

DISTRIBUTED COMPUTATIONAL INTELLIGENCE

APPLIED IN BIOINFORMATICS

PENG WEI

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DISTRIBUTED COMPUTATIONAL INTELLIGENCE

APPLIED IN BIOINFORMATICS

PENG WEI
(B. Eng. (1st class honors) National University of Singapore)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2004

 i

Acknowledgements

I would like to extend my grateful appreciation to all that helped me in their unique

ways throughout the course of this project.

First and most thanks go out to my supervisors, Dr. Vadakkepat, Prahlad and Dr. Tan

Kay Chen, for their scrupulous and brilliant supervision, their most-needed

encouragement and for their wise suggestion and positive criticisms.

Greatest thanks to Dr. Tay Ee Beng, Arthur for his patiently entertaining all my doubts

and requests, for leading me to the inspiring path to explore in the bioinformatics

world.

I am also grateful to all the individuals in the Control and Simulation Lab, Department

of Electrical and Computer Engineering, National University of Singapore, which

provides the research facilities to conduct the research work.

Finally, I wish to acknowledge National University of Singapore (NUS) for the

financial support provided throughout my research work.

 ii

Summary

DNA microarray is the latest bioinformatics technology which is high- throughput and

large-scale, making study complex interplay of all genes simultaneously possible.

This thesis reports the effort of applying a newly developed distributed computational

intelligence package, Paladin-DES to a real world bioinformatics problem, to search

the oligo probe sets of human malaria parasite, Plasmodium Falciparum to be printed

on the DNA microarrays.

Normal evolutionary computation has changed the traditional single-point gradient-

guided search technique to a population-based searching algorithm, which both

reduces the searching time and improves the optimum searching results. However, for

some very complicated searching problems, even evolutionary computation is also

cost impractical or extreme time-consuming.

The Paladin-DES package is developed on the bases of Paladin-DEC package, which

exploits the inherent parallelism of evolutionary algorithms by creating an

infrastructure necessary to support distributed evolutionary computing using existing

Internet and hardware resources. Through the simulation test of searching the probes

for the Plasmodium Falciparum, Paladin-DES is proven to be a very good candidate

in this bioinformatics area.

 iii

Plasmodium falciparum, which is the severest cause of human malaria diseases on the

earth, whose gene sequence was totally identified in 2002. The distributed package is

applied to the gene coding sequence file of this plasmodium to search optimum

probes for subsequent medical and biology research. In this research three criteria are

proposed to test whether one sequence of gene is a qualified probe or not. The criteria

are based on two fundamental considerations of microarray technology, specificity

and sensitivity.

Existing methods of searching probes are very rare. The results obtained by the

simulation from Paladin-DES are compared with two other methods in terms of

effectiveness and efficiency. Effectiveness measures the number of qualified probes

found by each method and efficiency measures the time spent by every method for

allocating one probe. The Paladin-DES method performs very well in both

competition and can be applied for some much larger genomes sequences like plant

genome in the later research.

 iv

Table of Contents

Acknowledgements i

Summary ii

Table of Contents iv

List of Figures vii

List of Tables viii

Chapter 1 Introduction ... 1

1.1 Computational Intelligence Definition .. 1

1.2 Project History ... 2

1.3 Bioinformatics, Microarray.. 3

1.4 Malaria Parasite, Plasmodium Falciparum 6

1.5 Contribution ... 6

1.6 Thesis Outline .. 7

Chapter 2 Distributed Computational Intelligence Technique

... 8

2.1 Introduction.. 8

2.2 Evolutionary Computation... 11

2.3 Parallel Evolutionary Computation.. 12

2.4 Existing Paladin –DEC Package.. 14

2.5 Updated Paladin –DES Package .. 15

2.5.1 Evolutionary Strategy…………………………………………16

 v

2.5.2 Updated Paladin-DES Design…………………………………17

2.5.3 Updated Paladin-DES Implementation.………………………20

 2.5.3.1 Database.. .20

 2.5.3.2 Server .. .21

 2.5.3.3 Clients/Peers25

 2.5.3.4 Controller .. .29

2.6 Conclusion30

Chapter 3 Bioinformatics Basics .. 31

3.1 Introduction.. 31

3.2 Genetic Information Transfer within cells 33

3.2.1 Transcription .. 35

3.2.2 Translation ... 35

3.3 DNA Microarray.. 37

3.3.1 Background .. 37

3.3.2 Microarray Fabrication and Experiment.............................. 39

3.3.3 Preparation for the Probes.. 41

3.3.4 Criteria in Searching Probes .. 41

3.4 Conclusion ... 43

Chapter 4 Case Study: Searching Oligo Sets of Malaria

Parasite, Plasmodium Falciparum ... 44

4.1 Introduction... 44

4.2 Problem Formularion ... 45

4.2.1 Malaria Parasite Plasmodium Falciparum 45

4.2.2 Criteria for Probes Search.. 48

 vi

 4.2.2.1 Uniqueness Criterion .. 50

 4.2.2.2 Melting Temperature Criterion... 50

 4.2.2.3 Non Self-Folding Criterion... 53

4.3 Conclusion ... 54

Chapter 5 Results and Discussions... 55

5.1 Introduction... 55

5.2 Competing Criteria... 55

5.3 Simulation Setup.. 56

5.4 Simulation Results ... 58

5.5 Comparison .. 60

5.5.1 Enumerating Method ... 60

5.5.2 ES with BLAST method .. 62

5.5.3 Effectiveness Comparison ... 64

5.5.4 Efficienct Comparison ... 65

 5.5.4.1 Comparison between Paladin-DES and ES with BLAST

 ……………………………………………….………..65

 5.5.4.2 Comparison between Paladin-DES and Enumerating

 method………………………………………………….………....67

5.6 Missing Probes... 68

5.7 Conclusion ... 69

Chapter 6 Conclusions and Future Directions.......................... 70

6.1 Conclusions.. 70

6.2 Future Directions ... 71

References.. 73

List of Publications ... 82

 vii

List of Figures

2.1 Basic concept of distributed EC………………………………………. 10

2.2 A model for distributed evolutionary computing……………………... 15

2.3 Class hierarchy of Distributed Evolutionary Strategy………………… 18

2.4 UML of DSWorld……………………………………………………... 19

2.5 MySQL Database table description…………………………………… 20

2.6 Working flowcharts of normal clients………………………………… 25

2.7 Peer computer logon GUI……………………………………………... 26

2.8 Peers working GUI……………………………………………………. 27

2.9 Peers finishes working GUI.. 28

2.10 Controller GUI………………………………………………………… 29

3.1 Two steps of genetic information transfer from DNA to protein……… 36

3.2 An illuminated microarray…………………………………………….. 38

3.3 Comparing the same cell type in a healthy and diseased state………… 39

3.4 A general overview of the DNA microarray experiment……………… 40

4.1 Approximate geographic distribution of malaria……………………… 45

4.2 Four species of Plasmodium…………………………………………... 46

4.3 Self-folding illustration………………………………………………... 53

5.1 Peer computers’ computation difference………………………………. 57

5.2 Sample found probes locations in gene………………………………... 59

5.3 Uniqueness comparison between Paladin-DES and ES with BLAST....

……………………………………………………………………….....

66

 viii

List of Tables

2.1 Four different types of EC……………………………………………... 11

2.2 Difference between GA and ES……………………………………….. 17

2.3 Main functions defined in the reception server………………………... 22

4.1 Enthalpy H values of a neighbor nucleotide (in -kcal/mol)…………… 52

4.2 Entropy S values of a neighbor nucleotide (in -cal/K.mol)…………… 52

5.1 ES parameter in Plasmodium Falciparum case……………………….. 56

5.2 Simulation results of DES applied to three different organisms………. 58

5.3 Effectiveness comparison……………………………………………… 64

5.4 Efficiency comparison between Paladin-DES and enumerating method

………………………………………………………………………….

67

 1

Chapter 1

Introduction

1.1 Computational Intelligence Definition

What is computational Intelligence (CI)? What is the difference between CI and AI

(Artificial Intelligence)? In 1992, Bezdek first time used the term CI and later in 1994

he gave the following definition:

A system is computationally intelligent when it: deals only with numerical

(low-level) data, has a pattern reorganization component, and does not use

knowledge in the AI sense; and additionally, when it (begins to) exhibit (i)

computationa l adaptivity; (ii) computational fault tolerance; (iii) speed

approaching human-like turnaround, and (iv) error rates that approximately

human performance.

 2

Recently Engelbrecht (Engelbrecht, 2002) declares that CI is a study of adaptive

mechanisms to enable or facilitate intelligence behavior in complex and changing

environments.

In general, the main objective of Computational Intelligence (CI) is to establish a

highly coherent design and analysis environment through a series of synergistic links

that give rise to neurofuzzy systems, evolutionary neural networks, fuzzy genetic

schemes, granular rough decision systems, and many others in the context of software

engineering (Bezdek, 1992; Pedrycz and Peters, 1998).

Computational Intelligence covers mainly 4 paradigms: neural networks, evolutionary

computation, swarm intelligence and fuzzy systems. The work in this thesis deals

mainly with one of the 4 paradigms: evolutionary computation.

1.2 Project History

This project of distributed computational intelligence was introduced by Tan in 1999.

In the first stage Tan and Wang designed a peer-to-peer based genetic algorithm

infrastructure over the Internet. Secondly Tan and Cai designed a distributed

evolutionary computation system which changed the infrastructure from a peer-to-

peer frame to a totally distributed frame with underlying Java based RMI-IIOP

(Remote Method Invocation over Internet Inter-ORB Protocol).

 3

In the second phase, a distributed evolutionary computing architecture has been

developed to exp loit the inherent parallelism of evolutionary algorithms by creating

an infrastructure necessary to support distributed evolutionary computing using

existing Internet and hardware resources.

There are three evolutionary algorithms packages involved in the system designed by

Tan and Cai, which are: Genetic Algorithm, Genetic Programming and Evolutionary

Strategy.

This current work is the third phase of the research. In this thesis work one of the

evolutionary algorithms package, the evolutionary strategy package has been

modified and then applied to a real world bioinformatics problem: to search the oligo

sets (probes) of malaria parasite, Plasmodium Falciparum.

1.3 Bioinformatics, Microarray

The availability of complete or near-complete catalogs of genes for organisms of

increasing complexity has created opportunities for studying numerous aspects of

gene function at the genomic level (Baxevanis and Ouellette, 2001). With readily

available technology such as DNA Microarray, it is now possible to carry out

massively parallel analysis of gene expression on different genomes.

DNA microarrays also referred to as DNA arrays, microarrays, DNA chips, biochips

or GeneChips – allow researchers to determine which genes are being expressed in a

given cell type at a particular time and under particular conditions (Gershon, 2002).

