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Summary

Semantic Web (SW), commonly regarded as the next generation of the Web, is an

emerging area from the Knowledge Representation and the Web Communities. The

Formal Methods (FM) community can also play an important role to contribute to

SW development. For example, formal methods and tools can be used to facilitate

the reasoning and consistency checking tasks for Semantic Web ontologies and ser-

vices. Semantic Web ontologies can even be generated automatically from formal

requirement models. It is hoped that SW will be a new novel application domain

for formal methods. On the other hand, the diversity of various formal specification

techniques and the need for their effective combinations require an extensible and

integrated supporting environment. The success of the Semantic Web may have pro-

found impact on the Web environment for formal methods, especially for extending

and integrating different formalisms. This thesis demonstrates the latest investiga-

tions on the links between Semantic Web and Formal Methods. First, a Semantic Web

(RDF/DAML+OIL) environment for supporting, extending and integrating many dif-

ferent formalisms was built. Such a meta integrator may bring together the strengths

of various formal methods communities in a flexible and widely accessible fashion.

The Semantic Web environment for formal specifications may lead to many benefits.

One novel application which has been demonstrated in this thesis is the notion of

specification comprehension based RDF query techniques. Since the SW builds on



the success of XML, as the preliminary work this thesis also presents the development

of an XML based Web browsing environment for Z family notations. On the other

hand, to apply formal methods to SW, formal methods and tools can be used to

facilitate the reasoning and consistency checking tasks for semantic web ontologies.

The semantics of the SW languages has been encoded into a formal language (in

particular Alloy), so that Alloy can be used to provide automatic reasoning and

consistency checking services for SW. At the same time, formal methods have been

used to assist design Semantic Web service application and the translation rules and

tools have been developed to extract the SW ontology and semantic markup for Web

service from the formal model automatically. In summary, we believe that there is

a close association between formal specification and Semantic Web, and the two can

benefit from each other in many ways.



Chapter 1

Introduction and Overview

1.1 Motivation and goals

Most discussions related to “Web and Software Engineering” are centered around two

main issues: how software engineering techniques facilitate Web applications and how

Web technology assists software design and development. This thesis tries to address

both issues within a specific context “Semantic Web (SW) [3] and formal software

modelling techniques”.

In recent years, researchers have begun to explore the potential of associating Web

content with explicit meaning so that the Web content becomes more machine-

readable and intelligent agents can retrieve and manipulate pertinent information

1



1.1. MOTIVATION AND GOALS 2

readily. The Semantic Web proposed by W3C is one of the most promising and ac-

cepted approaches. It has been regarded as the next generation of the Web. SW not

only emerges from the Knowledge Representation and the Web Communities, but

also brings the two communities closer together. We believe that there is also a close

association between formal specification and Semantic Web. The Semantic Web has

good support for automation, collaboration, extension and integration. However it is

less expressive and there is no systematic design process for Web ontology and no ma-

ture reasoning tool support. On the other hand, Formal Specifications are expressive,

diverse, can be combined effectively and have some mature tool supports. However,

it is hard to link various methods for collaborative design. The two communities can

benefit from each other in many ways.

This thesis will demonstrate the latest investigations on the links between Semantic

Web and Formal Methods. First, the success of the Semantic Web may have pro-

found impact on the Web environment for formal methods, especially for extending

and integrating different formalisms. At the same time, there is a role for software

engineering techniques and tools to play and make important contributions to the

SW development.

Many formal languages, like Z, are closely related to data modelling. Many researchers

investigated Z with database schemas [95, 14]. For example the Z schema calculus is

extended to model the familiar relational algebra operations [57]. Besides of database,
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linking formal methods with SW is another novel and important research area for

formal methods researchers.

1.1.1 Semantic Web for Formal Methods

Many formal specification techniques exist for modelling different aspects of software

systems and it is difficult to find a single notation that can model all functionalities of a

complex system clearly and precisely [68, 99]. For instance, B/VDM/Z are designed

for modelling system data and states, while CSP/CCS/π-calculus are designed for

modelling system behaviors and interactions. Various formal notations are often

extended and combined for modelling large and complex systems. In recent years,

Formal Methods Integration has been a popular research topic [2, 33, 10]. In the

context of combining state-based and event-based formalisms, a number of proposals

have been presented [9, 29, 31, 55, 81, 87, 89, 97, 69]. Our general observations on

these works are that

Various formal notations can be used in an effective combination if the

semantic links between those notations can be clearly established. The

semantic/syntax integration of those languages would be a consequence

when the semantic links are precisely defined. Due to different motiva-

tions, there are possible different semantic links between two formalisms,
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which lead to different integrations between the two.

Unlike UML [72], an industrial effort for standardizing diagrammatic notations, a

single dominating integrated formal method may not exist in the near future. The

reason may be partially due to the fact that there are many different well established

individual schools, e.g., VDM forum, Z/B users, CSP group, CCS/π-calculus family

etc. Another reason may be due to the open nature of the research community,

i.e. FME (www.fmeurope.org), which is different from the industrial ‘globalization’

community, i.e. OMG (www.omg.org).

Regardless of whether there will be or there should be an ultimate integrated formal

method (like UML), diversity seems to be the current reality for formal methods and

their integrations. Such diversity may have an advantage, that is, different formal

methods and their combinations may be effective for developing various kinds of

complex systems1. The best way to support and popularize formal methods and

their effective combinations is to build a widely accessible, extensible and integrated

environment.

The World Wide Web provides an important infrastructure for a promising environ-

ment for various formal specification and design activities because it allows sharing

1In fact, one of the difficult tasks of OMG is to resist many good new proposals for extending

UML — a clear consequence and drawback of pushing a single language for modelling all software

systems.
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of various design models and provides hyper textual links among the models. The

success of the Semantic Web may have profound impact on the Web environment for

formal specifications. Under this Meta integrating and intelligent Web environment,

formalist can work in co-operation easily. Many formal tasks like model reusing and

model refining can be achieved automatically or semi-automatically. This thesis only

demonstrates an approach on how to build a Semantic Web environment for sup-

porting, checking, extending and integrating various formal specification languages.

Furthermore, based on this Semantic Web environment, specification comprehension

(queries for review/understanding purpose) can be supported. Since the SW builds

on the success of XML, as the preliminary work this thesis also demonstrates how

the traditional Web techniques like XML can assist formal specification and design

process. We present the development of a Web browsing environment for Z family

notations.

1.1.2 Formal Methods for Semantic Web

After decades of research and development, some mature formal tools have been

established successfully. This thesis addresses how the existing formal tools can be

used to reasoning about the SW ontology.

From a different angle, the development of Semantic Web systems requires precise

modelling techniques to capture ontology domain properties and application func-
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tionalities. However, the Semantic Web language itself is too low level to be used for

systematically capturing ontology requirement and it is also not expressive enough

for designing Semantic Web service/agents. The TCOZ notation [55] is an extension

to Z, as a formal specification language based on set theory and predicate calculus.

We believe that TCOZ as a specification technique can contribute to the Seman-

tic Web-based system development in many ways. We demonstrate that TCOZ can

capture various requirements of SW services including ontology and service function-

alities. We also develop systematic translation rules and tools which can project

TCOZ models to DAML+OIL ontology and DAML-S automatically.

1.2 Thesis outline and overview

The structure of the thesis is as follows:

1.2.1 Chapter 2

This chapter is devoted to an overview of the Semantic Web and some formal nota-

tions involved in this thesis. Following the success of eXtensible Markup Language

(XML) [92], W3C’s primary focus is on Semantic Web. Currently, one of the ma-

jor Semantic Web activities at W3C is the work on Resource Description Frame-

work (RDF) [47], which provides interoperability between applications that exchange
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machine-understandable information on the Web. RDF Schema [7] and DARPA

Agent Markup Language (DAML) [91] provide the basic vocabulary to describe RDF

vocabularies. They can be used to define properties and types of the Web resources.

A fundamental component of the Semantic Web will be the markup of Web Services

to make them computer-interpretable, use-apparent, and agent-ready. DAML-S [12]

is a DAML+OIL ontology for Web service developed by a coalition2.

Many formal specification techniques exist for modelling different aspects of software

systems. The formal specification notations involved in this thesis include the Z nota-

tion [82], the Object-Z [24, 80], CSP [38], Alloy [44] and the TCOZ [55] etc. Z and CSP

are two well known formal notations with their respective user groups. Recently there

has been active investigation of the integration [29, 55, 81] of formal object-oriented

methods (e.g. Object-Z) with process description languages (e.g. CSP). One such ap-

proach, the Timed Communicating Object Z (TCOZ) combines Object-Z’s strengths

in modelling complex data and state with TCSP’s strengths in modelling real-time

concurrency. Alloy [44] is a structural modelling language based on first-order logic,

for expressing complex structural constraints and behavior. In this chapter we give a

brief overview of these formal notations.

2DAML Service Coalition: A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, D.

McDermott, S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara, H. Zeng.
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1.2.2 Chapter 3

This chapter presents the development of a Web browsing environment for Z family

notations – ZML. The World Wide Web (WWW) is a promising environment for soft-

ware specification and design because it allows sharing design models and providing

hyper textual links among the models [46]. It is important to develop links and tools

from FM to WWW so that FM technology transfer can be successful. In this chapter,

we demonstrate the use of the eXtensible Stylesheet Language (XSL) [93] to develop

a Web environment that provides various browsing and syntax checking facilities for

Z family languages.

The achievement presented in this chapter does not use the Semantic Web related

techniques. This work was done during the early stage of the PhD program. It was

the first attempt to investigate how the Web technology assists a formal design and

development process. ZML provides a nice environment for browsing the Z families

formal models on the Web. However under this environment, it is difficult to extend

and integrate the formalisms. In fact, this motivates us to investigate how the SW

can be used to build a flexible environment for different formalisms (The details about

this flexible environment will be presented in Chapter 4).
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1.2.3 Chapter 4

The best way to support and popularize formal methods and their effective combina-

tions is to build a widely accessible, extensible and integrated environment. In this

chapter we first use Z [98] and CSP [38] as examples to demonstrate how a Semantic

Web environment for formal specification languages can be developed. After that we

show these environments can be further extended and integrated easily. Furthermore

we illustrate how specification comprehension can be supported by RDF queries.

1.2.4 Chapter 5

This chapter presents the development of a reasoning environment for SW ontology

using formal techniques and tools, in particular, Alloy. In the development of Seman-

tic Web there is a pivotal role for ontology, since it provides a representation of a

shared conceptualization of a particular domain that can be communicated between

people and applications. Reasoning can be useful at many stages during the design,

maintenance and deployment of ontology. Because autonomous software agents may

perform their reasoning and come to conclusions without human supervision, it is

essential that the shared ontology is consistent. However, since the Semantic Web

technology is still in the early stage, the reasoning and consistency checking tools are

primitive.
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The software modelling language Alloy [44] is suitable for specifying structural prop-

erties of software. Alloy is a first order declarative language based on relations. We

believe SW is a new novel application domain for Alloy because relationships between

Web resources are the focus points in SW. Furthermore, Alloy specifications can be

analyzed automatically using the Alloy Analyzer (AA) [45]. Given a finite scope for

a specification, AA translates it into a propositional formula and uses SAT solving

technology to generate instances that satisfy the properties expressed in the specifi-

cation. This chapter presents a Alloy semantics for the SW languages and shows how

Alloy can be used to provide automatic reasoning and consistency checking services

for SW. Various reasoning tasks can be supported effectively by AA.

1.2.5 Chapter 6

This chapter tries to demonstrate that the formal technology can be used to assist

in the design of Semantic Web service applications. Complex Semantic Web (SW)

services may have intricate data state, autonomous process behavior and concurrent

interactions. The design of such SW service systems requires precise and powerful

modelling techniques to capture not only the ontology domain properties but also

the services’ process behavior and functionalities. On the other hand, the formal

method is the use of notations and languages with a defined mathematical meaning

to enable specifications (that is statements of what the proposed system should do) to



1.2. THESIS OUTLINE AND OVERVIEW 11

be expressed with precision and no ambiguity. We illustrate how TCOZ can be used as

high level design language to design SW services. Furthermore, the chapter presents

the development of the systematic translation rules and tools which can automatically

extract the SW ontology and services semantic markup from the formal TCOZ design

model. The online talk discovery system is used as a demonstrating case study.

1.2.6 Chapter 7

Chapter 7 concludes the thesis with a summary of the main contributions of this

thesis, and some suggestions for further research.

1.2.7 Thesis’s theme and relations between the main chap-

ters

This thesis centers on one theme – the linkage between the Semantic Web and Formal

Methods. This linkage can be illustrated in two directions: how FM techniques

facilitate SW applications and how SW assists FM. Each of the main chapters in this

thesis demonstrates that these two techniques can assist each other. Since each main

chapter demonstrates a different aspect of the main theme and has been published as

a full paper, the correlation between chapters may not be evident to the reader at first

glance. This section provides a detailed explanation on how the different chapters are
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related.

This thesis includes four main chapters from Chapter 3 to Chapter 6. Chapter 3, Z

family Markup Language – ZML, presents a nice interchange format for the formal

notations. This chapter serves two purposes. Firstly, it builds the foundation for

the subsequent chapters. All the tools developed in this thesis will use ZML as the

underlying encoding format. Secondly, as one such a way on FM contributing SW,

our research group are proposing to use the formal language Z as a Semantic Web

language (on top of the Semantic Web ontology layer). The following reasons make

the Z as a good candidate to be used as SW language:

• As a prestigious formal method, Z has a wide user group.

• After more than twenty years of development, many relatively mature support-

ing tools have been setup.

• Z is very expressive.

However according to W3C’s requirement, to use a language as a SW language, it

must have the XML syntax. Therefor ZML will be the first important step to achieve

our goal.

The Chapter 4: Semantic Web for Extending and Linking Formalisms, demonstrates

how one aspect the Semantic Web can assist the formal methods, which is how Se-

mantic Web techniques can assist integrating the formalisms. The Semantic Web can
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contribute to formal methods in many other areas, like formal model reuse, model

refinement, etc.. There will be some other PhD theses from the research group giving

more details.

Chapter 5 and Chapter 6 show that formal techniques can also contribute to Semantic

Web. Chapter 5 presents how the formal tools can be used to check and reason over

a Semantic Web ontology. This assumes that the Semantic Web ontology has already

been built up, e.g., extracted from a natural language document using NLP techniques

or merged from two different existing ontologies. One natural question people may

ask is what happens if the Semantic Web ontology has not been developed yet? Can

formal techniques assist the process of the Semantic Web ontology and system design

and developing? If we have a formal model, can we get the ontology easily? All those

questions will be answered in Chapter 6: TCOZ Approach to Semantic Web Service

Design. In this chapter, we demonstrate that a integrated formal method – TCOZ is

very suitable to be used as a high level design language for the Semantic Web service

system. Moreover, not only the ontology but also the semantic markup information

for the SW service can be automatically extracted from the TCOZ formal design

model by the tool we developed.
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1.3 Related works

To our knowledge, we are the first research group working on the linkage between

Semantic Web and Formal Methods. There is no much related works being done

before. One of the early work by Bicarregui and Matthews [4] has proposed ideas

to integrate SGML (earlier version of XML) and EXPRESS for documenting control

systems design. Z notation on the web based on HTML and Java applets has been

investigated by Bowen and Chippington [5] and Cinancarini, Mascolo and Vitali [11].

HTML has been successful in presenting information on the Internet, however the

lack of content information has made the retrieval and exchange of resource more

difficult to perform, and different formalism hard to be extended and integrated.

1.4 Publications

Most chapters of the thesis have been accepted in international refereed journals or

conference proceedings.

Chapter 3 has been published in the thirteenth volume of the Annals of Software En-

gineering journal (ASE, June 2002) [86]. Chapter 4 was presented at The Eleventh In-

ternational Formal Methods Europe Symposium (FME’02, July 2002, Copenhagen) [20].

Chapter 5 has been presented at The Twelfth International Formal Methods Europe
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Symposium (FM’03, Sep 2003, Pisa) [22]. The technique/tool presented in Chap-

ter 5 was successfully applied to a military case study and was presented at The

15th International Conference on Software Engineering and Knowledge Engineering

(SEKE’03, July 2003, San Francisco) [23]. Chapter 6 has been presented at The

4th International Conference on Formal Engineering Method (ICFEM’02, Nov 2002,

Shanghai) [21].

I also made partial contributions to other publications [17, 18, 84, 85] which are al-

though related to this thesis, they can be considered as side-stories or pre-thesis/follow-

up work.





Chapter 2

Background

This chapter reviews the vision of Semantic Web and some supporting techniques,

and then reviews the related formal notations and tools.

17
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2.1 Semantic Web overview

As a huge information space, the Web should be useful not only for human-human

communication, but also allows machines to participate and help. However, nowadays

most information on the Web is designed for human consumption and the structure

of the data is not evident for a robot browsing the Web. There are two distinct

approaches to enable the machine to automatically manipulate the information in

the Web. One approach which comes from artificial intelligence is machine learning.

The machine is trained to behave like a person. However this approach is domain-

dependent and requires a huge training process. The Semantic Web [3] approach

instead develops language for expressing information in a machine processable form.

The W3C gives the following definition for the Semantic Web:

The Semantic Web is an extension of the current Web in which information

is given a well-defined meaning, better enabling computers and people to

work in cooperation.

SW is a collaborative effort led by W3C with participation from a large number of

researchers and industrial partners. With the SW, the machine can do many compli-

cate tasks which currently can only be performed manually. For example, user can

directly send the following request to web agent –“Book me a holiday next weekend

somewhere warm, not too far away, and where they speak Chinese or English.”. The
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Web agent will be able to ‘understand’ the request and perform it for the users.

A series of technologies has been proposed to realize the vision of the Semantic Web

as the next generation Web. It extends the current Web by giving the Web content a

well-defined meaning and representing the information in a machine-understandable

form. HTML, the current Web data standard, is aimed at delivering information to

the end user for human-consumption (e.g. display this document). XML is aimed at

delivering data to systems that can understand and interpret the information. XML

is focused on the syntax (defined by the XML schema or DTD) of a document and it

provides essentially a mechanism to declare and use simple data structures. However

there is no way for a program to actually understand the knowledge contained in the

XML documents.

Resource Description Framework (RDF) [47] is a foundation for processing metadata;

it provides interoperability between applications that exchange machine-understandable

information on the Web. RDF uses XML to exchange descriptions of Web resources

and emphasizes facilities to enable automated processing. The RDF descriptions pro-

vide a simple ontology system to support the exchange of knowledge and semantic

information on the Web. RDF Schema [7] provides the basic vocabulary to describe

RDF documents. RDF Schema can be used to define properties and types of the

Web resources. In a similar fashion to XML Schema which gives specific constraints

on the structure of an XML document, RDF Schema provides information about
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the interpretation of the RDF statements. The DARPA Agent Markup Language

(DAML) [91] is an AI-inspired description logic-based language for describing taxo-

nomic information. DAML currently combines Ontology Inference Layer (OIL) [8]

and features from other ontology systems. It is now called DAML+OIL and contains

richer modelling primitives than RDF schema. The DAML+OIL language builds on

top of XML and RDF(S) to provide a language with both a well-defined semantics

and a set of language constructs including classes, subclasses and properties with

domains and ranges, for describing a Web domain. DAML+OIL can further express

restrictions on membership in classes and restrictions on certain domains and ranges

values. Semantic Web is highly distributed, and different parties may have different

understandings of the same concept. Ideally, the program must have a way to dis-

cover the common meanings from the different understandings. It is central to one

important concept in Semantic Web system – ontology. The ontology for a Semantic

Web system is a document or a file that formally defines the relations among terms.

The most typical kind of ontology for the Web has taxonomy and a set of inference

rules. Ontology can enhance the functioning of the Web in many ways. RDFS and

DAML+OIL supply the language to define the ontology. For example, the following

DAML+OIL code specifies a concept ‘talk’ which hold in a certain place. A ‘talk’ (a

DAML+OIL class) has a property ‘talk place’, having only one value ‘place’ (also a

DAML+OIL class).

<daml:class rdf:ID="talk">
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DAML+OIL constructs Description
DAML class classes
DAML property properties
DAML subclass [C ] subclasses of C
DAML subproperty [P ] subproperties of P
instanceof [C ] instances of the DAML+OIL class C

Table 2.1: DAML+OIL constructs (partial)

<rdfs:label>Talk</rdfs:label>

</daml:class>

<daml:class rdf:ID="place">

<rdfs:label>Place</rdfs:label>

</daml:class>

<daml:ObjectProperty rdf:ID="talk_place">

<rdf:type rdf:resource=

"http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>

<rdf:domain rdf:resource="#talk"/>

<rdf:range rdf:resource="#place"/>

</daml:ObjectProperty>

We summarize some essential DAML+OIL constructs in Table 2.1.

2.2 Semantic markup for Web service: DAML-S

A fundamental component of the Semantic Web will be the markup of Web Services

to make them computer-interpretable, use-apparent, and agent-ready. DAML-S [12]

is a DAML+OIL ontology for Web services developed by a coalition1. DAML-S was

1DAML Service Coalition: A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, D.

McDermott, S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara, H. Zeng.
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expected to enable the following tasks automatically:

• Web service discovery,

• Web service invocation,

• Web service composition and interoperation,

• Web service execution monitoring.

DAML-S consists of three main parts: the profile, the process model and the ground-

ing. The DAML-S profile describes what the service does. Thus, the class SER-

VICE presents a SERVICEPROFILE. The service profile is the primary construct

by which a service is advertised, discovered and selected. The DAML-S process

model tells how the service works. Thus, the class SERVICE is describedBy a

SERVICEMODEL. It includes information about the service inputs, outputs, precondi-

tions and effects. It also shows the component processes for a complex process and

how the control flows between the components. The DAML-S grounding tells how

the service is used. It specifies how an agent can access a service.

SW services(DAML-S) may have intricate data state, complex process behavior and

concurrent interactions. The design of such SW service systems requires precise and

powerful modelling techniques to capture not only the ontology domain properties

but also the services’ process behavior and functionalities. It is desired to have a
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powerful formal notation to precisely design the Web system. TCOZ is such a good

candidate. In this thesis, we focus on the connection between the TCOZ model and

the DAML-S process model (Chapter 6).

2.2.1 DAML-S process

The DAML-S process model is intended to provide a basis for specifying the behavior

of a wide array of services. It is influenced by the work in AI on standardizations of

planning languages [26], work in programming languages and distributed systems [61,

62], emerging standards in process modelling and workflow technology such as the

NIST’s Process Specification Language (PSL) [74] and the Workflow Management

Coalition effort (http://www.aiim.org/wfmc), work on modelling verb semantics and

event structure [64], work in AI on modelling complex actions [49], and work in agent

communication languages [59, 28].

There are two chief components of a DAML-S process model – the process, and

process control model. The process describes a Web Service in terms of its input,

output, precondition, effects and, where appropriate, its component subprocess. The

process model enables planning, composition and agent/service inter-operation. The

process control model – which describes the control flow of a composite process and

shows which of various inputs of the composite process are accepted by which of its

subprocesses – allows agents to monitor the execution of a service request. The con-
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Constructs Description
damls Process Describes

service which includes
atomic, composite and
simple process

damls input Specifies one of the in-
puts of the service.

damls output Specifies one of the
outputs of the service.

damls precondition Specifies one of the
preconditions of the
service.

damls effect Specifies one of the ef-
fects of the service.

damls AtomicProcess Process which is di-
rectly invocable, have
no subprocess and ex-
ecute in a single step.

damls CompositeProcess Process which is com-
posed from other
process.

damls SimpleProcess Process which is used
as elements of
abstraction.

damls Sequence[P1,P2, ...] Executes a list of pro-
cesses in order

damls Split [P1,P2, ...] Execute a bag of pro-
cesses concurrently

Table 2.2: DAML-S constructs (partial)

structs to specify the control flow within a process model include Sequence, Split,

Split+Join, If-Then-Else, Repeat-While and Repeat-Until. We will use the fol-

lowing table (Table 2.2) to summarize some of the constructs available in DAML-S

process.
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2.3 Description Logic

From a formal point of view, SW ontology language DAML+OIL can be seen to

be equivalent to a very expressive Description Logic (DL) [39]. Before discussing

the technical issues like automatically generating and reasoning about DAML+OIL

ontology in the later chapters, this section presents an introduction to DL.

