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Summary 

The Adaptive Boosting (AdaBoost) algorithm is generally regarded as the first 

practical boosting algorithm, which has gained popularity in recent years. At the same 

time, its limitation in handling the outliers in a complex environment is also noted.  We 

develop a new ensemble boosting algorithm, S-AdaBoost, after reviewing the popular 

adaptive boosting algorithms and exploring the need to improve upon the outlier 

handling capability of current ensemble boosting algorithms in the complex 

environment. The contribution of the S-AdaBoost algorithm is its use of AdaBoost’s 

adaptive distributive weight as a dividing tool to split up the input space into inlier and 

outlier sub-spaces. Dedicated classifiers are used to handle the inliers and outliers in 

their corresponding sub-spaces. The results obtained from the dedicated classifiers are 

then non-linearly combined. Experimental results of tests derived from some 

benchmark databases show the new algorithm’s effectiveness when compared with 

other leading outlier handling approaches. The S-AdaBoost machine is made up of an 

AdaBoost divider, an AdaBoost classifier for inliers, a dedicated classifier for outliers, 

and a non-linear combiner. 

Within the confines of a complex airport environment, to demonstrate the 

effectiveness of the S-AdaBoost algorithm, we develop the S-AdaBoost based FDAO 

(Face Detection for Airport Operators) and FISA (Face Identification System for 

Airports) systems. The FDAO system’s performance is compared with the leading face 

detection approaches using the data obtained from both the complex airport 

environment and some popular face database repositories. The experimental results 
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demonstrate the effectiveness of the S-AdaBoost algorithm on the face detection 

application in the real world environment. Similar to the FDAO system, the FISA 

system’s performance is compared with the leading face identification approaches 

using the airport data and the FERET (FacE REcognition Technology) standard dataset. 

Results obtained are equally promising and convincing, which shows that the S-

AdaBoost algorithm is effective in handling the outliers in a complex environment for 

the purpose of face identification.  
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Chapter One 

Introduction 

1.1 Motivation  

This thesis reports some research results conducted in the field of ensemble boosting, 

an active research stream of machine learning theory. The Ensemble Boosting (or 

boosting) algorithm [Valiant, 1984; Schapire, 1992] is a special machine learning 

technique, which intelligently integrates some relatively weak learning algorithms to 

form a stronger collective one in order to boost the ensemble’s overall performance. 

Recent interest in ensemble boosting is partly due to the success of an algorithm called 

the AdaBoost (Adaptive Boosting) [Freund and Schapire, 1994]. Implementations of 

this simple algorithm and the positive results obtained by researchers from using it in 

various applications [Maclin and Opitz, 1997; Schwenk and Bengio, 1997] have since 

attracted much research attention.    

Researchers, while celebrating the success of the AdaBoost algorithm in some 

applications, also find that the good performance of the AdaBoost algorithm tends to 

be restricted to the low noise regime, a drawback which limits its use in the often seen 

complex real world environments. This drawback is inherent in the design of the 

AdaBoost algorithm, which focuses on the “difficult” patterns instead of the “easy” 

ones. As noisy patterns or outliers often fall into the category of the “difficult” patterns, 
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the performance of the AdaBoost algorithm can be affected when the number of outlier 

patterns becomes large. 

To overcome this limitation, many enhanced versions of the AdaBoost 

algorithm have been proposed [Friedman, Hastie and Tibshirani, 1998; Freund, 1999; 

Freund, 1995; Domingo and Watanabe, 2000; Servedio, 2001; Mason, Bartlett and 

Baxter, 1998; Rätsch, Onoda and Müller, 2001] with varying success to expand the 

AdaBoost algorithm’s capability dealing with noise. 

Motivated by the effectiveness and elegance of the AdaBoost algorithm and the 

desire to extend the adaptive boosting approach to the complex real world environment, 

the S-AdaBoost algorithm [Liu and Loe, 2003a], which utilizes the widely used 

strategy of “divide and conquer” and is effective in handling outliers, will be discussed 

in this thesis. The S-AdaBoost algorithm’s effectiveness is demonstrated by the 

experimental results conducted on some benchmark databases through comparing with 

other leading outlier handling approaches. To further demonstrate the effectives of the 

S-AdaBoost algorithm in the real world environment, Face Detection for Airport 

Operators (FDAO) [Liu, Loe and Zhang, 2003c] and the Face Identification System for 

Airports (FISA) [Liu and Loe, 2003b] systems for a real airport complex environment 

will be discussed. The experimental results from these systems are compared with 

other leading face detection and face identification approaches, which clearly show the 

effectiveness of the S-AdaBoost algorithm. 

1.2 Contribution  

Solving a complex problem by using the widely used strategy of “divide and conquer”, 

we introduce the S-AdaBoost algorithm. Utilizing the characteristic that the AdaBoost 
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algorithm focuses more on the “difficult” patterns than the “easy” patterns after certain 

rounds of iteration, an AdaBoost algorithm-based dividing mechanism is implemented 

to divide the input pattern space into two separate spaces (the inlier sub-space and the 

outlier space). Dedicated two sub-classifiers are then used to handle the two separate 

sub-spaces. To further demonstrate the S-AdaBoost algorithm’s effectiveness, the 

algorithm is applied to the face detection and the face identification applications in the 

complex airport environment. The S-AdaBoost algorithm’s effectiveness is 

demonstrated by the experimental results conducted on some benchmark databases 

through comparing with other leading outlier handling approaches. To further 

demonstrate the effectives of the S-AdaBoost algorithm in the real world environment, 

the Face Detection for Airport Operators (FDAO) and the Face Identification System 

for Airports (FISA) systems based on S-AdaBoost algorithm, are introduced and 

discussed in this thesis.  

The complex environment associated with pattern detection and pattern identity 

recognition usually implies, but is not limited to the complication of the background 

and the complication of the conditions of the object patterns to be detected or 

identified. This includes those variations such as lighting, coloring, occlusion, and 

shading; whereas the complex condition of the objects may include the differences in 

positioning, viewing angles, scales, limitation of the data capturing devices and timing.  

In the face detection and the face identification applications, the complexity comes 

from three common factors (variation in illumination, expression, pose / viewing angle) 

as well as aging, make-up, and the presence of facial features such as a beard and 

glasses etc. In this thesis, the airport environment is chosen as a typical example of the 

complex environment for testing, as it contains all the above-mentioned complexity. 
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To summarize, the main contributions of the thesis are: 

- Propose the S-AdaBoost algorithm, which innovatively uses the AdaBoost’s 

adaptive distributive weight as a dividing tool to divide the input space into 

inlier and outlier sub-spaces and to use dedicated classifiers to handle the 

inliers and outliers in the corresponding spaces before non-linearly combining 

the results of the dedicated classifiers. 

- The S-AdaBoost algorithm’s effectiveness is demonstrated by the 

experimental results conducted on some benchmark databases through 

comparing with other leading outlier handling approaches. To further 

demonstrate the effectives of the S-AdaBoost algorithm in the real world 

environment, two S-AdaBoost algorithm based application systems, FDAO and 

FISA are developed. Better experimental results are obtained from the two 

systems comparing with leading face detection and face identification 

approaches. 

1.3 The Structure of the Thesis 

The rest of the thesis is structured as follows: Chapter 2 introduces some of the 

background information needed in the thesis. The widely used strategy of “divide and 

conquer” is introduced together with its application in ensemble learning; brief 

introductions of the face detection and the face identification applications, as well as 

the state of the art methodologies in the fields are mentioned. Chapter 3 describes the 

ensemble boosting. The popular adaptive boosting method AdaBoost, the AdaBoost 

algorithm’s effectiveness in preventing overfitting and its ineffectiveness in handling 

outliers are also described. Chapter 4 introduces the new S-AdaBoost algorithm. The 
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input pattern space in the S-AdaBoost algorithm is analyzed followed by proposing the 

structure of an S-AdaBoost machine; the S-AdaBoost’s divider, its classifiers and its 

combiner are also introduced. Some theory analysis is provided followed by the 

experimental results of the S-AdaBoost algorithm on some popular benchmark 

databases. Chapter 5 focuses on the S-AdaBoost algorithm’s applications in the 

domains of the face pattern detection and the face pattern identification in the complex 

airport environment. The Face Detection for Airport Operators (the FDAO system) and 

the Face Identification System for Airports (the FISA system) as well as their 

implementation details are discussed. The experimental results of the two systems 

obtained from the airport datasets are compared with the results obtained from other 

leading face detection and face identification approaches on the same airport datasets. 

Further experiments from all the approaches are also conducted on the benchmark 

datasets for the face detection and the face identification applications to further prove 

the S-AdaBoost algorithm’s effectiveness in those applications and datasets. 

Conclusions are drawn in Chapter 6 followed by the bibliography.  
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Chapter Two 

Background 

2.1 Ensemble Learning Classification 

A complex computational problem can be solved by dividing it into a number of 

simple computational sub-tasks, followed by conquering the complex computational 

problem through combining the sub-solutions to the sub-tasks. In the classification 

context, computational simplicity and efficiency can be achieved by combining the 

outputs from a number of sub-classifiers, each of which focuses on the partial or the 

whole input training space [Chakrabarti Soumen, Shourya Roy and Mahesh 

Soundalgekar, 2002]. The whole structure is sometimes termed as an Ensemble or 

Committee Machine [Nilsson, 1965]. 

In the classification scenario, an ensemble learning classifier Ê can be defined 

as an aggregated classifier, which is the combination of several individual component 

classifiers. It can be denoted by: 

yi = Ĉ(ŵj(xi))       (2.1.1) 

Where yi ∈Y, which stands for the output of the ensemble learning classifier Ê; 

Ĉ is the Combination function; 

ŵj (j takes its value from1 to J, which stands for the total number of the 

individual component classifiers) is the individual component classifier 
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(sometimes it is called the component classifier, the individual classifier or 

the base classifier); 

xi ∈ X (i =1 to I, which stands for the total number of the training input 

patterns) is the input to the particular individual component classifier ŵj.; 

and  

{xi, yi} denotes a specific training pattern pair. 

Ensemble classifiers Ês can be classified into static and dynamic categories 

depending on how their input patterns xis are involved in forming the structure of the 

classification mechanism. 

In a static ensemble classifier Ê (as shown in Figure 2.1), a particular input 

pattern xi is involved in the training of the individual component classifiers but not 

directly involved in the formation of the combination function Ĉ, which means:  

Ĉ= Ĉ (ŵj)               (2.1.2) 

In a dynamic ensemble classifier Ê (as shown in Figure 2.2), the particular 

input pattern xi is directly involved in the formation of the combination function Ĉ, 

which means: 

Ĉ= Ĉ ( ŵj, xi)      (2.1.3) 
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Figure 2.1 The static ensemble classification mechanism 

 

Figure 2.2 The dynamic ensemble classification mechanism 

Two main sub-categories of the static ensemble classifiers Ês are the Ensemble 

Averaging Classifier Â [Wolpert, 1992; Perrone, 1993; Naftaly and Horn, 1997; 

Hashem, 1997] and the Ensemble Boosting (or Boosting) Classifier Β [Schapire, 1990]. 

Outputs of the individual component classifiers ŵis are linearly combined by the 

combiner Ĉ to generate the final classification result in an ensemble averaging 

classifier Â. The weak individual component classifiers ŵis are boosted during the 
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training process to achieve the final good performance in a boosting classifier Β. The 

main difference between the two categories of classifiers is the way that the individual 

component classifiers ŵis are trained in the classifiers. In an ensemble averaging 

classifier Â, all of the individual component classifiers ŵis are trained on the same 

training pattern pair set {Xi, Yi}, even though they may differ from each other in 

choosing the initial training network parameter settings among the individual 

component classifiers ŵis. Whereas in the ensemble boosting classifier Β, the 

individual component classifiers ŵis are trained on the entirely different distributions 

of the training pattern pair set {Xi, Yi}. Boosting or Ensemble Boosting, which will be 

discussed in more detail in the following sections and chapters, is a general 

methodology to improve the performance of any weak classifiers better than random 

guessing. Combining some of the features of both categories of classifiers, S-AdaBoost 

[Liu and Loe, 2003a] classifier will be introduced and discussed in detail in the 

following sections and chapters. 

Two main classes of the dynamic ensemble classifiers Ê are the ME (Mixture 

of Experts) classifier and the HME (Hierarchical Mixture of Experts) classifier. Input 

patterns Xi, together with the outputs of the individual classifiers ŵis, jointly act as the 

inputs to the final combiner, which generates the final classification result output (as 

shown in Figure 2.2). In the ME classifier, all of the outputs from the individual 

classifiers ŵis are non-linearly combined (usually the outputs from the individual 

classifiers are softmaxed [Bridle, 1990] before being combined) by one gating network; 

whereas in HME classifier, outputs from the individual classifiers ŵis are non-linearly 

combined by several hierarchical gating networks before being combined by the final 

Combiner Ĉ. Involving the input patterns Xis of the individual component classifiers to 
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the Combiner Ĉ greatly increases the complexity of the algorithm and chance to overfit 

the input patterns if there are not enough training data available.  

It has been reported [Dietterich, 1997] that the ensemble classifier Ê can often 

achieve more accurate classification results on benchmark datasets than the individual 

base classifiers ŵi that make it up. It is this discovery that leads to the active research 

in this direction. 

The training of the ensemble classifier Ê generally begins with the training of a 

set of individual component classifiers ŵi (sometimes they are called the weak learners 

or the base learners in the Boosting domain or called the hypothesis experts in the 

Committee Machine domain), followed by the aggregation (or “combination”) of the 

Combiner Ĉ to integrate the classification results of these individual component 

classifiers ŵis. The common methodology of choosing the most suitable individual 

component classifiers ŵi is based on the principle of generating more diversity among 

the individual component classifiers ŵis. This is due to the research result that [Hansen 

& Salamon, 1990] a necessary and sufficient condition for an ensemble classifier Ê to 

be more accurate than any of the individual component classifiers ŵi that makes the 

ensemble classifier Ê  up is that the individual component classifiers ŵis are accurate 

and diverse. The definition of the individual component classifiers ŵis being 

“accurate” in this content is that every individual component classifier’s performance 

is better than random guessing; and the definition of the individual component 

classifiers ŵis being “diverse” is that the individual component classifiers ŵis can 

make different kinds of errors on the same new input patterns. It is evident that it is 

relative easier to construct an “accurate” classifier than a “diverse” classifier. 
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Approaches from different viewpoints have been proposed to construct the 

individual component classifier ŵis to create diversities.  Starting from Bayesian 

voting based approach [Neil, 1993], which initially proposed to enumerate the 

individual component classifiers in an ensemble machine with very limited success, 

four main categories of approaches have since been developed: approaches based on 

the manipulation of the input training patterns xis; approaches based on the 

manipulation of the input feature sets of input training patterns xis; approaches based 

on the manipulation of the output patterns Y; and approaches based on the 

methodologies injecting the randomness directly to the algorithm ŵi itself to create 

diversity.    

Approaches based on the manipulation of the input training patterns xis works 

well for the ensemble classifiers whose component classifiers ŵis are unstable, which 

means that the minor change of the training input pattern xi results in the major 

variation of the classification output Y. Typical examples of the unstable base 

classification algorithms ŵis are neural network algorithm [Schwenk H. and Bengio Y., 

1997; Schwenk H. and Bengio Y., 2000] and decision-tree algorithm. Among all the 

algorithms, random replacement Bagging (which stands for “bootstrap aggregation”) 

[Breiman, 1996], leave-one-out cross-validation committee machine [Parmanto, 

Munro, Dayle, 1996], and the AdaBoost algorithm are three representative algorithms 

belonging to the manipulation of input training patterns xis category. The second 

category of approaches based on the manipulation of the input features only works 

well when the numbers of the input features are highly redundant [Tumer and Ghost, 

1996]. 
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Two typical examples, ECOC (Error-Correcting Output Codes) and the 

AdaBoost.OC (AdaBoost.OC is the combination of ECOC and the AdaBoost 

algorithm) [Schapire, 1997] fall into the third category manipulating the output 

classification result Y. The last category works by injecting randomness directly to the 

individual component classification algorithms ŵis. Neural Network [Kolen & Pollack, 

1991], C4.5 [Kwok and Carter, 1990; Dietterich 2000], and FOIL [Ali and Pazzani, 

1996] can be used as the algorithm receiving the random noise injection to generate the 

required diversity. 

Based on the different combination mechanisms used, the Combiner Ĉ can be 

categorized into: combiners based on the combination by voting mechanism (used by 

the Bagging, the ECOC, and the AdaBoost algorithms) and combiners based on the 

combination by confidence value (techniques used including stacking [Breiman 1996; 

Lee and Srihari, 1995; Wolpert, 1992], serial combination [Madhvanath and 

Govindaraju, 1995], and weighted algebraic average [Jacob, 1995; Tax et al., 1997]).   

In the past few years, many ensemble algorithms have been proposed. Among 

them, some of the leading algorithms are Bagging [Breiman, 1996], Boosting and 

AdaBoost [Freund & Schapire, 1999], ECOC (Error-Correcting Output Codes) 

[Dietterich & Bakiri, 1995]. Among those approaches based on these leading 

algorithms, the AdaBoost algorithm-based approaches often outperform the 

approaches based on other algorithms [Dietterich, 2002]. The AdaBoost based 

ensemble classifiers are gaining more and more popularity due to their simplicity and 

effectiveness in solving problems. 

2.2 Face Detection and Face Identification in a Complex Environment 
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Face Detection [Yang, Kriegman, and Ahuja, 2002; Viola P. and Jones M., 2001] and 

Face Identification [Zhao, Chellappa, Rosenfeld, and Phillips, 2000a; He. X, Yan S., 

Hu and Zhang H.J., 2003] are two active research topics under the regime of pattern 

recognition. Face detection can be considered as the first step towards a face 

identification or recognition system, but this first step is in no way less challenging 

than the face identification system itself. 

In statistical learning, to estimate a classification decision boundary using a 

finite number of training patterns implies that any estimate is always inaccurate 

(biased). For a complex pattern classification problem (like face detection or face 

identification), it is becoming more and more difficult to collect enough and good 

training patterns. Non-perfect training samples will increase the complexity of the 

input space and results in a problem commonly known as “curse of dimensionality”. In 

the absence of any assumption or empirical knowledge about the nature of the function, 

the learning problem is often ill-posed. In statistical learning theory, the “divide and 

conquer” strategy is a means to solve this “curse of dimensionality”. 

Face pattern detection [Li, Zhu, Zhang, Blake, Zhang and Shum, 2002; 

Pentland, 2000a; Pentland 2000b; Pentland and Choudhury, 2000; Viola P. and Jones 

M., 2001] can be regarded as a two-class pattern classification (“face” v.s “non-face”) 

task. Face detection is to determine and locate all face occurrences in any given image. 

A face detection system extracts potential face regions from the background. A 

complex environment including differences in scale, location, orientation, pose, 

expression, occlusion and illumination associated with the face pattern detection often 

makes the face detection task challenging. Feature-based approaches and statistical 

approaches are two major types of algorithms used to detect faces. Feature-based 
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approaches are further divided into knowledge-based approaches [Kanade, 1973; 

Kotropoulos and Pitas, 1997; Pigeon and Vandendrope 1997; Yang and Huang, 1994], 

feature invariant approaches [Kjeldsen and Kender, 1996; Leung, Burl and Perona 

1995; McKenna, Gong and Raja, 1998; Yang and Waibel, 1996; Yow and Cipolla, 

1997] and template matching approaches [Venkatraman and Govindaraju, 1995; Sinha, 

1995; Lanitis, Taylor and Cootes, 1995; Govindaraju, Srihari and Sher, 1990; Craw, 

Tock and Bennett, 1992].  In the first category, human face features and their 

relationships are coded in the database or templates, and the correlations between the 

new image and the feature sets are calculated to determine whether the new image is a 

face or not. The second statistical approach category takes a holistic approach to the 

face detection task; it is also referred as appearance-based method in some literature. 

In contrast to comparing the new input with the fixed stored features as done in the 

first category, approaches in this category make use of statistical learning and machine 

learning techniques to establish a model of a face through learning the face knowledge 

from a known set of training patterns. The learned implicit knowledge is then 

embedded in the distribution model or the discriminant functions (including the 

decision boundaries, the separating hyper-planes or the threshold functions) that are 

later used to detect faces from new input images. The popular approaches, which 

utilize the PCA [Turk and Pentland, 1991], Support Vector Machine [Osuna, Freund 

and Girosi F, 1997], Gaussian distribution [Sung and Poggio, 1998], Naive Bayes 

statistics [Schneiderman and Kanade, 1998], Hidden Markov Model [Rajagopalan, 

Kumar, Karlekar, Manivasakan, Patil, Desai, Poonacha and Chaudhuri, 1998)], 

Entropy theory [Lew, 1996] and neural networks [Rowley, Baluja and Kanade, 1998] 

fall into this category.  
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Various error rates are used to describe the effectiveness of face detection 

algorithms. Two commonly used error rates are: the false negative rate, which 

measures the error rate of “faces” being wrongly classified as “non-faces”; and false 

positive rate, which measures the error rate of “non-faces” being wrongly classified as 

“faces”. A fair measure should take both the above rates into consideration, as 

reducing one rate might result in increasing the other rate. In this thesis, “the detection 

error rate” is used to measure the effectives of an algorithm, which is defined as the 

number of all the wrongly classified cases (including both the number of cases of 

“faces” wrongly classified as “non-faces” and the number of cases of “non-faces” 

wrongly classified as “faces”) divided by the number of all cases.  

Another issue is the definition of “face detection”. Some definitions are based 

on the existence of certain features and some definitions follow the judgment of human 

beings. But it is understood that human beings are sometimes even ambiguous among 

ourselves about whether a particular cut-out of an image is a face or not. All the above 

makes the face detection task very challenging. In the experiment, an international 

airport (as shown in Figure 2.3) is used as the testing complex environment, where 

thousands of people pass by everyday. The training and testing image patterns are 

taken by the CCD Cameras installed there. 
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Figure 2.3 Typical scenarios in the complex airport environment 

The face recognition or face identification system [Zhao, Chellappa, Rosenfeld 

and Phillips, 2000] is a non-intrusive biometric system being able to conduct the 

identification or the recognition of a number of candidates from a crowd. The facial 

recognition or the identification system can be used for criminal or idendity 

recognition purposes.  

Similar to the face detection task, there are also two main methodologies 

behind all the approaches: feature-based method and statistical method. Feature-based 

face identification systems are built on the analysis of the potential human face sub-

images of an input image for the purpose of identification. By measuring the existence 

of certain facial characteristics (such as the distance between the eyes, the length of the 

nose, the angle of the jaw), the feature-based face identification systems create a 

unique file called a "template file”. Using templates stored in the template file, the 

systems can compare the new input image with the stored face templates and produce a 

score that measures how similar the new image is to the stored face images. The scores 

obtained are used to make judgment on deciding whether the new input is a face image. 

