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Abstract

Wireless communications have been progressing steadily in recent years. It is expected

that data traffic generated by services such as web surfing, file transfer, emails and mul-

timedia message services will be dominant in next generation mobile networks. Radio

resource management is very important in that it improves the resource utilization

efficiency while meeting Quality of Service (QoS) requirements. This thesis studies the

design of optimal resource allocation policies for data services in wireless networks. In

particular, this thesis investigates the following resource management issues: power

allocation, transmission control and rate allocation. We first study these issues sepa-

rately from a single user point of view and then jointly from a system viewpoint.

A set of problems is modelled from the stochastic decision theoretic framework

and solved by using the Markov decision processes (MDP) mathematical tool. We first

consider a power allocation problem for transfer of a file by a single sender in a Rayleigh

fading channel. The objective is to minimize the energy required for transfer of the file

while meeting a delay constraint. We show how to convert such a constrained stochastic

optimization problem with an average delay constraint to a standard Markov decision

problem via a Lagrangian approach. It is observed from our numerical results that

transmission power can be substantially reduced with optimal policies which exploit

knowledge of the channel variations to meet the delay constraint.

We next consider a transmission control problem over a time-varying channel and

with general arrival statistics. We show the existence of average cost optimal policies

and explore the properties of the optimal policies. The resulting optimal policies are

proved to have a structural property: when the buffer occupancy is low, the sender can

suspend transmission in some bad channel states to save transmission power; however,

xiv
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when the buffer occupancy exceeds some thresholds, the sender has to transmit even

in some bad channel states to avoid increasing the delay cost. We evaluate how the

channel characteristic affects the resulting optimal policies via extensive simulations.

We also consider a rate allocation problem. We prove that the resulting optimal

policies have a monotone property, i.e., the optimal action is nondecreasing with the

system state. We analyze two extreme policies which provide the upper and lower delay

bounds based on the stochastic process comparison technique. A class of one-threshold

based simple policies are proposed to approximate the optimal policy and a tight delay

bound is proved. We also extend the rate control problem against the existence of

competitions across users. We then identify the characteristic of the value functions

and the property of optimal policies for such an extended problem

When allocating resource among multiple users, fairness among users is also im-

portant in addition to system utilization efficiency. We propose a new fairness model,

the fair-effort resource sharing model, and a simple credit based algorithm to im-

plement the proposed fairness model. According to our fairness model, the resource

share (quota) allocated to a user is proportional to the user’s effort which is consid-

ered as time dependent rather than as fixed. We then present an integrated packet

level resource allocation scheme which consists of optimal power allocation, exhaustive

instantaneous data rate allocation and fair-effort resource sharing. Numerical results

show that fair-effort based fairness is guaranteed with our proposed scheme and that

system efficiency is improved compared to a scheme based on the generalized processor

sharing fairness model.

xv



Chapter 1

Introduction

Cellular mobile communications have been progressing steadily in recent years, from

the first and second generation systems to the third generation systems (3G). The ser-

vices that can be supported have also evolved from pure voice service to multimedia

services, including voice, video and data. It is expected that data traffic generated by

services such as web surfing, file transfers, emails and multimedia message service will

be dominant in next generation mobile networks. As different services have different

Quality of Service (QoS) requirements, e.g., delay, error rate, etc., compared to pure

voice services, more flexibility in allocating the radio resources to meet these diverse

requirements is needed. However, radio resources are scarce due to the limited radio

spectrum. Therefore, how to efficiently utilize/allocate radio resources and simulta-

neously to provide the required QoS guarantees is an important topic of research to

enable mobile networks to support heterogeneous services.

1.1 Cellular Mobile Communications

In cellular mobile communications, the geographical area covered by the whole sys-

tem is divided into several contiguous small areas (cells) in which multiple mobile

stations (MS) communicate with a central base station (BS) [65], as shown in Fig. 1.1.

When several mobile stations (mobile users) wish to communicate with the base sta-

tion through a common channel, multiple access techniques are used to coordinate the

communications between the mobile stations and the base station. Common multiple

1



CHAPTER 1. Introduction Page 2

Figure 1.1: System model of cellular mobile communications

access techniques are:

• Frequency Division Multiple Access (FDMA)

The radio spectrum is divided into separate frequency bands (channels). Each

mobile station is assigned a unique frequency channel upon successful request,

which is not used by others during the whole course of its communication (con-

nection holding time). Multiple users can communicate with the base station

simultaneously by using different frequency bands.

• Time Division Multiple Access (TDMA)

The time axis is divided into several contiguous timeslots. In each timeslot,

only one user can transmit. However, a user can transmit in several consecu-

tive timeslots (in the same frame) to obtain a high transmission rate via slots

aggregation. Thus multiple users communicate with the base station through a

common frequency channel but in a time-slotted manner.

• Code Division Multiple Access (CDMA)

Each user is assigned a unique code which the base station uses to separate differ-

ent users. The codes are used for either modulating the radio waves or changing

the carrier frequency, i.e., spreading the information radio waves. Multiple users

share the same bandwidth and thus can transmit simultaneously.

The same frequencies and timeslots can be reused in different cells by using FDMA

and TDMA if the distance between the base stations are large enough and interference

2
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of the same frequency bands is negligible. Hence more users can be supported and

radio utilization efficiency can be improved in a mobile system. By using CDMA, the

information bearing signal is spread over a bandwidth larger than the signal itself.

Although it is not spectrally efficient for a single user, a CDMA system becomes band-

width efficient in the multiple user case since it is possible for multiple users to share

the same spreading bandwidth at the same time. Usually, FDMA is used together with

TDMA or CDMA to separate the spectrum into smaller bands which are then divided

in a time or code division manner. The above fundamental techniques can be used

together to form various hybrid schemes.

Some second generation digital cellular systems, such as the Global System of Mo-

bile Telecommunications (GSM), employ a simple form of TDMA scheme that assigns

fixed timeslots to mobile users to support digital voice services. Timeslots aggregation

can be used to support multi-rate services in second generation systems. Most third

generation mobile networks will be based on the Wide-band CDMA (W-CDMA) tech-

nique. However the TDMA component has also been incorporated in 3G standards.

1.1.1 3G and UMTS

The third generation mobile communication system (3G) is standardized and defined

by International Telecommunication Union (ITU) as IMT-2000 (International Mobile

Telecommunication). It comprises a set of standards and recommendations. In Europe,

the 3G system is called Universal Mobile Telecommunication System (UMTS) [40],

which has been specified by the European Telecommunication Standards Institute

(ETSI). The UMTS Terrestrial Radio Access (UTRA) consists of two operational

modes, a frequency division duplex (FDD) mode, and a time division duplex (TDD)

mode [13]. Wideband Code Division Multiple Access (WCDMA) is used for UTRA

FDD and Time Division-Code Division Multiple Access (TD-CDMA) is used for UTRA

TDD. UTRA FDD uses different frequency bands for uplink and downlink, separated

by the duplex distance, while UTRA TDD utilizes the same frequency for both uplink

and downlink. UTRA FDD and TDD are harmonized with respect to the basic system

parameters such as carrier spacing, chip rate and frame length and hence FDD/TDD

3
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dual mode operation can be facilitated. UMTS is a hybrid system which enables the

use of FDMA, TDMA and CDMA and their combinations. For more specifications of

UMTS, refer to the ETSI standard series and the text edited by Holma [40].

The most important feature of the UMTS is its high data rate capability, which

is usually summarized as 144 kbps for vehicular speeds, 384 for pedestrian speeds

and 2Mbps for indoor environments. Other main features include global roaming,

diverse services, Internet connection, easy and flexible service bearer configuration,

etc. Finally, we note that both circuit switching and packet switching are allowable in

UMTS. Hence advanced and flexible QoS can be supported.

1.2 Resource Allocation in Wireless Networks:

Challenges and Issues

As mentioned earlier, next generation mobile networks need to support heterogeneous

services with different QoS requirements. For example, voice services have strict delay

requirements while data services may tolerate some delays. Although this feature

lends the 3G networks to efficiently utilize resources, it also complicates the design

of resource management policies. On the other hand, due to the hostile transmission

medium in wireless communications, the resource allocation policy should also be fine

tuned to balance between the transmission quality, e.g., meeting the minimum error

rate requirement, and the cost to achieve the quality requirement, e.g., using the least

transmission power. In this section, we briefly overview the wireless QoS issue in the

context of UMTS, summarize the characteristic of the radio channel and introduce

some resource management modules.

1.2.1 Wireless Services and QoS Issues in UMTS

UMTS defines bearer service as the abstraction of the capability for information trans-

fer between access points [20]. The information transfer capabilities and transfer qual-

ities are the two main requirements for bearer services. The characterization of a

bearer service is made by using a set of characteristics, which include traffic type
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(realtime/non-realtime), traffic characteristics (uni-/bi-directional, broadcast, multi-

cast), information quality (delay, delay jitter, error rate, data rate) and so on. UMTS

allows a user (or application) to negotiate bearer characteristics that are most appro-

priate for its information transfer. It is also possible to change bearer characteristics

via a bearer re-negotiation procedure during an ongoing connection. UMTS uses a lay-

ered structure to map an end-to-end network service into several bearer services [21].

The end-to-end QoS is thus split into several parts and each part should be supported

by one bearer service. The lowest bearer service that covers all aspects of the ra-

dio interface transport is the radio bearer service, which uses the UTRA FDD/TDD

services.

UMTS defines four kinds of QoS classes (traffic classes) [21]. They are: conver-

sational, streaming, interactive and background class. The main distinguishing factor

between these QoS classes is how delay sensitive the traffic is. Conversational class is

meant for traffic which is very delay sensitive while background class is the most delay

insensitive traffic class. The first two classes are those real-time traffic which needs

to preserve time relation (variation) between information entities of the stream. The

last two classes are those best-effort traffic which needs to preserve payload content.

A summary of the major groups of example applications in terms of QoS require-

ments is shown in Fig. 1.2, in which the delay values represent the one-way delay [20].

Applications may be applicable to one or more groups.

Figure 1.2: UMTS QoS classes and example allocations [22].

In UMTS, the QoS attributes define some typical parameters (e.g., delay/loss ratio)

for each QoS class. The QoS attributes are used to compose a QoS profile for negotia-
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tion of the bearer service between the end user and the network. The specification of

UMTS QoS attributes is still ongoing and especially, the bit rate attributes are under

discussion. Different classes have different ranges of the value of some QoS attributes.

Table 1.1 summarizes the typical values for some main QoS attributes. The delivery

order indicates whether the service data unit (SDU) can be delivered in-sequence or

not. The residual bit error ratio indicates the undetected bit error ratio in the deliv-

ered SDUs. The transfer delay is the maximum delay for the 95th percentile of the

distribution of delay for all delivered SDUs during the life time of a bearer service. It

is worth noting that the guaranteed bit rate and the transfer delay are not specified

for the interactive and background classes according to UMTS specifications.

Table 1.1: Value ranges of UMTS radio bearer QoS attributes (adapted from [21])

QoS attributes Conversational Streaming Interactive Background

Maximum bit rate < 2048 kbps < 2048 kbps < 2048 kbps < 2048 kbps

Delivery order yes/no yes/no yes/no yes/no

Residual BER 5× 10−2, 10−2, 5× 10−2, 10−2, 4× 10−4, 4× 10−4,

5× 10−3, 10−3, 5× 10−3, 10−3, 10−5, 10−5,

10−4, 10−6 10−4, 10−5, 10−6 6× 10−9 6× 10−9

SDU error ratio 10−2, 7× 10−3, 10−1, 10−2, 10−4, 10−3, 10−4, 10−3, 10−4,

10−3, 10−4, 10−6 7× 10−3, 10−5 10−6 10−6

Transfer delay 80ms-maximum 250ms-maximum

The separation of the bearer service and QoS profile enables the flexible allocation

and utilization of UMTS network resources. For example, a user (or an application)

can request to use a lower data rate to save transmission cost during its connection

holding time via the radio bearer negotiation procedure in UMTS. On the other hand,

some distinguishing characteristics of wireless communications also complicate the re-

source management. The following subsection briefly overviews a main distinct feature

particular to wireless communications.
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1.2.2 Hostile Radio Channel

In a mobile radio environment, radio wave propagation suffers from attenuation be-

tween the mobile station and its serving base station. In general, the received signal

strength is affected by antenna heights, local reflectors and obstacles. Furthermore, the

user mobility pattern, i.e., the speed and the direction, also greatly impacts the received

signal strength. In practice, the path loss cannot be assumed to be computed based

on a simple free-space and line-of-sight model. However, some engineering models can

be used. These engineering models are based on several wave propagation phenomena

such as reflection, diffraction and scattering [65]. Reflection from an object typically

occurs when the wavelength of an impinging wave is much smaller than the object itself,

resulting in the multi-path components. Diffraction causes the wave to bend around

obstacles and can be explained by Huygen’s principle [65]. When a wave travels in a

medium with a large number of elements having smaller dimensions compared to its

wavelength, the energy is scattered. Although accurate prediction of ratio propagation

is rather difficult, several engineering radio fading models are widely used in cellular

mobile communications. The signal fading in a wireless environment is normally con-

sidered to contain three components with different time scales of variations. These

are the large-scale path loss, medium-scale slow fading and small-scale fast fading [65].

Decreased received power with distance, reflection and diffraction constitute the path

loss. These are denoted large-scale since changes appear when moving over hundreds

of meters. A mobile station can be shadowed by, e.g., trees and buildings. The local

mean received power changes when a user moves just a few tens of meters, i.e., on a

medium-scale. Small-scale fast fading or multi-path fading characterizes the effect of

multi-path reflections by local scatterers and changes by the order of wavelengths. For

example, in the absence of a strong non-fading line-of-sight component, the Rayleigh

fading model is often used, in which the envelope S of the received signal follows a

Rayleigh distribution: fS(s) = s
σ2 e

− r2

2σ2 , s ≥ 0. Note that the received signal power S2

follows the exponential distribution in this case.

The transmission quality of a connection (or an application) is closely related to

the underlying channel conditions which determine the probability of successful recep-
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tions and hence determine the QoS of the connection. Many methods can be used

to alleviate the harsh channel conditions, such as power control, error correction cod-

ing, interleaving and so on. However, there are always some costs associated with

the method for alleviating channel conditions. We consider the following example. In

wireless communications, the received signal to noise ratio (SNR, often in the context

of TDMA) or signal to interference plus noise ratio (SINR or SIR, often in the con-

text of CDMA) has a one-to-one mapping to the bit error rate (BER) given a fixed

transmission scheme, i.e., fixed coding and modulation scheme, etc. Let γ denote the

received SNR which can be simply computed as the ratio of the received signal power

to the channel noise, S2/σ2. Then the famous Shannon capacity of an additive white

Gaussian noise (AWGN) channel can be expressed as [61]:

C = log2(1 + γ) bit/sec/Hz (1.1)

This can be interpreted by an increase of 3dB in SNR required for each extra bit per

second per Hertz. Note that (1.1) can also be interpreted as how to maintain the

received SNR for a fixed transmission rate requirement, i.e., adjusting transmission

power according to the time-varying channel path gain. At first glance, increasing

transmission power can improve the received SNR and hence improve the effective

transmission rate of a connection. However, when we consider the transmission power

as the cost to achieve the QoS requirements, it is of course better to use the least

cost to achieve the same QoS requirements. Hence a better (or an optimal) resource

management policy should also address the tradeoff between the QoS requirements and

the costs to achieve the QoS. In the next subsection, we briefly introduce some resource

management tools considered in this thesis.

1.2.3 Some Management Modules

Radio resource management [40, 96], which has always been an important research

area in wireless communications, provides the mechanisms for efficient utilization of

the limited and scarce radio resources while guaranteeing the diverse QoS require-

ments of different services. However, the design of a comprehensive resource man-

agement scheme is rather difficult and, sometimes, almost impossible. Nonetheless,
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we can identify different QoS levels each with appropriate QoS metrics, and further

identify some management tools for each level accordingly. In general, we can classify

the QoS requirements at three different levels: class level, call level and packet level.

This example classification enables us to work at different levels of the QoS hierarchy

independent of each other and facilitates us to identify the required management tools

for each level. For example, at the call level, the channel allocation scheme and the

handoff scheme are important management modules as they determine the call blocking

and handoff dropping probabilities, the main call level QoS metrics. In this thesis, we

focus on packet level resource management and in particular, we focus on the optimal

policy design problem for data services.

At the packet level, we are mainly concerned with the following problems: when to

transmit a packet (or when to transmit which packet), how much transmission power

should be used and how many information bits (or data packets) should be transmit-

ted in a transmission. Indeed, these problems represent three important modules of

resource management at the packet level, i.e., transmission scheduling, power control

and rate allocation. These problems can be solved either separately or jointly. Further-

more, these problems can also be solved either from a single user point of view or from

the system point of view. For example, a centralized system operator decides which

user should transmit next among multiple backlogged users. We next briefly review

the main functionality of each module.

Transmission scheduling From a single user’s point of view, transmission schedul-

ing determines the times for transmitting the head of line packet in the (sorted) buffer.

Transmission scheduling can be used to exploit the variations of a wireless channel in

that it can avoid transmitting in poor channel conditions. This may lead to energy

savings but increases delay. However, a realtime packet should be transmitted before

its deadline. From a system operator’s point of view, transmission scheduling is used

to decide which user (flow) should transmit next. Hence, transmission scheduling may

(partly) determine the quota of the system resources allocated to each user and fairness

(e.g., the max-min fairness [8]) among users is a basic objective in this case.

Power control Transmission power determines the probability of a successful re-

ception of a packet. From a single user’s point of view, power control is mainly for

9
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combatting the hostile radio channel. It, together with transmission scheduling, can

achieve energy efficient transmissions. Power control is of particular importance in

CDMA network in that it controls the total interference over the air and hence deter-

mines the achievable total system throughput.

Rate allocation As mentioned in the previous section, it is possible to change the

transmission rate for a connection during its holding time. From a single user’s point

of view, it can choose to transmit with a high or low rate based on its demand, e.g.,

its buffer occupancy. From the system’s point of view, rate allocation also determines

how the system resources will be shared among different users.

In this thesis, we first consider the three management modules separately for a

single user and put the three problems in the decision theoretic framework. We then

study the three problems jointly and from a system operator’s point of view. We review

some related works for the two sets of problems in the next section.

1.3 Related Works

1.3.1 Optimal Policy Design

We focus on data services instead of realtime services throughout this thesis. In general,

data services generate elastic traffic which are more delay tolerant than realtime traffic,

cf. Section 1.2.1. At the packet level, delay tolerance often means that there is no

strict deadline for a data packet to be transmitted. Hence there is more flexibility

in allocating resources to data services. On the other hand, we may also exploit the

channel variations for delay tolerant data services in that we may transmit data packets

in an opportunistic way, e.g., not transmitting in bad channel conditions but waiting for

better channel conditions to transmit later. However, it is also not appropriate that we

totally neglect any delay requirement for data services. Instead, we can take the delay

into consideration via some cost functions and provide statistical delay guarantees. As

there may be many solutions to these problems, we need to find an optimal one and

design the resource allocation policy accordingly.

A resource allocation policy prescribes the procedure of how to choose different

10
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actions, e.g., different transmission powers, according to the observed state, e.g., the

channel conditions. Obviously, the design of a policy is determined by the design ob-

jective. It is desirable but almost impractical that a policy can perform best in all

aspects. It is not uncommon that we have to face tradeoffs between different design

objectives, e.g., reducing energy consumption vs. decreasing packet delay. To com-

pare different policies, it is useful to assign some (real) value to each policy. Hence

an optimal policy can be defined as the one that has the minimum (or maximum)

policy value among all (allowable) policies. When the dynamics of the radio channel

and/or the dynamics of the data sources are considered, a policy needs to consider

not only the current outcome of the action but also the future action options. In the

context of stochastic optimization, a Markov decision process (MDP) [7, 62] is such a

useful mathematic tool that can be used for our resource allocation problems in that

it not only considers stochastic dynamics but also assigns policy values. We defer the

introduction of the Markov decision theory to the next chapter. Note that there may

be other methods to compare policies, such as the commonly used linear programming

and nonlinear programming methods. For example, A. Sampath et al., in their widely

refereed paper [68], have applied the nonlinear programming modelling technique for

power control and resource management in a CDMA network and recently, M. Soleima-

nipour et al. have applied a mixed integer nonlinear programming technique in the

design of optimal resource management [74].

In this thesis, we apply MDP theory in policy design for the three allocation prob-

lems. Before going into our approaches, we mention some recent related works applying

MDP theory in wireless resource allocation policy design at the packet level. In par-

ticular, researchers have applied MDP theory in the design of wireless transmission

schemes each with a particular context and problem formulation [12, 37, 38, 39, 92,

93, 97, 98, 63, 64, 6, 32]. In [12], a user controls its target SIR for its head of line packet

based on the estimated interference over the air in order to maximize a reward func-

tion each time it transmits a deadline-constrained packet. The resulting policy provides

network layer QoS guarantees while increasing the system achievable total throughput

in a saturated CDMA network. In [37, 38, 39], T. Holliday et al. apply the MDP

theory to design optimal link adaptation policies for voice traffic in the context of both
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TDMA and CDMA networks. The resulting optimal transmission polices prescribe op-

timal actions in terms of the choice of the modulation scheme, source coding scheme,

and the transmission power level for a voice packet before its deadline. In [92, 93], H.

Wang and N. Mandayam consider an opportunistic file transfer over a Rayleigh fading

channel. The resulting optimal binary power control scheme, i.e., either transmit with

fixed power level or not transmit at all, takes care of both the energy constraint and

the different delay constraints for a fixed size file transfer. In [97, 98], D. Zhang and K.

Wasserman study the energy efficient power control problem for an always backlogged

user over a time-varying channel, in which the channel conditions are assumed only

partially observable. They prove that under a mild assumption, the resulting optimal

policy for such a partially observable MDP problem has a certain structural property.

In [63, 64], D. Rajan et al. explore transmission schemes for bursty sources over Gaus-

sian channels. In their work, a packet is considered lost when the buffer overflows, when

it is dropped or when it is received in error. They derive optimal transmission schemes

to minimize packet loss with constraints on both the average delay and transmit power.

In [6], R. Berry and R. Gallager consider the tradeoff between power consumption and

packet delay for one way communication (where erroneous packets are lost and not

retransmitted) over a fading channel. They show that the optimal power and delay

curve is convex and quantify the behavior of the power delay tradeoff in the regime of

asymptotically large delay. Finally, in [32], M. Goyal et al. extend the work in [6] to

provide upper and lower bounds for a simplified rate allocation policy.

1.3.2 Fair Resource Allocation

In this thesis, we also present an integrated resource allocation policy covering the three

management modules from a system operator’s point of view. When facing multiple

users, another important resource allocation criterion prevails, i.e., fairness among the

users.

Fairness has always been an important issue in communications, especially in com-

puter networks. In wired networks, packet scheduling, i.e., which packet should be

sent next, takes care of the fairness issue. The most often used fairness criterion is

12



CHAPTER 1. Introduction Page 13

max-min fairness and the Generalized Processor Sharing (GPS) model [60] is used

as the ideal reference model by most known algorithms, e.g., Weighted Fair Queue-

ing (WFQ) [10] and Worst-case Fair weighted Fair Queueing(WF2Q) [5]. Recently,

some wireless fair scheduling schemes have been proposed such as Channel-condition

Independent packet Fair Queueing (CIF-Q) [56] and Idealized Wireless Fair-Queueing

(IWFQ) [49], in which the GPS model has also been used as the fairness reference.

Compared to these previous works, we propose a new fairness model that may be more

appropriate to wireless communications, especially to soft capacity limited CDMA net-

works. The proposed fairness model is just a slight modification of the GPS model and

incorporates the time varying channel conditions as a factor impacting on the quota of

resources allocated to a user.

Based on our proposed fairness model, we then present a detailed packet level re-

source allocation policy that consists of a series of actions: transmission scheduling,

power allocation, and rate allocation in each frame. Recently, many compound resource

allocation schemes have been proposed but each with a particular objective and focus,

e.g., [2, 4, 34, 35, 57, 58, 59, 67]. M. Arad et al. [2, 4] and Ö. Gürbüz et al. [34, 35] pro-

pose detailed packet level resource allocation policies including transmission scheduling

and power allocation for multi-service CDMA networks. In their works, data users are

allocated the same instantaneous data rate and the simple first-in-first-out (FIFO)

transmission scheduling is used. In [57, 58, 59], S. Oh and K. Wasserman propose

several resource allocation schemes all based on the maximization of the system total

throughput, i.e., the total instantaneous data rate over all data users, in a multi-cell

CDMA system. The total throughput is maximized when the allocated instantaneous

data rate is inversely proportional to a user’s path gain. However, their proposed

scheme does not consider fairness among the data users, and hence a backlogged flow

with a low path gain may be starved for a long time. In [67], O. Sallent et al. propose

a detailed packet level resource allocation scheme for data users. In this work, different

instantaneous data rates for data users are allowed but no explicit fairness guarantee

is provided. Compared to these works, we allow users to be allocated different instan-

taneous data rates and provide explicit fairness guarantees among the users. However,

these are based on our proposed fairness model.
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1.4 Contributions of This Thesis

We apply MDP theory to solve the optimal policy design problems from a single user’s

point of view for the three resource management modules, viz., power control, transmis-

sion scheduling and rate allocation. Though the problems share a common mathematic

structure, their contexts are different. We also present a detailed packet level resource

allocation policy from a system operator’s point of view based on a proposed new fair-

ness model. This section reviews the main work in this thesis. Our contributions are

also briefly outlined and compared to the related works.

