
DATA INTEGRITY

FOR ACTIVE WEB INTERMEDIARIES

YU XIAO YAN

(B.S. FUDAN UNIVERSITY)

A THESIS SUBMITTED FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement

I am deeply and permanently indebted to my advisor, Dr. Chi Chi-Hung,

for everything he has done for me during my study in NUS. Without his

guidance and support I would not have finished this work. I also thank Dr.

Chi for his help in my pursuit of further study in the near future. Finally, I

thank Dr. Chi for reminding me about what is really important in life and

making sure I keep my eyes on the bigger picture.

I sincerely thank all my colleagues for offering me much needed assistance

and for sharing their invaluable insights whenever I encountered problems

during my research. I would also like to thank my dear friends Corrisa,

David, Xiaofeng, He Qi and Zhou Xuan for their companion and support.

They have brightened my life and made my stay in NUS during the past

two years a wonderful experience.

My husband, Wenjie, gives me so much support both in study and in life. I

love you. Finally, I would like to thank my parents for all the love,

encouragement and support they have given. Without them, I would not

have come this far.

Summary

In this thesis, we propose a data integrity framework with the following

functionalities: a server can specify its authorizations, active web

intermediaries can provide services in accordance with the server's

intention, and more importantly, a client is facilitated to verify the received

message with the server's authorizations and intermediaries' traces. We

implement the proxy-side of the framework on top of the Squid proxy

server system and its client-side with Netscape Plug-in SDK. To summarize,

my contributions are as follows.

• Define a data integrity framework, its associated language specifi-

cation and its associated system model to solve the data integrity

problem in active network with real-time content transformation.

• Build a prototype of our data integrity model and do sets of

experiments to show the practicability of our proposal through its

low performance overhead and the feasibility of data reuse.

Contents

1 Introduction

1.1 Background and Problems ……………………………………………..... 1

1.2 Needed Work and Contributions ………………………………………… 2

1.3 Organization ……………………………………………………………… 3

2 Related Work ………….……………………………………………………….. 5

2.1 Content Transformation 5

2.1.1 Technologies at Original Server ….………………………………. 5

2.1.2 Technologies at Active Web Intermediary ……….………………. 5

2.1.3 Protocols …………………………………………………………... 6

2.1.4 Discussion …………………………………………………………... 6

2.2 Data Integrity …………………………………………………………….... 7

2.2.1 Requirements ……………………………………………………….. 7

2.2.2 Traditional Data Integrity …………………………………………... 7

2.2.3 Data Integrity for Content Transformation in Active Network ..…... 8

3 The Data-Integrity Message Exchange Model …………………………..…10

3.1 Data Integrity ………………………………………………………..…… 10

3.2 The Data-Integrity Message Exchange Model ………………………..…. 11

3.3 Examples of Data-Integrity Messages ………………………………..….. 14

4 Language Support for Data Integrity Framework ………………………… 18

 i

4.1 Overview …………………………………………………………………. 18

4.2 Manifest ….……………………………………………………………..... 20

4.2.1 Authorization Information ……………………………………….. 21

4.2.2 Protection Measures ………………………………………………. 23

4.3 Part ………………………………………………………………………... 24

4.4 Headers …………………………………………………………………… 24

4.4.1 Message Headers ………………………………………………….. 25

4.4.2 Part Headers ………………………………………………………. 25

4.4.3 Relationship of Message Headers and Part Headers ……………… 27

4.5 Language Component Arrangements ……………………………………. 39

5 Traces of Proxies ……………………………………………………………… 30

5.1 Traces Leaving Requirement …………………………………………….. 30

5.2 Data-Integrity Intermediary's Manifest …………………………………. 30

5.3 Notification ………………………………………………………………. 32

5.4 Correctness of Data Integrity Framework ………………………………. 34

6 System Model…………………………………………………………………. 36

6.1 Basic Requirements ……………………………………………………… 36

6.2 Design Considerations and Decisions …………………………………… 37

6.3 System Architecture ………………………..……………………………. 38

6.3.1 Message Generating Module ……………………………………… 39

6.3.2 Data-Integrity Modification Application …………………………. 39

6.3.2.1 Scanning Module ………………………………………… 39

6.3.2.2 Modifying Module ……………………………………… 41

6.3.2.3 Notification Generating Module ………………………… 46

6.3.2.4 Manifest Generating Module ……………………...……. 47

6.3.2.5 Delivering Module ……………………………...………. 47

6.3.3 Data-Integrity Verification Application ……………………..…… 47

6.4 Analysis of System Model ……………….………………………...…… 49

 ii

7 System Implementation ……………………..………………………………. 50

7.1 Background ………………………………………………………………... 51

7.1.1 Overview of Squid Implementation ……………………………….. 51

7.1.1.1 Basic Components of Squid …………………………….. 51

7.1.1.2 Flow of A Typical Response ……………………………. 52

7.1.2 Overview of Netscape Plug-ins Implementation …………………. 53

7.2 Modification to Squid …………………………………………...……….. 54

7.2.1 Modification to Data Structure …………………………………… 55

7.2.2 Reply Header Processing …………………………………………. 57

7.2.3 Reply Ending ……………………………………………………… 57

7.2.4 Manifest Scanning ………………………………………………… 58

7.2.5 Child Manifest Generation ………………………………………… 58

7.2.6 Entity body Modification …………………………………………. 58

7.3 Modification to Netscape Plug-ins ………………………………………. 59

8 Experiment ……………………………………………………………………. 60

8.1 Objectives and Design ………….……………………………………….. 60

8.2 Experiment Set-up ……………………………………………………….. 62

8.3 Experiment Parameters …………………………………………………… 62

8.4 Experiment Methods and Results ………………………………………… 63

8.5 Analysis of Performance ……...………………………………………….. 69

9 Conclusions …..………………………………………………………………. 74

References ……………………………………………………………………………….. 75

Appendix: Data-Integrity Message Syntax ………………………...…………… 80

 iii

List of Figures

3.1 An HTML Page ………………………………………………………………14

3.2 Data-Integrity Message from A Server …………………..……………15

3.3 Data-Integrity Message after the Modification by a Web
Intermediary ……………………………………………………................... 16

4.1 Message Format ...……………………………………………………………19

6.1 System Architecture …………………………………………………………38

6.2 A Part and Its Sub-Parts …………………………….………………...……. 45

7.1 Basic Components of Squid …………….………………..…………….…. 51

7.2 Flow of A Typical Response …………..………………………………..…. 52

7.3 Netscape Plug-in APIs ……………….…..……………………………….... 54

8.1 Distribution of Object Sizes …………………….….………………………. 63

8.2 Increase Rate Due to Extra Transfer ……………….………...……………. 65

8.3 Whole Extra Cost Without vs. With an Authorization ………………….... 67

8.4 Retrieval of Other Objects Delayed After the Completed Retrieval of the
HTML Object ……………..…………………………………..………….... 69

8.5 Retrieval Time of DIF and HTTPS ………...……………………………… 71

8.6 Parallel Notification Generation and Packets Transmission ……………… 71

 iv

List of Tables

4.1 Action, Interpretation and Roles …………………………………………… 21

4.2 Message and Part Headers from HTTP Headers and New Part Headers……28

6.1 Important Information Extracted from A Manifest……………………………40

8.1 Retrieval Time With and Without 2 Extra Packets...…………………………65

8.2 Digest Cost Time with Different Object Sizes…………………………………66

8.3 Verification Cost without vs. with an Authorization ………………...……. 66

8.4 HTTPS Retrieval Time With Different Object Sizes …..…………….…. 69

 v

 1

Chapter 1

Introduction

1.1 Background and Problems

World Wide Web has already emerged from a simple homogeneous environment to an

increasingly heterogeneous one. In today's pervasive computing world, users are

accessing information sources on the web through a wide variety of mobile and fixed

devices. These devices have different display sizes and computing capacities. Their

connectivity to the Internet such as cellular radio networks, local area wireless networks,

dial-up connections and broadband connections have different network bandwidth

availabilities. Web clients also raise their demands by having different preferences such

as language and personalized content. Thus it is a challenge for the content server to

provide the "best-fitted" presentation of the content to these diversified clients and

networks with the same source of information.

One key direction to provide better web quality services in such heterogeneous web

environment is real-time content transformation. Basically, content transformation

research is to study the methods of providing services more efficiently through

real-time content adaptation to meet some special need or requirements. Examples of

these services include: image transcoding, media conversion (e.g image to text),

language translation, encoding (e.g. traditional Chinese to simple Chinese), and local

advertisement uploading.

To meet the wide variety of client demands, content providers support

value-added services by themselves initially. Very soon, however, it is found that this

approach is not efficient and sometimes even not appropriate. Not only does the

workload of the server increases, but more importantly, it also creates problems for data

caching and reuse. This problem arises because the best-fitted presentations of the same

 2

content to two clients are likely to be different. Even a single client might want different

best-fitted presentations at different instances due to his/her current bandwidth availability.

There are also services such as local advertisement uploading or content-based filtering,

where servers are either impossible or inappropriate to perform the task. Recently, one

new direction is to migrate selected content manipulation and management functions to

active web intermediaries. In such environment, clients can get these value-added services

faster without servers' intervention. With the numerous efforts of technology development

to handle real-time content transformation in proxy and wireless gateway in pervasive

computing environment, working groups in the Internet Engineering Task Force (IETF)

[1] start to engage in the related protocols and API definition and standardization, such

as Open Pluggable Edge Services (OPES) working group [2].

However, one important question has been drawing increasing attention with the

prosperity of research on content transformation by active web intermediaries. Since

proxies may modify a message on the way from a server to a client, how much can a

client trust the receiving message and how can a server ensure that what the client

receives is what it intends to respond? It is a data integrity problem.

1.2 Needed Work and Contributions

According to the data integrity problem that we state in the last section, we would

like to research on the following issues:

• Language Specification

It is essential for a server to specify its authorization that can be understood easily

by authorized proxies. Only if the proxies can understand the authorizations, they

can modify the message in accordance with the server's intention. On the other

hand, the authorizations should also be understandable to the client so that they

can be clues for the client to verify the message. All in all, we should provide

servers with a language specification to meet these requirements.

• Traces Leaving

As far as the proxies are considered, they should leave some traces together with

the modified message so that the client can verify the message and the server can also

monitor their actions. To meet these requirements, the traces MUST be

understandable to the client and the server. Therefore, the language specification

SHOULD cover the specification of the proxies' traces.

• Client Mechanisms

Data integrity is very different from security. A message with the former

requirement is visible to anyone whereas an encrypted message is visible only to

certain parties who are able to decrypt it. So the client should define its own

mechanism to measure how much it can trust the message with data integrity

technique.

In my thesis work, my contributions to the research community are as follows.

• Define a data integrity framework, its associated language specification and

system model to solve the data integrity problem in active network that supports

real-time content transformation.

• Build a prototype of our data integrity model and do sets of experiments to show

the practicability of our proposal through its low performance overhead and the

feasibility of data reuse.

1.3 Organization

The rest of this thesis is organized as follows. In Chapter 2, we review the development

of real-time content transformation in the network and outline the existing mechanisms

that handle data integrity problem caused by content transformation. In Chapter 3, we

give an intuitive explanation of our work on data integrity problem from the viewpoint

 3

of message exchange. In Chapter 4, we describe the main components of the language

we propose to address the data integrity problem. In this chapter, it is made clear how a

server specifies its intention. We then illustrate what traces an active web intermediary

should leave and how our language supports this requirement in Chapter 5. In Chapter

6, we propose a system model to solve the data integrity problem with the assistance

of the specified language. The system model is the blueprint of a system

implementation described in Chapter 7. We give an overview of Squid system and

Netscape plug-in APIs, and illustrate how we make use of them to build our system.

In order to prove the feasibility of our solution, we conduct experiments described in

Chapter 8. In Chapter 9, we conclude our work. Finally, we give the formal syntax

of our proposed language in Appendix A.

 4

Chapter 2

Related Work

In this chapter, we review the development in real-time content transformation in the

network and outline the existing mechanisms proposed to handle data integrity problem

brought by content transformation.

2.1 Content Transformation

The problem of real-time content transformation in a heterogeneous networked

environment has been studied quite extensively in the past few years. In general, there

are 3 aspects of works that we would like to survey.

2.1.1 Technologies at Original Server

A lot of technologies have been done to facilitate server-side content transformation.

Fragment-based page generation [18], [21] and delta encoding [31] reduce the server's

load via the reuse of previously generated content for new requests. InfoPyramid [33]

deploys server-side adaptation of multimedia objects for a wide range of clients with

different capabilities through off-line transcoding. Recently, Oracle launches an Ora-

cle9i Wireless Application Server product [8] to serve the adapted content to mobile

clients.

2.1.2 Technologies at Active Web Intermediary

Much work has been focusing on the deployment of content adaptation technology at

 5

an active web intermediary. [27] presents evidence that on-the-fly adaptation by active

web intermediaries is a widely applicable, cost-effective, and flexible technique. [16]

designs and implements a Digestor, which dynamically modifies requested Web pages

to achieve the best-fitted presentation document for a given display size. Mobiware [10]

aims to provide a programmable mobile network that meets the service demands of

adaptive mobile applications and addresses the inherent complexity of delivering

scalable audio, video and real time services to mobile devices. [15] proposes a proxy

based system MOWSER to facilitate mobile clients to visit web pages via transcoding of

HTTP streams. [19] makes use of the bit-streaming feature of JPEG2000 to support

scalable layered proxy-based transcoding with maximum (transcoded) data reuse.

2.1.3 Protocols

OPES working group [2] is chartered to define a framework and protocols to authorize

and invoke value-added services. It engages in extending the functionality of a caching

proxy to provide additional services that mediate, modify, and monitor object requests

and responses. Similar to OPES, [30] proposes a Content Service Networks (CSN) for

value-added service providers to put their applications into an infrastructure service

network via "service" distribution channels. Not only does content provider but also

end users, ISP and Content Delivery Networks (CDN) can subscribe and use this

service.

2.1.4 Discussion

From the above sections, we observe that real-time content transformation in the

network has been becoming a key technology to meet the diversified needs of web

clients. However, most of these works do not address the data integrity problem

although they mention it in their implementation of active web intermediaries.

Although OPES intents to maintain the end-to-end data integrity, the requirement and

 6

the analysis of threats for OPES [13] are just put forwards by now without any solution.

2.2 Data Integrity

2.2.1 Requirements

[13] analyzes most threats associated with the OPES environment. These threats can

cover most of the problems in real-time content transformation in the network. Based

on the dataflow of an OPES application, major threats to the content can be summarized

as: 1) unauthorized proxies doing services on the object, 2) authorized proxies doing

unauthorized services on the object, and 3) inappropriate content transformation being

applied to the object such as advertisement flooding due to local advertisement

insertion service. These threats may cause chaos to the content delivery service because

the clients cannot get what they really request. Therefore, data integrity has been

identified by IETF as a key item of research and development for the OPES group.