Another more popular methodology is based on the statistical property of the image, 

which attracts active research attention. Similar to the former approach, a segmented 

potential face image is fed into the statistical identification module, which reports back 

the determined identity if the identification module finds a match from a database of 

the known candidates. The statistical identification module is trained by the known 

input patterns; the feature’s known characteristics and other unknown hidden 

characteristics are coded in the distributed mechanism embedded in the module itself. 

Enhanced face identification is also studied with the aid of the known information like 
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human race, gender, and speech characteristics to assist the identification. We’ll not 

touch on the enhanced face identification methods in this thesis.  

In a complex environment, the challenge to a face recognition/identification 

system comes from the variances in image background, occlusion, and hairstyle; 

besides the two well-known difficulties, which are the variation of the background 

illumination and the difference of the poses. 

To handle the complex environment, various methodologies have been 

proposed. Based on the behavior of certain characteristics of noise, some heuristic 

methods (such as discarding the smallest principle components in the Eigen-face 

approach [Belhumeur, Hespanha and Kriegman, 1997; Turk and Pentland, 1991]) 

achieve good results in reducing the influence of the background illumination, the 

symmetry feature of the face pattern is also used in some approaches (such as [Zhao, 

1999]) to reduce the influence of the noise in the complex environment. These noise 

pattern based approaches apparently are very dependent on the environment itself and 

might not function well in a simple environment.  

Many approaches have been proposed to tackle face recognition in the complex 

environment dominated by the illumination variation. Based on the statistical 

knowledge that the difference of the same face in a different environment is smaller 

than the difference between two different faces, some image comparison based 

approaches (such as [Jacobs, Belhumeur and Basri, 1998]) are developed to tackle the 

complex environment, but these approaches are not capable of handling the complex 

environment effectively by themselves. Class-based approaches (such as [Belhumeur 

and Kriegman, 1997]) assume that the face images are of the Lambertain surface 
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without shadowing; three faces under different lighting conditions are obtained to 

construct a 3D model, which is invariant to lighting and other kinds of noises. Model-

based approaches (such as [Atick, Griffin and Redlich, 1996]) use PCA analysis and 

ICA analysis to transfer the Shape-From-Shading problem into a parametric problem 

and use many viewpoint samples to construct a model good at handling complex 

environments.  

Developing the face recognition methods in the complex environment that are 

able to handle multiple types of noise is a current hot topic of research nowadays. The 

neural network based EBGM (Elastic Bunch Graph Matching) approach [Wiskott, 

Fellous and Malsburg, 1997], the statistical subspace LDA (Linear/Fisher Discriminant 

Analysis) approach [Zhao, Chellappa and Krishnaswamy, 2000], and the Probabilistic 

PCA (Principle Component Analysis) approach [Moghaddam, 2002] are three of the 

most effective face recognition/identification methods. The EBGM approach defines a 

planar surface patch in each key landmark location, and studies the transformation of 

the rotation of the face and pose variation of the images. The system is good at 

handling face rotation and pose variation through applying techniques like face 

localization, landmark detection. By defining a graph matching mechanism, the system 

achieves good experimental results. However the challenge to the EBGM approach is 

how to accurately locate the landmark points. Statistical sub-space LDA approach aims 

to reduce the overfitting phenomenon on a large face database. This approach is more 

suitable for a database with a large number of classes to be classified; in the same time, 

the database is also under the restriction that only a small number of training patterns 

belong to a particular class. Utilizing PCA (Principal Component Analysis), the high 

dimension face images are projected to the face subspace with a lower dimension in 

the Statistical sub-space LDA approach. The LDA (Linear Discriminant Analysis) 
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process is conducted upon the PCA vectors in the sub-space. Something unique in the 

statistical sub-space LDA approach is that the dimension of the face sub-space is fixed 

regardless of the dimension of the face images, which are normally very big. The face 

sub-space dimension is decided by the number of the Eigenvectors. Utilizing Kernel 

PCA techniques, the probabilistic PCA applies a non-linear mapping to the input space 

and converts the non-linear face identification task to a linear PCA task in the larger 

dimensional mapped space. The advantage of the Probabilistic PCA approach over the 

neural network approach is that it reduces the overfitting and does not require 

optimization. Neither the prior knowledge of the network structure nor the size of the 

dimension is needed in this appraoch. Typical kernel functions used in the approach 

are Gaussian functions, Polynomials and Sigmoid functions (Yang Ming-Hsuan, 

Kriegman David, and Ahuja Narendra. 2002). Another emerging technique, which is 

called Laplacianface (He. X, Yan S., Hu and Zhang H.J., 2003), takes into account the 

face manifold structure to recognize faces. 

In this thesis, we introduce the S-AdaBoost algorithm. The S-AdaBoost 

algorithm’s effectiveness is demonstrated by the experimental results conducted on 

some benchmark databases through comparing with other leading outlier handling 

approaches. To further demonstrate the effectives of the S-AdaBoost algorithm in the 

real world environment, two application systems, FDAO and FISA are developed. 

 

 

19 



 

Chapter Three 

Ensemble Boosting 

3.1 Ensemble Boosting 

Ensemble Boosting (or Boosting) classifier Β [Schapire, 1990] is a kind of learning 

classifier Ê defined as the ensemble that combines some weak learners his  (also called 

the weak hypotheses, base classifiers, individual component classifiers, or component 

classifiers in the boosting theory) to improve the performance of the weak learners. In 

the process, new weak learners in the ensemble are generated and conditioned on the 

performance of the previously built weak learners.  

There are three main types of boosting classifiers Β, which are boosting by 

filtering classifiers (such as [Schapire, 1990]), boosting by sub-sampling classifiers 

(such as [Freund and Schapire, 1996a]) and boosting by re-weighting classifiers (such 

as [Freund Y., 1995]). The boosting by filtering classifiers use different weak 

classifiers his to filter the training input patterns xis; the training input patterns xis will 

either be learnt or discarded during filtering. The filtering approach is simple but often 

requires a large (in theory, infinite) number of training patterns from the training set X. 

Collecting such a large number of training patterns is often impossible in the real 

world. Compared with the large set of training patterns required in the boosting by 

filtering classifiers, only a limited set of training patterns xis are required in the 

boosting by sub-sampling classifiers. The training patterns xis are re-used and re-
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sampled according to certain distribution patterns in the boosting by sub-sampling 

based approaches. The boosting by re-weighting classifiers also make use of a limited 

set of training patterns (similar to the boosting by sub-sampling approaches), the 

difference between these two types of classifiers is that the boosting by re-weighting 

classifiers receive weighted training patterns xis rather than the sampled training 

patterns xis used in the boosting by sub-sample classifiers.  

Boosting was originally developed from the Probably Approximately Correct 

(PAC) theory [Valiant, 1984]. It is proven [Kearns M., and Valiant L.G., 1994] that the 

Boosting classifier Β can achieve arbitrary good classification results from slightly 

better than random guessing weak learners his through the boosting process, provided 

that there is enough training data available. After the first polynomial time boosting 

classifier Β [Schapire, 1990] was proposed, the first Boosting-based application 

system [Drucker, H., Schapire, R., and Simard, P., 1993] tackling the real world OCR 

task was built using a neural network as the base weak learners hi. In the following 

paragraphs, it will be explained why the boosting algorithm can boost the performance 

of the base weak classifier and why a weak classifier is equivalent to a strong classifier 

in the Boosting framework. The answers to these questions constitute the foundation of 

the boosting theory. 

The PAC learning model is a probabilistic framework for learning and 

generalization in the binary classification system, and it is closely associated with the 

supervised learning methods. In the PAC classification learning, the learning machine 

Ĺ tries to conduct classification on the randomly chosen training input patterns with an 

underlying distribution. The goal of the learning machine Ĺ is to be able to classify a 
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problem with an error rate less or equal to an arbitrary small positive number ε, and 

this property must hold uniformly for all the possible input distributions. As the 

training input pattern distributions are randomly chosen, the above goal can be 

achieved with a certain probability, which is defined to be equal to 1 - δ (δ is a small 

positive number, which is used to measure the unlikelihood of the learning machine Ĺ 

being accurate). The above PAC learning is often called strong learning (As shown in 

Figure 3.1). 

  

Figure 3.1 PAC Learning model 

As the accuracy requirement to the individual weak learners his in boosting 

classifier Β is “slightly better than random guessing”, which means that the individual 

weak learners his are only required to achieve slightly better than ½ accuracy in the 

binary classification; the requirement to the base learning algorithm is dramatically 

relaxed in the boosting algorithms. This kind of learning used in boosting algorithms is 

called weak learning compared with the PAC strong learning described in the above 

paragraph. 

Schapire [1990] proved constructively that weak learning and strong learning 

are equivalent. A boosting by filtering classifier Β with three individual weak learners 

his can convert an arbitrary weak learning classifier to a strong learning classifier (one 

of the conversion processes is shown in Figure 3.2).  

22 



 

 

Figure 3.2 Boosting by filtering - a way of converting a weak classifier to a strong one 

From Figure 3.2, it is shown that the first step of the boosting by filtering 

algorithm is to train the individual weak learner h1using the I1 training patterns 

randomly chosen from the input pattern set X. The method of obtaining the I1 training 

patterns, which will be used to train the weak learner h2 can be described as: 

Initialize the number of the training patterns already obtained for the weak 

learner h2 to 0: 

i = 0. 

Get a function Random (), which can generate values 0 and 1 

randomly. 

Use y1(x) to represent the targeted output of the weak learner h1.  
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Use X2 to represent the training set needed for training the weak  
learner  h2,  

initialize the set X2 by setting: 
X2 ={}; 

Use h1(x) to represent the actual output of the individual weak  
learner h1. 

LOOP until (i = I1) 

              BEGIN 

IF (Random () ≡ 1)  

BEGIN  

LOOP until h1(new training pattern x) ≠ y1(x))  

BEGIN  

Get a new training pattern x. 

END 

END  

ELSE  

BEGIN 

LOOP until h1(new training pattern x) ≡  y1(x))  

BEGIN  

Get a new training pattern x. 

END 

END               

i = i + 1;  

Store the current x training pattern in X2 by setting:  

X2 =X2 + {x}; 

END 

OUTPUT X2 

The output X2 set contains the I1 training patterns used to train the weak learner 

h2 in the future. 

In this way, all the I1 training patterns, which are used to train the individual 

weak learner h2 are of different distribution from the I1 training patterns, which have 

been selected to train the individual weak learner h1. If this I1 training patterns, which 
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are used to train individual weak learner h2, is used to test the individual weak learner 

h1, a 0.5 error rate will be obtained. 

Similarly, the requirement for getting the I1 training patterns for the individual 

weak learner h3 is that the new I1 training patterns must be of different distribution 

comparing with the I1 training patterns that are used to train the individual weak 

learner h1 as well as the I1 training patterns that are used to train the individual weak 

learner h2. The method can be described as: 

Initialize the number of the training patterns already obtained for the weak 
learner h3 to 0: 

 i = 0. 

Use X3 to represent the training set needed for training the weak learner h3, 
initialize the set X3 by setting: 

X3 ={}; 

Use h1(x) to represent the actual output of the individual weak learner h1. 
Use h2(x) to represent the actual output of the individual weak learner h2. 

LOOP until (i = I1) 

BEGIN 

LOOP until h1(new training pattern x)  

≠ h2(new training pattern x))  

BEGIN  

Get a new training pattern x. 

END 

i = i + 1;  

Store the current x training pattern in X3 by setting:  

X2 =X3 + {x}; 

END 

OUTPUT X3 

The output X3 set contains the I1 training patterns used to train the weak learner 

h3 in the future. 
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Through this way, all the I1 training patterns, which are used to train the 

individual weak learner h3 are of different distribution from both the I1 training 

patterns, which have been selected to train the individual weak learner h1 and the I1 

training patterns, which have been selected to train the individual weak learner h2. If 

these I1 training patterns, which are used to train individual weak learner h3, is to test 

the individual weak learner h1 and individual weak learner h2, a 0.5 error rate will be 

obtained. 

In the following discussion: 

I2 is used to denote the number of training patterns in the input space X needed 

to generate the I1 training samples for training the individual weak learner h2.  

I3 is used to denote the number of training patterns in the input space X needed 

to generate the I1 training samples for training the individual weak learner h3. 

The total number of training patterns needed to train the boosting by filtering 

classifier Β is:  

I = I1 + I2 + I3       (3.1.1) 

From the above discussion, it is known that this number I can be very big 

sometimes. In the statistical learning theory, the VC Dimension (the Vapnik 

Chervonenkis Dimension) provides some theoretical foundation to estimate the 

number of I, which is the optimal size of the training set. In the PAC contents and 

neural network implementation, the following statement is proposed (Blumer, 

Ehrenfeucht, Haussler and Warmuth, 1989; Anthony and Biggs, 1992; Vidyasagar, 

1997): 
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In the PAC framework, for a neural network implementing any constant 

learning algorithm with a finite VC Dimension ϋ (ϋ is equal to or greater than one), a 

constant Ķ exists such that the sufficient size of patterns in the training input space is: 

I = 
Ķ
ε ⎝⎜
⎛

⎠⎟
⎞ϋ log

⎝⎜
⎛
⎠⎟
⎞1
ε  + log

⎝⎜
⎛
⎠⎟
⎞1
δ      (3.1.2) 

Where,  

δ is the confidence parameter used to measure the unlikelihood of the learning  

machine being accurate.  

ε is the error parameter. 

Under the boosting by filtering framework, assuming that the error rates of the 

three individual weak learners are the same, it is proven [Schapire, 1990] that the 

overall error rate of the boosting by filtering classifier Β is bounded by  

ệ = 3ε2 -2ε3        (3.1.3) 

Where ε stands for the error rate of the individual weak classifier and its values 

is less than ½.   

The bounding error ệ is demonstrated in Figure 3.3, from where it can be found 

that the new error ệ is smaller than the original error rate ε of the individual weak 

classifiers. It is also meant that by applying the above boosting process recursively, 

arbitrary small error rate for the ensemble can be achieved. In this way, it is proven 

that weak learning is equivalent to strong learning.  
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Figure 3.3 Boosting combined error rate bounding 

In the following, Ĉ(h(x)) is used to denote the final hypothesis generated by the 

ensemble boosting classifier Β on the training patterns, which represents the input 

feature set; h(x) represents the hypothesis weak classifier with x as its input; and Ĉ(h) 

represents the combination function, combining the output of the hypothesis weak 

classifier h. In the classification scenario, the output labels yi ∈Y ={-1, 1} are used to 

denote the targeted output labels for binary classification (when the output is the scalar 

value, output labels di ∈D are sometimes used to denote the targeted output labels 

instead of using yi). The objective of the boosting machine Β is to minimize the error 

rate over all N patterns in the test set:  

1
N ∑

i = 1

N
Abs[yi - Ĉ (hj(xi))]     (3.1.4) 

Where Abs [s] denotes the absolute value of s.  
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Different boosting classification algorithms can be implemented by choosing 

different determinations of the Combiner Ĉ, individual hypothesis classifier hj and 

input pattern selection methods for hj. This thesis focuses the discussion on building 

boosting classifiers through supervised learning. Boosting principle used for regression 

[Duffy and Helmbold, 2000; Ratsch, Demiriz and Bennett, 2002] and unsupervised 

learning [Allwein, Schapire and Singer, 2000; Ratsch, Smola and Mika, 2003] will not 

be discussed.  

3.2 AdaBoost (Adaptive Boosting) 

Even though the original Boosting by filtering algorithm [Schapire 1990] is of little 

practical use due to its stringent demand for too large a training pattern set, it had led 

to the evolution of a series of boosting algorithms [Freund and Schapire 1996a; 

Friedman J., Hastie T. and Tibshirani R., 1998; Freund, Y., 1999; Domingo C. and 

Watanabe O., 2000; Rätsch G, Onoda T. and Müller K. R., 2001]. Among them, the 

AdaBoost algorithm (Adaptive Boosting) [Freund and Schapire 1996a] is one of the 

simplest yet most effective boosting algorithms. The AdaBoost algorithm gains its 

popularity in practice due to its being simple, effective and adaptive, which means that 

the update to its distribution weights is a function of the weighted error rates of the 

individual weak classifier (hypothesis) hj. While the theory foundation of the 

AdaBoost algorithm is still being improved, the practical effectiveness of the 

AdaBoost algorithm has been demonstrated by many researchers.  

To overcome the limitation of requiring a large amount of training data in 

Boosting by filtering approach, the AdaBoost algorithm reuses the samples in every 

new round of iteration. With a weak learning model Ŵ, the AdaBoost algorithm 
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targets to find a classifier hfinal with a lower error rate than the error rates of the 

original individual weak classifiers hjs.  

The pseudo code of the AdaBoost algorithm for a two-class classification can 

be described as follows: 

Given: Weak learning algorithm Ŵ;  

Training patterns: P ={pi = (xi, yi)} for i = 1 to M 

Where M stands for the number of the training patterns; 

xi ∈X stands for the input patterns;  and 

yi ∈Y ={-1,1} stands for the targeted output; 

Number of iteration T;  

L1: Initialize distribution D: 

Set D1(i) = 
1
M , for all i = 1 to M;  

Set iteration count t = 1;  

Set initial error rate∈1= 0. 

L2: Iterate while ( )∈t < 0.5  and ( )t ≤ T  

- Call Ŵ algorithm with distribution Di  

Obtain the hypothesis ht : X → Y 

- Calculate the weighted error rate:  

∈t = ∑
i:ht(xi)≠yi

 
 Dt(i) 

- Set βt = 
∈t

( )1 - ∈t
 

- Update the new distribution D for i= 1 to M: 

Dt+1(i) = 
Dt(i)βt

Sign(ht(xi) == yi)

 zt
 ;  
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Where zt is a normalization factor chosen such that the new distribution Dt+1 

is a normalized distribution, where Sign(x) = 
⎩⎪
⎨
⎪⎧1   if X > 0
0   if X ≤ 0. 

- t = t +1; 

L3:      Calculate the final hypothesis classifier 

hfinal(x)) = 
ArgMax

y∈Y  ∑
t = 1, ht(x) = y

 T
Log

⎝
⎜
⎛

⎠
⎟
⎞1

 βt
  

From the above pseudo code, it is shown that on iteration t, the AdaBoost 

algorithm learns the training input patterns P with the distribution Dt, a new hypothesis 

ht is also returned. New error rates are calculated with respect to the distribution Dt. 

The process will continue until the error rate is no more than 0.5 or the number of 

iteration reaches the specified number T. The final hypothesis classifier hfinal is 

calculated by combining all the classification results of the past individual hypothesis 

classifiers h1, h2, to hT. For distribution weights, starting from the uniform distribution 

D1, the new distribution Dt+1 is calculated based on the previous distribution Dt and the 

classification results of the previous individual hypothesis classifier ht. If the 

individual hypothesis classifier ht classifies the new input pattern correctly, the new 

distribution weight is adjusted with a factor less than one; otherwise the new 

distribution weight remains unchanged before normalization. In this way, the 

distribution weights of the training patterns are adjusted each round so that the 

individual weak hypothesis classifiers focus more and more on the difficult training 

input patterns. The final hypothesis classifier hfinal is calculated based on the weighted 

vote from all the previous individual hypothesis classifiers hts. Greater voting weights 

are assigned to those hts with lower error rates. 
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To summarize, in classification scenario, the Adaptive Boosting (AdaBoost) 

algorithm runs a given weak learning algorithm Ŵ repeatedly for certain rounds, the 

distribution weights of the training patterns are adjusted each round so that the 

individual hypothesis classifiers hts focus more and more on the difficult training 

patterns. In this way, the performance of the ensemble is boosted.  

Assuming the error rates ε generated by the individual hypothesis classifiers (as 

defined in the AdaBoost pseudo code) satisfy εt ≤ ½ (t = 1 to T), it can be proven 

[Freund and Schapire 1996a] that the upper bound of the error rate εfinal of hfinal is: 

Exp

⎝⎜
⎜⎛

⎠⎟
⎟⎞-2∑

t=1

T

⎝⎜
⎛

⎠⎟
⎞1

2 - εt
2      (3.2.1) 

This indicates that if hts, which are constructed on the weak learning algorithm 

Ŵ, have error rates only slightly better than ½, the error rate εfinal of the final 

hypothesis classifier hfinal drops to zero exponentially fast.  

However, the above upper theoretical bound could not provide much practical 

guideline. Experiments conducted [Freund and Schapire 1996a] have indicated that the 

theoretical bound on the training error is too weak and the generalization error tends to 

be much better that what the theory would suggest; the AdaBoost related researches 

have since been focused on the experimental results [Haykin S. p362, 1998]. 

The effectiveness of the AdaBoost algorithm can also be explained from the 

Gaming theory [Breiman, 1997], the Statistical Learning theory and the VC theory 

[Schapire, Freund, Bartlett and Lee, 1998] as well as from the Information theory’s 

entropy analysis [Kivinen and Warmuth, 1999] other than the PAC theory.  

32 



 

Breiman [1996] noted that one very unique feature of the AdaBoost algorithm 

is that the error rate for testing in the AdaBoost algorithm continues to drop after the 

error rate for training has decreased to nearly zero during the training process (as 

shown in Figure 3.4). This phenomenon has also been observed in the Boosting by 

filtering algorithm [Druker, Cortes, Jackel and LeCun, 1994]. People have been 

puzzled with this unique feature, as this phenomenon is seemingly controversial to the 

common belief of the generalization performance of a learning machine. According to 

the well known Occam’s razor, (stated by the 14th century logician and Franciscan 

friar, William of Occam) a learning machine should be as simple as possible to achieve 

good generalization result (“Entities should not be multiplied unnecessarily”), people 

normally feel that in a learning machine, along the decreasing of the training error rate, 

the testing error rate will drop to a minimum before climbing up due to overfitting (as 

shown in Figure 3.5). The phenomenon shown in Figure 3.4 shows that the 

generalization error decreases further even when the system has been over-trained in 

the AdaBoost algorithm. Recently, there are some breakthroughs in theory in 

explaining the above unique feature, the theoretical explanation [Schapire, Freund and 

Bartlett, 1997] based on the “margin” and “confidence of the classifier” concepts show 

that the above phenomenon is related to the distribution of the margins of the training 

input patterns with respect to the classification error.   
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Figure 3.4 The AdaBoost machine’s performance 

 

Figure 3.5 Normal learning machine’s performance 

Following the initial success of the original binary AdaBoost algorithm, 

researchers have tried various means to improve the performance of the algorithm and 

extend the application domains of the original AdaBoost algorithm. Nowadays, the 

AdaBoost algorithm has been successfully extended from the binary classification to 

multi-class classification [Freund and Schapire, 1997; Schapire, 1997; Schapire and 

Singer, 1998]. Adjusting the parameters in the original binary AdaBoost algorithm, 

different error function-based approaches including the LogitBoost’s binomial log-
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likelihood approach [Friedman, Hastie and Tibshirani, 2000], the Gentle AdaBoost’s 

Newton step approach [Friedman, Hastie and Tibshirani, 2000] have also developed 

and experimented with some success. The selection of the base weak classifier has also 

attracted much attention from the researchers. 

