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SUMMARY 

 

The Shewhart type control charts such as the p chart or the c chart have proven their 

usefulness over time but are ineffective when the fraction nonconforming level reaches a 

low value. This dissertation is an attempt to look at the alternatives that can replace the 

Shewhart charts and to improve them to make them more efficient in today’s ever 

changing environment. This dissertation also focuses on some new control charts that are 

not frequently used and tries to find out some instances where such control charts can be 

suitably applied. One such instance is to monitor the reliability of a component or a 

system. This is a comparatively new concept and desires attention. 

 

Chapter 2 reviews some of the recent work in control charting techniques that are suitable 

or can be suitably applied for high quality processes. Apart from the other monitoring 

techniques, the cumulative count of conforming control (CCC) charting and cumulative 

quantity control (CQC) charting are explained in detail. 

 

Chapter 3 extends the recent control scheme based on monitoring the cumulative quantity 

between observations of defects to monitor the quantity required to observe a fixed 

number of defects and is given the name CQCr. The advantages of this scheme include 

the fact that the scheme does not require any subjective sample size, it can be used for 

both high and low quality items,  it can detect process improvement even in a high-

quality environment and that the decision regarding the statistical control of the process is 

not based on a single observation. An investigation of its use for reliability monitoring is 
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presented in this chapter and the scheme can be easily extended to monitor inter-failure 

times that follow other distributions such as the Weibull distribution. 

 

The time between events control charts as an alternative to the traditional Shewhart charts 

for monitoring attribute type of quality characteristics have attracted increasing interest 

recently. In Chapter 4 the performance of three such charts, the CUSUM chart, the 

Cumulative Quantity Control (CQC) chart and the CQCr chart, is compared. The 

performance is compared based on their average run length and average time to signal 

behavior. Two cases are concerned when the underlying distribution is exponential and 

when the underlying distribution changes to Weibull. The properties of the CQCr chart 

are also studied when the underlying distribution changes to lognormal. The information 

acquired in this study can be used to select the proper charting procedure in 

manufacturing applications, and can as well be applied to study the time between 

accidents and in reliability studies. 

 

In Chapter 5 the Average run length behavior of the run-length control charts, based on 

skewed distributions like erlang and negative binomial, is studied. Ideally, we would like 

the ARL to be large when the process is at the in-control state, and decrease when the 

process is changed. However, it is observed that the average time to alarm may increase 

at the beginning when the process deteriorates. Some researchers have suggested 

multiplying the control limits with an adjustment factor so that the average run length is 

maximized when the process is at the normal level. However their findings are limited for 

the case of exponential and geometric distribution, that are special cases of erlang and 
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negative binomial distribution respectively. This chapter presents a general solution for 

the problem and also highlights that other than adjusting the limit it is also essential to 

specify an appropriate false alarm probability in order to get the desired in-control run 

length and thus increase the chart’s sensitivity to small process improvements. As an 

application example, the maximizing procedure is applied to the CCC chart in presence 

of inspection errors. 

 

Chapter 6 studies the effect of incorrect estimation of the control limits and their effect on 

the chart properties. Like any other control chart the performance of the CQC chart 

depends upon the control limits, which are generally estimated. An accurate estimate of 

the control limits requires an accurate estimation of the parameter involved. Most of the 

studies on control charts assume that the process average is either known or an accurate 

estimate is available. In cases where the process parameter is unknown, a preliminary 

sample is usually taken and the process parameter is estimated. The question is how large 

the sample size should be, as a poor estimation can lead to false interpretations. Even 

when the parameters are accurately estimated, as pointed out before, the CQC chart has 

an undesirable property that the chance for alarm first decreases and then increases as the 

process deteriorates. So apart from highlighting the importance of accurate estimation of 

control limits, this chapter also suggests how to obtain an optimal performance out of 

those control limits, based on the findings in Chapter 5. 

 

Chapter 7 proposes the control chart based on Weibull distribution to monitor quality 

characteristics following Weibull distribution. The CQC charts are no doubt a good 
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alternative to Shewhart charts for monitoring time or quantity between events. However, 

they are mostly based on the assumption of exponential distribution of time between 

events. A flexible alternative is to use Weibull distribution and it is especially useful for 

processes related to or affected by equipment failures. This chapter investigates time-

between-events chart based on Weibull distribution, their application and chart 

performance. We study the cases when the Weibull scale parameter, shape parameter or 

both change. It is noted that the in-control average run length with probability limits is 

not optimized at the in-control parameter value and adjustment is proposed. The 

problems of estimation error and biasness of the likelihood estimators are discussed. 

 

Chapter 8 proposes a combined decision scheme for the CQC charts to improve their 

sensitivity. No doubt CQCr chart has many advantages compared to the CQC chart and 

the traditional Shewhart charts, like the c or the u charts. However, even this approach 

suffers form a major drawback; that the average time to plot a point increases with r. On 

the other hand in the case of CQC chart, the decision regarding the statistical control of 

the process is based on a single observation. A combined decision based on the 

advantages of the two schemes would be an ideal choice. The properties of the combined 

procedure is studied and compared with the current design of the CQC and CQCr charts. 
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Quality and control charts 

The meaning of the word quality as given in dictionaries is: 

• Peculiar and essential character  

• An inherent feature  

• Degree of excellence 

• Superiority in kind 

• A distinguishing and intelligible feature by which a thing may be identified 

• A general term applicable to any trait or characteristic whether individual or 

generic 

• The totality of features & characteristics of a product or service that bear on its 

ability to satisfy stated or implied needs. Not to be mistaken for “degree of 

excellence” or “fitness for use” which meet only part of the definition. 

 

The traditional definition of quality from a customer’s point of view is given as “quality 

means fitness for use”. With time this definition has found itself associated with the tag 

of conformance to specifications and has led to the widely held belief that the quality 

problems can be dealt with only in manufacturing. Another famous definition of Quality 

defines it as an ongoing process of building & sustaining relationship by assessing & 

anticipating & fulfilling stated & implied needs. The modern definition of quality defines 

it as “Quality is inversely proportional to variability” and so quality improvement, the 

root cause behind this dissertation, is defined as “the reduction of variability in processes 

and products”.  
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The first quarter of the twentieth century can be aptly referred to as an era of renaissance 

in quality engineering. It was during this period that R. A. Fischer came out with the 

concept of design of experiments. The second notable milestone was the introduction of 

control chart by W.A. Shewhart, Shewhart (1926, 1931).  

 

The huge impact of these two findings can be judged from the fact that even now, after 

three quarter of a century, they are still a topic of interest among the researchers. The 

methods may have been modified to suit the trends of changing times but the motivation 

remains same, Quality Improvement.  

 

The control chart is considered as the formal beginning of the statistical quality control. 

Control chart is one of the seven (often referred to as the magnificent seven) tools of 

Statistical Process Control (SPC). Statistical process control (SPC) can be defined as a 

collection of tools, which track the statistical behavior of production processes, in order 

to maintain and improve product quality. The ideology behind SPC is similar to that of 

other quality philosophies like Total Quality Management (TQM) and Six Sigma.  

Therefore, SPC is regarded as an important component of Total Quality Management 

(see Cheng and Dawson (1998)) and other quality philosophies. 

 

Of all the tools of Statistical Process Control, Control charts are, perhaps, most 

technically sophisticated. The basic idea behind any control chart is to monitor a process 

and to identify any unusual causes (also referred to as assignable causes) of variation 

from the chance causes of variation (inherent to the process). 
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This dissertation attempts to discuss the new concepts in control charting and to improve 

the performance of the existing methods. The motivation behind this study is the 

unsuitability of the Shewhart charts, especially for attributes, in today’s automated and 

high quality environment. The term high quality, which will be used again and again 

during this study, defines a situation where the defects or defectives are very low, 

generally to the order of parts per million (ppm). In such a case the problems associated 

with the Shewhart charts makes it important to look for other alternatives.  

 

1.1 Properties of a control chart 

Any process suffers from two kinds of variations, chance causes and assignable causes. 

Chance causes are the causes that are inherently present in the process and thus have to 

be accepted. On the other hand assignable causes, as the name suggests are induced by 

the system, i.e. man, machine, material etc.  The main objective of the control chart is to 

detect the presence of assignable causes and to inform the user by raising an alarm.  

 

Usually the control chart has three lines, which are known as the upper control limit, the 

lower control limit, and the center line. The chart plots the sample statistic of some 

quality characteristic, which is to be monitored. The presence of an unusual source of 

variation results in a point plotting outside the control limits and warrants investigation 

and removal of such sources to bring the process back to its original state or if possible to 

improve it. A general formula to calculate the control limits is: 
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where x is the plotted sample statistic that measures the quality characteristic and µx and 

σx are the mean and the standard deviation. k is the “distance” of the upper and lower 

control limits from the center line in terms of the standard deviation. k is often taken as 3, 

which means that the 99.73 % of all the observations will fall within the control limits 

under the normality assumption.  

 

1.2 The Shewhart charts for attributes 

Of the two types of Shewhart charts, variable charts are perhaps more widely used than 

attribute charts. Shewhart charts for variable data, e.g. X  and R charts and individual 

charts are powerful tools for monitoring a process but their use is limited to only a few 

quality characteristics. One of their major limitations is that they can be used to monitor 

only those quality characteristics that can be measured and expressed in numbers, i.e. 

variable data. However, some quality characteristics can be observed only as attributes, 

i.e., either the items confirm to the requirements or they do not confirm. Generally it is 

quite difficult to represent such quality characteristics in terms of measurements on a 

continuous scale. 

 

 An item is said to be defective (nonconforming) if it fails to confirm to the specifications 

in any characteristics. Each characteristic that does not meet the specifications is a defect 
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(nonconformity). An item is considered defective if it contains at least one defect. 

Sometimes it is possible that a product or an item is passed as conforming but still has 

some flaws, which do not affect its functioning but may affect the price of the product. 

e.g. the broken case of a calculator does not affect the functioning of a calculator but can 

affect its price. So we can say that in this case the calculator is conforming but it has one 

nonconformity. In such cases, sometimes it becomes important to monitor the 

nonconformities or defects in a process. The Shewhart charts for attribute monitor 

discrete measurements that can be generally modeled by the binomial or the Poisson 

distribution. The four attribute charts commonly used for this purpose are: 

 

• p chart: Used for monitoring the fraction nonconforming in a sample 

• np chart: Used for monitoring number of nonconforming items per sample, where 

the sample is generally constant 

• u chart: Used for monitoring number of defects per unit 

• c chart: Used for monitoring number of defects per inspection unit. 

 

The p and the np chart are based on the binomial distribution, with probability density 

function (p.d.f.), mean and variance given as: 

 

)1(,,)1()( 2 pnpnppp
x

n
xf xnx −==−��

�

�
��
�

�
= − σµ    (1.2) 
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While, the c and the u chart are based on the Poisson distribution, with p.d.f., mean and 

variance given as: 

 

λσλµλλ

===
−

!
)(

x
e

xf
x

   (1.3) 

 

The control limits of the attribute charts are calculated under the assumption of normality 

approximation. However the approximation is not free of constraints. For example, in the 

case of binomial distribution and Poisson distribution, the approximation holds true only 

when the value of pn  and λ is reasonably large. 

 

1.3. The Statistical property of the Shewhart charts for attributes 

Two important statistical properties of the control chart are the Type I and the Type II 

errors defined as: 

 

Type I error (also referred to as false alarm rate): The probability that a plotted point 

falls outside the control limit when the process is in control 

 

Type II error: The probability that a plotted point falls within the control limits when the 

process has actually shifted 

 

Under ideal conditions we would want the control chart to raise less false alarms (to 

avoid unnecessarily interrupting the process) which in other words means a small Type I 
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error. While at the same time we would like it to detect the process shift as soon as 

possible, which means that the control chart should also have a small Type II error. If the 

control limits are widened, the Type I error decreases but the Type II error increases. 

Similarly, when the control limits are tightened, the opposite happens, i.e. the Type I 

error increases while Type II error decreases. Thus it is a question of compromise or trade 

off, and so 3 sigma limits were found out to be acceptable because they have a small 

Type I error when the process is in control and also have a small Type II error when the 

process is out of control.  

 

The average run length (ARL) is a commonly used measure of chart performance; see 

Grant and Leavenworth (1988), Ryan (1989), Quesenberry (1997), and Montgomery 

(2001). It is defined as the average number of points that must be plotted on the control 

chart before a point fall outside the control limits. A good control chart should have a 

large average run length when the process is in control and small average run length 

when the process shifts away from the target. The general way to represent the ARL of a 

control chart is 

 

errorIIType
ARL

−
=

1
1

    (1.4) 

 

1.4. CUSUM and EWMA charts 

CUmulative SUM (CUSUM) control charts were first introduced by Page (1954). One of 

the limitations of the Shewhart charts is that. the decision whether the process is in 
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control is taken on the basis of last plotted point and it ignores the information contained 

in the previous points. Due to this reason the Shewhart charts are not able to detect small 

shifts, of the order of σ5.1  or less. The Cumulative Sum (CUSUM) charts and the 

Exponentially Weighted Moving Average Control (EWMA) charts are two such 

alternatives that are frequently used when the detection of small shifts is more important. 

 

The CUSUM charts have been studied in detail by many researchers, Page (1961), 

Johnson (1961), Ewan (1963), Lucas (1976, 1982, 1989), Moustakides (1986), Gan 

(1991, 1993), Hawkins (1981), and Woodall and Adams (1993, 1985), Reynolds and 

Stoumbos (1999), Bourke (2001a,b). The CUSUM chart, unlike the Shewhart charts, 

makes use of the information contained in the previous plotted points. It plots the 

cumulative sum of the deviation of the observations from a target value. The CUSUM 

works by accumulating deviations from 0µ  that are above target with one statistic +C  

and accumulating deviations from 0µ  that are below target with another statistic −C . The 

statistics +C  and −C  are called one-sided upper and lower CUSUMs, respectively. They 

are computed as follows: 
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where the starting values are 000 == −+ CC . 
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In the above equations, K is the reference value, and is often chosen about halfway 

between the target 0µ  and the out-of-control value of the mean, 1µ , which we are 

interested in detecting quickly, that is, 

 

σδµµ
22

01 =
−

=K      (1.6) 

 

The statistic +
iC  and −

iC  are plotted on the upper and lower CUSUM respectively. When 

either one of them becomes negative it is set to zero. There is another parameter of 

tabular CUSUM, H, which is called decision interval. That is to say, if either +
iC  or −

iC  

exceeds H, the process is considered to be out of control.  

 

The EWMA chart was introduced by Roberts (1959). The EWMA chart plots the 

exponentially weighted statistic 

 

1)1( −−+= iii zxz λλ      (1.7) 

 

where, 0 < λ � 1 is the smoothing constant. The process average, µ0, is usually taken as 

the starting value for the statistic, z0. In case the process average is unknown, then an 

estimate of the average can be treated as the starting value. 
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Since the EWMA chart is insensitive to the normality assumption, see Borror et al. 

(1999), so the chart can have (L) sigma limits. The steady-state (L) sigma limits of the 

EWMA chart are given by.  
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    (1.8) 

 

The selection of λ and L depends upon the desired shift that needs to be detected. The 

user can decide on an in-control ARL and then select the appropriate values 

corresponding to the in-control ARL. The choice of λ and L have been studied in detail 

and ARL tables and graphs have been generated for different combinations of  λ and L, 

Crowder (1987, 1989), Lucas and Saccucci (1990). 

 

1.5. Problem Statement 

Even though Shewhart charts for attributes are effective most of the time, they become 

inadequate when the nonconforming or nonconformity level becomes very small, i.e. in 

high yield processes. The Shewhart charts are based on the normal approximation theory 

and for this theory to hold true it is important that the value of np and c be reasonably 

large, where n is the sample size, p is the fraction nonconforming and c is the number of 

nonconformities per inspection unit. When this is not so the normal approximation is no 
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longer valid. Some of the concerns that must be addressed while applying Shewhart 

charts for attributes are listed below: 

 

• The control limits will not be symmetrical about the central line, which means 

statistical foundation of the control chart is no longer valid.  

• The lower control limit will be often set to zero. To obtain a positive lower 

control limit the sample size has to be quite large which is impractical. Such a 

control chart, with lower control limit set at zero will not be able to detect process 

improvement.  

• A large sample size, for the sake of better approximation, would result in 

excessive number of nonconforming items when there is sudden change in the 

process. 

• The rational sub grouping of items becomes difficult in an automated or 100% 

inspection environment. 

• If the approximation is not true, the traditional three sigma upper control limit can 

be less than 1. This means that the only way the process can be kept in control is 

by continuously generating zero-defect samples, which is impossible to achieve. 

This also means that the control chart will be thrown out of control even if a 

single nonconforming item appears.   

 

A good alternative, which is free from the above disadvantages, is to monitor the items or 

quantity between two successive defectives or defects. This approach is studied in detail 

by many researchers and is further discussed in Chapter 2. Another alternative is to 
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monitor the process with the aid of time between events charts. Some issues that need to 

be considered while using these charts are: 

 

Decision regarding the statistical control of the process is based on a single point: 

Monitoring the defect occurrence process using the time between events control chart is 

straightforward. However, since the decision is based on only one observation, it may 

cause many false alarms or maybe insensitive to process shift if the control limits are 

wide (with small value of false alarm probability). As a result the chart becomes less 

sensitive to small changes in the process average. 

 

Selecting the appropriate charting method for monitoring time between events: This 

is an important issue for the end user. The user needs to know and decide which control 

chart is best suited for his/her process requirements 

 

The effect of skewness on the sensitivity of the chart: Often when we monitor the 

process based on a skewed distribution, say geometric or exponential, it becomes 

essential to study the effect of the skewness of the distribution on the chart properties, 

and therefore, on its sensitivity. 

 

Control charting for Weibull distributed quality characteristics: Most of the studies 

assume that time-between event is exponentially distributed. An important assumption 

when exponential distribution is used is that the event occurrence rate is constant. This 

assumption is usually violated in reality. Due to wear and tear and other usage conditions, 
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items usually have an increasing defect rate. To be able to monitor processes for which 

the exponential assumption is violated, Weibull distribution is a good alternative and it is 

a simple generalization of the exponential distribution. Thus there is a need for a control 

chart which can monitor the quality characteristics following Weibull distribution. 

 

Improving the sensitivity of the chart to small process deteriorations: An effective 

charting method is one which detects process changes faster and at the same time raises 

fewer false alarms when the process is in control. The time between events chart are often 

slow in detecting small process changes. This makes it important to look for options, 

other than increasing the sample size, to improve the sensitivity of the chart. 

 

1.6. Scope of Research 

This dissertation attempts to look at the alternatives to monitor the time (or quantity) 

between events type of data and to improve them to make them more efficient in today’s 

ever changing environment. Some relatively new charting methods are studied and their 

application issues are discussed. 

 

Chapter 2 is a review of some of the process monitoring techniques relevant to our study. 

Chapter 3 extends the recent control scheme based on monitoring the cumulative quantity 

between observations of defects to monitor the quantity required to observe a fixed 

number of defects. In Chapter 4 the performance of some of the time between events 

control charts are compared. In Chapter 5 the average run length behavior of the run-

length control charts, based on skewed distributions like erlang and negative binomial, is 
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studied and a procedure is developed to optimize the performance of the chart. Chapter 6 

studies the effect of incorrect estimation of the control limits and their effect on the 

properties of the cumulative quantity control chart. Chapter 7 proposes the control chart 

based on Weibull distribution to monitor quality characteristics following Weibull 

distribution. Chapter 8 proposes a combined decision scheme for the cumulative quantity 

charting procedure to improve their sensitivity. 
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2.1. The use of exact probability limits for Shewhart charts 

As discussed earlier the conventional Shewhart charts for attributes suffer from 

limitations when the value of fraction nonconforming or the rate of occurrence of 

nonconformities is small. Due to this most of the time the lower control limit has to be 

fixed at zero. Xie and Goh (1993a), Wetherill and Brown (1991), and Montgomery 

(2001) advocate the use of exact probability limits in place of the usual three-sigma 

limits. In the case of Poisson distribution, which is not a symmetrical distribution, the 

upper and the lower 3-sigam limits do not correspond to equal probabilities of a point on 

the control chart falling outside the limits even though process is in control. Using the 

exact probability limits actually modifies the control chart in such a way that each point 

has an equal chance of falling above or below the upper and lower control limits 

respectively. For the case of c chart the probability limits are given as: 

 

2!
,5.0

!
,

2
1

! 000

αα ==−= ���
=

−

=

−

=

− LCL

x

xcCL

x

xcUCL

x

xc

x
ce

x
ce

x
ce

  (2.1) 

 

where, α is the acceptable false alarm probability.  

 

Similarly for the case of np chart the probability limits are given as: 
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        (2.2) 

 

Using the exact probability limits we can enhance the performance of the control chart 

but it cannot be treated as a permanent solution. When the fraction nonconforming level 

or the rate of occurrence of nonconformities is substantially low, the lower control limit 

would still be zero. 

 

2.2. The Q chart 

Quesenberry (1995) proposed a transformation procedure, named as the geometric Q 

chart. The geometric Q chart is a form of standardized G chart. By using the 

transformation, the problem of detecting changes in the geometric distribution is 

transformed into one of monitoring a normally distributed variable so that other well 

developed techniques such as supplementary run rules, and CUSUM and EWMA control 

schemes can be used.  

 

The method utilizes the probability integral transformation to transform geometrically 

distributed data. Using φ-1 to denote the inverse function of the standard normal 

distribution, the Qi statistic can be calculated as 
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)(1
ii uQ −Φ−=      (2.3) 

 

where, ix
ii ppxFu )1(1);( −−== . For i = 1, 2, ……, Qi will approximately follow 

standard normal distribution. 

 

The accuracy of the chart improves as p approaches zero, thus making it suitable for 

monitoring high yield proceses. 

 

2.3. Goh’s pattern recognition approach  

Goh (1987a, 1991) suggested an approach which studies the occurring patterns of 

samples containing defectives or defects which can be applied to both np as well as c 

charts. A similar idea was also proposed by Rowlands (1992).  

 

Goh’s approach defines a nonconforming sample as one that contains a nonconforming 

item and a nonconforming item as one containing nonconformities. The approach is 

based on exact Poisson and binomial distribution with a pre-defined Type I error, α.  

 

Since, the defect rate or the fraction nonconforming is quite small for high quality 

process, an out of control signal will be raised whenever a sample containing more than 

one defect or defective is observed or when there are more than a specified number of 
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nonconforming samples within another specified number of consecutively collected 

samples. 

 

2.4. Control charts based on cumulative count of conforming items 

Calvin (1983) proposed that instead of concentrating on nonconforming items, the other 

alternative is to concentrate on conforming items, especially when p is low. Goh (1987b) 

further expanded this idea into the Cumulative Count of Conforming (CCC) chart. The 

CCC chart monitors the number of items inspected to observe a nonconforming item. 

This count is then plotted against the ordinal number of nonconforming item on the chart. 

If an item is nonconforming with probability p, then the number of items inspected to 

observe a nonconforming item, Y, follows geometric distribution. So, the probability that 

the nth item being inspected is defective is given by  

 

( ) ....1,2,3.....  ,1)( 1 =−= − nppng n        (2.4) 

 

The mean and variance of the geometric distribution are given as 

 

p
1=µ   and 

2
2 )1(

p
p−=σ     (2.5) 

 

respectively. The cumulative distribution function of the geometric distribution is given 

by: 
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Instead of using the 3σ limits the CCC chart employs the exact probability limits, see Xie 

and Goh (1997). Assuming that the acceptable false alarm risk level is α, the upper 

control limit (UCL), the centre line (CL)and the lower control limit (LCL) for the CCC 

chart are obtained as the solutions of  
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On further solving the control limits can be written as: 
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The implementation involves maintaining a count, n′ , of cumulative count of conforming 

items and every conforming item is added to that count. The moment a nonconforming 

item is found out, n′  (including the nonconforming item) is plotted on the chart and then 

the counter is set back to zero. The decision rule is similar to that of cumulative charting 

technique, discussed in detail in the next section. 
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Some other related work on the monitoring of high quality processes can be found in 

Kaminsky et al. (1992), Lawson and Hathway (1990), Glushkovsky (1994), Goh (1991, 

1993), Goh and Xie (1994, 1995), McCool and Joyner (1998), Nelson (1994), and 

Pesotchinsky (1987) Xie et al. (1995a).  

 

2.5. Cumulative Quantity Control (CQC) chart 

The Cumulative Quantity Control chart or the CQC chart was proposed by Chan et al. 

(2000). The chart is based on the fact that if defects (per unit quantity of product) 

occurring in a process follow Poisson distribution then the number of units inspected (Q) 

before exactly one defect is observed will be an exponential random variable. If the 

defects have a mean rate of occurrence λ, then Q can be described with  

 

Probability Density Function:  QeQf λλ −=)(        (2.9) 

Cumulative Distribution Function: QeQF λ−−= 1)(       (2.10) 

Mean:     
λ
1

)( =QE        (2.11) 

 

If the false alarm probability is set as α, then the probability limits of the CQC chart are 

calculated by equating Equation (2.10) to the respective probabilities (as in Equation 

(2.7)), and are given as 
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        (2.12) 

 

As it is evident from the above formulae that the functioning of the CQC chart is not 

affected by the choice of the sample size, which is a major advantage. 

 

2.5.1. The decision rule for the CQC chart 

The plotting procedure and decision rule for the CQC charts is as follows: 

• The horizontal axis is the sample number and the vertical axis is the logarithm of 

the quantity Q (for the CQC chart). 

• Initially Q is taken as zero.  

• An item is inspected from a sample. If the item does not contain any defects the 

value of Q is increased by 1. Then next item is taken and if it is also defect free Q 

is again increased by 1. After inspecting all the items in the sample if we do not 

find any defect then the value of Q, which will then be equal to the sample size, is 

plotted on the chart and next sample is taken and the process continues. So if after 

second sample (say of size N) we do not find any defect then the value of Q will 

be 2N and this will plotted against the sample number 2. 
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• The moment a defect is encountered the value of Q is plotted on the chart and is 

then reset to zero and the counting process starts again. 

• If the plotted point lies within the upper and lower control limits then the process 

is said to be in control. 

• If a point lies below the lower control limit, it may mean that the process average 

has shifted (or the defect rate has increased, i.e. the process has deteriorated) and 

action should be taken to identify any assignable causes responsible for this shift. 

If an assignable cause can be found then it should be removed to bring the process 

back to its original state. If no assignable causes are found then the out of limit 

point can be treated as a false alarm and plotting process will continue. 

• If a point lies above the upper control limit, then it may mean that the process 

average has improved (the defect rate has decreased, i.e. the process has 

improved). In such a case the process should be stopped and the reason for this 

improvement should be identified and a new chart should be implemented with 

the new defect rate. 

 

2.6. The Cumulative Probability Control chart 

Chan et al. (2002) proposed a statistical process control chart called the cumulative 

probability control chart (CPC chart). The CPC chart is motivated from two existing 

statistical control charts, the cumulative count control chart (CCC chart) and the 

cumulative quantity control chart (CQC chart). The CCC and CQC charts are effective in 

monitoring production processes when the defect rate is low and the traditional p and c 

charts do not perform well. In a CPC chart, the cumulative probability of the geometric or 
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exponential random variable is plotted against the sample number, and hence the actual 

cumulative probability is indicated on the chart. 

 

Apart from maintaining all the favorable features of the CCC and CQC charts, the CPC 

chart is more flexible and it can resolve the technical plotting inconvenience of the CCC 

and CQC charts. 

  

Criteria CCC chart CQC chart 

Underlying Distribution Geometric Distribution Exponential distribution 

Substitutes p, np chart c, u chart 

Monitored statistic 
Number of items inspected 
to observe one 
nonconforming item 

Number of items inspected 
(need not be an integer) to 
observe exactly one 
nonconformity 

Advantages 
• Improved sensitivity to process improvements especially 

in a high quality process 
• No approximation assumptions required  

Parameter 
Process fraction 
nonconforming (p), false 
alarm probability (α) 

Process defect rate (λ), false 
alarm probability (α) 

Disadvantages Not accurate in detecting small deteriorations in the process 

Table 1.1 Comparison of the CCC and CQC charts 

 

2.7. Application issues in the CCC charting procedure 

2.7.1. Resetting the initial count when applying the CCC chart 

The charting procedure proposed by Goh (1987b) was very effective but there is an area 

of concern. The charting procedure suggests that the moment a nonconforming item is 

discovered, the value of counter should be set back to zero, which means any past 
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information till this point is ignored. Xie and Goh (1992) addressed this issue. They 

pointed out two problems in this approach.  

 

The first is that in the traditional Shewhart control charts the α is fixed while in the CCC 

control charts it is not because the value of p is low and the decision whether the process 

is in control has to be based on the current value of p. They developed a decision graph to 

judge the statistical control of the process by the p- α relationship. Probability that no 

nonconforming item has been observed in n items inspected is 

 

( )np−1             (2.13) 

 

This probability is treated as the certainty with which the process is judged to be out of 

control when a nonconforming item is observed. Denoting the certainty by s, the above 

equation can be written as 

 

( )nps −= 1      (2.14) 

 

Taking log and rearranging, the relationship can be represented as  

 

( )p
s

n
−

=
1ln
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     (2.15) 
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Using different values of p, s and n, a decision graph is plotted. The user can then find 

out where his control chart is operating and then accordingly take decision whether the 

process is in control. 

 

The second problem is related to setting the counter back to zero whenever a 

nonconforming item is observed. Setting it back to zero, especially when the process is 

judged to be in control, does not make any sense as one would like to make use of all the 

information about the process. Xie and Goh proposed that when the process is judged to 

be in control then the counter be set at some another value no. The relationship between 

nc and n0 is given as  

 

( )
2

10

p
nnn cc −=        (2.16) 

 

where, nc is the number of items inspected before a nonconforming item is encountered. 

 

2.7.2. Inspection errors 

Lu et al. (2000) studied the effect of inspection errors on the properties of the run length 

control charts. In the presence of inspection errors, the control limits can be modified 

based on the errors. The relationship between pt, the true probability of nonconforming 

and p0, the observed fraction nonconforming can be represented as (see Burke et al. 

