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Summary: 

Structure based interpretation of biological systems has taken a major step forward in this 

decade with the advent of superior computational resources and image reconstruction 

software available to biologists. The basic structures can be solved by three important 

methods, X-ray crystallography, Nuclear magnetic resonance spectroscopy (NMR) and 

Electron microscopy (EM). Transmission EM is a direct way of looking at 

macromolecular structure, and has reached near-atomic resolution for macromolecular 

structures recently (7,9). Cryo-TEM can be used for looking at the structures of large 

complexes and relatively short-lived intermediates too. 

Study of protein assembly is important towards studying the functional aspect of proteins. 

The simplest system that could be used for this purpose is a virus. A virus usually 

consists of repeating units of the same protein thereby decreasing the complexity of the 

system. The correct assembly of proteins is governed by a number of features like 

protein-protein interaction, genetic packaging and conformational switches. The 

structural changes involved during the assembly gives an idea about these control 

mechanisms. Another important aspect of structure to function annotation is studying 

complexes of proteins using cryo-EM and fitting their crystal structures, if known, into 

these maps in order to understand the larger framework in which proteins work. 

We have determined the three dimensional structures of a dsDNA phage, the P4 

procapsid and expanded capsid at ~14Å and ~27Å respectively using cryo-EM 

techniques and 3D reconstruction software. We have determined the structural changes 

accompanying the transition from the procapsid to expanded capsid as a result of 

cleavage of the capsid protein of P4, gpN. The expanded capsid has a flattened capsomer 
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unlike the procapsid structure and more like the mature virion. However, the expanded 

structure is more rounded and not as angular as the mature virion. The crystal structure of 

another capsid protein gp5 from HK97 phage, belonging to the dsDNA phage family 

found to have some amount of secondary structure similarity to the P4 capsid protein 

gpN, has been docked into the P4 procapsid EM model to get an understanding of the 

packing of the capsid protein at the atomic level, in the capsomers. 

Another part of my thesis work comprises the study of the protein conducting channel in 

the endoplasmic reticulum (ER) membrane consisting of the heterotrimeric sec61p 

complex and the Translocon-associated protein (TRAP), with ribosome, by adding more 

data to the existing data set and getting an improved map for the ribosome channel 

complex. The resolution of the present improved structure is ~20 Å and we are in the 

process of improving it to resolutions sufficient to localize the secondary structural 

elements. 

Working in areas as varied as viruses and ribosome channel complexes has given me an 

interesting and illuminating picture of the importance of cryoEM and 3D reconstruction 

techniques in understanding the intricacies of the molecular machinery in large 

macromolecular assemblies.  

 
 
 
 
 
 
 
 
 
 
 
 



 

  1
 

 
  

1. Introduction: 

1.1 Electron microscopy 

1.1.1 Transmission electron microscopy 

Transmission electron microscopy (TEM) is a very direct way of determining 

macromolecular structure, which has reached near-atomic resolution for protein 

structures recently. In TEM, the electrons from the electron beam get scattered from the 

sample and are recorded either using a fluorescent screen or a CCD camera or a film. The 

energy of the electrons is typically between 100keV and 300keV, sometimes 400kV, very 

exceptionally 1MeV. The whole specimen is imaged at the same focus, and the recorded 

image is a 2-dimensional projection of the 3D electron scattering density of the specimen. 

It is therefore possible to reconstruct the 3D structure by recording projections of the 

object from different view directions and putting them together to get the 3D structure. 

The samples need to be thin, or they will absorb too much of the electron beam. Most 

biological EM work is done on small (several millimeters) copper discs called grids cast 

with a fine mesh. The grids are first layered with plastic then carbon is coated on top by 

evaporating carbon graphite or carbon is evaporated onto mica then placed on the grid. 

This mesh can vary a lot depending on the intended application, but is usually about 15 

squares per millimeter (400 squares per inch), about 3 mm in size. It is on this thin carbon 

film that the sample will then rest so that it can be examined in the microscope (56,62). 

1.1.1.1 Microscope Layout: 

The general layout of a transmission electron microscope (Figure 1) is as follows. At the 

top of the column, there is a high voltage electron emitter that generates a beam of 

electrons that travel down the column. These electrons pass through the sample and a 
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series of magnifying magnetic lenses, to where they are ultimately focused at the viewing 

screen at the bottom of the column. Different lenses can be used to change the 

magnification and focal point of the image. Apertures along the column can be used to 

change the contrast and resolution of the image. The column itself is at a very high 

vacuum to minimize interactions between the electron beam and air molecules (56). 

 

Figure 1: Picture of a Philips® transmission electron microscope with the column and viewing screen 
readily visible. Source: http://cryoem.berkeley.edu/ 
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Figure 2. Side view of an electron microscope column, showing the principal components 
Source: http://cryoem.berkeley.edu/ 
 
1.1.2 Cryo-electron microscopy  

Cryo-electron microscopy or Cryo-EM (35,37,39) is a Transmission electron 

microscopy technique in which, the sample to be viewed is frozen in liquid ethane at 

about minus 155°C so that a fine layer of vitreous ice is formed on the sample and it is 

preserved and protected during observation and exposure to vacuum. Liquid Ethane is 

used instead of liquid nitrogen for cryo-freezing because of its higher heat capacity in 

comparison to liquid nitrogen. Hence when a sample at room temperature is dipped into 

liquid ethane the liquid ethane is cold enough to freeze water quickly and correctly 

without boiling off unlike liquid nitrogen. Quick freezing is required to freeze water into 

vitreous ice and not cubic or hexagonal ice which forms at much higher temperatures 
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than vitreous ice. Special grids are used for cryoEM, which are called holey carbon grids 

(37,39). Similar to normal carbon coated grids, holey grids are covered with a fine layer 

of carbon. However, as part of the preparation process, the carbon film is deposited in 

such a way that there are holes of a desired size in the carbon. One of the purposes of 

these holes is to eliminate any absorption and scattering of the electron beam by the 

carbon film, which will generate noise and obstruct the signal especially considering that 

the sample in cryoEM is just frozen and does not have negative stain. The holes also 

allow for "pockets" of solvent to form. Within these pockets, the specimen remains fully 

hydrated, even when the sample has been frozen (56). 

The advent of Cryo-EM has allowed the imaging of isolated symmetric particles in the 

absence of stain and fixatives and under conditions, which preserve their symmetry. The 

advantage of Cryo-EM over traditional staining methods is that the shape of the sample is 

preserved, as the sample never comes into contact with the adhering surface. There is no 

stain to distort the sample. Also, low dose methods are normally used. Therefore, the 

electron beam causes less damage to the sample. Also by cooling the sample, free 

radicals produced by ionization are trapped, reducing their damage to the sample. The 

disadvantages are that there is very low contrast as the electron absorption properties of 

both protein and vitreous ice is the same. Care should be taken that the ice formed is 

vitreous and not cubic or hexagonal. Cubic ice absorbs electrons easily and the resulting 

sample is worthless (56,62). 

1.2 Imaging and reconstruction 

Imaging in cryo-EM is a very involved and intricate process. The sample in cryo-EM is 

very delicate. Low dose of electrons have to be used to prevent sample damage arising 
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from inelastic scattering of electrons. Williams and Fisher first developed the method of 

Minimum Dose Microscopy in 1970 (49). Two types of electron-sample interactions 

occur. They are elastic and inelastic scattering. The electrons undergoing elastic 

scattering have a fairly wide angular distribution and do not transfer energy. They give 

rise to the high-resolution information. The inelastically scattered electrons transfer some 

of their energy to the sample, which accumulates and can break apart molecular bonds, 

destroying the sample after some time. Its angular distribution is narrow and gives rise to 

undesired background term in the image. Therefore, for high-resolution imaging, low 

dose parameters require that the area to be imaged be not exposed until the picture is 

actually taken. All image calibration and focusing is done beforehand on a nearby area, in 

the hope that it's properties are similar to the final imaged area. Also, for the final 

imaging, very low electron doses of the order of 6-10 electrons per Å2 are used (56, 62).  

1.2.1 3D Reconstruction - Principle: 

The images received from an electron microscope are two dimensional projections of  the 

randomly oriented particles in the grid. The various projections or 2D images then put 

together to get a complete 3D image and hence is termed reconstruction. The method of 

reconstruction is based in the central section theorem that relates the 3D Fourier 

transform of the reconstruction with the 2D Fourier transform of the projection images. 

