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Summary 

 

 

Motion planning is one of the principal elements in a robotic system. It opens 

areas of interests especially when it is associated with sensor-based applications. 

Dedicated works mainly concern on global optimal solution using what so called 

on-line trajectory planners. The methods however often require massive 

computational power and thus limit its practical scope. A simpler optimality 

paradigm, i.e. kinematic optimality, opens possibility to study a more applicable 

sensor based motion planning profile. It also offers faster process and system 

optimality. The algorithms developed in this study apply conditionals to select the 

required motion parameter and are able to equivalently generate the optimal 

profile––trapezoidal trajectory profiles––in a reliable and low computational-cost 

algorithm. The simulations and experiments show satisfactory results on typical 

simple sensor based applications. This method is applicable for higher 

multidimensional systems. 

 



 1

Chapter 1 

 

Introduction 

 

1.1. Background 

Sensor based applications enhance robotic functions. In sensor-based applications, the 

performed task is subject to external sensed conditions. Being able for sensing, a 

sensor-based robotic system is expected to perform desirable reactions against the 

sensed conditions. In recent continuous developments, many types of sensor are being 

augmented and implemented in robotic system [3, 8, 9, 10, 11] to extend the system 

capability and intelligence 

Amidst numerous types of applicable sensor, the common required reaction of sensed 

conditions is motion. The desired motion can be, for example, avoiding obstacles or 

pursuing or preying targets. These applications have been studied for years as they are 

applicable in many useful scenarios like catching projectile/flying object, search and 

rescue, hazardous environment handling, or a classic industrial scenario where robots 

have to efficiently pick and place objects from/to moving conveyor system. 

Thus, it is reasonable to consider motion planning as important part of the spatial 

sensing ability of a robot. With the expectation to perform or anticipate the sensory 

information, the robot to some extent should be intelligent and able to plan and 

generate the motion with respect to the sensed information. Therefore, beside the 

significance of sensory information process, the motion planning remains important in 

the way to generate the desired actions. 
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In a typical system, the motion planner lies on the upper control level of a robotic 

system. It provides calculated data for the lower control level or joint controller. The 

data become the reference or desired values for the lower control. Figure 1.1 shows a 

block diagram of the controller of a robotic system. For sensor-based system, the upper 

control might content the necessary algorithms to handle the sensory interactions 

including the motion-planning algorithm. 

Storage/Memory
subsystem

Input/Output
subsystem

User Interface
  - console/terminal
  - teach pendant
  - etc.

Upper Control System
 - System monitor
 - Safety/watchdog
 - Exceptional handler
 - Planner
      - forwar/inverse kinematic
      - motion planning

Lower Control System
(Joint Controller)

Amplifier/Driver

R  o  b  o  t Feedback/Sensor

 

Figure 1.1 Typical components of robot control system 
 

In many non sensor based applications, motion planning roles on pick and place 

application where the robot should move from designated initial point to a target point 

in one shot process stop to stop. In such action, the motion planning algorithm will 

calculate a set of discrete points imposing the desired motion from initial point to 

target point with zero boundary conditions. In contrast to this “one shot” planning 

procedure, in a sensor-based application, the target is dynamic and is updated at certain 
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intervals. Therefore although the final condition remains zero, the motion planning has 

to be able to accommodate the dynamic and arbitrary initial conditions. 

Nevertheless, the motion must be acceptable and if possible it must be optimal. 

Further, as the information is continuously updated, the motion planning process has to 

be reliable and fast relative to refresh rate of the sensing process. The study presented 

here addresses the demand of fast reactive sensor based motion planning. 

 

1.2. Related work 

1.2.1. Motion Planning 

Robot as it is defined in [12] imposes two subsystems: the mechanism capable to 

perform motion manipulation and the computer algorithm/controller capable to plan 

and control the motions. Either mobile or the fix-based manipulator type conforms to 

this definition. 

Trajectory or motion planning as part of the robot’s computer algorithm/controller has 

a basic function. It defines the trajectory connecting the initial and final position. 

Moreover, it may characterize how efficient and optimal a motion will be. Another 

formal definition of trajectory/motion planning, as stated in [28], is the algorithm for 

finding a suitable spatial or physical path without taking into account the dynamics of 

the system. 

In common practices, trajectories are defined in Cartesian space or task space [4]. The 

controller will map the trajectory to the corresponding joint angles. Although the task 

space planning is desirable for its direct sensation to the user’s view, for certain 

reasons and applications the joint space planning is also used as it is easier and 

satisfactorily applicable in many areas. 

In contrast to pre-defined linear, circular, and spline path of CNC applications [1, 2], a 



 4

trajectory in robotics is defined with respect to the task. When the desired motion is a 

predefined path, the motion is called path constrained for example in welding, sealing, 

gluing, or spraying applications. When only initial and final points are considered it is 

called point to point motion. The study presented in this thesis is also regarding the 

point to point motion planning. 

Although paths or trajectories of robots motion are often computed separately, by 

joining piecewise trajectories through some knots, it is possible to form curved paths. 

This method is useful in constructing a collision avoidance path like many works have 

addressed. 

In general, the motion-planning process in robot controller can be described as follows. 

Given the initial and final point (and intermediate knots if applicable), the trajectory is 

calculated using certain profiler equations. The result of the calculation is a set of 

discrete points connecting initial and final points for each controller’s sampling time 

step. Joint controllers will ensure that the actuator achieves this reference position at 

every time step. If it is desirable, the controller may also refer to the reference velocity 

information from the controller [34]. 

The productivity of a robotic working cell would correlate with time-optimal and 

efficient works. This optimality can be achieved by managing the task such to 

consume minimum energy input, cost, and time. Thus, the common objective of 

motion planning is to generate effective and efficient working motions.  

Nevertheless, optimal motion should be generated subject to some actuator limitations 

such as allowable speed, acceleration, and jerk if applicable. Jerk, or torque rates [26], 

is the derivative of acceleration. For a given actuator limitation, the system is expected 

to plan a time-optimal motion within this limit. The importance of the limitation is 

obvious. From the design view, violations of the limit introduce uncertainties to the 
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performance measurements. Whereas from a practical or maintenance view, the over-

limit usages, in long term end, will become unexpected cost and time losses. 

 

1.2.2 Optimality issue 

Robotic manipulators have become common in recent automated working cell, and 

there are always great interests of performance improvements. To achieve this 

optimality question, the system has to be well programmed. The implementation can 

be done in different strategy such as energy optimality algorithm, action optimality, 

etc. However, mostly the common way is through time optimality [27]. 

Although many problems of robot motion/trajectory planning have been addressed in 

[35], the subject is still becoming an area of considerable interest and importance. 

Other authors like [36, 37] also describe novel discussions on motion planning 

problems. Reducing the movement time within system limitation/capabilities to obtain 

optimal motion is also still a challenging problem as theoretically there are no single 

solution for realizing a motion from one point to the target point. Many authors have 

worked on time optimal motions problems, like [16 – 28, etc.].  

Optimal trajectory planning is also challenging because of the complexity due to the 

fact that typical manipulators are coupled multi-body systems resulting in highly 

nonlinear dynamic system. This complexity increases exponentially with the number 

of degrees of freedom. Despite the demand of solid computational resources for 

finding the solution, this dynamic analysis is desirable because it offers a complete 

system solution. However, linearization and other simplified model-based approaches 

have been used to include the dynamics. As a result, it will respectively rely on the 

accuracy of the model used. 

In their works, many researches proposed the dynamic optimization problems using 
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numerous techniques and systems, for example [17, 18, 21, 34] proposed the 

optimization of commercial controllers. Most of the proposed methods applied 

optimization of parameterized trajectory techniques that are earlier introduced by 

Bobrow [16]. Some authors combined the technique with evolutionary search 

algorithm, for example [25, 30]. Constantinescu et al. [26] focuses the improvement of 

smoothness of trajectory for motion planner in typical industrial manipulators by 

ensuring a bounded jerk throughout motions. Bailin et al. [22] also proposed the same 

improvement, however, as a trade off, travel time or movement time is not considered 

anymore. 

Research in optimal trajectory planning mostly falls into two categories. The first type 

involves optimal trajectory planning along a prescribed path like the one proposed by 

Shin and McKay [29] and furthered by many others such as [16, 20, 22, 24, 26]. And 

the second type is to find the optimal trajectory for a common point to point motion 

like in [19, 21, 30, 34, 38, 39].  

The proposed methods mostly use a bang-bang time optimal solution and expect 

saturation of at least one joint actuator [26]. The solution often becomes problematic 

due to violations of actuator operational limitations/bounds especially on torque rate or 

jerk. Therefore it appears that additional works are still required to ensure smoothness. 

Those mentioned authors proposed the solution of the problem by concerning the 

dynamics of the manipulator. Although the solution can be considered as a complete 

and global solution, it has been found that the dynamic complexity has brought a 

remarkable computational burden. This computational problem makes the solution 

applicable only at off-line level. A simplified algorithm involving dynamics, which is 

proposed by Lin et al. [31] using cubic-based path approximation, still brings hefty 

computation because it needs to keep acceleration continuity within a dynamic 
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formulation. At the end the method may only applicable at off-line level as well. 

In an effort to develop online algorithm involving system dynamics, Miro [34] used 

industrial controllers for optimal trajectory planning. However, the work only concerns 

on optimization of tractability to maximize system utility while the kinematic 

constraints are neglected. 

To be more practical, it appears that a simpler approach can be acceptable where the 

dynamics are not highlighted. As actuators have physical limitations like maximum 

speed, maximum acceleration, and maximum torque, it will be simpler and more 

practical if the solution is based on purely the kinematic restrictions. The similar 

approach will be also applicable in Cartesian space planning, i.e. using corresponding 

Cartesian kinematic bounds. The solution will be kinematically optimal. This simpler 

perspective is also preferred in industrial applications [40]. As is proven later, 

kinematical optimization also offers much faster computation resulting in cheaper 

systems; which also makes it suitable for sensor-based applications. 

 

1.2.3 Sensor based application 

Meanwhile, recent applications such as medical robotic, mobile system, etc., dictate 

sensor-based systems. Sensors give feedback information for the system. By utilizing 

the feedback, the system is expected to be more intelligent by allowing reactions 

against the sensed conditions. 

The sensor-based applications open problems for motion planning. Many authors, such 

as [42, 43], have been interested and working on mobile system motion planning 

where sensory behaviors in large spatial arena are likely more representing the need of 

sensory interactions. Most of the works are on the system navigation and finding a safe 

path through a cluttered environment, harsh terrain, or amid dynamic objects. For fix-
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based manipulators, problems of avoiding obstacles have also been researched earlier 

using techniques like configuration space and search algorithms [44, 45, 46]. Instead of 

this obstacle avoidance problem, concern has also been addressed for manipulator 

interception or rendezvous problems [48, 61, 62, 40, 49, 50, 51, 64] using either 

variant methods of Prediction-Planning-Execution––which is mostly used––or the 

Navigation Guidance.  

A principal consideration in a sensor-based system is computation time. Motion 

planner algorithms for sensor-based systems have to be fast relative to sensor’s refresh 

rate. The fast algorithm will allow real time responses. It is found in the mentioned 

works, that fast calculation is mostly achieved by incorporating simple calculation, 

simplified optimality criteria, and the use of common joint trajectory profiler. 

 

1.2.3.1 A view on common profiles: cubic, quintic, and trapezoidals 

There have been many works in the area of smooth trajectory profile generation [16, 

22, 26, 58, 59]. Widely known and used profiles are: polynomial types, i.e. cubic, 

quintic; and blend types, i.e. trapezoidal velocity, trapezoidal acceleration [3, 5]. 

Chand et al. [59] used another polynomial spline to interpolate joint target, however 

jerk is not considered. Very few works use quartic. Chang et al. [60] used a quartic 

spline to approximate path or path tracking; however, the method requires advance 

knowledge of the path. Piecewise cubic is used in [16, 22] to obtain a smooth off-line 

time optimal constrained path trajectory. Cubics have also shown satisfactory results in 

an application of characterizing a bounded deviation path [52]. 

For online applications, Tondu use three piecewise cubics to characterize optimal 

online joint trajectory profiles under several constraints [40]. Although the method 

allows fast computation, it is still not reactive in the sense that the trajectory is not re-
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planned and executed in real-time but rather to wait the previous planned motion 

completion. The method also permits overshoots or oscillation tendency of 

polynomials––some call it wandering––and even utilizes it as a constraint parameter. 

Jerk is also not considered in the proposed method. 

Although higher degree polynomials tend to easily oscillate, quintic is still a preferable 

choice. For online applications, especially for visual control/coordination or 

interception applications, many have used it despite some underlying considerations. 

Andersson uses quintic for the impressive experiment of visual coordination in the 

robotic ping-pong player [61]. The algorithm is based on a predictive method to a 

priori known hit planes, thus adapting tolerances of the final points, and the motion 

planning practically is a stop to stop quintic. The method thus to some extent could not 

be considered as real-time reactive motion generation. Buttazzo uses a better strategy 

to realize real-time reactive action for the robotic mouse buster [62]. The algorithm 

allows quintic-based trajectories to be re-planned within motions for a continuous 

sensor-based prediction. Croft et al. improved the prediction strategy to obtain optimal 

and smooth preying motion while implementing the same quintic re-planning method 

[49, 26, 48, 47]. However, regarding to the predictive algorithm that is used by both 

authors, the on-line re-planning strategy is only applicable for small and determined 

target changes. On another development of an online quintic profiler, Macfarlane and 

Croft improved the smoothness using a bounded jerk point to point planning method 

[54] but still for small target changes. Earlier, Lin et al. [50] also proposed reactive 

motion planner based on a quintic profiler. But, optimality is not considered in their 

work. 

Quintic appears to have a better smoothness characteristic. Thus it is a preferable 

choice for certain application such as to minimize the effect of the dynamics of flexible 
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or elastic components [53]. As another example of application, Guarino et al. [57] used 

quintic to minimize and optimize the curvature variability of the steering curve for a 

mobile system. 

The fast trapezoidal profile is commonly used in industrial robots [14, 17, 18, 21]. As 

another application example, a force-torque sensor-based excavating system in [63] 

uses a trapezoidal velocity profiler to get fast excavating trajectories. Wikman et al. 

[46] proposed their collision free reflex control algorithm also by incorporating a 

trapezoidal velocity profiler to obtain fast reactions. The main weakness of the works 

is the jerky and non-smooth motions. Nam and Oh used a novel reactive phase 

resolved trapezoidal profiler algorithm for a visual servoing system [55]. However, the 

canonical algorithm in their method still requires high computation as a result of 

complex phase resolutions to obtain a smooth and optimal trajectory. 

 

1.2.3.2 Summary 

The mentioned common profilers and the proposed algorithms have proven their 

essential advantages one over another. It rather becomes trivial to choose the preferred 

one especially in context with on-line applications. It is desirable to have a clear 

comparative analysis over several relevant performance measures. Further the demand 

of low computational cost, fast, and reactive motion planner seems still has not found a 

satisfactory answer. The identified problems of adapting the large target position 

change, the tendency of oscillation or wandering of higher order polynomials, the 

efficient computations, smoothness, and optimality still remain as open problems for a 

typical reactive real-time sensor-based system. 

Earlier development [15] although has proven a satisfactory performance on a visual 

servoing application, this however, still encountered computational problems. This 
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work improves the computation/algorithm flow and tries to achieve better accuracy. 

 

1.3 Objectives, Scope, and Methodology 

The objective of this work is 

- to study motion or trajectory profile characteristics especially in correlation 

with reactive sensor-based motion planning applications. 

- to develop a suitable fast reactive sensor-based motion planning algorithm that 

is able: 

o to perform tasks of reaching static or dynamic target with zero velocity 

and zero acceleration 

o to react fast, and smoothly, at any time to a large change of target 

position 

o to conform to velocity and acceleration bounds, and jerk bound if 

applicable,  

o to apply in multidimensions, either in joint space or task space 

applications. 

The work covers analysis and synthesis for an optimal motion planning algorithm 

subject to kinematic constraints, i.e. maximum velocity, maximum acceleration, and 

maximum jerk. Thus the dynamics of system is not considered. A multi dimensional 

application involving 6 DOF is implemented at simulation level using graphical user 

interface.  

