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Summary 

 

DNA microarray is the latest bioinformatics technology which is high- throughput and 

large-scale, making study complex interplay of all genes simultaneously possible. 

This thesis reports the effort of applying a newly developed distributed computational 

intelligence package, Paladin-DES to a real world bioinformatics problem, to search 

the oligo probe sets of human malaria parasite, Plasmodium Falciparum to be printed 

on the DNA microarrays.  

 

Normal evolutionary computation has changed the traditional single-point gradient-

guided search technique to a population-based searching algorithm, which both 

reduces the searching time and improves the optimum searching results. However, for 

some very complicated searching problems, even evolutionary computation is also 

cost impractical or extreme time-consuming.  

 

The Paladin-DES package is developed on the bases of Paladin-DEC package, which 

exploits the inherent parallelism of evolutionary algorithms by creating an 

infrastructure necessary to support distributed evolutionary computing using existing 

Internet and hardware resources. Through the simulation test of searching the probes 

for the Plasmodium Falciparum, Paladin-DES is proven to be a very good candidate 

in this bioinformatics area.  
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Plasmodium falciparum, which is the severest cause of human malaria diseases on the 

earth, whose gene sequence was totally identified in 2002. The distributed package is 

applied to the gene coding sequence file of this plasmodium to search optimum 

probes for subsequent medical and biology research. In this research three criteria are 

proposed to test whether one sequence of gene is a qualified probe or not. The criteria 

are based on two fundamental considerations of microarray technology, specificity 

and sensitivity.  

 

Existing methods of searching probes are very rare. The results obtained by the 

simulation from Paladin-DES are compared with two other methods in terms of 

effectiveness and efficiency. Effectiveness measures the number of qualified probes 

found by each method and efficiency measures the time spent by every method for 

allocating one probe. The Paladin-DES method performs very well in both 

competition and can be applied for some much larger genomes sequences like plant 

genome in the later research.  
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Chapter 1 

 

 

Introduction 

 

 

1.1 Computational Intelligence Definition 

 

What is computational Intelligence (CI)? What is the difference between CI and AI 

(Artificial Intelligence)? In 1992, Bezdek first time used the term CI and later in 1994 

he gave the following definition: 

 

A system is computationally intelligent when it: deals only with numerical 

(low-level) data, has a pattern reorganization component, and does not use 

knowledge in the AI sense; and additionally, when it (begins to) exhibit (i) 

computationa l adaptivity; (ii) computational fault tolerance; (iii) speed 

approaching human-like turnaround, and (iv) error rates that approximately 

human performance.  
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Recently Engelbrecht (Engelbrecht, 2002) declares that CI is a study of adaptive 

mechanisms to enable or facilitate intelligence behavior in complex and changing 

environments.  

 

In general, the main objective of Computational Intelligence (CI) is to establish a 

highly coherent design and analysis environment through a series of synergistic links 

that give rise to neurofuzzy systems, evolutionary neural networks, fuzzy genetic 

schemes, granular rough decision systems, and many others in the context of software 

engineering (Bezdek, 1992; Pedrycz and Peters, 1998).  

 

Computational Intelligence covers mainly 4 paradigms: neural networks, evolutionary 

computation, swarm intelligence and fuzzy systems. The work in this thesis deals 

mainly with one of the 4 paradigms: evolutionary computation.  

 

1.2 Project History 

 

This project of distributed computational intelligence was introduced by Tan in 1999. 

In the first stage Tan and Wang designed a peer-to-peer based genetic algorithm 

infrastructure over the Internet. Secondly Tan and Cai designed a distributed 

evolutionary computation system which changed the infrastructure from a peer-to-

peer frame to a totally distributed frame with underlying Java based RMI-IIOP 

(Remote Method Invocation over Internet Inter-ORB Protocol).  
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In the second phase, a distributed evolutionary computing architecture has been 

developed to exp loit the inherent parallelism of evolutionary algorithms by creating 

an infrastructure necessary to support distributed evolutionary computing using 

existing Internet and hardware resources.  

 

There are three evolutionary algorithms packages involved in the system designed by 

Tan and Cai, which are: Genetic Algorithm, Genetic Programming and Evolutionary 

Strategy. 

 

This current work is the third phase of the research. In this thesis work one of the 

evolutionary algorithms package, the evolutionary strategy package has been 

modified and then applied to a real world bioinformatics problem: to search the oligo 

sets (probes) of malaria parasite, Plasmodium Falciparum.  

 

1.3 Bioinformatics, Microarray 

 

The availability of complete or near-complete catalogs of genes for organisms of 

increasing complexity has created opportunities for studying numerous aspects of 

gene function at the genomic level (Baxevanis and Ouellette, 2001).  With readily 

available technology such as DNA Microarray, it is now possible to carry out 

massively parallel analysis of gene expression on different genomes.   

 

DNA microarrays also referred to as DNA arrays, microarrays, DNA chips, biochips 

or GeneChips – allow researchers to determine which genes are being expressed in a 

given cell type at a particular time and under particular conditions (Gershon, 2002). 
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They can be used to compare the gene expression in 2 different cell types or tissue 

samples; for example, healthy versus diseased tissues to examine which genes are the 

causes of the diseases. Unlike conventional nucleic-acid hybridization methods, 

microarrays can identify thousands of genes simultaneously, which means that genetic 

analysis can be done on a huge scale (Lockhart and Winzeler, 2000).   

 

DNA molecules, typically in the form of double stranded PCR (Polymerase Chain 

Reaction) products or oligonucleotides (oligo), can be attached to glass slides or nylon 

membranes (Schena et al, 1995).  These oligo sets are typically optimized sequences 

of a particular genome which can represent the key characteristics of that genome.   

 

For example, the yeast genome consists of about 6000 genes of varying length; to 

print all these 6000 genes onto the microarray would not be practical as their varying 

length results in different melting temperature and thus different processing 

temperature.  The objective is thus to be able to extract 6000 optimized and unique 

sequences from the original 6000 genes, these 6000 unique sequences is called the 

olgio sets (probes) of the genome.  Optimized oligo sets allow for more efficient 

analysis of the microarray. However, most of current oligo sets are only available 

through commercial companies (Operon) involving high cost.   

 

It is our objective in this project to explore computational efficient methods in 

extracting these optimized sequences to be printed onto the microarray for the 

subsequent analysis. 
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In the literature there exist at least two confusing nomenclature systems for referring 

to hybridization partners. Both use common terms: "probes" and "targets". According 

to the nomenclature recommended by Phimister (Phimister, 1999), a "probe" is the 

tethered nucleic acid with known sequence, whereas a "target" is the free nucleic acid 

sample whose identity/abundance is being detected. 

 

Existing techniques for searching of these probes are not really available; a standard 

approach one could think of is to select a probe from a sequence and comparing it 

with all other sequences within the genome.  One would expect such a thorough 

search to be computationally intensive due to its large search space.   

 

Tay and his colleagues have previously demonstrated that the use of computational 

intelligence techniques such as genetic algorithm and evolutionary strategy can 

provide us an efficient method for extracting these unique sequences (Joe, 2002 and 

Xu, 2003).  However, most of these approaches become computationally intensive 

when applied to more complicated genomes. 

 

In this project, we extend the distributed architecture to include evolutionary 

strategies and apply it to the malaria parasite Plasmodium falciparum whose genome 

sequence was reported recently in October 2002 (Gardner et al, 2002).   
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1.4 Malaria Parasite, Plasmodium Falciparum 

 

The malaria parasite Plasmodium falciparum is responsible for hundreds of millions  

of cases of malaria, and kills more than one million African children annually 

(Gardner et al, 2002).  Immune responses cannot prevent the development of 

symptomatic infections throughout life, and clinical immunity to the disease develops 

only slowly dur ing childhood.  An understanding of the obstacles to the development 

of protective immunity is crucial for developing rational approaches to prevent the 

disease (Urben et al, 1999) and remains an active area of research.    

 

Since detailed coding sequence information about the malaria parasite, Plasmodium 

falciparum, is known, our aim is to develop a program that can search for 

probes/sequences within each gene so that the probes can be printed onto DNA 

microarrays for medical research.  One probe will identically identify one specific 

gene, and ideally all genes should be represented by their own probes on the DNA 

microarray.  Difficulties do arise for certain genes that are very similar to each other 

(may evolve from same ancestor).  

 

 

1.5 Contribution 

 

This thesis presents a newly developed distributed computational intelligence 

technique, a Java-based distributed evolutionary strategy package (Paladin-DES). The 

package has been applied to a complicated bioinformatics problem, to search the 
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probes for the human malaria parasite, Plasmodium Falciparum. The traditional 

searching methods are very troublesome and time-consuming. This project brings the 

new engineering insight into the bioinformatics field, making the searching more 

effective and more efficient.  