The mathematical theory was first developed by Radon in 1917 (51). This theorem states 

that in reciprocal space each 2D image produced by the microscope is a central section of 

the 3D Fourier transform of the object, and perpendicularly oriented when considering 

the direction of the electron beam with respect to the object. The Fourier Transform is an 

important image-processing tool, which is used to decompose an image into its sine and 
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cosine components. Hence, by combining different EM views, one can progressively fill 

up all the 3D reciprocal space, which by inversed Fourier transform can provide a 3D 

reconstruction volume of the particle in real space. The output of the transformation 

represents the image in the Fourier or frequency domain, while the input image is the 

spatial domain equivalent. In the Fourier domain image, each point represents a particular 

frequency contained in the spatial domain image. For non-symmetric objects high-

resolution 3D reconstruction methods require 10,000 to 100,000 or even more images to 

process. The process gets simplified when the object to be reconstructed has high 

symmetry which is not always the case (60,61). 

Single particle reconstruction (30,9) is the commonly used technique for getting the 3D 

structure from the 2D images received from a transmission electron microscope. The 

image of a field of randomly oriented, particles can be processed to yield a three 

dimensional structure by determining the relative positions of the symmetry elements. 

This involves putting together the various projections or 2D images to get a complete 3D 

image and hence is termed reconstruction.  

The process of reconstruction is iterative. Experimental projections are first selected from 

electron micrographs and orientations assigned to them. Particles with similar 

orientations are then centered, aligned, and classified. From the 

centered/aligned/classified particles, a preliminary model is generated. There are several 

methods to do this. They are the Random conical tilt, Common Lines technique and 

Projection-Matching. To refine this solution, the model is used to better align and classify 

the original particles. A new model is generated from the refined data, and so on until a 

satisfactory solution is reached (56).  
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1.2.2 Finding the orientations: 

The first step in this process is assignment of Euler angles to each experimental 

projection. Once these angles are assigned to each experimental projection, the model can 

be generated. 

 

 
 
Figure 3. Diagram of an Euler sphere indicating how � and � are used to describe any point on the 
surface of the sphere 
(Source:http://cryoem.berkeley.edu/~nieder/em_for_dummies/reconstruction.html) 

The transformation between the vectors in the coordinate system of the molecule and 

those in the coordinate system of the projection is expressed by three Eulerian 

rotations as per the convention followed by Radermacher (1991). These rotations are 

characterized by three Euler angles, which indicate a position and orientation in space 

around a common center. The three Euler angles are, 

� (theta)  

Defines the elevation above or below the equator. 

� (phi)  

Defines the rotation (azimuth) around the equator. 
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� (psi)  

Defines the rotation around the center of the position defined by � and �. 

In order to define a point on the surface of the sphere from the center of a hollow sphere, 

two pieces of information are important, the elevation of the spot relative to the equator 

of the sphere (�) and what the rotation around the vertical axis of the sphere (� - 

azimuth). To generate a reconstruction, � and � has to be determined for each 

experimental particle in order to define its position on the Euler sphere. The center of the 

Euler sphere represents the position of the 3D model. Assignment of the Euler angles can 

be done using random conical tilt, common lines method or by using a reference image. 

(56,62). 

1.2.2.1 Random conical tilt: 

This method is based on the fact that single macromolecules assume preferred 

orientations on the specimen grid (38). For this method the specimen field is recorded 

twice in tilted and untilted positions. For a specific class of particles images, once the 

untilted particles are aligned with each other, those angles and shifts are applied to the 

tilted pairs to determine their relative orientations in space. The projections of these 

aligned particles will form a cone with a fixed angle (the tilt angle) and a random azimuth 

(rotation) around the cone, matching the in-plane angles found in the alignment of the 

untilted particles. This method can be applied only if the particles in the specimen are 

known to take preferred orientations. 
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Figure 4 Principle of random conical tilting, showing how many rotated images within a cone come 
together to form a surface ( J Frank ,1996).Originally published in J.Microsc. 146, 113-136     
Source: http://cryoem.berkeley.edu/ 

1.2.2.2 Common Lines approach:  

The angular alignment is based on the Central section theorem. It thus follows that two 

non-parallel projections will have Fourier transforms identical to two non-parallel planes 

through the origin of the Fourier transform of the 3D volume, i.e. they will intersect in 

one line through the origin (22,48). For noise free data, their relative orientation can 

therefore be determined except for the rotation around an axis coinciding with this 

intersection (common line). For three or more orientations the relative orientation will be 

fixed except for the handedness (enantiomorphism) of the structure, which cannot be 

resolved from independent projections alone. The presence of symmetry within a 

molecule will generate common lines also in a single projection, and for symmetries 

higher than twofold rotation axis, the symmetry group can be oriented from an individual 

image. Due to the low signal to noise ratio in real images of non-stained biological 

macromolecules (typically 0.5-3 MDa molecular weight) it will be necessary to generate 

a large number of common lines to determine the orientations. For example the common 

lines for a two-fold, three-fold and five fold respectively are shown below: 

Two fold: 
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Generates one real line AA’ 

 
 
 
Three fold: 

Generates a pair OA and OA’ 

 
Five fold symmetry: 

Generates two pairs of common lines OB OB’ and OA OA’ 

 

 
Source: Dr.Tony Crowther’s lecture at NCMI workshop, December 2002   
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Icosahedral reconstruction 

 
Figure 5: Icosahedron . 
 Source: http://www.cryst.bbk.ac.uk/BBS/whatis/bbsem.html 

An icosahedron is composed of 20 facets, each an equilateral triangle, and 12 vertices, 

and because of the axes of rotational symmetry is said to have 5:3:2 symmetry. The Axes 

of Symmetry are a six 5-fold axes of symmetry passing through the vertices, ten 3-fold 

axes extending through each face and fifteen 2-fold axes passing through the edges of an 

icosahedron. The five fold axis is defined by Theta=90º and Phi=±31.717º while the three 

fold axis is defined by Theta=69.09º and Phi=±0º. Icosahedral reconstructions take 

advantage of this internal symmetry and repetition to generate a detailed three-

dimensional structure from the data set. There are exactly 37 pairs of common lines for 

an icosahedron. Each of the 6 five folds gives rise to two pairs, each of the 10 three-folds 

generates 1 pair and each of the 15 two folds a further pair which lie along the projection 

of the two-fold symmetry axis. 

1.2.2.3 Projection-Matching 

If a starting model is available then it is possible to take projections from this model and 

use these to compare and classify the input images. Refinement is then done iteratively to 

get a better model. 
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1.2. 3 Reconstruction cycle: 

1.2.3.1 Flow chart  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.2.3.2 Particle picking: 

The image taken by the microscope of a particular area in a grid is photographed and 

developed into a micrograph. The micrograph contains several particles in various 

orientations. In order to reconstruct a 3D molecule from it's 2D projections, it is often 

necessary to use several thousand experimental projections (particles). The right particles 

have to be picked out in order to get a good final 3D image. There are several softwares 

available to do this, which will be discussed later (9,21,22). 

 1.2.3.3 Particle alignment: 

Alignment involves placing the images of particles into a similar orientation on the 

screen. To calculate the similarities, correlation methods are used. The correlation can be 

done either between images in the data set (cross correlation) or by comparing an image 

to itself (autocorrelation). Usually a mixture of the two is used (56,62). 

Data collection 
 

Particle picking 

Classification and 
Alignment 

Preliminary model 

   Refinement 
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1.2.3.4 Particle classification: 

Due to the interaction with the carbon coated grid the particles take up different 

orientations. Each orientation would make up a class and the particles belonging to each 

class will then be averaged out. The back and the front projections are usually the most 

common orientations. The higher the symmetry the lesser will be the number of classes 

(56). 

1.2.3.5 Model building and Refinement: 

Using any one of the methods mentioned in 1.2.2 the initial model is built and iteratively 

refined with expanding particle data sets, to get better models.  

1.2.4 Programs used in reconstruction: 

There are a number of programs available to do reconstruction. Some examples are the 

common lines based program MRC-ICOS (22) , EMAN (16) and model based programs 

like PFT (21). The MRC/ICOS programs are used for icosahedral reconstruction. This 

program uses a common lines based approach for reconstruction of the model. EMAN is 

not limited to only icosahedral symmetry and can be used for any kind of symmetry. It is 

based on single particle reconstruction and also uses both the projection matching and the 

common lines method for model building. There are several model based programs 

which given a starting model will refine it iteratively using Projection matching 

algorithms. The model is used to generate projections, which will then be used to classify 

and align the input particles and get a more refined model.   