(1995)): 
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)1/()( ψθθ −−−= ot pp     (2.17) 

 

where, θ  = the probability of classifying a conforming item as nonconforming and ψ = 

the probability of classifying a nonconforming item as conforming are the classification 

error probabilities. It can be shown that the adjusted control limits of the CCC chart  in 

the presence of inspection errors can be derived as follows: 
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In the above formulae desiredα  is the desired false alarm probability when the process is in 

control. It should be noted that generally desiredα  is taken as 0.0027, which is equivalent to 

the standard 3-sigma control limits.  

 

2.8. Extension of the CCC and CQC charting techniques 

2.8.1. Control charting by fixing the number of nonconforming units, the CCC-r 

chart 

Xie et al. (1998b, 1999) proposed a control charting procedure to monitor cumulative 

count of items produced until a fixed number of nonconforming items (r) is observed. 
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Such a chart was given the name of CCC-r chart. The chart is particularly suitable for 

one-by-one inspection process and so no subjective sample size is needed. The CCC-r 

charting technique was also studied by Lu et al. (1998, 1999). Chan et al. (1997) 

proposed the CCC-2 control chart which is just a special case of the more general CCC-r 

charts. Some other related discussion can also be found in Wu et al. (2000). 

 

Let Y be the cumulative count of items inspected until r nonconforming items have been 

observed. If the probability of an item to be nonconforming is p, then Y follows a 

negative binomial distribution given by 
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The cumulative distribution function of count Y is 
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The use of exact probability limits in case of CCC-r chart can be explained due to the fact 

that in case of negative binomial distribution there is a poor normal approximation in the 

tails of the distribution. If the acceptable false alarm probability is α , then the upper 

control limit, the lower control limit and the centre line, UCLr, LCLr, and CLr 
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respectively, of the CCC-r chart can be obtained as the solution of the following 

equations: 
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      (2.21) 

 

The term ARL has little meaning in case of CCC-r chart as the number of points plotted 

does not signify the number of samples taken but rather denote the number of 

nonconforming items ( = r × ARL) observed until an alarm signal. So the term Average 

Item Run Length (AIRL) is used in the case of CCC-r charts. Bourke (1991) in his paper 

has also called it the Average Number Inspected (ANI). Let the probability for count Y 

not falling within the control limits be rβ , then 
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Using the type II error probability calculated in Equation (2.22) the AIRL of the CCC-r 

charts, AIRLr, can be written as:  

 

p
r

AIRL
r

r )1( β−
=           (2.23) 
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The selection of r can be treated as a subjective issue, if cost involved is not a 

consideration. Some facts, which should be kept in mind while choosing r, are 

 

• As p approaches zero the central line, which indicates the average number of 

items inspected until a point is plotted, is very large so it is not appropriate to use 

CCC-r charts with large r values for small values of p 

• The control limits of CCC-r chart are much larger for charts with large r than 

those with small r for the same value of p. 

 

Thus as the value of r increases the sensitivity of the chart increases, however, the user 

needs to wait too long to plot a point. So it becomes a question of trade off. Ohta et al. 

(2001) addressed this issue from an economic design perspective and proposed a 

simplified design method to select a suitable value of r based on the economic design 

method for control charts that monitor discrete quality characteristics. Other related work 

can be found in Wu et al. (2001) where the authors studied the design of CCC-r charts for 

a random shift model.   

 

2.8.2. Serial correlation 

The control charts make an important assumption regarding the independence of 

observations from a production process. However, this is generally not the case in most 

of the manufacturing processes. The correlated observations are especially common in 

automated manufacturing processes where the sample size is one and sampling interval is 
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very small and due to this small interval the observations will be serially correlated over 

time. 

  

Broadbent (1958) proposed the use of a Markov Serial dependence model to capture the 

correlation between the items produced in a manufacturing environment. This model 

assumes that the state of the current item depends only on that of the previous one. For a 

two-state Markov chain model, two probabilities are considered, 

 

a = probability of obtaining a nonconforming item if the preceding one is conforming. 

b = probability of obtaining a conforming item if the preceding one is nonconforming.  

 

Some related work on Markov serially dependent processes can be found in Bhat & Lal 

(1990), Bhat et al. (1990) and Lai et al. (1998). Bhat and Lal (1990) show that the long 

run fraction defective is p = a / (a + b) while the serial correlation coefficient is d = 1- (a 

+ b). 

 

Suppose that the user is interested in the cumulative count of items inspected until 

observing two nonconforming items (CCC-2 chart). Hence, for a specific count Y, an 

automated manufacturing process can be represented by sequences of (Y+1) items, in 

which the zeroth and Yth item are always nonconforming with a third nonconforming item 

in between them, while the remaining items are all conforming.  
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Based on this finding Lai et al. (2000) generalized the probability distribution function 

and the cumulative probability function of Y as: 
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where, c = (1-a). Putting d = 0 (independent observations), the above two equations will 

reduce to the respective equations of negative binomial distribution with parameters (2, 

p). 

 

If the conventional control limits are used for a Markov serially dependent process (i.e. if 

there exists a serial correlation between the items produced) then the false alarm 

probability of the CCC-r chart deviates from the desired false alarm probability 

(generally taken as 0.0027). The conventional CCC-2 chart gives fewer alarms when the 

serial correlation is negative while more alarms when it is positive. As for the AIRL, it 

decreases when correlation coefficient d increases. This means that the conventional 

CCC-r chart, which does not take into account the serial correlation existing between the 
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items produced, will give more alarms if d is positive and will give few alarms if d is 

negative.  

 

The decision making procedure for CCC-r charts for automated manufacturing process 

having serial correlation is same as before except for the fact that the control limits 

should be calculated as explained above. Other related work on data correlation can be 

found in Berthouex et al. (1978), and Montgomery and Freidman (1991). 

 

2.8.3. Transforming the geometric and exponential random variable 

The power transformation by Box and Cox (1964) is very suitable for transforming the 

geometric random variable to normal so that Shewhart control chart for variable data and 

other process monitoring techniques like CUSUM and EWMA can be applied on the 

transformed data. Xie et al. (2000b) compared three methods, namely Quesenberry’s Q-

transformation, the log transformation and the double square root transformation. They 

found that the double square root is the simplest and most suitable technique to transform 

the geometrically distributed quality characteristic. This finding is also supported by 

Kittlitz (1999) who proposed the double square root transformation for transforming 

exponentially distributed data. Some general discussion regarding transformation can also 

be found in Chou (1998). 

 

2.8.4. Control charts for near zero-defect processes 

In the so called near zero-defect manufacturing environments, when the number of 

defects or nonconformities is considered, usually a large number of zero-count values 
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along with some non-zero values are observed. Many researchers have studied the 

monitoring of near zero defect processes; see Bohning (1998), Bohning et al. (1999), 

Chang and Gan (1999), He and Goh (2002), Lambert (1992), and Vieira et al. (2000). It 

is now well established that the common pure Poisson distribution cannot adequately 

describe the data pattern, and a generalized Poisson distribution is preferred instead, 

which is usually canned zero-inflated Poisson (ZIP) distribution. The probability mass 

function of the zero-inflated Poisson distribution is given by: 
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where p is the probability of the occurrence of random shock, and d denotes the number 

of nonconformities and λ  is the expected number of nonconformities found in a sample 

when the random shock occurs. The CCC chart and the c chart can then be used to 

monitor p and λ  respectively. The details regarding the use of CCC chart in monitoring a 

near zero-defect process can be found in Xie and Goh (1993b), Xie et al. (1995b), and 

Xie et al. (2001b). 

 

2.8.5. Economic design of run length control Charts 

Cost consideration is always a concern in industry and any quality related activities 

should be put into the context of cost saving to improve profitability. In using control 

chart in practice, economic factors should be taken into account for designing control 
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chart. Xie et al. (1997), Tang et al. (2000) and Xie et al. (2001a) studied the economic 

deign of the CCC chart based on the flexible cost model proposed by Lorenzen and 

Vance (1986). In Xie et al. (1997) a general loss function and a design process was 

proposed based on an optimizing procedure to calculate the design parameters of the 

CCC charts. For a more detailed study of CCC chart and its properties the users can refer 

to Xie et al. (2002a). 

 

2.8.6 The CCC and exponential CUSUM Charts 

An alternative to monitor time between events data is to use a CUSUM chart. The 

CUSUM chart has proved to be very useful in detecting small shifts in the process. The 

time-between-events CUSUM has been studied by many authors, see Gan (1992, 1994), 

Lorden and Eisenberger (1973), Lucas (1985), Vardeman and Ray (1985), and Woodall 

(1983). The CUSUM scheme has also been developed for quality characteristics 

following geometric distribution and thus can be readily applied to cumulative count of 

conforming data. Related discussion can be found in Bourke (1991, 2001a) and Xie et al. 

(1998a).  

 

The CUSUM charts are known to be quite sensitive to small shifts in a process. Many 

researchers have studied the properties and charting procedures of the time-between-

events CUSUM, see Lucas (1985) and Gan (1992). If X1, X2,… be the inter-arrival times 

then the time-between-events CUSUM for detecting an increase or decrease in the inter-

arrival times can be respectively defined as 
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where, k is the pre-chosen parameter.  

 

The control limits are denoted by h and the decision on the statistical control of the 

process is taken depending on whether St
- � -h or St

+ � h. Most of the research on the 

time-between-events CUSUM assumes that the inter-arrival times follow exponential 

distribution.  

 

The average run length calculation for a CUSUM scheme is comparatively more difficult 

than that for a Shewhart chart. Vardeman and Ray (1985) obtained the exact expressions 

for the ARLs of CUSUM schemes when the inter-arrival times follow exponential 

distribution. Gan (1992) obtained the probability function of the run length, the ARLs, 

the standard deviation of the run length (SDRL) and the run length percentiles of 

exponential CUSUM schemes by solving the integral equations. Reynolds (1975) derived 

an expression for the ARLs by Brownian motion approximation. Lucas (1985) computed 

average run length of the CUSUM scheme by the Markov chain approach proposed by 

Brook and Evans (1972), which gives approximate but quite accurate results. Some other 

related discussions on ARL of CUSUM charts can be found in Gardiner (1987), Fellener 

(1990), Hawkins (1992), and Woodall (1983). 
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With so many monitoring options available, it becomes important for the users to 

correctly identify the monitoring method that is simple and easy to use and satisfies their 

requirements. Figure 2.1 shows the flow chart that helps the user in selecting an 

appropriate charting procedure for monitoring time between events type of data. First, 

when the distribution of the data is unknown, the plotting techniques can be employed to 

establish the underlying distribution as well as to calculate the relevant parameters. Then 

a judgment regarding the normality of the data has to be made.. If the data are normally 

distributed, we can either use the Shewhart control charts, EWMA, or CUSUM charts to 

monitor the process.  

 

For exponentially distributed data, we can use CQC chart, as well as exponential EWMA 

and CUSUM chart. Another option is to transform the data to normal. Once the data has 

been transformed to normal, either the Shewhart, or the EWMA or the CUSUM charts 

can be used for monitoring purposes. 
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Figure 2.1 Selecting the suitable charting procedure
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3.1. Monitoring defect rate in a Poisson process  

Standard c chart or u chart, which is for the monitoring of the number of defects in a 

sample, are extensively used in the industry for monitoring counted data. However, they 

require a large number of defects and are  not appropriate for application to a process 

with low count levels. Figure 3.1 is a typical example of periodic defect reports 

monitored with a c chart. When there are an excessive number of defects, the chart will 

signal an out-of-control situation. Although the anticipated false alarm probability is 

0.27% by a traditional chart, it could be much higher because when the number of 

failures is Poisson distributed, normal distribution, which is used, is not a good 

approximation when the average number of defects is small. Moreover, the lower control 

limit is usually set at zero, which is not useful because then process improvement cannot 

be detected. 

 

Chan et al. (2000) recently proposed a procedure based on the monitoring of cumulative 

production quantity between the observations of two defects in a manufacturing process. 

This approach has shown to have a number of advantages: it does not involve the choice 

of a subjective sample size; it raises fewer false alarms; it can be used in any environment 

irrespective of whether the process is of high quality; and it can detect further process 

improvement.  
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Figure 3.1 The traditional u chart for the monitoring of number of failures per unit time. 

  

For a process in normal operation, defects are random event caused by, for example, 

sudden increase of stress and human error. The defect occurrence process can usually be 

modeled by a homogeneous Poisson process with certain intensity. Hence, our aim here 

is to monitor the defect process and detect any change of the intensity parameter. The 

procedure in Chan et al. (2000) is based on the monitoring of the cumulative production 

quantity between observing two defects in a manufacturing process. This cumulative 

production quantity is an exponential random variable that describes the length till the 

occurrence of next defect in a Poisson process.  

 

The use of cumulative quality is a different and new approach. We further extend the 

procedure to the case when cumulative quantity to the rth defect is used to monitor the 



Monitoring Counted Data 
________________________________________________________________________ 
 

________________________________________________________________________ 
 43 

defect process. The implementation and interpretations are provided and numerical 

examples are used to illustrate the application procedure. We also investigate some basic 

properties of the proposed scheme. 

 

3.2. Monitoring quantity between r defects 

Monitoring the defect occurrence process using the CQC chart is straightforward. 

However, since the decision is based on only one observation, it may cause many false 

alarms or it is insensitive to process shift if the control limits are wide (with small value 

of α). To deal with this problem, we can consider using the quantity between r defects. 

Denote the quantity to observe the rth defect by Qr, a CQCr chart is proposed and studied 

here. 

 

3.2.1 The distribution of Qr  

To monitor the process based on the quantity between the occurrences of r defects, we 

need a distribution to model the cumulative quantity till the rth failure, Qr. It is well 

known that the sum of r exponentially distributed random variables is the Erlang 

distribution. An Erlang random variable is defined as the length till the occurrence of r 

defects (failures) in a Poisson process. Then the probability density function of Qr, is 

given as: 
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The cumulative Erlang distribution is  
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Qr can then be used to model the quantity to the rth defect in a Poisson process. We 

propose another chart; henceforth know as the CQCr chart, to monitor Qr.  

 

It should be noted that for r =1, the Gamma distribution reduces to the exponential 

distribution. Hence, the CQC1 chart is same as the CQC chart proposed by Chan et al. 

(2000) chart.  

 

3.2.2 Control limits of CQCr- chart 

To calculate the control limits of the CQCr chart, the exact probability limits will be used. 

If α is the accepted false alarm risk then the upper control limit, UCLr, the center line, 

CLr, and the lower control limit, LCLr, can be easily calculated by using Equation (3.2) in 

the following manner: 
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The control limits can be easily calculated using some mathematical or statistical 

software such as MATHEMATICA. Tables 3.1-3.3 show the computed control limits for 

some CQCr charts with the false alarm risk, α = 0.0027. It should be noted that rUCL  and 

rLCL  appear in Equation (3.3) in product with λ, which means that the control limits are 

inversely proportional to the λ. That is, when λ is increased by a factor, the limits will 

decrease by the same factor. 

 

Table 3.4 shows the control limits of some CQCr charts for different values of false alarm 

risk with the assumed in control defect rate of 0.001.As expected the lower control limits 

and the upper control limit, respectively, increase and decrease as the false alarm 

probability increases. The center line for the charts has not been computed as it only 

depends on the in control parameter and is not influenced by changes in false alarm 

probability. The center line for all the charts shown in Table 3.4 is thus - ln(0.5)/0.001 = 

693.147. 

 

The decision-making procedure for the CQCr chart remains same as the CQC chart and is 

shown in Figure 3.2.  



Monitoring Counted Data 
________________________________________________________________________ 
 

________________________________________________________________________ 
 46 

 

CQC1 CQC2 λ0 UCL CL LCL UCL CL LCL 
0.000001 6.61E+06 693147 1350.91 8.90E+06 1.68E+06 52883.6 
0.000002 3.30E+06 346574 675.46 4.45E+06 839173.5 26441.8 
0.000003 2.20E+06 231049 450.3 2.97E+06 559449 17627.9 
0.000004 1.65E+06 173287 337.73 2.23E+06 419586.75 13220.9 
0.000005 1.32E+06 138629 270.18 1.78E+06 335669.4 10576.7 
0.000006 1.10E+06 115525 225.15 1.48E+06 279724.5 8813.93 
0.000007 943950.1 99021 192.99 1.27E+06 239763.86 7554.79 
0.000008 825956.34 86643.4 168.86 1.11E+06 209793.37 6610.44 
0.000009 734183.41 77016.4 150.1 988911.8 186483 5875.95 
0.000015 440510.05 46209.8 90.06 593347.1 111889.8 3525.57 
0.000016 412978.17 43321.7 84.43 556262.9 104896.69 3305.22 
0.000017 388685.33 40773.4 79.47 523541.6 98726.29 3110.8 
0.000018 367091.7 38508.2 75.05 494455.9 93241.5 2937.98 
0.000019 347771.09 36481.4 71.1 468431.9 88334.05 2783.35 
0.00031 21315 2235.96 4.36 28710.34 5414.02 170.59 
0.00032 20648.91 2166.08 4.22 27813.14 5244.83 165.26 
0.00033 20023.18 2100.45 4.09 26970.32 5085.9 160.25 
0.00034 19434.27 2038.67 3.97 26177.08 4936.31 155.54 
0.00035 18879 1980.42 3.86 25429.16 4795.28 151.1 
0.00036 18354.59 1925.41 3.75 24722.8 4662.07 146.9 
0.00037 17858.52 1873.37 3.65 24054.61 4536.07 142.93 
0.00038 17388.55 1824.07 3.56 23421.6 4416.7 139.17 
0.00039 16942.69 1777.3 3.46 22821.04 4303.45 135.6 
0.0041 1611.62 169.06 0.33 2170.78 409.35 12.9 
0.0042 1573.25 165.04 0.32 2119.1 399.61 12.59 
0.0043 1536.66 161.2 0.31 2069.82 390.31 12.3 
0.0044 1501.74 157.53 0.31 2022.77 381.44 12.02 
0.0045 1468.37 154.03 0.3 1977.82 372.97 11.75 
0.0046 1436.45 150.68 0.29 1934.83 364.86 11.5 
0.0047 1405.88 147.48 0.29 1893.66 357.1 11.25 
0.0048 1376.59 144.41 0.28 1854.21 349.66 11.02 
0.0049 1348.5 141.46 0.28 1816.37 342.52 10.79 
0.055 120.14 12.6 0.02 161.82 30.52 0.96 

0.1 66.08 6.93 0.01 89 16.78 0.53 
Table 3.1 Some control limits of CQC1 and CQC2 charts with α = 0.0027 
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CQC3 CQC4 λ0 UCL CL LCL UCL CL LCL 

0.000001 1.09E+07 2.67E+06 211684 1.27E+07 3.67E+06 465296 
0.000002 5.43E+06 1.34E+06 105842 6.34E+06 1.84E+06 232648 
0.000003 3.62E+06 891353.4 70561.4 4.23E+06 1.22E+06 155099 
0.000004 2.72E+06 668515.1 52921.1 3.17E+06 918015 116324 
0.000005 2.17E+06 534812.1 42336.9 2.54E+06 734412 93059.2 
0.000006 1.81E+06 445676.7 35280.7 2.11E+06 612010 77549.4 
0.000007 1.55E+06 382008.6 30240.6 1.81E+06 524580 66470.9 
0.000008 1.36E+06 334257.5 26460.5 1.59E+06 459008 58162 
0.000009 1.21E+06 297117.8 23520.5 1.41E+06 408007 51699.6 
0.000015 724635 178270.7 14112.3 845365 244804 31019.8 
0.000016 679345.3 167128.8 13230.3 792529 229504 29081 
0.000017 639383.8 157297.7 12452 745910 216004 27370.4 
0.000018 603862.5 148558.9 11760.2 704471 204003 25849.8 
0.000019 572080.3 140740 11141.3 667393 193266 24489.3 
0.00031 35062.98 8626 682.85 40904.7 11845.4 1500.96 
0.00032 33967.26 8356.44 661.51 39626.5 11475.2 1454.05 
0.00033 32937.95 8103.21 641.47 38425.7 11127.5 1409.99 
0.00034 31969.19 7864.88 622.6 37295.5 10800.2 1368.52 
0.00035 31055.78 7640.17 604.81 36229.9 10491.6 1329.42 
0.00036 30193.12 7427.95 588.01 35223.5 10200.2 1292.49 
0.00037 29377.09 7227.19 572.12 34271.5 9924.49 1257.56 
0.00038 28604.01 7037 557.06 33369.7 9663.32 1224.46 
0.00039 27870.58 6856.56 542.78 32514 9415.54 1193.07 
0.0041 2651.1 652.21 51.63 3092.8 895.62 113.49 
0.0042 2587.98 636.68 50.4 3019.16 874.3 110.78 
0.0043 2527.8 621.87 49.23 2948.95 853.97 108.21 
0.0044 2470.35 607.74 48.11 2881.92 834.56 105.75 
0.0045 2415.45 594.24 47.04 2817.88 816.01 103.4 
0.0046 2362.94 581.32 46.02 2756.62 798.27 101.15 
0.0047 2312.66 568.95 45.04 2697.97 781.29 99 
0.0048 2264.48 557.1 44.1 2641.76 765.01 96.94 
0.0049 2218.27 545.73 43.2 2587.85 749.4 94.96 
0.055 197.63 48.62 3.85 230.55 66.76 8.46 

0.1 108.7 26.74 2.12 126.8 36.72 4.65 
Table 3.2 Some control limits of CQC3 and CQC4 charts with α = 0.0027 
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CQC5 CQC6 λ0 UCL CL LCL UCL CL LCL 

0.000001 1.44E+07 4.67E+06 791874 1.60E+07 5.67E+06 1.17E+06 
0.000002 7.20E+06 2.34E+06 395937 8.02E+06 2.84E+06 587486.1 
0.000003 4.80E+06 1.56E+06 263958 5.34E+06 1.89E+06 391657.4 
0.000004 3.60E+06 1.17E+06 197968 4.01E+06 1.42E+06 293743 
0.000005 2.88E+06 934181.8 158375 3.21E+06 1.13E+06 234994.4 
0.000006 2.40E+06 778484.8 131979 2.67E+06 945027 195828.7 
0.000007 2.06E+06 667272.7 113125 2.29E+06 810023 167853.2 
0.000008 1.80E+06 583863.6 98984.2 2.00E+06 708770 146871.5 
0.000009 1.60E+06 518989.9 87986 1.78E+06 630018 130552.5 
0.000015 959492.9 311393.9 52791.6 1.07E+06 378011 78331.48 
0.000016 899524.6 291931.8 49492.1 1.00E+06 354385 73435.76 
0.000017 846611.3 274759.4 46580.8 943222 333539 69116.01 
0.000018 799577.4 259494.9 43993 890821 315009 65276.23 
0.000019 757494.4 245837.3 41677.6 843935 298430 61840.64 
0.00031 46427.07 15067.45 2554.43 51725.1 18290.8 3790.23 
0.00032 44976.23 14596.59 2474.61 50108.7 17719.3 3671.79 
0.00033 43613.31 14154.27 2399.62 48590.2 17182.3 3560.52 
0.00034 42330.57 13737.97 2329.04 47161.1 16676.9 3455.8 
0.00035 41121.12 13345.45 2262.5 45813.6 16200.5 3357.06 
0.00036 39978.87 12974.75 2199.65 44541 15750.5 3263.81 
0.00037 38898.36 12624.08 2140.2 43337.2 15324.8 3175.6 
0.00038 37874.72 12291.87 2083.88 42196.8 14921.5 3092.03 
0.00039 36903.57 11976.69 2030.45 41114.8 14538.9 3012.75 
0.0041 3510.34 1139.25 193.14 3910.92 1382.97 286.58 
0.0042 3426.76 1112.12 188.54 3817.8 1350.04 279.76 
0.0043 3347.07 1086.26 184.16 3729.02 1318.64 273.25 
0.0044 3271 1061.57 179.97 3644.27 1288.67 267.04 
0.0045 3198.31 1037.98 175.97 3563.28 1260.04 261.1 
0.0046 3128.78 1015.41 172.15 3485.82 1232.64 255.43 
0.0047 3062.21 993.81 168.48 3411.65 1206.42 249.99 
0.0048 2998.42 973.11 164.97 3340.58 1181.28 244.79 
0.0049 2937.22 953.25 161.61 3272.4 1157.18 239.79 
0.055 261.68 84.93 14.4 291.54 103.09 21.36 

0.1 143.92 46.71 7.92 160.35 56.7 11.75 
Table 3.3 Some control limits of CQC5 and CQC6 charts with α = 0.0027 
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Figure 3.2 The decision rule for the CQCr chart 
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3.3. Using the CQCr charts for reliability monitoring 

Failure process monitoring is an important issue for complex or repairable systems. It is 

also a common problem for a fleet of systems such as equipment or vehicles of the same 

type in a company.  Control charts are widely used for process monitoring in the 

manufacturing industry. Little research is available on their use to monitor the failure 

process of components or systems, which is important for equipment performance 

monitoring. The Shewhart control charts for monitoring the number of defects, can be 

used for monitoring the number of failures per fixed interval; however, as pointed out 

before, they are not effective especially when the failure frequency becomes small. The 

cumulative quantity monitoring scheme between observations of defects can be easily 

adopted to monitor the failure process for exponentially distributed inter-failure time and 

the scheme can be easily extended to monitor inter-failure times that follow other 

distributions such as the Weibull distribution.  

 

As a brief review of related research, process monitoring of reliability related process 

characteristics has attracted some attention recently. Katter et al. (1998) used the control 

chart to monitor the on-line welder condition. Steiner et al. (2001) showed the use of 

control chart to detect process changed for censored data. Cassady et al. (2000) 

introduced a combined control chart-preventive maintenance strategy. Haworth (1996) 

showed how the multiple regression control charts could be used to manage software 

maintenance processes. Kopnov et al. (1994) discussed bearing degradation in a process 

and obtained an optimal control limit by defining the degradation process, considering 
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the costs involved. Radaelli (1998) studied the time-between-event Shewhart chart and 

showed how they can be applied when the times are exponentially distributed. These 

studies mainly follow the standard approach.  

 

As mentioned before, since the quantity produced between the observations of two 

defects is related to the time between failures in reliability study, the CQC chart approach 

can be readily adopted for process monitoring in reliability and maintenance. The control 

limits can be calculated using Equation (3.3). These control limits can then be utilized to 

monitor the failure times of components. After each failure the time can be plotted on the 

chart. If the plotted point falls between the calculated control limits, it indicates that the 

process is in the state of statistical control and no action is warranted. If the point falls 

above the upper control limit, it indicates that the process average, or the failure 

occurrence rate, may have decreased which resulted in an increase in the time between 

failures. This is an important indication of possible process improvement. If this happens 

the management should look for possible causes for this improvement and if the causes 

are discovered then action should be taken to maintain them. If the plotted point falls 

below the lower control limit, it indicates that the process average, or the failure 

occurrence rate, may have increased which resulted in a decrease in the failure time. This 

means that process may have deteriorated and thus actions should be taken to identify and 

remove them.  

 

In either case the people involved can know when the reliability of the system is changed 

and by a proper follow up they can maintain and improve the reliability. Another 
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advantage of using the control chart is that it informs the maintenance crew when to leave 

the process alone, thus saving time and resources. 

 

It can be noted here that the parameter λ should normally be estimated with the data from 

the failure process. Since λ �is the parameter in the exponential distribution, any 

traditional estimator can be used and we omit this discussion here. 

 

Monitoring the failure occurrence process using the CQC chart is straightforward. 

However, again the decision regarding the process is based on only one observation, it 

may cause many false alarms or it is insensitive to process shift if the control limits are 

wide (with small value of α). Thus we can monitor using the time between r failures as in 

the case of CQCr charts. A practical scenario is that when the reliability of a complex 

system is to be monitored and the failure of any components or incident is reported, the 

occurrence process can be modeled by a Poisson process. In fact, when components are 

replaced, we have a superposition of renewal processes. As mentioned before the 

superimposed process can be approximated by a Poisson process, and hence providing an 

important justification for the use of our model. 

 

3.4 An illustrative example 

An example is presented in this section to illustrate the charting procedure of CQCr chart 

and to also illustrate the increased efficiency of the chart when r becomes more than 1. 
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Table 3.5 shows a set of failure time data. The first 30 times were simulated with the 

process average, λ, of 0.001 and the second 30 times were simulated with the process 

average changed to λ = 0.003. The accepted false alarm risk is α = 0.0027.  

  

Failure number Time Failure number Time 
1 1065.55 31 35.85 
2 535.8 32 362.8 
3 540.53 33 357.85 
4 716.2 34 334.48 
5 2525.43 35 80.13 
6 1264.18 36 1939 
7 479.44 37 77.88 
8 1783.22 38 4.03 
9 473.67 39 98.67 

10 2265.42 40 17.19 
11 2191.75 41 289.79 
12 1097.26 42 63.99 
13 597.59 43 2.46 
14 971.16 44 697.68 
15 3157.29 45 1167.33 
16 2932.96 46 239.66 
17 987.67 47 93.78 
18 1816.18 48 680.45 
19 117.21 49 4.83 
20 190.65 50 102.91 
21 943.99 51 479.05 
22 1084.48 52 156.67 
23 2306.54 53 1286.24 
24 6.56 54 443.97 
25 3111.51 55 360.03 
26 283.86 56 414.66 
27 659.39 57 128.9 
28 683.48 58 36.1 
29 36.14 59 197.31 
30 754.16 60 418.12 

Table 3.5 Failure time data of the components. 
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Figure 3.3 shows the CQC chart for the data in Table 3.5. It can be seen that the CQC 

chart fails to raise an alarm. The control limits of the CQC chart can be calculated using 

Equation (2.12) and are 7.6607=UCL  and 4.1=LCL . 
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Figure 3.3 The CQC chart for the data in Table 3.5 and no alarm is raised. 