1.4.1 Optimal Power Allocation Policies

Intuitively, only transmitting in the best channel state and using the least transmission

power lead to the most energy efficient transmissions. However, the resulting cost

is increased delay. We consider an energy efficient file transfer problem, in which

a user needs to decide when to transmit and how much transmission power should

be used in each transmission in order to consume the least power while meeting the

delay constraints for finishing the file transfer. We model such a file transfer problem

as a constrained stochastic optimization problem. We note that our problem can be

considered as a dual problem of the one investigated by H. Wang and N. Mandayam [92,

93], which studies how to maximize the probability of a successful file transfer over a

Rayleigh fading channel via a binary power control scheme under total energy and

transfer delay constraints. Similar to [92, 93], we consider two delay constraints: the

average delay constraint and the strict delay constraint. However, we also consider

multiple transmission power levels. Furthermore, our objective is to achieve energy

efficient file transfer assuming an infinite power budget. We first show how to convert

the average delay constrained stochastic optimization problem to a standard Markov

decision problem via the Lagrange approach. The resulting optimal policy under the

average delay constraint is a stationary one while the resulting optimal policy under

the strict delay constraint is time dependent. We present numerical examples to show

the resulting optimal policies and to compare the performance of the optimal policies

to that of a fixed power persistent transmission policy. The simulation results indicate
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that the transmission power can be substantially reduced while the delay constraint is

still satisfied with the computed optimal policies which exploit the channel variations.

This work is also summarized in our paper [87].

1.4.2 Optimal Transmission Control Policies

We consider a simple transmission control problem, in which the arrival process is

included but the action is simplified as either to transmit or not to transmit. The

objective is to find the policy that optimally balances different costs such as the delay

and transmission power. We prove the existence of stationary average optimal policies

for such a Markov decision problem and explore the properties of the optimal policies.

In [97, 98], Zhang and Wasserman have explored the structure of the optimal policies for

an always backlogged user, i.e., when the channel estimation is in some bad states, the

sender suspends transmission and waits for the channel to transit to some good states.

Compared to their work, we show that with the arrival dynamics included, the sender

has to transmit in some bad channel states when the buffer exceeds some thresholds to

avoid increasing the delay cost. Furthermore, we propose an improved policy iteration

algorithm to efficiently compute optimal policies, which is based on the property of

the optimal policies. We present numerical examples to illustrate how the different

cost functions affect the resulting optimal policy and its performance. We compare the

performance of the optimal policy with that of a persistent transmission policy. We

also provide extensive simulation results that investigate the effect of channel memory

on the performance of the optimal policies. These results indicate that increasing the

channel memory increases the value of the optimal policy but decreases the system

throughput.

This work is also summarized in our papers [91, 90].

1.4.3 Optimal Rate Allocation Policies

Besides choosing the transmission times and adapting transmission powers, a data

connection may also adapt its transmission rate during its holding time to achieve

cost efficiency while meeting QoS requirements. We investigate the rate allocation
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problem, in which the arrival process is included but the channel is simplified as time

invariant. Some recent works have analyzed the problem of designing a power efficient

transmission scheme over a fading channel [6, 32, 63, 64]. Compared to these works,

our work simplifies the channel to be time invariant but we consider retransmissions.

We show that the optimal policy is monotone under a mild assumption, i.e., a larger

transmission rate should be chosen when the buffer occupancy increases. We analyze

two extreme policies which provide the upper and lower delay bounds based on the

stochastic process comparison technique. A case study with numerical examples is

also presented. We propose a class of one-threshold based simple policies and provide

a tight upper delay bound for such simple policies. We also propose and apply a

modelling technique in the case when a single user has to consider its self-optimization

in the presence of other users (interference). The characteristic and the property of

the optimal policies for the extended problem are also presented.

This work is also summarized in our papers [89, 85].

1.4.4 Fair-effort Based Resource Allocation

We study the three resource management modules, i.e., transmission scheduling, power

control and rate allocation, from the viewpoint of an operator who allocates the sys-

tem resources among multiple users. We focus on two policy design objectives: fairness

among users and system utilization efficiency. Unlike the GPS fairness model, we pro-

pose a new fairness model. The nominal weight of a flow is considered time-dependent

in our fairness model while it is fixed in the GPS model. By such a simple modification,

we can incorporate the (possible) interaction between users and the resource allocation

process. We then present a simple credit based algorithm to approximate the pro-

posed fairness model. Based on our fairness model, we present a detailed packet level

resource allocation scheme for a CDMA-based wireless network. The scheme consists

of resource shares assignment, transmission scheduling, rate and power allocation. We

evaluate our proposal via simulations. The simulation results show the advantages of

using our fairness model in terms of the system utilization efficiency.

This work is also summarized in our papers [84, 88, 86].
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1.5 Thesis Organization

In this chapter, we have presented a brief introduction to cellular mobile communica-

tions, some challenges and some resource management modules for the radio resource

management problem in next generation mobile systems. The research topics of interest

are identified and some related works have been reviewed.

The rest of this thesis is organized as follows. Chapter 2 summarizes the common

features of the system models and some Markov decision theory. Chapter 3 studies the

optimal power allocation policies for an energy efficient file transfer problem. Chapter 4

considers the transmission scheduling problem in which the arrival process is included

but the action is simplified. Chapter 5 investigates the rate allocation problem in

which the arrival process is included but the channel is simplified as time invariant. A

case study and extensions are also presented in Chapter 5. Chapter 6 deals with the

resource allocation problem from a system operator’s point of view. Finally, concluding

remarks and some future research work are given in Chapter 7.
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Chapter 2

System Models and Some Markov

Decision Theory

In this chapter, we first describe the common features of the models used in this thesis

and then summarize some Markov decision theory used as the theoretical framework

for our Markov decision problems.

2.1 Basic System Models

The simplified system architecture of cellular mobile communications illustrated in

Fig. 1.1 comprises several cells in the system. In this thesis, we focus on the resource

allocation issues in a single cell only, in which multiple mobile stations communicate

with the same base station located in the center of the cell. Mobile stations can

communicate with the base station simultaneously via the use of CDMA or exclusively

via the use of TDMA. Both are considered in this thesis, however, only a particular

frequency band is considered and hence FDMA is assumed throughout this thesis.

Though we study resource allocation problems each with a different objective from the

decision theoretic points of view, the problems share some common features and we

summarize them as follows.
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2.1.1 Discrete System

In this thesis, we consider a discrete system in which transmissions, transmission deci-

sions, transmission powers and transmission rates are all assumed to be discrete.

We consider a discrete time system in which the time axis is divided into contiguous

frames1 of equal duration. Transmissions are synchronized at the frame level, i.e.,

a transmission, if scheduled, should start at the beginning of a frame. Though a

transmission needs not span a whole frame, we sometimes assume so. Transmission

decisions, e.g., whether to transmit or not in a frame, are also made at the beginning

of a frame and just before the start of the transmission.

When we need to allocate different transmission powers or transmission rates, we

assume that the available powers and rates are discrete and finite. This assumption

simplifies the problem formulation which will be clear in the next section. However, our

problems can be extended to the continuous domain without too many modifications.

2.1.2 Transmission Model

We consider a transmission system that allows the use of different levels of transmis-

sion power and transmission rate in different frames as well as retransmissions. The

use of different levels of transmission power helps to combat the harsh transmission

conditions of the radio channel and interference on the one hand, and allows energy

efficiency on the other hand. The ability to transmit with different rates is an impor-

tant characteristic of next generation mobile systems. For example, radio bearers with

different transmission rates can be easily set up via the configuration and (re)allocation

procedure specified in UMTS [19], while different transmission rates can be achieved

by using variable spreading factor and/or multi-code operations. Retransmissions are

often used in real systems to improve the transmission efficiency, e.g., the RLC retrans-

mission mode in UMTS [18], especially for data services with some delay tolerance.

In our transmission model, we assume that all errors in a frame can be detected

and if an erroneous frame cannot be corrected, the data packet(s) in that frame should

1The term frame used in this thesis needs not be the physical radio transmission frame but just a

notational classification.
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be retransmitted. We then assume that each frame should be either positively or

negatively acknowledged, i.e., ACK/NACK should be sent by the receiver via some

feedback channels. In UMTS, either a dedicated or common control channel can be used

to send the acknowledgements, e.g., the dedicated physical control channel (DPCCH)

and the primary/secondary common control channel (CCPCH) defined in [15, 16]. For

simplicity, instantaneous and perfect reception of the acknowledgements is assumed

and a simple stop-and-wait retransmission scheme is employed in our transmission

model. Finally, we assume that the receiver has the ability to measure the transmission

channels and send perfect channel state reports (CSR) to the sender, although some

delay in sending CSR is allowed. The measurement of channel conditions can be

achieved using some pilot/training bits in each frame, e.g., the training bits in a GSM

frame [65]. In UMTS, a more comprehensive and complicated procedure for physical

layer measurements has been defined in [17, 23].

Transmissions over wireless channels are not reliable and hence a frame will be

successfully received only with some probability. We let fs , 0 ≤ fs ≤ 1, denote the

average frame success probability (FSP) in this thesis. Note that fs can be either a

function or as simple as a scalar based on the context. The detailed form of fs depends

on the choice of the modulation and channel coding schemes, the interleaving depth,

and some other system parameters. The value of fs can also be obtained via Monte

Carlo simulations.

We use the following figures to illustrate our transmission model as an example.

Figure 2.1: Transmission model example 1 – A single user transmits with different

transmission powers, represented by different colors in frames.

Fig. 2.1 provides an example of a single user transmitting with different transmission
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Figure 2.2: Transmission model example 2 – A single user transmits with different

transmission rates, represented by different number of packets in frames

powers. At the beginning of a frame, the sender may decide whether or not to transmit

in a frame, and if it decides to transmit, which level of transmission power should it

use. Note that the transmission of a data packet needs not span the whole frame and

so instantaneous acknowledgements can be obtained before the next frame. Fig. 2.2

presents an example that a single user transmits with different transmission rates. In

this thesis, we assume that if a frame is negatively acknowledged, then all the data

packets in that frame need to be retransmitted. Although we use dedicated control

channels to transmit control information in Fig. 2.1 and Fig. 2.2, we note that other

methods such as piggybacking are also allowable. Finally, we note that the sender

needs to make decisions at the beginning of each frame. In this thesis, we will consider

two kinds of decision and optimization problems. One is based on the Markov decision

theory focusing on a single user optimization problem. The other is to allocate resources

across users while meeting some optimization constraints. We introduce a more general

Markov decision model and related theory in the next section and defer the introduction

of the second optimization problem to Chapter 6.

2.2 Some Markov Decision Theory

In this thesis, we solve some of the optimal policy design problems based on deci-

sion theory. Thus in this section, we provide a brief introduction to Markov decision

processes and define the notations that will be used throughout this thesis.
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2.2.1 Markov Decision Processes

A Markov decision process (MDP) provides the theoretic foundation and framework for

modelling sequential decision making under uncertainty [7, 62]. MDP has been widely

adopted as a powerful tool in many fields such as applied mathematics, operations

research, economics, management science, stochastic control, and communications en-

gineering. In queueing systems and communication networks, MDP has been applied

for the analysis of traffic admission control, flow and congestion control, service rate

control and routing (see [1, 76, 77] for comprehensive surveys and references therein).

An MDP model consists of five elements: decision epochs, states, actions, transition

probabilities and costs (or rewards). In an MDP, a decision maker needs to take an

action at each decision epoch based on the observation of the current state (or the

history) of the system. The action chosen in the current decision epoch causes an

immediate one-stage cost (or generates a reward) and determines the state at the next

decision epoch through a transition probability function. At different decision epochs,

the available actions may be different since the system may be in different states.

When choosing an action at a decision epoch, the decision maker needs to take into

account not only the outcome of the current action but also future decision making

opportunities. An MDP is thus a stochastic model for a controlled stochastic process

and is often referred to as stochastic dynamic programming. If decision epochs are

finite (infinite), an MDP is said to be a finite (infinite) horizon process. The set of

decision epochs can be either a discrete or continuous set, and in the latter case an

MDP is termed a semi-Markov decision process (SMDP) or continuous-time Markov

decision process (CTMDP). For analysis, a CTMDP can be converted to an SMDP

or discrete time MDP through a standard uniformization technique. We will focus on

infinite horizon discrete time Markov decision problems in this thesis.

An MDP together with an optimality criterion define a Markov decision problem.

We introduce several optimality criteria in the next section. A policy which consists of

a sequence of decision rules provides a solution to such a Markov decision problem. A

decision rule prescribes a procedure for action selection at a specified decision epoch

and hence it is a mapping from the state space to the action space. A decision rule can
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be deterministic or random according to how it chooses an action based on certainty

or a probability distribution. It can also be Markovian or history dependent based

on whether the action is chosen based on only the current state or the history of the

system. A policy is called stationary if the decision rules are the same for all decision

epochs. In this thesis, we mainly focus on Markovian deterministic stationary policies,

which are easy to compute and implement from the engineering points of view. Before

going into the next section, we summarize some notations that are used throughout

this thesis.

We use R and R+ to denote the set of real numbers and the set of non-negative

real numbers, respectively. We use N and N+ to denote the set of integers and the

set of non-negative integers, respectively. As introduced in the previous section, we

consider discrete time systems and hence we only consider discrete time MDP models.

The decision epochs correspond to the beginning of each frame. The set of decision

epochs is denoted as T . We use t to denote a frame and use subscript to denote a

decision epoch t, t = 0, 1, · · · , T − 1 and T ≤ ∞. The system state is denoted as S

and an individual state as s or s, where s is used when a system state consists of more

than one component. The state of the system at decision epoch t is then denoted as

st. We use As to denote the set of available actions in state s and A, A =
⋃

s∈S As,

to denote the system action space. An action in the action space is denoted as a. We

use Tr(s′|s, a) to denote the transition probability that the system occupies state s′

at the next decision epoch if the current state is s and action a is chosen. We use

C(s, a) to denote the immediate one-stage cost when the system state is s and action

a is selected, which is a mapping from the product of state space and action space to

real values, i.e., C(s, a) : S ×A 7→ R. A decision rule at decision epoch t is denoted as

dt(·) : S 7→ A. A policy is denoted as π= (d0, d1, · · · , dT−1), T ≤ ∞ and we use Π to

denote the set of all (allowable) policies. For simplicity, we use µ to denote stationary

policies.
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2.2.2 Optimality Criteria

An optimality criterion determines how to compute the value of a policy and how to

determine an optimal policy. Commonly used optimality criteria include the expected

total cost optimal criterion, the expected total discounted cost optimal criterion and the

expected average cost optimal criterion. Using the expected total discount cost optimal

criterion is analytically easier than using the other two criteria. However, our policy

design problems are better understood and explained under the expected total cost

and the average cost optimal criteria. Since the three criteria are closely related under

some conditions, we briefly present their definitions here.

The value of a policy π with the starting state s, s ∈ S, under the expected total

cost optimal criterion is defined as

V π(s) = lim
T→∞

Eπ
s

{
T−1∑
t=0

C(st, at)

}
(2.1)

Eπ
s is the expectation of policy π conditioning on the starting state s. If the limit exists

and the interchanging of the limit and expectation is valid, the value of the policy π

can be written as

V π(s) = Eπ
s

{
∞∑

t=0

C(st, at)

}
(2.2)

If Eπ
s

{
∞∑

t=0

|C(st, at)|
}
< ∞, it means that reaching some cost-free absorbing state(s)

is inevitable (with probability 1) and in this case, the Markov decision problem with

the expected total cost optimal criterion is also a stochastic shortest path problem [7].

The value of a policy π with the starting state s under the expected total discount

optimal criterion (discount optimal for short) is defined as

V π
ρ (s) = lim

T→∞
Eπ

s

{
T−1∑
t=0

ρtC(st, at)

}
(2.3)

ρ is the discount factor and 0 ≤ ρ < 1. The limit in (2.3) exists when

sup
s∈S

sup
a∈As

|C(s, a)| = CONST <∞ (2.4)

When the state space and the action space are finite, we call a cost structure (uniformly)

bounded if the cost structure satisfies (2.4). When the limit exists and interchanging
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the limit and expectation is valid, for example when (2.4) holds, we write

V π
ρ (s) = Eπ

s

{
∞∑

t=0

ρtC(st, at)

}
(2.5)

Note that V π(s) = limρ↑1 V
π
ρ (s) whenever (2.2) holds.

The value of a policy π with the starting state s under the expected average cost

optimal criterion (average optimal for short) is defined as

V
π
(s) = lim sup

T→∞

1

T
Eπ

s

{
T−1∑
t=0

C(st, at)

}
(2.6)

The limit supremum is used in (2.6) since the limit sometimes fails to exist. Note that

the limit infimum can also be used in (2.6), however, the use of the limit supremum

may represent the worst case analysis.

Given an optimality criterion and an initial state, a policy is said to be optimal if

it has the smallest policy value among all (allowable) policies. We use π∗ = (d∗0, d
∗
1, · · ·)

to denote an optimal policy, where d∗ are optimal decision rules. For the total cost

optimal criterion, it is defined as

V π∗(s) = V ∗(s) ≡ inf
π
V π(s) (2.7)

For the discount optimal criterion, it is define as

V π∗

ρ (s) = V ∗
ρ (s) ≡ inf

π
V π

ρ (s) (2.8)

For the average optimal criterion, it is define as

V
π∗

(s) = V
∗
(s) ≡ inf

π
V

π
(s) (2.9)

Note that we may have more than one optimal policy.

Among optimal policies, we are interested in stationary optimal policies (if they

exist) which are easy to implement. The next section introduces the conditions for the

existence of a stationary optimal policy.

2.2.3 Stationary Optimal Polices

In this thesis, we focus on decision problems in which the state space and the action

space are finite, although some analyses later assume an infinite state space for the-

oretical completeness. Furthermore, the cost structures of our decision problems are
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bounded, provided that states and actions are finite, and hence (2.4) holds. Therefore,

it is easy to verify that stationary discount optimal policies exist for our Markov deci-

sion problems. But we need more conditions for the stochastic shortest path and the

average optimal problems. We summarize some related MDP theories as follows, and

we refer the reader to [7, 62] for more complete discussions.

In a stochastic shortest path problem, there exists (at least) a terminal state that

is cost free and absorbing, i.e., whenever the system enters the terminal state, it will

stay there forever. We will use the following definition and theorem for such decision

problems.

Definition 2.1 (Proper policy, Definition 1.1 in [7]) A stationary policy µ is said to

be proper if, when using this policy, the terminal state will be reached with probability

one, regardless of the starting state. A stationary policy that is not proper is said to be

improper.

If a stationary policy is proper, its policy value is finite provided that the state space

and action space are finite and a bounded cost structure is used. Otherwise, there

exists at least one state such that the value of any improper policy is infinite starting

from such a state.

Theorem 2.1 (Proposition 1.2 in [7]) If there exists at least one proper policy with

finite policy value, then there exists a stationary optimal policy. Furthermore, there

exists a bounded function u on S satisfying

u(s) = min
a∈As

{
C(s, a) +

∑
s∈S

Tr(s′|s, a)u(s′)

}
(2.10)

A stationary policy realizing the minimum part in (2.10) for all s ∈ S is an optimal

policy.

The function u is called the value function and (2.10) is also known as Bellman’s

equation. In the stochastic shortest path decision problem, u(s) is the optimal policy

value, i.e., the minimum expected total cost, if the system follows the optimal policy

starting from the state s .
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In a discount optimal decision problem, the conditions for the existence of stationary

optimal policies are very mild. For the interests of our decision problems, we summarize

the related MDP theory2 in the following theorem.

Theorem 2.2 Assume that S is discrete and As is finite for all s ∈ S, then there

exists a stationary discount optimal policy for all 0 ≤ ρ < 1. Furthermore, there exists

a bounded function uρ on S satisfying

uρ(s) = min
a∈As

{
C(s, a) + ρ

∑
s′∈S

Tr(s′|s, a)uρ(s
′)

}
(2.11)

A stationary policy realizing the minimum part in (2.11) for all s ∈ S is a discount

optimal policy.

The function uρ is also called the value function. In the discount optimal decision

problem, uρ(s) is the optimal policy value, i.e., the minimum expected total discount

cost, if the system follows the optimal policy starting from the state s.

In an average optimal decision problem, however, more conditions are needed for

the existence of a stationary optimal policy. Note that in a Markov decision problem,

any stationary policy induces a Markov chain on the state space. We will use the

following definition.

Definition 2.2 A Markov chain is called unichain if the Markov chain consists of a

single positive recurrent class and a (possibly empty) set of transient states. A Markov

decision process is called unichain if the Markov chain induced by every (allowable)

stationary policy is unichain.

The assumption that a Markov decision process is unichain is important to an average

optimal decision problem, although the verification may not be as straightforward. If

a Markov decision process is unichain, the average cost of a stationary policy can be

achieved by the limit in (2.6), and V
∗
(s) is a constant independent of the starting state.

The following theorem summarizes the related MDP theory.

2See [62] and [7] for complete discussions, for example, see Theorem 6.2.10 in [62] and Proposition

2.2 of Section 1.2 in [7] for reference.
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Theorem 2.3 (Theorem 8.4.3 in [62]) Assume that S and A are finite and C(s, a)

is uniformly bounded for all s and a. Furthermore, assume that the Markov decision

process is unichain. Then there exists a stationary average optimal policy. Moreover,

there exists a finite constant J and a bounded function u on S satisfying

J + u(s) = min
a∈As

{
C(s, a) +

∑
s′∈S

Tr(s′|s, a)u(s′)

}
(2.12)

A stationary policy realizing the minimum part in (2.12) for all s ∈ S is an average

optimal policy.

Equation (2.12) is also called the average cost optimality equation (ACOE). The con-

stant J is the optimal policy value, i.e., the minimum expected average cost, if the

system follows the optimal policy from any starting state. The function u is called

the relative value function. For simplicity, we also call it the value function in this

thesis. In an average optimal decision problem, u(s) is interpreted as the minimum of

the difference between the total expected cost to reach a distinct recurrent state from

the state s for the first time and the cost that would be incurred if the cost per frame

were the optimal average cost J , when the system follows the optimal policy.

The optimal equations (2.10), (2.11) and (2.12) provide the method to compute

optimal policies. When deciding optimal policies, we always break ties by choosing the

smallest action for our Markov decision problems. A general value iteration algorithm

for computing optimal policies is described in the next section.

2.2.4 Computation of Optimal Policies

Some fairly standard techniques can be used to compute a stationary optimal policy,

e.g., value iteration, policy iteration and linear programming (see [62] for details).

We briefly introduce the value iteration algorithm as it also provides the method to

investigate the characteristic of value functions. The value iteration algorithm of the

stochastic shortest path decision problem is structurally similar to that of the discount

optimal decision problem and hence we only introduce the latter. The value iteration

algorithm is as follows.

Value Iteration Algorithm
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1. Set k = 0; for all s ∈ S, set

u0
ρ(s) = 0 (2.13)

2. Set k = k + 1 and for all s ∈ S, compute

uk
ρ(s) = min

a∈As

{
C(s, a) + ρ

∑
s′∈S

Tr(s′|s, a)uk−1
ρ (s′)

}
(2.14)

3. For all s ∈ S, if

‖uk
ρ(s)− uk−1

ρ (s)‖ < ε (2.15)

goto (4). Otherwise, goto (2)

4. For each s ∈ S, choose

µ(s) = arg min
a∈As

{
C(s, a) + ρ

∑
s′∈S

Tr(s′|s, a)uk
ρ(s

′)

}
(2.16)

and stop.

In step (3), the function ‖·‖ is a norm function and ε > 0 is a constant specified before-

hand. Hence the computed optimal policy is also called ε-optimal policy. According

to MDP theory [7, 62], it can be shown that the function uk
ρ converges to the value

function uρ as k →∞ for all s, i.e.,

lim
k→∞

uk
ρ(s) = uρ(s), for all s ∈ S (2.17)

To compute an average optimal policy, the relative value iteration algorithm can

be used to avoid divergence of the value iteration algorithm that may occur in the

computation. It is a simple modification of the above algorithm. To apply the relative

value iteration algorithm, select a distinct recurrent state s̃ ∈ S. Note that under

the unichain assumption, all recurrent states communicate with the state s̃. As in the

value iteration algorithm above, we set u0(s) = 0 for all s ∈ S. Step (2) of the value

iteration algorithm is modified to compute

wk−1(s̃) = min
a∈As̃

{
C(s̃, a) +

∑
s′∈S

Tr(s′|s̃, a)uk−1(s′)

}
(2.18)

and

uk(s) = −wk−1(s̃) + min
a∈As

{
C(s, a) +

∑
s′∈S

Tr(s′|s, a)uk−1(s′)

}
(2.19)
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instead. According to MDP theory [7, 62], it can be shown that

lim
k→∞

wk−1(s̃) = J (2.20)

and for all recurrent states s ∈ S,

lim
k→∞

uk(s) = u(s) (2.21)

Finally, we note that if all states communicate, i.e., the Markov chain is ergodic,

then the discount optimal problem is related to the average optimal problem by

J = lim
ρ→1

(1− ρ)uρ(s) for all s ∈ S (2.22)

Thus we can first investigate the property of a discount optimal decision problem. Then

all the results will also apply to the average cost optimality criterion once we identify

the unchain property for the average optimal decision problem.