The selection of the base weak classifier plays a very important role in 

determining the performance of the AdaBoost algorithm, a good base weak classifier 

should be simple yet not too weak. The AdaBoost algorithm may encounter early 

stopping (error rate <1/2 for the binary classification case) for a too weak base 

classifier; and a too complex base classifier may lead to overfitting and the demanding 

of too big a training pattern set. Researchers experiment with different base weak 

classifiers (or called base classifiers or weak learners) such as CART (the 

Classification And Regression Tree) [Breiman, Friedman, Olshen and Stone, 1984], 

C4.5 [Quinlan, 1992], Neural Networks [Haykin, 1998; Bishop, 1995], etc. Among 

them, the Decision Trees and Stump Decision Trees are becoming two popular 

approaches due to their easy implementation and effectiveness [Hastie, Tibshirani and 

Friedma, 2001; Quinlan, 1992]. The Decision Tree based approaches are based on the 

nested recursive division of the input space while the Stump Decision Tree based 

approaches are based on a single layer tree structure. Approaches based on both pure 

Decision Tree [Schapire and Singer, 1998] and Decision Tree with logistic regression 

[Friedman, 1999] have also been explored and have achieved good experimental 

results. 

The Neural Network based approaches [Haykin, 1998; Bishop, 1995] have 

been studied extensively as well. As Neural Network is a relatively strong classifier 

compared with other weak classifiers mentioned above, theoretically, using Neural 
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Network as base weak classifier might lead to overfitting of the system. However, 

studies show [Schwenk and Bengio, 2000] that the AdaBoost algorithm can 

significantly improve the performance of the Neural Network based weak classifiers in 

the real world OCR (Optical Character Recognition) application; this is further 

demonstrated in the AdaBoost algorithm-based S-AdaBoost algorithm’s experimental 

results in facial detection and facial identification in the complex airport environment 

as well as some benchmark databases [Liu and Loe, 2003a; Liu and Loe, 2003b; Liu, 

Loe, Zhang 2003c]. Positive results making use of different kinds of weak base 

classifiers in real world applications will be demonstrated in greater detail in the 

coming sections and chapters. 

3.3 Outliers and Boosting 

The AdaBoost algorithm is famous for being effective, adaptive and simple. As 

demonstrated in the previous section, overfitting seldom happens in the AdaBoost 

algorithm-based system in low noise applications. However, the AdaBoost algorithm’s 

weakness in handling outliers in the complex environment are also pointed out and 

discussed [Dietterich and Kong, 1995; Quinlan 1996; Jiang, 2001; Dietterich 2000; 

Grove and Schuurmans 1998; Rätsch, 1998].  Some research has been conducted 

[Jiang, 2001; Wyner, Kriege and Long, 2001; Friedman, Hastie and Tibshirani, 2000; 

Freund, 1999; Domingo and Watanabe, 2000; Rätsch, Onoda, and Müller, 2001] from 

both theoretical and practical aspects. Some AdaBoost based methods such as the 

LogitBoost algorithm and Gentle AdaBoost algorithm [Friedman, Hastie and 

Tibshirani, 1998], BrownBoost algorithm [Freund, 1999] (which is an adaptive version 

of the Boost-by-Majority algorithm [Freund, 1995]), the MadaBoost algorithm 

[Domingo and Watanabe, 2000], SmoothBoost algorithm [Servedio, 2001], DOOM 
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(Direct Optimization of Margins) algorithm [Mason, Bartlett and Baxter, 1998], 

Regularized AdaBoost algorithm and the LP/QP (linear programming / quadratic 

programming) AdaBoost algorithm [Rätsch, Onoda and Müller, 2001] and other 

algorithms are further developed to address and improve the AdaBoost algorithm’s 

capability of handling outliers. 

The above classifiers can be categorized into two classes. The first class of 

classifiers focus more on improving the overall margin distribution of the classifiers, 

typical examples include the DOOM algorithm, the LP AdaBoost algorithm and the 

regularized LP AdaBoost algorithm; the second class of classifiers focus more on 

limiting the influence of the outliers. Typical examples include the Regularized 

AdaBoost algorithm, the BrownBoost algorithm and the SmoothBoost algorithm; the 

S-AdaBoost algorithm [Liu and Loe, 2003a; Liu and Loe, 2003b; Liu, Loe and Zhang, 

2003c] also falls into this category. 

The first category of classifiers are built upon the understanding that the 

success of the AdaBoost algorithm is due to its capability to boost weak classifiers and 

produce the final hypothesis classifier with a large margin. In an ideal environment 

without many outliers, the generalization error of the AdaBoost algorithm decreases 

with the increment of the size of the margin. However, experiments [Quinlan, 1996; 

Breiman, 1999; Rätsch, Onoda and Müller, 2001] conducted in the complex 

environment with many outliers show the discovery that the generalization error does 

increase with the increment of the size of the margin. It is found that besides the size of 

the margin, this category of classifiers focus on the good distribution of the margin as 

well. 
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The DOOM (Direct Optimization Of Margins) [Mason, Bartlett and Baxter, 

1998; Mason 1999; Mason, Baxter, Bartlett and Frean, 2000] algorithm makes use of 

the different set of loss functions to replace the exponential loss function used by the 

AdaBoost algorithm in order to achieve a good distribution of margins.  A piece-wise 

linear loss function has been implemented in the DOOM algorithm by some 

researchers, who find that in theory, optimization of the margin loss function to the 

global minimum is hardly reachable; but good heuristic improvements [Mason, Bartlett 

and Baxter, 1998; Mason, 1999; Mason, Baxter, Bartlett and Frean, 2000] can still lead 

to the delivery of some good results in the complex environment. The drawback of this 

approach is that a regularization parameter is to be handpicked in the algorithm, which 

makes the algorithm non-adaptive.  

Another two popular approaches belonging to the first category of classifiers is 

the Linear Programming AdaBoost approach [Freund and Schapire, 1996b; Breiman 

1997] and the Regularized Linear Programming AdaBoost approach. The latter one is 

also called the v-Arc approach [Rätsch, Onoda and Müller, 2001]. The v-Arc approach 

uses the soft-margin to reformulate the linear programming into a non-linear 

programming with the maximum hard margin; then another heuristic method is used to 

maximize the new margin. In the experiment conducted, the effectiveness of the v-Arc 

approach is demonstrated through comparing its results with those of the AdaBoost 

algorithm in the noisy environment.  

The second category of classifiers try to minimize the influence of the outliers. 

As introduced before, the weights of those training patterns, which are hard to be 

classified, are boosted after every round of iteration in the AdaBoost algorithm, and 

this leads to the increment of the minimum margin for the final combined hypothesis 
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classifier and also results in the decreasing of the training error exponentially. In the 

AdaBoost algorithm, in an ideal environment without any outliers, a few representative 

training patterns determine the decision boundary and the size of the margin; in a not 

so ideal situation with some distortion, the decision boundary and the margin of the 

AdaBoost algorithm can still be generated without losing the generalization capability 

through the non-linear transformation, in a situation with some hard-to-classify 

patterns, the AdaBoost algorithm can still manage to draw a decision boundary with 

some margin and at the same time overfit the training input patterns or sacrifice the 

generalization capability; however, in a noisy environment, the noisy patterns will 

affect both the classifier’s accuracy and the generalization capability of the AdaBoost 

algorithm; the overfitting in this scenario can lead to very poor system performance.  

Realizing the above limitations of the AdaBoost algorithm, the Boost-By-

Majority (BBM) algorithm [Freund, 1995] was developed. The BBM algorithm aims 

to minimize the training error within a pre-assigned number of iterations. As the 

algorithm runs towards its pre-determined number of iterations, the chance of the 

correct classification of the training patterns with large negative margins becomes slim. 

The BBM algorithm overcomes this by simply giving up learning from those training 

patterns with large negative margin and concentrates its effort on those patterns with 

small negative margins. One of the drawbacks of the BBM algorithm is that a pre-

specified upper bound must be specified in the algorithm. In this way, the algorithm is 

not adaptive, which leads to nearly no practical system being implemented based on 

this algorithm alone. 

The LogitBoost algorithm and Gentle AdaBoost algorithm [Friedman, Hastie 

and Tibshirani, 1998] were proposed to tackle the limitation of the AdaBoost algorithm 
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by slowing down the speed of weight update. Weight updating schemes in the 

LogitBoost algorithm and the Gentle AdaBoost algorithm make use of the functions 

that change not as exponentially fast as that used in the AdaBoost algorithm. In this 

way, it is hoped that the outliers cannot affect the generalization performance of the 

algorithms as much as they do in the AdaBoost algorithm. Even though the algorithms 

slow down the weight increment speed pertaining to the outliers, they still suffer from 

the overfitting problem when the number of iterations is large. 

Trying to overcome the limitation of the non-adaptive nature of the BBM 

algorithm, the BrownBoost algorithm [Freund, 1999] was proposed as an adaptive 

version of the BBM algorithm. Taking clue from the Brownian movement in noisy 

environments, Freund developed the BrownBoost algorithm providing a heuristic 

method to determine the values of the parameters. The BrownBoost algorithm is an 

AdaBoost based boosting algorithm with the PAC property. The core idea of the 

BrownBoost algorithm is to let the error rate approach ½ and observe the possible 

“movements” of the algorithm. The BrownBoost algorithm performs similar 

calculations within every round of iteration to that of the AdaBoost algorithm, the 

difference lies in the ways weights are updated in the BrownBoost algorithm and the 

AdaBoost algorithm. In the BrownBoost algorithm, a differential equation is to be 

solved in every round of iteration to calculate the weight changes of every individual 

hypothesis classifier. Even though the idea looks promising, there is a lack of practical 

system evidence to support the idea. 

The MadaBoost algorithm [Domingo and Watanabe, 2000] was proposed from 

a slightly different direction. Besides modifying the weights, the algorithm also tries to 

make itself a boosting algorithm under the Boosting by Filtering framework. Based on 

40 



 

the statistical enquiry-learning model, the weights in the MadaBoost algorithm are 

bounded by their initial probabilities. Domingo and Watanabe claim that the 

MataBoost algorithm is superior to the AdaBoost algorithm when the number of 

training patterns is huge (due to its compliance with the Boosting by Filtering 

framework). By bounding the weights, the weights in the MadaBoost algorithm cannot 

grow arbitrarily large as happens in the AdaBoost algorithm. The MadaBoost 

algorithm is slow and needs more experimental results to support the claims. 

The SmoothBoost algorithm [Servedio, 2001] was developed based on the idea 

of smoothing the skew of the pattern distribution to reduce the overfitting. Limitation 

on the skew is imposed on the algorithm to improve its capability of handling noise in 

certain conditions. A cut-off mechanism of the pattern distribution weights assigned to 

the training patterns is used to limit the large negative margins. As there are two 

parameters (the targeted error rate of the final hypothesis classifier and the guaranteed 

edge of the hypothesis classifier calculated by the individual weak hypothesis classifier) 

to be determined beforehand, the algorithm is not fully adaptive. More real world 

applications are needed to support this promising algorithm.  

Among all the approaches, the Regularized AdaBoost algorithm [Rätsch, 

Onoda and Müller, 2001] is one of the best performers in handling outliers. Realizing 

the overfitting of the AdaBoost algorithm in the high noise applications and analyzing 

the boosting from the “soft margin” approach, Rätsch takes clue from the Support 

Vector Machine [Vapnik 1995; Cortes and Vapnik, 1995] and introduces the mistrust 

to be associated with the training patterns to alleviate the distortion that an outlier can 

cause to the margin distribution. In the Regularized AdaBoost algorithm, the 

mislabeled training patterns and the outliers are not given as much attention as the 
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reliable patterns. The mistrust values are calculated based on the weights calculated for 

those training patterns. The Regularized AdaBoost algorithm (where the gradient 

descent is done directly with respect to the soft margin) achieves very good 

experimental results. While achieving good performance, Rätsch’s approach needs vast 

computation resources to get the optimal parameters.  

How to find a simple yet effective approach to handle outliers in the Adaptive 

Boosting algorithm framework is a challenge to the researchers. In the following 

chapter, the S-AdaBoost algorithm [Liu and Loe, 2003a; Liu and Loe, 2003b; Liu, Loe 

and Zhang, 2003c] is introduced to improve the outlier handling capability of the 

AdaBoost Algorithm. 
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Chapter Four 

S-AdaBoost 

4.1 Introduction 

We propose the S-AdaBoost algorithm [Liu and Loe, 2003a; Liu and Loe, 2003b; Liu, 

Loe and Zhang 2003c], which is a new extension of the AdaBoost algorithm and is 

more effective than the conventional AdaBoost algorithm in handling outliers in the 

pattern detection and the pattern identification applications in the complex real world 

environment. Utilizing the “divide and conquer” strategy, S-AdaBoost algorithm 

innovatively uses the AdaBoost’s adaptive distributive weight as a dividing tool to 

divide the input space into inlier and outlier sub-spaces and use dedicated classifiers to 

handle the inliers and outliers in the corresponding sub-spaces before non-linearly 

combining the results of the dedicated classifiers. The S-AdaBoost system is the 

ensemble of an AdaBoost divider, an AdaBoost classifier, a dedicated classifier for 

outliers, and a non-linear combiner. Experiments on a number of benchmark databases 

are conducted to test the effectiveness of the S-AdaBoost algorithm. The experimental 

results obtained clearly demonstrate the S-AdaBoost algorithm’s effectiveness in those 

benchmark datasets.   

According to the statistical learning theory [Vapnik, V.N, 1995], learning from 

known finite training samples can be called statistical estimation; and the pattern 
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classification (recognition) can be regarded as the estimation of class decision 

boundary [Cherkassky V. and Mulier F., 1998].  

In a two-class pattern classification scenario, there are always various types of 

decision boundaries to classify the finite training samples (as shown in Figure 4.1). 

The challenge is how to choose a decision boundary, which is able to classify the 

future input well with good generalization capability.   

 

Figure 4.1 Sample decision boundaries separating finite training patterns 

In statistical learning theory, it is stated that to find a good decision boundary, 

regularization [Giroshi F., Jones and M., Poggio T. 1995] is to be applied. In order to 

produce a unique solution for a learning problem with a set of finite training samples, 

the dataset need to be constrained through penalizing the complex functions (complex 

decision boundaries in pattern classification scenario).  

It is explained [Bellman R. E., 1961] that the complex decision boundaries 

often result in a problem called “the curse of dimensionality”. Bellman states that “a 

set of finite training samples imply that any estimate of the unknown classification 

function is inaccurate (biased). Meaningful estimation is only possible with sufficiently 
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smoothness. For high-dimensional functions, there is an exponential growth in 

complexity as a result of growth in dimensionality. It is very difficult to collect enough 

samples to attain the required high density”. 

Recent studies [Friedman J., 1995] also point out that the basic reason for 

“curse of dimensionality” is that a function defined in high-dimensional space is likely 

to be much more complex than a function defined in a lower-dimensional space, and 

those complications are very hard to discern.  

The famous “Occam’s razor” principle states the preference of the simple 

smooth learning models (or decision boundaries in pattern classification scenario) over 

the complex ones. This is often used as a guideline for us to find the trade-off between 

the learning model complexity and the learning model accuracy to achieve good 

generalization performance in a pattern classification system. 

In the next sections, we study the pattern space and use “divide and conquer” 

strategy to divide the pattern space into a few sub-spaces. Instead of using high-

dimensional decision boundary to divide the whole input space, less complex decision 

boundaries are used in the sub-spaces to tackle the classification. 

 

4.2 Pattern Spaces in the S-AdaBoost Algorithm 

In order to introduce the S-AdaBoost algorithm, the distribution of the training patterns 

in the whole input pattern space is outlined. The whole input pattern space Ŝ can be 

denoted by:   
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Ŝ = {P = (X, Y)} 

Where, 

X = {xi} denotes the input pattern set;  

xi denotes the number ith input pattern. 

Y = {yi} denotes the classification result set; 

yi denotes the classification result for the number ith input pattern.  

P = {pi= {(xi, yi)}} denotes the input pattern and the corresponding  

classification result pair set;  

(xi, yi) denotes the number ith input pattern and  

the corresponding classification result pair. 

In the S-AdaBoost algorithm, the input training patterns in Ŝ can be divided 

into a few disjoint sub-sets in the corresponding sub-spaces, which fully partition the 

space Ŝ relative to a particular classifier Ғ(x): 

Ŝ = Ŝno + Ŝsp + Ŝhd +  Ŝns      (4.2.1) 

Where,  

The “+” means Union; 

Ŝno = {Pno} denotes the sub-space containing the Normal Pattern set (those 

patterns, which can be easily classified by the classifier Ғ(x) with a relative 

simple and smooth decision boundary); 

Pno     denotes the Normal Pattern. 

Ŝsp = {Psp} denotes the sub-space containing the Special Pattern set (those 

patterns, which can be classified correctly by classifier Ғ(x) with a not very 

complex decision boundary); 

Psp denotes the Special Pattern. 
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Ŝhd = {Phd} denotes the sub-space containing the Hard-To-Classify Pattern set 

(those patterns, which are hard to be classified by the classifier Ғ(x) with a 

relative simple and smooth decision boundary); 

Phd denotes the Hard-To-Classify Pattern. 

Ŝns = {Pns} denotes the sub-space containing the Pattern set with Noise; 

Pns denotes the Noisy Pattern. 

A typical input pattern space is shown in Figure 4.2. If the whole input space Ŝ 

only consists of the normal patterns Pno from the sub-space Ŝno (as shown in Figure 

4.3), a simple and smooth decision boundary can easily be drawn; a few representative 

training patterns in the sub-space Ŝno determine the decision boundary and the margin. 

If the input space Ŝ consists of both the normal patterns Pno from the sub-space Ŝno and 

the special patterns Psp from the sub-space Ŝsp (as shown in Figure 4.4), the decision 

boundary can still be drawn without losing too much generalization capability, and the 

margin can also be obtained fairly easily. If the input space Ŝ consists of both the 

normal patterns Pno from the sub-space Ŝno and the special patterns Psp from the sub-

space Ŝsp as well as the hard-to-classify patterns Phd from the sub-space Ŝhd (as shown 

in Figure 4.5), the decision boundary can not be drawn without overfitting the training 

input patterns or sacrificing the generalization capability, much difficulty is needed to 

draw even a very narrow margin. If the input space Ŝ consists of both the normal 

patterns Pno from the sub-space Ŝno and the special patterns Psp from the sub-space Ŝsp 

as well as the hard-to-classify patterns Phd from the sub-space Ŝhd in a noisy 

environment with the noisy patterns Pns from the sub-space Ŝns (as shown in Figure 

4.6), the noisy patterns in the sub-space Ŝns will affect both the accuracy and the 

generalization capability of the algorithm, and the decision boundary can hardly be 

drawn; with overfitting and distortion, the margin is hardly noticeable in this scenario. 
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Figure 4.2 Input Pattern Space Ŝ 

 

Figure 4.3 Input Pattern Space with normal patterns Pno 
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Figure 4.4 Input Pattern Space with normal patterns Pno and special patterns Psp 

 

Figure 4.5 Input Pattern Space with normal patterns Pno, special patterns Psp and 
hard-to-classify patterns Phd 
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Figure 4.6 Input Pattern Space with normal patterns Pno, special patterns Psp, hard-to-
classify patterns Phd and noisy patterns Pns 

In the S-AdaBoost algorithm, the normal pattern sub-space Ŝno and the special 

pattern sub-space Ŝsp are jointly referred to as the ordinary pattern (or called inlier) 

sub-space Ŝod, and the hard-to-classify patterns sub-space Ŝhd and the noisy pattern 

sub-space are jointly called the outlier sub-space Ŝol: 

Ŝod = Ŝno + Ŝsp                                   (4.2.2) 

Ŝol = Ŝhd + Ŝns      (4.2.3) 

As shown in Figure 4.6, it is sometimes difficult to classify all the patterns in Ŝ 

well using a single classifier Ғ(x) with a simple and smooth decision boundary. 

Notwithstanding, after dividing the whole input space Ŝ into the ordinary pattern sub-

space Ŝod and the outlier sub-space Ŝol, it is relatively easier for an algorithm like 

AdaBoost to classify the ordinary pattern sub-space Ŝod well with a not very complex 

decision boundary (as shown in Figure 4.4). However, to correctly classify patterns in 

both the ordinary pattern sub-space Ŝod and the outlier sub-space Ŝol well using only 

one classifier Ғ(x) (as shown in Figure 4.5 and Figure 4.6), the trade-off between the 
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complexity and the generalization capability of the S-AdaBoost algorithm needs to be 

carefully considered. It is well understood that a more complex Ғ(x) yields lower 

training errors yet runs the risk of poor generalization. It has been confirmed by a 

number of researchers [Dietterich and Kong, 1995; Quinlan, 1996; Jiang, 2001; 

Dietterich, 2000; Grove and Schuurmans, 1998; Rätsch, 1998] that if a system is to use 

the AdaBoost algorithm alone to handle classifications in both the ordinary pattern 

sub-space Ŝod and the outlier sub-space Ŝol well, classifier Ғ(x) will focus intensively 

on the noisy patterns Pns and the hard-to-classify patterns Phd in the outlier sub-space 

Ŝol and the generalization characteristic of the system will be affected in the complex 

real world environment.  

4.3 The S-AdaBoost Machine 

During training, instead of manipulating the whole input space Ŝ with the weighted 

training distribution and using only one model to fit all the training patterns (often 

contain the outliers) as done in the AdaBoost algorithm, the S-AdaBoost machine uses 

an AdaBoost Đ(ŧ) as a divider to divide all the patterns in the original training input 

space Ŝ into two separate sets in two sub-spaces：the ordinary pattern sub-space Ŝod 

and the outlier sub-space Ŝol. The set of patterns in the ordinary pattern sub-space Ŝod 

is used to train the next AdaBoost classifier Ғod(x), which has a good generalization 

characteristic; and another set of patterns in the outlier sub-space Ŝol is used to train a 

dedicated outlier classifier O(x), which has a good localization characteristic. The 

framework of the S-AdaBoost machine is shown in Figure 4.7. During testing, the 

divider Đ(ŧ)  is no longer needed, testing patterns are fed directly to the AdaBoost 
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classifiers Ғod(x) and the outlier classifier O(x) followed by the combiner Ĉ to obtain 

the classification results. 