The algorithm development began with the comparison and analysis of one-dimension 

trajectory profilers that are commonly used in motion planning. The comparison 

provides references for a preferable profile. Trapezoidal profiles are found to excel 

other profiles especially in correlation with reactive sensor based applications. The 
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developed motion planning algorithms thus are based on trapezoidal profiles. Prior to 

the experiments on real systems, simulations are done for one and multi dimensional 

arrangements to verify planner performance and to find out better strategies such as 

scaling or coordinated axis algorithms. Although actual implementation in a fully 

articulated sensor-based robotic system is beyond this work, simulations and 

experiments on other platform show effective results for typical fast reactive and 

accurate sensor based applications [65]. 

 

1.4 Summary of Contribution 

The motion planner is designed to be suitable for target tracking application in sensor-

based systems that need fast and reactive behavior with good accuracy. The critical 

analysis provides a clear comparison between polynomial and trapezoidal type 

profilers. Each has distinguishing advantages over the other as well as disadvantages 

for on-line sensor based applications. 

 

1.5 Outline of Thesis 

The first chapter describes introduction to the work, covering background and related 

works. Prior to the algorithm development, a critical analysis and comparison of 

common profiles is presented in Chapter Two. Base on the findings in Chapter Two, 

the fast reactive sensor based motion planning algorithm is developed and detailed in 

Chapter Three. Chapter Four and Chapter Five cover the simulation and 

experimentation of the developed algorithm. Chapter Six summarizes and concludes 

the work. 
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Chapter 2 

 

Critical Analysis of Motion Planner Profiles 

 

Prior to the development and analysis of the fast reactive motion planner, an analysis 

and comparison of motion planner profiles is presented here to study the characteristics 

of motion profiles especially in correlation with reactive properties. Earlier, Park [56] 

proposed a comparison and analysis of features. However the interest is on energy 

efficiency and particularly only addressing repetitive point to point motions. 

The profiles that will be discussed in this chapter are those which are commonly used 

in joint trajectory profiles, i.e. cubic, quintic, trapezoidal velocity, and trapezoidal 

acceleration. The profiles are analyzed under several performance measures. The 

objective is to find one which is fast, optimal under certain kinematic measures, having 

low computation cost, and reliable for a sensor based motion planner algorithm. 

The analysis presented here will be restricted to point to point profiles. There are two 

point to point conditions that will be analyzed: zero to zero condition and non-zero to 

zero condition. A zero to zero condition conforms to a stop to stop scenario whereas a 

non-zero to zero reflects the dynamic motion planning where the motion starts from a 

nonzero initial condition and eventually to a stop position when the target achieved. 

The second condition imposes a reactive motion planning of sensor based application. 

 

2.1 Point to Point 

Point to point motion planning is a procedure of planning a trajectory to move from an 

initial position at t = 0 to a desired final position at t = T by only considering initial and 
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final state (velocity and acceleration). As the motion eventually stops, the final 

velocity and acceleration are zero. By associating q as displacement and T as 

movement time, the position and velocity at initial and final point can be written as: 

q(t)|t=0 = q0 = 0  ; q(t)|t=T = q(T) = qf  (2.1) 

)0(|)()( 00
vtvtq tt

== ==
&  ; 0)(|)(|)( === == Tvtvtq TtTt&  (2.2) 

and then considering the acceleration, it will be 

)0(|)(|)( 00 atatq tt == ==&&  ; )(|)(|)( Tatatq TtTt == ==&&  (2.3) 

Thus, for zero to zero motion, the conditions required are  

v(0) = 0,  v(T) = 0 

a(0) = 0,  a(T) = 0 

and for nonzero to zero the conditions required are 

v(0) = vs,  v(T) = 0 

a(0) = as,  a(T) = 0 

where the s symbol denotes “start”. To fulfill the boundary conditions and obtain a 

considerable smoothness, higher order polynomial types like cubic and quintic 

polynomials or a constructed blend type like trapezoidal velocity or trapezoidal 

acceleration profiles can be used to generate the trajectory profile. 

In an objective of optimality and efficiency, trajectories should be generated at a 

shortest move time T while satisfying the practical limitations of the actuators, i.e. 

maximum velocity v, maximum torque/force. As torque/force is proportional to 

acceleration, it can be associated to the maximum acceleration a. In addition, it is an 

established knowledge that limiting the jerk in manipulator trajectories is important for 

reducing wear and improving the motion [5, 54, 66]. Although jerk is not a nominal 

practical limitation of actuators, if applicable, it is preferably bounded to a desirable 
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maxima )(tq&&&  = j. 

 

2.2 Measures 

The trajectory profiles will be compared using several measures, i.e. movement time, 

total jerk, total energy/acceleration, velocity characteristics, and computation cost. 

- Movement time (T) 

Movement time is the needed time to achieve final position. 

- Total jerk 

Total jerk along a trajectory is defined as  

dttj
T

∫
0

|)(|  

This integration represents motion smoothness. Motion smoothness practically affects 

life-time performance of actuators. Yet it is also a problem of accuracy since high jerks 

at the boundaries will affect tractability or result in undesirable vibrations [22, 47, 48, 

28]. 

- Total energy 

Total energy is the amount of energy consumption along the motion. Although exact 

total energy should be integrated from electrical current drawn by actuators, but 

considering that 

     E (energy) ~  Û|I(t)| dt     (electrical current) 

    ~  Ûτ(t)  dt      (torque) 

    ~  Û|a(t)| dt     

the total energy also proportional to the total area under the acceleration curve [22]. 

Hence total energy measure can be represented by 

dtta
T

∫
0

|)(|  
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- Velocity 

This measure describes velocity characteristics along the trajectory for each profile 

type. 

- Computation cost (more relevant for reactive motion, i.e., for nonzero to zero 

condition) 

The motion planning algorithm calculates the desired points for every time step. 

Computation cost may not become a problem for recent digital control system but as 

the degree of freedom of the system scales up, the higher computation cost may 

corrupt the overall system performance. This measure will figure how intensive the 

calculation of each profile algorithm is. The cost is based on the number of summation 

and multiplication operations in each algorithm. Floating point and integer operations 

are considered to be similar. Logical expressions are considered as summation. 

Although square root or rational exponent computation actually requires great numbers 

of step, for simplification reason it is considered to be equivalent with multiplications. 

In correlation with computation cost, reliability (or flexibility) is also observed. 

Reliability means the ability of the algorithm to maintain trajectories continuity with 

any initial state without violating the given limitations. Practically only velocity and 

acceleration continuity are concerned. To be able to track the target at any moment, 

with a current state, the new trajectory must be immediately re-planned and executed 

regardless to the previous planned trajectory. The measure of computation cost also 

includes the steps to ensure this reliability feature. 

 

2.3 Trajectory profiles 

The profiles that will be discussed are cubic, trapezoidal velocity, quintic, and 

trapezoidal acceleration. At first, to know the characteristic of each profile, the 
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following subsections discuss a zero to zero condition. 

 

2.3.1 Cubic 

Using cubic or third order polynomial 

3
3

2
210)( tctctcctq +++=  

where c0, c1, c2, and c3 are the coefficients and t is the time parameter, one can obtain a 

smooth trajectory profile connecting the starting point and the final/target point. By 

considering equations (2.1) and (2.2) under a zero to zero condition, the corresponding 

motion equations become 

0)0( 0 == cq  (2.4) 

fqTcTcTccTq =+++= 3
3

2
210)(  (2.5) 

032)0()0(
0

2
321 =++==

=t
tctccvq&  (2.6) 

032)()( 2
321 =++== TcTccTvTq&  (2.7) 

Hence the coefficients c0, c1, c2, and c3 can be solved, i.e. 

c0 = 0,    c1 = 0,    22

3
T
q

c f= ,      33

2
T
q

c f−=  

Hence the completed trajectory equations are 







 −= 3

3
2

2
23)( t

T
t

T
qtq f  (2.8) 







 −== 2

32
66)()( t

T
t

T
qtvtq f&  (2.9) 







 −== t

TT
qtatq f 32

126)()(&&  (2.10) 

Once T is known, the trajectory profile can be computed. A typical cubic profile is 

shown in Figure 2.1. 
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For a given kinematic bounds with the maximum velocity v and maximum acceleration 

a, it is possible to find the move time T. Having symmetrical properties of zero to zero 

condition, v will be achieved at t = ½ T. Substitution of this condition to (2.9) will give 

v
q

T f

2
3

=  

On the other hand, as maximum acceleration a may only be achieved at t = 0 or t = T, 

substitutions to (2.10) will give 

a
q

T f6
=  

t @sD0.002
0.004
0.006
0.008
0.01

qHtL @mD

t @sD0.002
0.004
0.006
0.008
0.01

vHtL @mêsD

0.75 1.5
t @sD

-0.02
-0.01

0.01
0.02

aHtL @mês2D
Tê2 T

 
Figure 2.1 Typical zero to zero cubic profile for a distance qf = 0.01 m, kinematic bounds 

v = 0.01 m/s, and a = 0.2 m/s2. In this case the move time T = 1.5 s is subject of v. 
 
It is shown that each bound gives a different solution for T. Therefore for given 

kinematic bounds, the move time T that maintains the limit is the maximum between 

the two, i.e. 











=

a
q

v
q

T ff 6
,

2
3

max  (2.11) 

Hence, it is also obvious that for a set of given bounds cubic will only satisfy one. 
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For the jerk analysis of the zero to zero condition, despite a constant acceleration 

derivative with a value )(tq&&& =  - 12 qf / T3, the jerk value is infinite at the boundaries, 

i.e. at initial and final points. As it is shown in Figure 2.1, the acceleration at these 

points is not zero. This condition imposes discontinuity of acceleration profile or 

infinite jerks, and thus the total jerk for zero to zero condition is indefinite. 

j(t)  = ∞       , t = 0 and t = T (2.12) 

The energy measure for the zero to zero condition can be derived from total integration 

of (2.10) or the total area of acceleration curve, i.e. 

vtvdttadtta Tt

TT

2|)(2|)(|2|)(| 2/

2/

00

=== =∫∫  (2.13) 

The velocity profile of cubic is a quadratic function. For the symmetrical zero to zero 

condition, the maximum velocity v will be reached at t = ½ T, i.e. when a(t) = 0.   

 

2.3.2 Trapezoidal velocity 

This trajectory planner type is also known as linear function with parabolic blends [5]. 

The parabolic portions correspond to the constant acceleration and deceleration phases, 

i.e. the first and third phases of three phases of motion. The acceleration and 

deceleration has the same magnitude but with opposing sign. The typical profile for a 

distance qf and movement time T is as shown in Figure 2.2. 

With the maximum velocity bound v and the maximum acceleration bound a as shown 

in Figure 2.2, the trajectory can be divided into three phases: 

• at  0 ≤ t ≤ t1  , the constant acceleration phase with 

tavtv += 0)(  

q(t) = q0 + ½ a t2 
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Figure 2.2 Typical trapezoidal velocity profile. The profile can be segmented into three 
phases, 1, 2, and 3. 

 

By taking v0 = 0 and q0 = 0, the velocity and position equation at t = t1 will give 

a
vt =1  (2.14) 

q1 = ½ a t1
2 = v2/2 a (2.15) 

• at   t1 < t ≤ T–t1   , the cruising phase or constant velocity phase with 

vtv =)(  

q(t) = q1 +  v (t - t1) 

therefore at t = T–t1 

q2 = v2/2 a + v (T–2t1) (2.16) 

• at   T–t1 < t ≤ T  , the  constant deceleration phase with 

))(()( 1tTtavtv −−−=  

q(t) = q2 + v(t – (T–t1)) – ½ a (t – (T–t1))2 

and therefore at t = T the velocity and position equation will give 

0 = v –  a(T – (T–t1)) (2.17) 

qf = q2 +  v2/2 a (2.18) 

Thus, equations (2.15-17) will give 
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a
vttTT ==−− 11 )(  (2.19) 

a
v

v
q

tT f −=− )2( 1  (2.20) 

Hence, movement time T for a typical zero to zero condition is 

a
v

v
q

ttTtT f +=+−+= 111 )2(  (2.21) 

and correspondingly the position is given by 


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
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
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aTttTtTtatv
a

v

vtTttttv
a

v
attta

tq  

It is shown from (2.21) that both bounds v and a will directly determine T. For this 

reason, the motion will be realized as fast as possible satisfying both bounds. 

However, like cubic, there are acceleration discontinuities at the boundaries and also at 

t = t1 and t = T–t1. This discontinuity corresponds to indefinite jerk. 

j(t)  = ∞      , t = 0, t = t1, t = T– t1, t = T (2.22) 

The energy measure for zero to zero condition can be obtained from the integration of 

the acceleration profile 

∫∫∫∫
−

−

++=
T

tT

tT

t

tT

dttadttadttadtta
1

1

1

1

|)(||)(||)(||)(|
00

 

11 0 tata ++=  

v2=  (2.23) 

As another illustration, Figure 2.3. shows a profile for given kinematic bounds 

v = 0.01 m/s, and a = 0.2 m/s2. The acceleration and deceleration phase has linear 

velocity slope a and –a. The maximum velocity v will be achieved at t = v/a. 
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Figure 2.3 Trapezoidal velocity profile for distance qf = 0.01 m, and kinematic bounds 
v = 0.01 m/s, a = 0.2 m/s2. Move time T = 1.05 s. 

 

There is a particular/special condition for further consideration. If qf is a short distance 

then the constant velocity phase may be reached, that is when (T - 2t1) ≤ 0 or qf ≤ v2/a. 

Figure 2.4 illustrates the two phase condition with triangle velocity profile. In this 

short distance condition the analysis of movement time T of the two phase motion 

becomes as follow. 
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Figure 2.4 Trapezoidal velocity profile for short distance. Two phases, 1 and 2, now compose 
the motion. 

 

• At  0 ≤ t ≤ t1  it has constant acceleration phase with 

tavtv += 0)(  

q(t) = q0 + ½ a t2 

Taking v0 = 0 and q0 = 0, the velocity and position equation at t = t1 will give 
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t1 = vt1/a (2.24) 

q1 = ½ a t1
2 = (vt1)2/2 a 

• At   t1 < t ≤ T it has constant deceleration phase with 

)()( 11 ttavtv t −−=  

q(t) = q1 + vt1 (t–t1) – ½ a (t–t1)2 

and therefore at t = T  

0 = vt1 –  a(T–t1)    or    T–t1 = vt1/a = t1 

qf = q1 +  (vt1)2/2 a = (vt1)2/a 

Hence, 

T = 2t1 = 2 vt1/a     or    vt1 = ½ a T 

and 

qf = ¼ a T2 

Thus the motion time T is, 

a
q

T f2=  (2.25) 

and correspondingly the position is given by 
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=
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1

aTtttatqaq
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ff

 

For the total jerk measure, since the acceleration profile remains discontinuous, then it 

is obvious that the total jerk is infinite as in (2.22). Whereas, the energy measure can 

be expressed as 

11
00

22|)(|2|)(|
1

t

tT

vtadttadtta === ∫∫  

Hence, principally the last two measures remain similar as in the common/typical 

profile. 
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2.3.3 Quintic 

Quintic or fifth order polynomial is another polynomial that is commonly used to 

generate smooth trajectories. The quintic polynomial can be written as  

5
5

4
4

3
3

2
210)( tctctctctcctq +++++=  

With a zero to zero condition of (2.1–2.3), and regarding to the following derivatives 

4
5

3
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2
321 5432)()( tctctctcctvtq ++++==&  

3
5

2
432 201262)()( tctctcctatq +++==&&   

2
543 60246)()( tctctctjtq ++==&&&  

there will be six equations for six unknown coefficients with one parameter (T). With 

this set of equations and unknowns the coefficients can be solved, e.g.. 

c0 = c1 = c2 = 0  ; 33

10
T

q
c f=  ;  44

15
T

q
c f−=  ; and  55

6
T
q

c f=  

Hence, for the zero to zero condition, the complete motion equations become 
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Like in cubic analysis, the move time T is required to generate the trajectory. The 

symmetrical property dictates that the maximum velocity bound v will be reached at 

t = ½ T. Substitution of this condition to (2.27) gives 

T
q

v f

8
15

=   or 
v
q

T f

8
15

=  

On the other hand, the maximum acceleration bound a is reached when jerk expressed 
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by (2.29) is zero. By solving this zero jerk condition, the time of maximal acceleration 

can be found, i.e.  

