      return ; }  

. . . 

 n = Ml*Mw/Gs; 

// initialize the position of all seeds 

 double S[1000][2];  

for (i=0;i<n;i++){ 

 for (j=0;j<2;j++){  S[i][j]=0.0; } 

} 

 // generate seeds by random() 

srand(rseed); 

 for (i=0;i<n;i++) 

 { S[i][0] = Ml * rand() / RAND_MAX; 

S[i][1] = Mw * rand() / RAND_MAX; 

if ( i > 0){ m = 1;  // sign for regenerate a seed 

  for ( j = 0; j < i; j++) 

   { if ( sqrt((S[i][0]-S[j][0])*(S[i][0]-S[j][0])+(S[i][1]-

S[j][1])*(S[i][1]-S[j][1]))<=Md ){  m=m+1; } 

   } 

 if ( m>1 ){ i=i-1; } 

  else{ fprintf(outs,"%d %f %f\n",i,S[i][0],S[i][1]);   } 

 } 

      } 

} 
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2. Computation of Voronoi diagrams 

There are many algorithms and their variations that are proposed to construct 

Voronoi diagrams.  One of the classifications by Fortune [17] divides these into three 

categories – incremental algorithms, divide-and-conquer algorithms and sweep-line 

algorithms.  The algorithm used in this study is the sweep-line algorithm adopted from 

[11].   

The sweep-line algorithm is efficient and popular.  The algorithm computes the 

Voronoi diagrams by sweeping the plane.  When the sweep-line sweeps the plane, it 

encounters the site (or seeds) for each grain before intersecting the geometric area.  The 

geometric area here refers the regions around the site (or seeds).  Before the sweeping 

line starts sweeping, the seeds are sorted in ascending order according to their values of 

y-coordinate and x-coordinate. 

A detailed discussion of the algorithm can be found in literature, e.g. textbook on 

computational geometry books.  Here, only the overall structure of the sweep-line 

algorithm is given in the following code.  

 

Input. A set }p ..., ,{p  :P n1= of point sites in the plane 

Output. The Voronoi diagram Vor (P) given inside a bounding box in a doubly 

connected edge list D. 

1. Initialize the event queue Q with all site events, initialize an empty status structure 

T and an empty doubly connected edge list D. 

2. while Q is not empty 

3.  do Remove the event with smallest y-coordinate from Q. 

4.  if the event is a site event, occurring at site pi 
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5.   then HANDLESITEEVENT(pi) 

6.   else HANDLECIRCLEEVENT(Y), where Y is the leaf of T 

representing the arc that will disappear. 

… 

 

  

Refer to the Appendix B about the detailed process of this algorithm.  The 

algorithm runs in O( nlogn ) time and it uses O( n ) storage.  The main part of the 

implementation codes for the above algorithm, which is adapted from Steven Fortune’s 

[18] program, is given in the following code.   

 

voronoi(triangulate, nextsite) 

{… 

newsite = ( *nextsite )(); 

while(1) 

{ 

 if(!PQempty()) newintstar = PQ_min(); 

 if (newsite != (struct Site *)NULL  && (PQempty()  

   || newsite -> coord.y < newintstar.y 

    || (newsite->coord.y == newintstar.y && newsite->coord.x < 

newintstar.x))) 

 {// new site is smallest  

  out_site(newsite); 

  lbnd = ELleftbnd(&(newsite->coord)); 

  rbnd = ELright(lbnd); 

  bot = rightreg(lbnd); 

  e = bisect(bot, newsite); 

  bisector = HEcreate(e, le); 

  ELinsert(lbnd, bisector); 

  if ((p = intersect(lbnd, bisector)) != (struct Site *) NULL)  
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  {  

PQdelete(lbnd); 

   PQinsert(lbnd, p, dist(p,newsite)); 

  }; 

  lbnd = bisector; 

  bisector = HEcreate(e, re); 

  ELinsert(lbnd, bisector); 

  if ((p = intersect(bisector, rbnd)) != (struct Site *) NULL) 

  {  

PQinsert(bisector, p, dist(p,newsite));  

  }; 

  newsite = (*nextsite)();  