 

Figure 4.7 The S-AdaBoost Machine in Training 

4.4 The Divider of the S-AdaBoost Machine 

S-AdaBoost algorithm innovatively uses the AdaBoost’s adaptive distributive weight 

as a dividing tool to divide the input space into sub-spaces. An AdaBoost Đ(ŧ) (as 

shown in Figure 4.8) is used in the S-AdaBoost machine as a divider to divide the 

original training set into two separate sets in the ordinary pattern sub-space Ŝod and the 

outlier sub-space Ŝol. The reason for using the AdaBoost algorithm in both the divider 

Đ(ŧ) and the classifier Ғod(x)  is to ensure the optimal performance of the classifier 

Ғod(x). The pseudo code of the AdaBoost Divider Đ(ŧ) for a two-class classification 

can be described as follows: 

Given: Weak learning algorithm Ŵ;  

Training patterns: Ŝ = P ={pi = (xi, yi)} for i = 1 to M 

Where M stands for the number of the training patterns; 

xi ∈X stands for the input patterns; and 

yi ∈Y ={-1,1} stands for the targeted output; 

Number of iteration T;  
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The threshold value ŧ. 

L0: Initialize the two sub-spaces:  

Ŝod = Ŝ;  

Ŝ ol = {};  

m=M. 

L1: Initialize distribution D: 

Set D1(i) = 
1
M , for all i = 1 to M;  

Set iteration count t = 1;  

Set divide=0; 

Set initial error rate∈1= 0. 

L2: Iterate while ( )∈t < 0.5  and ( )t ≤ T  

- Call Ŵ algorithm with distribution Di:  

Obtain the hypothesis ht : X → Y 

- Calculate the weighted error rate:  

∈t = ∑
i:ht(xi)≠yi

 
 Dt(i) 

- Set βt = 
∈t

( )1 - ∈t
 

- Update the new distribution D for i= 1 to M: 

Dt+1(i) = 
Dt(i)βt

Sign(ht(xi) == yi)

 zt
 ;  

- Where zt is a normalization factor chosen such that the new distribution 

Dt+1 is a normalized distribution, where Sign(x) = 
⎩⎪
⎨
⎪⎧1   if X > 0
0   if X ≤ 0 

- t = t +1; 

- For i=1 to m,  

BEGIN  

If (Dt(i) > the threshold value ŧ)  

BEGIN 
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m =m-1;  

Ŝod = Ŝod – {Pi}; (Set difference)  

Ŝol = Ŝol + {Pi}; (Set Union) 

divide =1 

END 

If (divide=1)  

Go to L1. 

END 

L3:  Export the ordinary pattern sub-space Ŝod and the outlier sub-space Ŝol 

From the above algorithm description, it is noticed that: 

Ŝod U  Ŝol = Ŝ                                           (4.5.1) 

Ŝod ∩  Ŝol = Φ                                          (4.5.2) 

As the inlier and outlier sub-spaces defined above are relative to a particular 

classifier, they are not absolute concepts and they change with the selection of 

different threshold values. According to the above S-AdaBoost algorithm, the initial 

value of the Inlier sub-space is defined as the Input space, and the initial value of the 

Outlier sub-space is defined as empty. Only after an area is classified as the Outlier 

sub-space, the area is removed from the Inlier sub-space, this ensures that the two sub-

spaces cover the whole Input space and the two sub-spaces do not overlap with each 

other. It is noticed that initially all patterns belongs to Ŝod, if in an iteration, the 

distribution weight of a particular pattern pi exceeds the threshold, the pattern pi is 

removed from the  Ŝod and placed into Ŝol, this practice ensures that the two sub-spaces 

are mutually exclusive.  

After running the above codes, the patterns in the whole input space Ŝ will be 

divided into two sets: the ordinary pattern sub-space Ŝod and the outlier sub-space Ŝol. 
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Choosing the optimal threshold value ŧ is task specific. It will be discussed in the 

following sections.  

 

Figure 4.8 The Divider of the S-AdaBoost Machine 

4.5 The Classifiers in the S-AdaBoost Machine 

After dividing the training patterns in the whole input space Ŝ into the ordinary pattern 

sub-space Ŝod and the outlier sub-space Ŝol, the normal patterns Pno and the special 

patterns Psp in the ordinary pattern sub-space Ŝod are used to train the Ғod(x) classifier, 

whereas the noisy patterns Pns and the hard-to-classify patterns Phd in the outlier sub-

space Ŝol are used to train the outlier classifier O(x) in the S-AdaBoost Machine. 

After certain rounds of iteration, the classifier Ғod(x) focuses more on the 

difficult special patterns Psp and less on the easy normal patterns Pno in forming the 

decision boundary. As the special patterns Psp are not outliers, the accuracy and the 

generalization properties of the classifier Ғod(x) are not affected. Making use of the 

randomness nature of the noisy patterns Pns, O(x), a classifier preferably with the good 

localization characteristics, can identify the local clustering of the hard-to-classify 

patterns Phd and at the same time isolate the noisy patterns Pns from the hard-to-

classify patterns Phd. The pseudo code of the classifier Ғod(x) can be described as 

follows: 

Given: Weak learning algorithm Ŵ;  

Training patterns: Ŝod = {P} ={pi = (xi, yi)} for i = 1 to M 
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Where M stands for the number of the training patterns in Ŝod; 

xi ∈X stands for the input patterns;  

and yi ∈Y ={-1,1} stands for the targeted output; 

Number of iteration T;  

L0: Initialize the parameter:  

m=M. 

L1: Initialize distribution D: 

Set D1(i) = 
1
M , for all i = 1 to M;  

Set iteration count t = 1;  

Set initial error rate∈1= 0. 

L2: Iterate while ( )∈t < 0.5  and ( )t ≤ T  

- Call Ŵ algorithm with distribution Di:  

Obtain the hypothesis ht : X → Y 

- Calculate the weighted error rate:  

∈t = ∑
i:ht(xi)≠yi

 
 Dt(i) 

- Set βt = 
∈t

( )1 - ∈t
 

- Update the new distribution D for i= 1 to M: 

Dt+1(i) = 
Dt(i)βt

Sign(ht(xi) == yi)

 zt
 ;  

Where zt is a normalization factor chosen such that the new distribution 

Dt+1 is a normalized distribution, where Sign(x) = 
⎩⎪
⎨
⎪⎧1   if X > 0
0   if X ≤ 0 

- t = t +1; 

L3:      Calculate the classification confidence value 
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Max
y∈Y ∑

t = 1, ht(x) = y

 T
Log

⎝
⎜
⎛

⎠
⎟
⎞1

 βt
  

The base classifier of the AdaBoost Divider and Inlier Classifier can be 

implemented using the neural network algorithm, C4.5 tree algorithm or some linear 

classifier. The right choice is depending on the classification task, the complexity of 

the input patterns and other factors. In the thesis, some common classifiers are 

implemented to evaluate the influence of the base classifier to the overall performance 

of the system.  

The requirement to the outlier classifier O(x) is that it must be able to localize 

the influence of the patterns in the outlier sub-space Ŝol (as shown in Figure 4.9). RBF 

Neural Network [Chen and Liu, 1992] is used to implement the outlier classifier in the 

thesis.  

It is understood that AdaBoost is distance based classifier maximizing the 

margin. Intuitively, when outliers are handled by a separate outlier classifier O(x), the 

margin of the system is preserved or increased. 
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Figure 4.9 Localization of the Outlier Classifier O(x) in the S-AdaBoost machine 

4.6 The Combiner and the complexity of the S-AdaBoost Machine 

Many combination methods [Tresp and Maniguchi, 1995; Jacobs, Jordan, Nowlan and 

Hinton, 1991; Jordan and Jacobs, 1994] are available for selection. Noticing that the 

classifiers Ғod(x) and O(x) are of different structure and nature, a non-linear combiner 

Ĉ instead of linear ones like averaging, voting and Borda count [Ho, Hull and Srihari, 

1994] is used to combine the classification results of the Ғod(x) and O(x). Nevertheless, 

in the following sections, different combiners are implemented to support the intuitive 

selection. The confidence values generated by the S-AdaBoost classifiers act as the 

input and the final classification result are the output of the combiner Ĉ. 

 The system complexity of S-AdaBoost in training can be denoted as the sum of 

the complexity of AdaBoost Divider Đ(ŧ),  the maximum of the complexity of the 

Inlier Classifier Ғod(x) and the Outlier Classifier O(x), and the complexity of the 

Combiner Ĉ: 

            Otrain(S-AdaBoost) = O (Đ(ŧ)) +   Max [O(Ғod(x)), O(O(x))]  +  O(Ĉ)      (4.6.1) 
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Since the Outlier Classifier O(x) is implemented by a simple RBF Neural 

Network, whereas the Ғod(x) is a mixture of the classifier, the complexity of the 

Ғod(x) is generally much higher than that of O(x), we have: 

                   Max [O(Ғod(x)), O(O(x))] =   O(Ғod(x))                 (4.6.2) 

The Combiner Ĉ is normally implemented by a simple Multilayer Perceptron 

or some simpler mechanism, we have: 

                   O(Ĉ)  =< O (Đ(ŧ))                                 (4.63) 

As mentioned before, the AdaBoost Divider Đ(ŧ) and the Inlier Classifier Ғod(x) 

are of the same structure, we have: 

                    O (Đ(ŧ))  =   O(Ғod(x))      (4.6.4) 

Combining (4.6.1), (4.6.2), (4.6.3), and (4.6.4), we conclude: 

                  Otrain (S-AdaBoost) = O (Đ(ŧ)) +   Max [O(Ғod(x)), O(O(x))]  +  O(Ĉ)       

                                 =  O (Đ(ŧ)) +   O(Ғod(x))   + O(Ĉ) 

   = 2O (Đ(ŧ)) + O(Ĉ) 

                                    <= 3 O (Đ(ŧ))      (4.6.5) 

The above simple analysis shows that the complexity of S-AdaBoost in training 

is still not very significant complex comparing with that of an AdaBoost.  

Similarly, the system complexity of S-AdaBoost in testing can be denoted as 

the sum of the maximum of the complexity of the Inlier Classifier Ғod(x) and the 

Outlier Classifier O(x), and the complexity of the Combiner Ĉ: 

             Otesting(S--AdaBoost) = Max [O(Ғod(x)), O(O(x))]  +  O(Ĉ)      (4.6.6) 

Combining (4.6.2), (4.6.3), (4.6.6), we have: 

Otesting (S-AdaBoost) = Max [O(Ғod(x)), O(O(x))]  +  O(Ĉ)       

                                 =  O(Ғod(x))   + O(Ĉ) 

   = O (Đ(ŧ)) + O(Ĉ) 

                                    <= 2 O (Đ(ŧ))             (4.6.7) 
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The above simple analysis also shows that the complexity of S-AdaBoost in 

testing is still not very significant complex comparing with that of an AdaBoost.  

 

4.7 Statistical analysis of the S-AdaBoost learning 

S-AdaBoost’s effectiveness can be analyzed through bias/variance analysis. It is 

proven (see appendix for detail) that by dividing a problem into sub-problems in whole 

or sub-spaces, and using ensemble boosting approach, the overall performance can be 

boosted. 

According to the statistical learning theory (Vapnik, 1995), in the neural 

network environment, the learning is a process focusing on reducing the deviation 

between a targeted function and the real function.  

In statistical learning theory, the mean squared error is equal to the sum the 

variance and square of the bias. Bias denotes the inability of the individual component 

of the ensemble to accurately measure the decision boundary; Variance denotes the 

inadequacy and the limitation of the training pattern set. Differentiating these two 

kinds of errors will help us to analyze the effectiveness of the ensemble machines. It is 

noticed that in a single neural network system with a fixed size of training set, if we 

want to reduce bias, the variant often goes up; if we want to reduce variant, we need to 

pay the price of bias going up. It is only possible to reduce both bias and variance 

when we have infinite number of good training patterns (Geman, Bienenstock and 

Doursat, 1992), this phenomenon is called the bias/variance dilemma. To tackle this 

dilemma, at least two approaches have been proposed. One way to circumvent this is 

to introduce “harmless” bias to maintain bias and reduce variance [LeCun 1990], 

another way is to maintain bias and reduce variance using ensemble approaches 
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[Naftaly, Intrator and Horn,1997]. The S-AdaBoost ensemble method falls into the 

second category. 

In the S-AdaBoost algorithm based classifiers, differently trained classifiers 

(we use the neural network classifiers in this section for discussion) share different 

distributions of the training input patterns; the classification results (confidence values) 

of these classifiers are combined to produce the final classification output. It is noticed 

that if all those individual classifiers were combined to form one big classifying neural 

network, the number of free parameters to be decided would be numerous, which could 

easily lead to the overfitting of the big network. In the ensemble approach, each 

component classifier is trained separately; the chance of overfitting is thus reduced. 

In the ensemble approach, it is expected that each hypothesis classifier focuses 

on its own domain and converges to its own local minimum of the cost function. It is 

hoped that in this way the combiner can boost the combined performance of the 

ensemble. 

As proven in Appendix A, for a simple ensemble machine with averaging 

combination, we conclude that the ensemble can help to reduce the overall error rate. 

In the S-AdaBoost machine, the classifiers are extended to different types and the 

combination method is expanded to be non-linear, which can further regulate the 

bias/variance trade-off and error rate.  

4.8 Choosing the Threshold Value ŧ in the S-AdaBoost Machine 

The threshold value ŧ is an important non-adaptive parameter in the S-AdaBoost 

algorithm that needs to be decided to make the algorithm adaptive. The optimal value 
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of the threshold value ŧ in the Divider Đ(ŧ) dividing network is associated with the 

classification task itself and the nature of the input pattern set. According to statistical 

learning theory, many constrains exist in a classifier. Two of the constrains are: the 

accuracy of the training input patterns and the limitation of the number of training 

patterns. As the outliers in the training pattern set may not be able to be inferred easily, 

some extra argument must be used to describe the classification process, which means: 

y = f(x) + ε       (4.8.1) 

Where both y and x are variables; and the variable y statistically depends on the 

variable x. The dependency between the variable x and the variable y can be learned, 

but the causality between the variable x and the variable y can not be inferred from the 

data alone. Priori empirical knowledge can sometimes help to find the causality 

between the variable x and the variable y together with the limited non-perfect training 

data. One of the well-known principles is the “Occam’s razor” principle, which states 

the preference of the simple learning models over the complex ones; this is often used 

to guide us to find the trade-off between the learning model complexity and the 

learning model accuracy to achieve good generalization performance of the learning 

system. If some outliers, which include the noisy patterns and the hard to be classified 

patterns, are encountered; some dividing mechanisms are explored in the thesis instead 

of using a complex learning model to describe the unknown causality in the learning 

model. 

The inductive principles are used to optimize the above trade-off, the threshold 

value ŧ can be understood as one of the regularization parameters used in the S-

AdaBoost based systems for good generalization performance.  
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According to the Penalization (Regularization) Inductive principle, the 

classification problem can be understood as a class of approximating functions fis: 

yi = fi (x, φ)  

Where x ∈ X; and 

φ ∈ Ψ, which denotes the set of free parameters. 

To find the optimal function among the function class, a penalization 

(regularization) term is added to the following empirical risk item to be minimized: 

Ŕreg,i (φ) = Ŕemp,i (φ) + λ Ǿ [fi(x, φ)]   (4.8.2) 

Where, Ŕreg,i (φ) denotes the regularization risk; and 

Ŕemp,i (φ) denotes the empirical risk; 

Ǿ [fi(x, φ)] denotes the regularization term, which is a non-negative function 

associated with each approximating function fi(x, φ); it is often assigned to 

be small values for the smooth functions and large values for the non-

smooth functions; 

Parameter λ is called the regularization parameter, which is a positive number 

controlling the strength of the regularization. 

The priori empirical knowledge is embedded in the regularization term and the 

strength of the influence of the regularization is determined by the parameter λ.  In the 

S-AdaBoost algorithm, the regularization is implemented by the Divider (ŧ), the scale 

of the regularization is implemented by the parameter ŧ. If λ is chosen to be a large 

number, Ŕreg,i (φ) depends largely on the regularization term λ Ǿ [fi(x, φ)];  if λ is 

chosen to be a small number, Ŕreg,i (φ) depends largely on the regularization term λ Ǿ 

[fi(x, φ)]. For a given regularization term Ǿ [fi(x, φ)], the complexity of the learning 

model is controlled by the regularization parameter λ. The optimal value of λ (which 
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can help to generate the minimum regularization risk) is usually determined 

empirically (as the case of parameter of ŧ in the Divider (ŧ)). Experiments are 

conducted to find a formula to decide the optimal value of ŧ in the S-AdaBoost based 

face detection FDAO system and face identification FISA system as well as the GMD 

benchmark databases. 

The threshold value ŧ plays a very important role in the S-AdaBoost machine. It 

is noticed that: If the threshold value ŧ  is less than or equal to value 0, Ŝod  is empty; all 

the patterns in Ŝ are treated as outliers; the S-AdaBoost machine becomes a large 

memory network; and the Outlier Classifier O(x) determines the performance of the S-

AdaBoost machine. If the threshold value ŧ is greater than or equal to value 1, Ŝol is 

empty; no patterns in the Input Space Ŝ are treated as outliers; the S-AdaBoost 

machine becomes an AdaBoost machine; and the performance of the S-AdaBoost 

machine is determined by the AdaBoost Classifier Ғod(x) itself. 

The AdaBoost machine can be considered as a special implementation of the S-

AdaBoost machine when the threshold value ŧ is greater than or equal to 1. In the 

coming discussion, the parameter δ is defined as the S-AdaBoost machine’s Error Rate 

when the threshold value ŧ is equal to value 1. 

In practical systems handling real world scenario, the special patterns 

sometimes can be misclassified as outliers when the threshold value ŧ increases, this 

will not affect the classification result very much in S-AdaBoost, these patterns are just 

not participating in the forming of the decision boundary in the Ordinary Space, they 

can still contribute to the final classification result from the Outlier Space, the 

Combiner can help to balance the confidence values from the two sub-classifiers. 
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The optimal value of the threshold value ŧ is associated with the classification 

task itself and the nature of the input patterns in the whole input space Ŝ. Experiments 

are conducted to determine the optimal value chosen for the threshold value ŧ. From 

the experiments conducted, as a guideline, the S-AdaBoost machine performs 

reasonably well when the value of the threshold ŧ is around 1/(M X δ2), where M is the 

number of the training patterns and the parameter δ is the error rate (the detection error 

rate for the face detection and the face identification applications) of the AdaBoost 

machine when the threshold value ŧ =1. 

Hindsight analysis shows that:   

1/(M X δ2) = (1/M X δ) (1/δ).     (4.8.3) 

As M X δ denotes the number of wrong classifications of the classifier; the 

threshold is disproportionate to the number of error patterns and the error rate of the 

classifier. The noisier the pattern space, the smaller the threshold, which means more 

patterns are classified as outliers. 

4.9 Experimental Results on the Benchmark Databases 

As pointed out [Dietterich, 1997] that “fundamental research in Machine Learning is 

inherently empirical”, extensive experiments are conducted to test the effectiveness of 

the S-AdaBoost algorithm-based system on the GMD benchmark databases [GMD] 

compared with the experimental results from the systems based on the AdaBoost 

algorithm, the Support Vector Machine algorithm and the Regularized AdaBoost 

algorithm.  Back-propagation neural network is used as the base classifier to 

implement the AdaBoost algorithms for both the Divider Đ(ŧ) and the Classifier Ғod(x) 
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of the S-AdaBoost Machine. The RBF neural network is used to implement the Outlier 

Classifier O(x) of the S-AdaBoost Machine and a three layer back-propagation neural 

network with 2 input nodes and  2 hidden nodes is used to implement the Combiner Ĉ 

of the S-AdaBoost Machine. The threshold value ŧ in the Divider Đ(ŧ) of the S-

AdaBoost Machine is set to be equal to 1/(M X δ2), where M is the number of all the 

training patterns and the parameter δ is the error rate of the AdaBoost machine. More 

implementations of the S-AdaBoost algorithm in the complex airport environment will 

be discussed in more detail in the following chapters. 

The benchmark GMD database include the datasets collected from the UCI 

[UCI], the DELVE [DELVE] and the STATLOG [STATLOG] benchmark repositories. 

The original version of this GMD database has been used by Rätsch and other 

researchers [Weston, 1999; Herbrich and Weston, 1999; Chapelle, Vapnik, and 

Weston, 2000; P´erez-Cruz, Alarc´on-Diana, Navia-V´azquez and Art´es-Rodr´iguez., 

2001]. This collection is a well-balanced mixture of different learning tasks and a 

mixture of different levels of noise of the data. The numbers of patterns available are 

also varied among the datasets. As not all problems are binary, classification among 

sub-classes is performed first to change them into binary problems. In order to conduct 

some statistical analysis and make full use of the training data, 10-fold cross validation 

method is used in the experiments. Back-propagation multi-layer neural network is 

used in the experiments as the base classifier for the AdaBoost Machine, the 

Regularized AdaBoost Machine. The RBF Kernel is used to implement the SVM 

Machine. The maximum number of classifiers in the ensemble is set to 40 due to Back-

Propagation neural network’s relative strong classification performance. For easy 

comparison, the principles used by Rätsch in his experiments [Rätsch, Onoda and 
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Müller, 2001] are used to set other non-adaptive parameters in all the machines other 

than the S-AdaBoost Machine. 

In the experiment, the datasets’ sample sizes and number of input and output 

features are listed in Table 4.1. All the training data in all datasets are normalized with 

a mean of 0 and a standard deviation of 1. 

 No. of training 
samples 

No. of testing 
samples 

No. of input 
features 

No. of output 
features 

Ringnorm 4000 3400 20 1 

Twonorm 4000 3400 20 1 

Image 1200 1100 18 1 

Thyroid 100 115 5 1 

Splice 1500 1675 60 1 

Waveform 2000 2600 21 1 

Banana 100 177 9 1 

Heart 100 170 13 1 

Titanic 1000 1051 3 1 

Diabetes 400 368 8 1 

German 450 550 20 1 

B. Cancer 2000 3300 2 1 

F. Solar 500 566 9 1 

Table 4.1:  Datasets used in the experiment 

The test results from the implementations of the leading algorithms (the 

AdaBoost algorithm, the Support Vector Machine algorithm (RBF Kernel), the 

Regularized AdaBoost algorithm [Rätsch, Onoda and Müller, 2001]) and the S-
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AdaBoost algorithm are listed in Table 4.2. The mean and variance values for the error 

rates are listed in Table 4.2 based on the 10-fold cross validation calculation.  