 

Since CQC chart makes use of a single observation in decision making, a CQC3 chart 

could be used if more observations are to be taken into consideration in an easy way. The 

data shown in Table 3.5 is converted into the data of Table 3.6 which shows the 

cumulative time to failure between every three failures, i.e. Q3.  
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Observation 

number 

Time to the 
accumulation of 

three failures 

 
Observation 

number 

Time to the 
accumulation of 

three failures 
1 2141.88 11 756.5 
2 4505.81 12 2353.61 
3 2736.33 13 180.58 
4 5554.43 14 370.97 
5 4726.04 15 1867.47 
6 5736.81 16 1013.89 
7 1251.85 17 586.79 
8 3397.58 18 1886.88 
9 4054.76 19 903.59 

10 1473.78 20 651.53 
Table 3.6 Cumulative Failure Time between every three failures 

 

The performance of CQC chart can be compared with the performance of CQC3 chart by 

using the data of Table 3.6. The control limits of the CQC3 charts can be calculated by 

solving the following equations: 

 

�
=

− =−
2

0

3001.0 99865.0
!

)001.0(
1 3

k

k
UCL

k
UCL

e  

�
=

− =−
2

0

3001.0 5.0
!

)001.0(
1 3

k

k
CL

k
CL

e  

�
=

− =−
2

0

3001.0 00135.0
!

)001.0(
1 3

k

k
LCL

k
LCL

e  

 

Solving the above equations, the control limits of the CQC3 chart are obtained as  

 

UCL3 = 10869.3, CL3 = 2674.1, LCL3 = 211.7 
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The CQC3 chart is shown in Figure 3.4. As can be seen from the figure, the CQC3 chart 

raises an alarm signifying process deterioration from λ = 0.001 to λ = 0.003. This can be 

compared with the CQC chart shown in Figure 3.3, which fails to raise an alarm.  

 

Hence, by accumulating 3 failure times, the sensitivity of the chart to detect process 

changes can be improved as compared with CQC chart. On the other hand, it is a 

subjective issue what r should be used in CQCr chart. Usually r should not be too large, 

as it may need to accumulate a long time before a decision is made. In the next section, 

we investigate the properties for CQC3 chart and discuss the issue of chart sensitivity and 

implementation. 
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Figure 3.4 The CQC3 chart for the data in Table 3.6 
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3.5. Some statistical properties of CQCr chart 

One of the most frequently used terms associated with the control charts for process 

monitoring is the average run length (ARL) which is generally defined as the average 

number of points that must be plotted on the control chart before a point indicates an out 

of control situation. A good control chart should have a large average run length when the 

process is in control and small average run length when the process shifts away from the 

target. This means that when the process runs in control, the control chart should raise 

few false alarms while on the other hand when the process runs out of control the control 

chart should raise frequent false alarms to indicate the shift in the process parameters. 

Due to these reasons it becomes important for any type of control chart to exhibit 

desirable average run length property. However for the CQCr chart the ARL is not a good 

measure of the chart performance as in this case the out-of-control situation is very 

different from the traditional chart. A better measure of the chart performance is the 

Average item run length (AIRL), defined as, the number of items inspected to observe an 

out of control point. 

 

Assume that the probability for the quantity Qr falling within the control limits of the 

CQCr chart can be denoted by βr. Then βr can be represented as: 

 

),,(),,( λλβ rLCLFrUCLF rrr −=       (3.4) 
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where ),,( λrtF  is the distribution of Qr. Using Equation (3.2), the probability that the 

points do not fall between the control limits which is represented as (1-βr) can be 

obtained as  
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Thus the ARL of the CQCr charts can be written as: 
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The average run length values of some CQCr are shown in Table 3.7. It can be noticed 

from Table 3.7 that with increase in r the sensitivity of the CQCr increases. However, it 

should be made clear that the average time to plot a single point on a CQCr (r > 1) chart 

is r times that in the case of CQC1 chart. Thus, the ARL behavior does not necessarily 

reflect the true performance of the chart and a better option is to use AIRL as a 

performance measure.  

 

On an average only one out of 1/(1-βr) points falls outside the control limits. If the 

process failure occurrence rate is λ, on average r defects will occur for r/λ (the mean of 

the Erlang distribution) items inspected. The average item run length of the CQC3 chart 

(AIRLr) can then be represented as: 
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)1(
1

)(
r

r TEAIRL
β−

×=       (3.7) 

 

λ CQC1 CQC2 CQC3 CQC4 CQC5 CQC6 

0.001 1.01 1 1 1 1 1 
0.002 1.01 1 1 1 1 1 
0.005 1.03 1 1 1 1 1 
0.008 1.05 1 1 1 1 1 
0.01 1.07 1 1 1 1 1 
0.02 1.14 1.01 1 1 1 1 
0.05 1.39 1.08 1.02 1 1 1 
0.08 1.7 1.19 1.06 1.02 1.01 1 
0.1 1.94 1.29 1.11 1.04 1.02 1.01 
0.2 3.75 2.13 1.59 1.33 1.2 1.12 
0.5 26.73 15.63 10.79 8.1 6.41 5.27 
0.8 162.83 134.48 115.46 101.09 89.7 80.42 
1 370.37 370.37 370.37 370.37 370.37 370.37 

1.2 505.09 454.75 404 359.82 322.37 290.64 
1.5 482.18 332.49 236.66 175.36 134.45 105.98 
1.8 410.59 235.02 143.92 94.39 65.45 47.44 
2 370.37 191.77 108.24 66.56 43.87 30.54 
5 148.55 34.05 10.95 4.85 2.75 1.87 
8 93.03 14.74 4.15 1.96 1.32 1.1 

10 74.53 10.09 2.82 1.46 1.12 1.02 
20 37.51 3.5 1.26 1.02 1 1 
25 30.11 2.62 1.11 1 1 1 
50 15.31 1.35 1 1 1 1 
75 10.38 1.1 1 1 1 1 

100 7.91 1.03 1 1 1 1 
1000 1.35 1 1 1 1 1 

Table 3.7 Some ARL values of CQCr charts 
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Substituting the values of E(T) and (1-βr) Equation (3.7) can be written as: 
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        (3.8) 

 

The UCLr and LCLr can be calculated as before. Throughout the thesis the AIRLr values 

of the CQCr chart are obtained under the assumption of fixed shift model, i.e. the shift 

occurs either before plotting a point or after plotting a point on the CQCr chart.  

 

Some AIRLr values for λo=0.001 (process average) α = 0.0027 are shown in Table 3.8.  

 

λ AIRL1 AIRL2 AIRL3 AIRL4 
0.00001 106829 200749 300059 400004 
0.00002 57062.4 101428 150219 200028 
0.00005 27827.4 43196.7 61093.5 80327.5 
0.00008 21203.3 29761 39806.2 51014.5 
0.0001 19357.7 25767.9 33221.3 41665.5 
0.0002 18726.8 21327.5 23819.2 26672.5 
0.0005 53451.5 62504.3 64736.5 64815.6 
0.0008 203557 336113 432901 505458 
0.001 370495 740622 1110930 1481480 
0.002 185310 191772 162343 133114 
0.003 82471.3 58841.3 37421.5 25032.6 
0.004 46421.4 25700.3 13791.3 8421.8 
0.005 29729.7 13621.1 6567.1 3882.3 
0.008 11636.7 3685 1555.5 979.4 
0.01 7457.5 2018.7 845.2 585.8 
0.02 1877 350.3 188.9 203.5 
0.05 306.4 54 60.1 80 
0.08 122.1 27.1 37.5 50 
0.1 79.2 20.7 30 40 

Table 3.8 Some AIRL values for CQCr chart with λo=0.001 and α = 0.0027 
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As it is evident from the table, when the process is in control the AIRLr value is quite 

large and when the process average shifts the AIRLr value decreases, thus proving that 

the CQCr chart has a desirable AIRLr property. Figure 3.5 shows some AIRLr curves for 

λo=0.001 and α = 0.0027. 

 

From Table 3.8 it can be seen that AIRLr increases when λ < 0.0002, this is due to the 

effect of the term r/λ on the AIRLr. When λ becomes small (approaches zero), it tends to 

increase the average run length. Also, 1/(1-βr) tends to decrease the average item run 

length when the process improves but its effect is less dominant as compared to the other 

effect for small values of λ. Due to this when the process improves (i.e. λ decreases) the 

AIRLr first decreases and then increases.  

 

From Figure 3.5 it can also be seen that as λ increases, the AIRLr drops more sharply 

than the traditional CQC chart thus the CQCr charts (for r>1) are more sensitive to 

process deterioration than the CQC chart. 

 

Chan et al. (2000) show the AIRL property of CQC chart with only lower control limit, 

which means that only the process deterioration was of interest. Figure 3.6 shows some of 

the AIRLr curves of some CQCr charts having only a lower control limit with λo = 0.001 

and α = 0.00135. 
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Figure 3.5 Some AIRL curves of CQCr charts with λo = 0.001 and α = 0.0027 
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Figure 3.6 Some AIRL curves of CQCr charts (with only a lower control limit) with λo = 
0.001 and α = 0.00135 
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3.6. Comparison of CQCr chart and c chart 

Control charts based on a Poisson distribution, namely the c chart or the u chart, are often 

used to monitor the number of defects in sampling units. However, as discussed earlier, 

this procedure requires a large number of defects and it is not appropriate when applied to 

a high quality process, i.e. when the defect rate becomes small. The c chart and the u 

chart are based on the normal approximation of the Poisson distribution and this 

assumption is often violated when the average number of failures is small. As a result of 

this the false alarm probability can be much higher than its anticipated value of 0.27%. 

Moreover, the lower control limit is usually set at zero, which is not useful as process 

improvement cannot be detected. Control charts based on binomial distribution also face 

similar problems, see, e.g., Xie and Goh (1993a). In this section the performance of the 

CQCr chart is compared with the traditional Shewhart charts. 

 

3.6.1. Average Item Run Length of the c chart 

The probability limits of the traditional c chart are given as solutions of: 
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while the AIRL of the c chart, (AIRLc), can be written as: 
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The choice of the sample size depends on the value of the predetermined in-control 

AIRL. Moreover, the in-control AIRL of the two charts should be same in order to give a 

fair basis for comparison. Thus the sample size of the c chart can be calculated by 

equating the two in-control AIRLs and then solving for n. Theoretically, the sample size 

can be calculated as r/�. However, as the Poisson distribution is a discrete distribution, 

we cannot always get the in-control false alarm probability of 0.0027. In order to match 

the in-control AIRLs of the two charts the sample size should be calculated by iteration.  

 

The AIRL values of the CQCr charts are tabulated in Table 3.9 and the AIRL values of 

the corresponding c charts are listed in Table 3.10. The AIRL values have been calculated 

using the in-control defect rate as 0.001 and the false alarm probability of 0.0027. It can 

be seen that the two charts have the same in-control AIRL (marked in bold).  

 

From Table 3.9 it can be seen that when λ decreases, the AIRL values of the CQCr charts 

are smaller than those of the c charts. It is an indication that the CQCr chart is more 

sensitive in detecting process improvements. For all the c charts listed in Table 3.10, the 

AIRL increases when the process improves from � = 0.001, thus making them inadequate 

in detecting process improvement. This can be explained as follows: for the c charts with 

above parameters the lower control limit is taken as zero and hence only the upper 

control limit exists. As a result when the process improves the Type II error probability, 

�c increases and approaches 1. This also explains the notation N.A. in Table 3.10 which 

means no solution or in other word the improvement detection is not possible.  
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λ CQC1 CQC2 CQC3 CQC4 CQC5 CQC6 
0.00001 106829 200749 300059.2 400003.9 500000.2 600000 
0.00002 57062.4 101428 150218.7 200028.2 250003.2 300000 
0.00004 32560.9 52640.4 75751.64 100184.8 125040.9 150008 
0.00006 24772.9 37065.2 51471.15 67181.12 83497.3 100049 
0.00008 21203.3 29761.3 39806.3 51014.48 62912.15 75157 
0.0001 19357.7 25768.4 33221.44 41665.51 50805.73 60368.4 
0.0002 18726.8 21328.5 23819.69 26672.49 29931.04 33564.6 
0.0003 24127 26219 27219.13 28209.61 29393.39 30807.8 
0.0004 34875.6 38493.1 39158.64 39203.13 39194.24 39299 
0.0005 53450.8 62513.4 64741.55 64815.01 64146.87 63263.3 
0.0006 84234.5 107890 117200.3 120616.8 121270 120550 
0.0007 132948 191679 224177.8 242942.7 253770.1 259725 
0.0008 203533 336188 432962.2 505450.9 560643.5 603132 
0.0009 290179 543424 773730.9 984295 1.18E+06 1.35E+06 
0.001 370370 740741 1.11E+06 1.48E+06 1.85E+06 2.22E+06 
0.002 185185 191773 162363.5 133117.7 109662.7 91629.2 
0.003 82415.7 58841.4 37425.85 25033.17 17952.76 13727.1 
0.004 46390.2 25700.4 13792.84 8422.011 5851.445 4524.31 
0.005 29709.7 13621.1 6567.777 3882.399 2753.11 2247.12 
0.006 20645.7 8158.34 3674.863 2176.987 1618.656 1417.21 
0.007 15178.5 5316.48 2296.786 1393.181 1100.322 1034.57 
0.008 11628.9 3685.03 1555.661 979.4208 825.3149 827.342 
0.009 9194.44 2677.35 1119.799 737.9013 662.7403 700.452 
0.01 7452.52 2018.75 845.2739 585.7798 558.2727 614.611 
0.02 1875.71 350.329 188.8745 203.4752 250.1134 300.001 
0.04 475.263 80.0878 75.72133 100.001 125 150 
0.06 214.068 40.392 50.01438 66.66667 83.33333 100 
0.07 158.325 32.3218 42.85912 57.14286 71.42857 85.7143 
0.08 122.025 27.0582 37.50027 50 62.5 75 
0.1 79.1366 20.656 30 40 50 60 

Table 3.9 The AIRL values of the CQCr chart 

 

 

 



Monitoring Counted Data 
________________________________________________________________________ 
 

________________________________________________________________________ 
 67 

 

λ n (910) n (1777.7) n (2818) n (3969) n (4507) n (5774) 
0.00001 1.8E+15 1.60E+19 N.A. N.A. N.A. N.A. 
0.00002 5.6E+13 1.29E+17 N.A. N.A. N.A. N.A. 
0.00004 1.8E+12 1.E+15 3.85E+17 N.A. N.A. N.A. 
0.00006 2.4E+11 6.26E+13 1.05E+16 1.43E+18 2.03E+19 N.A. 
0.00008 5.7E+10 8.62E+12 8.33E+14 6.41E+16 6.25E+17 5.20E+19 
0.0001 1.9E+10 1.87E+12 1.18E+14 5.92E+15 4.66E+16 1.86E+18 
0.0002 6.4E+08 1.70E+10 2.96E+11 4.15E+12 1.72E+13 1.97E+14 
0.0003 9E+07 1.16E+09 9.89E+09 6.89E+10 2.00E+11 1.15E+12 
0.0004 2.3E+07 1.81E+08 9.55E+08 4.17E+09 9.59E+09 3.50E+10 
0.0005 8160000 4.43E+07 1.65E+08 5.13E+08 9.94E+08 2.62E+09 
0.0006 3540000 1.44E+07 4.10E+07 9.88E+07 1.68E+08 3.47E+08 
0.0007 1760000 5.70E+06 1.31E+07 2.59E+07 3.97E+07 6.79E+07 
0.0008 974226 2.61E+06 5.05E+06 8.51E+06 1.20E+07 1.77E+07 
0.0009 582350 1.33E+06 2.24E+06 3.32E+06 4.38E+06 5.76E+06 
0.001 370341 7.41E+05 1.11E+06 1.48E+06 1.85E+06 2.22E+06 
0.002 24029.3 2.55E+04 23974.7 22296.7 22722.2 21245.2 
0.003 6427.07 6173.3 5988.6 6173.1 6461.6 7045.5 
0.004 3020.98 3137.1 3561.3 4322.2 4765.3 5871.7 
0.005 1906.32 2270.7 2995.9 4016.2 4532.9 5778.5 
0.006 1430.33 1960.9 2855.9 3973.8 4508.9 5774.1 
0.007 1195.13 1843.5 2825.0 3969.4 4507.1 5774.0 
0.008 1069.26 1800.1 2819.1 3969.0 4507.0 5774.0 
0.009 999.186 1784.9 2818.2 3969.0 4507.0 5774.0 
0.01 959.594 1779.9 2818.0 3969.0 4507.0 5774.0 
0.02 910.065 1777.7 2818.0 3969.0 4507.0 5774.0 
0.04 910 1777.7 2818.0 3969.0 4507.0 5774.0 
0.06 910 1777.7 2818.0 3969.0 4507.0 5774.0 
0.07 910 1777.7 2818.0 3969.0 4507.0 5774.0 
0.08 910 1777.7 2818.0 3969.0 4507.0 5774.0 
0.1 910 1777.7 2818.0 3969.0 4507.0 5774.0 

Table 3.10 The AIRL values of the c chart 

 

Another interesting observation is that for CQCr charts the AIRL increases when λ < 

0.0002 (for r = 1-4) and when λ < 0.0003 (for r = 5-6). This happens due to the effect of 

the term r/λ on the AIRLr. When λ becomes small (approaches zero), it tends to increase 
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the AIRL. On the other hand, the term 1/(1-βr) tends to decrease the AIRL when the 

process improves but its effect is less dominant as compared to the other effect for small 

values of λ. Due to this when the process improves (i.e. λ decreases) the AIRLr first 

decreases and then increases. It can also be seen that a CQCr chart with a large value of r 

is more sensitive to small shifts in the process and is less sensitive to large shifts.  

 

When � increases, i.e. when the process deteriorates, it can be seen that the AIRL 

performance of the c chart is superior to that of a corresponding CQCr chart especially for 

small deterioration. When the magnitude of shift increases the CQCr chart outperforms 

the c chart in terms of sensitivity. Also, in case of the c chart, its AIRL cannot be less 

than the selected sample size as a result of which the c chart will end up producing more 

items with defects when the process shift occurs. 

 

3.6.2. An example 

Table 3.11 shows the number of items (quantity) inspected to observe a defect. The first 

30 points were simulated using the in-control defect rate of � = 0.001, while the next 15 

points were simulated using � = 0.0001 and the last 15 points were simulated using � = 

0.01. Using this data set we will illustrate the charting procedure of the CQCr and the c 

chart. For this purpose the data set in Table 3.11 is converted to record the cumulative 

quantity inspected to observe 3 defect (Table 3.12) and the number of defects observed in 

a sample of 2818 (Table 3.13).  
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2465.6 2189 2883.9 301.7 1577.5 626.2 398.8 6758 1538.3 671 

1282.5 445.6 47.8 709.2 986.8 699.8 1569.6 1738.3 2893.5 750.6 

147.6 971.5 729.4 115.3 251.2 1322.5 852.7 1887.3 559.8 312.2 

1707.6 3921 19694 1820.3 14831.1 5072.7 9625.7 22265.4 20215.3 22731.1 

1202.4 5906.6 89.8 9735.6 3142.5 546.4 71.5 152.8 66.1 35.2 
53.2 212.7 91.7 65.6 29.6 81.3 134.6 37.8 65.9 17.3 

Table 3.11 Quantity inspected to observe one defect (read across for consecutive data 
points) 

 

7538.5 2505.3 8695.1 2399 1743.8 4007.7 3791.7 1816.3 2426.4 2759.3 

25322.5 21724.1 52106.4 29840.1 12967.9 770.8 154.6 370 245.4 121 
Table 3.12 Quantity inspected till the occurrence of 3 defects (read across for consecutive 

data points) 

 

1 1 2 3 0 0 3 4 3 1 3 4 2 4 0 1 0 0 0 0 
0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 2 
0 0 1 3 13                

Table 3.13 Number of defects observed per sample (read across for consecutive data 
points) 

 

Solving Equations (3.3) and (3.8) with � = 0.0027, the control limits of the CQC3 chart 

and the c chart are obtained as  

UCL3 = 10869.3; CL3 = 2674.1; LCL3 = 211.7 and UCLc = 8; CLc = 2; LCLc = 0 

respectively. The CQC3 chart and the c charts with the computed limits are shown in 

Figures 3.7 and 3.8 respectively.  

 



Monitoring Counted Data 
________________________________________________________________________ 
 

________________________________________________________________________ 
 70 

0 10 20

100

1000

10000

100000

Observation Number

C
um

ul
at

iv
e 

Q
ua

nt
ity

UCL

CL

LCL

 

Figure 3.7 The CQC3 chart 

 

When the process improves from � = 0.001 to � = 0.0001, CQC3 chart raises an alarm on 

the very first out-of-control point. On the other hand the absence of lower control limit 

renders the c chart incapable of detecting the shift. This is perhaps the biggest demerit 

associated with the control charts based on the normal approximation assumption. As the 

figure shows a number of meaningless zeroes are plotted on the c chart.   

 

Another alternative to monitor the defects in a Poisson process is to use a CUSUM chart. 

The CUSUM chart has been shown to be very useful in detecting small shifts in the 

process. The important advantage associated with the CUSUM charts and the CQCr 

charts is that they are free from the sample size constraint and are thus superior to the c 

and the u chart. The CUSUM scheme is studied in detail in the next chapter and its 

performance is compared to that of the CQCr charts. 
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Figure 3.8 The c chart 
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4.1. Overview of Exponential CUSUM Charts 

A time-between-events CUSUM can be defined in the following manner: If X1, X2,… be 

the inter-arrival times then, as mentioned in 2.7, the time-between-events CUSUM for 

detecting an increase or decrease in the inter-arrival times can be respectively defined as 
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where, k is the reference value and can be treated as the reference value of the Wald 

sequential probability ratio test; see Moustakides (1986) and Reynolds and Stoumbos 

(1998). The value of the reference value k can be calculated for any given in-control 

defect rate, �0, and an out-of-control defect rate, �d, that the CUSUM scheme is designed 

to detect quickly as; see Lucas (1985): 
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The control limits of the CUSUM scheme are denoted by h and the decision on the 

statistical control of the process is taken depending on whether St
- � -h or St

+ � h. Once 

the reference value k has been calculated, a suitable value of h can be found out to give 

an acceptable in-control average run length. The average run length of the CUSUM 
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scheme can be calculated by the Markov chain approach, see Brook and Evans (1972) 

and Lucas (1985).  

 

When the random variable is continuous, the Markov chain method gives an approximate 

answer; however, this answer can be brought reasonably close to the exact values by 

grouping the possible values of the random variable into discrete class intervals. The 

width of the interval is given by: 

 

1
2
−

=
t

h
w           (4.2) 

 

where, t is the number of states in the Markov chain process.  

 

The transition probabilities are defined as: 
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where, r = j – i, where i is the state before transition and j is the state after transition. The 

transition probability matrix can then be written as: 
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Using the Markov chain result:  

 

1)( =− µRI        (4.4) 

 

where, I is the h × h identity matrix and R is the matrix obtained from the transition 

probability matrix P by deleting the last row and column and µ is a vector of factorial 

moments. 

 

The first element of the vector µ gives the average run length for the CUSUM chart.  

 

4.2. Numerical comparison based on ARL and ATS performance 

The case of process deterioration and improvement are considered separately. To detect 

the process deterioration, the performance of the lower CUSUM is compared to that of 

the CQC chart and CQCr chart having only a lower control limit. Similarly the 

performance of the upper CUSUM chart is compared to that of the CQC chart and CQCr 

chart with only an upper control limit. An in-control average run length of 370 is used for 

both cases, which translates to a false alarm probability of approximately 0.0027 for the 

CQCr charts with single limit. The in-control average time to signal (ATS0) is also fixed 
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as 370 for which the false alarm probability of the CQCr charts can be calculated as 

0.0027r/�0 (where �0 = 1).  

 

4.2.1. Case I: Process Deterioration 

The in-control value of the defect rate is assumed to be 1 and say that the user is 

interested in quickly identifying a shift to 1.4, 1.9 and 2.5. The reference value k for the 

three CUSUM charts, now onwards referred to as Lower CUSUM 1(LC-1), Lower 

CUSUM 2 (LC-2) and Lower CUSUM 3 (LC-3) respectively, can be calculated using 

Equation (4.1). The appropriate value of h can then be calculated to give an in-control 

ARL0 of approximately 370. The k and h values for the three CUSUM charts are found 

out to be, (0.84, 7.16), (0.71, 4.13) and (0.61, 2.783) respectively. The Markov chain 

approach (with 151 states) was then used to calculate the ARL for different values of 

defect rate. Table 4.1 shows the ARL values of the three CUSUM charts along with the 

ARL values of CQC, CQC2, CQC3 and CQC4 charts.  

 

It can be seen from the table that the CQCr charts are out-performed by the CUSUM 

charts. LC-1 chart gives a satisfactorily low ARL for small deteriorations in process 

while the LC-2 and LC-3 charts give better performance for moderate and larger shifts. 

Among the CQCr charts, the control chart with large r performs better than those with 

small r. The performance of CQC4 chart is quite close to that of the CUSUM charts and 

in fact is better than LC-1 and LC-2 charts for large shifts.  
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However it is not appropriate to use the ARL as a performance measure as it does not 

take into account the time needed to plot one point on the control chart. Moreover, the 

time needed to plot one point on CQCr chart is r times the time needed to plot one point 

on CQC chart Thus to give a better picture of the chart performance, average time to 

signal (ATS) is now used as the yardstick for comparison in place of ARL. Table 4.2 

shows the ATS values for all the seven charts mentioned above.  Again it can be seen that 

the CQCr charts perform worse than the CUSUM chart. For large process deteriorations, 

however, the performance of CQC4 chart is somewhat similar to the CUSUM charts. 

 

� CQC CQC2 CQC3 CQC4 LC-1 LC-2 LC-3 
1 370.37 370.37 370.37 370.37 370 370.23 370.3 

1.1 336.75 307.62 283.89 264.4 164.1 190.74 211.5 
1.2 308.73 259.78 223.08 195.1 91.84 111.32 131.2 
1.3 285.02 222.46 178.99 148.02 61.07 72.38 87.47 
1.4 264.69 192.77 146.19 114.99 45.65 51.47 62.18 
1.5 247.08 168.76 121.25 91.17 36.87 39.3 46.7 
1.6 231.67 149.07 101.91 73.57 31.33 31.71 36.74 
1.7 218.07 132.7 86.66 60.3 27.58 26.69 30.05 
1.8 205.98 118.96 74.47 50.11 24.88 23.19 25.38 
1.9 195.17 107.3 64.58 42.16 22.85 20.65 21.99 
2 185.44 97.32 56.47 35.86 21.27 18.74 19.47 

2.1 176.63 88.71 49.75 30.8 20.02 17.26 17.55 
2.2 168.62 81.23 44.13 26.7 18.99 16.08 16.03 
2.3 161.31 74.69 39.39 23.33 18.13 15.12 14.83 
2.4 154.61 68.93 35.36 20.54 17.41 14.33 13.84 
2.5 148.45 63.84 31.9 18.21 16.8 13.67 13.03 
2.6 142.76 59.32 28.92 16.25 16.26 13.1 12.34 
2.7 137.49 55.28 26.33 14.58 15.8 12.61 11.76 
2.8 132.6 51.66 24.07 13.15 15.39 12.19 11.26 
2.9 128.04 48.39 22.09 11.92 15.02 11.82 10.83 
3 123.79 45.44 20.35 10.86 14.7 11.49 10.45 

Table 4.1 ARL values when the process deteriorates from �0 = 1 
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� CQC CQC2 CQC3 CQC4 LC-1 LC-2 LC-3 
1 370.37 370.37 370.37 370.37 370 370.23 370.33 

1.1 306.13 280.25 260.56 245.48 149.22 173.4 192.27 
1.2 257.27 217.4 189.49 169.55 76.54 92.77 109.29 
1.3 219.24 172.21 141.68 121.24 46.97 55.68 67.28 
1.4 189.07 138.86 108.48 89.28 32.61 36.76 44.42 
1.5 164.72 113.7 84.76 67.44 24.58 26.2 31.13 
1.6 144.79 94.36 67.42 52.07 19.58 19.82 22.96 
1.7 128.28 79.22 54.47 40.99 16.22 15.7 17.68 
1.8 114.44 67.21 44.62 32.83 13.82 12.89 14.1 
1.9 102.72 57.55 37 26.69 12.03 10.87 11.58 
2 92.72 49.69 31.02 22 10.64 9.37 9.74 

2.1 84.11 43.23 26.27 18.36 9.53 8.22 8.36 
2.2 76.65 37.87 22.45 15.49 8.63 7.31 7.29 
2.3 70.14 33.37 19.34 13.2 7.88 6.58 6.45 
2.4 64.42 29.58 16.79 11.35 7.26 5.97 5.77 
2.5 59.38 26.35 14.67 9.85 6.72 5.47 5.21 
2.6 54.91 23.59 12.91 8.61 6.25 5.04 4.75 
2.7 50.92 21.22 11.42 7.58 5.85 4.67 4.36 
2.8 47.36 19.16 10.16 6.72 5.5 4.35 4.02 
2.9 44.15 17.36 9.08 5.99 5.18 4.08 3.73 
3 41.26 15.79 8.16 5.37 4.9 3.83 3.48 

Table 4.2 ATS values when the process deteriorates from �0 = 1 

 

4.2.2. Case II: Process Improvement 

The in-control value of the defect rate is again assumed to be 1 and say that the user is 

interested in quickly identifying a shift to 0.9, 0.5 and 0.1. The reference value k and the 

appropriate value of h were then calculated to give an in-control ARL0 of approximately 

370. The k and h values for the two CUSUM charts, now onwards referred to as Upper 

CUSUM-1 (UC-1), Upper CUSUM-2 (UC-2 ) and Upper CUSUM-3 (UC-3) 

respectively, are found out to be (1.05, 13.82), (1.39, 6.81) and (2.56, 3.58) respectively.  
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Table 4.3 shows the ARL values of charts when the process improves. Clearly the UC-1 

chart identifies the shift to λ = 0.9 faster than the other charts. UC-1 chart picks up the 

small changes faster than the rest followed by the CQC4 chart. For moderate and large 

shifts, however, the CQCr charts perform better than the CUSUM charts. 