2.3 Summary

In this chapter, we have introduced the basic system model and some Markov decision

theory. Some notations are also summarized in this chapter. We will consider a Markov

decision modelled file transfer problem in the next chapter.
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Chapter 3

Optimal Power Allocation Policies

In this chapter, we consider the power allocation problem in the transfer of a file by

a single sender in the presence of a Rayleigh fading channel. The fading channel is

modelled by a finite state Markov process. The sender can choose to use different

power levels in different channel states. As will be seen, we consider two kinds of delay

constraints.

3.1 Channel Model

Many researchers have proposed to use a finite-state Hidden Markov Model (HMM) to

model a wireless channel [94, 101]. Through the construction of a finite-state Markov

process, the variations of a time-varying channel can be represented via the stationary

transition probabilities. In some wireless communication situations, changes of the

received signal-to-noise ratio (SNR), i.e., the path gain, occur on a very slow time scale

(slow fading) compared with the transmission rate. Thus, it is reasonable to assume

that the transmitted symbols in one frame experience the same channel fading. In this

chapter, we consider a slow Rayleigh fading channel and use the method introduced

in [94] to construct a finite-state Markov channel.

Consider a slow fading channel. We assume that the received SNR remains at

a constant level during a frame. The channel can be modelled as an additive white
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Gaussian noise (AWGN) channel as follows:

y =
√
hx+ n (3.1)

where x and y are input and output signals, respectively, n is the AWGN noise and

h is the channel fading. For a Rayleigh fading channel, h is exponentially distributed

with the probability density function

f(h) =
1

h̄
exp(−h

h̄
), h ≥ 0 (3.2)

where h̄ is the average SNR of the channel. When the background noise is normalized

to 1, h may characterize the received SNR. A finite-state Markov channel model for

such a Rayleigh fading channel can be constructed as follows. Select a sequence of

received SNR thresholds: γ0 < γ1 < · · · < γM by which the range of the received SNR

is partitioned into a finite number of SNR intervals (M intervals for example). Let

H = {h1, h2, · · · , hM} denote such SNR intervals, in which hi represents the channel

state during a frame, and 0 < h1 < h2 < · · ·hM where the greater the index, the better

the channel quality. Then the channel is said to be in state hm if h ∈ [γm−1, γm),m =

1, 2, · · · ,M . Let Ĥm denote the steady state probability that the channel stays in the

state m, i.e.,

Ĥm =

∫ γm

γm−1

f(h)dh, m = 1, 2, · · · ,M (3.3)

and
∑M

m=1 Ĥm = 1. We assume that the channel state Ht during frame t remains

unchanged and that state transitions occur at the boundary of a frame. The channel

state transition probabilities are denoted as hij ≡ Pr(Ht+1 = hj|Ht = hi). According

to the model proposed in [94], a channel state transits only to its neighboring states

or stay in the same state. Furthermore, according to [94], the transition probabilities

are approximated by the ratio of the expected number of level crossings of the state

SNR boundary to the average number of symbols per second in that state, and they

are given by

hi,i+1 =
Ψ(γi+1)

ĤmRs

, i = 1, · · · ,M − 1 (3.4)

hi,i−1 =
Ψ(γi)

ĤmRs

, i = 2, · · · ,M, (3.5)
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where Rs is the symbol rate and Ψ is the expected number of level crossings given by

Ψ(z) =

√
2πz

h̄
fd exp(−z

h̄
) (3.6)

and fd is the maximum Doppler shift. This fading channel model has been verified to

be precise when the fading process is slow enough (see [94] for more discussions). We

let H = [hij]M×M denote the channel state transition matrix and Ht =
∏t

i=1 H. For

simplicity, the channel states are classified with equiprobability, i.e., all channel states

have the same steady state probability, though other classifications are also allowable

(see [99] for example).

We assume that the channel coding and the modulation schemes are fixed in all

frames. However, the transmission power can be changed in different frames to combat

the harsh channel conditions while allowing for energy savings. Hence the probability

of successful reception of a frame is dependent on both the transmission power and the

channel state, and is denoted as fs(a, hi) where a is the transmission power used in

a frame and hi is the current (or estimated) channel state in the same frame. As we

consider a discrete system (cf. Section 2.1.1), the transmission powers are chosen from

a finite set A = {a1, a2, · · · , aN}, with a higher index denoting a higher power level. In

general, we have the following relationship between frame success probabilities.

0 ≤ fs(ai, h1) ≤ fs(ai, h2) ≤ · · · ≤ fs(ai, hM) ≤ 1, for all i (3.7)

and

0 ≤ fs(a1, hi) ≤ fs(a2, hi) ≤ · · · ≤ fs(aN , hi) ≤ 1, for all i (3.8)

(3.7) implies that the probability of a successful transmission is nondecreasing in the

channel states given a fixed transmission power; (3.8) implies that the probability of

a successful transmission is also nondecreasing in the transmission power given a fixed

channel state. However, it is not so easy to determine a detailed form of the function

fs. It is also not easy to compare fs given any two arbitrary (a, h) pairs. Thus we often

use (3.7) and (3.8) for some qualitative analysis and resort to Monte Carlo simulations

to find the different fs values.
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3.2 Problem Formulation

We first provide the system model and then formulate the problem of an energy efficient

file transfer over a fading channel as a constrained optimization problem in which two

delay constraints are considered.

3.2.1 System Model

The system model is shown in Fig. 3.1. We consider a discrete time system (an example

Figure 3.1: System model

of a transmission model has been shown in Fig. 2.1). Note that each frame can transmit

exact one (coded) file packet. At the beginning of a frame, the sender first decides to

transmit or not based on the observation of the number of residual file packets in the

buffer and also the delay constraint. Furthermore, if a transmission is determined then

the sender decides the transmission power level needed for transmitting the packet.

The receiver measures the channel conditions via some pilot/training bits in each

frame and sends a channel state report (CSR) to the sender over the feedback channel.

Perfect reception of a CSR is assumed. However, there may be some delay in sending

a CSR. Let Dc denote the delay of the channel state report. Dc = 0 denotes that the

sender knows the channel state of the current frame before transmission and Dc = t

implies that the sender knows the channel state from t frames before and only has an

estimate of the current channel state based on the channel transition matrix. We focus
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on a finite CSR delay.

3.2.2 Energy Efficient File Transfer with Delay Constraints

During the file transfer, the sender has the choice to use different transmission power

levels in different frames. This opens up the chance for energy savings. However, using

different power levels may also result in different frame success probabilities (even given

the same channel state) and hence affects the (average) total transmission time for the

file transfer. Thus the tradeoff between power consumption and transfer delay exists,

and we explore such a tradeoff. We first model the problem in a direct way, i.e., as a

constrained optimization problem, and provide solutions in later sections.

We summarize some notations as follows. The size of the file is B packets. We use

the subscript t to denote a frame, and without loss of generality, we assume that the

file transfer starts at time t = 0 (t = 0, 1, · · ·). Let S denote the system state space and

st = (bt, ht), s ∈ S, denote the system state at the beginning of the frame t, where bt is

the residual file packets in the buffer and ht is the channel state or the estimate of the

channel state. As stated earlier, we consider discrete transmission power levels only.

Let A = {0, a1, a2, · · · , aN} denote the action space where 0 stands for no transmission

and ai, i = 1, · · · , N represent N possible transmission power levels. Without loss of

generality, we assume 0 < a1 < a2 < · · · < aN . Let π = (d0, d1, · · · , dt, · · ·) denote

the transmission policy where dt denotes the transmission scheme used in frame t.

Note that dt(st) is a function mapping from the state space to the action space, i.e.,

dt : S 7→ A. If dt is the same for all frames, the corresponding policy is said to be

stationary. For notational simplicity, let dt = 0 denote no transmission is scheduled in

a frame and dt > 0 denote a transmission is scheduled with some positive transmission

power level. Given an action a in a frame, the transition probabilities are given as

Tr((b′, hj)|(b, hi), a) =



hij, a = 0, b′ = b

f̃shij, a > 0, b > 0, b′ = b− 1

(1− f̃s)hij, a > 0, b > 0, b′ = b

0 otherwise

(3.9)

where f̃s is the probability of a correct reception of a frame when the CSR is hi. Since
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the CSR depends on Dc, f̃s is given as

f̃s =

 fs(a, hi), Dc = 0∑M
j=1 h

t
ijfs(a, hj), Dc = t > 0

(3.10)

where ht
ij is the t-step channel state transition probability, i.e., ht

ij is the element of

Ht. Let T π(s0) and P π(s0) =
∑T π(s0)

t=0 dt(st) denote the total transmission time (in

frames) needed and the total transmission power used for finishing the file transfer

in a single realization of the policy π given the starting state s0, respectively. Note

that T π(s0), and hence P π(s0), is a random variable dependent on both the policy and

the initial state. Let T π
avg(s0) = Eπ

s0
[T π(s0)] and P π

avg(s0) = Eπ
s0

[P π(s0)] denote the

average total transmission time and the average total transmission power of policy π,

where Eπ
s0

is the expectation over policy π conditioning on the initial state s0. Finally,

let Tmin
avg = minπEπ

s0
[T π

avg(s0)] denote the minimum average time for finishing the file

transfer over all policies. Fig. 3.2 illustrates two example realizations (sample paths)

Figure 3.2: Example realizations of file transfer over a Markovian fading channel

of two policies, viz., the dashed and the solid arrow lines. Note that the transition

probabilities in each state are dependent on both the selected action and the channel

transitions. There are some costs associated with the paths, viz., the time (roughly

represented with the number of the arrow lines in Fig. 3.2) and the power used to

reach the terminal states. Thus different sample paths have different costs, and a

policy determines the possible (cost of a) sample path through which the transmission
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will pass. Furthermore, the expected total cost of a (proper) stationary policy may be

determined by using some suitable averaging functions.

Our objective is to find a policy that minimizes the average total transmission power

for finishing the file transfer while satisfying some delay constraints. Let TD be the

delay constraint and assume that TD ≥ Tmin
avg to ensure the existence of a solution. We

mainly consider the following two delay constraints. (1) average delay constraint and

(2) strict delay constraint.

For the average delay constraint, T π
avg(s0) ≤ TD. The mathematical formulation of

the average delay constrained problem is given as :

Problem A: Given the initial state s0, find a policy π∗ such that

P π∗
avg(s0) = minπ

{
P π

avg(s0)
}

subject to: T π∗
avg(s0) ≤ TD

(3.11)

Note that the above definition is a typical constrained optimization problem. A direct

solution is not easy to find. However, Problem A can be reformulated as a stochastic

shortest path problem [7] and solved accordingly. Furthermore, the resulting optimal

policy is a stationary policy. We discuss this in the next section. Note that the case of

no delay constraint can be considered as a special case of the average delay constraint,

which may also provide the lower bound of Pavg(s0). We also discuss this in the next

section.

For the strict delay constraint, T π(s0) ≤ TD. The mathematical formulation of the

strict delay constrained problem is given as:

Problem B: Given the initial state s0, find a policy π∗ such that

P π∗
avg(s0) = minπ

{
P π

avg(s0)
}

subject to: T π∗(s0) ≤ TD

(3.12)

Problem B can be reformulated as a finite horizon Markov decision process problem [62]

and solved accordingly. But the resulting optimal policy is not a stationary policy and

is dependent on the frame index.
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3.3 Optimal Policy with Average Delay Constraint

3.3.1 The Stochastic Shortest Path Problem

We have briefly introduced the Stochastic Shortest Path (SSP) problem in Section 2.2.1

and we refer the reader to Bertsekas [7] for more discussions. In an SSP problem, the

termination state should be specified. Furthermore, it should be assumed that the

value of a proper policy is finite and the value of an improper policy is infinite. For

our problem, the termination states can be defined to be when there is no residual file

packet in the buffer, cf. Fig. 3.2. The proper policy can be defined as the policy that

only contains proper decision rules which require the sender to transmit at least on

some channel states (e.g., the best channel state). They are defined as follows.

Definition 3.1 (Terminal states) The terminal states are defined as the states with

no residual file packets in the buffer. Accordingly, let SF = {(b, hi)|b = 0} denote the

set of terminal states.

Definition 3.2 (Proper decision rules) When the system state is s = (b, h) such that

the buffer is not empty, i.e., b > 0 and the current estimate of the channel state is in the

best state hM , a proper decision rule requires that a transmission should be scheduled,

i.e., d(b, hM) > 0 if b > 0.

The definition of proper decision rules can be relaxed by specifying more channel

states in which the sender has to transmit when the buffer is not empty. Note that

the definition does not exclude the situation in which a transmission is scheduled when

the estimated channel is not in the best state. The proper policy thus only consists

of the proper decision rules and we denote the set of proper policies as Πp. As the

channel transition matrix H is ergodic and irreducible, there is a positive probability

to transit from a state (b, hM) to a state (b − 1, hM), (it may transit like (b, hM) →

(b− 1, ·)→ (b− 1, hM)) and hence the terminal states are reachable with probability 1

for all proper policies. To compute the average total transmission time, we define one

frame delay cost as:

Cd(st) =

 1, st 6∈ SF

0, st ∈ SF

(3.13)
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Note that (3.13) implies that the delay cost is not dependent on the particular number

of residual file packets but is for the whole file. Given a policy π and an initial state

s0, the average total transmission time can be computed as:

T π
avg(s0) = Eπ

s0

[
∞∑

t=0

Cd(st)

]
(3.14)

Note that for proper policies, the terminal states are reachable with probability 1 and

hence T π
avg(s0) < ∞ for all π ∈ Πp. An example of an improper policy can be that

the sender does not transmit in all states. It is easy to see that for such an improper

policy, the terminal states are not reachable and the average total transmission time of

improper policies is infinite. Obviously, the improper policies are not of our interests.

Hence we can restrict the search for optimal policies for Problem A only on the set of

proper policies. To compute the average total transmission power, we define the power

usage cost function in one frame as:

Cp(dt(st)) =

 dt(st), s 6∈ SF

0, s ∈ SF

(3.15)

Given a policy π and an initial state s0, the average total transmission power can be

computed as:

P π
avg(s0) = Eπ

s0

[
∞∑

t=0

Cp(dt(st))

]
(3.16)

Problem A can be converted into a family of unconstrained optimization problems

through a Lagrangian approach [50]. For every β > 0, the Lagrange multiplier, define

a mapping C(β, s, d(s)) : S ×A 7→ R+ as:

C(β, st, dt(st)) = βCd(st) + Cp(dt(st)) (3.17)

Further, given the initial state s0, define a corresponding Lagrangian functional for a

policy π ∈ Πp as:

V π(s0, β) = Eπ
s0

[
∞∑

t=0

C(β, st, dt(st))

]
(3.18)

Clearly, (3.18) has a similar mathematical definition as that of a Markov decision

problem with an expected total optimal criterion, cf. Section 2.2.2 and (2.2). Note

that as T π
avg(s0) and P π

avg(s0) are finite for any proper policy π ∈ Πp and infinite for
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any improper policy, so is V π(s0, β). Now we define a stochastic shortest problem as:

Problem A’: Given the initial state s0, find a policy π∗ ∈ Πp such that

V π∗(s0, β) = min
π∈Πp
{V π(s0, β)} (3.19)

The solution to Problem A is closely related to that of Problem A’. The following

proposition provides sufficient conditions under which an optimal policy for Problem

A’ is also optimal for Problem A.

Proposition 3.1 Given the initial state s0 and for some β > 0, let π∗ ∈ Πp be the

optimal policy solving Problem A’. Further, if π∗ meets the minimum average delay

constraint, i.e., T π∗
avg(s0) = TD, then the policy π∗ is also optimal for Problem A.

Proof: For briefness, we omit the dependence on the initial state. If the optimal

policy π∗ ∈ Πp solves Problem A’, then for any policy π ∈ Πp, we have

V π∗(β) = βT π∗

avg +W π∗

avg ≤ βT π
avg +W π

avg = V π(β) (3.20)

Furthermore, as the solution to Problem A can only be from the set of proper policies

(otherwise the average transmission time is infinite), we have T π
avg ≤ TD. As π∗ also

meets the constraint, i.e., T π∗
avg = TD, the inequality (3.20) and the fact β > 0 readily

imply that:

W π∗

avg ≤ W π
avg + β(T π

avg − T π∗

avg)⇒ W π∗

avg ≤ W π
avg (3.21)

for all policy π ∈ Πp. Hence the policy π∗ is also optimal for Problem A.

Indeed, β can be seen as the weight between the delay cost and the power consump-

tion cost. The use of a smaller β indicates that the transmission power is emphasized

more than the delay consideration, and a larger β puts more emphasis on the trans-

mission delay aspect. Consider a special case in which β = 0 for Problem A’. This

can correspond to the case of no delay constraint and it may be shown that the re-

sulting optimal policy consumes the minimum power. Without any delay constraint,

the sender can transmit by using the minimum power only on the best channel state.

Although such a transmission policy minimizes the total power, it may incur a very

large file transfer delay which is obviously undesirable.
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Problem A’ can be solved by using some standard techniques, such as value itera-

tion, cf. Section 2.2.4, or policy iteration [7], and the optimal policy can be found by

iteratively adjusting the value of β to meet the average delay constraint.

3.3.2 Numerical Examples

We consider a slow Rayleigh fading channel. We set the channel average SNR at

10dB when the normalized noise is equal to one. We classify the channel states by

partitioning the channel into SNR intervals each with the same steady state probability.

The channel transition matrix is constructed according to the method introduced in

Section 3.1. The maximum Doppler shift is set as 50 Hz. An example of the channel

transition matrix is shown in Table 3.1. The forward error correction (FEC) code

Table 3.1: Channel transition matrix (hij = 0 for all |i−j| > 1, fd = 50Hz, Rs = 62000

symbols/second,M = 8, h̄ = 10dB)

state i 1 2 3 4 5 6 7 8

hi,i−1 - 0.0051 0.0069 0.0068 0.0064 0.0060 0.0055 0.0050

hi,i 0.9949 0.9880 0.9863 0.9868 0.9876 0.9885 0.9895 0.9950

hi,i+1 0.0051 0.0069 0.0068 0.0064 0.0060 0.0055 0.0050 -

BCH[31,21, 2] is used and the Quadrature Phase Shift Keying (QPSK) modulation

scheme is employed. The duration of a frame is set at 5ms. The length of the file is

set at 5040 bits. Each frame transmits a 620-bit packet (including the error correction

bits) and hence there are altogether 12 coded file packets to transmit. As a numerical

illustration, we first consider 5 transmission powers and the action space is set as

A = {0, 6, 8, 10, 12, 14}. The average frame success probabilities fs(a, hi) are obtained

from Monte Carlo simulations. Table 3.2 shows some values of the frame success

probabilities from the Monte Carlo simulations.

We first present two example optimal policies computed via the value iteration

algorithm, which are shown in Tables 3.3 and 3.4, respectively. From the numerical

examples, we have the following observations. First, the sender uses lower power levels

when the channel state is good. Obviously, this is based on the fact that the sender
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Table 3.2: Channel states and average frame success probabilities (frame length = 5

ms, Rs = 62000 symbols per second, BCH[31,21,2] and QPSK)

State SNR (dB) fs( 6, ·) fs( 8, ·) fs(10, ·) fs(12, ·) fs(14, ·)
1 (−∞, 1.26) 0.0 0.0 0.0 0.0 0.0

2 [1.26, 4.59) 0.0 0.0 0.0 0.0136 0.1902

3 [4.59, 6.72) 0.0 0.0 0.0907 0.5398 0.8831

4 [6.72, 8.41) 0.0 0.0545 0.6493 0.9550 0.9976

5 [8.41, 9.92) 0.0053 0.5357 0.9612 1.0 1.0

6 [9.92, 11.42) 0.1541 0.9326 0.9992 1.0 1.0

7 [11.42, 13.18) 0.7304 0.9976 1.0 1.0 1.0

8 [13.18,∞) 0.9800 1.0 1.0 1.0 1.0

Table 3.3: Optimal actions (β = 1.0, Dc = 0)

buffer

channel 12 11 10 9 8 7 6 5 4 3 2 1

8 6 6 6 6 6 6 6 6 6 6 6 6

7 8 8 8 8 8 8 8 8 8 8 8 8

6 8 8 8 8 8 8 8 8 8 8 8 8

5 10 10 10 10 10 10 10 10 10 10 10 10

4 12 12 12 12 12 12 12 12 12 12 12 12

3 14 14 14 14 14 14 14 14 14 14 14 14

2 0 0 0 0 0 0 0 0 14 14 14 14

1 0 0 0 0 0 0 0 0 0 0 0 0

can benefit (energy-saving) from knowing (or estimating) the channel. We then observe

that the optimal actions are almost not sensitive to the number of residual file packets,

e.g., when the channel is in the best state, the optimal action is the same, i.e., using

the least transmission power, regardless of the number of the residual packets. This

is because the delay cost is not based on the number of packets in the buffer but for

the whole file instead. However, we also observe that the sender has to transmit even

when the channel is in bad states when the number of buffered packets is small, e.g,

d(4, 2) = 14, d(3, 2) = 14, · · ·, in Table 3.3. This is reasoned as follows. In general,

the fewer the buffered file packets, the less average transmission time is needed to
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Table 3.4: Optimal actions (β = 0.01, Dc = 0)

buffer

channel 12 11 10 9 8 7 6 5 4 3 2 1

8 6 6 6 6 6 6 6 6 6 6 6 6

7 8 8 8 8 8 8 8 8 8 8 8 8

6 8 8 8 8 8 8 8 8 8 8 8 8

5 0 0 0 0 0 0 0 0 10 10 10 10

4 0 0 0 0 0 0 0 0 0 12 12 12

3 0 0 0 0 0 0 0 0 0 0 0 14

2 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

finish the file transfer. Also energy saving may not be significant when the number

of file packets is small. Hence trading off between the (possible) energy-savings and

the average finishing times, it may be better to use high transmission power levels

during bad channel states to avoid incurring excessive delays in completing the file

transfer. Finally, when the delay cost is small compared with the power consumption,

i.e., when a small β is used, the sender can choose not to transmit in the worst channel

states. This is illustrated by the larger number of non-transmissions, i.e., d(b, h) = 0,

in Table 3.4 compared with Table 3.3. However, the average time for finishing the file

transfer also increases. This is clearly shown in the following two tables.

Table 3.5 and Table 3.6 present the Monte Carlo simulation results for the average

total transmission power and the average total transmission delay (frames) of the two

optimal policies. The right most columns of the two tables are the averages over all

initial channel states. Note that the average total costs can be derived as the average

total power plus β times the average total delay. It is clearly seen from the two tables

that the average total transmission powers and delays are heavily dependent on the

initial channel state. This is because when starting from a bad channel state, the

sender has to wait for the channel to transit to some better states in order to reduce

transmission power and hence, save energy. However, the sender still has to transmit

in some bad channel states to meet the delay constraint. We also note that the average

power consumption (averaging over all initial channel states) can be reduced greatly
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Table 3.5: Average total power consumption and average total transmission delay

(frames) under different initial channel states (β = 1.0, Dc = 0)

initial channel state

1 2 3 4 5 6 7 8 average

Costs 704.69 508.96 223.18 158.53 137.32 116.40 107.82 86.46 255.42

Powers 192.33 192.22 192.06 145.98 124.84 103.57 95.76 74.22 140.13

Delays 512.36 316.75 31.12 12.55 12.49 12.28 12.17 12.03 115.22

Table 3.6: Average total power consumption and average total transmission delay

(frames) under different initial channel states (β = 0.01, Dc = 0)

initial channel state

1 2 3 4 5 6 7 8 average

Costs 127.14 125.16 122.34 117.92 111.67 103.3 95.87 74.32 109.72

Powers 102.84 102.79 102.62 102.34 102.31 102.1 95.74 74.20 98.12

Delays 2430 2237 1952 1508 882.3 52.3 12.12 12.02 1135

by relaxing the delay constraint, which can be seen from the right most columns of

the two tables. An extreme case could be that the energy saving is maximized by

transmitting with the least power and in the best channel state only1. Finally, this

example also clearly illustrates why it is better to consider file transfer as background

traffic, as suggested in UMTS [21].