6
33 TTt ±=  (2.30) 

Substitution to (2.28) gives 

3

10
2T

q
a f=   or 

3

10

a

q
T f=  

Likewise, it is possible to find T from the quadratic jerk function. The jerk is bounded 

and maximal at the boundaries, i.e. at t = 0 and t = T. Substitutions to (2.29) gives 

3
60

j
q

T f=  

where j is the maximum jerk bound. Similar with cubic, each bound in quintic appears 

to give different solution of T. Therefore for a given kinematic bounds v, a, and j, the 

move time T shall be the maximum between the three, i.e. 
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It is also obvious that the bounds can not be satisfied simultaneously. Figure 2.5 shows 

an example of quintic profile satisfying v bound. It would be a desirable to satisfy the 

bounds simultaneously in one motion planning; at least for velocity and acceleration 

bounds. In next few sections a proposed profile is discussed to meet this requirement. 

By considering the maximum jerk at the boundaries, total jerk measure Û| j(t)|dt can be 

computed from the integration of jerk curve, i.e. 
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On the other hand, the total acceleration measure for zero to zero condition can be 

derived from integration of (2.28), i.e.  



 26

vtvdttadtta Tt

TT

2|)(2|)(|2|)(| 2/

2/

00

=== =∫∫  (2.33) 

Velocity curve now is a quartic or fourth order polynomial and it will be smoother than 

cubic’s. For zero to zero condition v will be reached at t = ½ T, the time when a(t) = 0. 
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Figure 2.5 Typical quintic profile for distance qf = 0.01 m, and kinematic bounds 
v = 0.01 m/s, and a = 0.2 m/s2, and j = 10 m/s3. In this case the move time T = 
1.875 s is obtained using v criterion. 

 

2.3.4 Trapezoidal acceleration 

Another common jerk limited profile is the trapezoidal acceleration profile. By 

limiting the jerk of the trapezoidal velocity, it is possible to generate a smoother 

trajectory. As a result, the profile has seven segments, i.e. with additional four constant 

jerk phases. The typical motion profile is shown in Figure 2.6 and the following, 

similar approaches are applied to analyze phase segments. 

• At  0 ≤ t ≤ t1  it has a constant jerk phase with j(t) = +j , therefore at t = t1 

j
a

j
aa

t =
−

= 0
1   
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Figure 2.6 Typical trapezoidal acceleration profile. The profile can be segmented into seven 
phases, 1–7. 

 
v1 = v0 + a0 t1 + 1/2 j t1

2  =   1/2 j t1
2   =  a2/2 j 

q1 = q0 + v0 t1 + 1/2 a0 t1
2 + 1/6 j t1

3  =  1/6 j t1
3 

    = a3/6 j2 

• At   t1 < t ≤ t2   it has a constant acceleration phase with 

a(t) = a    

v(t) = v1 + a(t – t1) 

q(t) = q1 + v1 (t – t1) + 1/2 a(t – t1)2 

and at t = t2 

v2 = a2/2 j  +  a(t2– t1) (2.34) 

q2 = a3/6 j2 + a2(t2– t1)/2 j + 1/2 a (t2– t1)2 (2.35) 

• At   t2 < t ≤ t2 + t1   it has a constant jerk phase with 

j(t) =  – j 

a(t) = a – j(t– t2) 

v(t) = v2 + a(t– t2) – 1/2 j(t– t2)2 (2.36) 
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q(t) = q2 + v2(t– t2) + 1/2 a(t– t2)2 – 1/6 j(t– t2)3 (2.37) 

and at t = t2 + t1 

a(t) = a – j t1  = 0;    hence again t1 = a/j (2.38) 

v(t) = v2 + a t1 – 1/2 j t1
2 = v (2.39) 

Substitution of (2.34) and (2.38) to (2.39) gives 

j
a

a
vtt −=− )( 12  (2.40) 

and accordingly v2 and q2 are 

v2 = v – a2/2 j (2.41) 
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and then substitution of (2.40), (2.41), and (2.42) to (2.37) gives 

j
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a
vqtq
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• At   t2 + t1 < t ≤ t3  (note: t3 = T–t2–t1 due to its similarities/symmetrical with the 

first three phases) it has a constant velocity phase with 

v(t) = v 

q(t) = q21 + v(t – t2 – t1) 

and at t = t3 

q(t) = q21 + v (t3 – t2 – t1) 

• Finally, since at t3 < t ≤ T the velocity and acceleration profile are symmetric with 

that of  0 < t ≤ t2 + t1 then it is possible to express qf  as 

q(T) = qf =q21 + v (t3 – t2 – t1) + q21 

Substitution of (2.43) will give 

j
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a
v

v
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ttt f −−=−− )( 123  (2.44) 
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Hence for zero to zero condition the move time T is 

j
a

a
v

v
q

tttttttttttT f ++=+−++−−++−+= ])([)(])([ 11211231121  (2.45) 

And correspondingly the seven phases of position q(t) can be written as 


















































+
<<−

+−++−−+−

+






 +−−−−

−
−<<−

+−

−+−







−+








−−−

−
−<<+−

++−

−++−+







+−

+
+−<<+

−−+







+

−
+<<

−−−

+−







−+








+−

+
<<

−+−+

+
<<

=

) jerk,(constant 
;

)(
6

)(
2

)(
2

6
34

2
2

) dec.,(constant 
;

)(

)(
262

3
2

) jerk,(constant 
)(;

)(

)(
2
3

2
3

) vel.,(constant 
)(;

)(
22

) jerk,(constant 
;

)()(

)(
2622

) acc.,(constant 
;

)()(
26

) jerk,(constant 
0;

)(

1

3
1

2
11

2

2

2322

12

2
22

1

2

2

2

32

212

3
216

1

21

2

1212
21

2

122

3
26

12
22

1

2

2

2

32

212
12

1
1

2

2

3

1
3

6
1

j
TttT

tTtjtTtatTt
j

a

j
aa

aj
avjvvavT

a
tTttT

tTta

tTt
j

av
j

a
a
v

j
avvT

j
tTtttT

ttTtj

ttTtv
a
v

j
avvT

v
ttTttt

tttv
j

av
a

v

j
tttt

ttjtta

tt
j

av
j

a
j

av
a

v

a
ttt

ttatt
j

a
j

a

j
tttj

tq

…

…..(2.46) 

Similar with trapezoidal velocity, (2.45) shows that the kinematic bounds v, a, and j 

determine T value; and this indicates that the motion will be performed as fast as 



 30

possible satisfying all bounds. Obviously, the movement time T will be slightly longer 

than trapezoidal velocity as a trade-off for the sloped acceleration phases. 

The jerk now is bounded, ±j. The total jerk, i.e. integration of jerk curve area along the 

trajectory is  

adttjdttj
tT

4|)(|4|)(|
1

00

== ∫∫  (2.47) 

which is equal to quintic’s total jerk in (2.32). The bounded jerk preserves a better 

motion smoothness. 

The acceleration curve now has sloped phases before and after reaching constant 

phases. The total integration of this curve gives the acceleration (energy) measure 
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The velocity curve is no longer trapezoidal. It is now smoother than trapezoidal 

velocity’s as result of the bounded jerk. The maximum velocity bound v will be 

achieved at t = t1+t2 = v/a + a/j. As an example, Figure 2.7 shows a profile for given 

kinematic bounds v = 0.01 m/s, a = 0.2 m/s2, and j = 10 m/s2. 
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Figure 2.7 Trapezoidal acceleration profile for distance qf = 0.01 m, and kinematic bounds 

v = 0.01 m/s, a = 0.2 m/s2, and j = 10 m/s3. Move time T = 1.07 s.  
 

There are also particular/special conditions for further consideration. If the distance is 

relatively short then the phase composition may become different and so does the 
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movement time T. The possible conditions are the six phases and the four phases 

depicted in Figure 2.8 (a) and (b). The movement time analysis is discussed below.  

– Six phases 

When the distance is relatively short such that the maximum velocity bound v is not 

reached—refer to condition of the following (2.55)—, the constant velocity phase does 

not exist. Thus the motion is composed by six phases instead of typically seven phases. 

Refer to Figure 2.8(a), the analysis of movement time T for this six-phases motion 

becomes as follow. 
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Figure 2.8 Special conditions of trapezoidal acceleration profile for short distance. Six phases 

motion (a), and four phases motion (b). 
 
• At  0 ≤ t ≤ t1  similarly it has constant jerk phase j(t) = +j and at t = t1 

a(t) = a = j t1   , hence   t1= a/j 

v(t) = v1 = a2/2 j 

q(t) = q1 = a3/6 j2 

• At   t1 < t ≤ t2’   it has constant acceleration phase, and at t = t2’ 

v(t) = v2’ = a2/2 j  +  a(t2’– t1) (2.49) 
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q(t) = q2’ = a3/6 j2 + a2(t2’– t1)/2 j + 1/2 a (t2’– t1)2 (2.50) 

• At   t2’ < t ≤ t2’ + t1   it has constant negative jerk j(t) = –j and at t = t2’ + t1 

v(t) = v21’ = v2’ + a t1 – 1/2 j t1
2    or 

j
attav

2

1221 )'(' +−=  (2.51) 

and 

q(t) = q21’ = q2’ + v2 t1 + 1/2 a t1
2 – 1/6 j t1
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Due to the symmetrical property, the distance can be expressed as  

qf = 2 q21’ 

and it is a quadratic function of (t2’– t1). The root of this quadratic function will be 
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from which T can be computed, i.e. 
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Equation (2.54) shows that the maximum velocity bound v is no longer determining 

the movement time T. Recalling (2.44) and (2.53), as the constant velocity phase does 

not exist and since there should be a constant acceleration phase, i.e. (t2’ - t1) ≥ 0, then 

the distance qf should be  

j
va

a
vq

j
a

f +<≤
2

2

32  (2.55) 

The jerk is still bounded and the total jerk would be similar with (2.47). Whereas, the 

energy measure is 
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– Four phases 

When the distance is even shorter—as in (2.59)—, the constant acceleration phase may 

even be reached. Thus the motion is sufficiently realized in four phases. Referring to 

Figure 2.8(b), the analysis of movement time T for this four phases motion becomes as 

follows. 

• At  0 ≤ t ≤ t1’  similarly it has constant jerk phase j(t) = +j and at t = t1 

a(t) = a1’ = j t1’   , hence   t1’= a1’/j 

v(t) = v1’ = (a1’)2/2 j 

q(t) = q1’ = (a1’)3/6 j2 

• At   t1’ < t ≤ 2t1’   it has constant negative jerk j(t) = –j and at t = 2t1’ 

a(t) = 0 = a1’ – j t1’   , hence again  t1’= a1’/j 

v(t) = v21’ = v1’ + a1’ t1’ – 1/2 j(t1’)2 = (a1’)2/j 

q(t) = q21’ = q1’ + v1’ t1’ + 1/2 a1’(t1’)2 – 1/6 j(t1’)3 = (a1’)3/j2 

Due to the symmetrical property, the distance can be expressed as  

qf = 2 q21’ = 2(a1’)3/j2 (2.56) 

and movement time T can be expressed as 

T = 4 t1 = 4(a1’)/j (2.57) 

From these last two equations, the relation between T and qf under a given kinematic 

bounds is 

3 4 fqjT =  (2.58) 

Further, as the constant acceleration phase no longer exist, i.e. a1’<a, and recalling 

(2.56) it is easy to find the condition for qf, i.e. 
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The jerk is still bounded and the total jerk would be 
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Whereas, the energy measure is 
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Hence the two measures for both special conditions are relatively similar with those of 

typical profile. 

 

2.3.5 Summary of typical profiles for  zero to zero condition 

Table 2.1 below summarizes the analysis of four common motion planner profiles: 

cubic, trapezoidal velocity, quintic, and trapezoidal acceleration. 

 
Measure Cubic 

polynomial 
Trapezoidal 

velocity 
Quintic 

polynomial 
Trapezoidal 
acceleration 

Movement 
time (T) 



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j
a
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v
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Total jerk indefinite indefinite 4 a 4 a 
Energy 2 v 2 v 2 v 2 v 

Computation 
cost 6 A, 37 M 22 A, 14 M 12 A, 93M 75 A, 128 M 

 
Table 2.1 Comparison of performance of the four typical profiles with zero boundary 

conditions. ‘A’ represents equivalent addition/subtraction and ‘M’ represents 
equivalent multiplication operations. 

 

From the table it is shown that the energy measure is the same for the four profiles. 

The jerk is infinite for cubic polynomial and the trapezoidal velocity profile, and 4a for 

the other two planners. Although there are different phase compositions for short 

distance trapezoidals, it has been shown that the main characteristics remain similar. 

Obviously the movement duration is larger for the trapezoidal acceleration than for the 
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trapezoidal velocity, and generally under the same maximum velocity criteria, larger 

for the fifth order polynomial than for the third order. It is important to note that the 

trapezoidal profiles are minimal time for the given kinematic bounds. The trapezoidal 

velocity profile requires less movement time than the cubic polynomial and the 

trapezoidal acceleration less than the quintic polynomial since both two trapezoidal 

planners are able to immediately reach the limit. For this reason, the trapezoidal type is 

kinematically time optimal. Next, the following section analyzes the remaining 

question about the reactive properties of the motion profiles. 

 

2.4 Reactive motion 

Reactive motion/response is a typical motion of a sensor-based system. Using sensory 

information the system ought to immediately react or perform desirable motion. 

Regardless of the previously planned motion, the system has to be able to plan and 

execute a new motion if required, provided with smooth transition. As a consequence, 

the new motion typically will begin from a non zero initial condition. 

To preserve smooth transitions, the motion profiles have to maintain continuity. The 

continuity and smooth transition of position can be achieved by maintaining, at least,  

velocity continuity. Continuity of higher derivative order will preserve better 

smoothness accordingly [34].  

In realizing this feature, the profile computation may not be as simple as in zero to zero 

condition. Typically the symmetrical property will no longer exist. This difference may 

lead to a more intensive and even to a very hefty computation. 

 

2.4.1 Cubic 
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For nonzero initial condition with initial velocity )0(qvs &= ≠ 0, the velocity equation 

(2.6) will be 

2
321 32)0( tctccvv s ++==  (2.59) 

and together with (2.4), (2.5), and (2.7), it will form a set of four equations with four 

unknown coefficients c0, c1, c2, c3, and one parameter T. The solutions for the 

coefficients are 
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As the profile is no longer symmetric, the maximum velocity bound v will not be 

reached at t = ½T. It will be achieved when 0)( =ta . Substitution of this condition to 

(2.62) gives the moment of maximum velocity achievement, i.e. at 

sf
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vTq
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t
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Consecutively, substitution of t1 to (2.60) will give the velocity bound v value 
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and then the positive T solution for vs ≠ 0 is 
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Similarly if the maximum acceleration bound a is used to obtain T and by noting that 
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the maximum acceleration bound a may only be achieved at t = 0 and t = T, 

substitutions of these conditions to (2.62) give two possibilities 

2
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from where each solution for positive T is obtained, i.e. 
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Hence, for the nonzero initial condition the move time T depends on vs. For a given 

maximum velocity bound v and maximum acceleration bound a, the T value that 

maintains the limits is the maximum value among the three, i.e. ),,max( 21 aav TTTT = , 

and only one bound will be satisfied. Figure 2.9 shows an example of a nonzero initial 

condition with velocity bound v as the criterion to get a maximum move time T. 
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Figure 2.9 Cubic profile with nonzero initial condition, qf = 0.01 m, vs = –0.0075 m/s, and the 
maximum velocity bound v = 0.01 m/s. 
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Figure 2.10 Cubic profile with nonzero initial condition and bounded final acceleration. Initial 
acceleration violates the given maximum acceleration bound a = 0.2 m/s2. 

 

Unlike Tv, both Ta1 and Ta2 are trivial. As both are obtained from different linear cases, 

Ta1 or Ta2 needs further analysis to confirm the validity. For example, if Ta2 of (2.67) 

and (2.69) is applied to control final acceleration, then (2.66) has to be used to check 

the initial acceleration. Fig 2.10 shows an example inapplicable solution where a 

correctly bounded final acceleration meet violated initial acceleration bound. 

In such consecutive point to point reactive motions the acceleration profiles in general 

will be discontinuous. As motion smoothness must be maintained––i.e. velocity 

continuity––position and velocity equations are actually sufficient to find the motion 

parameters. 