 

� CQC CQC2 CQC3 CQC4 UC-1 UC-2 UC-3 
1 370.37 370.37 370.37 370.37 370.08 370.86 370.21 

0.95 275.56 258.21 245.98 236.22 205.1 237.02 268.22 
0.9 205.01 180.41 164.08 151.68 126.63 154.19 194.36 

0.85 152.52 126.35 109.99 98.11 85.43 102.48 140.91 
0.8 113.48 88.72 74.13 63.98 61.62 69.8 102.26 

0.75 84.43 62.48 50.25 42.1 46.59 48.83 74.33 
0.7 62.81 44.15 34.3 27.99 36.41 35.1 54.14 

0.65 46.74 31.31 23.58 18.81 29.12 25.91 39.55 
0.6 34.77 22.3 16.35 12.81 23.66 19.59 29 

0.55 25.87 15.96 11.45 8.85 19.42 15.13 21.37 
0.5 19.25 11.48 8.11 6.21 16.04 11.89 15.83 

0.45 14.32 8.32 5.81 4.45 13.28 9.46 11.8 
0.4 10.65 6.07 4.23 3.25 10.99 7.6 8.86 

0.35 7.92 4.47 3.14 2.44 9.06 6.14 6.7 
0.3 5.9 3.33 2.37 1.89 7.41 4.96 5.1 

0.25 4.39 2.52 1.85 1.52 5.98 4 3.9 
0.2 3.26 1.93 1.48 1.27 4.73 3.2 3 

0.15 2.43 1.52 1.24 1.12 3.63 2.52 2.3 
0.1 1.81 1.24 1.09 1.03 2.66 1.94 1.77 

0.05 1.34 1.07 1.01 1 1.78 1.44 1.34 
0.01 1.06 1 1 1 1.15 1.08 1.06 

Table 4.3 ARL values when the process improves from �0 = 1 

 

Table 4.4 shows the ATS values of the three CUSUM charts listed along with the ATS 

values of the CQCr charts (r = 1-4). Clearly the UC-1 chart identifies the shift to λ = 0.9 

faster than the other charts. UC-1 chart picks up the small changes faster than the rest 
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followed by the UC-2 chart. For moderate shifts (the middle portion of the table) UC-2 

gives the best performance followed by the CQC4 chart. The table also shows that the 

ATS of the charts first decreases as the process improves and then increases. This is due 

to the effect of the term r/λ on the ATS (Equation (3.7)) as explained in section 3.5. 

When λ becomes small, it tends to increase the ATS. The second term in Equation (3.8) 

tends to decrease the ATS when the process improves but its effect is less dominant as 

compared to the other effect for small values of λ. Due to this when the process improves 

(i.e. λ decreases) the ATS first decreases and then increases. As a result for large shifts, 

the CQC chart and the CUSUM (particularly UC-3) charts perform better than the rest. 

 

� CQC CQC2 CQC3 CQC4 UC-1 UC-2 UC-3 
1 370.37 370.37 370.36 370.37 370.08 370.86 370.21 

0.95 290.06 282.5 276.7 271.97 215.89 249.49 282.34 
0.9 227.79 216.53 208.17 201.55 140.7 171.32 215.96 

0.85 179.44 166.87 157.84 150.88 100.51 120.56 165.78 
0.8 141.85 129.38 120.71 114.22 77.02 87.25 127.83 

0.75 112.57 100.99 93.21 87.55 62.12 65.1 99.1 
0.7 89.73 79.43 72.75 68.04 52.02 50.14 77.34 

0.65 71.9 63.03 57.49 53.72 44.8 39.86 60.85 
0.6 57.95 50.51 46.06 43.16 39.43 32.65 48.34 

0.55 47.03 40.95 37.5 35.4 35.31 27.51 38.85 
0.5 38.49 33.66 31.11 29.71 32.08 23.78 31.66 

0.45 31.82 28.11 26.37 25.63 29.52 21.03 26.23 
0.4 26.63 23.95 22.96 22.82 27.48 19.01 22.15 

0.35 22.64 20.91 20.64 21.12 25.88 17.54 19.14 
0.3 19.65 18.84 19.3 20.47 24.69 16.54 16.99 

0.25 17.55 17.69 19.01 21.03 23.91 16 15.6 
0.2 16.32 17.59 20.05 23.28 23.65 15.98 14.98 

0.15 16.19 19.09 23.34 28.51 24.2 16.79 15.36 
0.1 18.07 24.03 31.83 40.76 26.55 19.39 17.66 

0.05 26.88 42.24 60.6 80.14 35.66 28.75 26.82 
0.01 106.09 200.52 300.03 400 115.02 108.3 106.26 

Table 4.4 ATS values when the process improves from �0 = 1 
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4.3. Implementing the charts 

This section discusses some of the implementation issues associated with the CQC, 

CUSUM and the CQCr charts. The CQC and the CQCr charts plot the time or the 

quantity observed till the occurrence of an event (defect or failure) while the CUSUM 

charts plots the difference of the observed quantity from the reference value. One of the 

drawbacks associated with the CUSUM chart is the extensive computing required. In the 

case of CQC and the CQCr charts, the calculation of lower and upper control limits is 

much easier compared to the calculation of k and h for the CUSUM charts.  

 

Issues CQC CQCr CUSUM 

Information required Time/Quantity 
between events 

Time/Quantity 
between events 

Time/Quantity between 
events 

Parameters False alarm 
probability 

• r 
• False alarm 

probability 

• Reference Value (k) 
• Decision Interval (h) 

Value Plotted Time/Quantity 
between events 

Time/Quantity 
between r events 

Deviations from the 
reference value 

Calculation required Control limits Control Limits • Reference Value (k) 
• Decision Interval (h) 

Sensitivity Comparatively less 
sensitive 

Sensitive to moderate 
and large shifts Sensitive to small shifts 

Table 4.5 Implementation Issues  

 

Thus if ease of design is an issue, then the CQCr charts may turn out to be better 

alternative compared to the CUSUM charts. Even from operation point of view, the 

CQCr charts appear more promising due to their resemblance to the Shewhart chart 
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charts. The optimum CUSUM design discussed in this chapter requires extensive 

computing. On the other hand for the case of CQCr charts a simple algorithm can be 

written to calculate the control limits and the average run length. Most of the calculations 

in this chapter were done using the statistical software, MATHEMATICA.  

 

4.4. An example 

The charting procedure of the three charts for times between events will be illustrated 

with an example here. Table 4.6 shows some time between events. The first 36 values 

(across) correspond to a historical in-control defect rate of λ0 = 1. The last 24 points were 

simulated when the process average is shifted to λ = 0.9, which means that the process 

has improved. Suppose the user is interested in detecting the process improvement only.   

 

0.367 1.078 0.732 0.681 0.805 0.373 
1.42 0.514 1.649 0.508 2.193 0.368 

0.471 0.89 0.095 0.233 0.262 0.727 
0.461 0.641 0.318 0.163 1.819 1.304 
3.362 0.674 0.384 0.268 0.531 0.197 
0.822 1.788 0.927 1.518 1.115 0.744 
0.289 0.236 0.967 0.424 7.304 1.249 
0.265 2.065 1.439 0.827 0.521 0.137 
1.59 0.039 0.063 2.363 0.476 2.15 

0.759 0.055 1.515 0.086 1.922 0.823 
Table 4.6 Time between events data (read across for consecutive values) 

 

Using Equation (2.12), the upper control limit of the CQC chart (for α = 0.0027) can be 

found as 

91.5
)ln(

0

=−=
λ
α

UQ  
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The reference value of the CUSUM chart designed to detect the shift from λ0 = 1to λ = 

0.9 can be calculated using Equation (4.1) can then be found as 

05.1
19.0

)1ln()9.0ln( =
−
−=k  

Once the reference value is known, an appropriate value for the decision interval can be 

found out so that it gives a desired in-control ATS performance. The value of h for an in-

control ATS of 370 is 13.82. 

 

Since the CQC chart makes use of a single observation in decision making, a CQCr chart 

could be used if more observations are to be taken into consideration in an easy way. The 

data shown in Table 4.6 is converted into the data of Table 4.7 which shows the 

cumulative time between every three occurrences, i.e. Q3. The control limits of the CQC3 

chart can be calculated by using Equation (3.3) and solving it with the help of some 

statistical or mathematical package. Using MATHEMATICA the upper control limit of 

the CQC3 chart can be calculated as 8.67. The CQC chart, CUSUM chart and the CQCr 

chart are shown in Figures 4.1, 4.2 and 4.3 respectively.  

 

 2.177 1.859 3.583 3.069 1.456 1.222 1.42 3.286 4.42 0.996 
3.537 3.377 1.492 8.977 3.769 1.485 1.692 4.989 2.329 2.831 

Table 4.7 Cumulative time between every three events 
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Figure 4.1 The CQC chart for data in Table 4.6  
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Figure 4.2 The CUSUM chart for data in Table 4.6 



Control Charts for Monitoring the Inter-arrival times 
________________________________________________________________________ 
 

________________________________________________________________________ 
 85 

20100

10

1

Observation Number

ev
en

ts
C

um
ul

at
iv

e 
Q

ua
nt

ity
 to

 o
bs

er
ve

 3 UCL = 8.67

 

Figure 4.3 The CQC3 chart data in Table 4.7 

 

Interestingly both the CQC and the CQC3 charts raise an alarm while the CUSUM chart 

does not. However, the pattern on the CUSUM chart does point out a shift in the process. 

 

4.5. Detecting the shift when the underlying distribution changes 

4.5.1. Case I: Weibull Distribution 

In this section the performance of the CUSUM charts and CQCr charts arte studied when 

the underlying distribution can no longer be modeled by the exponential distribution. We 

have assumed that the underlying distribution can be modeled by the Weibull 

distribution. It should be noted that although similar ideas could be used for other 
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distributions, the Weibull distribution is probably the most widely used one and it is very 

flexible for modeling increasing or decreasing failure rate. 

 

Even though the scale parameter (θ) is more likely to change but sometimes the shape 

parameter (β), which depends on the material property, can also change. In this study we 

have only concentrated on the change in shape parameter, and the scale parameter is 

fixed as 1. For Weibull distribution, the mean is given by 

 

( )βθµ /11][ +Γ== TE     (4.5) 

 

and the variance is given by 

 

( ) ( )[ ]{ }222 /11/21 ββθσ +Γ−+Γ=     (4.6) 

 

It can be seen that the mean and the variance are strongly affected by the scale and shape 

parameter. When the shape parameter increases, both the mean and the variance reduce. 

However the decrease in variance is quite significant compared to the decrease in mean. 

Table 4.8 shows the ARL values of the charts when the shape parameter increases. As 

can be seen with the increase in shape parameter the chances of point falling within the 

limits increases. Thus the control charts will have larger out-of-control ARLs as 
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compared to the in-control ARLs. Same is the case for the Average time to signal, shown 

in Table 4.9. 

 

β CQC CQC2 CQC3 CQC4 LC-1 LC-2 LC-3 
1 370.37 362.02 366.33 368.34 370 370.23 370.33 

1.1 668.62 668 683.41 681.19 396.66 495.81 556.8 
1.2 1207.36 1233.33 1274.04 1295.18 428.72 680.56 865.39 
1.3 2180.54 2343.78 2192.89 2150.86 468.14 960 1391.93 
1.4 3938.43 3858.76 4716.23 4076.24 517.32 1394.87 2318.26 
1.5 7113.84 8328.59 9077.33 10775.54 579.35 2091.6 3997.87 
1.6 12849.8 17053.16 20597.06 15780.21 658.4 3241.43 7134.44 
1.7 23210.9 27664.47 23863.44 32366.8 760.21 5196.67 13161.73 
1.8 41926.9 45016.36 55224.28 64330.38 893.01 8622.67 25066.73 
1.9 75734.8 70173.18 124862 166029.2 1068.74 14807.8 49207.2 
2 136804 135287 207234 256074.3 1305.07 26308.73 99394.64 

Table 4.8 ARL values when the shape parameter increases 

 

β CQC CQC2 CQC3 CQC4 LC-1 LC-2 LC-3 
1 370.37 362.45 367.8 373.98 370 370.23 370.33 

1.1 645.16 507.15 503.31 493.4 382.74 478.41 537.27 
1.2 1135.71 650.1 635.13 611.01 403.28 640.18 814.03 
1.3 2013.9 783.3 755.4 729.48 432.36 886.64 1285.55 
1.4 3589.58 917.65 880.04 852.73 471.5 1271.31 2112.92 
1.5 6421.98 1067.11 1021.39 976.83 523.01 1888.18 3609.05 
1.6 11520.8 1219.61 1150.66 1099.29 590.3 2906.18 6396.56 
1.7 20709.81 1332.77 1260.79 1247.81 678.3 4636.7 11743.49 
1.8 37285.05 1473.91 1391.62 1375.16 794.15 7668.03 22291.52 
1.9 67204.26 1645.28 1534.33 1478.71 948.36 13139.9 43664.65 
2 121239.4 1715.03 1665.17 1631.86 1156.59 23315.5 88086.22 

Table 4.9 ATS when the shape parameter increases 

 

When the shape parameter decreases, the variance increases thus resulting in a decrease 

in the ARL and the control charts will be able to detect the decrease in the shape 
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parameter. Table 4.10 lists the ARL values when the shape parameter increases and the 

CQC4 chart detects the shifts fastest. In fact, in general all the CQCr charts perform better 

than the CUSUM charts (except for the CQC chart which outperforms the CUSUM 

charts only for β � 0.3). 

 

β CQC CQC2 CQC3 CQC4 UC-1 UC-2 UC-3 
1 370.37 366.56 395.84 384.36 370.08 370.28 370.21 

0.9 141.37 123.68 120.86 115.35 172.48 145.38 138.05 
0.8 63.12 53.6 45.03 42.99 90.61 67.04 61.18 
0.7 32.14 23.92 20.77 17.77 51.56 35.27 31.25 
0.6 18.27 12.59 10.13 8.73 30.81 20.54 17.92 
0.5 11.38 7.41 5.79 4.8 18.98 12.93 11.27 
0.4 7.66 4.76 3.64 3.07 11.97 8.65 7.65 
0.3 5.5 3.41 2.55 2.15 7.76 6.08 5.52 
0.2 4.17 2.51 1.94 1.65 5.21 4.47 4.18 
0.1 3.3 2 1.57 1.36 3.66 3.42 3.31 

Table 4.10 ARLs when the shape parameter decreases 

 

This is again a very good example of the case where the ARL values do not actually 

represent the correct information. Table 4.11 shows the ATS values for the control charts 

when the shape parameter decreases. From the table it can be noticed that as the shape 

parameter becomes very small the average time to signal becomes very large. This can be 

explained as follows: as the shape parameter decreases, no doubt the variability increases 

but at the same time the mean increases resulting in an increase in the ATS. For β � 0.3, 

the increase in mean in somewhat gradual but after that as the shape parameter further 

decreases, the mean increases very steeply as a result of which the time to plot a point 

become quite large and thus the ATS increases. In general, for β � 0.3 the CQC chart and 

the UC-3 chart give the best and almost identical performance. 
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β CQC CQC2 CQC3 CQC4 UC-1 UC-2 UC-3 
1 370.37 376.93 356.88 375.82 370.08 370.28 370.21 

0.9 148.75 159.35 159.32 169.79 181.48 152.96 145.26 
0.8 71.52 82.36 84.55 89.8 102.67 75.96 69.32 
0.7 40.68 45.51 50.17 52.08 65.26 44.64 39.56 
0.6 27.48 31.4 33.47 36.5 46.35 30.91 26.96 
0.5 22.76 26.05 28.62 30.52 37.95 25.86 22.55 
0.4 25.46 28.81 32.18 35.62 39.79 28.73 25.42 
0.3 50.92 59.56 66.95 73.96 71.84 56.28 51.08 
0.2 499.88 555.79 615.58 734.34 625.05 535.83 502.17 
0.1 11982152 13283098 11148821 15190426 13291052 12401015 12020158 

Table 4.11 ATS when the shape parameter decreases 

 

4.5.2. Case II: lognormal distribution 

The lognormal distribution is a widely used distribution in the field of economics. It is 

also used in modeling the processing time and repair times in the manufacturing industry. 

In this section the properties of the CQCr chart are studied when the underlying 

distribution changes from exponential to lognormal.  

 

The normal and lognormal distributions are closely related. If X is distributed lognormal 

with parameters µ and σ2, then the natural logarithm of X is distributed normal with 

parameters µ and σ2.  

 

The probability density function and the cumulative distribution function of the log 

normal distribution are: 
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The mean and variance of the lognormal distribution are: 
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Variance σµσµ ++ −= ee              (4.10) 

 

It can be seen that the mean and the variance are affected by changes in the parameters µ 

and σ2. When either µ  or σ  increases, both the mean and the variance increase. 

 

Figures 4.4 and 4.5 show the effect of changes in parameter µ  or σ  on the operation 

characteristic of the CQC chart with an in control parameter of 1 and false alarm 

probability of 0.0027. As µ or σ  decreases the Type II error probability increases. 

However the decrease in µ is more significant than the decrease inσ. Due to the increase 

in type II error the chart will take longer time to raise an alarm. In fact for small values of 

µ  and σ the type II error probability is close to one and makes it practically impossible 

for the chart to detect this shift. 
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Figure 4.4 The Type II error probability of CQC chart (top view) 
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Figure 4.5 The Type II error probability of the CQC chart (side view) 
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Tables 4.12 and 4.13 show the ARL values of the CQC chart for different values of µ  

and σ. Tables 4.14 and 4.15 show the computed values of the ARLs for CQC2 chart. The 

in control defect rate and false alarm probability for both the charts were fixed at 1 and 

0.0027 respectively.  

 

The ARLs were computed for charts having only an upper control limit. The reason why 

the lower control limit case was not used is that as the mean or standard deviation 

decrease, the probability of a point to fall below the lower control limit of either chart 

becomes very small and hence the chart will take too long to indicate the shift. For 

example, for µ  = 0 and σ = 1, the ARL of the CQC chart with a lower control limit is 

about 595908103.62. As µ  and σ decrease the ARL further increases. The ARLs of the 

CQC2 charts were calculated by simulation. For each set of value of µ  and σ  100000 

following lognormal distribution were simulated. 
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µ\σ 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 

0.7 64.15 39.9 27.57 20.53 16.16 13.26 11.23 9.76 8.65 7.79 7.11 

0.68 72.81 44.42 30.23 22.25 17.35 14.12 11.89 10.27 9.07 8.13 7.4 

0.65 82.83 49.53 33.2 24.14 18.64 15.06 12.6 10.83 9.51 8.5 7.71 

0.63 94.44 55.33 36.51 26.23 20.06 16.08 13.36 11.42 9.98 8.88 8.03 

0.6 107.92 61.93 40.22 28.54 21.61 17.18 14.18 12.05 10.48 9.29 8.37 

0.58 123.6 69.44 44.38 31.09 23.3 18.37 15.06 12.72 11.02 9.73 8.73 

0.55 141.89 78.01 49.03 33.91 25.15 19.66 16 13.45 11.59 10.19 9.1 

0.53 163.24 87.8 54.26 37.03 27.18 21.07 17.03 14.22 12.19 10.67 9.5 

0.5 188.25 99 60.14 40.5 29.4 22.59 18.13 15.05 12.84 11.19 9.93 

0.48 217.57 111.83 66.77 44.34 31.85 24.25 19.32 15.94 13.53 11.74 10.37 

0.45 252.04 126.57 74.23 48.62 34.53 26.06 20.61 16.9 14.26 12.32 10.85 

0.43 292.64 143.52 82.66 53.38 37.48 28.03 21.99 17.92 15.05 12.94 11.35 

0.4 340.57 163.04 92.19 58.68 40.73 30.18 23.5 19.02 15.89 13.6 11.88 

0.38 397.26 185.57 102.98 64.59 44.32 32.52 25.13 20.21 16.78 14.3 12.44 

0.35 464.45 211.61 115.21 71.2 48.27 35.08 26.89 21.48 17.74 15.04 13.03 

0.33 544.26 241.77 129.1 78.58 52.63 37.88 28.8 22.86 18.77 15.84 13.66 

0.3 639.27 276.74 144.89 86.84 57.46 40.94 30.87 24.33 19.86 16.68 14.33 

0.28 752.61 317.37 162.87 96.1 62.8 44.29 33.12 25.93 21.04 17.58 15.04 

0.25 888.1 364.66 183.38 106.49 68.71 47.97 35.57 27.65 22.3 18.54 15.79 

0.23 1050.43 419.8 206.79 118.16 75.26 52 38.23 29.5 23.66 19.56 16.59 

0.2 1245.33 484.19 233.55 131.29 82.54 56.42 41.12 31.5 25.11 20.66 17.44 

0.18 1479.85 559.54 264.21 146.07 90.62 61.28 44.27 33.67 26.67 21.82 18.34 

0.15 1762.64 647.84 299.36 162.73 99.61 66.63 47.7 36.01 28.34 23.07 19.3 

0.13 2104.4 751.53 339.73 181.54 109.61 72.52 51.45 38.54 30.14 24.4 20.31 

0.1 2518.32 873.48 386.17 202.8 120.76 79 55.53 41.28 32.08 25.82 21.4 

0.08 3020.74 1017.18 439.65 226.85 133.2 86.15 59.99 44.25 34.16 27.35 22.55 

0.05 3631.94 1186.8 501.35 254.09 147.09 94.04 64.87 47.47 36.4 28.98 23.78 

0.03 4377.09 1387.38 572.62 285 162.61 102.76 70.21 50.97 38.82 30.73 25.09 

0 5287.58 1624.99 655.08 320.1 179.98 112.4 76.05 54.76 41.43 32.6 26.49 

Table 4.12 ARL of CQC chart when the distribution changes to lognormal 
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µ\σ 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 
0.7 146.39 93.48 66.47 51.07 41.58 35.37 31.15 28.2 26.11 24.63 23.61 

0.675 162.05 101.48 71.08 53.98 43.53 36.75 32.16 28.96 26.7 25.09 23.96 

0.65 179.8 110.37 76.14 57.13 45.63 38.22 33.23 29.76 27.31 25.56 24.33 

0.625 199.93 120.25 81.67 60.54 47.88 39.79 34.37 30.61 27.96 26.06 24.73 

0.6 222.83 131.27 87.75 64.23 50.3 41.46 35.57 31.51 28.64 26.59 25.14 

0.575 248.91 143.56 94.42 68.24 52.9 43.24 36.85 32.45 29.35 27.14 25.57 

0.55 278.67 157.29 101.75 72.6 55.69 45.14 38.2 33.45 30.11 27.72 26.02 

0.525 312.7 172.65 109.82 77.33 58.7 47.18 39.64 34.5 30.9 28.33 26.49 

0.5 351.69 189.87 118.72 82.47 61.94 49.34 41.16 35.61 31.73 28.97 26.99 

0.475 396.44 209.19 128.53 88.08 65.42 51.66 42.78 36.79 32.61 29.64 27.51 

0.45 447.91 230.91 139.38 94.19 69.19 54.14 44.5 38.03 33.53 30.34 28.05 

0.425 507.23 255.37 151.37 100.85 73.25 56.8 46.33 39.34 34.51 31.08 28.62 

0.4 575.72 282.95 164.66 108.13 77.64 59.64 48.28 40.73 35.53 31.85 29.21 

0.375 654.96 314.09 179.39 116.09 82.38 62.68 50.34 42.2 36.61 32.67 29.84 

0.35 746.84 349.33 195.74 124.8 87.51 65.95 52.55 43.75 37.74 33.52 30.49 

0.325 853.57 389.25 213.92 134.34 93.07 69.45 54.89 45.4 38.94 34.41 31.18 

0.3 977.82 434.55 234.16 144.8 99.09 73.21 57.39 47.14 40.2 35.35 31.89 

0.275 1122.76 486.05 256.72 156.28 105.62 77.25 60.05 48.99 41.53 36.34 32.64 

0.25 1292.18 544.69 281.9 168.9 112.72 81.59 62.9 50.94 42.94 37.38 33.43 

0.225 1490.63 611.57 310.03 182.79 120.42 86.27 65.93 53.02 44.42 38.47 34.25 

0.2 1723.58 687.96 341.52 198.08 128.8 91.3 69.17 55.22 45.98 39.62 35.11 

0.175 1997.58 775.39 376.81 214.94 137.92 96.71 72.63 57.56 47.63 40.82 36.02 

0.15 2320.57 875.59 416.4 233.54 147.85 102.56 76.33 60.04 49.37 42.08 36.96 

0.125 2702.1 990.65 460.89 254.1 158.69 108.86 80.28 62.67 51.21 43.42 37.95 

0.1 3153.75 1122.97 510.95 276.84 170.51 115.67 84.52 65.48 53.15 44.82 38.99 

0.075 3689.54 1275.43 567.36 302.03 183.43 123.02 89.06 68.45 55.2 46.29 40.08 

0.05 4326.53 1451.37 631 329.95 197.56 130.97 93.92 71.62 57.38 47.84 41.22 

0.025 5085.45 1654.77 702.91 360.95 213.01 139.58 99.13 75 59.68 49.47 42.42 

0 5991.61 1890.33 784.28 395.4 229.95 148.9 104.73 78.59 62.11 51.19 43.67 

Table 4.13 ATS of CQC chart when the distribution changes to lognormal 
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µ\σ 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 

0.7 25.23 16.95 12.59 9.64 7.92 6.75 5.94 5.16 4.7 4.3 3.97 
0.65 33.91 21.93 15.69 11.6 9.29 7.78 6.75 5.77 5.21 4.72 4.33 

0.6 48.55 29.09 19.87 14.16 11.1 9.18 7.54 6.5 5.78 5.14 4.67 

0.55 68.99 38.53 23.87 17.31 13.03 10.51 8.7 7.41 6.36 5.69 5.13 

0.5 98.47 49.53 30.69 21.7 15.64 12.37 9.8 8.32 7.24 6.33 5.65 

0.45 138.31 68.22 39.71 26.01 19.13 14.66 11.37 9.47 8.04 6.94 6.16 

0.4 196.33 91.62 53.03 33.43 23.48 17.07 13.14 11.04 9.19 7.78 6.9 

0.35 308.72 136.24 66.21 42.21 28.25 20.56 15.69 12.59 10.58 8.8 7.69 

0.3 404.78 184.13 94.37 53.97 35.02 24.73 18.17 14.36 11.65 9.91 8.37 

0.25 821.84 265.16 122.4 67.55 43.3 30.04 20.99 16.81 13.33 11.15 9.43 

0.2 805.4 372.36 165.92 87.28 52.58 35.89 25.86 19.49 15.57 12.85 10.48 

0.15 1738.67 575.1 215.28 116.95 68.9 45.33 30.46 22.82 17.98 14.39 11.9 

0.1 2262.32 824.69 314.59 146.2 90.15 52.88 38.96 26.5 20.78 16.41 13.49 

0.05 3480.93 1061.66 457.39 188.3 115.87 66.64 45.52 31.84 23.47 18.44 15.13 

0 7320 1873.79 561.28 271.6 133.67 82.03 53.54 37.48 27.69 21.89 17.03 

Table 4.14 ARL of CQC2 chart when the distribution changes to lognormal 

 

µ\σ 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 
0.7 115.4 79.44 60.7 48.03 40.77 35.97 32.73 29.86 28.32 27.15 26.31 

0.65 147.56 97.76 71.99 54.97 45.5 39.46 35.38 31.8 29.87 28.33 27.25 
0.6 200.27 123.12 86.39 63.72 51.74 44.22 37.77 34 31.6 29.51 28.14 

0.55 270.34 155.25 99.31 74.16 57.9 48.23 41.48 36.79 33.15 30.9 29.38 
0.5 367.46 190.19 121.26 88.08 66.06 53.9 44.7 39.37 35.76 32.77 30.6 

0.45 491.24 249 149.34 101.25 76.68 60.79 49.21 42.72 37.85 34.26 31.94 
0.4 663.9 318.3 189.2 123 89.33 67.55 54.2 47.12 41.07 36.66 33.93 

0.35 992.3 449.2 225.8 148 102.5 77.49 61.22 51.16 44.84 39.22 36.07 
0.3 1238 577.8 304.3 179.8 121 88.29 67.45 55.64 47.31 41.9 37.53 

0.25 2393.57 790.56 376.05 214.85 141.91 102.05 74.46 61.84 51.29 45.08 39.89 
0.2 2233.92 1056.13 484.44 263.65 164.38 115.87 87.34 68.17 57.11 48.96 42.09 

0.15 4570.87 1551.29 599.89 335.97 205.02 139.18 97.56 76.15 62.55 52.47 45.63 
0.1 5679.71 2121.51 832.66 399.73 254.83 154.71 117.76 84.2 68.78 56.85 49.05 

0.05 8283.69 2592.54 1147.2 488.82 311.46 185.21 131.64 96.11 74.05 61.12 52.58 

0 16541.83 4356.4 1347.29 671.23 342.59 217.31 147.32 107.41 83.26 68.54 56.28 

Table 4.15 ATS of CQC2 chart when the distribution changes to lognormal 
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5.1. The ARL behavior of the run length type charts 

The average run length, defined earlier as the number of plotted points until an out of 

control signal, is commonly used to measure the chart performance. One would want the 

average run length to be large at the in-control process average and any change in the 

process average should be notified by a decrease in the average run length. However, the 

ARL behavior of any control chart based on a skewed distribution is inherently different 

from the one based on normal distribution. Compared to the normal distribution where 

the ARL is maximum at the in-control process parameter and decreases as the process 

shifts from its desired state on either side, the ARL of a control chart based on a skewed 

distribution, say exponential or geometric distribution, first increases and then decreases 

when the process deteriorates. This can be seen from Figure 5.1, which shows the CQCr 

chart with the maximum ARL not at the process average but is reached at a higher value. 