 

1.6 Thesis Outline 

 

This thesis consists of 6 chapters and is organized as follows:  Chapter 2 discusses the 

background of the computational intelligence, the distributed evolutionary algorithms, 

together with the updated Paladin-DES package. Some bioinformatics basics and the 

recently introduced microarray technology are presented in chapter 3. Chapter 4 

describes the malaria parasite probes searching problem studied in this project.  

Results are shown, compared with previously developed methods and discussed in 

chapter 5.  Conclusions are drawn in chapter 6. 
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Chapter 2 

 

 

Distributed Computational Intelligence Technique 

 

 

2.1 Introduction 

 

With the rapidly growing demand for new software systems having increasing 

complexity and size, research and development work in the area of computational 

intelligence also grows rapidly. Computational Intelligence (CI) is an area of 

fundamental and applied research involving numerical information processing (in 

contrast to the symbolic information processing techniques of Artificial Intelligence 

(AI)) (Pedrycz and Peters, 1998). Nowadays, CI technologies have been used in 

various areas to solve problems stemming from increasing complex of forms of 

software system description and analysis.  

 

Computational Intelligence covers mainly 4 different paradigms: artificial neural 

networks, evolutionary computation, swarm intelligence and fuzzy systems. The work 

in this thesis is under one of the 4 paradigms: evolutionary computation.  
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Evolutionary computation (EC) was first proposed by Holland (Holland, 1975) and 

Dejong (Dejong, 1975). The objective of EC is to model the real practical problems to 

natural evolution. The main concept is survival of the fittest. In 1989 Goldberg 

extended the early work to optimization and machine learning. An evolutionary 

algorithm (EA) can be considered as an iterative scheme, where each iteration cycle 

forms a generation of an evolutionary process. 

 

Although EC is a very powerful tool, the computational cost involved in terms of time 

and hardware is quite high. EC normally needs a large population size and generation 

number to simulate a more realistic evolutionary model with a better approximation. 

Sometimes it is cost impractical and not able to be performed without the presence of 

high performance computing. One solution to overcome this limitation is to exploit 

the inherent parallel nature of EC by formulating the problem into a distributed 

computing structure suitable for parallel processing.  

 

The fact is that there are complex problems which are difficult for one computer to 

solve; on the other hand there are many idle computers which are a large waste of 

resources. Hence the proposed solution is to divide the task into subtasks and solve 

the subtasks simultaneously using multiple computation clients, in a divide-and-

conquer manner, as shown in Fig 2.1. In this project one of the distributed 

evolutionary algorithms- Distributed Evolutionary Strategy- is applied to the 

bioinformatics area.  
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   Fig 2.1 Basic concept of distributed EC 

 

In this chapter the concept of Evolutionary Computation and then parallel EC theory 

is firstly discussed. After that the existing DEC package and the updated DES 

package are presented in details. 
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2.2 Evolutionary Computation 

 

The evolutionary computation, which also refers as evolutionary algorithm (EA), 

attempts to mimic the genetic shift and Darwinian’s  struggle for survival. Unlike 

traditional single-point gradient-guided search techniques, the evolutionary algorithm 

is population-based. It attempts to evolve complex systems concurrently rather than 

develop one and refine it.  

 

In evolutionary computation a model of a population of individuals is built where 

each individual is referred to as a chromosome. A chromosome defines the 

characteristics of individua ls in the population. For each generation, individuals 

compete to reproduce offspring. The survival strength of an individual is measured by 

a fitness function. Those individuals with the best survival capabilities (fitness value) 

will have the best opportunity to reproduce. After each generation, individuals may 

undergo culling, or individuals may survive to the next generation (elitism). There are 

many types of evolutionary algorithms, among which the best known are 4 types 

(Engelbrecht, 2002):  

 

Genetic Algorithm (GA) Modeling genetic evolution 

Genetic Programming (GP) Based on GA, but individuals are programs 

Evolutionary Programming (EP) Derived from the simulation of adaptive behavior 

in evolution 

Evolutionary Strategy (ES) Geared toward modeling the strategic parameters 

that control variation in evolution  

 

Table 2.1 Four different types of EC 
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The implicit parallel property gained by evolving a population of points in the search 

space concurrently suggests that EAs have a natural mapping onto parallel 

architectures. 

 

2.3 Parallel Evolutionary Computation 

 

According to Rivera (Rivera, 2001), there are four possible strategies to parallelize 

EAs, i.e., global parallelization, coarse-grained parallelization, fine-grained 

parallelization and hybrid parallelization.  

 

In global parallelization, only the fitness evaluations of individuals are parallelized by 

assigning a fraction of the population to each processor. The genetic operators are 

often performed in the same manner as traditional EAs since these operators are not as 

time-consuming as the fitness evaluation. This strategy preserves the behavior of 

traditional EA and is particularly effective for problems with complicated fitness 

evaluations.  

 

In coarse-grained parallelization, the entire population is  partitioned into 

subpopulations. This strategy is more complex since it consists of multiple 

subpopulations and different subpopulations may exchange individuals occasionally 

(migration). In this parallel EAs model, the whole population is divided into multiple 

subpopulations, demes, that evolve on their own isolated from each other most of the 

time. This is also called isolated island model. This class of parallel EAs uses few 

relatively large demes.  Each processor handles a subpopulation by itself. The 
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subpopulations communicate through certain migrant individuals that are transferred 

from one to another subpopulation periodically, which is migration.  The exchange of 

individuals is produced with low frequency. The migration of individuals from one 

deme to another is controlled by the topology that defines the connectivity between 

the subpopulations, by a migrate rate controlling the number of individuals to migrate, 

by a migration interval that affects the frequency of the migrations. Selection, 

mutation and crossover operations occur within a deme. Coarse-grained parallel EAs 

are more difficult to understand since the effects of migration are not fully understood. 

Often migration in coarse-grained parallel evolutionary algorithms is synchronous 

occurring at predetermined constant intervals.  According to the migration structure 

chosen, it can increase either, the selection pressure, the diversity or also delay 

convergence.  There is a critical migration rate. Below it, the performance of the 

algorithm is determined by the isolation of the demes.  There are different migration 

strategies such as to choose emigrants and replace them randomly or alternatively 

according to fitness. Besides, this strategy introduces fundamental changes in the EA 

operations and has a different behavior than traditional EAs.  

 

The fine-grained parallelization is often implemented on massively parallel machines, 

in which the population is divided into many and small demes.  In the extreme case 

one can use a single large population with one individual per processor.  Usually each 

processor controls one or a small amount of individuals and there is intensive 

communication between demes.  The individuals belonging to the whole population 

are distributed topologically in a grid and are restricted to reproduce in a small 

environment of its location. Selection and mating are local with neighbors.  A critical 

parameter is the ratio between the radius of the deme and the size of the underlying 
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grid. The genetic operators take place in parallel only among neighborhood processors, 

and the individuals in each processor are replaced by the new offspring as new 

generations come out. 

 

In hybrid parallelization, several parallelization approaches are combined, and the 

complexity of these hybrid parallel EAs depends on the level of hybridization. 

 

2.4 Existing Paladin –DEC Package 

 

The Distributed Evolutionary Computation package Paladin-DEC was first introduced 

by Tan (Tan, 2002) and had been applied to a case study of drug scheduling in cancer 

chemotherapy. The distributed implementation of evolutionary algorithms was 

extended from the coarse-grained parallel evolutionary algorithms with significant 

modifications, such as migration scheme, task scheduling and fault tolerant, so as to 

adapt to the features in distributed computing like variant communication overhead, 

unpredictable node crash and network restrictions. In Paladin-DEC implementation, 

the whole population is divided into n subpopulations. Each peer computer runs the 

combined algorithm on its own subpopulations. At each generation, peers run normal 

EA computation, including selection, crossover and mutation. After a period of time 

(migration interval), a number (migration rate) of good individuals will be selected 

and copies of them will be sent to one of its neighbors to perform migration. Every 

subpopulation also receives copies from its neighbors, which replaces its own low-

fitness individuals. After migration next generation’s evolutionary computation will 

go on. The Paladin-DEC package has shown good performance in work- load 
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balancing, robustness, portability and security.  Fig 2.2 shows the model of the 

Paladin-DEC package. 