Fig. 3.3 compares the average total cost, the average total power and the average

transmission delay (all are averaged over all initial states) of the optimal policy with

those of a persistent transmission policy, i.e., the sender knows nothing about the

channel and it transmits persistently in all frames with the same power. The labels on

the x-axis are the transmission powers used in all frames of the corresponding persistent

transmission policy. Obviously, using variable transmission power levels based on the

1However, this may impact on the end-to-end QoS when TCP is employed, since the trigger of TCP

retransmission may also result in undesirable waste of the whole communication network resources,

e.g., the bandwidth consumption due to undesirable TCP retransmission between the mobile station

and a remote file server.
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channel state has lower total cost than using a fixed transmission power without any

information about the channel state. We note that the average total transmission

Figure 3.3: Performance comparison of different persistent policies with the optimal

policy (channel states = 8, available actions {0, 6, 8, 10, 12, 14}, β = 1.0, Dc = 0)

delay in the persistent policy with a power level of 14 is less than that of the optimal

policy. However, this is achieved by using a much higher transmission power level

and hence the total cost is still much higher than that of the optimal policy. Indeed,

when the sender knows the channel fading level exactly, it can use a power level that

is the (multiple) inverse of the channel fading 2. This is a form of water-filling power

allocation policy to approximate the achievable channel capacity (the Shannon capacity,

cf. (1.1)). Note that the solutions to the Problem A’ (cf. Table 3.5 and Table 3.6)

are structurally similar to water-filling power allocation. Goldsmith has investigated

the achievable capacity of a fading channel via dynamic water-filling power (and rate)

allocation [29, 30]. Her approach is from the information theoretic point of view and

is based on the asymptotic analysis. Hence her approach does not consider the delay

2This helps to maintain a constant average frame success probability, however, it needs the as-

sumption of continuous transmission powers.
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cost, and also the tradeoff between the delay cost and power consumption. However,

our approach is from a decision theoretic point of view and takes the delay cost into

consideration as well.

Figure 3.4: The average total costs of different optimal policies (channel states = 8,

A={0, 6, 8, 10, 12, 14} and β = 1.0).

We next investigate the effect of the variation of the channel transition probabili-

ties and the delay incurred by channel state reports on the performance of the optimal

policies. The maximum Doppler shift is used to characterize the variation of a slow

Rayleigh fading channel. Figs. 3.4, 3.5 and 3.6 plot the average total costs, the aver-

age total power and the average total delay, respectively, of different optimal policies

that are computed from the different values of the maximum Doppler shift and the

delay incurred by channel state reports, Dc. All values in the figures are averaged

over all starting states for each optimal policy and are from Monte Carlo simulations.

From Fig. 3.4, we observe that the average total costs (i.e., the optimal policy val-

ues) decease monotonically with the maximum Doppler shift. This is because a higher

maximum Doppler shift increases the transition probabilities between channel states,

cf. (3.4), (3.5) and (3.6). Consequently, the sender incurs less delay costs in waiting

46



CHAPTER 3. Optimal Power Allocation Policies Page 47

Figure 3.5: The average total powers of different optimal policies (channel states = 8,

A={0, 6, 8, 10, 12, 14} and β = 1).

for good channel states (with high SNR intervals) to transmit in, which also requires

lower transmission levels. Clearly, this shows the benefit of using a channel dependent

transmission policy. From Fig. 3.4, we also observe that the larger Dc, the higher the

optimal policy values given the same maximum Doppler shift. When Dc > 0, the

optimal policies are computed based on the inaccurate (outdated) system states infor-

mation which causes misinterpretation of the channel states. In this case, the resulting

optimal policies require the sender to transmit in more bad channel states when Dc

increases. Hence the average total power increases greatly with the larger delay of the

channel state report, as shown in Fig. 3.5. On the other hand, since the sender trans-

mits in more bad channel states, the average total time for finishing the file transfer

is reduced, as shown in Fig. 3.6. However, the total costs (i.e., power plus delay) still

increase with the delay of the channel state reports, as shown in Fig. 3.4. This also

suggests that the outdated information results in inaccurate (optimal) policies and may

degrade the performance of the policies in our case.
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Figure 3.6: The average total delay of different optimal policies (channel states = 8,

A={0, 6, 8, 10, 12, 14} and β = 1).

3.4 Optimal Policy with Strict Delay Constraint

We now consider the problem with a strict delay constraint, i.e., Problem B (3.12).

The goal is to find the optimal power allocation policy that minimizes the power

consumption used to finish a file transfer under a strict delay constraint.

3.4.1 The Finite Horizon Dynamic Programming Problem

The period of the file transfer is required to be less than TD frames. We thus consider an

optimal policy design problem only spanning over TD frames and reformulate Problem

B as a finite horizon dynamic programming problem. Note that we do not need to

assume the proper decisions as there always exists a deterministic Markovian optimal

policy for a finite horizon dynamic programming problem with a finite state space and

a finite set of actions (see Theorem 4.2.2. and Proposition 4.4.3 of Puterman [62]).

Similar to the solution for Problem A’, to compute the average total transmission
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power, we define a one frame power usage cost function as:

Cp(dt(st)) =

 dt(st), s 6∈ SF and t < TD

0, otherwise
(3.22)

where SF is the set of terminal states defined as before (see Definition 3.1). At the end

of a transmission period, it is possible that some file packet(s) may not be transmitted.

Hence, to compute optimal policies, we need to define a terminal cost function to

allocate a cost (i.e., negative reward) when there are still file packet(s) left in the

buffer after TD frames. We consider the following simple terminal cost function.

Cf (b) = c0b
c1 , c0 > 0, c1 ≥ 1 (3.23)

Let V π(s0, TD) denote the expected total cost over a TD-frame decision making horizon

if policy π is used and the starting state is s0. This is defined by

V π(s0, TD) = Eπ
s0

[
TD−1∑
t=0

Cp(dt(st)) + Cf (sTD
)

]
(3.24)

Now Problem B can be considered as the solution to the following standard finite

horizon dynamic programming problem which is to find a policy π∗ which has the

minimum policy value:

V π∗(s0, TD) = V ∗(s0, TD) ≡ min
π
V π(s0, TD) (3.25)

Again, some fairly standard techniques, e.g., the backward induction algorithm (see

Puterman [62] page 92), can be used to solve such a problem and to provide the

optimal policy. Note however that the computed optimal policy is not a stationary

policy but is dependent on the frame index. We provide some numerical examples in

the next subsection.

3.4.2 Numerical Examples

As an illustration, we consider the same channel model used in Section 3.3.2. The

maximum Doppler shift is set at 50Hz and other parameters are set as before. For

Dc = 0 and TD = 30, Figs. 3.7 and 3.8 plot the optimal actions when there are 5

packets and 10 packets, respectively, left in the buffer at all decision epochs. Note that
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Figure 3.7: Optimal actions when there are 5 packets left in the buffer for all decision

epochs. (c0 = 500 and c1 = 2)

the optimal actions now are dependent on the frame index. Compared to the average

delay constraint, cf. Table 3.3, the sender has to transmit in some bad channel states,

e.g., channel states 2 and 3, with higher transmission power levels during the whole

decision period. Under the strict delay constraint, the sender knows that transmitting

even with a very lower frame success probability, e.g., fs(14, 2) = 0.19, is better than

not transmitting to avoid the much higher terminal cost at the end of the transmission

period. On the other hand, the optimal policy still exploits the channel variation to

some extent in order to save energy. For example, from Fig. 3.7, we see that the

sender does not transmit when the channel is in state 7 and there are 5 packets in the

buffer during the first 25 frames. In this case, the sender can benefit from waiting.

If the channel transits to a better state, i.e., state 8 in this case, the sender can save

transmission power. If the channel transits to a worse state, i.e., state 6 in this case, the

sender only needs to use the same transmission power level (8 in this case) in the worse

state as in the current state since the frame success probabilities are very close in the

two channel states. This is seen from Table 3.2 that fs(6, 7) = 0.73, fs(6, 8) = 0.98, and

50



CHAPTER 3. Optimal Power Allocation Policies Page 51

Figure 3.8: Optimal actions when there are 10 packets left in the buffer for all decision

epochs. (c0 = 500 and c1 = 2)

fs(8, 6) = 0.9326 and fs(8, 7) = 0.9976. However, we note that this assumes that the

sender has full knowledge of the channel variations when computing optimal policies.

Comparing Figs. 3.7 and 3.8, we see that the sender is more selective in transmitting

when there are fewer residual packets, i.e., there are more states that the sender does

not transmit in Fig. 3.7. This is because the sender has more time left to finish the file

transfer.

Fig. 3.9 compares the performance of the computed optimal policy (via the back-

ward induction algorithm) with some fixed power persistent transmission policy. Again,

the labels on the x-axis are the transmission power levels used. The success probabil-

ity is the probability that the file transfer can be finished within the decision period,

e.g., 30 frames in this case, averaged over all initial channel states. The normalized

power consumption is the average transmission power per frame used during the file

transfer for each policy, normalized with the maximum available transmission power.

Obviously, increasing the transmission power level helps to mitigate the effect of the

fading channel and hence increases the success probability. However, from Fig. 3.9, we
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Figure 3.9: Comparisons between different policies within the decision period (TD =

30).

clearly see that the success probability of the optimal policy is similar to the persistent

policy with a power level 14 but the power consumption is significant less. This again

suggests that the optimal policy can exploit and benefit from knowing the channel

state variations.

3.5 Summary

In this chapter, we have studied the problem of transferring a finite size file over a slow

Rayleigh fading channel with two types of delay constraint. The sender decides, at

the beginning of each frame, whether or not to transmit a file packet. If it transmits,

the transmission power level to use is based on the system (channel and buffer) state.

The goal is to minimize the power consumption while meeting the delay constraint.

We have shown how to convert such a constrained optimization problem to a standard

Markov decision problem. We have presented simulation results that indicate that

transmission power can be substantially reduced with optimal policies which exploit
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knowledge of the channel variations to meet the delay constraints.

We have not considered source dynamics in this chapter. In the next chapter, we

will consider a simple transmission control problem in which both source dynamics and

channel dynamics are considered.
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Chapter 4

Optimal Transmission Control

Policies

In this chapter, we study a transmission control problem for a single data user over a

time-varying channel. The arrival dynamics and the channel dynamics are considered,

however, the action is simplified as a binary action, i.e., either to transmit or not to

transmit. The objective is to find a policy that optimally balances different costs. We

investigate the characteristic and structure of optimal policies. Numerical examples

and some discussions are provided.

4.1 Problem Formulation

The system model is shown in Fig. 4.1. We consider a discrete time system. At the

beginning of each frame, the sender needs to decide whether or not to transmit a packet

in the frame based on the observation of the buffer occupancy and the channel state

information. In each frame, there is a batch of data packets of the same size arriving

at the sender’s buffer. Arriving packets are queued in a first-in-first-out buffer that can

hold at most B packets. If the buffer is full, arriving packets are discarded, i.e., the

buffer overflows. We assume that batch arrivals in different frames are independent and

cannot be transmitted in the same frame. Let q(i), i = 0, 1, · · ·, denote the probability

of i packets arriving in a frame and
∑

i q(i) = 1. Let λ denote the average number of

arrivals in a frame; λ =
∑
iq(i). To guarantee a stable queueing system, we require
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Figure 4.1: System model

λ < 1 which implies q(0) > 0. The wireless channel is modelled again as a finite-state

Markov channel with M states and as in the previous chapter, we use H = [hij]M×M

to denote the channel state transition matrix. We further assume that the Markov

chain over the channel states is ergodic and irreducible. As fixed transmission power

is used, the frame success probability is a function of the channel state, hi, only and is

denoted as fs(hi). The system state is denoted again as s = (b, hi), where 0 ≤ b ≤ B

and 1 ≤ i ≤ M . The action space now contains only two actions A = {0, 1}, where

a = 0 means no transmission and a = 1 means to transmit a packet with a fixed power

level. The transition probability is then given as:

Tr((b+ z − 1, hj)|(b, hi), a) =


q(z − 1)hij, b ≥ 0, a = 0

q(z − 1)hij(1− fs(hi)) + q(z)hijfs(hi) b > 0, a = 1

0 otherwise

(4.1)

where z ≥ 0 and q(z < 0) = 0. Note that we assume b + z ≤ B. If b + z > B, we can

redistribute the excess probability to state (B, ·) by using the augmentation procedure

introduced in [73].

Compared to the problem in the previous chapter, here, we consider the arrival

dynamics but simplify the set of actions. The simplification leads to some rigorous

qualitative analysis which will be presented later. Since two stochastic processes, i.e.,

the buffer evolution and the channel process, have been included in this model, the

analysis of multi-level or continuous transmission powers becomes much more com-
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plicated. However, extension to multi-level or continuous transmission powers can be

obtained via asymptotic analysis against the information theoretic framework of A.

Goldsmith [29, 30], for example, where for simplicity, no delay is considered.

The transmission control problem under consideration here can be formulated for

different purposes. For example, the objective can be to minimize the transmission

power, or to minimize the buffer overflow probability or to maximize the transmission

efficiency while meeting an average delay requirement. In the previous chapter, we

have introduced how to convert a constrained optimization problem into a standard

MDP problem (cf. Section 3.2 and 3.3.1) and how to solve them via the Lagrangian

approach. Indeed, different objectives can be represented via different cost functions

and a particular objective can be emphasized by adjusting its cost function. Here we

use the following cost structure:

C((b, h), a) =

 c0b, a = 0

c0b+ c1 − c2fs(h), a = 1
(4.2)

where c0, c1, c2 > 0 are constants. The above cost structure indicates that a user pays

some usage costs, i.e., power, for the transmission and some holding costs, i.e., delay, for

queueing packets in the buffer. However, it benefits from a successful transmission with

some probability, i.e., −c2fs(h). Note that the cost structure is uniformly bounded.

By adjusting c0, c1, c2, we can adjust the balance between transmission throughput,

energy efficiency and delay cost. In general, the larger c0/c1/c2 is, the more emphasis

is placed on the delay/energy/throughput efficiency. However, in order to encourage

transmission, a packet should be transmitted when the channel is in the best state 1.

Accordingly, we require c2fs(hM) > c1 (at least). We will use the average optimality

criterion to form a MDP modelled problem in the next section.

4.2 Average Cost Optimal Policy

We use the average cost optimality criterion as it implies the cost is not sensitive to

when the cost is incurred and the computed policy value is independent of the starting

1This is a rather conservative requirement, which can be relaxed if we emphasize more on trans-

mission.
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state. To apply the ACOE (2.12) to compute optimal policies, we need to identify

the unichain property. We use Definition (3.2) here again and let Πp denote the set

of policies that consist of only proper decision rules. The following proposition shows

that the Markov decision process in our problem is unichain.

Proposition 4.1 The Markov decision process under any transmission policy π ∈ Πp

is unichain.

Proof: As the system state is described by a two-tuple, i.e., s = (b, h), any stationary

policy induces a two-dimensional Markov chain. Under our channel state model, we

note that a system state (b, hi) communicates with all other states (b, ·) for all fixed

b. Now consider states (·, hM). Under the requirement of proper decision rules, a

packet should be transmitted with a positive power level, and it will be received with

a positive probability fs(hM) > 0. Furthermore, since q(0) > 0, it is always possible

for the process to transit from state (j, hM) to state (j−1, hM). On the other hand, as

q(k) > 0, k > 0, it is also possible for the process to transit from (j−1, hM) to (j, hM).

As j is chosen arbitrarily, all states (·, hM) can communicate with a distinguished state

(0, hM). Based on the above arguments, all states communicate with state (0, hM).

Therefore, all states form a single aperiodic positive class containing state (0, hM) and

the proposition follows from the unichain definition.

The state and the action are finite and the immediate cost is uniformly bounded.

Furthermore, as our transmission control problem is unichain under the proper decision

rules definition, all conditions in Theorem 2.3 are satisfied and we can use ACOE (2.12)

to compute an optimal policy.

4.3 Property of Optimal Policies

The computation effort for optimal policies increases as the state space increases, i.e.,

the buffer limit B and/or the number of channel states M increase. Though the

available actions are few, the computation effort could be high. For example, when the

value iteration algorithm (cf. Section 2.2.4) is used, there are altogether 2 × B ×M

equations that need to be solved at each step. Hence in this section we explore the
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property of optimal policies in order to reduce the computation effort. As the stationary

average cost optimal policies exist (cf. Section 4.2), the ACOE (2.12) for our problem

is rewritten as follows by using the transition probability (4.1) and the cost structure

(4.2).

u(0, hi) = −J +
∑
z=0

M∑
j=1

q(z)hiju(z, hj), b = 0

u(b, hi) = −J + min {X(b), X(b) + ∆(b, hi)} b > 0

(4.3)

where

X(b) = c0b+
∑
z=0

M∑
j=1

q(z)hiju(b+ z, hj) (4.4)

∆(b, hi) = c1 − c2fs(hi)− fs(hi)U(b) (4.5)

and

U(b) =
∑
z=0

M∑
j=1

q(z)hij [u(b+ z, hj)− u(b+ z − 1, hj)] (4.6)

We use the superscript k to index the kth step value functions in the value iteration

algorithm, e.g., uk(b, hi), and we define Xk(b), ∆k(b, hi) and Uk(b) accordingly, for

example, Xk(b) = c0b+
∑
z=0

M∑
j=1

q(z)hiju
k(b+z, hj). Recall that a function g(x) : N+ 7→ R

is defined to be convex if for all x = 1, 2, · · ·,

g(x+ 1) + g(x− 1) ≥ 2g(x). (4.7)

The following lemma states the convexity of u.

Lemma 4.1 u(b, hi) is a convex function of b for each fixed hi, i = 1, · · · ,M .

Proof: The proof is based on the relative value iteration algorithm (see Section 2.2.4)

and proceeds by induction. For notational simplicity, we let Jk−1 denote wk−1(s̃) used

in the iteration algorithm, i.e., (2.18) and (2.19). Note that Jk−1 is a constant in each

step to compute uk in (2.19). For k = 0, we set u0(b, hi) = 0 for all b and hi.

For k = 1, we have u1(b, hi) = min{c0b, c0b+ c1 − c2fs(hi)} and hence u1(b, hi) is a

convex function in b for each fixed hi, i = 1, · · · ,M .

Now assume that uk(b, hi) is convex for some k ≥ 1 and for each fixed hi, we have

uk(b+ 1, hi) + uk(b− 1, hi) ≥ 2uk(b, hi) for all b > 1. (4.8)
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We show that it also holds for k + 1. According to the iteration algorithm, we have

uk+1(b+ 1, hi) = −Jk + min
{
Xk(b+ 1), Xk(b+ 1) + ∆k(b+ 1, hi)

}
,

uk+1(b, hi) = −Jk + min
{
Xk(b), Xk(b) + ∆k(b, hi)

}
,

uk+1(b− 1, hi) = −Jk + min
{
Xk(b− 1), Xk(b− 1) + ∆k(b− 1, hi)

}
.

In the state (·, hi), when ∆k(·, hi) ≥ 0, the optimal action is not to transmit and when

∆k(·, hi) < 0, the optimal action is to transmit. We consider the following cases.

Case (1): The optimal action in state (b+ 1, hi) is not to transmit. This implies

∆k(b+ 1, hi) = c1 − c2fs(hi)− fs(hi)U
k(b+ 1) ≥ 0

From the induction assumption (4.8), we have

Uk(b+ 1) =
∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z + 1, hj)− uk(b+ z, hj)

]
≥

∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z, hj)− uk(b+ z − 1, hj)

]
= Uk(b)

≥
∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z − 1, hj)− uk(b+ z − 2, hj)

]
= Uk(b− 1)

(4.9)

Hence ∆k(b, hi) ≥ 0 and ∆k(b − 1, hi) ≥ 0. The optimal actions in states (b, hi) and

(b− 1, hi) are also not to transmit. In this case, we have

uk+1(b+ 1, hi) + uk+1(b− 1, hi)− 2uk+1(b, hi)

= Xk(b+ 1) +Xk(b− 1)− 2Xk(b)

=
∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z + 1, hj)− uk(b+ z, hj)

]
−

∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z, hj)− uk(b+ z − 1, hj)

]
≥ 0

(4.10)

The inequality is from the induction assumption (4.8) of the convexity of uk.

Case (2): The optimal action in state (b+ 1, hi) is to transmit and the optimal action

in state (b, hi) is not to transmit. Via similar arguments in Case 1, the optimal action

in state (b − 1, hi) is also not to transmit. Furthermore, that the optimal action in

state (b, hi) is not to transmit implies

∆k(b, hi) = c1 − c2fs(hi)− fs(hi)U
k(b) ≥ 0. (4.11)
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In this case, we have

uk+1(b+ 1, hi) + uk+1(b− 1, hi)− 2uk+1(b, hi)

= Xk(b+ 1) + ∆k(b+ 1, hi) +Xk(b− 1)− 2Xk(b)

= c1 − c2fs(hi) + (1− fs(hi))
∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z + 1, hj)− uk(b+ z, hj)

]
−

∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z, hj)− uk(b+ z − 1, hj)

]
≥ fs(hi)

∑
z=0

M∑
j=1

q(z)hij [u(b+ z, hj)− u(b+ z − 1, hj)]

+ (1− fs(hi))
∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z + 1, hj)− uk(b+ z, hj)

]
−

∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z, hj)− uk(b+ z − 1, hj)

]
= (1− fs(hi))

∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z + 1, hj)− uk(b+ z, hj)

]
− (1− fs(hi))

∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z, hj)− uk(b+ z − 1, hj)

]
≥ 0

(4.12)

The first inequality is from (4.11) and the second inequality is from the induction

assumption (4.8) of the convexity of uk.

Case (3): The optimal actions in states (b + 1, hi) and (b, hi) are to transmit and the

optimal action in state (b− 1, hi) is not to transmit. That the optimal action in state

(b, hi) is to transmit implies

∆k(b, hi) = c1 − c2fs(hi)− fs(hi)U
k(b) ≤ 0 (4.13)

In this case, we have

uk+1(b+ 1, hi) + uk+1(b− 1, hi)− 2uk+1(b, hi)

= Xk(b+ 1) + ∆k(b+ 1, hi) +Xk(b− 1)− 2
[
Xk(b) + ∆k(b, hi)

]
= (1− fs(hi))

∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z + 1, hj)− uk(b+ z, hj)

]
− (1− fs(hi))

∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z, hj)− uk(b+ z − 1, hj)

]
−∆k(b)

≥ 0

(4.14)

The inequality is from (4.13) of −∆k(b) ≥ 0 and the induction assumption (4.8) of the

convexity of uk.
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Case (4): The optimal actions in states (b+1, hi), (b, hi) and (b−1, hi) are to transmit.

In this case, we have

uk+1(b+ 1, hi) + uk+1(b− 1, hi)− 2uk+1(b, hi)

= Xk(b+ 1) + ∆k(b+ 1, hi) +Xk(b− 1) + ∆k(b− 1, hi)− 2
[
Xk(b) + ∆k(b, hi)

]
= (1− fs(hi))

∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z + 1, hj)− uk(b+ z, hj)

]
− (1− fs(hi))

∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z, hj)− uk(b+ z − 1, hj)

]
+ fs(hi)

∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z, hj)− uk(b+ z − 1, hj)

]
− fs(hi)

∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z − 1, hj)− uk(b+ z − 2, hj)

]
≥ 0

(4.15)

Again, the inequality is from the induction assumption (4.8) of the convexity of uk.

From (4.10), (4.12), (4.14), (4.15) and from the induction argument, we conclude

that uk+1(b, hi) is a convex function of b for all k ≥ 0, and from the MDP result of

value iteration algorithm, u(b, hi) = limk→∞ u(b, hi) is a convex function of b for each

fixed hi, i = 1, · · · ,M . This also completes the proof.

From Lemma 4.1, we then have the following corollary and proposition.

Corollary 4.1 ∆(b, hi) is a nonincreasing function of b for each fixed hi, i = 1, · · · ,M .

Proposition 4.2 If there exists a buffer threshold b(i) such that the optimal action

is to transmit in the state (b(i), hi) given some channel state hi, then for all states

(b > b(i), hi), the optimal action is to transmit too.

Proof: From the proposition assumption, ∆(b(i), hi) ≤ 0. The rest of the proof is

clear from Corollary 4.1 and (4.3).

Proposition 4.2 suggests that an optimal policy has a structural property which reduces

the computation effort for optimal policies. There may exist many buffer state thresh-

olds (assuming that the buffer limit is large enough) each corresponding to a particular

channel state. In [98], Zhang and Wasserman have proved that an optimal policy has a

back-off structure for an always backlogged user, i.e., whenever the estimated channel

state is in some bad channel states, the optimal policy is not to transmit and wait until
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the channel transits to some good states. However, with the arrival process included in

our model, the sender still has to transmit in some bad states to avoid increasing the

holding cost whenever the buffer occupancy exceeds some thresholds. We next show

the property of optimal policies related to the channel states.

Lemma 4.2 u(b, hi) is a nondecreasing function of b for each fixed hi, i = 1, · · · ,M .

Proof: Again, the proof is based on the relative value iteration algorithm (see Sec-

tion 2.2.4) and proceeds by induction. For k = 0, we set u0(b, hi) = 0 for all b and

hi.

For k = 1, we have u1 = min{c0b, c0b+ c1 − c2fs(hi)} and hence u1(b, hi) is nonde-

creasing in b for each fixed hi, i = 1, · · · ,M .

Now assume that uk(b, hi) is nondecreasing in b for some k ≥ 1 and for each fixed

hi, we have

uk(b+ 1, hi) ≥ uk(b, hi) for all b ≥ 1. (4.16)

We show that it also holds for k + 1. Again, we consider the following cases.