 }else if (!PQempty())  // intersection is smallest 

 {  

lbnd = PQextractmin(); 

  llbnd = ELleft(lbnd); 

  rbnd = ELright(lbnd); 

  rrbnd = ELright(rbnd); 

  bot = leftreg(lbnd); 

  top = rightreg(rbnd); 

  out_triple(bot, top, rightreg(lbnd)); 

  v = lbnd->vertex; 

  makevertex(v); 

  endpoint(lbnd->ELedge,lbnd->ELpm,v); 

  endpoint(rbnd->ELedge,rbnd->ELpm,v); 

  ELdelete(lbnd);  

  PQdelete(rbnd); 

  ELdelete(rbnd);  

  pm = le; 

  if (bot->coord.y > top->coord.y) 

  {  

temp = bot; bot = top; top = temp; pm = re;} 

  e = bisect(bot, top); 

  bisector = HEcreate(e, pm); 
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  ELinsert(llbnd, bisector); 

  endpoint(e, re-pm, v); 

  deref(v); 

  if((p = intersect(llbnd, bisector)) != (struct Site *) NULL) 

  {  

PQdelete(llbnd); 

   PQinsert(llbnd, p, dist(p,bot)); 

  }; 

  if ((p = intersect(bisector, rrbnd)) != (struct Site *) NULL) 

  { PQinsert(bisector, p, dist(p,bot)); }; 

 }else break; 

}; 

for(lbnd=ELright(ELleftend); lbnd != ELrightend; lbnd=ELright(lbnd)) 

 {  

e = lbnd -> ELedge; 

  out_ep(e);  

}; 

}

 

3.4.4 File Format Converting 

After computing the mesh for the solid models that are constructed by ACIS modeling 

engine and saved in SAT file format, the mesh files may be passed to the file format 

converter to create the file accessible by commercial FEM software tool to perform 

simulation tasks.  The file format converter can also be used to convert the mesh 

generated by the commercial software package ANSYS to INP file format as the input 

file for FEA simulation.  
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3.5 Visualization of Simulation Results 

3.5.1 Data Streaming for Co-Modeling and Co-Simulation 

The product development activities could result in transmission of massive engineering 

geometric and simulation data.  Despite the continuous improvements in computing 

hardware performance and network bandwidth, the visualization and analysis of these 

large-scale data sets remains a challenging task for researchers.  In this study, a client-

server software architecture is presented to support real-time collaborative design and 

simulation tasks for product development purposes.  The 3D objects generated by high-

performance server are transmitted to visualization clients using a highly compressed file 

format, HOOPS Stream Files (HSF).  Based on data streaming technology, the system 

supports 3D interactive exploration of the complicated geometric models and simulation 

results.  Synchronous and asynchronous forms of collaboration such as real-time co-

modeling, simultaneous view and mark-up and CAE analysis interpretation are also 

supported. 

As discussed in the previous chapter, the implementation of CoCADE consists of 

three major components: client, server and data depository.  The client interface provides 

functionalities such as 3D visualization, communication and interaction.  The multiple 

clients are run on conventional computers while the server is run on some high-

performance computer to fit the computing resource demand of engineering simulation.  

The server supports collaborative design coordination, session control, 3D simulation 

data generation and streaming data delivering.  A file system is used as data depository 

for geometric models (in SAT or HSF format) and simulation results.  Figure 3-14 shows 
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the implementation structure of data streaming for collaborative modeling and 

simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-14 Implementation Structure of Data Streaming for Co-Modeling and Co-

Simulation 

1. HSF data structure and 3D streaming data creation  

In the data structure of HSF, the geometric data and properties are stored as a 

hierarchical tree.  The root of the tree is placed at the top.  Each node in the tree is called 

a “segment” containing geometry and attributes. The segment can have its own sub-
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segments.  When exported, the HSF files are organized into three main sections, 

including file header, data block and file termination.  It is a highly compact file format 

for data to be efficiently transmitted over Internet/intranet.  Figure 3-15 shows the 

comparison between HSF and other mainstream graphical formats. 

 

 

 

 

 

 

 

 

 

 

Figure 3-15 Comparisons Between HSF and other Mainstream Graphical Formats 

 
2. Streaming Process 

The process of 3D scene graph streaming consists of two important steps: server 

export phase and client import phase.   