 

 

 

 

 

 

 

 

 

 

 

  Fig 2.2 A model for distributed evolutionary computing 

 

 

2.5 Updated Paladin –DES Package 

 

The original version of Paladin was developed to address mainly the distributed 

genetic algorithm.  In this project, the DES package is updated. Some parts are 

modified in the distributed evolutionary strategy package while the original 

framework still remains the same.  In this section, the main characteristics of 

evolutionary strategy and how it is implemented in the DES package is discussed.   
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2.5.1 Evolutionary Strategy 

 

Although both of the algorithms fall into evolutionary algorithms, evolutionary 

strategy has a big difference with genetic algorithm. Evolutionary Strategies (ES) are 

often presented and discussed as a technique competing with genetic algorithms. ES 

was developed to solve real-parameter optimization problem based upon one single 

genetic operator, i.e., mutation. In ES, a chromosome represents an individual as a 

pair of float-valued vectors, i.e. ),( σxv = . Here, the first vector x  represents a point in 

the search space; the second vector σ  is a vector of standard deviations. The 

mutations are realized by replacing x  by ),,0(
1

σNxx
ii

+=
+

 where N(0, σ ) is a vector 

of independent random Gaussian numbers with a mean of zero and standard deviation 

σ . The offspring is accepted as a new member of the population if and only if it has 

better fitness and all constraints are satisfied. The main idea behind these strategies is 

to allow control parameters to self-adapt rather than changing their values by some 

deterministic algorithm. 

 

As the original package concentrates on the Genetic Algorithm, to implement the 

distributed evolutionary strategy package it is essential to clarify the difference 

between the two algorithms. Table 2.2 lists out the seven most important differences. 
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Genetic algorithms Evolutionary strategies 

Genotype level of individuals (binary 

coding) 

Phenotype level of individuals (real-value 

representation) 

No knowledge about the objective 

function’s properties  

Knowledge of the dimension of the 

objective function (i.e. number of 

variables) 

Parameter space restrictions for coding 

purpose 

No parameter restricts apart from 

machine-dependencies 

Dynamic, preservative or static, 

preservative selection 

Static, extinctive selection (equal 

probabilities); more or less selective 

Recombination servers as the main search 

operator 

Mutation servers as the main search 

operator 

Secondary role of mutation Different recombination schemes 

No collective self- learning of parameter 

settings 

Collective self- learning of strategy 

parameters 

 

Table 2.2 Difference between GA and ES 

 

 

2.5.2 Updated  Paladin-DES Design 

 

Inheriting from the original framework, the updated version also has 4 main parts: 

Database, server, client and controller. The server part and the database remain the 

same as the old version, so as the connection between the clients and the server.  It 

continues using the Java-based Remote Method Invocation over Internet Inter-ORB 

Protocol. (RMI-IIOP)  
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Fig 2.3 Class hierarchy of Distributed Evolutionary Strategy 

 

As can be seen from Fig 2.3, the client DES class hierarchy doesn’t contain the 

crossover computation, since mutation is the only search operator in ES. However, a 

new fitness sharing scheme has been involved. This scheme is an improvement in the 

new version of the package. The function of the fitness sharing method is to compare 

the best individuals in a sub-population, if some of them have much higher fitness 

values than others, their fitness values will be shared to ensure global optimum to be 

found instead of local convergence. Fig 2.4 shows the UML of the DESWorld class. 
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Fig 2.4 UML of DSWorld 

 

The package is developed in JAVA language based on the latest J2EE technology 

with JBuilder software. Java Remote Method Invocation over Internet Inter-ORB 

Protocol technology ("RMI-IIOP") is part of the Java 2 Platform, Standard Edition 

(J2SETM). The RMI Programming Model enables the programming of Common 

Object Request Broker Architecture (CORBA) servers and applications via the rmi 

API. RMI-IIOP utilizes the Java CORBA Object Request Broker (ORB) and IIOP, so 

one can write all his own codes in the Java programming language, and use the rmic 

compiler to generate the code necessary for connecting the applications via the 

Internet InterORB Protocol (IIOP) to others written in any CORBA-compliant 

language. 
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2.5.3 Updated  Paladin-DES Implementation 

 

The updated version has 4 main parts: database, server, client and controller. 

 

2.5.3.1 Database  

 

All the final simulation results are stored in the database. Besides storing the final 

results, the database is also used for peer computers to exchange some intermediate 

calculation outcomes which are needed perform migration after a period time of 

migration interval. The database is built on MySQL database technology.     

 

 

 

Fig 2.5  MySQL Database table description 
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2.5.3.2 Server 

 

The server is built on a powerful computer with RedHat Linux operating system. It 

consists of three main functions: Logon server, Resource server and Reception server.  

 

The logon server monitors how many peer computers have logged on the system and 

can be used to carry out an ES job. All the peer computers logon to the server through 

a valid email address. One unique and valid email address can only register one peer. 

In the list of logged on computers, once any email address appear again, the previous 

logon information is removed while the latest information is updated. 

 

The main usage of the resource server is to manage job files transfer, peer 

synchronization and agent assigning.  

 

The reception server is responsible for assigning ES parameters, job scheduling and 

work load balancing, inspecting migrations, final result submission to the database 

and monitoring the overall ES job performance. As the reception server acts as the 

main part in server functioning, Table 2.3 shows the methods which are defined in the 

reception server class and their main operations. 
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Method Name Operation performed  

getPeerInfo Get peer computers information, including email address, 
operating system, memory size and ping value to the server. 

getJobInfo Obtain the normal EA parameters from the class files. 

assignJobTo According to the internal scheduling scheme, assign job to some 
or all the peer computers logged on the server. 

checkJob Check from the controller whether the job class file needs an 
agent or not. 

cancelJob Cancel the job from all the peers who have been assigned. Restore 
the server log on information. 

checkPoint After a migration interval, check the overall computation 
performance, perform load balancing and get ready for 
performing migration. 

removePeer Remove the idle peers from server’s logon list. It may be caused 
by hang of peer computer or other interference. 

performMig Perform migration. 

checkFinish Check whether the terminal condition has been matched. 

getBestResult From all the result submitted to the server, choose the best one. 

resultSubmit Submit the final result to the database. 

sendMail Email the final result to the user who submits the problem class 
file. 

 

Table 2.3 Main functions defined in the reception server 

 

 

To accomplish the distributed work, the server part of the DES package involves the 

latest J2EE Portable Object Adapter technology. An object adapter is the mechanism 

that connects a request using an object reference with the proper code to service that 

request. The Portable Object Adapter, or POA, is a particular type of object adapter 

that is defined by the CORBA specification.  
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The POA is designed to meet the following goals: 

• Allow programmers to construct object implementations that are portable 

between different ORB products. 

• Provide support for objects with persistent identities. 

• Provide support for transparent activation of objects. 

• Allow a single servant to support multiple object identities simultaneously. 

 

Normal creating and using POA involves 6 steps: 

(1) Get the root POA 

 

 

 

(2) Create a POA and define the appropriate policies 

 
ORB orb = ORB.init( args, null ); 
POA rootPOA = 
POAHelper.narrow(orb.resolve_initial_references("RootPOA")); 
 

 
 
Policy[] tpolicy = new Policy[3]; 
tpolicy[0] = rootPOA.create_lifespan_policy( 
        LifespanPolicyValue.TRANSIENT ); 
tpolicy[1] = rootPOA.create_request_processing_policy( 
        
RequestProcessingPolicyValue.USE_ACTIVE_OBJECT_MAP_ONLY
 ); 
 
tpolicy[2] = rootPOA.create_servant_retention_policy( 
        ServantRetentionPolicyValue.RETAIN); 
 
POA tPOA = rootPOA.create_POA("MyTransientPOA", null, 
tpolicy); 
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(3) Activate the POA Manager; otherwise all calls to the servant hang because, 

by default, POAManager will be in the HOLD state. 

 

 

 

(4) Instantiate the Servant and activate the Tie 

 

 

 

 

 

 

(5) Publish the object reference using the same object id used to activate the 

Tie object. 

 

 

 

 

 

(6) Get ready to accept requests from the client 

 

 

 

tPOA.the_POAManager().activate(); 

 

logonServer logon = new logonServer(); 

_logonServer_Tie tie1= 

(_logonServer_Tie)Util.getTie( logon ); 

String logOnId = "logonServer"; 

byte[] id1= logOnId.getBytes(); 

tPOA.activate_object_with_id( id1, tie1); 

 
Context initialNamingContext = new InitialContext(); 
      
initialNamingContext.rebind(messageTag.logonService, 
tPOA.create_reference_with_id(id1, 
            tie1._all_interfaces(tPOA,id1)[0]) ); 
System.out.println("Logon Server: Ready..."); 

orb.run(); 
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2.5.3.3 Clients/Peers  

 

The linkage between the server and the client inherits the older version of Paladin-

DEC, using the Java-based Remote Method Invocation over Internet Inter-ORB 

Protocol (RMI-IIOP). Normal client peers’ working flowchart is shown in Fig 2.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig 2.6 Working flowcharts of normal clients 
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There are two working modes for clients in the updated Paladin-DES package. One is 

normal working mode; the other is agent-working mode. The difference is that the 

second method needs an agent to manage data transfer from client to server. The 

normal client working process begins when a client is started and logon to the server. 