2.2.2 Traditional Data Integrity

There have been solutions to data integrity problem. However, their context that these

solutions assume is quite different from the new active web intermediary environment

that we are researching here.

• Integrity Protection [40]

In HTTP/1.1, integrity protection is a way for a client and a server to verify not

only each other's identity but also the authenticity of the data they send. When the

client wants to post something to the server such as paying some bills, he will

include the entire entity body of his message and personal information in the input of

the digest function and send this digest value to the server. Likewise, the server

will respond its data with a digest value calculated in the same way. The

pre-condition for this approach, however, is that the server knows who the client

 7

is (i.e. the user id and password are on the server). Moreover, if an adversary

intercepts the user's information, especially, its password, it can take advantage of

it to attack the server or the client.

• Secure Sockets Layer [41]

It does a good job to maintain the integrity of transferred data through the public

internet since it ensures the security of the data through encryption. The server

and the client can get a session key that no others can intercept after the SSL

handshakes. They use the key to encrypt the data transferred so that the data

cannot be tampered secretly by adversaries.

While these methods are efficient in the traditional end-to-end communication

environment, they fail to address the data integrity problem in active network with

value-added services as web intermediaries. This is because they do not support any

legal content modification during the data transmission process, even by authorized

intermediaries.

2.2.3 Data Integrity for Content Transformation in Active Network

Major proposals that have been put forward to address the data integrity problem in

active network are summarized as follows.

• Delta-MD5

To meet the need of data integrity for delta-encoding [31], [32] defines a new

HTTP header "Delta-MD5" to carry the digest value of the reassembling HTTP

response from several individual messages. However, this solution is proposed for

delta-encoding exclusively.

• VPCN [14]

VPCN is proposed to solve the integrity problem brought by OPES. It makes use of

the concept similar to Virtual Private Networks [24] to ensure the integrity of the

transport of content among network nodes and at the same time, to support the

 8

transformation on content provided that the nodes are inside a virtual private

content network. The main problems for this approach are the potential high

overhead and the restriction of performing value-added web services by a small

predefined subset of proxy gateways only. Furthermore, this is only a very

preliminary proposal, without any implementation to verify its correctness,

feasibility and system performance.

• XML-Based Solutions

[36] proposes a draft of data integrity solution in the active web intermediaries

environment. It uses XML instructions with the transferred data, which is closely

related to our proposed solution of data integrity problem. [20] proposes a

XML-based Data Integrity Service Model to define its data integrity solution

formally. However, both of these solutions are only at the preliminary stages.

Their contribution is more on the formal definition of the integrity problem in

active web intermediaries and on the suggestion of research direction rather than

to give a complete solution to the problem. Furthermore, just like the VPCN

situation, none of the two proposals is implemented to verify their feasibility,

correctness and completeness.

In view of the above discussion, we can conclude that it is important to put forward a

feasible framework for data integrity in active web intermediary environment.

 9

Chapter 3

The Data-Integrity Message

Exchange Model

In this chapter, we will give an intuitive explanation of our solution to the data

integrity problem mentioned in Chapter 1. Our solution emphasizes data integrity

from the viewpoint of message exchange. Firstly, we clarify the concept of Data

Integrity. Then we describe the data-integrity message exchange model from which

the necessity of a "Data Integrity Framework" becomes obvious. Finally, examples of

such messages are given to illustrate the basic concepts.

3.1 Data Integrity

Traditionally, data integrity is defined as the condition where data is unchanged from

its source and has not been accidentally or maliciously modified, altered, or destroyed.

However, in the context of active web intermediaries, we extend this definition to "the

preservation of data for their intended use, which includes content transformation by

the authorized, delegated web intermediaries during the data retrieval process".

In this thesis, we propose a technique for a client via XML and XML Digital

Signature to ensure that what it receives is what the server intends to give. This

includes the situation where the received message is modified by delegated, active

web intermediaries appropriately. Note that the aim of data integrity here is to keep

the integrity in the data transferring and content modification process but not to make

the data secret for the client and the server.

 10

We embed data in XML structures and sign it by XML digital signature to

construct a data-integrity message. There are some examples listed in Section 3.3. It

is obvious that strong security methods such as encryption can keep data more secure

than data integrity can. Then why do we employ data integrity but not very strong

traditional security methods? It stems from three aspects of considerations:

• Value-Added Services by Active Web Intermediaries

Once data transferred between a client and a server is encrypted, value-added

services will no longer be possible by any web intermediaries. This reduces the

potentials of content delivery network services.

• Data Reusability

Since current encryption along the network link is an end-to-end mechanism, it is

also impossible for any encrypted data to be reused by multiple clients. This has

great negative impact to the deployment and efficiency of proxy caching.

• Cost-Performance

A large proportion of data on the internet are not content sensitive. That is, there

is no harm if the data are visible to anyone. In this case, it is not necessary to keep

the data invisible via very strong security methods because of the high

performance cost of the traditional encryption process.

3.2 The Data-Integrity Message Exchange Model

Data-integrity messages that we propose are transferred over HTTP. Hence, a client can be

either a proxy or a web browser so long as it is an end point of the HTTP connection.

And this is independent of the mode of connectivity (i.e. wireless or fixed). Note that

while there is possibility for data transmission errors due to the poor link connectivity,

this is outside the scope of our work here.

Detail study shows that the data integrity problem can actually occur in both the

 11

HTTP request and the HTTP response. Here, we mainly focus on the latter situation in

the rest of sections because the former situation can be considered as a simple case to

the latter one. In the HTTP request, the type of requests that should have interest in data

integrity research is those using POST method, where a message body is included in the

request. In comparison with the HTTP response, it should be much easier to construct a

data-integrity message embedded in an HTTP request. There are much fewer scenarios

for web intermediaries to provide value-added services to the request. Furthermore, the

construction is very similar to that for a data-integrity message embedded in an HTTP

response when a server intends to ensure that no intermediaries can modify the message

(see Chapter 4). More importantly, there is no need to consider the reuse of the POST

request while the feasibility of reuse of data-integrity messages embedded in HTTP

responses is a key design consideration for both our language support in Chapter 4 and

our system model in Chapter 6. Furthermore, a data-integrity message that we study

here must be in "text/xml" MIME type because this is the only data type that web

intermediary services might work on.

Now we briefly describe the data-integrity message exchange model. There are

six stages in the round trip of a message request. We just consider the first-time

transfer of an object. That is, an object that a client requests is not found in web

intermediary proxy caches and the server needs to give a response. The former three

stages depict the situation from a client to a server and the latter three give the

situation from the server to the client.

1. (Pre-Stage) A server decomposes a given object such as an HTML text into several

parts according to some considerations and specifies its intention to assign some of

the parts to some web intermediaries for modification. Note that this is done offline

and can be considered as the initial preparation stage.

2. A client submits an HTTP request to the server for the object.

3. The request reaches the server untouched. This is the assumption that we make

 12

here to ease our discussion (i.e. we focus on the discussion for the HTTP

response).

4. The server responds with a data-integrity message over HTTP. The message

contains the decomposed object and the server's authorization information for

content modification.

5. The authorized web intermediaries that are on the return path from the server to

the client provide value-added services on the object according to the server's

intention. They will also describe what they have done in the message, but they

will not validate the received message.

6. The client verifies the received data-integrity message via the specifications of

server's authorization and active web intermediaries' traces. If any inconsistency

between the server's authorization and the traces is found, the client will handle

this by its local rules. Some possible actions are: discarding the content with

errors and showing users with the content left, or re-sending the request to the

server.

From the overview of the data-integrity message exchange model, we find out that it

is necessary to build a Data Integrity Framework, on which servers, clients and proxies

can communicate just as what we describe in the overview above. In order to get such a

Data Integrity Framework, it is necessary to follow 3 steps. Firstly, it is required to

provide a language specification for a server to specify its intention, for an authorized

web intermediary to understand the intention and leave its traces, and for a client as a

formal clue to verify the message. We will introduce the language in Chapter 4 and

Chapter 5, and give its formal schema in Appendix A.

Secondly, we will propose a system model for the framework. Basic requirements

and design considerations of such a system model as well as the architecture of the

system model will be blueprinted. There are two main components of the architecture.

One is a data-integrity modification application, which is introduced in Section 6.3.2,

 13

for an authorized web intermediary to provide services. The other is a data-integrity

verification application (see Section 6.3.3) required for a client who concerns about

the data integrity of the received message. In our design, performance impact will be

one of our main considerations. Section 6 follows such a routine to describe a system

model for our Data Integrity Framework.

Finally, in accordance with the former two steps, we will implement the model

and measure its performance (see Section 7 and Section 8).

3.3 Examples of Data-Integrity Messages
Let us first start with a simple example to illustrate what might happen in the active

network environment with web intermediaries for value-added services. Figure 3.1

shows a sample HTML object and Figure 3.2 and Figure 3.3 show the two typical

data-integrity message examples as the object is being transferred along the return

retrieval path. There are two parts of the object that the server would like to send to a

client. The first part is an untouched data-integrity message as an HTTP response to

the client. The second part is a message to be modified by a web intermediary as it is

sent from the server to the client.

Figure 3.1: An HTML Page

 14

Figure 3.2: Data-Integrity Message from A Server

 15

Figure 3.3: Data-Integrity Message after the Modification by a Web Intermediary

When the data integrity technique is applied to the object, the server might convert it

into one shown in Box-2 of Figure 3.2. The content of the original HTML object is

now partitioned into two parts (shown in Box-4). Its authorization intention for

content modification is specified in Box-3. While no one is authorized to modify the

first part, a web intermediary, proxy1.comp.nus.edu.sg might adapt the content of the

second part with some local information.

When the server receives the client's request for the object, it will combine the

message body (in Box-2) with the message headers (in Box-0 and Box-1) into a

data-integrity message shown in Figure 3.2 and send it to the client as the HTTP

response.

As the message passes through the proxy proxy1.comp.nus.edu.sg, this intermediary

will take action as specified in the message. It modifies the second part of the message

and then adds a notification to declare what it has done to the message. This is shown in

Figure 3.3. The transformed data-integrity message that the client receives will now

consist of the original message headers (in Box-0 and Box-1), the original server's

 16

intention (in Box-3), the modified parts (in Box-4) and the added notification (in

Box-5) as one of the web intermediaries' left traces.

 17

Chapter 4

Language Support For Data

Integrity Framework

In this chapter, we will first give an overview of a language definition for our Data

Integrity Framework. The followings are the detailed descriptions of how a server can

make use of the language to express its intention to web intermediaries for content

modification. The formal schema of the language is given in Appendix A.

4.1 Overview

Our data integrity framework naturally follows the HTTP response message model to

transfer data-integrity messages. Under this framework, a data-integrity message

contains a data-integrity entity body so that a server can declare its authorization on a

message, active web intermediaries can modify the message and a client can verify it.

However, it should also be backward compatible such that a normal HTTP proxy can

process the non-integrity part of the response without error.

 18

Figure 4.1: Message Format

The response message may comply with the format shown in Figure 4.1 (where "+"

denotes one or more occurrences; "*" denotes zero or more occurrences). Their details

are as follows:

• The status line in a data-integrity message is as the same as in a normal HTTP

response message. The semantics of Status Codes also follows those in HTTP/1.1

for communicating status information. For example, a 200 status code indicates that

the client's request is successfully received and a data-integrity message is responded

by the server. Note that in the active web intermediary environment, the status code

might not reflect errors that occur in the network (such as the abuse of information

by the web intermediaries).

• Generally speaking, the message headers are consistent with those defined in

HTTP/1.1 [26]. However, some headers might lose their original meanings due to

the change of the operation environment from object homogeneity to heterogeneity.

Take "Expires" as an example. This header shows the expired date of an entire

(homogeneous) object. But now multiple proxies might do different services on

different parts of the object. Each of the parts within the object might have its own

unique "Expires" date. This results in ambiguity in some of the "global" header

fields under this heterogeneous environment. As will be seen later in this section,

we will analyze all the HTTP headers in Section 4.4.1 and propose "Part Headers"

(in Section 4.4.2) in our language. We also need "DIAction", an extended HTTP

response header field to indicate the intent of a data-integrity message (see

Appendix A for details).

 19

• The entity body consists of one or more "manifests", one or more "parts" and zero

or more "notifications". They are the important components of our language.

Manifest: A server should provide a manifest to specify its intention for

authorizing proxies to do pre-defined services for clients (see Section 4.2). A

manifest might also be provided by a proxy who is authorized directly or

indirectly by the server for further task delegation (see Section 5.2).

Part: A part is the basic unit of data content for manipulation by an intermediary.

The one who provides a manifest should divide its object into parts, each of

which can be manipulated and validated separately from the rest. Proxies

should modify the content in the range of an authorized part, and a client can

verify the message in the unit of a part. A part consists of part headers and a

part body (see Section 4.3).

Notification: A notification is one of the most important traces that an authorized

proxy should provide. Its details will be illustrated in Chapter 6.3.2.

Note that the entity body of a message body might be encoded via the methods

indicated in "Transfer-Encoding" header fields (See [26] for details).

Next, we will discuss how a server makes use of Manifest, Part and Headers to

express its authorizations in this chapter. A discussion of their arrangements in an

entity body will be given in the end of the chapter.

4.2 Manifest

Both a server and delegated proxies can give manifests. The elements and the

functionalities of proxies' manifests are almost the same as the server's. We will cover

proxies' manifests in Section 5.2 and server's manifest in this section. A manifest has

two important functionalities. One is for a server to specify its authorizations. The

other is to prevent its intention from being tampered. The following 2 sections focus on

 20

two issues respectively.

4.2.1 Authorization Information

We have mentioned that a server should partition its object into parts and take the part

as the authorization unit. So we use a pair of tags < PartInfo > and < /PartInfo > to

mark up authorizations on a part. The server should identify which part it intends to

authorize via the element "PartID" and specify its authorizations on this part. Since

the server might authorize others to do a variety of services on the part, each

authorization on this part is confined via a pair of tags < Permission > and <

/Permission >.

In an authorization, i.e., between < Permission > and < /Permission >, three

aspects of information may be given: What action(s) can be done? Who can do the

action(s)? With what restriction(s) should the action(s) be done?