2.3.1 DL history

The Description Logic (DL) [40] is an important powerful class of logic-based knowl-

edge representation languages. The DL is used to represent and to reason about

terminological knowledge and it was evolved from two knowledge representation for-

malisms Frames and Semantic Networks. Frames developed by Minsky [63] are record-

like data structures for representing stereotyped situations and objects. Attached to

each frame is all the information necessary for treating a situation, which may include

information about how to use the frame, information about what one can expect to

happen next and information about what to do if these expectations are not con-

firmed and etc. Semantic Network, develop after the work of Quillian (1967) [71], is

a graph-based representation formalism to capture the semantics of nature language.

The common problem of both Frames and Semantic Networks is the lack of formal

semantics. This may lead to the result that every system behaved differently from
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the others. In response to this problem, the researchers tried to develop knowledge

representation languages equipped with a formal semantics to precisely capture its

meaning independently of the underlying inference machine.

2.3.2 Knowledge representation in DL

A DL-system consists of two components. The first component, known as the knowl-

edge base, provides a precise characterization of the type of the knowledge to be

specified to the system. The second is the reasoning engine, which provides various

inference services. The knowledge base in DL can further be divided into the TBox

and the ABox.

TBox

A TBox stores the conceptual knowledge of an application domain. It defines the

intentional knowledge in the form of a terminology (reason for the term “TBox”).

The terminology consists of concepts , which denote sets of individuals, and roles ,

which denote binary relations between individuals. The DL systems can build atomic

concepts and roles (concept and role names) and can also build complex descriptions

of concepts and roles. The different DL systems are distinguished by their description

language used for building complex concepts and roles. For example, AL− language,
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introduced in [75] as a minimal language that is of practical interest, has the following

syntax rule:

C ,D → A | (atomicconcept)
> | (universalconcept)
⊥ | (bottomconcept)
¬A(atomicnegation)
C u D(intersection)
∀R.C (valuerestriction)
∃R.>(limitedexistentialquantification)

The DL language FL− is a sublanguage of AL by disallowing atomic negation. FL0

is a sublanguage of FL− by disallowing existential quantification. The AL can be

extended to ALU , ALε, ALN and ALC if the union of concepts, full existential qual-

ification, number restriction and negation of arbitrary concepts is allowed accordingly.

Allowing more concept constructs makes a DL language more expressive, but more

difficult and complex to reason about. TBoxes allow introducing names for concept

descriptions.

ABox

An ABox contains extensional knowledge about the domain of interest. It introduces

the assertional knowledge (reason for the term “ABox”) (world description). Whereas

TBoxes restrict the set of possible words, ABoxes allow us to describe a specific state

of the world by introducing individuals (or instances) together with their properties.

In the Abox, knowledge can be divided into a concept assertion, which states an
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individual is a member of concept (in the form C(a)), and a role assertion with a pair

of individuals (in the form R(a, b)). When we say an ABox A is defined with respect

to a Tbox, the concept description in A may contain defined names of TBox.

2.3.3 Description Logic and FOL

The basic DL is considered as a fragment of first-order logic. We use Lk to denote

first order predicate logic over unary and binary predicates with at most k variables

and we use C k to denote first order predicate logic over unary and binary predicates

with at most k variables and counting quantifiers ∃>n ,∃6n . The basic DL concepts

can be translated into L2 formulae or C 2 if the number restriction is allowed. L2 and

C 2 are known to be decidable and NExpTime-complete, so the basic DL is decidable

and NExpTime-complete. Both L2 and C 2 are far more expressive than basic DL.

Different DL languages can be extended from the basic DL language. Some of the

extension can be as expressive as L2 and some can be as expressive as L3. For the

latter case, the DL language becomes undecidable.

Besides increasing the number of variables in the predicates, a certain extension of

the DL makes it go beyond first order logic, e.g. including transitive closure of roles.

On the whole, the DL can be considered as a subset of FOL. The reason FOL is not

directly used to represent knowledge without additional restrictions is that:



2.4. SPECTRUM OF FORMALISMS 29

• the expressive power is too high for obtaining decidable and efficient inference

problems;

• the inference power may be too low for expressing interesting, but still decidable

theories.

2.4 Spectrum of formalisms

In this section, we will use a simple stack system to give a brief introduction to the

Z, Object-Z, TCSP and TCOZ notations etc.

2.4.1 Z

Z notation [82] is a state-oriented formal specification language based on set theory

and predicate logic. A Z specification typically includes a number of state and op-

eration schema definitions. A state schema encapsulates variable declarations and

related predicates (invariants). The system state is determined by values taken by

variables subject to restrictions imposed by state invariants. An operation schema

defines the relationship between the ‘before’ and ‘after’ states corresponding to one

or more state schemas. Complex schema definitions can be composed from the simple

ones by schema calculus. Z has been widely adopted to specify a range of software
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systems (see [34]). Various tools, i.e. editors, type/proof checkers and animators, for

Z have been developed.

Consider the Z model of a stack. Let the given type Item represent a set of items.

The notation for this is:

[Item] [item type]

The stack contains operations to pop items off and push items onto the stack. The

total items in the stack cannot be more than max (say, a number larger than 100).

The global constant max can be defined using the Z axiomatic definition as:

max : N

max > 100

The state, potential state change and initial state of the stack system can be specified

in Z as:

Stack
items : seq Item

#items ≤ max

StackInit
Stack

items = 〈 〉

The operations to push items on, and pop items off of the stack can be modelled as:

Push
∆Stack
item? : Item

items ′ = 〈item?〉aitems
#items < max

Pop
∆Stack
item! : Item

items 6= 〈 〉
items = 〈item!〉aitems ′
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More complex operations can be constructed by using schema calculus, e.g., a new

item which is pushed on and then popped off, say Transit , can be specified by using

the sequential composition schema operator o
9 as:

Transit =̂ Push o
9 Pop

which is an (atomic) operation with the effect of a Push followed by a Pop. Other

forms of schema calculus include schema conjunction ‘∧ ’, disjunction ‘∨ ’ implication

‘ ⇒ ’, negation ‘¬ ’ and pipe ‘ >> ’, which have been discussed in many Z text

books [82, 98]. Appendix A presents a glossary of the Z notation.

2.4.2 Object-Z

Object-Z [24] is an extension of the Z formal specification language to accommodate

object orientation. The main reason for this extension is to improve the clarity of

large specifications through enhanced structuring. Object-Z has a type checker, but

other tool support for Object-Z is limited in comparison to Z. The essential extension

to Z in Object-Z is the class construct which groups the definition of a state schema

with the definitions of its associated operations. A class is a template for objects of

that class: for each such object, its states are instances of the state schema of the

class and its individual state transitions conform to individual operations of the class.

An object is said to be an instance of a class and to evolve according to the definitions

of its class.
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Consider the following specification of the Stack system in Object-Z:

Stack

items : seq Item

# items ≤ max

Init
items = 〈 〉

Push
∆(items)
item? : Item

items ′ = 〈item?〉aitems

Pop
∆(items)
item! : Item

items 6= 〈 〉
items = 〈item!〉aitems ′

Operation schemas have a ∆-list of those attributes whose values may change. By

convention, no ∆-list means no attribute changes value. The standard behavioral

interpretation of Object-Z objects is as transition systems [79]. A behavior of a

transition system consists of a series of state transitions each effected by one of the

class operations. A Stack object starts with items empty then evolves by successively

performing either Push or Pop operations. Operations in Object-Z are atomic, only

one may occur at each transition, and there is no notion of time or duration. It

is difficult to use the standard Object-Z semantics to model a system composed by

multi-threaded component objects whose operations have duration.

Every operation schema implicitly includes the state schema in un-primed form (the

state before the operation) and primed form (the state after the operation). Hence

the class invariant holds at all times: in each possible initial state and before and

after each operation.
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In this example, operation Push pushes a given input item? to the existing set pro-

vided the sequence has not already reached its maximum size (an identifier ending in

‘?’ denotes an input). Operation Pop outputs a value item! defined as one element

of items and reduces items by deleting the first one from the original stack (an iden-

tifier ending in ‘!’ denotes an output). Appendix B presents the concrete syntax of

Object-Z.

2.4.3 TCSP

Timed CSP (TCSP) [76] extends the well-known CSP (Communicating Sequential

Processes) notation of Hoare [38] with timing primitives. As indicated by its name,

CSP is an event based notation primarily aimed at describing the sequencing of behav-

ior within a process and the synchronization of behavior (or communication) between

processes. Timed CSP extends CSP by introducing a capability to consider temporal

aspects of sequencing and synchronization.

CSP adopts a symmetric view of process and environment. Events represent a co-

operative synchronization between process and environment. Both process and envi-

ronment may control the behavior of the other by enabling or refusing certain events

or sequences of events.
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Process Primitives

The primary building blocks for Timed CSP processes are sequencing, parallel com-

position, and choice.

A process which may participate in event a then act according to process description

P is written

a@t → P(t).

The event a is initially enabled by the process and occurs as soon as it is also enabled

by its environment. The event a is sometimes referred to as the guard of the process.

The (optional) timing parameter, t , records the time (relative to the start of the

process) at which the event a occurs and allows the subsequent behavior, P , to

depend on its value.

The second form of sequencing is process sequencing. A distinguished event X is used

to represent and detect process termination. The sequential composition of P and Q ,

written P ; Q , acts as P until P terminates by communicating X and then proceeds

to act as Q . The termination signal is hidden from the process environment. The

process which may only terminate is written Skip.

The parallel evolution of processes P and Q , synchronized on event set X is written

P |[X ]|Q .

No event from X is enabled in P |[X ]|Q unless enabled jointly by both P and Q .
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Other events occur in either P or Q separately.

Diversity of behavior is introduced through two choice operators. The external choice

operator allows a process a choice of behavior according to what events are enabled

by its environment. The process

a → P 2 b → Q

begins with both a and b enabled and performs the first to be enabled by its envi-

ronment. Subsequent behavior is determined by the event which actually occurred,

P after a and Q after b respectively. External choice may also be written in an

intentional form,

2 a : A • P(a).

Internal choice represents variation in behavior determined by the internal state of

the process. The process

a → P u b → Q

may initially enable either a, or b, or both, as it wishes, but must act subsequently

according to which event actually occurred. Again an intentional form is allowed.

An important derived concept in CSP is the notion of channel. A channel is a col-

lection of events of the form c.n: the prefix c is called the channel name and the

collection of suffixes the allowed values of the channel. When an event c.n occurs it is

said that the value n is communicated on channel c. By convention, when the value of
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a communication on a channel is determined by the environment (external choice) it is

called an input and when it is determined by the internal state of the process (internal

choice) it is called an output. It is convenient to write c?n : N → P(n) to describe

behavior over a range of allowed inputs instead of the longer 2 n : N • c.n → P(n).

Similarly the notation c!n : N → P(n) is used instead of u n : N • c.n → P(n) to

represent a range of outputs. Expressions of the form c?n and c!n do not represent

events, the actual event is c.n in both cases.

Recursion is used to given finite representations of non-terminating processes. The

process expression

µP • a?n → b!f (n) → P

describes a process which repeatedly inputs an integer on channel a, calculated some

function f of the input, and then outputs the result on channel b. CSP specifications

are typically written as a sequence of simultaneous equations in a finite collection of

process variables. Such a specification ~X == ~F (~X ) is implicitly taken to describe the

solution to the vector recursion µ ~X • ~F (~X ).

In general, the behavior of a process at any point in time may be dependent on its

internal state and this may conceivably take an infinite range of values. It is often

not possible to provide a finite representation of a process without introducing some

notation for representing this internal process state. The approach adopted by CSP

is to allow a process definition to be intentionally parameterized by state variables.
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Thus a definition of the form

Pn:N =̂ Q(n)

represents a (possibly infinite) family of definitions, one for each possible value of n.

It is important to note that there is no inherent notion of process state in CSP, but

rather that this intentional form of expression is a convenient way to provide a finite

representation of an infinite family of process descriptions.

To the standard CSP process primitives, Timed CSP adds two time specific primitives,

the delay and the timeout.

A process which allows no communications for period t then terminates is written

Wait t . The process

Wait t ; P

is used to represent P delayed by time t .

The timeout construct passes control to an exception handler if no event has occurred

in the primary process by some deadline. The process

a → P .{t} Q

will pass control to Q if the a event has not occurred by time t , as measured from

the invocation of the process.

A Leave process of the Stack example in TCSP can be constructed as follows:

StackLeave(items) = out !head(items) →
((ack → Pop) .{5} StackLeave(items))
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It states that the Leave process will output the first element in the stack every 5 time

units until an acknowledge message ack is received.

2.4.4 TCOZ

Timed Communicating Object Z (TCOZ) [55] is essentially a blending of Object-Z [25]

with Timed CSP [76], for the most part preserving them as proper sub-languages of

the blended notation. The essence of this blending is the identification of Object-

Z operation specification schemas with terminating CSP processes. Thus operation

schemas and CSP processes occupy the same syntactic and semantic category, op-

eration schema expressions may appear wherever processes may appear in CSP and

CSP process definitions may appear wherever operation definitions may appear in

Object-Z. The primary specification structuring device in TCOZ is the Object-Z class

mechanism.

In this section we briefly consider various aspects of TCOZ. A detailed introduction

to TCOZ and its Timed CSP and Object-Z features may be found elsewhere [56].

The formal semantics of TCOZ is also documented [53].
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A model of time

In TCOZ, all timing information is represented as real valued measurements in sec-

onds, the SI standard unit of time [43]. We believe that a mature approach to measure-

ment and measurement standards is essential to the application of formal techniques

to systems engineering problems. In order to support the use of standard units of

measurement, extensions to the Z typing system suggested by Hayes and Mahony [36]

are adopted. Under this convention, time quantities are represented by the type

T == R¯ T,

where R represents the real numbers and T is the SI symbol for dimensions of time.

Time literals consist of a real number literal annotated with a symbol representing a

unit of time. All the arithmetic operators are extended in the obvious way to allow

calculations involving units of measurement.

Interface – channels, sensors and actuators

CSP channels are given an independent, first class role in TCOZ. In order to support

the role of CSP channels, the state schema convention is extended to allow the dec-

laration of communication channels. If c is to be used as a communication channel

by any of the operations of a class, then it must be declared in the state schema to

be of type chan. Channels are type heterogeneous and may carry communications
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of any type. Contrary to the conventions adopted for internal state attributes, chan-

nels are viewed as shared (global) rather than as encapsulated entities. This is an

essential consequence of their role as communications interfaces between objects. The

introduction of channels to TCOZ reduces the need to reference other classes in class

definitions, thereby enhancing the modularity of system specifications.

As a complement to the synchronizing CSP channel mechanism, TCOZ also adopts a

non-synchronizing shared variable mechanism. A declaration of the form s : X sensor

provides a channel-like interface for using the shared variable s as an input. A decla-

ration of the form s : X actuator provides a local-variable-like interface for using the

shared variable s as an output. Sensors and actuators may appear either at the sys-

tem boundary (usually describing how global analog quantities are sampled from, or

generated by the digital subsystem) or else within the system (providing a convenient

mechanism for describing local communications which do not require synchroniza-

tion). The shift from closed to open systems necessitates close attention to issues

of control, an area where both Z and CSP are weak [100]. We believe that TCOZ

with the actuator and sensor can be a good candidate for specifying open control

systems. Mahony and Dong [54] presented detailed discussion on TCOZ sensor and

actuators.
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Active objects

Active objects have their own threads of control, while passive objects are controlled

by other objects in a system. In TCOZ, an identifier Main (indicating a non-

terminating process) is used to represent the behavior of active objects of a given

class [19]. The Main operation is optional in a class definition. It only appears in

a class definition when the objects of that class are active objects. Classes for defin-

ing passive objects will not have the Main definition, but may contain CSP process

constructors. If ob1 and ob2 are active objects of the class C , then the independent

parallel composition behavior of the two objects can be represented as ob1 ||| ob2,

which means ob1.Main ||| ob2.Main

Semantics of TCOZ

A separate paper details the blended state/event process model which forms the

basis for the TCOZ semantics [53]. In brief, the semantic approach is to identify

the notions of operation and process by providing a process interpretation of the Z

operation schema construct. TCOZ differs from many other approaches to blending

Object-Z with a process algebra in that it does not identify operations with events.

Instead an unspecified, fine-grained, collection of state-update events is hypothesized.

Operation schemas are modelled by the collection of those sequences of update events

that achieve the state change described by the schema. This means that there is no
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semantic difference between a Z operation schema and a CSP process. It therefore

makes sense to also identify their syntactic classes.

Network topology

The syntactic structure of the CSP synchronization operator is convenient only in

the case of pipe-line like communication topologies. Expressing more complex com-

munication topologies generally results in unacceptably complicated expressions. In

TCOZ, a graph-based approach is adopted to represent the network topology [52].

For example, consider that processes A and B communicate privately through the

interface ab, processes A and C communicate privately through the interface ac,

and processes B and C communicate privately through the interface bc. One CSP

expression for such a network communication system is

(A[bc ′/bc] |[ ab, ac ]| (B [ac ′/ac] |[ bc ]|C [ab ′/ab]) \ ab, ac, bc)
[ab, ac, bc/ab ′, ac ′, bc ′]

The hiding and renaming is necessary in order to cover cases such as C being able

to communicate on channel ab. The above expression not only suffers from syntactic

clutter, but also serves to obscure the inherently simple network topology. This

network topology of A, B and C may be described by

‖(A ab¾- B ; B bc¾- C ; C ca¾- A).

Other forms of usage allow network connections with common nodes to be run to-
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gether, for example

‖(A ab¾- B bc¾- C ca¾- A),

and multiple channels above the arrow, for example if processes D and F communicate

privately through the channel/sensor-actuator df1 and df2, then

‖(D df1,df2¾ - F ).

The syntactic implication of the above approach is that the basic structure of a

TCOZ document is the same as for Object-Z. A document consists of a sequence

of definitions, including type and constant definitions in the usual Z style. TCOZ

varies from Object-Z in the structure of class definitions, which may include CSP

channel and processes definitions. For instance, an active Stack can be derived from

the previous (Object-Z) Stack model as:

ActiveStack
Stack

tj , tl : T [durations for Join/Leave operations]
in, out : chan [channels for input and output]

Join =̂ [item : Item | #items < max ] • in?item → Push • Deadline tj
Leave =̂ [items 6= 〈 〉] • out !head(items) → Pop • Deadline tl
Main =̂ µQ • Join 2 Leave; Q

where the TCOZ Deadline command is used to constraint the Join and Leave to

be finished within their duration time.

As we can see that Object-Z and TCSP complement each other not only in their
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expressive capabilities, but also in their underlying semantics. Object-Z is an excel-

lent notation for modelling data and states, but difficult for modelling real-time and

concurrency. TCSP is good for specifying timed process and communication, but like

CSP, cumbersome to capture the data states of a complex system. The combination

of the two, TCOZ, treats data and algorithmic aspects in the Object-Z style and

treats process control, timing, and communication aspects in the TCSP style. In ad-

dition, the object oriented flavor of TCOZ provides an ideal foundation for promoting

modularity and separation of concerns in system design. With the above modelling

abilities, TCOZ is potentially a good candidate for specifying composite systems in a

highly constructed manner.

There is another well-known approach combining Object-Z and CSP developed by

Smith and Derrick [81]. In this approach the Object-Z classes are given a CSP-style

semantics in which operation calls become CSP events. Operation names take on

the role of CSP channels, with input and output parameters being passed down the

operation channel as values. In this approach any two operations with the same name

and parameters will be modelled by identical events when their parameters have same

values and hence will be able to synchronize. This view fits nicely with the Object-

Z interpretation of operations being atomic, but is not well suited to considering

multi-threading and real-time.

There are two main phases in specifying a concurrent system using Smith and Der-
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rick’s approach.

• The first phase is to decompose the complex system into components and specify

each of these components using Object-Z.

• The second phase involves the specification of the system using CSP operators.

2.4.5 Alloy

Alloy [44]2 is a structural modelling language based on first-order logic, for expressing

complex structural constraints and behavior. Z was a major influence on Alloy. Very

roughly, Alloy can be viewed as a subset of Z. In any Alloy model the universe of

atoms is partitioned into subsets, each of which is associated with a basic type. An

Alloy model is a sequence of paragraphs that can be of two kinds: signatures, used

for construction of new types, and a variety of formula paragraphs, used to record

constraints.

Signature and fields

A signature paragraph introduces a basic type and a set of atoms drawn from that

type. A signature declaration may include a collection of relations (that are called

2Version 2.0 is used in this thesis.
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fields) in it along with the types of the fields and constraints on their values. Each field

declaration introduces a relation whose left type is the signature type. For example,

sig S{f: T}

sig T{}

introduces S and T as an uninterpreted type (or a set of atoms). The field declaration

for f introduces a relation from type of S to the type of T. Implicit in this declaration

is that f is constrained to be a total function: it maps each atom in S to exactly one

atom T. This constraint can be weakened by inserting the keyword option to say that

each atom of S is mapped to at most one atom of T, or set to eliminate the constraint

entirely.

A signature may inherit fields and constraints from another signature. This is called a

subsignature. Declaring a subsignature doesn’t introduce any new types. For example,

static part sig T, U extends S {}

declares T and U to be subsets of S and inherit the field f. To say that two subsignatures

are mutually disjoint, the keyword disjoint is attached to each of their declarations.

The keyword part declares these subsets to be disjoint and their union to be Class.

To indicate that a signature contains exactly one atom, mark it as static.
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Relational expressions

In Alloy, every expression denotes a relation. There are no sets of atoms or scalars;

they are all represented by relations. A relation is a structure that relates atoms, a

collection of tuples of atoms. Each element of such a tuple is atomic and belongs to

some basic type. A relation may have any arity greater than one and typed. Sets can

be viewed as unary relations.

Relations can be combined with a set operator or relational operator to form expres-

sions. For the set operators, the tuple structure of a relation is irrelevant; a relation

might as well be a set of atoms. For the relational operators, the tuple structure is

essential to the operator’s definition.

The standard operators in ASCII form – union (+), intersection (&), and difference

(-) are used on the set to combine two relations of the same type, viewed as sets of

tuples. Their interpretation is standard: a tuple is in p+q for example if and only if

it is in p or in q; a tuple is in p&q for example if and only if it is in p and in q; a

tuple is in p-q for example if and only if it is in p but not in q.

The quintessential relational operator is composition, or join (dot operator). The

join p.q of relation p and q is the relation derived from taking every combination

of a tuple in p and a tuple in q, and including their join, if it exists. When p is a

unary relation (i.e., a set) and q is a binary relation, p.q is standard composition; p.q
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can alternatively be written as q[p], but with lower precedence. The unary operators

∼ (transpose), ∧ (transitive closure), and ∗ (reflexive transitive closure) have their

standard interpretation and can only be applied to binary relations.

Formulas

Formulas may have the value true or false. Formulas can be made using relational

comparison operators: subset (: or in), equality (=) and their negations (!:, !in, !=).

The formula p in q is true when every tuple of p is also a tuple of q. In other words,

viewed as sets of tuples, p is a subset of q. Equality is just containment in both

directions; p=q is true when both p in q and q in p are true. Larger formulas are

made from smaller formulas by combining them with the standard logical operators,

and by quantifying formulas that contain free variables. The formula no e is true when

e denotes a relation containing no tuples. Similarly, some e, sole e, and one e are true

when e has some, at most one, and exactly one tuple respectively. Alloy provides the

standard logical operators: && (conjunction), || (disjunction), => (implication), and

! (negation).