During a server export phase, the 3D streaming server generates data buffers that 

contain the encoded, highly compressed, binary HSF files, which represent the 3D scene 

graph objects or customized user data.  These streaming files can be stored locally or sent 

to a remote client as part of a message.  Both HTTP and TCP/IP connections are 

supported in the system. Similarly, during a client import phase, sequential 3D scene 
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graph, which is to be parsed and inserted into appropriate data structures, are retrieved 

from data buffers or remote server. 

3. Connection Establishment and Session Control 

Remote distributed clients send request commands to server using TCP/IP 

protocol in intranet or HTTP protocol in Internet.  The server validates the client request 

before granting a connection to be established.   

 After validation, a design session is set up as an environment for collaborative 

design and 3D visualization.  In the system, a Centralized Session Management 

mechanism (CSM) [19] is developed to ensure effective session control.  Streaming data 

transfer is bound by a session.  The efficiency of large-amount of data transfer depends 

on available bandwidth and client PCs performance. 

4. Collaborative Visualization and Co-modeling 

After the connection is established, the 3D scene graph is retrieved from server 

and is displayed as soon as the clients are receiving it.  It allows the clients to quickly 

obtain the visual feedback and interact with the 3D objects while it is still being 

transmitted.  A public data depository is deployed to store all versions of data. Only one 

client in a design session owns the initial data for editing and analysis.  A simplified copy 

of design data is passed to each client in current session for collaborative 3D 

visualization.  Only the client who holds the control token has access to modify the 

design data. 
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3.5.2 Visualization of Simulation Results 

The goal of the visualization module in CoCADE is to provide a powerful CAE pre-

processing and post-processing tool, which embraces fast and high quality graphics, user 

friendly interface and smart functionality.  The post-processing tool supports various 

functions for the three-dimensional and two-dimensional visualization of results from 

various solvers.   

The supported simulation results may include: node and element results, vector 

values, mesh generation results, Voronoi diagram results, and other formats of complex 

FEA simulation results.  In this section, the implementation of visualization of simulation 

results is discussed with emphasis on the use of data streaming technology in CoCADE to 

support co-visualization.  

1. Data structure of simulation results 

The scientific representation of the simulation results requires an effective data 

structure to read in the data and store it in the memory.  Of concern are the node class and 

the element class because the element is the basic unit in FEA process and the node is 

used to construct the element.  Moreover, computation results are usually reflected on the 

nodes of the product design such as vectors starting from the nodes to show the magnetic 

flux distribution.  Therefore, two classes are designed to hold the information of 

simulation results, as shown in the source code in the next page.   

 
 
 
 
 
 
 
 



 

   75 

struct element_info{ 

   int ele_index; 

   int material_num; 

   char ele_type[8]; 

   int ele_connectivity[4]; //Each element is formed by 4 nodes 

}; 

 

 

struct node_info{ 

   float node_coordinate[3];//each node has X, Y, Z coordinate 

   

   float M_coor[3]; 

    

   float divM; 

   float u1; 

   float u2; 

   float u; 

 

   float H_coor[3]; 

   float Hex_coor[3]; 

}; 

 
 
 

2. Dynamic memory allocation 

The memory allocated to hold the information of simulation results can be 

extremely huge that improper handling of memory allocation could cause the program to 

crash.  Therefore, the memory management is critical.   

There are two types of dynamic memory allocation widely used throughout the 

implementation of visualization of simulation results: dynamic memory allocation of a 

certain class (e.g., the node class or the element class) and dynamic memory allocation of 

two-dimensional arrays.  For the dynamic memory allocation of a certain class, the C++ 



 

   76 

STL vector class is used.  Any dynamic class that is explicitly allocated should be 

explicitly de-allocated.  The advantage of this class is that it automatically cleans up the 

memory it needed to allocate its own data. 

The relatively more difficult part is how to dynamically allocate two-dimensional 

arrays that hold the node information such as their coordinates.  The conventional C++ 

static memory allocation fails to solve this problem.  The static method requires the 

programmer to decide the amount of memory for the array in programming time instead 

of run time.  The pre-allocated memory has its maximum limit depending on different 

platforms.  Therefore, to handle this problem, a class called Dynamic2DArray is specially 

devised.  Another reason could be that many APIs of the commercial visualization 

toolkits required the node information to be passed by reference in a two-dimensional 

array.  The implementation of class Dynamic2DArray is shown in the code below. 