For the total jerk measure, despite a definite derivative value )(tq&&&  = - (12qf - 6T vs)/T3 

of (2.62), since the acceleration is discontinuous at the boundaries then the jerk is 

indefinite accordingly. 

j(t) = ∞       , t = 0, t = T (2.70) 

On the other hand, the total acceleration (energy) measure for nonzero initial condition 

will include the initial velocity vs, i.e. 
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and referring to (2.64), it can be expressed as 
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In comparison to (2.13), the expression within the rectangular bracket denotes the 

initial velocity contribution. 

The velocity curve remains quadratic. It is no longer symmetric with the maximum 

moment at t = t1 as described in (2.63). 

To find out the reactive feature, the author has tried to implement and realized a 

reactive motion planner algorithm using cubic polynomial. Chapter 4 will shortly 

cover the algorithm. Cubic has a relatively light computation cost with 27 

multiplications and 5 additions in trajectory generation. An additional 18 

multiplications and 8 additions are needed at the turning point, i.e. when target point is 

changed, due to the computations of new parameters for the new trajectory. 

However there remain several considerations for the reactive cubic motion planning 

algorithm. It can only ensure velocity continuity. Acceleration and jerk continuity are 

not controllable including the infinite jerks at the boundaries. For the computation, the 

maximum velocity criterion is preferable whereas the maximum acceleration criterion 

remains trivial. However, the light computation cost can be useful in multidimensional 

applications. 

 

2.4.2 Trapezoidal velocity 

For nonzero initial condition with vs ≠ 0 there may be additional fraction of time to be 

compensated. The typical profile for non zero initial condition is shown in Figure 2.11 

and the analysis will be as follow. 

• At  0 ≤ t ≤ t1’  it has constant acceleration phase a(t) = a and at t = t1’ 

t1’ = (v – vs)/a (2.72) 

q(t) = q1’ = vs t1’ + ½ a (t1’)2 = (v2 – vs
2)/2 a 

• At   t1’ < t ≤ T–t1   it has constant velocity phase and at t = T–t1 
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Figure 2.11 Typical nonzero to zero trapezoidal velocity profile. 
 

q(t) = q2 = (v2 – vs
2)/2 a + v (T – t1 – t1’) (2.77) 

• At   T–t1 < t ≤ T   it has constant deceleration phase a(t) = –a and the profile is 

similar with the third phase of the zero to zero condition. Recalling (2.14) and 

(2.15), at t = T the velocity and position expression will be 

v(T) = 0 = v –  a(T – (T–t1)) (2.78) 

q(T) = qf = q2 +  v2/2 a = (v2 – vs
2)/2 a + v (T – t1 – t1’) +  v2/2 a (2.79) 

and thus 

a
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Hence, move time T for this typical nonzero to zero condition is 
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and correspondingly the position is given by 



 41















−
≤<−+−−+−++−

−≤<+−−+

≤<
+

=

) decel., const.(
;

2
)()(

2

)  vel.,const.(
';

2
)(

2

) accel., const.(
'0;

)(

1
22

2
12

1
2

11
222

12
2
1

a
TttT

a
vvvtTtatv

a
v

v
tTtt

a
vvvvt

a
v

a
tt

tatv

tq

s

s

s

 (2.83) 

For the total jerk measure, since the acceleration will be discontinuous, the total jerk 

also remains infinite as in (2.22). On the other hand, the energy measure for nonzero 

initial condition can be derived as  
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= 2v + |vs| (2.84) 

To find out the flexibility and the computation cost, the author has developed reactive 

motion planning algorithm able to generate trapezoidal velocity profile. It is possible 

to use the derived formulas but it appears that the acceleration can always be set to 

eventually construct the desired velocity profile. The detail of the algorithm will be 

discussed in Chapter 3. The algorithm has low computation cost, i.e. 16 multiplications 

and 40 additions operations; hence it would be suitable for a fast real time trajectory 

generation. However considering the mentioned drawbacks, the system is likely 

applicable for/in relatively slow motions where jerk limitations are not highlighted.. 

There are particular/special conditions that require further considerations as for the 

zero to zero condition. When the distance to the target is relatively short, the phase 

compositions might be different and so the motion formulas. However, from the 

typical profile analysis, it is shown that the main characteristics would remain similar. 

 

2.4.3 Quintic 

For non zero initial condition, similar with the previous approach, the move time T is 
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going to be analyzed first to be able to generate the profile. The condition for six 

equations with six unknown coefficients and a parameter T is as follow 

q(t)|t=0 = q0 = 0  ;   q(t)|t=T  = qf 

)(tq& |t = 0 = v(0) = vs  ;  )(tq& |t = T = v(T) = 0 

)(tq&& |t = 0 = a(0) = as ;  )(tq&& |t = T = a(T) = 0 

and the solutions for the coefficients are 
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Hence the position, velocity, acceleration, and jerk equations are 

3
3

2
2

2
20123

2
)( t

T
qvTTa

tatvtq fsss
s

−+
−+=  

           5
5

2
4

4

2

2
126

2
30163

t
T

qvTTa
t

T
qvTTa fssfss −+

−
+−−

−  (2.85) 

 

2
3

2

2
)20123(3

)()( t
T

qvTTa
tavtvtq fss

ss

−+
−+==&  

   4
5

2
3

4

2

2
)126(5)30163(2

t
T

qvTTa
t

T
qvTTa fssfss −+

−
+−−

−  (2.86) 

 

t
T

qvTTa
atatq fss

s 3

2 )20123(3
)()(

−+
−==&&  

 3
5

2
2

4

2 )126(10)30163(6
t

T
qvTTa

t
T

qvTTa fssfss −+
−

+−−
−  (2.87) 

 

3

2 )20123(3
)()(

T
qvTTa

tjtq fss −+
−==&&&  

 2
5

2

4

2 )126(30)30163(12
t

T
qvTTa

t
T

qvTTa fssfss −+
−

+−−
−  (2.88) 



 43

Similarly, to generate the profile, the movement time T has to be solved. Maximum 

velocity v is reached when 0)()( == tatq&&  and from (2.87) the possible root is 
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However, substitution of this result may lead to a complex high order rational function. 

Substitution to == )()( tvtq& v leads to an equation in T of an order of fourteen! 

Equation (A.1) in Appendix shows the details. Pioneered previously by Ruffini, Abel 

proved that there is no closed form roots in radicals beyond quartics or fourth order 

equations [6, 7]. The theorem is emphasized by Galois’s group theory [7]. There is a 

closed form solution to a fifth order polynomial but it is necessary to go beyond the 

extraction of roots and to use modular elliptic and hyper-geometric functions [7]. 

Therefore, practically, numerical method will be a preferable tool to find the solution 

of T. However, the numerical solutions for given qf, vs, as, and v as observed using 

MATHEMATICATM [32], so far remain restricted to a few positive roots beside many 

failed cases resulting in complex, negative roots, or extreme oscillation/wandering 

[40]. Figure 2.12 shows an example of oscillation as a result of an undesirable choice 

of root. In addition, even a possible positive T solution may still result in a violation of 

the velocity bound v itself. Figure 2.13 shows an example of such a violation case. For 

this reason, the solution based on maximum velocity criterion may not always exist. 

Therefore, although it preserves velocity and acceleration continuity, the maximum 

velocity criterion is trivial and undesirable. The problem of formulating particular 

conditions for a feasible solution in this maximum velocity criterion is beyond the 

scope of this work. 
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Figure 2.12 Nonzero to zero quintic profile with undesirable choice of root of the maximum 
velocity criterion, resulting in oscillation (wandering) effect of position. Motion 
parameters are qf = 0.01 m, vs = 0.0075 m/s, as = 0.05 m/s2, v = 0.01 m/s. The 
selected root from the numerical computation is T = 4.05 s 
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Figure 2.13 Example of unsafe profile under v criterion with solution T = 1.56 s for a given 

qf = 0.01 m, vs = –0.0075 m/s, as = -0.05 m/s2, and v = 0.01 m/s. Velocity bound v 
is maintained at t = 0.11 s but violated at t = 0.85 s 
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On the other hand, by using the maximum acceleration criterion it is also possible to 

find the move time T. Similar with previous analysis, the maximum acceleration is 

achieved when the jerk j(t) in (2.88) is zero. From this quadratic expression, the zero 

jerk condition will give 
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Figure 2.14 Safely planned quintic profile under maximum acceleration criterion with 

T = 0.636575 s for qf = 0.01 m, vs = –0.0075 m/s, as = -0.05 m/s2, and a = 0.2 m/ 
s2. 

 

and substitutions to == )()( tatq&& a  leads to an equation in T of the order of eight. 

Equation (A.2) in Appendix shows the detail. Once again numerical method will be a 

preferable way to find T. The numerical solution for given qf, vs, as, and a, as observed 
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using MATHEMATICATM, although remains trivial and restricted to few possible 

positive roots, offers better possibilities for a desirable non-oscillatory displacement. 

Figure 2.14 shows an example of a profile obtained using the maximum acceleration 

criterion for the same initial condition with those in Figure 2.13. In addition, the 

solution is more reliable in maintaining the kinematic limit. However, as it only 

controls acceleration, the velocity extrema is no longer controlled. 

Meanwhile, from the discontinuous jerk profile it is also possible to find the T solution. 

The jerk is bounded at the boundaries and at the extrema. Thus substitution of t = 0 or 

t = T condition to the jerk equation (2.88) will give 

3

2 60369
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The other solution comes from the extrema of the parabolic jerk curve. Solving this 

extrema, i.e 0)( =tq
iv

, will give 
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Substitution to (2.88) gives one more maximum jerk equation 
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Hence there would be three possibilities for the T solution under the maximum jerk 

criterion. Equation (A.3) in the Appendix shows the detail. The first two equations can 

give a straightforward closed form third order function, whereas the third needs a 

numerical solution to find the roots of the fifth order function of T. However among 
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the three possibilities, as also observed using MATHEMATICATM, the solution is 

trivial and may only be valid for the one of (2.93). The other two often give negative or 

complex numbers. Unfortunately, the solution of (2.93) is also undesirable as it may 

result in a violation of the jerk bound itself; a similar situation with the maximum 

velocity criterion. As an example, the negative j(0) in Figure 2.15 illustrates a limiting 

condition of the applicable solution. The problem of finding a closed form formulation 

of the applicable conditions for this jerk bound criterion is beyond the scope of this 

work. 
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Figure 2.15 Nonzero to zero quintic under maximum jerk criterion with jerk root t1 < 0. Given 

qf = 0.01 m, vs = 0.025 m/s, as = 0.15 m/s2, and maximum jerk j = 1.5 m/s3 the 
resulting move time is T = 0.5 s as in left figure. Setting jerk bound below 1.5 m/s3 
will cause jerk bound violation as jerk minima at t = 0 becomes smaller than   
-1.5 m/s3 as in right figure. 

 

Hence it appears that the desirable solution may only come from the maximum 

acceleration criterion. 

Using t1,2 of (2.90), the total jerk for nonzero initial condition can be computed as 
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  for t1 ≥ 0 and t2 > 0 (2.94.a) 
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∫∫ +=
T

t

t

dttjdttj
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   for t1 ≤ 0 and t2 > 0 (2.94.b) 

= f(qf, as, vs, T) 

which are functions in qf, as, vs, and T. Equation (A.4) in the Appendix shows the 

details. Figure 2.16 shows an example of the condition with negative t1. Hence, the 

integration will depend on the parameter values. However, by investigating the 

evolution of acceleration curve, the jerk can be expressed as 

accaadttj s

T

<++=∫ ;22|)(|
0

 (2.92) 

Using quintic, it is possible to maintain acceleration and velocity continuity. The jerk 

at every turning point in reactive planning will be bounded. 
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Figure 2.16 Nonzero to zero quintic under maximum acceleration criterion with negative jerk 

root t1 < 0. Motion parameters qf = 0.01 m, vs = 0.03 m/s, as = 0.15 m/s2, and 
a = 0.2 m/s2 give jerk root t1 = –0.0523197 s, t2 = 0.280129 s, and later the 
movement time is found as T = 0.405448 s. 

 

For the energy measure analysis with the t of (2.90), integration of the segments of 

acceleration profile gives a function of qf, as, vs, and T. 
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= f(qf, as, vs, T)   svv +≅ 2  

Equation (A.5) in the Appendix shows the details. Note that the approximation value 

2v + |vs| is observed numerically as T is also obtained numerically. 

The velocity curve will be continuous and smoother than cubic’s as a result of 

acceleration continuity. The maximum velocity v will be reached at t = t1 or t = t2 as 

described in (2.89). 

In realizing a reactive motion planner, the author has developed and simulated the 

reactive quintic motion planning algorithm using the maximum acceleration criterion. 

It is noted that the computation cost is 220 multiplications and 46 additions excluding 

numerical method calculations. The numerical Eigenvalue Method root solver [33] is 

noted to cost up to 5.5 trillion additions and 2.2 trillion multiplications. Authors like 

[26, 47, 48, 49, 54, 61, 62] proved the possibility to realize and implement on-line 

sensor based quintic motion planner complete with the trivial and numerical method 

for the roots. However it is applied for predicted and relatively small target change. It 

is also unclear whether the resulting profiles are as expected or not. Under this hefty 

computation process and trivial procedure, a real-time, fast/optimal, and reactive 

multidimensional application may need some further investigations and considerations. 

A set of proper motion parameters needs to be carefully selected in addition to the  

numerical procedure to avoid undesirable oscillation and/or bound violation. 

 

2.4.4 Trapezoidal acceleration 
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For nonzero initial condition with vs ≠ 0 and as ≠ 0, there may be an additional 

fractions of time to be compensated. Typically the profile with nonzero initial 

condition will be as shown in Figure 2.17 and the analysis becomes as follows. 
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Figure 2.17 Typical nonzero to zero trapezoidal acceleration profile. 
 

• At  0 ≤ t ≤ t1’  it has constant jerk phase j(t) = +j therefore at t = t1’ 
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• At   t1’ < t ≤ t2’  it has constant acceleration phase a(t) = a and at t = t2’   

v(t) = v2’ = v1’ +  a(t2’– t1’) (2.99) 

q(t) = q2’ = q1’ + v1’(t2’– t1’) + 1/2 a (t2’– t1’)2 (2.100) 
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• At   t2’ < t ≤ t2’ + t1   it has constant negative jerk phase j(t) = –j. Note that t1 can be 

simply recalled from zero to zero condition, e.g. equation (2.38), because it is 

similar. Hence at t = t2’+ t1 

a(t) = 0 = a – j ((t2’+t1)– t2’);    hence t1 = a/j (2.101) 

v(t) = v = v2’ + a ((t2’+t1)– t2’) – 1/2 j ((t2’+t1)– t2’)2 
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q(t) = q2’ + v2’((t2’+t1)– t2’) + 1/2 a((t2’+t1)– t2’)2 – 1/6 j((t2’+t1)– t2’)2 (2.103) 

Substitution of (2.96-100) to (2.102) gives 
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and accordingly substitution of (2.103) to (2.99) and (2.100) give v2’ and q2’  

v2’ = v – a2/2 j (2.105) 
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and then substitution of (2.104–106) to (2.103) gives 
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• At   t2‘+ t1 < t ≤ t3    where t3 = T–t2–t1 and t1 and t2 are recalled back from (2.38) 

and (2.40) due to its similarities, it has a constant velocity phase v(t) = v. Therefore 

and at t = t3 

q(t) = q21‘ + v (t3 – (t2‘ – t1)) 

• Finally at t3 < t ≤ T the velocity and acceleration profile are similar with those of 

zero to zero condition. By recalling (2.43), at t = T it is possible to express the 

distance to target qf  as 
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q(T) = qf =q21‘ + v (t3 – (t2‘ – t1)) + v2/2a + a v/2j 

and accordingly (t3 – (t2‘ – t1)) can be derived, i.e. 
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Hence for nonzero to zero condition the move time T is 
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And correspondingly the seven phases of position q(t) can be written as 
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The jerk is still a step function bounded at ±j. and the total jerk, i.e. the integration of 

jerk profile along the trajectory is  
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The bounded jerk will give better trajectory smoothness than trapezoidal velocity’s. 