Case (1): The optimal action in state (b + 1, hi) is not to transmit. Then from (4.9),

the optimal action in state (b, hi) is also not to transmit. In this case, we have

uk+1(b+ 1, hi)− uk+1(b, hi)

= Xk(b+ 1)−Xk(b)

= c0 +
∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ 1, hi)− uk(b, hi)

]
≥ 0

(4.17)

The inequality is from the nonnegative c0 and the induction assumption (4.16)

Case (2): The optimal action in state (b+ 1, hi) is to transmit and the optimal action

in state (b, hi) is not to transmit. That the optimal action in state (b, hi) is not to

transmit implies

∆k(b, hi) = c1 − c2fs(hi)− fs(hi)U
k(b) ≥ 0

⇒ c1 − c2fs(hi) ≥ fs(hi)
∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z, hj)− uk(b+ z − 1, hj)

]
⇒ c1 − c2fs(hi) ≥ 0

(4.18)
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The last inequality follows from the induction assumption (4.16). In this case, we have

uk+1(b+ 1, hi)− uk+1(b, hi)

= Xk(b+ 1) + ∆k(b+ 1, hi)−Xk(b)

= c0 + c1 − c2fs(hi) + (1− fs(hi))
∑
z=0

M∑
j=1

q(z)hij

[
uk(b+ z + 1, hj)− uk(b+ z, hj)

]
≥ 0

(4.19)

The inequality follows from the nonnegative c0, (4.18), 1−fs(hi) ≥ 0 and the induction

assumption (4.16).

Case (3): The optimal actions in the states (b + 1, hi) and (b, hi) are to transmit. In

this case, we have

uk+1(b+ 1, hi)− uk+1(b, hi)

= Xk(b+ 1) + ∆k(b+ 1, hi)−Xk(b)−∆k(b, hi)

= c0 + (1− fs(hi))
∑
z=0

M∑
j=1

[
u(b+ z + 1, hj)− u(b+ z, hj)

]
+ fs(hi)

∑
z=0

M∑
j=1

[
u(b+ z, hj)− u(b+ z − 1, hj)

]
≥ 0

(4.20)

Again, the inequality follows from the nonnegative c0 and the induction assumption

(4.16).

From (4.17), (4.19), (4.20) and from the induction argument, we conclude that

uk+1(b, hi) is a nondecreasing function of b for all k ≥ 0 , and from the MDP result of

value iteration algorithm, u(b, hi) = lim
k→∞

uk(b, hi) is a nondecreasing function of b for

each fixed hi, i = 1, · · · ,M . This also completes the proof.

Note that fs(hi) is considered as a nondecreasing function of the channel state hi

(cf. Section 3.1 (3.7)). From Lemma 4.2 and the nondecreasing fs(hi), we then have

the following corollary and proposition.

Corollary 4.2 Suppose that fs(hi) is a nondecreasing function of the channel state hi,

then ∆(b, hi) is a nonincreasing function of hi, i = 1, · · · ,M for each fixed b > 1.

Proof: From Lemma 4.2, u(b+ z, hj)− u(b+ z − 1, hj) ≥ 0. The rest of the proof is

clear from the nonnegative increasing function fs(hi).
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Proposition 4.3 If there exists a channel state threshold hz such that the optimal

action is to transmit in the state (b, hz) given some buffer occupancy b > 0, then for

all states (b, hi), i ≥ z, the optimal action is to transmit too.

The proof of Proposition 4.3 is rather straightforward and we omit it here. Proposi-

tion 4.3 is intuitively clear and it suggests that if the sender transmits in a channel

state, it should also transmit in all channel states better than this one.

Besides the value iteration algorithm, the policy iteration algorithm [7, 62] can also

be used to compute an optimal policy. We propose the following modified unichain

policy iteration algorithm for our problem which simplifies the computation of optimal

policies. Puterman (see [62], page 386) has proposed a general modified policy iteration

algorithm. Our algorithm is based on his algorithm, however, the property of optimal

policies has been exploited in the policy improvement. Our algorithm, the modified

unichain policy iteration algorithm, is described as follows.

The modified unichain policy iteration algorithm

1. Set k = 0, u0(b, hi) = 0 for all (b, hi). Specify ε > 0 and an integer N ≥ 1.

2. (Policy Improvement)

2a. Set i = 1, b = 1; Goto (2b).

2b. Compute ∆k(b, hi). If ∆k(b, hi) ≥ 0, goto (2c); otherwise goto (2d).

2c. Set dk(b, i) = 0 and b = b+ 1. If b ≤ B, goto (2b); otherwise goto (2e).

2d. Set dk(b′, i) = 1 for all b′ ≥ b. Goto (2e)

2e. Set b = 1 and i = i+ 1. If i ≤M goto (2b), otherwise goto (3).

3. (Partial Policy Evaluation)

3a. Set n = 1 and for all s compute

vn(s) = C(s, dk(s)) +
∑
s′

Tr(s′|s, dk(s))uk(s). (4.21)

3b. If

‖uk − vn‖ ≤ ε (4.22)
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goto (4). Otherwise goto (3c).

3c. If n = N goto (3d); otherwise compute vn+1 by

vn+1(s) = C(s, dk(s)) +
∑
s′

Tr(s′|s, dk(s))vn(s). (4.23)

and set n = n+ 1, goto (3c).

3d. Set k = k + 1 and uk = vn and goto (2).

4. (Policy Identification)

4a. Set i = 1, b = 1; goto (4b).

4b. Compute ∆k(b, i). If ∆k(b, i) ≥ 0, goto (4c); otherwise goto (4d).

4c. Set dε(b, i) = 0 and b = b+ 1. If b ≤ B, goto (4b); otherwise goto(4e);

4d. Set dε(b
′, i) = 1 for all b′ ≥ b; goto (4e).

4e. Set b = 1 and i = i+ 1. If i ≤M , goto (4b); otherwise goto (5).

5. Print the ε−optimal policy and stop.

This algorithm combines features of both policy iteration, e.g., step 2 and value

iteration, e.g., step 3. Furthermore, in step 2 and step 4, the property of optimal

policies, i.e., Proposition 4.2, has been exploited to reduce the computation of optimal

policies. We next provide some numerical examples.

4.4 Numerical Examples

The channel model used in this section is based on the Gudmundson [33] model for

a mobile with a constant velocity. We classify the channel states in terms of channel

gain, i.e., the received SNR. We assume that fast fading is averaged over a frame via

perfect interleaving and only shadowing is considered in the simulations. As suggested

by Gudmundson [33], we model the log-normal shadowing as a Gaussian process (in

dB units). The channel gain (SNR) is modelled as a log-normal random process with

mean 7 dB and autocorrelation function R(k) = σ2(0.3)α|t| , where σ2 = 4.3 dB and

α is proportional to the velocity of a user. We split the range of channel gains into a
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finite number of intervals (states) and make each state equiprobable. The transition

probabilities are determined by suitably integrating over the conditional probability

density function. For example, we consider to construct a 4-state Markov channel.

The quantization intervals are given as: (0, 5.6013], (5.6013, 7], (7, 8.3985], (8, 3985,∞).

The transition probability is given by

Pr(h(t+ 1) = hj|h(t) = hi) =
Pr(h(t+ 1) = hj, h(t) = hi)

Pr(h(t) = hi)
(4.24)

where the joint cumulative distribution function of (h(t+1), h(t)) is a bivariate normal

distribution with the correlation matrix

 1 ρ12

ρ21 1

 and ρ12 = ρ21 = 0.3α. We

develop a routine to compute the probability of the bivariate normal probabilities,

which is based on the method introduced by A. Genz [27]. For example, the channel

transition matrix at α = 0.6 is

H =


0.4729 0.2784 0.1719 0.0768

0.2784 0.2930 0.2568 0.1718

0.1719 0.2568 0.2928 0.2785

0.0768 0.1718 0.2785 0.4729

 (4.25)

For simplicity, we assume an uncoded system using BPSK modulation with 512-

bit packets. The frame success probabilities fs(hi) are simply taken as the mid-

dle values of each SNR interval. For example, the frame success probabilities are

fs(h1) = 0.4, fs(h2) = 0.88, fs(h3) = 0.95, fs(h4) = 1.00 for a 4-state Markov channel.

We only consider a simple Bernoulli arrival process. The arrival probability is set as

q(0) = 0.5 and q(1) = 0.5. The buffer limit is set as 80 in all simulations.

We now provide some numerical examples to illustrate the performance of the op-

timal policies. The purpose of the simulations is two folds. We first evaluate how the

different cost weights affect the resulting optimal policies and then compare the per-

formance of an optimal policy with that of a persistent transmission policy. We then

evaluate how the channel characteristics affect the resulting optimal policies. For the

first purpose, we consider a 4-state Markov channel. We fix c1 = 100.0 and c2 = 200 and

use different values of c0 in the simulations. Recall that the value of c0 influences the

delay costs. Table 4.1 shows the computed optimal policies (i.e., the buffer occupancy
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that corresponds to the optimal action being transmission) with different values of c0.

In Table 4.1, there are four channel states with 1 representing the worst and 4 the best

Table 4.1: Optimal Transmission Policies (B = 80)

Channel state

c0 1 2 3 4

10 [4, 80] [1, 80] [1, 80] [1, 80]

5 [7, 80] [1, 80] [1, 80] [1, 80]

1 [31,80] [2, 80] [1, 80] [1, 80]

0.5 [60,80] [3, 80] [1, 80] [1, 80]

0.1 - [7,80] [1, 80] [1, 80]

channel. From Proposition 4.2, if the optimal action is to transmit in a state (b, hi),

then for all states (b′ > b, hi) the optimal actions are to transmit too. For example,

with c0 = 5 and the channel state being 1, the optimal action is to transmit whenever

there are 7 or more than 7 packets in the buffer. There may exist multiple thresholds

each corresponding to a particular channel state, for example, when c0 = 0.5. We see

from Table 4.1 that if the optimal action is to transmit in a state (b, hi), then for all

states (b, hj), j ≥ i the optimal actions are to transmit too (cf. Proposition 4.3). Also

as shown in Table 4.1, the optimal policies based on our average cost modelling have a

similar structure as the ”back-off” optimal policies in [98], i.e., the controller tends to

suspend a transmission when the channel state is in the worst state. However as the

arrival process is included in our model, in some bad channel states the controller still

has to transmit to avoid increasing the holding cost whenever the buffer occupancy

exceeds some thresholds.

We next compare an optimal transmission policy with a persistent transmission

policy. In the persistent transmission policy, the action is to transmit whenever the

buffer is not empty. In the simulations, immediate costs are computed and collected

in each frame based on the system state at the beginning of the frame and the action

prescribed by the optimal policy and the persistent transmission policy. In the simula-

tions, we also count the buffer state and record the delay of a successfully transmitted

packet in each frame. The simulation results including average costs, average delay and
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the probability of buffer occupancy are then computed by averaging over 10 runs of

simulations each with 100000 frames. Table 4.2 shows the average costs per unit time

(per frame) of the optimal policy and the persistent transmission policy. Note that

Table 4.2: Average Costs Comparison

c0 10 5 1 0.5 0.1

Optimal (computed) -32.6504 -39.4137 -45.4993 -46.5073 -47.6982

Optimal (simulated) -32.7216 -39.3334 -45.5844 -46.5301 -47.7238

Persistent(simulated) -30.0616 -32.9291 -36.2007 -36.5783 -37.0761

the negative cost can be considered as the positive reward from the transmission. The

simulated average cost of the optimal policy (given a fixed c0) is close to the computed

one, and is smaller than that of the persistent transmission policy. When the buffer

occupancy is less than some threshold, the sender can choose not to transmit if the

current channel state is poor under the optimal policy. In such a situation, suspen-

sion is more profitable than transmission and the sender can transmit either when the

channel transits to a better state or when the buffer occupancy exceeds a threshold.

However, this may be at the expense of increased delay. Table 4.3 compares the good-

put, the average buffer occupancy and the average delay of the optimal policy and the

persistent transmission policy. The goodput is defined as the ratio of error-free trans-

Table 4.3: Goodput, Occupancy and Delay Comparison

Goodput Occupancy Delay

c0 opti. pers. opti. pers. opti. pers.
10 0.9195 0.7977 1.2947 0.8733 3.0894 2.2466

5 0.9372 0.7972 1.4627 0.8739 3.4254 2.2478

1 0.9507 0.7978 1.9332 0.8742 4.3664 2.2484

0.5 0.9554 0.7973 2.3645 0.8740 5.2290 2.2480

0.1 0.9638 0.7978 4.3487 0.8736 9.1974 2.2472

missions over all transmissions. Note that the goodput defined here also can be used as

a measure of energy (or transmission) efficiency since the transmission power is fixed
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in our problem. The average buffer occupancy is the average number of packets in the

buffer. It is computed as N =
∑B

j=0 jp
π(j), where pπ(j) is the stationary probability of

j packets in the buffer when the policy π is applied. Since stationary optimal policies

exist, the stationary probability distribution of buffer occupancy exists. Note that in

our simulations, overflow does not happen as the arrival rate (λ =
∑

j jq(j) = 0.5) is

small and the buffer limit is large. Hence by Little’s theorem, the average delay of a

packet can also be computed as T = 1
2
+N/λ (unit in frame duration). It is seen from

Table 4.3 that the optimal policy has a larger goodput compared with the persistent

transmission policy. This is because the optimal policy can exploit the time-varying

channel and the delay tolerance of data users. It is also seen from Table 4.3 that the

larger the goodput of the optimal policy, the larger the average delay. However differ-

ent design objectives (e.g., goodput, delay) can be easily met by adjusting the values

of the different costs parameters.

We next investigate how the channel characteristic affects the resulting optimal

policy and its performance. The channel dynamics can be totally represented via the

channel transition matrix H. The frequency at which the channel changes state depends

on the values of the diagonal elements of H. As the values of the diagonal elements

increase, the less frequent the channel changes state, and the stronger the dependence

structure, or the channel memory, becomes. We hence use the following definition for

the channel memory which has also been used by D. Zhang and K. Wasserman in [98]

for a Markov channel.

Definition 4.1 The channel memory ξ of H is defined to be the second dominant

eigenvalue of the channel transition probability matrix H.

For example, the probability transition matrix of the two-state Markov channel (or the

Gilbert-Elliott (GE) channel [28]) is

H =

 1− g g

b 1− b

 (4.26)

and the second eigenvalue of H is ξ = 1 − g − b, which has been used as the channel

memory in [53]. The case of ξ = 0 corresponds to a memoryless channel, and ξ = 1

to a decomposable Markov chain, where the channel remains in its initial state for
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all time (infinite memory). Furthermore, when H is monotone 2 and irreducible, it

has, apart from its simple eigenvalue at 1, a second non-negative eigenvalue at ξ < 1

such that all other eigenvalues have modulus not exceeding ξ (see [42] for proof). As

the Markov channels used in our problem are monotone, we investigate the resulting

optimal policies for different channels in terms of the channel states and the channel

memory. We study 2-, 4- and 8-state Markov channels of different channel memories.

Furthermore, in all the following numerical examples we fix the arrival probabilities as

q(0) = 0.5 and q(1) = 0.5, and the weights as c0 = 1, c1 = 100 and c2 = 200.

Figure 4.2: Buffer threshold for starting transmission in channel state 1 of a 2-state

Markov channel as a function of channel memory.

Figs. 4.2, 4.3 and 4.4 plot the buffer thresholds (optimal policies) for starting trans-

mission in different channel states as a function of channel memory for the 2-, 4- and

8-state Markov channels, respectively. For those channel states that are not plotted in

the figures, the buffer thresholds for starting transmission are all from 1, i.e., when the

buffer is not empty. Though the buffer thresholds are not monotone increasing or de-

2A stochastic matrix is said to be monotone if its probability of row vectors are stochastically

nondecreasing. A brief introduction of monotone stochastic matrix is provided in Section 5.5.3.
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Figure 4.3: Buffer threshold for starting transmission in channel state 1 and 2 of a

4-state Markov channel as a function of channel memory.

creasing with the channel memory, e.g., Fig. 4.2, it is observed that the sender becomes

aggressive when the channel memory is very high (e.g., ξ ≥ 0.9) in that it has to send

even when the buffer occupancy is low in the bad state(s). We explain it as follows.

Note that an optimal policy is computed given a specific channel. When the channel

memory increases, the sojourn time in the current channel state increases. However,

the holding cost could increase regardless of the current channel state as new arrivals

are independent of the channel and could happen in each frame. Therefore, to reduce

the (possibly) increasing holding cost due to new arrivals, the sender cannot wait too

long for the channel to transit from a bad state to a good state and has to transmit

at the low buffer occupancy. We note that our results are different from the results

reported by D. Zhang and K. Wasserman. In [98], D. Zhang and K. Wasserman con-

sidered the optimal transmission control problem for an always backlogged user whose

buffer occupancy dynamics are not considered (i.e., the holding cost is not based on the

buffer occupancy but a constant) and reported that the optimal backoff time increases

as the channel memory increases. As the buffer dynamics are not considered and only
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Figure 4.4: Buffer threshold for starting transmission in channel state 1, 2 and 3 of a

8-state Markov channel as a function of channel memory.

fixed penalty is charged for no transmission in [98], the sender needs not to balance

the increased holding cost and hence the optimal backoff time (or in other words, the

optimal waiting time for channel transiting from a bad state to a good state) increases

with the channel memory.

Figs. 4.5, 4.6 and 4.7 plot the average cost as a function of channel memory for the

optimal policies and a persistent transmission policy with 2-, 4- and 8-state channels,

respectively. We first note that the optimal policies have lower costs than that of

the persistent policy. We then note that the cost increases with the channel memory

for both the optimal policies and the persistent policy. This is due to the fact that

a channel with a larger memory is less frequent to transit to other states. It is less

opportunistic for a sender to exploit the channel variation with the increase of channel

memory. This leads to the increased transmission failures and the increased holding

cost, and hence the total cost increases. Finally, we note that the cost with a channel

with more states is better than with a channel with fewer states (e.g., the cost of 8-state

channel is less than that of a 4-state channel), which is due to a finer quantization of
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Figure 4.5: Cost for the 2-state Markov channel as a function of channel memory.

the channel.

Figs. 4.8, 4.9, and 4.10 (Figs. 4.11, 4.12 and 4.13) plot the goodput (the average

buffer occupancy) as a function of channel memory for the optimal policies and the

persistent policy with 2-, 4- and 8-state channels, respectively. The goodput of the

optimal policy is higher than that of the persistent policy as the sender suspends

transmission in bad states. However, the higher goodput is at the cost of increased

buffer occupancy. Again, the fact that the sender stays more time in the current

state in channel with a small memory but has to transmit in bad state(s) explains

the decrease of the goodput for both the optimal and the persistent policies with the

channel memory. The drop in the occupancy in Fig. 4.11 when the memory ξ > 0.9 is

due to the fact that the corresponding optimal policy has to transmit at very low buffer

occupancy, cf. Fig 4.2. The drop in the occupancy in Fig. 4.12 when the memory ξ is

above 0.9835 is due to the fact that overflow occurs (0.0014%).
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Figure 4.6: Cost for the 4-state Markov channel as a function of channel memory.

4.5 Summary

In this chapter, we have studied a simple transmission control problem for a single

user with general arrival statistics. The sender decides, at the beginning of each frame,

whether or not to transmit a packet based on the buffer occupancy and the channel

state. The goal is to find a policy that optimally balances different costs such as

the transmission power and the average delay. We formulate it as a Markov decision

problem and show the existence of the stationary average cost optimal policies. We have

also shown the properties of the optimal policies, i.e., the threshold-based structure,

which helps to reduce computation effort. Numerical examples are then provided to

illustrate how to achieve different balance points and to compare the performance of

optimal policies with that of the persistent policy.

Besides power and transmission control, a mobile may control its transmission rate

during the holding time of a connection. Rate control will be studied in the next

chapter.
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Figure 4.7: Cost for the 8-state Markov channel as a function of channel memory.

Figure 4.8: Goodput for the 2-state Markov channel as a function of channel memory.
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Figure 4.9: Goodput for the 4-state Markov channel as a function of channel memory.

Figure 4.10: Goodput for the 8-state Markov channel as a function of channel memory.

76



CHAPTER 4. Optimal Transmission Control Policies Page 77

Figure 4.11: Average buffer occupancy for the 2-state Markov channel as a function of

channel memory.

Figure 4.12: Average buffer occupancy for the 2-state Markov channel as a function of

channel memory.
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Figure 4.13: Average buffer occupancy for the 2-state Markov channel as a function of

channel memory.
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Chapter 5

Optimal Rate Allocation Policies

In this chapter, we consider a rate allocation problem for a single data user. A data

user needs to pay for the usage of resources, e.g., it pays for its transmission rate. Thus

a data user may request different transmission rates during its connection holding time

to reduce its resource usage cost but still meeting its QoS requirements. We formulate

it as a Markov decision problem. The characteristic and structure of optimal polices

are discussed. We show that, based on some mild assumptions, the optimal policies

are monotone. Furthermore, we propose a class of simple policies that are easy to

implement to approximate the optimal policies. We analyze such simple policies and

provide an upper delay bound. Finally, we extend the single user self-optimization

problem to consider the situation where multiple users are present. We still use MDP

to model and to solve the latter problem but with some proper assumptions. The

characteristic of the value function and the property of the optimal policies for the

extended problem are discussed.

5.1 Problem Formulation

In this section, we provide the problem formulation of a Markov decision modelled

dynamic rate allocation problem for a single data user with general arrival statistics.

The system model is shown in Fig. 5.1. We consider a discrete time system and the

example of transmission model has been shown in Fig. 2.2. Note that the system model

can also be that of a service rate controlled queueing system, i.e., a single server with
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batch arrivals, adjustable batch service capabilities and a finite buffer. We consider

Figure 5.1: System model — A service rate controlled queueing system.

transmitting different number of packets in a frame to approximate the allocation

of different rates. Note that variable rates can be implemented using the variable

spreading factor operation and/or multi-code operation in a CDMA-based wireless

network 1. In each frame, there is a batch of data packets of the same size arriving at

the sender’s buffer. Arriving packets are queued in a first-in-first-out buffer that can

hold at most B packets. If the buffer is full, arriving packets are discarded, i.e., the

buffer overflows. We assume that batch arrivals in different frames are independent and

cannot be transmitted in the same frame. Let q(i), i = 0, 1, · · ·, denote the probability

of i packets arriving in a frame. Let λ denote the average number of arrivals in a frame;

λ =
∑

i=0 iq(i). In this chapter, we assume that the underlying power control algorithm

is ideal and can achieve the same average frame success probability fs, 0 < fs ≤ 1,

even if different number of packets are transmitted in a frame. In general, the target

SIR determines the frame success probability if perfect power control is assumed, and

a larger target SIR is required for achieving the same frame success probability when

more packets are sent in a frame. This will be discussed further later. We note that

1We note that other methods such as timeslot aggregation in GPRS/EDGE are also applicable for

configuring different rates in a TDMA based network. A good overview on rate configuration and

adaptation techniques in wireless packet data services can be found in [54].
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power control algorithms such as up-down power control used in practical systems2

have been shown to be able to achieve the SIR target [36, 75]. Thus fs is considered

as a constant in this chapter. At the beginning of each frame, the sender has to

decide the number of packets to send in that frame based on the observation of the

buffer occupancy. The objective of the sender is to find a stationary discount (average)

optimal policy. We now provide a brief Markov decision problem formulation.

The decision epochs correspond to the beginning of each frame. The states are the

number of packets queued in the buffer, denoted as s and 0 ≤ s ≤ B, and the state

space is then S = {0, 1, · · · , B}. The actions are the number of packets to transmit

in a frame. In state 0, i.e., s = 0, there is no action as there is no packet available

to transmit. In state s ≥ 1, the available actions are from As = {1, · · · ,min{A, s}},

where A is the largest number of packets that can be transmitted in a frame. From

the consideration of a stable queueing system, we require (at least) and hence assume

λ < Afs. Otherwise, buffer overflow is inevitable. The action space is then A =
⋃

sAs.

The above definition of action space requires that at least one packet should be sent

in a frame whenever the buffer is not empty. This can correspond to the minimum

data rate requirement of a connection. However, this requirement can be relaxed by

specifying a probability distribution on the set of actions, i.e., given that the buffer is

not empty, there is a probability to choose a number of packets to send. According to

our system model, the transition probabilities are then given as:

Tr(s′|s, a) =


q(s′) s = 0

(1− fs)q(s
′ − s) + fsq(s

′ − s+ a) s ≥ 1, a ∈ As

0 otherwise

(5.1)

where q(i < 0) = 0. Note that we assume s′ ≤ B. If s′ > B, we can redistribute

the excess probability to state s = B by using the augmentation procedure introduced

in [73]. However, as shown later in the next section, selected properties of optimal

policies simplify the computation of boundary probabilities and optimal policies. We

consider a linear cost structure which consists of two cost functions: the usage cost

function Cu and the holding cost function Ch. The usage cost may represent the

2For example, in UMTS the fast closed loop power control is designed to operate at a frequency

of 1500 Hz [40]
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charges that a user pays for its transmission rate and hence it is a function only on the

action space. Without loss of generality, we assume that the usage cost function Cu(a)

is a nonnegative and nondecreasing function of a. The holding cost may represent

the delay of packets and/or the energy that the sender uses to hold the packets and

hence it is a function only on the state space. Without loss of generality, we assume

that the holding cost function Ch(s) is a nonnegative and nondecreasing function of

s. Furthermore, we assume that Cu and Ch are bounded when the state space and

the action space are finite. Hence the cost structure in our dynamic rate allocation

problem is given as

C(s, a) = Ch(s) + Cu(a), s ∈ S, a ∈ As (5.2)

The objective is to find stationary optimal policies. Since the definition of policy values

and the definition of optimal policies are the same as those in Section 2.2.2, we omit

them here.