 AdaBoost SVM Reg. AdaBoost S-AdaBoost 

Ringnorm 1.9 ± 0.4 1.6 ± 0.2 1.6 ± 0.1 1.7 ± 0.2 

Twonorm 3.0 ± 0.2 2.7 ± 0.2 2.7 ± 0.3 2.7 ± 0.2 

Image 2.9 ± 0.9 2.8 ± 0.5 2.7 ± 0.4 2.7 ± 0.5 

Thyroid 4.5 ± 2.1 4.9 ± 1.8 4.6 ± 2.0 4.3 ± 2.0 

Splice 10.4 ± 1.1 10.6 ± 0.7 9.5 ± 1.0 9.3 ± 0.8 

Waveform 10.6 ± 1.3 9.8 ± 1.3 9.8 ± 1.1 9.6 ± 1.0 

Banana 10.8 ± 0.8 11.0 ± 0.7 10.9 ± 0.7 10.6 ± 0.5 

Heart 20.8 ± 3.2 16.4 ± 3.2 16.5 ± 3.3 15.9 ± 3.1 

Titanic 23.1 ± 1.4 22.2 ± 1.2 22.6 ± 1.2 22.2 ± 1.1 

Diabetes 26.8 ± 2.0 23.7 ± 2.0 23.8 ± 2.3 23.5 ± 1.6 

German 27.5 ± 2.4 22.8 ± 2.0 24.3 ± 2.3 23.8 ± 2.4 

B. Cancer 30.8 ± 4.0 26.3 ± 4.5 26.5 ± 4.3 26.1 ± 4.3 

F. Solar 35.7 ± 1.6 32.0 ± 1.6 34.2 ± 1.8 31.6 ± 1.8 

Average 

Mean 
16.1 14.5 14.6 14.1 

Table 4.2: Comparison of the error rates among various methods on the benchmark 
databases. 

The table shows that the S-AdaBoost machine performs the best in terms of 

general performance and achieves the best results in 10 out of 13 tests. Further analysis 

shows that the S-AdaBoost machine out-performs the AdaBoost machine in all tests, 

which clearly demonstrate S-AdaBoost’s superior performance than AdaBoost. The S-

AdaBoost machine also shows its effectiveness in this round of tests by out-performing 

the SVM machine and the Regularized AdaBoost machine, which are the leading 
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approaches in handling a complex environment. It is also shown that the AdaBoost 

machine performs reasonably well in low noise applications like the Twonorm, the 

Thyroid and the Image applications compared with the results of the other machines; at 

the same time, the performance of S-AdaBoost is shown comparing with results of the 

other machines in high noise applications like the Cancer, Diabetes, German and F. 

Solar applications. 

Further tests are conducted to test the effectiveness of the S-AdaBoost 

algorithm using different base classifiers in the AdaBoost Divider Đ(ŧ) and Classifier. 

AdaBoost Ғod(x) machines based on the tree structure based algorithm C4.5 and Linear 

single layer Perceptron algorithm are also implemented. The detail experimental 

results are shown in Table 4.3.  

 AdaBoost (BP) S-AdaBoost 
(C4.5) 

S-AdaBoost 
(Single layer 
perceptron) 

S-AdaBoost 
(BP) 

Ringnorm 1.9 ± 0.4 1.8 ± 0.2 1.7 ± 0.1 1.7 ± 0.2 

Twonorm 3.0 ± 0.2 2.7 ± 0.2 2.7 ± 0.2 2.7 ± 0.2 

Image 2.9 ± 0.9 2.5 ± 0.7 2.8 ± 0.3 2.7 ± 0.5 

Thyroid 4.5 ± 2.1 4.3 ± 1.8 4.6 ± 2.4 4.3 ± 2.0 

Splice 10.4 ± 1.1 9.3± 1.1 9.5 ± 1.6 9.3 ± 0.8 

Waveform 10.6 ± 1.3 9.4± 1.3 9.8 ± 1.4 9.6 ± 1.0 

Banana 10.8 ± 0.8 10.9± 0.7 10.5± 0.8 10.6 ± 0.5 

Heart 20.8 ± 3.2 16.3 ± 3.3 17.3 ± 3.6 15.9 ± 3.1 

Titanic 23.1 ± 1.4 22.2 ± 1.0 23.0 ± 1.6 22.2 ± 1.1 

Diabetes 26.8 ± 2.0 23.7 ± 2.0 24.8 ± 2.3 23.5 ± 1.6 

German 27.5 ± 2.4 24.5 ± 2.3 25.6 ± 2.1 23.8 ± 2.4 

69 



 

B. Cancer 30.8 ± 4.0 27.9 ± 4.0 27.0 ± 4.7 26.1 ± 4.3 

F. Solar 35.7 ± 1.6 31.3 ± 1.8 32.1 ± 1.7 31.6 ± 1.8 

Average 

Mean 
16.1 14.4 14.7 14.1 

Table 4.3: Comparison of the error rates among different base classifier based S-
AdaBoost classifiers on the benchmark databases. 

From Table 4.3, it is shown that generally, the performance of S-AdaBoost 

machines based on C4.5, linear Single Layer Perceptron, BP Neural Network achieve 

better results than AdaBoost machine. The S-AdaBoost machines based on C4.5 and 

BP Neural Network achieve slight better results than S-AdaBoost machine based on 

linear Single Layer Perceptron. It is also observed that the three S-AdaBoost machines 

achieve similar results in low noise applications, but Linear Single layer Perceptron 

based S-AdaBoost machine performs not as good as the other two in high noise 

applications. This might explains why C4.5 and BP are the two most popular base 

classifiers for AdaBoost based systems. As the three S-AdaBoost machines universally 

perform better than the original AdaBoost machine, the experiment shows that S-

AdaBoost is superior in performance than the AdaBoost algorithm irregardless of the 

base classifier used in our experiment; the choice of base classifier generally does not 

affect the system performance very much.   

Table 4.4 compares the mean errors of S-AdaBoost based on Single Layer 

Perceptron (Error 2) with the AdaBoost (Error 1) and S-AdaBoost based on BP Neural 

Network (Error 3). Volume 5 shows how much better the S-AdaBoost based on single 

layer Perceptron comparing with the AdaBoost Machine, volume 6 demonstrates how 

much better the S-AdaBoost based on BP neural Network comparing with the S-

AdaBoost based on single layer Perceptron.  
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Error 1: 
AdaBoost 

(BP) 

Error 2: 

S-AdaBoost 
(Single 
layer 

perceptron) 

Error 3: 

S-AdaBoost 
(BP) 

Comparison 
between 

Error 2 and 
Error 1 

(betterment 
%)  

Comparison 
between 

Error 3 and 
Error 2 

(betterment 
% ) 

Ringnorm 1.9  1.7  1.7  10.5 0 

Twonorm 3.0  2.7  2.7  10 0 

Image 2.9  2.8  2.7  3.4 3.6 

Thyroid 4.5  4.6 4.3  -2.2 6.5 

Splice 10.4  9.5  9.3  8.7 2.1 

Waveform 10.6  9.8  9.6  7.5 2.0 

Banana 10.8  10.5 10.6  2.8 -0.9 

Heart 20.8  17.3  15.9  16.9 8.1 

Titanic 23.1  23.0  22.2  0.4 3.5 

Diabetes 26.8  24.8  23.5  7.5 5.2 

German 27.5  25.6  23.8  6.9 7 

B. Cancer 30.8  27.0  26.1  12.3 3.3 

F. Solar 35.7  32.1  31.6  10.1 1.6 

Average 

Mean 
16.1 14.7 14.1 8.7 4.1 

Table 44: Comparison of the mean error rates between the linear Single Layer 
Perceptron and the non-linear BP based S-AdaBoost classifiers on the benchmark 

databases.  

It is observed from Table 4.4 that the linear Single Layer Perceptron based S-

AdaBoost machine achieves better results comparing with the AdaBoost machine (in 

12 of the 13 cases); the average betterment is 8.7%. The non-linear BP based S-

AdaBoost machine achieves better results comparing with the linear Single Layer 

Perceptron based S-AdaBoost machine (in 10 of the 13 cases); the average betterment 
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is 4.1%. Generally there is no clear indications showing in which “noise level”, the 

non-linear BP based S-AdaBoost machine has a overwhelming advantage over the 

linear Single Layer Perceptron based S-AdaBoost machine, except showing 

statistically that the non-linear one is better in overall results. 

Different Combiners are implemented to understand the influence of the 

combiner to the overall system’s overall performance. Simple combiners (Max 

combiner and single layer Perceptron combiner) are implemented. The detail 

experimental results are shown in Table 4.5. 

 
AdaBoost 

 
S-AdaBoost 

(Max) 

S-AdaBoost 
(Single Layer 
Perceptron) 

S-AdaBoost 
(Multi Layer 
Perceptron) 

Ringnorm 1.9 ± 0.4 1.6 ± 0.1 1.6 ± 0.2 1.7 ± 0.2 

Twonorm 3.0 ± 0.2 2.7 ± 0.2 2.7 ± 0.3 2.7 ± 0.2 

Image 2.9 ± 0.9        2.9 ± 0.5 2.6 ± 0.3 2.7 ± 0.5 

Thyroid 4.5 ± 2.1 4.0 ± 1.7 4.5 ± 2.4 4.3 ± 2.0 

Splice 10.4 ± 1.1 9.6 ± 0.7 9.9 ± 1.0 9.3 ± 0.8 

Waveform 10.6 ± 1.3 10.0 ± 1.5 9.6 ± 1.0 9.6 ± 1.0 

Banana 10.8 ± 0.8 10.6 ± 0.8       10.9 ± 0.4 10.6 ± 0.5 

Heart 20.8 ± 3.2 16.7 ± 3.3 19.5 ± 3.0 15.9 ± 3.1 

Titanic 23.1 ± 1.4 22.0 ± 1.1 24.4 ± 1.6 22.2 ± 1.1 

Diabetes 26.8 ± 2.0 24.7 ± 2.0 26.6 ± 2.0 23.5 ± 1.6 

German 27.5 ± 2.4 24.5 ± 2.2 26.7 ± 2.0 23.8 ± 2.4 

B. Cancer 30.8 ± 4.0 28.1 ± 4.2 30.7 ± 4.0 26.1 ± 4.3 

F. Solar 35.7 ± 1.6 33.5 ± 1.4 34.0 ± 1.8 31.6 ± 1.8 

Average 

Mean 
16.1 14.7 15.7 14.1 
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Table 4.5: Comparison of the error rates among different combination methods on the 
benchmark databases 

From the Table 4.5, it is shown that in the experiments, non-linear combiners 

(Max and Multi-Layer Perceptron based combiners) can achieve better performance 

than the linear one. The Inlier Classifier and the Outlier Classifier are of different 

structures and focuses, the non-linear ones can combine the results from the two 

classifiers more effectively. 
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Chapter Five 

Applications: Using S-AdaBoost for Face Detection and Face 

Identification in the Complex Airport Environment 

5.1 Introduction 

The S-AdaBoost algorithm’s effectiveness is demonstrated by the experimental results 

conducted on some benchmark databases through comparing with other leading outlier 

handling approaches in Chapter 4. To further demonstrate the effectives of the S-

AdaBoost algorithm in the real world environment, two application systems, the face 

detection system FDAO and face identification system FISA are introduced in this 

chapter. FDAO system’s performance is compared with the leading face detection 

approaches using the data obtained from both the complex airport environment and 

some popular face database repositories. The experimental results demonstrate the 

effectiveness of the S-AdaBoost algorithm on the face detection application in the real 

airport environment. Similarly, the FISA system is also based on S-AdaBoost 

algorithm and its performance is compared with the leading face identification 

approaches using the airport data and the FERET standard dataset. The results obtained 

are equally promising and convincing, which demonstrate that the S-AdaBoost 

algorithm is effective in handling the complex real airport environment in the face 

identification application. 

5.2 The FDAO System 
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The FDAO system is an S-AdaBoost algorithm-based system designed for face 

detection system for the airport operators, which uses the surveillance cameras to scan 

crowds to extract potential face images and send the potential images for detecting 

whether it is a face image (as shown in Figure 5.1).  

 

Figure 5.1 The FDAO system in use 

In the experiment, the CCD cameras with a resolution of 320 X 256 pixels are 

installed in the airport to capture the raw images to be sent to the FDAO system. From 

Figure 5.1, it is observed that when the FDAO system is in use, the raw inputs from the 

CCD camera are fed to a pre-processor. The pre-processor acts as a filter to generate a 

series of potential face patches with 20 X 20 pixel resolution from the input image with 

the brightness normalized to a mean of 0 and a standard deviation of 1. Simple edge 

detection techniques are used to remove some of the obvious non-face patches. The 
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pre-processor is designed in such a way to generate many more candidates than the 

real number of faces from the original images to avoid face images not being detected. 

The output 20 X 20 pixel potential face patches from the pre-processor are fed to both 

the face classifier Đ(ŧ) (whose base learner is implemented by an AdaBoost machine 

with the back-propagation neural network as the base weak learner) and the outlier 

classifier O(x) (implemented by a multi-layer RBF neural network) for classification. 

The reason of choosing the multi-layer feed-forward back-propagation neural network 

as the base weak learner for the face classifier is that Back Propagation Neural 

Network has good generalization capability. There are 400 input nodes in the input 

layer and 15 nodes in the hidden layer and one output node in the output layer; the 400 

normalized gray level values act as the input to the input nodes, the conventional 

sigmoid function is used as the transfer function for the nodes, the adjacent layers are 

fully-connected. Hidden layer nodes enable the network to learn the complex image by 

progressively extracting more meaningful non-explicit features from the input patterns 

(as shown in Figure 5.2). As face patterns are highly non-linear [Sebastian and Lee, 

2000], the non-linearity distributed form of the representation and the highly connected 

structure of the neural network base classifier suit the nature of the face detection 

problem. In the neural network, the input data is repeatedly presented to the neural 

network. After each round of input data presentation, the output of the neural network 

is compared with the desired output and an error is computed. This error is then fed 

back (back propagated) to the neural network and used to adjust the weights such that 

the error decreases with each iteration and the neural model gets closer and closer to 

the desired output.  
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Figure 5.2  The back-propagation neural network base classifier in the FDAO system 

A three-layer RBF neural network (as shown in Figure 5.3) is chosen to 

implement the outlier classifier O(x). The RBF (Radial Basis Function) neural network 

is chosen due to its good localization characteristic. Similar to the back propagation 

neural network base classifier, there are also 400 input nodes in the input layer in the 

RBF neural network and one output node in the output layer. The numbers of hidden 

nodes are dynamic and auto-growing depending on the diversity of the training 

patterns during the training stage. The radii of the hidden nodes in the RBF neural 

network are also chosen to be very small to enhance RBF network’s good local 

clustering characteristic, which helps to isolate the noisy patterns Pns from the hard-to-

classify patterns Phd. The adjacent layers are also fully connected with each other. The 

RBF neural network uses a complete different methodology comparing with the back 

propagation neural network approach by projecting the input space to a higher 

dimensional space to achieve good localization capability. The hidden layer nodes use 

a set of “functions”, which are called the radial basis functions to construct a new 

hidden feature space. As the face patterns are very difficult to separate, it is hoped that 
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by using these hidden “functions”, the face patterns could be localized in higher 

dimensional space by methods such as the linear separation, spherical separation or 

other separation schemes. Using the RBF neural network, along with the repeated 

presentation of the input patterns to the neural network, the input patterns are clustered 

to the centers formed in the hidden feature space; the number of hidden nodes is also 

automatically adjusted to optimize the radii of the clusters. Supervised learning method 

is used to learn the center locations in the hidden feature space as well as the weights 

of the output layer. Unlike the back propagation neural network used by the face 

classifier, the RBF neural network does not do error back-propagation. The RBF 

neural network is used as a local approximator whereas the back propagation neural 

network is used as a global approximator in the FDAO system.  

 

Figure 5.3 The radial basis function neural network outlier classifier in the FDAO 
system 

Two confidence values act as the outputs of the face classifier Ғod(x) and 

outlier classifier O(x) determining their estimates of whether the potential face image 

is indeed a face image. The confidence values act as the inputs to the combiner 
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(implemented by a three layer back-propagation neural network as shown in Figure 

5.4), which generates the final classification result determining whether the potential 

face patch of the input raw image is a face image or not. Multi-layer back propagation 

neural network is chosen to implement the combiner to make use of its good non-linear 

generalization capability. There are two input nodes in the input layer and three nodes 

in the hidden layer and one output node in the output layer. Conventional sigmoid 

function is used as the transfer function for the nodes; the adjacent layers are fully 

connected with each other as well. The hidden layer nodes enable the neural network 

to learn the complex relationship between the two confidence-values output by the two 

neural network classifiers. During training, for every new input, the output of the 

neural network is compared with the known judgment of whether the input is a face 

image and an error is thus calculated. This error calculated is then fed back to the back 

propagation neural network, which uses the error to adjust the weights of the combiner 

so that the system error rate decreases after every iteration and the neural network gets 

closer and closer to producing the correct final judgment. The final output is the 

classification result determining whether the input is a “face” or “non-face”. 

 

Figure 5.4 The back propagation neural network combiner in the FDAO system 

An international airport environment is chosen as the complex environment to 

test the effectiveness of the FDAO system. There are tens of thousand passengers 
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passing by this environment everyday, and potential face images are detected in 

complex backgrounds, which include different illumination, pose, occlusion, outlook 

and even make-up. 

5.3 Training and pre-processing of the FDAO System 

As mentioned in Chapter 2, one of the difficulties in face detection is that the face is 

often defined ambiguously. In FDAO system, following the definition by Yang [Yang 

Ming-Hsuan, Kriegman David, and Ahuja Narendra., 2002 ], face detection is defined 

as the detection of images with prominent facial features of mouth, nose and at least 

one eye. In the experiment, these 3 features are used to judge and analyze the results. It 

is found that most of the faces complying with this definition are frontal faces.  

CCD cameras with a resolution of 320 X 256 pixels installed in the airport 

were used to collect the raw images to train the FDAO system. Out of all the images 

collected, 5000 images with one or multiple face images in the airport environment 

were selected for this experiment. The 5000 raw images were further divided into two 

separate datasets, one of the datasets contained 3000 raw images, and the other one 

contained the remaining 2000 raw images. More than 7000 face candidates were 

cropped by hand from the 3000 image dataset as the training set for the FDAO system; 

and the 2000 image dataset (some of them are shown in Figure 5.5) were chosen as the 

test set of the FDAO system. 5000 non-face images  (including images of carts, 

luggage and pictures from some public image banks, etc.) were used (2500 images as 

the training set and the remaining 2500 images as test set) as non-face image dataset 

(some of them are shown in Figure 5.6). All the above training images were resized to 

20 X 20 pixels and the brightness of the images were normalized to mean of zero and 

standard deviation of one before being sent for learning.  
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In the FDAO system, each image is preprocessed before being sent to the 

classifiers. To detect faces at arbitrary locations of a raw image, the patching is applied 

at various image locations. To detect face images larger than 20 x 20 pixels, the input 

image is repeatedly sampled, and the patching is applied at various scales. 20 x 20 

pixel sub-images are then sent to the classifiers to generate the judgment result, which 

is the confidence value of a non-face (if the score is close to 0) or a face pattern (if the 

score is close to 1). 
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        Figure 5.5 Some images containing faces used to test the FDAO system 
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Figure 5.6 Some non-face patterns used in the FDAO system 
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During training (as shown in Figure 5.7), the Divider Đ(ŧ) of the FDAO system 

is used to divide the whole potential face image stream into a normal face image sub-

stream and an outlier sub-stream. The Divider Đ(ŧ) is constituted by a dividing 

network and a gating mechanism (as shown in Figure 5.8), which jointly generate 

different training sets for the following two classifiers: the back-propagation neural 

network based face classifier Ғod(x) and the multi-layer RBF neural network based 

outlier classifier O(x).  Similar to the face classifier Ғod(x), multi-layer back-

propagation neural network is chosen to be the base classifier to implement the Divider 

Đ(ŧ) dividing network. The Divider Đ(ŧ) dividing network is implemented by an 

AdaBoost machine with 400 input nodes in the input layer and 15 nodes in the hidden 

layer and one output node in the output layer (the same as the AdaBoost face classifier 

Ғod(x)); the 400 normalized gray level values act as the input to the Divider Đ(ŧ) input 

nodes, the conventional sigmoid function is used as the transfer function for the 

Divider Đ(ŧ) nodes; adjacent layers in the Divider Đ(ŧ) dividing network are fully-

connected. Hidden layer nodes in the Divider Đ(ŧ) dividing network enable the system 

to learn the complex input images by extracting progressively more meaningful non-

explicit features (the same as the face classifier Ғod(x)). The output of the Divider Đ(ŧ) 

dividing network is fed to a gating mechanism (as shown in Figure 5.8, if the judgment 

result shows that the input image is an “Inlier”, the image is sent to Ғod(x), otherwise 

O(x).)  together with the 20 X 20 pixel potential face images to decide whether to 

direct the 20 X 20 pixel potential face images to the back-propagation neural network 

based face classifier Ғod(x) or the multi-layer RBF neural network outlier classifier 

O(x).  
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Figure 5.7 Training the FDAO system 

  

Figure 5.8 The dividing network and the gating mechanism of the Divider Đ(ŧ) in the 
FDAO system 

In the experiment, the 3000 training raw images together with the 2500 non-

face images were sent to the pre-processor of the FDAO system to generate a series of 

potential 20 X 20 pixel face patches, which subsequently act as the training input to the 

Divider (ŧ) during training. The training inputs to the back-propagation neural network 

based face classifier Ғod(x) and the multi-layer RBF neural network outlier classifier 

O(x) were taken from the divided stream output by the Divider (ŧ). The confidence 
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values output by the face classifier Ғod(x) and outlier classifier O(x) act as the training 

input to the Combiner Ĉ of the FDAO system. 

5.4 Face Detection Experimental Results 

In this section, the FDAO system experimental results in the complex airport 

environment are presented. Other leading face detection algorithms are also discussed, 

implemented using the same airport dataset used in the FDAO system experiment. 

Results obtained from these methods are compared and analyzed. To further prove the 

S-AdaBoost algorithm’s effectiveness in the face detection application, experiments 

are also conducted on some benchmark face detection databases to compare with the 

results obtained from other leading approaches on these benchmark datasets. Some 

testing patterns are also sent to CMU (Carnegie Mellon University) face group’s web-

based on-line face detection program for obtaining comparison results. 

5.5 The Test Results from the FDAO System 

To obtain the optimal threshold value ŧ, different sets of test results are generated by 

the FDAO system through choosing different threshold value ŧ for the Divide (ŧ). 