Such behavior may lead to misinterpretation that the process is well in control, or even 

improved.  
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Figure 5.1 The behavior of the average run length in the CQCr chart (α = 0.0027) 



Optimal Control Limits for the Run Length Charts 
________________________________________________________________________ 
 

________________________________________________________________________ 
 98 

 

From Figure 5.1 it can be seen that the theoretical in-control average run length of 370 

(for α = 0.0027) is attained not just at the in-control parameter λ0 but also at an out of 

control parameter. The out of control parameter depends only on the in-control parameter 

and can be easily found out.  Figure 5.2 plots the ratio f, which has the same ARL as the 

in-control ARL against the r (the parameter of the Erlang Distribution).  From the figure 

it can be seen that any shift in the region 1 < f � 2 (100% deterioration) for CQC1 chart 

will not be detected quickly. The effect is less harmful for higher values of r and as r 

increases the value of f approaches 1.  
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Figure 5.2 The effect of r on the ARL of CQCr charts for process deterioration (α = 
0.0027) 

 

A similar problem lies with the Shewhart charts for attributes. Some researchers have 

studied this problem and have suggested alternative methods. Ryan and Schwertman 

(1997) proposed modifying the limits in order to obtain positive lower control limit for 
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the attribute charts. Winterbottom (1993) suggested a procedure to modify the limits and 

thus unbias the p charts. Some other related discussions can be found in Acosta-Meija 

(1999) and Xie and Goh (1993a). Xie et al. (2000a) suggested an optimizing procedure 

for the geometric charts so that the average run length is maximized at the in-control 

process average. However, Xie et al. (2000a) did not discuss the decrease in sensitivity of 

the chart towards process improvements due to the optimizing procedure.. In this chapter 

a general optimizing procedure is devised for the run length type charts based on erlang 

and negative binomial distribution and also addresses the issue of specifying a proper 

false alarm probability to improve the sensitivity of the chart towards process changes.  

 

5.2. The optimizing procedure for maximizing the ARL 

To resolve this undesirable property associated with the ARL of the run length charts, 

suitable control limits need to be calculated to give the maximum ARL at the desired 

process level. Once the ARL expression for the CQCr charts has been derived, Equation 

(3.6), the λ value at which the ARL is maximum can be found. Based on the procedure 

developed by Xie et al. (2000a) the maximum ARL at λ = λ0 by taking the derivatives of 

ARL, and equating it to zero, the λ* value at which the ARL is maximized can be 

calculated. To do we need to solve these two equations for  z2 and z1: 
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As found out by Xie et al. (2000a) the adjusted control limits are the product of old 

control limits and a factor, henceforth referred to as the adjustment factor (Af), which 

depends only on the false alarm probability α. After solving Equations (5.1) and (5.2), 

the Adjustment factor for control charts based on Erlang Distribution can be calculated 

as: 
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For the case of r = 1, Equations (5.1) and (5.2) can be solved to obtain: 
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Using Equation (5.3) the Af for CQC1 chart can be found out to be: 
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The adjustment factor can also be written as: 
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which is same as that obtained by Xie et al. (2000a) for the case of control charts based 

on geometric distribution. Some values of the adjustment factors for different values of 

false alarm probabilities are shown in Table 5.1.  

 

Af α 
CQC1 chart CQC2 chart CQC3 chart CQC4 chart CQC5 chart 

0.001 1.267 1.153 1.106 1.081 1.065 
0.002 1.28 1.157 1.108 1.082 1.066 
0.003 1.288 1.159 1.109 1.082 1.066 
0.004 1.294 1.161 1.11 1.083 1.066 
0.005 1.299 1.162 1.11 1.083 1.067 
0.006 1.303 1.164 1.111 1.083 1.067 
0.007 1.307 1.164 1.111 1.084 1.067 
0.008 1.31 1.165 1.111 1.084 1.067 
0.009 1.313 1.166 1.112 1.084 1.067 
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0.01 1.315 1.167 1.112 1.084 1.067 
0.011 1.318 1.167 1.112 1.084 1.067 
0.012 1.32 1.168 1.112 1.084 1.067 
0.013 1.322 1.168 1.113 1.084 1.068 
0.014 1.324 1.169 1.113 1.085 1.068 
0.015 1.326 1.169 1.113 1.085 1.068 
0.016 1.327 1.17 1.113 1.085 1.068 
0.017 1.329 1.17 1.113 1.085 1.068 
0.018 1.331 1.17 1.114 1.085 1.068 
0.019 1.332 1.171 1.114 1.085 1.068 
0.02 1.333 1.171 1.114 1.085 1.068 

0.021 1.335 1.171 1.114 1.085 1.068 
0.022 1.336 1.172 1.114 1.085 1.068 
0.023 1.337 1.172 1.114 1.085 1.068 
0.024 1.338 1.172 1.114 1.085 1.068 
0.025 1.34 1.172 1.114 1.085 1.068 
0.026 1.341 1.173 1.114 1.085 1.068 
0.027 1.342 1.173 1.115 1.085 1.068 
0.028 1.343 1.173 1.115 1.086 1.068 
0.029 1.344 1.173 1.115 1.086 1.068 
0.03 1.345 1.174 1.115 1.086 1.068 

0.031 1.346 1.174 1.115 1.086 1.068 
0.032 1.347 1.174 1.115 1.086 1.068 
0.033 1.347 1.174 1.115 1.086 1.068 
0.034 1.348 1.174 1.115 1.086 1.068 
0.035 1.349 1.174 1.115 1.086 1.068 
0.036 1.35 1.175 1.115 1.086 1.068 
0.037 1.351 1.175 1.115 1.086 1.068 
0.038 1.352 1.175 1.115 1.086 1.068 
0.039 1.352 1.175 1.115 1.086 1.068 
0.04 1.353 1.175 1.116 1.086 1.068 

0.041 1.354 1.175 1.116 1.086 1.068 
0.042 1.355 1.176 1.116 1.086 1.068 
0.043 1.355 1.176 1.116 1.086 1.068 
0.044 1.356 1.176 1.116 1.086 1.069 
0.045 1.357 1.176 1.116 1.086 1.069 
0.046 1.357 1.176 1.116 1.086 1.069 
0.047 1.358 1.176 1.116 1.086 1.069 
0.048 1.359 1.176 1.116 1.086 1.069 
0.049 1.359 1.177 1.116 1.086 1.069 
0.05 1.36 1.177 1.116 1.086 1.069 

Table 5.1 Values of Adjustment Factors for different values of false alarm probabilities 
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The ARL curves for the CQCr chart with adjusted control limits are shown in Figure 5.3. 

As expected the adjusted limits give a better performance with the maximum ARL 

attained at the process average. 
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Figure 5.3 ARL curves after adjusting the limits (α = 0.0027) 

 

5.3. The inspection error and modification of CCC chart 

The process monitoring technique based on the cumulative count of conforming (CCC) 

items between two nonconforming ones, or the so-called CCC chart, have been shown to 

be very useful, especially for high quality processes, see, e.g. Woodall (1997), Goh 

(1987a,b), Glushkovsky (1994), Kaminsky et al. (1992). Related discussions can be 

found in Wu and Spedding (1999) and Lai et al. (2000). However, as in the case of 

traditional Shewhart charts, the assumption of 100% error free inspection is also made in 

the study of the CCC charts. In reality this is hardly the case. Inspection errors and their 

impact on control charts have been discussed in Ryan (1989) and Johnson et al. (1991). 
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Burke et al. (1995) showed that when the process nonconforming is estimated from the 

sample, the estimated value might deviate from the true value due to the presence of 

inspection errors. Based on the relationship between the true and observed values of the 

process fraction nonconforming Lu et al. (2000) computed the adjusted control limits for 

the CCC chart in presence of inspection errors. Other studies on the inspection errors can 

be found in Case (1980), Lindsay (1985), Cheng and Chung (1994), Huang et al. (1989), 

and Suich (1988).  

 

Furthermore, as shown in section 5.1 there is an undesirable property of the CCC chart; 

the average time to alarm might increase in the beginning when the process deteriorates. 

This simply means that by the time the deterioration will be detected, many 

nonconforming items would have been already produced. Xie et al. (2000a) pointed out 

this, and they developed a procedure to determine an optimal set of control limits, which 

would provide maximum average run length when the process is in control, but again 

under the assumption of 100% error free inspection.  

 

5.3.1. The control limits and ARL of the CCC chart in presence of inspection errors 

There are two types of inspection errors that need to be considered, a conforming item 

being classified as nonconforming and a nonconforming item being classified as 

conforming. When inspection errors are present, the observed (estimated) process 

fraction nonconforming will be different from the true value. Denote by po and pt the 

observed (estimated) and the true process fraction nonconforming value respectively, 
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Burke et al. (1995) showed the relationship between the observed (estimated) and true 

value of fraction nonconforming as: 

 

)1()1( tto ppp −+−= θψ          (5.4) 

 

where θ  and ψ  are the probability of classifying a conforming item as nonconforming 

and the probability of classifying a nonconforming item as conforming. 

 

When there are inspection errors, the control limits can be modified based on the 

inspection error. Equation (5.4) can also be represented as: 

 

)1/()( ψθθ −−−= ot pp       (5.5) 

 

Using the above relationship it can be shown that the control limits of the CCC chart in 

the presence of inspection errors can be derived as follows: 
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In the above formulae desiredα  is the desired false alarm probability when the process is in 

control. It should be noted that generally desiredα  is taken as 0.0027, which is equivalent to 

the standard 3-sigma control limits. With these control limits, the false alarm probability 

will be equal to desiredα  (Lu et al., 2000).  

 

The average run length (ARL), is now given by 

 

UCL
o

LCL
o pp

ARL
)1()1(1

1
1 −+−−

= −     (5.9) 

 

In Table 5.2 some ARL values are given for a process for different values of αdesired  with 

average fraction nonconforming = 50 ppm, 2.0=ψ  and 0001.0=θ . Some ARL curves 

are also shown in Figure 5.4. 

 

It is also of interest to investigate the ARL property for different values of inspection 

errors. In Table 5.3 some ARL values are given for a process with fixed α (=0.0027) and 

average fraction nonconforming 50 ppm but for different values of the inspection errors. 

Some ARL curves are shown in Figure 5.5 for different values of inspection errors. 
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tp  
(ppm) 0027.0=

desiredα
 

01.0=
desiredα

 
05.0=

desiredα
 

10 330 113 30 
20 483 150 37 
30 686 195 43 
40 936 243 50 
50 1213 291 56 
60 1485 335 62 
70 1716 370 67 
80 1883 395 70 
90 1982 409 72 

100 2023 415 73 
120 1993 409 73 
140 1895 391 71 
160 1782 369 68 
200 1572 327 61 
300 1203 250 47 
400 974 203 38 
500 818 170 32 

Table 5.2  Some numerical value of the ARL for different values of observed fraction 
nonconforming and desired false alarm rate. 
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Figure 5.4 Some ARL Curves with p=50ppm, 0001.0,2.0 == θψ  
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tp  
(ppm) 5.0

00001.0
=
=

ψ
θ

 
5.0
00006.0

=
=

ψ
θ

 
2.0
00006.0

=
=

ψ
θ

 

10 14 208 136 
20 34 296 231 
30 78 406 377 
40 158 533 575 
50 262 665 800 
60 339 786 1003 
70 363 881 1140 
80 353 944 1205 
90 330 976 1213 

100 306 985 1188 
120 264 959 1101 
140 231 907 1008 
160 206 851 924 
200 168 748 791 
300 116 571 580 
400 88 461 458 
500 72 387 378 

Table 5.3 Some numerical value of the ARL for different values of observed fraction 
nonconforming and inspection errors.  
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5.3.2 The behavior of ARL in CCC chart 

It is evident from both Figures 5.4 & 5.5 that maximum ARL value is reached at a value 

of fraction nonconforming, which is greater than the average fraction nonconforming of 

the process. This means that when the process deteriorates, it will take a longer time to 

observe an out-of-control signal, a property that is highly undesirable. This is a general 

problem associated with the ARL of the control charts based on skewed distributions as 

pointed out before. Thus with the existing ARL expression it will take longer time for an 

alarm to be raised when the process deteriorates than when the process is in a state of 

statistical control.  

 

We can actually compute the relative differences between the maximum ARL and the 

ARL at the normal process fraction nonconforming level (called nominal level here) 

 

Relative Error (ARL)=
0
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ARL
ARLARL −

 

 

and also the relative difference between the p at which ARL reaches its maximum, and 

the nominal level, 

 

Relative Error (p)=
0

0max

p
pp −
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Table 5.4 and 5.5 give some values of the two relative errors for different values of false 

alarm rate (with fixed inspection errors 2.0,0001.0 == ψθ ) and for different values of 

inspection errors (with fixed 0027.0=desiredα ) respectively.  

 

0027.0=desiredα  005.0=desiredα  tp  
(ppm) ARLo 

 
Observed 
Maximum 

(ppm) 

Maximum 
ARL 
value 

Relative 
Error 
(p) 

Relative 
Error 

(ARL) 

ARLo 

 
Observed 
Maximum 

(ppm) 

Maximum 
ARL 
value 

Relative 
Error 
(p) 

Relative 
Error 

(ARL) 
20 2861 70 5881 2.5 1.0556 1340 60 2208 2 0.6478 
30 1889 80 3418 1.67 0.8094 921 80 1446 1.67 0.57 
40 1457 90 2503 1.25 0.7179 723 90 1110 1.25 0.5353 
50 1213 100 2023 1 0.6678 608 100 919 1 0.5115 

100 757 170 1209 0.7 0.5971 385 170 567 0.7 0.4727 
150 617 240 977 0.6 0.5835 314 240 458 0.6 0.4586 
200 550 300 874 0.5 0.5891 279 300 407 0.5 0.4588 
Table 5.4 Some values of the fraction nonconforming at which the maximum ARL is 

reached for different values of false alarm rate. 
 

It should be noted here that although the inspection error θ  has a large effect on the 

ARL, this type of error could be easily rectified. An item that is considered 

nonconforming will probably be checked again and if it turns out to be a conforming 

item, it will not be counted as nonconforming. This inspection procedure has been called 

“repetitive testing” in Greenberg and Stokes (1995). A nonconforming item when 

considered conforming will normally be just passed as one of the many conforming 

items. Hence, when considering inspection error for high-quality, the focus will be on the 

inspection error Ρ, the probability that a nonconforming item is considered conforming 

because as pointed out, the number of conforming items heavily outnumber the number 

of nonconforming ones in a high-quality environment (process). 
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5.0,00001.0 == ψθ  0,00001.0 == ψθ  
tp  

(ppm) ARLo Observed 
Maximum 

(ppm) 

Maximum 
ARL 
value 

Relative 
Error 
(p) 

Relative 
Error 

(ARL) 

ARLo Observed 
Maximum 

(ppm) 

Maximum 
ARL 
value 

Relative 
Error 
(p) 

Relative 
Error 

(ARL) 
20 373 30 521 0.5 0.3968 565 30 802 0.5 0.4195 
30 311 50 424 0.67 0.3633 504 40 716 0.33 0.4206 
40 280 60 388 0.5 0.3857 474 50 662 0.25 0.3966 
50 262 70 363 0.4 0.3855 457 70 651 0.4 0.4245 
100 225 140 311 0.4 0.3822 426 130 618 0.3 0.4507 
150 214 200 296 0.33 0.3832 422 200 622 0.33 0.4739 
200 208 270 290 0.35 0.3942 423 270 635 0.35 0.5012 
Table 5.5 Some values of the fraction nonconforming at which the maximum ARL is 

reached for different values of inspection errors. 
 

To resolve this undesirable property associated to the ARL of the CCC chart, we can find 

suitable control limits by using Equation (5.3). In fact, the p value for maximum ARL is 

given by: 
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Now substituting this value in Equations (5.6) and (5.8) we get the control limits as  
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and 
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For a fixed value of p0, Equations (5.11) and (5.12) can be used to compute the control 

limits. With these control limits, the ARL will decrease when the process is shifted from 

the value p0. 

 

 

5.3.3. Implementation procedure 

Although the Equations (5.11) and (5.12) look complicated, the implementation is 

straightforward. A close look at the above two formulas shows that it can be broken into 

two parts, the formula of the old control limits multiplied with a factor. The factor, which 

we will refer to as Adjustment Factor, can be written as:  
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Some values of the adjustment factor are given in Table 5.6 for a process with average 

fraction nonconforming of 50 ppm for different values of false alarm rate and inspection 

errors. From the table it can be observed that the inspection error θ  has much larger 

effects on the average run length than the inspection error ψ . This becomes even clearer 

in section 5.3.5, when we compare the current and the proposed methods. From Table 5.6 

we can see that when the inspection errors are absent (or ignored) then the adjustment 

factor increases with increase in false alarm rate. This also holds true for the case when 

inspection error θ  is zero (third column in Table 5.6). But this does not hold for the case 

when inspection error θ  is present (columns four, five and six). Adjustment factors first 

decrease and then increase with desiredα . It should be noted that θ  tends to increase the 

process fraction nonconforming while ψ  tends to decrease it. 

 

desiredα  
0
0

=
=

ψ
θ

 
2.0

0
=
=

ψ
θ

 
0

0001.0
=
=

ψ
θ

 
2.0
0001.0

=
=

ψ
θ

 
5.0
00006.0

=
=

ψ
θ

 

0.0015 1.2839 1.2848 1.3655 1.3460 1.2923 
0.0020 1.2873 1.2892 1.3344 1.3236 1.2907 
0.0025 1.2904 1.2929 1.3209 1.3136 1.2909 
0.005 1.3025 1.3064 1.3043 1.3019 1.2967 
0.006 1.3061 1.3104 1.3033 1.3016 1.2992 
0.007 1.3094 1.3138 1.3032 1.3020 1.3016 
0.008 1.3123 1.3169 1.3036 1.3028 1.3038 
0.01 1.3173 1.3223 1.3050 1.3046 1.3078 

Table 5.6 Values of the adjustment factor for a process with average fraction 
nonconforming = 50 ppm, 2.0=ψ and 0001.0=θ  

 

Figure 5.6 illustrates the charting procedure for the CCC chart in presence of inspection 

errors. The procedure includes the proposed method for finding the optimal set of control 

limits to maximize the ARL value at the process average. Before starting the chart the 
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count of conforming items (n) is set to zero. An item is inspected and if it is conforming 

the value of n is increased by 1 and another item is taken. This process goes on until the 

first nonconforming item is encountered. The value of n is plotted on the chart. If a 

plotted point falls below the lower control limit, it indicates that the process fraction 

nonconforming might have increased. In such a case investigation should be carried out 

to locate any assignable causes for the possible deterioration. If assignable causes are 

identified then they should be removed and the process should be brought back to its 

original state. If a plotted point falls above the upper control limit, it indicates that the 

process might have improved. In such a case again a search for assignable causes should 

be performed and if found the causes should be retained, and a new control chart should 

be started with improved fraction nonconforming.  
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Figure 5.6 Implementation Procedure 
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5.3.4. An application example 

Here an example is used to illustrate the usefulness of the proposed procedure. A process 

has average fraction nonconforming of 500ppm, 1.0=α  and inspection errors 

0002.0=θ , 1.0=ψ . The control limits calculated by the current method in the presence 

of inspection errors are 60 (LCL) and 5011 (UCL) and the proposed limits are 83 (LCL) 

and 6905 (UCL). The data in Table 5.7 represent the number of conforming items 

observed before observing a nonconforming one. The first 15 observations were 

simulated for p=500ppm while the second 15 observations were simulated for 

p=5000ppm. 

 

Nonconforming 
item No. 

Count of 
conforming 

items 

Process 
average 

Nonconforming 
item No. 

Count of 
conforming 

items 

Process 
average 

1 3211 p=500ppm 16 70 p=5000ppm 
2 612 p=500ppm 17 904 p=5000ppm 
3 899 p=500ppm 18 234 p=5000ppm 
4 10497 p=500ppm 19 342 p=5000ppm 
5 1760 p=500ppm 20 95 p=5000ppm 
6 26 p=500ppm 21 406 p=5000ppm 
7 3334 p=500ppm 22 99 p=5000ppm 
8 4830 p=500ppm 23 536 p=5000ppm 
9 3711 p=500ppm 24 40 p=5000ppm 

10 3518 p=500ppm 25 103 p=5000ppm 
11 5351 p=500ppm 26 480 p=5000ppm 
12 2477 p=500ppm 27 231 p=5000ppm 
13 4307 p=500ppm 28 103 p=5000ppm 
14 382 p=500ppm 29 82 p=5000ppm 
15 115 p=500ppm 30 102 p=5000ppm 

Table 5.7 Number of conforming items observed before observing a nonconforming item 
(for p=500ppm, 1.0=α , 0002.0=θ and 1.0=ψ ) 
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Figure 5.7 The CCC chart for the data set in Table 5.6 

 

It can be seen in Figure 5.7 that the chart based on current method raises two false alarms 

while the proposed method raises only one false alarm. Also as expected, the proposed 

method identifies the shift much quickly than the current method when the process 

average changes from 500ppm to 5000pppm.  

 

5.3.5. Statistical comparison of chart performance 

The proposed method makes sure that whenever there is a shift in the process fraction 

nonconforming level, irrespective of whether the process deteriorates or improves, it will 

be indicated by a change in the average run length value. This is a very important 

property for a control chart. As noted before, because of the skewness of the geometric 
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distribution, the CCC chart has the undesirable property that it will show fewer alarms 

initially when the process deteriorates. 

 

Figures 5.8 and 5.9 show the ARL curves for the data set presented in section 5.3.1. It is 

evident that maximum value of ARL is reached at the process average fraction 

nonconforming (50 ppm in this case). Table 5.8 shows a comparison between the current 

and the proposed method in terms of the average run length value at different process 

levels.  

 

The last column in Table 5.8 shows the percent reduction in the false alarm signal 

achieved when we use the proposed method instead of the current method. At process 

average 50 ppm, the current method raises the false alarm signal at every 1213 points 

while the proposed method raises a signal at every 1862 points which translates to almost 

54 percent reduction in the false alarm signal.  

 

When the process shifts to 90 ppm, the ARL value for the proposed method is 1641 and 

for the current method is 1982. Thus, the out-of-control ARL is also improved, in this 

instance by a reduction of 17%. 
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Current Method 
 

Proposed Method 
 

Process 
Average 
(ppm) LCLc UCLc 

ARL
c 

LCLp UCLp ARLp 

Increase in 
the in-control 

ARL (%) 

20 2 72113 2861 3 96370 4784 67.21426 
30 3 64729 1889 3 85376 3011 59.39651 
40 3 59100 1457 4 77615 2269 55.73095 
50 3 54550 1213 5 71522 1862 53.50371 
60 4 50745 1056 5 66499 1607 52.17803 
70 4 47492 947 5 62239 1431 51.10876 
80 4 44666 867 5 58555 1304 50.40369 
90 4 42180 806 5 55325 1207 49.75186 

100 4 39973 757 5 52462 1132 49.53765 
200 4 26421 550 5 34943 815 48.18182 

Table 5.8 A comparison of current and proposed methods for given process average, 
0027.0=α , 2.0=ψ and 0001.0=θ  

 

5.4. Attaining the desired false alarm probability 

The maximizing procedure described in the previous section results in the optimal set of 

control limits for the control charts based on skewed distributions, however, adjusting the 

limits results in a smaller false alarm probability than that specified. As a result of that 

the chart becomes less sensitive to small process deteriorations as compared to the chart 

without the adjusted limits. Figure 5.10 shows the ARL curves with and without the 

adjusted limits. As can be seen from the figure, any shift in the region between the drawn 

lines will be picked up faster by the control chart without the adjusted limits. This region 

in which the control chart with adjusted limits performs worse than the control charts 

without the adjusted limits can be found out by equating the ARLs of the two charts and 

then solving for f. The f values for CQCr charts are shown in Table 5.9. 
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Figure 5.10 The effect of the maximizing procedure on the anticipated false alarm 

 

f α 
CQC1 chart CQC2 chart CQC3 chart CQC4 chart CQC5 chart 

0.001 1.142 1.079 1.055 1.041 1.033 
0.002 1.148 1.081 1.055 1.042 1.033 
0.003 1.151 1.082 1.055 1.042 1.033 
0.004 1.153 1.082 1.056 1.042 1.034 
0.005 1.155 1.083 1.056 1.042 1.034 
0.006 1.157 1.083 1.056 1.042 1.034 
0.007 1.158 1.083 1.056 1.042 1.034 
0.008 1.159 1.084 1.056 1.042 1.034 
0.009 1.16 1.084 1.056 1.042 1.034 
0.01 1.161 1.084 1.056 1.042 1.034 

0.011 1.162 1.084 1.056 1.042 1.034 
0.012 1.163 1.084 1.056 1.042 1.034 
0.013 1.163 1.085 1.057 1.042 1.034 
0.014 1.164 1.085 1.057 1.042 1.034 
0.015 1.165 1.085 1.057 1.042 1.034 
0.016 1.165 1.085 1.057 1.042 1.034 
0.017 1.166 1.085 1.057 1.042 1.034 
0.018 1.166 1.085 1.057 1.042 1.034 
0.019 1.167 1.085 1.057 1.042 1.034 
0.02 1.167 1.085 1.057 1.042 1.034 

0.021 1.168 1.085 1.057 1.042 1.034 
0.022 1.168 1.086 1.057 1.043 1.034 
0.023 1.168 1.086 1.057 1.043 1.034 
0.024 1.169 1.086 1.057 1.043 1.034 
0.025 1.169 1.086 1.057 1.043 1.034 
0.026 1.17 1.086 1.057 1.043 1.034 
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0.027 1.17 1.086 1.057 1.043 1.034 
0.028 1.17 1.086 1.057 1.043 1.034 
0.029 1.171 1.086 1.057 1.043 1.034 
0.03 1.171 1.086 1.057 1.043 1.034 

0.031 1.171 1.086 1.057 1.043 1.034 
0.032 1.171 1.086 1.057 1.043 1.034 
0.033 1.172 1.086 1.057 1.043 1.034 
0.034 1.172 1.086 1.057 1.043 1.034 
0.035 1.172 1.086 1.057 1.043 1.034 
0.036 1.173 1.086 1.057 1.043 1.034 
0.037 1.173 1.086 1.057 1.043 1.034 
0.038 1.173 1.087 1.057 1.043 1.034 
0.039 1.173 1.087 1.057 1.043 1.034 
0.04 1.173 1.087 1.057 1.043 1.034 

0.041 1.174 1.087 1.057 1.043 1.034 
0.042 1.174 1.087 1.057 1.043 1.034 
0.043 1.174 1.087 1.057 1.043 1.034 
0.044 1.174 1.087 1.057 1.043 1.034 
0.045 1.175 1.087 1.057 1.043 1.034 
0.046 1.175 1.087 1.057 1.043 1.034 
0.047 1.175 1.087 1.057 1.043 1.034 
0.048 1.175 1.087 1.057 1.043 1.034 
0.049 1.175 1.087 1.057 1.043 1.034 
0.05 1.175 1.087 1.057 1.043 1.034 

Table 5.9 Some ARL values of the adjustment method and existing methods (α =0.0027)  
 

A large run length at the in-control process level is a desirable property, however in this 

case it means that the higher in-control average run length means smaller false alarm 

probability which means a higher Type II error than before. For example for the specified 

false alarm probability, αs, of 0.0027, the use of adjusted control limits gives an actual 

false alarm probability, αa, of 0.00194. In other words it means that the actual false alarm 

probability is less than that specified. One way to deal with this problem is to 

appropriately select αs so that αa can take the desired value. This can be done by equating 

the false alarm probability with adjusted limits to αa and then solving for αs. For example 

in order to obtain a desired (actual) false alarm probability of 0.0027, the specified false 
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alarm probability, αs, should be approximately 0.00372 for CQC1 chart and about 

0.00333 for CQC2 chart. Table 5.10 shows some values of actual (desired) false alarm 

probability and the corresponding false alarm probability that should be specified in order 

to obtain the desired false alarm probability. The ARL performance of the existing, 

adjustment and method is also shown in Figure 5.11. The continuous line represents the 

chart with optimized limits and adjusted false alarm probability. 

 

αs αa CQC1 chart CQC2 chart CQC3 chart CQC4 chart CQC5 chart 
0.001 0.0014 0.0013 0.0012 0.0011 0.0011 
0.002 0.0028 0.0025 0.0023 0.0023 0.0022 
0.003 0.0041 0.0037 0.0035 0.0034 0.0033 
0.004 0.0054 0.0049 0.0046 0.0045 0.0044 
0.005 0.0068 0.0061 0.0057 0.0056 0.0055 
0.006 0.0081 0.0072 0.0069 0.0067 0.0065 
0.007 0.0093 0.0084 0.008 0.0077 0.0076 
0.008 0.0106 0.0095 0.0091 0.0088 0.0087 
0.009 0.0119 0.0107 0.0102 0.0099 0.0097 
0.01 0.0132 0.0119 0.0113 0.011 0.0108 

0.011 0.0144 0.013 0.0124 0.0121 0.0119 
0.012 0.0157 0.0141 0.0135 0.0131 0.0129 
0.013 0.0169 0.0153 0.0146 0.0142 0.014 
0.014 0.0182 0.0164 0.0157 0.0153 0.015 
0.015 0.0194 0.0175 0.0168 0.0163 0.0161 
0.016 0.0207 0.0187 0.0179 0.0174 0.0171 
0.017 0.0219 0.0198 0.0189 0.0185 0.0182 
0.018 0.0231 0.0209 0.02 0.0195 0.0192 
0.019 0.0243 0.022 0.0211 0.0206 0.0203 
0.02 0.0256 0.0232 0.0222 0.0217 0.0213 

0.021 0.0268 0.0243 0.0233 0.0227 0.0224 
0.022 0.028 0.0254 0.0243 0.0238 0.0234 
0.023 0.0292 0.0265 0.0254 0.0248 0.0245 
0.024 0.0304 0.0276 0.0265 0.0259 0.0255 
0.025 0.0316 0.0287 0.0276 0.027 0.0266 
0.026 0.0328 0.0298 0.0286 0.028 0.0276 
0.027 0.034 0.031 0.0297 0.0291 0.0287 
0.028 0.0352 0.0321 0.0308 0.0301 0.0297 
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0.029 0.0364 0.0332 0.0319 0.0312 0.0307 
0.03 0.0376 0.0343 0.0329 0.0322 0.0318 

0.031 0.0388 0.0354 0.034 0.0333 0.0328 
0.032 0.04 0.0365 0.0351 0.0343 0.0339 
0.033 0.0412 0.0376 0.0361 0.0354 0.0349 
0.034 0.0424 0.0387 0.0372 0.0364 0.036 
0.035 0.0436 0.0398 0.0383 0.0375 0.037 
0.036 0.0447 0.0408 0.0393 0.0385 0.038 
0.037 0.0459 0.0419 0.0404 0.0396 0.0391 
0.038 0.0471 0.043 0.0414 0.0406 0.0401 
0.039 0.0483 0.0441 0.0425 0.0417 0.0411 
0.04 0.0494 0.0452 0.0436 0.0427 0.0422 

0.041 0.0506 0.0463 0.0446 0.0437 0.0432 
0.042 0.0518 0.0474 0.0457 0.0448 0.0442 
0.043 0.053 0.0485 0.0467 0.0458 0.0453 
0.044 0.0541 0.0496 0.0478 0.0469 0.0463 
0.045 0.0553 0.0506 0.0489 0.0479 0.0473 
0.046 0.0564 0.0517 0.0499 0.049 0.0484 
0.047 0.0576 0.0528 0.051 0.05 0.0494 
0.048 0.0588 0.0539 0.052 0.051 0.0504 
0.049 0.0599 0.055 0.0531 0.0521 0.0515 
0.05 0.0611 0.0561 0.0541 0.0531 0.0525 

Table 5.10 Some values of desired and specified false alarm probabilities 
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Figure 5.11 The ARL curves for the three methods



 

   

 

 

 

 

 

 



Process Monitoring with Estimated Parameters 
________________________________________________________________________ 
 

________________________________________________________________________ 
 126 

6.1. The effect of inaccurate control limits 

The motive behind using the control chart is to detect changes in the process. Shewhart 

control charts have undergone many modifications with time to enhance their detection 

power.  Some of these modifications are using variable sampling schemes (Aparisi and 

Haro (2001), Zimmer et al. (2000)) and using the pattern recognition techniques (Perry et 

al. (2001), Yang and Yang (2002)). The first step in implementing in any control chart is 

to determine the control limits, which in turn requires the determination of process model 

parameter(s) involved. The observations are then plotted on the control chart and 

inference about the state of the process is made.  