Quantified formulas consist of a quantifier, a comma separated list of declarations,

and a formula. Table 2.3 shows the various quantifiers in Alloy.

In a declaration, part specifies partition and disj specifies disjointness; they have their

usual meaning.
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Quantifiers Description
all x: e — F universal: F is true for every x in e
some x: e — F existential: F is true for some x in e
no x: e — F F is true for no x in e
sole x: e — F F is true for at most one x in e
one x: e — F F is true for exactly one x

Table 2.3: Quantifiers in Alloy

The expression can be prefixed with a set of keywords scalar, set or option. The

keyword scalar adds the side condition that the variable denotes a relation containing

a single tuple; set says it may contain any number of tuples; option says it contains at

most one tuple. The default marking is set, except when the comparison operator is

the colon(:) or negated colon (!:), and the expression on the right is unary, in which

case it is scalar.

Functions, facts, and assertions

A function (fun) is a parameterized formula that can be applied by instantiating the

parameters with expressions whose types match the declared parameter types. A fact

(fact) is a formula that constrains the values of the sets and relations. Fact takes

no arguments and need not be invoked explicitly and it is always true. An assertion

(assert) is a formula that is intended to be valid: in other words, it is a consequence

that is supposed to follow from the facts.
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Alloy Analyzer

The Alloy Analyzer (AA) is a tool for analyzing models written in Alloy. Given a

formula and a scope – a bound on the number of atoms in the universe – it determines

whether there exists a model of the formula (that is, an assignment of values to the

sets and relations that makes the formula true) that uses no more atoms than the

scope permits, and if so, returns it. Since first order logic is undecidable, AA limits

its analysis to a finite scope. If no model is found, the formula may still have a model

in larger scope. Nevertheless, the analysis is useful, since many formulas that have

models have small scope.

AA works by translating constraints to boolean formulas, and then applying state-

of-art SAT solvers. It can analyze billions of states in seconds.

AA provides two kinds of analysis, addressing the two principal risks of declarative

modelling. The first risk is that the constraints given are too weak. Flaws of this sort

are found by AA by checking assertions, in which a consequence of the specification

is tested by attempting to generate a counterexample. The second risk is that the

constraints given are too strong; in the worst case, the constraints contradict one

another and all states are ruled out. Flaws of this sort are found in simulation in

which the consistency of a fact or function is demonstrated by generating a snapshot

showing its invocation.



Chapter 3

ZML: Browsing Z Family

Documents On the Web

This chapter presents the development of a Web browsing environment for ZML.
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3.1 Introduction

One reason for the slow adoption of formal methods (FM) is the lack of tool sup-

port and connections to the current industrial practice. Recent efforts and success in

FM have been focused on building ‘heavy’ tools, such as theorem provers and model

checkers. Although those tools are essential and important in supporting applications

of formal methods, they are usually less used in practice due to the intrinsic difficulty

involved in the technology. In order to achieve wider acceptance of formal methods,

it is necessary to develop ‘light’ weight tools, such as easy-access browsers for for-

mal specifications and projection/transformation tools from formal specifications to

industry popular graphical notations. The World Wide Web (WWW) is a promising

environment for software specification and design because it allows sharing design

models and providing hyper textual links among the models [46].

Object-Z [24, 80], the object-oriented extension to Z, has an active research commu-

nity but lacks tool support. TCOZ [55, 54] integrates Object-Z with process algebra

Timed-CSP [76, 77]. In this chapter, we use XML and the eXtensible Stylesheet

Language (XSL) [93] to develop a Web environment that provides various browsing

and syntax checking facilities for Z family languages.

The SW builds on the success of XML and uses XML as the foundation technique.

The achievement presented in this chapter uses only the traditional Web techniques



3.1. INTRODUCTION 53

like XML and does not use the Semantic Web related techniques. This work has been

done during the early stage of the PhD study. It is a first attempt to investigate how

the Web technology assists a formal design and development process. ZML provides

a nice environment for browsing the Z families formal models on the Web. However

under this environment, the formalisms are difficult to extend and integrate. This

motivates us to investigate how the SW can be used to build a flexible environment

for different formalisms, and details about this flexible environment will be presented

in the next chapter. ZML is joint work done by Dr. SUN Jing and myself. Dr.

SUN Jing contributed more to the design of the ZML schema. The details of the

ZML schema design have been presented at [83]. I focus on the XSL translation

between ZML and HTML, and some extensive browsing facilities for schema calculus

and class inheritance expansion etc. We continue this work with involving in the

definition of a standard markup language [90] for the ISO Z standard [1], contributed

to the Community Z Tools (CZT) initiative [58]. Hopefully it will become part of the

ISO Z standard in the future.

The remainder of the chapter is organized as follows. Section 3.2 gives a brief intro-

duction to the requirements for browsing Z family notations on the Web. Section 3.3

presents the implementation issues of the Web environment and browsing facilities

for Z family languages. Section 3.4 concludes the chapter.
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3.2 Z family languages requirements

In this section, we will outline some requirements for browsing Z family specifications

on the Web. The differences among Z, Object-Z and TCOZ notations are illustrated

and Z schema calculus and Object-Z/TCOZ inheritance expansions (which is the chal-

lenge of the ZML development) are explained. Note that the essential requirements

of building ZML are highlighted in bold fonts.

3.2.1 Schema inclusion and calculus

Z specifications consist of schema inclusion and schema calculus, which are important

constructs for composing complex schema definitions. Consider the Z model of a stack

in Chapter 2. The expansions from the schema inclusion of the Stack and StackInit

definitions are illustrated as below in ∆Stack and StackInite .

∆Stack
items : seq Item
items ′ : seq Item

#items 6 max
#items ′ 6 max

StackInite
items : seq Item

#items 6 max
items = 〈 〉

The expanded form of the schema calculus in Transit is:
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Transite
∆Stack
item?, item! : MSG

∃ items ′′ : seq Item • items ′′ = 〈item?〉aitems

∧ items ′′ 6= 〈 〉 ∧ items ′′ = 〈item!〉aitems ′

The schema calculus expansions such as Transite are useful for analysis, review and

reasoning about Z specifications. ZML should support all schema inclusion and cal-

culus expansions automatically.

3.2.2 Inheritance

Inheritance is a mechanism for incremental specification, whereby new classes may be

derived from one or more existing classes. Active classes can be defined by inheriting

passive classes. TCOZ is a superset of Object-Z and all Object-Z classes are treated

as passive classes (without Main operation) in TCOZ. For instance, the expanded

form of the active stack example in Chapter 2 is as follows:
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ActiveStacke

items : seq Item
ti , tj : T; in, out : chan

# items ≤ max

Init
items = 〈 〉

Push
∆(items)
item? : Item

items ′ = 〈item?〉aitems

Pop
∆(items)
item! : Item

items 6= 〈 〉
items = 〈item!〉aitems ′

Join =̂ [item : Item | #items < max ] • in?item → Push • Deadline tj
Leave =̂ [items 6= 〈 〉] • out !head(items) → Pop • Deadline tl
Main =̂ µQ • Join 2 Leave; Q

Essentially, all definitions are pooled with the following provisions. Inherited type

and constant definitions and those declared in the derived class are merged. The

state and initialization schemas of derived classes and those declared in the derived

class are conjoined. Operation schemas with the same name are also conjoined.

We believe the browsing facilities are particularly useful to Object-Z/TCOZ

since the notations support cross references and various inheritance tech-

niques for large specifications. It is necessary to view a full expanded

version of an inheriting class for the purpose of reasoning and reviewing

the class in isolation. It is desirable for ZML to automatically support the

inheritance zoom-in/out features.
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3.2.3 Instantiation and composition

Let C be the name of a class. The identifier C semantically denotes a collection of ob-

jects of the class. Objects may have object references as attributes, i.e. conceptually,

an object may have constituent objects. Such references may either be individually

named or occur in aggregates. For example, the declaration c : C declares c to be

a reference to an object of the class described by C . The term c.att denotes the

value of attribute att of the object referenced by c, and c.Op denotes the evolution

of the object according to the definition of Op in the class C . Both Object-Z and

TCOZ support object composition, e.g., two stacks and two active-stacks classes can

be constructed based on Chapter 2’s examples in Object-Z and TCOZ respectively

as:

TwoStack

q1, q2 : Stack

Join =̂ q1.Push
Leave =̂ q2.Pop
Transfer =̂ q1.Pop ‖ q2.Push

TwoActiveStack

q1 : ActiveStack [talk/out ]
q2 : ActiveStack [talk/in]

Main =̂ q1 |[ talk ]| q2



3.2. Z FAMILY LANGUAGES REQUIREMENTS 58

The Object-Z parallel operator ‘‖’ used in the definition of Transfer (in TwoStack)

achieves inter-object communication: the operator conjoins constraints and equates

variables with the same name and also equates and hides any input variable to one

of the components of ‖ with any output from the other component that has the same

base name (i.e. the inputs and outputs are denoted by the same identifier apart from

? and ! decorations).

The CSP parallel operator ‘ |[ talk ]| ’ used in the definition of Main (in TwoActiveS-

tack) captures the concurrent and synchronization behavior of the two communicating

active processes q1.Main and q2.Main.

The models of TwoStack and TwoActiveStack appear to have similar behavior. How-

ever, the behavior of TwoStack is purely sequential. For example, Join (q1.Push) and

Leave (q2.Pop) cannot concurrently operate or partially overlap (even assuming the

duration of Object-Z operations can be explicitly modelled). This limitation is over-

come in the (TCOZ) TwoActiveStack (since two active stacks have their own threads

of control, only synchronizing through the talk channel).

Object-Z/TCOZ Models of complex systems may involve complex com-

position hierarchies, it is useful to have hyper links for all defined types

(particularly the class types) automatically created in the design document

– a clear requirement for the ZML tool.
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3.3 Web environment for Z family languages

3.3.1 Syntax definition and usage

Firstly, a customized XML document for Z family language is defined according to its

syntax formal definitions. This document is used for checking the syntax validity of

the user input specifications in XML. The World Wide Web Consortium (W3C) has

provided two mechanisms for describing XML structures: Document Type Definition

(DTD) and XML Schema. The former originated from the SGML Recommendations

and had a total different syntax. XML Schema is a kind of XML file itself and is going

to play the role of the DTD in defining customized XML structure in the future. It

is consistent with XML syntax and simpler to write than the DTD. We use XML

Schema to define our ZML structure syntax for the Z family notations. Part of the

XML Schema (for defining a class and its operation schema) is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<Schema xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes">

...

<ElementType name="op" content="eltOnly" order="seq">

<element type="name" minOccurs="1" maxOccurs="1"/>

<element type="delta" minOccurs="0" maxOccurs="1"/>

<element type="decl" minOccurs="0" maxOccurs="*"/>

<element type="st" minOccurs="0" maxOccurs="1"/>

<element type="predicate" minOccurs="0" maxOccurs="*"/>

<AttributeType name="layout" dt:type="enumeration"

dt:values="simpl calc" default="simpl"/>

<attribute type="layout"/>
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</ElementType>

<ElementType name="classdef" content="eltOnly">

...

<element type="op" minOccurs="0" maxOccurs="*"/>

...

</ElementType> ...

</Schema>

It states that the op tag is an element of classdef and consists of one name, a

∆−delta list, a number of declarations decl, a horizontal line st and some predicate

definitions. An attribute layout is defined to distinguish between vertical layout

schemas simpl and horizontal layout schemas calc.

Z family languages consist of a rich set of mathematical symbols. Those symbols

can be presented directly in Unicode that is supported by XML. We have defined all

entities in the DTD so that users do not have to memorize all the Unicode numbers

when authoring their ZML documents. Part of the entity declaration DTD is defined

as follows:

<?xml version="1.0" encoding="UTF-8"?>

...

<!ENTITY emptyset "&#x2205;">

<!ENTITY mem "&#x2208;">

<!ENTITY pset "&#x2119;">

<!ENTITY nem "&#x2209;">

<!ENTITY uni "&#x222a;">

...

As most existing Z specifications were constructed in LATEX, translating them to our

format can be a trivial task as each entity is given a Z LATEX compatible name. The
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DTD is chosen to define our entity declaration because XML Schema does not support

entity declaration at the moment. When authoring ZML files, the user simply declares

the name space of the XML schema and Entity DTD file as follows:

<?xml version="1.0" encoding="UTF-8"?>

...

<!DOCTYPE unicode

SYSTEM "http://nt-appn.comp.nus.edu.sg/fm/zml/unicode.dtd">

<objectZnotation xmlns="x-schema:

http://nt-appn.comp.nus.edu.sg/fm/zml/objectZschema.xml"

xmlns:HTML="http://www.w3.org/Profiles/XHTML-transitional">

...

</objectZnotation>

With the above namespace links, the XML editing tools can check the validity of the

file via XML Schema definition and the DTD entity declarations. Any unspecified

structures and entity symbols would be reported as a syntax error. The following is

the Web browsing environment for the Stack class (of the stack specification example)

in our ZML format.

<classdef layout="simpl" align="left">

<name>Stack</name>

<state>

<decl>

<name>items</name>

<dtype>&seq; <type>Item</type></dtype>

</decl>

<st/>

<predicate># items &leq; max</predicate>

</state>

<init>

<predicate>items=&emptyseq;</predicate>
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</init>

<op layout="simpl">

<name>Push</name>

<delta>items</delta>

<decl>

<name>item?</name>

<dtype><type>Item</type></dtype>

</decl>

<st/>

<predicate>items’=&lseq;item?&rseq; &cat; items </predicate>

</op>

<op layout="simpl">

<name>Pop</name>

...

</op>

</classdef>

3.3.2 XSL transformation

With a valid XML file in hand, the next step is to transform the XML file into HTML

format and display it on the Web. XSL is a stylesheet language to describe rules for

matching and transforming XML documents. An XSL file is an XML document itself

and it can perform the transformation from XML to HTML, XML to XML, XSL to

XSL and so on. This kind of transformation can be done on the server side or the

client side. Since Internet Explorer 5 (IE5) has already supported XSL technology,

the current ZML environment is based on client side (browser) transformation (server

side transformation will be discussed later). A partial XSL stylesheet segment for

displaying operation op and class definition classdef is defined below.
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<xsl:template match="op[@layout=’simpl’]">

<html>

<tr>

...

<td height="24" valign="middle" align="left" nowrap="true">

<i><xsl:value-of select="name"/></i>

...

</td>

...

</tr>

<xsl:for-each select="delta | decl">

<xsl:apply-templates select="."/>

</xsl:for-each>

<xsl:apply-templates select="st"/>

<xsl:for-each select="predicate">

<xsl:apply-templates select="."/>

</xsl:for-each>

...

</html>

</xsl:template>

<xsl:template match="classdef[@layout=’simpl’] |

classdef[@layout=’gen’]">

<html>

...

<a><xsl:attribute name="name">

<xsl:value-of select="name"/>

</xsl:attribute></a>

...

<xsl:apply-templates select="state"/>

<xsl:apply-templates select="init"/>

<xsl:apply-templates select="op"/>

...

</html>

</xsl:template>

The XSL stylesheet defines a match method for each tag in the XML structure and

describes the corresponding HTML codes. From the example above, in matching the
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Figure 3.1: Stack specification on Web

‘op’ tag the XSL will display the operation name, ∆-list, declaration and predicates

accordingly; in matching the ‘classdef’ tag the XSL will first convert the class name

into an HTML bookmark for the type reference usage and then apply the templates of

drawing state schema, initiation schema, operations and so on. To apply a template

in XSL is similar to making a function call in a programming language, and each

template will perform its own transformation. When authoring Z family specifications

in our ZML format, the users only need to construct their ZML files and add a URL

to the defined XSL stylesheet location as follows:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl"

href="http://nt-appn.comp.nus.edu.sg/fm/zml/objectzed.xsl"?>

With this link, the browser will automatically transform a ZML document into the

desired HTML output via the built-in XML parser. This process is totally user

transparent and much faster than the Java applet approaches [5, 11]. For example,
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the Stack and ActiveStack classes in ZML format specified previously is transformed

into HTML as in Figure 3.1.

Note that by clicking the ‘plus’ button the expanded version of class “ActiveStack”

will be displayed. A full demonstration of the Stack specification example is available

at

http://nt-appn.comp.nus.edu.sg/fm/zml/xml-web/stack.xml.

3.3.3 Extensive browsing facilities

In the previous section we showed how the Z family notations can be elegantly and

statically presented on the Web. To make the environment more powerful and user

friendly, some advanced functionalities are developed. This section discusses the

extensive browsing facilities for type reference, class inheritance expansion and schema

calculus expansion.

Type referencing

When building a large formal model, which could include many type definitions and

references, users often want to recall the definition of a particular type. Type ref-

erencing allows the user to browse back to the actual type definition and quickly

access the corresponding type declarations. In a predicate or declaration, by clicking
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the name of the type, the user will be brought to the location where the type was

declared. This is very useful for specification understanding.

This functionality is achieved in two steps. Firstly when a type definition node in XML

is transferred to HTML, its name is converted into an HTML bookmark. Secondly,

when the user needs to reference a type in a declaration or predicate, a hyper link

that points to the defined bookmark was created. The XSL template for the type

node is shown as follows:

<xsl:template match="type">

<xsl:choose>

<xsl:when test="//classdef[$any$ name=context(-1)] |

//tydef[$any$ name=context(-1)] |

//schemadef[$any$ name=context(-1)]">

<a>

<xsl:attribute name="href">#<xsl:value-of/>

</xsl:attribute><xsl:value-of/>

</a>

</xsl:when>

<xsl:otherwise>

<xsl:value-of/>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

It tests whether any name of class definition, basic type definition or schema definition

is equivalent to the current type name. If such a name exists, a type hyper-link is

established.
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Class inheritance expansion

Inheritance is a mechanism for incremental specification, whereby new classes may

be derived from one or more existing classes.

Essentially, in Object-Z all definitions are pooled with the following provisions. In-

herited type and constant definitions and those declared in the derived class are

merged. The state and initialization schemas of derived classes and those declared

in the derived class are conjoined. Operation schemas with the same name are also

conjoined. Name clashes, which would lead to unintentional merging or conjunction,

can be resolved by renaming when inheriting. The inheritance in TCOZ is similar

to inheritance in Object-Z except there are some slight differences in inheriting the

MAIN operation.

The aim of the class inheritance expansion is to allow a user to view the full definition

of a derived class. In the ActiveStack class case (in the right hand side of Figure 3.1),

when a user clicks the button ‘+’, the full definition of the class of ActiveStack will

be shown. Clicking button ‘−’ is for going back to the un-expanded version.

The challenge to achieve this facility is in how the completed definition of an inherited

class can be automatically constructed from individual class definitions and how to

control the presentation of different expanded and non-expanded definitions of a class.

To construct the full expanded version of an inheriting class, it is necessary to access
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and analyze each of the related XML class definition nodes, and some manipula-

tion is done based on the class inheritance definition. It is a complicated process

which is hard to achieve from the simple XSL commands, such as <xsl:match> and

<xsl:select>. Fortunately Microsoft has extended two XSL elements <xsl:script> and

<xsl:eval> to help the user to perform some complex calculations (As an extension

from Microsoft, these two XSL commands are not supported by browsers from non-

Microsoft platforms, such as Netscape. Section 3.3.4 will focus on the transformation

for the non-Microsoft platforms.) The script node can hold a piece of script for func-

tion definitions or variable declarations. The ‘eval’ element allows a user to generate

a text node in the destination document using script. <xsl:script> and <xsl:eval>

will be used to automatically construct the full expanded definition of an inheriting

class.

We also need to control the visibility of the two versions of definitions (expanded and

non-expanded) based on the user requirements, which can be achieved by DHTML

and JavaScript. For each of the expandable classes two blocks of HTML content are

created using <div> or <layer> elements. Each of the blocks contains one version

of the class definition. We swap the visibility of these two blocks based on user

requirements by the following JavaScript.

<xsl:template match="/">

<html>

<head>

<title>Web browsing Formal Specification</title>
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<SCRIPT language="JavaScript">

<xsl:comment>

<![CDATA[

<!-- some definition omitted here -->

//a, b are block id.

function showclass(a, b) {

a.style.display="block";

b.style.display="none";

}

function hide(a, b) {

b.style.display="block";

a.style.display="none";

}

<!-- some definition omitted here -->

]]></xsl:comment>

</SCRIPT>

</head>

<body>

<!-- some definition omitted here -->

</body>

</html>

</xsl:template>

Schema inclusion and schema calculus expansion

The purpose of extending schema inclusion and schema calculus is similar to class

inheritance expansion, which is giving the user a full picture of a schema definition.

Strictly speaking, schema inclusion refers to including a schema in the declaration

part of another schema. In this chapter we also include ∆ and Ξ declaration used

in operation schema as one form of schema inclusion. The meaning for each form of

inclusion is given here.
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In general, including a schema in the declaration part of another schema means that

the included schema has its declaration added to the new schema, and its predicate

conjoined to the predicate of the new schema. Figure 3.2 shows how StackInit schema

which includes Stack schema was expanded.

The ∆ naming convention is an abbreviation for the schema that includes both the

unprimed “before” and the primed “after” state. In ∆ schemas the predicate is

always repeated with the primed variables. Figure 3.3 shows how schema Push which

contains ∆Stack was expanded.

The Ξ symbol indicates an operation where the state does not change. The declaration

part of the Ξ convention is the same as the declaration part of the ∆ convention, but

the predicate has, in addition to the predicates of the ∆ convention, more items to

ensure that the state is unchanged.

Schema calculus is used to build complex schema from simple ones. The expan-

sion for schema calculus expresses the schema box forms definition of a schema,

which is defined by the schema calculus. The schema calculus expansion has two

approaches, partial expansion, which does not expand included schema and full ex-

pansion, which expands the entire included schema. There are several main schema

operators: schema conjunction, schema disjunction, schema composition, schema pip-

ing and schema negation. Our Web environment supports all of them. The expanding

requirements for each operator are defined as follows:
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Figure 3.2: Schema inclusion expansion
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Figure 3.3: ∆ convention expansion
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Schema conjunction The declaration part of a schema defined by schema conjunc-

tion is obtained by merging the declarations of the schemas on the right-hand

side, as explained for schema inclusion. The predicate part is the conjunction of

the predicate parts of the schemas on the right, including the implicit predicates.

Schema disjunction The declaration part of a schema defined by schema disjunc-

tion is obtained by merging the declarations of the schemas on the right-hand

side. The predicate part is the disjunction of the predicate parts of the schemas

on the right.

Schema composition The property of schema composition is constructed as fol-

lows. The property of the first schema is included, but all the dashed names are

redecorated with a decorator not used in either schema. The property of the

second schema is included, but all the undashed names are decorated with the

same decorator as was used in the first schema. The newly decorated names

are hidden with an existential quantifier.

Schema piping The schema defined by piping two schemas is constructed as follows.

The output of the first schema is matched with inputs of the second schema.

For each matching output and its corresponding input, a name not in scope is

chosen, and both are renamed to it. The predicates from two schema combined

by conjunction, and the new name are hidden.
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Schema negation To negate a schema, we expand all the included schemas, and

negate the predicate of the expanded schema.

Figure 3.4 and 3.5 show both partial and full expansion of the schema Transit , which

was defined by the schema composition as:

Transit =̂ Push; Pop

3.3.4 Server side transformation

As mentioned in Section 3.3.2 the current ZML Web environment is based on client

(browser) side transformation. It is not compatible with browsers that do not support

XSL technology presently such as Netscape. To make the ZML environment available

to all kinds of browsers, we can perform the transform on the server side and send

back pure HTML to the browsers. XSL transformation on the server is bound to be

a major part of the Internet Information Server (IIS) work tasks in the future, as we

will see a growth in the specialized browser market (for example the use of Braille,

Speaking Web, Web Printers, Handheld PCs, Mobile Phones ... [94]). The following

Active Server Pages (ASP) code for transforming the XML file to HTML on the server

side can achieve this.

