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Summary

Wide-issue microprocessors are capable of remarkable execution rates, but they

generally achieve only a fraction of their peak instruction throughput on real pro-

grams. This discrepancy is due to performance degrading events, largely branch

mispredictions and cache misses. In this work we have addressed the performance

degradation due to the latter through the use of Program Embedded Precompu-

tation using Speculative Execution (PEPSE).

Our work on program embedded precomputation using speculative execution (PEPSE)

aims at providing a unified framework to mitigate the ever-widening gap between

the data processing rate of the processor and the data delivery rate of the mem-

ory subsystem. Towards this, we introduce the Load Dependence Graph (LDG),

which is a sub-graph of the traditional Program Dependence Graph (PDG) that

computes the address of a load instruction. The LDG affords a unique characteri-

zation of the program structure and its memory reference patterns and facilitates

the discovery of appropriate memory management techniques.

In the context of data prefetching, we illustrate how PEPSE can accurately pre-

dict and effectively prefetch future memory references with negligible overhead for

vi



Summary vii

both regular array-based applications as well as irregular pointer-based applica-

tions. We narrow down the scope of the optimizations by limiting our processing

only to delinquent loads in a program, identified with the help of a profiler. LDGs

are created only for those delinquent loads. Subsequently, speculative versions of

the LDG operations are statically scheduled along with a prefetch instruction for

the computed address, such that these instructions execute and prefetch the value

before the actual load is encountered resulting in either an elimination or reduction

of the processor stall cycles due to the load instruction. Our prototype implementa-

tion of the optimizations using LDGs within the Open Research Compiler (ORC),

an open source compiler for the Itanium Processor Family (IPF), delivered encour-

aging results. For a 900 MHz Itanium 2 server, we could achieve speedups ranging

from 1.05 to 2.14 for several benchmarks from SPEC and OLDEN suites.



List of Tables

3.1 Delinquent Load Statistics . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Benchmark Evaluation Suite . . . . . . . . . . . . . . . . . . . . . . 49

5.2 CPU user time as a function of the number of embedded LDGs. . . 53

5.3 The user CPU time and total execution cycles for each benchmark. 54

5.4 The user CPU time and the dynamic number of operations for each

benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

viii



List of Figures

1.1 Performance Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 DGP hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Prefetching based on Mowry’s Work . . . . . . . . . . . . . . . . . . 14

3.1 An LDG example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 The scheduling algorithm . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Induction Unrolling in arrays . . . . . . . . . . . . . . . . . . . . . 32

3.4 Unrolling Example for pointers . . . . . . . . . . . . . . . . . . . . 35

3.5 Induction Unrolling for Pointer-chasing code . . . . . . . . . . . . . 36

4.1 Structure of an Operation . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Profiler Implementation . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 The structure of a dependence edge . . . . . . . . . . . . . . . . . . 45

5.1 Itanium 2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ix



Chapter 1
Introduction

1.1 Motivation

Out-of-order execution is the norm in current day processors. It is intended to

allow processors to tolerate pipeline stalls due to data dependencies, resource con-

flicts, cache misses, etc., by buffering stalled instructions in reservation stations

and executing other ready instructions out of program order. However, today’s

dominant application domains, including databases, multimedia and games, have

large memory footprints and do not use processor caches effectively resulting in

many cache misses. The resulting processor stalls degrade the performance of

applications considerably.

Furthermore, exponential increases in processor speeds continue to widen the gap

between the data consumption rate of the processor and the data delivery rate

of the memory. High computation power becomes useless if it is not backed by

a powerful memory system. Historically, the processor performances have been

increasing at a rate of 35% per year till 1986, and 55% per year since then. On the

other hand, the access time of DRAM has been improving at a rate of mere 7%

per year [11]. Figure 1.1 illustrates the performance disparity between processor

1
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Figure 1.1: The processor and memory performance trends plotted over time.

and memory with 1980 performance as the baseline.

In order to solve this problem, cache memories are widely used. They take advan-

tage of the locality of data accesses present in the programs. While deeper and

wider caches help mitigate this imbalance, there still remains a significant gap in the

ability of the memory systems to service data requests of the processor. The cur-

rent trends, viz., clock speed acceleration and Instruction Level Parallelism(ILP)

exploitation increase the delays between the processor and the memory. This is
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especially true of the explicitly parallel instruction computing (EPIC) platforms

which provide massive ILP. For example, the Intel Itanium processor consists of

a three-level cache hierarchy: 32KB primary cache, 256KB secondary cache and

tertiary cache as large as 6MB [24], with latencies ranging from 1 to 30 cycles [1].

It has a tertiary cache miss latency1 in excess of 200 cycles. Such long access la-

tencies degrade the processor performance and hence necessitate latency masking

techniques.

Explicitly parallel processors have features derived from both VLIW and super-

scalar architectures. They use large instruction words and issue multiple instruc-

tions per cycle. They continue to gain wider acceptance and play a significant role

in various aspects of the computer industry, ranging from the high end server plat-

forms such as the Itanium Processor Family(IPF) [24], to digital signal processing

engines such as the T1-C6x processors [12], to custom computing systems such as

the Trimedia VLIW products [27] and the HP-STMicroelectronics Lx processors

[23]. These EPIC processors expose the architecture to the compiler by exten-

sions to the Instruction Set Architecture(ISA). The extensions enable the compiler

to communicate with the hardware through hints attached to the instructions or

through special instructions and hence allow them to manage the data movement

across the memory hierarchy better.

During compilation, it is important to have the ability to predict the future memory

accesses and the access patterns so as to utilize the EPIC’s features to ameliorate

the difference in performance between the processor and the memory system. This

foresight would enable the compiler to make more informed decisions about the

placement and evacuation of data in caches, which could be communicated to the

hardware through the ISA. Towards this, a lot of hardware and software tech-

niques have been proposed that prefetch the data ahead of its actual consumption,

1Tertiary cache miss latency is the latency due to a memory access.
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resulting in a significant performance improvement.

Another orthogonal line of research towards reducing the memory bottleneck prob-

lem is to improve the data locality by reordering the execution of iterations. An

important example of such a transformation is blocking [32, 31, 9]. Instead of

operating on entire rows or columns of an array, blocked algorithms operate on

submatrices or blocks, so that data loaded into faster levels of the memory hierar-

chy are reused. Other useful transformations include unimodular loop transforms

like interchange, skewing and reversal [31]. These transformations complement

blocking and hence can be used together with it to enhance the application’s per-

formance. Since these transformations improve code’s data locality, they not only

reduce the effective memory access time but also reduce the memory bandwidth

requirement. Since these transformations aim at reducing the capacity misses, they

complement prefetching methods which help reduce the cold misses that occur due

to the first access to a data item. Hence, they can be used together to achieve even

better performances.

1.2 Research Goals

The objective of our research is to provide a unified framework for alleviating the

memory bandwidth bottleneck using static compilation techniques. The research

goals that we set out for our work are

1. To devise an algorithm that would be effective for both array and pointer

based programs.

2. The algorithm should only utilize the architectural features that are com-

monly available and should not require drastic changes to the underlying

architecture.
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3. The benefits of prefetching correctly should not be lost in the overhead or

prefetching incorrectly.

4. The prefetching should be effective in improving the overall performance of

the application.

1.3 Technique Overview

In this work, we explore the usage of Program Dependence graph(PDG) to pre-

dict the future memory accesses. We introduce the concept of Load Dependence

Graph(LDG), which is a subgraph of the PDG that contains instructions that con-

tribute towards the calculation of the load address. Typically, a small set of load

instructions contribute to over 90% of the misses in most applications. We modify

the code generation stage of the Open Research Compiler(ORC) to instrument the

assembly code so as to couple the original program with Dinero IV cache simulator

[10]. The output of the profiler is a detailed record of cache hits and misses for

each static load, along with its contribution to the total program stall cycles.

We focus our attention to only loads identified as delinquent by the profiler. LDGs

are created for these instructions by starting from them and moving up and in-

cluding any instruction that contributes to their address calculation. Ideally, this

LDG creation is stopped when it has moved a distance δ + α from the delinquent

load, where δ corresponds to the average latency of the load operation and α to

the schedule length of LDG itself. But other constrains, such as explosion of LDG

length and absence of enough free slots might stop it earlier. Program Embedded

Precomputation via Speculative Execution(PEPSE) inserts a speculative version

of the LDG instructions statically in the program along with a prefetch for the

load in the empty2 slots, as much as possible. These instructions would execute in

2NOPs are considered to be empty slots.
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advance and bring the data closer to the processor, resulting in a reduced latency

for the load.

We introduce a technique called Induction Unrolling to effectively prefetch for

loads in loops. We also modify the induction unrolling technique to enhance the

performance of pointer intensive programs dominated by pointer-chasing loops. A

pointer chasing loop is characterized by a cyclic dependence between two loads.

We implemented a prototype of our optimizations on Open Research Compiler

and obtained promising results. Our proposed methodology relies heavily on spec-

ulation, a concept that is widely used to improve ILP and overcome long branch

delays.

1.4 Thesis Overview

Chapter 2 gives a survey of the different techniques that have been proposed to

address the memory bandwidth problem and show how our technique differs from

them. Chapter 3 describes the Load Dependence Graph and details on how they

are created and embedded in the application using PEPSE. Chapter 4 explains

the implementation of PEPSE scheme in the Open Research Compiler. Chapter

5 discusses the experimental setup and the performance results obtained using

PEPSE on an Itanium 2 machine. Chapter 6 concludes the thesis and gives pointers

for future directions of research.



Chapter 2
Related Work

The speed of computer systems have been increasing steadily through the years.