A valid peer is uniquely identified by its email address. The logon server will check 

the email address whether have been present in its list and give a response of valid 

logon or not. After logging on the server, the client is idle and waiting for the 

controller to assign it an ES job. Fig 2.7 shows the peer computer logon GUI. 

 

 

Fig 2.7 Peer computer logon GUI 

 

After getting a job command, it first reads the class name from the controller, and 

then loads the class from remote resource server to the local peer machine through 

http. Thereafter it retrieves the ES working parameters from the reception server, and 

begins to perform normal ES calculation according to the schedule retrieved from 
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reception server. After migration interval, it performs migration if needed. Fig 2.8 

shows the working GUI of normal peers.  

 

Fig 2.8 Peers working GUI 

 

 

When the terminal condition matched, it will submit the results to the reception server 

and finally the reception server first store the results to the database and then email 

the user who submits the problem class file the final result. Fig 2.9 shows the GUI 

where peer computer finishes computation and reports the best individual to the server.  
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Fig 2.9 Peers finishes working GUI 

 

In agent-working mode, one peer is assigned as an agent according to the resource 

server’s criteria. This peer will not participate in any E S computation; it will be used 

as an intermediate node for data transfer, including sending problem file to peers, 

storing migration individuals for peers to exchange, submitting to server the results 

obtained from peers, etc. It is the only peer computer which directly handshakes to the 

server during computation. Other peers, now migration or submitting results, they 

only need to communicate to the agent peer instead of talking to the server directly.  

This will reduce the overhead time when more peers are connected to perform the 

computation. 
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2.5.3.4 Controller 

 

The controller of the package plays an important surveillance role. It monitors the 

whole process of the ES problem computation. Fig 2.10 shows the user control panel 

of the controller. When the controller starts, it first checks the status of the server. If 

the server operates normally, the controller will display all the job files present on the 

resource server for peers to download. After user determines the problem file, the 

number of working peers and whether to use agent or not, the controller will initialize 

an instance of reception server to perform inspection on the work flowing, including 

job scheduling, migration process, work load balancing until the final result 

submission.  

 

 

Fig 2.10 Controller GUI 
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2.6 Conclusion 

 

In this chapter the basic understanding of computational intelligence was presented 

and then the concept was narrowed down to the project work, evolutionary 

computation and hence evolutionary strategy. The underlying theory of evolutionary 

strategy and parallel computation were discussed in details. After that the design and 

the implementation of the Distributed Evolutionary Strategy package  were shown 

specifically, including the technology involved – JAVA, J2EE, CORBA- and each 

one of the four parts of the package. 
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Chapter 3 

 

 

Bioinformatics Basics 

 

 

3.1 Introduction 

 

In the last few decades, advances in molecular biology and the equipment available 

for research in this field have allowed the increasingly rapid sequencing of large 

portions of the genomes of several species. In fact, to date, several bacterial genomes, 

as well as those of some simple eukaryotes (e.g., Saccharomyces cerevisiae, or baker's 

yeast) and more complex eukaryotes (C. elegans and Drosophila) have been 

sequenced in full. The Human Genome Project, designed to sequence all 24 of the 

human chromosomes, is also progressing. Popular sequence databases, such as 

GenBank and EMBL, have been growing at exponential rates. This deluge of 

information has necessitated the careful storage, organization and indexing of 

sequence information. Information science has been applied to biology to produce the 

field called bioinformatics (NCBI Education). 
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Bioinformatics is conceptualizing biology in terms of molecules and then applying 

informatics techniques which derived from disciplines such as applied mathematics, 

computer science, artificial intelligence and statistics to understand and organize the 

information associated with these molecules, on a large scale. It is the recording, 

annotation, storage, analysis, and searching/retrieval of nucleic acid sequence (genes 

and RNAs), protein sequence and structural information. This includes databases of 

the sequences and structural information as well methods to access, search, visualize 

and retrieve the information.  

 

Bioinformatics is the field of science in which biology, computer science, and 

information technology merge into a single discipline. The ultimate goal of the field is 

to enable the discovery of new biological insights as well as to create a global 

perspective from which unifying principles in biology can be discerned. There are 

three important sub-disciplines within bioinformatics involving computational 

biology:  

• The development of new algorithms and statistics with which to assess 

relationships among members of large data sets; 

• The analysis and interpretation of various types of data including nucleotide 

and amino acid sequences, protein domains, and protein structures; and 

• The development and implementation of tools that enable efficient access and 

management of different types of information. 
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The most pressing tasks in bioinformatics involve the analysis of sequence 

information. Computational Biology is the name given to this process, and it involves 

the following: 

• Finding the genes in the DNA sequences of various organisms 

• Developing methods to predict the structure and/or function of newly 

discovered proteins and structural RNA sequences. 

• Clustering protein sequences into families of related sequences and the 

development of protein models. 

• Aligning similar proteins and generating phylogenetic trees to examine 

evolutionary relationships. 

 

The objective of this project is to apply the computational intelligence technique  - 

distributed evolutionary strategy - to search oligo sets (probes) of malaria parasite, 

Plasmodium Falciparum from the nucleotide gene coding sequences. The oligo sets 

found are to be printed on the microarray for subsequent biology and medical research.  

 

In this chapter the genetic information transfer inside the cell will be firstly presented. 

Subsequently the microarray technology will be introduced. 

 

3.2 Genetic Information Transfer within cells 

 

This project used the distributed computational intelligence technique, Paladin-DES 

package to search the malaria parasite’s coding sequence file for the qualified oligo 

sets (probes) to be printed on the microarray. Therefore knowing the genetic 
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information transfer from original DNA to the final pre-translation coding sequence is 

essential. 

 

As it is well known, DNA exists as a right-handed double helix in which two 

polynucleotide chains are coiled about one another in a spiral. DNA sequences consist 

of only four different types of alphabet letters, or 4 bases: Adenine (A), Cytosine (C), 

Guanine (G), and Thymine (T). They form pairs as AT and GC where AT bases pair 

is held together with 2 hydrogen bonds while GC pairs have 3.  

 

Although DNA is the source of all the genetic information, it is protein, which 

contains constituent called amino acids, that finally governs the functionality of the 

growth and development of an organism. According to central dogma of molecular 

biology, the transfer of genetic information from DNA to protein during its 

phenotypic expression in an organism involves two steps. The first step is 

transcription. It is information transfer from DNA to RNA. The second step is the 

transfer of information from RNA to protein, this step is called translation translation 

(Snustad, Simmons and Jenkins, 1997).  

 

During transcription, one strand of DNA of a gene is used as a template to synthesize 

a complementary strand of RNA called the gene transcript. During translation, the 

sequence of nucleotides in the RNA transcript is converted into the sequence of amino 

acids in the polypeptide gene product according to the genetic code. Translation takes 

place on intricate macromolecular machines called ribosomes which are composed of 

three to five RNA molecules and 50 to 90 different proteins. The RNA molecules that 

are translated on ribosomes are called messenger RNAs (mRNA). 
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3.2.1 Transcription 

 

In eukaryote, where Plasmodium Falciparum’s cell belongs to, primary transcripts 

usually are precursors to mRNA and are called pre-mRNAs. Not the whole eukaryote 

pre-mRNA sequence can be encoded into protein. Inside the pre-mRNA sequence, 

some are noncoding sequence called introns that separate the coding sequences or 

exons of these genes. The entire sequence of these split genes are transcribed into pre-

mRNA, and the noncoding sequences are subsequently removed by spicing reaction.  

 

3.2.2 Translation 

 

Inside the mRNA, the sequence still exists in the sense of the four bases. After 

translation, which controlled by the genetic code, every connective three nucleotide 

bases are translated into one amino acid. Translation is the process of matching amino 

acids to corresponding sets of three bases (codons) and linking them into a protein.  

The process of translation is governed by the genetic code. The mystery of genetic 

code was largely disclosed by the mid-1960s.  The genetic code has some very 

important properties: 

• The genetic code is composed of nucleotide triplets.  

• The genetic code is nonoverlapping. Each nucleotide in mRNA belongs to just 

one codon. 

• The genetic code is ordered. Multiple codons for a given amino acid and 

codons for amino acids with similar chemical property are closely related. 