When integrating the acceleration profile to find the energy measure, it is possible to 

compare and obtain the difference with zero to zero. Note that the two conditions will 

differ at the first and second phase. By recalling (2.38), (2.96), (2.40), and (2.104) it is 

possible to express the difference respectively as ∆tI and ∆tII where 

j
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and it helps in simplifying the integration of acceleration curve. Hence the total 

integration results in that for zero to zero condition plus two additional areas: i) a 

triangle area with height |as|, width ∆tI; ii) rectangular area with height a and width ∆tII 
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Similar with the trapezoidal velocity, yet there remain particular/special conditions that 

might need further considerations. A relatively short target distance combined with the 

nonzero initial velocity condition might yield into numerous combinations of phases 

and correspondingly into different motion formulas. However, section 2.3.4 shows that 

the main characteristics of such conditions would be similar. 

In realizing a reactive motion planning algorithm, the author has also developed an 

algorithm that is able to generate equivalent trapezoidal acceleration profile. It is 

possible to use the derived formulas, but it appears that the jerk can always be set to 
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eventually construct the desired acceleration and the rest of profiles. The details of the 

algorithm will be discussed in Chapter 3. The developed algorithm has been cascaded 

into 141 multiplication and 125 addition operations. This is more complex than 

trapezoidal velocity algorithm, however, in comparison to quintic, this planner is able 

to satisfy the bounds, including jerk bound, without the need of numerical solver 

routine. Therefore it is relatively optimal, fast, and having low computation cost. 

 

2.4.5 A view on modified quintic planner for zero to zero condition 

Previous discussions on quintic motion show that for zero to zero condition quintic 

will only satisfy one bound. For nonzero initial conditions, the trivial procedure 

restricts the quintic to be practically applicable only under maximum acceleration 

criterion. It will be desirable if it is possible to satisfy kinematic bounds 

simultaneously, at least acceleration and velocity bounds. 

This section discusses the proposed modified quintic to meet the requirement. The 

proposed method, however, needs a free boundary parameter. As the final velocity is 

zero to bring the system to stop, the only available parameter is the acceleration. 

For a zero to zero condition, the freed boundary condition of the acceleration will 

allow the profile to fit the bound. The acceleration profile will be stretchable to reach 

the bound. Thus by introducing nonzero boundary acceleration as and –as, the profile is 

able to reach the acceleration and velocity bounds simultaneously. 

Hence, for the zero to zero condition, the corresponding equation set of position, 

velocity, and acceleration will be 

q(t)|t=0 = q0 = 0  ;   q(t)|t=T  = qf 

)(tq& |t = 0 = v(0) = 0  ;  )(tq& |t = T = v(T) = 0 

)(tq&& |t = 0 = a(0) = as ;  )(tq&& |t = T = a(T) = – as 
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The solutions to the coefficients are 

c0 = 0,  c1 = 0,   
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and then the rest of motion equation can be completed. 

Using previous approach, the symmetrical property dictates that the maximum velocity 

bound v will be reached at t = ½ T. Substitution to the velocity equation will give 
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On the other hand, the maximum acceleration bound a is reached when jerk 

)(tq&&& = j(t) = 0, and correspondingly, by solving this condition from the jerk equation, 

the moment for the maxima can be derived, 
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Substitution to acceleration equation will give 
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Equation (2.115) and (2.117) denote two equations with two unknowns, T and as. Due 

to the complexities, numerical method is used to find the solutions. The appropriate 

solutions are those with real as and real positive T. Figure 2.18 shows the example of 

the profile. In comparison to v-bounded normal zero to zero quintic in Figure 2.5, with 

the same kinematic bounds, the move time T in this modified quintic is remarkably 

improved. 
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Figure 2.18 Modified quintic profile. Note the initial and final acceleration ±as. The profile is 
for qf = 0.01 m, v = 0.01 m/s, a = 0.2 m/s2 the calculated initial-final acceleration 
as = ±0.0266 m/s2, and T = 1.5 s. Although the maximum acceleration a is not 
actually reached, the curve extension to both sides will satisfy it. 

 

For nonzero condition with known vs and as, the condition will be 

q(t)|t=0 = q0 = 0  ; q(T)  = qf 

)(tq& |t = 0 = v(0) = vs ; )(tq& |t = T = v(T) = 0 

)(tq&& |t = 0 = a(0) = as ;  )(tq&& |t = T = a(T) = af 

Note that since qf, vs, as, v, and a are known, it appears that the curve is already 

determined and there is no possibilities to allow the dual bound achievement. The 

following discussion will discuss the possibilities by freeing up the final acceleration 

af. 

The equation set gives the coefficients solution, 
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The corresponding position, velocity, acceleration, and jerk equations can be 

completed afterward. 

Using similar approach, the time of maximal velocity and maximal acceleration can be 

obtained by solving the zero condition of the corresponding derivatives equations. As 

results, complex rational forms of tv, ta1, and ta2 respectively for the achievement time 

of maximum velocity and maximum acceleration are obtained with qf, vs, as, af, and T 

as parameters. The maximum velocity and maximum acceleration expression thus can 

be completed. Equation (A.6) in the Appendix shows the detail of the two equations. 

Since qf, vs, as, v, and a are given parameters, then the unknown are af and T, and the 

solutions can be expected from the two equations. However, as it is shown in (A.6), 

the equation forms are complex that so far the author has not been able to find any 

possible solution either in closed form or numeric. For then, no further analysis will be 

given for this nonzero initial condition of modified quintic profile. 

Hence, for one shot zero to zero condition, the modified quintic method is able to 

satisfy v and a bounds simultaneously. However the nonzero initial and final 

acceleration introduces infinite jerk at the boundaries. Therefore, for zero to zero 

condition the acceleration will be discontinuous and the total jerk is indefinite. 

j(t) = ∞     , t = 0, t = T (2.118) 

As acceleration curve is symmetric for zero to zero condition, the energy measure can 

computed as twice of the half acceleration profile integration, 

vdttadtta
TT

2|)(|2|)(|
2/

00

≅= ∫∫  (2.119) 

Note that the 2v value is approximated numerically as T is also obtained numerically. 

Further analysis shows some restrictions for this zero to zero profile. The applicable 

acceleration is 
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At the minimum value the profile is the normal zero to zero quintic. Below that, as will 

be negative and consequently it will result into opposing velocity slopes and thus 

undesirable oscillations of the position. Whereas, a larger value than the range is not 

recommended as the maximum acceleration will never be realized literally in the 

motion. Figure 2.18 also shows an example of such condition where the maximum 

acceleration is not realized in the motion. 

The velocity bound now is achievable as well as the acceleration bound. The 

symmetrical property dictates that the velocity bound v is achieved at t = ½ T. 

Computation cost for this zero to zero algorithm is noted with 128 multiplication and 

27 addition operations, excluding the numerical routine. Therefore it suggests further 

considerations for multidimensional real time sensor based implementations. 

Overall, the modified quintic profile so far is applicable and solvable for one shot zero 

to zero condition only. Despite the infinite jerk at the boundaries, this modified quintic 

is able to satisfy both acceleration and velocity bound thus offers optimality. 

 

2.4.6 Summary for reactive motions 

It appears that trapezoidal types have shorter move time T than polynomial’s. It has 

been discussed that move time T of polynomials are typically trivial and very restricted 

whereas trapezoidal conforms and are directly determined by the kinematic bounds. 

With the lacks, polynomials becomes relatively time consuming. In addition 

polynomials can only satisfy one bound at a time. Cubic is easier to implement using 

maximum velocity criterion than maximum acceleration. Whereas, quintic may only 

be applicable using maximum acceleration criterion. Other bound criteria are 
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undesirable since the method may result in oscillation or bound violations. It is 

possible to satisfy both acceleration and velocity bound in quintic using the proposed 

modified profile. However it is not suitable for reactive motion planning and implies 

infinite jerk at the boundaries. 

On the other hand, trapezoidal easily accommodates kinematic bounds. With this 

ability, it will give a fast motion satisfying the kinematic bounds. It is important to 

note that due to this characteristic, the trapezoidal profiles are kinematically optimal 

for all cases. 

Although it is difficult to compare of total jerk, energy, and velocity measures of the 

four profiles, there are some main characteristics that can be pointed out. Similar with 

trapezoidal velocity, cubic has infinite jerk as a result of acceleration discontinuity. 

Thus both lack on smoothness and might be suitable only for slow movement 

applications. Quintic can maintain acceleration continuity and excel the smoothness 

over other planner types. This finding supports many previous works in this particular 

objective [26, 27, 47, 48, 49, 54]. Effort to simultaneously satisfy kinematic bounds 

using quintic will acquire acceleration discontinuity and consequently disrupt the 

smoothness. 

Measure Cubic 
polynomial 

Trapezoidal 
velocity 

Quintic 
polynomial 

Trapezoidal 
acceleration 

Computation 
cost 10 A, 45 M 22 A, 14 M Numerical 75 A, 128 M 

Table 2.2 Comparison of the number of operations required by the four planner profiles in 
one-dimensional with non-zero initial conditions. ‘A’ represents equivalent 
addition/subtraction and ‘M’ represents equivalent multiplication operations. 

 

Another important measure is the computation cost. For the simplicity and the 

availability of the analytical solutions, it may appear that cubic becomes the simplest 

choice to generate smooth motion profiles with arbitrary change. As long as the proper 

solution of T is found, the rest of coefficients and motion profiles can be obtained. 
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However, the procedure to solve T might become problematic, trivial, and time 

consuming. Therefore it also appears to have practical disadvantages for reactive 

planning with arbitrary large changes of target position. 

Although cubic is comparable to trapezoidal velocity on several measures, however, 

from the table it can be seen that the trapezoidal velocity still excels cubic in 

computation cost with lesser multiplication and also in optimality. For applications 

with relatively slow motion trapezoidal velocity appears to be the most suitable choice. 

On the other hand, when jerk becomes important, trapezoidal acceleration also require 

much lesser computation cost over quintic, and is more optimal. Although quintic 

excels on smoothness, the simple bounded jerk of trapezoidal acceleration may 

considerably be sufficient for many fast reactive applications. 

 

2.5 Summary of profile analysis 

The results of reactive motion analysis of the profiles emphasize those summarized on 

zero-to zero condition discussed in section 2.3.5. Trapezoidal types appear to have 

preferable characteristics over polynomial. Among the important measures, trapezoidal 

types are kinematically optimal and having low computation cost. Due to these facts, it 

appears that trapezoidal planners offer more practical advantages for fast reactive 

sensor based applications. It is possible to use polynomials for the same purpose 

particularly since polynomial also offers better motion smoothness. However, there 

will be some considerations that have to be taken into account, i.e. the optimality, the 

trivial determination of motion parameters, and the computation cost. For 

multidimensional real time reactive application this limitation may become 

problematic. 
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Chapter 3 

 

Sensor Based Motion Planning 

 

3.1. Introduction 

It has been shown in previous chapters that one of the critical characteristics of a 

reactive motion planner is the computation time against the reliability to accommodate 

target position changes. The computation, in minimal time, has to ensure a desirable 

trajectory without obscurities of profile such as extreme overshoots or oscillations. 

Further, the planner has to be kinematically optimal to obtain a fast motion/reaction, 

and smooth if applicable. 

It has been discussed that trapezoidal velocity and trapezoidal acceleration algorithm 

are able to meet the requirements. The reactive sensor based motion planners 

developed here are based on these trapezoidal types. 

The developed motion planning algorithms are able to give equivalent profile of the 

trapezoidal velocity or trapezoidal acceleration profile. It is possible to realize reactive 

trapezoidal motion planners analytically using the derived equations in the previous 

chapter. However the last development reveal that determining the current phase to 

which next motion should refer to is problematic. The resulting numerical errors 

sometimes lead to instability [13]. To circumvent these problems, the algorithm that 

selects the action corresponding to the detected current state has been developed. 

Based on the detected state the algorithm selects the correct motion parameters; which 

in turn equivalently constructs trapezoidal motion planning profile. 

This work has completed two reactive motion planning algorithms, equivalent to the 
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trapezoidal velocity profile (Figure 2.4), and trapezoidal acceleration profile (Figure 

2.6). The development is done on simulation level using MATLABTM [67] prior to a 

lower level programming environment and real system implementation. The following 

sections will discuss each algorithm. 

The discussion will begin from one dimension reactive motion planner algorithm. The 

description of the algorithm steps describes how it selects the desired and correct 

motion parameters to anticipate target position changes. Target position is presumably 

given by the sensors. Once the algorithms perform well in one dimension, the work is 

furthered into multidimensional motion planning coordination.  

 

3.2. Trapezoidal velocity algorithm 

The analytical equations––(2.83), (2.110), and the corresponding zero to zero 

equations––describe the trapezoidal velocity motion planning profile. The profile 

consists of constant acceleration phase, cruising or constant velocity phase, and the 

braking or constant deceleration phase. The cruising or constant velocity phase 

actually corresponds to zero acceleration. Therefore, the entire phases actually can be 

characterized by controlling the acceleration. 

The developed algorithm of trapezoidal velocity profile here, rather than utilizing 

mentioned novel analytical equations, uses a controlled acceleration to equivalently 

construct a trapezoidal velocity profile. The algorithm, through series of conditionals, 

selectively chose the acceleration value to achieve the target position. The selected 

acceleration value corresponds to current condition and the objective, i.e. the target. 

The series of conditions control this selection process for a proper acceleration value 

until the target is reached. 
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3.2.1 Algorithm for reactive trapezoidal velocity 

This algorithm works as a continuous discrete time loop until a certain stopping 

condition is achieved. The discrete trajectory and the corresponding profiles are 

generated for each time step dt. Letting a(k+1), v(k+1), q(k+1), a(k), v(k), q(k) 

represent acceleration, velocity, and position at the next and current time steps, with k 

as the loop index, the algorithm can be describes in steps as follows: 

Step 1: Asking whether the remaining distance |qf – q(k)| to the target is smaller than a 

small limiting distance ε ? 

If the answer is yes, then 

Step 1.1: Stop, there is no need to move further. The target is presumably 

achieved. 

If the answer is no, then 

Step 1.2: Compute the braking distance dbrk using a method to be discussed later  

Step 1.3: Asking whether the remaining distance is smaller than braking distance 

dbrk 

If the answer is yes, then 

Step 1.3.1: Start to brake. 

Corresponds to the polarity or the direction, select the appropriate 

deceleration value a(k+1) = ±a. 

If the answer is no, then 

Step 1.3.2: Asking whether the current speed v(k) is much higher than 

maximum velocity v 

If the answer is yes, v(k) > v, then 

Step 1.3.2.1: Start to brake/slow down the motion. 
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Corresponds to the polarity or the direction, select the 

appropriate deceleration value a(k+1) = ±a 

If the answer is no, v(k) ≤ v, then 

Step 1.3.2.2: Asking whether the current speed v(k) is equal to 

maximum velocity v 

If the answer is yes, , v(k) = v then 

Step 1.3.2.2.1 Set the acceleration to be zero a(k+1) = 0, 

maintain the constant maximum speed v. 

If the answer is no, v(k) ≠ v, then 

Step 1.3.2.2.2: Accelerate 

Corresponds to the polarity or the direction, select the 

appropriate acceleration value a(k+1) = ±a 

Step 2: Integrate the corresponding velocity and position state 

v(k+1) = v(k) + a(k+1) dt 

q(k+1) = q(k) + v(k+1) dt + ½ a(k+1) dt2 

Step 3: Increment the loop index k = k + 1 

Step 4: Repeat the loop from Step 1 for the next time step. 

The flowchart shown in Figure 3.1 summarizes the mentioned steps flow. 

The limiting distance ε value is a small empirical stopping value. The value has to 

ensure a smallest or shortest oscillation period at the end of motion. 

The braking distance dbrk is the required distance to bring the motion to stop from the 

current condition. Thus braking distance is computed in real-time with respect to the 

current state. The braking distance can be computed by considering a sloped 

deceleration phase of the corresponding motion profile expressed in d as 



 65

 
Figure 3.1 The flowchart of trapezoidal velocity motion planning algorithm. 

 

d(t) = d0 + v0 t – ½ a t2  

= v0 t – ½ a t2 (3.1) 

with d0 can be considered zero. Meanwhile, the corresponding velocity equation is 

v(t) = v0 –  a t 

and at the final condition v(t) = 0, thus 

N

Y
STOP 

Is remaining dist. smaller 
than limiting dist. 

|qf-q(k)| < ε  ? 