 

 

1.3 Important experimental parameters in reconstruction: 
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1.3.1 Contrast transfer function (CTF) correction: 

In single particle analysis the amplitude and the phases are both obtained from the 

images. Amplitude contrast, which is the result of scattered electrons being deflected into 

the objective aperture, contributes approximately 5-10% to the image, as the electron 

scattering properties of protein and vitreous ice are very similar. The structure factor is a 

measure of this atomic scattering. Phase contrast is the result of interaction between the 

undeflected electron wave and those electrons that are weakly elastically scattered and 

still pass through the objective aperture. Phase contrast is increased by defocusing the 

microscope, but only for a range of spatial frequencies. This is dictated by an instrument-

dependent function called the point spread function (PSF) that is convoluted with the 

specimen projection to form the electron image. The PSF is more commonly considered 

in terms of its Fourier transform, the contrast transfer function (CTF). The CTF is an 

oscillating function and is dependent on several features of the microscope, most 

importantly in the case of cryo-TEM, the defocus and accelerating voltage. The advent of 

Field emission gun (FEG) microscopes has brought about a strong improvement in the 

temporal and spatial coherence and therefore the contrast transfer function thus enabling 

high-resolution imaging. The figure below shows the contrast transfer function curves for 

two microscopes an FEG and a non-FEG (LaB6) microscope. The strong improvement in 

contrast transfer by the FEG is to a large extent due to the much smaller incidence angle 

�, a parameter that describes the range of incidence angles seen by the specimen. Ideal 

spatial coherence with infinite extent (� = 0) would be obtained with a point source for 

the electrons. FEGs come much closer to this ideal situation than LaB6 filaments (28). 
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Figure 6: Comparison of contrast transfer functions between an FEG and non-FEG (LaB6) microscope. 
Source: M.T. Otten, W.M.J. Coene. High-resolution imaging on a field emission TEM. Ultramicroscopy 48 
(1993) 77-91 
 
A consequence of the improved CTF is that within certain resolution ranges density 

information is inverted i.e. the contrast is reversed. This can profoundly affect the 

resolution attainable in three-dimensional reconstructions from cryo-microscopy data 

unless sophisticated CTF corrections are applied. At a large defocus the CTF may restrict 

resolution to ~ 4 nm, which is too low to gain meaningful structural information. 

However, a very close to focus image will have very low contrast making the extraction 

of structural information very difficult. Cryo-TEM is, therefore, a trade off between 

contrast and resolution. It is important to have a wide range of defoci to get the maximum 

information for all spatial frequencies as can be seen from the figure below (Figure 7) 

where information at different defoci complement each other (55,57). 

Spatial frequencies in nm-1 
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Figure 7:Graph represents the CTF amplitudes at different defoci. Figure taken from “ctfit” program in 
EMAN 
 

1.4 Bacteriophage P2 and P4 

Bacteriophages P2 and P4 are two genetically unrelated dsDNA bacteriophages. P4 is a 

satellite phage of P2 as it is constructed from the structural proteins encoded by P2 

(Bertani capsid protein, arranged with T =7 symmetry). The smaller P4 capsid has T =4 

symmetry and contains 235 copies of gpN-derived protein (4) as compared to 415 copies 

in P2. P4 contains 12 pentamers and 30 hexamers.  

 

 

Defocus of 
micrographs: 
 
5493.avg.tnf = 2.4 µ 
5494.avg.tnf = 1.9 µ 
5497.avg.tnf = 2.4 µ 
5498.avg.tnf = 2.3 µ 
5501.avg.tnf = 1.3 µ 
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Figure 8: This is the view while looking down the two-fold view. The symmetrically different subunits are 
A,B,C,D wherein five A subunits form the pentamer and two of B,C,D subunits each form a hexamer. 
Pentagons and triangles indicate the five fold and three fold axes. 
Source: Terje Dokland (2000). Freedom and restraint: themes in viral capsid assembly. Structure 8: pp 
R157-62 
 
The presence of external scaffolding protein Sid (24) is responsible for the smaller size of 

the P4 capsid (36). Both P2 and P4 capsids contain a connector protein gpQ, which is a 

dodecameric ring-shaped protein and serves as a portal vertex for DNA transport (26). In 

the double-stranded (ds) DNA bacteriophages, cleavage is usually an integral part of the 

maturation process, occurring concomitantly with the removal of scaffolding proteins, 

DNA packaging, and accompanied by large-scale structural transitions in the capsid (14). 

An empty precursor capsid of the P2 and P4, called the procapsid is formed initially 

during assembly. The procapsid contains mostly uncleaved gpN, as well as scaffolding 

proteins (25). During assembly, the scaffolding is removed, the DNA is packaged 

through the portal vertex, and the capsids undergo striking conformational changes (24). 

These processes are accompanied by cleavage of the structural proteins (25), in this case 

gpN (40.2 kDa). It is cleaved to the smaller protein species h1 (39.0 kDa), h2 (38.6 kDa), 

and N* (36.7 kDa) (30). The predominant form of gpN found in mature capsids of both 

P2 and P4 is N*, although P4 capsids also contain about 10% of h1 and h2 (30). In vivo, 

this cleavage is presumed to be dependent on the internal scaffolding protein gpO (31 

kDa), which itself is cleaved to an amino-terminal 17-kDa fragment that remains inside 
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the mature capsid (26). Much is not known about gpO protease activity. The 31.9-kDa  

gpQ protein also undergoes N-terminal cleavage during capsid maturation, leaving the 

36.7-kDa cleavage product Q* (26). 

1.5 Protein-conducting channel in the endoplasmic reticulum (ER) membrane: 

Membrane bound ribosomes associate with the Sec61p complex. Secretory proteins pass 

through the channel and enter the ER lumen. In the case of the membrane proteins, 

hydrophobic segments are incorporated in the lipid bilayer while their luminal and 

cytoplasmic loops are exposed on either side of the membrane (17). The sec61p complex 

is the minimally required protein to reconstitute translocation in vitro. The heterotrimeric 

sec61p complex consists of an α subunit with ten transmembrane (TM) domains as well 

as smaller β and γ subunits, each with a single TM domain (17). Electron microscopy 

studies show that the channel in both the prokaryotes and eukaryotes forms a ring-like 

structure (23,19). The size of the channel suggests multiple copies of sec61p. The other 

complexes associated with the channel are the Translocon-associated protein (2) and the 

Oligosaccharyl transferase (OST) (31,32).  

Cryo-electron microscopy and single particle methods were used to study the 3D 

structures of the ribosome channel complex with or without nascent chains in both yeast 

and mammalian systems  (11). These studies showed that the junction between the 

ribosome and the channel was not tight; but instead made of a ~15A gap, three strong 

connections and a weaker one. The existence of the gap suggests the possibility that the 

cytosolic loops of membrane proteins may egress laterally and be esposed to the cystosol. 

The hydrophobic segment of the membrane protein exits laterally through the channel 

walls while the secretory proteins exit through the channel pore into the ER lumen. 
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Beside the sec61p complex, the TRAP and OST also form the channel and may 

contribute to the lumenal protrusion seen in the native channel. The ribosome channel 

complex structure was improved to 17 Å resolution from 27 Å and all known high-

resolution ribosomal subunit models were then docked within this map of the ribosome–

channel complex (5). These studies helped in identifying candidate regions on the large 

subunit that may participate in forming connections to the ER channel and the possible 

role of L1 stalk as a gate to release the E-site tRNA from the ribosome. The tRNA 

molecule is retained in the E-site after programmed mammalian ribosomes are treated 

with puromycin. Finally, six expansion segments were localized on the large subunit and, 

when combined with previous work provides insight into possible roles for these rRNA 

components. The TRAP and OST in the membrane channel do not seem to be directly in 

contact with the ribosome but instead seem to be associated laterally to the channel. The 

lumenal protrusion seems to be more due to TRAP as it is consistent to the size of TRAP. 

The narrowest region of the translocation pore may be smaller than 10–12 Å in diameter, 

and span a distance of 15Å (5). 
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2 Methods: 

2.1 Purification of P4 procapsid and expanded capsids: 

A new method for the production of P4 procapsids in vitro and in vivo was devised and 

greatly facilitated the study of procapsids in vitro (13,4). The chimeric plasmid pLucky7 

was constructed by fusing the Sid-expressing pVE2 and the gpN-expressing pTL1 

plasmids, so that the two genes were under independent control of the T7 promoter. 