• The genetic code is universal. With minor exceptions, the codons have the 

same meaning in all living organisms, from viruses to humans. 
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Fig 3.1 Two steps of genetic information transfer from DNA to protein 

 

Fig 3.1 shows the 2 steps genetic information transfer from DNA to protein. The 

coding sequence (cds) file of malaria parasite, Plasmodium Falciparum has been 

published by Nature in 2002.  The cds file provides the sequences inside which all the 

introns have been spliced out and all the exons have been combined together and 

ready to encode proteins.  The target of this project is to find qualified probes of these 

gene sequences from this coding sequence file to be printed on the DNA microarray. 

This file contains all useful genetic information in Plasmodium Falciparum and 

nothing else. Therefore probes found from this file are the most useful for the 

subsequent biology and medical research. 
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3.3 DNA Microarray 

 

3.3.1 Background 

 

It is widely believed that thousands of genes and the ir products (i.e., RNA and 

proteins) in a given living organism function in a complicated and orchestrated way 

that creates the mystery of life. However, traditional methods in molecular biology 

generally work on a "one gene in one experiment" basis, which means that the 

throughput is very limited and the "whole picture" of gene function is hard to obtain.  

 

In the past several years, a new technology, called DNA microarray, has attracted 

tremendous interests among biologists. The primary applications of microarrays are 

the study of differential gene expression and gene mapping. This technology promises 

to monitor the whole genome on a single chip so that it enables the simultaneous 

analysis of thousands of sequences of DNA for genetic and genomic research and for 

diagnostics.  

 

The microarray technology is having a significant impact on genomics study. It makes 

use of the sequence resources created by the genome projects and other sequencing 

efforts to answer the question, what genes are expressed in a particular cell type of an 

organism, at a particular time, under particular conditions. Many fields, including 

drug discovery and toxicological research, have already and will benefit from the use 

of DNA microarray technology. Fig 3.2 shows an illuminated microarray. 
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Fig 3.2 An illuminated microarray 

 

There are different ways how microarrays can be used to measure the gene expression 

levels. One of the most popular microarray applications allows comparing gene 

expression levels in two different samples, e.g., the same cell type in a healthy and 

diseased state (see Fig 3.3). 
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 Fig 3.3 Comparing the same cell type in a healthy and diseased state 

 

3.3.2 Microarray Fabrication and Experiment 

 

DNA microarrays are also referred to as DNA arrays, microarrays, DNA chips, 

biochips or GeneChips. Microarrays exploit the preferential binding of 

complementary single-stranded nucleic acid sequences. A microarray is typically a 

glass (or some other material) slide, on to which DNA molecules are attached at fixed 

locations.  

 

According to Young (Young, 2000), a DNA microarray is an orderly arrangement of 

samples, which provide a medium for marching known and unknown DNA samples 

based on base-pairing rules (A-T and C-G) and thus automating the process to 

identifying the unknowns. Several steps are required to conduct a microarray 

experiment. Firstly, the probe samples are to be synthesized. A probe is a subsequence 

of a gene coding sequence, which means a part of chromosome that is related to 

protein synthesis, which can represent the whole gene. Next, the synthesized probes 
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of thousands of gene sequences are automatically dotted on the chip to make an array. 

Upon setting up of the array, both dyed samples of test issues and control tissues are 

added on the probe dots. Since the samples constitute of RNAs complimentary to all 

gene sequences, they will react to the relative probes on the array.  From measuring 

the reaction strength on each dot, the respective RNA amount in the samples can be 

determined, and thus the researcher can find which gene sequence is more active. 

From this method, the relationship of gene sequence and specified disease can be 

found, and many other biomedical problems can be solved using similar techniques 

with the microarray (DeRisi, 1997; Ren, 2000) Fig 3.4 shows a general overview of 

the DNA microarray experiment.  

 

 

 

Fig 3.4 A general overview of the DNA microarray experiment 

 

 



 41 

3.3.3 Preparation for the Probes 

 

Many current DNA microarray protocols utilize double-stranded PCR (Polymerase 

Chain Reaction) products spanning the entire gene sequences as DNA probes 

immobilized onto glass slides (Bosch, 2000). Fig 3.4 above illustrates the steps 

needed to generate PCR-based microarrays. PCR is a technique to produce copies of a 

DNA strand, using the original DNA as a template. To generate full- length gene 

sequences, PCR requires the complete complementary DNA (cDNA) library as a 

template to amplify. The amplification of all genes in a genome can tale a long time, 

e.g. 4 months to amplify more than 6000 genes by a small group (DeRisi, 1997). 

Furthermore, the PCR products may fail to be verified, with a failure rate of 5-10% 

(DeRisi, 1997).  

 

For gene expression studies, RNA is typically reverse transcribed to give 

complementary DNA. Upon denaturation of both RNA and the immobilized DNA, 

the mixture is allowed to hybridize. After hybridization and washing, microarrays 

may be monitored as temperature is increased. The temperature at which 50% of a 

single stranded DNA annealed with its complement to form a perfect duplex is 

defined as melting temperature.  

 

3.3.4 Criteria in Searching Probes 

 

Based on the requirements in using the microarray, a set of criteria should be fulfilled 

when searching the probes.  The detailed criteria can be varied with different  

application. In the Paladin-DES package proposed, constraints can always be added as 
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required very easily.  For this current work, three very essential criteria are suggested.   

They are: 

 

(1) Uniqueness criterion: each probe should identify one and only one gene.  

(2) Melting temperature criterion: the melting temperature of the probe should be 

within a range to perform hybridization. Among various measuring methods 

of melting temperature, the following formula proposed by Breslauer 

(Breslauer, 1986) is more accurate.  
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where 

Tm(x): melting temperature of given probe x 

H(x): Enthalpy for helix information of x 

S(x): Entropy for helix information of x 

R: molar gas constant (1.987 cal/oC mol) 

C: concentration of the probe (set as 250pmol) 

[K+]: salt concentration (set as 50mmol) 

 

(3) Non self- folding criterion: the qualified probe should avoid self- folding.  

 

All of the three criteria will be discussed in details in the next chapter. 
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3.4 Conclusion 

 

In this chapter firstly the basic concept of bioinformatics has been presented in details. 

This project used the Paladin-DES package to search the malaria parasite, 

Plasmodium Falciparum’s coding sequence file for the qualified oligo sets (probes) to 

print on the microarray. Therefore knowing the genetic information transfer from 

original DNA to the final pre-translation coding sequence is very important. The two 

steps involved in genetic information transfer from DNA to protein-transcription and 

translation- are reviewed. Finally the latest biotechnology, microarray technology was 

also discussed and three criteria were suggested in searching the probes.  
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Chapter 4 

 

 

Case Study: Searching Oligo Sets of Malaria Parasite, 

Plasmodium Falciparum 

 

 

4.1 Introduction 

 

In previous two chapters the distributed computational intelligence technique, 

Paladin-DES package, and some basic bioinformatics have been discussed. This 

Paladin-DES package has been applied to a complex bioinformatics problem: 

searching the oligo sets of malaria parasite, Plasmodium Falciparum. Simulation 

results show that the Paladin-DES package performs better than some existing 

searching techniques and demonstrates its capability. This chapter describes the 

problem formulation in details, including the plasmodium species, ES fitness 

functions and the three important searching criteria.  
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4.2 Problem Formulation 

 

4.2.1 Malaria Parasite Plasmodium Falciparum 

 

Approximately 40% of the world's population lives in areas where malaria is 

transmitted. Each year there are an estimated 300–500 million new malaria infections 

and 1–3 million deaths caused by the disease (Hoffman, 2002). The mortality levels 

are greatest in sub-Saharan Africa, where children under 5 years of age account for 

90% of all deaths due to malaria (Breman, 2001). Four species of Plasmodium infect 

humans and cause malaria.  All species are vector borne diseases, being spread by 

anopheline mosquitoes, and the disease is distributed throughout much of the world. 

Fig 4.1 shows the distribution. 

 

 

Fig 4.1 Approximate geographic distribution of malaria 
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There are four species of Plasmodium: Plasmodium vivax, Plasmodium falciparum, 

Plasmodium ovale and Plasmodium malariae. Plasmodium vivax  is the most 

extensively distributed and causes much debilitating disease. Plasmodium falciparum, 

which is also widely spread, results in the most severe infections and is responsible 

for nearly all malaria-related deaths. Plasmodium ovale which is mainly confined to 

Africa is less prevalent, while Plasmodium malariae, which causes the least severe 

but most persistent infections, also occurs widely.  