START

k = 1

Compute braking distance, 
dbrk(k) 

Is remaining dist. smaller 
than braking dist. 

|qf-q(k)| < dbrk(k) ? 

Y

N

Is current velocity smaller 
than max. velocity 

v(k) ≥ v ? 

N

Y

Is current velocity equal to
max. velocity 

v(k) = v ? 

N

Y A

Brake : 
a(k+1) = ±a 

A

Accelerate : 
a(k+1) = ±a 

A

Brake : 
a(k+1) = ±a 

A

Maintain constant velocity
a(k+1) = 0

A

Integrate: 
   v(k+1) = v(k) + a(k+1)dt 
   q(k+1) = q(k) + v(k+1)dt + ½ a(k+1)dt2

Increment the loop index, k = k + 1
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t = v0 /a 

and substitution to (3.1) gives 

brk

2
0

2
)( d

a
vtd ==  

Referring back to discrete time, the braking distance for a corresponding time step k is 

)(2
)()(

2

brk ka
kvkd =  (3.2) 

 

3.2.2 Typical result 

As discussed, this algorithm is simple and straightforward. The algorithm can easily 

alternate acceleration value to a desirable one. Those conditional evaluations are done 

real time; thus it is possible to accommodate target changes coming from sensory 

information in very minimum time and performed continuously up until the target is 

achieved. Being constructed in this way, the planner allows optimal motion achieving 

dynamic target by satisfying acceleration and velocity bounds. 
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(a)                                                          (b) 

Figure 3.2 One dimensional trapezoidal velocity algorithm pursuing target changes (a). The 
algorithm generates necessary overshoot for a close target change (b). 

 

A simple one dimensional result of the algorithm pursuing target changes is shown in 

Figure 3.2. The figure shows that the algorithm can anticipate the target changes 

regardless of how far the distance is. Even if the target suddenly is too close, the 
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algorithm can easily generate the necessary overshoot. Figure 3.2b shows an example 

of overshoot motion. 

 

3.2.3 Identified problem 

There are identified problems in the algorithm. Due to numerical error the final 

velocity likely will not be zero. This velocity discrepancy even though only has a small 

magnitude at moments just before stop, however, it may result in undesirable effects. 

Further, as it shown in the typical result, the acceleration experiences a chattering 

effect at constant velocity phase. Although it is bounded within permissible 

acceleration value, it might result in undesirable effects to the system. Similar with the 

native infinite jerk at boundaries, this chattering acceleration may also result to 

tracking problems as well as physical vibration of system affecting accuracy and 

device’s lifetime. It is important to know the impact of this behavior to the system and 

it will be discussed in next chapter. 

 

3.3 Trapezoidal acceleration algorithm 

To prevent infinite jerk during fast motion one can use higher order polynomial i.e. 

quintic or bounded jerk profile, i.e. trapezoidal acceleration profile. However, as 

trapezoidal acceleration offers more practical advantages, it becomes more desirable. 

Like trapezoidal velocity profile, it is possible to develop motion planning algorithm 

using analytical equations such as (2.110) in previous chapter. However, this analytical 

method is problematic and in addition, as it is shown from the derived equations in 

Chapter Two, it is also found to be time consuming [13, 14, 15]. 

Rather than utilizing analytical method, the developed algorithm also uses conditionals 

to control the motion. The algorithm is able to equivalently construct trapezoidal 
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acceleration profile. The algorithm, with respect to current conditions, selectively 

chooses the jerk through series of conditionals and generate the motion trajectory until 

the target is reached. 

 

3.3.1 Algorithm for reactive trapezoidal acceleration  
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Figure 3.3 Flowchart of trapezoidal acceleration motion planning algorithm 
 
Similarly, the algorithm works as a continuous discrete time loop with sampling time 

dt as illustrated in Figure 3.3. 

The target position is determined from the sensor. Based on a known braking time tbrk 

the algorithm decides whether the motion is feasible or not under the sampling time dt. 

At start time with zero state, the braking time tbrk is simply initialized to a large 

number. If tbrk < 2dt then the motion is not feasible thus the trajectory generation is 

terminated, otherwise the algorithm computes the braking distance dbrk and braking 
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time tbrk for current state. There are two braking cases. Figure 3.4 shows the two cases 

for the computation of braking time which will be discussed in the next section. If the 

remaining distance to target |qf – q(k)| is smaller than braking distance then it brakes 

using appropriate jerk value, otherwise it continues to compare the current velocity 

with the maximum velocity. If the current velocity is bigger than the maximum 

velocity, then it brakes, otherwise it accelerates. In either case the appropriate value of 

jerk (0, +j, –j) is selected. 

The algorithm then calculates the position, velocity, and acceleration at the next time 

step using the selected jerk value.  

a(k+1) = a(k) + j(k+1) 

v(k+1) = v(k) + a(k+1) dt + ½ j(k+1) dt2 

q(k+1) = q(k) + v(k+1) dt + ½ a(k+1) dt2 + 1/6 j(k+1) dt3 (3.3) 

Note that this motion planner does not stop and eventually continue to oscillate around 

the target, but these oscillations will become so small such that the system will 

practically not move. The jerk is also set as 0 when the braking time tbrk < 2 dt. As the 

movement results from the integration of the jerk as in (3.3) it is expected that the error 

in reaching a target will be proportional to the third order of the time step dt3. 

In brief, the flowchart can be described in steps as follows 

Step 1. Check whether braking time tbrk is smaller than 2 dt 

If the answer is yes then no further motion is realizable under sampling time dt. Set 

the next time step jerk j(k+1) = 0 zero; and so does for current acceleration a(k) = 0 

and current velocity v(k) = 0. 

If the answer is no then it shall continue to go. 

Step 2. Calculate braking distance dbrk (and braking time tbrk) with respect to the 

current condition. 
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Step 3. Compare target distance with braking distance. 

If the target distance is closer than braking distance then 

Step 3.1. Brake 

Step 3.2. Ask the current speed v(k) sign 

Step 3.3. Ask current acceleration a(k) corresponding to current speed sign. 

Step 3.4. Select appropriate next step jerk value j(k+1). 

Otherwise it shall continue to go 

Step 3.5 Compare current speed with the limit v(k) = v ? 

If it is above then decrease the speed 

Step 3.5.1. Consider the blend when decreasing the speed. 

Step 3.5.2. Select appropriate next step jerk value j(k+1). 

Otherwise, ask whether current speed is equal with the limit. 

If it is equal to the limit then maintain the speed 

Step 3.5.3. Zero next step jerk value j(k+1) and zero a pseudo current 

acceleration a(k) 

Otherwise accelerate 

Step 3.5.4. Consider the blend when accelerate the speed. 

Step 3.5.5. Select appropriate next step jerk value j(k+1). 

Step 4: Integrate : 

   a(k+1) = a(k) + j(k+1) 

   v(k+1) = v(k) + a(k+1) dt + ½ j(k+1) dt2 

   q(k+1) = q(k) + v(k+1) dt + ½ a(k+1) dt2 + 1/6 j(k+1) dt3 (3.3) 

Step 5: Increment loop index, k = k+1 

Step 6: Repeat the loop from Step 1 to Step 5 until motion is no longer able to be 

realized. 



 71

 

3.3.2 Computation of braking time 

The previous discussion mentions the two braking cases for the computation of the 

braking distance and braking time. Figure 3.4 shows the two cases. In case A (Figure 

3.4.a) the minimum deceleration –a is not reached and a new lower bound a = –a* has 

to be computed, while in the  “normal” case, case B (Figure 3.4.b), the deceleration 

reaches the lower bounds –a. Case A typically occurs at moments close to the target, 

while case B mostly occurs at the other parts. 

t
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Figure 3.4 Computation of time to brake , (A) close to the target, braking in two phases; (B) 
normal brake, braking in three phases. 

 

3.3.2.1 Case A, two phases braking 

With respect to Figure 3.4.a, for case A, the braking distance is computed as 
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and the braking time tbrk is derived as follow. 

Figure 3.4.a shows that at t0 < t < t* the acceleration and velocity are: 

a(t) = a0 – j (t– t0) (3.5) 

v(t) = v0 + a0 (t– t0) – ½ j (t– t0)2 (3.6) 

To solve t1, substitution of a(t*) = –a*to equation (3.5) gives 

j
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and substitution of t1 to (3.6) gives 
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At t* < t < te the acceleration and velocity are 

a(t) = –a* + j (t–t*) (3.7) 

v(t) = v* – a* (t–t*) + ½ j (t–t*)2 (3.8) 

To solve t2, substitution of a(te) = 0 to equation (3.7) gives 
j
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hence, the new acceleration bound is 
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where ve = final velocity. The braking time can be written as 
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correspondingly, using (3.10), it is possible to rewrite t1 and t2 
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Hence, (3.4) can also be expressed as 

dbrk = v0 t1 + ½ a0 t1
2 – 1/6 j t1

3  +  v* t2 – ½ a* t2
2 + 1/6 j t2

3  (3.12) 

 

3.3.2.2 Case B, normal three phases braking 

Secondly, on the “normal” case B in Figure 3.4b, the braking distance is 
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and the braking time tbrk is derived as follow. 

Figure 3.4b shows that at t0 < t < t* the acceleration and velocity are: 

a(t) = a0 – j (t– t0) (3.14) 

v(t) = v0 + a0 (t– t0) – ½ j (t– t0)2 (3.15) 

Similarly, to solve t1, substitution of a(t*) = –a to equation (3.14) gives 
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At t* < t < t** the acceleration and velocity are 

a(t) = –a (3.16) 

v(t) = v* – a (t–t*) 
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= 2

22
0

0 2
ta

j
aav −−+  (3.17) 

Meanwhile at t** < t < te the velocity and acceleration are 

a(t) = –a + j (t– t**) (3.18) 

v(t) = 

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j
aav  – a (t– t**) + ½ j (t– t**)2 (3.19) 

yet, at t = te the acceleration is zero, a(t) = 0; thus substituting these value to (3.18) 

gives 

j
attte ==− 3*)*(  

Accordingly, substitution of t3 to (3.18) will give 
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from which t2 and v** can be obtained, i.e. 
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Hence, the braking time is 
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Braking distance equation (3.13) thus can also be expressed as 

dbrk = (v0t1 + ½ a0t1
2 – 1/6 j t1

3) + (v* – ½ a t2) + (v** t3 – ½ a t3
2 +1/6 j t3

3)  (3.23) 
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3.3.3 Typical result 
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(a)                                                          (b) 

Figure 3.5 One dimensional trapezoidal acceleration algorithm pursuing target changes. The 
algorithm generates necessary overshoot for a close target change (b). 

 

The algorithm can easily alternate the jerk value as required. Meanwhile, like 

trapezoidal velocity, the conditionals can be done in very minimum time. The 

algorithm is possible to accommodate target changes coming from sensory information 

while maintain smoothness and optimality by satisfying kinematic bounds. 

A typical result of the algorithm pursuing two changes of target position like in 

trapezoidal velocity example is shown in Figure 3.5. The figure also shows the 

necessary overshoot when the target becomes too close (Figure 3.5b) 

 

3.3.4 Oscillation 

Figure 3.5 also shows the typical oscillation at moments close to target. More apparent 

oscillation can be seen in the acceleration profile. This considerable small magnitude 

oscillation occurs due to the necessary overshoots in approaching the target. Numerical 

errors of the discretization also lead to the discrepancies causing this oscillation. 

As the algorithm only controls jerk value––a third order derivative of position––it can 

be understood that the integrations will have longer response delay than trapezoidal 
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velocity. The jerk value will affect the oscillation convergence. Higher jerk bound will 

result in faster convergence of the oscillation, the lower the slower. 

Jerk is an empirical value. Commercial actuators never suggest any recommended 

values. The jerk bound will depend on the type of application and the physical 

structure of the applied system. To select appropriate bound value users shall refer to 

the experiences and empirical results, i.e. compromising the desirable motion 

smoothness and response characteristics, with applicable speed and motion reliability. 

In this algorithm, the allowable highest jerk value can be determined from the 

sampling time dt 

dt
aj ≤  

A highest jerk setting j = a/dt will allow the acceleration to jump to/from maximum 

value within one sampling time period dt and thus it allows an alternating acceleration 

like in trapezoidal velocity. 

Whereas, the lowest value appears to be unrestricted; however it is important to 

minimize the oscillations especially at moments close to target. To determine the 

lowest value it is possible to use a practical approximation as follows. A low jerk value 

may eliminate constant acceleration phases and let the maximum velocity be achieved 

in only two consecutive opposing constant jerk phases. i.e. first and third phases or the 

fifth and seventh phases of the typical trapezoidal acceleration profile. The 

corresponding acceleration and velocity equations of these two phases will be 

a(t) = j t  and a(t) = 0 = a – j t 

v(t) = ½ j t2 and  v(t) = v = v0 + a0t – ½ j t2. 

Solving the equations for the given bounds v and a will give 

v
aj

2

≥  
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Hence for this algorithm, the suggested jerk value is a range of 

dt
aj

v
a ≤≤

2

 (3.24) 

 

3.4 Multidimensional reactive motion planner 

Multidimensional motion planning will be desirable as manipulators commonly 

resemble multilink body driven by multi joint actuators, In task space, position and 

orientation planning also impose a multidimensional planning, i.e. 6 degrees-of-

freedom. It is now desirable to develop multidimensional planner using the one 

dimension algorithm. 

 

3.4.1 Motion planner with independent axis 

A simple possibility to construct a multidimensional reactive motion planner consists 

of using N copies of one-dimensional planner working independently for N-dimension 

system. Each dimension (i.e. each axis if planned in joint space) will move as fast as 

possible relative to the specified kinematic bounds. 

Typical result of the planner working independently for each axis is given in Figure 

3.6.a. As expected, the resulting trajectories generally do not reach to target 

simultaneously or from straight line direction, , but tend to approach at different angles 

corresponding to the velocity bounds. For example, the trajectories make 45o or 135o 

angles if all dimensions have the same velocity bound like in Figure 3.6.a. 

This typical result is similar with CNC’s rapid feed trajectories generation [1]. As long 

as motion coordination among axis is not the main consideration, this simple 

implementation will sufficiently fulfill the need for fast reactive motion planning. 
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Figure 3.6 Movement of a 2-dimensional motion planner formed of (A) independent, and (B) 

coordinated one-dimensional reactive trapezoidal velocity planners pursuing 
changing targets. The dotted line connect point in motion to the new target. The 
targets 1, 2, 3, and 4 are: (0.002, 0.003) m at t = 0 s, (-0.002, 0.0035) at t = 190 ms, 
(0.0005, 0.001) m at t = 500 ms, (-0.0015, 0.0005) m at t = 670 ms. The kinematic 
bounds are v = (0.01; 0.01) m/s and a = (0,2; 0.2) m/s2. 

 

3.4.2 Motion planner with coordinated axis 

Coordinating the trajectories to move straightly to target might become desirable and 

useful in many applications (such as interception) [26, 48, 49, 61]. In recent 

application of sensor guided robotic surgery; the motion coordination also will 

generate motions straightly to the pointing/guiding device and helps to give better 

sensations. This section describes a simple scaling method for generating coordinated 

motion among axis. 

To bring the trajectory move straightly to target each dimension should coordinate the 

motion planning. Each axis planner should then be able to adjust motion parameters 

with respect to other axis. The method discussed here will bring the velocity vector in 

the direction of the target by modifying the vector of velocity bounds v = 

(v1 , v2 , … vi , … vN). The velocity bounds vector vnew  is modified to let it point to the 

target direction. Thus it imposes that vnew becomes proportional to the vector 

c = (c1 , c2 , … ci , … cN) between the current position and the target, i.e. 

vnew = s c (3.25) 
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where s is the scaling factor to be determined. The scaling factor s has to make the new 

velocity bound vi (new) smaller or equal to the real bound vi in every dimension i=1…N, 

i.e.  

vi (new)  =  s ci    ≤  vi   ,  or in other words 









≤

i

i

c
vs     for all i. (3.26) 

The maximum s value such that satisfies (3.26) hence is 









=

i

i

i c
vs min     for all i. (3.27) 

According to (3.25) thus the velocity bound is changed in every time step as 

vnew =  








i

i

i c
vmin   c (3.28) 

Figure 3.7 illustrates how the velocity bound vector is determined for two different 

target points. In Figure 3.7a, v1 is scaled down with a ratio of v2/c2 while in Fig. 5B v2 

is scaled down with a ratio of v1/c1. 
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Figure 3.7 Scaling the velocity bounds to reach the target straight for two different cases. 