<%
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Figure 3.4: Schema calculus partial expansion
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Figure 3.5: Schema calculus full expansion
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’Load the XML

set xml = Server.CreateObject("Microsoft.XMLDOM")

xml.async = false

xml.validateOnParse = true

xml.load(Server.MapPath("stack.xml"))

’Load the XSL

set xsl = Server.CreateObject("Microsoft.XMLDOM")

xsl.async = false

xsl.load(Server.MapPath("objectzednewnt.xsl"))

’Transform the file

Response.Write(xml.transformNode(xsl))

%>

The first block of code creates an instance of the Microsoft XML parser, and vali-

dates and loads the XML file into memory. The Microsoft XML parser is a COM

component that implements the W3C XML Document Object Model (DOM). As a

W3C specification, the objective for the XML DOM has been to provide a standard

programming interface to a wide variety of applications for accessing and manipu-

lating XML documents. The second block of code creates another instance of the

parser and loads the XSL document into memory. The last line of code transforms

the ZML document via the XSL style sheet, and then returns the resultant HTML

to the browser.
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3.4 Conclusions

The main contribution of this chapter is the demonstration of the XML/XSL approach

to the development of a Web browsing environment for Z family languages. The ZML

Web environment includes the auto type referencing and browsing facilities such as

the Z schema calculus and Object-Z/TCOZ inheritance expansions.

Our ideas for putting Z family on the Web can be easily adopted by other formal

specification notations, such as VDM and VDM++. In fact, since TCOZ includes

most Timed CSP constructs, its Web environment can be used for process algebra

(CSP/Timed-CSP) specifications. Perhaps this may create a new culture for con-

structing formal specifications on the Web in XML rather than in LATEX. We hope it

can be the starting point for developing a standard XML environment for all formal

notations (including integrated formal notations, i.e., RAISE [65], SOFL [50] and so

on): a formal specification Markup Language (FML). This may also make an impact

on formal methods education through the Web.

Since we have constructed a Web XSL environment as close as possible to the LATEX style

files for Z/Object-Z (fuzz.sty and oz.sty), one immediate work is to develop a transla-

tion tool to map existing Z/Object-Z specifications in LATEX to the ZML format [67].

Perhaps a reverse tool is also necessary as long as LATEX is not totally replaced by

XML technology.



Chapter 4

Semantic Web for Extending and

Linking Formalisms

This chapter presents a flexible Semantic Web environment for formal specification

languages.
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4.1 Introduction

Various formal notations are often extended and combined for modelling large and

complex systems. Unlike UML [72], an industrial effort for standardizing diagram-

matic notations, a single dominating integrated formal method may not exist in the

near future. The reason may be partially due to the fact that there are many different

well established individual schools, e.g., VDM forum, Z/B users, CSP group, CCS/π-

calculus family etc. Another reason may be due to the open nature of the research

community, i.e. FME (www.fmeurope.org), which is different from the industrial

‘globalization’ community, i.e. OMG (www.omg.org).

Regardless of whether there will be or there should be an ultimate integrated formal

method (like UML), diversity seems to be the current reality for formal methods and

their integrations. Such diversity may have an advantage, that is, different formal

methods and their combinations may be effective for developing various kinds of

complex systems. The best way to support and popularize formal methods and

their effective combinations is to build a widely accessible, extensible and integrated

environment.

In Chapter 3 a new environment for browsing the Z families formal models on the Web

was developed. However under this environment, the formalisms are difficult to extend

and integrate. The reason is that XML focuses on the syntax of the document – how
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the document was presented. XML defines the number of elements of certain types,

their attributes and ordering, and the sorts of text that can appear in datatypes.

When extending or integrating formalisms, we focus more on the semantic of the

language. For example, to integrate Object-Z with CSP, we care about whether a

resource is a class or operation, not in what kind of syntax the resource was encoded.

The SW related techniques, like RDF, are about things in the world - people who

have names, create documents, have friends. RDF is about real things in the world

not the documents that describe them. This makes SW a good candidate to provide

a widely accessible, extensible and integrated environment for formalisms.

The main contribution of the Semantic Web environments for formalisms is that

they provide formal specifications on the Web together with additional semantic in-

formation. Furthermore, they facilitate collaborative formal design and some static

semantics checking. For instance, given two CSP processes P1 and P2, the following

incorrect CSP expression

P1 → P2

will be detected by the CSP Semantic Web environment via an RDF validator. This

thesis will focus on how these environments can be easily extended and integrated to

form new environments for the extension and combination of formalisms.

In this chapter we first use Z [98] and CSP [38] as examples to demonstrate how

a Semantic Web environment for formal specification languages can be developed.
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After that we show these environments can be further extended and integrated. Fur-

thermore we illustrate how specification comprehension can be supported by RDF

queries.

4.2 Semantic Web for formal specifications

4.2.1 Semantic Web environment — DAML+OIL for Z

Firstly, a DAML+OIL definition for the Z language is developed according to its

syntax and static semantics. This definition (a DAML+OIL ontology itself) provides

information about the interpretation of the statements given in a Z-RDF instant data

model. Part of the DAML+OIL definitions (for constructing a Z schema) is as follows:

<rdf:RDF

xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs = "http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd = "http://www.w3.org/2000/10/XMLSchema#"

xmlns:daml = "http://www.daml.org/2001/03/daml+oil#"

xmlns:z = "http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#">

<!-- some definition omitted -->

<rdfs:Class rdf:ID="Schemadef">

<rdfs:label>Schemadef</rdfs:label>

</rdfs:Class>

<rdfs:Class rdf:ID="Schemabox">

<rdfs:label>Schemabox</rdfs:label>

<rdfs:subClassOf rdf:resource="#Schemadef"/>

<rdfs:subClassOf>

<daml:Restriction daml:cardinalityQ="1">
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<daml:onProperty rdf:resource="#name"/>

</daml:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<daml:Restriction daml:minCardinality="0">

<daml:onProperty rdf:resource="#del"/>

<daml:toClass rdf:resource="#Schemadef"/>

</daml:Restriction>

</rdfs:subClassOf>

<!-- some definition omitted -->

<rdfs:subClassOf>

<daml:Restriction daml:minCardinality="0">

<daml:onProperty rdf:resource="#decl"/>

</daml:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<daml:Restriction daml:minCardinality="0">

<daml:onProperty rdf:resource="#predicate"/>

</daml:Restriction>

</rdfs:subClassOf>

</rdfs:Class>

(note that xmlns stands for XML name space)

The DAML+OIL class Schemadef represents the Z schemas. The class Schemabox,

a subclass of Schemadef, represents the Z schemas defined in schema box form. The

class Schemabox models a type whose instance may consist of a name, a number of

declarations decl and some predicate definitions. In addition, a Schemabox instance

may also have zero or more properties del whose value must be another Schemadef

instance (for capturing the Z ∆-convention). As the thesis focuses on demonstrating

the approach, other Semantic Web environments for Z constructs are left out but can
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be found at:

http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z.daml

Under the Semantic Web environment for the Z language, Z specifications as RDF

instance files can be edited (by any XML editing tool).

The Z notation contains a rich set of mathematical symbols. The unicode DTD

defined in Chapter 3 is reused here. We have developed an XSLT program (http://nt-

appn.comp.nus.edu.sg/fm/zdaml/rdf2zml.xsl) to transform the RDF environment into

ZML, the XML environment for display/browsing Z on the Web directly (using the

IE Web browser).

The following is a simple Buffer schema and a Join operation.

[MSG ]

Buffer
max : Z
items : seqMSG

#items ≤ max

Join
∆Buffer
i? : MSG

#items < max ∧
items ′ = 〈i?〉aitems ∧
max ′ = max

The partial of corresponding RDF definition is as Figure 4.1 which is a graphical

representation of the following RDF document.

<z:Type rdf:ID="msg">

<z:type>MSG</z:type>
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</z:Type>

<z:Schemabox rdf:ID="buffer">

<z:name>Buffer</z:name>

<z:decl> <z:Decl z:name="max" z:dtype="&integer;"/> </z:decl>

<z:decl> <z:Decl z:name="items" z:dtype="&seq; MSG"/> </z:decl>

<z:predicate> #items &leq; max </z:predicate>

</z:Schemabox>

<z:Schemabox rdf:ID="join">

<z:name>Join</z:name>

<z:del rdf:resource="#buffer"/>

<z:decl> <z:Decl z:name="i?" z:dtype="MSG"/> </z:decl>

<z:predicate>#items &lt; max &land;

items’= &lseq; i? &rseq; &cat; items &land; max’ = max

</z:predicate>

</z:Schemabox>

Note that the RDF file is in XML format which can be edited by XML editing tools,

i.e. XMLSpy. Alternatively, this RDF specification can be treated as an interchange

format which can be generated from ZML or from LATEXvia our tools.

4.2.2 Semantic Web environment — DAML+OIL for CSP

Similarly a Semantic Web environment for CSP can be constructed based on its

definition. Part of the DAML+OIL definitions (for constructing a CSP process) is as

follows:

<!-- some definition omitted -->

<rdfs:Class rdf:ID="Event">

<rdfs:label>Event</rdfs:label> </rdfs:Class>

<rdfs:Class rdf:ID="Process">

<rdfs:label>Process</rdfs:label> </rdfs:Class>
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Figure 4.1: Z in Semantic Web environment

<rdfs:Class rdf:ID="Simevent">

<rdfs:label>SimpleEvent</rdfs:label>

<!-- some definition omitted -->

</rdfs:Class>

<rdfs:Class rdf:ID="Communication">

<rdfs:label>Communication</rdfs:label>

<rdfs:subClassOf rdf:resource="#Event"/>

<!-- some definition omitted -->

</rdfs:Class>

<!--STOP process-->

<rdfs:Class rdf:ID="Stop">

<rdfs:label>STOP</rdfs:label>
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<rdfs:subClassOf rdf:resource="#Process"/>

</rdfs:Class>

<!--prefix process-->

<rdfs:Class rdf:ID="PrefixPro">

<rdfs:label>prefixPro</rdfs:label>

<rdfs:subClassOf rdf:resource="#Process"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#prefix"/>

<daml:toClass rdf:resource="#Event"/>

</daml:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#toProc"/>

<daml:toClass rdf:resource="#Process"/>

</daml:Restriction>

</rdfs:subClassOf>

</rdfs:Class>

It states that there are two major kinds of constructs in CSP, events and processes.

Events can be classified into simple ones and communications containing channels

and messages. Processes can be classified into various forms including a special event

STOP, prefix, sequential etc. For example the parallel processes of process P1 and P2

will be represented in DAML+OIL as following:

<csp:ParallelPro>

<csp:subprocess rdf:resource="P1"/>

<csp:subprocess rdf:resource="P2"/>

</csp:ParallelPro>

As mentioned in before, these Semantic Web environments provide formal specifica-

tions on the Web together with additional semantic information, which make these
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environments easily extended and integrated to form new environments for the ex-

tension and combination of formalisms.

4.2.3 Extending Z to Object-Z

Object-Z [24, 80] is an object-oriented extension to Z. A Z specification defines a

number of state and operation schemas. In contrast, Object-Z associates individual

operations with one state schema. The collective definition of a state schema with

its associated operations constitutes the definition of a class. Each class has one

state schema, at most one initial schema and number of operation schema. The

state schema can be viewed as a nameless Z schema. The initial schema can be

viewed as a Z schema which only contains some predicate properties. The following

demonstrates parts of the Semantic Web environment for Object-Z. It extends the Z

SW environment.

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#"

xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

xmlns:oz="http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#"

xmlns:z="http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#"

xmlns="http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#">

<daml:Ontology rdf:about="">

<daml:imports rdf:resource=

"http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z"/>

</daml:Ontology>
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<rdfs:Class rdf:ID="State">

<rdfs:label>State</rdfs:label>

<rdfs:subClassOf rdf:resource="z:Schemabox"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="z:name"/>

<daml:hasValue>

<xsd:string rdf:value=""/>

</daml:hasValue>

</daml:Restriction>

</rdfs:subClassOf>

</rdfs:Class>

<rdfs:Class rdf:ID="Init">

<rdfs:label>INIT</rdfs:label>

<!-- some definition omitted -->

</rdfs:Class>

<rdfs:Class rdf:ID="OP">

<rdfs:label>OP</rdfs:label>

<!-- some definition omitted -->

</rdfs:Class>

<rdfs:Class rdf:ID="Message">

<rdfs:label>Message</rdfs:label>

<rdfs:subClassOf rdf:resource="#OP"/>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="oz:receiver"/>

</daml:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#method"/>

<daml:toClass rdf:resource="#OP"/>

</daml:Restriction>

</rdfs:subClassOf>

</rdfs:Class>

<!-- some definition omitted -->

<rdfs:Class rdf:ID="Classdef"/>
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<rdfs:Class rdf:ID="Classdef1">

<rdfs:label>Classdef1</rdfs:label>

<rdfs:subClassOf rdf:resource="#Classdef"/>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="z:name"/>

</daml:Restriction>

</rdfs:subClassOf>

<!-- some definition omitted -->

<rdfs:subClassOf>

<daml:Restriction>

<daml:maxCardinality>1</daml:maxCardinality>

<daml:onProperty rdf:resource="#state"/>

<daml:toClass rdf:resource="#State"/>

</daml:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#op"/>

<daml:toClass rdf:resource="#OP"/>

</daml:Restriction>

</rdfs:subClassOf>

</rdfs:Class>

<daml:DatatypeProperty rdf:ID="delObj">

<rdfs:range rdf:resource=

"http://www.w3.org/2000/10/XMLSchema#string"/>

</daml:DatatypeProperty>

</rdf:RDF>

This Object-Z Semantic Web environment imports the definition of Z. Note that

Message class is used to define message passing. It consists of a receiver property

(object reference) and a method property (the operation of the declared class of the

receiver).



4.2. SEMANTIC WEB FOR FORMAL SPECIFICATIONS 91

A Classdef1 class (an Object-Z class defined by a class box) was defined to have the

following properties.

• a name property,

• a state property whose value must be a State class object,

• some op properties whose values must be OP class objects etc.

The State class is a subclass of Schemabox (class for a Z schema defined in schema box

form). That is a State object is a special Schemadef object satisfying the restriction

that the name property has no value. The OP class is the same as class Schemadef

(for Z schema) except a new property delObj was added to it. This is due to the

difference between the semantic requirements of ∆ list in Z and Object-Z. In Z the

entity following ∆ is the name of state schema name, and in Object-Z the entity

following the ∆ are variables defined in the class state schema.

Consider the buffer example in Object-Z:

Buffer

max : N
items : seqMSG

#items ≤ max

Init
items = 〈 〉
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Join
∆(items)
i? : MSG

#items < max

items ′ = 〈i?〉aitems

Leave
∆(items)
i ! : MSG

#items 6= 0

items = items ′ a 〈i !〉

Under the Semantic Web environment this Buffer class can be edited as the following

RDF file.

<oz:Classdef1 rdf:ID="buffer">

<z:name>Buffer</z:name>

<oz:state>

<oz:State>

<z:decl> <z:Decl z:name="max" z:dtype="&integer;"/> </z:decl>

<z:decl> <z:Decl z:name="items" z:dtype="&seq; MSG"/> </z:decl>

<z:predicate>#items &leq; max</z:predicate>

</oz:State>

</oz:state>

<!-- some definition omitted -->

<oz:op>

<oz:OP rdf:ID="join">

<z:name>Join</z:name>

<oz:delObj> items</oz:delObj>

<z:decl> <z:Decl z:name="i?" z:dtype="MSG"/> </z:decl>

<z:predicate>#items &lt; max &land;

items’= {i?} &cat; items

</z:predicate>

</oz:OP>

</oz:op>

</oz:Classdef1>



4.2. SEMANTIC WEB FOR FORMAL SPECIFICATIONS 93

4.2.4 Extending CSP to TCSP

The extension from CSP to TCSP can be achieved in a similar way. The following is

part of the Semantic Web environment for TCSP.

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#"

xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

xmlns:tcsp="http://nt-appn.comp.nus.edu.sg/fm/zdaml/TCSP#"

xmlns:csp="http://nt-appn.comp.nus.edu.sg/fm/zdaml/CSP#"

xmlns="http://nt-appn.comp.nus.edu.sg/fm/zdaml/TCSP#">

<daml:Ontology rdf:about="">

<daml:imports rdf:resource=

"http://nt-appn.comp.nus.edu.sg/fm/zdaml/CSP"/>

</daml:Ontology>

<!--timed event-->

<rdfs:Class rdf:about="csp:Event">

<rdfs:subClassOf>

<daml:Restriction daml:minCardinality="0">

<daml:onProperty rdf:resource="#etime"/>

</daml:Restriction> </rdfs:subClassOf>

</rdfs:Class>

<daml:DatatypeProperty rdf:ID="etime">

<rdfs:range rdf:resource=

"http://www.w3.org/2000/10/XMLSchema#string"/>

</daml:DatatypeProperty>

<!--Wait process-->

<rdfs:Class rdf:ID="Wait">

<rdfs:label>WAIT</rdfs:label>

<rdfs:subClassOf rdf:resource="#process"/>

<daml:Restriction daml:minCardinality="0">

<daml:onProperty rdf:resource="#etime"/>

</daml:Restriction> </rdfs:subClassOf>

</rdfs:Class>

<!-- some definition omitted -->
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This TCSP environment is derived by first importing the definition of CSP, and then

defining a new property etime for the events in CSP. The property etime shows

the time of occurrence of events. Several new types of process are also defined. For

example, the WAIT process is just a subclass of a general process.

One interesting point is that the physical size or number of ‘subclass’ clauses in the

DAML+OIL file (above) may provide an indication of the degree of extension (how

much modification and extension has been developed in the new language). Such a

concrete number or ratio may give us some quantified comparison, perhaps indicating

how new (or faithful) is Object-Z relative to Z, TCSP to CSP or VDM++ to VDM.

In the next section, we will focus on one of the essential parts of this chapter – the

use of the Semantic Web for linking formalisms.

4.3 Semantic Web for linking formalisms

Various modelling methods can be used in an effective combination for designing com-

plex systems if the semantic links between those methods can be clearly established

and defined. Given two sets of formalisms, say state-based ones and event-based ones,

it is not too surprising to see that different possible integrations are more than the

cross-product of the two sets. This is simply because the different semantic links

between the two formalisms lead to different integrations. Furthermore, the semantic
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links can be uni-directional and bi-directional.

Let’s consider the case of linking Object-Z and CSP. Smith and Derrick’s approach [81]

is to identify Object-Z operations with CSP channel/events and Object-Z classes with

CSP processes. The CSP-OZ approach taken by Fischer and Wehrheim [29] is similar

to Smith and Derrick’s approach except that it divides each Object-Z operation into

two separate operations (enable and effect events). The TCOZ approach [55] identifies

Object-Z operations with CSP processes.

Despite the differences, all those integrations are useful for modelling different kinds

of complex systems. For example, Smith and Derrick’s approach is good at modelling

a system with a group of simple passive components and complex concurrent inter-

actions (at a system level) between those components. On the other hand, TCOZ

is good at modelling a system with complex components which may have their own

thread of control and support multi-layer compositions and concurrency.

In this section, we will demonstrate how the Object-Z and (T)CSP Semantic Web

environments can be linked to support both the Smith/Derrick and TCOZ approaches.

4.3.1 class =⇒ process

In Smith/Derrick’s approach [81], Object-Z classes are modelled as CSP processes

and the Object-Z operations are modelled as CSP events. The event corresponding



4.3. SEMANTIC WEB FOR LINKING FORMALISMS 96

to an operation is a communication event with the operation name as the channel and

the mapping from its parameters to their values as the value passed on that channel.

In this approach any two operations with the same name and parameters will be

modelled by identical events when their parameters have the same values and hence

will be able to synchronize. There are two main phases in specifying a concurrent

system.

• The first phase is to decompose the complex system into components and specify

each of these components using Object-Z.

• The second phase involves the specification of the system using CSP operators.

Considering the specification of two communicating buffers, the following model

demonstrates this approach:

Buffer1 =̂ Buffer [Transfer/Leave]
Buffer2 =̂ Buffer [Transfer/Join]
System =̂ Buffer1 |[Transfer ]|Buffer2

where the two buffers (Buffer1 and Buffer2) communicate through channel Transfer .

The semantic environment for this approach can be achieved in the following way:

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#"

xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
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xmlns:oz="http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#"

xmlns:csp="http://nt-appn.comp.nus.edu.sg/fm/zdaml/CSP#"

xmlns:app1="http://nt-appn.comp.nus.edu.sg/fm/zdaml/APP1#">

<daml:Ontology rdf:about="">

<daml:imports rdf:resource=

"http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ"/>

<daml:imports rdf:resource=

"http://nt-appn.comp.nus.edu.sg/fm/zdaml/CSP"/>

</daml:Ontology>

<rdfs:Class rdf:about="oz:Classdef">

<rdfs:subClassOf rdf:resource="csp:Pro"/>

</rdfs:Class>

<rdfs:Class rdf:about="oz:OP">

<rdfs:subClassOf rdf:resource="csp:Event"/>

</rdfs:Class>

<!--operation is one kind of process-->

</rdf:RDF>

It firstly imports the definition of CSP and Object-Z. The Object-Z class is declared as

a subclass of the CSP process and the Object-Z operation (extended from Z operation

schema) is declared as a subclass of the CSP event.

The above two buffers example can be encoded in the Semantic Web environment in

the following way:

<oz:Classdef2 rdf:ID="buffer1">

<z:name>Buffer1</z:name>

<oz:rename> Transfer/Leave</oz:rename>

<oz:eqclass rdf:resource="#buffer"/> </oz:Classdef2>

<oz:Classdef2 rdf:ID="buffer2">

<z:name>Buffer2</z:name>

<oz:rename> Transfer/Join</oz:rename>

<oz:eqclass rdf:resource="#buffer"/> </oz:Classdef2>

<oz:Classdef2 rdf:ID="system">

<z:name>System</z:name>
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<oz:eqclass>

<csp:ParallelPro>

<csp:subprocess rdf:resource="buffer1"/>

<csp:subprocess rdf:resource="buffer2"/>

<csp:ParaSync>Transfer</csp:ParaSync>

</csp:ParallelPro> </oz:eqclass>

</oz:Classdef2>

4.3.2 operation ⇐⇒ process

The TCOZ approach is to identify Object-Z operations as CSP processes and all the

communication must go through the explicitly declared channels. The behavior of

an active object is explicitly captured by a CSP process. To achieve this approach

several new elements are introduced. They are:

Chan A channel is declared in an object’s state.

Main This process defines the dynamic control behavior of an active object.