Induction of pLucky7 yielded high-level expression of both Sid and gpN protein with Sid 

in slight excess. The proteins expressed from pLucky7 assembled effectively to form 

procapsids, which were recovered by centrifugation at 40,000 rpm in a Ti50.2 rotor 

(190,000 g) for 1 hour. After resuspending in procapsid buffer, the particle mixture was 

run on a 5–20% sucrose gradient for 2 h at 34,000 rpm in an SW41 rotor. Gradient 

fractions were analyzed by SDS–PAGE and EM. The procapsid-containing band was 

diluted 5 times, concentrated by pelleting at 190,000 g for 1 h, and resuspended in 

procapsid buffer (100 mM Tris, pH 8.0, 50 mM NaCl, 10 mM MgCl2)(4). 

Trypsin treatment of the procapsids at a mass ratio of 1:400, corresponding to 0.36 BAEE 

enzyme units per milligram procapsids, for 24 h at 4°C, resulted in a cleavage pattern 

similar to that observed in spontaneously cleaved material. The main cleavage product 

was a doublet band at around 36 kDa, equivalent to the size of N*. Little cleavage was 

seen in Sid at this time point. At longer times (from 2 to 10 days), most of the cleaved 

gpN was present in the smaller of the two bands in the doublet, and more cleavage was 

seen in Sid as well. Treatment with trypsin at a mass ratio of 1:50 (3.0BAEE units per mg 

procapsids) for up to 2 h at 22°C yielded similar results. By comparison, Sid in solution 

is completely degraded by trypsin at 1:50 mass ratio after 20 min at 22°C (S. Wang and 
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T. Dokland, unpublished results). Part of the Sid cleavage seen upon trypsin treatment of 

procapsids is probably due to the release of protease-sensitive Sid, while Sid bound to 

procapsids is at least partially protected against proteolysis. Sucrose gradient purification 

of the trypsin-cleaved material resulted in a faster fraction containing uncleaved gpN and 

Sid and a slower fraction containing mainly cleaved gpN and no Sid (1). 

2.2 Cryo-EM for P4 procapsids: 

The procapsid particle samples recovered from the sucrose gradients were diluted 5 

times, pelleted at 190,000 g for 1 h, and resuspended in procapsid buffer at a 

concentration of 9 mg/ml. The sample was diluted to 1 mg/ml concentration in procapsid 

buffer immediately before microscopy, applied to quantifoil copper grids, plunge-frozen 

in liquid ethane, and observed in an FEI Tecnai 12 electron microscope operated at 120 

kV, equipped with a Gatan cryospecimen holder. The images were collected on Kodak 

SO-163 film at a magnification of X 50,000. The particles measure about 390-400A. The 

defocus of the micrographs ranged from 0.9 µm to 2.5 µm. 

2.3 Reconstruction of P4 procapsid using EMAN: 

EMAN (16) was used for reconstruction. EMAN is a set of image/volume processing 

tools to perform single particle reconstructions. It can be used for parallel processing and 

contains subroutines to run the desired process in as many as 32 processors at a time. The 

basic steps in the reconstruction using EMAN are illustrated in the flow chart in figure 9. 

2.3.1 Scanning and Digitization: 

The negatives were scanned using an EverSmart scanner from CreoScitex. The scanning 

resolution is 220 dots/millimeter.  Once the images were scanned they were converted 

into a file format with extension “smv”. This format is very useful to conserve space and 
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reduces it by one-third as it stores the RGB image by taking in a single channel, red, blue 

or green. These files were then converted into spider format using a small script and 

subsequently converted into the “MRC” format (stands for medical research council) 

using Proc2d program in EMAN (16) and inverted. In cryo-EM negatives, the proteins 

appear darker then the background and hence inversion is done to follow the conventions 

of EMAN where the higher density, in this case protein, appears lighter than lower 

density regions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Flow chart of reconstruction in EMAN 

Scanning and digitization of micrographs 

Picking particles from the micrographs 

Doing CTF correction 

Classifying the particles in the data set 
(CTF correction not used at this point) 

Aligning and averaging the particles in a 
class 

(CTF correction used from this point) 

Use these alignments to make a 3D model Doing a resolution test on           
the model 

Getting 2D projections from the 3D model 
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2.3.2 Picking the Particles (Boxing out) 

Particles were picked out from the scanned micrographs by using Boxer (16) available in 

EMAN. The semi-automated feature in boxer allows the user to choose a few good 

particles based on which it searches, using correlation based algorithms, the rest of the 

micrograph and picks out similar particles. This is not a foolproof method due to the 

varying contrasts and contaminations in a micrograph. Hence the selected particles have 

to be manually scanned to remove out any bad particles. This is a very important step in 

reconstruction, as selection of bad particles will lead to an incorrect 3D model. 

The resolution of the images was around 2.73Angstorm/pixel. This can be calculated by 

taking into consideration the resolution of the scanner (220dots/mm or 4.545 microns), 

magnification of the microscope (50,000) and the binning factor (3) applied while 

scanning the micrographs. The formula is: 

(Resolution (in microns) * binning factor)/magnification 

(4.545 * 3)/(5*104)=2.727 A/Pixel 

2.3.3 Correction of Contrast Transfer Function: 

A number of experimental and instrumental factors must be correctly included in the data 

analysis. These factors include the contrast transfer function (CTF) of the microscope 

(46,50), the effective envelope function (E) (35, 40, 41, 44, 45, 47) and a background 

noise function (N) (16,20,34). The envelope function is defined by B-factor and is a 

measure of a combination of factors like the spatial and temporal coherence of a 

microscope, the sample drift and scanner optics. These factors can be approximated as a 

single Gaussian envelope function, the width of which is described by B-factor (8). The 

B-factor is experimentally dependent on the objective lens defocus setting of the 
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microscope. The experimental B-factor is very critical for obtaining an atomic resolution 

structure. EMAN (16) uses a program called ctfit to fit in the B-factor, defocus, ctf 

amplitude and the Noise functions in a power spectrum and uses these corrected ctf 

parameters in the image reconstruction (53). 

This is done using the “ctfit” program in EMAN (16).  'Ctfit' determines the parameters 

of the CTF in each micrograph by fitting parameters in a predefined 10-parameter model 

to the power spectrum of data from the micrograph. These parameters are then used 

during the reconstruction procedure to make corrections for the CTF. A power spectrum 

is produced for each micrograph and the 10 parameters can be adjusted using sliding 

panels in a graphical interface window to best fit the default curve (Figure 10). The y-axis 

represents the intensity while the x-axis is the reciprocal of resolution in Angstrom. 

The measured data is usually a product of the structure factors and the CTF. The structure 

factor as discussed before contributes to about 5-10% of the final structure. Most of the 

structure information is from the phase contrast. To have more accurate structure factor 

data we would need to use the structure factors of the gpN protein itself. For this we 

would have to use small angle and for reaching higher resolutions large angle diffraction 

experiments of gpN. Experimentally, this would require a large quantity of the protein. 

To derive the structure factor file from EM data itself we would require some amount of 

very close to focus data in order to facilitate collection of data from a larger frequency 

range. 
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Figure 10: Fitting a simulated curve into the experimental spectrum of the micrograph 
 
2.3.4 Generating a preliminary 3D model and refinement: 

An initial model was generated from the best particles, about 442 raw particles from 5 

micrographs after doing four cycles of refinement and then refined iteratively with an 

increasing subset of original images to get a better model using the “refine” command in 

EMAN. Eight processors were used for the process of reconstruction. The final model 

was generated from 2755 particles after doing about 35 cycles of refinement excluding 

the first 4 cycles. Several parameters have to be specified in the refine command, chief 

among which is the angular step. This is given in degrees and defines the unit triangle in 

which the projections are generated with a relatively uniform projection density. The 
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other parameters are “classkeep”, which denotes the threshold value for keeping particles 

in a class, “classiter”, indicating the number of iterative loops, a circular mask radius for 

the class average and the symmetry of the particle, icosahedral, in this case. To apply ctf 

corrections the “ctfcw” option is used which performs CTF correction with a wiener filter 

using the structure factor file. Initially the angular step was taken as 3.8 and then 

gradually decreased to 2.5 for a finer refinement. The “classkeep” was decreased from 

0.8 to less than 0.001, which would discard as many as 50% of the original data set 

before the final reconstruction, to increase the stringency of the reconstruction process. 

Computational power is a rate-determining factor in the reconstruction. Hence the 

reconstruction was initially done at a sampling of 5.44 Å/pixel to speed up the process 

and then increased to 2.73 Å/pixel, once an optimum resolution for the 5.44 Å/pixel 

sampling space was reached (which depends upon the scanner and could be about 2 to3 

times the sampling space). About 20 cycles were done at 5.44 Å/pixel and 15 cycles at 

2.73 Å/pixel. In the last 15 cycles the “defilt” option in refine was also used to improve 

resolution. This option will make the rotational average structure factor of the particle the 

same as the projection. In the last two cycles the “refine” option in refine was used, 

which enables half pixel accuracy in alignment. Both the defilt and refine options 

considerably improved the resolution but decreased the computational speed to a large 

extent and hence were limited to the last few cycles only (53). 