 

When only the velocity is scaled, it may occur that at the initial phase of the movement 

(i.e. until the maximal speed is reached) the generated trajectory is not perfectly 

straight. To avoid this, the acceleration bound vector a = (a1 , a2 , … ai , … aN) also has 
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to be scaled, i.e. similarly using  

anew = 








i

i

i c
amin   c (3.29) 

and for the motion planner with trapezoidal acceleration also the jerk bound vector 

j = (j1 , j2 , … ji , … jN) using 

jnew = 








i

i

i c
jmin   c (3.30) 

Typical result of a coordinated motion planning for two axis can be seen in 

Figure 3.6b. The motion turns towards every new target as fast as possible and then 

drives straight to it, also providing smooth transitions. 

 

3.5 Prevention of Collisions 

As the trajectory is modified along the way and obstacles position can continuously 

change, it is necessary to check at every time step whether a collision may occur or 

not. This section describes a simple collision prevention algorithm based on the 

braking distance dbrk under assumption that the distance to the obstacles is provided at 

every time. This assumption imposes that typical sensor (e.g. laser range finder, 

ultrasonic sensor, lidar) is measuring and providing information of direction and 

distance to the closest point on the obstacle in real-time. 

The algorithm compares the braking distance with the free distance, defined as the 

intersection of the normal to the obstacle with a straight line in the forward direction 

(Figure 3.8). If the free distance is smaller than a safe distance then the robot starts 

immediately to brake. The safe distance is defined as braking distance with an offset δ, 

that is safe distance = (1 + δ) dbrk. The offset α corresponds to a distance achieved in a 

period ∆t as follows 
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δ = v ∆t + ½ a ∆t2     for the trapezoidal velocity profile and 

δ = v ∆t + ½ a ∆t2 + 1/6 j ∆t3   for the trapezoidal acceleration.  
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Figure 3.8 Distance diagram for prevention of collisions realized with the motion planner 
algorithm. The robot might need to brakes to see the free way. 

 

In general ∆t = 4 dt will give satisfactory results at any motion direction. Note that ∆t = 

dt would be sufficient when the motion is straight, but not when it is turning. During a 

straight braking motion, the direction is maintained using appropriately scaled 

deceleration and jerk bounds as previously described. On the other hand, in turning 

condition the algorithm is turning as fast as possible for each axis. As a consequence, 

should there be a need to brake due to obstacles; it needs larger free distance offset. 
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Chapter 4 

 

Simulations and Experiments 

 

To verify the algorithm performance, a series of simulations was done using 

MATLAB [67]. The simulations focus on the coordinated axis motion planning. As the 

algorithms directly compute the discrete position using the integration over selected 

motion parameter rather than pre-calculating the whole trajectory, it becomes desirable 

to know the planning accuracy. It is also desirable to observe how a modeled system 

behaves under such reactive action using the algorithms.  

 

4.1 Two dimension reactive motion planning with coordinated axis 

A simulation of the algorithms doing two dimensional planning realized in MATLAB 

is presented in Figure 4.1 and 4.2 respectively for trapezoidal velocity and for 

trapezoidal acceleration motion planning algorithm. Nine ‘jumping’ targets are given 

consecutively without waiting for each target to be reached, except for the last target. 

The dotted lines indicate the target changes, i.e. connecting a point in motion to the 

new target. The nine targets, the corresponding changing times, and the kinematic 

bounds are as described in of the figure captions. 

The results show that the motion turns towards every new target as fast as possible and 

then drives straight to it, and the transitions are always smooth. Note that the imposed 

kinematic bounds are never exceeded. The trapezoidal acceleration algorithm (Figure 

4.2) is smoother than the trapezoidal velocity algorithm (Figure 4.1), but obviously 

will turn slightly slower towards the targets. 



 83

 
Figure 4.1 Simulation of the motion planner with trapezoidal velocity profile tracking a 

“jumping target”. The bounds are as in Figure 3.6. The targets 1 to 9 are: (0.002, 
0.003) m at t = 0 s, (-0.002, 0.0035) at t = 250 ms, (0.0005, 0.001) m at t = 600 ms, 
(-0.002, 0.0002) m at t = 800 ms, (0,0) at t = 970 ms, (0, 0.002) m at t = 1150 ms, 
(0.0015, 0.0004) at t = 1300 ms, (-0.002, 0.0005) m at t = 1450 ms, (-0.001, 
0.0025) at t = 1700 ms 

 

 
Figure 4.2 The same sensor-guided movement as in Figure 4.1 realized with the motion 

planner with trapezoidal acceleration. The jerk bounds are j = (15;15) m/s3. 
 

4.2 Oscillation of trapezoidal acceleration algorithm 

The suggested jerk bound value for trapezoidal acceleration motion planning algorithm 

is given in (3.24). Figure 4.3 below shows a typical final oscillation of trapezoidal 

acceleration algorithm using two different jerk bounds. The low jerk bound may result 

into longer oscillation thus takes longer time to settle. The higher the faster. Noting 

that velocity and acceleration bounds respectively are 0.01 m/s and 0.2 m/s2, the jerk 

bound j = 3.5 m/s3 in Figure 4.3a is lower than the suggested range. On the other hand, 

a reasonable value of j = 15 m/s3 in Figure 4.3b gives satisfactory result 
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Figure 4.3 Two different jerk bound for same motion sequence. On the left figure j = 3.5 m/s3 

while the right figure is higher, j = 15 m/s3. 
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Figure 4.4 Two different jerk bound for same motion sequence. On the left figure j = 12 m/s3 

(3 times of the minimum of the range) while the right figure is higher, j = 16 m/s3 
(4 times of the minimum of the range). 

 

However, the multidimensional implementation might need further considerations. In a 

multidimensional implementation the coordinated axis method will adjust the bounds 

to generate straight motion to the target. Therefore the velocity bound will be adjusted 

correspondingly and according to (3.24) the minimum limit of the range will also be 

adjusted to a higher number. The assigned jerk bound might not cover the adjustment. 

Figure 4.4 gives an example of such situation in two dimension application where one 

axis experienced oscillation as a result of the adjusted kinematic bounds. Hence, it is 

necessary to select a safe jerk bound value to obtain satisfactory motions in all 

directions without erratic oscillations. It is observed that in general taking j in range of   
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10
dt
aj

v
a ≤≤

2

   ; with dt ≤ v / 10a  ought to be able to give satisfactory result in all  

motion directions. 

 

4.3 Reactive position and orientation planning 

In addition to the two dimensional reactive planning, the implementation is also done 

in position and orientation planning. The simulation imposes six degree of freedom 

motion planning in task space creating a 3D visualization of the reactive motion using 

the algorithms. 

The simulation uses Roll-Pitch-Yaw or any similar three angles representation of 

orientation. The translation and rotation are planned simultaneously using six-

dimensional reactive motion planner with coordinated axes as described previously. 

The orientation R is represented as  

R = R3 R2 R1 (4.1) 

where 

Ri = Rot(xi,α  i) ; i = 1,2, 3 

are the three simultaneous rotations with angles α1; α2; α3 about three corresponding 

perpendicular axes of the reference frame namely x1; x2; x3. By using this 

representation and resolving α  i  such as in [3], it becomes simple to code the 

remaining orientation distance vector α = (α  1; α  2; α  3)T to the target as 

α = αf – αc (4.2) 

where αf = (αf1; αf2; αf3)T describes the final orientation vector and 

αc = (α  c1; α  c2; α  c3)T the current one. Correspondingly the remaining position 

x = (x1; x2; x3)T can be written as 

x = xf – xc (4.3) 
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with xf = (xf1; xf2; xf3)T and xc = (xc1; xc2; xc3)T denotes the final and current position 

vectors respectively. Hence the planner uses the three orientation parameters 

(α1; α2; α3) and three Cartesian parameters (x1; x2; x3) for the six dimensional position 

and orientation planning. Note that when this representation is used for robots with a 

“wrist” mechanism corresponding to RPY angles, the true motor limitations can be 

used as orientation kinematic bounds. 

 

Figure 4.5 3D trajectory and orientation planner simulation program 
 

The visualization is done using the OpenGL graphic library [68] under LabWindowsTM 

development environment [69]. The above algorithms realize coordinated motion of all 

axes, meaning that all axes will move until the end of the movement. Figure 4.5 shows 

a screen capture of the simulation program and doing three targets reactive motion. As 

can be seen in Figure 4.6 the kinematic bounds are satisfied, provided with the smooth 

transitions. The kinematic bounds are as given in the figure caption. The program gives 

intuitive 3D trajectory transitions of position and orientation throughout dynamic 

target changes. However, as rotations are non commutative, the orientation in general 
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will not be straight on the sphere space. It drives straight in the space of the three 

orientation parameters. 
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(c)                                                                           (d) 

Figure 4.6 Position and orientation graphs using trapezoidal velocity (a) and (b), and using 
trapezoidal acceleration (c) and (d). The kinematic bounds are v = 9 m/s, 
a = 180 m/s2, j = 18000 m/s3 for position, and θ&  = 600 º/s, θ&&  = 6000 º/s2, 
θ&&&  = 300000 º/s2 for orientation. 

 

In addition, the program is also designed to perform polynomial based motion 

planning, i.e. using cubic and quintic profile. The algorithms use maximum velocity 

criterion for cubic and maximum acceleration criterion for quintic. 

Figure 4.7 shows a typical result for the same three targets reactive motion using 

polynomials. For a given kinematic bounds, the results show that despite velocity 

continuities in cubic, the acceleration is not controlled. On the other hand, maintaining 

acceleration continuity in quintic results in uncontrolled velocity limit. Likely the 

result seems to be faster than trapezoidals. However this is not necessarily true as the 
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velocity maxima are higher than trapezoidal’s. The trapezoidal algorithms shows its 

reliability and optimality over the polynomials. 
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(c)                                                                          (d) 

Figure 4.7 Position and orientation graphs of motion planning using cubic (a) and (b) under v 
criterion, and quintic (c) and (d) under a criterion. The kinematic bounds are 
v = 9 m/s, a = 180 m/s2 for position andθ&  = 600 º/s, θ&&  = 6000 º/s2 for 
orientation. 

 

4.4 Optimality of coordinated axis motion planning 

The planner algorithm with coordinated axes will make the motion turn as fast as 

possible to move towards the target straightly and then reach this target as soon as 

possible. In average this method is faster than the version using copies of N-

independent one-dimensional motion planner. 

Series of one hundred “random double-target” simulations show the time advantage of 

coordinated axis motion planning over the uncoordinated method. In these simulations 

the target position is modified randomly during the motion to the first target, as shown 
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in Figure 4.8a. The distribution of the difference between the total movement time with 

the coordinated axes algorithm and the algorithm with uncoordinated axes is shown in 

Figure 4.8b. Figure 4.8b shows that in 63% of the cases the axes coordination 

algorithm results in faster motions, and the time saved is about 50 ms in mean. This is 

due to the fact that the motion planner with coordinated axes is moving in a direction 

statistically closer to potential second targets than the planner with independent axis. 

 
Figure 4.8 (A) Motion planning with independent versus coordinated axes in double-target 

trials with random second targets. (B) The distribution of the time difference 
between the coordinated axes and uncoordinated axes algorithm. 

 

4.5 Accuracy 

In contrast to common motion planners which do a completely pre-calculated 

trajectory prior to motion execution such as in polynomial-based motion planner, the 

algorithms do not calculate and prescribe the trajectory connecting the starting point to 

the target. The algorithms at every time step directly generate and integrate the next 

time step position using selected motion parameter. This direct computation is done 

until the terminating condition is achieved. It is thus becomes desirable to know how 

close the target can be achieved or how accurate the planning algorithm is. 

Series of simulations under MATLAB show the typical position error to the target 

under given kinematic bounds. It is observed that the trapezoidal velocity motion 

planning algorithm has an overall error about 10 µm (Figure 4.9) under given 
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kinematic bounds a = 0.2 m/s2 and v = 0.01 m/s. The motion planning algorithm with 

trapezoidal acceleration results in higher accuracy. The algorithm will slightly oscillate 

around the target and approach it as close as possible. For example for j = 15 m/s3, a = 

0.2 m/s2, v = 0.01 m/s the error to the target is only 10 nm (Figure 4.10), i.e. 1000 

times smaller than with the trapezoidal velocity. 

 
Figure 4.9  Accuracy at which the target is reached using trapezoidal velocity motion planner. 

The figure shows four consecutive targets (1, 2, 3, 4). Kinematic bounds a = 0.2 
m/s2 and v = 0.01 m/s. 

 

 
Figure 4.10  Accuracy at which the target is reached using trapezoidal acceleration motion 

planner. The figure shows three consecutive targets (1, 2, 3). Kinematic bounds: j 
= 15 m/s3, a = 0.2 m/s2, and v = 0.01 m/s. 

 

4.6 Control simulations 

Control simulations provide typical outcomes of a modeled system under reactive 

motions using the developed algorithms. The chattering acceleration of trapezoidal 
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velocity algorithm and typical oscillations of the trapezoidal acceleration algorithm 

may affect the motion and thus it is desirable to observe the results. 

The control simulation is done on a modeled mini double pendulum or two link planar 

arms. The model is based on a microsurgical assisting arms to which this motion 

planning development is initially purposed for. The mini model is arranged as two link 

planar arms having mass concentrated at each ends M1 = 0.99 kg, M2 = 0.125 kg, of 

the length L1 = 0.075 m, L2 = 0.095 m. 

Dynamic of the system can be presented as 

τ=+ ),()( qqHqqM &&&  (4.4) 

 

 
Figure 4.11 Mini two link planar model. 

 

where M(q) is mass matrix and H is components consisting Corriolis V(q, q& ) q& . The 

gravity component is zero for planar case. By choosing input-output error as 

qqe r −=  

qqe r &&& −=  

where qr and rq&  is reference position and velocity, q and q&  as actual position and 

velocity, and by selecting simple path tracking PD controller 

iiiii eDeP &+=τ      ; i = 1, 2 (4.5) 
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it is expected that through careful selection of control parameters, the system will be 

able to track the desired motion satisfactorily. 

By choosing PD controller constants as P = diag(10, 10) Nm/rad and 

D = diag(0.3,0.15) Nm s/rad with corresponding cut-off and corner frequency 

approximately 60 rad/sec (3.18 Hz) and 300 rad/sec (47.75 Hz)––far below the 

sampling rate 1000 Hz––a filtered result can be expected. Figure 4.13 shows the result 

of the simulations. The figure shows that the chattering effect can be filtered. 
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Figure 4.12 PD controller frequency response. Vertical lines marks the corner frequency 
 

The trapezoidal acceleration motion planning algorithm clearly shows that although 

the chattering acceleration still exists, however the magnitude has been suppressed 

significantly. Under the same PD controller, overall, it yields smaller tracking error 

(Figure 4.14); note the smaller standard deviation. The bounded jerk also suppresses 

acceleration overshoots. In addition the results also show better accuracy at about 100 

times of trapezoidal velocity result. 
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final pos error: (0.000007, -0.000016) m 
stderr q1 = 0.000152 rad ; stderr q2 = 0.000053 rad ; mean1 = 0.000001 rad ; mean2 = 0.000001 rad 
stderr qv1 = 0.003688 rad/s ; stderr qv2 = 0.001970 rad/s ; mean1 = -0.000013 rad/s ; mean2 = 0.000007 rad/s 
stderr qa1 = 1.027570 rad/s2 ; stderr qa2 = 1.431937 rad/s2 ; mean1 = -0.003763 rad/s2 ; mean2 = 0.003370 rad/s2 

Figure 4.13 Control simulation result using trapezoidal velocity algorithm 
 

 

 
final pos error: (0.0000000379, -0.0000002579) m 
stderr q1 = 0.000142 rad stderr q2 = 0.000047 rad ; mean1 = -0.000001 rad ; mean2 = 0.000001 rad 
stderr qv1 = 0.003689 rad/s stderr qv2 = 0.002021 rad/s ; mean1 = 0.000018 rad/s ; mean2 = -0.000021 rad/s 
stderr qa1 = 0.399439 rad/s2 stderr qa2 = 0.338192 rad/s2 ; mean1 = 0.001115 rad/s2 ; mean2 = -0.001157 rad/s2 

Figure 4.14 Control simulation result using trapezoidal acceleration algorithm 
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Simulations on one shot point to point movement also shows different motion ends. 