The environment for this approach can be achieved in the following way:

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#"

xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

xmlns:tcoz="http://nt-appn.comp.nus.edu.sg/fm/zdaml/TCOZ#"

xmlns:oz="http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#"

xmlns:csp="http://nt-appn.comp.nus.edu.sg/fm/zdaml/CSP#"
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xmlns="http://nt-appn.comp.nus.edu.sg/fm/zdaml/TCOZ#">

<daml:Ontology rdf:about="">

daml:imports rdf:resource=

"http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ"/>

<daml:imports rdf:resource=

"http://nt-appn.comp.nus.edu.sg/fm/zdaml/CSP"/>

</daml:Ontology>

<rdfs:Class rdf:about="oz:State">

<rdfs:subClassOf>

<daml:Restriction daml:minCardinality="0">

<daml:onProperty rdf:resource="csp:chan"/>

</daml:Restriction>

</rdfs:subClassOf>

<!-- the channel can be declared in sate schema-->

</rdfs:Class>

<daml:ObjectProperty rdf:ID="MAIN">

<rdfs:range rdf:resource="csp:Process"/>

<rdfs:domain rdf:resource="#Classdef"/>

</daml:ObjectProperty>

<rdfs:Class rdf:about="oz:OP">

<rdfs:subClassOf rdf:resource="csp:Process"/>

</rdfs:Class>

<rdfs:Class rdf:about="csp:Process">

<rdfs:subClassOf rdf:resource="oz:OP"/>

</rdfs:Class>

<!--operation is one kind of process-->

</rdf:RDF>

Note that the DAML+OIL allows the subclass-relation between classes to be cyclic,

since a cycle of subclass relationships provides a useful way to assert equality between

classes. In TCOZ, the two communicating buffer system (with timing constraints on

input and output operations) can be modelled as:
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TBuffer
Buffer

left , right : chan [input and output channels]
tj , tl : T [time durations for Join and Leave operations]

Main =̂ µQ • ([i : MSG ] • left?i → Join • Deadline tj 2

[size 6= 0] • right !last(items) → Leave • Deadline tl); Q

TSystem

l : TBuffer [middle/right ]
r : TBuffer [middle/left ]

Main =̂ l |[middle ]| r

In the Semantic Web environment, the class TSystem can be encoded as follows:

<oz:Classdef1 rdf:ID="tsystem">

<z:name>TSystem</z:name>

<oz:state> <oz:State>

<z:decl>

<z:Decl z:name="l" z:dtype="TBuffer[middle/right]"/></z:decl>

<z:decl>

<z:Decl z:name="r" z:dtype="TBuffer[middle/left]"/></z:decl>

</oz:State> </oz:state>

<oz:MAIN>

<csp:parallelPro>

<csp:subprocess> <oz:Message oz:receiver="l"

oz:method="#TBMAIN"></oz:Message> </csp:subprocess>

<csp:subprocess> <oz:Message oz:receiver="r"

oz:method="#TBMAIN"></oz:Message> </csp:subprocess>

<csp:ParaSync>middle</csp:ParaSync>

</csp:parallelPro> </oz:MAIN>

</oz:Classdef1>

Clearly, unlike Smith and Derrick’s approach, TCOZ is not a simple integration of

Object-Z and TCSP, like CSP-OZ, TCOZ extends the two base notations with some
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new language constructs. Another distinct difference is that the semantic link between

operation vs. process in TCOZ is bi-directional (⇐⇒), while in Smith and Derrick’s

approach, the semantic link between class and process has a single direction (=⇒).

By building the Semantic Web environments for the two approaches, one can improve

the understanding of the difference. Such a Semantic Web environment is applicable

for many other integrated formalisms.

4.4 Specification comprehension

One of the major contributions of the RDF model, introduced by the Semantic Web

community, is that it allows us to do more accurate and more meaningful search-

ing. This strength of RDF can be applied in the specification context leading to

the notion of specification comprehension. Useful RDF queries can be formulated for

comprehending specification models particularly when models are large and complex.

There are many RDF query systems available or under development. In this thesis

the RDFQL [42], an RDF query language developed by Intellidimension, is used to

demonstrate some queries which can be achieved in the environment.

Based on our simple Buffer and TBuffer examples, the following demonstrates various

queries expressed in RDFQL.
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Figure 4.2: Find all the sub-classes

4.4.1 Inter-class queries

Two typical queries can be formulated for searching and understanding class relation-

ships, such as inheritance hierarchy and composition structure.

(Inheritance) Find all the sub-classes derived from the class Buffer (Figure 4.2)

Query:

select ?c_name using buffer where

{[http://www.w3.org/1999/02/22-rdf-syntax-ns#type]

?c [http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#Classdef1]}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?c ’Buffer’}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#inherit] ?derivedc ?c}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?derivedc ?c_name}

Result: TBuffer
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Here we only present the usage of the underlying query engine. To make this tool

more useful, a cleaner interface is needed. A GUI is Currently being implemented by

the group1.

(Composition:) Find all classes containing Buffer instances (as attributes)

Query:

select ?c_name using buffer where

{[http://www.w3.org/1999/02/22-rdf-syntax-ns#type]

?c [http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#Classdef1]}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?c ?c_name}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#state] ?c ?s}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#decl] ?s ?d}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#dtype] ?d ?dt}

and (INSTR(?dt, ’Buffer’) = 1)

Result: TSystem

4.4.2 Intra-class queries

A number of queries can be built for search/understanding class content (this is useful

particularly when a class is large and has many operations).

Find all the operations which may change the attribute items :

1I am very glad to see when I submit the final version of this thesis, the GUI has been built

successfully
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Query:

select ?op_name using buffer where

{[http://www.w3.org/1999/02/22-rdf-syntax-ns#type]

?c [http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#Classdef1]}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?c ’Buffer’}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#op] ?c ?op}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#delObj] ?op ’items’}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?op ?op_name}

Result: Join, Leave

Find all the constant attributes in a class:

Query:

select ?att using buffer where

{[http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#state] ?c ?sta}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#decl] ?sta ?decl}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?decl ?att}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#delObj] ?op ?att1}

and (?att <> ?att1)

Result: max

Find all the operations which have the same interface (with common base names for

output and input):

Query:

select ?op_name1 ?op_name2 using buffer where

{[http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#op] ?c1 ?op1}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/OZ#op] ?c2 ?op2}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?op1 ?op_name1}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?op2 ?op_name2}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#decl] ?op1 ?d1}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?d1 ?n1}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#decl] ?op2 ?d2}

and {[http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#name] ?d2 ?n2}

and (?op1 <> ?op2) and (STRCMP(regexp(?n1,’*!’), regexp(?n2,’*?’))= 0)

Result: ’Join’ ’Leave’
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4.5 Chapter summary

This chapter focuses on building a Semantic Web (RDF/DAML+OIL) environment

for supporting, extending and integrating many different formalisms. Such a meta

integrator may bring together the strengths of various formal methods communities

in a flexible and widely accessible fashion. The Semantic Web environment for formal

specifications may lead to many benefits. One novel application which has been

demonstrated in this chapter is the notion of specification comprehension based RDF

query techniques. The review process of a large specification can be facilitated by

various RDF queries.





Chapter 5

Checking and Reasoning About

Semantic Web Through Alloy

In this chapter, we present how existing formal tools can be used to reason about SW

ontologies.
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5.1 Introduction

In the development of the Semantic Web there is a pivotal role for ontology, since it

provides a representation of a shared conceptualization of a particular domain that

can be communicated between people and applications. Reasoning can be useful at

many stages during the design, maintenance and deployment of ontology. Because

autonomous software agents may perform their reasoning and come to conclusions

without human supervision, it is essential that the shared ontology is consistent.

However, since the Semantic Web technology is still in the early stage, the reasoning

and consistency checking tools are primitive.

The software modelling language Alloy [44] is suitable for specifying structural proper-

ties of software. SW is a well suited application domain for Alloy because relationships

between Web resources are the focus points in SW and Alloy is a first order declar-

ative language based on relations. Furthermore, Alloy specifications can be analyzed

automatically using the Alloy Analyzer (AA) [45]. Given a finite scope for a specifi-

cation, AA translates it into a propositional formula and uses SAT solving technology

to generate instances that satisfy the properties expressed in the specification. We

believe that if the semantics of the SW languages can be encoded into Alloy, then

Alloy can be used to provide automatic reasoning and consistency checking services

for SW. Various reasoning tasks can be supported effectively by AA.
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The remainder of the chapter is organized as follows. In section 5.2 semantic domain

and functions for the DAML+OIL constructs are defined in Alloy. Section 5.3 presents

the translation from DAML+OIL document to an Alloy program. In section 5.4

different reasoning tasks are demonstrated. Section 5.5 concludes the chapter.

5.2 DAML+OIL semantic encoding

DAML+OIL has a well-defined semantics which has been described in a set of ax-

ioms [27]. In this section based on the semantics of DAML+OIL, we define the se-

mantic functions for some important DAML+OIL primitives in Alloy. The complete

DAML+OIL semantic encoding can be found in Appendix D.

5.2.1 Basic concepts

The semantic model for DAML+OIL is encoded in the module DAMLOIL. Users only

need to import this module to reason about DAML+OIL ontology in Alloy.

module DAMLOIL

All the things described in the Semantic Web context are called resources. A basic

type Resource is defined as:

sig Resource {}
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All other concepts defined later are extended from the Resource. Property, which is a

kind of Resource itself, relates Resource to Resource.

disj sig Property extends Resource

{sub_val: Resource -> Resource}

Each Property has a relation sub val from set <Property, Resource, Resource> with

type <Resource, Resource, Resource> (since in Alloy subsignature does not introduce

a new type). This relation can be regarded as an RDF statement, i.e., a triple of the

form

<property(or predicate), subject, value(or object)>.

The class corresponds to the generic concept of type or category of resource. Each

Class maps a set of resources via the relation instances, which contains all the instance

resources. The keyword disj is used to indicate the Class and Property are disjoint.

disj sig Class extends Resource {instances: set Resource}

The DAML+OIL also allows the use of XML Schema datatypes to describe (or define)

part of the datatype domain. However there are no predefined types in Alloy, so we

treat Datatype as a special Class, which contains all the possible datatype values in

the instances relation.

disj sig Datatype extends Class {}
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5.2.2 Class elements

The subClassOf is a relation between classes. The instances in a subclass are also in

the superclasses. A parameterized formula (a function in Alloy) is used to represent

this concept.

fun subClassOf(csup, csub: Class)

{csub.instances in csup.instances}

The disjointWith is a relation between classes. It asserts that there are no instances

common with each other.

fun disjointWith (c1, c2: Class) {no c1.instances & c2.instances}

5.2.3 Property restrictions

A toClass function states that all instances of the class c1 have the values of property

P all belonging to the class c2.

fun toClass (p: Property, c1: Class, c2: Class)

{all r1, r2: Resource | r1 in c1.instances <=>

r2 in r1.(p.sub_val)=>r2 in c2.instances}

A hasValue function states that all instances of the class c1 have the values of property

P as resource r. The r could be an individual object or a datatype value.
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fun hasValue (p: Property, c1: Class, r: Resource)

{all r1: Resource | r1 in c1.instances => r1.(p.sub_val) = r}

A cardinality function states that all instances of the class c1 have exactly N distinct

values for the property P. The new version of Alloy supports some integer operations.

fun cardinality (p: Property, c1: Class, N: Int)

{all r1: Resource| r1 in c1.instances <=> # r1.(p.sub_val) = int N}

5.2.4 Boolean combination of class expressions

The intersectionOf function defines a relation between a class c1 and a list of classes

clist. The List is defined in the Alloy library. The class c1 consists of exactly all the

objects that are common to all class expressions from the list clist.

fun intersectionOf (clist: List, c1: Class)

{all r: Resource| r in c1.instances <=>

all ca: clist.*next.val | r in ca.instances}

The unionOf function defines a relation between a class c1 and a list of classes clist.

The class c1 consists of exactly all the objects that belong to at least one of the class

expressions from the list clist. It is analogous to logical disjunction;

fun unionOf (clist: List, c1: Class)

{all r: Resource| r in c1.instances <=>

some ca: clist.*next.val| r in ca.instances}
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5.2.5 Property elements

The subPropertyOf function states that psub is a subproperty of the property psup.

This means that every pair (subject,value) that is in psup is in the psub.

fun subPropertyOf (psup, psub: Property)

{psub.sub_val in psup.sub_val}

The domain function asserts that the property P only applies to instances of the class

c.

fun domain (p: Property, c: Class)

{(p.sub_val).Resource in c.instances}

The inverseOf function shows two properties are inverse.

fun inverseOf (p1, p2: Property) {p1.sub_val = ~(p2.sub_val)}

5.3 DAML+OIL to Alloy translation

In the previous section we defined the semantic model for the DAML+OIL con-

structs, so that analyzing DAML+OIL ontology in Alloy can be easily and effectively

achieved. We also constructed an XSLT [93] stylesheet for the automatic translation

from DAML+OIL file to into an Alloy program. 1

1The details of the XSLT program and other information on this thesis can be found at: http://nt-

appn.comp.nus.edu.sg/fm/alloy/
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A set of translation rules translating from DAML+OIL ontology to an Alloy program

are developed in the following presentation.

5.3.1 DAML+OIL class translation

C ∈ DAML class

static disj sig C extends Class{}

A DAML class C will be transferred into a scalar C, constrained to be an element of

the signature Class.

5.3.2 DAML+OIL property translation

P ∈ DAML property

static disj sig P extends Property{}

A DAML property p will be translated into a scalar P, constrained to be an element

of the signature Property.

5.3.3 Instance translation

x ∈ instancesof [Y ]

static disj sig x extends Resource{}
fact{ x in Y .instances}

A DAML instance x of class Y will be translated into a scalar x, constrained to be an

element of the signature Resource. x is a subset of Y.instances.
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5.3.4 Other translations

Other DAML+OIL constructs can be easily translated into the Alloy function we

defined in the previous section. For example the following rule shows how to translate

the DAML+OIL subclass relation into Alloy code.

subclass [X ,Y ],X ∈ DAML class ,Y ∈ daml class

fact{subClassOf (X ,Y )}

5.3.5 Case study

A classical DAML+OIL ontology, “animal relation” is used to illustrate how the

translation and analysis could be achieved. The following DAML+OIL ontology

defines two classes animal and plant which are disjoint. The eats and eaten by are

two properties, which are inverse to each other. The domain of eats is animal. The

carnivore is a subclass of animal which can only eat animals.

<daml:Class rdf:ID="animal">

<rdfs:label>animal</rdfs:label> </daml:Class>

<daml:Class rdf:ID="plant">

<rdfs:label>plant</rdfs:label>

<daml:disjointWith rdf:resource="#animal"/></daml:Class>

<daml:ObjectProperty rdf:about="eaten_by">

<rdfs:label>eaten_by</rdfs:label>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:about="eats">

<rdfs:label>eats</rdfs:label>

<daml:inverseOf rdf:resource="#eaten_by"/>

<rdfs:domain><daml:Class rdf:about="#animal"/>

</rdfs:domain></daml:ObjectProperty>
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<daml:Class rdf:ID="carnivore">

<rdfs:label>carnivore</rdfs:label>

<rdfs:subClassOf rdf:resource="#animal"/>

<rdfs:subClassOf>

<daml:Restriction> <daml:onProperty rdf:resource="#eats"/>

<daml:toClass rdf:resource="#animal"/>

</daml:Restriction>

</rdfs:subClassOf></daml:Class>

This DAML+OIL ontology will be translated into Alloy as follow:

module animal

/*import the library module we defined*/

open DAMLOIL

/* plant and animal are translated to two class instances. The key

word static is used to a signature containing exactly one element.*/

static disj sig plant, animal extends Class {}

/* The disjoin element was translated into fact in Alloy */

fact {disjointWith(plant, animal)}

/* eats, eaten_by are translated to two property instances */

static disj sig eats, eaten_by extends Property {}

fact {inverseOf(eats, eaten_by)}

fact {domain(eats, animal)}

static disj sig carnivore extends Class{}

fact{subClass(animal, carnivore)}

fact{toClass(eats, carnivore, animal)}

We can check the consistency of the DAML+OIL ontology and do some reasoning

readily.
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5.4 Analyzing DAML+OIL ontology

Reasoning is one of the key tasks for the Semantic Web. It can be useful at many

stages during the design, maintenance and deployment of ontology.

There are two different levels of checking and reasoning, the conceptual level and

the instance level. At the conceptual level, we can reason about class properties

and subclass relationships. At the instance level, we can do the membership checking

(instantiation) and instance property reasoning. The DAML+OIL reasoning tool, i.e.

FaCT [41], can only provide conceptual level reasoning, while AA can perform both.

The FaCT system was designed to be a terminological classifer (TBox) concerned

only about the concepts, roles and attributes, not the instances. The Semantic Web

reasoner based on the FaCT, like OILED, does not support instance level reasoning

well.

5.4.1 Class property checking

It is essential that the ontology shared between autonomous software agents is con-

ceptually consistent. Reasoning with inconsistent ontologies may lead to erroneous

conclusions. In this section we give some examples of inconsistent ontology that can

arise in ontology development, and demonstrate how these inconsistencies can be de-

tected by the Alloy Analyzer. For example, we define another class tastyPlant which
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Figure 5.1: Inconsistence example

is a subclass of plant and eaten by the carnivore. There is an inconsistency since by the

ontology definition carnivores can only eat animals. Animals and plants are disjoint.

<daml:Class rdf:ID="tastyPlant">

<rdfs:label>tastyPlant</rdfs:label>

<rdfs:subClassOf rdf:resource="#plant"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#eat_by"/>

<daml:toClass rdf:resource="#carnivore"/>

</daml:Restriction></rdfs:subClassOf>

</daml:Class>

We translate the ontology into an Alloy program, add some facts to remove the trivial

models (like every type is empty set) and load the program into the Alloy Analyzer.
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The Alloy Analyzer will automatically check the consistency. We conclude that there

is an inconsistency in the animal ontology since Alloy can not find any solutions

satisfying all facts within the scope (Figure 5.1). Note that when Alloy can not find

a solution, it may be due to the scope being too small. By picking a large enough

scope, “no solution found’ is very likely to mean that an inconsistency has occurred.

Let us take another example. Suppose we define that the polyphagic animal eats at

least two kind of things i.e polyphagic animal objects have at least two distinct values

for the property eats. There is also one kind of animal called picky animal which only

eats one other kind of animal. The ontology will be defined as follows:

<daml:Class rdf:ID="polyphagic_animal">

<rdfs:label>polyphagic_animal</rdfs:label>

<rdfs:subClassOf rdf:resource="#animal"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#eats"/>

<daml:minCardinality> 2 </daml:minCardinality>

</daml:Restriction></rdfs:subClassOf></daml:Class>

<daml:Class rdf:ID="#picky_animal">

<rdfs:label>picky_animal</rdfs:label>

<rdfs:subClassOf rdf:resource="#animal"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#eats"/>

<daml:Cardinality> 1 </daml:Cardinality>

</daml:Restriction></rdfs:subClassOf></daml:Class>

From the above ontology we can infer that the picky animal is not a kind of polyphagic animal,

otherwise it would be an inconsistency that AA can easily pick up.
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Besides discovering the existence of an inconsistency in ontology, tracing where the

inconsistency arises from is also crucial for a reasoning tool to be practical. Without

any tool support, identifying the conflicting knowledge could be frustrating. One

possible systematic technique for finding the causes of inconsistent ontology is to

manually remove individual knowledge information until the culprit is identified. This

task can be lengthy and dangerous. In the latest version of Alloy [78], the “unsatisfied

core” functionality of recent SAT solvers was utilized and it supports core extraction,

a new analysis technique that helps to discover over-constraint in declarative models.

This functionality can provide some assistance for the user to trace the inconsistency.

Extracting the unsatisfiable core of a CNF formula, that is a subset of the clause

set sufficient to cause a contradiction, has been developed recently by satisfiability

solvers [78, 32]. In the latest version of Alloy, the declarative model analysis has

been cast as satisfiability instances and the unsatisfiable core has been mapped back

onto the model. In other words, a user can identify the parts of model responsible

for producing the unsatisfiable CNF core. Those parts, by themselves, suffice to

produce an over-constraint, and their identification can help the user find the over-

constraint. Using this functionality, the portions of the ontology which contradict

each other can be traced readily. In the animal example, suppose a new class named

funnything was defined to be a subclass of both animal and plant classes. It is easy to

see that there is an inconsistency since the class animal and plant are disjoint. Alloy
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Figure 5.2: Tracing the inconsistency

can automatically identify a set of knowledge which makes the ontology unsatisfiable

(Figure 5.2). The unsatisfiability maybe due to the fact that funnything is a subclass

of animal, funnything is a subclass of plant or animal and plant are disjoint classes, and

so on.

5.4.2 Subsumption reasoning

The task of subsumption reasoning is to infer a DAML+OIL class is the subclass

of another DAML+OIL class. We use the relationship between the fish, shark and

dolphin as an example to demonstrate this kind of reasoning task. In the animal
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Figure 5.3: Subsumption example

ontology a property breathe by is defined. The fish is a subclass of the animal which

breathe by the gill.

<daml:ObjectProperty rdf:ID="breathe_by"/>

<daml:Class rdf:ID="gill">

<rdfs:label>gill</rdfs:label></daml:Class>

<daml:Class rdf:ID="fish">

<rdfs:label>fish</rdfs:label>

<rdfs:subClassOf rdf:resource="#animal"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#breathe_by"/>

<daml:toClass rdf:resource="#gill"/>

</daml:Restriction></rdfs:subClassOf>
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</daml:Class>

Since the purpose of this thesis is to demonstrate ideas, we keep the ontology simple.

In reality there are some animals such as frogs and toads, which can respire by use

of gills when they are young and by lungs when they reach adult stage. Also we do

not consider the animals which respire by use of the pharyngeal lining or skin, like

newborn Julia Creek dunnarts. We also define a class shark, a subclass of carnivore

which breathe by the gill.

<daml:Class rdf:ID="shark">

<rdfs:label>shark</rdfs:label>

<rdfs:subClassOf rdf:resource="#carnivore"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#breathe_by"/>

<daml:toClass rdf:resource="#gill"/>

</daml:Restriction>

</rdfs:subClassOf></daml:Class>

Several of the classes were upgraded to being defined when their definitions consti-

tuted both necessary and sufficient conditions for class membership, e.g., an animal

is a fish if and only if it breathes by the gill. Additional subclass relationships can

be inferred, i.e., the shark is also a subclass of fish. We transfer this ontology into an

Alloy program and make an assertion that the shark is a subclass of fish. The Alloy

analyzer will check the correctness of this assertion automatically (Figure 5.3). The

Alloy Analyzer checks whether an assertion holds by trying to find a counterexample.
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Note that “no solution” means no counterexample found, in this case, it strongly

suggests that the assertion is sound. To make it more interesting, we define classes

dolphin and lung. Dolphins are a kind of animal which breathe by lungs. The classes

gill and lung are disjoint.

<daml:Class rdf:ID="lung">

<rdfs:label>lung</rdfs:label>

<daml:disjointWith rdf:resource="#gill"/></daml:Class>

<daml:Class rdf:ID="dolphin">

<rdfs:label>dolphin</rdfs:label>

<rdfs:subClassOf rdf:resource="#animal"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#breathe_by"/>

<daml:toClass rdf:resource="#lung"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

Suppose we make an assertion that the dolphin is a kind of fish, the Alloy Analyzer will

refute it since some counterexample was found (Figure 5.4). If we add that dolphin is

a fish as a fact in the module, the AA will conclude that an inconsistency has arisen.

5.4.3 Debugging uncompleted ontology

Information in DAML+OIL is gathered into ontologies, which can then be from dif-

ferent parties and stored as documents in the World Wide Web. Some knowledge
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Figure 5.4: Dolphin is not a fish

may be missed in the ontology. Reasoning about uncompleted ontologies may lead

to some unexpected results. AA checks the assertion by generating counterexam-

ples – structures or behaviors for which an expected property does not hold; from a

counterexample, it is usually not too hard to figure out what’s wrong. Looking at

the counterexamples may provide some hints to the user on why the expected result

does not hold and what knowledge is missing. For example, we want to show the

DAML+OIL class dolphin and shark are disjoint. Intuitively, this is a correct state-

ment since dolphin breathes by the gill while shark breathes by the lung. Gill and

lung are disjoint. When the following assertion is added to Alloy, surprisingly AA
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concludes it is wrong.

assert disjointDS

{disjointWith(shark, dolphin)}

By looking at the counterexamples graph, it has been noticed that all the counterex-

amples (an animal which is both a shark and a dolphin) generated by AA have empty

values for the property breath by. In fact this unexpected result comes from the se-

mantic of toClass construct in DAML+OIL. A DAML+OIL semantic can not deduce

from a toClass restriction alone that there actually is at least one value for the prop-

erty. A toClass restriction for a property is trivially satisfied for an instance that has

no value for that property at all. The toClass restriction demands that all values of

the property belong to a class, and if no such values exist, the restriction is trivially

true. That is the reason why AA finds out the common instance, which does not

breathe at all, for the class dolphin and class shark. To remove this expected result,

extra knowledge needs to be added, e.g., an animal must breathe by something.

