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Summary

With the fast-growing and huge amount of data and information, Knowledge Discov-

ery in Databases has become one of the most active and exciting research areas in the

database research community because of its promise in efficiently discovering interest-

ing or unexpected knowledge from large databases. Association rule is one of the most

important subareas of data mining since it provides a concise and intuitive description

of knowledge and has wide applications. In this thesis, a framework of mining, recy-

cling and reusing frequent patterns for association rule mining is proposed. Within the

framework, several open technical problems are examined and addressed.

First, an approach is proposed to recycle the intermediate mining results and frequent

patterns from the previous mining process to speed up the subsequent mining process

when the mining constraints are changed. The main component of the approach is a new

concept “tree boundary” and a recycling technique based on the new concept. On the

basis of the recycling technique, two mining algorithms are adapted for the recycling

task. An extensive experiment is conducted and the experimental results show that the

technique is able to reduce the amount of computation greatly in the iterative mining

with constraint changes.

Second, an approach to recycling frequent patterns from previous round of mining

is proposed. The proposed method is operated in two phases. In the first phase, frequent

patterns obtained from an early iteration are used to compress a database. In the second

xi



phase, subsequent mining processes operate on the compressed database. Two compres-

sion strategies are proposed. One strategy, MLP, mainly considers space and the other,

MCP, considers the mining cost. In this thesis, three existing frequent pattern mining

techniques are adapted to exploit the compressed database. The experimental results

show that the proposed recycling algorithms outperform their non-recycling counter-

parts by an order of magnitude. Another interesting finding from experimental results is

that the strategy MCP is more effective than MLP for recycling.

Third, in order to efficiently mine frequent patterns in microarray datasets, which

are usually characterized by a large number of columns and a small number of rows,

several algorithms are proposed on the basis of row enumeration strategy. A series of

pruning strategies are designed to speed-up the proposed algorithms. The experimen-

tal results on real-life microarray data show that the proposed algorithms outperform

existing algorithms by orders of magnitude.

Finally, based on row enumeration strategy, algorithm FARMER is proposed to mine

interesting association rule groups (IRGs) given user specified rule consequent by identi-

fying their upper bounds and lower bounds. The IRGs can reduce the number of discov-

ered rules greatly. FARMER exploits the user specified constraints including minimum

support, minimum confidence and minimum chi-square to pruning rule search space.

Several experiments on real microarray datasets show that FARMER is orders of mag-

nitude better than previous association rule mining algorithms.

In summary, this thesis describes a framework for mining and recycling frequent

patterns in association rule mining. Within the framework, the mining results from the

previous mining process are shown to be helpful for subsequent constrained mining and

the proposed algorithms of mining frequent patterns and IRGs are shown to be efficient.

The publications that have arisen from the material described in this thesis are listed

in the reverse chronological order as follows.

• Gao Cong, Anthony K.H. Tung, Xin Xu, Feng Pan, Jiong Yang.FARMER: Fining
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• Gao Cong, Beng Chin Ooi, Kian-Lee Tan, Anthony K.H. Tung.Go Green: Recy-

cle and Reuse Frequent Patterns. In IEEE 20th International Conference on Data

Engineering, 2004.

• Feng Pan, Gao Cong, Anthony K.H. Tung, Jiong Yang, Mohammed J. Zaki.CAR-

PENTER: Finding Closed Patterns in Long Biological Datasets. In the 9th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

2003.

• Gao Cong, Bing Liu.Speed-up Iterative Frequent Itemset Mining with Constraint

Changes. In IEEE International Conference on Data Mining, 2002.
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Chapter 1

Introduction

With the popular use of the World Wide Web as well as the widespread use of new

technologies for data generation and collection, we are flooded with huge amounts of

fast-growing data and information. The explosive growth mainly comes from business

transactional data, medical data, scientific data, demographic data, and web data. These

data, collected and stored in numerous large databases, are far beyond our human ability

for comprehension without powerful tools. So, we must find ways to automatically

analyze, summarize, cluster and classify the data, and to discover and characterize the

properties in the data. In this situation, Knowledge Discovery in Databases (or KDD

in short) has become one of the most active and exciting research areas in the database

community.

KDD is the “process of discovering interesting knowledge from large amounts of

data stored in databases, data warehouses or other information repositories”[41]. The

discovered knowledge should be interesting to users. Moreover, the discovered knowl-

edge is usually implicit, previously unknown or unexpected, and potentially useful in-

formation. KDD can be viewed as the natural evolution of information technology. As

shown in Figure 1.1 [41], the development of KDD in the database industry follows the

path from data collection and database creation to database management system, and to

data warehouse and KDD.

KDD involves an integration of techniques from multiple disciplines, such as database

1



Chapter 1 Introduction 2

Figure 1.1: The evolution of database technique

technology, machine learning, statistics, expert systems and data visualization. Some

techniques of KDD, such as clustering and classification, have already been extensively

studied in machine learning. However, the emphasis of KDD is placed onefficiencyand

scalability of algorithms to discover interesting knowledge from emerging huge datasets

and other new types of datasets, such as web data and biological data.

KDD aims to find interesting knowledge for users in an efficient and effective way.

Only the users can judge whether the discovered knowledge is interesting or not. More-

over, it is difficult to know exactly what can be discovered from database before mining

is done [41] since one of the most attractive aspects of data mining is to find unexpected

patterns. As a result, data mining should be a human-centered, interactive and iterative
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process.

The discovered knowledge or patterns can be represented with various formats,

among which association rules, classification, clustering and outlier detection are the

most investigated topics in the field of KDD. A short introduction of them is given as

follows.

• Association rules. Association rule mining discovers the attribute-value condi-

tions that occur frequently together in a given database [5]. A typical example of

association rule problem is market basket analysis, in which the typical question

addresses the sets of items that customers are likely to purchase together in a trip

to the store.

• Classification. Classification is “the process of finding a set of models (or func-

tions ) that describe and distinguish between data classes or concepts for the pur-

pose of being able to use the model to predict the class of objects whose class

label is unknown”[41, 76].

• Clustering. Unlike classification that is supervised, clustering analyzes data ob-

jects without consulting a known class label since such a class label does not

always exists. Clustering is used to generate such a label and group similar ob-

jects together based on the principle of maximizing the intraclass similarity and

minimizing the interclass similarity [41, 44, 104].

• Outlier Analysis. Outlier analysis finds deviation from the expected values since

the rare events may be more interesting than the more regularly occurring ones

[41]. The expected value may be given by users or estimated by some statistic

method, such as regression analysis.

Many people treat Knowledge Discovery in Databases, (KDD in simple) as a syn-

onym for another popular term, Data Mining [41]. Others consider Data Mining as
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an essential step in the whole process of KDD, which includes the following steps: (1)

Data cleaning; (2) Data integration; (3) Data selection; (4) Data transformation; (5) Data

Mining; (6) Pattern evaluation; and (7) Knowledge presentation [41]. Like [41], this the-

sis does not distinguish between the two terms, KDD and Data Mining and views both

terms as the whole process of knowledge discovery in database.

This thesis concentrates on association rule mining. The rest of this chapter first

gives some background knowledge about the association rule mining, and then discusses

the motivations and contributions of this thesis.

1.1 Background

This section will introduce the association rule and its applications as well as research

progress of association rule mining.

1.1.1 Association rules and their applications

Association rule mining was first introduced in [5] to address a class of problems typ-

ified by a market-basket analysis. One example of association rule is “80 percent of

all transactions in whichbeerandpeanutwere purchased also includedpotato chips.”

Classic market-basket analysis treats the purchase of a number of items (for example,

the contents of a shopping basket) as a single transaction. The goal is to find trends

across large numbers of transactions that can be used to understand and exploit natural

buying patterns. This information can be used to adjust inventories, modify floor or shelf

layouts, or introduce targeted promotional activities to increase overall sales.

Before introducing the other applications of association rule mining, this chapter first

gives an informal definition of association rule and the formal concept will be given in

Chapter 2.

Let I={i1, i2, .., im} be a set of items. LetD be the dataset (or table) which consists
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of a set of rows (transactions)R={r1, .., rn}. Each rowri consists of a set of items inI

and is associated with a unique identifier, calledRID (row ID) or TID (transaction ID).

Note that we can also treatD as a boolean dataset, where each column of the boolean

dataset corresponds an item inI and each rowri consists of a value of either 1 or 0 for

each item inI.

An association rule has the formX → Y , where theX andY are sets of items, and

X ∩ Y = ∅. For simplicity, a set of items is called as anitemset or a pattern1. Let

freq(X) be the number of rows (transactions) containingX in the given database. The

support of an itemsetX is defined as the fraction of all rows containing the itemset, i.e.

freq(X)/|D| × 100% 2. Thesupport of an association rule is the support of the union

of X andY , i.e. freq(X ∪ Y )/|D| × 100%. Theconfidenceof an association rule is

defined as the percentage of rows inD containing itemsetX that also contain itemsetY ,

i.e. (freq(X ∪Y )/freq(X))×100%. An itemset (or a pattern) is frequent if its support

is equal to or more than a user specified minimum support (a statement of generality

of the discovered association rules). Association rule mining is to identify all rules

meeting user-specified constraints such as minimum support and minimum confidence

(a statement of predictive ability of the discovered rules). One key step of association

mining is frequent itemset (pattern) mining, that is to mine all itemsets satisfying user-

specified minimum support.

While association rule approaches have their origins in the retail industry, they can be

applied equally well to services that develop targeted marketing campaigns or determine

common (or uncommon) practices. In the financial sector, association approaches can

be used to analyze customers’ account portfolios and identify sets of financial services

that people often purchase together. They may be used, for example, to create a service

“bundle” as part of a promotional sale campaign. The association relations can also help

in many business decision making processes, such as cross-marketing, category design

1This thesis does not distinguish the two terms itemset and pattern
2It is noticed that support of an itemsetX is defined asfreq(X) in some research
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and loss-leader analysis.

Besides, association rules and frequent itemsets can be applied for many other data

mining functionalities. One of successful applications is classification. CBA [55] chose

a special subset of association rules to build classifiers. CBA was shown to be, in gen-

eral, more accurate than well known rule based classification system C4.5. Some other

classification methods using association rules include CMAR [54] and [10]. Similarly,

CAEP [33] built classifiers from emergent patterns [32], which can be regarded as spe-

cial association rules.

In [39], clustering was done using association rule hypergraphs. Association rules

have also been widely used in web mining and text mining. For example, frequent item-

set mining was applied to build Yahoo-like information hierarchies [94]. In [28, 93],

frequent itemset mining was used to mine common substructures from semi-structured

datasets. [36, 84] mine text documents with the help of association rules. More ap-

plications include building intrusion detection models [60], recommending services in

E-commerce[78], and mining sequence patterns [8, 98], etc.

1.1.2 Association rule mining algorithms

Generally, association rule mining is divided into two subtasks: (1) find all itemsets

whose supports are no less than the user-specified minimum support. Such itemsets

are calledlarge itemsetsor frequent itemsets; (2) generate association rules satisfying

user-specified minimum confidence from the frequent itemsets.

Since step (1) is usually the most time consuming step in association rule mining,

researchers mainly focused on frequent pattern mining. A phenomenal number of algo-

rithms have been developed for frequent pattern mining, such as [2, 5, 6, 7, 17, 34, 40,

43, 45, 46, 57, 58, 68, 72, 74, 80, 82, 91, 97, 100, 103]. Many of these proposed frequent

pattern (itemset) mining algorithms, such as [5, 6, 7, 17, 40, 45, 58, 68, 80, 82, 91, 103],

are variants of Apriori [7]. Apriori employs a bottom-up, breadth-first search and uses
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the downward closure property of pattern support to prune the search space. Intuitively,

the downward closure property means that all subsets of a frequent pattern must be fre-

quent. Such a property is widely applied in frequent mining algorithms to prune the

candidates whose subsets are not frequent. Some recently proposed algorithms do not

strictly follow the downward property to prune the search space, but discover frequent

patterns by extending patterns organized in an enumeration tree. The TreeProjection

algorithm [2] proposes a database projection technique which explores the projected

database with different frequent patterns. On the basis of projected database, some new

algorithms are designed, such as FP-growth algorithm [43], H-Mine [72] and oppor-

tunistic projection [46].

The data mining research community has put great effort to develop efficient al-

gorithms to discover frequent itemsets or association rules. In recent years, researchers

have realized that the involvement of users in data mining process is vital for discovering

only patterns that are interesting and relevant to the users.

One way of involving users in data mining is to allow the users to express their

preferences for mining via constraints. One simple constraint is that theLHS of dis-

covered rule contains itembeer. (Note that minimum support and confidence can also

be regarded as constraints specified by users.) [86] first introduced item constraints to

produce only the useful patterns for constructing association rules. [63] classified the

constraints to be imposed in association mining and proposed an effective solution for

succinct constraints, anti-monotone constraints and monotone constraints. In a later

work [64], more complicated constraints problems were investigated. [71] successfully

integrated convertible constraints into some frequent pattern mining algorithms. The

method reordered the items, which makes it possible to apply the anti-monotone and

monotone properties to the convertible constraints. [19, 49] transformed the constraint

problems into optimization problems.

The introduction of constraints into mining process is valuable in two aspects. On
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one hand, constrained mining tries to return knowledge that is of interest to users and it

does not bother the users with uninteresting patterns or rules. On the other hand, con-

straints can be used to guide the mining process instead of being imposed after patterns

or rules are discovered. In case that constraints are imposed to check whether return pat-

terns or rules satisfy the given constraints, the performance cannot be improved since the

computation has already been wasted in discovering uninteresting patterns. Researchers

try to push constraints deep into association rules mining, improving the search effi-

ciency by pruning the search spaces that do not satisfy the constraints.

Besides the introduction of constraints into data mining process, strengthening user

interaction in mining process has also been studied. [63] proposed placing breakpoints

in the mining process to accept user feedback to guide the mining. The idea was to

divide the mining task into several sub-tasks and to place a breakpoint between two sub-

tasks. The mining task can be adjusted at the breakpoint as early as possible if the user

is not satisfied, thus avoiding unnecessary computation of the whole task. Although the

idea seems to be promising in strengthening user interaction, it is difficult to operate in

practice to divide association rule mining into smaller subtasks than two subtasks, min-

ing frequent patterns and generating rules. Furthermore, online association rule mining

[3] also allowed the user to make dynamic changes (with limitation) to the parameters

of computation to improve interaction.

In addition to frequent itemsets, two other concepts, maximal frequent itemsets and

frequent closed itemset, are proposed. The maximal frequent itemset is proposed under

the background that existing frequent itemset mining algorithms usually degrade greatly

when the discovered itemsets are long and are large in number although they usually

show good performance in market basket datasets where the discovered itemsets are

usually short. In many real applications, such as bio-sequences, census data, etc, finding

long itemsets (the length can be more than 30) is not uncommon [12, 101] and has great

requirements for both CPU and I/O. The maximal frequent itemsets are typically orders
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of magnitude fewer than all frequent itemsets and usually much faster than existing

frequent pattern mining algorithms as shown in [1, 12, 20]. The maximal itemsets can

help in understanding the datasets. But they can not be used to generate association rules

directly since maximal itemset mining does not compute the frequency of subsets.

Unlike maximal frequent itemsets, frequent closed itemsets are lossless in that the

frequencies of all frequent subsets can be obtained from frequent closed itemsets. Fre-

quent closed itemsets are shown to be orders of magnitude fewer than frequent itemsets

on some datasets (especially those dense datasets and datasets in which items are highly

correlated), which results in faster algorithms [11, 70, 73, 92, 101]. The representative

algorithms of finding frequent itemsets, maximal frequent itemsets and frequent closed

itemsets will be reviewed in next chapter.

Although there are a large number of algorithms for frequent itemset mining (or

maximal frequent itemsets or frequent closed itemsets), frequent pattern mining is still a

time consuming computation, which is often beyond the users’ expectation. The perfor-

mance of algorithms often relies on the underlying datasets. None of these algorithms

can outperform the others in all cases. This has been shown by the results reported in

[38, 106]3.

Considering that frequent itemset mining is a time consuming process and the under-

lying database may change, some researchers have proposed some incremental mining

methods [22, 35, 69, 88, 89] to utilize previous mining results when database is changed.

Considering that the number of association rules can be extremely large for users to

understand, some researchers proposed to discoverinterestingor optimizedassociation

rules instead of all association rules. There are various definitions of interestingness

according to different metrics, such as [13, 37, 50, 56, 77]. Some of these methods post-

processed discovered association rules to prune those uninteresting rules while some

integrated the pruning process into mining process to improve algorithm efficiency.

3In their experiments, the datasets are assumed to loaded into memory. It is still not clear of the
performance comparisons of state of the art algorithms when dataset cannot fit in memory
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This subsection gave a brief introduction of the research on association rule mining.

The next subsection will discuss the motivations of this thesis.

1.2 Motivations

Association rule mining is an iterative process. For a given mining task, the user will

set some initial constraints and run a mining algorithm. At the end of the mining, the

user will check the results. In the case where the user is satisfied with the output, the

mining task ends. In the case that the user is not satisfied with the results, the discovered

knowledge will be abandoned and another round of mining is required after the user

changes some constraints. The user often needs to run the mining algorithm several

times before he/she is satisfied with the final results in most practical applications. The

iterative process is illustrated with a frequent pattern mining task with only theminimum

supportconstraint (also called thefrequencyconstraint). The user may initially set the

minimum support to 5% and run a mining algorithm. After inspecting the returned

results, s/he finds that 5% is too high. S/he then decides to reduce the minimum support

to 3% and runs the algorithm again. This process is usually repeated several times before

s/he is satisfied with the final mining results.

This interactive and iterative mining process is very time consuming. Mining a

dataset from scratch in each iteration is clearly inefficient because a large portion of

the computation from previous mining is repeated in the new mining process. This re-

sults in enormous waste in computation and time. Iterative computation means that it

is possible to integrate the consecutive iterations to speed up the computation. In other

words, the subsequent iterations can turn to previous mining results besides mining al-

gorithms. However, it is noticed that, so far, limited work has been done to address this

problem. [89] mentioned the possibility that the incremental mining algorithm can be

adapted to make use of previous computation to speed up new round of mining and [75]
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considered the change of minimum support in incremental mining. The careful anal-

ysis to be presented in Chapter 2 will show that it may not feasible to adapt existing

incremental mining algorithms to handle the above problem.

As discussed in last subsection, there are many other constraints imposed in asso-

ciation rule mining besides minimum support and minimum confidence. On one hand,

these additional constraints give the user more freedom to express his/her preferences.

On the other hand, however, it often prolongs the mining process because the user may

want to see the results of various combinations of constraint changes by running the

mining algorithm more times. This makes mining using previous results for efficiency

even more important.

In a multi-user data mining system (that may run on a peer-to-peer platform), ex-

ploiting and recycling frequent itemsets mined previously is more valuable. This is

because users might share and recycle the mining results of other users that are mined

under different constraints.

When a constraint imposed on association rule mining istightened, e.g., minimum

support is increased. In this case, it is straightforward to obtain the new set of frequent

patterns under the new constraint by simply checking the frequent patterns obtained

from the old mining to filter out the patterns that do not satisfy the new constraints. This

filtering process is sufficient because the set of new frequent patterns is only a subset of

the old set.

On the other hand, when constraints arerelaxed, the problem becomes non-trivial

as re-running the mining algorithm is needed to find the additional frequent patterns.

For instance, if minimum support is decreased, more patterns may be generated. The

problem becomes even more complicated when multiple constraints are changed at the

same time. There is still no effective solution for this complex problem.

The first motivation of this thesis isto examine how the previous mining results can

be utilized to speed up re-mining when constraints are changed.
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The second motivation of this thesis isto present some novel algorithms to effectively

and efficiently mine frequent patterns, and thus association rules from the microarray

datasets.

Microarray gene expression profiling technology [81] provides the opportunity to

measure the expression levels of tens of thousands of genes in cell simultaneously, which

results in a large amount of high-dimensional data at both the transcript level and the

protein level. These microarray datasets4 typically have a large number of columns but

a small number of rows. For example, many gene expression datasets may contain up to

tens of thousand of columns but only tens or hundreds of rows. The high-dimensional

datasets also become popular in scientific datasets, census and text datasets.

In [29], association rules are discovered from microarray data to find associations

between different genes as well as genes and their environments/categories (for instance

cancer cell), thus helping gene pathway regulations. The associations between genes

can discover the knowledge of how a particular gene is affected by other genes. The

associations between genes and categories can describe what genes are expressed as a

result of certain cellular environments, thus providing great help in the search for gene

predictors of the sample categories. [29] also suggested to construct gene network from

association rules. Moreover, frequent patterns are expected to be useful for clustering

and bi-clustering microarray datasets and [105] applied frequent pattern mining algo-

rithms in mining bi-clusters.

After introducing the usefulness of association rules and frequent patterns in mi-

croarray datasets, we now examine the problems of discovering association rules from

microarray data. Most of state of the art algorithms for association rule mining or fre-

quent pattern mining usually work well when the average number of items in each trans-

action (row) is small (the number is usually less than 100). However, they do not scale

well with high-dimensional datasets and are not practical to mine such datasets. Even

4Each column of the original microarray datasets represents the expression level of a gene, which is
continuous value. In this thesis, the continuous value will be discretized.
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the algorithms of mining closed itemsets face the same dilemma. The intuitive reason

for the poor performance of existing techniques on high-dimensional datasets is that they

usually search frequent (closed) patterns in the item enumeration space, which is very

large for microarray data. The detailed analysis will be discussed in Chapter 4. [66]

proposed to mine frequent closed patterns in row enumeration space5 and proposed al-

gorithm CARPENTER. Considering that many algorithms have been proposed to mine

frequent (closed) patterns by item enumeration, it would be interesting to investigate

whether some ideas can be borrowed from these algorithms to search row enumeration

space more efficiently.

Although the proposed frequent pattern mining algorithms in this thesis are usually

much faster than existing algorithms, mining all association rules satisfying minimum

support and minimum confidence is still time consuming sometimes. Moreover, due to

high dimensions of microarray data and the combinatorial explosion of frequent itemsets

(from which rules are generated), it is not uncommon to have billions of rules generated,

in which many are redundant. The huge discovered rules are beyond the ability of human

to understand. Fortunately, it is noticed that people may often be interested in rules with

given consequent, which will be much smaller in number than all rules. For instance,

recent studies have shown that association rules with given class labelRHS are very

useful in the analysis of microarray data. For example, it is shown in [33, 53] that

classifiers built from association rules are rather accurate in identifying cancerous cell.

But fixing the consequent of rules only partly alleviates but not solve the above problems,

i.e., the huge number of rules and long runtime. Another motivation of this thesis isto

efficiently discover interesting rules for given consequent from micorarray data.

5[34] called the counting method in Apriori algorithm [7] as row-wise counting. [34] also proposed
to count supports of candidates by intersecting of the list of row ids of items in a candidate and called
this counting method as column-wise counting. Both row-wise and column-wise in [34] have different
meaning with the item enumeration and row enumeration in this thesis and their methods are completely
different from the proposed methods in this thesis
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1.3 Contributions

Based on the above gaps identified in current research of association rule mining, this

thesis will present an extended framework for mining and recycling frequent itemsets.

Two open problems in the framework will be addressed in this thesis. One is to recycle

and reuse previous mining results. The other is to efficiently mine frequent patterns and

interesting association rules with given consequent from microarray datasets.

Extended framework for association rule mining. The proposed framework is

designed for association rule mining in the environments of individual user or multiple

users. There are two main features of the framework. One is to choose appropriate

algorithms according to the properties of datasets to be mined. The other is to recycle

previous mining results for new round of mining if there exist such previous mining

results.

Recycling frequent patterns with constraint changes.This thesis will present two

novel techniques to solve the problem of recycling previous patterns for new rounds of

mining when (individual or multiple) constraints are changed.

Using the relaxation of frequency constraint (the decrease ofminimum support) as an

example, the first technology is based on the proposed concept oftree boundaryto sum-

marize and to reorganize the previous mining results which include both final mining

results and some intermediate results. The additional frequent patterns can be generated

in the new mining process by extending only the patterns on thetree boundarywithout

re-generating the frequent patterns produced in the previous mining. The proposed tech-

nique has been implemented in the contexts of two frequent pattern mining algorithms,

FP-tree [43] and Tree Projection [2]. This results in two augmented pattern mining

algorithms RM-FP (re-mining using FP-tree) and RM-TP (re-mining using Tree Pro-

jection). Extensive experiments on both synthetic data and real-life data are conducted

to compare the performance of RM-FP and FP-tree algorithm, as well as RM-TP and

Tree Projection algorithm. Finally, it is also addressed how the proposed technique can



Chapter 1 Introduction 15

be applied to handle the changes of other types of constraints given in previous studies

[63, 71]. This work is published in [24].

The first technique utilizes both the frequent patterns and some intermediate results

from previous mining while the latter may not be available sometimes. For example,

in a multi-user environment, one user may not be willing to output the intermediate

results for other users to recycle since it will take extra time and space to output these

intermediate results, which may not be useful for the user him/herself.

The second proposed recycling technique only utilizes frequent patterns. The pro-

posed technique uses the frequent patterns generated from previous mining to compress

the datasets to be mined. And the new round of mining is done on the compressed

datasets. Two compression strategies are designed. While the first attempts to minimize

cost(computation cost measured by runtime), the second minimizes storage space. The

strategy of minimizing cost is novel in that a function is designed to estimate the poten-

tial saving of using a pattern to do the compression for subsequent mining. The strategy

of minimizing storage space is relatively straightforward. Three existing frequent pat-

tern mining algorithms, H-Mine [72], FP-tree [43] and Tree Projection[2], are adapted

to mine the compressed databases. Extensive experiments are conducted to compare the

recycling algorithms with their counterparts as well as the effectiveness of two compres-

sion techniques for recycling patterns. This work is published in [25].

New mining algorithms for microarray datasets. This thesis will present three

algorithms, CARPENTER6, RERII and REPT, to mine frequent closed patterns for mi-

croarray databases with a large number of columns and a small number of rows, thus

obtaining all association rules or using the discovered patterns for other tasks as dis-

cussed in last section. Unlike the traditional frequent (closed) pattern mining algorithms

that mine the datasets in column enumeration strategy, the proposed techniques adopt

row enumeration strategy. With the change, the well-known pruning techniques, such

6Feng Pan played a primary role in developing CARPENTER algorithm



Chapter 1 Introduction 16

as downward property, cannot be used in the proposed technique. Instead, a series of

new pruning techniques are introduced to improve the efficiency of the proposed algo-

rithms. The three algorithm explore various possibilities of implementing row enumer-

ation approach. The proposed algorithms are tested on some publicly available microar-

ray datasets to compare its efficiency with the performance of some other established

approaches for frequent pattern mining. The basic idea of row enumeration and algo-

rithm CARPENTER are published in [66].

The number of association rules generated from microarray datasets is usually enor-

mous. The concept of interesting association group is proposed to greatly reduce the

number of discovered rules while keeping the necessary information of all interesting

rules. A rule group is identified by its unique upper bound and a rule group has lower

bounds. The concept will be introduced in Chapter 5. Algorithm FARMER is designed

to mine interesting association rule groups with givenRHS from microarray datasets. In

FARMER, the basic idea of row enumeration is combined with efficient search pruning

strategies based on user-specified thresholds (minimum support, minimum confidence

and minimum chi-square value), yielding a highly optimized algorithm. The algorithm

FARMER is compared with the existing rule mining algorithms in terms of efficiency

on real-life biological datasets. This work is published in [27].

1.4 Outline

In the next chapter, state of the art algorithms will be reviewed. In Chapter 3, a frame-

work for mining and recycling frequent itemsets is presented. In Chapters 4 and 5,

two methods of recycling previous frequent patterns are proposed. Three algorithms

that mine frequent closed itemsets from microarray datasets are described in Chapter 6.

The algorithm FARMER that mines interesting rule groups from microarray datasets is

presented in Chapter 7. This thesis is concluded in Chapter 8.
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State of the Art

This chapter will first introduce some preliminary of association mining algorithms in

Section 2.1, then present the frameworks of association rule mining in Section 2.2, and

state of the art of association rule mining algorithms in Section 2.3.

2.1 Preliminaries

The concepts of association rules, maximal frequent itemsets and closed frequent item-

sets will be given first and then two kinds of dataset layouts are explained.

Formally, the association rule mining problem can be stated as follows. LetI =

{i1, i2, ..., im} be a set of items. Letdataset1 D be a set of variable lengthtransactions,

where eachtransaction t (or row) is a set ofitems (or columns) such thatt ⊆ I. An

association rule is an implication of the formX → Y , whereX ⊂ I, Y ⊂ I and

X ∩ Y = ∅. X is called the antecedent andY is called the consequent of the rule.

In general, a set of items (such asX andY ) is called anitemset (or a pattern). The

number of items in an itemset is called the length of the itemset. Itemset with lengthk

is calledk-itemset (ork-pattern). Note that this thesis does not distinguishitemsetand

patternas well asitemandcolumn.

1In this thesis, boolean database is considered as underlying dataset

17
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TID Items

100 a,b,c,d,e,f
200 a,b,d,h
300 a,b,d,e,f
400 a,b,c
500 c,e

Table 2.1: The example databaseDB in horizontal layout.

Each itemset has an associated support that is a statement of statistical significance

or generality. For an itemsetX ⊂ I, its support iss = sup(X) if the percentage of

transactions that containX equals tos. Each rule has an associated confidence that is a

statement of strength or predictive ability. For a ruleX → Y , its confidence is defined

asc = sup(X ∪ Y )/sup(X) × 100%, which means that the percentage of transactions

in D that containX also containY .

Definition 2.1.1. Mining association rules

The problem of mining association rules is to generate all rules that have support and

confidence greater than some user specified minimum support,, denoted byξ, and mini-

mum confidence, denoted byminconf , thresholds respectively.2

The algorithms for mining the complete association rules usually work in the fol-

lowing two steps:

1. Generate allfrequent (or large) itemsets. An itemset is calledfrequent(or large)

if it has support above the user specifiedminimum support.

2. Generate all association rules that satisfyminimum confidencethreshold using the

frequent itemsets.

Example 2.1.1.Given the database as shown in table 2.1, minimum supportξ = 80%

and minimum confidenceminconf = 80%. The set of frequent itemsets is{a : 4, b :

4, c : 3, d : 3, e : 3, ab : 4, ad : 3, abd : 3}. Symbol ”:” separates an itemset and its
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associated support. For simplicity, we useabd to represent itemset{a, b, d}. The same

is for itemsetsab andad. The set of association rules includes{a → b : 100%, b → a :

100%, d → a : 100%, d → ab : 100%}. As a comparison, the rule{a → d : 75%} does

not satisfy the minimum confidence threshold.2

The second step, i.e. generating rules that have minimum confidence given the set of

frequent itemsets and their supports is relatively straightforward. The general idea given

in [7] is as follows: given a frequent itemsetX and anyY ⊂ X, if sup(X)/sup(X −
Y ) ≥ minimum confidence, then the rule(X − Y ) → Y satisfies the minimum con-

fidence. However, the first step, i.e. discovering all frequent itemsets, is a non-trivial

problem. Nearly all proposed algorithms of mining association rule focus on the first

step while using the method in [7] for the second step. The algorithms introduced in

the remaining chapter use the method in [7] for the second step if there is no special

specification.

Since the discovered frequent patterns may be huge in number, maximal frequent

patterns and closed frequent patterns are proposed as two complementary concepts of

frequent patterns.

Definition 2.1.2. maximal frequent pattern

Given databaseD, a frequent patternX is called as a maximal pattern if there exists no

frequent patternY such thatX ⊂ Y .2

Definition 2.1.3. closed frequent pattern

Given databaseD, a frequent patternX is called as a closed frequent pattern if there

exists no frequent patternY such thatX ⊂ Y andsup(X) = sup(Y ).2

Example 2.1.2.Continue with the last example, itemset{a, b, d} is a maximal frequent

pattern while{a, b} and{a, d} are not because they are subsets of{a, b, d}. Itemset

{a, b, d} is also a closed frequent itemset while{a, d} is not. Here itemset{a, b} is also

a closed frequent itemset while it is not a maximal frequent itemset.2
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Item TID-list

a 100,200,300,400
b 100,200,300,400
c 100,400,500
d 100,200,300
e 100,300,500
f 100,300
h 200

Table 2.2: The example databaseDB in vertical layout.

Maximal frequent patterns can be regarded as the boundary of all frequent patterns

and the frequency information of other frequent patterns cannot be inferred from the

maximal frequent patterns. However, the closed frequent patterns are information loss-

less and the frequency information of all frequent patterns can be inferred from them.

Closed frequent pattern is a way of avoiding the discovery of a large set of redundant

patterns as explained in [70].

Horizontal layout data and vertical layout data. Both kinds of data layouts are widely

adopted in existing association mining algorithms. One example of horizontal layout

dataset is shown in Table 2.1, where each row of database represents a transaction which

has a transaction identifier (TID), followed by a set of items. The vertical layout of

dataset in Table 2.1 is illustrated in Table 2.2. In a vertical layout dataset, each tuple

corresponds to an item, followed by a TID list2, which is the list of rows that the item

appears. For clarity, we callrow for a record in horizontal data layout database while

we calltuple for a record in a vertical layout database.

2.2 Frameworks

As discussed in Section 2.1, association rules mining algorithms usually work in two

steps, i.e. first finds frequent itemsets, and then derives association rules from frequent

2The TID list can also be represented in bit vector in some algorithms, such as[82]
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itemsets. The two phases form the framework of most of existing association rule mining

algorithms. [63] suggests to place break points in a whole mining task. In an association

rule mining task, break point can be placed between the two steps. Only if users are

satisfied with the returned frequent itemsets, the next step i.e. generating association

rules is initiated.

There are some studies that do not strictly follow the two phase framework. OPUS

[95] searched association rules directly. In [95], it was shown that OPUS is good to

mine top-k association rules but its performance is poor when mining all association

rules. The study in [99] proposed a framework to discover non-redundant rules using

frequent closed itemsets (rather than frequent itemsets) although it still follows the two

phase framework. Research in [37, 77] aimed to discover one optimized association rule

from dataset with numeric attributes.