Under the same kinematic bounds, trapezoidal velocity has a jumping termination with 

drastic end. Trapezoidal acceleration in other hand shows smoother ending condition 

with curly motions. Figure 4.15 shows the comparison.  

The difference comes from different ending condition on the algorithm. The 

trapezoidal velocity is terminated at very high jerk when target is considerably 

achieved, while trapezoidal acceleration is in controlled jerk smoothly approaching the 

target. The figure also shows significant accuracy difference between the two 

algorithms. 
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 final pos error: (-0.000006, -0.000012) final pos error: (0.0000000001, -0.0000000640) 

Figure 4.15 Zoomed view of typical motion ends of trapezoidal velocity (left) and trapezoidal 
acceleration (right). Solid line is the desired motion from the algorithm, dashed 
line is simulated motion of mini two links planar arm. 

 
 
4.7 Collision prevention simulation 

The collision prevention algorithm also has been simulated. Assuming the distance to 

obstacle is known from the sensory information, this simple algorithm effectively 

prevents collision with obstacle as in Figure 4.16. If there is enough free space to go, 

i.e. the distance to obstacle is larger than a safe free distance/space, the motion is 

continued and braked otherwise. In some cases the robot will start to brake, then notice 

that more free space is available while moving along the object and so continues and 

passes the object (Figure 4.17). 

Target 

Target 
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target

obstacle

(1) (2) (3) (4)  
Figure 4.16 Braking is performed to prevent direct collision with blocking obstacle 

 
target

obstacle

(1) (2) (3) (4) (5) (6)
 

Figure 4.17 Motion is continued when available free space is confirmed. 
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Chaper 5 

 

Typical Application 

 

5.1 Point to point on two actuators 

The algorithm is originally developed for a robotic assistant for microvascular surgery 

[70]. The surgeon's task is to stitch and join back the severed body vessels. This 

operation has to be performed under microscope and typically lasts for 4-6 hours. 

Currently, a human assistant is helping the surgeon during this tedious and exhausting 

operation. The assistant has to hold the vessels or handling tools precisely for long 

periods. Robot with its superiority in precise handling will become an effective 

replacement for the human assistant. The motion planning becomes important to 

enables the robot to efficiently perform the desired gestures and to reach sensor-guided 

suturing/cutting/holding location. 

The manipulator designed for this application is a two link planar manipulator 

equipped with two mini DC motors (Faulhaber Minimotor 1016006G) capable of 

running at max. speed of 18400 rpm, with 2667:1 gear ratio, encoder resolution of 10 

counts/rev. and controlled at 1 kHz with a Pentium 133 MHz PC. The given task 

simply is to realize point to point motions using simple PID joint controller. The PID 

parameters of the joint controller are: P = diag(13, 13) V/count, I = diag(400, 

400) V/s count and D = diag(0.0001,0.0001) Vs/count. 

Figure 5.1 shows a typical result of the experiment using the algorithms. The 

experiments show that the motion planner with trapezoidal velocity profile exhibits 

sudden changes of acceleration, what results in oscillations. The limited jerk of the 
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trapezoidal acceleration motion planning algorithm significantly suppress the 

oscillations and so the tracking error. This result confirms the efficiency of the jerk 

bound to minimize the vibrations close to the target. 

 
Figure 5.1 Result of point to point motion on a actuators of microsurgical assisting robot. 

Note the smaller error at the phase transitions of trapezoidal acceleration 
algorithm. 

 

5.2 Sensor based passive visual tracking using gimbal/pitch-yaw robot 

A real sensor based experiments are also conducted. The experiment realizes a passive 

guided visual tracking and interception of an object moving arbitrarily in Cartesian 

planar surface. The algorithms perform dynamic trajectory generation to reach the 

moving object/target subject to a set of joint actuator kinematic bounds 

The equipments are a two-degree of freedom gimbal mechanism, a POLARISTM 

optotrack system, and a laser pointer as a virtual target pointer/trapper. The gimbal 

mechanism has two adjacent perpendicular rotation axis correspond to “yaw” and 

“pitch” axis. A laser pointer is attached adjacent to the other gimbal rotation center (i.e. 

align to the third axis or the “roll” axis). The laser ray points to the object position. By 
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swiveling right–left or up–down, the mechanism guides the laser ray for tracking the 

arbitrary moving object. For simplification, a white board is placed parallel to the yaw 

axis to allow the object moves in a parallel surface. The object location is tracked and 

given by the POLARISTM Optotrack System. This optical-tracking system capable to 

perform object tracking at refresh rate of approximately 150 ms. The object must carry 

an ‘active device’ to make it track-able. The active device emits infrared signal to the 

POLARIS tracking unit. Figure 5.2 below shows the experiment arrangement. 

 

  

Figure 5.2 Sensor based passive visual tracking experiment setup. 
 

The actuators of the gimbal mechanism are HATHAWAY brushless DC motors type 

QBO3401A00HE coupled with a 1,000 counts/rev digital encoder and 100:1 reduction 

gear. For safety reason the motor speed is limited to 114,000 counts/s or equal to 

1710 rpm from its maximum speed, 1750 rpm. 

There are two tracking test conditions, a fast object motion and slow object motion. In 

each condition both trapezoidal algorithms track the arbitrary object movement. To get 

a similar target movement for both algorithms, the object movement is recorded. The 

kinematic bounds setting are also different in each condition, i.e. high and low setting 

for each condition. Through these combinations, it is expected to see different tracking 

characteristics for each condition. 

POLARIS

Object & 
active 
device 

Laser pointer 

Gimbal mechanism 

Gimbal 
mechanism 

Yaw

Pitch 
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5.2.1. Fast object motion. 

In this experiment, the object is moving on the surface up to 550 mm/s. The gimbal 

directs the laser ray to track and intercept the position of the object. Figure 5.3 shows 

the results of the tracking trajectory (in Cartesian space), the tracking trajectory (in 

joint space), and the tracking error of each algorithm. The tracking error is the 

difference between reference/desired motor position generated by the planner 

algorithms with the actual actuator position. 

The left graphs represent trapezoidal velocity algorithm result, whereas the right 

represents trapezoidal acceleration. Since the tracking error is considerably small, the 

dotted line either in the Cartesian and joint space tracking graphs, i.e. the first and 

second row graphs, depict the reference and the actual position; whereas the solid line 

depicts the actual object position obtained form POLARIS. The actual tracking error is 

given in the third row graphs. 

At first set of experiment, the joint kinematic bounds are set as v = 7,000 counts/s 

(corresponds to 6.3 º/s), a = 20,000 counts/s2 (18 º/s2), and for trapezoidal acceleration 

j = 80,000 counts/s3 (72 º/s3). Secondly, in Figure 5.4, the kinematic bounds is 

increased sixteen times to v = 114,000 counts/s (100.8 º/s), a = 20,000 counts/s2 

(288 º/s2), and for trapezoidal acceleration j = 1,280,000 counts/s3 (1152 º/s3). 

 

5.2.2 Slow object motion. 

In this experiment, the object is moving up to 225 mm/s. The same experiment 

kinematic bounds settings and the same graphs representation are applied in this slow 

object movement experiment. The 20 seconds of results are given in Figure 5.5 and 5.6 

respectively for low kinematic bounds (v = 7,000 counts/s, 
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 » std(err1)   13.0395 
» std(err2)   15.4620� 

Figure 5.3 Experiment result of tracking fast moving target on low kinematic bounds. Left 
graphs are results of trapezoidal velocity algorithm, right graphs are trapezoidal 
acceleration’s. 
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Figure 5.4 Experiment result of tracking fast moving target on high kinematic bounds. 
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Figure 5.5 Experiment result of tracking slow moving target on low kinematic bounds. 
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Figure 5.6 Experiment result of tracking slow moving target on high kinematic bounds. 
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 a = 20,000 counts/s2 and for trapezoidal acceleration j = 80,000 counts/s3) and sixteen 

times higher kinematic bounds (v = 114,000 counts/s, a = 20,000 counts/s2, and for 

trapezoidal acceleration j = 1,280,000 counts/s3). 

 

5.2.3 Comparison 

The algorithms are applicable satisfactorily for sensor based system. It is shown that 

the two algorithms are able to track arbitrary moving object. At 150 ms sensor refresh 

rate the algorithms dynamically generate trajectory towards the object and eventually 

intercept it. 

At low kinematic bounds the robot experiences action lags in tracking target change 

either for fast or slow object movement. The lag is longer for trapezoidal acceleration 

as a result of the bounded jerk. Only when the object also moves slowly the trapezoidal 

velocity algorithm considerably can keep pace with target position changes. Therefore, 

trapezoidal velocity is merely sufficient for slow sensor based application. Meanwhile 

trapezoidal acceleration will be able to minimize the lag with higher jerk limit. 

Overall, the tracking error with low kinematic bounds setting is about the same for 

both algorithms. Trapezoidal acceleration however is able to minimize the error spikes 

that are common in trapezoidal velocity applications. 

More noticable tracking error suppression is shown by the trapezoidal acceleration 

algorithm in high kinematic bounds applications. Respectively, higher kinematic 

bounds also allow faster response to track the fast moving object. However, the error 

suppressions through the jerk limitation appear at a cost on small response lags which 

still can be notified at some turning points. As a consequence, in comparison to 

trapezoidal velocity on the same kinematic limits, the bounded jerk eventually will 

give bigger tracking offset between the target trail and the generated trajectory. For 
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fast sensor based applications trapezoidal acceleration algorithm is suitable to obtain a 

fast, smooth and relatively accurate tracking performance. 
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Chaper 6 

 

Conclusion 

 

6.1 Summary of work 

Motion planning is an important element in robot control. Motion planning allows the 

robot to define the efficient and effective trajectory to achieve the goal position. 

Motion planning, when associated with sensor-based applications, opens new interests 

and challenges.  

Sensor based motion planning extends system capability beyond pick and place or one 

shot point to point applications. Sensor based motion planning, in conjunction with the 

sensory information process, allows the system to accommodate input from the 

surrounding and perform the desirable motion response. To certain extent sensor-based 

motion planning advances the system intelligent. 

The development of sensor based motion planning is detailed in this work. Related 

works, despite their particular achievements, typically and mostly are aiming on a 

global and task oriented solutions under dynamics considerations, which nevertheless 

requires very intensive computation and restricts the application scope. Here, the 

developed algorithms offer a simpler view and faster process while still offer 

optimality in kinematical consideration. 

First, prior to develop sensor–based motion planning algorithm, a critical analysis is 

given to provide a comparison of common motion planning profiles under several 

performance measures. Among the critical points for sensor-based applications, are the 

computation cost and reliability within optimality consideration. For instance, by 
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offering faster computation the system is expected to allow real-time response against 

the changes of the requirements provided by sensory information. 

Secondly, based on the analysis, the sensor based motion planner algorithms are 

developed. The algorithms equivalently construct the optimal trapezoidal profiles 

through series of conditionals, i.e. trapezoidal velocity and trapezoidal acceleration 

motion planning algorithms. 

Third, simulations are done to find out the performance of the developed algorithms. 

Upon a complete analysis in one-dimensional analysis, the simulation is also done in 

multidimensional implementation under MATLAB and 3D graphical simulation 

program. 

At last, typical sensor based application is also done to find out actual performance. 

Real-time experiments are carried out using a 2-axis gimbal mechanism with passive 

visual tracking using POLARIS optotrack system on actual arbitrary moving object. 

 

6.2 Results 

The critical analysis over motion planning profiles is given. It is found that 

polynomials, despite offering some advantages, are lacking in optimality, reliability, 

and flexibility especially in applications to reactive planning in sensor-based 

application. Cubic profile is simple; and quintic offers the best smoothness. However 

these two polynomial types lack in optimality as both can not control or satisfy the 

kinematic bounds simultaneously. A chosen criterion for characterizing a profile does 

not always convey reliability. Other motion parameters may not be controllable; 

moreover, it may still violate the selected kinematic bound criterion. Cubic, although 

considerably applicable with a low computation cost and comparable to trapezoidal 

velocity’s, it still lacks on optimality. Quintic requires numerical solution to address 
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flexible/reactive planning, involving millions or trillions of arithmetic operations. This 

high computation cost may become a basic consideration when one wants to apply it 

for a fast reactive motion planning algorithm. 

On the other hand, the developed algorithms appear to be desirable as they offer low 

computation cost, flexibility, reliability, and optimality with respect to actuator’s 

kinematic bounds. Using simple series of conditionals, the algorithms offer optimality 

by simultaneously satisfying the given kinematic bounds as fast as possible either in 

one shot or reactive planning. The conditionals also make the algorithm reliable by 

giving fast response directly using given kinematic bounds as planning parameters. 

The simple conditionals are cascaded without the need of numerical solution. By 

implementing simple scaling method it is possible to generate coordinated motion for 

multidimensional sensor based applications in minimum computation cost. 

The trapezoidal velocity offers a simple algorithm that is suitable for slow application. 

Although it is comparable to cubic, it offers better control over the trajectory 

generation. However, as cubic also does, it has infinite jerks in starting/turning/braking 

points. This lack may affect the smoothness and tracking accuracy in typical sensor 

based applications. However, the simulations and the experiments show that for slow 

applications the algorithm appears to be satisfactory. 

The trapezoidal acceleration, in the other hand, offers better smoothness by controlling 

and limiting the jerk. However it appears that the jerk bound would give longer 

response lag. The jerk also should be chosen carefully as to minimize the response lag 

and prevent erratic oscillations. The algorithm achieves high planning accuracy as it 

continuously oscillates around the target until the least possible movement. Overall, as 

it is proven in the simulations and the experiments, for a fast dynamic target 

interception in sensor based application, the algorithm is suitable by offering fast 
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response, excellent smoothness and accuracy. The tracking error could be significantly 

minimized while the system is able to move fast and maintain the kinematic bounds. 

 

6.3 Future works 

It is regretful that for many reasons the author could not completely implement and 

apply the algorithm on what it is initially developed for, a microsurgery assisting 

robot. However, the actuator device in one experiment is taken from the assisting 

robot. Both algorithms would be suitable for the task as it has been working well in the 

typical sensor based simulation and experiment. By considering a real position and 

orientation planning, it would be desirable as a future work to implement and find out 

a complete performance analysis on multidimensional sensor based applications. 

Although it is proven with successful result in simulation level, the collision 

prevention should be later intensively tested in real application. It could complement 

and support the intelligent feature of a system such as collision avoidance algorithms. 

There also remain some points of profile analysis that are still beyond this work. 

Recall the mentioned points in Chapter 2, there are unsolved formulations onto which 

a selected criterion is still applicable. It would be helpful to know further 

characteristics of profiles especially in conjunction with real-time reactive motion 

planning. 
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Appendix A 

 

A.1 Related quintic profile equations 

Maximum velocity equation for nonzero to zero quintic profile 

 
 …(A.1) 
 

Maximum acceleration equation for nonzero to zero quintic profile 

 
 …(A.2) 
 

Maximum jerk for nonzero to zero quintic profile under using t = 0 
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Movement time T under maximum jerk criterion using root of (A.3a) 

 (A.3d 

Movement time T under maximum jerk criterion using root of (A.3b) 

 (A.3e) 

Movement time T under maximum jerk criterion using jerk profile extrema is the 

numerical root of 

 (A.3f) 

 

Total jerk measure for nonzero to zero quintic profile with t1 ≥ 0 

 (A.4a) 

 

Total jerk measure for nonzero to zero quintic profile with t1 < 0 

 
 …(A.4b) 
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Total energy (acceleration) measure for nonzero to zero quintic profile with t1 ≥ 0 

 
 …(A.5a) 
 

Total energy (acceleration) measure for nonzero to zero quintic profile with t1 < 0 

 
 …(A.5b) 
 

 

A.2 Related modified quintic profile equations 

Maximum acceleration equation for nonzero to zero modified quintic profile 

 
 …(A.6a) 
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Maximum velocity equation for nonzero to zero modified quintic profile 

 
 …(A.6b) 
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