• Action: This element gives an authorized service. At this moment, our language

supports four types of feasible services. However, when a new type of services is

available, the language can be extended to support it easily. The keywords

"Replace", "Delete", "Transform" and "Delegate" stand for the current services

respectively. We also need a keyword for the server to express a part not in

demands of any services. We list these keywords and their corresponding

meanings in Table 4.1. As for their implementations, refer to Section 6.3.2

Action Interpretation Possible Roles
None No authorization is permitted on the part. n.a.
Replace Replace content of the part with new content. c.o.
Delete Cut off all the content of the part. c.o.
Transform Give a new representation of the content of the part. p.
Delegate Do actions or authorize others to do actions. c.o., p., a.o.

Table 4.1: Action, Interpretation and Roles
(n.a.: not applicable; c.o.: content owner; p.: presenter; a.o.: authorization owner)

 21

• Editor: The element provides an authorized proxy. We use host name of a proxy to

identify it. In Figure 3.2, the authorized proxy's host name is

"proxy1.comp.nus.edu.sg", specified within "Editor" element.

• Restricts: All the constraints should be declared here to confine this authorization.

Usually, the constraints are related to the content's properties. For example, the

server might limit the type, format, language or length of a new content provided by

proxies. But for "Delegate" action, its meaning is much more than this. The

constraints can answer at least three questions. Can a delegated proxy A authorize a

proxy B to do services? Can the proxy A (without delegation from the server)

authorize the proxy B to do a certain service? Can the proxy B further authorize

others to do its authorized services? The answers of these questions are given by the

sub-elements of the "Restricts" element, "Editor", "Action", "Depth" (See more in

Section 5.2).

Two elements, "PartDigestValue" in a part information and "Roles" in a permission,

have not been introduced yet. The first element is one of the protection measures (see

Section 4.2.2.). The element "Roles" depicts what roles an editor might play on the

Data Integrity Framework due to their services permitted in a data integrity message.

Note that for every role or service that a data-integrity intermediary does, there will be a

corresponding responsibility in the data integrity framework. For example, an intermediary

proxy uploading local information to a part needs to be responsible for its freshness and data

validation. Now we analyze what may be changed by each of the support services and

conclude the possible roles in the Data Integrity Framework. We also list the possible

roles of an action in Column 3 of Table 4.1.

• Content is changed. From the interpretations of "Replace" and "Delete", they

modify the original content of a part. If a delegated proxy itself does "Replace" or

"Delete" action, "Delegate" action will also change the content of the authorized part.

In these cases, an authorized proxy will play a role of a Content Owner.

 22

• Representation is changed. "Transform" action might only change the

representation of an authorized part but not its content. Also, "Delegate" action will

bring a new representation to a delegated part if a delegated proxy itself

"transforms" the content of the part. In these cases, an authorized proxy will play a

role of a Presenter.

• Authorization is changed. Only "Delegate" action may change authorizations on a part.

A delegated proxy becomes Authorization Owner if it authorizes others to do some

services on its delegated part.

4.2.2 Protection Measures

Despite the clear authorization information that a server specifies in a part, it is very

easy for a malicious web intermediary to violate the server's intention and perform its

own services without permission. For example, a web intermediary might convert the

English-based content of a part to Chinese automatically using some translation

software, but the original server might not feel comfortable with the quality of

translation. To handle this problem, we propose to digest each part of an object via a

digest algorithm such as MD5 [38] and use "PartDigestValue" element to record the

digest value. With its help, it is very easy to find out if a part is modified since the

digest value of a modified part will be different from before.

To prevent a manifest from being tampered, XML Digital Signature [23] is used to

ensure the integrity of the manifest. The number of parts listed in a manifest should also

be the same as that in the original object. That is, even if there is no authorization on a

part, the server should list it with "NONE" action to keep it untouched.

The final situation of concern is related to the cached objects and their manifests in proxy.

It is possible for a malicious proxy to replace the object and its manifest in an HTTP response

with different pairing/matching. To handle this situation, the object's URL should be declared

in its manifest through the element "MessageURL".

 23

4.3 Part

A server uses < Part > and < /Part > tags to mark up a part of an object, which is defined as the

basic entity for ownership and content manipulation. To decompose an object into parts, while

a server might have its own rules, there are three general guidelines what are worth suggesting

here.

The first guideline is that each part should be independent of the other in the object.

If dependency occurs between two parts, errors might occur. For example, a server asks

proxies A and B to do language translation on the content of two parts a and b

respectively. If there is content dependency between the two parts a and b, errors or at

least inaccuracy translation might occur because separate translation might cause some

of the original meanings to be lost.

Furthermore, a part may be of space inconsistency. That is, a part may contain

inconsistent sequences of bytes. Take the HTML page in Figure 3.2 and Figure 3.3 as

an example. Its beginning section and its ending section are classified as one part

because the server intends to leave them untouched.

Another guideline is related to malicious proxy attack. It is advisable for a server to

mark up all the parts of an object in lest the unmarked parts might be attacked. In this

way, the integrity of the whole object can be ensured.

Lastly, the properties (or attributes) of a part should be specified carefully. For example,

the content of the object in a part is also the content of the part. < Content > and < /Content >

tags are used to mark it up and "PartID" element is used to identify a part. Most of time, it is

necessary to give out properties of a part via "Headers" element. We will illustrate it in Section

4.4.2.

4.4 Headers

 24

Under the current HTTP definition, headers are used to describe the attributes of an

object. One basic assumption behind is that the same attribute value can be applied to

every single byte of the object. However, with the introduction of content

heterogeneity by active web intermediaries, this assumption might not be valid to

some of the headers' values. A given attribute might have different values to different

parts of the same object. In the following sub-sections, we would like to introduce the

concept of "homogeneous" message headers and "heterogeneous" part headers for an

object and define the relationship between them.

4.4.1 Message Headers

A message header is an HTTP header which describes a property of a whole object and

its value will not be affected by any intermediary's value-added services to individual

parts of the object. That is, the attribute can be applied to all parts of an object. Through

the analysis of the current HTTP headers of a response, we observe that there are two

basic types of message headers.

• Message Generation Information

This type of headers is related to the general property of an object. "Server" and

"Date" headers describe message generated software and its generation date

respectively.

• Message Transfer Information

This type is related to the response transfer of a web object. "Connection", "Trailer",

"Transfer-Encoding", "Upgrade", "Via", "Accept-Ranges", "Location",

"Proxy-Authenticate", "Retry-After", "WWW-Authenticate" and "DIAction"

headers are all related to the message transfer.

4.4.2 Part Headers

A part header is the one that describes a property of a part, defined by the tag pair <

 25

Part > and < /Part >. These headers are specified in the "Headers" element. Also, we

call the line starting with < Headers > tag and ending with < /Headers > tag as a header

line.

The following HTTP headers describe properties of an entity body and take them as

part headers when they may have different values for different parts.

• Representation of Object

"Content-Encoding", "Content-Language", "Content-Length" and "ContentType"

headers describe an object's representation. Due to some services on the object, the

encoding, the language and the type of different parts of the object are different.

• Cacheability of Object

"Cache-Control", "Pragma", "Age", "ETag", "Vary", "Expires" and "LastModified" are

used to control cacheability of the object in the entity body. Because of the

heterogeneity of the object, different parts of the object might have different

cacheability.

• Others (Currently Existent)

Some of currently-defined warn-codes in "Warning" header might be not suitable

for a whole message. For example, in HTTP/1.1, the "214 Transformation applied"

warning added by the proxy means that a proxy transforms the object in the entity

body. But now a proxy might transform only one part of the object that it is

responsible for, this warn-code is no longer suitable in this case.

In some cases, "Allow" header might not be fit for a heterogeneous object. For

example, if a proxy provides new content for a part of the object, the valid methods

associated with the new content resource may be different from the other parts.

In a heterogeneous object, different parts might be accessible from different

locations that are separated from the requested resource's URI. So

"Content-Location" header has several values in such a case.

 26

Also, because of services on the object, a server might not know the exact digest

value and content-range of the object transferring from it to a client. So

"Content-MD5" and "Content-Range" fall in this class.

Note that while we classify "Content-Length" into the part header class, it is also

used for the receivers to recognize the end of the transmission. So it is related to

Message Transfer, which is fallen into the message header class. This actually hints to

us that with content adaptation, mechanisms that are useful before might no longer be

valid. In this particular case, we use the other two methods of HTTP to find out the

end of the message. They are chunked transfer coding provided under HTTP/1.1 or

close connection from the server side under HTTP/1.0.

On top of the current HTTP headers, there are four new headers that we introduce

for a part. They are "Content-Owner", "Presenter", "Authorization-Owner", and

"URL". The first three headers record who does services on the part. A data-integrity

intermediary should specify its host name in these headers if it plays the corre-

sponding roles. In Figure 3.3, proxy1.nus.edu.sg does "Replace" action and specifies

itself in the "Content-Owner" header. The "URL" header locates the part. These four

headers might be very useful to cache the part and validate it in the near future.

Note that when data-integrity intermediaries alter any property of an authorized part,

it should modify the corresponding part headers so that the part headers can reflect

the real properties of the current version of the part (see Section 6.3.2).

4.4.3 Relationship of Message Headers and Part Headers

There is one intrinsic relationship between these two types of headers. Whenever an

attribute of a part is described by both the message header and the part header at the

same time, the latter one will override the former one. That is, the message header

will lose its effect in this situation. This is to give flexibility in the actual

implementation of the system architecture and the application deployment. Note that

 27

headers specified in one part do not affect the properties of the other sibling parts.

Table 4.2 lists the message and part headers that are derived from the HTTP

headers, together with the new part headers introduced. There are two headers worth

mentioning here. For "Content-MD5" header, it is unnecessary to be a part header

because each part's digest value has to be included in the manifest (see Section 4.2.2).

Furthermore, although we mention that the "Content-Type" of a data-integrity

message should be "text/xml" in Section 3.2, we allow other "text" MIME types for

its parts such as "text/html" and "text/plain".

 Message Headers Part Headers
General
Header

Connection
Date

Trailer
Transfer-Encoding

Upgrade
Via

Cache-Control
Pragma
Warning

Response
Header

Accept-Ranges
Location

Proxy-Authenticate
Retry-After

Server
WWW-Authenticate

Age
ETag
Vary

Entity
Header

Content-MD5 Allow
Content-Encoding
Content-Language

Content-Length
Content-Location

Content-Range
Content-Type

Expires
Last-Modified

New
Part

Header

 Content-Owner
Presenter

Authorization-Owner
URL

Table 4.2: Message and Part Headers from HTTP Headers and New Part Headers

 28

4.5 Language Component Arrangements

With all the basic components of the language defined in the last few sections, the last

consideration for the language is the sequencing structure of the components. This is a

key consideration for any network based application because data is actually streamed

from a server to a client in a chunk-by-chunk manner. Once a data chunk is received

by an intermediary, it will be forwarded to the next network level without waiting for

the following data chunks to arrive. Any buffering of the streaming data in an

intermediary proxy will have direct impact to the system performance (e.g. perceived

time) and stability.

The basic ordering of components in the entity body of our language is shown in

Figure 4.1. The manifest is put in the front of a data-integrity object. With the

manifest, data-integrity intermediaries will know its tasks and can forward the

manifest so as not to stop the streaming data transfer of the object. What if a manifest

is put in any other position of the object? Say, put it after the part body. The proxies

have to buffer the part body before they know if it is an authorized part from the

manifest for them to perform tasks. Obviously, performance loss will occur in this

case and the loss will increase with the more rear position of the manifest.

We put part header information in the front of each part. Two aspects of

considerations contribute to this decision. Proxies need these properties of a part to

perform caching and other value-added services. Putting them in the front instead of

at the rear end can avoid data buffering and stalling of the streaming data. However, it

is not advisable to push the part headers earlier to beginning of the object. When an

authorized proxy does services on a part, it should modify some part headers to

reflect the corresponding properties of the part. If the part headers are much more

ahead, the authorized proxies cannot start transferring the part headers until it

modifies them. This burdens the proxy with data buffering from the beginning of the

part header information.

 29

Chapter 5

Traces of Proxies

In this chapter, we first analyze what traces are required to be left by proxies. To

satisfy the requirement of trace leaving, what other components should be supported

in our language? We list and illustrate them one by one. In the end, we will combine

this chapter and Chapter 4 to analyze the correctness of our data integrity framework.

5.1 Traces Leaving Requirement

There are three requirements to leave traces. First, since a proxy might change the

properties of a part during its services, it should provide correct property description to the

modified part. Second, in order for the client and the server to know that the proxy does

the services, the proxy should leave a trace to declare itself. Finally, a proxy should

publish its intention to make not only other proxies authorized by it but also the server

and the client know the authorizations. In response to these requirements, a proxy should

provide part headers, notifications or its manifests in different cases. Part headers here

are consistent with those in Section 4.4.2. As for its usage, we will illustrate it in

Section 6.3.2.2. In this chapter, we mainly introduce the other two traces.

5.2 Data-Integrity Intermediary's Manifest

We introduce a data-integrity intermediary's manifest, an interesting component of our

language for Data Integrity Framework. With the introduction, we can then answer if

there are differences between the information extracted from a server's manifest and

 30

that from delegated proxies' manifests.

A delegated proxy's manifest plays the same role as a server's manifest. That is, it

will provide authorizations clearly and safely. So the manifest also consists of

authorization information and protection measures.

But there are two main differences between a server's manifest and a delegated proxy's

manifest.

• Authorization Information: The delegated proxy's manifest provides

authorization information on one part of an object while the server's manifest

provides that on the object. So what the "MessageURL" element gives out is the

URL of the authorized part but not the object. Although "< PartInfo >" and "<

/PartInfo>" mark up the sub-parts of the authorized part, all the authorization

information inside should be the same. However, we should give more description

on information given via the "PartID" element. We can tell the relationship of the

two parts via it. A sub-part will get an ID with a suffix ".x" of the ID of the part and

"x" stands for the sub-part's number in the part. It is worth noting a part whose ID

has a ".0" suffix. In this case, the proxy does not partition its authorized part and

authorizes the whole of the part.

• Protection Measures: It is necessary to specify who authorizes the proxy to

provide such a manifest in the "ParentManifestDigestValue" element as an

additional but important protection measure for the delegated proxy's manifest. But

the element "PartDigestValue" for each sub-part might be omitted. Since the

proxy's manifest is generated on-the-fly and should be sent out from the proxy as

early as possible (based on the same reason as the server's manifest mentioned in

Section 4.5), we put off the job of counting digest value of each sub-part, which has

to wait for finding the sub-parts, and puts them in the notification of the proxy. That

is, the proxy should provide both a manifest and a notification if each sub-part's

digest value should be specified. Of course, the proxy need not give a notification if

 31

it just delegates the authorized part identified by the suffix ".0".

Based on the differences between these two kinds of manifests, we can conclude

that information necessary to be extracted from a delegated proxy's manifest is the

same as, if not less than, that from a server's manifest.