The optimality criterion can be either the discount optimal or the average optimal

criterion. We prefer to use the average optimal criterion, since it implies that the cost is

not sensitive to when the cost is incurred and also its policy value is independent of the

starting state. However, as we assume a very general arrival probability distribution, it

may not be easy to identify the unichain property for our Markov decision problem. On

the other hand, it is easy to verify that all conditions in Theorem 2.2 are satisfied for

this dynamic rate allocation problem. Thus a stationary discount optimal policy exists

and the computation method introduced in Section 2.2.4 can be used to compute a

stationary discount optimal policy for our rate allocation problem. However, based on

a mild assumption, we find that optimal policies have a monotone property that can be

used to simplify the computations. The next section discusses this monotone property

of optimal policies. It is based on the discount optimality criterion, however, it also

applies to the average optimality criterion once we identify the unichain property. A

case study that deals with average optimal policies will be provided later.
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5.2 Monotone Optimal Policies

A policy is monotone if its decision rules are monotone (nondecreasing/nonincreasing)

in the state space. In our dynamic rate allocation problem, this means that the decision

rules require that a larger number of packets are sent in a frame (i.e., using a higher

transmission rate) when the number of packets in the buffer increases. If an optimal

policy is monotone, we can simplify its computation and implementation. For example,

when the largest action has to be used for a state s′, then it should be used for all state

s > s′ assuming that an optimal policy is monotone. An example is of the following

multiple-threshold-based policy.

d(s) =


amin if s < z1

aavg if z1 ≤ s < z2

amax if s ≥ z2

where z1 and z2, z1 < z2, are some buffer occupancy thresholds and amin, aavg and

amax, amin < aavg < amax, are distinct transmission rates. A more simplified threshold-

based policy will be analyzed in detail later. An intuitive explanation here is that the

sender needs to transmit more packets in a frame (i.e., using a higher transmission rate)

to reduce delay when its buffer occupancy increases. On the other hand, it needs to

transmit fewer packets (i.e., using a smaller transmission rate) to reduce resource usage

costs when its buffer occupancy decreases. If we can establish that optimal policies are

monotone, then such a multi-threshold policy is also optimal and the problem reduces

to that of determining the proper thresholds. We note that a multi-threshold like radio

bearer allocation policy has also been suggested for UMTS in [22].

Many researchers including Puterman [62], Bertsekas [7], Serfozo & Lu [48], and

Stidham & Weber [78, 79] have proposed and proved necessary conditions for the exis-

tence of a monotone optimal policy for Markov decision problems, though their problem

contexts are different. Puterman proposed a set of general conditions for the existence

of monotone optimal policies. The main idea of Puterman’s monotone conditions (e.g.,

see Theorem 4.7.4 and Theorem 4.7.5 in [62]) is to establish the superadditive (or sub-

additive) property of the value function over the state space and the action space. Both

Bertsekas and Serfozo & Lu provide a proof for monotone optimal service rate control

83



CHAPTER 5. Optimal Rate Allocation Policies Page 84

policies in a continuous time M/M/1 queueing system. Bertsekas’ proof is based on

showing the convexity of the value function while Serfozo & Lu show the superadditive

property of the value function. Stidham & Weber provide the monotone conditions for

general cases in which the induced Markov chain is left-skip-free in a Markov decision

problem.

We note that the context of our dynamic rate allocation problem defined in the

previous section is more general than those above. However, based on an additional

but mild assumption, we prove that the optimal policies for our dynamic rate allocation

problem also have a monotone property. Our proof follows a similar line with that of

Bertsekas, i.e., to prove the convexity of the value function, but our problem takes a

more general form. As the state space and the action space are discrete in our problem,

we use the following definition for a convex function on the set of nonnegative integers.

A function g(x) : N+ 7→ R is defined to be convex if for all x = 1, 2, · · ·,

g(x+ 1) + g(x− 1) ≥ 2g(x) (5.3)

The following lemma provides an alternative characterization of the convexity restricted

to nonnegative integers. We denote dxe to be the smallest integer greater than x and

bxc to be the largest integer smaller than x.

Lemma 5.1 Let g : N+ → R be a function defined on {0, 1, · · · , }, then the following

claims are equivalent:

(i) g is convex.

(ii) g(x1) + g(x2) ≥ g(dx1+x2

2
e) + g(bx1+x2

2
c) for all x1, x2 ∈ N+.

Proof: Note that (ii) implying (i) is straightforward. By letting x1 = x + 1 and

x2 = x− 1, (ii) implies (5.3) and hence g is convex. We now show that (i) implies (ii).

That g is convex also implies g(x + 1) − g(x) is non-decreasing in x ∈ N+ and hence

g(x+ 1 + k)− g(x+ k) ≥ g(x)− g(x− 1) for all k ≥ 0. This follows by iterating (5.3)

with k steps, i.e., iterating g(x + 1) − g(x) ≥ g(x) − g(x − 1) and summing up the k

inequalities.

We show that (i) implies (ii) by an induction argument. Without loss of generality,

we assume that x1 ≥ x2. First note that (ii) holds with equality for all x1, x2 ∈ N+

84



CHAPTER 5. Optimal Rate Allocation Policies Page 85

with x1 = x2 and x1 = x2 + 1. It is also easy to verify that (i) implies (ii) for all

x1, x2 ∈ N+ with x1 = x2 + 2. Now assume that (i) implies (ii) for all x1, x2 ∈ N+ with

x1 = x2 + k for some k ≥ 3. We then show by induction that (ii) must be true for any

x1, x2 with x1 = x2 + k + 1. As g is convex and g(x+ 1)− g(x) is nondecreasing in x,

we have

g(x1)− g(x1 − 1) = g(x2 + k + 1)− g(x2 + k) ≥ g(x2 + 1)− g(x2)

for all k ≥ 1. Let x′1 = x1 − 1 and x′2 = x2 + 1. Note that x′1 = x′2 + k − 1. Thus by

induction, we have

g(x1 − 1) + g(x2 + 1) ≥ g(dx1 + x2

2
e) + g(bx1 + x2

2
c)

Combining the above two inequalities, we have

g(x1) + g(x2) ≥ g(dx1 + x2

2
e) + g(bx1 + x2

2
c)

We then have that (ii) also holds for all x1, x2 with x1 = x2 + k + 1 and hence the

lemma follows from the induction.

Our monotone proof is based on showing that the value function is convex, which

is accomplished by the following assumption and lemma. We use the discount optimal

value function in our proof. However, we note that similar arguments also apply to

the average optimal relative value function once we identify the unichain property.

Furthermore, we assume that the buffer is infinite to eliminate any buffer boundary

effect, which is equivalent to assuming that no buffer overflow occurs.

Assumption 5.1 The usage cost function Cu(a) is a convex function on the action

space and the holding cost function Ch(s) is a convex function on the state space.

Lemma 5.2 Assumption 5.1 holds. Assume that the buffer is infinite, i.e., s ∈

{0, 1, · · ·}, the discount optimal value function uρ(s) is a convex function of s.

Proof: The proof is based on the value iteration algorithm (see Section 2.2.4) and

proceeds by induction arguments. For k = 0, we set uρ(s) = 0 for all s ∈ S.

For k = 1, we have

u1
ρ(s) = min

a∈As

{Ch(s) + Cu(a)}
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and hence u1
ρ(s) is convex as Ch(s) is assumed as a convex function of s.

Now assume that uk
ρ(s) is convex for some k ≥ 1. We show that it also holds for

k + 1. By substituting the general transition probabilities representation of Tr(s′|s, a)

in (2.14) with the one defined in (5.1), the (k + 1)th step of the value function can be

written as

uk+1
ρ (s)

= min
a∈As

{
Ch(s) + Cu(a) + ρ(1− fs)

∑
i=0

q(i)uk
ρ(s+ i) + ρfs

∑
i=0

q(i)uk
ρ(s+ i− a)

}
(5.4)

For any s ≥ 2, let a∗s+1 and a∗s−1 be the optimal actions that realize the minimum part

of (5.4) for uk+1
ρ (s+ 1) and uk+1

ρ (s− 1), respectively. Then we have

uk+1
ρ (s+ 1) + uk+1

ρ (s− 1)

= Ch(s+ 1) + Ch(s− 1) + Cu(a
∗
s+1) + Cu(a

∗
s−1)

+ρ(1− fs)
∑

i q(i)u
k
ρ(s+ i+ 1) + ρfs

∑
i q(i)u

k
ρ(s+ i+ 1− a∗s+1)

+ρ(1− fs)
∑

i q(i)u
k
ρ(s+ i− 1) + ρfs

∑
i q(i)u

k
ρ(s+ i− 1− a∗s−1)

≥ 2Ch(s) + Cu(d
a∗s+1+a∗s−1

2
e) + Cu(b

a∗s+1+a∗s−1

2
c) + 2ρ(1− fs)

∑
i q(i)u

k
ρ(s+ i)

+ρfs

∑
i q(i)u

k
ρ(s+ i− da∗s+1+a∗s−1

2
e) + ρfs

∑
i q(i)u

k
ρ(s+ i− ba∗s+1+a∗s−1

2
c)

≥ 2uk+1
ρ (s)

The first inequality follows from the convexity of Cu, Ch and uk
ρ (from the induction

hypothesis) and the application of Lemma 5.1. The second inequality follows from the

definition of uk+1
ρ .

Thus we have the convexity of uk+1
ρ for all k ≥ 0 from the induction argument,

and from the MDP result of value iteration algorithm (2.17), uρ(s) = limk→∞ u
k
ρ(s) is

convex in s. This also completes the proof.

Indeed, uρ(s) is also a nonnegative and nondecreasing3 function of s. Surprisingly

though, the monotone proof does not need such a condition. The proof above in essence

shows that the convexity of the cost structure can be propagated to the value function

via the optimal equation. The following proposition summarizes our monotonicity

result.

3Proposition 5.5 provides a proof of nondecreasing value function for an extended problem, where

the same procedure is also applicable to prove the nondecreasing uρ(s).
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Proposition 5.1 Assume that buffer overflow does not occur. Then the stationary dis-

count optimal policy of our dynamic rate allocation problem is monotonically increasing

in the state space. Mathematically, this means that

d∗(s+ 1) ≥ d∗(s), s ≥ 1 (5.5)

Proof: The proof proceeds by contradiction.

For states s and s+ 1, s ≥ 1, let a∗s and a∗s+1 be the corresponding optimal actions,

respectively. Assuming a∗s > a∗s+1, we show that this assumption contradicts with the

convexity of uρ(s). As the optimal actions realize the minimum part of the right hand

side of optimal equation(2.14), via some simple algebraic calculations and for state s,

we have

Cu(a
∗
s) + ρfs

∑
i

q(i)uρ(s+ i− a∗s) < Cu(a
∗
s+1) + ρfs

∑
i

q(i)uρ(s+ i− a∗s+1)

Note that the strict inequality holds since we always break ties by choosing the smallest

action when choosing an optimal action. Similarly, for state s+ 1, we have

Cu(a
∗
s+1) + ρfs

∑
i

q(i)uρ(s+ i+ 1− a∗s+1) ≤ Cu(a
∗
s) + ρfs

∑
i

q(i)uρ(s+ i+ 1− a∗s)

Combining the above two inequalities, we have∑
i q(i)

[
uρ(s+ i+ 1− a∗s+1)− uρ(s+ i− a∗s+1)

]
<

∑
i q(i) [uρ(s+ i+ 1− a∗s)− uρ(s+ i− a∗s)]

(5.6)

From Lemma 5.2, uρ is convex in s and hence uρ(s+ 1)− uρ(s) is nondecreasing in s.

Thus ∑
i

q(i) [u(s+ i+ 1− a∗s)− u(s+ i− a∗s)]

is also nondecreasing in s. Then from (5.6), it follows that s + i − a∗s+1 ≤ s + i − a∗s.

But this contradicts with the assumption that a∗s > a∗s+1 and hence the assumption is

not true. This also completes the proof.

We note that similar techniques to prove Lemma 5.2 and Proposition 5.1 also apply

to the average optimal decision problem whenever we identify the unichain property,

or whenever we use the average cost optimal equation (2.12) to compute stationary

average optimal policies. Indeed, we can prove that the relative value function u is
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convex by using the same argument as that in Lemma 5.2, provided that the ACOE

holds. We now summarize the result in the following corollary but omit the proof here.

Corollary 5.1 Assumption 5.1 holds. Further, assume that there exists stationary

average optimal policies satisfying the ACOE (2.12). Then the average optimal policy

is monotone in the state space.

The unichain assumption is a strong assumption to prove the existence of a sta-

tionary average optimal policy. We note that weaker but sufficient conditions can be

used in the existence proof instead of verifying the unichain property when the state

space is finite. This will be discussed in the next section.

5.3 A Case Study

In this section, we provide a case study of the dynamic resource allocation problem. To

this end, we assume that the packet arrivals in a frame follow a geometric distribution

with the parameter Q, 0 < Q < 1, i.e.,

q(i) = Q(1−Q)i, i = 0, 1, · · · (5.7)

As an example, we first show that stationary average optimal policies exist in this

special case. We then discuss the choice of cost functions and provide some numerical

examples for this case study.

5.3.1 Existence of Stationary Average Optimal Policies

In Section 2.2.3, the conditions for the existence of a stationary average optimal policy

have been stated in Theorem 2.3. The first three conditions of Theorem 2.3 are easily

verified from our problem definition, i.e., the state space and the action space are

finite and the cost structure is uniformly bounded. However, it is not an easy task

to examine the unichain property (though it seems straightforward) for all possible

stationary policies as there may have altogether BA stationary policies to be examined.

Instead, we use the following theorem from Bertsekas (see Proposition 2.6 of Section
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4.2 [7]) to verify that a stationary average optimal policy exists and it also satisfies the

ACOE in our particular problem.

Theorem 5.1 (Bertsekas [7] page 198) Assume that the state space S is finite. Fur-

ther, for every two states s and s′, there exists a stationary policy π = (d, d, · · ·)

(depending on s and s′) such that, for some t < ∞, Tr(st = s′|s0 = s, π) > 0. Then

the optimal average cost is a constant independent of the starting state for all s ∈ S,

i.e.,

V
∗
(s) ≡ J, for all s ∈ S (5.8)

Furthermore, the ACOE given in (2.12) holds and an optimal stationary policy realizes

its minimum for all s ∈ S.

Recall that V
∗
(s), defined by (2.9), is the optimal policy value under the average

optimal criterion. Indeed, the condition in Theorem 5.1 is a weaker version of the

unichain property, which requires the existence of at least one stationary policy under

which all states communicate when the state space is finite. The following proposition

summarizes the existence of a stationary average optimal policy for our particular

problem.

Proposition 5.2 There exists a stationary average optimal policy satisfying the ACOE

for our dynamic rate allocation problem. Further, the average optimal policy value is

a constant independent of the starting state.

Proof: The proof is based on showing that the conditions in Theorem 5.1 are satisfied

in our problem.

Consider a stationary policy π′ that always transmits one packet whenever the buffer

is not empty, i.e., π′ = (d′, d′, · · ·) where d′(s) = 1, for all s ≥ 1. We denote d′(0) = 0.

Recall that in this case study, the batch arrivals follow a geometric distribution and

q(i) > 0 for all i ≥ 0. For any state s and state s− 1, s ≥ 1, we have Tr(s|s− 1, d′(s−

1)) = q(1) > 0, s = 1 and Tr(s|s − 1, d′(s − 1)) = (1 − fs)q(1) + fsq(2) > 0, s > 1,

and Tr(s− 1|s, d′(s)) = fsq(0) > 0. Thus state s communicates with state s− 1 under

policy π′. As s is arbitrarily chosen, we conclude that all states communicate with

each other. Thus all states consist of a closed recurrent class under policy π′ and the
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induced Markov chain is ergodic and irreducible, i.e., the conditions in Theorem 5.1

are satisfied. We then conclude that a stationary average optimal policy satisfying the

ACOE exists for our problem.

We may have a similar analysis for any other stationary policy that consists of the

decision rules such that the sender has to send (at least one) packet(s) whenever the

buffer is not empty. And indeed the Markov decision problem is unichain if d(s) > 0 for

all s ≥ 1. Furthermore, we may also prove that a stationary optimal policy exists and

the ACOE applies if the state space is denumerable infinite, i.e., the buffer is infinite.

However this needs other conditions, namely, 1−Q
Q

< fsA (for a stable queueing system)

and there exists a finite constant N and a non-negative integer n such that Ch(s) ≤

Nsn. The existence proof becomes more complicated in the case of a denumerable

infinite state space. We do not discuss it further here and the interested reader can

refer to Sennott [73].

5.3.2 Choice of Cost Functions

A stationary policy does not depend on the decision epochs and hence we can denote

it as a vector µ = (µ(1), µ(2), · · · , µ(B)) with the action µ(s) ∈ As associated with

the state s, 1 ≤ s ≤ B. We let µ(0) = 0. We have shown in Proposition 5.2 that

the induced Markov chain of our problem is ergodic and irreducible. Thus, the steady

state probability distribution of the buffer occupancy exists under a stationary policy

µ and we denote it as pµ = (pµ(0), pµ(1), · · · , pµ(B)) 4. The buffer overflow probability

associated with policy µ is denoted as P µ
o and given as P µ

o = pµ(B). Although buffer

overflow is admissible, it is undesirable. Given a large enough but finite buffer limit

B, we are more interested in a stationary policy resulting in no buffer overflow. Let

µ ≡ E[µ] denote the average number of packets to send in a frame under policy µ (i.e.,

the average service rate of policy µ) which can be computed as

µ = fs

B∑
s=1

µ(s)pµ(s) (5.9)

4It may be hard to derive a closed form of pµ for a general stationary policy. However we can get

pµ via simulations.
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To avoid buffer overflow, we require that λ < µ. Thus we define allowable stationary

polices where the average arrival rate is less than the average service rate. When

overflow is taken into consideration, the effective average packet arrival rate (for those

packets actually accepted and queued in the buffer) is given as

λ
µ

= (1− P µ
o )(

1

Q
− 1) (5.10)

The average number of packets in the system can be computed as:

N
µ

=
B∑

s=1

spµ(s) (5.11)

By Little’s Theorem, the average waiting time of a packet is then given as:

W
µ

=
1

2
+N

µ
/λ

µ
=

1

2
+
Q/(1−Q)

1− P µ
o

B∑
s=0

spµ(s) (5.12)

The constant 1
2

in (5.12) accounts for the fact that a batch arrival can occur anywhere

within a frame but the packets can only be transmitted after the current frame. Also

the unit of W
µ

is in terms of frame time.

As the Markov chain induced by a stationary policy µ is ergodic and irreducible,

we have an alternative method to compute the average cost associated with policy µ,

i.e.,
B∑

s=0

pµ(s)[Cu(µ(s)) + Ch(s)] (5.13)

Eq. (5.13) is the objective function of the corresponding dual linear programming

problem formulation of the Markov decision problem (see Section 4.3.3 of Bertsekas [7]

for example). It is clearly seen from (5.13) that we can use a linear holding cost function

to (partly) characterize the average delay of a packet. Furthermore, we will use a simple

nonlinear resource usage cost function. A discussion for such a usage function will be

given in Section 5.5.1. Then, we suggest the following cost structure:

C(s, a) = Cu(a) + Ch(s) = c0a
c1 + s , c0 > 0, c1 ≥ 1 (5.14)

The parameter c0 may capture the relationship between the unit usage cost and the unit

holding cost. The parameter c1 is used to capture the effect of the nonlinear increase

of the usage cost. Note that the cost functions given in (5.14) satisfy Assumption 5.1.
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5.3.3 Average Delay Bounds

In this section, we consider two extreme policies which also provide the average delay

bounds among all policies. Define a least-effort policy µl as that where only one packet

is sent whenever the buffer is not empty. µl is given as:

µl(s) =

 0, s = 0

1, s > 0
(5.15)

Define a most-effort policy µm as that where packets in the buffer or the largest al-

lowable number of packets whenever possible, whichever is smaller, are sent whenever

possible. µm is given as:

µm(s) =

 0, s = 0

min{s, A}, s > 0
(5.16)

Note that µl and µm defined above are stationary polices. It is intuitively clear that µm

minimizes the total number of packets in the buffer and hence has the lowest average

waiting time, while µl results in the largest average delay. Recall that according to

our action space definition, at least one packet should be sent whenever the buffer is

not empty. We will show that µl and µm provide the upper and lower bounds of the

average waiting time among all policies (and also the bounds of the buffer overflow

probability), respectively, using the comparison method for stochastic processes and

related theory (see Stoyan [80] for more references).

We will use the following definition of stochastic orders for random variables and

stochastic processes and also a related theorem. First consider two real valued random

variables X̂ and Ŷ defined on a common probability space. Then X̂ is said to be

stochastically smaller than Ŷ , denoted as X̂ ≤st Ŷ , if Pr(X̂ > z) ≤ Pr(Ŷ > z) for all

z ∈ R. Furthermore, X̂ is stochastically smaller than Ŷ if and only if E[g(X̂)] ≤ E[g(Ŷ )]

for all nondecreasing functions g : R 7→ R. In particular, if g(x) = x and X̂ is

stochastically smaller than Ŷ , then E[X̂] ≤ E[Ŷ ]. Now consider two discrete processes:

X = {Xt}∞t=0 and Y = {Yt}∞t=0. Let R = RN+
denote the space of all real valued

sequences. We say that the process X is stochastically smaller than the process Y,

denoted as X ≤st Y, if Pr(g(X) > z) ≤ Pr(g(Y ) > z) for every z ∈ R, where g : R 7→ R

is measurable and g(X) ≤ g(Y ) for every X, Y ∈ R such that Xt ≤ Yt for all t ∈ N+.
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The following theorem from [80] provides alternative characterizations of the stochastic

orders between two processes.

Theorem 5.2 (Stoyan 1983 [80]) Consider two discrete time stochastic processes X =

{Xt}∞t=0 and Y = {Yt}∞t=0. The following three statements are equivalent.

(i) X ≤st Y

(ii) Pr(g(X0, · · · , Xk) > z) ≤ Pr(g(Y0, · · · , Yk) > z) for all z ∈ R, k ∈ N+, and

for all g : Rt 7→ R, measurable and such that Xi ≤ Yi, 0 ≤ i ≤ k, implies that

g(X0, · · · , Xk) ≤ g(Y0, · · · , Yk).

(iii) There exists two stochastic processes X′ = {X ′
t}∞t=0 and Y′ = {Y ′

t }∞t=0 on a

common probability space with the same probability laws as X and Y, respectively,

such that X ′
t ≤ Y ′

t almost surely (a.s.) for every t ∈ N+.

We note that if we can prove that the total number of packets in the buffer under

policy µm is stochastic smaller than that under some other policy π, then the expected

average number of packets in the buffer under µm is smaller than that under policy

π. The construction method in Theorem 5.2 (iii) is also known as stochastic coupling.

Another application of Theorem 5.2 is as follows, which needs stronger assumptions.

If we can find two random variables X̂ and Ŷ on a common probability space such

that when t goes to infinity, the processes X and Y converge in law (in distribution for

example) to X̂ and Ŷ , denoted as X →t X̂ and Y →t Ŷ , respectively, then X ≤st Y

implies that X̂ ≤st Ŷ and E[X̂] ≤ E[Ŷ ]. Finally, we note that actually, policy µm is

stochastically smaller than any other policy, not restricted to stationary policies only.

The following lemma states that µm minimizes in the stochastic ordering sense the

total number of packets in the system.

Lemma 5.3 Let Sπ = {Sπ
t }∞t=0 be the buffer process with the starting state s0 when

a policy π is applied. Let Sµm = {Sµm
t }∞t=0 be the corresponding buffer process when

policy µm is used. Then

Sµm ≤st Sπ (5.17)

Proof: The proof consists of two steps. For any arbitrary policy π, there exists

a policy π0 such that π0 acts in the same way as policy µm at t = 0. Further, the
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corresponding buffer processes satisfy Sπ0
t ≤ Sπ

t almost surely (a.s.) for t = 0, 1, · · ·.

Then in the second step, we show that such a construction can be repeated and finally

leads to our result according to Theorem 5.2.

We construct a policy π0 and couple the buffer occupancy realizations under π and

π0 as follows. We construct a policy π0 that acts the same as µm at time 0 and acts

almost the same as policy π for t = 1, · · · in the sense that it either sends the same

number of packets as π does or all the packets in the buffer, whichever is smaller.

Furthermore, without loss of generality, we assume that policy π successfully transmits

packet(s) in frame 0. Then policy π0 is constructed with a successful transmission in

frame 0 accordingly. If π0 and π take the same action at t = 0, then the buffer processes

are actually identical and hence we have Sπ0
t = Sπ

t . If π sends fewer packets than π0 at

t = 0, then we have Sπ0
1 ≤ Sπ

1 at t = 1. We can easily see that if Sπ0
t ≤ Sπ

t holds at t,

it also holds at t + 1 via an induction argument. Hence we can have Sπ0
t ≤ Sı

t almost

surely (a.s) for all t from the induction argument.