This is partly through the advancement of technology and partly because of the

certain properties exhibited by the programs. The most important program prop-

erty that is exploited is the principle of locality. Programs tend to reuse data and

instructions they have used recently. A widely held rule of thumb is that a pro-

gram spends 90% of its execution time in only 10% of the code. An implication

of locality is that we can predict with reasonable accuracy what instructions and

data a program will use in the near future based on its accesses in the recent past.

Principles of locality also applies to data accesses, though not as strongly as to

code accesses. Two different types of locality have been observed [11]. Temporal

Locality states that recently accessed items are likely to be accessed in the near

future. This happens, say, when every iteration of an outer loop accesses the same

set of items in the inner loop. Spatial Locality says that items whose addresses are

near one another tend to be referenced close together in time. This happens when

the loop has a sequential access along the data items placed contiguous to each

other.

To exploit the locality in the programs, a small cache memory was added to the

7
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processor. An access to the cache memory is an order of magnitude faster than a

memory access, which is generally off the processor chip. But still, the addition of

cache memory doesn’t serve as a panacea to the memory wall1 problem. This is

because not all data accesses hit the cache and the misses would have to be served

by the slower main memory and the processor might have to be stalled till the data

item becomes available.

There are three kinds of cache misses : Conflict misses, Compulsory misses and

Capacity misses [13]. Conflict misses are those that would be avoided by having a

fully associative cache with LRU replacement. They occur because two data items

conflict for the same cache line and hence the earlier one needs to be evacuated

to give way for the latter, even though it may be accessed again soon. Capacity

misses occur when cache is too small to hold data between references. Compulsory

misses occur in every cache organization because they represent the first access to

the data item. Past research on conflict misses have reduced them largely without

resorting to fully associative caches, by the use of set-associative caches. The set-

associative caches provide a trade-off between cache misses on the one side and the

access time and energy on the other side.

To effectively reduce capacity misses, one has to either enlarge the cache or rear-

range the program so that the working set would fit in the cache, both of which

has been done to a large extent. Nowadays, the amount of on-chip cache is quite

large and we have a hierarchy of caches so that the large caches do not increase

the average memory access time. Tiling or Blocking [9] and loop interchange are

commonly used compiler techniques to rearrange the memory accesses in the pro-

gram to match the cache structure. But, some form of prefetching is required to

minimize compulsory misses, also called cold misses. There are various hardware

1The problem of the memory system not being fast enough to serve the processor is commonly

called the memory wall problem.
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and software methodologies proposed to reduce the compulsory misses. We will

review some of those methods in the following sections.

2.1 Hardware Techniques

The hardware prefetching methods were the first to be introduced and imple-

mented. Long cache lines and hardware prefetching [16] are two of those hardware

methods. With long cache lines, a cache miss results in the retrieval of data of

one cache line size. Future loads might hit the cache now, even though they are

the first accesses to that data item, if the data item happens to be in the same

cache line. In hardware prefetching, an access to a cache entry invokes a prefetch

to the address of the next datum in the address space, assuming it will be accessed

in the near future. This method has the advantage of allowing sequential array

accesses to be fetched with only one miss for the first item. Though both of these

methods reduce the miss rate in a few circumstances, they cannot be disabled

in other circumstances since they are implemented in hardware. For example, in

case of array access in a loop with a high step size or a pointer chasing code with

arbitrary memory access, both long cache lines and hardware prefetching would

prefetch values that would not be used in the future. In such cases, it increases the

data traffic between the cache and the main memory and also pollutes the cache

with unwanted data.

In 1991, Baer and Chen [4] proposed a scheme that uses a history buffer to detect

strides. In their scheme, a “look ahead PC” speculatively walks through the pro-

gram, ahead of the normal PC, using branch prediction. The processor is extended

with a Reference Prediction Table(RPT) which is used to keep track of previous

reference addresses and associated strides. When the look ahead PC hits a load

and finds a matching entry in this table, it issues a prefetch. They evaluated the
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scheme in a memory system with 30 cycles miss latency and found good results.

In the context of multiprocessors, Multiple-Context Processors [30] were intro-

duced, where each processor maintains multiple processes as multiple contexts and

switches between them when there is a long latency load in one context. In this

manner the memory latency of one context can be overlapped with computation of

another context. The interval between long latency operations is becoming fairly

large, allowing just a handful of hardware contexts to hide most of the latency.

But this method has the disadvantage of context switch overhead and the high

processor complexity resulting from the inclusion of contexts in it. Also, since the

different contexts share a single processor cache, they can interfere with each other,

both constructively and more often, destructively.

Fetch

I-Cache
OP2OP1InstIT

Predecode

RDV

Decode Execute Writeback Commit

ROB

Dependence 
Graph Generator          

Dependence 
Graph Buffer          

Precomputation
Engine          

SRF

Data Pre  
fetches

Figure 2.1: DGP hardware

More recently, Annavaram et.al. [22] have introduced an extension to the proces-

sor to pre-compute the load address and issue a prefetch. Figure 2.1 shows the
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additional hardware required for this implementation. The fundamental idea of

this method is to pre-compute the address of a load available in the Instruction

Fetch Queue(IFQ), instead of predicting it, and then issuing a prefetch. The IFQ

is extended(with extra columns) to help dependence graph creation and the pre-

decode stage is also modified to fill in those extra columns. The dependence graph

of a load/store instruction, I , in the IFQ is the set of all unexecuted instructions

waiting in the IFQ, that contribute to the address calculation of I. The Depen-

dence Graph Generator generates the graph based on the dependence information

available in the OP1 and OP2 columns of IFQ, which contains pointers to the

instructions that produce the values for operand one and two respectively.

The processor is augmented with a Precomputation Engine(PE) which is used to

execute the dependence graphs stored in the dependence graph buffer. The PE

executes instructions speculatively. The results generated by the PE are used only

for prefetching data, and in particular, they never update the architected state of

the main processor. Note that the dependence graph generation does not remove

any instruction from the IFQ2: Consequently, all precomputed instructions will be

executed in the normal manner by the main processor pipeline. The precomputa-

tion engine has a scratch register file(SRF) to store the live results of precomputed

instructions. PE executes at most one instruction every cycle, and hence SRF

needs only two read ports and one write port. If the OP field of an operand is not

null, it would have been generated by an already executed instruction and hence

available in the SRF. If it is null, the PE obtains the corresponding operand value

by accessing the processor’s register file and the Re-ordering buffer3 for forwarding

uncommitted register values.

In their work, Roth et.al. [3] also use an extra computation engine4 to run ahead of

2It just makes speculative copies.
3The processor’s register file and ROB each need two additional read ports for PE accesses.
4They call it prefetch engine.
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the processor, executing only load instructions that are required to iterate through

the Linked Data Structure. Dependence relationships between loads that produce

addresses and loads that consume these addresses is exploited by constructing a

compact representation for them and their traversal. To achieve prefetching, the

prefetch engine speculatively traverses this representation ahead of the executing

program. Since the prefetch engine executes only the loads that are required to

traverse through the data structure, this engine initiates accesses faster, producing

the desired prefetching effect.

Though some of the hardware techniques are effective in certain circumstances,

they are not flexible. It would be hard to adapt the hardware technique to suit a

given program. In the next section we review some of the software techniques for

prefetching.

2.2 Software Techniques

2.2.1 Preliminary Work

Software prefetching was introduced by Callahan et.al. [8] and since then several

prefetching algorithms [28, 33, 20] have been proposed and implemented. Software

prefetching needs hardware support in the form of a special prefetch instruction,

which would issue a non-blocking prefetch. The cache needs to be lockup-free [18],

that is, the cache must allow multiple outstanding misses. Otherwise, an outstand-

ing prefetch instruction might block a load instruction from the original program,

degrading its performance. Also, this instruction should not affect the correctness

of the program, viz., the insertion of prefetch should not raise exceptions or produce

incorrect results, if the speculative address is wrong. These hardware supports are

available in almost all processors nowadays, since, even with simple algorithms [5]
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, prefetching is effective in overlapping the memory latency with other useful com-

putation. Software techniques introduced in this section are compiler algorithms

which insert prefetch instructions along with the original program to avoid the

processor stalls due to memory accesses.

The first successful prefetching algorithm, which is implemented most commonly

in compilers today, was devised by Mowry [28]. The domain of this algorithm is the

set of array accesses whose indices are affine functions of loop indices. A substantial

amount of data references in scientific code belong to this domain. There are three

major steps in this prefetching algorithm.

1. For each reference, determine the accesses that are likely to be cache misses

and therefore need to be prefetched.

2. Isolate the predicted cache miss instances through loop splitting. This avoids

the overhead of adding conditional statements to the loop bodies or adding

unnecessary prefetches.

3. Software pipeline prefetches for all cache misses.

The first step determines those references that are likely to cause a cache miss.