 4

They can be used to compare the gene expression in 2 different cell types or tissue

samples; for example, healthy versus diseased tissues to examine which genes are the

causes of the diseases. Unlike conventional nucleic-acid hybridization methods,

microarrays can identify thousands of genes simultaneously, which means that genetic

analysis can be done on a huge scale (Lockhart and Winzeler, 2000).

DNA molecules, typically in the form of double stranded PCR (Polymerase Chain

Reaction) products or oligonucleotides (oligo), can be attached to glass slides or nylon

membranes (Schena et al, 1995). These oligo sets are typically optimized sequences

of a particular genome which can represent the key characteristics of that genome.

For example, the yeast genome consists of about 6000 genes of varying length; to

print all these 6000 genes onto the microarray would not be practical as their varying

length results in different melting temperature and thus different processing

temperature. The objective is thus to be able to extract 6000 optimized and unique

sequences from the original 6000 genes, these 6000 unique sequences is called the

olgio sets (probes) of the genome. Optimized oligo sets allow for more efficient

analysis of the microarray. However, most of current oligo sets are only available

through commercial companies (Operon) involving high cost.

It is our objective in this project to explore computational efficient methods in

extracting these optimized sequences to be printed onto the microarray for the

subsequent analysis.

 5

In the literature there exist at least two confusing nomenclature systems for referring

to hybridization partners. Both use common terms: "probes" and "targets". According

to the nomenclature recommended by Phimister (Phimister, 1999), a "probe" is the

tethered nucleic acid with known sequence, whereas a "target" is the free nucleic acid

sample whose identity/abundance is being detected.

Existing techniques for searching of these probes are not really available; a standard

approach one could think of is to select a probe from a sequence and comparing it

with all other sequences within the genome. One would expect such a thorough

search to be computationally intensive due to its large search space.

Tay and his colleagues have previously demonstrated that the use of computational

intelligence techniques such as genetic algorithm and evolutionary strategy can

provide us an efficient method for extracting these unique sequences (Joe, 2002 and

Xu, 2003). However, most of these approaches become computationally intensive

when applied to more complicated genomes.

In this project, we extend the distributed architecture to include evolutionary

strategies and apply it to the malaria parasite Plasmodium falciparum whose genome

sequence was reported recently in October 2002 (Gardner et al, 2002).

 6

1.4 Malaria Parasite, Plasmodium Falciparum

The malaria parasite Plasmodium falciparum is responsible for hundreds of millions

of cases of malaria, and kills more than one million African children annually

(Gardner et al, 2002). Immune responses cannot prevent the development of

symptomatic infections throughout life, and clinical immunity to the disease develops

only slowly dur ing childhood. An understanding of the obstacles to the development

of protective immunity is crucial for developing rational approaches to prevent the

disease (Urben et al, 1999) and remains an active area of research.

Since detailed coding sequence information about the malaria parasite, Plasmodium

falciparum, is known, our aim is to develop a program that can search for

probes/sequences within each gene so that the probes can be printed onto DNA

microarrays for medical research. One probe will identically identify one specific

gene, and ideally all genes should be represented by their own probes on the DNA

microarray. Difficulties do arise for certain genes that are very similar to each other

(may evolve from same ancestor).

1.5 Contribution

This thesis presents a newly developed distributed computational intelligence

technique, a Java-based distributed evolutionary strategy package (Paladin-DES). The

package has been applied to a complicated bioinformatics problem, to search the

 7

probes for the human malaria parasite, Plasmodium Falciparum. The traditional

searching methods are very troublesome and time-consuming. This project brings the

new engineering insight into the bioinformatics field, making the searching more

effective and more efficient.

1.6 Thesis Outline

This thesis consists of 6 chapters and is organized as follows: Chapter 2 discusses the

background of the computational intelligence, the distributed evolutionary algorithms,

together with the updated Paladin-DES package. Some bioinformatics basics and the

recently introduced microarray technology are presented in chapter 3. Chapter 4

describes the malaria parasite probes searching problem studied in this project.

Results are shown, compared with previously developed methods and discussed in

chapter 5. Conclusions are drawn in chapter 6.

 8

Chapter 2

Distributed Computational Intelligence Technique

2.1 Introduction

With the rapidly growing demand for new software systems having increasing

complexity and size, research and development work in the area of computational

intelligence also grows rapidly. Computational Intelligence (CI) is an area of

fundamental and applied research involving numerical information processing (in

contrast to the symbolic information processing techniques of Artificial Intelligence

(AI)) (Pedrycz and Peters, 1998). Nowadays, CI technologies have been used in

various areas to solve problems stemming from increasing complex of forms of

software system description and analysis.

Computational Intelligence covers mainly 4 different paradigms: artificial neural

networks, evolutionary computation, swarm intelligence and fuzzy systems. The work

in this thesis is under one of the 4 paradigms: evolutionary computation.

 9

Evolutionary computation (EC) was first proposed by Holland (Holland, 1975) and

Dejong (Dejong, 1975). The objective of EC is to model the real practical problems to

natural evolution. The main concept is survival of the fittest. In 1989 Goldberg

extended the early work to optimization and machine learning. An evolutionary

algorithm (EA) can be considered as an iterative scheme, where each iteration cycle

forms a generation of an evolutionary process.

Although EC is a very powerful tool, the computational cost involved in terms of time

and hardware is quite high. EC normally needs a large population size and generation

number to simulate a more realistic evolutionary model with a better approximation.

Sometimes it is cost impractical and not able to be performed without the presence of

high performance computing. One solution to overcome this limitation is to exploit

the inherent parallel nature of EC by formulating the problem into a distributed

computing structure suitable for parallel processing.

The fact is that there are complex problems which are difficult for one computer to

solve; on the other hand there are many idle computers which are a large waste of

resources. Hence the proposed solution is to divide the task into subtasks and solve

the subtasks simultaneously using multiple computation clients, in a divide-and-

conquer manner, as shown in Fig 2.1. In this project one of the distributed

evolutionary algorithms- Distributed Evolutionary Strategy- is applied to the

bioinformatics area.

 10

 Fig 2.1 Basic concept of distributed EC

In this chapter the concept of Evolutionary Computation and then parallel EC theory

is firstly discussed. After that the existing DEC package and the updated DES

package are presented in details.

 11

2.2 Evolutionary Computation

The evolutionary computation, which also refers as evolutionary algorithm (EA),

attempts to mimic the genetic shift and Darwinian’s struggle for survival. Unlike

traditional single-point gradient-guided search techniques, the evolutionary algorithm

is population-based. It attempts to evolve complex systems concurrently rather than

develop one and refine it.

In evolutionary computation a model of a population of individuals is built where

each individual is referred to as a chromosome. A chromosome defines the

characteristics of individua ls in the population. For each generation, individuals

compete to reproduce offspring. The survival strength of an individual is measured by

a fitness function. Those individuals with the best survival capabilities (fitness value)

will have the best opportunity to reproduce. After each generation, individuals may

undergo culling, or individuals may survive to the next generation (elitism). There are

many types of evolutionary algorithms, among which the best known are 4 types

(Engelbrecht, 2002):

Genetic Algorithm (GA) Modeling genetic evolution

Genetic Programming (GP) Based on GA, but individuals are programs

Evolutionary Programming (EP) Derived from the simulation of adaptive behavior

in evolution

Evolutionary Strategy (ES) Geared toward modeling the strategic parameters

that control variation in evolution

Table 2.1 Four different types of EC

 12

The implicit parallel property gained by evolving a population of points in the search

space concurrently suggests that EAs have a natural mapping onto parallel

architectures.

2.3 Parallel Evolutionary Computation

According to Rivera (Rivera, 2001), there are four possible strategies to parallelize

EAs, i.e., global parallelization, coarse-grained parallelization, fine-grained

parallelization and hybrid parallelization.

In global parallelization, only the fitness evaluations of individuals are parallelized by

assigning a fraction of the population to each processor. The genetic operators are

often performed in the same manner as traditional EAs since these operators are not as

time-consuming as the fitness evaluation. This strategy preserves the behavior of

traditional EA and is particularly effective for problems with complicated fitness

evaluations.

In coarse-grained parallelization, the entire population is partitioned into

subpopulations. This strategy is more complex since it consists of multiple

subpopulations and different subpopulations may exchange individuals occasionally

(migration). In this parallel EAs model, the whole population is divided into multiple

subpopulations, demes, that evolve on their own isolated from each other most of the

time. This is also called isolated island model. This class of parallel EAs uses few

relatively large demes. Each processor handles a subpopulation by itself. The

 13

subpopulations communicate through certain migrant individuals that are transferred

from one to another subpopulation periodically, which is migration. The exchange of

individuals is produced with low frequency. The migration of individuals from one

deme to another is controlled by the topology that defines the connectivity between

the subpopulations, by a migrate rate controlling the number of individuals to migrate,

by a migration interval that affects the frequency of the migrations. Selection,

mutation and crossover operations occur within a deme. Coarse-grained parallel EAs

are more difficult to understand since the effects of migration are not fully understood.

Often migration in coarse-grained parallel evolutionary algorithms is synchronous

occurring at predetermined constant intervals. According to the migration structure

chosen, it can increase either, the selection pressure, the diversity or also delay

convergence. There is a critical migration rate. Below it, the performance of the

algorithm is determined by the isolation of the demes. There are different migration

strategies such as to choose emigrants and replace them randomly or alternatively

according to fitness. Besides, this strategy introduces fundamental changes in the EA

operations and has a different behavior than traditional EAs.

The fine-grained parallelization is often implemented on massively parallel machines,

in which the population is divided into many and small demes. In the extreme case

one can use a single large population with one individual per processor. Usually each

processor controls one or a small amount of individuals and there is intensive

communication between demes. The individuals belonging to the whole population

are distributed topologically in a grid and are restricted to reproduce in a small

environment of its location. Selection and mating are local with neighbors. A critical

parameter is the ratio between the radius of the deme and the size of the underlying

 14

grid. The genetic operators take place in parallel only among neighborhood processors,

and the individuals in each processor are replaced by the new offspring as new

generations come out.

In hybrid parallelization, several parallelization approaches are combined, and the

complexity of these hybrid parallel EAs depends on the level of hybridization.

2.4 Existing Paladin –DEC Package

The Distributed Evolutionary Computation package Paladin-DEC was first introduced

by Tan (Tan, 2002) and had been applied to a case study of drug scheduling in cancer

chemotherapy. The distributed implementation of evolutionary algorithms was

extended from the coarse-grained parallel evolutionary algorithms with significant

modifications, such as migration scheme, task scheduling and fault tolerant, so as to

adapt to the features in distributed computing like variant communication overhead,

unpredictable node crash and network restrictions. In Paladin-DEC implementation,

the whole population is divided into n subpopulations. Each peer computer runs the

combined algorithm on its own subpopulations. At each generation, peers run normal

EA computation, including selection, crossover and mutation. After a period of time

(migration interval), a number (migration rate) of good individuals will be selected

and copies of them will be sent to one of its neighbors to perform migration. Every

subpopulation also receives copies from its neighbors, which replaces its own low-

fitness individuals. After migration next generation’s evolutionary computation will

go on. The Paladin-DEC package has shown good performance in work- load

 15

balancing, robustness, portability and security. Fig 2.2 shows the model of the

Paladin-DEC package.