 

 

Fig 4.2 Four species of Plasmodium 
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Of the four species of Plasmodium that infect humans, Plasmodium falciparum is the 

most lethal. It is responsible for more than 95% of all malaria deaths. Resistance to 

anti-malarial drugs and insecticides, the decay of public health infrastructure, 

population movements, political unrest, and environmental changes are contributing 

to the spread of malaria (Greenwood, 2002). In countries with endemic malaria, the 

annual economic growth rates over a 25-year period were 1.5% lower than in other 

countries. This implies that the cumulative effect of the lower annual economic output 

in a malaria-endemic country was a 50% reduction in the per capita GDP compared to 

a non-malarious country (Gallup, 2001). Recent studies suggest that the number of 

malaria cases may double in 20 years if new methods of control are not devised and 

implemented (Breman, 2001).  

 

The effort to sequence the Plasmodium Falciparum genome starts from 1996. It is an 

international collaboration, mainly includes laboratories from USA, UK and Australia. 

Altogether the 23-megabase nuclear genome consists of 14 chromosomes and encodes 

about 5300 genes. The genome sequenc ing work was announced completed by Nature 

in year 2002 (Gardner et al, 2002). An official website containing all the sequence 

information was open to all.  

 

For microarray technology, ideally qualified probes of every single gene should be 

found and printed. From the gene coding sequencing file (cds file) downloaded from 

the malaria genome sequencing official website, the Paladin-DES package has been 

applied to search for all the probes for altogether 5409 sequences. When searching, 

the probes which fulfill all the following three criteria are defined as qualified probes. 
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4.2.2 Criteria for Probes Search 

 

When applying evolutionary strategies, a fitness function is required to evaluate the 

performance of an individual. The ones with higher fitness will beat others in the 

selection scheme and will be chosen as the parents for the next generation. While 

designing the fitness function of this probe-searching problem, the basic 

considerations are specificity and sensitivity.  

 

Specificity means that a probe should avoid cross- hybridization with other genome. It 

should hybridize primarily with its target. To ensure this, the probe should be a unique 

sequence that only appears in the specified gene and nowhere else. Good sensitivity 

requires favorable thermodynamics of probe-target hybridization and avoiding self-

hybridization. 

 

With these two considerations in mind, there are three essential criteria for a qualified 

sequence:  

 

1) Uniqueness criterion. This will ensure the probe will not appear elsewhere in the 

whole genome sequence, which is the specificity consideration. 

2) Melting temperature criterion. This criterion ensures the probe will have 

favorable thermodynamics performance. 

3) Non self- folding criterion. This criterion ensures that the probe found will not 

perform self-hybridization. 

 

 



 49 

Three functions are defined to represent the three criteria respectively.   

 

1) funi(x) = 0.8-length(x) /10000   if the probe x is unique 

                = 0                                 if the probe x is not unique  

2)  ftm(x)  = 0.1 if the probe’s melting temperature is in the 

desired range 

= 0 if the melting temperature is not in the desired 

range   

3)  fsf(x)   = 0.1              if the probe has no self complementary sequence  

        = 0                      if the probe has self complementary sequence  

  

The fitness function is defined as the summation of the three functions above.  

  

F(x) = funi(x) + f tm(x) + f sf(x) 

 

As the uniqueness test is the most important part, it has the largest weight of about 

0.8. The other two tests equally share the remaining 0.2. In probes searching, shorter 

probes are preferred. The reason is that the longer the probe is, the more difficulties 

exist for the probe’s hybridization on the microarray. Therefore the length of the 

probe has a negative effect on its final fitness value. One qualified probe will have a 

fitness value very close to 1. For example, consider a unique qualified probe with a 

length of 20 amino acids, which is 60 in nucleotide length, if it also fulfills the other 

2 criteria, then it will have a fitness value of 0.8-60/10000+0.1+0.1=0.9940.  
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4.2.2.1 Uniqueness Criterion 

 

First of all, the qualified probe should not appear in any other genes. If the sequence 

appearing in more than one gene was chosen as a probe, when doing the hybridization, 

it will act with the first gene coming to it instead of its designate gene. In this case the 

microarray experiment result will not be accurate. Uniqueness criterion is the most 

crucial criterion among the three and hence it takes the largest weight in the fitness 

evaluation function. 

 

The computational cost of the uniqueness test is rather high. Since a probe is 

randomly selected from the gene and then compared with the whole 23-Megabyte 

genome sequence file, it is a computationally expensive task. It is this characteristic 

which makes traditional methods requiring extremely long time to find one probe. 

Moreover, the feasible region of the sequences that satisfy the uniqueness criterion is 

highly nonlinear. The non- linearity comes from the fact that some genes are 

homology, i.e. they evolve from a common ancestor, therefore they share a degree of 

conservation (Duret, 2000) 

 

4.2.2.2 Melting Temperature Criterion 

 

The stability and association between complementary DNA molecules critically 

depends on the melting temperature (Tm). The melting temperature of an 

oligonucleotide refers to the temperature at which the oligonucleotide is annealed to 

50% of its exact complement. In DNA double-helix structure, 4 bases form pairs as 

base A from one strain always pairs with T of the opposing strain in the same location. 
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GC are paired together in the same way. GC pairs are held together with 3 hydrogen 

bonds while AT pairs have 2 bonds, therefore GC pairs need more energy to break all 

the hydrogen bonds, and hence the melting temperature of GC-rich sequences will be 

higher than AT- rich sequences. In a typical microarray experiment, thousands of 

DNA spots on the microarray interact with a very complex mixture of labeled DNA 

under one single condition. Therefore, optimal hybridization condition is necessary to 

obtain the best result. One way to accomplish optimal hybridization is to control the 

melting temperature of the immobilized DNA on the microarray. 

 

A number of methods are present for calculating Tm. One of the more accurate 

equations for Tm is the Nearest Neighbor Method (Breslauer, 1986 and Santalucia, 

1996). 
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where 

Tm(x): melting temperature of given probe x 

H(x): Enthalpy for helix information of x 

S(x): Entropy for helix information of x 

R: molar gas constant (1.987 cal/oC mol) 

C: concentration of the probe (set as 250pmol) 

[K+]: salt concentration (set as 50mmol) 

 

The table of H and S values can be found in Table 4.1 and 4.2 respectively (Breslauer, 

1986 and Santalucia, 1996). 
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                   2nd Nucleotide 

1st Nucleotide 

A C G T 

A 9.1 6.5 7.8 8.6 

C 5.8 11.0 11.9 7.8 

G 5.6 11.1 11.0 6.5 

T 5.0 5.6 5.8 9.1 

 

Table 4.1 Enthalpy H values of a neighbor nucleotide (in -kcal/mol) 

 

                   2nd Nucleotide 

1st Nucleotide 

A C G T 

A 24.0 17.3 20.8 23.9 

C 12.9 26.6 27.8 20.8 

G 13.5 26.7 26.6 17.3 

T 16.9 13.5 12.9 24.0 

 

Table 4.2 Entropy S values of a neighbor nucleotide (in -cal/K.mol) 

 

Example calculation of enthalpy H and entropy S: 

H (GATC) = H (GA) + H (AT) + H (TC) = - (5.6+8.6+5.6) kcal/mol 

S (GATC) = S (GA) + S (AT) + S (TC) = - (13.5+23.9+13.5) cal/K.mol 

In this work the suitable value for Tm is chosen in the range of 65°C to 80°C. 
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4.2.2.3 Non Self-Folding Criterion 

 

A qualified probe should not have complementary pair. If one section of a probe is the 

same as the complement of another section in the reverse direction, it is a 

complementary pair. For example, a probe has a sequence GTTGAC and another 

section GTCAAC. Reverse the second section, the resulting sequence CAACTG is 

the complementary base pairs of the first section. They form a complement pair 

(hairpin pattern) as illustrate in Fig 4.3.  If the length of the complement pair is too 

long, it will cause self-hybridization; hence the probe will be inactive in microarray 

test.  In this project, the length of the complementary pair is set to seven. 

 

 

 

 

 

 

 

 

 

 

Fig 4.3 Self- folding illustration 

 

In this work, only three criteria are set for the qualified probes. These are the three 

most fundamental ones. Other criteria can be included if required.  