This locality analysis consists of discovering data reuses within a loop nest and

determining whether the set of reuses would be exploited by a particular cache

configuration. The reuse could be one of spatial, temporal or group reuses. In the

example program of figure 2.2a, there is a spatial reuse in the access of A[i][j] if the

cache line size is larger than an array element size. There is also a temporal reuse

of B[j][0] in the outer loop, viz., every time around the outer loop same elements of

B array are accessed. But, whether this reuse would turn into a cache hits depends

on the size of the cache and the iteration count of the inner loop. In this case, since

the iteration count of the inner loop is small(100), this reuse would be converted
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for ( i = 0 ; i < 3 ; i ++ ) 
    for( j = 0 ; j < 100 ; j ++ ) 
        A [ i ] [ j ] = B [ j ] [ 0 ]  +  B [ j + 1 ] [ 0 ] ; 
  

a) Source Program        
 
 
prefetch ( & A [ 0 ] [ 0 ] ) ; 
for ( j = 0 ; j < 6 ; j + = 2 ) { 
    prefetch ( & B [ j + 1 ] [ 0 ] ) ; 
    prefetch ( & B [ j + 2 ] [ 0 ] ) ; 
    prefetch ( & A [ 0 ] [ j + 1 ] ) ; 
} 
for ( j = 0 ; j < 94 ; j + = 2 ) { 
    prefetch ( & B [ j + 7 ] [ 0 ] ) ; 
    prefetch ( & B [ j + 8 ] [ 0 ] ) ; 
    prefetch ( & A [ 0 ] [ j + 7 ] ) ; 
    A [ 0 ] [ j ] = B [ j ] [ 0 ] + B [ j + 1 ] [ 0 ] ; 
    A [ 0 ] [ j + 1 ] = B [ j + 1 ] + B [ j + 2 ] [ 0 ] ; 
} 
for ( j = 94 ; j < 100 ; j + = 2 ) { 
    A [ 0 ] [ j ] = B [ j ] [ 0 ] + B [ j + 1 ] [ 0 ] ; 
    A [ 0 ] [ j + 1 ] = B [ j + 1 ] + B [ j + 2 ] [ 0 ] ; 
} 
for ( i = 1 ; i < 3 ; i ++ ) { 
    prefetch ( & A [ i ] [ 0 ] ; 
    for ( j = 0 ;  j < 6 ; j + = 2 ) 
        prefetch ( & A [ i ] [ j + 2 ] ) ; 
    for ( j = 0 ;  j < 94 ; j + = 2 ) 
        prefetch ( & A [ i ] [ j + 7 ] ) ; 
        A [ i ] [ j ] = B [ j ] [ 0 ] + B [ j + 1 ] [ 0 ] ; 
        A [ i ] [ j + 1 ] = B [ j + 1 ] + B [ j + 2 ] [ 0 ] ; 
    for ( j = 94 ; j < 100 ; j + = 2 ) { 
        A [ i ] [ j ] = B [ j ] [ 0 ] + B [ j + 1 ] [ 0 ] ; 
        A [ i ] [ j + 1 ] = B [ j + 1 ] + B [ j + 2 ] [ 0 ] ; 
    } 
} 
 
        b) Resulting loop with prefetches inserted 
      

Figure 2.2: A prefetching example
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to a cache hit. There is also a group reuse between B[j][0] and B[j+1][0]. Elements

accessed by the second would be accessed by the first in the next iteration.

The second step uses the locality analyzes of the first step to reorder the loop and

split it between cache hit and cache miss iterations. The presence of temporal

locality in a loop with index i means that prefetching is necessary only when i=0.

The presence of spatial locality in a loop with index i implies that prefetching is

necessary only when (i mod n)=0, where n is the number of array elements that

would fit in a cache line. Prefetch predicates are defined for references and they

determine if, in a particular iteration, that reference needs to be prefetched. Ideally,

only iterations satisfying the prefetch predicate should issue prefetch instructions.

To accommodate this,we can decompose loops into different sections so that the

predicates for all instances for the same section evaluate to the same value. This

process is known as loop splitting. In general a predicate i=0 requires the first

iteration of the loop to be peeled. The predicate (i mod n)=0 requires the loop

to be unrolled by a factor of n with only one prefetch. Peeling and unrolling can

be applied recursively to handle predicates in nested loops. Figure 2.2b shows the

result of applying these transformations to the loop-nest of figure 2.2a.

2.2.2 Prefetching methods for pointer intensive applica-

tions

One prefetching heuristic that works well for pointer based applications was intro-

duced by Lipasti et.al [20]. In this, a prefetch instruction is inserted at the call

site for every function call with at least one pointer parameter. The basic premise

of this heuristic is that the pointer arguments passed on procedure calls are highly

likely to be dereferenced within the scope of the called procedure. In this work,

they had showed that with the insertion of just one or two prefetch instructions

at each call site, performance can be improved by 5-7% for benchmarks with high
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call sites and lower procedure lengths, without significantly increasing the memory

traffic. This particularly works well for C++ programs since, in the xlC implemen-

tation of C++, the first argument is always the this pointer, which, intuitively has

a very high probability of being dereferenced in the ensuing method call. But this

work has a limited scope of prefetching only the pointers passed as parameters.

Youfeng [33] introduced another heuristic for prefetching in pointer-based applica-

tions. This is based on the fact that some important load instructions in irregular

programs contain stride access patterns. Namely, the difference between addresses

of two successive data accesses changes only infrequently at runtime. But these

strides are impossible to identify with compiler techniques since the memory allo-

cation is decided at runtime. In this work, they designed a new profiling method

that integrates profiling for stride information and the traditional profiling for edge

frequency into a single profiling pass. The collected stride information helps the

compiler to identify load instructions with stride patterns that can be prefetched

efficiently.

The work by Chi Keung Luk and Todd Mowry [19] analyzes the major issues and

challenges involved in software-controlled prefetching for Recursive Data Struc-

tures(RDS) like lists, trees and graphs. In general, analyzing the address of heap-

allocated objects is a very difficult problem for the compiler. They propose three

possible solutions to overcome this problem.

1. In a k-ary RDS5, all k pointers can be used in prefetching in the hope that

the objects pointed to by the other pointers would also be used in the future.

2. The first traversal through the RDS can be used to create a history. The

history would add an extra pointer to each node to indicate which node is to

be prefetched from the current node. Subsequent traverses through the RDS

5Each node contains k pointers to other nodes.
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would use this history information for prefetching and prefetch the address

pointed by the added pointer.

3. The heap-allocated nodes that are likely to be accessed close together in

time can be mapped into contiguous locations. This would also improve the

spatial locality.

In recent times, multithreaded processors are becoming popular. There is an enor-

mous amount of research interest to investigate if these extra threads could be used

in improving the performance of single threaded applications. In the next section,

we review some of those techniques which use a helper thread for prefetching.

2.2.3 Thread Based techniques

Despite the importance of mispredicted branches and loads that miss in the cache,

a sequential processor is not able to prioritize these computations because it must

fetch all computations sequentially, regardless of their contribution to performance.

Alleviating this by spawning separate threads to execute only the delinquent op-

erations and other instructions that contribute to them is the fundamental idea

behind all thread based techniques.

Speculative Data Driven Multithreading(DDMT) was introduced by Amir Roth

et.al. [25]. In DDMT, critical computations are identified with the help of a profiler

and annotated, so that they can execute stand alone. When the processor predicts

an upcoming instance of critical instruction, it microarchitecturally forks a copy

of its computation as a new kind of speculative thread. This thread executes in

parallel with the main thread, but typically generates results faster. These threads

execute speculatively, they do not change the architected state of the machine

though they may impact the performance of the application.

Collins et.al. [15] extend the thread based latency tolerance ideas of Amir Roth



2.2 Software Techniques 18

[25]. In this work, they first identify delinquent loads6 with the help of a profiler.

Then the program is simulated on a functional Itanium simulator to create p-slices7

for each delinquent load. Whenever a delinquent load is executed, the instruction

that had been executed 128 instructions prior to it in the dynamic execution stream

is marked as a potential basic trigger. This is achieved by keeping the most recent

256 retired instructions in a buffer and looking it up for the 128th instruction.

The next few times that this potential trigger is executed, the instruction stream

is observed to verify that the same delinquent load is executed somewhere within

the next 256 instructions. If the potential trigger consistently fails to lead to the

delinquent load, it is discarded. Otherwise, if the trigger consistently leads to the

delinquent load, the trigger is confirmed and the backward slice of instructions

between the delinquent load and the trigger is captured. Instructions between the

trigger and the delinquent load constitute potential instructions for constructing

the p-slice. Those unnecessary to compute the address are eliminated.

In addition to these basic triggers, they use chaining triggers, which allows one

speculative thread to explicitly spawn another speculative thread. A key feature

for applying chaining triggers is the presence of stride in addresses consumed by a

load that is a dynamic invariant whose value is fixed for the duration of the loop.

Thus p-slices containing chaining triggers typically have three parts - a prologue,

a spawn instruction for spawning another copy of this p-slice and an epilogue.

Most of the thread based techniques differ only in the way threads are created and

how they are triggered. On the one end, researches [17] propose a source-to-source

C compiler that extracts p-slices, reducing the dynamic hardware required. On

the other end, in long range prefetching technique [15], p-threads are constructed

spawned, improved upon, evaluated and possibly even removed, entirely by hard-

ware. In either case, some amount of hardware support is required, in the form of

6Loads that have the largest impact on performance.
7Precomputation slices
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threads and their spawning mechanisms. Though the thread-based techniques are

generally effective in accurate address generation8 and timely prefetching, it comes

at a high hardware overhead. Also, since threads are delinked from the original

program, their scheduling becomes a problem. Giving low priority to them might

not let them fetch the required values in time. Giving them a high priority might

slow down the original program. One more problem with thread-based prefetching

techniques is the non-determinism introduced in the instruction cache behavior be-

cause of addition of a new thread(s), which may interact with the original thread

both constructively and destructively.

A combination of hardware and software techniques was used by Abraham et.al.

[26] to predict the latencies of load/store instructions and subsequently use them

to improve performance of the application. This method requires that the ISA

have instructions that permit the software to manage the cache, e.g., DEC Alpha.