 Fig 2.2 A model for distributed evolutionary computing

2.5 Updated Paladin –DES Package

The original version of Paladin was developed to address mainly the distributed

genetic algorithm. In this project, the DES package is updated. Some parts are

modified in the distributed evolutionary strategy package while the original

framework still remains the same. In this section, the main characteristics of

evolutionary strategy and how it is implemented in the DES package is discussed.

Server

Physical

connection
Virtually migration

path

Sub-

population

i

Individual

 16

2.5.1 Evolutionary Strategy

Although both of the algorithms fall into evolutionary algorithms, evolutionary

strategy has a big difference with genetic algorithm. Evolutionary Strategies (ES) are

often presented and discussed as a technique competing with genetic algorithms. ES

was developed to solve real-parameter optimization problem based upon one single

genetic operator, i.e., mutation. In ES, a chromosome represents an individual as a

pair of float-valued vectors, i.e.),(σxv = . Here, the first vector x represents a point in

the search space; the second vector σ is a vector of standard deviations. The

mutations are realized by replacing x by),,0(
1

σNxx
ii

+=
+

 where N(0, σ) is a vector

of independent random Gaussian numbers with a mean of zero and standard deviation

σ . The offspring is accepted as a new member of the population if and only if it has

better fitness and all constraints are satisfied. The main idea behind these strategies is

to allow control parameters to self-adapt rather than changing their values by some

deterministic algorithm.

As the original package concentrates on the Genetic Algorithm, to implement the

distributed evolutionary strategy package it is essential to clarify the difference

between the two algorithms. Table 2.2 lists out the seven most important differences.

 17

Genetic algorithms Evolutionary strategies

Genotype level of individuals (binary

coding)

Phenotype level of individuals (real-value

representation)

No knowledge about the objective

function’s properties

Knowledge of the dimension of the

objective function (i.e. number of

variables)

Parameter space restrictions for coding

purpose

No parameter restricts apart from

machine-dependencies

Dynamic, preservative or static,

preservative selection

Static, extinctive selection (equal

probabilities); more or less selective

Recombination servers as the main search

operator

Mutation servers as the main search

operator

Secondary role of mutation Different recombination schemes

No collective self- learning of parameter

settings

Collective self- learning of strategy

parameters

Table 2.2 Difference between GA and ES

2.5.2 Updated Paladin-DES Design

Inheriting from the original framework, the updated version also has 4 main parts:

Database, server, client and controller. The server part and the database remain the

same as the old version, so as the connection between the clients and the server. It

continues using the Java-based Remote Method Invocation over Internet Inter-ORB

Protocol. (RMI-IIOP)

 18

Fig 2.3 Class hierarchy of Distributed Evolutionary Strategy

As can be seen from Fig 2.3, the client DES class hierarchy doesn’t contain the

crossover computation, since mutation is the only search operator in ES. However, a

new fitness sharing scheme has been involved. This scheme is an improvement in the

new version of the package. The function of the fitness sharing method is to compare

the best individuals in a sub-population, if some of them have much higher fitness

values than others, their fitness values will be shared to ensure global optimum to be

found instead of local convergence. Fig 2.4 shows the UML of the DESWorld class.

DECWorld

DESWorld

DGAWorld

DES
Chromosome

Gaussian

Mutation

Mutation Fitness

Evaluation

Selection

Migration DES
Population

Random Elitism

Evolution

 19

Fig 2.4 UML of DSWorld

The package is developed in JAVA language based on the latest J2EE technology

with JBuilder software. Java Remote Method Invocation over Internet Inter-ORB

Protocol technology ("RMI-IIOP") is part of the Java 2 Platform, Standard Edition

(J2SETM). The RMI Programming Model enables the programming of Common

Object Request Broker Architecture (CORBA) servers and applications via the rmi

API. RMI-IIOP utilizes the Java CORBA Object Request Broker (ORB) and IIOP, so

one can write all his own codes in the Java programming language, and use the rmic

compiler to generate the code necessary for connecting the applications via the

Internet InterORB Protocol (IIOP) to others written in any CORBA-compliant

language.

 20

2.5.3 Updated Paladin-DES Implementation

The updated version has 4 main parts: database, server, client and controller.

2.5.3.1 Database

All the final simulation results are stored in the database. Besides storing the final

results, the database is also used for peer computers to exchange some intermediate

calculation outcomes which are needed perform migration after a period time of

migration interval. The database is built on MySQL database technology.

Fig 2.5 MySQL Database table description

 21

2.5.3.2 Server

The server is built on a powerful computer with RedHat Linux operating system. It

consists of three main functions: Logon server, Resource server and Reception server.

The logon server monitors how many peer computers have logged on the system and

can be used to carry out an ES job. All the peer computers logon to the server through

a valid email address. One unique and valid email address can only register one peer.

In the list of logged on computers, once any email address appear again, the previous

logon information is removed while the latest information is updated.

The main usage of the resource server is to manage job files transfer, peer

synchronization and agent assigning.

The reception server is responsible for assigning ES parameters, job scheduling and

work load balancing, inspecting migrations, final result submission to the database

and monitoring the overall ES job performance. As the reception server acts as the

main part in server functioning, Table 2.3 shows the methods which are defined in the

reception server class and their main operations.

 22

Method Name Operation performed

getPeerInfo Get peer computers information, including email address,
operating system, memory size and ping value to the server.

getJobInfo Obtain the normal EA parameters from the class files.

assignJobTo According to the internal scheduling scheme, assign job to some
or all the peer computers logged on the server.

checkJob Check from the controller whether the job class file needs an
agent or not.

cancelJob Cancel the job from all the peers who have been assigned. Restore
the server log on information.

checkPoint After a migration interval, check the overall computation
performance, perform load balancing and get ready for
performing migration.

removePeer Remove the idle peers from server’s logon list. It may be caused
by hang of peer computer or other interference.

performMig Perform migration.

checkFinish Check whether the terminal condition has been matched.

getBestResult From all the result submitted to the server, choose the best one.

resultSubmit Submit the final result to the database.

sendMail Email the final result to the user who submits the problem class
file.

Table 2.3 Main functions defined in the reception server

To accomplish the distributed work, the server part of the DES package involves the

latest J2EE Portable Object Adapter technology. An object adapter is the mechanism

that connects a request using an object reference with the proper code to service that

request. The Portable Object Adapter, or POA, is a particular type of object adapter

that is defined by the CORBA specification.

 23

The POA is designed to meet the following goals:

• Allow programmers to construct object implementations that are portable

between different ORB products.

• Provide support for objects with persistent identities.

• Provide support for transparent activation of objects.

• Allow a single servant to support multiple object identities simultaneously.

Normal creating and using POA involves 6 steps:

(1) Get the root POA

(2) Create a POA and define the appropriate policies

ORB orb = ORB.init(args, null);
POA rootPOA =
POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

Policy[] tpolicy = new Policy[3];
tpolicy[0] = rootPOA.create_lifespan_policy(
 LifespanPolicyValue.TRANSIENT);
tpolicy[1] = rootPOA.create_request_processing_policy(

RequestProcessingPolicyValue.USE_ACTIVE_OBJECT_MAP_ONLY
);

tpolicy[2] = rootPOA.create_servant_retention_policy(
 ServantRetentionPolicyValue.RETAIN);

POA tPOA = rootPOA.create_POA("MyTransientPOA", null,
tpolicy);

 24

(3) Activate the POA Manager; otherwise all calls to the servant hang because,

by default, POAManager will be in the HOLD state.

(4) Instantiate the Servant and activate the Tie

(5) Publish the object reference using the same object id used to activate the

Tie object.

(6) Get ready to accept requests from the client

tPOA.the_POAManager().activate();

logonServer logon = new logonServer();

_logonServer_Tie tie1=

(_logonServer_Tie)Util.getTie(logon);

String logOnId = "logonServer";

byte[] id1= logOnId.getBytes();

tPOA.activate_object_with_id(id1, tie1);

Context initialNamingContext = new InitialContext();

initialNamingContext.rebind(messageTag.logonService,
tPOA.create_reference_with_id(id1,
 tie1._all_interfaces(tPOA,id1)[0]));
System.out.println("Logon Server: Ready...");

orb.run();

 25

2.5.3.3 Clients/Peers

The linkage between the server and the client inherits the older version of Paladin-

DEC, using the Java-based Remote Method Invocation over Internet Inter-ORB

Protocol (RMI-IIOP). Normal client peers’ working flowchart is shown in Fig 2.6.

 Fig 2.6 Working flowcharts of normal clients

Begin

 Logon

Wait for controller to assign job

 Assigned job?
No

Read class name

Yes

Load remote class to local
peer computer

Perform normal ES

computation

 Terminate?

 Need migration?

Submit result

Stop

Perform migration

Yes

Yes

No

No

 26

There are two working modes for clients in the updated Paladin-DES package. One is

normal working mode; the other is agent-working mode. The difference is that the

second method needs an agent to manage data transfer from client to server. The

normal client working process begins when a client is started and logon to the server.

A valid peer is uniquely identified by its email address. The logon server will check

the email address whether have been present in its list and give a response of valid

logon or not. After logging on the server, the client is idle and waiting for the

controller to assign it an ES job. Fig 2.7 shows the peer computer logon GUI.

Fig 2.7 Peer computer logon GUI

After getting a job command, it first reads the class name from the controller, and

then loads the class from remote resource server to the local peer machine through

http. Thereafter it retrieves the ES working parameters from the reception server, and

begins to perform normal ES calculation according to the schedule retrieved from

 27

reception server. After migration interval, it performs migration if needed. Fig 2.8

shows the working GUI of normal peers.

Fig 2.8 Peers working GUI

When the terminal condition matched, it will submit the results to the reception server

and finally the reception server first store the results to the database and then email

the user who submits the problem class file the final result. Fig 2.9 shows the GUI

where peer computer finishes computation and reports the best individual to the server.

 28

Fig 2.9 Peers finishes working GUI

In agent-working mode, one peer is assigned as an agent according to the resource

server’s criteria. This peer will not participate in any E S computation; it will be used

as an intermediate node for data transfer, including sending problem file to peers,

storing migration individuals for peers to exchange, submitting to server the results

obtained from peers, etc. It is the only peer computer which directly handshakes to the

server during computation. Other peers, now migration or submitting results, they

only need to communicate to the agent peer instead of talking to the server directly.