5.4.4 Instantiation

Instance level reasoning is one of the main contributions for reasoning over DAML+OIL

ontology using Alloy. Currently some successful DAML+OIL reasoners like FaCT are

designed for description logic (DL) T-box reasoning, which lacks support for instances.
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In Alloy every expression denotes relations. The scalars will be represented by sin-

gleton unary relations - that is, relations with one column and one row. The instance

level reasoning can be supported readily in Alloy.

Instantiation is a reasoning task which tries to check if an individual is an instance

of a class. For example, we define two resources aFeralAnimal and aMeekAminal as

the instances of class animal. aGill is an instance of class gill. aFeralAnimal eats

aMeekAnimal and breathes by aGill. People may want to check if aFeralAnimal is a

carnivore and a fish.

<animal rdf:ID="aMeekAnimal">

<rdfs:label>aMeekAnimal</rdfs:label>

</animal>

<gill rdf:ID="aGill">

<rdfs:label>aGill</rdfs:label>

</gill>

<animal rdf:ID="aFeralAnimal">

<rdfs:label>aFeralAnimal</rdfs:label>

<breathe_by rdf:resource="aGill"/>

<eats rdf:resource="aMeekAnimal"/>

</animal>

We translate the ontology into an Alloy program and make an assertion as following:

static disj sig aFeralAnimal, aMeekAnimal extends Resource{}

static disj sig aGill extends Resource{}

fact {aFeralAnimal in animal.instances &&

aMeekAnimal in animal.instances}

fact {aGill in gill.instances}

fact {(aFeralAnimal->aMeekAnimal) in eats.sub_val}

fact {(aFeralAnimal->aGill) in breathe_by.sub_val}

assert isFishCarnivore
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{(aFeralAnimal in fish.instances)

&& (aFeralAnimal in carnivore.instances)}

check isFishCarnivore for 15

AA concludes that this assertion is correct.

5.4.5 Instance property reasoning

Instance property reasoning (often regarded as knowledge querying) is important in

Semantic Web applications. Since one of the promising strengths of Semantic Web

technology is that it gives the agents the capability to do more accurate and more

meaningful searches. The agent can answer some questions for which the answer is

not explicitly stored in the knowledge base.

For example, the emerge early and emerge later are two properties, which are inverse

to each other. Animal A emerged earlier than B if the species of A emerges earlier

than the species of B on the earth. emerge early is transitive. Three animal instances

firstDinosaur, firstApe and firstHuman are defined. firstDinosaur emerge early than

firstApe and firstApe emerge early than firstHuman. One possible question people may

ask is whether firstHuman is emerge later than firstDinosaur. With the assistance of

Alloy reasoner, such questions can be answered.

fact{TransitiveProperty(emerge_early)}

static disj sig firstDinosaur, firstApe, firstHuman extends Resource{}

fact { firstDinosaur in animal.instances
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&& firstApe in animal.instances

&& firstHuman in animal.instances}

fact {(firstDinosaur->firstApe) in emerge_early.sub_val}

fact {(firstApe->firstHuman) in emerge_early.sub_val}

assert hum {(firstHuman->firstDinosaur) in emerge_later.sub_val}

check hum for 14

AA concludes that this assertion is correct.

The correctness of the translation has been verified by many different test cases. A

same problem has been sent to existing SW tools, theorem provers and Alloy; the same

conclusions are drawn. Furthermore, the DAML+OIL has well defined semantics in

first order logic and Alloy is also based on the first-order logic. The soundness of the

translation can also be proved easily.

5.5 Chapter summary

The main contribution of this chapter is that it develops the semantic models for

DAML+OIL language constructs in Alloy and the systematic translation rules and

(XSLT) program which can translate DAML+OIL ontology to Alloy automatically.

With the assistance of Alloy Analyzer (AA), we also demonstrated that the con-

sistency of the SW ontology can be checked automatically and different kinds of

reasoning tasks can be supported.

Alloy was chosen over other modelling techniques because
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• Alloy is based on relations, and relations between Web resources are the focus

issues in SW.

• Alloy has an impressive automatic tool support.

• Alloy provides automatical debugging assistance (counter example and UNSAT

core).

• Alloy has a relatively simple syntax and semantics which allows us to quickly

justify our ideas – reasoning SW using Formal methods tools.

However, the automation of Alloy sacrifices the scalability. The approach we present

here can only deal with the ontologies with relatively small size. Based on the same

idea, we also attempt to use the theorem prover, i.e. Z/EVES, to reason the SW

ontology [17]. The theorem prover can handle large sized ontologies, but it requires

the user’s interaction. Here we do not claim that Alloy is the only and best formal

tool to reason over SW ontologies, but we do claim that it is an effective attempt

with certain novel and irreplaceable advantages like full automation and promising

debugging assistance. In fact, it is unlikely in the near future that both expressive

and automatic tool will be developed. Currently, it is desirable if we can combine

the strength from different ontology reasoning tools. In [16], we present the method-

ology of checking DAML+OIL ontologies using tools RACER, Z/EVES and AA in

conjunction.
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We believe SW is a new novel application domain for Alloy. Recently, the tech-

nique/tool developed in this chapter was successfully applied to a military case

study [23]. Alloy was used to check and reason about a plan ontology [48] devel-

oped by a research team at DSO National Laboratories in Singapore.

Recently, some researchers have begun to explore the potential of combining Web tech-

nologies and SE technologies together, e.g. [60]. However there has not been much

work done on the application of formal techniques for Semantic Web. In the next chap-

ter we try to extract Web ontology from TCOZ requirement models, which is a very

different approach from the techniques demonstrated in this chapter – checking and

reasoning about Semantic Web ontology by encoding the semantics of DAML+OIL

into the Alloy system.





Chapter 6

TCOZ Approach to Semantic Web

Service Design

In the previous chapter, we demonstrated that the formal tool, i.e. Alloy, could be

used to reasoning the existing SW ontology; that is the ontology has already been

built. It could have been revised from a existing ontology or extracted from natural

language documents. One natural and interesting question will be, if users want to

build a new Semantic Web system, how can formal techniques help on the development

process. This question will be answered in this chapter. In this chapter, we present in

several ways TCOZ as a specification technique can contribute to the Semantic Web

133
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based system development.
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6.1 Introduction

As the next generation of Web, the Semantic Web (SW) [3] provides computer-

interpretable markup of the Web’s content and capability, thus enabling automation

of many tasks currently performed by humans. Among the most important Web re-

sources are those that provide service. The Web services, as the key application of

SW, are Web-accessible programs and devices that will proliferate the Web. Some

SW services have been developed recently, e.g. ITTALKS [13].

SW is highly distributed, and different parties may have different understandings for

the same concept. One important concept in SW service is ontology. Ontology is the

basis for constructing common understanding through explicitly defined relations.

The most typical kind of ontology for the Web has taxonomy and a set of constraints.

RDFS and DAML+OIL languages can be used to define the ontology. Another im-

portant concept in SW service is the semantic markup of service. Semantic markup

of the content and capability of Web services – what a service does, how to use it,

what its effect will be – will enable easy automation of a variety of reasoning tasks,

currently performed manually by human beings, or through arduous hand-coding that

enables subsequent automation. DAML-S [12] is such a semantic markup language

for Web service.

SW services may have intricate data state, complex process behavior and concurrent
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interactions. The design of such SW service systems requires precise and powerful

modelling techniques to capture not only the ontology domain properties but also the

services’ process behavior and functionalities. It is desired to have a powerful formal

notation to precisely design the Web system.

Timed Communicating Object Z (TCOZ) [55] is a formal specification language which

builds on the strengths of Object-Z in modelling complex data and state with strength

of Timed CSP in modelling real-time concurrency.

We believe that TCOZ as a high level design technique can contribute to the semantic-

web-based system development in many ways. In support of this claim, we conduct a

SW service case study, i.e., the online talk discovery system, and apply TCOZ to the

design stage to demonstrate how TCOZ can be used as high level design language to

specify SW services. The following characteristics of many Web services make TCOZ

a good candidate to design such a system.

• A complex Web service system often has both intricate data state and process

control aspects. An integrated formal modelling language, like TCOZ, has the

strength to model such systems.

• A Web service agent often provides several kinds of different services concur-

rently. TCOZ has the multithreaded capabilities to capture that.

• A complex Web service system is often composed from sub-services. The sub-
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services may be provided by other agents, which have their own thread of con-

trol. It can be modelled by the active objects feature in TCOZ.

• A Web service includes highly distributed components with various synchronous

and asynchronous communications. It can be specified with various TCOZ

communication interfaces – channels, sensors and actuators.

• A Web service like an online hospital or online bank may have critical timing

requirements. TCOZ can capture the real-time requirement well.

Furthermore, the chapter presents the development of the systematic translation rules

and tools to automatically extract the Web ontology and semantic markup for the

SW services from the formal TCOZ design model. This online talk discovery system

is a simplified version of the ITTALKS system [13] which is a real life SW service case

study.

The remainder of the chapter is organized as follows. Section 6.2 formally specifies

the functionalities of the Semantic Web service case study (talk discovery system).

Section 6.3 presents the tool which extracts the ontology used by the SW service from

the TCOZ design model automatically. Section 6.4 presents the tool which extracts

the semantic markup for SW service from the TCOZ design model automatically.

Section 6.5 concludes the chapter.
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6.2 The talk discovery system

In this section, an online talk discovery system is used as a case study to demonstrate

how TCOZ notation can be applied to the Semantic Web service development.

6.2.1 System scenario

The talk discovery system is a Web portal offering access to information about talks

and seminars. This Web portal can provide not only the talk’s information corre-

sponding to the user’s profile in terms of his interest and location constraints, but

also can further filter the IT related talks based on information about the user’s

personal schedule, etc.

In the course of operation, the talk discovery system discovers that there is an up-

coming talk that may interest a registered user based on information in the user’s

preferences, which have been obtained from his online, DAML-encoded profile. Upon

receiving this information, the user’s User Agent needs to know more; it consults with

its Calendar agent to determine the user’s availability, and with the MapQuest agent

to find the distance from the user’s office to the talk’s venue. We assume that a user

only wants to attend the talks located within a few miles from his office. Finally,

after evaluating the information and making the decision, the User Agent will send

a notification back to the talk discovery agent indicating that the user will/will not
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plan to attend. The completed functionality of the ITTALKS system can be found

at http://www.ittalks.org/jsp/Controller.jsp.

6.2.2 Formal model of the talk discovery system

The system involves four different intelligent agents which communicate interactively.

They are the user’s Calendar agent, MapQuest agent, user’s personal agent and the

talk discovery agent.

Calendar agent

Firstly, the DATE and TIME set are defined by the Z given type definitions. As this

thesis focuses only on demonstrating the approach, we try to make the model simple.

Z given type is chosen to define TIME , DATE and some other concepts. These

concepts can be subdivided into detailed components, e.g., the TIME comprises hour,

minute, and second. The more detailed the model is, the more detailed ontology will

be derived automatically from our tool. This tool will be further discussed in the

later section.

The DateTime is defined as a schema with two attributes date and time.

[TIME ,DATE ] DateTime
date : DATE ; time : TIME
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The Calendar agent maintains a schedule for each eligible user and supplies some

related services. Each eligible user must have a personal ID [PID ] registered. This

id is used to validate the identity of users when the system receives requests. The

Calendar agent has an ID manager which provides functions for identity certifying.

It may use Web security techniques like digital signatures to ensure the service is only

available to the valid users.

The following specifies the ID manager:

PIDManager

ids : PPID
add , remove : chan
check : chan

Init
ids = ∅

AddPID
∆(ids)
id? : PID

ids ′ = ids ∪ {id?}

RemovePID
∆(ids)
id? : PID

ids ′ = ids − {id?}
New =̂ [id : PID | id 6∈ ids ] •

add?id → AddPID
Delete =̂ [id : PID | id ∈ ids ] •

remove?id → RemovePID
Validate =̂ [id : PID ] • check?id →

([id ∈ ids ] • check ! true → Skip
2 [id 6∈ ids ] • check ! false → Skip)

Main =̂ µN • (New 2 Delete 2 Validate); N

The Status defined by the Z free type definition indicates if a person is free or busy.

Status ::= FREE | BUSY
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Calendar

timetable : (PID × DateTime) → Status
upd , checktm : chan
check : chan

Upd
∆(timetable)
id? : PID ; t? : DateTime; s? : Status

timetable ′ = timetable ⊕ {(id?, t?, s?)}
Update =̂ [id : PID ; t : DateTime; s : Status ]

• upd?(id , t , s) → check !id →
(check? false → Skip 2 check? true → Upd)

Check Status =̂ [id : PID ; t : DateTime]
• checktm?(id , t) → check !id →

(check? false → Skip 2

check? true → checktm!timetable(id , t) → Skip)
Main =̂ µN • (Update 2 Check Status); N

Update is used to update the timetable. The operation Check Status is used to check

whether a person is available or not for a particular time slot.

MapQuest agent

MapQuest agent is a third party agent supplying the service for calculating the dis-

tance between two places.

Firstly, the PLACE is defined as a Z given type. The MapQuest agent contains a set

of places in its domain and a database storing the distance between any two places.

[PLACE ]
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MapQuest

places : PPLACE
distance : places × places → R+

dist : chan

Get dis =̂ [p1, p2 : places ]
• dist?(p1, p2) → dist !distance(p1, p2) → Skip

Main =̂ µN • Get dis ; N

Personal agent

The personal agent keeps the user’s profile including user’s name, office location,

interests, etc.

[NAME , SUBJECT ]

Person

id : PID
name : NAME
office : PLACE
interests : P SUBJECT
upd , talkch, dist , checktm : chan

Check =̂ [tk : Talk ] • talkch?(id , tk) →
((checktm!(id , tk .dt) → [tresult : Status ]

• checktm?tresult → Skip)‖
(dist !(office, tk .place) → [dresult : R+]

• dist?dresult → Skip));
[tresult = FREE ∧ dresult < 5]

• talkch!(id ,GO) →
upd !(id , tk .dt ,BUSY ) → Skip

2 [tresult = BUSY ∨ dresult > 5] •
talkch!(id ,NO) → Skip

Main =̂ µN • Check ; N
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After receiving an interested talk information from the talk discovery agent (defined

later), the personal agent uses operation Check to communicate with his calendar

agent to check whether the user is free or not and with the MapQuest agent to ensure

the talk will be held nearby. In our system we assume that a user only wants to

attend the talks located within five miles from his office. If the user could attend

the talk, the personal agent will inform the discovery agent and connect the calendar

agent to update the user’s timetable.

Talk discovery agent

Schema Talk is defined for a general talk type. The interested subjects records the

interested subjects for the users.

Talk
place : PLACE
dt : DateTime
subject : P SUBJECT

notify ::= GO | NO

interested subjects : Person ↔ SUBJECT

Discovery

users : P1 Person
talkch : chan
monitor : Talk sensor
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Main =̂ µM • [t : Talk ] • monitor?t
→ ||| [u : users ] •

([interested subjects(| {u} |) ∩ t .subject 6= ∅] •
talkch!(u, t) → [response : notify ] •

talkch?(u, response) → Skip
2 [interested subjects(| {u} |) ∩ t .subject = ∅] • Skip); M

The talk discovery system senses market updates, finding new talks information. Once

a new talk is found, it sends a notification to all the users who may be interested.

A number of instances can be created also.

National University Singapore : Place
atalk : Talk

atalk .place = National University Singapore
...

6.3 Extracting Web ontology from the TCOZ model

It is important to have a thoroughly designed ontology since it will be shared by

different agents and it forms the foundation of all agents’ service. However designing

a clear and consistent ontology is not a trivial job. It is useful to have some tool

support in designing the ontology.

In this section, we will demonstrate the development of an XSL [93] program to

automatically extract the ontology related domain properties from the static aspects

of TCOZ formal models (encoded in ZML format [85]). The ontology for the system
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Figure 6.1: TCOZ DAML+OIL/DAML-S projection

can be resolved readily from the static parts of TCOZ design documents. In the next

section, we will demonstrate tools to automatically extract the semantic markup for

service from dynamic aspects of TCOZ formal models.

ZML (details have been presented in Chapter 3) is an XML environment for Z family

notations (Z/Object-Z/TCOZ). It encodes the Z family documents in XML format

so that the formal model can be easily browsed by the Web browser (e.g. Internet

Explorer). The eXtensible Stylesheet Language (XSL) [93] is a stylesheet language

to describe rules for matching and translating XML documents. In our case we

translate the ZML to DAML+OIL and DAML-S. The main process and techniques

for the translation are depicted by Figure 6.1.
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A set of translation rules translating from TCOZ model (in ZML) to DAML+OIL

ontology is developed in the following presentation.

6.3.1 Given type translation

The given types in the TCOZ model are directly translated into DAML+OIL classes.

This rule is applicable to the given types defined in both inside and outside of a class

definition. The translation can be expressed as the following rule:

[T ]

T ∈ daml class

For example, the given type TIME can be translated into a class in DAML+OIL

with time as ID.

<daml:Class rdf:ID="time">

<rdfs:label>TIME</rdfs:label>

</daml:Class>
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6.3.2 Axiomatic (Function and Relation) definition transla-

tion

The translation from functions and relations in TCOZ to DAML+OIL ontology re-

quires several cases.

R : B ↔ (→, 7→)C

...

B ,C ∈ daml class

R ∈ daml objectproperty [B ↔ (→, 7→)C ]

The relation R will be translated into a DAML+OIL property with B as the domain

class and C as the range class. For total functions we restrict the daml : cardinality

property to be one and for partial functions we restrict the daml : maxCardinality

property to be one.

In our talk discovery case study, the relation interested subjects can be translated

into DAML+OIL as:

<daml:ObjectProperty rdf:ID="interested_subjects">

<rdfs:domain rdf:resource="#person"/>

<rdfs:range rdf:resource="#subject"/>

</daml:ObjectProperty>

6.3.3 Z Axiomatic (Subset and Constant) definition transla-

tion

Subset: In this situation, if N corresponds to a DAML+OIL class, then M will
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be translated into a DAML+OIL subclass of N . If N corresponds to a DAML+OIL

property, then M will be translated into a DAML+OIL subproperty of N . The trans-

lation rules for the subset are:

M : PN

...

N ∈ daml class M : PN

...

N ∈ daml objectproperty

M ∈ daml subclass[N ] M ∈ daml subproperty [N ]

Constant: In this situation, X will be translated into an instance of Y . The following

is the translation rule:

x : Y

...

Y ∈ daml class

x ∈ instantceof [Y ]

For example, the National University Singapore and atalk defined in a previous sec-

tion can be translated to

<place rdf:ID="National_University_Singapore"/>

<talk rdf:ID="atalk">

<rdfs:label>atalk</rdfs:label>

<talk_place rdf:resource="#National_University_Singapore"/>

...

</talk>
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6.3.4 Z state schema translation

A Z state schema can be translated into a DAML+OIL class. Its attributes are

translated into DAML+OIL properties with the schema name as domain DAML+OIL

class and the Z type declaration as range DAML+OIL class. In order to resolve the

name conflict between same attribute names used in different schemas, we use the

schema name appended with attribute name as the ID for the DAML+OIL property.

S
x : T1; y : PT2

...

T1,T2 ∈ daml class

S ∈ daml class, S x ∈ daml objectproperty [S → T1],
S y ∈ daml objectproperty [S ↔ T2]

For example the Talk schema defined in a previous section can be translated to

DAML+OIL as:

<daml:Class rdf:ID="talk">

<rdfs:label>Talk</rdfs:label>

</daml:Class>

<daml:ObjectProperty rdf:ID="talk_place">

<rdf:type rdf:resource="

http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>

<rdf:domain rdf:resource="#talk"/>

<rdf:range rdf:resource="#place"/>

</daml:ObjectProperty> ...

<daml:ObjectProperty rdf:ID="talk_subject">

<rdf:domain rdf:resource="#talk"/>

<rdf:range rdf:resource="#subject"/>

</daml:ObjectProperty>
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6.3.5 Class translation

An Object-Z class can be translated into a DAML+OIL class. Its attributes defined

in state schema are translated into DAML+OIL properties with the class name as

domain DAML+OIL class and the type declaration as range DAML+OIL class. Other

translation details are similar to the Z state schema translation defined above.

C

x : T1; y : PT2

...

...

T1,T2 ∈ daml class

C ∈ daml class, C x ∈ daml objectproperty [C → T1],
C y ∈ daml objectproperty [C ↔ T2]

For example the Person class defined in a previous section can be translated to

DAML+OIL as:

<daml:Class rdf:ID="person">

<rdfs:label>Person</rdfs:label>

</daml:Class>

<daml:ObjectProperty rdf:ID="person_id">

<rdf:type rdf:resource="

http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>

<rdf:domain rdf:resource="#person"/>

<rdf:range rdf:resource="#PID"/>

</daml:ObjectProperty>

...

Other translation rules are omitted as the aim of this thesis is to demonstrate the
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approach rather than providing the complete XSL program design.

6.4 Extracting DAML-S ontology from the TCOZ

model

In the previous two sections we demonstrated how TCOZ can be used to capture

the requirement of Semantic Web applications and how to project TCOZ models

to DAML+OIL ontology automatically. DAML+OIL ontology is used to define the

common understanding for certain concepts. The dynamic aspects of Semantic Web

service, which define what is the service done and how it behaves is also crucial. Re-

cently, DAML-S [12] emerges to define such information for SW services. Extracting

the semantic markup information (i.e. DAML-S) for a Semantic Web service from

the formal requirement model is another important research work. In this section,

we will demonstrate the development of another XSL program to automatically ex-

tract DAML-S information from TCOZ formal models. The semantic markup for the

system can be resolved from the TCOZ design documents also.
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Figure 6.2: The DAML-S process ontology for AddID service

6.4.1 Translation rules

A set of translation rules translating from TCOZ model to DAML-S semantic markup

for Semantic Web services are developed in the following:

Basic rule 1 (R1):

Each operation in TCOZ is modelled as a process (AtomicProcess or CompositePro-

cess) in DAML-S. In TCOZ, operations are discrete processes which specify the com-

putation behavior and interaction behaviors. From a dynamic view, the state of an

object is subject to change from time to time according to its interaction behavior,

which is defined by operation definitions. At the same time the service process allows

one to effect some action or change in the world. The connection between operations

in TCOZ and service process in Semantic Web services is obvious. In order to resolve

the name conflict between the same operation names used in different classes we use



6.4. EXTRACTING DAML-S ONTOLOGY FROM THE TCOZ MODEL 153

the class name appended with operation name as the ID for the process.

Basic rule 2 (R2):

In the case that an operation that invokes no other operations, the operation is

translated as an AtomicProcess.

C

O
...

pre(O)
post(O)

[pre(O) is a precondition
of the operation O.
post(O) is a postcondition
of the operation O.]

C O ∈ damls AtomicProcess ∧ C O pre(O) ∈ damls precondition

∧ C O post(O) ∈ damls effect

A precondition appearing in a TCOZ operation schema definition is modelled as

precondition in the respective service process. A postcondition appearing in a TCOZ

operation schema definition is modelled as effect in the respective service process.

Basic rule 3 (R3):

C

O
i? : T
o! : T
...

C O i ∈ damls input ∧ C O o ∈ damls output
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An input appearing in a TCOZ operation schema definition is modelled as input in

the respective service process. An output appearing in a TCOZ operation schema

definition is modelled as output in the respective service process.

Basic rule 4 (R4):

C
O =̂ ...

C O ∈ damls CompositeProcess

In the case that an operation calls other operations, the operation is translated as a

composite process.
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Basic rule 5 (R5):

Communication in TCOZ is modelled as an atomic process with input or output.
C
O =̂ ...Ch?i → ...

C O Ch ∈ damls AtomicProcess ∧ C O Ch i ∈ damls input

C
O =̂ ...Ch!o → ...

C O Ch ∈ damls AtomicProcess ∧ C O Ch o ∈ damls output

In DAML-S, atomic processes, in addition to specifying the basic actions from which

larger processes are composed, can also be thought of as the communication primitives

of an (abstract) process specification.