In addition to the standard load/store operations, the architecture needs to pro-

vide explicit control over the memory hierarchy. For example, there could be two

modifiers associated with each load operation specifying which level in the memory

hierarchy is this load is likely to be found and another to specify which level the

loaded value should be placed. These hardware support are becoming increasingly

common in commercial microprocessors. In this work, they use profiling to get the

memory referencing behavior of individual machine-level instructions. The infor-

mation gained by the compiler through profiling can be passed on to the hardware

by annotating the instructions, viz. adding values to these modifiers. If the com-

piler is unable to gain this information, these modifiers are set to a special nta9

value, which specifies that no information is available. This allows for a mixed

compiler/hardware control over the cache hierarchy where the compiler interferes

only if it has some insight into the program behavior.

8They are precomputation based not prediction based
9Not available
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2.3 Application Restructuring

Instead of using either hardware or software methods to effect a prefetch, there are

techniques that have been proposed for restructuring the program to modify its

cache behavior. One such methodology is detailed below.

A method of creating and utilizing the cache hit/miss heuristics and utilizing that

in the amelioration of memory latency bottleneck was introduced by Toshihiro

et.al. [29]. In this work, they have developed simple compiler heuristics to iden-

tify load instructions that are likely to cause a cache miss. Firstly, the loads are

classified into either list accesses, stride accesses or others. List access refers to a

load instruction whose load address comes from another load instruction, which

is typical of pointer-chasing. Stride access refers to loads in a loop with constant

or variable address increment. For every load that falls into either one of these

two classes, there is a high probability of a cache miss. Hence the compiler tries

to insert sufficient instructions between the selected load instruction and instruc-

tions that use the loaded data by one of the following three ways: selected load

instruction and its address calculation are moved up or the instruction that uses

the loaded data and its dependents are moved down or instructions not related

to this load are moved between the load and its use. These moves are allowed to

cross basic block boundaries. This, in effect, would reduce the stalls due to the

load since there are computations inserted in between, which are independent of

the load.

2.4 Limitations

All the above said methods fall short of the proposed PEPSE, which
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• Provides a unified framework for prefetching in both scientific and pointer-

intensive applications using well known concepts of speculative execution and

Program Dependence Graph(PDG).

• Ensures accurate and timely precomputation of the load addresses and hence

does not issue unnecessary prefetches.

• Does not require any special hardware to implement.

• Has little resource overhead, since it utilizes the available unutilized resources

in the architecture.



Chapter 3
LDG and PEPSE

In this chapter we elaborate on our proposed methodology. First, we explain the

concept of Load Dependence Graph(LDG). Then we explain the Program Embed-

ded Precomputation using Speculative Execution(PEPSE), our technique to embed

the speculative program slices along with the original program. Throughout this

chapter, we assume that the reader is familiar with the standard control and data

flow analysis techniques.

3.1 Load Dependence Graph

The concept of Program Dependence Graph is well established in the compiler

arena. At compile time, validity of operations are governed by the dependencies

that need to be followed. If a transformation would disrupt a dependence, then

it would not be allowed. A typical compiler would construct the data and control

dependence graphs before it begins optimizing code, as these graphs are essential

for verifying if certain transformations are possible on the code. In the following

subsections, we show how the concept of PDG can be used to extract the subset

of a program which computes the address of a load, the Load Dependence Graph.

22
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3.1.1 Delinquent Load Selection

Callahan et.al [5] show that, on an average, an application spends about one-third

of its execution time waiting for cache miss(for a memory latency of about 50

cycles). The current trends in processor design increases this even further. Also,

they [5] observe that a small percentage of the references cause majority of the

misses in the programs. To validate these claims, so that we could focus our

optimizations to only a few delinquent loads in a program, we profiled various

programs to find the number of loads that account for more than 90% of the

misses. Empirically, we modelled different memory system architectures including

the Pentium4, Itanium and Itanium 2, and we overwhelmingly found that a very

small number of load instructions cause more than 90% of the data stalls incurred

by the processor. The results are shown in Table 3.1. This characteristic allows

us to focus the memory system optimizations to a small subset of the total load

instructions in the program.

Our framework identifies the delinquent loads in a program using profiling, a tech-

nique that is becoming popular in feedback driven optimizations. We generate the

profile information by instrumenting the code generated by ORC to couple it with

the Dinero IV cache simulator [10]. The simulator allows various parameters of

each cache to be set separately (architecture, policy, statistics). During initializa-

tion, the configuration to be simulated is built up, one cache at a time, starting

with each memory as a special case. After initialization, each reference is fed to

the appropriate top-level cache by a single simple function call. Lower levels of

the hierarchy are handled automatically. The simulator is trace driven, viz., it

works on the traces of memory accesses generated by the program. The loads in

the program are identified with the help of a centralized identifier generator which

initializes a new identifier for all the memory operations in the program. This

identifier along with the reference address are passed as parameters to the cache
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Benchmark Total Number of Number of

Static Loads Delinquent Loads

132.ijpeg 5079 43

164.gzip 1226 9

175.vpr 5289 30

181.mcf 515 14

183.equake 945 30

188.ammp 776 3

197.parser 4368 6

255.vortex 21298 361

256.bzip2 1064 28

300.twolf 10695 99

Table 3.1: Number of static load instructions accounting for more than 90% of the

memory stalls (assuming an Itanium 2 processor and memory hierarchy configura-

tion.)
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simulator.

When the instrumented code is run with the simulator, it produces the statistics

of the hits and misses of the program in the memory hierarchy. For each load, we

compute the total stall cycles caused by that load,

Total Stall Cycles =
∑

n

number of accesses ∗ latencyn (3.1)

where latencyn is the latency of a particular cache level/main memory. This gives

the total performance degradation of the application due to this load. After sorting

the loads according to their total stall cycles, we pick up the top 5% of them for

our analysis.

Since our methodology is profile driven, we recognize the importance of addressing

the issue of profile sensitivity to different input workloads. This is to check if

the set of delinquent loads for an application remain relatively constant across

different inputs. For our work, we used the distributed training input(train) to

profile applications. All our reported results in the later sections are collected

using the ref input set(ref ). Though we would expect the set of delinquent loads

to be dependent on the workloads distributed with the program and also on the

program’s characteristics, we have observed that the set of delinquent loads does

not vary much among the different input workloads.

3.1.2 LDG Creation

We use the concept of PDG to create Load Dependence Graph(LDG), which is a

program slice of the set of instructions that contribute to the address calculation

for the load instruction. The LDG creation starts with the delinquent load and

moves up, including any instruction that produces results that any of the existing

LDG instructions is dependent on.
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Ideally, the last instruction of the LDG(the prefetch instruction) should be initiated

δ cycles before the actual load is encountered, where δ is the average latency of

the load instruction. This would prefetch the address just in time for the load

instruction. But to achieve that, the LDG has to be started δ + α ahead of the

load, where α is the schedule length of the LDG. This may not always be possible

because the LDG creation would have to be stopped if one the following happens.

• The LDG creation encounters a function call. Inter procedural analysis is

beyond the scope of this work, though it remains an interesting topic to

explore. Since we cannot determine the effect of the procedure call on the

LDG instructions, we stop the LDG creation.

• The length of LDG increases beyond a predefined limit. This would ensure

that the program embedding of speculative LDG instructions does not dras-

tically increase the static length of the program.

• When the current block is the first region or if all the predecessor blocks are

visited, then the LDG creation is stopped.

If the LDG creation has to be stopped prematurely because of one of the above

reasons, then the insertion of LDG would not be able to fully absolve the load

latency. But, it is still effective in reducing the latency of the load instruction.

While building the LDG, the LDG creation algorithm is allowed to cross basic

block boundaries. In this case, a path specific LDG would have to be created for

each of the incoming paths. Without some kind of path profiling and pruning,

the number of path-specific LDGs would be excessively large. For this, we use the

branch profile and create path-specific LDGs only for incoming edges with atleast

20% edge frequency, meaning that a branch edge must have been taken atleast

20% of the time to be considered for a path-specific LDG.
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adds r27=r45,16

instr a

ldfd f12=[r27]

shl r45=r15,4
adds r27=r45,16

ldfd f12=[r27]

adds r27=r45,16
ldfd f12=[r27]

shl r45=r15,4

instr c

instr b

instr f

instr e

instr d

Path BPath A

Figure 3.1: An LDG example

Figure 5.1 depicts the construction of LDG for a simple program. In this figure

every instruction that is unrelated to the load is referred to simply to as instr(a,

b, c, d and e). When the LDG creation algorithm hits at the end of the basic

block, it has to start creating path-specific LDGs for the two incoming paths. For

this example, we assume that both the incoming edges are frequently taken. For

the two paths A and B, path specific LDGs are created as shown in the two cloud

structures attached to them.

To effectively mask the load latency, the first LDG instruction must be scheduled

as far before the load as possible. But when the LDG creation moves up, it would

include more instructions into it. This would mean that we would have to move

further up to fully overlap the latency of the inserted instructions. Though this

might look like a vicious loop, in practice, after we move a few instructions above

the load, we hit upon instructions unrelated to the load. This would generally

provide a “Sweet Spot” to place the instructions.
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The LDG described in this section is the program slice for the computation of

a load address. Program Embedded Precomputation using Speculative Execution

(PEPSE) embeds a speculative version of this and schedules it alongside the original

program and ensures the timely availability of the loaded value.

3.2 PEPSE

We perform the PEPSE after pre-pass scheduling. As we assume that some schedul-

ing has already taken place, we note the following

• Each function consists of a set of blocks or regions.

• Each operation i in a block is a member of a unique instruction word wi. The

bundled operations will be issued in parallel.

• The schedule time of an operation i is the schedule time of the bundle w

which contains this operation.

The effect of compiler phase ordering problem on LDG is beyond the scope of this

work.