To facilitate our later descriptions, some names should be introduced here. Since

the "Delegate" action can be authorized nested (i.e., server delegates a part to a proxy,

the proxy delegates the part to another proxy and so on), a proxy might provide a

manifest due to another proxy's authorization. So we call the proxy or the server

delegate another proxy as "delegator" and the delegated proxy as "delegatee", and their

manifests as "parent manifest" and "child manifest" respectively. Plus, we can take an

object and its parts as a part and its sub-parts.

Note that these names are relative to each other. A proxy can be both "delegator"

and "delegatee", its manifest can be "parent manifest" and "child manifest", and also its

authorized part can be "part" and "sub-part". Moreover, they have "one-to-many"

relationship. For example, a delegator might have many delegatees but a delegatee only

has one delegator.

So the differences between server's manifest and delegated proxy's manifest can be

expressed, in a more general way, as the differences between a parent manifest and its

child manifest.

5.3 Notif icat ion

Figure 3.3 shows a notification. There are four considerations that the proxy should

specify such a notification. Firstly, by means of the element "ManifestDigestValue",

the client can know which manifest authorizes a proxy to do the action declared in the

notification. Secondly, the elements of "Editor", "Action" and "PartID" can answer if

the three "W"s are consistent with the manifest: Who does What action on Which part.

 32

Thirdly, to assure that the part received by the client is just what the proxy puts into the

message, the proxy fills in "PartDigestValue" with the digest value of the part. Finally,

in order to prove the notification is from the proxy, the proxy should sign the

notification just as the server signs its manifest.

Besides the components introduced above, a notification might include a

"InputDigestValue" element and a "PartDigestValues" element. In order to assure that

the authorized part received by the proxy that does "Transform" action is not tampered

by malicious intermediaries, the proxy should put the digest value of the part before

transformation into the "InputDigestValue" element. The element "PartDigestValues" is

for the proxy who does the "Delegate" action with partitioning the part into sub-parts.

This element is supposed to record each sub-part's digest value.

We append a notification to the end of the message for delivery. It is an obvious

and also efficient way:

• Putting all the notifications at the end of the message will not cause any process

delay. Proxies do actions independently of the notifications. They only rely on the

guide information listed in the manifest.

• It preserves the order of the notification list. By appending a notification to the

end, all the notifications are stored as a list. So it is easier for the client to find out

all the notifications related to one part in order, without the need to sort these

notifications. It will reduce the message verification time.

• If we choose to append notification at the end of each part, the notification

generation will be much more time critical. Proxies must generate a notification

when they are doing the actions. If a proxy needs to process many messages

simultaneously, the pipeline would be stalled for the proxy will wait for the result

from the notification generation and insert the notification in front of the next

part.

• For client verification, it is better to put notifications just after each part. But

 33

when the first three reasons are taken into consideration, which could heavily

impact the performance more, we prefer to append the notifications at the end of

the message.

5.4 Correctness of Data Integrity Framework

Now we analyze if our data integrity framework can assure the integrity of data in

question. That is, can a client detect the abnormal of the received message with the

help of our data integrity framework?

• Whole Message Alteration

A client receives a message that is not in accordance with its request at all. For

example, a client requests page1, while a proxy gives it page2 with page2's

manifest. The client can detect it via the "MessageURL" element in the

corresponding manifest.

• Manifest Alteration

It is possible for a proxy to modify and even kick off the manifests of a message.

The client can check the integrity of the manifests through verifying the digital

signature on the manifests. If a client receives a message without a manifest, the

client might doubt the message and decide not to accept it.

• Notification Alteration

It is also possible for a proxy to alter a notification list. For example, a proxy

modifies a notification of another proxy. In our model, a proxy MUST sign the

notification. So a client can know if others have modified the notification from the

digital signature.

• Message Body Alteration

If a proxy commits wrongdoing to the message body, the client can easily find it out

by checking the manifests and the notification list. For example, some adversary

 34

does what it is not authorized to do with or without attaching a notification. If it

attaches its notification, by checking the manifests, we can find it is the

unauthorized proxy; if no notification is attached, by comparing the digest value

of the part with the "PartDigestValue" element in the corresponding manifest, the

wrong doing can be detected easily.

 35

Chapter 6

System Model

In this chapter, we propose a system model for Data Integrity Framework. Section 6.1

describes the basic requirements of the framework. To meet these requirements, we

point out the design considerations and our decisions in Section 6.2. Section 6.3 shows

the system architecture module by module. Finally, the qualitative analysis of the

performance of our system model is given in Section 6.4.

6.1 Basic Requirements
In order to prove the feasibility of our framework, we build a system model. Although

it can be concluded that our Data Integrity Framework assures clients to get correct

value-added services (Section 5.4), it should not increase clients waiting time

significantly, consumes much more network resources in order to ensure data integrity.

Therefore, our system should meet the requirements as follows.

• Minimal Perceived Time

Latency is a main reason to prevent clients from surfing on the Internet. More

importantly, when proxies perform some services on a message, they may delay

message transmission. Therefore, it is very necessary for our system to reduce

perceived time of clients as much as possible.

• Minimal Required Bandwidth

Bandwidth is always scarce and expensive. Our data integrity framework increases

the message size due to the inclusion of server's intention and proxies' traces, and

therefore increases the bandwidth requirement. Thus it is more critical for our

 36

system to minimize the bandwidth requirement.

6.2 Design Considerations and Decisions

In this section, we give design considerations and our decisions on the system model, which

mainly stem from its requirements.

• Off-line Intention Generation

In order to reduce origin server's load and its response time, our system requires the

server to generate its manifests in advance.

• Streaming Transmission

We want to avoid stalling the message streaming transmission so as not to affect

client's perceived time. Therefore, besides off-line intention generation, proxies

should forward the ready packages immediately after they perform services on the

message.

• No Verification On-the-fly

Due to the above considerations, we do not perform proxy verification in as way

similar to manifest verification. Firstly, from the view of the client, proxy

verification brings nothing but longer response time. On one hand, if a proxy does

verification and there is something wrong with the message, it will go on delivering

the message with a warning. However, since the client will only rely on itself, it

will cost the client the same time to do verification (Section 6.3.3) as usual. On the

other hand, if all the proxies on the path will verify the message but there is nothing

wrong, it will cost the client some extra time to get the message. Secondly, in the

sight of proxies, proxy verification does just very little good to them. It is to save

proxies' resources to cache a message to be refused by the client and also to avoid

using the cached one. But these benefits are diminished due to at least two reasons.

One is that the cached message will not always be there because of the cache

 37

replacement algorithm. The other is that the cached message might not be served to

others. The cached message might be replaced by a new and probably correct

response because the client will send a request for the message with a "no-cache"

header, which passes through the proxy again.

• Data Reuse

Data reuse is an important way to reduce load of the origin server. It also reduces

network latency and bandwidth requirement. From these considerations, we design

a data-integrity message cacheable and improve its reusability by its part reusability.

That is, some parts can be reused while others cannot.

6.3 System Architecture

Our system architecture consists of the components shown in Figure 6.1. The

description of the modules of each component is depicted as follows.

 38

6.3.1 Message Generating Module

When a server receives a request for a web message, it generates the HTTP response

message header and transfers the header followed by the data-integrity message body

(Chapter 4).

6.3.2 Data-Integrity Modification Application

Data-integrity modification application consists of Scanning, Modifying, Notification

Generating, Manifest Generating and Delivering modules. If some errors occur in

some module, we call them "application errors", which the proxy should specify them

in the Warning header of parts where errors happen.

6.3.2.1 Scanning Module

In order for a proxy to recognize a data-integrity message, to look for authorizations and

to find the authorized part, this module performs three different scans.

• Header Scanning: When a data-integrity proxy receives HTTP headers of a

response, it can know from the DIAction header whether it is a data-integrity

response message. If no DIAction header is there, the proxy will forward and

cache the message as usual.

• Manifest Scanning: The proxy parses manifests while extracting important

information. If there is no authorization to the proxy, the package and all its

subsequent ones will be ready for delivery to the next level.

• Authorized Part Scanning: The proxy locates the parts by "PartID" element (See

Section 4.2 and Section 4.3 for "PartID"). There are two cases that the package is

ready for delivery. Firstly, the authorized part is not in this package. Secondly, the

proxy has finished what it supposes to do on all the parts of the object, and it is

time for it to deliver the package to its subsequent network levels.

When a manifest streams in and out a data-integrity modification application, an

 39

authorized data-integrity intermediary will record important information of a manifest

as it parses it. This policy has two advantages. Firstly, when a manifest might fall into

two successive data chunk packages, the first package can be forwarded to the client

without any delay. This is to lower the performance impact when compared to

another policy that the extract procedure should not start before getting the whole

manifest. Secondly, it is efficient for a proxy to do actions and generate notifications

according to the extracted information in parallel, without the need to wait for the

whole manifest to come first.

 Do Actions Generate Notifications
Digest Value of The Manifest N Y
ID of A Part Y Y
Action Y Y
Restrictions Y Y
Roles Y Y

Table 6.1: Important Information Extracted from A Manifest

What then should be extracted from a manifest? Generally speaking, the extracted

information should be a good assistance for a proxy both to do actions and to generate

notifications (see Table 6.1).

The Part's ID, Action, Restrictions let the proxy know what it should do. When

generating a notification, the proxy should include these information in the notification

as declaration about what it has done. It is also necessary to record the manifest's digest

value and put it in the notification. It is a convincing evidence to prove the strong tie

between the notification and the manifest (see more in Section 5.3). But why other

information in a manifest need not be extracted? It is mainly because they function as

proofs of the validity of a manifest and we do not employ manifest verification in a

data-integrity proxy.

"Delegate" action will enrich manifest scanning. A data-integrity intermediary

should search for not only server's manifest but only delegated proxies' manifests to

 40

check if it is authorized. If it gets some authority from a delegated proxy's manifest, it

should extract some information from the manifest (see Section 5.2). Of course, it will

also record the server's manifest as mentioned before if it also gets some authority

directly from the server (see Section 4.2). Furthermore, the proxy also should call the

"Manifest Generating Module" (Section 6.3.2.4) to generate its own manifest on-the-fly

if it is authorized to do "Delegate" action and it intends to authorize others to perform

some services. When the proxy determines to authorize others, it will do the same thing,

but under constraints specified by the server, to the authorized part as the server treats its

object. It will partition the part into subparts and generate a manifest to authorize others

with its sub-parts (as is mentioned in Chapter 4).

When the authorized part is located, the scanning module can either call its own

"Modifying Module" or asks the help from a remote call-out server. In the latter case,

the remote call-out server will perform the necessary content transformation functions

and then send the result back to the proxy. Note that modifying the content locally or

remotely on the part should not make any different to the result.

6.3.2.2 Modifying Module

After a proxy finds out what it should perform on a part, it will determine whether it

should accept the tasks based on its local rules. For a part authorized to the proxy and

accepted by the proxy, when the proxy finds that part, the defined service will be

performed through two steps: 1) to modify the headers of the part; and 2) to do the

authorized action. Since each step has its own features, we describe what the

framework should do in each step to fulfill the predefined service.

Modifying the Headers of the Part

Just as is discussed in Section 4.4.2, it is necessary for header lines of the part to

conform to the part's properties. To realize this, we should perform different tasks to

the header lines according to the definition of the actions:

 41

• Delete: The proxy deletes the entire original header lines of the part because they

already lose their original meaning. It then gives a new header line with only one

property "Content-Owner" that contains its host name. Although the part is empty,

it will be easier for the client to identify who does the action by means of

"Content-Owner" and to tell if it does legally by checking its notification and

manifests.

• Replace: Here we use a "substitute" content to replace the original content. With

the same reason as "Delete", the proxy should replace the header lines of the part

with a new header containing at least the following properties:

Content-Owner: its host name;

URL: where or how the substitute can be found in the proxy;

Last-Modified: the date that the substitute is last modified;

Expires: the date that the substitute expires.

• Transform: Under this action, the proxy should not change the original header

lines but should append a new header line to the transformed content. Originally,

there might be three kinds of header lines. The first kind is used to describe the

content properties. Since the original content is not changed, it is necessary to keep

it there. The second kind is probably related to the authorization on the part (see the

next item "Delegate"). The proxy also cannot modify these header lines because its

action will not change the authorization on the part. The rest (if any) of the header

lines are left by the other proxies that have performed "Transform" actions on the

part. To meet a client's demand, a proxy might be authorized to perform

"Transform" actions that are different from those done by other proxies on the same

part. Hence, the proxy should keep these header lines to indicate the combined

"Transform" action done by it and other proxies to produce the final presentation of

the part.

The new header line should contain at least "Presenter", "URL" and

 42

"Last-Modified" header fields to describe the new representation of the part. Since

we assume that the representation should expire at the same time as its content does,

the proxy need not specify the "Expires" header field. The "Expires" property of

the representation should be implicitly equal to the one specified in the original

header lines for the content.

• Delegate: The proxy should keep the original header lines and add a new header

line with one new property "Authorization-Owner" to indicate its authorization on

this part.

All in all, a part can have at most three kinds of header lines at any time. And this

happens when at least one "Delegate" or "Transform" action is done on the part.

Do the Authorized Action on the Part

• Delete: The proxy just removes the content of the part. For example, the proxy A

deletes the part j, so the part is changed to:
<Part>
<Header Content-Owner="A" / >

<PartID>j< /PartID>

<Content/ >

< /Part>

We still keep the "PartID" element because of the following consideration. A part

is authorized with two possible permissions, one is "Delete" and the other is

"Replace". In case where if a proxy deletes everything in the part (including the

"PartID"), other proxies will not be able to do the "Replace" action on the part

with the new content because the part location is now missing.

• Replace: The proxy replaces data marked between "<Content>" and "<

/Content>" tags in the part with new data according to its local rules.

 43

• Transform: The proxy gives a new representation for content between the

"<Content>" and "< /Content>" tags. Note that the data buffering requirement for

content transformation is dependent on the transformation algorithm of interest.

For example, for context language translation, we usually need to buffer the entire

content of the part that might be transmitted across multiple data chunks before

the action takes place. In contrast, it is not necessary to buffer data if we only

perform action character by character such as encoding.

• Delegate: The proxy appends its manifest to the (primary) manifests of the object.

Of course, this action should be done before the proxy starts searching for the

authorized parts. That is, after the proxy scans through the last manifest of an

object, it will insert its manifest between the last manifest and the first part.

Besides appending its manifest, the proxy should do one the following things.

1. Divide the part into several sub-parts:

In this case, the proxy treats the content of the part just as the server treats the

content of the object. So a nested structure should be expected. We will give

an example in Figure 6.2 below to illustrate this concept.