Basic rule 6 (R6):

Each TCOZ process primitive will be translated into the proper DAML-S composite

process. For example, the following two rules show how the translation is done for

the sequential and parallel processes in TCOZ.

C
O =̂ P1; P2 [P1 and P2 are process components]

C O ∈ damls Sequence[P1,P2]
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C
O =̂ P1 ‖ P2 [P1 and P2 are process components]

C O ∈ damls Split [P1,P2]

Other translation rules for process primitive are omitted due to the limited space.

Basic rule 7 (R7):

C
O =̂ [G ]..

C O G ∈ damls precondition

The guards in TCOZ model are used to control the input of an operation. The guards

are modelled as preconditions.

Other translation rules are omitted as the aim of this thesis is to demonstrate the

approach rather than providing the complete XSL program design.

6.4.2 Case study

The PIDManager class defined for the Calendar agent will be used to demonstrate

the translation. The PIDManager class has five operations, AddPID , RemovePID ,
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New , Delete and Validate. Each of them will be translated into a process .

The operation AddPID is an operation invokes no other operations, so it will be

translated as an AtomicProcess (R2). Some standard header information is generated

first.

<!--Header Information-->

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<rdf:RDF xmlns:rdf = "&rdf;#" ...>

<daml:Ontology rdf:about="">

<daml:imports rdf:resource="&daml;"/>

<daml:imports rdf:resource="&service;"/>

<daml:imports rdf:resource="&process;"/>

....

</daml:Ontology>

<!--PIDmanager AddPId process-->

<daml:Class rdf:ID="PIDManager_AddPID">

<rdfs:subClassOf

rdf:resource ="&process;#AtomicProcess"/>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#AddPID_id"/>

</daml:Restriction>

</rdfs:subClassOf>

...

</daml:Class>

Figure 6.2 shows the semantic markup for service AddID in the graphical format.

The DAML-S code in RDF format can be found in Appendix E.

The operation AddPID has one input id? declared to be type PID . It will be trans-

lated into input (PIDManager AddPID id) in DAML-S (R3).
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The operation AddPID has one predicate ids ′ = ids ∪{id?} which is a postcondition.

It will be translated into effect (PIDManager AddPID EFFECT ) in DAML-S (R2).

The operation RemovePID can be translated similarly.

The operation New calls the other operation AddPID , so it is translated as a com-

posite process (R4). It performs two subprocesses PIDManager AddPID add id in

and PIDManager AddPID in sequence. The PIDManager AddPID add id in pro-

cess represents the communication on channel add (R5). The guard of the operation

is translated as the precondition (IDnotInIDS )(R7). Figure 6.3 shows the semantic

markup DAML-S for the operation New .

The operation Delete and Valide can be similarly translated.

6.5 Chapter summary

In this chapter, we demonstrate that TCOZ can be used as a high level design lan-

guage for modelling the SW services ontology and functionalities. Another major

contribution of this chapter is that it develops systematic transformation rules and

tools which can automatically project TCOZ models to DAML+OIL ontology and

DAML-S semantic markup.



Chapter 7

Conclusions and directions for

further research

This chapter summarizes the main contributions of the thesis and discusses possible

directions for further research.
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7.1 Thesis main contributions and influence

The content of the thesis demonstrate the latest investigations on the links between

Semantic Web and formal methods. It shows that these two communities can benefit

from each other in different ways.

• This thesis developed a Web environment for the Z family languages based

on XML/XSL transformation. The ZML Web environment provides a feasi-

ble means of constructing, displaying and resource sharing formal specification

models on the web. It includes the auto type referencing, static syntax checking

and browsing facilities such as the Z schema calculus and Object-Z/TCOZ in-

heritance expansions. As part of the Community Z Tools (CZT) initiative [58]

project, this work is continuing with the definition of a standard markup lan-

guage [90] for the ISO Z standard [1]. Hopefully it will become part of the ISO

Z standard in the future. This will also make an impact on formal methods

education through the internet.

• This thesis also developed a Semantic Web (RDF/DAML) environment for sup-

porting, extending and integrating many different formalisms. Such a meta inte-

grator may bring together the strengths of various formal methods communities

in a flexible and widely accessible fashion. This Semantic Web environment for

formal specifications also leads to many benefits. One novel application which



7.2. DIRECTIONS FOR FURTHER RESEARCH 161

has been demonstrated in this thesis is the notion of specification comprehension

based RDF query techniques.

• This thesis presented an Alloy semantic models for DAML+OIL and the system-

atic transformation rules and (XSLT) program which can translate DAML+OIL

ontology to Alloy automatically. With the assistance of Alloy Analyzer (AA),

we demonstrated that the consistency of the SW ontology can be checked au-

tomatically and different kinds of reasoning tasks can be supported. This work

also forms the starting point for applying other formal methods and tools i.e.

Z [17] and HOL/Isabelle [88].

In summary, as demonstrated above there is a clear synergy between SW languages

and formal specifications. The investigation into links between those two paradigms

will lead to great benefits for both areas.

7.2 Directions for further research

The following topics, arising out of this thesis, seem worthy of further research.



7.2. DIRECTIONS FOR FURTHER RESEARCH 162

7.2.1 Enrich the Semantic Web environment for different for-

malisms

In Chapter 4 we use Z [98] and CSP [38] as examples to demonstrate how an ex-

tendable and flexible Semantic Web environment for formal specification languages

can be developed. This environment can be further enriched by including some other

formalisms like π-calculus, B, and VDM.

7.2.2 Analysis/Reasoning about Semantic Web ontology us-

ing other formal tools

In Chapter 5 we demonstrate how the Alloy Analyzer could be used to reason about

Semantic Web ontology. Recently we investigated how other formal tools like theorem

provers, e.g. HOL/Isabelle [66] or Z/EVES [73] can be used to reason about Semantic

Web ontology.

There are some pros and cons between these different approaches. Being a model

checker liked tool, reasoning in Alloy is fully automated and if there is an incon-

sistency, Alloy can give a counter example so that it is easier to trace the origin

of the inconsistency. On the other hand, Alloy is not very scalable. Since it per-

forms exhaustive search, it can only handle ontologies with no more than twenty

entities. Moreover, Alloy does not support concrete domains such as integer, etc.
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These characteristics make Alloy more automated, but less powerful and expressive

than Z/EVES. Compared to Semantic Web-specific reasoning tools and Alloy, the

apparent disadvantage of theorem prover approach, i.e. Z/EVES or HOL/Isabelle,

is that it has a lower degree of automation and can only perform reasoning tasks

interactively. However, the high degree of expressiveness of Z language or HOL im-

plies that it can capture properties beyond ontology languages and applying theorem

prover to checking ontologies gives us more confidence in the correctness of ontology

related properties.

The new ontology language OWL Full is designed to be very expressive and reason-

ing will be generally undecidable [15]. As a result, proof process will be inevitably

interactive. Therefore, theorem prover is a natural choice for reasoning over OWL

language. Extending the support to OWL will be one of the future work directions.

7.2.3 Analysis/Reasoning about DAML-S using formal tools

Following the same motivation of reasoning about DAML+OIL by Alloy in chpater 5,

we believe that if the DAML-S languages can be transferred into some formal language

like CSP, TCOZ, SPIN [30] or PORMELA [70], then the formal tools can be used to

provide automatic reasoning and consistency checking services for DAML-S. Strictly

speaking, DAML-S is one kind of process algebra language, just like CSP. Reasoning

about DAML-S through CSP verification tools like FDR [51] seems to be a natural
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attempt. FDR (Failures-Divergence Refinement) is a model-checking tool for CSP.

Its method of establishing whether a property holds is to test for the refinement of

a transition system capturing the property by the candidate machine. There is also

the ability to check determinism of a state machine. Reasoning about DAML-S will

be a novel application domain for FDR.

7.2.4 Time extension for DAML-S

When we develop the rule and tools extracting the semantic markup (DAML-S) for a

Web Service from the TCOZ model in Chapter 6, one observation is that some time

related features of TCOZ can not be expressed in DAML-S. The reason is that the

time issue has not been included in the current version of DAML-S. However people

do realize that temporal concept is crucial for the Web Service semantic markup [12]

and some incipient research on temporal ontology are undergoing. In this section

we propose a timed extension for DAML-S process ontology. Two more process flow

control constructors Timeout and Timed − interrupt were defined.

Timeout: The semantics is that the process tries to invoke P first but, if unable to

make it within outtime time, process evokes Q .

Timed-interrupt: The semantics is that the process invokes P first but, if unable

to finish it within outtime time, process evokes Q .



7.2. DIRECTIONS FOR FURTHER RESEARCH 165

The definition of the Timeout construct is defined as:

<daml:Class rdf:ID="Timeout">

<rdfs:subClassOf rdf:resource="#ControlConstruct"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#components"/>

<daml:toClass rdf:resource="#ProcessComponentBag"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<daml:Property rdf:ID="outtime">

<rdfs:domain rdf:resource="#Timeout"/>

</daml:Property>

<daml:Property rdf:ID="P">

<rdfs:domain rdf:resource="#Timeout"/>

<rdfs:range rdf:resource="#ProcessComponent"/>

</daml:Property>

<daml:Property rdf:ID="q">

<rdfs:domain rdf:resource="#Timeout"/>

<rdfs:range rdf:resource="#ProcessComponent"/>

</daml:Property>

7.2.5 Soundness proof of the translation between TCOZ and
DAML+OIL, DAML-S

In Chapter 6 we presented systematic translation rules and tools which can project

TCOZ models to DAML+OIL ontology and DAML-S automatically. The soundness

of these translation rules can be formally proved. As an ongoing work we give a

semantic foundation for these tools showing that they are defining morphisms between

the logical systems underlying the three specification languages. To do that the
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institution is introduced for formalizing the logic underlying the specification langauge

TCOZ, the Web ontology language DAML+OIL and DAML-S.
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Appendix A

Glossary of Z Notation

This appendix presents a glossary of the Z notation used in this thesis. The glossary

is based on the glossary of Z notation presented in Hayes[35] with modifications to

reflect more closely the more recent Z notation of Spivey[82].

Mathematical Notation

Definitions and declarations

Let x , xk be identifiers and let T ,Tk be non-empty, set-valued expressions.

LHS == RHS Definition of LHS as syntactically equivalent to RHS .

LHS [X1,X2, . . . ,Xn ] == RHS

Generic definition of LHS , where X1,X2, . . . ,Xn are variables

denoting formal parameter sets.
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x : T A declaration, x : T , introduces a new variable x of type T.

x1 : T1; x2 : T2; . . . ; xn : Tn

List of declarations.

x1, x2, . . . , xn : T == x1 : T ; x2 : T ; . . . ; xn : T

[X1,X2, . . . ,Xn ] Introduction of free types named X1,X2, . . . ,Xn .

Logic

Let P ,Q be predicates and let D be a declaration or a list of declarations.

true, false Logical constants.

¬ P Negation: “not P”.

P ∧ Q Conjunction: “P and Q”.

P ∨ Q Disjunction: “P or Q or both”.

P ⇒ Q == (¬ P) ∨ Q

Implication: “P implies Q” or “if P then Q”.

P ⇔ Q == (P ⇒ Q) ∧ (Q ⇒ P)

Equivalence: “P is logically equivalent to Q”.
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∀ x : T • P Universal quantification: “for all x of type T , P holds”.

∃ x : T • P Existential quantification: “there exists an x of type T such

that P holds”.

∃1 x : T • P Unique existence: “there exists a unique x of type T such that

P holds”.

∀ x1 : T1; x2 : T2; . . . ; xn : Tn • P

“For all x1 of type T1, x2 of type T2, . . . , and xn of type Tn ,

P holds.”

∃ x1 : T1; x2 : T2; . . . ; xn : Tn • P

Similar to ∀.

∃1 x1 : T1; x2 : T2; . . . ; xn : Tn • P

Similar to ∀.

∀D | P • Q ⇔ ∀D • P ⇒ Q

∃D | P • Q ⇔ ∃D • P ∧ Q

t1 = t2 Equality between terms.

t1 6= t2 ⇔ ¬ (t1 = t2)
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Sets

Let X be a set; S and T be subsets of X ; t , tk terms; P a predicate; and D declara-

tions.

t ∈ S Set membership: “t is a member of S”.

t 6∈ S ⇔ ¬ (t ∈ S )

S ⊆ T ⇔ (∀ x : S • x ∈ T )

Set inclusion.

S ⊂ T ⇔ S ⊆ T ∧ S 6= T

Strict set inclusion.

∅ The empty set.

{t1, t2, . . . , tn} The set containing the values of terms t1, t2, . . . , tn .

{x : T | P} The set containing exactly those x of type T for which P holds.

(t1, t2, . . . , tn) Ordered n-tuple of t1, t2, . . . , tn .

T1 × T2 × . . .× Tn

Cartesian product: the set of all n-tuples such that the kth

component is of type Tk .
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first(t1, t2, . . . , tn)

== t1

Similarly, second(t1, t2, . . . , tn) == t2, etc.

{x1 : T1; x2 : T2; . . . ; xn : Tn | P}

The set of all n-tuples (x1, x2, . . . , xn) with each xk of type Tk

such that P holds.

{D | P • t} The set of values of the term t for the variables declared in D

ranging over all values for which P holds.

{D • t} == {D | true • t}

P S Powerset: the set of all subsets of S .

P1 S == P S \ {∅}

The set of all non-empty subsets of S .

F S == {T : P S | T is finite }

Set of finite subsets of S .

F1 S == F S \ {∅}

Set of finite non-empty subsets of S .

S ∩ T == {x : X | x ∈ S ∧ x ∈ T}

Set intersection.
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S ∪ T == {x : X | x ∈ S ∨ x ∈ T}

Set union.

S \ T == {x : X | x ∈ S ∧ x 6∈ T}

Set difference.

⋂
SS == {x : X | (∀ S : SS • x ∈ S )}

Intersection of a set of sets; SS is a set containing as its mem-

bers subsets of X , i.e. SS : P(PX ).

⋃
SS == {x : X | (∃ S : SS • x ∈ S )}

Union of a set of sets; SS : P(PX ).

#S Size (number of distinct members) of a finite set.

Numbers

R The set of real numbers.

Z The set of integers (positive, zero and negative).

N == {n : Z | n ≥ 0}

The set of natural numbers (non-negative integers).

N1 == N \ {0}

The set of strictly positive natural numbers.
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m . . n == {k : Z | m ≤ k ∧ k ≤ n}

The set of integers between m and n inclusive.

min S Minimum of a set; for S : P1 Z,

min S ∈ S ∧ (∀ x : S • x ≥ min S ).

max S Maximum of a set; for S : P1 Z,

max S ∈ S ∧ (∀ x : S • x ≤ max S ).

Relations

A binary relation is modelled by a set of ordered pairs hence operators defined for

sets can be used on relations. Let X , Y , and Z be sets; x : X ; y : Y ; S be a subset

of X ; T be a subset of Y ; and R a relation between X and Y .

X ↔ Y == P(X × Y )

The set of relations between X and Y .

x R y == (x , y) ∈ R

x is related by R to y .

x 7→ y == (x , y)

{x1 7→ y1, x2 7→ y2, . . . , xn 7→ yn}

== {(x1, y1), (x2, y2), . . . , (xn , yn)}

The relation relating x1 to y1, x2 to y2, . . . , and xn to yn .
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domR == {x : X | (∃ y : Y • x R y)}

The domain of a relation: the set of x components that are

related to some y.

ranR == {y : Y | (∃ x : X • x R y)}

The range of a relation: the set of y components that some x

is related to.

R1
o
9 R2 == {x : X ; z : Z | (∃ y : Y • x R1 y ∧ y R2 z )}

Forward relational composition; R1 : X ↔ Y ; R2 : Y ↔ Z .

R1 ◦ R2 == R2
o
9 R1

Relational composition. This form is primarily used when R1

and R2 are functions.

R∼ == {y : Y ; x : X | x R y}

Transpose of a relation R.

id S == {x : S • x 7→ x}

Identity function on the set S .

Rk The homogeneous relation R composed with itself k times:

given R : X ↔ X ,

R0 = idX and Rk+1 = Rk o
9 R.
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R+ ==
⋃{n : N1 • Rn}

=
⋂{Q : X ↔ X | R ⊆ Q ∧ Q o

9 Q ⊆ Q}

Transitive closure.

R∗ ==
⋃{n : N • Rn}

=
⋂{Q : X ↔ X | idX ⊆ Q ∧ R ⊆ Q ∧ Q o

9 Q ⊆ Q}

Reflexive transitive closure.

R(| S |) == {y : Y | (∃ x : S • x R y)}

Image of the set S through the relation R.

S C R == {x : X ; y : Y | x ∈ S ∧ x R y}

Domain restriction: the relation R with its domain restricted

to the set S .

S −C R == (X \ S ) C R

Domain subtraction: the relation R with the elements of S

removed from its domain.

R B T == {x : X ; y : Y | x R y ∧ y ∈ T}

Range restriction to T .

R −B T == R B (Y \ T )

Range subtraction of T .



Appendix A. Glossary of Z Notation 192

R1 ⊕ R2 == (domR2 −C R1) ∪ R2

Overriding; R1,R2 : X ↔ Y .

Functions

A function is a relation with the property that each member of its domain is associated

with a unique member of its range. As functions are relations, all the operators defined

above for relations also apply to functions. Let X and Y be sets, and T be a subset

of X (i.e. T : PX ).

f t The function f applied to t .

X 7→ Y == {f : X ↔ Y | (∀ x : dom f • (∃1 y : Y • x f y))}

The set of partial functions from X to Y .

X → Y == {f : X 7→ Y | dom f = X }

The set of total functions from X to Y .

X 7½ Y == {f : X 7→ Y | (∀ y : ran f • (∃1 x : X • x f y))}

The set of partial one-to-one functions (partial injections) from

X to Y .

X ½ Y == {f : X 7½ Y | dom f = X }

The set of total one-to-one functions (total injections) from X

to Y .
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X 7→→ Y == {f : X 7→ Y | ran f = Y }

The set of partial onto functions (partial surjections) from X

to Y .

X →→ Y == (X 7→→ Y ) ∩ (X → Y )

The set of total onto functions (total surjections) from X to

Y .

X ½→ Y == (X →→ Y ) ∩ (X ½ Y )

The set of total one-to-one onto functions (total bijections)

from X to Y .

X 7 7→ Y == {f : X 7→ Y | f ∈ F(X × Y )}

The set of finite partial functions from X to Y .

X 7 7½ Y == {f : X ½ Y | f ∈ F(X × Y )}

The set of finite partial one-to-one functions from X to Y .

(λ x : X | P • t) == {x : X | P • x 7→ t}

Lambda-abstraction: the function that, given an argument x

of type X such that P holds, gives a result which is the value

of the term t .

(λ x1 : T1; . . . ; xn : Tn | P • t)

== {x1 : T1; . . . ; xn : Tn | P • (x1, . . . , xn) 7→ t}
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disjoint[I ,X ] == {S : I 7→ PX | ∀ i , j : dom S • i 6= j ⇒ S (i) ∩ S (j ) = ∅}

Pairwise disjoint; where I is a set and S an indexed family of

subsets of X (i.e. S : I 7→ PX ).

S partitions T == S ∈ disjoint ∧ ⋃
ran S = T

Sequences

Let X be a set; A and B be sequences with elements taken from X ; and a1, . . . , an

terms of type X .

seqX == {A : N1 7→ X | (∃ n : N • domA = 1..n)}

The set of finite sequences whose elements are drawn from X .

seq∞X == {A : N1 7→ X | A ∈ seqX ∨ domA = N1}

The set of finite and infinite sequences whose elements are

drawn from X .

#A The length of a finite sequence A. (This is just ‘#’ on the set

representing the sequence.)

〈〉 == {}

The empty sequence.

seq1 X == {s : seqX | s 6= 〈〉}

The set of non-empty finite sequences.
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〈a1, . . . , an〉 = {1 7→ a1, . . . , n 7→ an}

〈a1, . . . , an〉a 〈b1, . . . , bm〉

= 〈a1, . . . , an , b1, . . . , bm〉

Concatenation.

〈〉a A = A a 〈〉 = A.

head A The first element of a non-empty sequence:

A 6= 〈〉 ⇒ head A = A(1).

tail A All but the head of a non-empty sequence:

tail (〈x 〉a A) = A.

last A The final element of a non-empty finite sequence:

A 6= 〈〉 ⇒ last A = A(#A).

front A All but the last of a non-empty finite sequence:

front (A a 〈x 〉) = A.

rev 〈a1, a2, . . . , an〉

= 〈an , . . . , a2, a1〉

Reverse of a finite sequence; rev 〈〉 = 〈〉.

a/AA = AA(1) a . . . a AA(#AA)

Distributed concatenation; where AA : seq(seq(X )). a/〈〉 =

〈〉.
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A ⊆ B ⇔ ∃C : seq∞X • A a C = B

A is a prefix of B . (This is just ‘⊆’ on the sets representing

the sequences.)

squash f Convert a finite function, f : N 7 7→ X , into a sequence by

squashing its domain. That is, squash{} = 〈〉, and if f 6= {}

then squash f = 〈f (i)〉asquash({i}−Cf ), where i = min(dom f ).

For example, squash{2 7→ A, 27 7→ C , 4 7→ B} = 〈A,B ,C 〉.

A ¹ T == squash(A B T )

Restrict the range of the sequence A to the set T .

Bags

bag X == X 7→ N1

The set of bags whose elements are drawn from X . A bag is

represented by a function that maps each element in the bag

onto its frequency of occurrence in the bag.

[[ ]] The empty bag ∅.

[[x1, x2, . . . , xn ]] The bag containing x1, x2, . . . , xn , each with the frequency that

it occurs in the list.
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items s == {x : ran s • x 7→ #{i : dom s | s(i) = x}}

The bag of items contained in the sequence s .

Axiomatic definitions

Let D be a list of declarations and P a predicate.

The following axiomatic definition introduces the variables in D with the types as

declared in D. These variables must satisfy the predicate P. The scope of the variables

is the whole specification.

D

P

Generic definitions

Let D be a list of declarations, P a predicate and X1,X2, . . .Xn variables.

The following generic definition is similar to an axiomatic definition, except that the

variables introduced are generic over the sets X1,X2, . . .Xn .

[X1,X2, . . .Xn ]
D

P

The declared variables must be uniquely defined by the predicate P .
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Schema Notation

Schema definition

A schema groups together a set of declarations of variables and a predicate relating

the variables. If the predicate is omitted it is taken to be true, i.e. the variables are

not further restricted. There are two ways of writing schemas: vertically, for example,

S
x : N
y : seqN

x ≤ #y

and horizontally, for the same example,

S == [x : N; y : seqN | x ≤ #y ]

Schemas can be used in signatures after ∀, λ, {...}, etc.:

(∀ S • y 6= 〈〉) ⇔ (∀ x : N; y : seqN | x ≤ #y • y 6= 〈〉)

{S} Stands for the set of objects described by schema S . In decla-

rations w : S is usually written as an abbreviation for w : {S}.

Schema operators

Let S be defined as above and w : S .

w .x == (λ S • x )(w)

Projection functions: the component names of a schema may
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be used as projection (or selector) functions, e.g. w .x is w ’s x

component and w .y is its y component; of course, the predicate

‘w .x ≤ #w .y ’ holds.

θS The (unordered) tuple formed from a schema’s variables, e.g.

θS contains the named components x and y .

Compatibility Two schemas are compatible if the declared sets of each vari-

able common to the declaration parts of the two schemas are

equal. In addition, any global variables referenced in predicate

part of one of the schemas must not have the same name as

a variable declared in the other schema; this restriction is to

avoid global variables being captured by the declarations.