 

Most of the research done on control charts is based on the assumption that an accurate 

estimation of the parameter is available. However, an estimate of process parameters can 

be far from accurate. There is always uncertainty involved when a preliminary sample is 

taken to estimate the parameter of the process and many authors have addressed this 

issue, Proschan and Savage (1960), Hillier (1969), Quesenberry (1993), Chen (1997, 

1998), Woodall (1997), Braun (1999), Woodall and Montgomery (1999), Bischak and 

Silver (2001), Yang et al. (2002a). He et al. (2002) studied the effect of estimation error 

in a near zero defect production process. 

 

The average run length, defined as the number of plotted points until an out of control 

signal, is commonly used to measure the chart performance. One would want the average 

run length to be large at the in-control process average and any change in the process 
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average should be notified by a decrease in the average run length. However, due to the 

skewness of the exponential distribution, the average run length of the CQC chart first 

increases and then decreases when the process deteriorates. This problem can be solved 

by adjusting the limits as shown in section (5.2). Again this is done under the assumption 

that parameters are known or an accurate estimate is available. 

 

The CQC chart proposed by Chan et al. (2000) plots the quantity produced before 

observing one defect. For any production process, the occurrence of defects is a random 

event. Under fairly general conditions, the occurrence process can be modeled by Poisson 

process. It then follows that the quality produced between the occurrence of two defects 

is exponential distributed with mean of 1/λ. The control limits of CQC chart cam be 

calculated using Equation (2.12)  

 

In case the actual parameter is not known then it needs to be estimated and the control 

limits can then be expressed as: 

 

λ
α

λ

λ
α
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=
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CL
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        (6.2) 

 

These control limits are then used to plot the CQC chart.  
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Figure 6.1 shows a typical CQC chart. The data was simulated for λ = 0.0001. The 

continuous lines show the control limits calculated with the actual estimate (Equation 

(6.1)). Suppose that the actual defect rate was not known and a preliminary sample was 

used to estimate the parameter and it was found out to be 0.0002. From sampling point of 

view the situation can be seen as one in which 2 defects were observed in a sample of 

10000. The dashed lines show the estimated control limits (Equation (6.2)).  
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Figure 6.1 A CQC chart with actual (continuous) and estimated (dotted) control limits 

 

As can be seen, when estimated control limits are used, two points fall above the control 

limits. According to the common practice a search for assignable cause(s) should be 
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performed and if any assignable cause is found then it should be removed, and in case 

there are no assignable causes then the point(s) should be treated as false alarm(s). 

Considerable amount of time and effort is used up by such search actions. Imagine 

stopping the production to conduct the search. The two points above the upper control 

limit point towards a ‘possible’ process improvement, but, in fact, they are due to 

incorrectly placed control limits. Thus, apart from the two alternatives, namely presence 

and absence of an assignable cause, there is also a third possibility that the parameter and 

hence the control limits may be inaccurate. Figure 6.2 shows the decision path when an 

out of control point is observed. 

 

Figure 6.2 Decision path for an out of control situation 
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6.2. Estimated control limits and their effect on chart properties 

As seen from the example in the previous section, the accurate estimation of the control 

limits is actually a problem of the accurate estimation of the parameter. In this section, 

first, the estimation of the parameter, λ, and then, the effect of estimation error on the 

chart properties are discussed.  

 

6.2.1. Estimation of λλλλ 

Often the parameter λ is estimated by taking a preliminary sample. For example, when a 

sample of m items is taken and the total number of defects observed is x, then the process 

parameter can be calculated as 

 

m
x=λ̂                 (6.3) 

 

This value is treated as an estimate of the actual process parameter λ0 and then it is used 

to compute the control limits, given by Equation (6.2). Thus, using Equation (6.2) and 

(6.3), the estimated control limits can be represented as: 
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Using these control limits the control chart is then plotted and the decision about the 

statistical control of the process is made based on whether the plotted point falls within or 

outside the control limits. 

 

6.2.2. Properties of the CQC chart with estimated parameter 

Let Qi be a cumulative quantity observed and assume that the process parameter has 

shifted from λ0 to λ.  Define the event Ei as, 

 

iE  = { Qi > )(ˆ XLCU  or  Qi  <  )(ˆ XLCL } 

 

Then, P( iE ) is the alarm rate (AR), which becomes the false alarm rate (FAR) when  λ = 

λ0. The AR can then be calculated by using the following conditional argument 
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where, 

 

   )|( xXEP i = = P{ Qi > )(ˆ XLCU | X = x} +  P{ Qi <  )(ˆ XLCL | X = x} 

 = ( ) ( ) xmxm // 2/112/ λλ αα −−+ . (6.6)  



Process Monitoring with Estimated Parameters 
________________________________________________________________________ 
 

________________________________________________________________________ 
 132 

 

and Equation (6.5) can also be written as 
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All the events iE  are dependent on the same estimated control limits and unless the 

estimated limits are very close to the true limits, the false alarm probability can be far 

from the desired level.  Due of this, the decision about the process, whether in-control or 

out of control, will not reflect the exact status of the process.   

 

6.2.3. Zero defect samples 

As mentioned before, the CQC chart is very effective in a high quality environment 

where the defect rate is quite small. In such a process it is very common that the 

preliminary sample taken contains no defects. On encountering such a problem the usual 

practice is to take another sample as no information is obtained from the previous sample. 

Due to this reason it would be wise that the first term obtained by expanding Equation 

(6.5), which is same as the last term in Equation (6.7), be omitted from the calculations 

for the alarm rate and future calculations. If that term is included in the calculations then 

it will give unusually high values of alarm rate (Yang et al. (2002a)). Equation (6.5) can 

then be written as: 
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Table 6.1 provides the probability of obtaining zero defects in a sample of size m for 

different values of process average (λ0).  

 

m \ λ0 0.00001 0.00005 0.0001 0.0002 0.0005 0.0008 0.001 
100 0.999 0.99501 0.99005 0.9802 0.95123 0.92312 0.90484 
200 0.998 0.99005 0.9802 0.96079 0.90484 0.85214 0.81873 
500 0.99501 0.97531 0.95123 0.90484 0.7788 0.67032 0.60653 

1000 0.99005 0.95123 0.90484 0.81873 0.60653 0.44933 0.36788 
2000 0.9802 0.90484 0.81873 0.67032 0.36788 0.2019 0.13534 
5000 0.95123 0.7788 0.60653 0.36788 0.08209 0.01832 0.00674 

10000 0.90484 0.60653 0.36788 0.13534 0.00674 0.00034 0.00005 
20000 0.81873 0.36788 0.13534 0.01832 0.00005 1.13E-07 2.06E-09 
50000 0.60653 0.08209 0.00674 0.00005 1.39E-11 4.25E-18 1.93E-22 

100000 0.36788 0.00674 0.00005 2.06E-09 1.93E-22 1.80E-35 3.72E-44 
200000 0.13534 0.00005 2.06E-09 4.25E-18 3.72E-44 3.26E-70 1.38E-87 

1000000 0.00005 1.93E-22 3.72E-44 1.38E-87 7.12E-218 3.67E-348 5.076E-435 
2000000 2.06E-09 3.72E-44 1.38E-87 1.92E-174 5.08E-435 1.35E-695 2.58E-869 

∞ 0 0 0 0 0 0 0 
Table 6.1 Probability of obtaining zero defect in a sample 

 

It can be seen from the table that the probability value is very high for small sample size 

and low defect rate. This further strengthens the fact that if it is included in the 

calculations then it will lead towards unusually high alarm rates. The table also shows 

that the probability of obtaining zero defect approaches zero as the sample size becomes 

large. 
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6.2.4. The case when samples contain at least one defect 

The alarm rate (AR) or the false alarm rate (FAR) can be calculated using Equation (6.8). 

Table 6.2 provides FAR values for different combinations of 0λ  and m, and Table 6.3 

provides AR values when the process parameter is shifted from 0λ  = 0.0002. Table 6.2 

shows that for a sample size of 100, the false alarm rate is quite small for small values of 

λ0. This is due to the fact that for small values of m and λ0 most of the times no defects 

will be observed. The possible solution is to take a substantial sample size so that there is 

sufficient possibility of occurrence of at least one defect. So for λ0=0.00001 (a high yield 

process) a sample of around 100000 is required. In such a case the false alarm will 

decrease with increase in λ0 for a fixed sample size and will decrease with increase in m 

for a fixed defect rate. 

 

m \  λ0 0.00001 0.00005 0.0001 0.0002 0.0005 0.0008 0.001 
100 0.00099 0.00483 0.00932 0.01736 0.03521 0.04587 0.05012 
200 0.00197 0.00932 0.01736 0.03019 0.05012 0.05426 0.05292 
500 0.00483 0.02095 0.03521 0.05012 0.0493 0.03691 0.03089 

1000 0.00932 0.03521 0.05012 0.05292 0.03089 0.02166 0.01864 
2000 0.01736 0.05012 0.05292 0.03691 0.01864 0.01366 0.01187 
5000 0.03521 0.0493 0.03089 0.01864 0.01038 0.00792 0.00698 

10000 0.05012 0.03089 0.01864 0.01187 0.00698 0.00541 0.00487 
20000 0.05292 0.01864 0.01187 0.00792 0.00487 0.00406 0.00379 
50000 0.03089 0.01038 0.00698 0.00487 0.00357 0.00324 0.00314 

100000 0.01864 0.00698 0.00487 0.00379 0.00314 0.00297 0.00292 
200000 0.01187 0.00487 0.00379 0.00324 0.00292 0.00284 0.00281 

1000000 0.00487 0.00314 0.00292 0.00281 0.00274 0.00273 0.00272 
2000000 0.00379 0.00292 0.00281 0.00275 0.00272 0.00271 0.00271 

∞ 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 
Table 6.2 Values of FAR with Estimated Control Limits, α = 0.0027 
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The same argument holds true for the case of AR, shown in Table 6.3. It can be noted 

from the table that for substantial sample size, the AR first decreases and then increases 

when the process deteriorates. This is due to the skewness of exponential distribution. 

 

m  \ λ 0.00001 0.00005 0.00008 0.0001 0.0002 0.0003 0.0004 0.0008 0.001 
100 0.01967 0.01916 0.01879 0.01854 0.01736 0.01626 0.01522 0.01171 0.01027 
200 0.0387 0.03673 0.03532 0.0344 0.03019 0.0265 0.02326 0.01382 0.01066 
500 0.09215 0.08102 0.07358 0.06901 0.05012 0.03647 0.0266 0.00776 0.00431 

1000 0.17025 0.1326 0.11007 0.09728 0.05292 0.0293 0.01659 0.00238 0.00119 
2000 0.29273 0.18345 0.13045 0.10446 0.03691 0.01492 0.00693 0.00119 0.00099 
5000 0.49281 0.19936 0.11101 0.07813 0.01864 0.00638 0.00316 0.00267 0.00328 

10000 0.60217 0.19011 0.09593 0.06368 0.01187 0.00434 0.00329 0.00537 0.0067 
20000 0.65818 0.18816 0.086 0.05334 0.00792 0.00359 0.00367 0.00696 0.00869 
50000 0.69637 0.18863 0.07788 0.04472 0.00487 0.00262 0.00309 0.00608 0.0076 

100000 0.70819 0.18984 0.0748 0.04124 0.00379 0.00231 0.00286 0.00569 0.00711 
200000 0.71361 0.19079 0.07323 0.03937 0.00324 0.00218 0.00278 0.00553 0.00691 

1000000 0.71772 0.19175 0.07199 0.03782 0.00281 0.00209 0.00271 0.00542 0.00677 
2000000 0.71822 0.19189 0.07184 0.03762 0.00275 0.00208 0.00271 0.0054 0.00675 

∞ 0.71872 0.19202 0.07168 0.03742 0.0027 0.00207 0.0027 0.00539 0.00673 
  Table 6.3 Values of AR with Estimated Control Limits: α = 0.0027, λ0=0.0002 

 

6.2.5. The effect of estimated parameter on the run length 

As discussed earlier the control chart should be able to raise an alarm when the process 

average shifts in step. At the same time it should raise minimum false alarms when the 

process is in control. The average number of points plotted on the control chart until a 

plotted point falls outside the control limits is termed as the run length. This section 

discusses the effect of estimated parameter on the run length of the CQC chart.  
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Denote the run length by R and )|( XEP i  defined in Equation (6.6) by )(Xp .  

Following a conditional argument the unconditional distribution of R can be represented 

as 
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Due to the reasons mentioned in Section 6.2.3, the case x = 0 has been omitted from the 

Equation (6.9). The expected value of the run length, i.e. the average run length (ARL), 

and the standard deviation of the run length (SDRL) can be represented as: 

 

 ),( λλ0ARL = ])([ Xp1EX  (6.10) 

  

 ),( λλ0SDRL  = ])())(1([])(1[ 2 XpXpEXpVar XX −+ , (6.11) 

 

The quantity ])([ Xp1EX  and ])(1[ 2 XpEX  in Equations (10) and (11) can be 

calculated by using the distribution of X.  
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In case the parameter is known or an accurate estimate is available, the relationship 

between SDRL0, the in control standard deviation of run length, and ARL0, the in control 

average run length, takes the form: 

 

  )1(),( 0000 −= ARLARLSDRL λλ  (6.13) 

 

In such case, for α = 0.0027 and λ = λ0, the ARL0 ≅ SDRL0 ≅ 370. When the control 

limits are estimated, a decision about how large the sample size should be, can be made 

on the basis of the above mentioned in control value of ARL and SDRL.  

 

Table 6.4 shows some values of ARL and SDRL for fixed value of λ0, when the control 

limits are estimated.  The table shows the manner in which the estimated limits have an 

impact on the run length. As discussed in Section 6.2.4, the ARL and SDRL value for 

small sample sizes are not reliable. In general the estimated limits tend to decrease the 

ARL and the SDRL value from their usual value.  Another impact of the dependence of 

events Ei is that SDRL is greater than ARL. This is also due to the geometric distribution 

of the run length. Yang et al. (2002a) have given an excellent explanation for this 
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behavior. The last row shows that for an infinitely large sample size, the in control ARL 

and SDRL value take the expected value of 370. 

 

m  \   λ 0.00001 0.00005 0.00008 0.0001 0.0002 0.0003 0.0004 0.0008 0.001 
0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.04 100 
0.14 0.15 0.15 0.15 0.17 0.18 0.2 0.28 0.33 
0.04 0.04 0.04 0.04 0.05 0.06 0.07 0.11 0.15 200 
0.2 0.21 0.23 0.23 0.28 0.33 0.39 0.72 0.96 
0.1 0.11 0.12 0.13 0.18 0.25 0.35 1.28 2.44 500 

0.31 0.37 0.43 0.46 0.69 1.01 1.45 5.69 11 
0.19 0.25 0.3 0.34 0.65 1.23 2.35 26.9 61.09 1000 
0.43 0.61 0.78 0.91 1.91 3.83 7.51 89.1 202.86 
0.37 0.6 0.87 1.12 3.96 13.97 44.45 131.71 119.73 2000 
0.57 1.13 1.77 2.36 9.29 34.15 110.54 312.62 271.85 
0.82 2.47 6 11.02 141.81 202.06 209.51 174.07 145.39 5000 
0.8 3.71 10.35 20.11 284.51 368.5 328.67 286.33 245.32 

1.29 9.49 49.38 109.76 217.31 277.68 283.45 183.73 148.24 10000 
1.03 17.5 109.48 250.05 321.43 366.14 366.22 255.68 208.38 
1.6 34.99 68.93 105.27 277.52 347.33 329.95 185.4 148.53 20000 

1.37 138.2 184.89 227.48 366.33 398.27 379.91 226.13 181.29 
1.48 10.68 37.11 69.72 326.28 414.19 359.59 185.56 148.55 50000 
1.21 44.67 108.77 163.87 391.59 434.49 385.49 202.71 162.18 
1.42 6.48 21.7 45.55 348.23 445.87 366.91 185.56 148.55 100000 
0.81 10.73 46.57 93.1 398.62 455.29 381.9 194.09 155.27 
1.41 5.68 16.72 34.18 360.56 464.03 369.21 185.56 148.55 200000 
0.76 5.84 21.84 49.68 396.71 468.54 377.16 189.63 151.7 
1.39 5.29 14.39 27.89 369.32 478.77 370.22 185.56 148.55 100000

0 0.74 4.85 14.44 29.03 380.86 479.46 371.52 185.98 148.79 
1.39 5.25 14.16 27.29 369.98 480.5 370.3 185.56 148.55 200000

0 0.74 4.76 13.92 27.55 376.06 480.62 370.7 185.52 148.42 
1.39 5.21 13.95 26.73 370.37 482.18 370.37 185.56 148.55 ∞ 0.74 4.68 13.44 26.22 369.87 481.68 369.87 185.06 148.05 

Table 6.4 Values of ARL (upper entry) and SDRL (lower entry) with Estimated Control 
Limits, λ0 = 0.0002 

 

6.3. The optimal limits of the CQC chart with estimated parameter  

Table 6.4 proves the undesirable behavior of the ARL of CQC chart, i.e. the ARL first 

increases and then decreases as the process deteriorates. To obtain the optimal ARL 
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performance we would once again follow the optimizing procedure discussed in previous 

chapter to get the estimated adjusted control limits as: 
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By replacing the old estimated limits by the estimated adjusted limits the FAR, AR, ARL 

and SDRL can be easily tabulated. Tables 6.5, 6.6 show the FAR and AR, respectively, 

when the estimated adjusted control limits are used.  

 

Comparing the values in Table 6.2 and Table 6.5 it can be seen that for a fixed λ0, the 

false alarm probability approaches the desired value of 0.0027 much faster when the 

adjusted control limits are used. For a sample size of 100000 and process average of 

0.0001, use of old control limits gives a false alarm of 0.0049 which is around 81% more 

than the desired level of 0.0027. For the same parameters the use of adjusted control 

limits results in a false alarm of 0.0028, which is around 44% more than the false alarm 

probability of 0.00194 for known parameters. This shows that the use of adjusted control 

limits gives a better performance. Comparing Table 6.3 and Table 6.6, it can be seen that 
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the alarm rate increases on either side (provided the sample size is large enough) when 

the adjusted limits are used. 

 

m \  λ0 0.00001 0.00005 0.0001 0.0002 0.0005 0.0008 
100 0.00099 0.00478 0.00914 0.01672 0.03208 0.0396 
200 0.00196 0.00914 0.01672 0.02802 0.04178 0.04096 
500 0.00478 0.01999 0.03208 0.04178 0.03285 0.02161 

1000 0.00914 0.03208 0.04178 0.03765 0.01738 0.01158 
2000 0.01672 0.04178 0.03765 0.02161 0.0097 0.0069 
5000 0.03208 0.03285 0.01738 0.0097 0.00541 0.00434 

10000 0.04178 0.01738 0.0097 0.00606 0.00389 0.0031 
20000 0.03765 0.0097 0.00606 0.00434 0.00283 0.00246 
50000 0.01738 0.00541 0.00389 0.00283 0.00226 0.00213 

100000 0.0097 0.00389 0.00283 0.00235 0.00209 0.00203 
200000 0.00606 0.00283 0.00235 0.00213 0.00202 0.00199 

1000000 0.00283 0.00209 0.00202 0.00198 0.00195 0.00195 
2000000 0.00235 0.00202 0.00198 0.00196 0.00195 0.00194 

∞ 0.00194 0.00194 0.00194 0.00194 0.00194 0.00194 
Table 6.5 Values of FAR with estimated adjusted control limits, α = 0.0027. 

 

m  \ λ 0.00001 0.00005 0.00008 0.0001 0.0002 0.0003 0.0004 0.0008 
100 0.01963 0.01898 0.01851 0.0182 0.01672 0.01537 0.01412 0.01008 
200 0.03856 0.03605 0.03428 0.03314 0.02802 0.02369 0.02004 0.01028 
500 0.0913 0.07738 0.06837 0.06297 0.04178 0.02781 0.01859 0.00397 

1000 0.16722 0.12132 0.09558 0.08161 0.03765 0.01796 0.00896 0.00109 
2000 0.28299 0.15577 0.10121 0.07661 0.02161 0.00767 0.00339 0.00099 
5000 0.4597 0.14941 0.07445 0.04945 0.0097 0.0034 0.00229 0.00337 

10000 0.54661 0.13551 0.06018 0.03712 0.00606 0.00332 0.0036 0.00689 
20000 0.59317 0.12812 0.04993 0.0284 0.00434 0.0036 0.00451 0.00893 
50000 0.63011 0.12272 0.04139 0.02126 0.00283 0.00299 0.00392 0.00782 

100000 0.6425 0.12111 0.03793 0.01839 0.00235 0.00277 0.00366 0.00731 
200000 0.64836 0.12046 0.03607 0.01682 0.00213 0.00268 0.00356 0.00711 

1000000 0.65286 0.12004 0.03451 0.0155 0.00198 0.00262 0.00349 0.00696 
2000000 0.65341 0.12 0.03431 0.01533 0.00196 0.00261 0.00348 0.00694 

∞ 0.65396 0.11996 0.03411 0.01515 0.00194 0.00261 0.00347 0.00692 
Table 6.6 Values of AR with estimated adjusted control limits: α = 0.0027, λ0=0.0002 
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Table 6.7 shows some values of ARL (upper entry) and SDRL (lower entry) when the 

adjusted limits are used in place of the old control limits. As can been seen the ARL 

decreases when the process average shifts unlike previously (see Table 6.4) where the 

ARL first increases and then decreases when the process deteriorates. 

 

m  \   λ 0.00001 0.00005 0.00008 0.0001 0.0002 0.0003 0.0004 0.0008 
1.68 20.27 75.44 136.39 405.63 369.48 287.32 144.41 50000 
2.32 71.83 172.13 245.76 433.18 394.66 313 157.65 
1.58 11.57 50.25 108.52 446.79 378.87 288.13 144.41 100000 
1.01 23.15 101.24 185.42 459.39 393.62 301.5 150.94 
1.55 9.48 37.78 87.45 475.49 382.08 288.28 144.41 200000 
0.94 10.97 55.39 127.77 480.12 390.05 294.86 147.47 
1.54 8.73 32.15 73.95 497.58 383.32 288.31 144.41 500000 
0.91 8.71 36.11 86.93 498.24 386.41 290.67 145.34 
1.53 8.52 30.65 69.8 506.17 383.6 288.32 144.41 1000000 
0.91 8.23 32.04 75.26 506 384.93 289.25 144.63 
1.53 8.43 29.97 67.85 510.74 383.73 288.32 144.41 2000000 
0.9 8.02 30.34 70.13 510.33 384.15 288.54 144.27 

1.53 8.34 29.32 65.99 515.53 383.84 288.32 144.41 ∞ 0.9 7.82 28.81 65.49 515.03 383.34 287.82 143.91 
Table 6.7 Values of ARL (upper entry) and SDRL (lower entry) with Estimated (and 

adjusted) Control Limits, λ0 = 0.0002
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7.1. Weibull distribution and the t chart  

Most of the studies assume that time-between events is exponentially distributed. An 

important assumption when exponential distribution is used is that the event occurrence 

rate is constant. In reliability applications, this implies that the items have no aging 

property. This assumption is usually violated in reality. Due to wear and tear and other 

usage condition, items usually have an increasing failure rate.  

 

To be able to monitor processes for which the exponential assumption is violated, 

Weibull distribution is a good alternative and it is a simple generalization of the 

exponential distribution. This flexibility and its reasonableness have made Weibull 

distribution probably the most useful distribution model in reliability analysis and it has 

been widely used by various authors to model the failure times. There are a couple of 

papers where the authors have indicated the use of Weibull distribution for process 

monitoring in reliability (Banjevic et al. 2001; Sun et al. 2001 and Xie et al. 2002), but 

no detailed analysis is carried out. 

 

Related to the use of Weibull distribution in statistical process control, Zhang et al. 

(1997) studied the economic design of X (bar) chart for monitoring systems with Weibull 

in-control times with the main objective being the economic performance. Ramalhoto and 

Morais (1999) studied the performance of a control chart for the scale parameter of the 

three-parameter Weibull Distribution where the location and the shape parameters are 

assumed to be known. Earlier, Nelson (1979) considered Weibull distribution for median 
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and range charge, assuming a fixed subgroup size. The use of Weibull distribution was 

also investigated in Johnson (1966). The cumulative distribution function of a Weibull 

random variable, T is given as 
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where θ > 0 and β > 0 are the scale parameter and shape parameter, respectively.  

 

Weibull distribution is a generalization of exponential distribution. Although exponential 

distribution has been widely used for time-between-event, Weibull distribution is more 

suitable as it is more flexible and is able to deal with different types of aging 

phenomenon. This is common, for example, when dealing with equipment failures. The 

main characteristics of Weibull distribution is its hazard function given by 
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and it can be seen that the hazard function is constant when 1=β  and increasing or 

decreasing according to whether 1>β  or 1<β . 
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7.1.1. Control limits for Weibull time-between-event chart 

A process can be monitored with a control chart and the time-between events can be 

used. A control chart for process monitoring of time-between-event, or t chart, should 

have exact probability limits due to the skewness of the Weibull Distribution. Solving 

Equation (7.1) with respective probabilities, the control limits can be calculated as: 
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where α is the acceptable false alarm probability, and β0 and θ0 are the in-control shape 

and scale parameter, respectively. In the following, the false alarm probability is fixed at 

α = 0.0027 which is equivalent to three sigma limits for X-bar chart under normal 

distribution assumption.  Some control limits for different values of β0 are shown in 

Table 7.1. The scale parameter, θ0, is fixed at 10. It should be noted that for the shown 

values of β0, the control limits can be easily calculated for any value of the scale 

parameter θ0 by multiplying the control limits, corresponding to the β0, by a factor θ0 / 

10. 
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β0 UCL CL LCL 
0.1 1.59E+09 0.25601 2.02E-28 
0.2 125960.8 1.60003 4.50E-14 
0.3 5413.651 2.94726 2.73E-09 
0.4 1122.323 4.00003 6.71E-07 
0.5 436.6105 4.80453 1.8E-05 
0.6 232.6725 5.42887 0.00017 
0.7 148.4212 5.9239 0.0008 
0.8 105.9397 6.32458 0.00259 
0.9 81.50109 6.65487 0.00648 
1 66.07651 6.93147 0.01351 

1.1 55.65412 7.16631 0.02463 
1.2 48.23614 7.36808 0.04063 
1.3 42.73714 7.54324 0.06206 
1.4 38.52547 7.69669 0.08922 
1.5 35.2126 7.8322 0.1222 
1.6 32.54838 7.95272 0.16093 
1.7 30.36551 8.06061 0.20518 
1.8 28.5484 8.15774 0.25463 
1.9 27.01492 8.24563 0.30889 
2 25.70535 8.32555 0.36755 

2.1 24.57529 8.39852 0.43016 
2.2 23.59113 8.46541 0.49629 
2.3 22.727 8.52695 0.56552 
2.4 21.96273 8.58375 0.63742 
2.5 21.28231 8.63635 0.71162 
2.6 20.67296 8.68518 0.78776 
2.7 20.12432 8.73065 0.8655 
2.8 19.62791 8.77308 0.94455 
2.9 19.17674 8.81277 1.02462 
3 18.76502 8.84997 1.10546 

3.1 18.38787 8.88492 1.18685 
3.2 18.04117 8.9178 1.26859 
3.3 17.72144 8.94881 1.3505 
3.4 17.4257 8.97809 1.43241 
3.5 17.15138 9.00578 1.51419 
3.6 16.89627 9.03202 1.5957 
3.7 16.65844 9.05691 1.67685 
3.8 16.43622 9.08055 1.75753 
3.9 16.22813 9.10303 1.83765 
4 16.03289 9.12444 1.91715 

Table 7.1 Control Limits of a control chart based on two-parameter  
Weibull distribution with θ = 10 and α = 0.0027 
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A point plotting above the upper control limit may be due to an improvement in the 

reliability. If there is an assignable cause it should be maintained and the control limits 

should be revised. If a point falls below the lower control limit, the user should look for 

the assignable cause and should remove it. In either case if an assignable cause is not 

found, the point should be treated as a false alarm.  

 

7.1.2. An example 

An example is presented here to illustrate the charting procedure of the Weibull t chart. 

Some problems are also highlighted. Since there are two parameters for Weibull 

distribution, it is important to study how the control chart reacts when each of the 

parameters is changed. Table 7.2 shows the data points simulated for different parameter 

values. The first 50 points were simulated β = 1.3, θ = 10. The second 50 points were 

simulated for β = 1.3, θ = 20. While the third is for β = 2; θ = 10. These two cases are the 

typical and interesting ones and hence used here. 