2.3.5 Resolution test: 

In order to calculate the final resolution “eotest” program in EMAN (16) is used. This 

calculates the Fourier shell coefficient (fsc) between two reconstructions from even and 

odd halves of the data. There are different ways of calculating the resolution. A more 
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conservative but foolproof resolution test is to take the resolution at which the fsc falls to 

0.5. The output of eotest is a file containing the fsc for the entire range of pixels ranging 

from 1 to half the boxsize (216/2=108 in the case of procapsids). Hence the resolution is 

calculated by multiplying, twice the sampling space, with maximum pixel value and 

dividing it by pixel value at which fsc is 0.5. The reason we take twice the sampling 

space is due to Shannon Nyquist theorem. This theorem states that to avoid aliasing, that 

is non-overlap of the periodic transform of the object density, the finest spatial period 

must be at least twice the sampling space (Dr.Tony Crowther’s lecture at NCMI 

workshop, December 2002).  

Again this is an underestimation of resolution as it compares the models from two halves 

of the data. 

2.4 CryoEM for P4 expanded particles: 

The material from the upper band of the sucrose gradient separated trypsin-cleaved 

particles was observed in a native, unstained state by cryo-EM (37, 39). The samples 

were pelleted in a Beckman Airfuge, resuspended in 10 mM Tris pH 8.0, 15 mM MgCl2, 

placed on Quantifoil copper grids, vitrified by plunging in ethane, and observed in an FEI 

Tecnai F20 field emission gun electron microscope operated at 200 kV, equipped with a 

Gatan cryo-specimen holder. The images were collected on Kodak SO-163 film at a 

magnification of X50,000 (1).  

2.5 Reconstruction of P4 expanded particles using the MRC-ICOS programs: 

The MRC-ICOS (22) set of programs and PFT (21) was used for reconstruction and a 

simple program “Micos” written by Dr.Terje Dokland was used to set up scripts and 

organize particle lists. The flow chart for the reconstruction process is given in Figure 11. 
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Figure 11: Flow chart representing reconstruction-using MRC-ICOS 

 

Scanning and digitization of micrographs 

Pre processing (picking out particles) 

Fourier transforms the images 

Brute force search for initial orientations 

Centering of particles 

Refinement of particles 

Symmetrizing the reconstruction 

Reconstruction to get a 3D model 

Viewing the reconstruction 

Model based orientation search 
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2.5.1 Scanning and digitization: 

The cryomicrographs were scanned on a FAG Hi-scan rotating drum scanner (Dunvegan, 

Geneva) in 16-bit gray scale mode at a raster step of 1000 dpi or 25.4 µm, corresponding 

to 5.08 Å in the specimen. A linear stretch of the gray values was applied using Adobe 

Photoshop before conversion to 8-bit gray scale. 

2.5.2 Particle picking: 

Particles of expanded appearance were selected for reconstruction from 30 micrographs 

using BOXER from the EMAN package (16). The procedure for boxing is as explained 

in section 2.3.1. 

2.5.3 Fourier Transformation: 

The boxed particles were separated into individual particle files using “proc2d” in 

EMAN. Fourier Transformation of these images was done with FFTRANS in the MRC-

ICOS program suite. All subsequent processing steps are done on these Fourier 

transforms. 

2.5.4 Brute force search of orientations and Centering: 

The program EMICOFV was used to generate orientations for these Fourier transforms. 

It works by searching all orientations (theta, phi, omega) in the asymmetric unit in one-

degree steps for the lowest common-lines residual after weighting for degeneracy. The 

program computes various residuals and outputs the ten best orientations (those giving 

lowest residuals) as well as a residual map for each. By inspection of these, the best 

orientation, which is not affected by artifacts such as degeneracy, is picked. These 

particles were then centered using EMICOORG. EMICOORG1 minimizes the common-
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lines residual to determine the phase origin (X, Y) for the particle in the orientation 

(theta, phi, omega) given by FV (52).  

2.5.5 Reconstruction and Symmetrizing: 

Reconstruction of this set of orientations was done with EMICOMAT, EMICOBG, 

EMICOLG, and EMICOFB (MAT_FB).  These set of programs apply the icosahedral 

symmetry, do an inverse Fourier transform and generate three-dimensional maps of the 

averaged particle in various settings. In generating the final reconstruction, EMICOFB 

only imposes the D5 symmetry to the map. To apply the full icosahedral symmetry, the 

program SYMMETRIZE is used, and applies the three-fold symmetry missing from the 

map. SYMMETRIZE also allows interpolation and rotation of the map (52).  

2.5.6 Model based refinement: 

Model based orientation search on this initial model was done using PFT (21). The 

algorithm is the polar Fourier transform method developed by Drs. T.S. Baker and R. H. 

Cheng (Purdue University) and compares the projections of the model with the original 

images iteratively. It then classifies and aligns the original images based on these 

projections and outputs a reconstruction, which will be the starting model for the next 

cycle. In this way it progresses iteratively producing a more refined model in each cycle. 

SIMPLEX, a program to refine the particles was also used at this point but no further 

improvement of resolution was seen, possibly because the resolution limit was reached 

for the available number of particles. For viewing the reconstruction – PTONE was used. 

PTONE takes MRC format image files and generates half tone output in postscript 

format. 
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2.5.7 Determining the resolution: 

The resolution was calculated by dividing the particles into even and odd halves and 

comparing the reconstructions from these two halves. The Fourier shell correlation (FSC) 

was calculated between these two reconstructions and the point at which it falls off 

steeply is considered as the most likely resolution for the model. This is an under 

estimation of the resolution as it compares two images formed from half the original data 

set and not the complete set. 

2.4 Purification of ribosome channel complexes: 

The ribosome channel complexes (2) were prepared by binding ribosomes to the purified 

Sec61p complex reconstituted in membranes, which created a more natural interaction 

(5). The canine non-translocating, native ribosome–channel complex was prepared by 

taking puromycin-treated ribosomes and ribosome-stripped membranes from rough 

microsomes in high salt conditions to re-assemble “native” channel complexes in which 

the ribosome has a tRNA in the exit-site.  

Purified ribosomes were then added back to stripped ER membranes and the resulting 

membranes separated from unbound ribosomes by floatation on a sucrose gradient. These 

membranes were solubilized in deoxy-BigCHAP (DBC) and the ribosome channel 

complexes were concentrated by centrifugation (2).  

2.5 Cryo-EM and three-dimensional reconstruction of Ribosome channel complex: 

CryoEM: 

After resuspension, the RCCs were adsorbed to a carbon-coated EM grid in buffer and flash 

frozen. Interactions of the channel with the continuous carbon support seemed to be a 

limiting factor. Therefore the grid surface was treated with poly-lysine, to prefer 
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interactions of the RCC through its ribosomal portion and avoid damage to the channel 

thus allowing the study of the channel in greater detail (2). ”Boxer” in EMAN was used 

to select particles from a set of micrographs scanned using an EverSmart scanner from 

CreoScitex. The scanning resolution is 220 dots/millimeter. The 8-bit data were binned 

3X3. Boxer has an option called “autobox from reference” using which the particles can 

be boxed based on the projections in a reference file. An initial model at 17 Å (5) was 

used to generate these projections using “project3d” software in EMAN. The ribosome 

channel complex is an asymmetric particle and hence about 40 to 50 reference 

projections are required to box the whole micrograph with a reasonable amount of 

accuracy. The references should be able to describe all possible unique orientations of the 

particles but at the same time should not be prohibitively long. The project3d in EMAN 

has a unique algorithm to choose an optimal set of particles for use in autobox from 

reference (53). On using this option, a small area in the micrograph is chosen and a panel 

with four sliders appears. These have to be suitably adjusted until all the good particles in 

the chosen area are selected and then the program is run to autobox from the whole 

micrograph. About fifteen thousand particles were selected in this method. CTF 

correction was applied to these micrographs as discussed in section 2.3.The structure 

factor file used was derived from the micrographs that were close to defocus. 
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3: Results and Discussion: 

3.1 Procapsid structure 

Procapsids were produced by co-expression of gpN and Sid from the chimeric plasmid 

pLucky7 and purified on sucrose gradients as previously described in section2.1. Such 

procapsids consist of a 420 Å diameter (Figure 12), T= 4 capsid surrounded by an 

external scaffold made of 120 copies of Sid and are identical to capsids produced by 

combining purified gpN and Sid in vitro (13). 