Now we repeat the construction, and we can show there exists a policy π1 that

agrees with π0 at the first frame, agrees with µm at the second frame, and agrees again

with π0 at the third and all subsequent frames. We then have Sπ1
t ≤ Sπ0

t almost surely

(a.s.) for t = 0, 1, · · ·. We can repeat the above argument k times and obtain policies

πi, i = 0, 1, · · · , k such that for the corresponding processes, we have

Sπk
t ≤ S

πk−1

t ≤ · · · ≤ Sπ0
t ≤ Sπ

t a.s., t = 0, 1, · · · (5.18)

For frames 0, 1, · · · , k and a function g as in Theorem 5.2 (ii), consider policies πk and

µm. By construction, the total number of packets in the system under policy πk, S
πk
0 ,

Sπk
1 , · · ·, Sπk

k have the same joint probability distribution with Sµm

0 , Sµm

1 , · · ·, Sµm

k

under policy µm. Hence for all z, we have

Pr(g(Sπk
0 , Sπk

1 , · · · , Sπk
k ) > z) = Pr(g(Sµm

0 , Sµm

1 , · · · , Sµm

k ) > z) (5.19)

From (5.18), Sπk
t ≤ Sπ

t almost surely (a.s.) for all t = 0, 1, · · ·. Therefore, we have

Pr(g(Sπk
0 , Sπk

1 , · · · , Sπk
k ) > z) ≤ Pr(g(Sπ

0 , S
π
1 , · · · , Sπ

k ) > z) (5.20)

From Theorem 5.2(ii) and (5.19) and (5.20), we conclude Sµm ≤st Sπ.
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Although policy µm minimizes the expected total number of packets in the buffer,

it may not necessarily be the average cost optimal one when the resource usage cost is

taken into consideration. This is clear with the numerical example in the next section.

Via similar arguments in Lemma 5.3, we have the following lemma for the least-effort

policy and we omit the proof here.

Lemma 5.4 Let Sπ = {Sπ
t }∞t=0 be the buffer process with the starting state s0 when a

policy π is applied. Let Sµl = {Sµl
t }∞t=0 be the corresponding buffer process when policy

µl is used. Then

Sπ ≤st Sµl (5.21)

We note that the queueing system under policy µl may not be a stable one if the

arrival rate λ > 1. In such a case, policy µl also results in the largest buffer overflow

probability according to Lemma 5.4. Indeed, since the buffer is assumed finite and the

arrival process is assumed to be identically and independently distributed, it can be

shown that under any stationary policy, the system may eventually reach a statistical

equilibrium or steady-state regime (cf. Proposition 5.2 that the induced Markov chain

is ergodic and irreducible). Thus we may safely assume that for any stationary policy

µ, there exists some random variable Ŝµ such that Sµ
t converges in law to Ŝµ as t

goes to infinity, denoted as Sµ
t →t Ŝ

µ. Furthermore, if Sµ
t →t Ŝ

µ in distribution,

then E[g(Sµ
t )]→ E[g(Ŝµ)] as t→∞ for all bounded continuous functions g. We then

summarize the results of this section in the following proposition.

Proposition 5.3 Assume that the buffer process Sµ
t under any stationary policy µ

converges in law as t goes to infinity. Then the average waiting time of policy µ is upper

and lower bounded as W
µm ≤ W

µ ≤ W
µl

. Further, the buffer overflow probability is

upper and lower bounded as: P µm
o ≤ P µ

o ≤ P µl
o .

Proof: From Lemma 5.3 and 5.4, we have Ŝµm ≤st Ŝ
µ ≤st Ŝ

µl . Then by Little’s law,

we know that the average waiting time of policy µ is upper and lower bounded by that

under policy µl and µm, respectively. The second claim follows from the definition of

stochastic orders for random variables.
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5.3.4 Numerical Examples

We provide some numerical examples in this section. We compute optimal policies

under different settings of the usage function (5.14) and compare the optimal policies

with other policies. We set Q = 0.2 (hence on average 4 packets arrive in a frame) and

fs = 0.95 in all simulations. The available actions are to send from 1 to 10 packets, i.e.,

A = {1, 2, · · · , 10}. The buffer limit is set as B = 200 in the computation of optimal

policies but we will examine the buffer overflow probabilities by assuming a smaller

buffer.

Fig. 5.2 shows the computed optimal policies under a fixed c1 = 1.6 but with

different choices of c0. As expected, the optimal policies are monotonically increasing

with the buffer occupancy. Note that c0 may (partially) represent the ratio of the cost

Figure 5.2: Optimal policies with respect to different c0

of transmitting a packet to the cost of holding a packet. From Fig. 5.2, we see that

given a buffer state (e.g., 20 packets in the buffer), fewer packets are transmitted when

c0 is larger. In other words, with increasing unit usage cost (price per unit resource),

the user prefers to hold more packets in its buffer and defers the transmission of more

packets in order to be total cost optimal.
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We next compare the performance of different policies summarized in Table 5.1.

Policies µ1, µ2 and µ3 are the average cost optimal policies but with different available

Table 5.1: Different Rate Allocation Policies

µ1 optimal policy with available actions {1, · · · , 10}
µ2 optimal policy with available actions {1, 5, 10}
µ3 optimal policy with available actions {1, 10}
µ4 least-effort policy with a single action {1}
µ5 most-effort policy with available actions {1, · · · , 10}
µ6 dull policy with a single action {5}

actions. Policy µ3 (µ2) may represent the situation in which only the minimum and

maximum (average) transmission rates are available. Policy µ4 always transmits one

packet whenever the buffer is not empty. Note that buffer overflow is inevitable under

policy µ4 when Q = 0.2. Policy µ5 is one that either depletes the buffer when s < 10

or transmits with the largest rate when s ≥ 10. Policy µ6 is one that always transmits

5 packets when s ≥ 5 and does not transmit when s < 5.

We set c0 = 5.0, c1 = 1.6 and B = 80 in the simulations. The buffer size is chosen

in order to examine the buffer overflow probability. In the simulations, immediate costs

are computed and collected in each frame based on the system state at the beginning of

the frame and the action prescribed by the policies. In the simulations, we also count

the buffer state and record the delay incurred by successfully transmitted packets in

each frame. The simulation results include the average cost, the average delay and

the probability of buffer overflow. They are computed by averaging over 10 runs of

simulations each with 100000 frames.

Fig. 5.3 shows the average total costs (including the average usage and holding

costs), usage costs and holding costs of the different policies. We see that policy µ1

has the smallest average total cost among all the policies. In particular, the average

total cost of µ1 is smaller than those of µ2 and µ3 which are also optimal policies but

have fewer available actions. This indicates that more options (more available actions)

is better. Note that the queueing system is not stable under policy µ4 and its buffer

occupancy increases rapidly towards the buffer size. Thus policy µ4 is not an allowable
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Figure 5.3: Average costs of different policies

policy as it results in a non-stable queueing system. Except policy µ4 the rest of the

policies are allowable policies as the induced queueing system is stable and their average

holding costs will not tend to infinity as the buffer size tends to infinity. From Fig. 5.3,

we see that although policy µ5 has the smallest holding cost among all the policies,

its average total cost is larger than that of policy µ1 due to its high usage cost. From

Fig. 5.3, we also see that the average total cost of policy µ2 is close to that of policy

µ1. This indicates that policy µ1 can be well approximated by a threshold-based policy

with fewer available actions to simplify implementation.

Table 5.2: Performance comparison of different policies

µ1 µ2 µ3 µ4(µl) µ5(µm) µ6

W 2.73 3.07 2.70 84.32 1.76 4.59

N 8.91 10.27 8.80 79.68 5.03 17.96

Po(10−4) 0.0175 0.0325 0.0 7620 0.0 41.2

Table 5.2 compares the average waiting time W , the average number of packets in

the buffer N and the average buffer overflow probability Po for the different policies,
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Figure 5.4: Average delay and average buffer occupancy of different policies

which are also represented with Fig. 5.4. The numerical results also verify Proposi-

tion 5.3, i.e., the average waiting time is upper and lower bounded by that of policy

µ4 (µl) and µ5 (µm), respectively. We see that policy µ4 (µl) has a very large buffer

overflow probability. This is because the service rate (0.95 packet/frame) of policy µ4

(µl) is far lower than its arrival rate. We note that policy µ5 (µm) has the smallest W ,

N and Po compared with the other policies. However policy µ5 (µl) is not average cost

optimal (as shown in Fig. 5.3) since its usage cost is also very high. We also note that

policy µ6 has larger W , N and Po compared with policies µ1 and µ2. These indicate

that using variable service rates is better than using a single service rate.

5.4 A Class of Simple Policies

In previous sections, we have shown that the optimal policies have a monotone property.

Furthermore, the numerical results suggest that some threshold-based policies with

fewer available actions may well approximate the optimal policies with a full set of

available actions. Thus in this section, we propose and analyze a class of simple policies
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with a single threshold.

5.4.1 A Class of Threshold-based Simple Policies

We define a class of simple policies µz with one threshold as follows. Denote λ = d λ
fs
e

and λ = d λ
fs
e + 1. For a given threshold z ∈ (0, λ], we partition the buffer into two

parts: (0, z) and [z,∞). Policy µz is defined as:

µz(s) =

 min{s, a}, s < z, 1 ≤ a ≤ λ

min{s, a}, s ≥ z, λ ≤ a ≤ A
(5.22)

Obviously, we may have many other threshold options and also the available actions in

different partitioned sets. However, the threshold used here may (partly) characterize

the arrival process and the effect of retransmissions, i.e., λ (or λ) may characterize the

effective average number of packets (plus possible retransmitted packets) that arrive

in a frame. The intuition behind the simple policies is as follows. We do not want the

buffer occupancy to get too large which may increase the holding cost as well as the

probability of overflow. On the other hand, keeping the buffer occupancy too small may

also be undesirable as it may need more actions that increase the usage cost. Note

that buffer occupancy either stays less than the threshold or stays greater than the

threshold. Thus policy µz is in essence trying to control the buffer occupancy around

the threshold (as a compromise).

Let {Qt}∞t=0 denote the arrival process. As the arrival process is IID, we sometimes

uses Q̂ to denote the corresponding random variable. Let Uµz
t = µz(s) denote the num-

ber of packets to transmit in frame t given the buffer occupancy is s at the beginning

of frame t and the policy µz is applied. Let Sµz = {Sµz
t }∞t=0 be the buffer occupancy

process under policy µz. Thus the dynamics of the buffer process under policy µz can

be written as

Sµz

t+1 = min{B,Qt + [Sµz
t − fsU

µz
t ]+}, t ≥ 0 (5.23)

in which [x]+ = max{0, x}. Since µz implies that the buffer occupancy will be controlled

around the threshold that is larger than the average effective arrival rate, the queueing

system under policy µz is stable and buffer overflow may be avoided provided that

B � z. With this in mind, it is reasonable to look instead at the infinite buffer system
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(B = ∞) associated with (5.23). Then we consider the following recursion of buffer

occupancy instead:

Sµz

t+1 = max{Sµz
t +Qt − fsU

µz
t , Qt}, t ≥ 0. (5.24)

Now we may again apply the stochastic comparison method to estimate the buffer

average occupancy and to provide a (more accurate) average delay bound for these

simple policies. We discuss it in the next section.

5.4.2 An Upper Bound for Average Delay

Besides the stochastic comparison method, we will also use some theory on random

walks to establish our analytical results. We have introduced some basics of stochas-

tic comparison before and only provide some preliminaries of random walk here. R.

Gallager [26] (1995) provides more discussions on random walks. Let {Xi}∞i=0 be a

sequence of identical and independent distributed (IID) random variables, i.e, Xi can

be considered as copies of a random variable X with mean E[X] = X < 0. Let

ψ(r) = ln(E[eXr]) be the semi-invariant moment generating function of X. We assume

that ψ(r) is finite in an open interval (r−, r+), r− < 0 < r+ and ψ(r) has a root at

r∗ > 0. Let {Yt+1}∞t=0 be a process defined by Y0 and Yt+1 = max{Yt + Xt, 0}. Thus

{Yt} is a random walk restricted to the positive axis. Let Ŷ be a random variable

with the steady state distribution. Assume that Yt →t Ŷ almost surely (a.s.) and

limt→∞ Pr(Yt > y) = Pr(Ŷ > y). From the theory of random walks, we have the

following result:

lim
t→∞

Pr(Yt > y) = Pr(Ŷ > y) ≤ e−r∗y, for all y ≥ 0 (5.25)

When Yt represents the waiting time in a G/G/1 queue, this result is known as King-

man’s Bound (R. Gallager [26], page 234).

We define a second buffer process used as an auxiliary process in the proof of the

lemma. Consider the following control policy:

µ̃z(s) =

 0, s < z,

min{s− z, a}, s ≥ z, λ ≤ a ≤ A
(5.26)
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The above control policy implies that the sender only transmits when the buffer oc-

cupancy exceeds the threshold and does not transmit otherwise. The second buffer

process Sµ̃z = {Sµ̃z
t }∞t=0 under policy µ̃z is assumed to experience the same arrival

statistics in all frames as the process Sµz = {Sµz
t }∞t=0. It is given as

Sµ̃z

t+1 = max{Sµ̃z
t +Qt+1 − fsU

µ̃z
t , Qt+1} (5.27)

and Sµ̃z

0 = max{Sµz

0 , z}. Note that the second process Sµ̃z will be restricted to stay in

[z,∞) for all frames. Let Ŝµz and Ŝµ̃z be the random variables with the same steady

state distributions for the processes Sµz and Sµ̃z (if they exist), respectively. We make

the following assumption.

Assumption 5.2 Assume that Sµz
t →t Ŝ

µz almost surely (a.s.) and limt→∞ Pr(Sµz
t >

s) = Pr(Ŝµz > s), and Sµ̃z
t →t Ŝ

µ̃z almost surely (a.s.) and limt→∞ Pr(Sµ̃z
t > s) =

Pr(Ŝµ̃z > s)

It may be shown that the assumption is true when the induced Markov chains are

ergodic and irreducible under the stationary policy µz and µ̃z, respectively. The fol-

lowing lemma provides an upper bound on the average number of packets in the buffer

for a simple policy with one threshold. We should note that the bound may not be the

tightest one. However, it provides some insights on the buffer occupancy.

Lemma 5.5 Assumption 5.2 holds. Then the average buffer occupancy under policy

µz satisfies

E[Ŝµz ] ≤ z +
er∗(a)fsa

r∗(a)
(5.28)

where r∗(a) is the unique positive root of ψ(r) = ln(EQ̂[e(Q̂−a)r]) and EQ̂ is the expec-

tation with respect to the arrival process.

Proof: The proof consists of two steps. We first show that Sµz ≤st Sµ̃z . We then

show that Ŝµ̃z has an exponential bound.

As we assume the steady state distribution exists, then E[Ŝµz ] can be written as

the complementary distribution function of Ŝµz as follows

E[Ŝµz ] =

∫ ∞

0

Pr(Ŝµz > s)ds (5.29)
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For s < z, we upper bound Pr(Ŝµz > s) by 1, then we have

E[Ŝµz ] =
∫ z

0
Pr(Ŝµz > s)ds+

∫∞
z

Pr(Ŝµz > s)ds

≤ z +
∫∞

0
Pr(Ŝµz > s+ z)ds

(5.30)

Next, we consider how to bound Pr(Ŝµz > s + z). We resort to the auxiliary process.

We may show that Sµz is stochastically smaller than Sµ̃z by a constant, i.e., Sµz ≤st

Sµ̃z + fsa. Indeed the two processes can be related with the following inequality.

Sµ̃z
t ≥ Sµz

t − fsa , for all t = 0, 1, · · · (5.31)

We show (5.31) by induction arguments. By assumption, it is true at frame 0, as

Sµ̃z

0 ≥ Sµz

0 ≥ Sµz

0 − fsa. Now assume that at frame t, t ≥ 0, Sµ̃z
t ≥ Sµz

t − fsa, we will

show that it also holds for frame t + 1. We consider two cases: (1) Sµz
t ≥ z, and (2)

Sµz
t < z.

Case (1): Sµz
t ≥ z. In this case, U µ̃z

t ≤ Uµz
t and by induction hypothesis Sµ̃z

t ≥

Sµz
t − fsa, hence we have

Sµ̃z

t+1 = max{Sµ̃z
t +Qt+1 − fsU

µ̃z
t , Qt+1}

≥ max{Sµz
t − fsa+Qt+1 − fsU

µz
t , Qt+1}

≥ max{Sµz
t +Qt+1 − fsU

µz
t , Qt+1} − fsa

= Sµz

t+1 − fsa

Case (2): Sµz
t < z. In this case, Sµ̃z

t ≥ z ≥ Sµz
t and U µ̃z

t ≤ a ≤ Uµz
t + a, hence we have

Sµ̃z

t+1 = max{Sµ̃z
t +Qt+1 − fsU

µ̃z
t , Qt+1}

≥ max{Sµz
t +Qt+1 − fsU

µz
t − fsa,Qt+1}

≥ max{Sµz
t +Qt+1 − fsU

µz
t , Qt+1} − fsa

= Sµz

t+1 − fsa

From the induction arguments, we now conclude Sµ̃z
t ≥ Sµz

t − fsa for all t ≥ 0 and

hence Pr(Sµz
t > s+ z) ≤ Pr(Sµ̃z

t > s+ z− fsa) almost surely (a.s.) for all s and t ≥ 0.

Under the Assumption 5.2 and by letting t→∞, we have

Pr(Ŝµz > s+ z) ≤ Pr(Ŝµ̃z > s+ z − fsa) (5.32)
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Note that the process {Sµ̃z
t }∞t=0 is a random walk restricted to [z,∞) and E[Q̂− fsa] =

λ− fsa < 0. Thus using (5.25) we have

Pr(Ŝµ̃z > s+ z − fsa) ≤ e−r∗(a)(s−fsa)

and also

Pr(Ŝµz > s+ z) ≤ e−r∗(a)(s−fsa)

Substituting this into (5.30), we have

E[Ŝµz ] ≤ z +
∫∞

0
e−r∗(a)(s−fsa)ds

= z + er∗(a)fsa

r∗(a)
,

(5.33)

which the desired result and this completes the proof.

Proposition 5.4 Assume that the induced Markov chain under policy µz is ergodic

and the buffer overflow does not occur. The average waiting time W
µz ≡ E[W µz ]

satisfies:

W
µz ≤ 1

2
+
z

λ
+
er∗(a)fsa

r∗(a)λ
(5.34)

Proof: From the assumption and Little’s law, we have:

E[W µz ] =
1

2
+

E[Ŝµz ]

λ
(5.35)

where the constant 1
2

in (5.35) accounts for the fact that a batch arrival can occur

anywhere within a frame but the packets can only be transmitted after the current

frame. The proof follows by applying Lemma 5.5 in (5.35).

5.4.3 Numerical Examples

We present some numerical examples to illustrate the delay bound and the performance

of the simple policies. We still consider a geometric arrival process with the probability

function given by (5.7). Hence the mean arrival rate is λ = 1
Q
− 1. According to

Lemma 5.5, r∗(a) should satisfy:

EQ̂

[
e(Q̂−a)r∗(a)

]
= 1

⇒
∑∞

i=0Q(1−Q)ie(i−a)r∗(a) = 1

⇒ Qe−ar∗(a) + (1−Q)er∗(a) − 1 = 0.

(5.36)
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Figure 5.5: Examples of f(r) (Q = 1/(1 + λ) and a = 2λ)

Let f(r) = Qe−ar + (1 − Q)er − 1. It is not hard to see that for a given Q, if a > 1
Q

,

then f(r) has a unique positive root. This is satisfied as we require a > d λ
fs
e+ 1 ≥ 1

Q
.

We plot some examples of f(r) and the corresponding positive root in Fig 5.5, where

we set Q = 1/(1 + λ) and a = 2λ.

We first investigate the delay bound and the average delay given different choices

of the available actions. To compute the upper delay bound given by (5.34), we need

to know a and z. We set the available actions first and we can determine the (optimal)

threshold z by computing an optimal policy. We set c0 = 1.0, c1 = 1.6 and B = 300

when computing optimal policies. We evaluate the following three schemes: Scheme A

has the available actions a = λ and a = 2λ; Scheme B has the available actions a = 1

and a = d1.5λe; and Scheme C has the available actions a = 1 and a = d λ
fs
e+1. Recall

that we use the smaller action a and the larger action a to control the buffer occupancy

close to zero and close to the threshold, respectively. Hence we can expect that the

upper delay bound becomes a tight bound for small a and a. Fig. 5.6 illustrates the

delay bound and the average delay of different schemes as a function of the arrival

rate. As expected, the delay bound for Scheme C is tighter than for Scheme B, and
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Figure 5.6: Average delay and delay bound of different optimal policies

the bound for Scheme B is tighter than that for Scheme A.

We next compare the performance of the simple optimal policies with only two

available actions to those optimal policies with more than two available actions. Let

Na denote the number of available actions. We use the following method to set the

available actions:

ai = d 2λ
Na

× ie, i = 1, 2, · · · , Na. (5.37)

For example, when λ = 4 and Na = 3, the available actions are A = {3, 6, 8}. Note

that the maximum available action is the same for different Na, i.e., aNa = d2λe. The

justification behind such a method is for a fair comparison. The range of the available

actions is the same but different Na quantifies the range differently. Indeed, (5.37) is to

emulate the common quantization method and the larger Na, the finer the quantization

granularity.

Fig. 5.7 plots the policy value of optimal policies with different number of available

actions as a function of the arrival rate. We observe that the policy value of the optimal

policy with more available actions, i.e., with large Na, is smaller than those with fewer

available actions. This is due to the effect of a finer quantization with more available
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Figure 5.7: Policy value of optimal policies with different number of available actions

actions. However, we also observe that the policy values of the optimal policy with

Na = 2 are close to those with large Na. This indicates that the simple optimal policies

could be a good approximation.

Note that the method used in Section 5.4.2 to derive the upper delay bound for

optimal policies with only two available actions also applies to those policies with more

available actions, where we can simply use the largest buffer threshold and the largest

action to derive the delay bound for the policies with more than one buffer threshold 5.

However, we should note that the upper delay bound becomes less tight for policies

with more than two actions. Fig. 5.8 compares the delay bound and the average delay

of the optimal policies with different number of available actions as a function of the

arrival rate. We observe that the delay bound for the optimal policies with Na = 2 is

tighter than the others, i.e., the distance between the bound and the average delay is

closer. We also observe that the average delay for the optimal policies with Na = 2 is

larger than the other policies, however, the differences are small. This again indicates

5The proof can be simply developed by upper bounding the probability for the buffer occupancy

less than the largest threshold by 1 in (5.30).
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Figure 5.8: Average delay and delay bound of optimal policies with different number

of available actions

that the simple policies could be a good approximation.

5.5 Extension to The Existence of Competitions

So far, we have discussed the problem of rate allocation for a single data user and

formulated it as a Markov decision problem. In our problem defined in Section 5.1,

the rate allocation is considered to be carried out independently and exclusively for

a single user without considering any (possible) interactions across users. However,

in a CDMA-based network, since multiple users can transmit simultaneously by using

different spreading codes [40, 65], a user’s transmission may impacts on all the other

users’ transmissions, e.g., the transmission power of a user also serves as interference to

other users and impact the transmission quality of other users. Indeed, if the number

of simultaneous transmitting users in a frame increases, a user has to use a higher

transmission power to maintain the same transmission quality in general. This phe-

nomenon can be seen as a kind of competition across users. Furthermore, there may
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exist some competition costs resulting from different numbers of simultaneously trans-

mitting users, e.g., different transmission powers. Thus in this section, we extend the

previous rate allocation problem and put the self-optimization problem for an isolated

single user into the existence of competitions across multiple users. We should note

that such a competitive and dynamic allocation problem would be better modelled

from a game theory [24] framework 6, or more precisely, from a competitive Markov

decision processes (dynamic games) [41] theory framework, which are also much more

complicated. Nonetheless, we provide an alternative formulation that is still within

the Markov decision processes theory framework for such a problem. In this section,

we describe the competitions in detail and provide our modelling technique for such

an extended problem. Some qualitative analysis are also provided in this section.

5.5.1 Competition Across Users

We explain the competition across users in detail with an example. It is well known that

the transmission quality (e.g., BER or FSP, fs) of a user is determined by its received

signal to interference and noise ratio. In a CDMA-based network, the transmissions of

other users form a major part of the interference seen by a particular user. However,

the interference over the air may be hard to track as the number of active users 7 and

their transmission rates can be time-varying (and unpredictable). In general, the more

users transmit and the larger their transmission rates, the larger the interference over

the air and hence the larger the transmission power a user needs to maintain the same

transmission quality. Therefore, there are some costs associated with competing with

other users and we call this the competition cost. The following example can serve as

an explanation of the competition cost.