2. Indicate that it authorizes the part:

As mentioned in Section 6.3.2.1, the proxy is unlikely to partition a part into

sub-parts as authorization unit but will authorize the whole part to others. To

indicate this, the proxy just needs to append an ".0" to the ID of the part to

declare its intention.

We mentioned in Section 6.2 that our system model can keep up with the

streaming data transmission to a great extent. But how can this be done? To answer

this question, we will elaborate on the details of how a proxy handles the streaming

data – what data is sent through the proxy at when.

 44

Figure 6.2: A Part and Its Sub-parts

The header field of a part needs to be ready for delivery before any action can be

taken on the part. Since the proxy collects all the information of the part and has

already decided what to do, it will be easy for the proxy to modify the header fields of

the part. For example, when the proxy is going to replace content of a part with the

content of a file, it will specify the "URL" header with the address of the file,

"Last-Modified" header with the last modified date of the file, "Expires" header with

the expired date of the file, and so on.

For replacement or deletion, it is possible for the proxy to do action in parallel

with the delivery of some packets, since such action can be done without the need to

consider the original part. The proxy only needs to put the new content in the part,

write it back to a packet, and deliver it. It then reads the subsequent packets into its

buffer until it gets another part. Afterwards, it will clean up all the data of the part

from its buffer.

For transformation, a proxy might also perform parallel actions of doing the action

and delivering packets in some situations. For example, a proxy is required to transform

traditional Chinese characters to simple Chinese characters on the streaming data. Since

this is a character-to-character transformation, each transformed character is ready for

delivery. However, if the transformation needs the content of the whole part as the

input (such as language translation from Chinese to English), the proxy should buffer

all the packets containing the part first before it performs the transformation.

 45

For delegation, after a proxy appends its manifest, it will stream the message.

There is no other thing needed to be done on the message but to append its

notification to the end of the message.

During the actions, a notification generating process can be started. But when

should be the good time to call the Notification Generating Module? Since all the

information are ready after scanning the corresponding manifest except the digest

value of the part, the time to call the module should be at the beginning of counting

the digest value. But for different actions, the time to start the notification generation

process (i.e. to do the digest) can be different.

For deletion, since the input of doing digest comprises only the ID of the part, the

proxy can start doing digest when it finds out the ID of the part.

For replacement, it can get the digest value from the ID of the part and the new

content. Thus, once the proxy finds out the ID of the part and knows the content, it

can start doing the digest.

For transformation, it is necessary to do digest twice. Firstly, the part's ID and the

content with an original representation comprise the data for digest. Secondly, the

proxy does digest on the part's ID and the content with a new representation. So the

proxy will wait for the input and the output of the transformation before it can start

doing digest.

For delegation, there are two cases to do digest. If the proxy does not partition the

part, the new ID of the part and the original content are the data for digest. On the other

hand, if it partitions the part into several sub-parts, it should count each sub-part's

digest value with the sub-part's ID and content. So the proxy can start doing digest only

when it gets all the necessary information.

6.3.2.3 Notification Generating Module

When it is time to count the digest value of a modified part, the process comes to this

 46

module. After the digest value is obtained, it will also generate a notification (as the

one described in Section 5.3) to declare what the proxy has done.

6.3.2.4 Manifest Generating Module

When the proxy intends to give a child manifest, this module will be called to

generate a manifest as illustrated in Section 5.2. The manifest will be put in the end of

all the manifests by now.

6.3.2.5 Delivering Module

The proxy delivers all the ready packages. If it is time to deliver the last package, it

appends the generated notifications (if any) to the last package and delivers it.

6.3.3 Data-Integrity Verification Application

One important feature of our Data Integrity Framework is that a client can verify what

it receives is what the server intends to give to it. If the client wants to verify

data-integrity responses, it should employ a data-integrity verification application. Of

course, the client can choose not to install the application and treat a data-integrity

response as a normal response.

Data-Integrity Verification Application has one module, Authenticating Module.

It consists of the functions as follows.

• Data-integrity responses differentiation: The application can differentiate data-

integrity responses with other responses via "DIAction" header field of the response.

Furthermore, it does not affect the process of other responses.

• Certificate authentication: To verify that a server's manifest is signed by the

server, or some proxy's manifest and notification are signed by the proxy, we need

its real public key. To check the authenticity of the public key in its certificate as

one of the elements of XML Digital Signature, the application will verify the

certificate authority (CA) locally or remotely that provides the trustworthy

 47

certificate. This method is a typical public key verification [42].

• Manifest authentication: The digital signature on a manifest can be verified with the

help of its public key so that it is easy to find out if the manifest from a server or

from some delegated proxies is modified or replaced by malicious intermediaries

during the transmission. It also checks if a delegatee gives a child manifest within

its authority.

• Declaration authentication: In order to verify that a proxy declares to do what it is

authorized to do on a part, the application goes through the following steps:

1. via "PartID" and "Editor" elements of a notification, it is easy to find the

notifications of the proxy on the part.

2. Get all the authorizations on the part to the proxy from the manifests declared

via the "ManifestDigestValue" element of these notifications.

3. Match what the proxy declares to do with the authorizations gotten in the last

step.

• Part authentication: The application can make known the authenticity of the

received part after it knows who finally touches the part with what kinds of action.

Through the proxy's host name in the last header line of a part, the corresponding

notification can then be found easily. As for "Delete" or "Replace" action, the

received one is authentic if its digest value is the same as the one declared in the

notification. It is a nested procedure to verify a part on which the final action is

"Transform". Besides verifying the digest values of the counted and the declared,

the application should verify the input of the transformation. It can identify who

touches the part before the proxy transforms it via the host name in the header line

in front of the last and "InputDigestValue" element of the notification and verifies if

the input is provided by the server or a verified proxy. For "Delegate" action, the

part without sub-parts is authentic if its digest value matches the one in the

notification. The part with sub-parts is authentic if all its sub-parts are authentic.

 48

6.4 Analysis of System Model

In accordance with basic requirements presented in Section 6.1, the qualitative analysis

of performances is listed here and their quantitative analysis will be given in Chapter 8.

• Minimal Client's Perceived Time

Our system model minimizes the client's perceived time with the following strategies.

Firstly, a server provides its manifest off-line. Secondly, a proxy does not verify

what it receives and does its best to overlap its services with the streaming

transmission of the message. Finally, clients can get response much faster since our

model makes full use of cacheability of an object via allowing independent

cacheability of each part of the object.

• Minimal Bandwidth Requirement

Although server's manifests and proxies' traces increase the amount of transferred

data, the extra bandwidth requirement over the server-proxy link can be reduced

through the reuse of manifests. That is, proxies can do services for a variety of

clients in accordance with the cached, not expired manifests so that the server

need not response its message to different clients every time.

 49

Chapter 7

System Implementation

In this chapter, we will describe how we implement the Data Integrity Framework in a

fully functional system in details. Note that we assume that a server only needs to

respond with a data-integrity message. It is not our focus on how a server generates the

message, either by a program automatically or manually by hand. Thus, we will only

give our detailed implementation of proxy and client. That is, based on our proposal in

the previous chapters, how do we entitle proxies with modification functionality and

how do we provide clients with verification functionality?

7.1 Background

We modify Squid [3] so that it can do proxy-related services on a data-integrity message and

modify Netscape Plug-in [4] so that it can verify the data-integrity message for clients.

In this section, we describe their basic implementation and illustrate our modification

on them in details in Section 7.2 and Section 7.3.

 50

Figure 7.1: Basic Components of Squid

7.1.1 Overview of Squid Implementation

7.1.1.1 Basic Components of Squid

There are 3 main components of Squid: client-side, server-side and storage manager.

(See Figure 7.1)

Client-Side: This is where new requests are accepted, parsed and processed and

responses are forwarded to downstream proxies or clients. This module de-

termines if the request is a cache hit or miss.

Server-Side: These routines are responsible for forwarding the cache miss requests to

the origin server. Various protocols (e.g. HTTP, FTP, Gopher) should be

supported. In particular, the HTTP module is designed to handle exclusively HTTP

requests. It sets up the TCP connection to upstream proxies or the origin server, builds

a request buffer and submits it for writing on the socket, and registers a read

handler to receive and process the HTTP response.

Storage Manager: This is the glue between the client- and server- sides. Every object

saved in the cache is allocated a StoreEntry data structure. A client-side request

registers itself with a StoreEntry to be notified when new data arrive in the

StoreEntry. Server-side response appends ready data to the StoreEntry.

 51

With Figure 7.2, we now illustrate the workflow of an HTTP response for a cache

miss request in Squid. In this illustration, we focus on how the server-side works because

we implement a data-integrity intermediary mainly based on the functions in the

server-side.

7.1.1.2 Flow of A Typical Response

1. On the client-side, a new StoreEntry is allocated and the client is registered with it.

The server-side then allocates an HTTPStateData data structure for the request to

store all the important information related to the request and its reply including

StoreEntry, and at the same time forwards the request to the original server. It also

registers a read handler to receive and process the HTTP reply.

2. As a response is initially received, the httpReadReply function is invoked to read

data from the read handler package by package. It reads data until errors happen,

connection is closed, or all the response data are received. At the beginning of the

function, the httpProcessReplyHeader function is invoked to parse the HTTP reply

headers and store them in the HttpReply structure of the HttpStateData. As a package

of reply data is read, it is appended to the StoreEntry of the HttpStateData via the

storeAppend function. Every time a data package is appended to the StoreEntry, the

client-side is notified of the new data via a callback function.

3. As the client-side is notified of a new data package, it copies the data from the

StoreEntry into a data buffer, processes the data, and then writes the processed

 52

data on the client socket.

4. Via the httpPconnTransferDone function invoked by httpReadReply, the

server-side can find out if it finishes reading the reply from the upstream server or

by which method it can tell the completion of its work.

5. When the server-side finishes reading the reply, it marks the StoreEntry as

"complete" by updating the store-status of the StoreEntry from STOREPENDING

to STORE-OK. It also unregisters itself from the HttpStateData and either waits

for another reply from the server, or for the server connection closed by the

upstream server.

6. When the client-side has written all of the object data, it unregisters itself from the

StoreEntry. At the same time, it either waits for another request from the client, or

closes the client connection.

7.1.2 Overview of Netscape Plug-ins Implementation

Netscape Plug-in provides the APIs mainly as follow. (See Figure 7.3)

1. Initialization and Shut-down

When Netscape is started, plug-ins are loaded. By NPP_Initialize, any plugin

specific initialization is done when they are loaded, while NPP_Shutdown is called

when a plug-in is being unloaded to do any specific shut-down function.

2. Creation and Destroy

When an "EMBED" tag appears in a page, Netscape will create an instance of NPP data

structure for the corresponding plug-in. At this time, NPP_New is called to create

a PlugInstance-type component of the structure. All the instate state information

about the plug-in is put into the component and so do all per-instance information

that plug-in developers need in the routines of the plug-in. As opposed to it, if the

instance is destroyed, NPP_Destroy is called for storing some state information if

 53

this instance needs to be recreated later.

3. Window Set

When some messages (e.g., a process message) are supposed to be shown by

calling a plug-in, NPP_SetWindow will be called to point out where to put the

messages.

4. Stream

When a "src" tag appears in the line marked by the "EMBED" tag, a stream of

NPStream type is created by Netscape. NPP_NewStream is provided to do any

preparation for the delivery of the data. The stream is destroyed after the

completion of the data delivery. At this time, NPP_DestroyStream is called to

handle the ending of the stream. After the data are read into a file,

NPP_StreamAsFile is called so that the data can be processed via file method.

7.2 Modification to Squid

Our system on the proxy side is built on a freely distributed Squid proxy server system. We

 54

use the 2.4.STABLE6 version. We modify some data structures and some data

routines in Squid to realize the data-integrity modification application.

7.2.1 Modification to Data Structure

We add a new flag dif into the HttpReply structure to tell if this is a data-integrity

response or not. We also add a new field difState, which points to a new data

structure DifStateData, into HttpStateData. The new data structure has three kinds of

fields and a pointer array field whose elements point to a DifStateData. We define

these fields as follows:

• Status

We store some status of our processing to the reply and its associated

modification in this kind of fields.

manifest: It records the process of scanning for a manifest, i.e., starting to look for

the manifest, finding the manifest but not its end, or getting the complete

manifest.

authorization-number: This field shows the number of authorizations already

accepted by the proxy before finishing to scan the manifest or the number of

authorizations not executed by the proxy yet since the beginning of the services.

delegate-number: Similar to the authorization-number, this field traces the

number of child manifests probably after the current manifest but before fin-

ishing to scan the manifest or the number of child manifests not scanned yet

after the beginning to search for the child manifests.

• Manifest

We store some important information extracted from the current manifest as

mentioned in 6.3.2. In accordance with the information described in that section,

we provide two fields: authorization, which is an array of Authorization type, to

 55

store authorization information and manifestdigest-value to store the manifest's

digest value.

• Buffer

Because data are sent package by package, some information might appear across

multiple packages. In this case, we need to buffer them in some of the following

fields below. Furthermore, child manifests and notifications should be placed in

locations as mentioned in 6.3.2, so that those early generated ones need to be

stored for a shorter period of time. We provide a field to store them.

tag Since all the important information is marked up via tags, we should match data

with these tags in order to find the information we need. However, it is possible

for a tag to be distributed in two packages and we cannot match the tag in one

package of data. With this consideration, we use this field to store the tag and

record which portion of the tag is in the first package. When the subsequent

package is read, we can know if the tag is found by comparing the left portion

of the tag and the beginning data of the second package. Also, the first package

with the ending of the front portion of the tag can be appended to the StoreEntry

after we record the portion in the tag field.

Buf Whether the information stored in this field is ready for storeAppend depends

on whether it needs to be modified. When it is ready for storeAppend, "store"

action accounts for "copy". Otherwise, it accounts for "paste". There are 2

pieces of information stored in this field at different times. When it is time to

scan for a manifest, we "copy" an authorization for a part in this field if the

authorization is distributed in two packages. The reason is that we extract the

authorization information part by part. Moreover, we "paste" an authorized

part into this field due to not only its distribution but also the authorized action

on this part in accordance with Section 6.3.2.

 56

manifest-notification In our implementation, child manifests and notifications

need to be stored in different times. So we provide one buffer for both.

• Delegate

When we process child manifests and do actions according to them, it is necessary

to use all of the above fields. The reason is that the operation functions (added in

httpReadReply) on the DifStateData structure are recursively called since the

flows of processing the parent manifest and child manifests are the same and so do

the flows of doing actions according to them. So we employ a child field and a pointer

array to help deal with child manifests successfully.