Different sets of the corresponding face classifier Ғod(x) and outlier classifier O(x) are 

also trained based on the different output of the Divider (ŧ) for different threshold 

value ŧ. To measure the effectiveness of the FDAO system, two error rates are 

measured, namely the false positive rate as well as the detection error rate δ, which is 

defined as:  

Detection Error Rate δ = 
( )N1 + N2

N    (5.3.1.1) 
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Where N1 stands for the number of the face images wrongly classified as non- 

face images; 

N2 stands for the number of the non-face images wrongly classified as face 

images; and 

N stands for the total number of faces in the FDAO test set.  

The corresponding false positive rates and the detection error rates for different 

threshold value ŧ are plotted in Figure 5.9.   

    

Figure 5.9 Error rates of the FDAO system 

In Figure 5.9, the Y-axis denotes the error rate; the X-axis (not drawn 

proportionally) denotes the value of the threshold value ŧ. It is found that the error rates 

of the FDAO system decrease slowly when the threshold value ŧ gradually increases 

from 0 (when all patterns are treated as outliers) upward, the error rates of the FDAO 

system drop faster and faster with the increment of the threshold value ŧ before 
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becoming stable for a while. The error rates slowly climb up afterwards; in the end, 

when the threshold value ŧ approaches 1, the false positive rate reaches ∂ and the 

detection error rate of the system reaches δ. To explain this observation, the input 

patterns in the outlier set in the pattern space Ŝol are examined, it is found that when 

the threshold value ŧ is small (near value 0), most of the patterns in the input space Ŝ 

are in the outlier pattern space Ŝol, and the system’s generalization performance is 

affected, which results in the high error rates. Along with the increment of the 

threshold value ŧ, there are more and more normal patterns Pno and special patterns Psp 

going into the ordinary pattern space Ŝod; more and more numbers of the genuine 

clustering of the hard-to-classify patterns Phd are detected in the outlier space Ŝol, the 

error rates of the system go down faster and faster before reaching an optimal range (in 

this case from value 0.001 to value 0.005). When the threshold value ŧ increases 

further, the hard-to-classify patterns Phd and the noisy patterns Pns start to enter the 

ordinary space Ŝod, the face classifier Ғod(x) tries progressively harder to adopt these 

input patterns, which results in the slow increase of the error rates of the FDAO system 

as well. The false positive rate reaches ∂ and the Detection Error Rate reaches δ when 

all the input patterns go to the ordinary space Ŝod. It is noted that most of the time 

(when the threshold value ŧ exceeds value 0.001), S-AdaBoost achieves better false 

positive rate and the detection error rate than those of the AdaBoost machine (0.26). 

The number of training patterns M  

= 7000 face (in the 3000 face images) + 2500 non-face images  

=  9500  

The error detection rate of the AdaBoost Machine: 

δ = 0.26;  

If the threshold value is set to be equal to 1/(M X δ2), then 

The threshold value ŧ  
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= 1/(M X δ2) 

= 1 / (9500 X 0.262) 

= 0.0015 

It is noted that this threshold value ŧ falls into the optimal range (from value 

0.001 to 0.005).  

This formula gives a guideline in setting the threshold value; a more accurate 

value can be decided by experiment. 

5.6 Testing Results of the Other Leading Face Detection Algorithms in 
the Complex Airport Environment 

To test the effectiveness of the S-AdaBoost algorithm on the face detection application 

in the complex airport environment, the performance of the FDAO system (when the 

threshold value ŧ is set to 1/(M X δ2), where M is the number of all the training 

patterns and the parameter δ is the detection error rate of the AdaBoost machine.) and 

other leading approaches are compared. The Rowley, Baluja and Kanade’s [1998] 

Neural Network approach, the Viola and Jones’s [2001] Asymmetric AdaBoost 

Cascading approach, and the Osuma, Freud and Girosi’s [1997] Support Vector 

Machine approach are implemented. To make the approaches more comparable, the 

Detection Error Rate δ of the four algorithms are compared in the test. 

In the Rowley, Bajula and Kanade’s Neural Network approach, each face is 

preprocessed before being fed to an ensemble of neural networks, which is used to 

detect the face patterns.  A decision making structure (similar to the structure of the 

Combiner in the S-AdaBoost machine) is used to render the final decision from the 

multiple detection results) follows the neural network ensemble to make the final 
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judgment. After the pre-processing, a 20 x 20 pixel sub-image (the same size as that of 

S-AdaBoost sub-images) are sent to the neural network ensemble and the scores 

ranging from -1 to 1 are generated, which is the confidence value of a non-face (if the 

score is close to -1) or a face pattern (if the score is close to 1) (in the S-AdaBoost 

machine, the confidence values range from 0 to 1). To detect faces at arbitrary 

locations of a raw image, the patching is applied at all image locations. To detect face 

images larger than 20 x 20 pixels, the input image is repeatedly sampled, and the 

patching is applied at each possible scale (the same method is also used by FADO). 

More than 1000 face patterns of various sizes, orientations, positions, and intensities 

are used to train the neural network ensemble. For each training image, the eyes, tips 

of the nose, corners, and centers of the mouth are manually cropped and labeled. The 

normalization process is conducted to normalize the face images to the same scale, 

orientation, and position. The decision-making structure takes the output from the 

individual neural networks and detects duplicated detection among the individual 

neural networks. Simple arbitration schemes such as Logic AND and Logic OR 

operators as well as voting, instead of the complex ones used by some researchers 

(such as operators used by [Sung and Poggio, 1998]) are used to make the final 

judgment. Satisfying results are obtained in their experiments. (In the S-AdaBoost 

machine, due to the different structure of the two neural network classifiers, a complex 

combination mechanism is used instead). The system has also been extended to detect 

possible face rotation using a special router network, which processes each input 

window to determine the possible face orientation and then rotate the window to a 

canonical orientation, before feeding the potential face images to the neural network 

ensemble for detection.  
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Rooted in the statistical learning theory, Osuma, Freud and Girosi’s SVM 

(Support Vector Machines) based face detection algorithm also receives much 

attention. Different from the ERM (Empirical Risk Minimization) principle used by 

the conventional Neural Network based face classifiers (such as the Rowley, Bajula 

and Kanade’s approach), the Support Vector Machine based face detection approaches 

apply the SRM (Structural Risk Minimization) principle and use the RBF (Radial 

Basis Function) based face classifier or face polynomial function based classifiers to 

reduce the structural risk of the system. Instead of minimizing the training error as 

practiced in the ERM based approaches, the upper bound of the expected 

generalization error is minimized in the SRM based approaches (the Regularized 

AdaBoost approach discussed before also falls into the SRM category). A small subset 

of the training vectors, which are called the support vectors, are chosen to form an 

SVM (Support Vector Machine) classifier, which is a linear classifier (if the non-linear 

kernel is sued, the classifier can be expanded to non-linear) chosen to minimize the 

expected classification error of the test patterns. A linearly constrained quadratic 

programming problem needs to be solved to estimate the optimal hyper-plane formed 

by the classifier. The Osuma, Freud and Girosi’s SVM based face detection approach 

successfully handles a large-scale face detection problem and achieved good 

experimental results on the two test sets consisting of 10,000,000 test patterns of 19 x 

19 pixel resolution (in the FDAO system, the patterns are normalized to 20 X 20 pixel 

resolution with mean of zero and standard deviation of one). 

Viola and Jones’s Asymmetric AdaBoost Cascading approach is one of the 

most rapid approaches able to conduct real-time face detection in a normal 700M Hz 

Intel Pentium III based notebook and process the 15 fps (frame per second) 384 X 288 

pixel gray level input images. Viola and Jones claims that the Asymmetric AdaBoost 
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Cascading approach has made three key contributions to face detection research.  The 

first contribution is the introduction of a new image representation scheme called 

“Integral Image'', which enables the features used by the Asymmetric AdaBoost 

Cascading detector to be computed and evaluated rapidly. The second contribution is 

the introduction of a new AdaBoost based learning algorithm, which is able to make 

use of just a small number of critical visual features to build the efficient classifiers.  In 

order to achieve efficient system performance, only a small percentage of the critical 

features are selected through a modified AdaBoost procedure, which constrains the 

weak base classifier so as to make each weak classifier only focus on one feature. In 

this regard, every iteration of the AdaBoost algorithm can be considered as a new 

feature selection process. The reason of choosing the AdaBoost algorithm to build the 

face detection classifier is because of the AdaBoost algorithm’s effectiveness and the 

good generalization capability. The third contribution claimed by Viola and Jones is 

the introduction of the combining cascading classifiers, which is able to discard the 

image background and focus on identifying the promising objects to speed up the 

classification process. A set of face detection experiments have been conducted by 

Viola and Jones to show the effectiveness of the Asymmetric AdaBoost Cascading 

approach. 

After implementing the above three leading face detection systems, the same 

training set (the face and non-face datasets) and the testing set (the face and non-face 

datasets) used in the FDAO system are used to train and test these three systems to 

compare the effectiveness of different approaches in the real complex airport 

environment. Again, the 10 cross validation method is used in the experiment. The 

testing results obtained from the leading face detection approaches are listed in Table 

5.1.  
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 Rowley Viola SVM (RBF 
Kernel) S-AdaBoost 

Average 
Detection 
Error Rate 

29.4% 27.1% 27.7% 25.5% 

Standard 
deviation ± 3.2% ± 2.9%  ± 3.0% ± 3.5% 

Table 5.1: Comparison of error rates of the different face detection approaches 

From Table 5.1, it can be found that the S-AdaBoost approach achieves the best 

experimental result compared with the other three leading approaches using the 

training and testing datasets obtained in the complex airport environment. Even though 

other approaches achieve good results in their respective face detection databases, they 

seem to suffer more compared with the FDAO system when the datasets are “noisy” 

with a large amount of outliers. Utilizing AdaBoost to implement the dividing 

mechanism and utilizing a dedicated RBF outlier classifier in the S-AdaBoost based 

FDAO system is proven effective in this round of test in the complex airport 

environment. 

Further comparison between the results in Table 4.2 and those in Table 5.1 

shows that S-AdaBoost out-performs other methods in the latter more than in the 

former. Analysis shows that this might be due to the fact that the data collected in 

FDAO is more “raw” and “noisy” than the data collected in the benchmark databases 

used in Table 4.2.  

5.7 Comparison of the Leading Face Detection Approaches on the 
Standard Face Detection Databases 
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In order to conduct a fair comparison between the S-AdaBoost algorithm-based system 

and the other leading approaches. All the algorithms should be trained and tested on 

the same datasets. In the previous section, the datasets collected from the complex 

airport environment are used to conduct the training and testing. In this section, the 

current popular face databases and the benchmark face detection benchmark databases 

are studied and explored to find the possibility to use one of, or a combination of a few 

of, them to do another round of tests to the face detection algorithms.  

The researchers in MIT (Massachusetts Institute of Technology) have produced 

at least two standard face detection databases. The MIT media lab database 

(ftp://whitechapel.media.mit.edu/pub/images/) consists of the face images from 16 

people, 27 images are collected for each person under different conditions of 

illumination, scale and head orientation. Another popular face image database from 

MIT is the MIT CBCL (the Center for Biological and Computational Learning) face 

dataset (http://www.ai.mit.edu/projects/cbcl/software-datasets/FaceData2.html). The 

MIT CBCL database is further divided into a training set and a testing set, the training 

set consists of 6,977 cropped images (2,429 faces and 4,548 non-faces), and the testing 

set consists of 24,045 images (472 faces and 23,573 non-faces). All the images are 

normalized to 19 X 19 pixel resolution with values between 0 and 1; a tag follows the 

data indicating whether it is a face image (-1 for a non-face image and 1 for a face 

image).  

The FERET database is another database used for face detection and 

identification applications, the FERET database will be discussed further in the face 

identification application system in the next few sections. The UMIST (University of 

Manchester Institute of Science and Technology) face database 
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(http://images.ee.umist.ac.uk/danny/database.html) consists of 564 images of 20 

people. Images are of 220 X 200 pixel 8 bit gray level capturing people of different 

race, gender and appearance. The images are of different poses (from profile to frontal 

views) as well. The AT&T Cambridge lab face database (formally known as the ORL 

database of faces) (http://www.uk.research.att.com/facedatabase.html) contains images 

of 40 subjects. There are ten different images for each of the 40 distinct subjects. For 

some subjects, the images are taken at different time, lighting, facial expressions (open 

/ closed eyes, smiling / not smiling) and facial details (glasses / no glasses). All the 

images are taken against a dark homogeneous background with the subjects in an 

upright, frontal position (with tolerance of some side movement). The size of each 

image is 92 X 112 pixels, with 256 gray levels per pixel.  

The M2VTS (Multi Modal Verification for Tele-services and Security 

applications) face database (http://www.tele.ucl.ac.be/PROJECTS/M2VTS/ 

m2fdb.html) is a multi-modal database containing various image sequences. It is made 

up of 37 different faces with 5 shots per person. The shots are taken at one-week 

intervals or when drastic face changes occur. During each shot, people are asked to 

rotate their heads from 0 degree to -90 degrees, again to 0 degree, then to +90 degree 

and back to 0 degree. Also, they are asked to rotate their heads once again without 

glasses if they wear any. The motion sequence and the glasses off motion sequence (if 

any) are captured. The two sequences can provide information about the 3-D face 

features thanks to the motion. They may also be used to implement or compare with 

other techniques like identification from 2-D facial pictures, profile view or multiple 

views. These shots mainly differ from the others because of face variations (head tilted, 

eyes closed, different hairstyle, presence of a hat/scarf and etc.), or shot imperfections 
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(poor focus, different zoom factor, etc.). The resolution for the database images is 286 

X 350 pixels.  

Purdue face database (http://rvl1.ecn.purdue.edu/~aleix/aleix_face_DB.html) is 

created by Aleix Martinez and Robert Benavente. It contains over 4,000 color images 

corresponding to 126 people's faces (70 men and 56 women). Images feature frontal 

view faces with different facial expressions, illumination conditions, and occlusions 

(wearing sun glasses or scarf). The pictures are taken under strictly controlled 

conditions. No restrictions on wear (clothes, glasses, etc.), make-up, hair style, etc. are 

imposed to the participants. Each person participates in two sessions; the shots are 

taken in two-week intervals and the same pictures are taken in both sessions. Images 

are of 768 by 576 pixels and of 24-bit color. The 3,276 face images are with different 

facial expressions and occlusions under different illuminations.  

Some benchmark databases have also been developed in the past. CMU frontal 

face test set [http://vasc.ri.cmu.edu/IUS/eyes_usr17/har/har1/usr0/har/faces/test/] has 

been a popular benchmark dataset to evaluate the performance of a face detection 

system to detect frontal faces in grayscale images. Three test sets are included in this 

collections, which are referred as Test Set A, Test Set B, Test Set C and Rotated Test 

Set. Test Set B is provided by Kah-Kay Sung and Tomaso Poggio at the AI Lab at 

MIT, and Test Set A, Test Set C and Rotated Test Set are collected by Henry A. 

Rowley, Shumeet Baluja, and Takeo Kanade in CMU. All the files are of gray level 

and GIF format. A new database called the CMU Pose, Illumination, and Expression 

(PIE) has also been developed in CMU [Sim, Baker, and Bsat, 2003]. It contains 

41,368 images of 68 people. The images of each person are taken under 13 different 

poses, 43 different illumination conditions, and with 4 different expressions.  
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In our experiment, the training set was built from the MIT CBCL Face Dataset 

(1000 face images and 1000 non-face images were abstracted from MIT CBCL 

dataset), and Purdue Databases (1000 face images from Purdue dataset); the CMU 

frontal databases (contains 130 images of 507 frontal face images) as the test set. MIT 

CBCL dataset was re-sized from the resolution of 19X19 to 20X20, and Purdue data 

was re-sized to gray-level 20 X 20 from 768 X 576 color pictures. 5 approaches 

(Rowley’s approach, Viola’s approach, the SVM approach (RBF Kernel), the 

AdaBoost approach and the S-AdaBoost approach) were implemented (We thank some 

researchers for providing some of their source codes used here). The test results are 

listed in Table 5.2: 

Approaches δ Mean% δ Standard 
deviation  % 

Rowley 5.5 0.6 

Viola 4.8 0.5 

SVM 4.1 0.6 

AdaBoost 6.2 0.6 

S-AdaBoost 3.9 0.7 

Table 5.2:  Comparison of error rates among various methods on CMU-MIT 
databases. 

Table 5.2 shows that all the algorithms are stable algorithms with generally low 

and similar standard deviation. The S-AdaBoost based approach achieves the best 

results in the experiment. All the other three algorithms perform better than pure 

AdaBoost based approach; the SVM based approach achieves the second best result 

(very near to the performance of the S-AdaBoost based approach). These experimental 

results further demonstrate the effectiveness of the S-AdaBoost algorithm. In the 
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experiment, face alignment and “integral face” (as used by Viola) are not used. Facial 

alignment has been tested but not reported in the thesis; as due to the highly complex 

environment, facial alignment does not work well in our scenario. The “integral face” 

approach is mainly for fast detection, as our system can achieve real time detection 

using a 60fps CCD camera connected to a PC, the “integral face” approach is not used 

in our system.  

5.8 Comparison with the CMU on-line Face Detection Program 

As a further comparison, 50 testing images (including the 8 images shown in Figure 

5.5) are sent to the CMU on-line face detection test program 

[http://www.vasc.ri.cmu.edu/cgi-bin/demos/findface.cgi] for analysis 

[http://vasc.ri.cmu.edu/demos/faceindex/images Submission 1-13 on October 19, 2002 

and Submission 4-40 on Oct 18, 2002]. The detection error rate obtained from the 50 

testing image set is 55% and the number of false face images detected is 23 (some 

sample results are shown in the Fig 5.10). Again, as a comparison, 50 testing face 

images were sent to the FDAO system; the detection error rate obtained from the 

FDAO system on the 50 testing image set is 20% and the number of the false face 

images detected is 8 (some sample results are shown in the Fig 5.11).  

98 



 

           

          

           

           

Figure 5.10 Sample results obtained from the CMU on-line face detection program on 
some face images 
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Figure 5.11 Sample results obtained from the FDAO system on some face images  
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For easy description, the sample figures are named following the convention 

that the top-left sample image is called sample image number one, the top-right image 

is called sample image number two, the bottom right image is the last image, the rest 

are named accordingly.  

It is noticed that there is one face being correctly detected, and one false face 

being detected in sample image three in Figure 5.10; there are one face being correctly 

detected, and no false face being detected in sample image three in Figure 5.11. Table 

5.3 lists the comparison of the detection results of the two algorithms on these 8 face 

image samples. From Table 5.3, it is shown that the FADO system performs better 

than the CMU on-line program especially in the reducing the number of false 

detections among the testing samples. 

Image Number No. of correct 
face detections 
in Figure 5.10 

No. of correct    
face detections 
in Figure 5.11 

No. of false 
face detections 
in Figure 5.10 

No. of false 
face detections 
in Figure 5.11 

1 5 5 0 0 

2 1 2 0 0 

3 1 1 0 0 

4 1 1 1 0 

5 0 1 1 0 

6 2 1 1 0 

7 2 2 2 1 

8 3 3 0 0 

Table 5.3:  The detection results of the CMU on-line program and the FDAO system 
on the 8 samples 
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Later, 63 testing images (including the 8 images shown in Figure 5.6) were sent 

to the CMU on-line face detection test program for analysis as well 

[http://vasc.ri.cmu.edu/demos/faceindex/images Submission 1 - 63 on Friday April 18, 

2003]. The total number of images with false face detection is 11 and the total number 

of false face detected is 21 (some false detection sample results are shown in the Fig 

5.12). Again, as a comparison, 63 testing non-face images were sent to the FDAO 

system. The total number of images with false face detection is 5 and the total number 

of false face detected is 7 (some false detection sample results are shown in the Fig 

5.13).  
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Figure 5.12 Sample results obtained from the CMU on-line face detection program on 
some non-face images 
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Figure 5.13 Sample results obtained from the FDAO system on some non-face images  
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Table 5.4 lists the comparison of the detection results of the two algorithms on 

these 8 non-face image samples. From Table 5.4, it is shown very clearly that the 

FADO system’s performance in detecting non-face images is much better that that of 

the CMU on-line program. 

Image Number No. of false 
face detections 
in Figure 5.12 

No. of false 
face detections 
in Figure 5.13 

1 1 0 

2 1 0 

3 1 0 

4 0 0 

5 0 1 

6 0 0 

7 3 1 

8 2 1 

Table 5.4:  The detection results of the CMU on-line program and the FDAO system 
on the 8 non-face samples 

5.9 Face Identification using the S-AdaBoost Algorithm 

To demonstrate the effectiveness of S-AdaBoost, the face identification application 

system FISA (Face Identification System for Airports) [Liu and Loe, 2003b] using the 

S-AdaBoost algorithm in the complex airport environment will be introduced. Similar 

to the comparative method used in the previous sections, the experiment obtained from 

the FISA system is compared with the results of the other leading approaches obtained 

from the complex airport environment as well as some benchmark datasets.  

105 



 

5.9.1 Face Identification and the FISA System  

Different from the face detection systems introduced in the previous sections, the face 

identification system takes an image as its input and reports back the identities of the 

people in the image after searching through a database containing all the known 

candidates.  In the airport environment, due to the large number of moving passengers, 

a non-intrusive face identification system is in urgent demand to scan the crowd to 

look for the potential wanted terrorists or the person of interest. Integrating with other 

technologies such as the smart card technology, the face identification system can be 

used for immigration control and custom clearance in the airport environment as well.  

Even though it has been demonstrated in the previous sections that the S-

AdaBoost based approach is effective in the face detection application in the complex 

airport environment, it is still unclear whether the S-AdaBoost based approach can 

achieve the same effectiveness in the face identification application. Some research 

shows that a face detection system makes use of the low-frequency features of the 

images, whereas the face identification system focuses on the high-frequency features 

of the images [Sergent, 1986]. Further research shows that if the distinct face features 

are stored in the memory based network, the face identification system using this 

network will result in faster and better identification; whereas the face detection using 

the same network will lead to much slower and more inaccurate results. In Addition, 

the complex environment (such as the variations of illumination, pose and others) is 

also challenging the design of the face identification systems.  

The S-AdaBoost algorithm is based on the “divide and conquer” strategy. 

According to some researchers [Biederman and Kalacsai, 1998], compared with the 
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face detection system, there are at least seven features that should be considered when 

designing the face identification system. They are the differences in the configural 

effects; special expertise; whether difference between faces can be verbalized; the 

sensitivity to contrast polarity and illumination direction; the difference in metric 

variation; the extent of rotation of the face images; and the inverted image effect.  