The effectiveness of the prefetch algorithm depends on its ability to issue the

prefetch enough cycles ahead of the actual load so that it can mask the load la-

tency completely. Towards this, PEPSE tries to schedule the instructions of LDG

as tightly as possible. Figure 3.2 shows the steps involved in scheduling the LDG

instructions. This algorithm assumes that the delinquent loads have been iden-

tified and the LDGs are constructed for them in previous stages. Note that the

destination registers have to be changed for the LDG operations to make them run

speculatively. Otherwise, they would interfere with the correctness of the original

program. This mapping information is maintained in a map data structure, which
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is used to change the source registers of subsequent instructions that may use the

changed register value.

Input: function f, LDG and the operation c where scheduling is to 
begin

Ouput: function f with LDGs

1. Perform register live range analysis
2. Create a map and initialize it to be empty.
3. Process each operation j in the LDG from head to tail
4. Find the earliest available scheduling slot occurring at time t, t>tc

along the visited blocks, where tc is the schedule time of the last 
scheduled LDG instruction.

5. d destination operand of j.
6. find an available register r.
7. use r as the new destination register for j.
8. for each source operand s of j do
9. if s is in map then replace s with map(s)
10. end for.
11. map(d) r

Figure 3.2: The scheduling algorithm

We perform the LDG insertion just after pre-pass scheduling and before the register

allocation. Hence we use the compiler’s register allocator to allocate registers

for LDG operations. If the register allocator runs out of registers, it will insert

register spill and restore operations as it would for the registers used by the original

instructions in the program. But,we observe that in almost all cases, we successfully

scheduled and register allocated the LDG instructions without (i) increasing the
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static schedule length of a block or (ii) significantly increasing register pressure1.

Finally, the load instruction is changed into a prefetch. A prefetch instruction

would not have a destination register since it would only try to get the data closer

to the processor by placing it in the primary cache.

3.2.1 Optimizations

Pruning the list of LDGs

The initial delinquent load selection is based on the cache hit/miss statistics derived

from profiling. For all loads identified as delinquent, LDGs are created. But, we

evaluate the effectiveness of LDG in masking the latency and the resources available

to eliminate non-profitable LDGs or LDGs with substantial resource requirements.

For a load i, the following heuristic is used to compute the LDG’s benefit factor

αi.

αi =
di ∗ available resources

| LDG |
(3.2)

where di is the dependence distance between the starting point of LDG2 and the

load instruction, available resources refers to the amount of free slots available in

this part of the code and | LDG | refers to the size(latency) of the LDG itself. As

it is clear from the above equation, we would give higher priority to LDGs that (i)

have higher distance di which would enable better masking of the load latency, (ii)

has more free resources available in which case the LDG insertion would not need

much additional resources and (iii) have less instructions, otherwise, it would lead

to static code explosion. We use the above equation as a guide to maximize the

performance gains due to LDG insertion without increasing the overhead.

1The processors in the Itanium family contain 128 registers and hence a slight increase in the

register presssure does not adversely affect the performance.
2The location in the original source code from where the LDG scheduling is to start.
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Loop Optimizations

Since LDG, in principle, is similar to a PDG, all transformations that are available

to the PDG are applicable to the LDGs also. Cyclic dependence between two loads

in a loop, for example, would indicate that the load is a part of a pointer-chasing

loop. We observe that most of the delinquent loads in a program are located in

tight loop nests. If the delinquent load is present in a straight line code, it is

generally a small procedure3 that is called from a loop. But since our current

implementation does not include interprocedural analyzes, identifying these LDGs

is out of our scope.

The PEPSE methodology is to identify the load dependence graph for a delinquent

load l, and statically schedule speculative equivalents of the LDG operations in the

original program. Ideally the distance between the last LDG operation and the

load instruction should be equal to the average miss latency for l. In a cyclic

program region, it is often the case that the prefetch is necessary in some iteration

k in order for the data to arrive in time for processing in a future iteration m. The

LDG lends itself well for such purposes. Unrolling of a LDG contained in a loop,

for example, is very simple and straightforward.

In case of loops, we perform a LDG transformation called Induction Unrolling.

Initially, the LDG is created for the load by the normal procedure, but it is kept

within the loop’s limits. This LDG alone(and not the whole loop) is then unrolled

n times, where n is the loop distance by which we want to prefetch. The unrolling

factor is ideally equal to dLl/Ce, where Ll is the average miss latency of the load

and C represents the critical path length of the loop(i.e. the longest path from the

start of the loop to its exit operation).

Figure 3.3 shows an example of the transformations performed for induction un-

rolling. Figure 3.3a shows the original loop. The loop might have other instructions

3For example, a sin function called to calculate the value in the innermost loop.
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loop bb:

adds r10 = r10,64

adds r2 = r10, 4

ld r1 = [r2]

br loop bb

a) Original code

loop bb:

adds r10 = r10, 64

add r2 = r10, 4

load r1 = [r2]

add r11 = r10, 64

add r3 = r11, 4

prefetch r3

br loop bb

b) Example LDG

loop bb:

adds r10 = r10, 64

add r2 = r10, 4

load r1 = [r2]

add r11 = r10, 64

add r3 = r11, 4

add r12 = r11, 64

add r4 = r12, 4

prefetch r4

br loop bb

c) Unrolled LDG

loop bb:

adds r10 = r10, 64

add r2 = r10, 4

load r1 = [r2]

add r12 = r10, 128

add r4 = r12, 4

prefetch r4

br loop bb

d) Optimized and unrolled LDG

Figure 3.3: Example load dependence graph for a simple loop construct.
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unrelated to the load, which are not shown in the figure. The access pattern shown

in the loop is similar to accesses in array of structures or multi-dimensional arrays.

Figure 3.3b shows the program with LDG operations (the last 3 operations before

the br) inserted. If the original loop has some available resources to accommodate

the precomputation and the prefetch operation, then the critical path of the loop

would not be lengthened. When the loop body executes, the embedded speculative

operations will initiate prefetch requests one iteration ahead of the actual loop. For

a longer prefetch distance, the LDG, consisting of a two add instructions in this

example, is unrolled as necessary. Figure 3.3c shows the result of unrolling the

LDG two times to precompute the memory addresses two iterations ahead of the

host loop region. In addition to unrolling, we can also apply other optimizations

like constant folding and dead code elimination to achieve a more compact LDG.

Figure 3.3d shows the result of applying these optimizations to figure 3.3a.

3.2.2 Pointer Applications

In the previous section, we described a method of prefetching for loop structures,

namely the induction unrolling. Though the induction unrolling technique is effec-

tive in prefetching for array structures, it is not effective for pointer-chasing code

in the given form. An example of that is shown in figure 3.4. Here, figure 3.4a

shows a pointer chasing loop. A pointer chasing loop code generally contains two

loads that are cyclically dependent on each other. The computations that are not

related to the load are removed for simplicity. For this example, let us consider the

second load to be delinquent. Figure 3.4b shows the result of attaching the LDG

instructions to the original loop body. The added instructions would try to look

ahead and prefetch the load one iteration ahead of time. Note that the LDG would

also contain a copy of the original delinquent load. But that load is converted to

a prefetch in this figure.
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In case of unrolling the LDG for an array based code, the delinquent load in-

struction(which is the first instruction to be added to the LDG) is not required to

calculate the load address for a future iteration. Generally, the load in an array

based code loads the value into a local variable which is either used for some calcu-

lations or used to update another array. But in pointer based code, the value that

the delinquent load loads is necessary for the address computation for the next

iteration. This is because of the loop carried cyclic dependency present in pointer-

chasing loops. Hence the unrolled loop shown in figure 3.4c is full unrolling of

LDG(including the delinquent load instruction) and then the final load instruction

is converted to a prefetch instruction.

As shown in figure 3.4c, to look-ahead in a pointer code by a few iterations, the

unrolled LDG would have a few loads in it, which cannot be compacted any further.

And these loads themselves might miss the cache, in which case, the LDG might

degrade the performance of the application.

We change our Induction Unrolling technique to accommodate pointer-chasing

code. Generally, for pointer chasing, the lead is available in the basic block that

is executed just before the loop. We first identify the predecessor basic block for

the loop containing the delinquent load. This is the last basic block visited by the

program before the start of the loop. We have not encountered situations when

the loop(which iterates through the list) is preceded by more than one basic block.

In that case, we would have to place the prologue(explained below) in each of the

predecessor basic blocks.

Figure 3.5 illustrates the mechanism. We place dLl/Ce unrolled iterations of the

LDG in the predecessor basic block(s) of the loop, where dLl/Ce is the desired

prefetching distance (as defined in the previous section). This serves as a prologue

to the LDG in the loop. The loop itself contains only one iteration of the LDG.

Hence, during every iteration of the loop, one iteration of the LDG and prefetch
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loop bb:

ld r10 = [r1]

adds r14 = r10,10

ld r1 = [r14]

br loop bb

a) Original code

loop bb:

ld r10 = [r1]

adds r14 = r10,10

ld r1 = [r14]

ld r11 = [r1]

adds r11 = r11,10

prefetch r11

br loop bb

b) Example LDG

loop bb:

ld r10 = [r1]

adds r14 = r10,10

ld r1 = [r14]

ld r11 = [r1]

adds r12 = r11,10

ld r13 = [r12]

ld r15 = [r13]

adds r15 = r15,10

prefetch r15

br loop bb

c) Unrolled LDG

Figure 3.4: Example load dependence graph for a simple pointer-chasing loop

construct.

are executed, which would prefetch data that would be accessed in some future

iteration. Note that the data prefetched during the last few iterations would not

be useful. But in case of pointer chasing loop which ends with a null pointer, the

prefetch would be quashed since it would try to prefetch a null value. In other

times the amount of unwanted prefetch is still very less and hence ignored.