#pragma once 

#ifndef DYNAMIC_2D_ARRAY_H_HEADER_GUARD_ 

#define DYNAMIC_2D_ARRAY_H_HEADER_GUARD_ 

#include <cstdlib> 

#include <vector> 

template <class T> 

 

class Dynamic2DArray 

{ 

private: 

 Dynamic2DArray& operator=(const Dynamic2DArray&); 

 const int m_row; 

 const int m_col; 

 T* m_data;  

public: 

 Dynamic2DArray(void); 
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 const T* DataPtr() const { return m_data; }; 

  

Dynamic2DArray(int row, int col) : m_row(row), 

               m_col(col),  

      m_data((row!=0&&col!=0)?new T[row*col]:NULL){}; 

 

Dynamic2DArray(const Dynamic2DArray&src) : m_row(src.m_row), 

               m_col(src.m_col),    

m_data((src.m_row!=0&&src.m_col!=0)?new T[src.m_row*src.m_col]:NULL) 

 { 

        for(int r=0; r<m_row; ++r) 

for(int c=0;c<m_col;++c)  

(*this)[r][c] = src[r][c] 

 }; 

 ~Dynamic2DArray(){ if(m_data) delete []m_data; } 

 

 inline T* operator[](int i) { 

return (m_data + (m_col*i)); 

} 

 inline T const*const operator[](int i) const 

 { 

return (m_data + (m_col*i)); 

} 

}; 

 

#endif //!DYNAMIC_2D_ARRAY_H_HEADER_GUARD_ 
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3.6 Summary 

In this chapter, the graphical user interface and geometry processing in CoCADE are 

discussed.  The user interface is characterized by various features to support modeling 

functionalities and simulation results visualization.  After geometric model construction 

and  assignment of geometrical parameters and properties, the design models are further 

processed to generate irregular grain shapes to emulate magnetic recording media.  The 

goal is to prepare the geometric models suitable for engineering numerical solution by 

FEA. 
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4. Case Study Using CoCADE 

 

This chapter presents the case study using CoCADE to demonstrate the use of CoCADE 

framework for co-modeling and co-simulation in collaborative product development.  In 

the first section, a brief introduction of the product development process is given.  

Secondly, a discussion of the collaborative modeling functions in CoCADE is given.  

Finally, a case study about the design and analysis of magnetic recording media is 

presented. 

 

4.1 Introduction to Product Development 

Product development is usually a complicated and iterative process of developing 

new products to meet customers’ needs.  This process may involve a group of designers 

from multiple disciplines and different locations.  The task of developing high-tech 

products is difficult, time-consuming and costly.  They often evolve over time through 

countless hours of research, analysis, design studies, engineering and prototyping efforts, 

and finally, testing, modification, and re-testing until the design is perfected. 

 The new product development process may vary among companies.  Regardless 

of organizational differences, a methodical development effort with well-defined product 

specifications and project goals is a must.  Figure 4.1 illustrates a generic product 

development process. 

 

 



 

   80 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1 A Generic Product Development Process 
 
 The above figure shows the generic product development process with each block 

representing a stage.  The highlighted blocks are of particular concern to this study.  

Good concept development is crucial.  This stage provides the foundation for the 

development effort.  In the next stage, the system-level design is to be carried out to 

define primary functional sub-systems and how these systems are arranged to work as a 

unit.  In the detailed product design (CAD) stage, the digitized form of the product is 

created, followed by the simulation and analysis (CAE) stage where the product is 

assigned various properties, and simulation activities carried out to assess the product’s 

performance.  Before the product is sent for manufacturing, it is tested and refinement 

applied if necessary. 
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 From the above discussion, it is obvious that solving the product design 

specification conflicts and meeting the customers’ requirements in the early design stage 

is important, resulting in the reduction of the development cycle and saving production 

costs.   