Constrained association rule mining extends the two step framework of association

rule mining. Some constraints in [63, 71, 86] are introduced for the two-step associ-

ation rule mining. Users can express their preference by means of constraints. These

constraints can be divided into the following categories in previous studies [63, 71, 86].

• If a constraintCa is anti-monotone, for any patternS that does not satisfyCa,

none of the supersets ofS satisfiesCa.

• If a constraintCm is monotone, for any patternS that satisfiesCm, every superset

of S also satisfiesCm.

• If a constraintCs is asuccinctconstraint, we can succinctly characterize the set of

all patterns that satisfyCs and only generate patterns that satisfyCs.

• Given an orderR over the set of itemsI, if a constraintCca is aconvertible anti-

monotoneconstraint w.r.t.R, for any patternS that violates the constraintCca, any

pattern that hasS as its prefix w.r.t.R also violatesCca. Convertible monotone

constraint is defined similarly.
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Constraint Anti-monotone Succint Monotone

v ∈ S no yes yes
S ⊇ V no yes yes
S ⊆ yes yes no
min(S) ≤ v no yes yes
min(S) ≥ v yes yes no
max(S) ≤ v yes yes no
max(S) ≥ v no yes yes
count(S) ≤ v yes weakly no
count(S) ≥ v no weakly yes
sum(S) ≤ v, ∀a ∈ S, a ≥ 0 yes no no
sum(S) ≥ v, ∀a ∈ S, a ≥ 0 no no yes
range(S) ≤ v yes no no
range(S) ≥ v no no yes
avg(S)θv, θ ∈ {≤,≥} conv. no conv.
range(S) ≥ v yes no no

Table 2.3: The representative constraints

• For any constraints that do not have any above property are classified ashardcon-

straints since they are hard to be pushed into frequent pattern mining algorithms

effectively.

As a summary, Table 2.3 lists the representative subsets of constraints introduced in

[63, 71, 86].

Incremental mining technique further extends the framework of association rule min-

ing. Incremental mining algorithms are developed to update the set of discovered asso-

ciation rules when one of the following cases occurs or both cases occur: (1) new tuples

are inserted into the database; (2) existing tuples are deleted from the database.

The earliest proposed incremental mining techniques are based on Apriori-like algo-

rithm. FUP in [22] is a straightforward extension of Apriori algorithm for incremental

mining. If an itemset is counted in old dababaseDB and is a candidate in the updated

databaseDB′, FUP only needs to count the frequency of the itemset inDB′ − DB.

Therefore, the saving of FUP comes from the frequencies of itemset counted inDB.

FUP method follows the Apriori framework and may needO(n) passes over the data
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wheren is the size of the maximal frequent itemset.

Some incremental mining methods [35, 69, 88, 89] utilize the concept of negative

border (proposed in [90]) to update the mining results when additional data becomes

available. A negative border consists of all the itemsets that are candidates of the Apriori

algorithm that do not have sufficient support. [35, 88, 89] utilize negative borders as

follows: (1) from frequent itemsetsLDB and its negative borderNB(LDB) for old

datasetDB, the algorithm obtains the itemsetsLDB′ that are frequent under the updated

datasetDB′; (2) it then computes the negative borderNB(LDB′); (3) it setsLDB′ =

LDB + NB(LDB+), and goes to step (2) untilNB(LDB′) = LDB′; (4) it counts

the supports of the itemsets inNB(LDB′) but not inLDB andNB(LDB). Although

the methods in [35, 69, 88, 89] only need one scan of the updated dataset, they could

not avoid the disadvantage of negative border, i.e., maintaining a negative border is very

memory consuming and is not well adapted for very large databases [69].

One inherent assumption of the above incremental techniques [22, 35, 69, 88, 89]

is that the new set of frequent patterns after database is changed mainly comes from

the set of frequent patterns and infrequent patterns counted before database is changed.

The assumption usually can be true because the updating of database is usually small

compared with the original database. As a result, existing incremental techniques rely

on previous frequent patterns and the infrequent patterns computed previously.

DELTA [75] is another incremental method that is based on negative border. Unlike

the previous incremental technique based on negative border, DELTA does not generate

the complete negative border as candidates, which can be very large in number. Instead,

DELTA first counted the set of 2-itemset and then generated negative border for the

itemsets longer than 2. DELTA usually scanned the incremental database three times and

the original database once. Because it was observed that the set of 2-itemset is typically

much smaller than the overall number of all possible 3-itemsets pairs, it is expected that

the generated negative border is much smaller than that generated by previous methods.
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Another contribution of DELTA [75] is that it considered the case when the distribution

of the update is skewed compared with original database. In such case, the experiments

in [75] showed that the algorithms [35, 88] nearly cannot achieve saving comparing with

running Apriori from scratch while DELTA can still improve performance.

As discussed in Chapter 1, association rule mining is an iterative process, especially

the constrained association rule mining. Previous association rule mining frameworks

usually fail to utilize the previous mining results to speed up subsequent rounds of min-

ing when constraints are changed in the iterative mining process.

The concept of reusing previous frequent patterns has already been used in incre-

mental mining. However, our concept is different in two aspects: 1) we consider to

recycle and reuse of previous frequent pattern when constraints are changed between

two data mining iterations instead of dataset change in the incremental mining; 2) we

also consider the case that one user recycles and reuses the mining results from the other

users in a data mining system.

With the similarity between our proposed concept and incremental mining, can the

existing incremental mining algorithms be adapted to efficiently handle the recycling

problem when constraints are changed? [89] actually mentioned the possibility of using

negative border [90] but no detailed algorithm was proposed. However, one significant

shortcoming of the negative border based incremental mining approach is that generating

candidates under new constraints using the negative border under old constraints usually

results in over-generation of a huge number of useless candidates (although the dataset

is only scanned once). This makes the approach in [35, 88] impractical for our constraint

relaxation problem for large datasets, especially when the number of frequent patterns

is large. For example, if 105 frequent patterns are obtained given minimum support of

1% and 50 1-itemsets become frequent after minimum support is reduced to 0.9%, the

number of candidate itemsets generated using the above approach is (250-1)*105 ≈ 1020

even if we do not consider the expansions of 105 frequent itemsets themselves. This is
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clearly impractical.

DELTA [75] tried to extend the framework of incremental mining by considering

that the minimum support may be changed after database is updated. The method is

established on the assumption that the frequent 2-itemset is only a small fraction of 2-

itemset candidates and it becomes possible to generate the negative border when the set

of frequent 2-itemsets is known. However, the assumption may not always hold and it

is very common that the itemsets with length larger than 2 is very large in number, thus

generating huge number of candidates as analyzed in last paragraph.

FUP is not designed for mining with constraint changes. If it is applied to our task,

it basically re-runs the Apriori algorithm without re-counting the supports of the item-

sets generated previously (they still need to be re-generated). Moreover, FUP [22] is

criticized that it may needO(n) passes over the data wheren is the size of the maximal

frequent itemset. There, the computation saving of adapting FUP to recycle previous

results with constraint change is thus very limited, if any, because of some overheads to

check which itemsets have already been counted.

2.3 Algorithms

This section will introduce and compare some representative algorithms of mining as-

sociation rules and frequent itemsets. Finally, algorithms of finding interesting or opti-

mized rules are introduced.

2.3.1 Apriori and Apriori-like algorithms

Apriori. Apriori [7] is the first algorithm that efficiently fulfills the task of mining

all association rules satisfying minimum support and minimum confidence from large

databases. Apriori algorithm makes multiple passes over the database for discovering

frequent itemsets. In the first scan, all frequent singleton items together with their counts
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are obtained. The set of singleton items are used to generate new potential frequent 2-

itemsets, calledcandidate itemset and one more database scan is required to compute

the support of these candidates of size 2 to determine whether they are frequent. Then

from frequent 2-itemsets, candidates of size 3 are generated and evaluated. The process

continues until no new frequent itemsets are found.

The efficiency of Apriori algorithm is based on a simple but effective observation that

any subset of a frequent itemset must be frequent. Such a property is called asdown-

ward closure property. With the property, any candidate that contains a subset that is

not frequent can be removed and there is no need to count its support. More specifically,

Apriori generatesk-candidates by joining the(k−1)-frequent itemsets; ak-candidate is

pruned off if any of its(k − 1) subsets is not frequent. The process can be explained by

the following example. Given the set of frequent 2-itemsets{a, b}, {a, c}, {a, d}, {c, d},
by joining 2-itemsets, the set of potential candidates of size 3,{a, b, c}, {a, c, d} can

be generated. Because that the subset{b, c} of {a, b, c} is not frequent,{a, b, c} surely

cannot be frequent and is pruned from the set of candidates. In this way, Apriori algo-

rithm avoids wasting computation in counting the itemsets that must not be frequent by

judging from their subsets.

The above property is also utilized in [58], a concurrent work of Apriori algorithm[7]

and, to some extent, in nearly all subsequent frequent pattern mining algorithms. After

Apriori algorithm [7], some subsequently proposed algorithms adopt similar database

scan level by level while the methods of candidate generation and pruning, support

counting and candidate representation may differ. We classify these algorithms as Apriori-

like algorithms and will describe them briefly with a stress on their difference with Apri-

ori algorithm.

Instead of using a hash-tree to represent candidates for support counting as proposed

in [68], some efficient and well-known implementations of Apriori algorithm, such as

[16], adopt prefix tree data structure to represent candidates for generating and pruning
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candidates as well as counting supports.

DHP. It was observed in [68] that to determine frequent itemsets from a huge number of

candidates is one of the dominating factors for the performance of association rule min-

ing. A hash-based technique DHP [68] was proposed to further reduce both the number

of candidates in the early passes of database and the size of database, thus improving

performance. It was shown that the the number of candidates of size 2 generated by the

hash-based method can be orders of magnitude smaller than that of Apriori algorithm

according to the experimental results [68].

Partition. The Partition algorithm [80] computed all frequent itemsets only in two

passes over the database. In the first scan of database, the algorithm partitioned the

database into sections that are small enough to be handled in main memory. Each parti-

tioned database was loaded into memory and mined level by level to obtain the locally

frequent itemsets in the partitioned database. All locally frequent itemsets made up

the candidates of global frequent itemsets. The second scan over the database would

compute the global frequency of each locally frequent itemset. Another originality of

Partition algorithm is its method of counting support. Partition algorithm associated

each frequent itemset with aTID list, which is the list of transaction (or row) ids that

contain the itemset, and computed the frequencies of itemsets byTID-list join.

Sample. Sample [90] reduced the I/O overhead of association rule mining from a dif-

ferent angle. It aimed to only scan database once to generate all frequent itemsets. It

worked by first finding all association rules that probably hold in the given database by

mining a random sample of the database using a reduced minimum support threshold,

and then verifying the results with the rest of the database.
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DIC. DIC [18] algorithm also tried to improve performance by reducing the number

of database scans. DIC utilized the downward closure property for candidate pruning

and adopted similar counting method as Apriori algorithm does. Two tricks were used

in DIC in order to reduce the number of database scans. Unlike most of previous al-

gorithms that mine frequent itemsets strictly level by level, DIC maintained a set of

candidates that can have different sizes and dynamically changed them when scanning

a database. The underlying database was divided into several sections. Unlike Apriori

algorithm that generates candidates for next-level scan at the end of one scan, DIC de-

tected a new candidate (i.e. all its subsets are frequent so far) after scanning one section,

and started to count frequency of the new candidate at the point of the scan. In this way,

DIC could reduce the number of complete database scans.

Comments. It is noted in our study and also in other studies, such as [43], that the size

of candidates can be the memory bottleneck and even the performance bottleneck of

Apriori algorithm. The number of database scans is the other factor that dominates the

performance of Apriori algorithms. DHP[68], Partition[80], Sampling[90] and DIC[18]

algorithms are variants of Apriori. DHP tries to reduce the number of candidates while

the other three algorithms address to reduce the number of database scans.

DHP [68] adopted a hash-based technique to reduce the number of candidates. The

technique was shown to work in the early scans, especially the second level. However,

the hash technique may deteriorate the performance of later levels. Therefore, DIC

algorithm still followed the Apriori algorithm to generate candidates in later level. For

datasets of market basket type, the number of candidates of size 2 is often the largest of

all sizes and they become the memory bottleneck. The hash-based technique of DHP can

relieve the problem although it cannot solve it completely. But in some other datasets as

used in [106, 12], it is not the case and the length of candidates of the largest size is hard

to tell in advance. It is not clear whether DHP can improve the performance of Apriori
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algorithm in this case.

Another originality of the DHP algorithm is to progressively reduce the size of

database for subsequent database scans. But this will result in additional I/O overhead.

We find that algorithms Partition, Sampling and DIC usually generate more can-

didates than Apriori algorithm does although they are able to reduce the number of

database scans. As a result, if the time used to compute the frequencies of these ex-

tra candidates is more than the saving in database scans, these algorithms will preform

worse. In many dense datasets used in [12, 20], generating the large number of can-

didates and computing their frequencies are the bottleneck of performance while the

database scans only take a small part of runtime. In this case, Partition, Sampling and

DIC may make the problem worse because they consider more candidates than Apriori

algorithm does.

The performance of the three algorithms relies on an implicit assumption that the

database is homogenous and thus they will not generate too many extra candidates than

Apriori algorithm does. For example, if all partitions in Partition algorithm are not ho-

mogenous and nearly completely different sets of local frequent itemsets are generated

from them, the performance cannot be good. The effect of data homogenization on per-

formance is noticed in DIC algorithm. The datasets used by most of these studies are

synthetic datasets generated by the IBM data generator, which are usually homogenous.

However, the real-life datasets may display different properties and only DIC studied

performance on real-life datasets while the Partition and Sample’s performance on real-

life datasets are not studied.

Of all the algorithms described above, Partition utilizes the vertical layout data while

all others mine association rules from horizontal layout data. Some algorithms [34, 82,

102] are proposed to mine association rules from vertical layout data, which is the topic

of next subsection.
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2.3.2 Mining from vertical layout data

This section will introduce some algorithms that successfully mine vertical layout database,

such as the Eclat and MaxClique algorithms [102] and VIPER algorithm [82].

Eclat and MaxClique. Eclat and MaxClique utilized maximal frequent itemsets in dis-

covering frequent itemsets although the two methods did not aim to discovering maximal

frequent itemsets. The Eclat and MaxClique used two different methods to generate po-

tential maximal candidates, identified true maximal frequent itemsets and computed the

supports of their subsets by means of TID list intersection. The two methods also ex-

plored the orders of top-down, bottom-up and their hybrid to compute frequent itemsets.

The limitation of two methods is the memory usage. The frequent itemsets together

with their TID lists will make two methods infeasible especially when there are a large

number of frequent itemsets and database has a large number of transactions.

VIPER. VIPER [82] represented TID list with compressed bit-vector. The representa-

tion, together with some optimization of storage, generation and intersection of TID list,

formed the core of VIPER algorithm. Although VIPER claims that there are no special

requirements for underlying database, it still has several limitations. First, it assumes

that candidates of size 2 are the most large in number and TID list intersection can not

be effective to generate frequent 2-itemsets. VIPER uses similar method as Apriori to

generate frequent 2-itemsets and has the same problem that the candidates of size 2 can-

not fit in memory. Moreover, it is possible that the number of candidates of size 2 is not

the largest while the number of candidates of larger size, e.g 10, is.
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2.3.3 Projected database based algorithms

In Tree Projection algorithm[2], the concept of projected database was proposed and

applied to frequent itemset mining. FP-tree growth and H-Mine also used the projected

database as underlying framework. But they proposed original data structures to rep-

resent projected databases. These methods do not strictly follow the Apriori-like algo-

rithms. For example, if itemsets{a, b} and{a, b} are frequent, itemset{a, b, c} will be

counted while Apriori-like method will check whether{b, c} is frequent before counting

the support of{a, b, c} (if {b, c} is not,{a, b, c} is not counted). Therefore, the projected

database algorithms usually compute frequencies for more itemsets than Apriori-like al-

gorithm does. However, the projected database algorithms usually are more efficient in

counting support since they use divide-and-conquer method. As experiments showed

in [2, 43, 72, 46], these methods usually perform better than earlier algorithms. Before

introducing these algorithms, we first explain the concept of projected database.

Definition 2.3.1. Projected database

Projected database for an itemsetX are composed of the set of records (or rows) con-

tainingX.2

For example, given the database shown in table 2.1, the projected database of itemset

{a, b} is {100 : abcde, 200 : abdh, 300 : abdef, 400 : abc}. The symbol ”:” separates a

record ID and a record.

The size of projected database ofX can be further reduced by removing the items

that will not be useful in extendingX to get longer frequent itemsets. For example, the

projected database of itemset{a, b} can be reduced to{100 : d, 200 : d, 300 : d, 400 : ∅}
given the minimum supportξ =3.

Tree Projection. Tree Projection algorithm [2] represented frequent itemsets as nodes
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of a lexicographic tree3. The lexicographic order usually followed the ascending order

of frequency of items for better performance. All frequent items formed the first level

nodes of a lexicographic tree.

Tree Projection algorithm explored two kinds of orders of generating frequent item-

sets: breadth-first and depth-first. For breath-first order, Tree Projection algorithm gen-

erated frequent itemsets by successive construction of nodes of a lexicographic tree level

by level. In order to compute frequencies of nodes (corresponding frequent itemsets) at

k level, tree projection algorithm maintained matrices at nodes of thek−2 level and one

database scan was required for counting support. Transactions were projected on each

node of the tree from the root on one by one. The reduced set of transactions after being

projected were used to compute frequencies, thus improving efficiency. For depth-first

order, databases were required to fit in memory and projected along the paths of a lexi-

cographic tree. The advantage is that the projected database will become smaller along

the branch of the lexicographic tree while the breadth-first needs to project the database

from the scratch at each level. The disadvantage of depth-first is obvious that it needs

to load database and projected databases in memory. The breadth-first method will also

meet the memory bottleneck when the number of frequent items is large and the matrix

is too large to fit in memory.

FP-tree. In the FP-tree algorithm[43], the set of frequent individual items was discov-

ered first and items in the set were sorted based on their frequencies in the descending

order to form a list, denoted byF -list. Then, the dataset was scanned to construct a

frequent pattern tree (or FP-tree in short), which was a prefix tree. A FP-tree repre-

sented compressed but complete frequent itemset information in database. Each path of

the FP-tree followed the order ofF -list. The transactions with the same prefix shared

the portion of the path from a root. The FP-tree was explored with a pattern fragment

3More explanation of lexicographic tree can be found in Chapter 4
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Figure 2.1: Example of FP-tree

growth method to discover all frequent itemsets.

Example 2.3.1.Given the database as shown in Table 2.1, minimum supportξ = 3. The

database is represented with FP-tree in Figure 2.1.2

Definition 2.3.2. Conditional pattern base

For an itemsetX, the set of prefix paths ofX forms the conditional pattern base ofX

which co-occurs withX.2

Definition 2.3.3. Conditional FP-tree

The FP-tree built on the conditional pattern base ofX is called the conditional FP-tree of

X and denoted byFP |X . Conditional FP-tree ofX contains the complete information

of candidate extensions ofX.2

The FP-tree algorithm worked by (1) identifying the list of frequent itemsF -list

in the dataset, (2) for each itemα in F -list, constructing its conditional pattern base

to mine the set of frequent itemsEα, and constructing conditional FP-treeFP |α with

items inEα, and (3) mining frequent itemsets beginning withα onFP |α by recursively

constructing conditional FP-tree for its descendant itemsets.
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Figure 2.2: Example of data structure of H-Mine

H-Mine. H-Mine algorithm adopted in-memory pointers [72] to construct projected

databases. This is different from FP-tree and Tree Projection that physically constructed

projected databases. The advantage of in-memory pointers is that the projected database

itself do not need memory and the extra memory usage is only for the set of in-memory

pointers. The disadvantage is that the size of projected database cannot be further re-

duced by removing those useless items for subsequent mining.

Example 2.3.2.Given the database as shown in table 2.1, minimum supportξ = 3. The

database is represented with the data structure of H-Mine in Figure 2.2. It is obvious

that we can get thea-projected database by following the pointers. After a-projected

database is mined, the tuples are assigned tob, c andd projected databases.2

As discussed in Chapter 1, when the discovered frequent itemsets are long (more

than 15 to 20 items), the number of all frequent patterns may be too large so that al-

gorithms introduced above may become infeasible. Maximal frequent patterns and fre-

quent closed patterns are proposed to address the problem.
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Figure 2.3: Column enumeration space of four items

2.3.4 Maximal frequent pattern mining

This section will introduce Max-Miner[12], the first maximal frequent pattern mining

algorithm, DepthProject[1] and MAFIA[20].

Max-Miner. Figure 2.3 shows the itemset enumeration tree representing all itemsets

over {a, b, c, d}. Similar to Apriori algorithm, Max-Miner [12] enumerated frequent

itemsets level by level. However, at each node, Max-Miner also computed the frequen-

cies of the itemset that is the union of all its children. For example, at node{b}, the

support of itemset{b, c, d} is counted together with{b, c} and{b, d}. If itemset{b, c, d}
is frequent, all subsets of{b, c, d} are frequent. Then there is no need to explore the

node below{c}. Max-Miner also explored a lot of optimizations to improve efficiency,

such as item ordering.

DepthProject. DepthProject algorithm was similar to a depth-first version of Tree Pro-

jection algorithm. DepthProject algorithm required the database to be loaded in memory.

DepthProject algorithm represented database with bitstring, which can save memory us-

age and speed up counting computation. DepthProject algorithm used some heuristics

to determine at which nodes to maintain projected databases.
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MAFIA. MAFIA algorithm mined maximal frequent patterns using vertical layout database.

Similar to other maximal frequent pattern mining algorithm, MAFIA also needed the

database to be loaded in memory. MAFIA explored different alternative techniques

proposed by previous research on mining vertical layout databases and chose the best

combination to form the MAFIA algorithm.

2.3.5 Frequent closed pattern mining

Close and Pascal.Close [70] and Pascal [11] are two algorithms which discover closed

patterns by performing breadth-first, column enumeration. Close [70] is an Apriori-like

algorithm that first found allgeneratorswhich were the smallest frequent patterns that

determine a closed itemset. After finding all frequent patterns of lengthk, the support of

a pattern was compared to that of its subsets. A pattern was removed if it had the same

support with any of its subsets since it was proven that such a pattern cannot be a gen-

erator. In the second step, Close computed the closure of all generators by intersecting

the set of rows that contained the generators. Pascal [11] was an improved algorithm of

Close. Pascal found the setkey patternsand the authors showed that all other frequent

patterns could be directly inferred from the key patterns. Key patterns are a superset of

the frequent closed patterns. Due to the level by level approach of Close and Pascal that

is like Apriori, the number of database scans will be large when the length of discovered

patterns is large.

CLOSET and CLOSET+. In [73], the CLOSET algorithm was proposed for min-

ing closed frequent patterns. Unlike Close and Pascal, CLOSET performed depth first,

column enumeration. CLOSET used a novel frequent pattern tree (FP-tree) to give a

compressed representation of the datasets. It then performed recursive computation of

conditional tables to simulate the search on the column enumeration tree.

CLOSET was usually unable to handle biological datasets with a large number of
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columns because of two reasons. First, the FP-tree is unable to give good compres-

sion for long rows. Second, there are too many combinations when performing column

enumerations.

CLOSET+ was an improved algorithm on CLOSET algorithm. It adopted the FP-

tree structure to represent datasets for datasets but adopted two different methods for

dense datasets and sparse datasets. For dense datasets, CLOSET+ explored FP-tree us-

ing a method similar to that used in FP-tree algorithm [43] but for sparse data CLOSET+

used a set of in-memory pointers to explore FP-tree, which is similar to the method used

in H-Mine algorithm.

CHARM. Another algorithm for mining frequent closed pattern is CHARM [101].

Like CLOSET, CHARM performed depth-first, column enumeration. However, unlike

CLOSET, CHARM stored the dataset in a vertical format where a list of row ids was

stored for each item. These row id lists were then merged during the column enumer-

ation to generate new rows id lists that represented nodes in the enumeration tree. In

addition, a technique calleddiffsetwas used to reduce the size of the row id lists and

the computational complexity for merging them. Although performance studies in [101]

showed that CHARM was substantially faster than all other algorithm on most datasets,

CHARM is still unable to handle microarray dataset efficiently because it still performed

column enumeration.

2.3.6 Analysis of algorithms

In this subsection, we analyze frequent pattern mining algorithms in terms of both CPU

time and memory usage.

The Apriori algorithm has been quite successful on the basket-type datasets, for

which it is designed. The basket-type datasets usually contain a large number of rows
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and the lengths of discovered frequent itemsets are usually short. Moreover, the basket-

type datasets are usually sparse. In such kinds of datasets, it is usually the case that the

dominating CPU loads come from scanning database, and generating and counting can-

didates. As a result, subsequent variants of Apriori algorithms try to improve efficiency

by reducing the number of database scans, such as Partition, Sample and DIC, or the

number of candidates, such as DHP.

Apriori-like algorithms typically do not work well on datasets that have different

properties with basket-type data, such as census datasets and telecom datasets. These

datasets usually contain high correlated items and may be dense. As a result, the frequent

patterns discovered from these datasets are long and are large in number. If the longest

frequent itemset hask items, the number of its subsets is2k. Therefore, the number

of candidates may increase exponentially with the length of longest frequent itemset.

This will result in huge increase of CUP load and deteriorate the performance of Apriori

algorithms. It is usually the case to mine such datasets that compared with the time used

to generate candidates and compute their supports, the time of database scanning can be

ignored if the database is not very large. Algorithms Partition, Sample and DIC usually

consider more candidates than Apriori does and might become worse.

The Apriori-like algorithms do not need load database into memory. Therefore,

the size of database will not be the bottleneck of memory. However, the Apriori-like

algorithms will meet memory problem when the number of candidates is too large to fit

in memory.

Algorithms that mine association rules from vertical layout database basically gen-

erate the same set of candidates as Apriori algorithm does. Therefore, large number of

candidates will result in poor performance of these algorithms although these algorithms

claim that TID list intersection is faster to compute frequencies than Apriori algorithm.

The category of algorithms usually require more memory than Apriori algorithm does.
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They need to load both the database (although it may not be the whole database), candi-

dates and the TID list of some frequent itemsets.

Projected database based algorithms are usually faster in computing the supports of

itemsets. For breath-first Tree Projection, its memory usage is mainly limited by the

number of candidates. The number of candidates is usually not a problem in depth-

first Tree Projection, FP-tree and H-Mine algorithms since they usually do not consider

a large number of candidates at one time. However, they are limited by the size of

database. FP-tree needs to load a series of projected FP-trees in memory while depth-

first Tree Projection needs to load a series of projected databases. Although FP-tree

usually can compress the underlying datasets, the compression is not obvious when the

number of items in dataset is large and the average length of rows is large since the

pointers for FP-tree structure take a lot of memory. H-Mine needs to load the database

in memory but subsequent projected databases do not take much memory since it uses

in-memory pointers.

The algorithms for maximal frequent itemsets and closed frequent itemsets are usu-

ally developed on the basis of some algorithms of frequent itemsets. For example,

DepthProject is developed using the depth-first TreeProjection, CLOSET algorithm is

based on FP-tree and CLOSE is based on Apriori. Therefore, they have the similar

problem with their corresponding frequent itemset mining algorithms although maxi-

mal frequent itemsets and closed frequent itemsets can alleviate the problem since their

size is usually smaller then frequent itemsets. Although CHARM [101] algorithm pro-

poses the diffset technique to reduce the size of tidlist, it still needs more memory than

CLOSET and CLOSET+ as shown in [92]. One problem of closed pattern mining al-

gorithms CLOSE and CHARM is that they need the whole or part of discovered closed

patterns to be held in memory. This is not feasible in some cases although the number

of frequent closed itemsets maybe much smaller than that of frequent itemsets.

In summary, all existing frequent itemset mining algorithms (inclusive of maximal
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frequent itemsets and closed itemsets) mine frequent itemsets using column-enumeration

(or item-enumeration). As shown in Figure 2.3, all existing methods enumerate certain

combination of columns (or items) although different pruning strategies are designed to

prune some of the search space to improve performance.

It is obvious that the search space of column-enumeration will increase exponentially

with the number of items in a row. As a result, all existing algorithms cannot work well

for high-dimensional datasets. The detailed analysis will be given in Chapter 6.

2.3.7 Mining the optimized association rules

The number of discovered association rules can be huge because of the combinational

explosion of frequent itemsets. The large number of rules is often beyond the users’

understanding. Moreover, there are a lot of redundant rules in all discovered association

rules.

There are numerous proposals about the definition of ”interestingness”. Various

approaches are proposed to mine the interesting rules according to respective definitions

of interestingness. Studies of mining interesting rules can be roughly classified into two

categories. First, some studies [56, 83] are proposed to do a postprocessing to identify

and remove redundant and less interesting rules. Second, others try to generate only

interesting rules, thus saving a lot of computation.

[56] proposed a two phase method of postprocessing. The method worked in two

steps. First it pruned the discovered association rules by removing the insignificant

association while preferring to general and simple rules. The insignificant associations

can be explained using the example in [56]. Given two rules: R1:Job = yes→ Loan

= approvedat support = 60% and confidence = 90%; and R2:Job= yes, Credit-history

= good→ Loan= approvedat support = 40% and confidence = 91%. Given R1, R2 is

insignificant and will be pruned off. From the remaining rules after insignificant rules

are removed, a special subset of the unpruned association rules are selected to form a
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summary of the discovered association rules. The rules in the selected subset give the

essential relationships of the dataset while the other rules are not surprising given the

selected set of rules.

Bayardo and Agrawal [13] defined two kinds of orders for interesting rules according

to confidence and support measures. One kind is called SC-Optimality and the other is

called PC-Optimality.

Definition 2.3.4. SC-Optimality.

Given rulesr1 and r2, orderr1 < r2 if and only if sup(r1) ≤ sup(r2) ∧ conf(r1) <

conf(r2), or sup(r1) < sup(r2) ∧ conf(r1) ≤ conf(r2). Additionally, r1 = r2 if and only

if sup(r1) = sup(r2) ∧ conf(r1) = conf(r2).2

The concept of SC-optimality is useful in finding the support-confidence borders. It

tends to produce rules that primarily characterize only a specific subset of records. In

other word, the discovered rules do not consider the coverage of rules on the underlying

tuples. To remedy the deficiency, the concept of PC-Optimality is proposed in [13].

Before giving the definition of PC-Optimality, we first explain the conceptpopulation

or coverage. The population of a ruleA → C is simply the set of records that are covered

by the rule. We denote the population of a ruler as pop(r). Clearly,|pop(r)|=sup(r).

Definition 2.3.5. PC-Optimality.

Given rulesr1 and r2, orderr1 < r2 if and only if pop(r1) ⊆ pop(r2) ∧ conf(r1) <

conf(r2), or pop(r1) ⊂ pop(r2) ∧ conf(r1) ≤ conf(r2). Additionally, r1 = r2 if and only

if pop(r1) = pop(r2) ∧ conf(r1) = conf(r2).2

When some rules have the same PC-Optimality, one of them is placed into the set of

interesting rules.

Besides the minimum confidence and minimum support, some other metrics have

been proposed and used to define the ”interestingness” or ”goodness” of discovered as-

sociation rules. These metrics include lift [18, 30] (also known as interest and strengthen),

conviction[18], gain [37], chi-square value[62], entropy gain [61], gini [61], and laplace[96].



Chapter 2 State of the Art 42

There are some research [37, 77] that mines an optimized rule from datasets with

numeric attributes. The mined rule is in the form ofsalary ∈ [s1, s2] → Loan =

approved.

There is also some research, such as [85], that mine quantitative rule from datasets

with quantitative and categorical attributes and some research that mine hierarchical

association rules, such as [40].

Having described and analyzed the state of the art association rule mining algorithms

and frameworks, this chapter comes to the end. In next chapter, we will describe a

framework of mining and recycling frequent patterns considering the problems identified

in this chapter.



Chapter 3

A Framework for Association Rule
Mining

This chapter will describe an extended framework for association rule mining. Below,

this chapter first present a typical data mining system and some important problems that

need to be addressed in the system.

Figure 3.1 shows a typical association rule mining system on a data warehouse.

There arem association mining algorithm modules andn users in the system. In the

multiple user system, user may have access to not only mining results from previous

rounds of mining but also mining results from other users.

As discussed in Chapter 1, there are two important open questions identified in a

data mining system shown in Figure 3.1. The two questions are reviewed as follows:

1. The first problem comes from the consideration that association rule mining is

an iterative process and multiple users in a data mining system can share mining

results. This poses a challenge for association rule mining: whether the mining re-

sults from the previous mining by the same user or different users can be recycled

and reused in the new round of mining to avoid the waste of previous computation.

2. The analysis in the last two chapters shows that there is still no efficient algorithm

to mine association rules from dataset with long columns despite the numerous

43
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Figure 3.1: A typical data mining system

Figure 3.2: Framework for association rule mining and recycling.

algorithms available for association rule mining. Moreover, given so many algo-

rithms, which one do users choose to mine a specific dataset?

The remaining chapter will introduce a framework of association rule mining. Within

the framework, the above two problems can be examined. Note that the framework

will be described in an abstract way in this thesis and the implementation of such a

framework will be discussed in Chapter 8.
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3.1 Overview

Figure 3.2 shows the proposed framework of mining and recycling association rules.

There are four main components in the framework, themining algorithms, theknowl-

edge recycle bin, thebin manager and themining optimizer . Below, each of them

will be looked at individually.

Mining Algorithms. This component includes the available algorithms of mining fre-

quent patterns and association rules. Some of representative algorithms have been re-

viewed in the last two chapters. This thesis alsodescribes some novel algorithm to mine

frequent patterns in Chapter 6 and a novel algorithm to mine interesting rule groups in

Chapter 7 from microarray datathat have a few of rows and a large number of columns.