This acts as an effective technique for prefetching in pointer-chasing loops. But,

as explained above, the inserted LDG instructions contain load instructions, which

might incur a miss themselves. But these are misses that would anyway have

occured during the original execution of the loop. If the loop is big, some of this
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Predecessor bb Predecessor bb 
with n iterations of 
LDG

bbs that constitute 
the loop + 1 
iteration of the LDG

bbs that 
constitute the 
loop

Figure 3.5: Induction Unrolling for Pointer-chasing code

miss latency can be reduced by placing the load and its use as far away as possible,

exploiting the fact that the processor implements a stall-on-use4 technique. Also,

since the prefetch brings in a whole cache line, accesses to other members of the

structure would also hit the cache. Squashing the LDG instructions when a load

in the LDG misses, remains an important direction of future research. This could

help eliminate the overhead that may result from the LDG without affecting its

efficacy in favorable situations.

4The processor is stalled not when a load misses the cache, but only when the load value is

needed by another instruction



Chapter 4
PEPSE Implementation

This chapter explains the implementation of the PEPSE scheme in the Open Re-

search Compiler. For a reader uninterested in the implementation details, this

chapter can be skipped without any loss of continuity. The next chapter gives a

detailed description of the results achieved by our PEPSE implementation on the

Open Research Compiler. This chapter is also intended to serve as a reference for

researchers working at the code generation stage of Open Research Compiler.

4.1 Open Research Compiler

Open Research Compiler(ORC) is an open source compiler for the Itanium Pro-

cessor Family(IPF) developed by researchers in Intel and Chinese Academy of Sci-

ences. It is a sequel to the Pro-64 compiler from Silicon Graphics(SGI). The Pro-64

compiler was originally targeted for the MIPS processor. It was changed to retarget

it for the IPF. ORC includes a comprehensive set of optimizations which include

blocking(tiling), loop unrolling, software pipelining, if-conversion, data prefetch-

ing(based on Mowry et.al.[28]) and a global instruction scheduler integrated with

a finite-state-automaton-based resource management.

37
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ORC provides a common robust infrastructure and is modular, which enables quick

prototyping of new ideas. For our implementation, we were concerned only with

the Code Generation(CG) module of ORC. ORC provides separate compilation for

different modules which makes it easier to locate errors in a particular module. It

uses region based compilation, where the regions act as boundaries for the opti-

mizations. This enables better management of compilation time and space, since

only regions considered important would have to be fully optimized. ORC has the

leading performance amongst the open source compilers for the IPF. It provides

front-ends for C/C++, fortran77 and fortran 90.

The abstract syntax tree based intermediate representation used by ORC for its

optimizations is called Whirl. Most of the interprocedural optimizations like alias-

ing analysis, call tree, function inlining, dead function elimination and loop nest

optimizations like loop distribution, unimodular transformations and blocking are

performed on the whirl representation of the original program. This intermediate

representation was a legacy from the Pro-64 compiler. But the code generation

stage of ORC uses a register based Intermediate Representation(CGIR). Most of

our work was confined to the code generation stage and hence we use this repre-

sentation.

The structure of an operation in this representation is shown in figure 4.1. Most

of the fields in the structure are self explanatory. The scycle of an operation is

set by the scheduler to indicate the start cycle of the operation and order shows

the order of the operation in the basic block. A basic block contains a set of ops

connected using the prev and next pointers. Since the code generation stage is

the compiler stage that creates the assembly code, we can note that the structure

of an operation in this representation encompasses all the information required to

produce an assembly instruction.

ORC contains functions to create and manipulate OPs, BBs and dependence edges
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SRCPOS     srcpos;           /* source position of the OP */
OP               *next;        /* Next OP in BB list */
OP               *prev;        /* Preceding OP in BB list */
struct bb      *bb;          /* BB in which this OP lives */
struct bb      *unroll_bb;      /* BB just after unrolling */
mUINT16     order;             /* relative order in BB */
mUINT16     map_idx;        /* index used by OP_MAPs*/
mUINT16     orig_idx;         /* index of orig op before        

unrolling*/
mINT16        scycle;           /* Start cycle */
mUINT32     flags;              /* attributes for OP */
mTOP opr;                /* Opcode. topcode.h */
mUINT8       unrolling;       /* which unrolled replication */
mUINT8       results;          /* Number of results */  
mUINT8       opnds;           /* Number of operands */
mUINT8       flag_value_profile; /* flag for value_profile */
mUINT32     value_profile_id;    /*ID for value profile No. */
mUINT64     exec_count;           /* Execution count */
struct tn *res_opnd[10];        /* result/operand array */

Figure 4.1: Structure of an Operation

between the OPs. It also contains iterator classess and functions to walk through

the regions within a procedure, OPs within a BB, etc. In both our profiler and

PEPSE implementations, we have heavily used these functions and iterators.

Itanium architecture incorporates an advanced mechanism of register stacks to

avoid the unnecessary spilling and filling of all general purpose registers at proce-

dure call and return interfaces through compiler-controlled renaming. This tech-

nique is important in our implementation and hence we describe it in the next few

paragraphs.

At a call site, a new frame of registers is made available to the called procedure

without the need for register fill and spill(either by the caller or by the callee).

Register access occurs by renaming the virtual register identifiers in the instruc-

tions through a base register into the physical registers. The callee can freely use
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available registers without having to spill and eventually restore the caller’s regis-

ters. The callee executes an alloc instruction specifying the number of registers it

expects to use in order to ensure that enough registers are available. This frame of

registers is allocated by the hardware from the register stack. If sufficient registers

are not available(stack overflow), the alloc stalls the processor and spills the caller’s

registers until the requested number of registers are available.

At the return site, the base register is restored to the value that the caller was using

to access registers prior to the call. Some of the caller’s registers may have been

spilled by the hardware and not yet restored. In this case(stack underflow), the

return stalls the processor until the processor has restored an appropriate number

of the caller’s registers. The structure of an alloc statement is shown below.

(qp) alloc r1 = ar.pfs, i, l, o, r

At the execution of the alloc instruction, a new stack frame is allocated on the

general register stack, and the Previous Function State register is copied on to

GPR1 r1. The change of register frame is immediate at the execution of this

instruction. The write of GPR r1 and the subsequent instructions use the new

frame. The four parameters i, l, o, and r specify the number of input, local, output

and rotating registers being used in this procedure respectively. Note that most of

the instructions in Itanium are predicated. The qp in the above instruction is the

qualifying predicate register.

4.2 Profiler Implementation

To get the profile information of the loads, we needed to couple the original program

with Dinero IV cache simulator. This is achieved by inserting calls to the simulator

1General Purpose Register
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modules from the original program. The simulator program, compiled separately,

is then linked to this program. The simulator is trace driven, viz., it examines the

trace of memory addresses accessed by the program and simulates them for the

given cache configuration. The simulator needs the following information from the

original program. (i) The address accessed by the instruction, (ii) The identifier

for the instruction (This is used to generate the hit/miss statistics for each static

load in the program), (iii) The size(in bytes) of the data access.

mov temp_reg1 = param_reg1

mov temp_reg2 = param_reg2

mov temp_reg3 = param_reg3

mov param_reg1 = OP_ID

mov param_reg2 = addr_reg

mov param_reg3 = func_id

br.call memprofiler_type

mov param_reg1=temp_reg1

mov param_reg1=temp_reg1

mov param_reg1=temp_reg1

ld reg = [addr_reg]

First Set

Second Set

Third Set

Figure 4.2: Profiler Implementation

We achieve the above said goal by inserting 10 extra instructions for every mem-

ory access operation. This mechanism is depicted in figure 4.2. The extra 10

instructions are the 3 mov instructions moving the parameters to the appropriate
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parameter registers, the procedure call instruction, 3 instructions each for saving

up and restoring the parameter registers’ values before and after the procedure

call. We would call the sets of move instructions first, second and third set re-

spectively in the subsequent discussions. Note that the calls contain the operation

identifier, function identifier and the address of the access as parameters. Since

the profiler provides different calls for different types of memory accesses, size of

the data access can be derived from the procedure called. The saving and restor-

ing of the values held by parameter registers is necessary to avoid the parameters

for the memprofiler modules (the procedures in the cache simulator have the name

memprofiler type, where type represents the type of the memory instruction) being

sent in as parameters to any other normal procedure call that follows, but whose

parameters were assigned before our simulator call.

The challenge of allocating unique identifiers for every memory access operation

was achieved by attaching an extra map structure to map each memory access

operation to an identifier. Every time a new memory access operation is created,

a new member of this structure is created with the next higher identifier. The

uniqueness of the identifier is maintained across various procedure calls in a source

file and also across various source files within the same application.

Since the instructions are inserted before the register allocation stage, the tem-

porary registers can be freely used. The register allocator then tries to map the

virtual register identifiers to physical registers which is limited in number. In the

Itanium architecture, the number of registers that a procedure can use is limited

to 128 registers. So, sometimes, when the register pressure in the original program

is very high, the insertion of these extra ops which use temporary registers might

compel the register allocator to spill and restore some of these or other registers.

To avoid the extra spills and restores, we used the branch registers to hold the val-

ues contained in the parameter register temporarily. In Itanium processor, there
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are 8 branch registers(b0 to b7) and only b0 is used to hold the return address.

The other branch registers are unused and are intended for future extensions. We

used those registers to hold the values of parameter registers temporarily and to

restore them to their original values.

Note that for every memory access instruction in the original program, there is

an overhead of 10 inserted instructions along with a procedure call. Hence the

running time of the original program for profiling would increase considerably.