 

4.2 Collaborative Modeling Function in CoCADE 

This section illustrates a scenario where designers from different locations and research 

backgrounds conduct geometric modeling activities in a distributed and collaborative 

modeling environment built with CoCADE.  When conducting product co-modeling 

activities in such an environment, the following requirements should be met: 

(1) The system must have a 3D graphical user interface that supports geometric 

model creation and basic solid modeling operation like Boolean operations and 

sweeping, which are considered in the development of CoCADE.  The interface 

should support either mouse click or dialog-based operation or both.  Currently, 

the popular geometric modeling engines include ACIS, ParaSolid and 

CASCADE.  This study uses ACIS as its geometric engine, which is programmed 

in C++ language. 

(2) The system must have a 3D visualization system that supports geometric model 

visualization and object selection.  In CoCADE, these features are available.  

Meanwhile, the display functions include orbiting, zooming, and panning.  Both 

select by click and by window are supported in the selection function.  The 

selection level includes vertex, edge, face and body.  Rich rendering modes such 
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as wire-frame, Gouraud shaded mode and hidden line mode are all supported in 

the visualization system. 

(3) The clients must be able to store the model’s geometry and topology in industry- 

recognized standard file formats so that these models can be exchanged with 

other commercial CAD software packages under heterogeneous platforms.  In 

CoCADE, the standard file formats like SAT, HSF, SAB are supported.  The 

Hoops development toolkit provides the bridge between mapping of SAT file and 

HSF file format, facilitating the file transmitting process. 

(4) Each client must be able to collaborate with the others.  The modeling operation 

by a client must be able to be reflected on the screen of the other clients 

immediately.  In CoCADE, a master client is used to coordinate the collaborative 

session and central session control mechanism is devised to ensure that no 

conflicts between clients occur. 

Based on the above requirements, a scenario where designers from different 

locations and backgrounds conduct a part modeling activity is developed and illustrated 

in Figure 4.2.  In this scenario, the designers can conduct collaborative modeling within 

the Local Area Network (LAN) or across the Internet.  In the case of collaborating within 

LAN, TCP/IP protocol is used to boost communication efficiency.  In the case of 

collaborating across Internet, the HTTP protocol is used. 
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Figure 4-2 The General Diagram of the Co-Modeling and Co-Simulation 

Environment 

 In particular, a Boolean operation during the modeling process is highlighted in 

the following diagram to show the typical geometric modeling procedure in a 

collaborative modeling environment.  Figure 4.3 is an example of subtraction operation 

being carried out in a design process.  The design first creates a solid hub model 

leveraging on the primitives creation functionalities supported in CoCADE.  In the next 

stage, a cylinder (highlighted in yellow color) is added to the hub model.  To carry out 

the subtraction operation, the designer must select a “blank” (the hub) object and a “tool” 

object (the cylinder).  The “blank” object will be returned as the operation result.   
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Figure 4-3 Boolean Operation Example One: Subtraction 

 

 

 

 

 

 

 

 

 

 

Figure 4-4 Boolean Operation Example Two: Intersection
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 Another example is shown in Figure 4.4.  Here the Boolean operation is 

intersection.  The procedure is similar with the previous subtraction operation.  Care must 

be taken when selecting the object because the selection sequence may influence the final 

returned result, depending on which operation is executed.  

4.3 Design and Analysis of Magnetic Recording Media  

4.3.1 Introduction 

It is very essential to consider the realistic physical microstructure when building 

the mathematical model for accurately predicting the magnetic properties of recording 

media. The Voronoi model [20]-[25] is used in this research to generate grain size 

distribution as it adequately represents the grain structure of the magnetic media.  The 

grain will build up at a finite number of initial nucleation sites randomly and grows until 

the two neighboring grains touch each other.  

4.3.2 Design and Processing of Magnetic Recording Media  

Much research into the structural details of the magnetic patterns which strore 

information in magnetic recording systems has been based on micro-magnetic models of 

magnetic recording media [26]-[29].  Some extremely irregular and unrealistic shapes 

may be generated based on a uniform triangular, hexagonal or square seed lattice.  The 

finite element models of the grain structure obtained form Voronoi construction and 

subsequent meshing of the polyhedral region are proposed to yield a realistic 

microstructure of recording media [30].  
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As shown in Figure 4.5, the process begins from a randomly located seed points 

from which the grains are assumed to grow with constant velocity in each direction.  