7.2.2 Reply Header Processing

In order to make sure this is a data-integrity reply, we do three modifications to routines

in Squid. Firstly, we modify function the httpReplyParse invoked in httpProcess-

ReplyHeader to set dif when httpReplyParse finds a "DIAction" header. Secondly, after

calling back from httpProcessReplyHeader (other modifications depicted from now on

are all put in httpReadReply), we check HttpReply if "Content-Type" is "text/xml" and

"Content-Length" is unknown. Finally, if all these fields show a data-integrity reply, we

set manifest to "starting to look for the manifest". Otherwise we take the reply as a

normal one and other modifications will not be called.

7.2.3 Reply Ending

We use the simplest way to tell the end of the reply, i.e., the close connection by server.

When coming to the end of the reply, proxies' notifications will be appended to the

StoreEntry before the original final tasks such as freeing the read handler are

performed.

We will add the following three modules all with a DifStateData as their parameter

into httpReadReply to implement the functionality that a proxy does services on the

 57

object in this reply.

7.2.4 Manifest Scanning

When we find the beginning of a manifest, manifest is set to "finding the manifest but

not the end". This status will be changed to "getting the complete manifest" until we

find the end of the manifest. We also extract authorization information (if it is for the

proxy or "Delegate" action for others) to authorization field part by part while

scanning the manifest. authorization-number will be increased with a new value put

into the authorization field and delegate-number will also be increased if the new

element records "Delegate" action for others. Finally the manifest digest value will be

extracted from the XML Digital Signature to manifestdigest-value field. If

delegate-number shows child manifests probably follows this parent manifest after

we finish parsing the parent manifest, the "Manifest Scanning" module will be called

again with an element of child, a DifStateData.

7.2.5 Child Manifest Generation

Via authorization field, the proxy can know if it should provide a child manifest and

how the manifest is (if yes). So it will generate a child manifest as mentioned in

Section 6.3.2 with the help of information already obtained upon scanning the parent

manifest. It then puts the generating result in the manifest-notification field so that

we can insert it in the front of the first part of the object when we find the part.

7.2.6 Entity body Modification

This is also a recursive function. This function is called when the proxy modifies a

sub-part according to the parent manifest with a parent DifStateData or according to

the child manifest with a child DifStateData. After each modification, a notification

will be generated in the manifest-notification field. Upon finishing an authorization,

 58

authorization-number will be decreased, which finally shows the proxy completion

of all its modification work to the authorized parts.

7.3 Modification to Netscape Plug-ins

With the Netscape Plug-in APIs, it is convenient for us to implement our data integrity

verification application. We just need add something into two of the APIs,

NPP_SetWindow and NPP_StreamAsFile. Via NPP_SetWindow, we display "In

Progress", "Error", or "No Errors" message about the on-going verification process to

users. Since our data-integrity message has been read into a file by Netscape, we

access the file via NPP_StreamAsFile. In this API, a function will be called to verify

the data of the file in the Authenticating module mentioned in Section 6.3.3.

 59

Chapter 8

Experiment

In this chapter, we will firstly describe our experiment objectives and define the

design of our experiments. We then explain the experiment parameters used and

describe the set-up of the experiments. Finally we present and analyze our experiment

results.

8.1 Experiment Objective and Design

In the previous chapters, we presented a language support and a system model for our

Data Integrity Framework. We also implemented a real-life system that is fully

compliant with our proposed system model. In this chapter, we are going to design

several sets of experiments to support our argument that our Data Integrity Framework

incurs only very small performance overhead but brings great benefits.

With this objective, we design two sets of experiments and contrast our Data Integrity

Framework with HTTP and HTTPS in different cases. Our reasons for choosing them

as contrasts are as follows:

HTTP

There are two main reasons why we choose HTTP as the basic reference in our

experiments. Since our Data Integrity Framework is built on HTTP, one main

concern is on how much extra overhead it incurs (although it enriches HTTP

functionalities). In the active web intermediaries environment, HTTP intermediaries

may also do actions on the transferred object according to some architecture such as

 60

OPES [2] although the integrity of the object cannot be ensured. So we compare our

Data Integrity Framework with HTTP in the active web intermediaries

environment.

HTTPS

HTTPS is a superset of data integrity, so it is an alternative to ensure data integrity.

And since proxies cannot provide services on an encrypted message, we compare

HTTPS with our Data Integrity Framework under the situation that the server does

not authorize anyone to modify the message.

Our Data Integrity Framework incurs additional performance overhead (in terms

of the time) because of the following reasons. Firstly, manifests and notifications

increase the size of the response message. Thus, during the retrieval of a text object,

network bandwidth requirement is higher and longer retrieval time is incurred. It also

spends additional time to generate the notifications and the child manifests on-the-fly.

Secondly, after the retrieval, client verification costs some time. Note that the time

cost of performing actions in the web intermediaries should not be counted as extra

for maintaining data integrity. It is because a data-integrity intermediary should spend

the same amount of time to perform actions as an HTTP intermediary does. However,

for "Delegate" action, the generation of a child manifest on-the-fly and the existence

of the manifest contribute to the extra overhead, since an HTTP intermediary might

do actions according to its local rules established with servers and other intermediaries in

private.

We design a set of experiments to quantify the extra overhead mentioned above

under two conditions: the object is untouched and only one service is performed on

the object.

 61

8.2 Experiment Set-up

Our experiment system consists of four components as follows.

• Server: We use Apache server v/1.3.27 (Unix) that holds all the objects requested

by the client and supports both HTTP requests and SSL requests for these objects.

The Apache is run on a machine with four ultraSPARC-II 296 Mhz CPU and 4

Gbytes RAM.

• Proxy: It is a C program to generate a notification, since some of proxies' extra

overhead stems from the notification generation in accordance with our analysis

in the last section.

• Latency: It simulates the latency due to the increase of each requested object's size

by a manifest.

• Client: The client consists of two C programs. One is to request objects in the

server via HTTP and HTTPS respectively. The other is to verify the

corresponding data-integrity objects.

Last three components are built on a Pentium 200 MMX machine with 64 Mbytes

of RAM and 10Mbps Ethernet. Both machines are in the same high speed network

environment.

8.3 Experiment Parameter

We use "text object size" as a parameter in our experiments. In this section, we analyze

the distribution of sizes of text objects via a trace log with 1,364,219 records from

National Laboratory for Applied Network Research (NLANR). Among them, there are

110,961 TCP_MISS/200/text records. Moreover, we classify the size of objects into 0-1

packet size, 1-10 packet size, 10-20 packet size till more than 90 packet size. One

packet size amounts to about 1.3 Kbytes. We use packet size as the basic unit because

 62

the effect of object size on retrieval time depends on the amount of packets necessary to

load the object (data are sent in packets). We show the distribution in Figure 8.1. The

amount of packets to transfer a text object mainly falls into the range of 0-30 packets.

Only 1 % of the text objects need more than 60 packets for its transmission. So we

study text objects with sizes of not more than 80 Kbytes (1.3Kbytes per packet).

According to this statistic, we take nine discrete sizes as the object sizes in our

subsequent experiments. They are 1K, 10K, 20K,..., 80K.

Figure 8.1: Distribution of Object Sizes

8.4 Experiment Methods and Results

In this section, we would like to study the extra performance overheads of our model

and that of HTTPS.

• Extra Overhead of Our Model

According to the analysis in Section 8.1, we do the following experiments to

measure the extra overhead of our model in contrast with HTTP. We use a

data-integrity message with only one part. That is, we do not partition an object

 63

into parts but just put its content into < Content > and < /Content > tags of the

only part. We vary the object's size to get the extra overheads of our model:

(a) Extra sizes due to manifests and notifications

Our measurement shows that the signature of a manifest is about 1.5 Kbytes.

Other information of a manifest with only one part information is about 0.35

Kbytes. So the minimal size of a manifest can be estimated to be about 1.85

Kbytes. Since one packet size is about 1.3 Kbytes, two extra packets for the

message due to the manifest in our experiment should be needed. Same as a

manifest, the minimal size of a notification is about 1.85 Kbytes. This size

will increase with the amount of sub-parts whose digest value should be

specified in the notification. But for the notification in our experiment, the

message also at most takes another 2 extra packets to deliver the notification.

(b) Time cost due to extra sizes

Since both a manifest and a notification takes at most 2 extra packets, we just

measure the time cost due to 2.7 Kbytes extra sizes. We use a program to

request 9 objects with the different sizes plus 2.7 Kbytes. For example, if the

original object size is 1 Kbytes, what we request will be of 3.7 Kbytes. At the

same time, we use another program to record the arrival time of each packet for

every reply. We take the time cost of the first two packets of each reply as that

due to the extra sizes and the whole retrieval time cut off the extra time as the

retrieval time of the original object. We request each object 100 times and take

the average of the data we collect. The result is shown in Table 8.1. We see that

the extra transfer time is quite constant, independent of the size of the web

object. Furthermore, the approximated overhead of about 2000 µs should be

small enough to be justified for the important function of data integrity. Figure

8.2 shows the percentage of the relative percentage overhead with respect to the

 64

object size. As is expected, it is larger when the object size is small. With larger

object size, it quickly decreases and then levels off at about 2%, which is quite

reasonable. Note that here, the measurement is the object transfer time. In the

normal situation of web page retrieval, the perceived overhead by a client is

much smaller due to the parallel fetching of objects within a page.

Size (KBytes) 1 10 20 30 40 50 60 70 80

Extra Transfer(µs) 1961 2331 2043 2031 2138 2042 2034 2027 2036
RT Without
Extra Transfer(µs)

7761 16021 24211 32901 56116 58609 71734 87349 97431

RT With
Extra Transfer(µs)

9722 18351 26254 34932 58253 60651 73768 89376 99467

Table 8.1: Retrieval Time With and Without 2 Extra Packets

Figure 8.2: Increase Rate Due to Extra Transfer

(c) Time cost of notification generation

There are 2 main costs in the notification generation. It takes some time to count

the digest value of the part for which the notification is declared for. Also,

signing the notification costs some time.

– Digest Value: We use md5 function in OpenSSL [5] to do the digest. The

 65

result is shown in Table 8.2. The cost of counting digest value is almost

linearly increasing (with 0.5E-7 slope) with the size of the digest.

Furthermore, even for objects of up to about 80 Kbytes, the digest cost is

only about 3800 µs, which is definitely small enough to be practical.

– Signature: We first do digest on a notification (excluding its signature)

with the md5 function. The digest value is put in its XML Digital Signature

structure. We then use signature function in OpenSSL [5] to get the

signature value. It employs the SHA1 [22] digest algorithm to ensure the

integrity of the XML Digital Signature and the 1024-bit RSA [7] private

keys to encrypt the digest value. Since a notification without sub-parts'

digest values (excluding its signature) is measured to be about 300 bytes, the

cost of counting it is measured to be about 275 µs. Also, due to the fixed

XML Digital Signature's structure, the size of what to be signed is almost a

constant and the cost on it is measured to be about 3973 µs. Therefore, the

overall signature's cost is about 4248 µs.

Object Size (Kbytes) 1 10 20 30 40 50 60 70 80

Digest Cost (µs) 79 501 962 1438 1898 2354 2833 3309 3816

Table 8.2: Digest Cost Time with Different Object Sizes

Original Object Size
(Kbytes)

1 10 20 30 40 50 60 70 80

Verification Time with
No Authorization (µs)

1779 2403 3115 3853 4589 5357 6097 6899 7726

Verification Time with
An Authorization (µs)

2799 3467 4253 4974 5699 6455 7240 8044 8787

Table 8.3: Verification Cost without vs. with an Authorization

 66

(d) Time cost of client verification

We use the verification program with the functionality as illustrated Section

6.3.3 to collect the verification time with and without an authorization. The

result is shown in Table 8.3. Here, we see that the verification time is about

1000 µs, which again is small enough to ensure the practicability of our Data

Integrity Framework.

Without an authorization,

Extra Time = Extra Transfer Time + Client Verification Time (without an

authorization)

With an authorization,

Extra Time = 2 * Extra Transfer Time (a manifest and a notification) +

Notification Generation Time + Client Verification Time (with

an authorization)

Figure 8.3: The Whole Extra Cost Without vs. With an Authorization

All in all, the basic costs of our model with and without an authorization are shown

 67

in Figure 8.3. While the extra time overhead increases with the object size, its

absolute value is small and should be acceptable as the cost for maintaining data

integrity of web retrieval. And the fact of parallel object fetching in web page

retrieval further ensures its practicability.

• Overhead of HTTPS

We design this set of experiments with two considerations. Since the overhead of

HTTPS mainly stems from the handshaking and the data encryption/decryption [11],

a large proportion of the retrieval time of an object over HTTPS is spent on these

two procedures. Besides these, HTTPS brings another kind of latency to the

retrieval of a web page. It can retrieve other embedded objects in a web page

ONLY after it finishes the retrieval of the HTML container object and

authenticates it.

One object: We use the same program that issues HTTP requests in the "Time

Cost Due to Extra Sizes" experiment of the above section to request the same

objects over HTTPS. Result of object's average retrieval time is shown in

Table 8.4. "Original Object" in the table stands for an object before encryption.

Compared this result with those in Table 8.1 to Table 8.3, we see that the

performance of HTTPS is far much lower than that of our Data Integrity

Framework and System. Of course, if data can only be seen by the receiving

end-client and need to be hidden from other people, we cannot avoid the

HTTPS overhead. On the other hand, however, if we just want to ensure the

integrity of the web data, such large performance overhead can be

significantly reduced with our framework.

 68

Original
Object Size
(Kbtyes)

1 10 20 30 40 50 60 70 80

HTTPS
Retrieval
Time (µs)

526871 540872 555434 568074 583840 599269 631427 616339 634373

Table 8.4: HTTPS Retrieval Time With Different Object Sizes

Web page: We use the same NLANR log with 34,613 web pages. The additional

delay between the ending of the HTML container retrieval and the end of the

whole web page retrieval (taken into the consideration of the parallel object

fetching) are shown in Figure 8.4. Note that we do not consider those web pages

with just the HTML object only because they do not trigger any additional

embedded object retrieval and hence, no further latency will occur.

Amount of

objects in a web
page

Amount of
web pages

Original retrieval
time with delay

(µs)

Retrieval time
with delay (µs)

Extra
time
(µs)

Increased
percentage

2 – 5 19,409 14,247 14,973 726 5.10%
5 – 10 9,173 23,751 24,512 761 3.20%

10 – 15 2,888 34,397 35,380 983 2.86%
15 – 20 1,307 41,992 42,875 883 2.10%
> 20 1,838 43,734 44,745 1,011 2.31%

Figure 8.4: Retrieval of Other Embedded Objects Delayed After the Completed

Retrieval of the HTML Object

8.5 Analysis of Performance

According to the collected data in the last section, we compare the performance of our

model with those of HTTP and HTTPS respectively.