 

 
 
Fig 12: Cryo-EM micrograph showing P4 procapsids 
Source: Wang et al. In vitro assembly of bacteriophage P4 procapsids from purified capsid and scaffolding 
proteins. Virology 275, 133–144 
 
These particles were observed by CryoEM as explained in section 2.2. Initially five of the 

best micrographs were picked and particles boxed from these and ctf correction applied. 

These were used for generating a preliminary model in EMAN (16). Four hundred and 

forty two particles were aligned to generate the initial model at around 36 Å. 

Micrographs with a good distribution of P4 particles, which are well formed, and without 

too much ice and superfluous densities and other contaminations like dust, were chosen. 

Particles were chosen from these micrographs by using the semi-automated boxing 
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feature in boxer. A total of 30 micrographs were chosen and boxed to a size of 256x256. 

The structure factor data until 31.5 Å was got from the EM data on P4. Below 31.5 Å, the 

structure factor data from GROEL x-ray diffraction experiments were used (9). GROEL 

data was considered because between proteins (with the exception of membrane proteins) 

the structure factor data usually does not vary widely. Also, as explained before the 

structure factor contributes to 5-10% of the final resolution which may make a difference 

only when we go to very high resolutions like below 10 Å. Hence it may suffice to use 

the GROEL data for the missing structure factor data in the capsid protein. Initially to 

speed up the refinement process the refinement was done at a sampling space of 5.44 

Å/pixel. After 20 cycles the original sampling resolution of 2.73 Å /pixel was considered 

at this point for further refinement. The resolution of the initial model was found to be 

around 36 Å and after doing 20 cycles of refinement at higher sampling of 5.44 Å/pixel 

the resolution improved to 17.408 Å. After this, 15 cycles of refinement were carried out 

at 2.73 Å/pixel sampling. Several cycles of refinement with different refinement 

conditions like “refine” and “dfilt”(53) were carried out as explained in section 2.3.4. A 

final resolution of 14.38 was reached with 2755 particles (Figure 13) as calculated by 

eotest (16). Ideally the curve should fall off gradually towards higher resolutions but in 

this case the curve rises up again after falling steeply at 14.38 Å. This could be due to 

missing data at around x=40, caused by the overlaps of the CTF zeroes at different 

defoci. This signifies the importance of having data from a large range of defocus. 
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Figure 13: Output from “eotest”. Resolution at which the fsc=0.5 on y-axis, corresponds to 40 pixels on the 
x-axis. The resolution is calculated to be 14.38 Å as discussed in section 2.3.5 
 

The final structure of the procapsid at 14.38 Å (Figure 14) has more detail than the 

previous structure at 21 Å (4). 

 
  
Figure 14: P4 procapsid at 14.38 Å looking down the 2-fold axis 

fsc 

Pixels 
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The reconstruction clearly shows the T = 4 arrangement of gpN in the shell, organized as 

12 pentamers and 30 hexamers. There are 120 copies of Sid (4) arranged in dimeric and 

trimeric parts. The handedness of the scaffold and the three-fold symmetry of the trimeric 

part are clearly seen (Figure 14). The presence of two distinct domains in gpN had been 

mentioned in an earlier paper (29) with one domain comprising the capsomer and the 

other the trimeric connection between the capsomers with a hinge region connecting 

them. The hinge region is supposed to conform the flexibility to take on several different 

conformations. The previous structure at 21 � (4) also showed the gpN subunits in both 

the hexamers and the pentamers as having a protruding domain that is shaped similar to a 

slightly twisted slab, and a shell domain that made up the bulk of the capsid density. This 

feature is also seen in the present higher resolution model at 14.38 �. The hexamers are 

not sixfold symmetric, but have an elongated appearance characteristic of dsDNA phage 

procapsids with a two-fold symmetry (Figure 13). Another feature that is seen at this 

resolution is that certain intercalating densities apparently belonging to Sid seem to 

restrict the interactions amongst the subunits (Figure 15). The significance of this is not 

immediately understood. We would require higher resolution structure of the procapsid to 

see finer connections between the Sid and the subunits. The interaction of Sid with two 

domains of the hexamer is seen in the current model (Figure 14, Figure 17) but the likely 

interaction with two other domains () is not apparent in the structure. The pentamers have 

a slightly different arrangement of the gpN protein (Figure 16) and the domains in gpN 

may be more clustered together in the pentamer as is evident from the raised portion in 

the center of the pentamer. 
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Figure 15:A view of the hexamer in “O” after slabbing sufficiently to see the outlines of the shapes of the 
different hexameric subunits. Similar colors dotted subunits, represent the same symmetric subunit 
 

 
 
Figure 16:View of pentamer containing the same symmetric subunit in 5 copies 
 
 
 

 
Possibly density belonging to 

Sid 
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Figure 17: Shows the continuous density between Sid and a hexamer subunit. The colored dot indicates the 
same subunits as in figure 13 while the red dot stands for possible Sid density 
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3.2 Fitting the HK97 capsid head II protein gp5 into the P4 procapsid: 

Studying a protein structure in isolation cannot give a complete understanding of its 

interactions with other proteins or DNA/RNA. EM maps of protein complexes are very 

important towards getting a larger picture of the protein interactions by docking available 

atomic models of the respective proteins or homologous proteins into these maps. This 

leads to the complete functional elucidation of the complex and the proteins therein. 

Hence fitting atomic models of protein into EM maps of their complexes is gaining 

importance. 

A vast majority of dsDNA-tailed phages have common ancestry and they undergo 

profuse exchange of functional genetic elements drawn from a large shared pool. Phages 

frequently have specific functional properties in common (for example, the cross linked 

head proteins of L5 and HK97 and ribosomal frame shifting in tail genes) even when 

sequence similarity is not evident. The combination of these functional, organizational, 

and sometimes sequence similarities suggests that a significant number of dsDNA 

bacteriophages are in fact related, having had and continuing to have access to a large 

pool of functional genetic elements (18).  The HK97 capsid head II was solved by 

crystallography (15) to a resolution of 3.6 �. HK97 like P4 is a double stranded DNA 

phage virus but with a T=7 symmetry. The HK97 capsid protein Gp5 undergoes a 102-

residue proteolysis of its � domain to form procapsid II from its earliest precursor 

procapsid I. Procapsid II then forms the head II capsid. The head II capsid protein’s 

conformation was adapted and modeled to fit prohead II (6).  

Crystallization attempts of P4 procapsids and expanded capsids, similar to the 

crystallization of the HK97 capsid Head-II were not very successful. Crystallization of P4 
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procapsids did not produce good quality crystals in the past and in case of the expanded 

capsids the heterogeneous sizes of the capsids in the sample is not pure enough for 

crystallization.  

In order to investigate the possibilities of docking the proheadII pseudo atomic model in 

P4, the sequences of the two, capsid proteins gpN (P4) and gp5 (HK97) were compared 

to check for any significant sequence similarity. An output of ClustalW (59) showing the 

multiple alignment of the two sequences is given below.  The secondary structure 

prediction using Predict Protein software (58), for each of the sequences was also done. 

 
CLUSTALW Results 
 
gigpn        1 --MRQETRFKFNAYLSRVAELNGIDAGDVSKKFTVEPSVTQTLMNTMQESSDFLTRINIV 
gigp5        1 MSELALIQKAIEESQQKMTQLFDAQKAEIESTGQVSKQLQSDLMKVQEELTKSGTRLFDL 
consensus    1 ms              rv  L     gdv     V   v   LM    E s   TRi  v 
 
 
gigpn       59 PVSEMKGEKIGIG-----------VTGSIASTTDTAGGTERQPKDFSKLASNKYECDQIN 
gigp5       61 EQKLASGAENPGEKKSFSERAAEELIKSWDGKQGTFGAKTFNKSLGSDADSAGSLIQPMQ 
consensus   61       G      kksfseraaeev  S      T Gg   q    S   S       in 
 
 
gigpn      108 FDFYIRYKTLDLWARYQDFQLRIRNAIIKRQSLDFIMAGFNGVKRAETSDRSSNPMLQDV 
gigp5      121 IPGIIMPGLRRLTIRDLLAQGRTSSNALEYVREEVFTNNADVVAEKALKPESDITFSKQT 
consensus  121     I      L  R    Q R     i     d        V        S         
 
 
gigpn      168 AVGWLQKYRNEAPARVMSKVTDEEGRTTSEVIR-------------VGKGGDYASLDALV 
gigp5      181 ANVKTIAHWVQASRQVMDDAPMLQSYINNRLMYGLALKEEGQLLNGDGTGDNLEGLNKVA 
consensus  181 A          A   VM             vi glalkeegqllng G G     L  l  
 
 
gigpn      215 MDATNNLIEPWYQEDPDLVVIVGRQLLADKYFPIVNKEQDNSEMLAADVIISQKRIGNLP 
gigp5      241 TAYDTSLNATGDTRADIIAHAIYQVTESEFSASGIVLNPRDWHNIALLKDNEGRYIFGGP 
consensus  241       L          l   v      d     v         lA       k I   P 
 
 
gigpn      275 AVRVPYFPADAMLITKLENLSIYYMDDSHRRVIEENPKLDRVENYESMNIDYVVEDYAAG 
gigp5      301 QAFTSNIMWGLPVVPTKAQAAGTFTVGGFDMASQVWDRMDATVEVSREDRDNFVKNMLTI 
consensus  301             li    n    y             klD          D  V       
 
 
gigpn      335 CLVEKIKVGDFSTPAKATAEPGA-- 
gigp5      361 LCEERLALAHYRPTAIIKGTFSSGS 
consensus  361    Eki vg f   A   a    gs 
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Secondary structure Prediction: 
 