The simulator modules basically check to see if the address provided would hit or

miss the cache configuration that it simulates and adds the corresponding hit/miss

statistics for the identifier provided.

There are a few optimizations that ORC performs for leaf procedures. Leaf proce-

dures are those without any procedure calls in them. Some of the status registers

need not be saved up and restored in them. But if these procedures contain mem-

ory operations, we insert procedure calls to memprofiler modules(which changes

the leaf status of the procedure). Hence, we change ORC to consider all procedures

to be non-leaf procedures. Also, the calls to memprofiler requires three parameter

registers(output registers). If the original procedure has procedure calls exceeding

three parameter registers, those registers can be used by these additional calls.

But, if the procedure does not contain any procedure call, or if it contains proce-

dure calls with less than 3 parameters, we change the register allocator to allocate

a minimum of 3 output registers. This would be reflected in the alloc instruction

for the procedure.

Though the inserted instructions are aligned properly at insertion, as shown in

figure 4.2, the local instruction scheduler and register allocator can change the

order of these instructions, or worse still, delete some of the operations. To avoid

this, we need to insert dependence edges between these operations to preserve

their order. The order between the three sets of three moves, viz., three moves
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to temporary registers, three moves to parameter registers and the three moves

back from temporary registers have to be preserved though we can allow arbitrary

mixing within each set. We draw PREBR2 arcs from the first and second set

of moves to the procedure call and POSTBR3 edges from the call instruction to

the third set. We also draw register dependency edges between the three sets as

required by their register usages. The addition of these dependence edges ensures

that the order between them is maintained.

4.3 PEPSE Implementation

Itanium architecture provides a non-blocking prefetch instruction lfetch. The syn-

tax of the instruction [14] is

(qp) lfetch.lftype.lfhint [r1]

The function of this instruction is to move the line containing the address specified

by the value in register r1 to the highest level of the data memory hierarchy.

The lftype component decides whether to raise faults normally associated with a

regular load for this prefetch instruction. This instruction has an immediate and

base-update variants.

The objective of our scheme is to construct dependence graphs for delinquent loads

and statically schedule speculative versions of them earlier in the program. ORC

contains functionality to create and analyze the dependence graph at basic block,

region and procedure levels. The kinds of dependencies that are of interest to us are

CG DEP REGIN, CG DEP REGOUT and CG DEP REGANTI which represent

2A PREBR edge between an operation and a call instruction indicate that the operation has

to be strictly executed before the ensuing procedure call.
3An POSTBR edge between a call instruction and an operation indicate that the operation

has to be executed strictly after the procedure call.
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register flow(true dependency), output and anti dependencies respectively, between

the registers of the predecessor and successor instructions. The structure of a

dependence edge between two OPs is shown in figure 4.3.

OP *pred; /* the predecessor */

OP *succ; /* the successor */

mINT16 latency; /* latency in cycles from pred to succ */

mUINT8 omega; /* iteration distance for loop-carried deps */

mUINT16 kind def opnd; /* kind is LOW 8 bits, definite is next bit,

dotted edge is the next bit, which tells if the edge is not always strict

and opnd is the HIGH 4 bits */

struct arc *next[2]; /* next ARC in pred/succ list, respectively */

Figure 4.3: The structure of a dependence edge

For LDG creation, we first create the full dependence graph for the procedure using

the ORC’s functionality and then carve out LDGs for the delinquent loads. The

set of predecessors for the operations are maintained in the compiler. The LDG

is constructed by iterating the set of predecessors for each operation in the LDG.

In the first iteration, the predecessors of the delinquent load instruction would

be examined for inclusion in the LDG and these instructions in turn would be

iterated to include the instructions on which they are dependent on. The boundary

conditions are implemented as explained in section 3.2.

In our implementation, LDG creation and PEPSE scheduling are done in the same

phase. The delinquency information is available to this phase from the profile

run of the program. So, LDGs are created and PEPSE-scheduled only for the



4.3 PEPSE Implementation 46

delinquent loads. Before this phase starts, the delinquent loads are identified by

sorting the loads according to the total stalls caused by them and then selecting

the top 5% of them.

To create speculative versions of the LDG instructions, the scheduler needs to

interact with the register allocator. The speculative version of the instructions are

copies of original instructions with the source and destination registes changed so

that they wouldnt affect the execution of the original program. Since our PEPSE

implementation occurs before the register allocation stage, these new set of registers

are easy to obtain. We just use temporary identifiers which will then be assigned

to physical registers by the graph-coloring based register allocation algorithm. The

insertion of LDGs only slightly increases the register pressure of the program since

we limit the size of LDG to be 7 instructions. In case of delinquent loads in loops,

the LDG typically contains only 1-3 instructions and it is quite easy to create a

speculative version of them with very few extra registers.



Chapter 5
Evaluation Framework and Results

In this chapter we describe the results obtained from the implementation of the al-

gorithms described in chapter 3 on the Open Research Compiler(ORC). In Section

5.1, we describe the evaluation framework used to implement the optimizations

and in Section 5.2, we present the details of the results obtained.

5.1 Evaluation Framework

Our experimental platform is a 900MHz Itanium 2 server with four processors.

Each processor has 4-way 16KB Level 1 split instruction and data caches, 8-way

256KB unified secondary cache and 12-way 1.5MB unified tertiary cache. The

latencies for primary secondary and tertiary caches are 1,5-6,12-13 cycles respec-

tively. The processor core has a 8-stage pipeline, can issue upto 6 instructions1

at a time and incurs 6 cycle penalty on a branch misprediction. The Itanium ar-

chitecture provides mechanisms, such as instruction templates, branch hints and

cache hints to enable the compiler to communicate compile-time information to

1Each Long instruction in Itanium consists of three instructions. It is also called as an in-

struction bundle. Six simple instructions translate into two bundles in Itanium.
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the hardware.

Every memory load and store instruction in the Itanium architecture has a 2-bit

cache hint field in which the compiler is allowed to fill its prediction on the spatial

and/or temporal locality of the memory area being accessed. By using the pro-

gram’s structural information, the compiler can fill out which cache level the load

value is likely to be found and to which cache level it should be fetched. A proces-

sor based on the Itanium architecture can use this information to determine the

placement of cache lines in the cache hierarchy to improve the memory utilization.

One important property of the Itanium processor that is worth noting is that it

implements a stall-on-use policy: suppose a load instruction is issued at cycle time

ti, and the first use of the delivered data occurs at cycle time tj, then the processor

is not stalled unless the data is unavailable in the required register at time tj.

When this happens, the processor will be stalled for L − (tj − ti) cycles where L is

the latency of the memory hierarchy in which the data is found. During the stall,

no further instructions can be issued until the data is available for the processor

to continue.

Intel C/C++ compiler and Intel Fortran compilers produce the best results on the

Itanium machine across all the SPEC benchmarks. But both of them are propri-

etary softwares and we do not have access to their source codes. Hence, we imple-

mented a prototype of our optimizations on the Open Research Compiler(ORC)[6],

version 1.1. ORC is an open source compiler for the Itanium Processor Fam-

ily(IPF). It has the leading performance amongst the open source compilers for

the IPF. ORC includes a comprehensive set of optimizations which include block-

ing(tiling), loop unrolling, software pipelining, if-conversion, data prefetching(based

on Mowry et.al.[28]) and a global instruction scheduler integrated with a finite-

state-automaton-based resource management. It provides common robust infras-

tructure and is modular, which enables quick prototyping of novel ideas. It provides
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front-ends for C/C++, Fortran77 and Fortran 90.

Benchmark Profile Evaluate Delinquents

101.tomcatv train ref 70

168.wupwise train ref 10

171.swim train ref 120

172.mgrid train ref 70

179.art train ref 100

183.equake train ref 60

189.lucas train ref 70

em3d 2000 2 50 30000 2 200 8

tsp 8000 0 8000000 0 10

Table 5.1: Our IPF benchmark suite and input workloads used for profiling and

evaluation.

The benchmarks we use are a collection of 7 programs selected from the SPEC

CFP suite (179.art and 183.equake are C programs, the others are implemented

in Fortran)[7] and two kernels from the Olden pointer-intensive benchmarks. The

reason for this selection is to demonstrate that our methodology is simultaneously

applicable to both array and pointer based programs. We chose ORC’s best opti-

mization options2 as the baseline, which implements prefetching based on Mowry’s

work[28]. The prefetch algorithm implemented in ORC is optimized for fortran

programs but their prefetching support for C is poor because of the aliasing prob-

lem. We would like to demonstrate that our method works good when implemented

on top of the native prefetching implemented in the ORC. All the selected bench-

marks are comprised of various loops and contain most of the delinquent loads

within do-while or for loops. Table 5.1 shows the set of benchmarks used, the

2ORC executed with -O3 option
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inputs used for profiling and evaluation runs(with PEPSE-enabled code) and the

number of delinquent loads used for our optimizations. Note that, in the case of

SPEC benchmarks, we have used the train input workload for profiling run and

ref input workload for reporting purposes.

We would expect the SPEC CFP benchmarks to exhibit significant ILP and that

they are highly optimized by the ORC. But, the results in the next section show

that there are still enough resources available that can be utilized by PEPSE.

The PEPSE scheme has a few compile-time parameters which we consistently set

to be as follows: The number of delinquent loads selected are the top 5% of the

total loads present in the program rated according to total stall cycles, calculated

as described in equation 3.1 from the profile information. The budget size for the

LDG is set to be 7 instructions. The minimum branch frequency for a path-specific

LDG to be constructed was set to be 20%.