• HTTP vs. Data Integrity Framework

Figure 8.3 shows the extra overhead of our model with and without an

authorization. We can see that the extra overhead is increasing nearly linearly

with the original object size. However, with the size of a text object mainly

 69

ranged from 0 to 80 Kbytes, the extra overhead even at 80 Kbytes is still small

enough to be accepted for data integrity function. Of course, here we assume the

object is not divided into parts. If it does, performance overhead will definitely be

incurred and it should be minimized. It will be discussed in the later part of this

section.

Our model's performance will be affected as follows. With the increasing amount

of parts of an object, there will be more pieces of part information in a manifest. It

also costs more time to verify more parts. Thus the more the amount of parts, the

more the extra overhead of our model will be. Moreover, the increase of

authorizations incurs more extra overhead in our model due to three main reasons.

Firstly, it not only adds the size of a manifest but also the amount of notifications.

"Delegate" action may also increase the size of extra information transferred by

child manifests. Secondly, it spends more time on notification generations. Finally,

the verification time increases due to more information on demand of verification

such as manifests, notifications and parts.

However, these factors mean more services added on an object so that both

servers and clients can get more benefit. It is naturally to get more services with

higher cost. So a server should consider both benefits and extra overhead of Data

Integrity Framework together in order to find out the balanced point to make it

most beneficial per dollar cost.

• HTTPS vs. Data Integrity Framework

 70

Figure 8.5: The Retrieval Time of DIF and HTTPS

We compare our model with HTTS in two aspects. One is the retrieval time and

the other is the server's load.

We show the retrieval time of our model without any authorization and that of

HTTPS in Figure 8.5. Since the two sets of experiments are performed with the same

network/system environment and with same object requests, this ensures the fair

comparison of their results. From this figure, we show that clients can get a

data-integrity message much faster than an encrypted object over HTTPS.

Data encryption/decryption will burden servers and cause dramatically latency

especially without session reuse [11]. However, our model does not increase

servers' loads since servers give out their intentions off-line. More importantly, the

reusability of data-integrity objects also relieves servers' burden.

With the consideration of these two aspects, we can conclude that Data Integrity

Framework has an overwhelming performance advantage over HTTPS when they

are choices for data integrity. More importantly, our model allows providing

value-added services by web intermediaries but HTTPS cannot.

Figure 8.6: Parallel Notification Generation and Packets Transmission

 71

The extra overhead of our model can be decreased with the parallel processing of

tasks as follows.

• Parallel notification generation and transmission

The notification generation time, in practice, may be overlapped with the message

transmission packet by packet. Due to the network condition, there is an interval

between packets since a packet may not be sent out before enough data are filled

in the packet. Although the notification generation may stall the pipeline of

transmission, the loss is very little now that it amounts to some intervals in the

transmission. We illustrate this case in Figure 8.6. The first time axis shows the

packets transmission without notification generation. Each dot marked in the axis

stands for the time of ready delivery of a packet. When it is time to generate a

notification during the preparation of the second packet, the ready delivery time

of the second packet is delayed by t µs. If the interval between the second and the

third packets is larger than t µs, the transmission of subsequent packets will not be

affected as shown in the second time axis of the figure.

• Parallel verification and object retrieval

When a client intends to retrieve a web page with some objects, our model will cause

almost the same loss as HTTPS (Figure 8.4) if it verifies the message after

retrieving the HTML page and retrieves the other objects only after the successful

verification. However, our model provides different choices to avoid this worse case.

1. Verifying message after retrieving the HTML page and its objects

The retrieval process of the web page is the same as a normal HTTP retrieval

process. After the client receives all the objects, verification will start. This

method is the simplest one, just to bundle these two tasks together. However, it

may not be efficient. Firstly there is no parallel processing. Secondly if some

error is found in the later verification process, some of the retrieved objects are

 72

useless.

2. Retrieving the page and its objects as usual but verifying the page after retrieving

it

In contrast with the first method, the time for verification is earlier and errors (if

any) can be found earlier.

3. Verifying while retrieving the HTML page

There is some space for improvement of the second method since we can start

some verification sub-tasks before finishing the retrieval of the HTML page.

For example, the client may verify the manifests since they are in the beginning

packages. By employing this method, time is saved and errors can be found as

soon as possible. Of course, this method will also improve performance in the

case of single object retrieval.

• Parallel verification and object presentation

Usually, the object is shown to users only after object verification. This is to

guarantee that the users can see correct data, but the price to pay is the longer client

perceived time. If the correctness of the object is important for users, this method is

appropriate. But it might not be worthy for users to wait such long perceived time

delay for relatively non-critical pages such as entertainment web pages.

In order to meet this need, the object can be shown before or during the ver-

ification. This method is employed, especially when the network is slow and the

correctness of the object is that critical. On the contrary, it may cause some

problems such as providing some error information if users are very sensitive to

the correctness of the object. Although after the verification these errors could be

found, it might have caused some, probably serious, trouble to this kind of users.

 73

Chapter 9

Conclusions

In this thesis, we proposed a data integrity framework with the following functionalities

that a server can specify its authorizations, active web intermediaries can provide

services in accordance with the server's intentions, and more importantly, a client is

facilitated to verify the received message with the server's authorizations and

intermediaries' traces. We implemented the proxy-side of the framework on top of the

Squid proxy server system and its client-side with Netscape Plug-in SDK. To summarize,

my contributions are as follows.

• We defined a data integrity framework, its associated language specification and its

associated system model to solve the data integrity problem in active, content

transformation network.

• We built a prototype of our data integrity model and performed sets of experiments,

which showed the practicability of our proposal through its low performance

overhead and the feasibility of data reuse.

 74

References

[1] [Online]. Available: http://www.ietf.org

[2] [Online]. Available: http://www.ietf-opes.org

[3] [Online]. Available: http://www.squid-cache.org

[4] [Online]. Available:

 http://wp.netscape.com/comprod/development_partners/plugin_api/

[5] [Online]. Available: http://www.openssl.org

[6] [Online]. Available: http://squid-docs.sourceforge.net/latest/html/c1389.html

 [7] "RSA Encryption Standard, v.1.5," Nov 1993.

[Online]. Available: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/

 [8] "Oracle9iAS wireless: Creating a mobilized business," Mar 2002.

[Online]. Available:

http://www.jlocationservices.com/Newsletter/Nov.02/Oracle9i.pdf

[9] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin, "A calculus for access

control in distributed systems," ACM Transactions on Programming Languages

and Systems, vol. 15, no. 4, 1993, pp. 706–734.

[Online]. Available: http://citeseer.nj.nec.com/abadi91calculus.html

[10] O. Angin, A. Campbell, M. Kounavis, and R. Liao, "The Mobiware Toolkit:

Programmable Support for Adaptive Mobile Networking," IEEE Personal

Communications Magazine, August 1998.

[Online]. Available: http://citeseer.nj.nec.com/angin98mobiware.html

[11] G. Apostolopoulos, V. Peris, and D. Saha, "Transport Layer Security: How much

does it really cost?" in Proc. INFOCOM: The Conference on Computer

Communications, joint conference of the IEEE Computer and Communications

Societies, March 1999.

 75

[Online]. Available: http://citeseer.nj.nec.com/apostolopoulos99transport.html

[12] T. Aura, "On the structure of delegation networks," in Proc. the IEEE Computer

Security Foundations Workshop, 1998, pp. 14–26.

[13] A. Barbir, O. Batuner, B. Srinivas, M. Hofmann, and H. Orman, "Security threats

and risks for OPES," Feb 2003.

[Online]. Available:

http://www.ietf.org/internet-drafts/draft-ietf-opes-threats-02.txt

[14] A. Barbir, N. Mistry, R. Penno, and D. Kaplan, "A framework for OPES end to

end data integrity: Virtual private content networks (VPCN)," Nov 2001.

[Online]. Available:

http://standards.nortelnetworks.com/opes/non-wg-doc/draft-barbir-opes-vpcn-00.txt

[15] H. Bharadvaj, A. Joshi, and S. Auephanwiriyakul, "An active transcoding proxy

to support mobile web access," in Proc. the IEEE Symposium on Reliable

Distributed Systems, 1998.

[Online]. Available: citeseer.nj.nec.com/bharadvaj98active.html

[16] T. W. Bickmore, and B. N. Schilit, "Digestor: Device-independent access to the

World Wide Web," Computer Networks and ISDN Systems, vol. 29, no. 8–13, 1997,

pp. 1075–1082.

[Online]. Available: citeseer.nj.nec.com/bickmore97digestor.html

[17] P. Biron, and A. Malhotra, "XML schema part 2: Datatypes," 2001.

[Online] Available: http://www.w3.org/TR/xmlschema-2/

[18] J. Challenger, A. Iyengar, K. Witting, C. Ferstat, and P. Reed, "A publishing

system for efficiently creating dynamic web content," in Proc. INFOCOM, 2000,

pp. 844–853.

[Online]. Available: http://citeseer.nj.nec.com/challenger00publishing.html

[19] C.-H. Chi, and Y. Cao, "Pervasive web content delivery with efficient data reuse,"

in Proc. International Workshop on Web Content Caching and Distribution,

 76

August 2002.

[20] C.-H. Chi, and Y. Wu, "An XML-based data integrity service model for web

intermediaries," in Proc. International Workshop on Web Content Caching and

Distribution, August 2002.

[21] F. Douglis, A. Haro, and M. Rabinovich, "HPP: HTML macropreprocessing to

support dynamic document caching," in Proc. USENIX Symposium on Internet

Technologies and Systems, 1997.

[Online]. Available: http://citeseer.nj.nec.com/douglis97hpp.html

[22] D. Eastlake, and P. Jones, "US Secure Hash Algorithm 1 (SHA1)," 2001.

[Online]. Available: http://www.faqs.org/rfcs/rfc3174.html

[23] D. Eastlake, J. Reagle, and D. Solo, "XML-Signature syntax and processing,"

2002.

[Online]. Available: http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/

[24] B. G. et al, "A framework for IP based Virtual Private Networks," Feb 2000.

[Online]. Available: http://www.ietf.org/rfc/rfc2764.txt

[25] R. Falcone, and C. Castelfranchi, "Levels of delegation and levels of adoption as

the basis for adjustable autonomy," AI*IA, 1999, pp. 273–284.

[26] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.Masinter, P. Leach, and T.

Berners-Lee, "Hypertext Transfer Protocol – HTTP/1.1," 1999.

[Online]. Available: http://www.ietf.org/rfc/rfc2616.txt

[27] A. Fox, S. Gribble, Y. Chawathe, and E. Brewer, "Adapting to network and client

variation using active proxies: Lessons and perspectives," in a special issue of IEEE

Personal Communications on Adaptation, 1998.

[Online]. Available: http://citeseer.nj.nec.com/article/fox98adapting.html

[28] J. Howell, and D. Kotz, "A formal semantics for SPKI," 2000.

[Online] Available: http://citeseer.nj.nec.com/howell00formal.html

[29] Li, Feigenbaum, and Grosof, "A logic-based knowledge representation for

 77

authorization with delegation," in Proc. of the 12th Computer Security

Foundations Workshop (PCSFW), IEEE Computer Society Press, 1999.

[Online]. Available: http://citeseer.nj.nec.com/li99logicbased.html

[30] W. Ma, B. Shen, and J. Brassil, "Content services networks: The architecture and

protocol," in Proc. WCW'01, Boston, MA.

[Online]. Available: http://citeseer.nj.nec.com/ma01content.html

[31] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy, "Potential benefits

of delta encoding and data compression for HTTP," in Proc. SIGCOMM, 1997,

pp. 181–194.

[Online]. Available: http://citeseer.nj.nec.com/39596.html

[32] ——, "Potential benefits of delta encoding and data compression for HTTP

(corrected version)," Dec 1997.

[Online]. Available: http://citeseer.nj.nec.com/mogul97potential.html

[33] R. Mohan, J. R. Smith, and C.-S. Li, "Adapting multimedia internet content for

universal access," IEEE Transactions on Multimedia, vol. 1, no. 1, 1999, pp.

104–114.

[Online]. Available: http://citeseer.nj.nec.com/mohan99adapting.html

[34] T. J. Norman, and C. A. Reed, "Delegation and responsibility," ATAL, 2000, pp.

136–149.

[35] ——, "Group delegation and responsibility," in Proc. International Joint

Conference on Autonomous Agents and Multi-Agent Systems, 2002, pp. 491–498.

[36] H. K. Orman, "Data integrity for mildly active content," Aug 14 2001.

[Online]. Available:

http://standards.nortelnetworks.com/opes/non-wg-doc/opes-data-integrityPaper.pdf

[37] T. Norman, P. Panzarasa, and N. R. Jennings, "Modeling sociality in the BDI

framework," in Proc. Asia-Pacific Conference on Intelligent Agent Technology, World

Scientific, 1999.

 78

[38] R.Rvest, "The MD5 Message-Digest Algorithm," 1992.

[Online]. Available: http://www.ietf.org/rfc/rfc1321.txt

[39] T.Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler, "Extensible markup

language (XML) 1.0 (second edition)," 2000.

[Online]. Available: http://www.w3.org/TR/REC-xml/

[40] S. Thomas, HTTP Essentials. New York: Wiley, John and Sons, Incorporated,

2001, Chapter on Integrity Protection, pp. 152 – 156.

[41] ——, HTTP Essentials. New York: Wiley, John and Sons, Incorporated, 2001,

Chapter on Secure Sockets Layer, pp. 156 – 169.

[42] ——, HTTP Essentials. New York: Wiley, John and Sons, Incorporated, 2001,

Chapter on Public Key Cryptography, pp. 159 – 161.

[43] H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, "XML schema part 1:

Structures," 2001.

[Online]. Available: http://www.w3.org/TR/xmlschema-1

 79

Appendix A

Data-Integrity Message Syntax

This appendix specifies the syntax of a data-integrity message. Such a message can be

verified by the client and hence makes the client clear about the data integrity of the

received message.

A.1 Introduction

Since proxies on the path can be authorized by the server to modify its object, it is a

big problem to keep data integrity of the message. In order to solve the problem, the

chapters before in this thesis give a solution. We now define the syntax for a

data-integrity message here. We first provide an overview and an example of

data-integrity entity body syntax. We then specify the core of the syntax.

A.2 Overview and Example

The main components of a data-integrity entity body may contain manifests, parts with

header lines, and a list of notifications. A part can contain arbitrary text content. Since

it is probably a XML document, care should be taken in choosing names so that there

are no subsequent collisions that violate the ID uniqueness validity constraint [39].

In this section, an informal specification and an example are given to depict the

structure of the syntax of the data-integrity entity body. They may omit attribute and

details that will be fully explained in the next section.