Knowledge Recycle Bin.As the name implies, theknowledge recycle binstores in-

formation about data mining processes that have been previously executed. For each

association rule mining process, some of the useful information that should be stored is

as follows:

• Data Selection Predicates and Mining Parameters.Data Selection predicates

and mining parameters will be used to evaluate the usefulness of the association

rules or frequent patterns for recycling in a different mining context. Typically, a

set of selection predicates are used to specify the relevant set of rows and columns

from the database for mining. For example, users may want to mine sale data

of the last 3 months, which means to select a set of rows to mine. Storing the

data selection predicates helps us to determine the relevancy between one mining

process and another. Knowledge discovered on one set of data is usually not useful

to recycle when a completely different set is mined.
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Mining parameter here means the constraints imposed on frequent pattern min-

ing and association rule mining. For example, minimum support and minimum

confidence are two common constraints.

• Knowledge/Patterns Discovered and Algorithms. The adopted mining algo-

rithm, discovered frequent itemsets together with their frequencies, and the infre-

quent itemsets computed together with their frequencies are important information

for recycling. Given a dataset and a set of constraints, all algorithms generate the

same set of frequent itemsets, but the set of computed infrequent itemsets depends

on the algorithms. These infrequent itemsets are also called asintermediate re-

sults in the rest thesis.

One issue that should be addressed is that the amount of storage for these output

can be large. As such, it is important to group the common output of different

KDD processes together so as to reduce storage for them. Efficient retrieval of

these output is also an important issue which is addressed by abin manger that

will be introduced later.

• Time of Mining. Since the database might be changed after a mining process,

storing the time of mining can help us to determine whether the result of a mining

process is still valid. Storing the time of mining also helps thebin manager to

determine which process should be removed should there be a need to reduce

storage for the knowledge recycle bin.

• Efficiency Measurement. The CPU and I/O for each process are stored to help

selection of mining algorithms in the future.

Bin Manager. The task of maintaining the knowledge recycle bin is handled by the bin

manager. The main functions of the bin manager are listed as follows:

• Storage to Bin. Information on terminated mining algorithms will be passed

to the bin manager for storage in the knowledge recycle bin. The bin manager



Chapter 3 A Framework for Association Rule Mining 47

ensures that there is minimum redundancy (user specified threshold) among the

KDD processes in the knowledge recycle bin. To do so, a matching must be done

to compare the incoming KDD process against those in the recycle bin based on

some similarity measure. For this purpose, a coarse filtering can first be done by

matching the data selection predicates and the mining algorithm/parameters that

are used. Further comparison of the output can be conducted for those which pass

the coarse filter possibly with the help of indexes.

The discovered knowledge/patterns should be explicitly stored if minimum redun-

dancy is satisfied. Otherwise, it will be more desirable to use virtual pointers to

link a KDD process to a set of common discovered knowledge in the bin and store

only those portion of the knowledge which is different for the process.

• Retrieval from Bin. Given a mining query by the user, themining optimizer will

try to retrieve relevant knowledge from the knowledge recycle bin through the bin

manager by sendingbin retrieval query to the bin manager. A bin retrieval query

from the mining optimizer can consist of the desired data selection predicates,

mining algorithms/parameters and the knowledge that is required. Again, a coarse

filtering can be done initially by comparing the data selection predicates and the

mining algorithm/parameters.

Further refinement of the search will depend on the type of knowledge being dis-

covered in the recycle bin entries. In the context of frequent pattern discovery,

the subject of interest could be patterns satisfying certain constraints. Supporting

efficient execution of such queries will be one of the main challenges for imple-

menting the bin manager.

• Removal from Bin. In the case where the knowledge recycle bin becomes sat-

urated, heuristic must be adopted to determine the entries that should be cleared

from the recycle bin. A simple strategy to do this is to remove the oldest entries in
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the recycle bin. Alternatively, it can be done by monitoring the usage of each entry

and removing those that are less frequently used. Since patterns or knowledge in

the common area might be relevant to multiple entries, they are removed only if

no entries are referencing them.

Mining Optimizer. The role of the mining optimizer is to develop a mining plan using

existing knowledge or patterns in the knowledge recycle bin such that the cost of the as-

sociation rule mining is minimized. An analogy can be drawn between the database

query optimizer and the mining optimizer in terms of functions. Despite the large

amount of research that has been done on data mining, the equivalence of a database

query optimizer for data mining is largely unheard of. While there is work on imple-

menting data mining algorithms based on a series of SQL statements [65, 79], the query

optimizer in such case is only optimizing each SQL statement individually without being

aware of the mining algorithm.

• Mining Plan. Mining plan is made from two aspects. First, in the existence of

frequent patterns in the knowledge recycle bin, the mining optimizer will check

whether these patterns are useful for new mining process and whether these are

some methods to recycle the previous mining patterns. This thesis will present

two recycling methods in Chapters 4 and 5respectively.

On the other hand, if there are no patterns to recycle or there are no good ways

to recycle, mining optimizer tries to select appropriate algorithms from available

algorithms based on the database properties.

In the next two subsections, this chapter will further discuss the two aspects of mak-

ing mining plans.
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3.2 Recycle and reuse frequent patterns

From theknowledge recycle bin, a set of frequent patterns and intermediate results, to-

gether with the constraints imposed on them, may be available for new mining process.

Both the two kinds of itemsets may be frequent in a new round of mining when con-

straints are changed. Therefore, one natural solution of speeding up the new round of

mining is to recycle these itemsets counted before in an effective way.The proposed

method in Chapter 4 tries to recycle both frequent itemsets and infrequent itemsets from

previous mining to effectively speed up subsequent mining.

Considering the case that intermediate results are not always available fromknowl-

edge recycle binwhile the set of frequent itemsets are available,the proposed method in

Chapter 5 recycle only the discovered frequent itemsets.

3.3 Select appropriate mining algorithms

It is difficult to tell which is the best algorithm to mine a dataset before every algorithm

is tried and compared on the dataset. One possible way is to sample the given database

and try to mine the sample database using candidate algorithms. The algorithm that

performs the best on the sample is selected to mine the whole database. Moreover, this

section tries to give some heuristic rules for selecting appropriate algorithms according

to dataset properties on the basis of the analysis in Chapter 2.

When the user specified minimum support is relatively high, i.e. the discovered

frequent itemsets are small in number and short in length, nearly all algorithms perform

very well and do not have much difference. Therefore, it does not matter too much to

choose any algorithm. This can be shown in the study [106] on the performances of

association rule mining algorithms.

When the specified minimum support is relatively low, i.e. the discovered frequent

itemsets are long or large in number, it is desirable to choose a good algorithm since the
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performance of various algorithms can be of several orders of magnitude difference.

When the dataset, such as the market basket dataset, is large and sparse, Apriori

and apriori-like algorithms are usually sufficient for the association rule mining. How-

ever, these algorithms will meet problems when the candidates cannot fit in memory.

Projected database based algorithms, such as H-Mine algorithm and Tree Projection al-

gorithm, usually can get better performance than Apriori algorithm does according to

[2, 72] if the dataset can be held in memory (required by H-mine) or candidates can be

held in memory (required by breadth-first Tree Projection algorithm).

When the dataset is dense, FP-tree algorithm and its variations usually perform good

if the FP-tree and its conditional FP-tree can fit in memory.

When the dataset is highly correlated (usually dense datasets are highly correlated),

the frequent closed itemsets can usually reduce the number of frequent itemsets greatly,

thus achieving better performance. Therefore, the algorithms of mining frequent closed

patterns can be used. However, if it is not the case, the algorithm of mining closed

itemsets may deteriorate performance since it needs additional computation to determine

whether an itemset is closed. Moreover, as discussed in Chapter 2.3, the algorithms

of mining frequent closed itemsets usually originate from some algorithm of frequent

itemset mining and will meet similar problems with their corresponding frequent itemset

mining algorithms although they usually can alleviate the problems to some extent.

When the average number of columns (items in a row) is large (for example> 100)

and the minimum support is relatively low, all existing algorithms usually cannot per-

form well. As discussed in Chapter 1, microarray data usually have tens of thousands

columns and only tens or hundreds of rows. Even the proposed recycling techniques in

Chapters 4 and 5 usually will not be helpful for mining frequent patterns from microar-

ray data and the reason will be discussed in Chapter 8.This motivates the design of new

algorithms described in Chapters 6 and 7 to mine microarray data.
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These rules can be helpful for themining optimizer to select algorithm if the prop-

erty of database, such as dense or sparse, is known in advance. It is noticed that algo-

rithm in [46] first scans dataset once to judge wether the dataset is dense and use different

strategy for dense and sparse data. Algorithm CLOSET+ [92] performs the similar step

to mine frequent closed patterns. But when the property of database is unknown, more

operative rules are required for themining optimizer to work. We notice that it is still

an open problem, but not the focus of this thesis.

Note that the framework to be proposed applies to mining systems with multiple min-

ing tasks although this thesis only considers association rule mining algorithms. Some

recent research tried to combine several kinds of data mining task. This means that there

are opportunities to recycle one mining result in another mining results. For example,

classification approach CBA [55] used association rule to build classifier. Obviously,

previous association rule mining results, if have, can be recycled for classification pur-

pose. Netcube [59] used bayesian network for the purpose of database compression, that

could be extended for query and mining. [9] integrated different data mining functions

for one task by utilizing set of decision trees for compression. [23] utilized the clustering

results to improve the classification accuracy. [48] gave a model and algebra about the

integration of data mining models.



Chapter 4

Speed-up Iterative Frequent Pattern
Mining with Constraint Changes

This chapter will address the question of how to make use of previous mining results to

speed up subsequent mining when constraints are changed.

4.1 Introduction

In constrained data mining, users can specify constraints to prune the search space to

avoid mining uninteresting knowledge. This is typically done by specifying some initial

values of the constraints that are subsequently refined iteratively until satisfactory results

are obtained. Most of existing schemes fail to exploit the frequent patterns from an early

round of mining for subsequent iterations.

In this chapter, a novel technique is proposed to solve this problem. Using the re-

laxation of frequency constraint (the decrease of minimum support) as an example, this

chapter first proposes the concept of tree boundary to summarize and to reorganize the

previous mining results. This chaper then shows that the additional frequent itemsets

can be generated in the new mining process by extending only the itemsets on the tree

boundary without re-generating the frequent itemsets produced in the previous mining.

52
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The proposed technique has been implemented in the contexts of two frequent item-

set mining algorithms, FP-tree [43] and Tree Projection [2]. This results in two aug-

mented itemset mining algorithms RM-FP (re-mining using FP-tree) and RM-TP (re-

mining using Tree Projection). Extensive experiments on both synthetic data and real-

life data show that RM-FP and RM-TP dramatically outperform FP-tree and Tree Pro-

jection algorithm respectively. Finally, it is also addressed how the proposed technique

can be applied to handle the changes of other types of constraints given in previous

studies [63, 52, 71, 86].

The proposed tree boundary is different from the negative border proposed in [90]

although they are both related to the previous mining results. Moreover, tree boundary

is utilized in a completely different way from the previous works [35, 69, 88, 89] that

utilize negative border (the concept has been introduced in Section 2.2). The proposed

approach can avoid the disadvantages of negative border (e.g. maintaining the negative

border can consume huge memory). It is also shown that a simple combination of tree

boundary with existing mining approaches can not be effective and an effective solution

is proposed in Section 4.4.

This rest of this chapter is organized as follows: Section 4.2 describes the problem

of iterative mining of frequent patterns. The proposed technique will be described in

Section 4.3 and the experimental analysis is presented in Section 4.4. Finally, Section

4.5 extends the proposed technique to all kinds of constraint changes and Section 4.6

concludes this chapter.

4.2 Problem statement

Let I be the set of all items, andD be a transaction database. This section first reviews

the constraints used in frequent pattern mining. It then states the problem of iterative

mining of frequent patterns with constraint changes.
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4.2.1 Constraints in frequent pattern mining

Let each item inI be an object with some predefined attributes (e.g.,price, type, etc).

A is used to denote an attribute of items in the setI. Let S.A be the set of values

of attributeA for the items in patternS. Constraints can be imposed on both pattern

S itself and its attributes. For example, in a market basket case, the constraintS ⊇
{Carlsbergbeer, budweiser beer}means that a patternS must containCarlsbergbeer

andBudweiserbeer. The constraintS.Type⊇ {beer} means that a valid patternS must

contain some items whose type isbeer.

There are many types of constraints that can be imposed on frequent pattern mining.

Four categories of constraints:anti-monotone, monotone, succinct, andconvertiblecon-

straints have been effectively integrated into some mining algorithms [52, 63, 71, 86].

They have been introduced briefly in Section 2.2.

4.2.2 Iterative mining of frequent patterns with constraint changes

As discussed in Chapter 1, a typical data mining application is an iterative process. The

user of the application often runs the mining algorithm many times, and in each time

s/he changes some constraints.

Given a transaction databaseD, the whole process ofiterative(and interactive) min-

ing of frequent patterns with constraint changesis captured with the following iterative

steps:

(1) specify the initial set of constraintsSC;

(2) run the mining algorithm;

(3) check the returned results to determine whether they are satisfactory. If so, the

mining process ends. Otherwise, the user changes one or more constraints inSC (in-

cluding deletion and addition of constraints), and the process then goes to (2).

(1) and (3) will not be discussed further in this thesis as it is the user’s responsibility

to devise and to change constraints. This chapter presents a framework designed for the
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mining algorithm in (2) so that it is able to leverage on the mining results from the pre-

vious mining iteration to improve the efficiency of the current mining, and consequently

speed up the whole data mining process.

Constraint changes:Change of a constraint includes two cases:

(1) Tighten the constraint: The solution space is reduced. For example, theminimum

supportis increased.

(2) Relax the constraint: The solution space is expanded. For example, theminimum

supportis reduced.

Constraint changes mean changes to one or several constraints in a set of pre-defined

constraints. The changes cover deletion or addition of constraints. Adding a new con-

straint corresponds to tightening the constraint, while deleting an existing constraint

corresponds to relaxing the constraint.

As discussed in Chapter 1, if a constraintC is tightened toC ′, the set of patterns that

satisfy the new constraintC ′ is only a subset of the patterns that satisfy the old constraint

C. Thus, the set of patterns that satisfyC ′ can be obtained by filtering the set of patterns

that satisfyC. The challenge comes when a constraintC is relaxed toC ′. The set of

patterns that satisfy the old constraintC is only a subset of the patterns that satisfy the

new constraintC ′. The problem is how to efficiently discover the set of patternsFn that

satisfy the new constraintC ′ but not the old constraintC. Note that the patterns that

satisfyC do not need to be generated again. The rest of this chapter focuses on this

problem, i.e., taking advantage of the previous mining results to speed up the mining

of Fn whenC is relaxed toC ′. This chapter also presents how to utilize the previous

mining results to efficiently discover the set of patterns when multiple constraints are

changed at the same time.
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4.3 Proposed technique

The minimum support constraint is used as an example to present the proposed technique

for finding the set of patternsFn that satisfy the new but not the oldminimum support

when theminimum supportis reduced (relaxed) from one mining process to the next.

Minimum support is an essential constraint in frequent pattern mining. The relaxation

problems of the other constraints can be solved within the proposed framework (to be

discussed in Section 4.5), although the technical details may vary.

Let ξold be the minimum support used in the previous (or old) mining, andξnew be the

relaxed (or new) minimum support. This section first introduces the useful information

that can be obtained from the previous mining process (underξold) using aprojected

databasebased pattern mining framework. The reason that the proposed approach uses a

projected database based framework will become clear later. Then a method is described

to represent the old information for the purpose of mining underξnew. Next, a näıve

approach and the proposed technique are presented for discovering the set of patterns

Fn that are frequent underξnew but notξold.

4.3.1 Useful information from previous mining

This subsection discusses what kind of information from previous mining is essential

for the current mining.

After running a mining algorithm usingξold, the set of frequent patterns can be dis-

covered. One byproduct of the process is the set of patterns that are checked againstξold

(supports are counted) but are not frequent. LetLf be the set of frequent patterns under

ξold, andLif be the set of patterns that are counted, but found infrequent (the byproduct).

The byproduct is also calledintermediate results. Although all frequent pattern mining

algorithms generate the same setLf , the set of infrequent patternsLif checked in the

process varies according to algorithms.

Algorithms, such as those in [2, 43], do not strictly follow the candidate generation
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of Apriori-like algorithms. Instead, they are based on projected databases as discussed

in Chapter 1. These algorithms are classified as projected database based algorithms.

They will count the support of a patternS = {i1, i2, . . . , ik} if two proper subsets ofS,

namelyS1 = {i1, . . . ,ik−2,ik−1} andS2 = {i1,. . . ,ik−2,ik}, are frequent.

The projected database based mining algorithms are used as the underlying min-

ing framework of the proposed technique because they can give the proposed technique

sufficient information, while Apriori-like algorithms do not (see Remark 4.3.1). Experi-

mental studies in [2, 43] also show that projected database based algorithms are actually

more efficient than Apriori algorithm.

As in [2], a lexicographic tree is used to represent the set of frequent patternsLf .

Given the set of itemsI, it is assumed that a lexicographic orderR exists among the

items inI. The orderR is important for efficiency and for the organization of mining

results. The notationi ≤L j denotes that itemi occurs lexicographically earlier thanj.

Definition 4.3.1. Lexicographic Tree

A node in a lexicographic tree corresponds to a frequent pattern. The root of the tree

corresponds to thenull pattern.

Definition 4.3.1 is extended so that the patterns inLif can also be represented with a

lexicographic tree. An example lexicographic tree is shown in Figure 4.1. Those nodes

enclosed in circles are frequent patterns underξnew but notξold, i.e. the patterns inFn.

The nodes enclosed by dotted squares are the patterns inLif that are not frequent under

eitherξold or ξnew. The other nodes are patterns that are frequent under bothξold and

ξnew. Let P andQ be two patterns andQ be the parent ofP .

Definition 4.3.2. Tree Extensions

A frequent 1-extension of a pattern such that the last item is the contributor to the ex-

tension is called atree extension. The list of tree extensions of a nodeP is denoted by

E(P ).
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Figure 4.1: A lexicographic tree

In Figure 4.1, underξold, the list of tree extensions of node 3E(3) = <4, 6>.

Definition 4.3.3. Candidate Extensions

The list of candidate extensions of a nodeP is defined to be the items inE(Q) that occur

lexicographically after the nodeP . The list is denoted byC(P ). Note thatE(P ) is a

subset ofC(P ).

Items in C(P ) are possible frequent extensions ofP . Under ξold, the candidate

extensions ofnull nodeC(null) = <3, 4, 5, 6, 7> (note that 2 is not frequent underξold),

and the candidate extensions of node 3C(3) = <4, 5, 6, 7>.

Extensions of Lexicographic Tree The following extends the lexicographic tree with

some new conceptions, which will be used in the proposed technique.

Definition 4.3.4. Infrequent Borders

If a 1-extensioni of patternP is not frequent,i is called aninfrequent border. The

list of infrequent bordersof a nodeP is denoted byIB(P ). We have the relationship:

IB(P ) = C(P )− E(P ).

Note that the union of infrequent border will be superset of the negative border. In

Figure 4.1, underξold, the infrequent borders of node 3IB(3) = <5, 7>.

Definition 4.3.5. New Tree Extensions

If patternP∪ {i}, i ∈ IB(P ), becomes frequent after minimum supportξ is reduced
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from ξold to ξnew, i is called a new tree extension of nodeP w.r.t. ξnew. The list of new

tree extensions of nodeP w.r.t. ξnew is denoted byNTE(P ).

In Figure 4.1, the list of new tree extensions of node 3w.r.t. ξnew NTE(3) = <5, 7>.

For any frequent patternP (which can benull) underξold, its tree extensionsE(P )

andinfrequent borders IB(P ) are stored for mining underξnew. Its new tree extensions

NTE(P ) w.r.t. ξnew can be obtained by checking the list of infrequent borders ofP ,

IB(P ). Underξold, the set oftree extensionsof all frequent tree nodes makes upLf , and

the set ofinfrequent bordersof all frequent nodes in the tree makes upLif .

4.3.2 Näıve approach

With the two setsLf andLif from the mining underξold, this subsection first looks at

a näıve (or straightforward) approach to making use of previous mining results for the

new mining.

The näıve approach checks all patterns inLf andLif one by one to find the change of

their candidate extensions underξnew, and to extend them to obtain the complete setFn

(in which patterns are frequent underξnew but notξold). Figure 4.2(a) shows the children

patterns ofnull node and the children patterns of pattern{3} in the näıve approach. To

make the figure manageable, this thesis assumes that pattern{3, 8} is frequent under

ξnew but {4, 8}, {5, 8}, {6, 8}, and{7, 8} are not. Candidate extensions of each node

are shown under the node in Figure 4.2(a). The only saving in the new mining comes

from the reuse of the count information saved previously for those patterns inLf and

Lif .

However, this saving in computation is very limited in a tree-based algorithm. Thus,

the computation is basically the same as re-mining from scratch. In tree-based algo-

rithms, the main computation comes from the generation of projected transactions for

each node. Project transactions for a patternS are the set of transactions containingS.
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Figure 4.2: Part of mining results underξnew

Tree-based algorithms use this sub-transaction set for counting support and for all sub-

sequent pattern (containingS) generations. Therefore, this naı̈ve approach still requires

the same computation to generate the projected transactions as running a tree-based al-

gorithm from scratch. For instance, in Figure 4.2(a), this naı̈ve approach still needs to

create projected transactions for{3} to count the support for pattern{3, 8} although

the supports of its other children patterns{3, 4}, {3, 5}, {3, 6} and{3, 7} are known

previously (the projected transactions for{3} are also used to generate the projected

transactions for children patterns of{3}). A similar computation is required for creating

projected transactions for{2}, {3}, {4}, {5}, {6} and{7}.
Another shortcoming of the naive approach is that it cannot avoid re-generating pat-

terns inLf because they need to be extended in the new mining. For example, in Figure

4.2(a), patterns{3}, {4}, {5}, {6} and{7} still need to be generated to check whether
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item 8 is in their tree extensions although their supports are already counted in previous

mining.

Based on the above discussion, it can be seen that saving by the naive approach is

limited. It is thus not efficient. Below, the next subsection first presents the concept of

tree boundary, which provides an effective and efficient framework for mining under

ξnew. Then the proposed approach is presented.

4.3.3 Proposed approach

Definition 4.3.6. Tree Boundary

A tree boundaryw.r.t. ξnew is defined to be the set of patternsTB = {tb | tb ∈ Lif ,

Support(tb) ≥ ξnew}, whereLif is the set of counted but infrequent patterns underξold,

andSupport(tb) is thesupportof patterntb. 2

For example, the patterns on the dotted line shown in Figure 4.1 make up thetree

boundaryw.r.t. ξnew. Patterns{1} and{3, 4, 6} are not inTB although they are inLif

because they are not frequent underξnew.

Tree boundaryis different from the negative border proposed in [90] although they

are both related to the previous mining results. For example, the itemset{3, 4, 6} will

be in the negative border under theξold while it is not in the tree boundary. Unlike pre-

vious works on incremental mining that maintain the negative border in the new mining

process (many itemsets will be put in the negative border underξnew, for example,{3, 5,

6}), the proposed approach uses the tree boundary as the starting point and framework

for the new mining (explained below). Thus, the shortcoming of negative border (e.g.

maintaining the negative border can take up huge memory, as given in the example of

Section 2.2) can be avoided.

The proposed approach discovers the complete set ofFn by extending only the pat-

terns on thetree boundary. The basic idea is to eliminate the effect of minimum support

decrease on patterns inLf , i.e., no pattern will be extended if it has been extended in
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the previous mining. This is achieved by changing the order oftree extensionsof every

node (including thenull node) inLf (underξold).

Let Sp benull node or any pattern inLf . Tree extensions ofSp underξnew, denoted

by Enew(Sp), contain two parts:

• tree extensions ofSp underξold,Eold(Sp), e.g.,Eold(3) = <4, 6>, and

• new tree extensions ofSp (w.r.t. ξnew), NTE(Sp), e.g.,NTE(3) = <5, 7>.

The item order ofEnew(Sp) is changed as follows: move items from the new tree

extensions,NTE(Sp), to the front of the (old) tree extensions ofSp underξold, Eold(Sp).

For example, in Figure 4.1, the tree extensions ofnull underξnew are changed from<2,

3, 4, 5, 6, 7,8> to < 2, 8, 3, 4, 5, 6, 7>.

With the new ordering, for a child pattern ofSp such thatSc = Sp∪ {i}, wherei ∈
Eold(Sp) (Sc ∈ Lf ), thecandidate extensionsof Sc are the same underξold andξnew.

For a child pattern ofSp such thatSn = Sp∪ {i}, wherei ∈ NTE(Sp), thecandidate

extensionsof Sn consists of :

• the itemsj such thati ≤L j, wherej ∈ NTE(Sp), and

• the itemsj, j ∈ Eold(Sp).

Due to the re-ordering, candidate extensions of the patterns inLf are not affected.

For instance, after the tree extensions ofnull node underξnew are changed into<2, 8,

3, 4, 5, 6, 7>, the tree extensions of patterns{3}, {4}, {5}, {6} and{7} underξnew

are the same as those underξold. The tree extensions of pattern{8} become<3, 4, 5,

6, 7> from ∅ underξold. The proposed approach only needs to compute the projected

transactions for pattern{8} to decide whether items 3, 4, 5, 6, and 7 are tree extensions

of {8}. There is no need to compute projected transactions for{3}, {4}, {5}, {6} and

{7} (they were computed in the previous mining).
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Another example is given in Figure 4.2(b), which shows the corresponding part of

Figure 4.2(a) in our approach. After the order of tree extensions of thenull node is

changed, there is no need to extend patterns{3}, {4}, {5}, {6} and{7} with item 8.

Tree extensions of pattern{3} is changed from<4, 5, 6, 7> to <5, 7, 4, 6>. The

candidate extensions of node{3, 5} are<4, 6, 7>. The candidate extensions of node

{3, 7} are<4, 6>. As a result, the proposed approach only needs to compute projected

transactions for patterns{3, 5} and {3, 7} (which are not computed in the previous

mining) while the näıve approach needs to compute projected transactions for patterns

{3, 4}, {3, 5}, {3, 6} and{3, 7}.
Notice that those patterns on thetree boundarywhose candidate extensions are

empty can be removed from thetree boundary, e.g., patterns{4, 5, 7} and{5, 7} in

Figure 4.1.

Let us summarize the advantages of thetree boundarybased extension with ordering

change.

1) The approach is able to avoid the computation of counting the supports of patterns

in Lf andLif . The approach does not re-generate the patterns inLf to extend them in

the new mining process.

2) The approach is able to avoid the generation of projected transactions that were

done in the previous mining while the naı̈ve approach is unable to.

The ordering change is the key of the proposed technique. It also brings some addi-

tional benefits when integrating tree-based algorithms withtree boundary. These bene-

fits will be further discussed in the next subsection.

Now, let us prove the correctness and completeness oftree boundaryapproach.

Property 4.3.1. Given tree boundary TBw.r.t. ξnew, the complete set of patternsFn

(frequent underξnew but notξold) can be generated by extending the patterns inTB.

Proof: As discussed above,Fn can be obtained by extending frequent patterns inLfand
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Lif in the näıve approach. It is proved that extending patterns onTB with their can-

didate extensions can achieve the same results as the naı̈ve approach does. LetSp be

the null node or any pattern inLf . Changing the order of tree extensions ofSp under

ξnew,Enew(Sp), affects the generation of candidate extensions of the children patterns of

Sp. Consider any two itemsi, j ∈ Enew(Sp). We have two cases.

The ordering change does not affect the relative order ofi andj. If j is a candidate

extension of patternSp ∪ i before the ordering change, it is still the case after the order

change. Therefore, the ordering change will not affect the final results in this case.

If the relative order ofi andj is changed, it must be the case thati ∈ Eold(Sp), j ∈
NTE(Sp), andi ≤L j (or j ∈ Eold(Sp), i ∈ NTE(Sp), andj ≤L i), whereEold(Sp) is the

list of tree extensions ofSp underξold andNTE(Sp) is the list of new tree extensions of

Sp, because of the way that the order is changed.j is acandidate extensionof pattern

Sp∪ i before the order change whilei is acandidate extensionof patternSp∪ j after the

order change. Therefore, the order change will not affect the results in the case.

Thus, based on (1) and (2), it is known that the approach of extending the patterns in

TBcan generate the same set of results as the naı̈ve approach does, i.e., the complete set

of patternsFn. 2

Besides mining frequent patterns with constraint changes,tree boundarycan be ap-

plied to mining other kinds of patterns with constraint changes when integrated with

their corresponding tree-based algorithms. For example,tree boundarycan be used to

discovermaximal frequent patterns with constraint changeswhen it is integrated with

the algorithms in [4, 8], to discoverclosed frequent patterns with constraint changes

when integrated with the algorithm [20], and to discoverdisjunction-free sets with con-

straint changeswhen integrated with the algorithm in [7].

Remark 4.3.1. In Apriori-like algorithms, previous mining results underξold do not pro-

vide sufficient information to build thetree boundaryfor re-mining underξnew. More-

over, even if we could build atree boundary, Apriori-like algorithms could not be easily
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modified to extend patterns ontree boundaryto discoverFn.

Apriori-like approaches count the support of a child pattern ofS iff all proper subsets

of the child pattern are frequent. As a result, previous mining results generated by

Apriori-like approaches do not provide sufficient information to buildtree boundary.

For example in Figure 4.1, although patterns{4, 5, 6} and{4, 5, 7} are on thetree

boundary, Apriori-like approaches do not count their supports because patterns{5, 6}
and{5, 7} are not frequent.

Furthermore, even if it is assumed thattree boundarycould be built, Apriori-like

algorithms are unable to discover the set of patternsFn by extending patterns ontree

boundary. Unlike tree-based algorithms that generatecandidate extensionsnode by

node, Apriori-like approaches generate candidatek-patterns by joining frequent (k-1)-

patterns with themselves. Apriori-like approaches do not allow change in the order of

tree extensionsas proposed above. For example in Figure 1, pattern{3, 5} cannot be

extended with item 4 in Apriori-like approaches as the new technique does. Thus, a

different technique is needed for Apriori-like algorithms, which is beyond the scope of

this thesis.2

4.3.4 Tree boundary based re-mining

The proposed technique is realized using the FP-tree frequent pattern mining and the

Tree Projection algorithms, which are both tree-based algorithms. The algorithm using

FP-tree is called Re-Mining using FP-tree (in short RM-FP), and the algorithm using

Tree Projection is called RM-TP (Re-Mining using Tree Projection). This section first

presents the RM-FP algorithm, and then RM-TP algorithm.

4.3.4.1 Re-Mining using FP-tree (RM-FP)

This subsection will present the approaches to constructing FP-tree underξnew based

on the previous mining results and to extendingtree boundaryusing adapted FP-tree

algorithm to generate the complete set of patternFn that are frequent underξnew but not



Chapter 4 Speed-up Iterative Frequent Pattern Mining with Constraint Changes 66

underξold.

FP-tree algorithm works by recursively building conditional databases and mining

the corresponding FP-trees. This thesis has given a brief introduction of FP-tree algo-

rithm in Section 2.3.

Constructing FP-tree under ξnew: As discussed in Section 4.3.1, for any frequent

patternα (or null) underξold, its tree extensionsE(α) and infrequent bordersIB(α) are

stored for new mining. Another piece of valuable information from previous mining is

the initial FP-tree constructed underξold. It is called theold FP-tree. Theold FP-tree

includes complete information about items inE(null) (the set of frequent items under

ξold) in dataD. The initial FP-tree built underξnew is called thenew FP-tree. Thenew

FP-treeincludes complete information about items inE(null) andNTE(null) (the set of

items that are frequent underξnew but notξold) in datasetD. With the help of theold

FP-treeand the set of infrequent items underξold, IB(null), the new FP-tree is obtained

as follows.

(1) If NTE(null) = ∅, thenew FP-treeis the same as theold FP-tree.

(2) If NTE(null) 6= ∅, items in NTE(null) have lower frequencies than items in

E(null). Since the items of each path of the FP-tree are in the order of decreasing

frequencies, in thenew FP-tree, items inNTE(null) are in the lower part of a path while

items inE(null) are in the upper part. Because theold FP-treeincludes complete in-

formation about the items inE(null), the new FP-tree can be obtained by appending the

paths of theold FP-treewith the information about the items inNTE(null).

Integration of tree boundary with FP-tree: For each patterntb on tree bound-

ary TB, its conditional FP-tree, FP|tb, is built. FP|tb contains all items in the candidate

extensions of patterntb, which contain two parts as discussed in the Section 4.3.3:

(a) items from new tree extensionsw.r.t. ξnew of the parent pattern oftb, and

(b) items from tree extensions of the parent pattern oftb underξold.

The items from (b) are ordered in front of items from (a) in each path of FP|tb.
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Note that the order plays the same role as the order that the Section 4.3.3 discussed for

tree boundaryalthough they are different apparently. This is because FP-tree algorithm

works backwards.

Compared with the initial orderOd, the item order discussed above can bring two

additional advantages because items from (b) have higher supports than items from (a):

First, there are more chances for prefix paths of FP|tb to be shared. Thus a smaller

FP-tree which still contains the complete information could be built.

Second, the ordering increases the possibility that the conditional FP-tree built from

FP|tb contains a single path. According to a lemma given in [43], if the occurrences of

items are in a single path in FP|tb, the complete set of frequent patterns extended from

patterntb can be generated by enumerating all the combinations of the items in FP|tb.
Thus there is no need to build conditional FP-tree for children patterns of patterntb,

which improves efficiency greatly.

Conditional FP-trees built in such a way ensure that FP|tb contains the complete

information about candidate extensions oftb for discovering all frequent patterns under

tb. With property 4.3.1 and the definition of FP-tree, conditional FP-trees of the patterns

on the tree boundaryprovide sufficient information to discover the setFn (frequent

underξnew but not underξold).

Based on the above discussion, the mining algorithm RM-FP is given as follows.