This will reduce the overhead time when more peers are connected to perform the

computation.

 29

2.5.3.4 Controller

The controller of the package plays an important surveillance role. It monitors the

whole process of the ES problem computation. Fig 2.10 shows the user control panel

of the controller. When the controller starts, it first checks the status of the server. If

the server operates normally, the controller will display all the job files present on the

resource server for peers to download. After user determines the problem file, the

number of working peers and whether to use agent or not, the controller will initialize

an instance of reception server to perform inspection on the work flowing, including

job scheduling, migration process, work load balancing until the final result

submission.

Fig 2.10 Controller GUI

 30

2.6 Conclusion

In this chapter the basic understanding of computational intelligence was presented

and then the concept was narrowed down to the project work, evolutionary

computation and hence evolutionary strategy. The underlying theory of evolutionary

strategy and parallel computation were discussed in details. After that the design and

the implementation of the Distributed Evolutionary Strategy package were shown

specifically, including the technology involved – JAVA, J2EE, CORBA- and each

one of the four parts of the package.

 31

Chapter 3

Bioinformatics Basics

3.1 Introduction

In the last few decades, advances in molecular biology and the equipment available

for research in this field have allowed the increasingly rapid sequencing of large

portions of the genomes of several species. In fact, to date, several bacterial genomes,

as well as those of some simple eukaryotes (e.g., Saccharomyces cerevisiae, or baker's

yeast) and more complex eukaryotes (C. elegans and Drosophila) have been

sequenced in full. The Human Genome Project, designed to sequence all 24 of the

human chromosomes, is also progressing. Popular sequence databases, such as

GenBank and EMBL, have been growing at exponential rates. This deluge of

information has necessitated the careful storage, organization and indexing of

sequence information. Information science has been applied to biology to produce the

field called bioinformatics (NCBI Education).

 32

Bioinformatics is conceptualizing biology in terms of molecules and then applying

informatics techniques which derived from disciplines such as applied mathematics,

computer science, artificial intelligence and statistics to understand and organize the

information associated with these molecules, on a large scale. It is the recording,

annotation, storage, analysis, and searching/retrieval of nucleic acid sequence (genes

and RNAs), protein sequence and structural information. This includes databases of

the sequences and structural information as well methods to access, search, visualize

and retrieve the information.

Bioinformatics is the field of science in which biology, computer science, and

information technology merge into a single discipline. The ultimate goal of the field is

to enable the discovery of new biological insights as well as to create a global

perspective from which unifying principles in biology can be discerned. There are

three important sub-disciplines within bioinformatics involving computational

biology:

• The development of new algorithms and statistics with which to assess

relationships among members of large data sets;

• The analysis and interpretation of various types of data including nucleotide

and amino acid sequences, protein domains, and protein structures; and

• The development and implementation of tools that enable efficient access and

management of different types of information.

 33

The most pressing tasks in bioinformatics involve the analysis of sequence

information. Computational Biology is the name given to this process, and it involves

the following:

• Finding the genes in the DNA sequences of various organisms

• Developing methods to predict the structure and/or function of newly

discovered proteins and structural RNA sequences.

• Clustering protein sequences into families of related sequences and the

development of protein models.

• Aligning similar proteins and generating phylogenetic trees to examine

evolutionary relationships.

The objective of this project is to apply the computational intelligence technique -

distributed evolutionary strategy - to search oligo sets (probes) of malaria parasite,

Plasmodium Falciparum from the nucleotide gene coding sequences. The oligo sets

found are to be printed on the microarray for subsequent biology and medical research.

In this chapter the genetic information transfer inside the cell will be firstly presented.

Subsequently the microarray technology will be introduced.

3.2 Genetic Information Transfer within cells

This project used the distributed computational intelligence technique, Paladin-DES

package to search the malaria parasite’s coding sequence file for the qualified oligo

sets (probes) to be printed on the microarray. Therefore knowing the genetic

 34

information transfer from original DNA to the final pre-translation coding sequence is

essential.

As it is well known, DNA exists as a right-handed double helix in which two

polynucleotide chains are coiled about one another in a spiral. DNA sequences consist

of only four different types of alphabet letters, or 4 bases: Adenine (A), Cytosine (C),

Guanine (G), and Thymine (T). They form pairs as AT and GC where AT bases pair

is held together with 2 hydrogen bonds while GC pairs have 3.

Although DNA is the source of all the genetic information, it is protein, which

contains constituent called amino acids, that finally governs the functionality of the

growth and development of an organism. According to central dogma of molecular

biology, the transfer of genetic information from DNA to protein during its

phenotypic expression in an organism involves two steps. The first step is

transcription. It is information transfer from DNA to RNA. The second step is the

transfer of information from RNA to protein, this step is called translation translation

(Snustad, Simmons and Jenkins, 1997).

During transcription, one strand of DNA of a gene is used as a template to synthesize

a complementary strand of RNA called the gene transcript. During translation, the

sequence of nucleotides in the RNA transcript is converted into the sequence of amino

acids in the polypeptide gene product according to the genetic code. Translation takes

place on intricate macromolecular machines called ribosomes which are composed of

three to five RNA molecules and 50 to 90 different proteins. The RNA molecules that

are translated on ribosomes are called messenger RNAs (mRNA).

 35

3.2.1 Transcription

In eukaryote, where Plasmodium Falciparum’s cell belongs to, primary transcripts

usually are precursors to mRNA and are called pre-mRNAs. Not the whole eukaryote

pre-mRNA sequence can be encoded into protein. Inside the pre-mRNA sequence,

some are noncoding sequence called introns that separate the coding sequences or

exons of these genes. The entire sequence of these split genes are transcribed into pre-

mRNA, and the noncoding sequences are subsequently removed by spicing reaction.

3.2.2 Translation

Inside the mRNA, the sequence still exists in the sense of the four bases. After

translation, which controlled by the genetic code, every connective three nucleotide

bases are translated into one amino acid. Translation is the process of matching amino

acids to corresponding sets of three bases (codons) and linking them into a protein.

The process of translation is governed by the genetic code. The mystery of genetic

code was largely disclosed by the mid-1960s. The genetic code has some very

important properties:

• The genetic code is composed of nucleotide triplets.

• The genetic code is nonoverlapping. Each nucleotide in mRNA belongs to just

one codon.

• The genetic code is ordered. Multiple codons for a given amino acid and

codons for amino acids with similar chemical property are closely related.

• The genetic code is universal. With minor exceptions, the codons have the

same meaning in all living organisms, from viruses to humans.

 36

Fig 3.1 Two steps of genetic information transfer from DNA to protein

Fig 3.1 shows the 2 steps genetic information transfer from DNA to protein. The

coding sequence (cds) file of malaria parasite, Plasmodium Falciparum has been

published by Nature in 2002. The cds file provides the sequences inside which all the

introns have been spliced out and all the exons have been combined together and

ready to encode proteins. The target of this project is to find qualified probes of these

gene sequences from this coding sequence file to be printed on the DNA microarray.

This file contains all useful genetic information in Plasmodium Falciparum and

nothing else. Therefore probes found from this file are the most useful for the

subsequent biology and medical research.

Gene

Exon Intron Exon

Transcription

RNA splicing

Translation

DNA

Pre-mRNA

mRNA

Protein

(Coding

Sequence)

 37

3.3 DNA Microarray

3.3.1 Background

It is widely believed that thousands of genes and the ir products (i.e., RNA and

proteins) in a given living organism function in a complicated and orchestrated way

that creates the mystery of life. However, traditional methods in molecular biology

generally work on a "one gene in one experiment" basis, which means that the

throughput is very limited and the "whole picture" of gene function is hard to obtain.

In the past several years, a new technology, called DNA microarray, has attracted

tremendous interests among biologists. The primary applications of microarrays are

the study of differential gene expression and gene mapping. This technology promises

to monitor the whole genome on a single chip so that it enables the simultaneous

analysis of thousands of sequences of DNA for genetic and genomic research and for

diagnostics.

The microarray technology is having a significant impact on genomics study. It makes

use of the sequence resources created by the genome projects and other sequencing

efforts to answer the question, what genes are expressed in a particular cell type of an

organism, at a particular time, under particular conditions. Many fields, including

drug discovery and toxicological research, have already and will benefit from the use

of DNA microarray technology. Fig 3.2 shows an illuminated microarray.

 38

Fig 3.2 An illuminated microarray

There are different ways how microarrays can be used to measure the gene expression

levels. One of the most popular microarray applications allows comparing gene

expression levels in two different samples, e.g., the same cell type in a healthy and

diseased state (see Fig 3.3).

 39

 Fig 3.3 Comparing the same cell type in a healthy and diseased state

3.3.2 Microarray Fabrication and Experiment

DNA microarrays are also referred to as DNA arrays, microarrays, DNA chips,

biochips or GeneChips. Microarrays exploit the preferential binding of

complementary single-stranded nucleic acid sequences. A microarray is typically a

glass (or some other material) slide, on to which DNA molecules are attached at fixed

locations.

According to Young (Young, 2000), a DNA microarray is an orderly arrangement of

samples, which provide a medium for marching known and unknown DNA samples

based on base-pairing rules (A-T and C-G) and thus automating the process to

identifying the unknowns. Several steps are required to conduct a microarray

experiment. Firstly, the probe samples are to be synthesized. A probe is a subsequence

of a gene coding sequence, which means a part of chromosome that is related to

protein synthesis, which can represent the whole gene. Next, the synthesized probes

 40

of thousands of gene sequences are automatically dotted on the chip to make an array.

Upon setting up of the array, both dyed samples of test issues and control tissues are

added on the probe dots. Since the samples constitute of RNAs complimentary to all

gene sequences, they will react to the relative probes on the array. From measuring

the reaction strength on each dot, the respective RNA amount in the samples can be

determined, and thus the researcher can find which gene sequence is more active.

From this method, the relationship of gene sequence and specified disease can be

found, and many other biomedical problems can be solved using similar techniques

with the microarray (DeRisi, 1997; Ren, 2000) Fig 3.4 shows a general overview of

the DNA microarray experiment.

Fig 3.4 A general overview of the DNA microarray experiment

 41

3.3.3 Preparation for the Probes

Many current DNA microarray protocols utilize double-stranded PCR (Polymerase

Chain Reaction) products spanning the entire gene sequences as DNA probes

immobilized onto glass slides (Bosch, 2000). Fig 3.4 above illustrates the steps

needed to generate PCR-based microarrays. PCR is a technique to produce copies of a

DNA strand, using the original DNA as a template. To generate full- length gene

sequences, PCR requires the complete complementary DNA (cDNA) library as a

template to amplify. The amplification of all genes in a genome can tale a long time,

e.g. 4 months to amplify more than 6000 genes by a small group (DeRisi, 1997).