The FISA system, which stands for the Face Identification System for Airports 

is an S-AdaBoost algorithm-based system. It is used to spot the identities of 40 people 

from a complex airport environment with thousands of people passing the airport 

everyday. Images with complex background are sent to the system and the identities of 

the people of interest will be highlighted by the system automatically. Figure 5.14 

shows a typical scenario of the system. 

 

Figure 5.14 A typical scenario in the FISA System 
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The face identification system FISA (as shown in Figure 5.15) includes a Face 

Detection Module (FDM) and an Identity Detection Module (IDM). The face detection 

system FDAO discussed in the previous chapter can be used to implement the FDM in 

the FISA system. This means that if there are face images detected by the FDAO 

system, the corresponding 20 X 20 pixel potential face images will be sent to the IDM 

module for identity check. As the FDAO system only achieves about 75% face 

detection rate in the experiment conducted in the previous sections, some adjustment in 

the FDAO Combiner is done to ensure more potential face images are passed to the 

identity detection module IDM for identity check in the FISA system. The focus of the 

following discussion is the design of the IDM module in the FISA system. 

 

Figure 5.15 The FISA system 

In the training phase, the IDM module of the FISA system is implemented by a 

structure (as shown in Figure 5.16), which is very similar to that of the FDAO system 

in training. The 20 X 20 pixel detected potential face images from the FDAO system 

(with brightness normalized with mean of zero and standard deviation of one) are fed 

to the IDM module for identity check. The Divider in the IDM module divides the 

potential face images into inliers and outliers.  
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Figure 5.16 The FISA System in the training stage 

The Divider is implemented by a back-propagation neural network dividing 

network (as shown in Figure 5.17) based AdaBoost Machine (with 400 input nodes in 

the input layer, 15 hidden nodes in the hidden layer and 40 output nodes in the output 

layer of the base back-propagation neural network classifier) and a gating network 

similar to the one used in the FDAO system. The output of the Dividing network 

denotes the confidence values (associated with the corresponding labels) judging the 

input being the face of a particular candidate (there are 40 candidates in the FISA 

system). The output confidence values and the expected results are fed to the gating 

network to do a simple comparison to decide whether the labels match the target ones. 

If matched, it is an Inlier otherwise it is an outlier. Other implementation parameters in 

the Divider of the FISA system are similar to those of the Divider of the FDAO system. 

Cascades of the binary AdaBoost machines are used to implement the multi-value 

classification systems. 

109 



 

 

Figure 5.17 The back-propagation neural network dividing network base classifier in 
the Divider of the FISA system 

The output 20 X 20 pixel inliers from the Divider are fed to the Inlier Classifier  

(whose base learner is implemented by the same kind of back-propagation neural 

network as that of the FISA Divider), and the Outliers are sent to the Outlier Classifier 

(implemented by a multi-layer RBF neural network, as shown in Figure 5.18) for 

classification. 
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Figure 5.18 The radial basis function neural network outlier classifier in the FISA 
system 

The RBF (Radial Basis Function) neural network is chosen due to its good 

localization and memory capability. Similar to the back propagation neural network 

base classifier, there are also 400 input nodes in the input layer in the RBF neural 

network and 40 output nodes in the output layer. The number of hidden nodes is 

dynamic and auto-growing depending on the diversity of the training patterns during 

the training stage. The radii of the hidden nodes in the RBF neural network are also 

chosen to be very small to enhance RBF network’s good local clustering characteristic.  

Two sets of confidence values (40 values in one set) (labels are associated with 

them) act as the outputs of the inlier classifier and the outlier classifier. The confidence 

values act as the inputs to the combiner (implemented by a three layer back-

propagation neural network as shown in Figure 5.19), which generates the final 

classification result determining the identity of the input image. Multi-layer back 

propagation neural network with 80 input nodes in the input layer, 15 nodes in the 

hidden layer and 41 output nodes in the output layer is used to implement the FISA 

combiner. 

111 



 

 

Figure 5.19 The back propagation neural network combiner in the FISA system 

5.9.2 The Experimental Results of the FISA System 

The same international airport environment selected by the FDAO system is chosen as 

the complex environment to test the effectiveness of the FISA system. In the FISA 

system, the face images of 40 candidates are stored in the candidate database. 5000 

images with one or multiple face images in an airport environment are collected; about 

10% of the images contain one or a few candidate faces. 3000 images are randomly 

selected as the training set and the remaining 2000 images are chosen as the test set. It 

is noticed that during the collection period, there are hairstyle and glasses wear 

changes to the 40 candidates. The FDAO system processes the input images and 

generates constant flow of 20 X 20 segmented potential face images to the FISA 

system.  

To test the effectiveness of the S-AdaBoost (S-AB) algorithm-based FISA 

system on the face identification application in the airport environment, the 
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performance of the FISA system is compared with those of the other leading 

approaches. The neural network based EBGM (Elastic Bunch Graph Matching) 

approach [Wiskott, Fellous and Malsburg, 1997], the statistical subspace LDA 

(Linear/Fisher Discriminant Analysis) approach [Zhao, Chellappa and Krishnaswamy, 

2000], and the Probabilistic PCA (Principle Component Analysis) approach PPCA 

[Moghaddam, 2002], are implemented. The False Negative Rate (FNR) and the False 

Positive Rate (FPR) of the four algorithms as well as those of the AdaBoost (AB) 

algorithm are calculated in the experiment. (We thank some facial researchers for 

providing some of the source codes for the above algorithms.) All approaches are 

trained and tested on the same dataset collected from the airport. 10-fold cross-

validation method is used in all the tests. In the FISA testing system, the 20 X 20 pixel 

face images detected by the FDAO systems are fed directly to the Inlier Classifier and 

the Outlier Classifier without passing through the Divider (as shown in Figure 5.20) 

 

Figure 5.20 The FISA System in the testing stage 
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The testing results obtained from the various face identification approaches are 

listed in Table 5.5.  

Error Rate % S-AB AB EBGM LDA PPCA 

FPR 33.4  ±  4.5 44.6 ±  4.6 40.2 ±  4.3 43.3±  3.8 38.5± 3.2 

FNR 0.1± 0 1.4± 0.1 0.2± 0 0.6± 0 0.5± 0.1 

Table 5.5: The error rates of different face identification approaches on the airport 
database 

From the experimental results, it is found that the S-AdaBoost algorithm-based 

FISA system achieves the best result among all the approaches on the complex airport 

database both in terms of the FPR and the FNR. The other approaches seem to suffer 

more when the datasets are “noisy” with a large amount of outliers. The “divide and 

conquer” approach used in the S-AdaBoost algorithm shows its effectiveness in this 

round of tests in the face detection application in the complex airport environment. 

The FERET [NIST, 2001] (FacE REcognition Technology) database is the 

leading testing database for the face identification applications. It consists of 14126 

images from 1199 individuals. Experiments are conducted using datasets from the 

FERET database to compare the results of the above leading approaches. The 

experimental data consists of the training “gallery” of 150 candidate FERET faces and 

240 “probe” images containing one or more views of every candidate in the gallery. 

The input values to the systems are normalized with zero mean and standard deviation 

of one. The probe images are of different expression, illumination, and poses, 

with/without glasses. Due to the limited size of the testing gallery, 10-fold cross-

validation method is used in the experiment. The experimental results on this standard 

database are listed in Table 5.6. 
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Error Rate % S-AB AB EBGM LDA PPCA 

FPR 5.2 ± 0.4 9.8± 0.6 6.5± 0.4 7.0± 0.4 5.5± 0.4 

FNR 0± 0 1.2± 0.1 0.5± 0 0± 0 0± 0 

Table 5.6: The error rates of different face identification approaches on the FERET 
database 

From the experimental results in Table 5.6, it is found that the S-AdaBoost 

algorithm-based FISA system marginally outperforms the other approaches on the 

datasets. Comparing with the results in Table 5.5, this marginal out-performance in 

Table 5.5 might due to the relative small Probe images/Candidate images ratio as well 

as that the FERET dataset used in the experiment is not as “noisy” and “real” as the 

complex airport environment dataset. 
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Chapter Six 

Conclusion 

This chapter summarizes what have been reviewed, proposed, developed, and tested. 

Conclusions are drawn and future research direction discussed.  

6.1 Concluding Remarks 

In the thesis, a new ensemble boosting algorithm, S-AdaBoost, is introduced after 

reviewing the popular adaptive boosting algorithms and the need to improve the outlier 

handling capability of the current ensemble boosting algorithms in the complex 

environment. The contribution of the S-AdaBoost algorithm is to make use of the 

AdaBoost’s adaptive distributive weight as a dividing tool to divide the input space 

into inlier and outlier sub-spaces and to use dedicated classifiers to handle the inliers 

and outliers in the corresponding sub-spaces before combining the results of the 

dedicated classifiers.  

The S-AdaBoost algorithm’s effectiveness is demonstrated by the experimental 

results conducted on some benchmark databases through comparing with other leading 

outlier handling approaches. To further demonstrate the effectives of the S-AdaBoost 

algorithm in the real world environment, two application systems, the face detection 

system FDAO and face identification system FISA are developed. FDAO system’s 

performance is compared with the leading face detection approaches using the data 

obtained from both the complex airport environment and some popular face database 
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repositories. The experimental results demonstrate the effectiveness of the S-AdaBoost 

algorithm on the face detection application in the real airport environment. Similarly, 

the FISA system is also based on S-AdaBoost algorithm and its performance is 

compared with the leading face identification approaches using the airport data and the 

FERET standard dataset. The results obtained are equally promising and convincing, 

which demonstrate that the S-AdaBoost algorithm is effective in handling the complex 

real airport environment in the face identification application. 

6.2 Future Research 

While the S-AdaBoost algorithm and the systems build on the S-AdaBoost algorithm 

present positive and promising results, it also generates many questions to be answered 

in the future. 

1. The theory foundation of the S-AdaBoost algorithm is to be enhanced. Even 

though many experimental results demonstrate the effectiveness of the 

algorithm, more theoretical analysis is to be conducted in the future. 

2. To apply the same Divide and Conquer strategies used in S-AdaBoost to 

other machine learning algorithms to enhance their outlier handling capability 

in the real world environment. In order to do that, the most crucial issue is to 

find some parameters, which function as the “distributive weight” in AdaBoost, 

in those algorithms to divide the Input Space. 

3. The setting of the threshold value in S-AdaBoost algorithm needs to be 

studied further so as to provide a better understanding and guideline to the 

design of the S-AdaBoost based application systems. 

4. Another research direction is to integrate the understanding of structure and 

features of the patterns to be recognized into the design of S-AdaBoost 
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algorithm. A variant of the S-AdaBoost algorithm, Sub-Space AdaBoost, is 

being developed along this direction. 
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Appendix A 

Bias/Variance Analysis of the ensemble algorithms 

According to the statistical learning theory (Vapnik, 1995), in the neural network 

environment, the learning is a process focusing on reducing the deviation between a 

targeted function f(x) and the real function F(x,w), which is realized by the neural 

network architecture. The vector x denotes the input signal and the vector w denotes 

the weights of the neural network. A neural network is a mechanism being able to 

incorporate the empirical knowledge of the phenomena through learning.  For a 

stochastic phenomenon described by a random vector X (consisting of some 

independent variables) and a random dependent scalar D (consisting of some 

independent variables), the realization of the vector X and the dependent scalar D are 

denoted by {xi} and {di}. The realization of the phenomenon is denoted by Ŕ= {(xi,di)}. 

As we might not be able to obtain the absolute accurate relationship between the vector 

X and the dependent scalar D from the learning itself, we have: 

D = f(X) + ε       (A.1) 

Where ε denotes the neural network’s ignorance of the dependency between the 

vector X and the dependent scalar D. The parameter ε is defined as the 

expectation error with zero mean and a positive probability of occurrence: 

Ẽ[ε|x] = 0       (A..2) 

Where Ẽ is the expectation operator.  From A.1 and A.2, we can conclude that: 

f(x) = Ẽ[D|x]       (A.3) 

Ẽ[εf(x)] =  Ẽ[Ẽ[εf(x)|x]  
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= Ẽ[f(x)Ẽ[ε|x]  

= Ẽ[f(x) 0]  

= 0         (A.4) 

The expectation of the squared distance (or the mean squared error) between 

the targeted function f(x) and the real function F(x,w) in classification is (according to 

A.3 and A.4): 

Mean Squared Error  

= SUMx [f(x) - F(x, Ŕ))2]  

= ẼŔ [(f(x) - F(x,w))2]  

= ẼŔ[(Ẽ[D|X=x]- F(x, Ŕ))2]       (A.5) 

The above equation can be understood as that the mean squared error is equal 

to the average mean of the estimation error between the function f(x) and the 

approximated function F(x, Ŕ). In the following equation, an item ẼŔ[F(x, Ŕ)], which 

is the average expectation over all of the training patterns, is inserted: 

Mean Squared Error  

= ẼŔ [(Ẽ[D|X=x]- F(x, Ŕ))2]  

= ẼŔ [(Ẽ[D|X=x] - ẼŔ[F(x, Ŕ)]) + (ẼŔ[F(x, Ŕ)] - F(x, Ŕ)))2] 

= ẼŔ [(Ẽ[D|X=x] - ẼŔ[F(x, Ŕ)])) 2 + ((ẼŔ[F(x, Ŕ)] - F(x, Ŕ)))2 + 

   2(Ẽ[D|X=x] - ẼŔ[F(x, Ŕ)]) (ẼŔ[F(x, Ŕ)] - F(x, Ŕ))] 

= ẼŔ [(Ẽ[D|X=x] - ẼŔ[F(x, Ŕ)])) 2]+ ẼŔ [((ẼŔ[F(x, Ŕ)] –  

   F(x, Ŕ)))2]  +  2ẼŔ [(Ẽ[D|X=x] - ẼŔ[F(x, Ŕ)])  

   (ẼŔ[F(x, Ŕ)] - F(x, Ŕ))] 

According to (A.4), 

Mean Squared Error  

= ẼŔ [(Ẽ[D|X=x] - ẼŔ[F(x, Ŕ)])) 2]+  

    ẼŔ [((ẼŔ[F(x, Ŕ)] - F(x, Ŕ)))2] 

= Bias2(w) + Variance(w)     (A.6) 
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Bias is defined as: 

Bias ≡ ẼŔ [Ẽ[D|X=x] - ẼŔ[F(x, Ŕ)]] 

Bias denotes the inability of the individual neural network component to 

accurately measure the decision boundary; it is also called the approximation error. 

Variance is defined as: 

Variance ≡ ẼŔ [((ẼŔ[F(x, Ŕ)] - F(x, Ŕ)))2] 

Variance denotes the inadequacy and the limitation of the training pattern set, it 

is also called the estimation error. Differentiating these two kinds of errors will help us 

to analyze the effectiveness of the ensemble machines. It is noticed that in a single 

neural network system with a fixed size of training set, if we want to reduce bias, the 

variant often goes up; if we want to reduce variant, we need to pay the price of bias 

going up. It is only possible to reduce both bias and variance when we have infinite 

number of good training patterns (Geman, Bienenstock and Doursat, 1992), this 

phenomenon is called the bias/variance dilemma. To tackle this dilemma, at least two 

approaches have been proposed. One way to circumvent this is to introduce “harmless” 

bias to maintain bias and reduce variance [LeCun 1990], another way is to maintain 

bias and reduce variance using ensemble approaches [Naftaly, Intrator and Horn,1997]. 

The S-AdaBoost ensemble method falls into the second category. 

In the S-AdaBoost algorithm based classifiers, differently trained classifiers 

(we use the neural network classifiers in this section for discussion) share different 

distributions of the training input patterns; the classification results (confidence values) 

of these classifiers are combined to produce the final classification output. It is noticed 

that if all those individual classifiers were combined to form one big classifying neural 

121 



 

network, the number of free parameters to be decided would be numerous, which could 

easily lead to the overfitting of the big network. In the ensemble approach, each 

component classifier is trained separately; the chance of overfitting is thus reduced. 

In the ensemble approach, it is expected that each hypothesis classifier focuses 

on its own domain and converges to its own local minimum of the cost function. It is 

hoped that in this way the combiner can boost the combined performance of the 

ensemble. 

In an ensemble, the Space Ž is defined as the (production of) Input Space Ŝ 

together with the Parameter Space Č, which stands for all the training parameters 

(including the distribution parameter and the network parameter).  

Ž = Ŝ X Č           (A.7) 

Each member of the ensemble has its own Parameter Space Č. There are many 

distribution methods available for selection. In the following discussion, simple 

averaging is used as the representative combination function for discussion. Defining: 

Fav(x) = Mean of the F(x) over the Parameter Space Č (A.8) 

So, we have: 

ẼŽ [(Ẽ[D|X=x]- F(x))2]  = BiasŽ
2(F(x))+ VarianceŽ (F(x)) 

         (A.9) 

BiasŽ
2(F(x)) = ([(Ẽ[D|X=x]]- ẼŽ [F(x)])2   (A.10) 

VarianceŽ (F(x)) = ẼŽ [(ẼŽ [F(x)]- F(x))2]  (A.11) 

Combining (A.8) and (A.9), we have 

ẼČ [(Ẽ[D|X=x]- Fav(x))2]  = BiasČ2(F(x))+ VarianceČ (F(x))  

        (A.12) 

BiasČ2(F(x)) = ([(Ẽ[D|X=x]- Fav (x))2    (A.13) 
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VarianceČ (F(x)) = ẼČ [ẼČ [(Fav (x)] - F(x))2]  (A.14) 

In the Input Space Ŝ, we also have: 

ẼŜ [(Ẽ[D|X=x]- Fav(x))2]  = BiasŜ2(F(x))+ VarianceŜ (F(x)) 

        (A.15) 

BiasŜ2(Fav (x)) = ([(Ẽ[D|X=x]- Fav (x))2    (A.16) 

VarianceŜ (Fav (x)) = ẼŜ [ẼŜ [(Fav (x)] - F(x))2]  (A.17) 

From (A.7), we can find that: 

ẼŜ [(Fav (x)] = ẼŽ [F(x)]     (A.18) 

So, (A.16) can be re-written as: 

BiasŜ2(F(x)) = (ẼŜ [(Ẽ[D|X=x]- Fav (x))2  

         = (ẼŽ [Ẽ[D|X=x]- F(x)])2  

         = BiasŽ
2(F(x))          (A.19) 

As the variant of the Fav (x) is equal to the Mean Square Error minus the Bias 

Square. Based on (A.18) and (A.17), we have:  

VarianceŜ (Fav (x)) = ẼŜ [(Fav (x) 2] – (ẼŜ [(Fav (x)]) 2 

                   = ẼŜ [(Fav (x) 2] - (ẼŽ [(F(x)]) 2 (A.20) 

Similarly, based on (A.11) and (A.17), we have: 

VarianceŽ (F(x)) = ẼŽ [(F(x) 2] - (ẼŽ [(F(x)]) 2         (A.21) 

It is obvious that the mean square error of the F(x) over entire space Ž is equal 

to or greater than that of the Fav over the input space Ŝ, which means: 

ẼŽ [(F(x) 2] ≥ ẼŜ [(Fav (x) 2]       (A.22) 

Combining (A.6), (A.19), (A.20), (A.21), and (A.22), we have 

            Mean Square Error of Fav (x) on Ŝ ≤ Mean Square Error of F(x) on Ž

          (A.23) 
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For a simple ensemble machine with averaging combination, we conclude that 

the ensemble can help to reduce the overall error rate. In the S-AdaBoost machine, the 

classifiers are extended to different types and the combination method is expanded to 

be non-linear, which can further regulate the bias/variant trade-off and error rate.  

 

124 



 

References 

1. Ali, K. M., and Pazzani, M. J. (1996). Error reduction through learning 

multiple descriptions. Machine Learning, 24 (3), 173-202. 

2. Allwein E.L., Schapire R.E., and Singer Y. (2000). Reducing multiclass to 

binary: A unifying approach for margin classifiers. Journal of Machine 

Learning Research, 1:113-141. 

3. Anthony M., and Biggs N. (1992) Computational Learning Theory. Cambridge: 

Cambridge University Press. 

4. Atick J., Griffin P. and Redlich N. (1996). Statistical Approach to shape from 

shading: Reconstruction of three-dimensional face surfaces from single two-

dimensional images. Neural Computation. Vol. 8, pp. 1321-1340. 

5. Belhumeur P.N and Kriegman D.J. (1997). What is the Set of Images of an 

Object Under All Possible Lighting Conditions? Proceeding of the Conference 

on Computer Vision and Pattern Recognition, San Juan, PR, pp.52-58. 

6. Belhumeur P.N. Hespanha J.P and Kriegman D. J (1997) Eigenfaces vs. 

Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE 

Transaction on PAMI vol. 19, No. 7, pp. 711-720.  

7. Bellman R. E. (1961). Adaptive Control Processes: A Guided tour, Princeton: 

Princeton University Press. 

8. Biederman I. and Kalacsai P. (1998) Neural and Psychophysical Analysis of 

Object and Face Recognition. Face recognition, from Theory to Applications. 

Berlin: Springer Verlag, pp. 3-25. 

9. Bishop C. M. Neural Networks for Pattern Recognition. Oxford University 

Press, 1995. 

125 



 

10. Blumer, A, Ehrenfeucht A., Haussler D. and Warmuth M.K. (1989) 

Learnability and the Vapnik-Chervonenkis Dimension. Journal of the 

Association for Computing Machinery, vol. 36, pp. 929-965. 

11. Breiman L. (1997) Prediction games and arcing algorithms, technical Report 

504, Statistics Department, University of California, Berkeley.  

12. Breiman L. (1999). Prediction games and arcing algorithms. Neural 

Computation, 11(7):1493-1518. 

13. Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140. 

14. Breman L., Friedman J., Olshen J., and Stone C. (1984) Classification and 

Regression Trees. Wadsworth. 

15. Bridle J.S. (1990) Probabilistic interpretation of feedforward classification 

network outputs, with relationships to statistical pattern recognition, Neuro-

computing: Algorithms, Architectures and Applications, F. Fougelman-Soulie 

and J. Herault, eds. New York: Springer-Verlag. 

16. Bruce V., Hancock P.J.B. and Burton A.M. (1998) Human Face Perception and 

Identification. Face recognition, from Theory to Applications. Berlin: Springer 

Verlag, pp. 51-72. 

17. Carlos Domingo and Osamu Watanabe (2000). MAdaBoost: A Modification of 

AdaBoost, Proceedings of 13th Annual Conference on Computing Learning 

Theory, Morgan Kaufmann, San Francisco, pp 180-189. 

18. Chakrabarti Soumen, Shourya Roy and Mahesh Soundalgekar (2002). Fast and 

accurate text classification via multiple linear discriminant projections. VLDB, 

Hong Kong, August 2002. 

126 



 

19. Chapelle O., Vapnik V., and Weston J. (2000). Transductive inference for 

estimating values of functions. Advances in Neural Information Processing 

Systems, volume 12, pages 421-428. MIT press. 