Step 1: For each patterntb on tree boundary TB, RM-FP first constructs its condi-

tional pattern base from the new FP-tree to discover its tree extensionE(tb), and then

construct its conditional FP-tree FP|tb, which contains items in the setE(tb).

Step 2: If FP|tb contains a single path, for each combination of items (denoted asc)

in the path, frequent patterntb ∪c is generated. Otherwise, for eachα ∈ E(tb), RM-FP

generates frequent patternβ = tb∪ α, and for eachβ, RM-FP constructs its conditional

pattern base and its conditional FP-tree FP|β from FP|tb.
Step 3: If FP|β 6= ∅, let tb = β, and go to Step 2.
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4.3.4.1 Re-Mining using Tree Projection (RM-TP)

This subsection will present the approach to usingtree boundaryto generate the com-

plete set of patternFn that are frequent underξnew but not underξold. A brief introduction

about Tree Projection [2] can be found in Section 2.3.

Integration of Tree Boundary with Tree Projection: RM-TP discovers the set

of itemsetsFn (which satisfy the new constraints but not the old) by extendingtree

boundarywith a breadth-first strategy. RM-TP first finds frequent 1-exentsions of the

itemsets ontree boundaryby one database scan. These frequent 1-extensions form new

leaf nodes of the lexicographic tree. Then the new leaf nodes are extended. The process

continues until the leaf nodes cannot be extended any more.

RM-TP has the advantages oftree boundary. Moreover, it has two additional advan-

tages: (1)Tree boundarymakes up the initial leaf nodes of a lexicographic tree. Unlike

Tree Projection algorithm that builds thekth level of the lexicographic tree at thekth

database scan, RM-TP extends its leaf nodes that cut across various levels of the lexico-

graphic tree. With such a strategy, RM-TP (usually) requires fewer database scans than

re-running the Tree Projection algorithm (up-to 8 times fewer in our experiments). This

saving is significant for real datasets that are large. (2) RM-TP can reduce the size of

the dataset by removing those transactions that do not contain any items useful for re-

mining after scanning the dataset one time. These features make running RM-TP much

more efficient than re-running Tree Projection.

4.4 Experimental evaluation

In order to evaluate the effectiveness and efficiencies of the techniques that utilize pre-

vious mining results to speed-up current mining, this section reports the performance

studies of RM-FP and RM-TP over a variety of datasets.
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4.4.1 Experimental setup

Both synthetic and real-life datasets were used in experiments to compare the efficiency

of FP-tree algorithm and RM-FP as well as that of Tree Projection and RM-TP. All

experiments were performed on a 750-Mhz Pentium PC with 512 MB main memory,

running on Microsoft Windows 2000. All the programs were written in Microsoft Visual

C++ 6.0.

The synthetic datasets were generated using the procedure described in [7]. Exper-

imental results are reported with two synthetic datasets: one is T25.I20.D200k [43],

denoted as D1, with 1K items. In D1, the average transaction size and the average

maximal potentially frequent pattern size are 25 and 20 respectively. The number of

transactions is 200k. The other dataset is T20.I6.D100k [7], denoted as D2, also with

1K items.

Experiments were also conducted on one real-life dataset obtained from the UC-

Irvine Machine Learning Database Repository1. TheMushroomdataset has 8124 trans-

actions, and each transaction has 23 items chosen from 119 items.

4.4.2 RM-FP vs FP-tree

Figure 4.3 shows the performances of RM-FP with FP-tree algorithm run on datasets

D1. In the curves for RM-FP, the CPU time for each point (except the first point) is

obtained by running RM-FP (with the value of that point asξnew) based on the previous

mining results (including frequent patterns and patterns in thetree boundary) underξold

just before that point. For example, in Figure 4.3, the CPU time of RM-FP atξnew =

1.75% is based on the old mining results withξold = 2%, and the CPU time for RM-FP

at ξnew = 1.5% is based on the old mining results withξold = 1.75%, and so on. Note

that whenξnew of RM-FP is the same asξold of the previous mining, e.g., atξ = 2% in

Figure 4.3, the extra running time of RM-FP as compared to FP-tree shows the overhead

1http://www.ics.uci.edu/∼mlearn/MLRepository.html



Chapter 4 Speed-up Iterative Frequent Pattern Mining with Constraint Changes 70

Figure 4.3: Interactive mining on D1
Figure 4.4: Interactive mining on
D1(smaller decrease)

Figure 4.5: RM-FP performance on D1Figure 4.6: RM-FP performance on D2

of RM-FP to output patterns inLif . The extra time is very small as shown in Figures

4.3-4.7.

From Figures 4.3, it can be observed that RM-FP is able to save more than 40%

of running time of FP-tree in each iteration. The saving is very significant in practice.

In fact, RM-FP can achieve even better results if the decrease of minimum support is

smaller in each iteration as shown in Figure 4.4. In Figure 4.4, the minimum support

is reduced by 10% each time (the decrease is smaller than that in Figures 4.3). At each

point, again RM-FP is run based on the mining results of the previous point except for

2%. In each iteration, more than 70% of the running time is saved.

More performance curves on datasets D1, D2, andMushroomare given in Figures
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Figure 4.7: RM-FP performance onmushroom

Figure 4.8: Scalability with the number of transactions

4.5, 4.6, and 4.7 respectively. In Figure 4.5, RM-FP is run based on the initial mining

results of the FP-tree algorithm withξold = 2%, 1.5% and 0.75%. In each case, a few

reducedξnew values are used. In Figure 4.6, RM-FP is run based on the mining results

of ξold = 2%, 1% and 0.5%. In Figure 4.7, RM-FP is run based on the mining results at

ξold = 2%, 1%, and 0.5%. In each of Figures 4.5, 4.6, and 4.7, results with differentξnew

values are shown.

Note that Figures 4.3 and 4.5 are different although they are obtained using the same

dataset D1. In Figure 4.5, for each curve of RM-RP, at all points (corresponding to

different new minimum support) of the curve, RM-FP utilizes the mining result of the
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starting point of the curve, but not the previous point as RM-FP did in Figure 4.3.

All the experiments show that RM-FP consistently outperforms the FP-tree algo-

rithm even when minimum support drops to a very low level from a very high level.

The reasons for the improvement have been given in Section 4.3. With the same initial

(old) mining results, it can be observed from the experimental results that the lower the

ξnew is in the new mining, the smaller is the percentage of saving in computation. The

observation can be explained by the fact that the number of frequent patterns atξnew is

much larger than the number of patterns inLf from old mining. For example, for D1,

the number of frequent patterns discovered at 2% is 521 while the number at 0.33% is

519,704. For D2, the number of frequent patterns discovered at 2% is 381 while the

number at 0.15% is 558,834. However, in practice, the same user typically will not

reduce the minimum support so drastically from one mining process to the next. For ex-

ample, in most cases, it is unlikely that the user usesξold = 2% first, and then changes it

to ξnew = 0.15% suddenly for the next mining. Instead, the decrease each time is usually

small as in the cases of Figures 4.3 and 4.4.

Note that in Figure 4.7, RM-FP based on 1% support takes more time than RM-FP

based on 2% support atξnew = 0.75%. The likely reason is that the time used to check

previous mining results offsets part of the benefit from utilizing previous mining results

when the number of the previous mining results is very large.

Another finding from the experiment is that that RM-FP requires less memory than

FP-tree algorithm does. This is because the number of nested FP-trees built in RM-FP is

smaller than that in the FP-tree algorithm. In real data, the saving can be 50%. Because

the FP-tree algorithm usually requires more memory than Tree Projection and Apriori

algorithms, the memory saving is valuable.

The scalability experiments were conducted by increasing the number of transactions

of dataset D1. As shown in Figure 4.8, both FP-tree and RM-FP have linear scalability

with the number of transactions, but RM-FP is more scalable.
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4.4.3 RM-TP vs Tree Projection

The experiments presented in this subsection were conducted on the same datasets as

those in last subsection. Figure 4.12 shows the experimental result of interactive mining

on D1. Figure 4.12 shows that RM-TP achieves much better improvement than Tree

Projection in interactive and iterative mining. The saving is more than 70%. The lowest

curve in Figure 4.12 used a smaller decrease ofminimum supportthan the curve above

it. These results clearly show the usefulness of previous mining results in interactive and

iterative mining.

More experimental results are given in Figures 4.9, 4.10 and 4.11. In Figure 4.9,

RM-TP was run based on the initial mining results of the FP-tree algorithm withξold =

2%, 1.5% and 0.75%. In each case, a few reducedξnew values were used. In Figure

4.10, RM-TP was run based on the mining results ofξold = 2%, 1% and 0.5%. In Figure

4.11, RM-TP was run based on the mining results ofξold = 20%, and 14% (very high

minimum support have to be used because the dataset is very dense). In each of Figures

4.9, 4.10 and 4.11, results with differentξnew values are shown.

From Figures 4.9 to 4.11, it is clearly shown that RP-TP is able to improve the ef-

ficiency of Tree Projection algorithm, which is in a similar way that RM-FP is able to

improve FP-tree algorithm shown in Section 4.4.2. The likely reason for the improve-

ment is that RM-TP makes use of previous mining results as RM-FP does. Moreover,

with the help of the previous mining results, RM-TP (usually) requires fewer database

scans than Tree Projection algorithm does (it can be 8 times fewer for dataset Mushroom

in our experiments). These features make RM-TP much more efficient than re-running

Tree Projection.

Figures 4.9 to 4.11 also show that the improvement of RM-TP as compared to Tree

Projection is very small when the new minimum support drops sharply from the old

minimum support. The reason for this is that RM-TP can hardly save the number of

database scans required by Tree Projection when the minimum support drops sharply.
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Figure 4.9: RM-TP performance on D1Figure 4.10: RM-TP performance on D2

Figure 4.11: RM-TP performance on
mushroom

Figure 4.12: Interactive mining on D1Figure 4.13: Scalability with the number
of transactions

In this case, the only saving comes form the previous mining results.

Figure 4.13 shows the scalability test of RM-TP with the number of transactions.
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Both Tree Projection and RM-TP have linear scalability with the number of transactions,

but RM-TP is more scalable.

4.5 Application to other constraints

This section shows that the proposed approach is also applicable to discovering the set

Fn (which satisfies the new constraints but not the old) when any other single or multiple

constraints are changed.

The detailed techniques of dealing with the mining with changes of these constraints

differ. The followings present methods of dealing with the change of individual con-

straints and multiple constraints intuitively.

4.5.1 Dealing with individual constraint changes

This subsection discusses the methods for discovering the setFn when a single constraint

is changed.

Method 1: Filtering previous mining results

The setFn can be obtained by filtering previous results in the following two cases:

• tightening of a constraint of any kind, which has been discussed in Section 4.1;

• relaxation of a convertible monotone or monotone constraint.

For example, assume that a monotone constraintsum(S.price) ≥ 100 is relaxed to

sum(S.price) ≥ 50. The setFn can be obtained by checking the previous mining results

because in the old mining those patterns that do not satisfy the old constraint are also

checked. Thus, all checked patterns can be stored. In the new mining, each of them is

simply checked against the new constraint.

Method 2: Tree boundary based re-mining

This method applies to the relaxation of a convertible anti-monotone or anti-monotone
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constraint. Minimum support is an anti-monotone constraint. Ourtree boundaryap-

proach is able to discover the setFn. An example of the convertible anti-monotone

constraint isavg(S.price) ≥ 25 when items are listed in the descending order ofprice.

When theavg value is relaxed, e.g., to 20, the setFn can be discovered basically fol-

lowing the approach for anti-monotone constraint relaxation. Unlike an anti-monotone

constraint relaxation, the relaxation of a convertible anti-monotone constraint does not

need to change the item order in order to constructtree boundary. This is due to the

special property of convertible constraints as discussed in [71].

Method 3: Simpler tree boundary based re-mining

Tree boundaryin this method is easier to devise than that for Method 2 and usually

contains only 1-patterns. It applies to the relaxation of a succinct and anti-monotone

constraint, or a succinct and monotone constraint. When one of such constraints is

relaxed, it can be dealt with as follows: LetE(null) be the list of frequent items that

satisfy the old constraint. By checking the old mining results, we first find the list

of frequent itemsNTE(null) that satisfy the new constraint but not the old constraint.

Patterns made of individual items inNTE(null) make up thetree boundary. Note that

if items in NTE(null) are not counted (the minimum support constraint is imposed after

other constraints), they are needed to be counted by scanning the dataset once. Below,

the application of this method to the two kinds of constraints will be explained.

When a succinct and anti-monotone constraint is relaxed, the patterns made of in-

dividual items inNTE(null) form the tree boundary, and the candidate extensions of

patterns on thetree boundarycome from the listsE(null) andNTE(null). For example,

assume we have a set of itemsIf = {i1, i2, i3, i4, i5, i6}, wherei1.price = 30, i2.price =

50, i3.price = 80,i4.price = 100,i5.price = 110, andi6.price = 130. Each item inIf is a

frequent 1-pattern and any combination of items inIf is frequent. Assume the old con-

straintmin(S.price) ≥ 100 is relaxed to the new constraintmin(S.price) ≥ 50. Under the

old constraint the listE(null) is < i4, i5, i6 >. With regard to the new constraint, the list
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NTE(null) is < i2, i3 >. Patterns{i2} and{i3} are on thetree boundary. The candidate

extensions of{i2} are< i3, i4, i5, i6 > and those of{i3} are< i4, i5, i6 >. Then, the

setFn can be discovered by extending the patterns ontree boundarywith items of their

candidate extensions.

For the relaxation of a succinct and monotone constraint (e.g.,min(S.price) ≤ 100

is relaxed tomin(S.price) ≤ 150), the method is similar except for the generation of

candidate extensions.

In summary, both RM-FP and RM-TP achieve better performance than their counter-

parts that do not utilize previous results. This proves the effectiveness and efficiency of

the proposed technique.

4.5.2 Dealing with multiple constraint changes

Although users usually change one constraint at a time to see the effect of the change, it

is also possible that multiple constraints are changed at the same time. Table 4.1 shows

the methods for discoveringFn when two constraints are changed at the same time.

Most of the combined cases can be handled by combining the approaches to handle the

change of individual constraint. For example, tightening a succinct & anti-monotone

constraint and relaxing a succinct & monotone constraint require Method 1 (handling

the tightening) and 3 (handling the relaxation). The exceptional cases in table 4.1 are

explained as follows.

Adapted: Consider the case that a succinct & anti-monotone constraint is relaxed

and a succinct & monotone constraint is tightened. A tree boundary cannot be con-

structed from the previous mining results by combining methods 1 and 3. Instead, the

dataset is required to be scanned once to find patterns on the tree boundary before ap-

plying method 3. We call this method adapted Method 3 (M3). For example, given a set

of itemsIf = {i1, i2, i3, i4, i5, i6}, wherei1.price = 120,i2.price = 100,i3.price = 80,

i4.price = 60, i5.price = 50, andi6.price = 30. Each item inIf is a frequent 1-pattern.
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Table 4.1: Handling the change of two combined constraints

The succinct & anti-monotone constraintmin(S.price)≥ 50 is relaxed tomin(S.price)≥
20 and the constraintmax(S.price)≥ 80 is tightened tomax(S.price)≥ 100. To discover

Fn, we first count the supports for{i6, i1}, {i6, i2}, {i6, i3}, {i6, i4} and{i6, i5}. If {i6,
i1}, {i6, i3}, {i6, i4} are frequent, then the tree boundary is composed of pattern{i6, i1}
whose candidate extensions are< i3, i4 >.

Depends:Consider the case that a succinct & anti-monotone and a convertible anti-

monotone constraint are both relaxed. If the order required by the convertible constraint

cannot be maintained in the new mining with the tree boundary approach, the convertible

property is violated, i.e., using the tree boundary approach may cause the loss of the

convertible property. If the order can be maintained, the tree boundary approach can be

applied while the convertible anti-monotone property is also exploited.

– : When a convertible constraint (anti-monotone or monotone) is combined with

another constraint that requires items to follow a different order from the order required
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by the convertible constraint, the combination will cause the loss of the convertible prop-

erty [71] or the loss of the property of the other constraint. In [71], it is shown that one

of the two constraints cannot be pushed into frequent pattern mining even without con-

sidering constraint changes. In this case, thetree boundarybased method faces the same

problem.

Violates: Consider the case that an anti-monotone and a convertible anti-monotone

constraint are relaxed at the same time. When an anti-monotone constraint is relaxed,

item order is needed to changed to construct the tree boundary. Because of the order

change, the convertible anti-monotone constraint is not convertible any longer. There-

fore, the convertible property will be violated if the tree boundaryapproachis applied.

Note that the above case (–) is different from this case as in this case the properties of

the constraints can be utilized in mining if old mining results are not employed to speed

up new mining.

For the cells containing “\ ” in Table 4.1, e.g., -\ M1, it means that the combined

changes require the method on the left of “\” in some cases and on the right of “\” in

other cases.

Finally, when more than two constraints are changed at the same time, they can be

handled by combining the methods for their respective changes, taking into account the

exceptional cases.

4.6 Summary

Practical data mining is often a highly interactive and iterative process. Users change

constraints and run the mining algorithm many times before they are satisfied with the

final results. Using the minimum support constraint as an example, this chapter first de-

scribes the concept oftree boundaryto summarize and reorganize the previous mining

results. It then presents an effective and efficient framework for re-mining under the re-

duced minimum support. Experimental results demonstrate that the proposed technique
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is highly effective. Finally, this chapter also shows that when any other individual con-

straint is changed, the new set of frequent patterns can also be mined efficiently using

the proposed technique. When multiple constraints are changed at the same time, the

tree boundarytechnique usually can provide an effective solution.

The proposed technique in this chapter assumes that a user utilizes the previous min-

ing results to speed-up the current round of results. With the assumption, it is usually the

case that the constraints are not changed significantly at one time. However, in the multi-

user environment, mining results from other users can be recycled. In such a case, the

constraints of two mining process may differ significantly and the proposed technique in

this chapter may not work well. Moreover, the proposed method of this Chapter relies on

the intermediate results, which may not always be available. Considering the problem,

the next chapter will propose a different solution.



Chapter 5

Recycle and Reuse Frequent Patterns

In this chapter, a novel solution to recycle frequent patterns to speed up subsequent

frequent pattern mining will be described. Unlike the technique in last chapter, the

solution to be proposed does not need the intermediate results from previous mining

process.

5.1 Introduction

The proposed recycling scheme comprises two phases. In the first phase, the frequent

patterns from an early iteration of mining are used to compress the database. In the

second phase, the compressed database is mined. The compression here aims to speed

up subsequent mining by utilizing the knowledge encapsulated in previous frequent pat-

terns, rather than to save space although it does. Two compression strategies are de-

signed. While the first attempts to minimize cost, the second minimizes storage space.

The strategy of minimizing cost is novel in that a function is designed to estimate the

potential saving of using a pattern to do the compression for subsequent mining. The

strategy of minimizing storage space is relatively straightforward. This chapter also

presents a naive mining algorithm that operates on the compressed database using the

projected database technique. It will be shown how the naive algorithm can be combined

with algorithms that use the projected database as the underlying framework easily. In

this thesis, the H-Mine [72], FP-tree [43] and Tree Projection [2] are adapted to mine

81
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compressed databases.

Extensive experiments are conducted to study the performance of the proposed recy-

cling technique. The experimental results show that the proposed recycling algorithms

outperform their non-recycling counterparts by an order of magnitude. The experimen-

tal study also shows that the compression strategy that minimizes cost is more effective

than the compression strategy which minimizes storage space. Another interesting find-

ing is that the saving of recycling algorithms over non-recycling counterparts is much

greater than the time that is used to mine the set of frequent patterns for recycling.

The rest of this chapter is organized as follows. In Section 5.2, the problem of recy-

cling patterns is described. Section 5.3 presents the compression techniques and how to

apply the projected database techniques to mine the compressed database. Section 5.4

shows how existing frequent mining algorithms can be adapted to mine a compressed

database. Section 5.5 presents performance studies. Section 5.6 gives some discussion

and concludes this chapter.

5.2 Problem statement

As discussed before, a typical data mining application is an iterative process. A user

often runs a mining algorithm many times, each with more refined constraints. Such an

iterative process provides the opportunity to recycle frequent patterns obtained in early

iterations. Moreover, when there are many users in a data mining system, the frequent

patterns discovered by one user also provide opportunity for the others to recycle.

Recycling frequent patterns: Given a databaseDB and a set of constraintsC, the

problem ofrecycling frequent patternsis to find the complete set of frequent patterns

with the help of the set of frequent patterns, denoted asFP , discovered at a set of

constraintsCold.

Compared withCold, the set of constraintsC might be tightened (e.g., theminimum
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supportis increased), or relaxed (e.g., theminimum supportis decreased). When con-

straints are tightened fromCold, the new set of frequent pattern can be filtered from the

old set easily.

The challenge comes when constraints are relaxed. The new set of frequent patterns

cannot be obtained from the old ones. The main approach to recycling previous patterns

is to carefully select a set of frequent patterns from an early iteration and compress

the data to be mined using these patterns. The selection criteria take into account the

estimated saving that could occur when the database is compressed with a particular

pattern. A series of algorithms using projected database as the underlying framework

can be adapted to mine the compressed database.

It is noted that many frequent pattern discovery algorithms have been developed

[7, 12, 43, 46, 72, 101] and it is not the intention of this chapter to develop yet another

efficient algorithm for finding frequent patterns.Instead, the aim of this chapter is to

show that the concept of recycling patterns is useful and practical in an interactive data

mining environment.More specifically, it is hoped to illustrate two points: (1) Frequent

patterns can be used to estimate the cost for visiting some portion of the search space that

have been visited before. (2) It is possible to use such estimation to develop a mining

plan such that the cost of a new round of mining is reduced.

Note that the problem statement can be extended by two cases: (1) The constraintsC

andCold are the same while a set ofFP may be discovered on a database that contains

more or fewer tuples thanDB. This is essentially the incremental update problem. (2)

Both constraints and database are changed. It should be pointed out that the proposed

technique can be applied to these two cases.

5.3 Recycling frequent patterns through compression

This section will present the proposed strategy to recycle frequent patterns by first look-

ing at how compression can optimize subsequent mining. Then this section will present
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two compression strategies, and a naive algorithm to mine the compressed database.

The minimum supportconstraint relaxation is used as an example to present the

proposed technique of recycling frequent patterns. Letξold be theminimum support

corresponding to the set of frequent patternsFP , and ξnew be the currentminimum

support(relaxed fromξold). Recycling with other constraint changes can be similarly

addressed. The proposed technique uses projected database concept as the underlying

mining framework. Algorithms based on projected database concept include Tree Pro-

jection, FP-tree, H-Mine and their variations [46, 73].

5.3.1 Recycling frequent patterns via compression

This subsection will illustrate how compression can be used to speed up the mining of

frequent patterns with an example. The following three definitions will be used in the

example.

Definition 5.3.1. Frequent List

Given a databaseDB, a frequent listis a list in which frequent items in the database are

ordered in support ascending order. Frequent list is denoted asF-list. 2

For example, withξnew = 2, theF-list of the databaseDB in Table 5.1 is< d : 2, f :

3, g : 3, a : 3, e : 4, c : 4 >, where the number after ”:” indicates the support of the item.

Definition 5.3.2. Projected Database

Consider a databaseDB and its F-list. Leti be a frequent item inDB. The i-projected

database is the subset of tuples inDB containingi, where all the occurrences of infre-

quent items, itemi and items beforei (i.e., lower support values) in the F-list are omitted.

The i-projected database is denoted asPROJi 2

For instance, thea-projected database in Table 5.1 is< 100 : ec, 400 : ec, 500 : e >

where ”:” separates the tuple ID and tuple.
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Definition 5.3.3. Candidate Extension

Consider a (projected) databaseDB and itsF-list. Let i be an item inF-list. The

candidate extensions ofi (or the corresponding pattern ofi) in DB are defined to be the

items followingi in the F-list. Candidate extensions ofi are denoted asCi 2

Example 5.3.1.For the database in Table 5.1, the set of frequent patterns underξold = 3 is

FP = {f : 3, fg : 3, fgc : 3, g : 3, gc : 3, a : 3, ae : 3, e : 4, ec : 3, c; 4}. Table 5.2 is the

corresponding compressed database using the setFP (It will be explained shortly how to

get the compressed database). The outlying items are the remaining items in each tuple

after compression.

With ξnew = 2, the fourth column in Table 5.2 is obtained by ranking the left items

according toF-list after removing the infrequent items (not inF-list) in the third column

of Table 5.2. It is observed that compression can help to save computation in two ways.

First, computation can be saved when counting the support of a pattern. When min-

ing frequent patterns extended from itemf (it is in groupfgc), there is no need to scan

the items in the groupfgc (in the uncompressed database, they have to be scanned tuple

by tuple). Instead the group count (here it is 3) can be utilized to compute the fre-

quent items inf-projected database. When mining frequent patterns extended fromd (it

does not belong to any group), groupfgc is associated with a counter when scanning

d-projected database, and the counter value (here it is 2) is then added to the counter

of each item infgc. In this way, it requires less computation to mine the compressed

database than the uncompressed one. The saving is significant in practice where each

group contains a large number of tuples. Similarly, it requires less computation to con-

structF-list by scanning Table 5.2 (the compressed database) instead of Table 5.1 (the

uncompressed database).

Second, computation can be saved when constructing a projected database. Consider

the construction ofg-projected database. It can be known all tuples of groupfgc be-

longing to theg-projected database by checkingfgc once. Again, if we were to operate
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ID Items

100 a,c,d,e, f,g
200 b,c,d,f,g
300 c,e,f,g
400 a,c,e,i
500 a,e,h

Table 5.1: The example databaseDB.

Group ID Outlying items (Ordered) Frequent
Outlying Items

fgc 100 a,d,e d,a,e
200 b,d d
300 e e

ae 400 c,i c
500 h

Table 5.2: The compressed databaseCDB.

on the uncompressed database, every tuple has to be scanned in Table 5.1. For groupae,

it needs to scanae only once and then scans the outlying items in the group.2

In summary, the new round of mining can benefit from the compression using pat-

terns from the previous round of mining as follows. Computation can be saved when

counting supports for candidate extensions of a patternP in a (projected) database. As

shown in the above example, not only items in some groups but also items not in any

group can benefit when we compute the supports of candidate extensions. Computa-

tion can also be saved when constructing the projected database. Constructing projected

databases and computing supports take the main computation in frequent pattern min-

ing algorithms that employ projected database as the underlying framework. The saving

from the two aspects can greatly improve mining efficiency as we shall see later in our

experimental study.
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5.3.2 Compression strategies

We now have some intuition on how compression can help in mining frequent patterns.

The remaining problem is to determine good strategies to compress a database given a set

of frequent patternsFP . The basic framework for the compression works as follows (see

Figure 5.1). Step 1 determines the utility of each frequent pattern. The utility functions

used will be discussed shortly. In step 2, the patterns are ordered in descending order

of their utility values. For each tuple in the database, Steps 3-5 then select a pattern to

compress it. Note that a tuple is left as it is when it has no matching pattern. The pattern

picked is the one with the highest utility.

To estimate the potential savings for subsequent mining if a pattern is used for com-

pression, two functions are designed to compute the utility of each frequent patternX

as follows:

Strategy 1: Minimize Cost Principle (MCP)

The utility function isU(X) = (2|X| − 1) ∗ X.C, whereX.C is the number of tuples

that contain patternX.

MCP assumes that the potential savings of patternX for subsequent mining can be

estimated by the cost of visiting the search space to generate the patternX at ξold. The

assumption is reasonable since the larger the cost used in the old mining to discover

X, the larger the potential savings can be derived from usingX for the compression.

The remaining problem is how to estimate the amount of processing that must be done

in order to discoverX at ξold. Since all subsets ofX are also frequent patterns in this

case and their support are at least X.C, the amount of processing to discoverX can be

estimated to be (2|X| − 1) ∗ X.C. This represents the potential savings for subsequent

mining if a tuple is covered with the pattern.
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Strategy 2: Maximal Length Principle (MLP)

The utility function isU(X) = |X| ∗ |DB|+ X.C.

MLP aims to cover each tuple with the longest pattern. Among the patterns with the

same maximal length, MLP will choose the pattern with the highest support to do com-

pression. The first part of the utility function, i.e., the product of the pattern length and its

frequency of occurrences, ensures that longer patterns always have larger utility values

than shorter ones. The second part, i.e., the frequency of occurrences ofX in database,

ensures that among patterns with the same length, patterns with larger frequency have

larger utility values.

The two utility functions essentially give rise to two different compression strategies

that will be studied later.

Example 5.3.2.This example illustrates how the compressed database in Table 5.2 is

obtained from Table 5.1 using the MCP strategy. The method of using the MCP strategy

computes the utility of patterns inFP (e.g. the utility value offgc : 3 is (23−1)∗3 = 21)

and sorts them in descending utility value. It is obtained of{fgc : 21, fg : 9, gc : 9, ae :

9, ec : 9, e : 4, c; 4, f : 3, g : 3, a : 3} (the number after ”:” is the utility value). First, it

is found that tuple 100 contains patternfgc. Thusfgc is used to compress it. The same

is done for tuples 200 and 300. Tuple 400 does not containfgc, fg, andgc, butae. ae

is used to compress it. The same is done for tuple 500. Finally, the results obtained is

shown in Table 5.2.2

5.3.3 Naive algorithm for mining compressed databases

This subsection will show how to mine the compressed database using the projected

databases in a naive way. Let us illustrate the naive algorithm with an example first.

Example 5.3.3.Figure 5.2 shows the mining process on the compressed databaseCDB

in Table 5.2 withξnew = 2.
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Compression Algorithm
Procedure CompressDB(Database:DB, set of frequent patterns:FP )

(1) Compute the utility values of all patterns inFP ;
(2) Sort patterns inFP according to the descending order of utility values;
(3) for each tuplet in DB do
(4) for eachpatternX in FP do
(5) if tuplet contains patternX then UseX to compresst, break;

Figure 5.1: The compression algorithm

Figure 5.2: Mining from compressed DB

TheCDB is first scanned to find frequent items to construct the F-list. Following

the order of F-list, the complete search space of frequent patterns is mined as follows

(the mining process can be regarded as a depth-first traversal of all nodes of Figure 5.2):

(1) Find those containing itemd. The candidate extensions ford are the items afterd in

F-list, i.e. f, g, a, e, c. The naive approach first constructsd-projected database, which is

fgc(2){ae}, where 2 registers the frequency of the groupfgc in d-projected database.

Each candidate extension is associated with a counter and each group is also associ-

ated with a counter. In the process of constructing projected database, these counters

are filled. The naive approach then adds the values of group counters to the corre-

sponding counters for candidate extensions. It is obtained of the set of frequent items

{f : 2, g : 2, c : 2} in d-projected database (the count ofa is 1). Because all occurrences

of f, g, c belong to groupfgc, the frequent patterns can be generated by enumerating

any combination off, g, c, i.e. {dc : 2, df : 2, dg : 2, dcf : 2, dcg : 2, dfg : 2, dcfg : 2}.
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(2) Find those containing itemf but notd. The naive approach first constructs thef-

projected database. The support for candidate extensions off is counted as in (1). The set

of frequent items inf -projected database is{g : 3, e : 2, c : 3}. Then the naive approach

constructsfg-projected database. The set of frequent items infg-projected database is

{e : 2, c : 3}. The naive approach needs to construct thefge-projected database. In this

step, the naive approach can get the set of frequent patterns{fg : 3, fge : 2, fgec :

2, fgc : 3, fe : 2, fec : 2, fc : 3}.
(3) Find those containingg, but notf andd. The mining process is similar to (2) and is

ignored here.

(4) Find those containinga but notg, f andd. The naive approach constructs thea-

projected database and gets the set of frequent items{e : 3, c : 2}. Thenae-projected

database is constructed. Finally, the frequent patterns in the step are{ae : 3, aec : 2, ac :

2}.
(5) Finally, the other frequent patterns are computed in a similar way and are ignored

here. These include those patterns containingebut noa, g, f andd as well as those only

containingc. 2

Lemma 5.3.1. (Single group pattern generation)

Suppose that all occurrences of frequent items in a projected database is in a single

group. The complete set of frequent patterns can be generated by the enumerations of

all the combinations of frequent items with the count of the group as support.2

The above example assumes that the compressed database fit in memory. Although

the compressed database is smaller than the original database, it is possible that it may

still be too large for the available memory. In this case, the compressed database can

be projected onto its set of frequent items. There are two methods for doing so. One is

the partition-based projection as used in [72]. This approach projects each tuple only to

its first projected database (according to item ordering). After processing the first pro-

jected database, it needs to project the first projected database to subsequent projected
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Algorithm Recycling
Input: Compressed databaseCDB, the support
thresholdξnew, and available memoryM .
Output: The complete set of frequent patterns.
Method: Call Procedure RP-Mine(CDB, null)

Procedure RP-Mine(compressed DB:D, pattern:α)
(1) ScanD to find frequent itemsIf and estimate expected memory usageEM(D);
(2) if (EM(D) > M ) then
(3) ProjectD to items in setIf ;
(4) for eachprojected databaseDi (i ∈ If ) do
(5) Generate patternβ = i ∪ α with supp =i.count
(6) Call RP-Mine(Di, β);
(7) elseCount frequency of items inD & constructF -list
(8) Call RP-InMemory(D, F -list, i ∪ α);

Procedure RP-InMemory(Projected DB:PROJ , List :list, Pattern:α)
(1) if all occurrences of items inlist are in a single groupG in PROJ then
(2) for eachcombination (denoted asβ) of the items in thelist do

Generate patternβ ∪ α with supp = the count of groupG
(3) else for eachitemai in list do
(4) Generate patternβ = ai ∪ α with supp =ai.count;
(5) Constructai-projected databasePROJai and find the list of frequent itemsLFai in PROJai

(6) if LFai 6= null
(7) then Call RP-InMemory(PROJai , LFai , β);

Figure 5.3: Algorithm to recycle patterns

databases. The method is not efficient although it saves disk space. Another approach,

which this chapter adopted, is to use parallel projection to speed up the computation.