 

 

Gene Sequence 

G T T G A C G T C A A C 

Part 1 Part 2 

G T T G A C 

C A A C T G 

Part 1 

Reverse of part 2 

Base pairs combination 
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4.3 Conclusion 

 

In this chapter the malaria parasite, Plasmodium Falciparum’s probes searching 

problem has been presented. Among four kinds of plasmodium, the Plasmodium 

Falciparum is the most lethal. When applying the Paladin-DES package to search for 

the probes, three criteria have to be fulfilled.  They are: uniqueness criterion, melting 

temperature criterion and non self- folding criterion. In the next chapter the simulation 

results of the distributed package and comparison with other searching techniques will 

be presented.  
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Chapter 5 

 

 

Results and Discussions 

 

 

5.1 Introduction 

 

After gathering enough knowledge on the Paladin-DES package and the real world 

bioinformatics case study: searching oligo sets for the malaria parasite, Plasmodium 

Falciparum from previous three chapters, in this chapter we will present the 

simulation results of the distributed computational intelligence technique and some 

discussion about its performance comparison with other searching methods. It will be 

shown that the Paladin-DES package is a good choice in searching the probes both 

effectively and efficiently.  

 

5.2 Competing Criteria 

 

As described in chapter 4, the qualified probes should fulfill three requirements: 

uniqueness criterion, melting temperature criterion and non self- folding criterion. On 
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the base of these three searching criteria, there are two measuring criteria: 

effectiveness and efficiency.  Effectiveness refers to the quantity aspect, which means 

whether the program can locate all the probes in the genome. Efficiency refers to 

quality part, which is the time required to locate one qualified probe. In the following 

comparison between the Paladin-DES package and other searching techniques, 

attention will be paid on these two aspects.  

 

5.3 Simulation Setup 

 

When setting up the simulation for Paladin-DES package to search the probes, some 

general settings for normal evolutionary computation are applied. Table 5.1 shows the 

ES parameters used in searching the Plasmodium Falciparum genome.   

 

Parameter Type Parameter value 

Generation size 500 

Total population size 200 

Mutation rate 0.1 

Selection type Tournament Selection 

Migration rate 0.02 

Migration interval 0.1 

 

Table 5.1 ES parameter in Plasmodium Falciparum case 
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In the simulation to find all the probes for the 5000 more genes of Plasmodium 

Falciparum, maximally 10 computers in the university LAN are used for distributing 

the job simultaneously. All of them have different processing unit frequency and 

memory, so the computation power also varies from each other largely from one 

computer to another and hence the performance of each peer has a large difference. 

For allocating one qualified probe, the fastest peer needs only 5 seconds, while the 

slowest needs more than 20 seconds. Fig 5.1 shows how long it takes one peer 

computer to obtain a qualified probe. 
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Fig 5.1 Peer computers’ computation difference  

 

During the process of the simulation, the 10 computers are grouped into two 

categories according to their computation power. Later in this chapter the group with 

the 5 faster computers will be referred to as faster group, while the other will be 

referred to as slower group.  
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5.4 Simulation Results 

 

The Paladin-DES was first applied on two small organisms Buchnera sp. APS and 

Chlamydia pneumoniae, which have 575 and 1054 genes respectively, to test whether 

it is capable of finding gene probes.  The testing results showed that the percentages 

of probes being found of both species are more than 99%. After getting this inspiring 

result, the package was applied to the Plasmodium Falciparum case, whose genome is 

much larger, more than 5000 genes.  Table 5.2 shows the searching results for the 

three different organisms.  

 

Method 
 

Paladin-DES (5 
peers, faster 
group) 

Paladin-DES (5 
peers, faster 
group) 

Paladin-DES (10 peers) 

Applied 
species  

Buchnera sp. APS  
 

Chlamydia 
pneumoniae 
 

Plasmodium Falciparum 

Number of 
non-found 
probes 

2 0 54 

Total number 
of genes 
tested 

575 1054 5409 

 

Table 5.2 Simulation results of DES applied to three different organisms 

 

Fig 5.2 shows the sample for the found probes’ loc ation within each gene. From this 

figure it is clearly shown that the location of the probes are extremely distributed, or 

uncertain. For some genes, it may appear just from the beginning while others may 

exist at the end of the gene.  
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Fig 5.2 Sample found probes locations in gene 
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5.5 Comparison 

 

Existing techniques for searching of these probes are not really available; a standard 

approach one could think of is to select a probe from a sequence and comparing it 

with all other sequences within the genome. It becomes computationally intensive 

when applied to more complicated genomes.  In this section two most frequently used 

methods: enumerating method and ES with BLAST method are discussed and their 

searching results are compared with the results from Paladin-DES package. 

 

5.5.1 Enumerating Method 

 

A most straightforward way one could think of for finding unique probes is the 

enumerating method.  A probe is first selected from a sequence and compared with all 

other sequences within the genome.  Once a probe is found, it is then tested whether it 

meets the other 2 criteria.  One would expect such a thorough search to be 

computationally intensive due to its large search space.  The number of sub-sequence 

of a gene (sequence) with length n is (n(n-1)/2). For a typical gene in the malaria 

parasite Plasmodium Falciparum with length 1000, there will be 500,000 sub-

sequences to be tested to find a qualified probe.  It is clear that as the length of the 

genes gets longer, it becomes more computationally intensive in the search process.  

 

In this project, the enumerating method is coded in JAVA language which is the same 

as the Paladin-DES package. 
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import java.io.*; 

 

public class enumerating_method{ 

 

//read each gene from the original cds file  

public static void readGeneFile(){ 

… . 

} 

 

public static void main(String[] args){ 

 

//loop until all the genes in the cds files are read, save the gene presently as gene 

while(gene=in.readLine()!=null){ 

 

//select from the beginning of the gene, a certain length of nucleotide as testing 

//sequence 

x = gene.chosen(length) 

 

//first check the uniqueness criterion 

if (checkUniqueness(x)) 

 

 //if passed, check self folding criterion 

 if (checkSelf_folding(x)) 

 

  //if passed, check the melting temperature criterion 

  if(checkMT(x)) 

 

   //if all the three criteria passed, print to a result file  

   out= FileWriter("enumeration_out.dat "); 

    

}//end of while  

}//end of main 

}//end of class 
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5.5.2 ES with BLAST method 

 

ES, because of its powerful optimization searching scheme, is a good candidate of 

finding the probes.  ES combined with a biological software tool called BLAST has 

been previously applied in searching for the oligo sets of human chromosome 12 (Tay, 

2002) so as to speed up the whole searching process.   

 

Basic Local Alignment Search Tool (BLAST) is a powerful method that shows good 

overall search speed and puts database searching on a firm statistical foundation in 

local alignment, both for protein and DNA. Tens or hundreds of genes can be put 

together and compared with the database to find whether there are any same sub-

sequences in these genes.  The uniqueness test is the bottleneck and most time-

consuming part of sequencing comparison algorithms, with BLAST, multiple genes 

are compared simultaneously and therefore importing BLAST into ES saves a lot of 

time. In ES with BLAST method,   BLAST is used to reduce the computational time 

of the uniqueness test.  The results of the uniqueness test are sent to MATLAB for the 

other two tests.   

 

As suggested by the name, BLAST searches for local alignments, meaning that given 

a long query sequence, BLAST will report sequences in the database that significantly 

match the subsequences of the query sequence. Consequently, non-unique regions in a 

gene can be identified by feeding the gene as a query sequence to BLAST. Comparing 

to other searching methods, the main computation task of ES with BLAST falls into 

the checking of non self- folding criteria instead of uniqueness checking.  
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There are three basic parameters in BLAST that can be varied to adjust the sensitivity 

of BLAST search. They are Expected value (E), the threshold value (T) and the word 

size (w).  

 

The BLAST used in the simulation is the standalone BLASTN version 2.2.6 for 

windows. The standalone BLAST 2.2.6 version is downloaded from the National 

Center for Biotechnology Information (NCBI) ftp website. The procedures in 

evaluating the three criteria of a probe are: 

(1) Use formatdb command of standalone BLAST to prints the gene sequence 

being evaluated to a text file current.txt. 

(2) Set BLAST with the following parameter w = T = S = 15. S and E are related 

by  

SKmneE λ−=  

where m and n are the lengths of the two sequences being compared, K and  

λ are constants. (K=0.711, λ =1.37) (Karlin and Altschul, 1990) 

(3) Run the BLAST with the following command 

blastall –p blastn –d db.fasta –i current.txt –o 

out.txt –F F –g F –W 15 –f 15 –e evalue 

The command is running from the main algorithm, which is implemented in 

MATLAB, by using the in-built DOS interface.  

(4) The main algorithm reads the BLAST report in out.ext, creating the list 

containing the matching subsequences. 

(5) Evaluate the uniqueness of each individual, if it passes the uniqueness test, 

then proceed to MATLAB for the melting temperature and non self- folding 

test which has no relationship with BLAST any more. 
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5.5.3 Effectiveness Comparison 

 

The fastest peer computer among the ten candidates, which is a Pentium IV, 1.6G Hz, 

512M RAM computer, is used for the enumerating and ES with BLAST simulation.  