Furthermore, the PCR products may fail to be verified, with a failure rate of 5-10%

(DeRisi, 1997).

For gene expression studies, RNA is typically reverse transcribed to give

complementary DNA. Upon denaturation of both RNA and the immobilized DNA,

the mixture is allowed to hybridize. After hybridization and washing, microarrays

may be monitored as temperature is increased. The temperature at which 50% of a

single stranded DNA annealed with its complement to form a perfect duplex is

defined as melting temperature.

3.3.4 Criteria in Searching Probes

Based on the requirements in using the microarray, a set of criteria should be fulfilled

when searching the probes. The detailed criteria can be varied with different

application. In the Paladin-DES package proposed, constraints can always be added as

 42

required very easily. For this current work, three very essential criteria are suggested.

They are:

(1) Uniqueness criterion: each probe should identify one and only one gene.

(2) Melting temperature criterion: the melting temperature of the probe should be

within a range to perform hybridization. Among various measuring methods

of melting temperature, the following formula proposed by Breslauer

(Breslauer, 1986) is more accurate.

15.273
][7.01

][
log*6.16

)4ln(*)(
)(

)(−
++

+
+

+
=

K
K

CRxS
xH

xTm

where

Tm(x): melting temperature of given probe x

H(x): Enthalpy for helix information of x

S(x): Entropy for helix information of x

R: molar gas constant (1.987 cal/oC mol)

C: concentration of the probe (set as 250pmol)

[K+]: salt concentration (set as 50mmol)

(3) Non self- folding criterion: the qualified probe should avoid self- folding.

All of the three criteria will be discussed in details in the next chapter.

 43

3.4 Conclusion

In this chapter firstly the basic concept of bioinformatics has been presented in details.

This project used the Paladin-DES package to search the malaria parasite,

Plasmodium Falciparum’s coding sequence file for the qualified oligo sets (probes) to

print on the microarray. Therefore knowing the genetic information transfer from

original DNA to the final pre-translation coding sequence is very important. The two

steps involved in genetic information transfer from DNA to protein-transcription and

translation- are reviewed. Finally the latest biotechnology, microarray technology was

also discussed and three criteria were suggested in searching the probes.

 44

Chapter 4

Case Study: Searching Oligo Sets of Malaria Parasite,

Plasmodium Falciparum

4.1 Introduction

In previous two chapters the distributed computational intelligence technique,

Paladin-DES package, and some basic bioinformatics have been discussed. This

Paladin-DES package has been applied to a complex bioinformatics problem:

searching the oligo sets of malaria parasite, Plasmodium Falciparum. Simulation

results show that the Paladin-DES package performs better than some existing

searching techniques and demonstrates its capability. This chapter describes the

problem formulation in details, including the plasmodium species, ES fitness

functions and the three important searching criteria.

 45

4.2 Problem Formulation

4.2.1 Malaria Parasite Plasmodium Falciparum

Approximately 40% of the world's population lives in areas where malaria is

transmitted. Each year there are an estimated 300–500 million new malaria infections

and 1–3 million deaths caused by the disease (Hoffman, 2002). The mortality levels

are greatest in sub-Saharan Africa, where children under 5 years of age account for

90% of all deaths due to malaria (Breman, 2001). Four species of Plasmodium infect

humans and cause malaria. All species are vector borne diseases, being spread by

anopheline mosquitoes, and the disease is distributed throughout much of the world.

Fig 4.1 shows the distribution.

Fig 4.1 Approximate geographic distribution of malaria

 46

There are four species of Plasmodium: Plasmodium vivax, Plasmodium falciparum,

Plasmodium ovale and Plasmodium malariae. Plasmodium vivax is the most

extensively distributed and causes much debilitating disease. Plasmodium falciparum,

which is also widely spread, results in the most severe infections and is responsible

for nearly all malaria-related deaths. Plasmodium ovale which is mainly confined to

Africa is less prevalent, while Plasmodium malariae, which causes the least severe

but most persistent infections, also occurs widely.

Fig 4.2 Four species of Plasmodium

 47

Of the four species of Plasmodium that infect humans, Plasmodium falciparum is the

most lethal. It is responsible for more than 95% of all malaria deaths. Resistance to

anti-malarial drugs and insecticides, the decay of public health infrastructure,

population movements, political unrest, and environmental changes are contributing

to the spread of malaria (Greenwood, 2002). In countries with endemic malaria, the

annual economic growth rates over a 25-year period were 1.5% lower than in other

countries. This implies that the cumulative effect of the lower annual economic output

in a malaria-endemic country was a 50% reduction in the per capita GDP compared to

a non-malarious country (Gallup, 2001). Recent studies suggest that the number of

malaria cases may double in 20 years if new methods of control are not devised and

implemented (Breman, 2001).

The effort to sequence the Plasmodium Falciparum genome starts from 1996. It is an

international collaboration, mainly includes laboratories from USA, UK and Australia.

Altogether the 23-megabase nuclear genome consists of 14 chromosomes and encodes

about 5300 genes. The genome sequenc ing work was announced completed by Nature

in year 2002 (Gardner et al, 2002). An official website containing all the sequence

information was open to all.

For microarray technology, ideally qualified probes of every single gene should be

found and printed. From the gene coding sequencing file (cds file) downloaded from

the malaria genome sequencing official website, the Paladin-DES package has been

applied to search for all the probes for altogether 5409 sequences. When searching,

the probes which fulfill all the following three criteria are defined as qualified probes.

 48

4.2.2 Criteria for Probes Search

When applying evolutionary strategies, a fitness function is required to evaluate the

performance of an individual. The ones with higher fitness will beat others in the

selection scheme and will be chosen as the parents for the next generation. While

designing the fitness function of this probe-searching problem, the basic

considerations are specificity and sensitivity.

Specificity means that a probe should avoid cross- hybridization with other genome. It

should hybridize primarily with its target. To ensure this, the probe should be a unique

sequence that only appears in the specified gene and nowhere else. Good sensitivity

requires favorable thermodynamics of probe-target hybridization and avoiding self-

hybridization.

With these two considerations in mind, there are three essential criteria for a qualified

sequence:

1) Uniqueness criterion. This will ensure the probe will not appear elsewhere in the

whole genome sequence, which is the specificity consideration.

2) Melting temperature criterion. This criterion ensures the probe will have

favorable thermodynamics performance.

3) Non self- folding criterion. This criterion ensures that the probe found will not

perform self-hybridization.

 49

Three functions are defined to represent the three criteria respectively.

1) funi(x) = 0.8-length(x) /10000 if the probe x is unique

 = 0 if the probe x is not unique

2) ftm(x) = 0.1 if the probe’s melting temperature is in the

desired range

= 0 if the melting temperature is not in the desired

range

3) fsf(x) = 0.1 if the probe has no self complementary sequence

 = 0 if the probe has self complementary sequence

The fitness function is defined as the summation of the three functions above.

F(x) = funi(x) + f tm(x) + f sf(x)

As the uniqueness test is the most important part, it has the largest weight of about

0.8. The other two tests equally share the remaining 0.2. In probes searching, shorter

probes are preferred. The reason is that the longer the probe is, the more difficulties

exist for the probe’s hybridization on the microarray. Therefore the length of the

probe has a negative effect on its final fitness value. One qualified probe will have a

fitness value very close to 1. For example, consider a unique qualified probe with a

length of 20 amino acids, which is 60 in nucleotide length, if it also fulfills the other

2 criteria, then it will have a fitness value of 0.8-60/10000+0.1+0.1=0.9940.

 50

4.2.2.1 Uniqueness Criterion

First of all, the qualified probe should not appear in any other genes. If the sequence

appearing in more than one gene was chosen as a probe, when doing the hybridization,

it will act with the first gene coming to it instead of its designate gene. In this case the

microarray experiment result will not be accurate. Uniqueness criterion is the most

crucial criterion among the three and hence it takes the largest weight in the fitness

evaluation function.

The computational cost of the uniqueness test is rather high. Since a probe is

randomly selected from the gene and then compared with the whole 23-Megabyte

genome sequence file, it is a computationally expensive task. It is this characteristic

which makes traditional methods requiring extremely long time to find one probe.

Moreover, the feasible region of the sequences that satisfy the uniqueness criterion is

highly nonlinear. The non- linearity comes from the fact that some genes are

homology, i.e. they evolve from a common ancestor, therefore they share a degree of

conservation (Duret, 2000)

4.2.2.2 Melting Temperature Criterion

The stability and association between complementary DNA molecules critically

depends on the melting temperature (Tm). The melting temperature of an

oligonucleotide refers to the temperature at which the oligonucleotide is annealed to

50% of its exact complement. In DNA double-helix structure, 4 bases form pairs as

base A from one strain always pairs with T of the opposing strain in the same location.

 51

GC are paired together in the same way. GC pairs are held together with 3 hydrogen

bonds while AT pairs have 2 bonds, therefore GC pairs need more energy to break all

the hydrogen bonds, and hence the melting temperature of GC-rich sequences will be

higher than AT- rich sequences. In a typical microarray experiment, thousands of

DNA spots on the microarray interact with a very complex mixture of labeled DNA

under one single condition. Therefore, optimal hybridization condition is necessary to

obtain the best result. One way to accomplish optimal hybridization is to control the

melting temperature of the immobilized DNA on the microarray.

A number of methods are present for calculating Tm. One of the more accurate

equations for Tm is the Nearest Neighbor Method (Breslauer, 1986 and Santalucia,

1996).

15.273
][7.01

][
log*6.16

)4ln(*)(
)(

)(−
++

+
+

+
=

K
K

CRxS
xH

xTm

where

Tm(x): melting temperature of given probe x

H(x): Enthalpy for helix information of x

S(x): Entropy for helix information of x

R: molar gas constant (1.987 cal/oC mol)

C: concentration of the probe (set as 250pmol)

[K+]: salt concentration (set as 50mmol)

The table of H and S values can be found in Table 4.1 and 4.2 respectively (Breslauer,

1986 and Santalucia, 1996).

 52

 2nd Nucleotide

1st Nucleotide

A C G T

A 9.1 6.5 7.8 8.6

C 5.8 11.0 11.9 7.8

G 5.6 11.1 11.0 6.5

T 5.0 5.6 5.8 9.1

Table 4.1 Enthalpy H values of a neighbor nucleotide (in -kcal/mol)

 2nd Nucleotide

1st Nucleotide

A C G T

A 24.0 17.3 20.8 23.9

C 12.9 26.6 27.8 20.8

G 13.5 26.7 26.6 17.3

T 16.9 13.5 12.9 24.0

Table 4.2 Entropy S values of a neighbor nucleotide (in -cal/K.mol)

Example calculation of enthalpy H and entropy S:

H (GATC) = H (GA) + H (AT) + H (TC) = - (5.6+8.6+5.6) kcal/mol

S (GATC) = S (GA) + S (AT) + S (TC) = - (13.5+23.9+13.5) cal/K.mol

In this work the suitable value for Tm is chosen in the range of 65°C to 80°C.