This approach projects each tuple into all its projected databases. Based on the above

analysis, Figure 5.3 gives the naive algorithm of recycling patterns. In line 1 of pro-

cedure RP-Mine(), the estimation of memory usage relies on the representation of the

projected database.

5.4 Mining algorithms on compressed database

Three representative frequent pattern mining algorithms (using projected database as the

underlying framework) are adapted to mine a compressed database. This section mainly
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Figure 5.4: The Representation of Table 2
with RP-Struct Figure 5.5: RP-Header tablesHf andHfg

Figure 5.6: RP-Header tableHa

introduces how to adapt H-Mine since it is the most complicated to be adapted. A short

introduction about adapting FP-tree and Tree Projection algorithms is also given.

The data structure of H-Mine is used to represent the outlying frequent items (un-

compressed part). The integration of such a data structure into recycling algorithm

is non-trivial. This subsection first uses an example to illustrate how a compressed

database can be mined by adapting H-Mine. Then the algorithm for frequent pattern

discovery is given.

Example 5.4.1.Consider the compressed databaseCDB as shown in Table 2 andξnew =

2. CDB can be organized as shown in Figure 5.4. The RP-Header tableH contains the



Chapter 5 Recycle and Reuse Frequent Patterns 93

same number of items asF-list and follows the order ofF-list. One compressed group

fgc contains three tuples, and the other groupaecontains two tuples (one tuple isnull

after compression).2

The representation of the compressed database as in Figure 5.4 is calledRP-Struct.

It has three components:

1. Group Head: Each entry in group head consists of three fields:group pattern, count,

andtail, wheregroup patternregisters the items contained in the group,countregisters

the number of tuples in the group, andtail points to the tuples of the group.

2. Group Tail: It records the frequent items in the uncompressed part of each tuple. The

data structure of H-Mine [72] is adapted forgroup tails. Each frequent item is stored

in an entry that contains two fields:item-nameanditem-link, whereitem-nameregisters

the item the entry represents anditem-linkis used to link the sameitem-namein different

group tails together.

3. RP-Header Table:Each entry in RP-Header table represents a pattern and the entries

in RP-Header table follow the same order as F-list. Each entry consists of four fields:

item-name, count, item-link, andgroup-link, whereitem-nameregisters the last item of

the pattern represented by the entry,countmeans the number of tuples containing the

pattern represented by the entry,item-link points to the tuple whose first item isitem-

name, andgroup-linkpoints to the groups containing item-name. By followingitem-link,

andgroup-link, the projected database for the pattern represented by each entry can be

obtained.

One main originality of H-Mine is to construct the projected database using a set of

pointers rather than physically projecting the database. The compressed database makes

it non-trivial to do so since both group heads and tails need to be considered. Figure

5.4 shows how to fill theitem-link andgroup-link of RP-Header table to construct the

projected database. The algorithm is described in Figure 5.7.

As in Example 5.3.3,d-projected database is mined first. In filling the RP-Header
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Algorithm FillTable

Method: Fill-RPHeader(null, H, F -list, null);
Procedure Fill-RPHeader(RP-Header table:H1, PR-Header table:H2, Item List: LI, Item:ai)
(1) for eachgroupG linked bygroup-linkof entryai of H1

// if H1 = null, for each group used for compression
(2) if G ∩ LI 6= ∅
(3) Let i be the first item ofG ∩ LI;
(4) Link groupG to thegroup-linkof entryi of H2;
(5) for eachgroup tailt of G
(6) if there exists an itemj, j ∈ LI ∩ t, j orders beforei in the order ofLI then
// if there are several such j, we choose the first. When i = null, i is ordered after all items in LI.
(7) Link entryj in group tailt with entryj of H2

Figure 5.7: Algorithm to fill the RP-Header table

table,d-projected database can be obtained while assigning the group heads and group

tails that are not ind-projected database to the other entries in RP-Header table. For

group headG (lines 2-4), it is assigned to the entry corresponding to the first item of

G ∩ F -list. For instance, groupfgc is assigned to the entryf of RP-Header tableH

becausef is the first item offgc ∩ F -list. For group tail (lines 5-7), two examples are

used to illustrate the algorithmFillTable: (1)Group tail 100 in groupfgc is linked by

the item-linkof entryd of H. (2) Group tail 300 is not linked with entrye of H. Note

thatgroup tails100 and 300 are handled differently. This is because in 100 itemd ranks

beforef (the first item of groupfgc) in F -list andd-projected database is mined before

f -projected database. However, in 300e ranks afterf ande-projected database is mined

afterf -projected database.

Example 5.4.2.Let us examine the mining process for Example 5.3.3 based on the RP-

Struct constructed in Example 5.4.1 as follows:

(1) Find those containing itemd. There is nogroup headthat containsd. Therefore,

by traversing theitem-link of d, the set of frequent items{f : 2, g : 2, c : 2} in d-

projected database can be found. Because all occurrences off, g, c belong to groupfgc,

the frequent patterns can be generated by enumerating any combination off, g, c.

After discovering frequent patterns in the subset, the recycling algorithm based on
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RP-Struct traverses the item-link ofd again to assign them to the items afterd, i.e.

f, g, a, e (there is no need to fill the item-link and group-link of itemc because it can

not be further extended). Ingroup tail 100, the item afterd is a anda ranks after item

f, the first item of groupfgc. Group tail 100 is not linked with the entry of itema of

RP-Header tableH sincef-projected database is mined beforea-projected database. For

the similar reason,group tail300 will not be linked with any entry ofH, too.

(2) Find those containing itemf but notd. The item-link of item f is null. The set of

frequent items inf -projected database is{g : 3, e : 2, c : 3} by checking the groupfgc.

The RP-Header tableHf is constructed forf as shown in Figure 5.5. The groupfgc

contains the first itemg of Hf . Therefore, the groupfgc is linked with group-link of

entryg of Hf . Since all items ingroup tailsare after itemg according to the order of

Hf , there is no need to scan the group tails offgc to build item-link for other items in

Hf .

In order to mine thefg-projected compressed database, the RP-Header tableHfg is

constructed as shown in Figure 5.5. The RP-Header table is constructed by traversing

the item-linkandgroup-linkof entryg of Hf . For groupfgc, its first item contained in

Hfg is c. Since itsgroup tails 100 and 300 contain iteme ande is beforec in Hfg, they

are linked with entrye of Hfg. Entryc is not linked with groupfgc since pattern (fgc)

represented byc can not be extended. Thegroup tail 200 does not contain any items in

Hfg. See Example 5.3.3 for the set of frequent patterns obtained. At the end of the step,

the groupfgc is assigned to itemg of H.

(3) Find those containingg, but notf andd. The mining process is similar to (2) and is

ignored here.

(4) Find those containinga but notg, f andd. Figure 5.6 shows the RP-Header table

Ha. The set of frequent patterns (see Example 5.3.3) can be obtained by traversing the

item-link and group-link of entrye.

(5) The step is ignored here.2
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Procedure Recycle-HM(PR-Struct:Struct, RP-Header table :H, pattern:α)
(1) if RP-Header tableH only contains a single groupG then
(2) for eachcombination of (denoted asβ) the items in groupG do

Generate patternβ ∪ α with supp = the count of groupG;
(4) else for eachitemai in H do
(5) Generate patternβ = ai ∪ α with supp =ai.count;
(6) Find List of frequent itemsLFai in ai-projected database;
(7) Construct RP-Header tableHβ for patternβ;
(8) Call Fill-RPHeader(H, Hβ, LFai , ai);
(9) if Hβ 6= null
(10) then Call Recycle-HM(Struct, Hβ, β);
(11) LetAai be the list of items ordered afterai in H;
(12) Call Fill-RPHeader(H, H, Aai , ai);

Figure 5.8: Recycling frequent patterns by adapting H-Mine

Based on the above analysis, Figure 5.8 gives the procedure Recycle-HM that recy-

cles patterns by adapting H-Mine. The procedure Recycle-HM is used to replace the

procedure RP-InMemory in algorithm Recycling shown in Figure 5.3. Theai-projected

database in line 6 of procedure Recycle-HM is obtained by following the item-link and

group-link of entryai of H. The Procedure Fill-RPHeader() called in lines 8 and 12

is given in Figure 5.8. In line 8, the item-link and group-link ofai are assigned to the

RP-Header table in next level while in line 12 they are assigned to the entries afterai in

the same RP-Header table.

In order to adapt FP-tree algorithm [43] to mine compressed databases, the data

structure of frequent pattern tree (or FP-tree in short), which is a prefix tree, is used to

represent the outlying frequent items (uncompressed part). In the process of recursively

constructing projected databases that are represented with FP-tree, each (compressed)

group head is treated as a special item, which is in the upper of each prefix tree branch.

The frequency can be computed from both the compressed groups and the outlying items

as it is done in adapting H-Mine algorithm in last subsection.

In Tree Projection algorithm [2], transactions are projected on each node of the tree

from the root on. A matrix is maintained to count the support on the reduced set of
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transactions after projection. Tree Projection algorithm can mine frequent patterns in

both depth-first and breath-first ways. We adapt the depth-first Tree Projection for re-

cycling algorithm. Since the Tree projection does not represent projected databases as

algorithms FP-tree and H-Mine do, the implementation is relatively straightforward and

can be easily adapted from the naive algorithm in Figure 5.3.

5.5 Performance studies

This section will look at the performance of the approaches to recycling and reusing fre-

quent patterns by comparing recycling algorithms with their corresponding non-recycling

algorithms. As it is difficult to simulate the actual constrained mining environment, a

simplified method is adopted to conduct our experiments. An initial mining with a sup-

port thresholdξold is performed to generate a set of patterns for recycling and then lower

the support threshold toξnew when trying to recycle the patterns.

An extensive performance study has been performed on a wide range of data sets.

A summary of the results is reported here. All the experiments are performed on a

1.4GHz Pentium PC with 512M main memory, running Windows XP1. All programs

are developed using Microsoft VC++.

Weather2 andForest3 are two sparse datasets used to report our results.Connect-4

4 andPumsb5 are dense data sets that we have used. The columns 2-4 of Table 5.3

(a) list the number of tuples, the average tuple length and the total number of items in

each data set. Because of the different properties of these datasets, it is not necessary

and feasible to choose the same initial support thresholdξold for all datasets. Instead,

the initial supportξold for each dataset is chose to ensure that there are some frequent

patterns to recycle.

1The experiments were performed on a different platform with that used in previous chapter because
the platform was updated when study in this chapter was done

2http://cdiac.esd.ornl.gov/cdiac/ndps/ndp026b.html
3http://www.ics.uci.edu/ mlearn/MLRepository.html
4http://www.ics.uci.edu/ mlearn/MLRepository.html
5http://www.almaden.ibm.com/cs/quest/demos.html
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Dataset #Tuples Avg. Len. # Items ξold # pattern maximal
length

Weather 1,015,367 15 7939 5% 1227 9
Forest 581,012 13 15,970 1% 523 4

Connect-4 67,557 43 130 95% 4411 10
Pumsb 49,046 74 7117 90% 2607 8

(a) Properties

Dataset Run Time(I/O) Run Time(Pipeline) Compression
Sec. Sec. Ratio

MCP MLP MCP MLP MCP MLP
Weather 9.61 10.68 4.34 5.31 0.723 0.675
Forest 2.67 4.58 0.45 2.25 0.858 0.785

Connect-4 0.32 0.32 0.06 0.06 0.773 0.773
Pumsb 0.50 0.51 0.10 0.11 0.894 0.894

(b) Compression statistic

Table 5.3: The properties of datasets and compression statistic

The argument for this is that a lack of frequent patterns for recycling will mean that

little or no resources are used for the previous round of mining. It thus makes no sense

to try to recycle patterns when no resources are used in the first place. This argument,

based on the law of conservation, is also consistent with the observation that a lower

initial support will usually give better performance of recycling. After all, it is known

that mining frequent patterns with low minimum support will typically require more

resources in term of both CPU and I/Os. Since more resources are used, it is expected

to bring more benefits when reusing the output of the mining.

5.5.1 Analysis of compression strategies

This subsection analyzes compression time and compression ratio of the two proposed

compression strategies,MCP andMLP .

Table 5.3 (b) gives some statistic on the patterns that are discovered with a minimum

supportξold. We compress each database using these patterns. The last two columns

of Table 5.3 (b) shows the compression ratio using the two strategies. The compression

ratioR is computed asSc/So, whereSc is the size of compressed database andSo is the
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size of original database. In term of the compression ratio,MLP ≥ MCP .

It would be stressed again that the compression here provides a way to speed up

subsequent mining by utilizing previous frequent patterns, rather than to save space

although it does. It can seen that the compression ratio is not very large.

Table 5.3(b) also shows the running time for compressing the dataset in seconds.

The column“run time (I/O)” in Table 5.3(b) includes the time used to read, write and

compress data sets. The column“run time (pipeline)” deducts the I/O time from the

columnrun time(I/O). We list such a column since the compression step can in fact be

directly integrated into the mining algorithm when it is projecting the databases which

means that the I/O time will be incurred anyway.

As shown in Table 5.3(b), the compression time is small compared with the mining

time as shown in next subsection. This shows that the overhead of compression is not

significant. The run time of the two strategies follows the order:MLP ≥ MCP . The

order is consistent with the compression ratio since the better ratio usually means more

computation required for compression.

5.5.2 Mining in main memory

In this subsection, it is assumed that both the compressed databases and original databases

can fit into the memory. We will evaluate the effectiveness of recycling patterns and the

two compression strategies. HM-MCP and HM-MLP are used to represent the two

recycling pattern algorithms adapted from H-Mine. HM-MCP and HM-MLP run on

compressed database generated with the MCP and MLP strategies respectively. Simi-

larly, FP-MCP and FP-MLP represent two algorithms adapted from FP-tree; TP-MCP

and TP-MLP represent two algorithms adapted from Tree Projection.

The reported CPU time does not include the time used to output frequent patterns

since it is the same for all algorithms. In any case, the mining cost dominates perfor-

mance so that including them does not affect the relative performance of the various
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schemes.

The effectiveness of recycling patterns:Figures 5.9, 5.12, 5.15 and 5.18 compare

the performance of recycling algorithm HM-MCP with H-Mine by varying the new

support thresholdξnew and plotting the CPU running time for each support threshold.

For example, in Figure 5.9, HM-MCP mines the compressed datasetweatherwhich

is generated using the set of frequent patterns underξold = 5%. Readers can refer to

Table 5.3 to get the related information for other figures. Note that the vertical axes of

Figures 5.15 and 5.18 use logarithmic scale for clarity. These figures clearly show that

HM-MCP are performing far better than H-Mine with respect to run time. In Figures

5.15 and 5.18, recycling algorithms are over two orders of magnitude faster than the

non-recycling version. It is also observed of similar relative performance between the

recycling algorithms and their non-recycling counterparts for FP-based techniques (see

Figures 5.10, 5.13, 5.16 and 5.19) and Tree Projection methods (see Figures 5.11, 5.14,

5.17 and 5.20, where the vertical axes of Figures 5.17 and 5.20 use logarithmic scale).

The experiment results clearly demonstrate the usefulness of recycling frequent patterns.

There are three interesting observations from our experiment results:

(1) Whenminimum supportis low, the savings of HM-MCP against H-Mine are

much more than the time used to generate the set of frequent patterns atξold.6 Consid-

ering that the compression time with pipeline in Table 5.3 is also small, this suggests

the possibility that a new mining task with low minimum support could be split into

two steps: (a) first run it with a high minimum support; (b) then compress the database

with the strategy MCP and mine the compressed database with the actual low minimum

support.

(2) None of H-Mine, FP-tree and Tree Projection algorithms came out as a winner on

all the datasets used. However, the proposed recycling algorithms can always improve

their performance.

6Although we do not show the time when mining with the support thresholdξold, readers can infer
that it will be less than the CPU time for the lowestξnew.
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Figure 5.9: Adapting H-Mine on WeatherFigure 5.10: Adapting FP-tree on Weather

Figure 5.11: Adapting Tree Proj. on
Weather

Figure 5.12: Adapting H-Mine on Forest

Figure 5.13: Adapting FP-tree on ForestFigure 5.14: Adapting Tree Proj. on For-
est

(3) When theminimum supportis low, recycling patterns using MCP performs bet-

ter. This is exciting for incremental mining of frequent patterns. Existing incremental

mining techniques do not work well when the data set or constraints change dramatically

(e.g. sharp decrease in minimum support). HM-MCP can overcome the problem when
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Figure 5.15: Adapting H-Mine on
Connect-4

Figure 5.16: Adapting FP-tree on
Connect-4

Figure 5.17: Adapting Tree Proj. on
Connect-4

Figure 5.18: Adapting H-Mine on Pumsb

Figure 5.19: Adapting FP-tree on PumsbFigure 5.20: Adapting Tree Proj. on
Pumsb

it is applied to incremental mining.

Comparison of two compression strategies:Figures 5.9–5.20 compare the use-

fulness of the two compression strategies in recycling patterns. As shown, in all cases,
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Figure 5.21: Weather with Memory Limi-
tation

Figure 5.22: Forest with Memory Limita-
tion

Figure 5.23: Connect-4 with Memory
Limitation

Figure 5.24: Pumsb with Memory Limita-
tion

the compression strategy MCP achieves at least the same or better performance than

the other strategy MLP. As shown in Section 5.5.1, MLP usually achieves better com-

pression ratio than MCP. Therefore, it can be concluded that better compression does

not necessary means better performance. The experiments also prove that minimizing

mining cost (MCP) is more effective than minimizing storage space (MLP)in recycling

frequent patterns. In fact, the compression ratios are not very large for both strategies as

in Table 5.3. As given in section 5.3.1, the reason for the improvement of recycling al-

gorithms against non-recycling schemes is that recycling algorithms can achieve savings

in counting and projecting by means of compression.

In Figure 5.12, HM-MLP that recycles patterns based on MLP performs even worse

than H-Mine. This implies that simply maximizing compression can even worsen the
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situation. It is also observed that the recycling mining algorithms based on the two

compression strategies nearly achieve the same performance on dense data sets. This is

because the two strategies nearly do the same compression as shown in Table 5.3.

5.5.3 Mining with memory limitation

This subsection will consider the case that the compressed datasets (and hence the orig-

inal datasets) cannot be held in the main memory. As discussed in [72], the mining

algorithms HM-MLP and HM-MCP can compute the size of memory usage in the same

manner as the H-Mine algorithm because they adopt similar data structure. The memory

usage of FP-tree and Tree Projection algorithms can not be effectively estimated, and it

is difficult to enforce memory limitation using FP-tree and Tree Projection algorithms.

As a result, this subsection does not compare FP-tree and Tree Projection with their

recycling algorithms.

Memory limitation is enforced to 4 and 8 megabytes. Such limitations are used be-

cause they can imitate the memory limitation situations considering the size of datasets

although it is realized such limitations are small compared to the available memory in

current PC. The compressed databases are generated using the same set of recycled

patterns as that in Section 5.5.1. Figures 5.21–5.24 show that HM-MCP outperforms

H-Mine. Figures 5.23 and 5.24 use logarithmic scale for y-axes.

When comparing Figure 5.15 with Figure 5.23, readers may find that enforcing

memory restriction on dense data setConnect-4even improves performance of both H-

Mine and HP-MCP in some cases . Memory restriction requires that the (compressed)

database be projected in the secondary storage until a level where the projected database

can fit into memory. The projected (compressed) databases require less time in count-

ing and the savings may be larger than the time used to read and write the projected

(compressed) database.
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Finally, all experiments show that in nearly all cases the saving of recycling algo-

rithms over non-recycling counterparts is much greater than the time that is used to

generate the set of frequent patterns for recycling.

In summary, the experimental results and performance analysis support the claim

that recycling patterns is useful. Moreover, the experiments showed that the strategy of

minimizing cost (MCP) is usually more effective than MLP for recycling patterns.

5.6 Discussion and summary

Obviously, the proposed technique in this chapter can be applied to incremental prob-

lems. Compared with existing incremental techniques [22, 69, 88], the proposed tech-

nique overcomes the following disadvantages of existing incremental techniques: (1)

existing incremental techniques need to store the negative border or similar information

from previous computation, which can take large amount of space; (2) they are not effec-

tive when the change of database or constraints are significant; (3) existing techniques

become awkward when the size of data set reduces rather than increases. However,

existing incremental mining techniques are not practical for recycling with constraint

changes as discussed in Section 2.2.

Next, this section will give a qualitative comparison of the recycling approach in last

chapter and the approach described in this chapter.

First, the method of handling of constraint changes in last chapter is dependent on

the properties of constraints and is not applicable to certain constraints, for example

convertible andhard constraints. The proposed technique in this chapter gives a non-

intrusive method of reusing patterns in previous computation no matter what type of

constraints that are being used.

Second, the approach of this chapter does not make any assumption that old mining

process realizes and makes preparation for subsequent mining. Thus, it is more appli-

cable to recycling in a multi-user environment. The method of last chapter relies on
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intermediate results and the intermediate results can be too large to handle.

Third, the underlying reasons for saving of the two approaches are different. The

method of last chapter only mine the set of frequent patterns that satisfy the new con-

straints BUT NOT the old constraints. Therefore the saving mainly comes from the

frequency information to be recycled. It usually performs good in the case that the set of

frequent patterns with new constraints mainly comes from the previous mining results

when the changes of constrains are not significant. On the contrary, the improvement

may not be significant. This is shown in the experiments of last chapter. For the approach

described in this chapter, the saving is not directly from the frequency information com-

puted in previous process. The approach will mine the set of complete frequent patterns

that satisfy the new constraints (also satisfy the old constraints) no matter how much the

constraint are changed.

In a summary, this chapter shows how frequent patterns discovered in the early round

of mining (by the same user or different users) can be recycled to enhance subsequent

mining. This chapter describes a two phase strategy that first compresses the database

based on frequent patterns from an early round of mining and then mine the compressed

database. This chapter presents two compression strategies and three existing mining al-

gorithms are adapted to work on compressed databases. The experimental results show

that the proposed strategies are effective, and the proposed recycling algorithms outper-

form their non-recycling counterparts significantly. The results also show that a cost-

based compression strategy is preferred over a storage-based strategy.



Chapter 6

Mining Frequent Closed Patterns for
Microarray Datasets

This chapter will describe three algorithms adopting row enumeration strategy to mine

the microarray datasets with a large number of columns and only a few rows.

6.1 Introduction

6.1.1 Properties of microarray datasets

With recent advances in DNA chip-based technologies [81], we can now measure the

expression levels of thousands of genes in cell simultaneously, which results in a large

amount of high-dimensional data. These microarray datasets typically have a large num-

ber of columns but a small number of rows. For example, many gene expression datasets

may contain up to tens of thousands columns but only tens of hundreds rows.

6.1.2 Usefulness of frequent patterns in microarray datasets

In the biological analysis, the frequent patterns have the following potential applications:

1) To discover association rules. Association rules are suggested to be very promis-

ing in helping uncover gene networks [29]. Associations rules can describe the associa-

tions between the expression of one gene with the expression of a set of other genes. If

such discovered association rules indicate reasonable cause and effect relationship that

107
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can be proved by the prior biological knowledge or further investigation, one might eas-

ily infer some type of gene networks. Then similar to cluster analysis, one could infer

some function for a gene whose function is not known from those genes by means of

association rules. However, association rules might reveal more patterns than clustering

[31, 87], considering that a gene may belong to many rules while it is usually grouped

to one cluster (or a hierarchy of clusters in hierarchical clustering method).

Moreover, when there are two (or more) categories of samples in microarray datasets,

association rules can help to identify a subset of genes/proteins which can identify the

category that a sample belongs to.

2) To discover bi-clustering of gene expression [4] or help in performing subspace

clustering on these datasets [21]. The bi-clustering [21] is a bit similar to frequent pat-

terns and [105] applied frequent pattern mining algorithm to discover bi-clusters.

6.1.3 Feasibility analysis of algorithms

Such new high-dimensional biological datasets pose a great challenge for existing fre-

quent pattern discovery algorithms. While there are a large number of algorithms that

had been developed for frequent pattern discovery [2, 7, 43, 58, 72, 82, 102], their basic

approaches are all column enumeration in which combinations of columns are tested

systematically to search for frequent patterns. As a result, their running time increases

exponentially with increasing average length of the records. The high dimensional bioin-

formatics datasets with thousands of items render most of these algorithms impractical.

The same trend holds even for recent work on closed pattern mining [11, 70, 73, 101]

which aims to find non-redundant patterns from the data.

Most previous work on (closed) frequent pattern mining assumes that the average

number of columns in a dataset is much smaller than the number of rows. The length of

a frequent pattern is obviously limited by the row length. Ifi is the maximum length of a

row, the longest frequent pattern could have lengthi, and the number of possible frequent
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patterns will be2i based on the Apriori principle. Previous pattern mining methods

work well for datasets with small average row length (usuallyi < 100). However, for

the datasets taken from the bioinformatics domain (or other domains with similar data

characteristics),i can be in the range of tens of thousands. As a result, the column search

space is simply too large.

On the other hand, the number of rows in such datasets is typically on the order of

hundreds to a thousand. Ifm is the number of rows, the size of the row subset space is

2m. In the application domain (e.g., microarray datasets), the possible row set space is

much less than the possible item set space sincem ¿ i. Therefore, it seems reasonable

to devise the algorithm that does not search column set space, but rather search the

row set space. One challenge here is whether row enumeration method is able to mine

the same set of complete and sound frequent patterns as column enumeration method

does. So far, none of existing studies investigate the possibilities of discovering rules

in row enumeration space1. The other challenge is how to design algorithms for row

enumeration if it is feasible for rule mining.

This chapter will describe three algorithms that implement the row enumeration

strategy in different ways to mine frequent closed patterns. This first algorithm, called

CARPENTER 2, is inspired by algorithms [15]3 and [72]. The second algorithm

called RERII4 is inspired by algorithms that mine patterns from vertical layout data

[82, 101, 102]. The third algorithm called REPT5 is inspired by algorithms that are

based on FP-tree [43, 73]. Although the three row enumeration algorithms are inspired

by existing column enumeration methods, the three proposed algorithms are very dif-

ferent from the existing algorithms in that they adopt row enumeration which requires

1As discussed in Chapter 1, the row-wise concept in [34] is completely different from the row enu-
meration concept in this thesis

2CARPENTER stands for Closed Pattern Discovery by Transposing Tables that are Extremely Long;
the ”ar” in the name is gratuitous.

3BUC is developed to compute iceburg cube on relational data.
4Row Enumeration by Row ID Intersection
5Row Enumeration based on Prefix Tree
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i ri

1 b,d,e,f
2 a,c,e,f
3 a,c,d,e
4 a,b,c,d,e,g
5 a,b,c,d,e,f

Figure 6.1: Example Table

ij R(ij)
a 2,3,4,5
b 1,4,5
c 2,3,4,5
d 1,3,4,5
e 1,2,3,4,5
f 1,2,5
g 4

Figure 6.2: Transposed Table

ij R(ij)
e 3,4,5
f 5

Figure 6.3: 12-Projected
Transposed Table

different implementation and pruning methods. Several experiments are performed on

real-life microarray data to show that the new algorithms are much faster than the exist-

ing algorithms, including CLOSET [73], CLOSET+[92] and CHARM[101].

The remaining chapter is organized as follows: it first introduces some background

and preliminaries of the problem: mining frequent closed patterns from microarray

datasets. The three proposed algorithms will be explained in Sections 6.3, 6.4 and 6.5

respectively. To show the superiority of the proposed algorithms for mining microar-

ray datasets, experiments are conducted in Section 6.6 on real-life biological data. This

chapter will be concluded in Section 6.7.

6.2 Problem Definition and Preliminary

6.2.1 Problem definition

Let I={i1, i2, .., im} be a set of items. LetD be the dataset (or table) which consists of

a set of rowsR={r1, .., rn} with each rowri consisting of a set of items inI, i.e ri ⊆ I.

Figure 6.1 shows an example dataset in which the items are represented using alphabets

‘a’ to ‘g’. There are altogether 5 rows,r1,...,r5 in the table. The first rowr1 contains

the items ‘b’,‘d’, ‘e’ and ‘f’. To simplify notation, in the sequel, we will denote a set of

row numbers like{r2, r3, r4} as ”234”. Likewise, a set of items like{a, c, f} will also

be represented asacf .
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Definition 6.2.1. Item Support Set,R(I ′)

Given a set of itemsI ′ ⊂ I, we useR(I ′) ⊂ R to denote the largest set of rows that

containI ′. 2

Definition 6.2.2. Row Support Set,I(R′)

Given a set of rowsR′ ⊂ R, we useI(R′) ⊂ I to denote the largest set of items that are

common among the rows inR′. 2

Example 6.2.1.R(I ′) and I(R′)

Consider the table in Figure 6.1. LetI ′ be the item set{b, d, e}, thenR(I ′) = {r1, r4, r5}
since these are all the rows inR that containI ′. Also letR′ be the set of rows “14” (i.e.

{r1, r4}), thenI(R′)={b, d, e} since this is the longest pattern that occurs in bothr1 and

r4.

Definition 6.2.3. Support,|R(I ′)|/|D|
Given a set of itemsI ′, the fraction of the number of rows in the dataset that containI ′

is called thesupport of I ′. Using earlier definition, we can denote the support ofI ′ as

|R(I ′)|/|D|. 2

The definitions of closed patterns and frequent closed patterns have been given in

Section 2.1. Next, the two definitions will be restated with the symbols introduced

above. A set of itemsI ′ ⊆ I is called aclosed pattern if there exists noI ′′ such

that I ′ ⊂ I ′′ and |R(I ′′)| = |R(I ′)|. In other words, a pattern is considered closed

when the set of rows containing the supersetI ′′ is not exactly the same as the set of

rows containingI ′. A set of itemsI ′ ⊆ I is called afrequent closed pattern if (1)

|R(I ′)|/|D|, the support ofI ′ is higher than a minimum support threshold,ξ; (2) I ′ is a

closed pattern.

Example 6.2.2.Given thatξ = 40%, the itemset{a, c, e} is a frequent closed pattern in

the table of Figure 6.1 since it occurs four times in the table.{a, c} on the other hand is
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not a frequent closed pattern although its support is more than theξ threshold. This is

because it has a superset{a, c, e} such that|R({a, c, e}) = |R({a, c})|.

Problem Definition: Given a datasetD which contains records that are subset of a

set of itemsI, the problem is to discover all frequent closed patterns with respect to a

user given support thresholdξ. In addition, we assume that the database satisfies the

condition|R| << |I|.

6.2.2 Preliminary
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Figure 6.4: The row enumeration tree.

Table in Figure 6.2 is a transposed version of the table in Figure 6.1. In the transposed

tableTT , the items become the row ids while the row numbers become the items. A

row numberi in the original table will only appear in a rowfj in the transposed table if

the itemfj occurs in rowri of the original table. To avoid confusion, we will hereafter

refer to the rows in this transposed table astupleswhile referring to those in the original

table asrows 6.

Let X be a subset of rows. Given the transposed tableTT , a X-projected trans-

posed table, denoted asTT |X , is a subset of tuples fromTT such that: 1) For each tuple

x in TT , there exists a corresponding tuplex′ in TT |X . 2) x′ contains all rows inx with

6The tuples in the transposed table actually represent the items in the original table
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row ids larger than any row inX. As an example, let the transposed table in Figure 6.2

beTT and letX = 12. TheX-projected transposed table,TT |X is as shown in Figure

6.3.

Figure 6.4 shows the complete row enumeration tree on table in Figure 6.2. The row

enumeration tree represents the maximal search space of row enumeration when there

is no any pruning technique to be applied. Each node of the enumeration tree represents

a combination of rows which are denoted using the convention we introduced earlier.

Given a node representing a subset of rowsR′, we also showI(R′) at the node for use

in later discussion. For example, the node “12” represents{r1, r2} and “ef ” indicates

thatI({r1, r2}) = {e, f}.
In what follows, the thesis will give the proof that the complete set of closed patterns

can be discovered by means of row enumeration.

Lemma 6.2.1.Let I be a closed pattern andR(I) be the subset of tuples from the original

table that containsI. R(I) is unique. In other words, there does not exist a closed

patternI ′, I ′ 6= I, that satisfyR(I) = R(I ′).

Proof: We will prove by contradiction. Assuming there exists a closed patternI ′ that

satisfiesR(I) = R(I ′) but I ′ 6= I. Let patternCF = I ′ ∪ I. ThenR(CF ) = R(I) =

R(I ′). SinceI ′ ⊂ CF contradicts with the definition of closed pattern. So we can say

that such aF ′ does not exist.2

Lemma 6.2.2. Let X be a subset of rows from the original table, thenI(X) must be a

closed pattern (not necessary frequent).

Proof: We will prove by contradiction. AssumingI(X) is not a closed pattern, then

there exists a itemij such thatR(I(X)) = R(I(X)+ ij). SinceX contains all items of

F (X), thenX ⊂ R(I(X)). This means thatij is also found in every row ofX which

contradicts the definition thatI(X) is the largest set of items that are found in every row

of X. The largest set in this case isX + ij. 2

The main observation used in the proof is thatI(X) cannot be a maximal item sets
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that are common in all rows ofX unless it is a closed pattern. Lemma 6.2.2 ensures

that only closed patterns will be enumerated in the search tree. As a result, we need not

perform detection of superset-subset relationship among the patterns while mining algo-

rithms using column enumeration, such as CHARM and CLOSET, need to do that. For

example, in Figure 6.4, it is not possible for the pattern{a, c} to be enumerated although

both{e} and{a, c, e} are closed patterns with support of 100% and 80% respectively.

This is unlike CHARM and CLOSET, both of which will enumerate{a, c} and check

that it has the same support as a superset{a, c, e} before discarding it as a non-closed

pattern.

With Lemma 6.2.1, we know that each closed pattern corresponds to a unique set

of rows in the original table. By enumerating all combinations of rows as shown in the

enumeration tree of Figure 6.4, we can be sure that all closed patterns in the datasets are

enumerated. Together with Lemma 6.2.2, we know that the complete and correct set of

frequent closed patterns will be discovered by row enumeration.