For the Paladin-DES package proposed here, multiple peers can work together to 

search qualified probes. The results show that the package is more effective and more 

efficient than the other methods. Table 5.3 shows the effectiveness comparison for the 

three different searching techniques.  

 

Method Enumerating 
Method 

ES with BLAST 
method 

Paladin-DES 
(1 peer) 

Paladin-DES (10 
peers) 

Number of 
non-found 
probes 

50 76 1616 54 

Total 
number of 
genes/exons 
tested 

5409 501 5409 5409 

Effectiveness 99.1% 84.83% 70.1% 99.0% 

 

Table 5.3 Effectiveness comparison 

 

The Paladin-DES package performs very well in finding the probes. From the table it 

can be seen that the Paladin-DES package performs quite good in the Plasmodium 

Falciparum case. It can achieve an effectiveness above 99%, which can reach the 

same level of enumerating method, which is the most thorough searching algorithm. 

For the ES with BLAST method, because it has the window size limitation, it 

performs not as well as the other two methods.  
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However, it has to be pointed out that this good result is the contribution of multiple 

peers. If only one peer is present, the finding ratio is only about 70%. When multiple 

clients are available, the migration scheme will transport the good individuals 

between different sub-populations. This increases the opportunity of higher fitness 

candidate to be found than using only one single client computer. And hence increases 

the chance of locating a qualified probe.  

 

5.5.4 Efficiency Comparison 

 

Although the enumerating method is the most thorough technique in searching the 

probes, it is also the most time-consuming method. In this section of efficiency 

comparison, the enumerating method is taking the disadvantage.  

 

5.5.4.1 Comparison between Paladin-DES and ES with BLAST 

 

ES with BLAST has the advantage in uniqueness criterion testing. BLAST is a proven 

technique in sequence comparison, and it is the most powerful and popular tool used 

for sequence aliasing presently. Fig 5.3 shows the uniqueness test results by using the 

Paladin-DES package and BLAST. 



 66 

 

Fig 5.3 Uniqueness comparison between Paladin-DES and ES with BLAST  

 

As expected, with only one computer, ES with BLAST will perform much faster 

comparing with the proposed DES package. BLAST software only needs 4.59s to find 

out one unique sequence while DES needs 10.516s. The advantage of the Paladin-

DES package can only be shown when multiple peers distribute the job and work 

simultaneously. From the results it can be seen that when 5 peers logon the distributed 

system and work together, the package takes about 2 seconds for locating one unique 

sequence, which saves half the time BLAST needs. The computation power brought 

in by multiple peer computers is much stronger than the high performance technology 

like BLAST, and this is the underlying reason why the distributed system is 

developed.  
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5.5.4.2 Comparison between Paladin-DES and Enumerating method 

 

Although the enumerating method is the most thorough searching method, it is 

computationally time consuming. By using only one computer, it finds 5359 probes 

out of 5409 genes using 295,424 seconds. On average, it requires 55.1 second for one 

probe. For the Paladin-DES package, with one computer, it only takes 11.6 second to 

locate one qualified probe averagely. Table 5.4 shows the efficiency difference 

between the enumerating method and the Paladin-DES package.  

 

Searching Method Average time needed for one qualified 

probe (second) 

Enumerating Method 55.1 

Paladin-DES (1peer, average) 11.6 

Paladin-DES (5 peers with agent) 2.3 

Paladin-DES (5 peers without agent) 2.1 

Paladin-DES (10 peers without agent) 1.9 

Paladin-DES (10 peers with agent) 1.1 

 

Table 5.4 Efficiency comparison between Paladin-DES and enumerating method 

 

Table 5.4 also demonstrates the effect of adding more resources (computers) in 

solving the problem. The 10 computers involved in this simulation are of different 

computational power. They are divided into 2 categories according to their 

computational capabilities. Results shown in row 4 and 5 of Table 5.4 are from the 

faster group.   
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From Table 5.4, it is obvious that 5 peers need 1/5 of the time required for 1 PC.  

While from 5 peers to 10 peers, the time reduced is not very large.  The reason is that 

in the scheduling procedure, faster- funning PCs will have to share some work from 

slower ones and hence the time saved will not be as impressive as adding the first a 

few PCs.  

 

Another observation is the effect of assigning an agent. From table 5.4 it could be 

noticed that with five peers present in the system, assigning an agent does not make 

the system function faster.  However for the 10-peer case, agent-mode does improve 

the whole performance. As has been mentioned above, instead of talking to server 

directly, in the agent mode, clients can transfer data to the agent and it is agent that 

directly communicates to the server. When only 5 peers logged on, the 

communication overhead is not very heavy, assigning an agent will reduce the total 

computation power of the system; as more peers comes in, assigning an agent to 

manage data transfer does help the system work faster. 

 

5.6 Missing Probes 

 

Even with the most thorough searching technique, the enumerating methods, there are 

still 50 missing probes. This is a quite strange phenomenon. After checking the 

genome sequence file again, it is found that all these genes have failed to pass the 

most important criteria, uniqueness test. For example, gene 1190 and gene 1751 are 

identical to each other. Obviously they will fail the uniqueness test. Every partition 

from gene 1190 will find its clone in gene 1751. Therefore the qualified probes for 



 69 

both of the two genes could not be found. For all the 50 genes whose probes could not 

be found, each one of them can find its clone pairs inside these 50.  

 

5.7 Conclusion 

 

In this chapter the simulation result of applying the Paladin-DES package to search 

probes of malaria parasite, Plasmodium Falciparum, has been shown. Effectiveness 

and efficiency, these two competing criteria have been defined. From the result 

comparison it has been shown that the Paladin-DES package demonstrates good 

performance in terms of the number of probes found and computational time when 

comparing with the traditional enumerating methods and other previously developed 

probe-finding algorithms. 
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Chapter 6 

 

 

Conclusions and Future Directions 

 

 

6.1 Conclusions 

 

In this thesis a distributed computational intelligence technique, Paladin-DES package 

has been introduced. The Paladin-DES package was developed on the bases of 

Paladin-DEC package, which exploits the inherent parallelism of evolutionary 

algorithms by creating an infrastructure necessary to support distributed evolutionary 

computing using existing Internet and hardware resources. 

 

The Paladin-DES has been applied to a real world bioinformatics problem: to search 

for unique and optimized probe sets.  Probes of the human malaria parasite, 

Plasmodium Falciparum, have been found using the Paladin-DES package and results 

are compared with other previously developed techniques. Simulation results 

demonstrate the capability of Paladin-DES. 
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6.2 Future Directions 

 

This project is the third stage of the distributed computational intelligence research. 

There are three ways on which the research can be further carried out. 

 

The first way is to further improve the system. Theoretically with a powerful server, 

the current distributed system could handle as many peer computers as possible. 

However, practically the network delay confines the number of peers the server can 

manage to a finite number. More consideration can be given on the system fault 

tolerance, security, robustness to make the server handle more peers.   

 

Secondly the package can be applied to some genomes which are much more 

complicated. The case study in this project is human malaria parasite, Plasmodium 

Falciparum, which consists of 5000 more genes. The package can be applied to some 

larger genomes, for example, plants genomes which normally contain more than a 

hundred thousand genes.  

 

The third way is to combine the underlying distributed technology with other 

computational intelligence techniques. Some research has been done by using 

artificial neural network to handle HIV’s multi -drug resistance problem.  

 

Drug resistance is probably the most important factor influencing the failure of 

present HIV therapies. The emergence of anti-retroviral drug resistance is not 

unexpected, as drug resistance had been reported for other viruses such as herpes 

simplex, varicella-zoster, cytomegalovirus, influenza A and rhinovirus. However, the 
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drug resistance problem is far more important in the case of the HIV virus because of 

the severe final outcome of HIV-related illnesses (Draghici and Potter, 2003).  

 

In the literature, it is discovered that the effectiveness of the contacts between the 

protease inhibitor drug Saquinavir and the HIV protease gene is related to the amino 

acid sequence of HIV protease mutants. The prediction is based on a set of HIV 

protease mutants with reported Saquinavir IC90 values, which were used to classify 

the resistance of the mutants tested. In this research, a Learning Vector Quantisation 

(LVQ) network is constructed for the purpose of predicting the HIV resistance of the 

drug Saquinavir and results generated will be compared with a SOFM (Self-

Organizing Features Map) network used by Draghici and Potter.  

 

Further research can be done in this direction since the multi-drug resistance research 

is very complicated and very helpful in both medical and biology science. With 

including the different insight from engineering aspect, the problem could be analyzed 

more specifically. 
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