A data-integrity entity body is represented by Message element with the fol-

 80

lowing structure. (Where "?" denotes zero or one occurrence; "+" denotes one or

more occurrences; "*" denotes zero or more occurrences)

<Message>
(<Manifest>

<MessageURL>
<ParentManifestDigestValue>?
(<PartInfo>

<PartID>
<PartDigestValue>
(<Permission>

<Action>+
<Editor>*
<Restricts>?
<Roles>?

</Permission>)+
</PartInfo>)+
<Signature>

</Manifest>)+
(<Part>

<Header>*
<PartID>
<Content>

</Part>)+
(<Notification>

<PartID>
<Action>
<Editor>
<Restricts>?
<Roles>
<InputDigestValue>?
<PartDigestValue>+
<ManifestDigestValue>
<Signature>

</Notification>)*
</Message>

The following simple example is an XML file for a web page based on the

schema defined in this document. The web page contains just one part without a

notification.

[m01] <Message>
[m02] <Manifest Id="manifest_for_x1">

 81

[m03] MessageURL>http://www.nus.edu.sg/mark1.htm</MessageURL>
[m04] <PartInfo>
[m05] <PartID>1</PartID>
[m06] <PartDigestValue>...</PartDigestValue>
[m07] <Permission>
[m08] <Action>Replace</Action>
[m09] <Editor>http://www.comp.nus.edu.sg</Editor>
[m10] <Restricts>
[m11] <Content-Length>10k</Content-Length>
[m12] </Restricts>
[m13] <Roles>Content Owner</Roles>
[m14] </Permission>
[m15] </PartInfo>
[m16] <Signature Id="firstsignature">
[m17] <SignedInfo>
[m18] <CanonicalizationMethod
Algorithm="http://www.3w.org/TR/2001/REC-xml-cn14-20010315"/>
[m19] <SignatureMethod Algorithm= "rsa-sha1"/>
[m20] <Reference URI="#manifest_for_x1" >
[m21] <DigestMethod Algorithm="md5"/>
[m22] <DigestValue>...</DigestValue>
[m23] </Reference>
[m24] </Signedinfo>
[m25] <SignatureValue> ... </SignatureValue>
[m26] <KeyInfo>

<X509data> Server's certificate </X509data>
[m27] </KeyInfo>
[m28] </Signature>
[m29] </Manifest>
[m30] <Part>
[m31] <Headers Content-Owner="proxy1.nus.edu.sg"
 URL="http://www.nus.edu.sg/mark1.htm#part1"
 Content-Length="34" Content-Type="text/plain"
 Expires="Tue, 05,Mar 2002 18:16:15 GMT"/>
[m32] <PartID>1</PartID>
[m33] <Content>The whole page is one part</Content>
[m34] </Part>
[m35] </Message>

[m02-29] "Manifest" element in the example describes what is authorized by the server.

Note that "MessageURL" element must be specified in order to identify the object

that the server specifies the manifest for.

[m16-28] "Signature" element is just the Signature element specified in [23]. It is

 82

used to sign the manifest so that the manifest will not be modified during its delivery.

[m30-34] "Part" element contains the content of a part with its properties.

[m31] "Headers" element depicts the properties of the part. Most of its attributes

are consistent with [26].

Since we only add one message header into a normal HTTP message, we depict it

in the next section. The rest of sections in this chapter focus on the syntax of a

data-integrity entity body.

A.3 The DIAction HTTP Header Field

The DIAction HTTP response header field can be used to indicate the intention of the

data-integrity response. The value is a URI identifying the intention. A data integrity

server MUST use this header field when issuing a data-integrity response.

diaction ="DIAction" ":" "URI-reference" URI-reference = <as
defined in [RFC2396]

A.4 Additional Syntax

Before the description of the core syntax, it is necessary to illustrate three things first.

• Namespace

This element provides the name space of the schema definition of the message.

Schema Definition:
<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:mn="URL of this document"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
targetNamespace="URL of this document"
elementFormDefault="qualified">

<!----for digital signature---->
<import namespace="http://www.w3.org/2000/09/xmldsig#">

• The ds:DigestValueType Simple Type

 83

This specification imports a simple type, ds:DigestValueType, from [23]. It

represents arbitrary-length integers in XML as octet strings. It is used mainly for

the value of digest. Since it takes less time to generate a digest by [38], MD5 is

selected as the default method of manifest digest and part digest.

• The ds:Signature Element

The ds:Signature element is imported from [23] It is used to present digital

signature.

Now it is time to move to the core syntax of a data-integrity entity body.

A.5 The Message Element

The Message element is the root element. Implementation MUST generate laxly

schema valid [43] [17]. Message elements as specified by the following schema.

Schema Definition:
<element name="Message" type="mn:MessageType"/>
<complexType name="MessageType">
<sequence>

<element ref="mn:Manifest" maxOccurs="unbounded"/>
<element ref="mn:Part" maxOccurs="unbounded"/>
<element ref="mn:Notification" minOccurs="0"
maxOccurs="unbounded"/>

</sequence>
</complexType>

A.6 The Manifest Element

The Manifest element describes the features of a manifest of an object. A message

may consist of several manifests. One of them may be from server, and the others

may come from the proxies, each of which is permitted to do the "Delegate" action.

A manifest contains the URL of its corresponding object, the information of the

parts of the object, the digest value and the digital signature of the manifest signed

 84

by the server or proxies. The Signature element is imported from [23] and enveloped into

the Manifest element.

Schema Definition:
<element name="Manifest" type="mn:ManifestType"/>
<complexType name="ManifestType">
<sequence>

<element name="MessageURL" type="anyURI"/>
<element name="ParentManifestDigestValue"

type="ds:DigestValueType" minOccurs="0"/>
<element ref="mn:PartInfo" maxOccurs="unbounded"/>
<element ref="ds:Signature" />

</sequence>
<attribute name="Id" type="ID" use="required"/>
</complexType>

A.6.1 The MessageURL Element and
ParentManifestDigestValue Element
The MessageURL element specifies which object the manifest is for. It must occur.

The ParentManifestDigestValue element specifies who delegates the owner of the

manifest. If the element does not occur, the manifest will be given by server.

Otherwise, the manifest is given by the proxy who is entitled to the "Delegate"

action.

A.6.2 The PartInfo Element
"PartInfo" is an element that may occur one or more times. It specifies an identity

of a part, the information of part's digest, and what may be done on the part.

Schema Definition:
<element name="PartInfo" type="mn:PartInfoType"/> <complexType

name="PartInfoType"> <sequence>
<element ref="mn:PartID"/>
<element ref="mn:PartDigestValue" />
<element ref="mn:Permission" maxOccurs="unbounded"/>

</sequence>
</complexType>

 85

A.6.2.1 The PartID Element

"PartID" is an element to specify the identity of a part.

Schema Definition:
<element name="PartID" type= "mn:PartID"/>
<simpleType name ="PartID">

<restriction base="string">
<pattern value="[0-9]+(.[0-9])+)*"/>

</restriction>
</simpleType>

A.6.2.2 The PartDigestValue Element

"PartDigestValue" is an element to specify the digest value of a part.

"PartDigestMethod" is an attribute of the element. Md5 digest method is the

default value.

Schema Definition:
<element name="PartDigestValue" type="mn:PartDigestValueType"/>
<complexType name="PartDigestValueType"> <simpleContent>

<extension base="ds:DigestValueType">
<attribute name="PartDigestMethod" default="md5"/>

</extension>
</simpleContent>
</complexType>

A.6.2.3 The Permission Element

This section defines the permission element. It specifies who can do which kind of

actions with what restrictions. In addition, it may point out what roles the one

does actions plays.

Schema Definition:
<element name="Permission" type="mn:PermissionType"/>
<complexType name="PermissionType">

<sequence>
<element ref="mn:Action" />
<element ref="mn:Editor"/ minOccurs="0"
maxOccurs="unbounded"/>
<element ref="mn:Restricts" minOccurs="0" />
<element ref="mn:Roles"/>

 86

</sequence>
</complexType>

A.6.2.4 The Action Element

"Action" is an element to specify what kind of actions editors can do. By now, the

choice is limited with five actions: None, Delete, Replace, Transform, and

Delegate. It can be enriched if other action can be implemented. "None" represents

that the part is not permitted to be modified and it is the default value of the

Action element.

Schema Definition:
<element name="Action" type="mn:ActionType" default="None"/>
<simpleType name="ActionType">

<restriction base="string">
<enumeration value="None"/>
<enumeration value="Delete"/>
<enumeration value="Replace"/>
<enumeration value="Transform"/>
<enumeration value="Delegate"/>

</restriction>
</simpleType>

A.6.2.5 The Editor Element

"Editor" is an element to specify who can do the action. It can occur zero, one or

more times. The content of it is a URI.

Schema Definition:
<element name="Editor" type="anyURI"/>

A.6.2.6 The Restricts Element

"Restricts" is an element to define under what restrictions the editor should do the

action. By now, the following properties of a part can be taken as restrictions:

Content-Length, Content-Encoding, Content-Language, Content-Type, Editor,

Action, and Depth. Among them, "Content-Length" is a string to specify the range

of the size of a part. For example, a value of 3K means that the size of a part

 87

cannot be more than 3 Kbytes. Depth, Editor, and Action elements constraint the

delegated proxy's authority. Other properties are consistent with [26].

Schema Definition:
<element name="Restricts" type="mn:RestrictsType"/>
<complexType name="RestrictsType">
<sequence>

<element name="Content-Length" type="mn:CLType" minOccurs="0"/>
<simpleType name="mn:CLType">

<restriction base="string">
<pattern value="([0-9]+)k?)"/>

</restriction>
</simpleType>
<element name="Content-Encoding" type="string" minOccurs="0"/>
<element name="Content-Language" type="language" minOccurs="0"/>
<element name="Content-Type" type="string" minOccurs="0"/>
<element name="mn:Editor" minOccurs="0" maxOccurs="unbounded"/>
<element name="mn:Action" minOccurs="0" maxOccurs="unbounded"/>
<element name="Depth" type="nonNegativeInteger" minOccurs="0"/>

</sequence>
</complexType>

A.6.2.7 The Roles Element

"Roles" is an element for a sever or delegated proxies to define the prospective

roles of the authorized editors by the authorized actions. "Content-Owner" repre-

sents that the ownership of the content will be changed by the action. "Presenter"

means that although the representation of the content may be changed by some

editor, its ownership is not entitled to the editor. A "Delegate" action will give the

part a new authorization, so we use "Authorization-Owner" to show this.

Schema Definition:
<element name="Roles" MinOccurs="0" default="Content-Owner">

 <simpleType>
<restriction base="string">

<pattern value="(Content-Owner)|(Presenter)
|(Authorization-Owner)"/>

</restriction>
</simpleType>

</element>

 88

A.7 The Part Element

The Part element is introduced to delimit the content of an object and provide the

properties of a part of the object. PartID element has been described in Section

A.6.2.1. Content element contains the text content of the part. A Part element can

contain several Part elements as its sub-elements. A sub-element Part describes a

sub-part of the original part.

Schema Definition:
<element name="Part" type="mn:PartType"/>
<complexType name="PartType">

<sequence>
<element ref="mn:Headers" minOccurs="0"

maxOccurs="unbounded"/>
<element ref="mn:PartID"/>
<choice>

<element name="Content" type="string"/>
<element ref="mn:Part" maxOccurs="unbounded"/>

</choice>
</sequence>

</complexType>

A.7.1 The Headers Element
"Headers" is an element to specify the properties of a part. The first three attributes

describe who provides the header. In a Header element, only one of them can be

specified, which also implies the type of the action on the part. URL attribute

defines the URL of the part. Other properties are consistent with headers in [26].

The Headers element can occur zero or more times. If it does not occur, all the

properties of the part will be the same as the whole message. If an attribute of the

element does not occur, the property will be the same as the corresponding property

of the message or not appropriate to the part.

Schema Definition:
<element name="Headers" type="mn:HeaderType"/>
<complexType name="HeaderType">

<attributeGroup ref="mn:FieldType/>

 89

</complexType>
<attributeGroup name="FieldType">

<attribute name="Content-Owner" type="anyURI"/>
<attribute name="Presenter" type="anyURI"/>
<attribute name="Authorization-Owner" type="anyURI"/>
<attribute name="URL" type="anyURI"/>
<attribute name="Pragma" type="string"/>
<attribute name="Warning" type="string"/>
<attribute name="Vary" type="string"/>
<attribute name="Allow" type="string"/>
<attribute name="Content-Length" type="positiveInteger"/>
<attribute name="Content-Encoding" type="string"/>
<attribute name="Content-Language" type="language"/>
<attribute name="Content-Type" type="string"/>
<attribute name="Content-Location" type="anyURI"/>
<attribute name="Content-Range" type="string"/>
<attribute name="Etag" type="string"/>
<attribute name="Age" type="positiveInteger"/>
<attribute name="Vary" type="string"/>
<attribute name="Cache-Control" type="string"/>
<attribute name="Expires" type="dateTime"/>
<attribute name="Last-Modify" type="dateTime"/>

</attributeGroup>

A.8 The Notification Element

The Notification element can occur zero, one, or more times. It contains some

important information about who does the action, what action it does, on which

part of an object it does the action and according to which manifest it does the

action. All the sub-elements in this element have been described in the above

sections except InputDigestValue and ManifestDigestValue elements. A

notification element can have several PartDigestValue sub-elements when

"Delegate" action divides a part into sub-parts whose digest values should be

declared in a notification.

Schema Definition:
<element name="Notification" type="mn:NotificationType"/>
<complexType name="NotificationType">

<sequence>
<element ref="mn:PartID" />

 90

<element ref="mn:Action" />
<element ref="mn:Editor" />
<element ref="mn:Restricts" minOccurs="0"/>
<element ref="mn:Roles"/>
<element ref="mn:InputDigestValue" minOccurs="0">
<element ref="mn:PartDigestValue" maxOccurs="unbounded"/>
<element ref="mn:ManifestDigestValue" />
<element ref="ds:Signature" />

</sequence>
<attribute name="Id" type="ID" use="required"/>

</complexType>

A.8.1 The InputDigestValue Element
"InputDigestValue" is an element used to record the digest value of the received

part by a proxy before it does "Transform" action.

Schema Definition:
<element name="InputDigestValue" type="ds:DigestValueType"/>

A.8.2 The ManifestDigestValue Element
ManifestDigestValue element is the digest value of the manifest that directly gives

the authority to the proxy which gives the notification. Its value must be identical

with the DigestValue element value of the Signature element in the Manifest ele-

ment. Since the digest value of a manifest is unique, it can tell if a notification is

consistent with a certain manifest.

Schema Definition:
<element name="ManifestDigestValue" type="ds:DigestValueType"/>

 91