 

The first 50 values are assumed to come from the in-control process with parameters β0 = 

1.3, θ0 = 10. The control limits of the Weibull t chart can be calculated by using Equation 

(7.3) and are found out to be, LCL = 0.062, CL = 7.54, and UCL = 42.74. Figure 7.1 

depicts the scenario when the scale parameter is increased and Figure 7.2 is a t chart for 

the case when the shape parameter is increased. 
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β = 1.3, θ = 10 
29.24 0.75 15.43 2.18 14.18 4.25 12.07 8.4 4.16 3.27 
3.99 3.37 15.22 11.11 17.46 14.83 5.87 8.64 11.32 2.62 
4.42 2.65 7.44 6.96 4.67 2.18 10.75 5.03 7.84 16.3 

22.72 13.96 3.75 10.16 11.14 8.79 6.29 24.25 14.8 13.11 
0.65 5.89 2.05 9.31 12.45 3.6 9.86 2.24 6.35 1.83 

β = 1.3, θ = 20 
48.83 28.69 39.02 7.81 0.73 0.65 21.38 19.31 9.89 13.18 
7.46 21.09 15.74 22.21 6.7 8.01 11.92 3.09 14.38 1.37 

27.16 46.69 2.14 41.81 29.94 5.02 4.82 21.7 28.97 4.71 
14.47 2.22 14.16 23.09 7.37 11.88 47.2 0.92 1.18 4.55 
16.93 43.14 16.68 3.7 27.45 59.04 14.85 5.75 50.24 31.08 

β = 2, θ = 10 
15.25 15.52 4.13 13.26 12.94 6.42 7.26 1.63 12.99 15.31 
3.14 5.89 13.66 11.29 17.01 3.94 7.16 8.73 3.87 6.15 
4.67 4.89 3.81 2.85 5.89 6.01 19.49 5.37 8.1 18.3 
9.16 5.04 10.47 2.51 8.01 16.34 13.11 6.45 8.68 12.43 
7.38 12.82 7.03 7.99 5.04 9.49 5.42 7.07 16.33 5.86 

Table 7.2 Time between failures (read across for consecutive data points) 

 

Figure 7.1 and Figure 7.2 are typical cases of using Weibull t chart to detect process shift. 

When the scale parameter is reduced, the chart behavior is similar. However, for the case 

when the shape parameter is increased, the chart seems to be insensitive because of the 

reduced variability. We do not have this problem when the shape parameter is decreased 

as the variability is increased and there will be a higher chance for a point to fall outside 

of the control limits. Here we discuss this based on the property of Weibull distribution. 

Note that the exponential distribution is a special case of Weibull distribution, and since 

the shape parameter is equal to one, no change of this parameter has been investigated 

previously. 
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Figure 7.1 Weibull t chart for shift from θ = 10 to θ = 20 (with β = 1.3) 
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Figure 7.2 Weibull t chart for shift from β = 1.3 to β = 2 
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Note that for Weibull distribution, the mean and variance are given by equations (4.5) 

and (4.6) respectively. 

 

It can be seen that the mean and the variance are strongly affected by the scale and shape 

parameter. In fact, it is decreasing when β increases. It is known that )6/( 2222 βθπσ ≈  

when the shape parameter is large, McEwen and Parresol (1991). When the shape 

parameter increases, the variance reduces significantly.  

 

Hence it is expected that the Weibull t chart is able to detect the change in the scale 

parameter effectively, while it is insensitive to the increase in the shape parameter. We 

will investigate this in detail in the next section. 

 

 

7.2. The chart properties 

The Type II error, i.e. the probability of not detecting the shift in the following 

observation when the process has shifted, for the Weibull t chart can be calculated as: 
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The average run length can then be calculated as: 
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The average run length property of for the control chart based on Weibull distribution can 

be studied in the same way as for other Shewhart charts. However, since there are two 

parameters in this case, a change in ARL may mean a change in one or two or both the 

parameters.  

 

This section illustrates how the change in the parameters affect the average run length of 

the control chart based on Weibull distribution. As discussed before there are three ways 

in which the parameters can change and they are investigated in the following. 

 

7.2.1. Case 1: Change in the scale parameter  

Weibull distribution contains two parameters; a change in any of them could cause an 

out-of-control signal. Since the scale parameter is usually related to operating condition, 

the scale parameter is likely to change because of assignable causes. Figure 7.3 shows 

some ARL curves for a control chart based on two-parameter Weibull distribution when 

there is a change in only the scale parameter, with the in-control θ0 = 10.  



Monitoring Quality Characteristics following Weibull Distribution 
________________________________________________________________________ 
 

________________________________________________________________________ 
 152 

 

6 8 10 12 14 16
�

100

200

300

400

500

600
ARL

��3

��1.5

��0.5

 

Figure 7.3 Some ARL curves with the in-control θ0 = 10 

 

The figure shows that the ARL decreases when the scale parameter increases. However, 

it is interesting to note that the same is not true for a decrease in scale parameter. When 

the scale parameter decreases the ARL first increases and then decreases. This is due to 

the skewness of the Weibull distribution.  

 

In fact, this happens also for the case of exponential chart which is a special case of the 

Weibull t chart. Only when the Weibull shape parameter is large, the parameter at which 

the maximum of the ARL will occur is close to the in-control value. As it is known, 

Weibull distribution can be well estimated by Normal distribution when the shape 

parameter is between 3-4 and when the shape parameter is larger, the variance will be 

very small, and hence the difference from the in-control value will be small. 
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7.2.2. Case 2: Change in the shape parameter 

Even though the scale parameter is more likely to change but sometimes the shape 

parameter can also change. Figure 7.4 shows some Operation Characteristic (OC) curves 

when the shape parameter changes. 

 

1 2 3 4 5
�

0.2

0.4

0.6

0.8

1
Type II error

�0�3

�0�1.5

�0�0.5

 

Figure 7.4 OC curves when the shape parameter increases 

 

When the shape parameter decreases, the Type II error also decreases resulting in a 

decrease in the ARL and a control chart will be able to detect the decrease in the shape 

parameter. As the shape parameter increases, the probability of a point plotting within the 

control limits increases significantly and for large shifts in the process parameters, the 

probability approaches one. Thus the time until a point falls outside the control limits will 

be very long. As explained before, when the shape parameter increases, the variability is 
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reduced and more points will actually fall within the limits. Hence the Weibull t chart is 

not able to detect the increase in the shape parameter. 

 

7.2.3. Case 3: Change in both the shape and the scale parameter 

The third case, though not so common, is a change in both the parameters. Figure 7.5 

shows the ARL curves when both the scale as well as the shape parameter changes.  
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Figure 7.5 The ARL curves when both the parameters change with in-control θ0 = 10, β0 
= 1.5 

 

The figures show that the shape parameter has the predominant effect on the ARL and it 

is impossible to detect increase in the shape parameter with the t chart in this case and 

other chart will be needed to monitor this. An increase in shape parameter increases the 

ARL no matter whether the scale parameter increases or decreases. This can be explained 

again by the fact that when the shape parameter is increased, the variability is reduced. 
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However, a change in the shape parameter is rare as it usually depends on intrinsic 

material property although it is an important aging parameter. 

 

7.2.4. Comparison with Weibull CUSUM chart 

The CUSUM charts are known to be quite sensitive to small shifts in a process. Many 

researchers have studied the properties and charting procedures of the time-between-

events CUSUM, see Lucas (1985) and Gan ( 1992). If X1, X2,… be the inter-arrival times 

then the time-between-events CUSUM for detecting an increase or decrease in the inter-

arrival times can be respectively defined as 
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where, k is the pre-chosen parameter. The control limits are denoted by h and the decision 

on the statistical control of the process is taken depending on whether St
- � -h or St

+ � h. 

Most of the research on the time-between-events CUSUM assumes that the inter-arrival 

times follow exponential distribution. Since Weibull distribution is a generalization of the 

exponential and can model increasing, decreasing as well as constant failure rates, it 

would be interesting to see the performance of the time-between-events (Weibull) 

CUSUM scheme when the shape parameter changes, more specifically when there is an 

increase in the shape parameter. 
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The average run length calculation for a CUSUM scheme is comparatively more difficult 

than that for a Shewhart chart or, as a matter of fact, the Weibull t chart presented in this 

chapter.  Vardeman and Ray (1985) obtained the exact expressions for the ARLs of 

CUSUM schemes when the inter-arrival times follow exponential distribution. Gan 

(1992) obtained the probability function of the run length, the ARLs, the standard 

deviation of the run length (SDRL) and the run length percentiles of exponential CUSUM 

schemes by solving the integral equations. However in this chapter we follow the Markov 

chain approach of Brook and Evans (1972) which gives approximate but quite accurate 

results. The results were obtained using 41 states and were compared with those obtained 

by Gan (1992) for shape parameter = 1 (exponential distribution) and no substantial 

difference was found.  When the shape parameter increases, the mean of the Weibull 

distribution decreases and a lower Weibull CUSUM chart should be employed. The 

calculated average run lengths for the lower CUSUM scheme are shown in Table 7.3. 

The first row values are similar to those, except for h = 6.506 and k = 0.8, obtained by 

Gan (1992) for the case of exponential distribution.  

 

It is evident from the table that the ARLs increase with an increase in shape parameter. 

So even the use of the CUSUM procedure does not help us detect the increase in shape 

parameter.  
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� h = 0, k = 
0.002 h = 0.737,  k= 0.3 h = 1.905, k = 0.5 h = 4.267, k = 

0.7 
h = 6.506, k 

= 0.8 
1 500.50 500.55 500.98 500.72 481.33 

1.1 931.32 940.19 850.49 692.67 561.85 
1.2 1733.36 1818.88 1499.70 985.03 665.18 
1.3 3226.48 3610.96 2743.74 1444.25 800.85 
1.4 6006.12 7331.17 5199.43 2188.51 982.95 
1.5 11180.84 15173.47 10184.46 3433.81 1232.87 
1.6 20814.33 31925.55 20572.20 5585.53 1583.80 
1.7 38748.47 68119.29 42749.51 9425.26 2088.45 
1.8 72135.50 147082.88 91167.27 16500.83 2832.55 
1.9 134290.29 320796.38 199061.53 29959.52 3958.82 
2 250000.50 705674.39 444030.50 56369.46 5710.74 

2.1 465411.89 1563582.50 1009754.28 109791.07 8513.89 
2.2 866431.55 3485781.63 2336496.43 221078.10 13130.81 
2.3 1612988.03 7811569.33 5491608.87 459579.54 20962.56 
2.4 3002811.59 17583043.64 13089569.47 984821.53 34648.91 
2.5 5590170.44 39726443.22 31594618.20 2172032.22 59290.46 
3 125000000.07 2433113007.03 2998712632.35 165595171.05 1432836.49 

3.5 2795084600.02 154851325281.86 335720509259.21 20934511413.92 72759159.68 

Table 7.3 ARLs of the lower Weibull CUSUM for � = 1. 

 

7.3. Individual chart with Weibull distribution  

It is possible to directly plot the observation and use individual chart to monitor the 

process. However, before plotting the I chart, the Weibull data should be transformed to 

normal. There are different approaches to transform Weibull distribution to near 

normality. Yang et al. (2002b) discussed some transformation methods. The power 

transformation by Box and Cox (1964) is very suitable. A simple power transformation, 
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i.e. X (λ) = Xλ, where X is a Weibull random variable, can be used. Hernandez and 

Johnson (1980) have shown that the value of λ can be calculated as: 

 

βλ 2654.0=      (7.6) 

 

where β is the shape parameter of the Weibull distribution. The transformation method, 

thus, requires only an estimation of the shape parameter, which is relatively a simple task. 

It can be noted that for exponential distribution, 2654.0=λ  can be used as suggested in 

Nelson (1994). Kittlitz (1999) also proposed the double square root transformation for 

transforming exponentially distributed data. Some general discussion can also be found in 

Chou (1998). 

 

For calculating the control limits of the I chart, though we can calculate the standard 

deviation of the transformed data, we do not use it for calculating the limits because the 

skewness and kurtosis of the transformed data departs slightly from the values 0 and 3 

respectively, see Kittlitz (1999). As a result, most of the time the use of standard 

deviation calculated from the data will give a wider set of control limits. Alternatively the 

control limits of the I chart can be calculated by transforming the control limits obtained 

for the t chart. Thus the control limits of the I chart will be given by: 
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Figure 7.6 I chart for shift from θ = 10 to θ = 20 

 

The individual chart and a standard EWMA chart are shown in Figures 7.6-7.7. There are 

quite a few points above the upper control limit, which is an indication that the process 

parameter has changed. Such a situation should be then followed by a search and the 
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causes of the improvement should be maintained and a new control chart should then be 

started with revised control limits.  
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Figure 7.7 EWMA chart for shift from θ = 10 to θ = 20 

 

7.4. Maximizing ARL for fixed in-control state 

As mentioned before, and also evident from Figure 7.3, the maximum ARL value is 

reached at a value of θ different from the in-control value. In fact, by taking the 

derivative of ARL with respect to θ and setting it to be zero, the value of θ at which ARL 

will be maximum can be shown to be: 
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It is also possible to set the control limits so that the maximum ARL occurs at the 

specified in-control value of the scale parameter. This can be done by equating Equation 

(7.8) in place of θ0 in Equation (7.3) to obtain the adjusted control limits as follows. 
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When these adjusted control limits replace the old control limits in Equation (7.5), the 

resulting ARL will reach the maxima at the in-control θ0. Figure 7.8 shows some ARL 
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curves, when only the shape parameter changes. The maximum ARL is at θ0  = 10 for all 

the three cases. 
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Figure 7.8 Some ARL curves with adjusted control limits and the in-control θ0 = 10 

 

By looking at the patterns of out-of-control signal, a decision can be made on which of 

the parameters has changed. Basically a Weibull distribution with small shape parameter 

will have a "heavy" tail while one with large shape parameter is more centered around the 

mean. 

 

7.5. The effect of estimated parameters on the Weibull t chart 

In most of the control chart studies, it is assumed that the parameters are known or an 

accurate estimate is available. In reality, however, the parameters of the distribution have 

to be estimated and usually the sample size is small so the estimates are not accurate. 
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Since the control limits can be affected by the parameters, the estimation error is an 

important issue. Many authors have addressed this issue. An early paper is Proschan and 

Savage (1960) and for some recent papers, see e.g. Quesenberry (1993), Chen (1998), 

Braun (1999), Champ and Chou (2003), Jones (2002), Jones, and Champ (2002) and 

Jones et al. (2001). As will be seen in the following, this is a more interesting problem for 

the Weibull t chart.  

 

Among the various estimation techniques the one most widely used is the Maximum 

Likelihood Estimators (MLE). The ML estimate of the parameters of the Weibull 

distribution can be obtained by solving the following two equations 
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The estimators are random variable and for a given set of data, the estimates could be 

different from the true value leading to wrong control limits. In fact, in the case of 



Monitoring Quality Characteristics following Weibull Distribution 
________________________________________________________________________ 
 

________________________________________________________________________ 
 164 

Weibull, the MLEs are known to be biased and the bias itself could be very large for 

small sample. This is especially the case when the shape parameter is concerned.  

 

A simulation study is carried out and the results are tabulated in Table 7.4.  It shows the 

MLE of the parameters of the Weibull distribution for different sample sizes and the 

control limits based on the estimated parameters. The results in each row are based on 

10000 random samples simulated with in-control parameters θ0 = 10 and β0 = 1.5. 

Median, due to its robustness to outliers, was used to compute the central location of the 

parameters and the control limits. The true control limits (for α = 0.0027) are (from Table 

7.1) 35.21 (UCL), 7.83 (CL) and 0.12 (LCL). We can also compute the relative percent 

error between the estimated limit and the actual limit as follows: 

 

Relative Error (%) = 100
Limit True

Limit True -Limit  Estimated ×  

 

Estimated Limits Relative Error (%) Sample 
Size β δ 

UCL CL LCL UCL CL LCL 
5 1.86 9.78 27.44 7.99 0.28 (-) 22.07 (+) 2.04 (+) 133.33 

10 1.66 9.81 31.09 7.88 0.18 (-) 11.70 (+) 0.64 (+) 50.00 
15 1.61 9.91 32.35 7.89 0.16 (-) 8.12 (+) 0.77 (+) 33.33 
20 1.57 9.96 33.24 7.85 0.15 (-) 5.60 (+) 0.26 (+) 25.00 
25 1.56 9.96 33.52 7.87 0.14 (-) 4.80 (+) 0.51 (+) 16.67 
30 1.55 9.97 33.88 7.87 0.14 (-) 3.78 (+) 0.51 (+) 16.67 

Table 7.4 The MLEs and the estimated control limits for different sample sizes (α = 
0.0027, β0 = 1.5, θ0 = 10) 
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As expected, a small sample size has a drastic effect on the control limits. For a sample 

size of 5, in 50% of cases, the difference between the true lower control limit and the 

estimated one is larger than 133%. It can be seen from Equation (7.3) that a larger 

estimate of β  results in an overestimation of the lower control limit and the centre line, 

and an underestimation of the upper control limit. On the other hand a larger estimate of 

θ will overestimate the control limits while a small θ will always underestimate them. In 

general, the shape parameter has a larger effect and as can be seen, this is due to the fact 

that it is very biased when the sample size is small.  

 

In the above simulation study, the shape parameter was 1.5, which means increasing 

hazard rate. It would be interesting to study the results when the shape parameter is less 

than 1, i.e. decreasing hazard rate. Table 7.5 shows the results of the simulation for β0 = 

0.5. From Table 7.1 the true control limits are UCL = 436.61, CL = 4.8 and LCL =1.82E-

05. It can be seen from Table 7.5 that the effect is more serious when the estimation 

problem is considered. Again, the problem is mainly due to the biased estimator. 

 

Estimated Limits  Relative Error (%) Sample 
Size β θ 

UCL CL LCL UCL CL LCL 
5 0.62 9.04 206.60 5.10 2.24E-04 (-) 52.68 (+) 6.25 (+) 1126.49 

10 0.55 9.52 300.42 4.90 6.07E-05 (-) 31.19 (+) 2.08 (+) 232.76 
15 0.54 9.59 338.46 4.91 4.30E-05 (-) 22.48 (+) 2.29 (+) 135.82 
20 0.52 9.79 367.13 4.84 3.28E-05 (-) 15.91 (+) 0.83 (+) 79.61 
25 0.52 9.82 376.70 4.88 2.95E-05 (-) 13.72 (+) 1.67 (+) 61.56 
30 0.52 9.87 388.95 4.87 2.76E-05 (-) 10.92 (+) 1.46 (+) 51.21 

Table 7.5 The MLEs and the estimated control limits for different sample sizes (α = 
0.0027, β0 = 0.5, θ0 = 10) 
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In all of the above cases it is visible that the shape parameter is overestimated. This is 

because the Maximum Likelihood method yields biased estimators for the Weibull 

parameters. Ross (1994) presented a correction formula to reduce the bias of the 

estimated shape parameter of the Weibull distribution. This formula when added to the 

ML method reduces the bias to < 3% of the shape parameter value. Ross (1994) gave a 

simple formula for unbiasing the shape parameter β as: 

 

68.0
2

−
−=

n
n

U ββ      (7.12) 

 

where βU is the corrected unbiased estimator and n is the sample size. We will show that 

this approach, which is simple, can be very effective in dealing with estimation error in 

this case. 

 

A simulation was done using this corrected unbiased estimator. As before the results in 

each row are based on 10000 random samples simulated with parameters θ0 = 10 and β0 

= 0.5. For each sample the shape parameter was first calculated by the standard ML 

method, and then it was unbiased by multiplying it with the correction factor. The 

corrected unbiased estimator was then used to calculate the scale parameter. The control 

limits were then calculated based on these unbiased estimators. The values shown in 

Table 7.6 are the median of the parameters and the estimated limits. The true control 

limits (for α = 0.0027) are UCL = 436.61, CL = 4.8 and LCL =1.82E-05. 
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Estimated Limits  Relative Error (%) Sample 
Size β θ 

UCL CL LCL UCL CL LCL 
5 0.43 7.41 621.89 3.07 1.61E-06 (+) 42.44 (-) 36.04 (-) 91.17 

10 0.47 8.53 467.64 3.92 7.58E-06 (+) 7.11 (-) 18.33 (-) 58.44 
15 0.49 9.04 449.85 4.25 1.13E-05 (+) 3.03 (-) 11.46 (-) 37.82 
20 0.49 9.19 451.69 4.35 1.23E-05 (+) 3.45 (-) 9.38 (-) 32.76 
25 0.49 9.46 442.24 4.48 1.36E-05 (+) 1.29 (-) 6.67 (-) 25.41 
30 0.49 9.57 446.18 4.54 1.46E-05 (+) 2.19 (-) 5.42 (-) 19.94 

Table 7.6 The corrected unbiased MLEs and the estimated control limits for different 
sample sizes (α = 0.0027, β0 = 0.5, θ0 = 10) 

 

The results in Table 7.6 are completely different in nature to those displayed in Table 7.4. 

When the corrected unbiased estimators are used the upper control limit is overestimated 

while the lower control limit and the centre line are underestimated. This results in a 

wider control limits. This means less interruptions (false alarm) but at the same time the 

control chart will also become less sensitive to process shifts. However as the sample size 

increases the control limits approach the true limits. For a large sample size even though 

the limits are still slightly away from their true values (say for a sample size of 30), the 

overall performance will be quite satisfactory as compared to the case in Table 7.5 with 

biased parameters. Another interesting revelation is that when the sample size changes 

from 5 to 10, there is a sharp change in the estimated limits. When the sample size further 

increases, the estimated limits approach the true limits but the change is more gradual. To 

validate this finding another simulation was run by changing the value of β0 fro 0.5 to 

1.5. The results are shown in Table 7.7.  
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As before a sharp change was noticed in the estimated limits when the sample size 

changes from 5 to 10. Thus, it can be said that the corrected unbiased estimators give a 

better set of limits, especially for 10≥n . Overall, the estimated limits are much more 

closer to the true limits than compared to Table 7.4. 

 

Estimated Limits  Relative Error (%) Sample 
Size β θ 

UCL CL LCL UCL CL LCL 
5 1.28 8.93 39.67 6.69 5.31E-02 (+) 12.67 (-) 14.56 (-) 55.76 

10 1.42 9.49 36.35 7.32 9.14E-02 (+) 3.24 (-) 6.51 (-) 23.79 
15 1.45 9.63 35.53 7.46 1.02E-01 (+) 0.91 (-) 4.73 (-) 14.68 
20 1.47 9.72 35.45 7.56 1.08E-01 (+) 0.68 (-) 3.45 (-) 9.69 
25 1.48 9.80 35.53 7.62 1.11E-01 (+) 0.91 (-) 2.68 (-) 7.89 
30 1.48 9.82 35.52 7.68 1.12E-01 (+) 0.88 (-) 1.92 (-) 6.36 

Table 7.7 The corrected unbiased MLEs and the estimated control limits for different 
sample sizes (α = 0.0027, β0 = 1.5, θ0 = 10) 
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8.1. The Need 

Control Charts based on variable sampling intervals (VSI), where the sampling interval 

depend upon position of last plotted point, has been studied by many authors in detail, see 

Reynolds et al. (1988, 1990), Runger and Pignatiello (1991), Saccucci et al. (1992), 

Amin and Miller (1993), and Runger and Montgomery (1993). Similar to the idea of VSI 

is the variable sample size (VSS), where the size of the sample varies depending upon the 

plotted point, and has been studied by many authors, see Prabhu et al. (1993), Costa 

(1994), Park and Reynolds (1994), Annadi et al. (1995). A combination of both, where 

both the sample size and sampling interval are treated as variable, is the control chart 

with variable sample size and the sampling intervals (VSSI); see Rendtel (1990), Prabhu 

et al. (1994), Costa (1997, 1999).  

 

The idea behind all these approaches is proper or optimum utilization of resources. Other 

approaches to improving the control chart’s performance consist of adopting double 

sampling procedures; see Croasdale (1974), Daudin (1992) and Steiner (1999). Crosdale 

(1974) and Daudin (1992) added warning limits to the standard - X chart. In their 

methodology, any sample mean that falls between the warning limit and the control limit 

triggers the withdrawal of a second sample. In the Croasdale (1974) procedure, the in-

control/out-of-control decision, after taking the second sample, is based solely on the 

second sample while in Daudin (1992), it is based on the combined sample. In Steiner 

(1999), the decision is based on the individual results extracted from each sample.  Other 

related discussion on the use of warning limits can be found in Page (1955, 1962), 
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Roberts (1966), Gordon and Weindling (1975), Chiu and Cheung (1977), Rahim (1984) 

and Chung (1993). 

 

Most of the work in this area has been done for control charts based on variable data. A 

comprehensive review of the development of Control Charts using attributes data is 

provided in Woodall (1997), while excellent introductions are provided in textbooks such 

as Duncan (1986) and Montgomery (2001). 

 

Although the CQC charts are much more appropriate for high-quality process control, it 

relies purely on a single value for decision-making. As a single value is always inefficient 

in decision-making, it is necessary to create a new procedure either by adding an 

additional chart or by introducing some run rules. Another way to solve this problem is 

by plotting the observed quantity between every r failures. However, the user needs to 

wait for too long to plot a single point. Kuralmani et al. (2002) addressed this issue for 

the CCC charts by incorporating some run rules into the regular CCC control charting 

procedure.  

 

8.2. The Combined scheme 

The control limits of the CQC1 chart can be calculated by Equation (2.12) and are 

reproduced here for ease: 
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where,  α is an acceptable probability of false alarm, and λ0  is the parameter of the 

exponential distribution. The decision rule for the CQC chart, henceforth referred to as 

the CQC1 chart, proposed by Chan et al. (2000) is shown in Figure 8.1. The decision rule 

is straightforward and can be easily understood.  

 

 
No doubt CQC1 chart has many advantages compared to the traditional Shewhart chart 

for monitoring Poisson counts, like the c or the u charts. However, as pointed out by Xie 

et al. (2002b), one major disadvantage of the CQC1 chart is that the decision whether the 

process is out of control is taken based on only one point and thus as a result, the chart 

may either cause many false alarms or it may be insensitive to process shift if the control 

limits are wide (with small value of α). To overcome this problem Xie et al. (2002b) 

suggested monitoring the time between r defects (events). This approach gives more 

credibility to the decision regarding the statistical control of the process as the decision is 

made on the basis of r points rather than a single point.  
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Figure 8.1 Decision Rule for CQC1 chart 
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To calculate the control limits of the CQCr chart, the concept of exact probability limits is 

used. If α is the accepted false alarm risk then the upper control limit, UCLr, the center 

line, CLr, and the lower control limit, LCLr, can be calculated by using Equation (3.3) 

and are reproduced here for convenience: 
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However, this approach too has two major disadvantages; first, the average time taken to 

plot a point increases with r and second that the average time to alarm increases as the 

process improves beyond a certain level. Here it must be made clear that this problem is 

also present for the CQC1 chart however it is more pronounced in the case of CQCr chart 

due to the effect of r.  

 

The ideal condition would be to use the advantages of both these schemes, i.e. 

• To decrease the time to plot a point, an advantage associated with the CQC1 chart 

• To take the decision regarding statistical control of the process based on one more 

than one point, an advantage associated with the CQCr chart 
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The procedure proposed in this chapter is based on the two advantages mentioned above.  

A set of warning limits is established corresponding to some “critical” false alarm 

probability. The selection of this probability is a subjective decision and should be taken 

by the concerned people based on the past information about the process. The upper 

warning limit is named as UCLc and the lower warning limit as LCLc (where c stands for 

“critical”). These warning limits can be calculated just like the control limits of CQC1 

chart as: 

 

c
c

c
c UCLLCL
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−
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where αc is the specified critical false alarm probability 

 

The individual time (or quantity) to failure (or defect) is plotted on the control charts. If 

the point plots above or below the UCL or the LCL, respectively, of the CQC1 chart 

(henceforth referred to as the UCL1 and the LCL1 respectively), the process is deemed 

out of control. If the point, Q1, plots between  LCLc and LCL1 or the UCLc and the UCL1, 

no decision regarding the statistical control of the process is made, however since the 

plotted point lies in the warning zone and hence provide a strong evidence regarding 

possible shift in the process, the user switches over from the CQC1 charting procedure to 

CQCr charting procedure. Once the rth event occurs, the sum of observed quantity, Qr, 

and the initial observation Q1 is plotted on the chart. If this sum lies above the UCL1+r or 

below the LCL1+r, the process is declared out of control else the process is declared in 
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control and the user goes back to the normal plotting procedure for the CQC1 chart. 

Figure 8.2 shows the decision rule for this combined procedure.  

 

The procedure can be thought of as “switch-over” procedure where the user switches, 

from the one plotting method to another. The advantage of this combined plotting method 

is that we consider more points only when there is strong evidence that the process might 

have shifted. Thus we do not compromise on the waiting time (to plot a point) and at the 

same time we get a better performance as compared to the CQC1 chart. 

 

Since the user plots the sum of initial (1) and last r observations, the charting procedure is 

given the name of CQC1+r chart. 
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Figure 8.2 Decision Rule for the combined procedure 



Combined Decision Scheme for CQC Charts 
________________________________________________________________________ 
 

________________________________________________________________________ 
 178 

8.3. Average Run Length of the combined scheme 

Average run length of a control chart is defined as the number of points plotted on the 

control chart before the chart raises an out of control alarm. The ARL of any chart can be 

represented by the formula 

 

limit the outside fall point to a ofy probabilit
1=ARL   (8.4) 

 

To calculate this probability for the combined scheme we need to consider four scenarios: 

 

Case 1: The plotted point falls outside UCL1 and LCL1, with probability p1  

The probability p1 can be calculated as: 

 

1111
LCLUCL eep λλ −+= −     (8.5) 

 

Case 2: The plotted point, a, falls between UCLc and UCL1. The sum of a and next 

quantity, b falls beyond UCL1+r with probability p2 

 

The quantity b is actually the sum of r exponential random variables and thus follows 

Gamma distribution with parameters r and λ. Therefore, the probability, p2, can be 

calculated as: 
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Assuming independence between initial and next r observations, the joint probability 

function of observations a and b can be found as 
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where, λ is the out of control parameter. 