Most of the recent processors have special performance counters to measure appli-

cation characteristics. These counters exist as a small set of registers that count

events, occurrences of specific signals related to the processor’s function. Moni-

toring these events facilitates correlation between the structure of source/object

code and the efficiency of the mapping of that code to the underlying architecture.

This correlation has a variety of uses in performance analysis including hand tun-

ing, compiler optimization, debugging, benchmarking, monitoring and performance

modelling.

Performance Application Programming Interface(PAPI)[2] provides a simple, high

level interface for the acquisition of simple measurements from the underlying

counter hardware. As part of PAPI, there are a predefined set of events that

represents the lowest common denominator of every good counter implementation.

In this work, we use the PAPI software to verify the speedups obtained using the

time command and also to check the overhead due to PEPSE.
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5.2 Results

The results reported in this section were obtained by running the benchmarks

compiled using the ORC compiler with and without our optimizations. The ex-

periments for PEPSE are conducted in two stages. In the first stage, the assembly

code is instrumented to be coupled to Dinero IV cache simulator and the profile

information is obtained. To achieve this, the code generation stage of ORC was

changed to add calls to dinero IV simulator just before the load instruction, with

the load address and an identifier as parameters. In the second phase, the profile

information generated in the first phase is used to identify the delinquent loads and

enhance the application performance by applying PEPSE optimizations to those

delinquent loads.

In Figure 5.1 we graph the normalized execution time of each of the benchmarks

from our evaluation suite. For each benchmark, there are two bars showing the

performances of PEPSE-enhanced and Load Sensitive Scheduling(LSS) enhanced

programs. We have considered the performance of ORC with its maximum op-

timization option(-O3) as the baseline. We note that the baseline implements

software pipelining and a data prefetching mechanism largely based on Mowry’s

doctoral thesis [21].

Load sensitive scheduling is a method by which the load latency information is

made available to the scheduler through dependence edges between the load in-

struction and its use. The fundamental premise for this method is that the pro-

cessor implement a stall-on-use policy. The scheduler equipped with the latency

information tries to schedule more instructions in the region between the load and

its use so as to nullify the effect of the long-latency load. We had implemented

a simple case of load sensitive scheduling. Each time a new dependence arc is

drawn, if the predecessor operation is a delinquent load, the arc is annotated with

the average miss penalty of the load. This informs the scheduler of the memory



5.2 Results 52

sensitive latency, and as such, leads to improved scheduling decisions.
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Figure 5.1: Normalized user CPU times for the Itanium 2 processor for PEPSE-

enhanced and LSS-enhanced benchmarks relative to the baseline ORC optimiza-

tions.

In the graph of Figure 5.1 a value of 1 represents the execution time of the baseline.

Any value less than 1 shows that the optimization has enhanced the performance

and hence shortened the execution time. A value greater than 1 indicates that

the optimization has degraded the performance of the application. According to
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LDGs 101.tomcatv LDGs 183.equake

time (secs) time (secs)

10 35.56 10 292

20 32.06 20 261

40 29.78 30 253

60 29.35 40 205

80 29.67 50 200

100 29.50 60 200

Table 5.2: CPU user time as a function of the number of embedded LDGs.

the results, the execution time of the PEPSE-enabled benchmarks reduced by 25%

on an average. But our LSS implementation did not yield significant performance

improvements and we attribute this observation to the lack of sufficient ILP in the

benchmarks. The scheduler would then have to add nop instructions in those slots

to make up for that latency, which ultimately degrades the performance.

As another experiment, we measured the running time of the applications by vary-

ing the number of delinquent loads selected for PEPSE. Table 5.2 shows the results

for two benchmarks. The results of Table 5.2 show that the performance of bench-

marks increase with increasing number of embedded LDGs. This is because of

the higher coverage of delinquent loads. However, we cant increase the number of

LDGs arbitrarily. Ultimately, we reach a stage at which, further increase in the

number of LDGs increase the overhead without sufficiently reducing the processor

stalls and hence the overall performance degrades. Our experiments show that we

gain maximum performance when around the top 10% of the total loads in the

program are considered for PEPSE processing.

In addition to the application running time, we use the PAPI toolkit [2] to monitor

the performance counters in the Itanium and record the number of cycles elapsed
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Time (in secs) Cycles (in millions)

Benchmark ORC PEPSE LSS ORC PEPSE Speedup

101.tomcatv 45.6 29.3 43.3 39,069 26,329 1.56

168.wupwise 622 591 629 568,122 528,326 1.05

171.swim 317 230 307 305,825 219,447 1.38

172.mgrid 369 257 362 329,280 232,467 1.44

179.art 489 297 485 476,161 240,952 1.65

183.equake 471 220 512 422,920 199,857 2.14

189.lucas 366 307 369 332,537 283,951 1.19

tsp 80.7 75.9 80.7 69,347 67,866 1.06

em3d 6.39 5.29 6.41 5,643 4,726 1.21

Table 5.3: The user CPU time and total execution cycles for each benchmark.

between the start and end of the program. PAPI runs in the back ground and

counts the cycles. The results are listed in Table 5.3. They are similar to the

results obtained using the time command, shown in the second and third columns

of the table.

In addition to the performance, one should also quantify the computation overhead

due to the optimization. Towards this, we record the total number of dynamic in-

struction bundles issued before and after the prefetch orchestration using PEPSE.

Each instruction bundle consists of a set of operations that are issued simulta-

neously and execute in parallel. The extent to which the prefetch orchestration

lengthens the critical path is reflected in the number of instruction bundles that

are processed. Counting the static size of the program would not reflect fully on

the overhead. If the ILP is not very high in the program, adequate amount of

resources may be available for PEPSE and hence the overhead would be very less.

Table 5.4 quantifies the overhead due to orchestration of the PEPSE scheme to the



5.2 Results 55

Time (in secs) Instructions (in millions)

Benchmark ORC PEPSE LSS ORC PEPSE Overhead

101.tomcatv 45.6 29.3 43.3 63,599 69,510 1.09

168.wupwise 622 591 629 834,064 855,467 1.03

171.swim 317 230 307 510,672 557,737 1.09

172.mgrid 369 257 362 253,719 287,007 1.13

179.art 489 297 485 90,687 112,498 1.24

183.equake 471 220 512 253,719 287,007 1.13

189.lucas 366 307 369 467,338 471,439 1.01

tsp 80.7 75.9 80.7 75,699 80,673 1.07

em3d 6.39 5.29 6.41 967 1039 1.08

Table 5.4: The user CPU time and the dynamic number of operations for each

benchmark.

benchmark suite. From the data on the table, the PEPSE implementation incurs

a 3.66% increase in the number of dynamic instructions, on an average. Disre-

garding static schedule length of host regions and performing program embedded

precomputation aggressively results in a 32% increase in the instruction count with

detrimental effect on the performance. Hence it is prudent to narrow the scope of

the optimizations to only severely delinquent loads in a program.



Chapter 6
Conclusions

This chapter concludes the thesis with a summary of the technique, its applicability

and also gives directions for future research.

6.1 Summary of the thesis

In this thesis, we have addressed the ever-widening gap between the speed at

which a processor processes data and the speed at which the memory sub-system

supplies data to the processor with the introduction of PEPSE. We introduced the

concept of Load Dependence Graph, which is a slice of the original program that

calculates the address of a load instruction. First, we instrument the assembly

code of the program to couple the program with Dinero IV uniprocessor cache

simulator. This helps in identifying the delinquent loads in a program by creating

the profile statistics of the program, consisting of a list of hits and misses due to

the memory access instructions.

For all memory access instructions identified as delinquent by the profile run, we

create the Load Dependence Graphs for those instructions. We then illustrate how

56
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Program Embedded Precomputation using Speculative Execution(PEPSE) sched-

ules a speculative version of these loads along with the program and ensures the

timely availability of the loaded value so that the latency of the load is nullified

or reduced. We also describe algorithms for generating the LDGs and embedding

the corresponding address precomputation and data prefetch into the instruction

stream of the application, compiled for the EPIC architecture. Then we intro-

duced a technique by which the LDG can be applied to loops accessing an array

structure(Induction Unrolling). We also propose a modification to the induction

unrolling technique which would work well for pointer intensive applications.

We implemented a prototype of the proposed optimizations in the Open Research

Compiler, an open source compiler for the Itanium Processor Family(IPF). This al-

lowed us to study in detail the conditions affecting the effectiveness of the method,

and using these studies, we formulated several variants of the algorithm and heuris-

tics that will maximize the efficacy of PEPSE as a data prefetching mechanism. As

a result, we have a data prefetching scheme that is (1) highly precise, (ii) efficient

and robust in the context of a wide class of applications, (iii) does not require any

new hardware support , and (iv) incurs very little overhead. Our implementation of

PEPSE on ORC demonstrates that PEPSE is a viable optimization strategy and

delivers upto 53% performance improvements compared to ORC optimizations,

which includes its own native prefetching technology. We achieved a speedup of

25.6% on an average across nine benchmarks from the SPEC and olden suites.

This serves as a concrete evidence that this method is effective.

6.2 Future Research Directions

Combining interprocedural analysis with PEPSE to enhance the PEPSE scheduling

decisions using the information available from the inter-procedural analysis remains
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an important topic of future research. Another orthogonal direction is to enhance

the effectiveness of PEPSE in pointer-based code by disabling the LDG when it

incurs misses itself. In pointer code, the result of the load is necessary to further

propagate the precomputation. If a load within the LDG results in a cache miss

that is not serviced in time for a subsequent LDG operation, the processor stalls

and awaits data delivery. To alleviate this problem , we have devised a technique

that will selectively disable the LDG instructions if any previous LDG instruction

missed the cache. This would make sure that the LDG instructions themselves do

not stall the processor. We plan to carry on this work further.
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