20. Chen, H., and Liu R.W. (1992). Adaptive distributed orthogonalization 

processing for principal components analysis, International Conference on 

Acoustics, Speech, and Signal Processing, vol.2,, pp. 293-296, San Francisco.   

21. Cortex, C., and V. Vapnik (1995) Support Vector Network. Machine Learning, 

Vol. 20, pp.273-297. 

22. Craw I., Tock D. and Bennett. (1992) A. Finding Face Features. Proceedings of 

the Second European Conference on Computer Vision, pp. 92-96. 

23. DELVE: Data for Evaluating Learning in Valid Experiments 

http://www.cs.toronto.edu/~delve/ 

24. Dietterich, T. G. (2002). Ensemble Learning. The Handbook of Brain Theory 

and Neural Networks, Second edition, (M.A. Arbib, Ed.), Cambridge, MA: The 

MIT Press. 

25. Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via 

error-correcting output codes. Journal of ArtificialIntelligence Research, 2, 

263-286. 

26. Dietterich, T. G., (1997). Machine Learning Research: Four Current Directions 

AI Magazine. 18 (4), 97-136. 

27. Domingo C. and Watanabe O. (2000). MadaBoost: A Modification of 

AdaBoost, Proceedings of 13th Annual Conference on Computing Learning 

Theory, Morgan Kaufmann, San Francisco, pp 180-189. 

127 



 

28. Drucker H., Schapire, R., & Simard, P. (1993). Boosting performance in neural 

networks. International Journal of Pattern Recognition and Artificial 

Intelligence, 7, 704-719. 

29. Druker H., Cortes C., Jackel L.D., LeCun Y. (1994) Boosting and other 

ensemble methods Neural Computation, Vol. 6, pp. 1289-1301. 

30. Duffy N. and Helmbold D.P. (2000) Leveraging for regression. In Proc. COLT, 

pages 208-219, San Francisco. Morgan Kaufmann 

31. Freund Y. & Schapire R. E. (1999). A short introduction to boosting. Journal 

of the Japanese Society for Artificial Intelligence, 14, 771-780. 

32.  Freund Y. (1995) Boosting a weak learning algorithm by majority, Information 

Computation, Vol. 121, pp. 256-285. 

33. Freund, Y, & Schapire, R. E. (1996a). Experiments with a new boosting 

algorithm. Proceedings of the Thirteenth International Conference on Machine 

Learning (pp. 148-156). 

34. Freund, Y, & Schapire, R. E. (1996b). Game Theory, on-line prediction and 

boosting. Proceedings of the 9th Annual Conference on Computing Learning 

Theory, pp. 325-332. ACM Press, New York, NJ. 

35. Freund, Y, & Schapire, R. E. (1997). A decision-theoretic generalization of on-

line learning and an application to boosting, Journal of Computer and System 

Sciences, vol. 55, pp.119-139. 

36. Freund, Y. (1999) An Adaptive Version of the Boost by Majority Algorithm. 

Proceedings of the Twelfth Annual Conference on Computational Learning 

Theory 

128 



 

37. Friedman J. (1995). An overview of prediction learning and function 

approximation. From statistics to neural networks: theory and pattern 

recognition applications, New York: Springer-Verlag. 

38. Friedman J. (1999). Greedy function approximation. Technical report, 

Department of Statistics, Stanford University, February. 

39. Friedman J., Hastie T., and Tibshirani R.J. (2000). Additive logistic regression: 

a statistical view of boosting. Annals of Statistics, 2:337-374. 

40. Geman, S., Bienenstock, E. and Doursat R. (1992) Neural Network and the 

Bias/Variance dilemma, Neural Computation Vol. 4, pp. 1-58. 

41. Giroshi F., Jones, M., Poggio T. (1995). Regularization theory and neural 

networks architecture, Neural Computing, 7, 219-269. 

42. GMD: Gunnar Rätsch.   http://ida.first.gmd.de/~raetsch/data/benchmarks.htm 

43. Govindaraju V., Srihari S.N. and Sher D.B. (1990) A Computational Model for 

Face Location. Proceedings of the Third International Conference on Computer 

Vision, pp. 718-721. 

44. Grove A. J.  and Schuurmans D. (1998). Boosting in the limit: maximizing the 

margin of learned ensembles. 15th National Conference on Artificial 

Intelligence 

45. Hansen, L., & Salamon, P. (1990). Neural network ensembles. IEEE Trans. 

Pattern Analysis and Machine Intell., 12, 993-1001. 

46. Hashem S. (1997) Optimal linear combinations of neural networks, Neural 

Networks, Vol. 10, pp. 599-614. 

47. Hastie T., Tibshirani R., and Friedma J. (2001). The Elements of Statistical 

Learning: data mining, inference and prediction. Springer series in statistics. 

Springer, New York, N.Y. 

129 



 

48. Haykin S. Neural Networks: A Comprehensive Foundation. Prentice-Hall, 

second edition, 1998. 

49. He. X, Yan S., Hu and Zhang H.J (2003). Learning a locality preserving 

subspace for visual recognition. International Conference on Computer Vision 

(ICCV). 

50. Herbrich R. and Weston J. (1999) Adaptive margin support vector machines for 

classification. Proceedings of the Ninth International Conference on Artificial 

Neural Networks, pages 880-885. 

51. Ho T. K., Hull J. J., and Srihari S.N. Decision Combination in Multi Classifier 

Systems. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 16, no. 

1, pp. 66-75, 1994. 

52. Jacobs D.W., Belhumeur P.N. and Basri R. (1998) Comparing Images under 

Variable Illumination. Proceeding of the Conference on Computer Vision and 

Pattern Recognition, pp. 610-617. 

53. Jacobs M.A., Jordan M. I., Nowlan S. J. and Hinton G.E.(1991) Adaptive 

Mixture of Local Experts. Neural Computation, vol 3, pp. 79-87. 

54. Jacobs R. A. (1995). Methods for combining experts' probability assessments. 

Neural Computation, 7, 867-888. 

55.  Jerome Friedman, Trevor Hastie, and Robert Tibshirani (1998). Additive 

logistic regression: a statistical view of boosting. Stanford University Technical 

Report. 

56. Jiang W. (2001) Some theoretical aspects of boosting in the presence of noisy 

data. Proceedings of the Eighteenth International Conference on Machine 

Learning. 

130 



 

57. Jordan M. I., and Jacobs R. A. (1994). Hierarchical mixtures of experts and the 

EM algorithm. Neural Computation, 6, 181-214. 

58. Kanade T. (1973). Picture Processing by Computer Complex and Recognition 

of Human Faces. Ph.D thesis, Kyoto University. 

59. Kearns M. and Valiant L.G.(1994) Cryptographic limitations on learning 

Boolean formulae and finite automata. Journal of the ACM, 41(1):67-95, 

January. 

60. Kivinen J. and Warmuth M.K.(1999) Boosting as entropy projection. 

Proceedings of the 12th Annual Conference on Computational Learning Theory. 

Pp 134-144. 

61. Kjeldsen R. and Kender J. (1996) Finding Skin in Color Images. Proceedings 

of the Second International Conference on Automatic Face and Gesture 

Recognition, pp. 312-317. 

62. Kolen, J. F., & Pollack, J. B. (1991). Back propagation is sensitive to initial 

conditions. In Advances in Neural Information Processing Systems, Vol. 3, pp. 

860-867 San Francisco, CA. Morgan Kaufmann. 

63. Kotropoulos C. and Pitas I.(1997) Rule-Based Face Detection in Frontal Views. 

Proceedings of International Conference on Acoustics, Speech and Signal 

Processing. Vol. 4, pp. 2537-2540. 

64. Kwok, S. W., & Carter, C. (1990). Multiple decision trees. In Schachter, R. D., 

Levitt, T. S., Kannal, L. N., & Lemmer, J. F. (Eds.), Uncertainty in Artificial 

Intelligence 4, pp. 327-335. Elsevier Science, Amsterdam. 

65. Lanitis A., Taylor C.J. and Cootes T.F. (1995) An Automatic Face 

Identification System Using Flexible Appearance Models. Image and Vision 

Computing, vol. 13, no.5, pp. 393-401. 

131 



 

66. LeCun, Y., Boser B., Denker J.S., Henderson D., Howard R.E., Hubbard W., 

Jackel L.D. (1990) Handwritten digit recognition with a back-propagation 

network. Advances in Neural Information Processing, Vol. 2, pp. 396-404, San 

Mateo, CA: Morgan Kaufmann.  

67. Lee, D., & Srihari, S. N. (1995). A theory of classifier combination: The neural 

network approach. Proceedings of the Third International Conference on 

Document Analysis and Recognition (pp. 42-45). 

68. Leung T. K., Burl M.C. and Perona P. (1995) Finding Faces in Cluttered 

Scenes Using Random Labeled Graph Matching. Proceedings of the Fifth IEEE 

International Conference on Computer Vision. Pp. 637-644.  

69. Lew M. S. (1996) Information Theoretic View-Based and Modular Face 

Detection. Proceeding of the Second International Conference on Automatic 

Face and Gesture Recognition, pp. 198-203. 

70. Li S.Z., Zhu L., Zhang Z.Q., Blake A., Zhang H.J. and Shum H. (2002) 

Statistical Learning of Multi-View Face Detection. Proceedings of the 7th 

European Conference on Computer Vision. Copenhagen, Denmark. May. 

71. Liu J. and Loe K.F. (2003a) S-AdaBoost and face detection in complex 

environment, Proceedings of Computer Vision and Pattern Recognition 2003, 

pp. 413-418. 

72. Liu J. and Loe K.F. (2003b) Boosting Face Identification in Airports, 

Proceedings of the Eighteenth International Joint Conference on Artificial 

Intelligence 2003.   

73. Liu J., Loe K.F. and Zhang H.J. (2003c) Robust Face Detection in Airports. 

The special issue for Biometric Signal Processing, EURASIP Journal on 

Applied Signal Processing. 

132 



 

74. Maclin R. and Opitz D. (1997). An empirical evaluation of bagging and 

boosting. In Proceedings of the Fourteenth National Conference on AI, pages 

546-551. 

75. Madhvanath, S., & Govindaraju, V. (1995). Serial classifier combination for 

handwritten word recognition. Proceedings of the Third International 

Conference on Document Analysis and Recognition (pp. 911-914). 

76. Mason L. (1999). Margins and Combined Classifiers. PhD thesis, Australian 

National University, September. 

77. Mason L., Bartlett P.L. and Baxter J. (1998). Improved generalization through 

explicit optimization of margins. Technical report, Department of Systems 

Engineering, Australian National University. 

78. Mason L., Baxter J., Bartlett P.L. and Frean M. (2000). Functional gradient 

techniques for combining hypotheses. In A.J. Smola, P.L. Bartlett, B. 

Scholkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, 

pages 221-247. MIT Press, Cambridge, MA. 

79. McKenna S., Gong S. and Raja Y. (1998) Modeling Facial Color and Identity 

with Gaussian Mixtures. Pattern Recognition. Vol. 31, no. 12, pp.1883-1892. 

80. Moghaddam B. (2002) Principal Manifolds and Probabilistic Subspaces for 

Visual Recognition. IEEE Trans. On Pattern Analysis and Machine Intelligence, 

Vol 24, No. 6, June. 

81. Naftaly U. N. Intrator and D. Horn (1997) Optimal ensemble averaging of 

neural networks, Network, Vol. 8, pp. 283-296 

82. Neal, R. (1993). Probabilistic inference using Markov chain Monte Carlo meth-

ods. Tech. rep. CRG-TR-93-1, Department of Computer Science, University of 

Toronto, Toronto, CA. 

133 



 

83. Nilsson N. J. (1965). Learning Machines: Foundations of Trainable Pattern 

Classifying Systems, New York, Macgraw-Hill. 

84. NIST (2001) FERET Database. http://www.itl.nist.gov/iad/humanid/feret/, 

NIST 42(3):287-320, March. Kluwer Academic Publishers 

85. Osuna E., Freund R. and Girosi F. (1997) Training Support Vector Machines: 

An Application to Face Detection. Proceeding of IEEE Conference on 

Computer Vision and Pattern Recognition, pp. 130-136 

86. P´erez-Cruz F., Alarc´on-Diana P.L.,A.Navia-V´azquez,and A.Art´es-

Rodr´iguez. (2001) Fast training of support vector classifiers. Advances in 

Neural Inf. Proc. Systems, volume 13, pages 734-740. MIT Press. 

87. Parmanto, B., Munro, P. W., & Doyle, H. R. (1996). Improving committee 

diagnosis with resampling techniques. In Touretzky, D. S., Mozer, M. C., & 

Hesselmo, M. E. (Eds.), Advances in Neural Information Processing Systems, 

Vol. 8, pp. 882-888 Cambridge, MA. MIT Press. 

88. Pentland A. (2000a). Looking at People, IEEE Transaction on Pattern Analysis 

and Machine Intelligence, vol.22, no.1, pp. 107-119, Jan. 

89. Pentland A. (2000b). Perceptual Intelligence, Communication ACM, vol. 43, 

no. 3, pp. 35-44. 

90. Pentland A. and Choudhury T. (2000). Face Recognition for Smart 

Environments. IEEE Computer, pp. 50-55.  

91. Perrone M.P. (1993). Improving regression estimation: Averaging methods for 

variance reduction with extensions, to general convex measure optimization, 

Ph.D thesis, Brown University, Rhode Island.  

134 



 

92. Pigeon S. and Vandendrope L. (1997) The M2VTS Multimodal Face Database. 

Proceedings of the First International Conference on Audio and Video-based 

Biometric Person Authentication.  

93. Quinlan J. R. (1992) C4.5: Programs for Machine Learning. Morgan 

Kaufmann. 

94.  Quinlan J. R. (1996) Bagging, boosting, and C4.5. Proceedings of the 

Thirteenth National Conference on Artificial Intelligence, pp. 725-730.  

95. Rajagopalan A. Kumar K., Karlekar J., Manivasakan R., Patil M., Desai U., 

Poonacha P. and Chaudhuri S. (1998) Finding Faces in Photographs. 

Proceeding of the Sixth IEEE International Conference on Computer Vision, pp. 

640-645. 

96. Rätsch G. (1998).  Thesis   http://www.first.gmd.de/~raetsch/diploma.ps.gz 

97. Ratsch G., Demiriz A., and Bennett K.( 2002). Sparse regression ensembles in 

infinite and finite hypothesis spaces. Machine Learning, 48(1-3):193-221. 

Special Issue on New Methods for Model Selection and Model Combination. 

Also NeuroCOLT2 Technical Report NC-TR-2000-085. 

98. Rätsch G., Onoda T., and Müller K.-R. (2001). Soft margins for AdaBoost.  

Machine Learning Journal, 42(3): 287-320, March. Kluwer Academic 

Publishers 

99. Ratsch G., Smola A.J., and Mika S. (2003). Adapting codes and embeddings 

for polychotomies. In NIPS, volume 15. MIT Press. 

100. Rowley H., Baluja S. and Kanade T. (1998) Neural Network-based Face 

Detection. IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 

20, no. 1, pp. 23-38, Jan. 

135 



 

101. Schapire R. E., and Singer Y. (1998) Improved boosting algorithms using 

confidence-rated predictions. Proceedings of the 11th Annual Conference on 

Computational Learning Theory. 

102. Schapire R. E., Freund Y., and Bartlett P. (1997). Boosting the margin: A new 

expanantion for the effectiveness of voting methods, Machine Learning: 

Proceedings of the 14th International Conference, Nashville, TN. 

103. Schapire R.E., Freund Y., Bartlett P., and Lee W. (1998) Boosting the margin: 

a new explanation for the effectiveness of voting methods. Annals of Statistics 

26(5), 1651-1686. 

104. Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5, 

197-227. 

105. Schapire, R. E. (1997). Using output codes to boost multi-class learning prob-

lems. In Proceedings of the Fourteenth International Conference on Machine 

Learning, pp. 313-321 San Francisco, CA. Morgan Kaufmann. 

106. Schapire, R.E. (1992) The Design and Analysis of Efficient Learning 

Algorithms.PhD thesis, MIT Press. 

107. Schneiderman H. and Kanade T. (1998) Probabilistic Modeling of Local 

Appearance and Spatial Relationships for Object Recognition. Proceeding of 

IEEE Conference on Computer Vision and Pattern Recognition, pp. 45-51. 

108. Schwenk H. and Bengio Y. (1997). AdaBoosting neural networks Proc. of the 

International Conference on Artificial Neural Networks, pages 967-972, Berlin, 

Springer. 

109. Schwenk H. and Bengio Y. (2000). Boosting neural networks. Neural 

Computation, 12(8): 1869-1887. 

136 



 

110. Sebastian H. Seung and Lee D. Daniel (2000) The manifold ways of Perception. 

2268-2269, SCIENCE, December 2000. 

111. Sergent J. (1986). Microgenesis of Face Perception. Aspects of Face Processing. 

Dordrecht: Nijhoff. 

112. Servedio R.A.(2001). Smooth boosting and learning with malicious noise. In 

Proceedings of the Fourteenth Annual Conference on Computational Learning 

Theory, pages 473-489. 

113. Sim T., Baker S., and Bsat M. (2003). The CMU Pose, Illumination, and 

Expression Database, IEEE Transactions on Pattern Analysis and Machine 

Intelligence. 

114. Sinha P. (1995) Processing and Recognizing 3D Forms. Ph.D thesis, MIT. 

115. STATLOG: The StatLog Repository. 

http://borba.ncc.up.pt/niaad/statlog/datasets.html 

116. Sung K. K. and Poggio (1998) Example-Based Learning for View-Based 

Human Face Detection. IEEE Transaction on Pattern Analysis and Machine 

Intelligence. Vol. 20, no. 1, pp39-51, Jan. 

117. Tax, D. M. J., Duin, R. P. W., & van Breukelen, M. (1997). Comparison 

between product and mean classifier combination rules. Proceedings of the 

Workshop on Statistical Pattern Recognition. 

118. Turk M. and Pentland A.(1991)  Eigenface for Recognition. Journal of 

Cognitive neuroscience, vol 3, no. 1, pp71-86. 

119. Turner, K., & Ghosh, J. (1996). Error correlation and error reduction in 

ensemble classifiers. Connection Science, 8,385-404. 

120. UCI: UCI Machine Learning Repository http: 

//www1.ics.uci.edu/~mlearn/MLRepository.html 

137 



 

121. Valiant L. G. (1984). A theory of the learnable. Communications of the ACM, 

27(11): 1134-1142, November. 

122. Vapnik, V.N. (1995). The Nature of Statistical Learning Theory, New York: 

Springer-Verlag. 

123.  Venkatraman M. and Govindaraju V. (1995) Zero Crossings of a Non-

Orthogonal Wavelet Transform for Object Location. Proceedings of IEEE 

International Conference on Image Processing. Vol. 3, pp.57-60. 

124. Vidyasagar M. (1997) A Theory of Learning and Generalization, London: 

Spronger-Berlag. 

125. Viola P., Jones M. (2001). Fast and Robust Classification using Asymmetric 

AdaBoost and a Detector Cascade. Neural Information Processing Systems. 

126. Weston. J. (1999) LOO-Support Vector Machines. Proceedings of the Ninth 

International Conference on Artificial Neural Networks, pages 727-733. 

127. Wiskott L., Fellous J.M., and Malsburg C. van der. (1997) Face Recognition by 

Elastic Bunch Graph Matching. IEEE Trans. on Pattern Analysis and Machine 

Intelligence, Vol. 19, pp. 775-779. 

128. Wolpert D. H. (1992). Stacked generalization, Neural Networks, Vol. 5, pp. 

241-259. 

129. Wyner A., Kriege A. and Long C. (2001) Boosting Noisy Data. Proceeding of 

8th ICML.   

130. Yang G. and Huang T. S. (1994) Human Face Detection in Complex 

Background. Pattern Recognition vol. 27, no. 1, pp.53-63.   

131. Yang J. and Waibel A. (1996) A Real-Time Face Tracker. Proceedings of the 

third workshop on Computer Vision. Pp. 142-147. 

138 



 

132. Yang Ming-Hsuan, Kriegman David, and Ahuja Narendra. (2002). Detecting 

Faces in Images: A Survey, IEEE Transactions on Pattern Analysis and 

Machine Intelligence (PAMI), vol. 24, no. 1, pp. 34-58. 

133. Yow K.C. and Cipolla R. (1997) Feature-based Human Face Detection. Image 

and Vision Computing. Vol. 15, no. 9, pp. 713-735.  

134. Zhao W. (1999) Improving the robustness of face recognition. Proceeding of 

International Conference on Audio and Video-based Person Authentication, pp. 

78-83. 

135. Zhao W., Chellappa R, and A. Krishnaswamy (2000b). Discriminant 

Component Analysis for Face Recognition. Proceedings of International 

Conference on Pattern Recognition 

136. Zhao W., Chellappa R, and Krishnaswamy A. (2000) Discriminant Component 

Analysis for Face Recognition. Proceedings of International Conference on 

Pattern Recognition. 

137. Zhao W., Chellappa R, Rosenfeld A, Phillips P J. (2000) Face Recognition: a 

literature survey. http://citeseer.nj.nec.com/374297.html.  

138. Zhao W., Chellappa R, Rosenfeld A, Phillips P J. (2000a) Face Recognition: a 

literature survey. http://citeseer.nj.nec.com/3 74297.html. 

139 


	Chapter One
	Motivation
	Contribution
	The Structure of the Thesis

	Chapter Two
	Ensemble Learning Classification
	Face Detection and Face Identification in a Complex Environm

	Chapter Three
	Ensemble Boosting
	AdaBoost (Adaptive Boosting)
	Outliers and Boosting

	Chapter Four
	Introduction
	Pattern Spaces in the S-AdaBoost Algorithm
	The S-AdaBoost Machine
	The Divider of the S-AdaBoost Machine
	The Classifiers in the S-AdaBoost Machine
	The Combiner and the complexity of the S-AdaBoost Machine
	Statistical analysis of the S-AdaBoost learning
	Choosing the Threshold Value ŧ in the S-AdaBoost Machine
	Experimental Results on the Benchmark Databases

	Chapter Five
	Introduction
	The FDAO System
	Training and pre-processing of the FDAO System
	Face Detection Experimental Results
	The Test Results from the FDAO System
	Testing Results of the Other Leading Face Detection Algorith
	Comparison of the Leading Face Detection Approaches on the S
	Comparison with the CMU on-line Face Detection Program
	Face Identification using the S-AdaBoost Algorithm
	Face Identification and the FISA System
	The Experimental Results of the FISA System


	Chapter Six
	6.1 Concluding Remarks
	6.2 Future Research

	Appendix A