 53

4.2.2.3 Non Self-Folding Criterion

A qualified probe should not have complementary pair. If one section of a probe is the

same as the complement of another section in the reverse direction, it is a

complementary pair. For example, a probe has a sequence GTTGAC and another

section GTCAAC. Reverse the second section, the resulting sequence CAACTG is

the complementary base pairs of the first section. They form a complement pair

(hairpin pattern) as illustrate in Fig 4.3. If the length of the complement pair is too

long, it will cause self-hybridization; hence the probe will be inactive in microarray

test. In this project, the length of the complementary pair is set to seven.

Fig 4.3 Self- folding illustration

In this work, only three criteria are set for the qualified probes. These are the three

most fundamental ones. Other criteria can be included if required.

Gene Sequence

G T T G A C G T C A A C

Part 1 Part 2

G T T G A C

C A A C T G

Part 1

Reverse of part 2

Base pairs combination

 54

4.3 Conclusion

In this chapter the malaria parasite, Plasmodium Falciparum’s probes searching

problem has been presented. Among four kinds of plasmodium, the Plasmodium

Falciparum is the most lethal. When applying the Paladin-DES package to search for

the probes, three criteria have to be fulfilled. They are: uniqueness criterion, melting

temperature criterion and non self- folding criterion. In the next chapter the simulation

results of the distributed package and comparison with other searching techniques will

be presented.

 55

Chapter 5

Results and Discussions

5.1 Introduction

After gathering enough knowledge on the Paladin-DES package and the real world

bioinformatics case study: searching oligo sets for the malaria parasite, Plasmodium

Falciparum from previous three chapters, in this chapter we will present the

simulation results of the distributed computational intelligence technique and some

discussion about its performance comparison with other searching methods. It will be

shown that the Paladin-DES package is a good choice in searching the probes both

effectively and efficiently.

5.2 Competing Criteria

As described in chapter 4, the qualified probes should fulfill three requirements:

uniqueness criterion, melting temperature criterion and non self- folding criterion. On

 56

the base of these three searching criteria, there are two measuring criteria:

effectiveness and efficiency. Effectiveness refers to the quantity aspect, which means

whether the program can locate all the probes in the genome. Efficiency refers to

quality part, which is the time required to locate one qualified probe. In the following

comparison between the Paladin-DES package and other searching techniques,

attention will be paid on these two aspects.

5.3 Simulation Setup

When setting up the simulation for Paladin-DES package to search the probes, some

general settings for normal evolutionary computation are applied. Table 5.1 shows the

ES parameters used in searching the Plasmodium Falciparum genome.

Parameter Type Parameter value

Generation size 500

Total population size 200

Mutation rate 0.1

Selection type Tournament Selection

Migration rate 0.02

Migration interval 0.1

Table 5.1 ES parameter in Plasmodium Falciparum case

 57

In the simulation to find all the probes for the 5000 more genes of Plasmodium

Falciparum, maximally 10 computers in the university LAN are used for distributing

the job simultaneously. All of them have different processing unit frequency and

memory, so the computation power also varies from each other largely from one

computer to another and hence the performance of each peer has a large difference.

For allocating one qualified probe, the fastest peer needs only 5 seconds, while the

slowest needs more than 20 seconds. Fig 5.1 shows how long it takes one peer

computer to obtain a qualified probe.

Computation power difference
among 10 peers

0
5

10
15
20
25

1 2 3 4 5 6 7 8 9 10

tim
e(

se
co

n
d
s)

Fig 5.1 Peer computers’ computation difference

During the process of the simulation, the 10 computers are grouped into two

categories according to their computation power. Later in this chapter the group with

the 5 faster computers will be referred to as faster group, while the other will be

referred to as slower group.

 58

5.4 Simulation Results

The Paladin-DES was first applied on two small organisms Buchnera sp. APS and

Chlamydia pneumoniae, which have 575 and 1054 genes respectively, to test whether

it is capable of finding gene probes. The testing results showed that the percentages

of probes being found of both species are more than 99%. After getting this inspiring

result, the package was applied to the Plasmodium Falciparum case, whose genome is

much larger, more than 5000 genes. Table 5.2 shows the searching results for the

three different organisms.

Method

Paladin-DES (5
peers, faster
group)

Paladin-DES (5
peers, faster
group)

Paladin-DES (10 peers)

Applied
species

Buchnera sp. APS

Chlamydia
pneumoniae

Plasmodium Falciparum

Number of
non-found
probes

2 0 54

Total number
of genes
tested

575 1054 5409

Table 5.2 Simulation results of DES applied to three different organisms

Fig 5.2 shows the sample for the found probes’ loc ation within each gene. From this

figure it is clearly shown that the location of the probes are extremely distributed, or

uncertain. For some genes, it may appear just from the beginning while others may

exist at the end of the gene.

 59

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

100

Length of gene and location of probes

G
en

e
nu

m
be

r
Locations of probes in Genes

Fig 5.2 Sample found probes locations in gene

 60

5.5 Comparison

Existing techniques for searching of these probes are not really available; a standard

approach one could think of is to select a probe from a sequence and comparing it

with all other sequences within the genome. It becomes computationally intensive

when applied to more complicated genomes. In this section two most frequently used

methods: enumerating method and ES with BLAST method are discussed and their

searching results are compared with the results from Paladin-DES package.

5.5.1 Enumerating Method

A most straightforward way one could think of for finding unique probes is the

enumerating method. A probe is first selected from a sequence and compared with all

other sequences within the genome. Once a probe is found, it is then tested whether it

meets the other 2 criteria. One would expect such a thorough search to be

computationally intensive due to its large search space. The number of sub-sequence

of a gene (sequence) with length n is (n(n-1)/2). For a typical gene in the malaria

parasite Plasmodium Falciparum with length 1000, there will be 500,000 sub-

sequences to be tested to find a qualified probe. It is clear that as the length of the

genes gets longer, it becomes more computationally intensive in the search process.

In this project, the enumerating method is coded in JAVA language which is the same

as the Paladin-DES package.

 61

import java.io.*;

public class enumerating_method{

//read each gene from the original cds file

public static void readGeneFile(){

… .

}

public static void main(String[] args){

//loop until all the genes in the cds files are read, save the gene presently as gene

while(gene=in.readLine()!=null){

//select from the beginning of the gene, a certain length of nucleotide as testing

//sequence

x = gene.chosen(length)

//first check the uniqueness criterion

if (checkUniqueness(x))

 //if passed, check self folding criterion

 if (checkSelf_folding(x))

 //if passed, check the melting temperature criterion

 if(checkMT(x))

 //if all the three criteria passed, print to a result file

 out= FileWriter("enumeration_out.dat ");

}//end of while

}//end of main

}//end of class

 62

5.5.2 ES with BLAST method

ES, because of its powerful optimization searching scheme, is a good candidate of

finding the probes. ES combined with a biological software tool called BLAST has

been previously applied in searching for the oligo sets of human chromosome 12 (Tay,

2002) so as to speed up the whole searching process.

Basic Local Alignment Search Tool (BLAST) is a powerful method that shows good

overall search speed and puts database searching on a firm statistical foundation in

local alignment, both for protein and DNA. Tens or hundreds of genes can be put

together and compared with the database to find whether there are any same sub-

sequences in these genes. The uniqueness test is the bottleneck and most time-

consuming part of sequencing comparison algorithms, with BLAST, multiple genes

are compared simultaneously and therefore importing BLAST into ES saves a lot of

time. In ES with BLAST method, BLAST is used to reduce the computational time

of the uniqueness test. The results of the uniqueness test are sent to MATLAB for the

other two tests.

As suggested by the name, BLAST searches for local alignments, meaning that given

a long query sequence, BLAST will report sequences in the database that significantly

match the subsequences of the query sequence. Consequently, non-unique regions in a

gene can be identified by feeding the gene as a query sequence to BLAST. Comparing

to other searching methods, the main computation task of ES with BLAST falls into

the checking of non self- folding criteria instead of uniqueness checking.

 63

There are three basic parameters in BLAST that can be varied to adjust the sensitivity

of BLAST search. They are Expected value (E), the threshold value (T) and the word

size (w).

The BLAST used in the simulation is the standalone BLASTN version 2.2.6 for

windows. The standalone BLAST 2.2.6 version is downloaded from the National

Center for Biotechnology Information (NCBI) ftp website. The procedures in

evaluating the three criteria of a probe are:

(1) Use formatdb command of standalone BLAST to prints the gene sequence

being evaluated to a text file current.txt.

(2) Set BLAST with the following parameter w = T = S = 15. S and E are related

by

SKmneE λ−=

where m and n are the lengths of the two sequences being compared, K and

λ are constants. (K=0.711, λ =1.37) (Karlin and Altschul, 1990)

(3) Run the BLAST with the following command

blastall –p blastn –d db.fasta –i current.txt –o

out.txt –F F –g F –W 15 –f 15 –e evalue

The command is running from the main algorithm, which is implemented in

MATLAB, by using the in-built DOS interface.

(4) The main algorithm reads the BLAST report in out.ext, creating the list

containing the matching subsequences.

(5) Evaluate the uniqueness of each individual, if it passes the uniqueness test,

then proceed to MATLAB for the melting temperature and non self- folding

test which has no relationship with BLAST any more.

 64

5.5.3 Effectiveness Comparison

The fastest peer computer among the ten candidates, which is a Pentium IV, 1.6G Hz,

512M RAM computer, is used for the enumerating and ES with BLAST simulation.

For the Paladin-DES package proposed here, multiple peers can work together to

search qualified probes. The results show that the package is more effective and more

efficient than the other methods. Table 5.3 shows the effectiveness comparison for the

three different searching techniques.

Method Enumerating
Method

ES with BLAST
method

Paladin-DES
(1 peer)

Paladin-DES (10
peers)

Number of
non-found
probes

50 76 1616 54

Total
number of
genes/exons
tested

5409 501 5409 5409

Effectiveness 99.1% 84.83% 70.1% 99.0%

Table 5.3 Effectiveness comparison

The Paladin-DES package performs very well in finding the probes. From the table it

can be seen that the Paladin-DES package performs quite good in the Plasmodium

Falciparum case. It can achieve an effectiveness above 99%, which can reach the

same level of enumerating method, which is the most thorough searching algorithm.

For the ES with BLAST method, because it has the window size limitation, it

performs not as well as the other two methods.

 65

However, it has to be pointed out that this good result is the contribution of multiple

peers. If only one peer is present, the finding ratio is only about 70%. When multiple

clients are available, the migration scheme will transport the good individuals

between different sub-populations. This increases the opportunity of higher fitness

candidate to be found than using only one single client computer. And hence increases

the chance of locating a qualified probe.