It is obvious that a complete traversal of the row enumeration tree is not efficient and

pruning techniques must be introduced to prune off unnecessary searches. Moreover,

the efficient implementation of row enumeration is also a trick problem. Both of the two

problems will be addressed in the three proposed algorithms.

6.3 CARPENTER algorithm

6.3.1 Algorithm overview

By imposing an orderORD based on the row number, we are able to perform a sys-

tematic search by enumerating the combinations of rows based on lexicographical order.

For example, the order of search on the row enumeration tree in Figure 6.4 will be{1,

12, 123, 1234, 12345, 1235,...,45, 5} (in absence of any optimization and pruning strate-

gies).

CARPENTER performs a depth first search on the enumeration tree and recursively



Chapter 6 Mining Frequent Closed Patterns for Microarray Datasets 115

Algorithm CARPENTER (D, ξ)

1. Scan databaseD to find the set of frequent itemsF ;
2. Remove the infrequent items in each rowri of D;
3. TransposeD to get transposed tableTT ;
4. FCP = ∅. Let R be the set of rows in the original table in the orderORD;
5. MinePattern(TT |∅,R, FCP );
6. ReturnFCP ;

Procedure: MinePattern(TT ′|X ,R′, FCP ).

7. ScanTT ′|X and count the frequency of occurrences for each row,ri ∈ R′. Y = ∅;
8. Pruning 1: Let U ⊂ R′ be the set of rows inR′ which occur in at least one tuple of
TT ′|X . If |U |+ |X| ≤ ξ, then return; elseR′ = U ;
9. Pruning 2: LetY be the set of rows which are found in every tuple of theX-projected
transposed table. LetR′ = R′ − Y and remove all rows ofY from TT ′|X ;
10. Pruning 3: If I(X) ∈ FCP , then return;
11. If |X|+ |Y | ≥ ξ, addI(X) into FCP ;
12. For eachri ∈ R′, R′ = R′ − {ri} call MinePattern(TT ′|X |ri

, R′, FCP );

Figure 6.5: The CARPENTER algorithm

generates projected transposed table. For example, at the root node that corresponds to

the transposed table in Figure 6.2, CARPENTER will first project on rowr1 and build

r1-projected transposed table. Based onr1-projected transposed table, CARPENTER

will project on rowr2 to enumerate the combinationr1r2 and so on.

6.3.2 Algorithm design

The formal algorithm is shown in Figure 6.5. There are two input parameters, the dataset

D and the minimum supportξ. After doing initialization, CARPENTER calls the pro-

cedureMinePattern to perform depth-first traversal of row enumeration tree. The

procedureMinePattern takes in three parametersTT ′|X , R′ andFCP . TT ′
X is aX-

projected transposed table.R′ contains the set of rows that will be used to enumerate the

next level of projected transposed table whileFCP contains the frequent closed patterns

that have been discovered so far.

Steps 7 to 10 in the procedure perform the counting and pruning. They are extremely
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important to the efficiency of CARPENTER Algorithm and will be explained later. Ac-

cording to Lemma 6.2.2,MinePattern procedure will output a pattern if and only if it

is a closed pattern. Step 11 checks whetherI(X) is a frequent closed pattern before in-

sertingI(X) into FCP , and Step continues the next level of enumeration in the search

tree.

Lemma 6.3.1.TT ′|X |ri
= TT ′|X+ri

2

Lemma 6.3.1 is useful for explaining Step 12. It simply states that aX +ri projected

transposed table can be computed from aX projected transposed table,TT ′|X , by se-

lecting those tuples that containri in TT ′|X , i.e. TT ′|X |ri
. This is in fact generating the

{X + ri} projected transposed table that is needed to represent the next level of row set

enumeration.

Note that Step 12 implicitly represents a form of pruning too since it is possible

to haveR′ = ∅. It can be observed from the enumeration tree that there exist some

combinations of rows,X, such thatI(X) = ∅. This implies that there is no item

which exists in all the rows inX. When this occurs,R′ will be empty and no further

enumeration will be performed.

We next look at the pruning techniques that are used in CARPENTER to enhance

its efficiency. The emphasis here is to show that the pruning steps do not prune off

any frequent closed patterns while preventing unnecessary traversal of the enumeration

tree. Combining this with the earlier explanation on how all frequent closed patterns are

enumerated in CARPENTER without the pruning steps, the correctness of the algorithm

will be obvious.

The first pruning step is executed at Step 8 ofMinePattern. The pruning is essen-

tially aimed at removing search branches which cannot yield closed patterns that satisfy

thexi threshold. The following lemma is applied in the pruning.

Lemma 6.3.2.Let TT ′|X be aX projected transposed table. LetU be a set of rows which

occur in at least one tuple ofTT ′|X . If |U |+ |X| < ξ, then it isnot possible that for any
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U ′ ⊂ U , I(X + U ′) is a frequent closed pattern.

Proof: All rows that are not in theX projected transposed table will create an empty

pattern if they are combined withX, thus these rows are of no interest to us. As suchX

can only be combined with someU ′ ⊂ U in order to continue the enumeration.

The maximum support in further enumeration is however bounded by|U | + |X|.
Since|U |+ |X| < ξ, we can safely conclude that all the patterns in further enumeration

will not be frequent.2

At Step 9 ofMinePattern, the second pruning strategy is applied. This pruning

deals with rows that occur in all tuples of theX projected transposed table. Such rows

are immediately removed fromTT ′|X because of the following lemma:

Lemma 6.3.3.Let TT ′|X be aX projected transposed table andY be a set of rows which

occur in every tuple ofTT ′|X . Given any subsetR′ ⊂ R, we haveI(X + R′) =

I(X + Y + R′).

Proof: By definition,I(X + R′) contains a set of items which occur in every row of

X + R′. Since the rows inY occur in every tuple ofTT ′|X , this means that these rows

also occur in every tuples ofTT ′|{X+R′} (Note: TT ′|{X+R′} ⊂ TT ′|X). Thus, the set

of tuples inTT ′|{X+R′} is exactly the set of tuples inTT ′|{X+R′+Y }. From this, we can

conclude thatI(X + R′) = I(X + Y + R′). 2

The final and most complex pruning strategy is shown at Step 9 ofMinePattern.

This step will prune off any further search down the branch of nodeX if it is found that

I(X) was already discovered previously in the enumeration tree. The intuitive reasoning

which we will prove later is as follows: the set of closed patterns that will be enumerated

from the descendants of nodeX must have been enumerated previously.

Another important thing to note here is that the correctness of the third pruning

strategy (Step 9)is dependent on the second pruning criteria. This is essential because

of the following lemma.
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Lemma 6.3.4. Let X be the set of rows in the current search node andX ′ be the set

of rows that result inI(X) (which is the same asI(X ′)) being inserted intoFCP in

earlier enumeration. If pruning strategy 2 is applied consistently in the algorithm, then

the node representingX in the enumeration tree will not be the descendent of the node

representingX ′in the enumeration tree.

Proof: Assume otherwise, thenX ′ ⊂ X. Let Z = X −X ′. SinceI(X) = I(X ′), all

rows inZ must be contained in all tuples of theX ′ projected transposed table. Based

on pruning strategy 2, the rows inZ would be added toX ′ and will be removed from

subsequent transposed table down that search branch. Thus the node representingX

will not be visited, which contradicts the fact that nodeX is currently being processed

in the enumeration tree.2

Lemma 6.3.4 shows that it is NOT possible to prune off the branches of a node

simply because they represent the same item sets as an ancestor node in the enumeration

tree. Again, we emphasize that this come hand in hand with the second pruning strategy.

We next try to prove that all branches from a nodeX in the enumeration tree can be

pruned off ifI(X) is already inFCP . We have the following lemma.

Lemma 6.3.5.Let TT ′|X be the projected transposed table in the current search node. Let

X ′ be the set of rows which result inI(X) (which is the equals toI(X ′) ) being inserted

into FCP in earlier enumeration. Letxij andx′ij be the two tuples that represent item

ij in TT ′|X andTT ′|X′ respectively. We will havexij ⊂ x′ij for all ij ∈ I(X).

Proof: We know thatI(X) = I(X ′) which implies that the set of items represented by

tuples in both the projected transposed tables will be the same.

Let the maximal set of rows that contains the item setI(X ′) beR′
max = {r′1, ..., r′n}

which is sorted based on the orderORD . Let m be the minimum number such that

I({r′1, ..., r′m}) = I(X ′). Denoting{r′1, ..., r′m} asR′
min, an analysis of the enumeration

tree based onORD will tell us that the row setR′
min is the first combination of rows

that causeI(X ′) to be inserted intoFCP .
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Based on Lemma 6.3.4,X cannot be a descendent ofX ′ in the enumeration tree.

Thus,X must be of the form(R′
min−A) + B whereA ⊂ R′

min andB ⊂ R′
max−R′

min,

A 6= ∅, B 6= ∅. We can conclude from here that there exists a rowr′i such thati > m

andri ∈ X.

By definition of a projected transposed table, we know that all rows which occur

beforer′m (based on the orderORD) will be removed inTT ′|X′. Likewise, all rows

occurring beforer′i will be removed inTT ′
X . Sincei > m, a tuplex′ij representing

item ij in TT ′|X′ will have less rows being removed than the corresponding tuplexij

representing itemij in TT ′|X . Hence the proof.2

In a less formal term, Lemma 6.3.5 shows that ifX ′ is the first combination of

rows that causeI(X ′) to be inserted intoFCP , then the projected transposed table

TT ′|X′ will be more “general” than any other projected transposed tableTT ′|X in which

I(X) = I(X ′). “General” in this case, refers to the fact that each tuple inTT ′|X′ is

in fact a superset of the corresponding tuple inTT ′|X . We will now formalize the third

pruning strategy as a theorem.

Theorem 6.3.1.Given a node representing a set of rowsX in the enumeration tree, if

I(X) is already inFCP , then all enumeration down that node can be pruned off.

Proof Let X ′ be the combination of rows that first causeI(X) to be inserted intoFCP .

From Lemma 6.3.5, we know that any tuplex′ij in the X ′ projected table will be a

superset of a corresponding tuplexij in theX projected table. Since we know that the

next level of search at nodeX in the enumeration tree is based on the set of rows in the

X projected transposed table, it is easy to conclude that the possible enumeration at the

nodeX is a subset of the possible enumeration at nodeX ′. SinceX ′ had been visited,

it is thus not necessary to perform any enumeration from the nodeX onwards.2

The implementation of CARPENTER uses memory pointers to point at the relevant

tuples in the in-memory transposed table to simulate the projected transposed table.
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Figure 6.6: Pointer lists at node{1}.
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Figure 6.7: Pointer lists at node{2}.

We will illustrate the construction of memory pointers using memory pointers with an

example here and interested readers are referred to [15, 72] for details.

The implementation assumes that despite the high dimensionality, the biological

datasets that we are trying to handle are still sufficiently small to be loaded completely

into the main memory. This is true for many gene expression datasets which have only

small number of rows (usually from 100 to 300). We will discuss the case when the data

cannot fit in memory in Chapter 8.
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Figure 6.8: Pointer lists at node{12}.

Given the transposed table in the running example, we show the state of memory
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pointers when we are at node{1} of the enumeration tree in Figure 6.6 assuming that

ξ = 1. The in-memory transposed table is shown on the right hand side of the figure and

the head table is shown in the left hand side of the figure. Each entry of the head table

is composed of a row id, its frequency in the transposed table of its parent node and a

pointer pointing to the transposed table corresponding to the entry.

In Figure 6.6, we can derive the 1-projected transposed tableTT ′|1 by following the

pointer list of the entry 1 in the head table. Since generating the 1-projected pointer list

requires a full scan of the transposed table, CARPENTER also generates the pointer lists

of r2, r3, r4 andr5 projected transposed databases on the way. However, the generation

of the pointer list of entry 2 is slightly different. It now contains tuples that containr2

BUT NOT r1. For example, although the tuple representing item ‘e’ contains rowr2, it

does not appear in the the pointer list of entry 2. It will be inserted subsequently as we

will see later.

A scan through the pointer list of entry 1 will allow us to generate the pointer lists of

12, 13, 14 and 15 projected transposed databases. Figure 6.8 shows the state of memory

pointers when we are processing node{1, 2}. Again, note that iteme is not in linked

with the entry 3 (13 projected database) although the corresponding tuple does contain

the set of rows{r1, r3}. This is because we will first process the combination{1, 2} and

move entries in pointer list of 12 to the other pointer lists (including combinations 13,14

and 15 here) later. As a result, the current pointer list of 13 only indicates tuples that

have{1, 3} BUT NOT {1, 2}.
Finally, we show the state of pointer lists after node{1} and all its descendants have

been processed in Figure 6.7. Since all enumerations involving rowr1 have been either

processed or pruned off, the tuples linked by pointer list of projected database 1 are

moved into the pointer lists of 2, 3, 4 and 5 projected databases. For example, tuples

corresponding to itemse andf are appended to the pointer list of entry 2. Subsequent



Chapter 6 Mining Frequent Closed Patterns for Microarray Datasets 122

enumerations can then continue in similar fashion and the items in the pointer list of en-

try 2 will be moved to the pointer lists of other entries after node{2} and its descendants

are processed.

Throughout all the enumerations described above, the three pruning strategies need

to be implemented. The implementation of strategies 1 and 2 is straightforward. For

pruning strategy 3, a trie structure [51] is used to perform the full pattern matching.

6.4 Algorithm RERII

In this section, we will first give an overview of algorithm Row Enumeration by Row ID

Intersection(RERII), then describes the implementation and optimization strategies that

make RERII more efficient.

6.4.1 Algorithm overview

In RERII, each nodeX in Figure 6.4 will be represented with a three-element group

X = {itemlist, sup, childlist}, whereitemlist is the closed pattern corresponding to

nodeX, sup is the number of rows at the node andchildlist is the list of child nodes of

X. For example, the root of the tree can be represented with{{}, 0, {1, 2, 3, 4, 5}} and

the node ”12“ can be represented with{{1, 2}, 2, {3, 4, 5}}.
Given a nodeX in the row enumeration tree, we will perform an intersection of the

itemlist of nodeX with theitemlists of all its sibling nodes afterX. Each intersection

will result in a new node (Note that the intersection may be pruned as discussed later)

whoseitemlist is the intersection, whosesup is X.sup + 1 and whosechildlist will

be available at next level intersection. And each new node will be intersected with its

afterward siblings. In this way, the row enumeration tree will be recursively expanded

in a depth-first way. For example, at node 1, we will intersect itsitemlist with those of

nodes 2,3,4 and 5. RERII improves on the basic enumeration scheme by using a series

of optimization strategies (introduced in the next subsection) to prune the search space.
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RERII intersects the itemlists to obtain closed patterns. However, the algorithms of

finding frequent (closed) patterns from vertical layout dataset, such as [82, 101, 102],

join tidlist to obtain the support of a pattern which needs to be tested to determine

whether it is closed or not in closed pattern mining algorithms. With the essential differ-

ence, the optimization techniques in these methods cannot be applied in RERII and we

specially design a series of optimization strategies for RERII to improve its efficiency.

6.4.2 Algorithm design

This subsection will describe how to expand a node in the row enumeration tree and the

optimization strategies to improve the efficiency of such expansion.

Given a nodeXri and a nodeXrj, whereXri andXrj have the same parentX

andXri < Xrj. We will perform intersections of theitemlist of Xri with that of

nodeXrj. There are several possibilities of such intersection and the following lemma

explores these possibilities based on the properties of intersecteditemlists.

Lemma 6.4.1.Let Xri andXrj be two sibling nodes, whereXri < Xrj. The following

five properties will hold:

1) If Xri.itemlist ∩Xrj.itemlist = ∅, nothing needs to be done.

2) If Xri.itemlist = Xrj.itemlist, Xrj will be integrated intoXri, i.e. Xri.sup =

Xri.sup + 1 and any further expansion belowXrj will be pruned.

3) If Xri.itemlist ⊂ Xrj.itemlist, Xri.sup = Xri.sup + 1 and Xrj will not

expandXri.

4) If Xri.itemlist ⊃ Xrj.itemlist, any further expansion belowXrj will be pruned

andXrj will become a candidate extension ofXri. (Note that whetherXrj will be a

true extension ofXri is pending other checking introduced later.)

5) If Xri.itemlist 6= Xrj.itemlist, Xrj will become a candidate extension ofXri.

Proof:

Let Xrk be an afterward sibling node ofXrj (Xrk < Xrj < Xri). 1) If Xri.itemlist∩
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Xrj.itemlist = ∅, it is obvious that there is no meaning to test such a row enumera-

tion since it cannot generate any closed pattern. 2) IfXri.itemlist = Xrj.itemlist, it

is obvious thatXrk.itemlist ∩ Xrj.itemlist = Xrk.itemlist ∩ Xri.itemlist. There-

fore, patterns enumerated belowXrj can be obtained belowXri and we can prune

nodeXrj for further enumeration. 3) IfXri.itemlist ⊂ Xrj.itemlist, Xri.itemlist ∩
Xrj.itemlist = Xri.itemlist. This means that any closed patterns discovered be-

low Xri will be contained by the rowrj. Therefore there is no meaning to extend

Xri with Xrj and we increaseXri.sup by 1. 4) If Xri.itemlist ⊃ Xrj.itemlist,

Xrk.itemlist ∩Xrj.itemlist ∩Xri.itemlist = Xrk.itemlist ∩Xrj.itemlist. So we

can pruneXrj for further enumeration. 5) IfXri.itemlist 6= Xrj.itemlist, it is possi-

ble thatXrj will be an extension ofXri.

The properties in Lemma 6.4.1 are different from the strategies used in CARPEN-

TER to determine whether a node is expanded by a row. CARPENTER does that by

checking the frequency of a row in the projected transposed table and needs to record

the row combination information. On the contrary, Lemma 6.4.1 only depends on the

item information but not row information.

{abcdef}

24{ace}23 {ace}

1

12

{bdef}

{ef} 13 14{de} {bde}

123 {e} {e}124

{abcdeg}

45 {abcde}

{acde}2 3 4 5

{}

{acef}

Figure 6.9: The pruned row enumeration tree.

Example 6.4.1.We now illustrate the Lemma 6.4.1 with the example table in Figure 6.1.

Suppose minimum support = 1, let us look at how to apply Lemma 6.4.1 to prune the

complete row enumeration tree shown in Figure 6.4. Consider node 1, its itemlist is a

subset of that of node 5 (case 2) while the intersection of its itemlist with the others
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satisfies the case 5. As a result, we increase the support of node 1 by 1 and extend node

1 with nodes 2, 3 and 4 to get three child nodes. Next we process the node 12, the

intersection of the itemlist of 12 with the itemlist of 13 and 14 satisfies the case 5 and

we extend 12 with 13 and 14. At the node 123, the intersection of its itemlist with that of

124, i.e. e satisfies with case 2. In this way, we get a close pattern{e} with support=4.

Next we proceed to node 13 and the intersection of its itemlist with that of node 14, i.e.

{de}, satisfies case 3. Thus we get a closed patternde with support =3. The extension is

done in a depth-first way. The nodes that are actually checked are shown in the Figure

6.9.

The first three cases in Lemma 6.4.1 are preferable over others since they will not

result in deeper row enumeration tree. The first two cases are not affected by the order of

childlist while sortingchildlist of a node in the ascending order of the number of their

itemlists will increase the opportunity that the third case of Lemma 6.4.1 is satisfied.

In Example 3, the lexicographic order of rows has already followed the ascending order

of number of items in theiritemlists. We also notice that reordering strategy is widely

used in algorithms searching frequent patterns in item enumeration space.

Before introducing other optimization techniques, we give the pseudo code of algo-

rithm RERII in Figure 6.10. There are two input parameters of the algorithm, the dataset

D and the minimum supportξ. In algorithm RERII(), infrequent items are removed and

the child nodes of the root node are constructed. Then the procedure RERIIdepthfirst()

is called to perform the depth-first traversal of row enumeration tree.

We further optimize the algorithm RERII using three techniques that will be ex-

plained as follows.

Single Item Pruning. RERII has already discovered the set of frequent single items

by scanning the database once, we only need to discover those frequent closed patterns

longer than 1. Therefore, if RERII finds that an enumeration node cannot result in pattern
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Algorithm RERII(D, ξ)

1. Scan databaseD to find the set of frequent itemsF ;
2. Remove the infrequent items in each rowri of D;
3. Eachri forms a node in the first level of row enumeration tree and letN be the set of nodes;
4. RERIIdepthfirst(N, FCP );
5. LetCF be the set of closed items inF , FCP = FCP ∪ CF and returnFCP ;

Procedure: RERIIdepthfirst(N, FCP)

6. for each nodeni in N
7. Ni = null
8. if the left row enumeration cannot be frequentreturn
9. for eachnj in N , wherenj > ni

10. compute the frequency of items to do support pruning
11. d =ni.itemlist ∩ nj .itemlist
12. if |d| > 1
13. if ni.itemlist = nj .itemlist
14. removenj from N
15. increaseni.sup andn′.sup (n′ ∈ Ni) by 1
16. if ni.itemlist ⊂ nj .itemlist
17. increaseni.sup andn′.sup (n′ ∈ Ni) by 1
18. if ni.itemlist ⊃ nj .itemlist
19. removenj from N
20. if ni.itemlist ∪ d is not discovered before
21. addn′ (n′.sup = ni.sup + 1, n′.itemlist = d) to Ni

22. if (ni.itemlist 6= nj .itemlist)
23. if ni.itemlist ∪ d is not discovered before
24. addn′ (n′.sup = ni.sup + 1, n′.itemlist = d) to Ni

25. end for
26. if ni.sup ≥ ξ, addni.itemset to FCP
27. if Ni 6= ∅ andNi satisfies support pruning
28. call RERIIdepthfirst(Ni, FCP )
29.end for

Figure 6.10: Algorithm RERII

longer than 1, that node will be pruned. Algorithm RERII applies such an optimization

at line 3 and line 12. At line 3, a row containing fewer than 2 frequent items can be

pruned off since the intersection of theitemlist of such a row with others cannot get

patterns longer than 1. Similarly, at line 12 if the intersection of twoitemlists contains

fewer than 2 items, there is no need to extendni with nj. In addition, this pruning strat-

egy will be applied in the next pruning strategy, calledsupport pruning.One overhead



Chapter 6 Mining Frequent Closed Patterns for Microarray Datasets 127

of such a pruning method is that we need to check whether frequent single items are

closed. RERII do this by checking whether the support of a discovered patternP is

equal to the support of its component items for each discovered frequent closed pattern.

If it is the case, such items cannot be closed patterns.

Support Pruning. RERII tries to utilize support pruning by making use of both row

information and item information while CARPENTER makes use of only row informa-

tion. The support pruning can be done at three levels.

Level 1. This pruning is done at line 8 of RERIIdepthfirst(). Given a nodeX with k

child nodesXr1, Xr2, ..., Xrk, for any child nodeXri, if Xri.sup + k − i < ξ, there

is no need to do any further enumeration below nodeXri since any further enumeration

cannot generate frequent closed patterns.

Level 2. This pruning is done at line 10 of RERIIdepthfirst(). Given a nodeX with

k child nodesXr1, Xr2, ..., Xrk, for any child nodeXri, we compute the supports for

items inX.itemlist (= i1, i2, ...im) in all nodesXrj such thati ≤ j ≤ k. The counter

support(il) for each itemil in X.itemlist is initialized withX.sup and will be increased

by 1 if the item is inXrj.itemlist. On the basis ofsingle item pruning, we only need

to discover patterns longer than 1. We can derive the following two pruning methods.

First, if there are fewer than two items such thatil ∈ Xri andsupport(il) ≥ ξ, there is

no need to do any further enumeration below nodeXri. Second, if there are fewer than

two items such thatil ∈ X.itemset andsupport(il) ≥ ξ, there is no need to do any

further enumeration below nodesXrj (i ≤ j ≤ k).

Level 3. This pruning is done at line 27 of RERIIdepthfirst() afterNi is filled, i.e. the

child nodes ofni are obtained. We will recompute the support of items initemlist of ni

in the child nodes ofni. If there are fewer than two items such thatil ∈ ni.itemlist and

support(il) ≥ ξ, there is no need to do any further enumeration below nodeni and all

its child nodes will be removed.
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Redundant Pruning. The last pruning strategy is based on the following Lemma which

is similar to the Theorem 6.3.1.

Lemma 6.4.2. On the basis of the lemma 6.4.1, at a nodeX, if patternX.itemlist has

already been discovered in an earlier enumeration, we can prune nodeX and any further

enumerations belowX.

RERII adopts prefix tree to store the discovered patterns to save memory usage as

CLOSET [73] and CLOSET+ [92] do. But we only check the equal relationship between

patterns while CLOSET needs to check both equal and subsumption relationship. RERII

builds a two level hash function on each pattern to speed up searching. The first hash

function adopts the sum of items in the pattern and the second level hash function uses

the last item in a pattern. We will store the length information of a pattern with its last

item. When a pattern is hashed to a node in the prefix tree, we first check whether the

length of the two patterns is the same. If it is case, we go up along the prefix tree to

compare the whole patterns. Interested reader can refer to [73, 92] for details.

6.5 Algorithm REPT

This section will present another row-enumeration algorithm called Row Enumeration

based on Prefix Tree (REPT).

6.5.1 Algorithm overview

Like CARPENTER, algorithm REPT traverses the row enumeration tree with the help

of projected transposed table. Its first main difference from CARPENTER is that REPT

represents (projected) transposed table with prefix trees, which can help in saving mem-

ory and saving computation in counting frequency. The second main difference of REPT

from CARPENTER is that REPT designs a backward pruning method to implement

Theorem 6.3.1 while CARPENTER uses a similar method as RERII. The prefix tree
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used to represent transposed table is similar to the FP-tree used in [43] to represent orig-

inal table (horizontal layout table). In FP-tree, each node represents an item while the

node of prefix tree used in REPT represents a row.

Next, we will illustrate how to represent (projected) transposed tables with prefix

trees. REPT represents the transposed table in Figure 6.2 with prefix tree shown in Fig-

ure 6.11(a). The left head table in the figure records the list of rows in the transposed

table and their frequencies. At each node of the prefix tree, REPT records row number

and the count of the row in a prefix path (separated by“:” in Figure 6.11(a)). Another

information recorded at each node but not shown in the figure is the set of items repre-

sented at the node, such as itemsb, d, e andf at node 1:4. Such information will help

REPT to know quickly the pattern corresponding to a projected transposed table.
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Figure 6.11: The Projected Prefix Tree.
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Figure 6.12: The 12-projected
prefix treePT |12.

Example 6.5.1.Projected Prefix Tree

The parts of nodes enclosed by dotted line in Figure 6.11(a) is the 1-projected prefix tree,

PT |1. Note that there are pointers linking the child nodes of root with corresponding

row in head table. By following the pointer starting from the row 1 of header table, we

can get thePT |1. After mining thePT |1, the child paths of node with label 1 will be

assigned to other rows of header table after row 1 and we get the 2-projected prefix tree,

PT |2. In Figure 6.11(b), the part enclosed by dotted line isPT |2. By following the

pointer from the row 2 in header table, we can get thePT |2.

In algorithm REPT, a nodeX will be associated withX-projected transposed table

(represented with prefix treePT |X) and arowlist that is the list of rows inX-projected
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transposed table. Continue with the above example, 1-projected prefix treePT |1 can

be located by following the pointers of row 1 in head table. By assembling the items

of nodes in the pointer link, the closed pattern corresponding toPT |1 can be obtained

(b, d, e, f ). REPT will scan thePT |1 to build head table for row set 12 and obtain the

PT |12 as shown in Figure 6.12. After thePT |1 has been mined recursively, the paths in

PT |1 will be assigned to the projected prefix tree of rows after row 1(i.e. rows 2, 3, 4

and 5) and the pointer status of head table is shown in Figure 6.11(b).

6.5.2 Algorithm design

Figure 6.13 gives the pseudo code of algorithm REPT. There are two input parameters

of the algorithm, the datasetD and the minimum supportξ. In algorithm REPT(), the

datasetD is transposed. Then the procedure REPTdepthfirst() is called to perform the

depth-first traversal of row enumeration tree.

Algorithm REPT(D, ξ)

1. Scan databaseD to find the set of frequent itemsF
2. Remove the infrequent items in each rowri of D and letR be the set of rows inD
3. Transpose tableD and build prefix treePT |∅
4. Call REPTdepthfirst(PT |∅,R, FCP )
5. LetCF be the set of closed items inF , FCP = FCP ∪ CF and returnFCP

Procedure: REPTdepthfirst(PT ′|X ,R′, FCP ).
6. ScanPT ′|X and compute the frequencysupport(ri) for each row,ri ∈ R′

7. Support Pruning: Let U ⊂ R′ be the set of rows inR′ such thatsupport(u) > 1 andu ∈ R′.
If |U |+ |X| ≤ ξ, then return; elseR′ = U
8. Row Merging Pruning: Let Y be the set of rows such thatsupport(y) = |I(X)| andy ∈ R′.
Let R′ = R′ − Y andX = X ∪ Y and remove all rows ofY from PT ′|X ;
9. Backward Pruning: If there is a rowr′ that appears in each prefix path w.r.tI(X) and does
not belong toX, then return
10. if |X| ≥ ξ, addI(X) into FCP
11. for eachri ∈ R′

12. R′ = R′ − {ri} and generatePT ′|Xri

13. REPTdepthfirst(PT ′|Xri , R
′, FCP )

Figure 6.13: The REPT algorithm

REPT applies three pruning methods. The first issupport pruningimplemented at
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line 7. This strategy is essentially the same as the case 1 of support pruning in algorithm

RERII and will not be explained again here. The strategy implicitly employs thesingle

item pruningby ignoring such a rowri, support(ri) = 1, since enumerating such rows

generates only single item. The second pruning strategy isrow merging pruningimple-

mented at line 8. At an enumeration nodeX, enumerating rows inPT |X whose supports

are the same as|I(X)|will only contribute to the support but not to new patterns. There-

fore, such rows can be pruned off. Such a strategy is also used in CARPENTER. The

last pruning method isbackward pruningimplemented at line 9. The pruning method

essentially does the same pruning as the Lemma 6.4.2 although the implementation is

completely different. If there exists a rowr′ that appears in each prefix path w.r.t the

set of nodes contributing toI(X) and does not belong to row setX, the patternI(X)

and all patterns belowX must have already been discovered below some enumeration

node containingr′. REPT implements this strategy by means of row information while

RERII does that using pattern information.

6.6 Performance studies

This section will study and compare the performance of three row enumeration methods

with closed pattern discovery algorithms CLOSET [73], CLOSET+ [92]7 and CHARM

[101]8. Experiments in [73, 101] have shown that depth-first mining algorithms like

CHARM and CLOSET are substantially better than level-wise mining algorithms like

Close[70] and Pascal [11]. All the experiments were performed on a PC with a Pentium

2.4 Ghz CPU, 1GB RAM running Linux and a PC with Pentium IV 2.6, 1 G RAM

running Windows XP. Algorithms were coded in Standard C.

Datasets: We choose 2 real-life datasets for performance studies. The 2 datasets are

7I am grateful to Dr. Jiawei Han and Dr. Jianyong Wang for making the executable code of CLOSET+
running on Windows avialble

8I am grateful to Dr. Mohammed Zaki for making us the Linux version source code of CHARM
available



Chapter 6 Mining Frequent Closed Patterns for Microarray Datasets 132

10

100

1000

10000

100000

5 6 7 8 9 10

R
un

tim
e(

s)

Minimum Support(%)

RERII
REPT

CARPETNER
CHARM
CLOSET

(a) Breast Cancer

1

10

100

1000

10000

100000

4 5 6 8 9 10

R
un

tim
e(

s)

Minimum Support(%)

RERII
REPT

CARPETNER
CHARM
CLOSET

(b) ALL-AML leukemia

Figure 6.14: Equal-depth Partitioned Datasets

clinical data on Breast Cancer (BC)9 and ALL-AML leukemia (ALL) 10. In such datasets,

the rows represent clinical samples while the columns represent the activity level of

genes/protein presence in the sample. There are 97 samples in BC and 72 samples in

ALL. Each sample in BC is described by the activity level of 24481 genes while each

sample in ALL is described by the activity level of 7129 genes.

The datasets are discretized by doing a equal-depth partition for each column with

10 buckets and a equal-width partition for each column with 50 buckets (Note that many

buckets in equal-width partition are empty). This studies show that having fewer buckets

will result in extremely high running time (up to a few days) for CHARM and CLOSET.

A setting of 10 and 50 buckets reduces this time sufficiently for performing the experi-

ments with reasonable efficiency. Equal-depth partition will result in evenly distributed

data while equal-width partition will result in data with some dense items.

Figure 6.14 shows the experimental results on the two equal-depth partitioned datasets

and Figure 6.15 shows the experimental results on the two equal-width partitioned datasets.

Note that the y-axes of these graphs are in logarithmic scale. The highestminimum sup-

port is set at 10% for all datasets. Then we try to reduce theminimum supportby

1% each time to plot a new point if the reducedminimum supportmakes a difference.

9http://www.rii.com/publications/default.htm
10http://www-genome.wi.mit.edu/cgi-bin/cancer



Chapter 6 Mining Frequent Closed Patterns for Microarray Datasets 133

10

100

1000

10000

5 6 7 8 9 10

R
un

tim
e(

s)

Minimum Support(%)

RERII
REPT

CARPETNER
CHARM
CLOSET

(a) Breast Cancer

1

10

100

1000

10000

4 5 6 8 9 10

R
un

tim
e(

s)

Minimum Support(%)

RERII
REPT

CARPETNER
CHARM
CLOSET

(b) ALL-AML leukemia

Figure 6.15: Equal-width Partitioned Datasets
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Figure 6.16: Comparison with CLOSET+

Sometimes, 1% decrease inminimum supportdoes not make a difference because the

total number of samples is very small. For example, on dataset ALL, 8% actually rep-

resents the same level as theminimum supportat 7%. This also explains why the values

on the x-axis of some graphs are not continuous. At some points in Figure 6.14 and

6.15, the runtime of CHARM is not shown because CHARM cannot finish by reporting

error after using up all available memory. We do not give the runtime of CLOSET on all

points because it is too slow and showing them will make the differences in runtime of

other algorithms unclear in these graphs.