GpN 
 

��������������������������������������������������������������������	���������
�������������������������������
AA         MRQETRFKFNAYLSRVAELNGIDAGDVSKKFTVEPSVTQTLMNTMQESSDFLTRINIVPVSEMKGEKIGIGVTGSIASTTDTAGGTERQPKDFSKLASNK 
PHD_sec       HHHHHHHHHHHHHHHH                HHHHHHHHHHHHHHHHHHH EEEEE      EEEE EEEEEEEE                      
 
 
           ....,....11...,....12...,....13...,....14...,....15...,....16...,....17...,....18...,....19...,....20 
AA         YECDQINFDFYIRYKTLDLWARYQDFQLRIRNAIIKRQSLDFIMAGFNGVKRAETSDRSSNPMLQDVAVGWLQKYRNEAPARVMSKVTDEEGRTTSEVIR 
PHD_sec     EEEE     HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHEE                  HHHHHHHHHHHHHHH HHHHHH          EEEEE 
 
           ....,....21...,....22...,....23...,....24...,....25...,....26...,....27...,....28...,....29...,....30 
AA         VGKGGDYASLDALVMDATNNLIEPWYQEDPDLVVIVGRQLLADKYFPIVNKEQDNSEMLAADVIISQKRIGNLPAVRVPYFPADAMLITKLENLSIYYMD 
PHD_sec    E     HHHHHHHHHHHHHHH HHH      EEEEEEHHHH              HHHHHHHHHHHHHHH              EEEEEEE   EEEE   
 
           ....,....31...,....32...,....33...,....34...,....35...,....36 
AA         DSHRRVIEENPKLDRVENYESMNIDYVVEDYAAGCLVEKIKVGDFSTPAKATAEPGA 
PHD_sec       EE         EEEE      EEEEE     EEEEEEEE                
 
 

             Gp5 
 
           ....,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8....,....9....,....1 
AA         MSELALIQKAIEESQQKMTQLFDAQKAEIESTGQVSKQLQSDLMKVQEELTKSGTRLFDLEQKLASGAENPGEKKSFSERAAEELIKSWDGKQGTFGAKT 
PHD_sec      HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH           HHHHHHHHHHHHH       EE   
 
           ....,....11...,....12...,....13...,....14...,....15...,....16...,....17...,....18...,....19...,....20 
AA         FNKSLGSDADSAGSLIQPMQIPGIIMPGLRRLTIRDLLAQGRTSSNALEYVREEVFTNNADVVAEKALKPESDITFSKQTANVKTIAHWVQASRQVMDDA 
PHD_sec                            E     EEEEE             EEEEE                            HHHHHHHHHHHHHHHHHH  
 
 
           ....,....21...,....22...,....23...,....24...,....25...,....26...,....27...,....28...,....29...,....30 
AA         PMLQSYINNRLMYGLALKEEGQLLNGDGTGDNLEGLNKVATAYDTSLNATGDTRADIIAHAIYQVTESEFSASGIVLNPRDWHNIALLKDNEGRYIFGGP 
PHD_sec    HHHHHHHHHHHHHHHHHHHHHHEE          HHHHHHE             HHHHHHHHHHHHHHH    EEEE   HHHHHHHHH      EE    
 
 
            
           ....,....37...,....38...,....39...,....40...,....41...,....42...,....43...,....44...,....45 
AA         QAFTSNIMWGLPVVPTKAQAAGTFTVGGFDMASQVWDRMDATVEVSREDRDNFVKNMLTILCEERLALAHYRPTAIIKGTFSSGS 
PHD_sec           EE   EEEEE      EEE      EEEEE   EEEEEE      HHHHHHHEEEEEE EEEEE    EEEEEEE    

�
�
�

The amino acids highlighted in red correspond roughly to domain P, green to the helices 

in domain A, orange to a loop like region in domain A and purple to the domain E in gp5. 

These amino acid estimations for the domains are not from any motif finder tools but by 

visual inspection of the structure itself.  The corresponding amino acids in gpN (from 

ClustalW results) are also given the same color. The results show that these capsid 

proteins possess some amount of homology at the secondary structure level. Similarity at 

secondary structure levels could result in similar motifs and domains in the tertiary 

structure. GpN protein has 35.29% helices, 18.21% sheet and 46.50% loops while gp5 
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has 39.74% helices, 15.84% extended sheets and 44.42% loops. The sequence in gpN 

aligned to the domain P in gp5 is also principally helical and hence this domain could be 

conserved in gpN. Sequence in gpN aligned to Domain A, shows some variance but also 

seem to have two helices and an extended sheet like domain A. The domain E is not 

conserved in gpN and hence the sequence from 144 to 182 is cut off from the pdb 

structure of gp5 before fitting into the EM map of P4 procapsid and it is interesting to 

note that the sequence aligned to domain E in gpN is principally helical and this gives 

rise to the interesting speculation of the presence of a totally different domain in P4. 

Based on this assumption, the PDB structure of the prohead II without the N-terminal 

region and domain E, was docked into the ~14A map of P4 procapsid with scaffolding 

protein Sid, using O (63). The seventh chain in the proheadII belonging to the pentamer 

was removed and docking done with only the hexamer. The reason for this is that the 

packing between hexamers and pentamers differ for phages with different symmetries, as 

is the case here. The chain belonging to the pentamer was then fit separately into a 

pentamer in the EM map by visual inspection and using a program called “apply60f “ 

was generated for the rest of the icosahedron. 

�

Figure 20 shows the pdb structure of proheadII without the N-Terminal region and the 

non-homologous sequence to domain E (144 to 182 Amino acids), docked into the 

hexamer of P4 Procapsid. This is the view looking down the pseudo six-fold axis or 

icosahedron two-fold axis. The 6 chains are colored in different colors. The P4 EM 

density is shown in grey. 
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Figure 18 shows a hexamer looking down the two-fold icosahedral axis using “O”. 
 

 
 
 
Figure 19 shows the view of the hexamer after rotating around the x-axis by 90 degrees after slabbing 
adequately to make out the inner features, using “O”. 
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Figure 20 shows a view of a pentamer down the five-fold using “O”. 
 

 
Figure 21 shows the view of the pentamer after rotating around the x-axis by -90 degrees after slabbing 
adequately to make out the inner features, using “O”. 
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Figure 22 shows both the pentamer and hexamer using “O”. 
 
 
The fitting of the proheadII into the P4 EM map shows that there are some common 

conserved domains in the capsid proteins of the two phages. However there are also gaps 

in the EM map not filled by the atomic model indicating the presence of extra domains in 

gpN. One possibility is the sequence in gpN aligned to the domain E in gp5. The N-

terminal region in gpN is also different as compared to gp5 and is not known to undergo 

any proteolysis unlike gp5 in the formation of P4 procapsids. Also, in the hexamer there 

is some gap in the twisted slab like regions after fitting domain A in gp5. This could be 

because the homologous domains in gpN may be positioned slightly differently. The 

differential arrangement of the subunits in the hexamer maybe a result of intercalation of  

Sid within the hexamer (Figure 15). In the pentamer the fitting seems better because the 

chain belonging to the pentameric unit was moved slightly to fit the map better before 

using apply60f to generate similar chains in the remaining pentameric subunits. Also 

there is no interference of Sid in this region. 
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A previous study (29) had indicated the presence of two domains in gpN with one 

domain comprising the capsomer and the other the trimeric connection between the 

capsomers with a hinge region connecting them. It is possible that the sequence 

homologous to domain A forms the domain comprising the capsomer and the sequence 

homologous to domain P, the shell region along with the N terminal region and the 

sequence aligned to domain E.  