 

Substituting the above equation in Equation (8.6) we can obtain the probability p2  

 

Case 3: The plotted point, a, falls between LCL1 and LCLc. The sum of a and next 

quantity, b falls below LCL1+r with probability p3 and it can be calculated as: 
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Case 4: The plotted point, a, falls between LCL1 and LCLc. The sum of a and next 

quantity, b falls beyond UCL1+r. This probability, p4, can be calculated as: 
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So, the overall probability, p, for a point to indicate an out of control situation is: 

 

4321 ppppp +++=  

 

As an illustration for r = 1, i.e. for CQC1+1 chart, the four probability components can be 

calculated as: 

 

 

 

 

 

 

 

 

where, λ  and λ0 are the out of control and in control parameter respectively. Substituting 

this sum in Equation (8.4) we can compute the ARL for the combined scheme. Tables 1-4 

show the ARL values of CQC1+r chart for different values of r. The parameters used in 

the ARL computation are as follows: 

 

• The false alarm probability for calculating the limits of the CQC1 and the CQC1+r 

chart in the combined procedure was assumed to be, α = 0.0027. 

• The critical false alarm probability was assumed to be, αc = 0.01 

��
�

�
��
�

�

−
−=

��
�

�
��
�

�

−
−−�

�

�
�
�

� −−�
�

�
�
�

� −=

�
�

�
�
�

�=

�
�

�
�
�

�+�
�

�
�
�

� −−=

−

−

−

2/1
2/1

ln

2/1
2/1

ln
2

1
2

1

ln

22
11

0
4

0
3

0
2

1

2

2
00

2

00

c

UCL

c

LCLc

cUCL

ep

ep

ep

p

α
α

λ
λ

α
α

λ
λαα

α
α

λ
λ

αα

λ

λ
λ

λ
λ

λ

λ

λ
λ

λ
λ



Combined Decision Scheme for CQC Charts 
________________________________________________________________________ 
 

________________________________________________________________________ 
 181 

• The in-control parameter (λ0) for all the charts is assumed to be 1 

• The false alarm probability for the “matched” CQC1 chart were selected to give the 

same in-control ARL as the CQC1+r chart. For example for in Table 8.1 the false 

alarm probability for the CQC1 chart was taken as 0.003056 while those in Tables 

8.2, 8.3 and 8.4 were taken as 0.002917, 0.002868 and 0.00284 respectively.  

 

ARL ARL 

λ 
CQC1+1 CQC1 

Reduction 
in the out 
of control 
ARL (%) 

λ 
CQC1+1 CQC1 

Reduction 
in the out 
of control 
ARL (%) 

0.01 1.05 1.07 1.87 1.1 403.79 403.28 -0.13 
0.05 1.31 1.38 5.07 1.2 440.62 444.22 0.81 
0.1 1.75 1.91 8.38 1.3 443.79 453.64 2.17 

0.15 2.36 2.64 10.61 1.4 428.14 443.89 3.55 
0.2 3.21 3.65 12.05 1.5 404.9 425.37 4.81 

0.25 4.4 5.05 12.87 1.6 379.98 404.05 5.96 
0.3 6.04 6.97 13.34 1.7 355.95 382.77 7.01 

0.35 8.34 9.62 13.31 1.8 333.71 362.68 7.99 
0.4 11.54 13.27 13.04 1.9 313.46 344.15 8.92 

0.45 15.99 18.27 12.48 2 295.11 327.22 9.81 
0.5 22.16 25.09 11.68 2.1 278.48 311.78 10.68 

0.55 30.67 34.36 10.74 2.2 263.39 297.69 11.52 
0.6 42.32 46.82 9.61 2.3 249.65 284.8 12.34 

0.65 58.1 63.4 8.36 2.4 237.09 272.96 13.14 
0.7 79.1 85.05 7 2.5 225.59 262.07 13.92 

0.75 106.4 112.68 5.57 2.6 215.01 252.01 14.68 
0.8 140.8 146.82 4.13 2.7 205.26 242.7 15.43 

0.85 182.1 187.26 2.76 2.8 196.25 234.05 16.15 
0.9 229.1 232.69 1.55 2.9 187.89 226 16.86 

0.95 278.8 280.52 0.6 3 180.12 218.48 17.56 
1 327.2 327.22 0     

Table 8.1 The ARL values for CQC1+1 and CQC1 charts 
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ARL ARL 

λ 
CQC1+2 CQC1 

Reduction 
in the out 
of control 
ARL (%) 

λ 
CQC1+2 CQC1 

Reduction 
in the out 
of control 
ARL (%) 

0.01 1.05 1.07 1.23 1.1 428.74 423.08 -1.34 
0.05 1.31 1.39 5.84 1.2 471.78 466.13 -1.21 
0.1 1.72 1.92 10.66 1.3 477.21 475.84 -0.29 

0.15 2.28 2.66 14.31 1.4 461.14 465.42 0.92 
0.2 3.06 3.69 16.9 1.5 436.12 445.84 2.18 

0.25 4.16 5.11 18.57 1.6 408.87 423.39 3.43 
0.3 5.69 7.07 19.47 1.7 382.33 401.03 4.66 

0.35 7.85 9.78 19.75 1.8 357.6 379.95 5.88 
0.4 10.88 13.52 19.5 1.9 334.95 360.52 7.09 

0.45 15.14 18.66 18.83 2 314.31 342.77 8.3 
0.5 21.12 25.69 17.81 2.1 295.54 326.6 9.51 

0.55 29.45 35.27 16.48 2.2 278.42 311.83 10.71 
0.6 41 48.18 14.91 2.3 262.78 298.32 11.91 

0.65 56.81 65.41 13.14 2.4 248.46 285.92 13.1 
0.7 78.12 87.97 11.2 2.5 235.29 274.51 14.29 

0.75 106.17 116.85 9.14 2.6 223.17 263.98 15.46 
0.8 141.9 152.63 7.03 2.7 211.97 254.22 16.62 

0.85 185.48 195.13 4.95 2.8 201.6 245.16 17.77 
0.9 235.69 242.98 3 2.9 191.98 236.72 18.9 

0.95 289.59 293.45 1.32 3 183.05 228.85 20.01 
1 342.77 342.77 0     

Table 8.2 The ARL values for CQC1+2 and CQC1 charts 

 

As can be see from the tables, the combined scheme gives a better ARL performance than 

the current design. It can also be seen that for small process deterioration the ARL of 

both the charts increase and later decrease as the magnitude of shift becomes large. 

Moreover, the CQC1 chart gives a better performance than the CQC1+r charts for small 

process deteriorations.  
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ARL ARL 

λ 
CQC1+3 CQC1 

Reduction 
in the out 
of control 
ARL (%) 

λ 
CQC1+3 CQC1 

Reduction 
in the out 
of control 
ARL (%) 

0.01 1.05 1.07 1.87 1.1 437.05 430.65 -1.49 

0.05 1.3 1.39 6.47 1.2 481.06 474.51 -1.38 

0.1 1.7 1.92 11.46 1.3 486.32 484.33 -0.41 

0.15 2.24 2.67 16.1 1.4 469.38 473.65 0.9 

0.2 2.99 3.7 19.19 1.5 443.12 453.67 2.33 

0.25 4.02 5.13 21.64 1.6 414.43 430.78 3.8 

0.3 5.47 7.11 23.07 1.7 386.38 408.01 5.3 

0.35 7.52 9.84 23.58 1.8 360.1 386.54 6.84 

0.4 10.43 13.61 23.37 1.9 335.91 366.77 8.41 

0.45 14.54 18.8 22.66 2 313.79 348.72 10.02 

0.5 20.37 25.92 21.41 2.1 293.57 332.26 11.64 

0.55 28.57 35.61 19.77 2.2 275.09 317.23 13.28 

0.6 40.03 48.7 17.8 2.3 258.16 303.49 14.94 

0.65 55.86 66.16 15.57 2.4 242.63 290.88 16.59 

0.7 77.35 89.08 13.17 2.5 228.34 279.27 18.24 

0.75 105.82 118.43 10.65 2.6 215.18 268.55 19.87 

0.8 142.29 154.84 8.11 2.7 203.04 258.62 21.49 

0.85 186.94 198.12 5.64 2.8 191.82 249.4 23.09 

0.9 238.53 246.9 3.39 2.9 181.43 240.82 24.66 

0.95 293.99 298.39 1.47 3 171.81 232.81 26.2 

1 348.72 348.72 0     

Table 8.3 The ARL values for CQC1+3 and CQC1 charts 
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ARL ARL 

λ 
CQC1+4 CQC1 

Reduction 
in the out 
of control 
ARL (%) 

λ 
CQC1+4 CQC1 

Reduction 
in the out 
of control 
ARL (%) 

0.01 1.05 1.07 1.87 1.1 441.24 434.95 -1.45 
0.05 1.3 1.39 6.47 1.2 485.14 479.28 -1.22 
0.1 1.7 1.93 11.92 1.3 489.73 489.16 -0.12 

0.15 2.23 2.67 16.48 1.4 471.77 478.32 1.37 
0.2 2.94 3.71 20.75 1.5 444.26 458.11 3.02 

0.25 3.93 5.14 23.54 1.6 414.17 434.99 4.79 
0.3 5.32 7.13 25.39 1.7 384.64 411.97 6.63 

0.35 7.28 9.88 26.32 1.8 356.85 390.3 8.57 
0.4 10.07 13.67 26.34 1.9 331.17 370.33 10.57 

0.45 14.05 18.89 25.62 2 307.59 352.1 12.64 
0.5 19.74 26.05 24.22 2.1 286 335.47 14.75 

0.55 27.8 35.8 22.35 2.2 266.23 320.3 16.88 
0.6 39.17 48.99 20.04 2.3 248.12 306.43 19.03 

0.65 54.99 66.59 17.42 2.4 231.52 293.69 21.17 
0.7 76.61 89.7 14.59 2.5 216.3 281.97 23.29 

0.75 105.39 119.32 11.67 2.6 202.32 271.15 25.38 
0.8 142.39 156.09 8.78 2.7 189.49 261.12 27.43 

0.85 187.79 199.82 6.02 2.8 177.69 251.82 29.44 
0.9 240.26 249.13 3.56 2.9 166.84 243.15 31.38 

0.95 296.6 301.19 1.52 3 156.85 235.06 33.27 
1 352.09 352.1 0     

Table 8.4 The ARL values for CQC1+4 and CQC1 charts 

 

The increase in ARL for small process deterioration is because of the skewness of the 

underlying distribution and is a general problem associated with the control charts based 

on run length distribution as discussed in 5.1. However, from the Figure 5.1 it is obvious 

that the effect is less prominent for large r. So, it can be argued that the better 

performance of the CQC1 chart is not due to the skewness. The reason behind this slightly 

better performance is the fact that the ARL for the two charts were computed for different 
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false alarm probability. For the CQC1 chart in Table 8.1, we had assumed a false alarm 

probability of 0.003056. When the process deteriorates, the Type II error of CQC1 chart 

first increases from its in-control value of 0.996944 and then decreases with further 

deterioration. The Type II error for the CQC1+r chart also increases as the process 

deteriorates but the increase is more as compared to the CQC1 chart. As a result of this 

the CQC1 chart performs better than the CQC1+r chart for small process deteriorations. 

This can also be seen from Figures 8.3-8.6 which plot the Type II errors for the two 

charts for different values of r for small increase in λ. 

 

The problem of increment in ARL for small process deteriorations can be corrected by 

placing the optimal limits on the control chart as shown in Chapter 5. Kuralmani et al. 

(2002) too obtained the optimal limits for their proposed combined decision scheme for 

CCC charts. 
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Figure 8.3 OC Curves of CQC1+1 and CQC1 charts for small process deteriorations 
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Figure 8.4 OC Curves of CQC1+2 and CQC1 charts for small process deteriorations 
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Figure 8.5 OC Curves of CQC1+3 and CQC1 charts for small process deteriorations 
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Figure 8.6 OC Curves of CQC1+4 and CQC1 charts for small process deteriorations 
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8.4. Average Time to Signal of the combined scheme 

As discussed before the disadvantage of the CQCr charts is that the average time to plot a 

point is r times that for the CQC1 chart, thus it would be interesting to study the 

performance of the combined in terms of average time to signal (ATS). A simulation 

study was carried out in which 100000 points were simulated for the CQC1+1 and CQC1+2 

schemes and their ATS was noted. The performance of the combined decision scheme is 

compared with the current CQC2 and CQC3 chart.  

 

Table 8.5 compares the performance of CQC1+1 chart with that of the CQC2 chart. The 

false alarm probability for the CQC2 chart was assumed to be 0.003056, so that both the 

charts have the same in-control ARL, as shown in Table 8.1. This results in a higher in 

control ATS for the CQC2 chart. However there can be certain situations where the time 

to signal may actually be more important than number of false alarm. Thus we have also 

compared the performance of the CQC1+1 chart with the CQC2 chart having same in 

control average time to signal though with a higher false alarm probability (0.006112). 

 

For process improvements, not only the CQC1+1 performs much better than the matched 

CQC2 chart having same in control false alarm probability, but also performs better than 

the CQC2 chart (having same in control average time to signal) for large process 

improvement (λ � 0.3) .  
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λ CQC1+1 
CQC2   
(α = 

0.003056) 

CQC2    
(α = 

0.006112) 
λ CQC1+1 

CQC2   
(α = 

0.003056) 

CQC2    
(α = 

0.006112) 
0.01 106.3 200.73 200.61 1.1 370.1 717.16 351.31 
0.05 27.81 43.11 42.61 1.2 393.35 667.64 327.9 
0.1 18.87 25.6 24.71 1.3 310.65 571.17 283.04 

0.15 16.96 21.44 20.1 1.4 285.56 474.15 236.77 
0.2 17.39 20.96 19.01 1.5 284.25 391.91 196.73 

0.25 18.92 22.41 19.65 1.6 245.79 325.75 164.1 
0.3 21.24 25.44 21.53 1.7 201.7 273.12 137.95 

0.35 25.16 30.14 24.6 1.8 167.34 231.12 116.97 
0.4 31.17 36.87 29 1.9 156.59 197.31 100.04 

0.45 37.88 46.22 35.01 2 152.6 169.81 86.24 
0.5 46.25 59.07 43.07 2.1 135.65 147.25 74.9 

0.55 58.79 76.64 53.75 2.2 121.62 128.55 65.49 
0.6 72.83 100.55 67.78 2.3 118.89 112.92 57.62 

0.65 89.08 132.87 86.01 2.4 102.74 99.75 50.98 
0.7 112.16 176.06 109.36 2.5 99.41 88.58 45.34 

0.75 143.92 232.63 138.56 2.6 91.28 79.04 40.52 
0.8 181.49 304.22 173.75 2.7 79.1 70.84 36.38 

0.85 205.75 390.07 213.88 2.8 78.38 63.76 32.79 
0.9 269.29 484.89 256.11 2.9 64.7 57.6 29.67 

0.95 285.15 577.83 295.73 3 61.03 52.22 26.94 
1 332.95 654.45 327.23     

Table 8.5 The ATS of CQC1+1 and CQC2 charts 

 

For process deterioration the CQC1+1 outperforms CQC2 (α = 0.003056) chart except for 

large deterioration (λ ≥ 2.3). The other CQC2 (α = 0.006112) chart gives the best 

performance though at the expense of a higher false alarm probability, i.e. one 

interruption per 164 plotted points.  

 



Combined Decision Scheme for CQC Charts 
________________________________________________________________________ 
 

________________________________________________________________________ 
 189 

λ CQC1+2 
CQC3   
(α = 

0.002917) 

CQC3    
(α = 

0.005834) 
λ CQC1+2 

CQC3   
(α = 

0.002917) 

CQC3    
(α = 

0.005834) 

0.01 108.04 200.74 300.04 1.1 389.93 752.34 353.79 
0.05 28.65 43.14 60.75 1.2 449.19 700.24 307.42 
0.1 19.65 25.66 32.27 1.3 401.13 598.72 246.31 

0.15 17.77 21.54 24.11 1.4 339.54 496.79 192.92 
0.2 17.87 21.09 21.21 1.5 279.97 410.5 151.48 

0.25 19.25 22.61 20.68 1.6 228.63 341.13 120.27 
0.3 21.54 25.73 21.64 1.7 231.46 285.98 96.75 

0.35 25.22 30.56 23.88 1.8 206.38 241.97 78.85 
0.4 30.21 37.47 27.45 1.9 196.3 206.55 65.03 

0.45 36.36 47.09 32.6 2 169.05 177.75 54.22 
0.5 44.75 60.34 39.74 2.1 128.36 154.12 45.66 

0.55 56.32 78.49 49.48 2.2 134.16 134.53 38.8 
0.6 72.31 103.25 62.63 2.3 117.27 118.16 33.24 

0.65 87.88 136.8 80.26 2.4 109.65 104.38 28.7 
0.7 118.15 181.78 103.6 2.5 96.9 92.68 24.94 

0.75 146.39 240.85 133.88 2.6 82.06 82.69 21.82 
0.8 179.4 315.87 171.8 2.7 80.77 74.11 19.2 

0.85 217.68 406.11 216.6 2.8 68.03 66.69 16.99 
0.9 286.67 506.12 264.82 2.9 67.8 60.24 15.1 

0.95 278.5 604.41 309.71 3 67.3 54.62 13.49 
1 343.53 685.64 342.82     

Table 8.6 The ATS of CQC1+2 and CQC3 charts 

 

Table 8.6 shows the ATS values of CQC1+2 and CQC3 charts. The findings remain same 

as before with CQC1+2 chart performing better than the CQC3 (α = 0.002917) chart 

except for λ ≥ 2.4. The other CQC3 (α = 0.005834) chart performs better than the 

combined scheme in detecting process deterioration and are also more sensitive to small 

process  deteriorations (λ � 0.35) though again at the expense of a higher false alarm 

probability (one interruption per 171 plotted points). 
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8.5. An example to illustrate the charting procedure 

Table 8.7 shows a set of simulated data. The first 50 point were simulated from 

exponential distribution with the assumed in control parameter of λ = 1 and the last 25 

points were simulated using an out of control parameter of λ = 0.5.  

 

The control limits of CQC1 and CQC2 chart were calculated for a false alarm probability 

of 0.0027 and were found to be, LCL1 = 0.00135, UCL1 = 6.61, LCL2 = 0.053, and UCL2 

= 8.9. The critical control limits were calculated using αc = 0.01 and were found out to be 

LCLc = 0.005, and UCLc = 5.3.  

 

Figure 8.7 shows the CQC1+1 control chart. Observation number 19 falls below the lower 

critical limit and the LCL1. As a result of this the next observation that should be plotted 

on the control chart would be the sum of observation 19 and 20. Since the sum lies above 

LCL2 so the process is deemed in control and the point is referred to as false alarm and 

the user returns to the normal (CQC1) charting procedure. Here, it is noteworthy to point 

out that since we know the parameters of the distribution hence we can straightaway 

make decisions regarding the statistical control of the process. However, while 

monitoring an actual process, the same is not true and any decision regarding the control 

of the process must be only taken before a search for assignable cause has been carried 

out. 
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0.06763 2.62971 0.23131 0.05702 0.94536 1.19876 
2.84374 0.78621 1.55125 0.81133 0.50925 1.7095 
5.19695 0.01452 0.23274 0.26251 1.25752 2.2016 
0.00242 0.053706 0.03238 2.42276 1.22476 1.40963 
3.39545 4.09971 0.69249 1.20512 0.43853 0.33546 
0.81617 0.1695 0.83702 1.30658 0.17296 0.41078 
0.84988 1.2547 3.01973 0.11204 1.94414 1.74562 
2.97139 0.09142 1.74312 2.45504 0.27786 0.40286 
1.95582 2.66957 2.71678 1.99529 1.40049 2.07538 
0.40925 1.29001 5.5146 10.4798 0.05315 0.2981 
0.90513 0.45038 0.156 0.06605 1.41496 0.94376 
0.26997 5.80523 8.09719 1.23991 4.30271 1.90137 
3.46928 1.51564 0.30338    

Table 8.7 Simulated data set to (Read across for consecutive data point) 

 

0 10 20 30 40 50 60 70 80

0.001

0.010

0.100

1.000

10.000

Observation Number

P
lo

tte
d 

Q
ua

nt
ity

UCL-2

LCL-c

LCL-2

CL

UCL-c
UCL-1

LCL-1

Figure 8.7 The CQC1+1 chart 

 



Combined Decision Scheme for CQC Charts 
________________________________________________________________________ 
 

________________________________________________________________________ 
 192 

The chart finally raises an alarm at observation 59, which is actually the sum of 

observation 58 and 59. Observation 58 falls between UCLc and UCL1 and the sum of 

observation 58 and 59 plots beyond UCL2 thus indicating a possible shift in the process. 

The black circle represents plot of the actual value of the observation. 
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The Shewhart type control charts such as the p chart or the c chart have proven their 

usefulness over time but are ineffective when the fraction nonconforming level reaches a 

low value. An alternative process monitoring technique that can be useful in such a case 

are the control charts based on the cumulative count of conforming (CCC) items or 

cumulative quantity (CQC) produced between two nonconforming items or between two 

nonconformities respectively. These two types of charts have been shown to be very 

useful, especially for high quality processes, those with very low defect or defective 

levels. 

 

For this type of process, even for fairly large sample size, the number of nonconforming 

items can be very small or even zero for most of samples. When a p chart or c chart is 

used for monitoring such a process, first, there will be a large number of false alarms and 

second, process improvement cannot be detected because the lower control limit is 

usually negative and thus taken as zero. In this dissertation, some applications and 

extensions based on cumulative quantity are proposed and studied.  

 

Until now statistical control charts have been mostly used to monitor production 

processes. Although reliability monitoring, especially for complex equipment or fleet of 

systems, is an important subject, little study has been carried out on the applications of 

traditional control chart for defects such as the c chart or u chart. In fact, they might not 

be suitable unless the number of failures per monitoring interval is large. If the time 

interval itself is long, such as months or quarters, deteriorating systems will not be 
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detected quickly. In this dissertation we studied the use of control charting technique to 

monitor the failure of components. 

 

Chapter 2 reviews some of the recent work in control charting techniques that are suitable 

or can be suitably applied for high quality processes. Apart from the other monitoring 

techniques, the cumulative count of conforming control (CCC) charting and cumulative 

quantity control (CQC) charting are explained and their applications and extensions are 

reviewed. 

 

In Chapter 3 a procedure based on the monitoring of quantity to observe r defects is 

proposed and is given the name CQCr chart. It is an extension of the CQC chart. This 

procedure is useful and more sensitive compared to the CQC chart although the user 

needs to wait until r defects to make a decision. Statistical properties of this procedure are 

investigated. Also notable is the fact that unlike the traditional c chart and u chart, where 

the lower limit is commonly set to zero, the CQCr chart is able to detect process 

improvement as well as deterioration. The use of the CQCr control charting technique is 

extended to monitor the failure of components and an example is given to illustrate the 

charting procedure.  

 

The procedure can also be extended to general nonrepairable system when non-

homogeneous Poisson process has to be used as well. For this type of processes, a time-

dependent intensity function is needed and the data can be transformed to another time-

scale so that the process becomes Poisson process. On the other hand, for the non-
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homogeneous Poisson process, what is usually more important is to predict the trend 

rather than monitoring the failure process itself. The CQCr charting method is compared 

with the c chart on the basis of their Average item run length performance. It is found that 

CQCr chart not only detects the process improvement but also out performs the c chart in 

detecting large process deteriorations. 

 

As seen in Chapters 2 and 3, the traditional attribute control charts like c and u charts do 

not provide satisfactory results, which is mostly due to the violation of the normal 

approximation to the Poisson distribution. The CUSUM charts and the CQCr charts are 

free from the sample size constraint and are thus superior to the c and the u chart. In 

Chapter 4 the performance of the time-between-events CUSUM chart has been compared 

to that of the CQC chart and the CQCr charts.  

 

The results in chapter 4 suggest that if the focus is on small process deterioration then the 

user can select a CUSUM chart while if the concern is on large deteriorations then a 

CUSUM or a CQCr chart (with large r) can be selected. In case of process improvements 

even though, based on the ARL performance, the CQCr charts give a superior 

performance for moderate and large shifts, still it is recommended that a CUSUM chart 

be used as the ARL performance of the CQCr charts can be quite misleading. Again if the 

concern is on large process improvements the CQC chart can be used. It is found that 

when the underlying distribution changes to Weibull both the CUSUM and the CQCr 

charts turn out to be incapable of detecting the increase in shape parameter. The 

performance of the CQCr charts is also studied when the underlying distribution changes 
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from exponential to lognormal and it is found that when either of the parameters of the 

lognormal distribution decreases the CQCr takes longer time to detect the shift. 

 

The control charts based on run length, like the CCC and the CQC chart have an 

undesirable property of reacting late to small process deterioration, which may lead to 

misinterpretation that the process is well in control, or even improved. This drawback can 

be removed by adjusting the control limits by multiplying them with an adjustment factor 

so that a minimum false alarm probability and maximum average run length is reached at 

the process average. However, it makes the chart take more time to react to process 

improvements as the limits are widened due to the adjustment.  

 

In the CQC chart; the average time to alarm increases in the beginning when the process 

deteriorates. This simply means that by the time the deterioration will be detected, many 

“bad” items would have been already produced. So the control limits should be adjusted 

to attain maximum average run length so that the process deterioration can be identified 

and at the same time the false alarms can be reduced. In Chapter 5 a simple procedure is 

proposed which results in maximum ARL at the process average and the issue of 

adjusting the false alarm probability is discussed to make the chart more sensitive to 

process shifts. With the current CCC chart practice the ARL is maximized at an out of 

control value of the proportion nonconforming which can be significantly above the in 

control value. With the proposed design the ARL is maximized at the in control value, 

improving the out of control performance.  
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Most of the research on the CCC chart has been based on the assumption of an error free 

inspection, and this assumption is rarely met in reality. In this chapter the problem of 

inspection errors is discussed for the case of control charts based on cumulative count of 

conforming (CCC) items. For high yield processes, the inspection error will have 

significant impact on chart performance. Furthermore, the error of classifying a 

nonconforming item as a conforming one is the critical type of error as the other error 

(classifying a conforming item as nonconforming) can be easily rectified by further 

checking the item. Hence we have focused on the first type of inspection error here. As 

an application example optimizing procedure is applied to CCC charts in presence of 

inspection errors.  

 

In Chapter 6, the effect of estimated control limits on the performance of CQC chart is 

studied. All the previous chapters have shown that the CQC chart is particularly useful in 

the high quality manufacturing environment when the count of defects is of interest. 

However, the performance of CQC chart is subject to the estimating accuracy of the 

exponential parameter, since the true value of the parameter is generally unknown. 

Furthermore, due to the low defect level of processes, it is difficult to obtain an accurate 

estimate of the parameter when the size of preliminary sample is not large. When there is 

no process shift, the estimated false alarm rates are commonly larger than the theoretical 

value, and the effect can be quite significant even if the sample size is large. However, 

when there is a process shift, the alarm rates are usually underestimated mildly. On the 

other hand, the average run length is underestimated when the exponential parameter is 

unknown.  
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As stated before the main problem in implementing any chart is the estimation of 

parameter. Even if one is confident of the accuracy of parameter still caution should be 

maintained while interpreting an out of control point. For a control chart, the larger the 

sample size, the better the performance. Too small preliminary sample size will result in 

inaccurate estimation of the parameter and control limits, and finally wrong decisions 

could be made. On the other hand, a larger sample size means the consumption of more 

resources. Hence, it is important to choose a reasonable sample size when constructing 

the control chart. Apart from this, to encounter the undesirable property of CQC chart, it 

will be worthwhile to adjust the control limits.  The results in this chapter can be used 

selecting a suitable sample size for the CQC control chart when some criteria are 

preferred, for example, certain in-control average run length. 

 

Chapter 7 proposes a control chart based on Weibull distribution and is given the name 

Weibull t chart. The control charts have been successfully used for the monitoring of 

manufacturing processes. As shown in Chapter 3, they can be also used to monitor the 

equipment performance, especially in terms of failures or breakdowns. A common 

assumption used when discussing time-between-events chart is that the underlying 

distribution is exponential, but this is not always true. In such cases it becomes essential 

to look for other alternatives and Weibull distribution has shown to be a very flexible 

option. Control chart based on the monitoring of time-between-events for a more general 

case of Weibull characteristics is investigated in this chapter. The Weibull t chart for 
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time-between-events can detect the shift from the nominal scale parameter effectively. 

However, the study of the chart properties shows that the ARL is also heavily influenced 

by the shape parameter and especially by an increase in the shape parameter. When the 

shape parameter increases, the variability is reduced, and hence the process will act more 

in-control. Furthermore, an accurate estimate of the shape parameter is very important 

(when the exponential time-between-event is used, the shape parameter is assumed to be 

one) and it can affect chart performance significantly. When MLE is used, the Weibull 

shape parameter is known to be biased. However, a simple adjustment can be adopted. 

 

In Chapter 8 a combined charting procedure is proposed for the CQC chart and is the 

given the name CQC1+r chart. It is seen that combined decision has a better average run 

length performance than the current design of the CQC chart and is more sensitive than 

the CQC1 chart in detecting process changes. 

 

The major portion of this dissertation is dedicated to the study of the CQCr charts. This 

study has attempted to look at the various problems associated with chart, and has tried to 

remove them or propose an alternative solution. However, not all issues have been 

addressed. For example it would be interesting the study the behavior of the chart in 

presence of inspection errors. This gives way to another important issue that requires 

further research, the estimation of inspection errors. In this dissertation, we have assumed 

that they are known.  
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Usually the probability of inspection error has to be estimated and this can usually be 

done based on the information from the inspection in similar processes. It would also be 

interesting to study effect on ARL when a random shift model is used rather than the 

current practice of assuming a fixed shift model. This dissertation has not addressed the 

issue of economic design of the chart and few things that can be studied in the future are 

obtaining the optimum r and designing the other chart parameters from an economic 

design perspective. Another important issue is to unbias the behavior of ARL that is the 

getting the same reduction in ARL on both sides of the process average like in the case of 

Shewhart chart. Furthermore, the performance of CQC chart is quite satisfactory under 

the assumption that the data collected is independent. It will be interesting to study the 

effect of data correlation on its performance. 
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