We first observe that there is a large variation in the running time for both CHARM
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and CLOSET even though the variation in minimum supportξ is small. This is be-

cause the average length of each row after removing the infrequent features can increase

(decrease) substantially due to a small decrease (increase) inξ value. This increases

(decreases) the search space of both CHARM and CLOSET substantially, resulting in

large differences in running time

The three algorithms using row enumeration strategy usually perform much better

than the two column enumeration algorithms, CHARM and CLOSET on both equal-

depth partitioned and equal-width partitioned datasets. Although CHARM sometimes

outperforms RERII and REPT at high support level in Figure 6.15, the absolute dif-

ference between them is negligible compared to the difference in running time at low

minimum support.

As shown in Figure 6.14 on equal-depth partitioned dataset, CARPENTER is usu-

ally a bit better than RERII and REPT. However, as shown in Figure 6.15 on equal-width

partitioned dataset, RERII is usually 2-4 times faster and REPT is usually 1-2 times

faster than CARPENTER. The possible reason for the difference is that the data struc-

tures used in RERII and REPT are more effective for equal-width partitioned datasets

in which some items are dense. This is similar to the column enumeration algorithms

adopting FP-tree structure (similar to REPT) usually work well on dense datasets while

column enumeration algorithms adopting in-memory pointer (similar to CARPENTER)

usually work well on sparse datasets.

We report the comparison results with CLOSET+ on the two equal-depth partitioned

datasets BC and ALL in Figure 6.16. The CLOSET+ reports errors when running on

equal-depth partitioned datasets. CLOSET+ cannot finish by reporting error after using

up all available memory atξ = 7% on BC. Figure 6.16 shows that both RERII and REPT

are usually 1 order of magnitude faster than CLOSET+.

As can be seen, in all the experiments we conducted, the three row enumeration

algorithms outperform CHARM and CLOSET in most cases. This result demonstrates
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that row enumeration strategy is extremely efficient in finding frequent closed patterns

on datasets with a small number of rows and a large number of columns.

6.7 Conclusion

In this chapter, we described three algorithms, CARPENTER , RERII and REPT, for

finding frequent closed patterns in microarray datasets. The three algorithms explore

various implementation of row enumeration which overcomes the extremely high di-

mensionality of microarray datasets. Experiments showed that these algorithms based

on row enumeration outperforms existing closed pattern discovery algorithms like CHARM,

CLOSET and CLOSET+ by a large order of magnitude when they are running on mi-

croarray datasets. Moreover, the experiments also showed that the algorithm CARPEN-

TER usually perform well on sparse data while RERII and REPT usually perform well

on data containing dense items.



Chapter 7

Mining Interesting Rule Groups from
Microarray Datasets

On the basis of CARPENTER algorithm, this chapter extends the row enumeration

techniques to mine interesting rule group with a given consequent. This chapter also

handles the problem of large number of rules by means of the concept of interesting rule

group.

7.1 Introduction

One special association rule takes the form ofLHS → C, whereLHS is a set of

items andC is a class label. The term “support ofA” is used to refer to the number of

rows containingA in the database and denote this number assup(A). The probability

of the rule being true is referred to as “the confidence of the rule” and is computed as

sup(LHS ∪ C)/sup(LHS). The number of rows in the database that match the rule is

defined as “the support of the rule”. User-specified constraints such as minimum support

(a statement of generality) and minimum confidence (a statement of predictive ability)

are often imposed on mining such association rules.

Recent studies have shown that such kinds of association rules themselves are very

useful in the analysis of microarray data. Due to their relative simplicity, they are more

easily interpreted by biologists, providing great help in the search for gene predictors

(especially those still unknown to biologists) of the sample categories.

136
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Moreover, such association rules can be applied in the scenario of classification:

it is shown in [33, 53] that classifiers built from association rules are rather accurate

in identifying cancerous cell since such association rules can relate gene expressions

to their cellular environments or categories. It can discover the relationship between

different genes, so that the functions of an individual gene can be inferred based on its

relationship with others [29].

Microarray datasets pose great challenges for existing rule mining algorithms in both

runtime and the number of discovered rules. The high dimension and huge number

of rules also render existing rule mining algorithms impractical for microarray data.

Existing association rule mining algorithms all perform column enumeration, and thus

usually take long time to run on microarray datasets.

Due to the high dimensions and the combinatorial explosion of frequent itemsets

[14], enormous association rules may be generated even for given consequent, many of

which are redundant. To address the problem of huge number of redundant rules, we

propose the concept of interesting rule group (IRG) that can greatly reduce the number

of rules by grouping similar rules and removing uninteresting groups.

The concept of IRG is illustrated with a simple example. Given a one row dataset

with five features and one class label:{a, b, c, d, e, Cancer}, we could have 31 rules of

the formLHS → Cancer since any combination ofa, b, c, d, e could be theLHS for

the rule. These 31 rules are all covered by the same row and have the same confidence

(100%). Such a large set of rules contains a lot of redundancy and is difficult to interpret.

Instead of generating all 31 rules, we propose to discover these rules as a rule group

whose consequent is Cancer, which can be identified by a uniqueupper bound and a

set oflower bounds. The upper bound of a rule group is the rule with the most specific

LHS among the rules. In this case, the upper bound rule isabcde → Cancer. The

lower bounds of the rule group are the rules with the most general LHS in the rule

group. For the example, the rule group has 5 lower bounds (a → Cancer, b → Cancer,
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c → Cancer, d → Cancer, ande → Cancer). Given the upper bound and the lower

bounds of the rule group, other rules within the group can be easily derived.

The number of rules can be further reduced by finding interesting rule groups only.

Consider two rulesabcd → Cancer with confidence 90% andab → Cancer with con-

fidence 95%, it is obvious thatab is a better indicator ofCancersinceab → Cancer has

a higher confidence and all rows coveringabcd → Cancer must coverab → Cancer.

With ab → Cancer, ruleabcd → Cancer is not interesting1.

The interesting rule discussed in [13] is quite similar to the interesting rule group.

However, [13] randomly discovers one rule for each rule group while FARMER dis-

covers the upper bound and lower bounds for each rule group. Moreover, [13] search

interesting rules in column enumeration space and usually cannot work on microarray

datasets as shown in experimental study in Section 7.4.

This chapter describes a novel algorithm called FARMER2, that is specially de-

signed to mine interesting rule groups whose consequent is a specified class label. The

target datasets are microarray data which have large number of columns and relatively

small number of rows. FARMER discovers upper bounds of interesting rule groups with

given consequent from datasets by performing depth-first row enumeration instead of the

usual column enumeration approach taken by existing rule mining algorithms. On the

basis of row enumeration, efficient search pruning strategies are designed based on user-

specified thresholds (minimum support, minimum confidence and minimum chi square

value) and the fixed consequent information. This chapter also describes an efficient al-

gorithm for computing the lower bounds. Experimental results show that FARMERsub-

stantially outperforms other rule mining algorithms described in [13], [101](CHARM)

and [92](CLOSET+) on Microarray datasets and the pruning strategies are effective.

1Rules likeabcd → Cancer are also not useful for method like CBA [55] of building classifier using
association rules.

2FARMER stands for Finding Interesting Association Rule by Enumeration of Rows.
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To further illustrate the usefulness of the discovered interesting rule groups in bi-

ology, a simple classifier is built based on these interesting rule groups, which outper-

forms several well-known existing classification methods, e.g., CBA [55] and SVM[47]

on several real life datasets.

The rest of this chapter is organized as follows: More formal definition of interest-

ing rule group is given in Section 7.2. The FARMER algorithm is described in Section

7.3. To illustrate the performance of FARMER and the usefulness of discovered inter-

esting rule groups in classification, the experimental results are described in Section 7.4.

Finally, Section 7.5 concludes this chapter.

7.2 Preliminary

This section will introduce some basic notations and concepts that are useful for further

discussion and give a formal definition for aninteresting rule group.

7.2.1 Basics

Dataset: the dataset (or table)D consists of a set of rows,R={r1, ...,rn}. LetI={i1, i2, ..., im}
be the complete set of items ofD, andC = {C1, C2, ..., Ck} be the complete set of class

labels ofD, then each rowri ∈ R consists of one or more items fromI and a class label

from C.

As an example, Figure 7.1(a) shows a dataset whose items are represented with al-

phabets from ‘a’ to ‘t’. There are altogether 5 rows,r1,...,r5, in the table, the first three

of which are labeledC while the other two are labeled¬C. To simplify the notation,

therow id setis used to represent a set of rows and theitem id setis used to represent a

set of items. For instance,“234” denotes the row set{r2, r3, r4}, and“acf” denotes the

itemset{a, c, f}.
This chapter will also use theitem support setR(I ′) androw support set I(R′)

which are defined in Chapter 4.



Chapter 7 Mining Interesting Rule Groups from Microarray Datasets 140

Association Rule: an association ruleγ, or just rule for short, from datasetD takes

the form ofA → C, whereA ⊆ I is the antecedent andC is the consequent (here, it is

a class label). Thesupport of γ is defined as the|R(A∪C)|/|D|, and itsconfidenceis

|R(A ∪C)|/|R(A)|. The antecedent ofγ is denoted asγ.A, the consequent asγ.C, the

support asγ.sup, the confidence asγ.conf and the chi square value asγ.chi.

As discussed in the introduction, in real biological applications, people are often

interested in rules with a specified consequentC that meet specified thresholds, like

minimum support and minimum confidence.

7.2.2 Interesting rule groups (IRGs)

The interesting rule group is a concept which helps to reduce the number of rules dis-

covered by identifying rules that come from the same set of rows and clustering them

conceptually into interesting groups.

Definition 7.2.1. Rule Group

Let D be the dataset with itemsetI and C be the specified class label.G = {Ai →
C|Ai ⊆ I} is a rule group with antecedent support set R and consequent C, iff (1)

∀Ai → C ∈ G,R(Ai) = R, and (2)∀R(Ai) = R, Ai → C ∈ G.2

Definition 7.2.2. the Upper Bound of a Rule Group

Let G = {Ai → C} be a rule group of dataset D. Ruleγu ∈ G (γu: Au → C) is an

upper bound of G iff there exists noγ′ ∈ G (γ′:A′ → C) such thatA′ ⊃ Au.2

Definition 7.2.3. the Lower Bound of a Rule Group

Let G = {Ai → C} be a rule group of dataset D. Ruleγl ∈ G (γl: Al → C) is a lower

bound of G iff there exists noγ′ ∈ G (γ′: A′ → C) such thatA′ ⊂ Al.2

Lemma 7.2.1. Given a rule groupG with the consequentC and the antecedent support

setR, it has a unique upper boundγ (γ: A → C).

Proof: Assume there exists another upper boundγ′(A′ → C) ∈ G such thatA′ 6= A



Chapter 7 Mining Interesting Rule Groups from Microarray Datasets 141

andA′ 6⊆ A. Let A′′ = A ∪ A′. Because ofR(A′) = R(A) = R, we getR(A′′) = R,

and thenA′′ → C ∈ G andA′′ ⊃ A. Therefore,γ(A → C) can not be an upper bound

of G. So the upper bound of a rule group must be unique.2

Based on lemma 7.2.1, a rule groupG can be represented with its unique upper

boundγu.

Example 7.2.1.Rule Group

A running example is shown in Figure 7.2.R({e}) = R({h}) = R({ae}) = R({ah}) =

R({eh}) = R({aeh}) = {r2, r3, r4}. They make up a rule group{e → C, h →
C, ..., aeh → C} of consequent C, with the upper boundaeh → C and the lower

boundse → C andh → C.2

It is obvious that all rules in the same rule group have the same support, confidence

and chi square value since they are essentially derived from the same subset of rows.

Based on the upper bound and all the lower bounds of a rule group, its remaining mem-

bers can be identified according to the lemma below.

Lemma 7.2.2. Suppose rule groupG with the consequent C and antecedent support set

R has an upper boundAu → C and a lower boundAl → C. Ruleγ(A → C), where

A ⊂ Au andA ⊃ Al, must be a member ofG.

Proof: SinceA ⊂ Au, R(A) ⊇ R(Au). Likewise,R(A) ⊆ R(Al). SinceR(Al) =

R(Au) = R,R(A) = R. Soγ(A → C) belongs to G.2

Definition 7.2.4. Interesting Rule Group (IRG)

A rule groupG with upper boundγu is an interesting rule group iff for any rule group

with upper boundγ′u ⊂ γu, γ′u.conf < γu.conf . For brevity, the abbreviation IRG will

be used to refer to interesting rule group.2

The algorithm FARMER is designed for finding IRGs that satisfy user-specified con-

straints includingminimum support, minimum confidenceandminimum chi square value



Chapter 7 Mining Interesting Rule Groups from Microarray Datasets 142

i ri class
1 a,b,c,l,o,s C
2 a,d,e,h,p,l,r C
3 a,c,e,h,o,q,t C
4 a,e,f,h,p,r ¬C
5 b,d,f,g,l,q,s,t ¬C

(a) Example Table

ij R(ij)
C ¬C

a 1,2,3 4
b 1 5
c 1,3
d 2 5
e 2,3 4
f 4,5
g 5
h 2,3 4
l 1,2 5
o 1,3
p 2 4
q 3 5
r 2 4
s 1 5
t 3 5
(b) Transposed Table,TT

Figure 7.1: Running example

ij R(ij)
C ¬C

a 1,2,3 4
e 2,3 4
h 2,3 4

Figure 7.2:TT |{2,3}

3. These constraint parameters are deliberately left out of the definition of IRG to avoid

restricting the definition of interestingness to these measures. FARMER finds the upper

bounds of all IRGs first, and then gathers their lower bounds. This makes it possible for

users to recognize all the rule group members as and when they want to.

7.3 The FARMER algorithm

This section first gives a running example (Figure 7.1) to illustrate the algorithm. Table

TT (Figure 7.1(b)) is a transposed version of the example table (Figure 7.1(a)). InTT ,

the items become the row ids while the row ids become the items. A row numberrm

in the original table will appear in tuplein of TT if and only if the itemin occurs in

the rowrm of the original table. For instance, since itemd occurs in rowr2 andr5 of

the original table, row ids “2” and “5” occur in tupled of TT . To avoid confusion, this

chapter hereafter refers to the rows in the transposed table astuples while referring to

3Other constraints such as lift, conviction, entropy gain, gini and correlation coefficient can be handled
similarly
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Figure 7.3: The row enumeration tree.

those in the original table asrows 4.

A conceptual explanation of algorithm FARMER to discover upper bounds of inter-

esting rule groups is given in Section 7.3.1, the pruning strategies are given in Section

7.3.2, and the implementation details are given in Section 7.3.3. Section 7.3.4 describe

subroutine MineLB of FARMER to discover the lower bounds of interesting rule groups.

7.3.1 Enumeration

FARMER performs search by enumeration of row sets to find interesting rule groups

with consequentC. Figure 7.3 illustrates the row enumeration tree on the table in Figure

7.1. Each nodeX of the enumeration tree corresponds to a combination of rowsR′ and

is labeled withI(R′) that is the antecedent of the upper bound of a rule group identified

at this node. For example, node “12” corresponds to the row combination{r1, r2} and

“al” indicates thatI({r1, r2}) = {a, l}. An upper boundal → C can be discovered at

node “12”. This is correct because of the following lemma.

Lemma 7.3.1.Let X be a subset of rows from the original table, thenI(X) → C must

4The tuples in the transposed table actually represent the items in the original table
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be the upper bound of the rule group G whose antecedent support set isR(I(X)) and

consequent isC.

Proof: First, according to definition 7.2.1,I(X) → C belongs to rule groupG with

antecedent support setR(I(X)) and consequentC. Second, assume thatI(X) → C

is not the upper bound ofG, then there must exist an itemi such thati /∈ I(X), and

I(X) ∪ {i} → C belongs toG. So we getR(I(X)) = R(I(X) ∪ {i}). Since rows

in X contain all items ofI(X), we getX ⊆ R(I(X)), and thenX ⊆ R(I(X) ∪ {i}).
This means thati is also found in every row ofX, which contradicts the definition that

I(X) is the largest set of items that are found in every row ofX. SoI(X) → C is the

upper bound of the rule group with antecedent support setR(I(X)).2

FARMER performs a depth first search on the enumeration tree by moving along the

edges of the tree. By imposing an orderORD, in which the rows with consequent C

are ordered BEFORE the rows without consequentC, on the set of row numbers, we

are able to perform a systematic search by enumerating the combinations of rows based

on the orderORD. Note that the order also serves for confidence pruning purpose

(explained in Section 7.3.2).

Next, this section proves that the complete rule groups can be discovered by a com-

plete enumeration of row combinations. Following is the lemma.

Lemma 7.3.2.By enumerating all possible row combinations in the enumeration tree in

Figure 7.3, the complete set of upper bounds and the corresponding complete set of rule

groups in the dataset can be obtained.

Proof: With Lemma 7.2.1, we know that each rule group can be represented by a unique

upper bound. Based on the definition of rule group (Definition 7.2.1), all possible an-

tecedent support sets of rule groups can be obtained by enumerating all possible row

combinations. Each antecedent support set X corresponds to a rule group with upper

bound “I(X) → C”. So we get the proof.2
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It is obvious that a complete traversal of the row enumeration tree is not efficient.

Various pruning techniques will be introduced to prune off unnecessary searches in the

next section. This section will next introduce the framework of the algorithm FARMER

for discovering the upper bounds of rule groups. Two concepts are given as follows.

Definition 7.3.1. Conditional Transposed Table (TT |X)

Given the transposed tableTT (used at the root of the enumeration tree), aX-conditional

transposed table (TT |X) at node X (X is the row combination at this node) is a subset of

tuples fromTT such that for each tuplet of TT thatt ⊇ X, there exists a tuplet′ = t in

TT |X .2

Example 7.3.1.Let TT be the transposed table in Figure 7.1(b) and letX = {2, 3}. The

X-conditional transposed table,TT |X is shown in Figure 7.2.2

Definition 7.3.2. Enumeration Candidate List (TT |X .E)

Let TT |X be theX-conditional transposed table andrmin ∈ X be the row id with the

lowestORD order in row combination X. LetEP = {r|r ÂORD rmin ∧ r ∈ R(C)} (all

rows of consequent C ordered afterrmin), andEN = {r|r ÂORD rmin ∧ r ∈ R(¬C)}
(all rows with class C ordered afterrmin). The enumeration candidate list forTT |X ,

denoted asTT |X .E, is defined to beEP ∪ EN .2

Note that the definition of Conditional Transposed Table is different from that in

Chapter 6. The rows that are not in enumeration candidate list are not removed from

transposed table since the information of rows that are not in enumeration candidate list

may be useful in the pruning techniques(Section 7.3.2).

In the remaining chapter, the following notations are used to represent the attributes

of TT |X :

TT |X .E: the enumeration candidates;

TT |X .EP : the enumeration candidates with label C;

TT |X .EN : the enumeration candidates without label C;
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TT |X .Y : the enumeration candidates that occur in each tuple ofTT |X .

The formal algorithm is shown in Figure 7.4. FARMER involves recursive compu-

tations of conditional transposed tables by performing a depth-first traversal of the row

enumeration tree. (Section 7.3.3 will show that memory pointers are used to generate

conditional transposed tables instead of constructing conditional transposed tables phys-

ically). Each computed conditional table represents a node in the enumeration tree of

Figure 6.4. For example, the{2, 3}-conditional table is computed at node “23”. Af-

ter initialization, FARMER calls the subroutineMineIRGs to recursively generateX-

conditional tables.

The subroutineMineIRGs takes in four parameters at node X:TT ′|X , supp, supn

and IRG. TT ′|X is theX-conditional transposed table at node X with enumeration

candidatesTT ′|X .EP andTT ′|X .EN . supp is the number of identified rows that contain

I(X) ∪ C while supn is the number of identified rows that containI(X) ∪ ¬C before

scanningTT ′|X . IRG stores the upper bounds of interesting rule groups discovered so

far.

Steps 1, 2, 4 and 5 in the subroutineMineIRGs perform the pruning. They are

extremely important for the efficiency of FARMER algorithm and will be explained in

the next subsection. Step 3 scans the tableTT ′|X . Step 6 moves on into the next level

enumerations in the search tree. Step 7 checks whetherI(X) → C is the upper bound

of an IRG that satisfies the user-specified constraints before inserting it intoIRG. Note

that step 7 must be performed after step 6 (the reason will be clear later). This section

first proves the correctness of the two steps by two lemmas as follows:

Lemma 7.3.3.TT |X |ri
= TT |X+ri

, ri ∈ TT |X .E. 2

Lemma 7.3.3 is useful for explaining Step 6. It simply states that aX+ri conditional

transposed table can be computed from aX conditional transposed tableTT |X in the

next level search after nodeX.
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Algorithm FARMER
Input: tableD, specified consequentC, ξ, minconf , andminchi.
Output: interesting rule groups with consequentC satisfying minimum measure thresholds.
Method:

1. Initialization: Let TT be the transposed table of ORD orderedD; IRG = ∅.
2. Mine Interesting Rule Groups:MineIRGs(TT |∅, 0, 0,IRG).

3. Mine Lower Bounds of Interesting Rule Groups:Optional.

Subroutine: MineIRGs(TT ′|X , supp, supn, IRG).
Parameters:

• TT ′|X : aX-conditional transposed table;

• supp andsupn: support parameters;

• IRG: the set of discovered interesting rule groups;

Method:

1. Apply Pruning 2: If I(X) → C is already identified,then return.

2. Apply Pruning 3: If prunable with the loose upper bounds of support or confidence,then return.

3. ScanTT ′|X and count the frequency of occurrences for each enumeration candidate,ri ∈
TT ′|X .E,
Let Up ⊆ TT ′|X .EP be the set of rows fromTT ′|X .EP which occur in at least one tuple of
TT ′|X ;
Let Un ⊆ TT ′|X .EN be the set of rows fromTT ′|X .EN which occur in at least one tupleTT ′|X ;
Let Yp ⊂ TT ′|X .EP be the set of rows fromTT ′|X .EP found in every tuple ofTT ′|X ;
Let Yn ⊂ TT ′|X .EN be the set of rows fromTT ′|X .EN found in every tuple ofTT ′|X ;
supp = supp + |YP | (|R(I(X) ∪ C)|);
supn = supn + |YN | (|R(I(X) ∪ ¬C)|);

4. Apply Pruning 3: If prunable with one of the three tight upper bounds,then return.

5. Apply Pruning 1: Update enumeration candidate list,TT ′|X .EP = UP − YP , TT ′|X .EN =
UN − YN .

6. for eachri ∈ TT ′|X .E do
if ri ∈ R(C) then

TT ′|X |ri .EP = {rj |rj ∈ TT ′|X .EP ∧ rj ÂORD ri}; TT ′|X |ri .EN = TT ′|X .EN ;
a = supp + 1; b = supn;

else
TT ′|X |ri .EP = ∅; TT ′|X |ri .EN = {rj |rj ∈ TT ′|X .EN ∧ rj ÂORD ri};
a = supp; b = supn + 1;

MineIRGs(TT ′|X |ri , a, b, IRG);

7. Let conf = (supp)/(supp + supn);
If (supp ≥ ξ) ∧ (conf ≥minconf )∧ (chi(supp, supp+ supn) ≥minchi) then

if ∀γ, (γ ∈ IRG) ∧ (γ.A ⊂ I(X)) ⇒ (conf > γ.conf)
then add upper bound ruleI(X) → C into IRG.

Figure 7.4: The FARMER algorithm

Lemma 7.3.1 ensures that at Step 7 only upper bounds of rule groups are possibly
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inserted intoIRG. To determine whether an upper boundγ discovered at nodeX rep-

resents an interesting rule group satisfying user-specified constraints, FARMER needs

to compareγ.conf with all γ′.conf , whereγ′.A ⊂ γ.A andγ′ satisfies user specified

constraints. FARMER ensures that all suchγ′ have already been discovered and kept in

IRG at Step 7 by lemma 7.3.4 below.

Lemma 7.3.4.Let γ : I(X) → C be the upper bound rule discovered at nodeX. The rule

group with upper boundγ′ : A′ → C such thatA′ ⊂ I(X) can always be discovered at

the descendent nodes of nodeX or in an earlier enumeration.

proof: SinceA′ ⊂ I(X), andγ′ andγ are the upper bounds of two different rule groups,

we seeR(A′) ⊃ R(I(X)) ⊇ X. Let RS = {r|r ∈ R(A′) ∧ r /∈ X} andrmin ∈ X

be the row with the lowest ORD rank in row set X. If∃r′ ∈ RS such thatr′ ≺ rmin,

then nodeR(A′) is traversed before nodeX; otherwise nodeR(A′) is traversed at a

descendent node of nodeX. 2

Step 7 is implemented after Step 6 to ensure all descendant nodes downX are ex-

plored before determining whether the upper boundγ at X is an IRG. Together with

Lemma 7.3.2, it is known that the complete and correct set of interesting rule groups

will be in IRG.

Note that Step 6 implicitly does the pruning since it is possible that the enumeration

candidate list is empty, i.e.TT ′|X .E = ∅. It can be observed from the enumeration

tree that there exist some combinations of rows,X, such thatI(X) = ∅ (an example is

node “134”). This implies that there is no item existing in all the rows inX. When this

happens,TT ′|X .E is empty and no further enumeration will be performed.

7.3.2 Pruning strategy

This section presents the pruning techniques that are used in FARMER, which are essen-

tial for the efficiency. The emphasis here is to show that the pruning steps do not prune
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off any interesting rule groups while preventing unnecessary traversals of the enumera-

tion tree. Combining this with the earlier explanations on how all interesting rule groups

are enumerated in FARMER without the pruning steps, the correctness of the algorithm

FARMER will be obvious.

Pruning Strategy 1

Pruning strategy 1 is implemented at Step 5 of MineIRGs by pruningTT |X .Y , the

set of enumeration candidate rows that occur in all tuples of theTT |X . TT |X .Y is

partitioned to two subsets:Yp with consequent C andYn without. The intuitive reason

for the pruning is that we obtain the same set of upper bound rules along the branch

X WITHOUT such rows. The correctness of such a pruning strategy is because of the

following lemma.

Lemma 7.3.5. Let TT ′|X be aX-conditional transposed table. Given any subsetR′,

R′ ⊂ TT ′|X .E, we haveI(X ∪R′) = I(X ∪ TT ′|X .Y ∪R′).

Proof: By definition,I(X ∪ R′) contains a set of items which occur in every row of

(X ∪ R′). Suppose candidatey ∈ TT ′|X .Y (y occurs in every tuple ofTT ′|X), then

eithery ∈ X ∪ R′ (if y ∈ R′) or y occurs in every tuple of theTT ′|X∪R′ (if y /∈ R′). In

either case,I(X∪R′) = I(X∪R′∪{y}). Thus,I(X∪R′) = I(X∪TT ′|X .Y ∪R′).2

With Lemma 7.3.5, FARMER can safely delete the rows inTT ′|X .Y from the enu-

meration candidate listTT ′|X .E.

Example 7.3.2.ConsiderTT |{2,3}, the conditional transposed table in Figure 7.2. Since

enumeration candidate row 4 occurs in every tuples ofTT |{2,3}, it can be concluded that

I({2, 3}) = I({2, 3, 4}) = {a, e, h}. Thus, there is no need to traverse node “234” and

to createTT |{2,3,4}. Row 4 can be safely deleted fromTT |{2,3}.E.2

SinceI({2, 3, 4}) = I({2, 3}), the upper bound rule is identified at node “23” and

node “234” is redundant. We say that node “234” is compressed to node “23”.
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We argue here that Lemma 7.3.4 still holds after applying pruning strategy 1. With-

out applying pruning strategy 1, for each nodeX, A′ → C, whereA′ ⊂ I(X), is identi-

fied at a nodeX ′, which is traversed before nodeX or is a descendent node of nodeX.

With pruning strategy 1,X ′ might be compressed to a nodeX ′′ (X ′′ ⊂ X ′ and I(X ′′) =

I(X ′) = A′), and it can be seen that nodeX ′′ is either traversed before the subtree rooted

at nodeX, or inside this subtree.

Pruning Strategy 2

This pruning strategy is implemented at Step 1 of MineIRGs. It will stop searching the

subtree rooted at nodeX if the upper bound ruleI(X) → C was already discovered

previously in the enumeration tree because this implies that any upper bounds to be

discovered at the descendants of nodeX have been discovered too.

Lemma 7.3.6.Suppose pruning strategy 1 is utilized in the enumeration tree. LetTT ′|X
be the conditional transposed table of the current nodeX. All upper bounds to be dis-

covered in the subtree rooted at nodeX must have already been discovered if there exists

such a rowr′ that satisfies the following conditions: (1)r′ /∈ X; (2)r′ /∈ TT ′|X .E; (3)for

any ancestor nodeXi of nodeX, r′ /∈ TT |Xi
.Y (pruned by strategy 1); and (4)r′ occurs

in each tuple ofTT ′|X .

Proof: Let X = {r1, r2, ..., rm}, wherer1 ≺ORD r2 ≺ORD ... ≺ORD rm. Suppose that

there is a nodeX ′′(X ′′ = X ∪ {r′}), we can have the following properties: (1)I(X) =

I(X ′′); (2) r′ ≺ORD rm, sincer′ /∈ TT ′|X .E andr′ /∈ X; (3) TT ′|X .E = TT ′|X′′ .E.

X ′′ is either enumerated or compressed to a nodeXC (XC ⊂ X ′′), whereI(XC) =

I(X ′′) andTT ′|X′′ .E ⊆ TT ′|XC
.E. It can be proved that either nodeX ′′ or nodeXC is

traversed before nodeX by considering the following two cases: (1) Ifr′ ≺ORD r1, node

X ′′ or nodeXC falls in the subtree rooted at node{r′}, which is traversed before node

X. (2) If row ids in X ′′ follow the orderr1 ≺ORD r2 ≺ORD ... ≺ORD rt ≺ORD r′ ≺ORD

rt+1 ≺ORD ... ≺ORD rm, nodeX ′′ or nodeXC falls in the subtree rooted at node
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X ′ = {r1, r2, ..., rt, r
′}, which is also traversed before nodeX. Because ofTT ′|X .E =

TT ′|X′′ .E andTT ′|X′′ .E ⊆ TT ′|XC
.E, it can be concluded that all upper bounds to be

discovered in the subtree rooted at nodeX must have already been discovered earlier in

the subtree rooted at nodeX ′′ or nodeXC . 2

In the implementation of pruning strategy 2, the existence of such ar′ can be effi-

ciently detected by a process callback counting without scanning the whole ofTT ′|X .

Details are explained in Section 7.3.3.

Example 7.3.3.Consider node “23” in Figure 6.4 where the upper bound rule{a, e, h} →
C is identified for the first time. When it comes to node “34”, it is noticed that row

“2” occurs in every tuple ofTT |{3,4}, ‘2’ /∈ TT |{3,4}.E, and ‘2’ /∈ TT |{3}.Y . So it is

concluded that all upper bounds to be discovered down node “34” have already been

discovered before (I({3, 4}) = I({2, 3}) = {a, e, h}. I({3, 4, 5}) = ∅). The search

down node “34” can be pruned.2

Pruning Strategy 3

Pruning strategy 3 performs pruning by utilizing the user-specified thresholds,ξ, minconf

andminchi. It estimates the upper bounds of the measures for the subtree rooted at the

current nodeX. If the estimated upper bound atX is below the user-specified threshold,

FARMER stops searching down nodeX.

Pruning strategy 3 consists of 3 parts: pruning using confidence upper bound, prun-

ing using support upper bound and pruning using chi square upper bound. This strategy

is executed separately at Step 2 and Step 4 (Figure 7.4). Step 2 performs pruning using

the two loose upper bounds of support and confidence that can be calculated BEFORE

scanningTT ′|X . Step 4 calculates the three tight upper bounds of support, confidence

and chi square value AFTER scanningTT ′|X .

For clarity, the notations to be used in the lemmas in this subsection are listed as

follows.
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X: the current enumeration node;

γ: the upper boundI(X) → C at nodeX;

X ′: the immediate parent node of X;

γ′: the upper bound ruleI(X ′) → C at nodeX ′;

rm: a row id thatTT |X = TT |X′|rm ;

Pruning Using Support Upper Bound

Two support upper bounds for the rule groups can be identified at the subtree rooted at

node X: the tight support upper boundUs1 (after scanningTT ′|X) and the loose support

upper boundUs2 (before scanningTT ′|X). If the estimated upper bound is less than

minimum supportξ, the subtree can be pruned.

If rm has consequentC:

Us1 = γ′.sup + 1 + MAX(|TT ′|X .EP ∩ t|), t ∈ TT ′|X ;

Us2 = γ′.sup + 1 + |TT ′|X .EP |;

If rm has no consequent C:

Us1 = Us2 = γ′.sup;

Lemma 7.3.7.Us1 andUs2 are the support upper bounds for the upper bound rules dis-

covered in subtree rooted at nodeX.

proof: Because of the ORD order (definition 7.3.2), ifrm has no consequentC, the

enumeration candidates of nodes down nodeX will not have consequentC, either. The

support can not increase down nodeX, so the support of upper bounds discovered at the

subtree rooted at nodeX is less thanγ′.sup. If rm has consequentC, for nodeX and its

descendent nodes, the maximum increase of support fromγ′.sup must come from the

number of enumeration candidates with consequentC (|TT ′|X .EP |) at nodeX plus 1

(1 for rm)(Us2), or more strictly, from the maximum number of enumeration candidates

with consequentC within a tuple ofTT ′|X (MAX(|TT ′|X .EP ∩ t|), t ∈ TT ′|X) plus 1
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(Us1).2

Note that it is needed to scanTT ′|X to getUs1 while Us2 can be obtained directly

from the parameterssupp andX passed by its parent node without scanningTT ′|X . If

rm has consequentC, we getγ′.sup+1 = supp; otherwise we getγ′.sup = supp, where

supp is the input parameter of current MineIRGs subroutine (Figure 7.4).