5.5.4 Efficiency Comparison

Although the enumerating method is the most thorough technique in searching the

probes, it is also the most time-consuming method. In this section of efficiency

comparison, the enumerating method is taking the disadvantage.

5.5.4.1 Comparison between Paladin-DES and ES with BLAST

ES with BLAST has the advantage in uniqueness criterion testing. BLAST is a proven

technique in sequence comparison, and it is the most powerful and popular tool used

for sequence aliasing presently. Fig 5.3 shows the uniqueness test results by using the

Paladin-DES package and BLAST.

 66

Fig 5.3 Uniqueness comparison between Paladin-DES and ES with BLAST

As expected, with only one computer, ES with BLAST will perform much faster

comparing with the proposed DES package. BLAST software only needs 4.59s to find

out one unique sequence while DES needs 10.516s. The advantage of the Paladin-

DES package can only be shown when multiple peers distribute the job and work

simultaneously. From the results it can be seen that when 5 peers logon the distributed

system and work together, the package takes about 2 seconds for locating one unique

sequence, which saves half the time BLAST needs. The computation power brought

in by multiple peer computers is much stronger than the high performance technology

like BLAST, and this is the underlying reason why the distributed system is

developed.

 67

5.5.4.2 Comparison between Paladin-DES and Enumerating method

Although the enumerating method is the most thorough searching method, it is

computationally time consuming. By using only one computer, it finds 5359 probes

out of 5409 genes using 295,424 seconds. On average, it requires 55.1 second for one

probe. For the Paladin-DES package, with one computer, it only takes 11.6 second to

locate one qualified probe averagely. Table 5.4 shows the efficiency difference

between the enumerating method and the Paladin-DES package.

Searching Method Average time needed for one qualified

probe (second)

Enumerating Method 55.1

Paladin-DES (1peer, average) 11.6

Paladin-DES (5 peers with agent) 2.3

Paladin-DES (5 peers without agent) 2.1

Paladin-DES (10 peers without agent) 1.9

Paladin-DES (10 peers with agent) 1.1

Table 5.4 Efficiency comparison between Paladin-DES and enumerating method

Table 5.4 also demonstrates the effect of adding more resources (computers) in

solving the problem. The 10 computers involved in this simulation are of different

computational power. They are divided into 2 categories according to their

computational capabilities. Results shown in row 4 and 5 of Table 5.4 are from the

faster group.

 68

From Table 5.4, it is obvious that 5 peers need 1/5 of the time required for 1 PC.

While from 5 peers to 10 peers, the time reduced is not very large. The reason is that

in the scheduling procedure, faster- funning PCs will have to share some work from

slower ones and hence the time saved will not be as impressive as adding the first a

few PCs.

Another observation is the effect of assigning an agent. From table 5.4 it could be

noticed that with five peers present in the system, assigning an agent does not make

the system function faster. However for the 10-peer case, agent-mode does improve

the whole performance. As has been mentioned above, instead of talking to server

directly, in the agent mode, clients can transfer data to the agent and it is agent that

directly communicates to the server. When only 5 peers logged on, the

communication overhead is not very heavy, assigning an agent will reduce the total

computation power of the system; as more peers comes in, assigning an agent to

manage data transfer does help the system work faster.

5.6 Missing Probes

Even with the most thorough searching technique, the enumerating methods, there are

still 50 missing probes. This is a quite strange phenomenon. After checking the

genome sequence file again, it is found that all these genes have failed to pass the

most important criteria, uniqueness test. For example, gene 1190 and gene 1751 are

identical to each other. Obviously they will fail the uniqueness test. Every partition

from gene 1190 will find its clone in gene 1751. Therefore the qualified probes for

 69

both of the two genes could not be found. For all the 50 genes whose probes could not

be found, each one of them can find its clone pairs inside these 50.

5.7 Conclusion

In this chapter the simulation result of applying the Paladin-DES package to search

probes of malaria parasite, Plasmodium Falciparum, has been shown. Effectiveness

and efficiency, these two competing criteria have been defined. From the result

comparison it has been shown that the Paladin-DES package demonstrates good

performance in terms of the number of probes found and computational time when

comparing with the traditional enumerating methods and other previously developed

probe-finding algorithms.

 70

Chapter 6

Conclusions and Future Directions

6.1 Conclusions

In this thesis a distributed computational intelligence technique, Paladin-DES package

has been introduced. The Paladin-DES package was developed on the bases of

Paladin-DEC package, which exploits the inherent parallelism of evolutionary

algorithms by creating an infrastructure necessary to support distributed evolutionary

computing using existing Internet and hardware resources.

The Paladin-DES has been applied to a real world bioinformatics problem: to search

for unique and optimized probe sets. Probes of the human malaria parasite,

Plasmodium Falciparum, have been found using the Paladin-DES package and results

are compared with other previously developed techniques. Simulation results

demonstrate the capability of Paladin-DES.

 71

6.2 Future Directions

This project is the third stage of the distributed computational intelligence research.

There are three ways on which the research can be further carried out.

The first way is to further improve the system. Theoretically with a powerful server,

the current distributed system could handle as many peer computers as possible.

However, practically the network delay confines the number of peers the server can

manage to a finite number. More consideration can be given on the system fault

tolerance, security, robustness to make the server handle more peers.

Secondly the package can be applied to some genomes which are much more

complicated. The case study in this project is human malaria parasite, Plasmodium

Falciparum, which consists of 5000 more genes. The package can be applied to some

larger genomes, for example, plants genomes which normally contain more than a

hundred thousand genes.

The third way is to combine the underlying distributed technology with other

computational intelligence techniques. Some research has been done by using

artificial neural network to handle HIV’s multi -drug resistance problem.

Drug resistance is probably the most important factor influencing the failure of

present HIV therapies. The emergence of anti-retroviral drug resistance is not

unexpected, as drug resistance had been reported for other viruses such as herpes

simplex, varicella-zoster, cytomegalovirus, influenza A and rhinovirus. However, the

 72

drug resistance problem is far more important in the case of the HIV virus because of

the severe final outcome of HIV-related illnesses (Draghici and Potter, 2003).

In the literature, it is discovered that the effectiveness of the contacts between the

protease inhibitor drug Saquinavir and the HIV protease gene is related to the amino

acid sequence of HIV protease mutants. The prediction is based on a set of HIV

protease mutants with reported Saquinavir IC90 values, which were used to classify

the resistance of the mutants tested. In this research, a Learning Vector Quantisation

(LVQ) network is constructed for the purpose of predicting the HIV resistance of the

drug Saquinavir and results generated will be compared with a SOFM (Self-

Organizing Features Map) network used by Draghici and Potter.

Further research can be done in this direction since the multi-drug resistance research

is very complicated and very helpful in both medical and biology science. With

including the different insight from engineering aspect, the problem could be analyzed

more specifically.

 73

References

Altschul SF., Gish W., Miller W., Myers EW. and Lipman DJ. Basic Local Alignment

Search Tool, Journ. Mol. Biol 1990; vol. 215: 403-410

Arabas, J., Michalewicz Z. and Mulawka J. GAVaPS-A Genetic Algorithm with

Varying Population Size. Proceedings of the First Conference on Evolutionary

Computation, 1994; vol. 1, 73-74

Back, T., Fogel, D. B., and Michalewicz, Z. (editors). Handbook on Evolutionary

Computation, Bristol, UK: Institute of Physics Publishing and New York: Oxford

University Press, 1997.

Bahl A et al, PlasmoDB: the Plasmodium genome resource. A database integrating

experimental and computational data. Nucleic Acids Res. 2003 Jan 1; vol 31,

issue 1: 212-215

Baxevanis AD, and Ouellette BF. Bioinformatics: A Practical Guide to the Analysis

of Genes and Proteins, Wiley-Interscience; 2001

Ben Mamoun C et al, Co-ordinated programme of gene expression during asexual

intraerythrocytic development of the human malaria parasite Plasmodium

falciparum revealed by microarray analysis. Mol Microbiol. 2001 Jan; vol 39,

issue 1:26-36

Bezdek JC. On the relationship between neural networks, pattern recognition and

intelligence, Int. J. Approximate Reasoning; 1992; vol. 6: 85-107

Bezdek JC. What is computational intelligence? Computational Intelligence Initating

Life, IEEE Press; 1994: 1-12

BLAST http://www.ncbi.nlm.nih.gov/blast

 74

Bioinformatics Introduction

 http://www.library.csi.cuny.edu/~davis/molbiol/lecture_notes/bioinformatics_gen

omics/bioinformaticsIntro.html

Bosch JT., Seidel C., Batra S., Lam H., Tuason N., Saljoughi S., and Saul R.

Validation of sequence-optimized 70 base oligonuclieotides for use on DNA

microarrays; 2000; at http://www.operon.com

Bozdech Z, et al, Expression profiling of the schizont and trophozoite stages of

Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol.

2003;4(2):R9. Epub 2003 Jan 31

Breman JG. The ears of the hippopotamus: manifestations, determinants, and

estimates of the malaria burden. Am. J. Trop. Med. Hyg 2001; vol. 64:1-11

Breslauer KJ, et al. Predicting DNA duplex stability from the base sequence.

Proceeding Natural Academic Science 1986; vol. 83:3746-3750

Cantú-Paz E. A survey of parallel Genetic Algorithms, Calculateurs Paralleles,

Reseaux et Systems Repartis, Paris: Hermes, 1998; vol. 10, no. 2: 141-171,

Chait, Y. QFT Loop-Shaping and Minimisation of the High-frequency Gain via

Convex Optimisation. Proceedings Symposium on Quantitative Feedback Theory

and other Frequency Domain Method and Applications, Glasgow, Scotland, 1997;

13-28

Chen, Y. W., Nakao, Z., and Xue F., “A Parallel Genetic Algorithm Based on the

Island Model for Image Restoration”, Proceedings of the 13th International

Conference on Pattern Recognition, 1996; vol. 3, 694-698

Chipperfield, A.J. and Fleming PJ. Gas Turbine Engine Controller Design using

Multiobjective Genetic Algorithms. In Proceedings of the First IEE/IEEE

 75

International Conference on Genetic Algorithms in Engineering Systems:

Innovations and Applications, ed. by A.M.S. Zalzala, 1995; 214-219

Cristea, V. and Godza, G., “Genetic algorithms and Intrinsic Parallel Characteristics”,

Proceedings of the 2000 Congress on Evolutionary Computation, 2000; vol. 1,

431- 436

Dasgupta D, and Michalewicz Z. Evolutionary algorithm-An overview. Evolutionary

Algorithms in Engineering Application. Springer 1997; 3-28

Degrave WM, Melville S, Ivens A, Aslett M. Parasite genome initiatives. Int J

Parasitol. 2001 May 1; 31(5-6):532-536

Dejong KA. Analysis of the behavior of a class of genetic adaptive systems. Ph.D.