Thereafter, the grains are surrounded by the Voronoi cells (Figure 4.5 b).  According to 

the algorithm of Voronoi construction, the Voronoi cell of seed point i contains all points 

of space which are closer to seed point i than to any other seed point.  It is expected to 

subdivide the media model into cubic cells and choose one seed point within each cell at 

random to avoid highly irregular shaped grains.  Once the polyhedral grain structure is 

obtained, the grains are further meshed into finite elements using tetrahedral elements 

[12].   

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-5 Magnetic Recording Media Finite Element Model with Voronoi 

Algorithm
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For our case study, firstly a block representing the magnetic recording media is 

constructed.  Thereafter, one of the surfaces of the block is extracted from the block.  

This surface is then sent to compute seeds.  The result of seeds computation is shown in 

Figure 4.6 (b).  Finally, the 2D Voronoi diagrams of the media surface are to be 

computed from the seeds and then extruded in a certain direction to construct the final 

media model.  Figure 4.6 shows an example of the case study before the Voronoi 

diagrams are extruded in a certain direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6 An Example of Magnetic Recoding Media Design and Processing
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Figure 4.7 shows the result of extruding the Voronoi diagrams in a certain 

direction of the space.  Each of the grains can be viewed as a prism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7 An Example of Extrduing the Voronoi Diagrams in a Certain 

Direction 

After each Voronoi diagram is built, the magnetic recording media model is 

sent for mesh generation.  Figure 4.8 shows the mesh generation result of a single 

hexahedral-shape grain.  The elements in the meshed grain are tetrahedral structures. 
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Figure 4-8 An Example of Tetrahedral Mesh Generation 

 

4.3.3 Visualization and Analysis of Simulation Results 

 Till now, the model of magnetic recoding media is ready to be fed into 

simulation solvers.  The simulation task can be accomplished by leveraging on 

commercial CAE software tools using Finite Element Analysis (FEA).  A detailed 

discussion of the FEA method is beyond the scope of this study.  The simulation 

results are presented in a 3D viewer to the designers for visualization and analysis.  As 

shown in Figure 4.9, the vectors show the direction of the magnetization in the internal 

part of the grain.   
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Figure 4-9 Visualization of Simulation Results 
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Figure 4.10 shows another example of visualization of simulation results where 

the designer can cut into the interior part of the model and analyze the results.  The 

implementation of a cutting plane tool allows the user to take a cut-away view of the 

product.  As such the detailed distribution of the flux vectors inside the model can be 

visualized.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-10 An Example of Simulation Results Visualization with Cutting Plane 
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5. Conclusions 

 The state-of-the-art innovation in computer technologies has enabled product 

development activities to be undertaken across distributed teams in various 

organizations.  A team of engineers with different expertise and backgrounds 

collaborates to achieve a common goal: the development of a product that can be used 

and sold.  In this context the collaboration must be organized to allow a better 

communication among designers [31].  Given this development, collaborative 

modeling and simulation systems are emerging to support geographically separated 

engineers to conduct design activities synchronously, asynchronously and 

cooperatively. 

 In this thesis, a framework called CoCADE is introduced to support 

collaborative product development activities among geographically dispersed 

organizations.  The architecture of CoCADE has been described from different 

perspectives such as user case view, data streaming view and static class view.  This 

architecture adopts a three-tiered client-server structure.  The client side provides the 

essential geometric modeling functionalities as well as interactive visualization tools 

for analysis of sophisticated geometric models and large-scale simulation results.  The 

server side offers the functions of collaborative session management, multi-client 

communication mechanism, engineering simulation and optimization. 

The functionalities of the client interface as well as the methodology of the 

geometry processing have been fully discussed and implemented.  The proposed 
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distribution of modeling functionalities is reasonably well balanced while leveraging 

on the powerful CAD workstation.  The powerful features of geometric processing and 

simulation results visualization characterize the client side software while the server 

side offers the functionalities of session management, simulation and data 

coordination.   

The effectiveness of the system is demonstrated through the development of 

two applications: a collaborative modeling application and a CAE application 

concerned with design and analysis of magnetic recording media. 