3.3 Structure of Expanded capsid: 

Upon storage of these purified procapsids for about 2 months at 4°C, some of the 

procapsid samples were found to have undergone spontaneous proteolytic degradation of 

gpN. Presumably the cleavage of gpN had been caused by an unknown contaminating 

protease, as other samples stored in the same way were unaffected. When the 

spontaneously cleaved samples were rerun on sucrose gradients as explained above, 

uncleaved gpN and Sid sedimented in the position expected for normal procapsids, while 

cleaved gpN was found in a more predominantly slowly sedimenting fraction (1). 

Negative stain EM as well as cryo-EM confirmed that the Sid-containing band contained 

procapsids of normal appearance (Figure 12), while the band containing cleaved protein 

comprised mostly expanded, thin-shelled particles (Figure 23). Hence it is possible that 

the spontaneous cleavage of gpN had caused an expansion of the procapsids with 

associated loss of Sid to form expanded capsids. 

These expanded particles were studied using cryo-EM as described in section 2.4. The 

expanded particles showed a wide variation in size from 250 to 350 Å in diameter. About 

20–30 particles could be found in each negative. These particles were thin-shelled, about 

450 Å in diameter and had a somewhat angular shape with a smooth outline (Figure 23). 



 

  47
 

 
  

In total 316 particles were chosen from 30 negatives based on the fact that they were 

more uniform in shape. Preliminary orientations were generated for 92 of the best 

particles using the program EMICOFV, and a map was calculated to 35 Å resolution. 

Initially only 92 of the best particles were considered and a model generated. In 

successive iterations more and more particles were included, with the final number of 

particles considered coming to 247, with a PFT correlation of 0.4. EMAN (16), described 

in detail in the above section was used initially to get a model for 156 best, expanded 

particles. Although this procedure yielded a reconstruction with T = 4, due to concerns 

that the number of particles used maybe insufficient for the EMAN classification the 

more traditional approach with the common lines-based MRC/ICOS programs (21,22) 

was taken. These programs are more forgiving of having small numbers of particles, 

probably due to the use of exact orientations and interpolation in the Fourier transforms 

(48). In the end, the reconstruction produced by this procedure was quite similar to that 

determined by EMAN, demonstrating the equality of these two fundamentally different 

reconstruction algorithms (1).  

 

 
Figure 23: Cryo-EM micrograph of P4 expanded capsids 
Source: Wang et al. Cleavage leads to expansion of bacteriophage P4 procapsids in vitro. Virology 314: 
pp1-8 
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The Fourier shell correlation (fsc) between two reconstructions calculated to 24 Å 

resolution for the P4 expanded capsid data set, from two separate halves of the data 

dropped steeply at about 29 Å resolution, suggesting that this is the effective resolution 

limit of the data (figure 24).  

 

 
 
Figure 24: expanded capsid at 29 Å resolution. 
Source: Wang et al. Cleavage leads to expansion of bacteriophage P4 procapsids in vitro. Virology 314: 
pp1-8 
 
Failure to reach higher resolution is probably mainly due to slight structural differences 

in the particles chosen for reconstruction.  

Hence, capsid expansion and scaffold removal can be triggered in vitro by cleavage of 

gpN with trypsin in the absence of genome packaging or other structural proteins. Thus, 

the role of gpN cleavage may be to destabilize the gpN–gpN interactions and make the 

particle more susceptible to expansion. Due to this expansion the Sid scaffolding is 

removed. After trypsin treatment there were two cleavage sites in gpN an N-terminal and 

C-terminal cleavage site. The N-terminal cleavage site is almost identical (within two 

residues) of the native cleavage site for gpN (33) while the C-terminal could be an 

artifact of trypsin treatment. To be sure that the expanded capsids are not an aberrant by 
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product of this C-terminal cleavage N-mutants without this cleavage site should be 

assembled and analyzed (1). 

Another interesting study would be to try and block the protease involved in the cleavage 

of gpN and thereby block the maturation and DNA assembly. Unfortunately the exact 

protease in vivo is not known, and indeed the gpN cleavage may be autocatalytic. It is 

also known that gpO is involved in this in vivo though, gpO in itself may not be a 

protease. Producing gpO in vitro has also been quite difficult. Hence checking out these 

possibilities is beyond the scope of this present investigation.  

3.4 Comparison between the P4 Procapsid and P4 expanded capsid and conclusions 

on the fitting of proheadII capsid into P4 procapsid: 

From this it is clear that the P4 capsid undergoes rearrangement of subunits in the process 

of maturation, which is important for the unfolding of protein-protein interactions and 

DNA packing subsequently. An exact comparison between the expanded capsid and 

procapsid of P4 is not possible as they are at very different resolutions.  
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Figure 25: Comparison between P4 procapsid and P4 expanded capsid 
Source: Wang et al. Cleavage leads to expansion of bacteriophage P4 procapsids in vitro. Virology 314: 
pp1-8 
 
The P4 Procapsid hexamers have an elongated appearance characteristic of the dsDNA 

phage procapsids and has a two-fold symmetry. Unlike the procapsid structure, the 

expanded capsid has a flattened, symmetric capsomer and a thinner shell, more closely 

resembling the structure of the mature virion (29). The hexamers almost have a perfect 

six-fold symmetry. However, the mature virion appears to have a more distinctly angular 

shape than the expanded procapsid. It could be that although the shell had expanded it 

had not gone through the complete angularization process typical of mature virions. Thus, 



 

  51
 

 
  

P4 capsid maturation might proceed through several steps, most likely involving the 

DNA and other proteins in vivo (1).  

The fitting of the proheadII atomic model into the P4 procapsid EM map illustrates that 

the construction principles within a capsomer are essentially identical for most dsDNA 

phages. However, the gaps in the fitting indicate that in spite of some common domains, 

the capsid proteins have evolved differently within the same dsDNA phage family. The 

gaps in the P4 EM model, based on the multiple sequence alignment and secondary 

structure prediction may be due to the presence of some other domains like the predicted 

helical domain in gpN corresponding to domain E in gp5 or due to the N-terminal region 

not used in the fitting. Also, the gap in the twisted slab like regions of the hexamer after 

fitting domain A in gp5 could indicate that the homologous domains in gpN may be 

shifted slightly with respect to each other due to the interaction of Sid with two of the 

subunits (Figure 15). In an earlier paper (4) it was discussed that in P4 phage, unlike P2 

phage only 4 subunits get cleaved from N to N* form and that Sid interaction with the N-

terminal of gpN protein in the remaining two subunits, prevent them from getting 

cleaved. Based on the assumption that the present fitting of gp5 is correct and that gpN 

and gp5 share optimum homology on a structural basis, in the present model it appears 

that Sid does interact with two subunits but the interaction is most likely with the 

sequence in gpN homologous to domain A and this is close to C-terminal. It is clear that a 

higher resolution structure is required to know how and where Sid interacts with the 

subunits in the hexamer. 
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Improving the resolution of the Ribosome channel complex: 

The present structure (Figure 26) of the ribosome channel complex using poly-lysine 

treated grid surface is at 20 Å (2). 

 
 
Figure 26: Ribosome channel complex. The dark blue region is the large ribosomal subunit while light blue 
represents the small ribosomal subunit. The golden region represents the channel. S1 is the stalk of TRAP. 
The black dots represent truncated RNA helices due to interaction with poly lysine grid. 
Source: Ménétret et al, . Architecture of the Ribosome-Channel Complex Derived from Native Membranes 
(To be published) 
 
The boxed particles would be used to improve this current model to a higher resolution 

with the aim being to reach a resolution at which the localized helices will begin to be 

apparent and would allow the study of the channel in greater detail. The main purpose of 

this exercise was to study the robustness of EMAN in dealing with both symmetrical (P4 

phage) and non-symmetrical (ribosome channel complex) particles and to grasp the 

importance of 3D reconstruction in studying protein complexes be it virus assembly or 

ribosome channel complexes. 

3.6 Future prospects: 

Higher resolution maps below 10 Å are required for both the P4 phage and the ribosome 

channel complex to identify helices, which can be used to do a better fitting of the atomic 
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models. A higher resolution map can help in identifying the densities for the more 

flexible regions too. Also, the gpN structure could be modeled from gp5 using threading, 

as there is sufficient homology between the gp5 and gpN proteins and used to fit into the 

higher resolution EM map of the P4 procapsid as well as expanded capsid.  
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