Pruning Using Confidence Upper Bound

Similarly, FARMER estimates two confidence upper bounds for the subtree rooted at

nodeX, the tight confidence upper boundUc1 and the loose confidence upper boundUc2.

If the estimated upper bound is less than minimum confidenceminconf , the subtree can

be pruned.

GivenUs1 andUs2, the two confidence upper bounds of subtree rooted at nodeX,

Uc1(tight) andUc2(loose), are:

Uc1 = Us1/(Us1 + |R(γ.A ∪ ¬C)|);
Uc2 = Us2/(Us2 + |R(γ′.A ∪ ¬C)|) (rm has consequent C);

Uc2 = Us2/(Us2 + |R(γ′.A ∪ ¬C)|+ 1) (rm has no consequent C).

Lemma 7.3.8. Uc1 andUc2 are the confidence upper bounds for the upper bound rules

discovered in the subtree rooted at node X.

Proof: For a ruleγ′′ discovered in subtree rooted at node X, its confidence is computed

as|R(γ′′.A∪C)|/(|R(γ′′.A∪C)|+ |R(γ′′.A∪¬C)|). This expression can be simplified

asx/(x + y), wherex = |R(γ′′.A ∪ C)| and y = |R(γ′′.A ∪ ¬C)|. This value is

maximized with the largest x (Us1 andUs2) and smallest y. Suppose ruleγ is discovered

at node X. For any upper bound ruleγ′′ discovered down node X,γ′′.A ⊂ γ.A because

of pruning strategy 1, so we can see|R(γ′′.A ∪ ¬C)| ≥ |R(γ.A ∪ ¬C)|. Thusy is

minimized at value|R(γ.A ∪ ¬C)| or loosely at|R(γ′.A ∪ ¬C)| + 1(if rm has no

consequent C) and|R(γ′.A ∪ ¬C)| (if rm has consequent C).2

Note that ifrm has consequentC, we get|R(γ′.A∪¬C)| = supn; otherwise we get
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|R(γ′.A ∪ ¬C)| + 1 = supn, wheresupn is the input parameter of current subroutine

MineIRGs (figure 7.4).

Example 7.3.4.Suppose minimum confidenceminconf = 95%. At node “134”, the

discovered upper bound rule is “a → C” with confidence0.75 < 0.95. Since row 4 has

no consequentC, any descendent enumeration will only reduce the confidence. Thus

next level searching can be stopped.

Pruning Using Chi Square Upper Bound

The chi square value of an association rule is the normalized deviation of the observed

values from the expectation.

Let γ be a rule in the form ofA → C of datasetD, n be the number of rows ofD,

and m be the number of instance with consequentC of D. The four observed values

for chi square value computation are listed in the following table. For example,OA¬C

represents the number of rows that containA but do not containC. Let x = OA and

y = OAC . Sincem andn are constants, the chi square value is determined byx andy

only and we get chi square functionchi(x, y).

C ¬C Total

A OAC = y OA¬C OA = x

¬A O¬AC O¬A¬C O¬A = n− x

Total OC = m O¬C = n−m n

The following lemma gives an estimation of upper bound of chi square value for rules

down the nodeX.

Lemma 7.3.9. Suppose ruleγ is discovered at enumeration nodeX. The chi square

upper bound for the upper bound rules discovered at the subtree rooted as nodeX is:

max{chi(x(γ)− y(γ) + m,m), chi(y(γ) + n−m, y(γ)).

Proof: Suppose ruleγ′ (A′ → C) is identified in the subtree rooted at node X,x′ = OA′

andy′ = OA′C . SinceO(A) = |R(A)| andA′ ⊂ A. The followings are satisfied.
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Figure 7.5: The possible Chi-square variables

1) x ≤ x′ ≤ n (|R(A)| ≤ |R(A′)|)
2) y ≤ y′ ≤ m (|R(A ∪ C)| ≤ |R(A′ ∪ C)|)
3) y′ ≤ x′ (|R(A′ ∪ C)| ≤ |R(A′)|)
4) n−m ≥ x′ − y′ ≥ x− y (|R(A′ ∪ ¬C)| ≥ |R(A ∪ ¬C)|)

The value pair(x′(γ′), y′(γ′)) falls in the gray parallelogram(x(γ), y(γ)), (x(γ)−y(γ)+

m,m), (n,m), (y(γ) + n − m, y(γ) (Figure 7.5). Sincex(γ) > 0 andy(γ) > 0, all

value pairs(x′, y′) in the gray parallelogram can be matched to the quadrangle (0, 0),

max{chi(x(γ) − y(γ) + m, m), chi(y(γ) + n − m, y(γ)), and (m,n). Since the chi

square functionchi(x, y) is a convex function [62], which is maximized at one of its

vertexes, andchi(0, 0) = chi(n,m) = 0 (please refer to [62]), only the remaining two

vertexes are needed to be considered.2

7.3.3 Implementation

In the implementation of CARPENTER , we use memory pointers [15] to point at the

relevant tuples in the in-memory transposed table to simulate the conditional transposed

table.
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Figure 7.6: Conditional Pointer Lists

Following is the running example. Suppose the current node is node “1” (Figure

7.6(a)), andξ = 1. The in-memory transposed table is shown on the right hand side of

the figure. Memory pointers are organized intoconditional pointer lists.

In Figure 7.6(a), the “1”-conditional pointer list (at the top left corner of the figure)

has 6 entries in the form of< fi, Pos > which indicates the tuple (fi) that containsr1

and the position ofr1 within the tuple (Pos). For example, the entry< a, 1 > indicates

that rowr1 is contained in the tuple ‘a’ at position 1. We can extend the “1”-conditional
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transposed tableTT ′|{1} by following thePos. During one full scan of the transposed

table, CARPENTER also generates the conditional pointer lists for other rows (i.e.r2,

r3, r4 andr5). However, the generated “2”-conditional pointer list is slightly different

in that it contains an entry for each tuple that containsr2 BUT NOT r1. For example,

although the tuple ‘a’ containsr2, it does not appear in the “2”-conditional pointer list.

It will be inserted subsequently as we will see later.

A further scan through the “1”-conditional pointer list will allow us to generate the

“12”, “ 13”, “ 14” and “15” conditional pointer lists. Figure 7.6(b) shows the state of

memory pointers when we are processing node{1, 2}.
Finally, we show the state of conditional pointer lists after node{1} and all its de-

scendants have been processed (Figure 7.6(c)). Since all enumerations involving rowr1

have been either processed or pruned off, the entries in the “1”-conditional pointer list

are moved into the remaining conditional pointer lists. The entries in the “2”-conditional

pointer list will be moved to the other conditional pointer lists after node{2} and its de-

scendants are processed, and so on.

Throughout all the enumerations described above, we need to implement our three

pruning strategies. The implementation of strategies 1 and 3 is straightforward. For

pruning strategy 2, we do a back scan through the conditional list to see whether there

exists some row that satisfies the condition of Lemma 7.3.6. For example at node “2”

in Figure 7.6(c), we scan from the position of each pointer to the head of each tuple,

instead of scanning the transposed table from the position of each pointer to the end of

each tuple. In this example, there is no row that satisfies the pruning condition of Lemma

7.3.6. Such an implementation is proven to be efficient for our purpose as shown in our

experiments.

Moreover, two optimization strategies are utilized in the implementation.

Optimization 1. OrderORD. The rows of consequentC will be ordered before

those rows that do not containC. For the rows of the same class, the less frequent the
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row, the higher ORD order it gets. This will reduce the running time greatly because it

reduces the entry moving processes.

Optimization 2. Enumeration Candidate Constraint. At step 3 of subroutineMineIRGs,

if a row only occurs in one tuple ofTT ′|X , the descendent enumeration with the row only

generate a length-1 rule, while all length 1 rules can be easily discovered by scanning

the transposed tableTT ′ once. It is required that the enumeration candidate must occur

in at least two tuples ofTT ′|X .

7.3.4 Finding lower bounds

After discovering the upper bounds of interesting rule groups, users might be interested

to have a closer look at the members of the rule group. The algorithm, MineLB, is

designed for the purpose by finding the lower bounds of a rule group5. Since a rule

group has a unique upper bound and the consequent of a rule group is fixed, the problem

can be regarded as generating the lower bounds for the antecedent of the upper bound

rule. This antecedent could be regarded as a closed set (definition 7.3.3) and the problem

can be solved as long as the lower bounds of a closed set (definition 7.3.4) are generated.

Definition 7.3.3. Closed Set

Let D be the dataset with itemsetI and row set R. A (A ⊆ I) is a closed set of dataset

D, iff there is noA′ ⊃ A such thatR(A) = R(A′).2

Definition 7.3.4. Lower Bound of a Closed Set

Suppose A is a closed set of dataset D.Al, Al ⊆ A, is a lower bound of closed set A, iff

R(Al) = R(A) and there is noA′ ⊂ Al such thatR(A′) = R(A).2

MineLB is an incremental algorithm that is initialized with one closed setA, which

is the antecedent of an upper boundA → C of a rule group. It then updates the lower

bounds ofA incrementally whenever a new closed setA′ is added, whereA′ ⊂ A andA′

5Note that the lower bounds can not be directly derived from upper bounds.
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is the antecedent of the newly added upper boundA′ → C. In this way, MineLB keeps

track of the latest lower bounds ofA. MineLB is based on the following lemma.

Lemma 7.3.10.Let A be the closed set whose lower bounds will be updated recursively

andz be the set of closed sets that are already added. LetA.Γ be the current collection

of lower bounds for A. When a new closed setA′ ⊂ A is added,A.Γ is divided into two

groups,A.Γ1 andA.Γ2, whereA.Γ1 = {li|li ∈ A.Γ ∧ li ⊆ A′}, A.Γ2 = A.Γ − A.Γ1.

Then the newly generated lower bounds of A must be in the form ofl1 ∪ {i}, where

l1 ∈ A.Γ1, i ∈ A− A′.

Proof: Supposel is a newly generated lower bound of A.

(1) we provel ⊃ l1. SinceR(l) = R(A) (Definition 6.2.2) beforeA′ is added, there

must exist ali ∈ A.Γ such thatli ⊂ l ⊂ A. If li ∈ A.Γ2, l can not be a new lower bound,

sinceli ∈ A.Γ2 is still a lower bound ofA afterA′ is added. Sol ⊃ l1, l1 ∈ A.Γ1.

(2) Obviously, the newly generated lower bound must contain at least one item from the

set(A− A′).

(3) l′ = l1 ∪ {i} is a bound forA after addingA′, wherel1 ∈ A.Γ1, i ∈ A andi /∈ A′.

BeforeA′ is added,l′ = l1 ∪ {i} is a bound, so for anyX ∈ z, l′ * X. After A′ is

added,l′ * A′ becausei /∈ A′. So,l′ = l1 ∪ {i} is a new bound for A after addingA′.

Based on (1), (2) and (3), we come to the conclusion that the newly generated lower

bound for A after insertingA′ takes the form ofl1 ∪ {i}, wherel1 ∈ A.Γ1 and i ∈
(A− A′). 2

Itemsetl1 ∪ {i} described in Lemma 7.3.10 is a candidate lower bound ofA after

A′ is added. Ifl1 ∪ {i} does not cover anyl2 ∈ A.Γ2 and other candidates,l1 ∪ {i}
is a new lower bound ofA afterA′ is added. MineLB adopts bit vector for the above

computation. ThusA.Γ can be updated efficiently. The detailed algorithm is illustrated

in Figure 7.7.

The Lemma 7.3.11 can ensure that the closed sets (those that cover all the longest

closed setA′ ⊂ A) obtained at Step 2 are sufficient for the correctness of MineLB.
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Lemma 7.3.11. If closed setA1 ⊂ A is already added and the collection of A’s lower

boundsA.Γ is already updated,A.Γ will not change after adding closed setA2, A2 ⊂
A1.

proof: After A1 ⊂ A is added,A.Γ is updated so that noli ∈ A.Γ can satisfyli ⊆ A1.

So noli ∈ A.Γ can satisfyli ⊆ A2, A2 ⊂ A1. Since A2 will not cover anyli ∈ A.Γ,

A.Γ will not change, according to Lemma 7.3.10.2

Example 7.3.5.Find Lower Bound

Given an upper bound rule with antecedentA = abcde and two rows,r1 : abcf and

r2 : cdeg, the lower boundsA.Γ of A can be determined as follows:

1)Initialize the set of lower boundsA.Γ = {a, b, c, d, e};
2)add “abc” (= I(r1) ∩ A): We getA.Γ1 = {a, b, c} andA.Γ2 = {d, e}. Since all

the candidate lower bounds, “ad”, “ ae”, “ bd”, “ be”, “ cd”, “ ce” cover a lower bound from

A.Γ2, no new lower bounds are generated. SoA.Γ = {d, e};
3)add “cde” (= I(r2) ∩ A): We getA.Γ1 = {d, e} andA.Γ2 = ∅. The candidate

lower bounds are “ad”, “ bd”, “ ae” and “be”. Because none of them is covered by another

candidate andA.Γ2 = ∅, A.Γ = {ad, bd, ae, be}.2

7.4 Performance studies

This section will study both the efficiency of FARMER and the usefulness of the dis-

covered IRGs. All the experiments were performed on a PC with a Pentium IV 2.4

Ghz CPU, 1GB RAM and a 80GB hard disk. Algorithms were coded in Standard C.

Following are the 5 datasets used in the experiments.

Datasets:The 5 datasets are the clinical data on lung cancer (LC)6, breast cancer (BC)7,

prostate cancer (PC)8, ALL-AML leukemia (ALL) 9, and colon tumor (CT)10. In such

6http://www.chestsurg.org
7http://www.rii.com/publications/default.htm
8http://www-genome.wi.mit.edu/mpr/prostate
9http://www-genome.wi.mit.edu/cgi-bin/cancer

10http://microarray.princetion.edu/oncology/affydata/index.html
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Subroutine: MineLB(Table:D, upper bound rule:γ).

1. A = γ.A; A.Γ = {i|i ∈ A}; Σ = ∅;
2. for each rowrid of D thatrid /∈ R(A): if (I(rid) ∩A) ⊂ A then add(I(rid) ∩A) to Σ;

3. for each closed setA′ ∈ Σ: {
A.Γ1 = A.Γ2 = ∅;
for each lower boundli ∈ A.Γ: if li ⊆ A′ then addli to A.Γ1; elseaddli to A.Γ2;
CandiSet = ∅;
for eachli ∈ A.Γ1 and eachi ∈ A && i /∈ A′: add candidateli ∪ {i} to CandiSet;
A.Γ = A.Γ2;
for each candidateci ∈ CandiSet

if ci does not cover anyli ∈ A.Γ2 andci does not cover any othercj ∈ CandiSet
then addci to A.Γ

}
4. OutputA.Γ.

Figure 7.7: MineLB

datasets, the rows represent clinical samples while the columns represent the activity

levels of genes/proteins in the samples. There are two categories of samples in these

datasets.

dataset # row # col class 1 class 0 #row of class 1
BC 97 24481 relapse nonrelapse 46
LC 181 12533 MPM ADCA 31
CT 62 2000 negative positive 40
PC 136 12600 tumor normal 52

ALL 72 7129 ALL AML 47

Table 7.1: Microarray datasets

Table 7.1 shows the characteristics of these5 datasets: the number of rows (# row),

the number of columns (# col), the two class labels (class 1 and class 0), and the num-

ber of rows for class 1 (# class 1). All experiments presented here use the class 1 as

the consequent; it has been found that using the other consequent consistently yields

qualitatively similar results.

Two methods are used to discretize the datasets. One is the entropy-minimized par-

tition (for CBA and IRG classifier)11 and the other is the equal-depth partition with 10

11the code is available at http://www.sgi.com/tech/mlc/
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buckets. Ideally, we would like to use only the entropy discretized datasets for all exper-

iments since we want to look at the classification performance of IRGs. Unfortunately,

the two rule mining algorithms that we want to compare against are unable to run to

completion within reasonable time (they usually run out of memory after several hours

or longer) on the entropy discretized datasets, although FARMER is still efficient. As a

result, the efficiency results will be reported based on the equal-depth partitioned data

while the classifiers are built using the entropy-discretized datasets.

7.4.1 Efficiency of FARMER

The efficiency of FARMER will first be evaluated. We compare FARMER with the

interesting rule mining algorithm in [13]12. The algorithm in [13] is the one most related

to FARMER in terms of interesting rule definition. But the interesting rule discussed in

[13] does not contain the complete information of a rule group as FARMER does by

discovering the upper bound and lower bounds for each rule group. However, [13] only

randomly discovers one rule for each rule group. To the best knowledge, the algorithm in

[13] is also the most efficient algorithm that exists with the purpose of mining interesting

rules of the kind that FARMER discovers. We denote this algorithm asColumnEsince

it also adopts column enumeration like most existing rule mining algorithms.

We also compare FARMER with the closed set discovery algorithms CHARM [101]

and CLOSET+ [92], which are shown to be more efficient than other association rule

mining algorithms in many cases. We found that CHARM is always orders of mag-

nitude faster than CLOSET+ on the microarray datasets and thus we do not report the

CLOSET+ results here. Note that the runtime of FARMER includes the time for com-

puting both the upper bound and lower bounds of each interesting rule group. Compared

with CHARM, FARMER does extra work in: 1)computing the lower bounds of Inter-

esting Rule Groups and 2) identifying the IRGs from all rule groups. Unlike FARMER

12My own implementation is used in the experimental study since the code from the authors is not
available.
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(a) Lung Cancer (b) Breast Cancer

(c) Prostate Cancer (d) ALL-AML leukemia

(e) Colon Tumor (f) The Number of IRGs(minchi=0)

Figure 7.8: Varying minimum support

that discovers both upper bound and lower bounds for each IRG, ColumnE only gets

one rule for each IRG.

Varying Minimum Support

The first set of experiments (Figure 7.8) shows the effect of varying minimum support

thresholdξ. The graphs plot runtime for the three algorithms at various settings of

minimum support. Note that the y-axes in Figure 7.8 are in logarithmic scale. Both

minconf and minchi are set as ZERO, which disables the pruning with confidence
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(a) Lung Cancer (b) Breast Cancer

(c) Prostate Cancer (d) ALL-AML leukemia

(e) Colon Tumor (f) The Number of IRGs (minchi=0)

Figure 7.9: Varyingminconf

upper bound and the pruning with the chi square upper bound of FARMER.

For CHARM,xi represents the least number of rows that the closed sets must match.

The runtime of CHARM is not shown in Figures 7.8(a) and 7.8(b) because CHARM runs

out of memory even at the highest support in Figure 7.8 on datasets BC and LC.

Figure 7.8 shows that FARMER is usually 2 to 3 orders of magnitude faster than

ColumnE and CHARM (if it can be run). Especially at low minimum support, FARMER

outperforms ColumnE and CHARM greatly. This is because the candidate search space

for ColumnE and CHARM, dependent on the possible number of column combinations

after removing the infrequent items, is orders of magnitude greater than the search space
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of FARMER, dependent on the possible number of row combinations, on microarray

datasets.

As shown in Figure 7.8(f), the number of interesting rule groups discovered at a low

ξ is much larger than that at a highξ. Besides the size of row enumeration space, the

number of IRGs also affects the efficiency of FARMER. First, FARMER discovers IRGs

by comparison (see algorithm section, step 7). The more IRGs discovered, the more time

is consumed for the comparison. The time can take 20% of the runtime of FARMER at

low ξ. Second, the time complexity of computing lower bounds in FARMER isO(n),

wheren is the number of IRGs. It is observed that at highξ, the time used to compute

lower bounds takes 5% to 10% of the runtime of FARMER while the time can take up

to 20% at lowξ. ColumnE also does the comparison to get interesting rules while all the

runtime of CHARM is used to discover closed sets.

Readers may wonder why different minimum support thresholds are chose for differ-

ent datasets. The principle here is to make the runtime of FARMER about 10 seconds.

It can seen that ColumnE and CHARM might catch up with FARMER if theξ is further

increased. However, the absolute time difference must be less than 10 seconds and is

not interesting for comparison. This is negligible compared to the difference in running

time at lowξ. To make figures clear, they are not shown here.

Varying Minimum Confidence

The next set of experiments (Figure 7.9) shows the effect of varyingminconf when

minimum support is fixed. In this subsection, the minimum support is represented with

minsup which is absolute number of rows. Theminchi pruning is still disabled by

setting it as ZERO. For all the parameter settings in Figure 7.9, CHARM can not finish

because it always runs out of memory within several hours while ColumnE always needs

more than 1 day to finish. This is because we adopt a relative lowminsup to study the

effectiveness of confidence pruning in the experiment. To show the effect of various

minconf clearly, we do not give the runtime of ColumnE since it is too slow to compare.
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Let’s first ignore the lines marked with “minchi =10” here. We setminsup = 1, which

means that minimum support pruning is almost disabled.

Figure 7.9 shows that the runtime of FARMER decreases when increasingminconf

on all the 5 datasets (Figure 7.9(f) lists the number of IRGs). This shows that it is

effective to exploit the confidence constraint for pruning. There is only a slight decrease

in runtime of FARMER when theminconf increases from 85% to 99%. The reason

behind this is that there are few upper bound rules whose confidences fall between 85%

and 99%. It is observed that nearly all IRGs discovered at confidence 85% on these

5 datasets have a 100% confidence. As a result, FARMER does no additional pruning

whenminconf increases from 85% to 99%.

The result that many discovered IRGs have a 100% confidence is interesting and

promising. It means that the IRGs are decisive and have good predicability.

Varying Minimum Chi Square Value

The last set of experiments was preformed to study the effectiveness of the chi square

pruning. Minimum chi square constraint is usually treated as a supplementary constraint

of minimum support and minimum confidence. We setminchi = 10 and draw the

runtime vs variousminconf in Figure 7.9 due to the space limitation, whereminconf

is set the same as in Section 7.4.1.

The pruning exploited by constraintminchi = 10 is shown to be very effective on

datasets BC, PC, CT and ALL. In some cases, the saving can be more than an order

of magnitude. The pruning effect is not so obvious on dataset LC. By checking the

identified IRGs, we found that discovered IRGs from LC usually have higher chi square

value. If a tighter chi square constraint is imposed by increasingminchi, theminchi

pruning will be more obvious as found in experimental study.

As can be seen, in all the experiments conducted, FARMER outperforms ColumnE

and CHARM. Moreover, the pruning based on minimum support, confidence and chi-

square are effective. In general, the runtime of FARMER correlates strongly with the
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number of interesting rule groups that satisfy all of the specified constraints. The ex-

perimental results demonstrate that FARMER is extremely efficient in finding IRGs on

datasets with small number of rows and large number of columns.

7.4.2 Usefulness of IRGs

One avenue to assess the usefulness of IRGs is to pass them to the biologists for inter-

pretation since the number of IRGs is much smaller than the number of rules and the

IRGs themselves are intuitive. The other evaluation method is to build classifier to show

the usefulness of discovered IRGs. This thesis will reports the classification results in

[27] 13 to provide some evidence that the discovery of IRGs is at least useful for such

purpose. The classifier in [27] is calledIRG classifier. Interested readers can also refer

to the extension work [26] of this thesis for another classification method for microarray

datasets using rule groups.

The IRG classifier is compared with two well-known classifiers CBA [55] and SVM

[47]. The code of these two classifiers is open-source and is available through the inter-

net. The IRG classifier building shares the similar three steps with CBA as follows.

1. Ranking of Rules

Here, the rules are first sorted by confidence (descending), second by the support

of rules (descending), and last by the length of the rules (ascending). For two

rules with the same confidence and support, the rule with fewer items will be

placed first.

2. Pruning of Rules

Having sorted the rules, CBA will try to find a cover for each training data in-

stance. Given two rules that match a training instance, the rule with the higher

sorted order is deemed to cover the instance. Rules that do not cover any instance

will be removed.
13Xin Xu played primary role in the study of building classifiers using IRGs
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3. Test Data Prediction

After the ranking and pruning, the test data is predicted by the highest ordered rule

that matches the test instance. A default class is set in case no rules are matched

by the test instance.

While the general approach is the same, the IRG classifer is different from CBA in

that the upper bounds of the IRGs are used INSTEAD of the frequent rules. This reduces

a significant amount of noisy rules in the classifier which will boost the performance of

the IRG classifier substantially.

As the entropy based discretization algorithm also performs feature selection as part

of its process, the number of columns in the datasets is reduced after the discretization.

We indicate the new dimensionality of the datasets in Table 7.2.

Despite the reduction in the number of columns, the open-source CBA algorithm

(and all competitors we look at in the earlier section) failed to finish running in one

week. However, based on the upper bounds and lower bounds generated by FARMER,

we can obtain the frequent rules14 to build the CBA classifier (only the SHORTEST

members of IRGs are possible to be selected by CBA). We compared the performance

of the IRG classifier with CBA and SVM on the 5 microarray datasets we used earlier.

For CBA and the IRG classifier, we use the entropy discretized datasets; for SVM, we

use the corresponding dataset with thesameset of features output by the discretization

algorithm but the actual numeric values before discretization are used.

For SVM, we always use the default setting ofSV M light[47]. For CBA, we set the

minimum support threshold as0.5∗number of training data of classC for each class

C and set the minimum confidence threshold as0.8 (According to the experiments,

if we further lower the minimum confidence threshold, the final CBA classifier is the

same). For IRG classifier, we set the same minimum support and minimum confidence

thresholds, and setminchi as 0 (To keep the comparisons fair) when running FARMER.

14We note that this itself is a contribution of FARMER, since conventional rule mining algorithms fail
to generate rules in reasonable time.
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Dataset # features # training # test IRG Classifier CBA SVM
BC 619 78 19 78.95% 57.89% 36.84%
LC 2173 32 149 89.93% 81.88% 96.64%
CT 135 47 15 93.33% 73.33% 73.33%
PC 1554 102 34 88.24% 82.35% 79.41%

ALL 866 38 34 64.71% 91.18% 97.06%
Average Accuracy 83.03% 77.33% 76.66%

Table 7.2: Classification results

Table 7.2 illustrates the new characteristic of the 5 microarray datasets, together

with the percentages of correctly predicted test data for the IRG classifier, CBA and

SVM. We can see that the IRG classifier has the highest average accuracy. Although

SVM performs very well on LC and ALL, it fails on BC. No classifier outperforms the

others on all datasets, but they can be supplementary to each other. The IRG classifier is

more understandable than SVM which employs complicated kernel models and distance

model making it difficult to derive understandable explanation of diagnostic decision

made by SVM method, Therefore, IRG classifier could be a good reference tool for the

biological research.

7.5 Conclusion

In this chapter, we proposed an algorithm called FARMER for finding the interesting

rule groups in microarray datasets. FARMER makes use of the consequent and the spe-

cial characteristic of microarray datasets to enhance its efficiency. It adopts the novel ap-

proach of performing row enumeration instead of the conventional column enumeration

so as to overcome the extremely high dimensionality of microarray datasets. Experi-

ments show that FARMER outperforms existing algorithms like CHARM and ColumnE

by several orders of magnitude on microarray datasets. The discovered IRGs were also

shown to be useful for the classification of microarray data.
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Conclusions

This thesis described a framework for mining, recycling and reusing frequent patterns in

association rule mining. Within this framework, recycling previous mining results and

mining microarray data are addressed.

Practical data mining is often a highly interactive and iterative process. Users change

constraints and run the mining algorithm many times before they are satisfied with the

final results. The frequent patterns discovered in the early round of mining encapsulate

the complete or part of computation required by subsequent mining processes. This

thesis has shown that recycling previous mining results from the same user or different

users in the mining system is valuable and useful for subsequent mining.

Chapter 4 proposed the concept of tree boundary to summarize and reorganize the

previous mining results (including frequent patterns and intermediate results) and a re-

cycling technique to extending the tree boundary to discover the set of frequent itemsets

that were not counted in previous mining. Based on the tree boundary and recycling

technique, two existing algorithms were adapted to re-mine these itemsets under re-

laxed constraints. Experimental results demonstrated that the proposed technique was

highly effective in improving the efficiency of subsequent mining with relaxed mini-

mum support. The application of such technique to more complicated constraints was

also discussed in Chapter 4.

Chapter 5 presented a different technique to recycle frequent patterns discovered in
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the early round of mining (by the same user or different users) to enhance subsequent

mining. Chapter 5 proposed a two phase strategy that first compressed the database

based on frequent patterns from an early round of mining and then mined the com-

pressed database. Two compression strategies were designed for this technique and

three existing mining algorithms were adapted to work on compressed databases. The

experimental results showed that the proposed strategy was effective, and the proposed

recycling algorithms outperformed their non-recycling counterparts significantly. The

results also showed that a cost-based compression strategy was preferred over a storage-

based strategy. In Chapter 5, the recycling technique described in Chapter 4 was com-

pared qualitatively with that described in Chapter 5.

Chapter 6 described three algorithms using row enumeration for finding frequent

closed patterns in microarray datasets with long columns and a small number of rows.

The three algorithm explored various implementations of row enumeration strategy. Ex-

periments showed that the three algorithms usually outperformed existing closed pattern

discovery algorithms like CHARM and CLOSET by a large order of magnitude when

they were running on microarray datasets.

Association rules discovered from microarray data are often too large in number to

handle and people may often be interested in rules with given right hand side. How-

ever, the number of rules with given consequent is also huge in number and many of

them are redundant. Chapter 7 addressed these problems by proposing the concept of

interesting rule groups and presenting FARMER algorithms to find the interesting rule

groups. FARMER also performed the novel approach of performing row enumeration

and pruned search space using the minimum support, minimum confidence and mini-

mum chi square constraints. Experiments showed that FARMER outperformed the best

known existing algorithms by a large order of magnitude on microarray datasets. The

IRG classifier built on interesting rule groups discovered by FARMER not only demon-

strated the usefulness of discovered IRGs, but also extended the associative classification
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to microarray datasets.

8.1 Discussion and future work

Along the direction of recycling data mining results, one immediate future work is to

combine the two recycling methods in Chapters 4 and 5. More specifically, the tree

boundary in Chapter 4 is used to summarize the previous results and the technique in

Chapter 5 is used to extend tree boundary.

One interesting question here is whether the recycling technique can be applied to

microarray data when the constraints are changed. Unfortunately, the recycling tech-

niques in Chapters 4 and 5 usually cannot help the frequent pattern mining from mi-

croarray data. This is because there are usually a large number of frequent patterns

mined from microarray and the patterns to be recycled will be numerous if the infre-

quent intermediate results are also considered. Processing these patterns to generate

tree boundary (required by the technique in Chapter 4) or select a subset of patterns to

compress database (required by the technique in Chapter 5) will be a time consuming

process. In addition, the average computation of discovering each pattern is not very

expensive considering there is only a few rows in microarray data. This means that the

potential saving of using such a pattern to compress database in the technique in Chapter

5 may not be large. All these make the techniques in Chapters 4 and 5 usually cannot

work well on microarray data. How to recycle patterns for microarray data will be a

future work.

The other open problems that can be investigated in future are listed as follows: (1)

to investigate the possibility of applying the proposed recycling technique in Chapter

5 to other frequent pattern algorithms, such as Apriori-like algorithms and algorithms

mining frequent patterns from vertical layout datasets. In addition, it would be also

interesting to study the recycling techniques for the proposed algorithms described in

this thesis; (2) to examine the possibilities of compressing databases using frequent
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patterns from other sources, such as the branches of decision trees and the frequent

patterns discovered from a sample of dataset for the recycling technique in Chapter 5;

(3) to investigate how frequent patterns can be recycled for decision tree construction

since there are many aggregation operations in classification that could be sped up with

the proposed technique in Chapter 5; and (4) to investigate the application of recycling

in other data mining tasks, such as clustering.

Both frequent closed pattern mining algorithms in Chapter 6 and interesting rule

groups mining algorithm in Chapter 7 are designed for biological data with a small

number of rows and a large number of columns, especially the emerging microarray

data. They usually work well for datasets with less than 300 rows. Although it is true

that current microarray datasets usually have small number of rows, these proposed al-

gorithms could be extended to other large datasets, such as the Thrombin Data in KDD

cup 2001, that are characteristic of both long columns and large number of rows by using

a combination of column and row enumerations. More specifically, column enumera-

tions can be first applied to discover short frequent patterns, and then row enumerations

can be applied to extend these short patterns (or rules) to get longer ones. In [67], we

made some attempt to combine the two enumeration strategy but the combination is still

naive. More work is needed to make the combination more effective and efficient.

This method can also help the three row enumeration algorithms in Chapter 6 to deal

with those datasets too large to fit in memory, as it is well known that some column-

wise mining algorithms have linear scalability with dataset size. The other method for

the three row enumeration algorithms to deal with the memory limitation problem is to

utilize the database projection (disk-based) techniques as suggested in [42, 43]. This

technique was also used in the recycling algorithms in Chapter 5.

Another problem that deserves further investigation is to optimize the IRG classifier

for microarray data classification. The IRG classifier described in this thesis was built

on discovered IRGs to illustrate the usefulness of discovered IRGs. The IRG classifier is
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adapted from CBA [55] method. Therefore, a natural extension is to investigate whether

the improved classification techniques over CBA, such as CMAR [54] and [10], could be

used to improve IRG classifier. In [26], we tries to discover Top-k covering rule groups

for each sample and build a refined classifier which is shown to be more accurate than

IRG classifier.

Finally, an interesting problem that can be addressed in future is how to implement

the framework given in Chapter 3. Chapter 3 described the components for the frame-

work that was presented as a vision. In order to implement such a framework, more de-

tailed problems need to be addressed, such as how to represent the recycling technique

with rules that can be automatically understood by the data mining system. Moreover,

although this thesis presented some qualitative heuristics of choosing appropriate algo-

rithms according to dataset property, they are still not enough and it is an interesting

topic to study more operative and subtle rules.
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