In conclusion, this research focuses on geometric modeling in distributed 

environment to support collaborative CAD and CAE activities.  It is a research 

challenge to implement a collaborative product development system based on .NET 

technology [34] for distributed computing and HOOPS streaming technology for 3D 

scientific data presentation.  This research attempts to meet such technological 

challenge.  Moreover, this research has special reference to the product development 

process related to magnetic recording devices.  The design and realization of such 

product generally involve the effective collaboration among key component 

manufacturers in data storage industry.  The implementation of Voronoi diagram 

generation emulates the realistic irregular grain structure of magnetic recoding media, 

avoiding the shortcoming of unphysical anisotropic properties yielded by regular 

microstructure.  Finally, the visualization of large-scale simulation results using data 

streaming technology provides a useful tool for engineering analysis and optimization. 

Effective methods were presented in this research to further develop co-

modeling and co-simulation in collaborative product development. 
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Appendix B. Overall Structure of Sweep Line 

Algorithm for Voronoi Diagrams[11] 

Algorithm VORONOIDIAGRAM(P) 

 

Input. A set }p ..., ,{p  :P n1= of point sites in the plane 

Output. The Voronoi diagram Vor (P) given inside a bounding box in a doubly 

connected edge list D. 

1. Initialize the event queue Q with all site events, initialize an empty status 

structure T and an empty doubly connected edge list D. 

2. while Q is not empty 

3.          do Remove the event with smallest y-coordinate from Q. 

4.                    if the event is a site event, occurring at site pi 

5.                             then HANDLESITEEVENT(pi) 

6.                             else HANDLECIRCLEEVENT(Y), where Y is the leaf of T 

representing the arc that will disappear. 

7. The internal nodes still present in T correspond to the half-infinite edges of the    

Voronoi diagram.  Compute a bounding box that contains all vertices of the 

Voronoi diagram in its interior, and attach the half-infinite edges to the 

bounding bsx by updating the doubly connected edge list appropriately. 

8. Traverse the half-edges of the doubly connected edge list to add the cell records 

and the pointers to and from them. 
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The procedures to handle the events are defined as follows. 

HNADLESITEEVENT(pi) 

1. If T is empty, insert pi into it (so that T consists of a single leaf storing pi) and 

return.  Otherwise, continue with steps 2-5. 

2. Search in T for the arc α vertically above pi.  If the leaf representing α has a 

pointer to a circle event in Q, then this circle event is a false alarm and it must 

be deleted from Q. 

3. Replace the leaf of T that represents α with a sub-tree having three leaves.  The 

middle leaf stores the new site pi and the other two leaves store the site pj that 

was originally stored with α.  Store the tuples <pi, pj> and <pj, pi> 

representing the new breakpoints at the two new internal nodes.  Perform 

rebalancing operations on T if necessary. 

4. Create new half-edge records in the Voronoi diagram structure for the edge 

separating V(pi) and V(pj), which will be traced out by the two new 

breakpoints. 

5. Check the triple of consecutives arcs where the new arc for pi is the left arc to 

see if the breakpoints converge.  If so, insert the circle event into Q and add 

pointers between the node in T and the node in Q.  Do the same for the triple 

where the new arc is the new arc is the right arc. 

 

HANDLECIRCLEEVENT(Y) 

1. Delete the leaf Y that represents the disappearing arc α from T.  Update the 

tuples representing the breakpoints at the internal nodes.  Perform rebalancing 

operations on T if necessary.  Delete all circle events involving α from Q; these 
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can be found using the pointers from the predecessor and the successor of Y in 

T.  (The circle event where α is the middle arc is currently being handled, and 

has already been deleted from Q.) 

2. Add the center of the circle causing the event as a vertex record to the doubly 

connected edge list D storing the Voronoi diagram under construction.  Create 

two half-edge records corresponding to the new breakpoints of the beach line.  

Set the pointers between them appropriately.  Attach the three new records to 

the half-edge records that end that the vertex.   

3. Check the new triple of consecutive arcs that has the former lef neighbor of α 

as its middle arc to see if the two breakpoints of the triple converge.  If so, 

insert the corresponding circle event into Q, and set pointers between the new 

circle event in Q and the corresponding leaf of T.  Do the same for the triple 

where the former right neighbor is the middle arc. 