Inclusion A schema S may be included within the declarations of a

schema T , in which case the declarations of S are merged

with the other declarations of T (variables declared in both S

and T must have the same declared sets) and the predicates

of S and T are conjoined. For example,

T
S
z : N

z < x

is equivalent to
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T
x , z : N
y : seqN

x ≤ #y ∧ z < x

The included schema (S) may not refer to global variables

that have the same name as one of the declared variables of

the including schema (T).

Decoration Decoration with subscript, superscript, prime, etc: systematic

renaming of the variables declared in the schema. For example,

S ′ is

[x ′ : N; y ′ : seqN | x ′ ≤ #y ′].

¬ S The schema S with its predicate part negated. For example,

¬ S is [x : N; y : seqN | ¬ (x ≤ #y)].

S ∧ T The schema formed from schemas S and T by merging their

declarations and conjoining (and-ing) their predicates. The

two schemas must be compatible (see above).

Given T == [x : N; z : PN | x ∈ z ], S ∧ T is

S ∧ T
x : N
y : seqN
z : PN

x ≤ #y ∧ x ∈ z
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S ∨ T The schema formed from schemas S and T by merging their

declarations and disjoining (or-ing) their predicates. The two

schemas must be compatible (see above). For example, S ∨ T

is

S ∨ T
x : N
y : seqN
z : PN

x ≤ #y ∨ x ∈ z

S ⇒ T The schema formed from schemas S and T by merging their

declarations and taking ‘predS ⇒ predT ’ as the predicate.

The two schemas must be compatible (see above). For exam-

ple, S ⇒ T is

S ⇒ T
x : N
y : seqN
z : PN

x ≤ #y ⇒ x ∈ z

S ⇔ T The schema formed from schemas S and T by merging their

declarations and taking ‘predS ⇔ predT ’ as the predicate.

The two schemas must be compatible (see above). For exam-

ple, S ⇔ T is
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S ⇔ T
x : N
y : seqN
z : PN

x ≤ #y ⇔ x ∈ z

S \ (v1, v2, . . . , vn)

Hiding: the schema S with variables v1, v2, . . . , vn hidden –

the variables listed are removed from the declarations and are

existentially quantified in the predicate. The parantheses may

be omitted when only one variable is hidden.

S ¹ (v1, v2, . . . , vn)

Projection: The schema S with any variables that do not occur

in the list v1, v2, . . . , vn hidden – the variables are removed from

the declarations and are existentially qualified in the predicate.

For example, (S ∧ T ) ¹ (x , y) is

(S ∧ T ) ¹ (x , y)
x : N
y : seqN

(∃ z : PN •
x ≤ #y ∧ x ∈ z )

The list of variables may be replaced by a schema; the variables

declared in the schema are used for projection.
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∃D • S Existential quantification of a schema.

The variables declared in the schema S that also appear in the

declarations D are removed from the declarations of S. The

predicate of S is existentially quantified over D. For example,

∃ x : N • S is the following schema.

∃ x : N • S
y : seqN

∃ x : N •
x ≤ #y

The declarations may include schemas. For example,

∃ S • T
z : N

∃ S •
x ≤ #y ∧ z < x

∀D • S Universal quantification of a schema.

The variables declared in the schema S that also appear in the

declarations D are removed from the declarations of S. The

predicate of S is universally quantified over D. For example,

∀ x : N • S is the following schema.

∀ x : N • S
y : seqN

∀ x : N •
x ≤ #y
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The declarations may include schemas. For example,

∀ S • T
z : N

∀ S •
x ≤ #y ∧ z < x

Operation schemas

The following conventions are used for variable names in those schemas which rep-

resent operations, that is, which are written as descriptions of operations on some

state,

undashed state before the operation,

dashed state after the operation,

ending in “?” inputs to (arguments for) the operation, and

ending in “!” outputs from (results of) the operation.

The basename of a name is the name with all decorations removed.

∆S =̂ S ∧ S ′

Change of state schema: this is a default definition for ∆S . In

some specifications it is useful to have additional constraints

on the change of state schema. In these cases ∆S can be

explicitly defined.
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ΞS =̂ [∆S | θS ′ = θS ]

No change of state schema.

Operation schema operators

pre S Precondition: the after-state components (dashed) and the

outputs (ending in “!”) are hidden, e.g. given,

S
x?, s , s ′, y ! : N

s ′ = s − x? ∧ y ! = s ′

pre S is,

pre S
x?, s : N

∃ s ′, y ! : N •
s ′ = s − x? ∧ y ! = s ′

S ; T Schema composition: if we consider an intermediate state that

is both the final state of the operation S and the initial state

of the operation T then the composition of S and T is the

operation which relates the initial state of S to the final state

of T through the intermediate state. To form the composition

of S and T we take the pairs of after-state components of S and

before-state components of T that have the same basename,

rename each pair to a new variable, take the conjunction of the
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resulting schemas, and hide the new variables. For example,

S ; T is,

S ; T
x?, s , s ′, y ! : N

(∃ ss : N •
ss = s − x? ∧ y ! = ss
∧ ss ≤ x? ∧ s ′ = ss + x?)



Appendix B

Concrete Syntax of Object-Z

The following concrete syntax of Object-Z is an extension of the concrete syntax of

Z presented by Spivey[82]. It is given in an extension to Backus-Naur Form (BNF)

defined in [82]. Optional phrases are enclosed in slanted square brackets. NL denotes

new line.

Specification ::= Paragraph NL . . .NL Paragraph

Paragraph ::= [Ident, . . . , Ident]
— AxiomaticBox
— SchemaBox
— GenericBox
— ClassBox
— SchemaName [ GenFormals] =̂ SchemaExp
— ClassName [ GenFormals] =̂ ClassRef
— DefLhs == Expression
— Predicate

AxiomaticBox ::=
DeclPart

[
AxiomPart ]

SchemaBox ::=
SchemaName [ GenFormals]
DeclPart

[
AxiomPart ]

207
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GenericBox ::=
[ GenFormals]
DeclPart

[
AxiomPart ]

ClassBox ::=
ClassName [ GenFormals]
[ LocalDefs]
[ State]
[ Init]
[ Opn

...
Opn]

[
HistPred ]

LocalDefs ::= LocalDef
...

LocalDef

LocalDef ::= InheritedClass
— [Ident, . . . , Ident]
— AxiomaticBox
— DefLhs == Expression

State ::= [DeclPart [ |AxiomPart] ]
— [AxiomPart ]
— StateBox0
— StateBox1

StateBox0 ::=
DeclPart

[
AxiomPart ]

StateBox1 ::=
AxiomPart

Init ::= Init =̂ [AxiomPart ]
— InitBox
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InitBox ::=
Init
AxiomPart

Opn ::= OpnName =̂ OpnExp
— OpnBox0
— OpnBox1

OpnBox0 ::=
OpnName
OpnDeclPart

[
AxiomPart ]

OpnBox1 ::=
OpnName
AxiomPart

DeclPart ::= BasicDecl Sep . . .Sep BasicDecl

OpnDeclPart ::= ∆(DeltaList) [ Sep DeclPart]
— DeclPart

AxiomPart ::= Predicate Sep . . .Sep Predicate

Sep ::= ; — NL

DefLhs ::= VarName [ GenFormals]
— PreGen Ident
— Ident InGen Ident

SchemaExp ::= ∀SchemaText • SchemaExp
— ∃SchemaText • SchemaExp
— ∃1 SchemaText • SchemaExp
— SchemaExp1
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SchemaExp1 ::= [SchemaText ]
— SchemaRef
— ¬SchemaExp1
— preSchemaExp1

— SchemaExp1∧ SchemaExp1

— SchemaExp1∨ SchemaExp1
— SchemaExp1⇒ SchemaExp1
— SchemaExp1⇔ SchemaExp1
— SchemaExp1 ¹ SchemaExp1

— SchemaExp1 \ (DeclName, . . . ,DeclName)
— SchemaExp1 o

9 SchemaExp1
— (SchemaExp)

OpnExp ::= ∀SchemaText • OpnExp
— ∃SchemaText • OpnExp
— ∃1 SchemaText • OpnExp
— OpnExp1

OpnExp1 ::= [OpnText ]
— OpnRef
— ¬OpnExp1
— preOpnExp1

— OpnExp1∧OpnExp1

— OpnExp1∨OpnExp1
— OpnExp1 ‖ OpnExp1
— OpnExp1⇒ OpnExp1
— OpnExp1⇔ OpnExp1
— OpnExp1 ¹ OpnExp1

— OpnExp1 \ (DeclName, . . . ,DeclName)
— OpnExp1 • OpnExp1
— (OpnExp)

SchemaText ::= Declaration [ |Predicate]

OpnText ::= OpnDeclaration [ | Predicate]
— Predicate

SchemaRef ::= SchemaName Decoration [ GenActuals]
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InheritedClass::= ClassRef [ RenameList] [ RedefList]

ClassRef ::= ClassName [ GenActuals]

OpnRef ::= OpnName
— ObjRef.OpnName

Declaration ::= BasicDecl; . . . ; BasicDecl

OpnDeclaration::= ∆(DeltaList) [ ; Declaration]
— Declaration

BasicDecl ::= DeclName, . . . ,DeclName : Type
— SchemaRef
— OpnRef

Type ::= Expression
— ClassRef
— ↓ClassRef

Predicate ::= ∀SchemaText • Predicate
— ∃SchemaText • Predicate
— ∃1 SchemaText • Predicate
— Predicate1

Predicate1 ::= Expression Rel Expression Rel . . .Rel Expression
— PreRel Expression
— SchemaRef
— OpnRef
— ObjRef.Init
— preSchemaRef
— preOpnRef
— true
— false
— ¬ Predicate1
— Predicate1 ∧ Predicate1
— Predicate1 ∨ Predicate1
— Predicate1 ⇒ Predicate1
— Predicate1 ⇔ Predicate1
— (Predicate)
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Rel ::= = —∈ — InRel

Expression0 ::= λSchemaText • Expression
— Expression

Expression ::= Expression InRel Expression
— Expression1×Expression1× . . .×Expression1
— Expression1

Expression1 ::= Expression1 InFun Expression1
— PExpression3
— PreGen Expression3
— −Expression3
— Expression3 PostFun
— Expression3Expression

— Expression3(| Expression0 |)
— Expression2

Expression2 ::= Expression2 Expression3
— Expression3

Expression3 ::= VarName [ GenActuals]
— Number
— SchemaRef
— SetExp
— 〈 [ Expression, . . . ,Expression] 〉
— [[ [ Expression, . . . ,Expression] ]]
— (Expression, . . . ,Expression)
— θSchemaName Decoration
— Expression3.VarName
— (Expression0)

HistPred ::= ∀Declaration [ | HistPred] • HistPred
— ∃Declaration [ | HistPred] • HistPred
— ∃1 Declaration [ | HistPred] • HistPred
— HistPred1
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HistPred1 ::= Predicate

—
−→

ObjRef
— OpnRef enabled [ | Predicate]
— OpnRef occurs [ | Predicate]
— 2HistPred1
— 3HistPred1
— ¬ HistPred1
— HistPred1 ∧ HistPred1
— HistPred1 ∨ HistPred1
— HistPred1 ⇒ HistPred1
— HistPred1 ⇔ HistPred1
— (HistPred1)

RenameList ::= [RenItem, . . . ,RenItem]

RenItem ::= FeatureRen — ParamRen

FeatureRen ::= Ident/Ident

ParamRen ::= OpnName[FeatureRen, . . . ,FeatureRen]

RedefList ::= [redef OpnName, . . . ,OpnName]

DeltaList ::= Ident, . . . , Ident

SetExp ::= { [ Expression, . . . ,Expression] }
— {SchemaText [ • Expression] }

ObjRef ::= Ident | (Ident, Ident)

Ident ::= Word Decoration

DeclName ::= Ident — OpName

VarName ::= Ident — (OpName)
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OpName ::= InSym — PreSym — PostSym — (| |) — −

InSym ::= InFun — InGen — InRel

PreSym ::= PreGen — PreRel

PostSym ::= PostFun

Decoration ::= [ Stroke . . .Stroke]

GenFormals ::= [Ident, . . . , Ident]

GenActuals ::= [Expression, . . . ,Expression]

Word Undecorated name or special symbol
Stroke Single decoration: ′, ?, ! or a subscript digit
SchemaName Same as Word, but used to name a schema
OpnName Same as Word, but used to name an operation
ClassName Same as Word, but used to name a class
InFun Infix function symbol

7→ . . + − ∪ \ a ∗ div mod ∩ ¹ o
9 ◦ ⊕ C B −C −B

InRel Infix relation symbol
6= 6∈ ⊆ ⊂ < 6 > > partitions

InGen Infix generic symbol
↔ 7→ → 7½ ½ 7→→ →→ ½→ 7 7→ 7 7½

PreRel Prefix relation symbol
disjoint

PreGen Prefix generic symbol
P1 id F F1 seq seq1 seq∞ bag

PostFun Postfix function symbol
∼ ∗ +

Number Unsigned decimal integer
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TCOZ glossary

Notation Explanation

c : chan declare c to be a channel

a : actuator declare a to be a actuator

s : sensor declare s to be a sensor

⊥ divergent process

Stop deadlocked process

Skip terminate immediately

Wait t delay termination by t

a → P communicate a then do P

continued on next page
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Notation Explanation

a@t → P communicate a at time t

then do P

[t : T] • a@t → P record time of a event in

variable t

c.a communicate a on channel c

c?a input a on channel c

c!a output a from channel c

[b] • P enable P only if b

P; Q perform P until termina-

tion, then perform Q

P 2 Q perform the first enabled of

P and Q

[i : I] • P perform P with first enabled

value of i (indexed external

choice)

P u Q perform either of P and Q

continued on next page
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Notation Explanation

[i! : I]; P perform P with any value of

i (indexed internal choice)

v := e syntactic sugar for [∆v |

v′ = e]

P \A hide the events A from the

environment of P

P |[A ]|Q synchronise P and Q on

events from A

(‖p1, . . . ,pn • . . . ; pi
A¾- pj; . . .) network topology

abstraction with parameters

p1, . . . ,pn and network con-

nections including pi com-

municating with pj on pri-

vate channels from A

P ||| Q P and Q running without

sychronisations

continued on next page
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Notation Explanation

P .{t} Q if P does not begin by time

t, perform Q instead

P ↙{t} Q perform P until time t, then

transfer control to Q

P O e → Q perform P until exception e,

then transfer control to Q

P • Deadline t behaviours of P which ter-

minate before time t

P • WaitUntil t after P idle until time t
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Completed DAML+OIL semantic
encoding

D.1 Basic concepts

The semantic models for DAML+OIL are encoded in the module DAMLOIL.

module DAMLOIL

The semantic encoding for the basic concepts is summarized in Table D.1.

All the things described in Semantic web context are called resources. All other

concepts defined later like Property and Class are extended from the Resource.

DAML+OIL primitive Alloy semantic function
Resource sig Resource {}

DAML Property disj sig Property extends Resource
{sub val: Resource → Resource}

DAML Class disj sig Class extends Resource
{instances: set Resource}

Datatype disj sig Datatype extends Class {}

Table D.1: DAML+OIL Semantic encoding (basic concepts)
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DAML+OIL primitive Alloy semantic function
subClassOf fun subClassOf(csup, csub: Class)

{csub.instances in csup.instances}
disjointWith fun disjointWith (c1, c2: Class)

{ no c1.instances & c2.instances}
disjointUnionOf fun disjointUnionOf(clist: List, c1: Class)

{c1.instances = clist.*next.val.instances
all disj ca1, ca2: clist.*next.val |
no ca1.instances & ca2.instances }

sameClassAs fun sameClassAs( c1, c2: Class)
{c1.instances = c2.instances}

Table D.2: DAML+OIL Semantic encoding (class elements)

D.2 Class elements

The semantic encoding for the class elements is summarized in Table D.2. It includes

constructs like subClassOf, disjointWith, disjointUnionOf and sameClassAs.

D.3 Property restrictions

The semantic encoding for the property restrictions is summarized in Table D.3. A

property restriction defines the class of all objects that satisfy the restriction. For

example the toClass function states that all instances of the class c1 have the values

of property P all belonging to the class c2. The other constructs include hasValue,

hasClass, cardinality etc.
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DAML+OIL primitive Alloy semantic function
toClass fun toClass (p: Property, c1: Class, c2: Class)

{all r1, r2: Resource | r1 in c1.instances <=>

r2 in r1.(p.sub val) => r2 in c2.instances}

hasValue fun hasValue (p: Property, c1: Class, r:
Resource)

{all r1: Resource | r1 in c1.instances =>

r1.(p.sub val)=r }
hasClass fun hasClass (p: Property, c1: Class, c2: Class)

{all r1: Resource | r1 in c1.instances =>

some r1.(p.sub val) & c2.instances}
cardinality fun cardinality (p: Property, c1: Class, N: Int)

{all r1: Resource | r1 in c1.instances <=>

# r1.(p.sub val) = int N}
maxCardinality fun maxCardinality (p: Property, c1: Class, N:

Int)
{all r1: Resource | r1 in c1.instances <=>

# r1.(p.sub val) =< int N }
minCardinality fun minCardinality (p: Property, c1: Class, N:

Int)
{all r1: Resource | r1 in c1.instances <=>

# r1.(p.sub val) >= int N }
cardinalityQ fun cardinalityQ (p: Property, c1: Class, N: Int,

c2: Class)
{all r1: Resource | r1 in c1.instances <=>

# r1.(p.sub val) & c2.instances = int
N }

maxCardinalityQ fun maxCardinalityQ (p: Property, c1: Class, N:
Int, c2: Class)

{all r1: Resource | r1 in c1.instances <=>

# r1.(p.sub val) & c2.instances =< int
N }

minCardinalityQ fun minCardinalityQ(p: Property, c1: Class, N:
Int, c2: Class)

{all r1: Resource | r1 in c1.instances <=>

# r1.(p.sub val) & c2.instances >= int
N}

Table D.3: DAML+OIL Semantic encoding (Property restrictions)
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DAML+OIL primitive Alloy semantic function
intersectionOf fun intersectionOf (clist: List, c1: Class)

{all r: Resource| r in c1.instances <=>

all ca: clist.*next.val | r in ca.instances}
unionOf fun unionOf (clist: List, c1: Class)

{all r: Resource| r in c1.instances <=>

some ca: clist.*next.val| r in ca.instances}

Table D.4: DAML+OIL Semantic encoding (Boolean combination)

D.4 Boolean combination of class expressions

The semantic encoding for the boolean combination of class expression is summarized

in Table D.4.

D.5 Property elements

The semantic encoding for the property elements is summarized in Table D.5. It

includes subPropertyOf, samePropertyAs etc.
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DAML+OIL primitive Alloy semantic function
subPropertyOf fun subPropertyOf (psup, psub: Property)

{psub.sub val in psup.sub val }
domain fun domain (p: Property, c: Class)

{(p.sub val).Resource in c.instances }
range fun range (p: Property, c: Class)

{Resource.(p.sub val) in c.instances }
samePropertyAs fun samePropertyAs(p1, p2: Property)

{p1.sub val=p2.sub val }
inverseOf fun inverseOf (p1, p2: Property)

{p1.sub val = (̃p2.sub val)}
TransitiveProperty fun TransitiveProperty(p: Property)

{all x, y, z: Resource |
y in (p.sub val).x && z in (p.sub val).y

=>

z in (p.sub val).x }
UniqueProperty fun UniqueProperty (p: Property)

{all x : Resource | sole x.(p.sub val) }
UnambigousProperty fun UnambigousProperty(p: Property)

{all x : Resource | sole (p.sub val).x}

Table D.5: DAML+OIL Semantic encoding (Property elements)
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DAML-S process ontology for

PIDManager (XML format)

he PIDManager class defined for the Calendar agent will be used to demonstrate

the translation from TCOZ model to DAML-S document. The PIDManager class

has five operations, AddPID, RemovePID, New, Delete and Validate. Each of

them will be translated into a process.

The operation AddPID is an operation invokes no other operations, so it will be

translated as an AtomicProcess (R2). Some standard header information is generated

firstly.

<!--Header Information-->

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

...

225
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<!--PIDmanager AddPId process-->

<daml:Class rdf:ID="PIDManager_AddPID">

<rdfs:subClassOf rdf:resource

="&process;#AtomicProcess"/>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty

rdf:resource="#AddPID_id"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

The operation AddPID has one input id? declared to be type PID. It will be

translated into input in DAML-S (R4).

<!--input-->

<rdf:Property rdf:ID="PIDManager_AddPID_id">

<rdfs:subPropertyOf rdf:resource="&process;#input"/>

<rdfs:domain rdf:resource="#PIDManager_AddPID"/>

<rdfs:range rdf:resource="#PID"/>

</rdf:Property>

The operation AddPID has one predicate ids′ = ids ∪ {id?} which involve post-

states. It will be translated into effect

(PIDManager AddPID EFFECT) in DAML-S (R2).

<!--UnConditionalEffect parameter -->

<daml:Property

rdf:ID="PIDManager_AddPID_EFFECT">

<rdfs:subPropertyOf

rdf:resource="&process;#effect"/>

<rdfs:domain rdf:resource="#PIDManager_AddPID"/>

<rdfs:range><daml:Class>

<rdfs:subClassOf rdf:resource

="&process;#UnConditionalEffect"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty
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rdf:resource="&process;#ceEffect"/>

<daml:toClass

rdf:resource="#PIDManager_AddPIDEffect"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class></rdfs:range>

</daml:Property>

<daml:Class rdf:ID="#PIDManager_AddPIDEffect">

<rdfs:subClassOf rdf:resource="&daml;#Thing"/>

</daml:Class>

The operation RemovePID can be translated similarly.

The operation New calls other operation AddPID, so it was translated as a com-

posite process (R4). It perform two subprocess PIDManager AddPID add id in

and PIDManager AddPID in sequence. The PIDManager AddPID add id in

process represents the communication on channel add (R5). The guard of the oper-

ation was translated as the precondition (IDnotInIDS)(R7).

<-- "New" process-->

<--Communication translated as atomic process R5-->

<daml:Class rdf:ID="PIDManager_New_add_id_in">

<rdfs:subClassOf

rdf:resource="&process;#AtomicProcess"/>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty

rdf:resource="#PIDManager_New_add_id"/>

</daml:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty

rdf:resource="&process;#precondition"/>

<daml:toClass rdf:resource ="#IDnotInIDS"/>

</daml:Restriction>

</rdfs:subClassOf>
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</daml:Class>

<-- input from channel translated

as input for process--!>

<rdf:Property rdf:ID="PIDManager_New_add_id">

<rdfs:subPropertyOf

rdf:resource="&process;#input"/>

<rdfs:domain

rdf:resource="#PIDManager_New_add_id_in"/>

<rdfs:range rdf:resource="#PID"/>

</rdf:Property>

<--Guard --!>

<daml:Class rdf:ID="IDnotInIDS">

<rdfs:subClassOf

rdf:resource="&process;#Condition"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty

rdf:resource="&process;#Value"/>

<daml:hasValue

rdf:resource="&process;#True"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<-- "New" translated as compositeprocess--!>

<daml:Class rdf:ID="PIDManager_New">

<rdfs:subClassOf

rdf:resource="&process;#CompositeProcess"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource=

"&process;#composedOf"/>

<daml:toClass>

<daml:Class>

<daml:intersectionOf

rdf:parseType="daml:collection">

<daml:Class rdf:about="&process;#Sequence"/>

<daml:Restriction>

<daml:onProperty

rdf:resource="&process;#components"/>

<daml:toClass><daml:Class>
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<process:listOfInstancesOf

rdf:parseType="daml:collection">

<daml:Class

rdf:about="#PIDManager_New_add_id_in"/>

<daml:Class

rdf:about="#PIDManager_AddPID"/>

</process:listOfInstancesOf>

</daml:Class></daml:toClass>

</daml:Restriction>

</daml:intersectionOf>

</daml:Class>

</daml:toClass></daml:Restriction>

</rdfs:subClassOf>

<!--some atomic derived IOEP was omitted here--> </daml:Class>

The operation Delete and Valide can be similarly translated.