Thesis USA: University of Michigan, Ann Arbor, MI; 1975

DeRisi J., et al. Exploring the metabolic and genetic control of gene expression on a

genomic scale; Science 1997; vol 278, issue 5338: 680-686

Draghici S. and Potter RB. Predicting HIV drug resistance with neural networks.

Oxford University Press, 2003; vol 19, issue1: 98-107

Duggan DJ., et al. Expression profiling using cDNA microarrays. Nature Genetics

1999; vol. 21;supplementary 10-14

Duret L, and Abdeddaim S. Multiple Alignments for Structural, Functional, or

Phylogenetic analyses of homologous sequences. Bioinformatics: Sequence,

Structure and databases. Oxford press 2000; 51-76

Engelbrecht AP. Computational Intelligence, an Introduction, John Wiley & Sons Ltd,

2002

Fogel DB. An Introduction to Simulated Evolutionary Optimization. Evolutionary

Computation, the fossil record. IEEE Press 1998; 1-28

 76

Gallup JL, and Sachs JD. The economic burden of malaria. Am. J. Trop. Med. Hyg

2001; vol. 64:85-96

Ganesan K, Jiang L, Rathod PK. Stochastic versus stable transcriptional differences

on Plasmodium falciparum DNA microarrays. Int J Parasitol. 2002 Dec 4; vol 32,

issue 13:1543-1550

Gardner MJ, et al. Genome Sequence of the Human Malaria parasite Plasmodium

Falciparum. Nature 2002; vol. 419:498-511

Gardner MJ, et al. Sequence of Plasmodium falciparum chromosomes 2, 10, 11 and

14. Nature 2002; vol. 419:531-534

Gershon D. Microarray technology: An Array of Opportunities. Nature 2002; vol

416:885 – 891

Goldberg DE. Genetic Algorithms in Search, Optimization, and Machine Learning,

Addison Wesley, Massachusetts, 1989a

Goldberg DE. Sizing populations for serial and parallel genetic algorithms, In

Schaffer, J. D. (editor). Proceedings of the Third International Conference on

Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers Inc., 1989b:

70-79

Greenwood B, and Mutabingwa T. Malaria in 2002. Nature 2002; vol. 415:670-672

Grefenstette JJ, and Baker JE. How Genetic Algorithm Work: A Critical Look at

Implicit Parallelism. Genetic Algorithm, IEEE Computer Society press 1992: 12-

19

Hall N, et al. Sequence of Plasmodium falc iparum chromosomes 1, 3–9 and 13,

Nature 2002; vol. 419:527-531

Haykin S., Neural Networks – A Comprehensive Foundation, Prentice Hall

International Inc, Second Edition 1999.

 77

Hayward RE, Derisi JL, Alfadhli S, Kaslow DC, Brown PO, Rathod PK. Shotgun

DNA microarrays and stage-specific gene expression in Plasmodium falciparum

malaria. Mol Microbiol. 2000 Jan; vol 35, issue 1:6-14.

Higgins D. and Taylor W., Bioinformatics: Sequence, Structure, and Databanks: A

Practical Approach, Oxford University Press, 2000

Hiroyasu, T., M. Miki and S. Watanabe. Distributed Genetic Algorithm with a New

Sharing Approach in Multiobjective Optimization Problems. IEEE International

Conference on Evolutionary Computation, 1999; Vol.1, 69-76

Hoffman SL, et al. Plasmodium, human and Anopheles genomics and malaria. Nature

2002; vol 415:702-709

Hoffmeister F, and Baeck T. Genetic algorithms and evolution strategies: similarity

and differences. Technical Report No. SYS-1/92, University of Dortmund, 1992

Holland J. Adaptation in natural and artificial systems. University of Michigan Press,

Ann Arbor, Mich; 1975

Hughes TR., Mao M., Jones AR., Burchard J., Marton MJ., Shannon KW., Lefkowitz

SM., Ziman M., Schelter JM., and Meyer et al. Expression profiling using

microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature

Biotechnology, 2001; vol. 19, issue 4: 342-347,

Hyman RW, et al. Sequence of Plasmodium falciparum chromosomes 12. Nature

2002; vol. 419:534 -537

Joe YY, Xu H, Dong ZY, Ng HH, and Tay A. Searching Oligo Sets of Human

Chromosome 12 using Evolutionary Strategies, Congress on Evolutionary

Computation 2003

 78

Karlin S. and Altschul SF. Methods for assessing the statistical significance of

molecular sequence features by using general scoring schemes. Proceedings of

National Academy of Science, U.S.A 1990; vol. 87; 2264-2268

Lin, D.S. and Leou J.J. A Genetic Algorithm Approach to Chinese Handwriting

Normalization. IEEE Transactions on Systems, Man, and Cybernetics – Part B:

Cybernetics, 1997; Vol. 27, No. 6, 999-1007.

Lipshutz RJ., Fodor SP., Gingeras TR., and Lockhart DJ., High Density Synthetic

Oligonucleotide Arrays. Nature Genetics, 1999; vol. 21, issue 1, supplement: 20-

24

Lockhart DJ and Winzeler EA. Genomics, Gene Expression and DNA Arrays. Nature

2000; vol. 405:827- 836

Meta Group Consulting, CORBA VS DCOM: Solutions for Enterprise, 1998

Michalewicz Z. Genetic Algorithms + Data Structure = Evolutionary Programs,

Springer-Verlag, Berlin, 2nd Edition, 1994

Mohammadian M, Sarker RA. and Xin Y. Computational Intelligence in Control, Idea

Group Publishing, 2003

NCBI Education http://www.ncbi.nlm.nih.gov/Education

Operon http://www.operon.com

Paechter, B. and Back, T. A Distributed Resources Evolutionary Algorithm Machine

(DREAM). Proceedings of the 2000 Congress on Evolutionary Computation,

2000; vol. 2: 951-958

Paladin-DES package searching malaria parasite result

 http://evolab.ece.nus.edu.sg/project_malaria/result/

Pease, A. C., Solas, D., Sullivan, E. J., Cronin, M. T., Holmes, C. P., and Fodor, S. P.,

“Light Generated Oligonucleotide Arrays for Rapid DNA Sequence Analysis”,

 79

Proceedings of the National Academy of Sciences of the United States of America,

1994; vol. 91, 5022-5026

Pedrycz W. and Vasilakos A. Computational Intelligence in Telecommunication

Networks, CRC Press LLC, 2001

Pedrycz W. and Peters JF. Computational Intelligence in Software Engineering,

World Scientific, 1998

Pena-Reyes CA, and Sipper M. Evolutionary computation in medicine: an overview.

Artif Intell Med 2000; vol. 19:1-23

Phimister B. Going global. Nature Genetics 1999; vol. 21, pp. 1

Plasmodium Falciparum sequence website

 http://www.plasmodb.org/restricted/GridddPf.shtml

Rathod PK, Ganesan K, Hayward RE, Bozdech Z, DeRisi JL. DNA microarrays for

malaria. Trends Parasitol. 2002 Jan; vol 18, issue 1:39-45

Ren B. et al. Genome-wide location and function of DNA binding proteins. Science

2000; vol. 290:2306-2309

Rivera W. Scalable Parallel Genetic Algorithms. Artificial Intelligence Review 2001;

vol. 16:153-168

Subbu, R. and Sanderson, A. C., “Modeling and convergence analysis of distributed

co-evolutionary algorithms”, Proceedings of the 2000 Congress on Evolutionary

Computation, 2000; vol. 2, 1276-1283

Santalucia J, Allawi HT, and Seneviratne PA. Improved Nearest-Neighbor Parameters

for Predicting DNA Duplex Stability. Biochemistry1996; vol. 35, issue 11:3555-

3562

Schena M, et al. Quantitative Monitoring of Gene Expression Patterns with a

Complementary DNA Microarray. Science 1995; vol. 270:467-470

 80

Schwefel, H. P., Evolution and Optimum Seeking, New York, NY: John Wiley, 1995.

Sun Microsystems Inc., IBM co. RMI-IIOP Programmer's Guide, 1999.

Sun Microsystems Inc. J2EE tutorial, 2001a.

Sun Microsystems Inc. Java Message Service Tutorial, 2001b.

Sun Microsystems Inc. www.jxta.org, 2002.

Snustas DP, Simmons MJ, Jenkins JB. Principles of Genetics. John Wiley; 1997

Tan KC., Khor EF., Cai J., Heng CM. and Lee TH. Automating the drug scheduling

of cancer chemotherapy via evolutionary computation, Artificial Intelligence in

Medicine, 2002; vol. 25: 169-185.

Tan KC., Tay A. and Cai J. Design and implementation of a distributed evolutionary

computing software. IEEE Transactions on Systems, Man and Cybernetics: Part C

(Applications and Reviews), 2003; vol. 33, issue 3: 325-338

Tan KC., Wang ML. and Peng W. A P2P genetic algorithm environment on the

Internet. Communications of the ACM, accepted.

Topping BHV, Khan AI, and Sziveri J. Parallel and Distributed Processing for

Computational Mechanics: An Introduction. Parallel and Distributed Processing

for Computational Mechanics: Systems and Tools. Saxe-Coburg Publication 1999;

1-23

Urben BC, et al. Plasmodium falciparum-infected erythrocytes modulate the

maturation of dendritic cells. Nature 1999; vol. 400:73 – 77

Wu Y, Wang X, Liu X, Wang Y, Data-mining approaches reveal hidden families of

proteases in the genome of malaria parasite, Genome Res. 2003 Apr; vol 13, issue

4 :601-16.

 81

Xu H, Tay A, Dong ZY, and Ng HH. Searching Probe Set of Yeast Genome: An

implementation of Evolutionary Strategy, 4th Asian Control Conference 2002;

Sept: 25-27

Yoshida N. and Yasuoka T., “Multi-GAP: Parallel and Distributed Genetic

Algorithms in VLSI”, IEEE International Conference on Systems, Man, and

Cybernetics 1999; vol. 5:571-576.

Young RA. Biomedical discovery with DNA arrays. Cell 2000; vol. 102; 9-15

Zurada JM., Marks II R.J., and Robinson C.J. Computational Intelligence Imitating

Life, IEEE Press, 1994

 82

List of Publications

Journal Papers

Tan, K. C., Wang, M. L. and Peng, W., 'A P2P genetic algorithm environment on the

Internet', Communications of the ACM, accepted.

Conference Papers

Tan, K. C., Peng, W., Lee, T. H. and Cai, J. (2003). Development of a distributed

evolutionary computing package, IEEE Congress on Evolutionary Computation

2003, Canberra, Australia, 8-12 December, pp. 77-84.