Consider the uplink transmission power allocation. To guarantee a minimum BER

requirement, the following equation can be used to calculate the transmission power

for an active user [3, 68]

pi =
giη0W

hi(1−
∑n

j=1 gj)
. (5.38)

6We note that recently many researchers have applied game theory in wireless communications.

For example, Mandayam et.al. applied game theory in wireless power control [31, 70, 71].
7In this section, the term active users means the users transmitting simultaneously in a frame.
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We will discuss a bit more on (5.38) in the next chapter. In (5.38), pi is the transmission

power of user i, hi is its path gain, W is the system spreading bandwidth, η0 is the

background noise spectral density (possibly plus inter-cell interference) at the base

station, n is the number of users that transmit simultaneously and gi is the power

index, given by

gi =
γi

γi +W/Ri

(5.39)

In (5.39), Ri is the instantaneous data rate of user i and γi is the target Eb/I0 (the

bit-energy-to-interference-power-spectral-density) of user i with transmission rate Ri.

It can be observed from (5.38) that assuming that all active users have the same power

index, the transmission power of user i is increasing in the number of active users, i.e.,

pi is increasing in n. Another observation from (5.38) and (5.39) is that the larger the

transmission rate of a user, the larger the transmission power of all users, provided that

all other conditions remain unchanged. Thus a nonlinear resource usage cost function,

cf. (5.14), can be used to cover such a situation, i.e., the large transmission rate should

be charged much more. On the other hand, we can simply approximate the competition

cost by relating it to the number of active users in the system only.

The number of active data users in the system can be modelled either by a stochastic

process (called competition process hereafter), or as a degenerate case, by an identical

independent distributed random variable with a common support, i.e., a memoryless

competition process. A data user needs to request (and use) different transmission

rates based on the usage charge, its own transmission requirement, and the system

competition dynamics. Thus we put a single user self-optimization into the presence

of multiple users, i.e., the effect of multiple competitive users is represented by the

competition process in our model.

5.5.2 Extended Problem Formulation

We still formulate the rate allocation problem for a single user as a Markov decision

problem. However, the competition process is included in our problem formulation.

The system model is shown in Fig. 5.9, which is almost the same as the model in

Fig. 5.1 except for the information on the number of active users that is taken into
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Figure 5.9: System model of the extended problem

account by the decision maker to make decisions. We only provide the description of

the competition process here as the other system descriptions are the same as those

in Section 5.1. Let N = {Nt}∞t=0 denote the competition process and let nt denote the

number of active data users in the system in frame t. For simplicity, we sometimes use

N to denote the population of data users in the system. As the user in consideration

remains active for the convenience of our analysis, we thus have nt ≥ 1. If {Nt} is

modelled as a stochastic process, we let hij ≡ Pr{nt+1 = j|nt = i}, 1 ≤ i, j ≤ N denote

the transition probability that the number of active data users transits to j in frame

t+ 1 when the number of active users is i in frame t. We assume stationary transition

probabilities hij and hence the stochastic process over the number of active users is

only dominated by a transition matrix H = [hij]N×N . Although a new data user can

arrive anywhere within a frame, we assume that a change in the number of active users

occurs only at the boundary of a frame. We assume that the Markov chain (given by

H) over the number of active users in the system is ergodic and irreducible. If {Nt}

is modelled as a memoryless process, we let h(n) denote the probability of n active

users in a frame, which is assumed to be drawn from a common known probability

distribution with support {1, 2, · · · , N}.

We now summarize the difference of the MDP formulation between the extended

problem and the problem defined in Section 5.1. Now an element in the state space is

denoted as s = (b, n) where b, 0 ≤ b ≤ B, is the number of packets queued in the buffer

and n, 1 ≤ n ≤ N , is the number of active users (including the user in consideration).
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Sometimes, we use (b, ·) or (·, n) to denote the states with one element being b or n

while the other element being arbitrary. The transition probabilities are now given by

Tr((b′, n′)|(b, n), a) =


q(b′)hnn′ b = 0

(1− fs)q(b
′ − b)hnn′ + fsq(b

′ − b+ a)hnn′ b ≥ 1, a ≤ min{A, b}

0 otherwise

(5.40)

Again q(i < 0) = 0 and we assume s′ ≤ B. Now the cost structure C(s, a) (sometimes

written as C(b, n, a)) is given as C(s, a) = Ch(b) + Cc(n) + Cu(a), where Ch, Cc and

Cu are the holding cost, competition cost and usage cost functions, respectively. Fur-

thermore, Ch, Cc and Cu are assumed to be nonnegative and nondecreasing functions.

Again, we may use either the discount optimal criterion or the average optimal crite-

rion to determine the optimal policies. In the following subsections, we provide some

qualitative analysis of the extended problem, which are based on the discount optimal

criterion. However, as discussed earlier, the analysis is also applicable to the average

optimal criterion once we can identify the unichain property.

5.5.3 Characteristic of Value Function

In this subsection, we provide some qualitative analysis which describe some charac-

teristic of the value function uρ(s) = uρ(b, n). In particular, we show that uρ(b, n)

is monotone in each variable when the other is fixed. Note that stationary discount

optimal policies for the extended problem exist and further, the value function uρ(s)

satisfies the optimal equation (2.11) where the states s = (b, n) and the transition

probabilities Tr((b′, n′)|(b, n), a) should be used instead.

Proposition 5.5 uρ(b, n) is nondecreasing in b for all n.

Proof: The proof proceeds by induction.

For k = 0, we set u0
ρ(b, n) = 0 for all (b, n) and hence the proposition holds when

k = 0. For k = 1, let a∗,1b+1 be the optimal action that realizes the minimum part of

(2.11) for state (b + 1, n) for all b ≥ 1. Note that A(b,n) ⊆ A(b+1,n) from the action

space definition. Consider two cases.
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i) a∗,1b+1 ∈ A(b,n). In this case, we have

u1
ρ(b+ 1, n) = Ch(b+ 1) + Cu(a

∗,1
b+1) + Cc(n)

≥ Ch(b) + Cu(a
∗,1
b+1) + Cc(n)

≥ min
a∈A(b,n)

{Ch(b) + Cu(a) + Cc(n)} = u1
ρ(b, n)

ii) a∗,1b+1 6∈ A(b,n). In this case, a∗,1b+1−1 ∈ A(b,n) according to our action space definition.

Then we have

a∗,1b+1 > a∗,1b = arg min
a∈A(b,n)

{Cu(a) + Ch(b) + Cc(n)}

and

Ch(b+ 1) + Cu(a
∗,1
b+1) + Cc(n) ≥ Ch(b) + Cu(a

∗,1
b ) + Cc(n)

since Ch and Cu are nondecreasing. Thus we have u1
ρ(b+ 1, n) ≥ u1

ρ(b, n) also.

Now assume that the proposition holds for some k ≥ 1, i.e., uk
ρ(b+ 1, n) ≥ uk

ρ(b, n)

for all b ≥ 1, we then show that it also holds for k + 1. By substituting the general

transition probability representation of Tr(s′|s, a) in (2.14) with the one defined in

(5.40), the (k + 1)th step of the value function can be written as

uk+1
ρ (b+ 1, n)

= min
a∈A(b+1,n)

{
Ch(b+ 1) + Cu(a) + Cc(n) + ρ(1− fs)

∑
n′
hnn′

∑
b′
q(b′ − b− 1)uk

ρ(b
′, n′)

+ ρfs

∑
n′
hnn′

∑
b′
q(b′ − b− 1 + a)uk

ρ(b
′, n′)

}
(5.41)

for state (b+ 1, n) and

uk+1
ρ (b, n)

= min
a∈A(b,n)

{
Ch(b) + Cu(a) + Cc(n) + ρ(1− fs)

∑
n′
hnn′

∑
b′
q(b′ − b)uk

ρ(b
′, n′)

+ ρfs

∑
n′
hnn′

∑
b′
q(b′ − b+ a)uk

ρ(b
′, n′)

} (5.42)

for state (b, n), respectively. We first compare the fourth term in the minimum part of

the two equalities. By the induction hypothesis, we then have

ρ(1− fs)
∑
n′
hnn′

[∑
b′
q(b′ − b− 1)uk

ρ(b
′, n′)−

∑
b′
q(b′ − b)uk

ρ(b
′, n′)

]
= ρ(1− fs)

∑
n′
hnn′

∑
i=0

q(i)
[
uk

ρ(b+ i+ 1, n′)− uk
ρ(b+ i, n′)

]
≥ 0

(5.43)
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Let a∗,k+1
b+1 be the optimal action that realizes the minimum part in (5.41). Similar to

(5.43), we also have

ρfs

∑
n′
hnn′

∑
b′
q(b′ − b− 1 + a∗,k+1

b+1 )uk
ρ(b

′, n′)

≥ ρfs

∑
n′
hnn′

∑
b′
q(b′ − b+ a∗,k+1

b+1 )uk
ρ(b

′, n′)
(5.44)

Again, consider two cases.

i) a∗,k+1
b+1 ∈ A(b,n). We have

uk+1
ρ (b+ 1, n)

= Ch(b+ 1) + Cu(a
∗,k+1
b+1 ) + Cc(n) + ρ(1− fs)

∑
n′
hnn′

∑
b′
q(b′ − b− 1)uk

ρ(b
′, n′)

+ ρfs

∑
n′
hnn′

∑
b′
q(b′ − b− 1 + a∗,k+1

b+1 )uk
ρ(b

′, n′)

≥ Ch(b) + Cu(a
∗,k+1
b+1 ) + Cc(n) + ρ(1− fs)

∑
n′
hnn′

∑
b′
q(b′ − b)uk

ρ(b
′, n′)

+ ρfs

∑
n′
hnn′

∑
b′
q(b′ − b+ a∗,k+1

b+1 )uk
ρ(b

′, n′)

≥ min
a∈A(b,n)

{
Ch(b) + Cu(a) + Cc(n) + ρ(1− fs)

∑
n′
hnn′

∑
b′
q(b′ − b)uk

ρ(b
′, n′)

+ ρfs

∑
n′
hnn′

∑
b′
q(b′ − b+ a)uk

ρ(b
′, n′)

}
= uk+1

ρ (b, n)

The first inequality follows from the nondecreasing of Ch, (5.43) and (5.44).

ii) a∗,k+1
b+1 6∈ A(b,n). Recall that the action space A(b+1,n) = {1, · · · ,min{A, b + 1}} and

A(b,n) = {1, · · · ,min{A, b}}. Thus if a∗,k+1
b+1 6∈ A(b,n), let âk+1

b+1 = a∗,k+1
b+1 − 1 and hence

âk+1
b+1 ∈ A(b,n). We then have

uk+1
ρ (b+ 1, n)

= Ch(b+ 1) + Cu(a
∗,k+1
b+1 ) + Cc(n) + ρ(1− fs)

∑
n′
hnn′

∑
b′
q(b′ − b− 1)uk

ρ(b
′, n′)

+ ρfs

∑
n′
hnn′

∑
b′
q(b′ − b− 1 + a∗,k+1

b+1 )uk
ρ(b

′, n′)

≥ Ch(b) + Cu(â
k+1
b+1 ) + Cc(n) + ρ(1− fs)

∑
n′
hnn′

∑
b′
q(b′ − b)uk

ρ(b
′, n′)

+ ρfs

∑
n′
hnn′

∑
b′
q(b′ − b+ âk+1

b+1 )uk
ρ(b

′, n′)

≥ min
a∈A(b,n)

{
Ch(b) + Cu(a) + Cc(n) + ρ(1− fs)

∑
n′
hnn′

∑
b′
q(b′ − b)uk

ρ(b
′, n′)

+ ρfs

∑
n′
hnn′

∑
b′
q(b′ − b+ a)uk

ρ(b
′, n′)

}
= uk+1

ρ (b, n)
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This first inequality follows from the nondecreasing Ch and Cu and (5.43).

Therefore, we have uk
ρ(b+ 1, n) ≥ uk

ρ(b, n) for all k ≥ 0 by the induction argument.

Then the proposition follows by letting k → ∞, i.e., u(b, n) = limk→∞ u
k(b, n) is

nondecreasing in b for fixed n.

Proposition 5.5 states that a large buffer occupancy is undesirable as this increases

the holding cost and then may increase the value of a policy. Thus the sender needs

to consider using higher transmission rates that can optimally balance between the

holding cost and the usage cost, when the buffer occupancy increases. Given an addi-

tional assumption, the following proposition states that a competitive situation is also

undesirable as it may increase the competition costs, i.e, it may increase the power con-

sumption when the number of active users increases provided other situations remain

unchanged.

We have introduced and applied the concept of stochastic orders to compare two

stochastic processes (see Section 5.3.3 and Section 5.4.2). Now we consider the stochas-

tic orders for two probability vectors p = (pi)
N
i=1,

∑N
i pi = 1 and p′ = (p′i)

N
i=1,∑N

i p
′
i = 1. p is said to be stochastically smaller than p′, denoted as p ≤st p′, if

and only if
∑N

i=k pk ≤
∑N

i=k p
′
k, k = 1, 2, · · · , N . The vector p is strictly dominated

by p′ if and only if strictly inequality holds for k = 2, 3, · · · , N . For a nondecreas-

ing real-valued sequence {vi}, vi ≤ vi+1, if p ≤st p′ then
∑N

i=1 vipi ≤
∑N

i=1 vip
′
i (see

Lemma 4.7.2 in Puterman [62]). A transition probability matrix can be considered

as a column of probability row vectors. A probability transition matrix is said to be

monotone if each row vector is stochastically smaller than all the row vector(s) below

it (see [42] for more discussion). For example, consider the transition matrix H and let

Hi = (hi1, · · · , hiN), i = 1, 2, · · · , N , denote its row vectors. If H is a monotone matrix,

we have Hi−1 ≤st Hi, i = 2, · · · , N . It is not difficult to find many analytical models

whose transition matrix H is monotone. For example, for a M/M/n queueing system

with finite population, its transition matrix is monotone. Suppose that the transition

matrix H is monotone, we have the following result, which also states that a highly

competitive situation is undesirable as this increases the competition cost.

Proposition 5.6 Suppose that the transition matrix of the competition process is mono-

tone, i.e., H is monotone. Then uρ(b, n) is nondecreasing in n for all b.
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Proof: The proof proceeds by induction. Note that for fixed b, the action space is

the same for all states (b, ·). Hence we omit the action space in the proof.

For k = 0, we choose u0
ρ(b, n) = 0 for all (b, n). We first show that the proposition

holds for k = 1. Let a∗,1n+1 be the optimal action that realizes the minimum part of

(2.11) for state (b, n+ 1). we have

u1
ρ(b, n+ 1) = C(b) + Cc(n+ 1) + Cu(a

∗,1
n+1)

≥ C(b) + Cc(n) + Cu(a
∗,1
n+1)

≥ min
a
{Ch(b) + Cc(n) + Cu(a)} = u1

ρ(b, n)

The first inequality follows from the nondecreasing Cc.

Assume that the proposition holds for k ≥ 1, i.e., uk
ρ(b, n) ≤ uk

ρ(b, n + 1) for all

1 ≤ n ≤ N − 1. We now show that it is also true for k+1. By substituting the general

transition probability representation of Tr(s′|s, a) in (2.14) with the one defined in

(5.40), the (k + 1)th step of the value function can be written as

uk+1
ρ (b, n+ 1)

= min
a

{
Ch(b) + Cc(n+ 1) + Cu(a) + ρ(1− fs)

∑
b′
q(b′ − b)

∑
n′
hn+1,n′u

k
ρ(b

′, n′)

+ ρfs

∑
b′
q(b′ − b+ a)

∑
n′
hn+1,n′u

k
ρ(b

′, n′)

}
(5.45)

for state (b, n+1). Let a∗,k+1
n+1 be the optimal action that realizes the minimum in (5.45)

and we have

uk+1
ρ (b, n+ 1)

= Ch(b) + Cc(n+ 1) + Cu(a
∗,k+1
n+1 ) + ρ(1− fs)

∑
b′
q(b′ − b)

∑
n′
hn+1,n′u

k
ρ(b

′, n′)

+ρfs

∑
b′
q(b′ − b+ a∗,k+1

n+1 )
∑
n′
hn+1,n′u

k
ρ(b

′, n′)

≥ Ch(b) + Cc(n) + Cu(a
∗,k+1
n+1 ) + ρ(1− fs)

∑
b′
q(b′ − b)

∑
n′
hn,n′u

k
ρ(b

′, n′)

+ρfs

∑
b′
q(b′ − b+ a∗,k+1

n+1 )
∑
n′
hn,n′u

k
ρ(b

′, n′)

≥ min
a

{
Ch(b) + Cc(n) + Cu(a) + ρ(1− fs)

∑
b′
q(b′ − b)

∑
n′
hn,n′u

k
ρ(b

′, n′)

+ ρfs

∑
b′
q(b′ − b+ a)

∑
n′
hn,n′u

k
ρ(b

′, n′)

}
= uk+1

ρ (b, n)
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The first inequality is from the fact that Cc is nondecreasing in n, q(·) ≥ 0, Hn−1 ≤st Hn

(proposition assumption) and uk
ρ(b, n) ≤ uk

ρ(b, n+ 1) (induction hypothesis).

Therefore, we have uk+1
ρ (b, n + 1) ≥ uk+1

ρ (b, n) for all k ≥ 0 by the induction argu-

ment. Then the proposition follows by letting k → ∞, i.e., uρ(b, n) = limk→∞ u
k
ρ(b, n)

is nondecreasing in n for fixed b.

5.5.4 Property of Optimal Policies

In this subsection, we provide some qualitative analysis which describes the property

of the optimal policies. In particular, we prove that the optimal policies are also

nondecreasing in the buffer occupancy. Again, the monotonicity is also built on showing

that uρ(b, n) is a convex function of b based on the induction argument. The following

lemma and proposition summarize the monotonicity property of the optimal policies.

Lemma 5.6 Assumption 5.1 holds and further Assume the buffer is infinite, i.e., b ∈

{0, 1, · · ·}, the value function uρ(b, n) is a convex function of b for all n.

Proposition 5.7 Assume that buffer overflow does not occur. Then the stationary dis-

count optimal policy of the extended rate allocation problem is monotonically increasing

in the buffer occupancy. Mathematically, this means that

d∗(b+ 1, n) ≥ d∗(b, n), b ≥ 1 (5.46)

Their proofs are similar to that of Lemma 5.2 and Proposition 5.1, respectively, and

hence we omit them here. Again, the explanation behind Proposition 5.5 is that a

large transmission rate should be chosen to deplete the buffer (quickly) and to avoid

the increasing holding cost, when the buffer occupancy increases.

We have not been able to prove that the same monotone property holds in n direc-

tion for the optimal actions. However, when the competition process is degenerated to

a memoryless process, i.e., the probability of n active users in a frame is given as h(n)

(
∑

n h(n) = 1) which is independent of the frame index, we have an interesting result

indicating the optimal actions are insensitive to the number of users in the cell. An

intuitive explanation could be that since a user cannot predict whether the number of

active user would increase in the next frame or not, the best response for a user is not
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to change its decisions and to use the state-action pair that is determined by the buffer

occupancy. The result is summarized in the following proposition.

Proposition 5.8 Assuming the competition process {Nt} is memoryless. Then the

stationary discount optimal policy of the extended rate allocation problem is independent

of the number of active users. Mathematically, this means d∗(b, n + 1) = d∗(b, n) for

all b and n if {Nt} is memoryless.

Proof: The proof proceeds by contradiction.

Let a∗n+1 and a∗n be the optimal actions for states (b, n+ 1) and (b, n), respectively.

Assuming a∗n+1 < a∗n, we show that the assumption leads to a contradiction. As {Nt}

is memoryless, the discount optimal equations (2.11) can be written as:

uρ(b, n)

= min
a∈A(b,n)

{
Ch(b) + Cc(n) + Cu(a) + ρ(1− fs)

∑
n′
h(n′)

∑
i

q(i)uρ(b+ i, n′)

+ρfs

∑
n′
h(n′)

∑
i

q(i)uρ(b+ i− a, n′)
} (5.47)

As the optimal actions realize the minimum part of the right hand side of (5.47), then

for state (b, n), we have:

Cu(a
∗
n) + ρfs

∑
n′
h(n′)

∑
i

q(i)uρ(b+ i− a∗n, n′)

< Cu(a
∗
n+1) + ρfs

∑
n′
h(n′)

∑
i

q(i)uρ(b+ i− a∗n+1, n
′)

(5.48)

Note that the strict inequality holds since we always break ties by choosing the smallest

action when choosing an optimal action. Similarly, for state (b, n+ 1), we have

Cu(a
∗
n+1) + ρfs

∑
n′
h(n′)

∑
i

q(i)uρ(b+ i− a∗n+1, n
′)

≤ Cu(a
∗
n) + ρfs

∑
n′
h(n′)

∑
i

q(i)uρ(b+ i− a∗n, n′)
(5.49)

Combing (5.48) and (5.49), we have 0 < 0. Thus the assumption is not true and we

have a∗n+1 ≤ a∗n. Now again we assume that a∗n+1 > a∗n. With the similar argument

to above, we can show that such assumption is not true also and we have a∗n+1 ≥ a∗n.

Thus the arguments above imply that a∗n+1 = a∗n which is the desired result.
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5.6 Summary

In this chapter, we have studied the rate allocation for a single data user as a Markov

decision problem. The property of optimal policies have been discussed and a case study

with numerical examples has been presented. We have also proposed and analyzed a

class of simple policies. In the last part of this chapter, we have extended the rate

control problem for an isolated single user to one in the presence of multiple users.

The competition across users has been represented by a competition process over the

number of active users in the extended problem formulation. The characteristic of

value function and the property of optimal policies for the extended problem has also

been studied.

We note that the optimization problems discussed so far are from a single user’s

point of view. Another optimization problem from the point of view of the whole

system of multiple users is also important to wireless communications. We study a

system level optimization problem in the next chapter.
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Chapter 6

Fair-effort Based Resource

Allocation

In the previous chapters, we have studied some resource management mechanisms,

i.e., transmission scheduling, power control and rate allocation, from a single user’s

point of view. In this chapter, we consider the resource allocation problem from the

viewpoint of an operator who allocates the system resources among multiple users. The

operator should take both fairness among users and system utilization efficiency into

account when designing an allocation policy. In this chapter, we first propose a new

fairness criterion and a novel fair-effort fairness model. We then present a simple credit

based algorithm to approximate the proposed fairness model. Furthermore, based on

our fairness model, we provide a detailed packet level resource allocation scheme for

a CDMA based network which supports variable instantaneous data rate allocation.

Finally, some numerical results are provided at the end of the chapter.

6.1 Problem Description

We consider a single cell in a hybrid CDMA/TDMA network in this chapter. We

focus on the resource allocation problem for only data services in a synchronized uplink

channel but similar arguments apply to the downlink. In such an uplink channel, mobile

users send their transmission requests to a centralized controller (the base station). The

controller schedules which user(s) should transmit in the next frame, and it then decides
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Figure 6.1: System model

the transmission power and the transmission rate for those scheduled user(s). We focus

on the policy used by the controller, which consists of the above series of actions. The

detailed protocols and the formats for the requests and related signallings are beyond

the scope of this thesis (some related works on protocols design can be found in [2, 45]).

Fig. 6.1 illustrates the system model of our resource allocation problem. Mobile users

send transmission requests and report some related information such as their channel

conditions and buffer occupancies. The base station schedules a transmission scheme

consisting of the scheduled users and their allocated transmission powers and rates in

each frame to all users and the scheduled users transmit according to such a scheme.

In the time domain, transmissions and resource allocations are assumed to be syn-

chronized on a frame by frame basis. In the code domain, a user may use different

codes for spreading and thus may have difference instantaneous data rates. Fig. 6.2

illustrates the transmission model. The size of a pipe roughly represents the instan-

taneous data rate of a flow in a frame. In the time domain, transmission scheduling

can be used for time multiplexing and hence a flow may not necessarily transmit in

every frame. This is represented with the non-continuous pipe in Fig. 6.2. In the code

domain, the number of users that can transmit simultaneously in a frame is not fixed
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Figure 6.2: A transmission example in a synchronized CDMA channel

as this is influenced by the interference limited system capacity.

An optimal (and ideal) power allocation scheme can guarantee that all scheduled

users experience the same frame success probability, which will be introduced later.

The transmission scheduling and the rate allocation together determine the (effective)

average throughput of a backlogged user. We can use the average total instantaneous

throughput that is summed over all scheduled flows to measure the system utilization

efficiency. One calibration for the fairness among users is in terms of the difference

between the weighted average throughput of backlogged flows, which is also the widely

referred fairness measure. S. Oh and K. Wasserman [59] have shown that the average

total instantaneous throughput can be maximized by allocating larger instantaneous

data rates to those users with relatively better channel conditions and allocating smaller

instantaneous data rates to those users with relatively poorer channel conditions. How-

ever, this allocation scheme may introduce unfairness among users and some users with

relatively poorer channel conditions may be starved of service for a long time. This

is also undesirable. Such a tradeoff between fairness and efficiency motivates us to

propose a new fairness model which incorporates the time varying channel conditions

as a factor impacting on the quota of resources allocated to a user. We discuss our

fairness model and compare it to the classical generalized processor sharing (GPS)

fairness model in the next section.
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6.2 Fair-effort Resource Sharing

6.2.1 The Fair-effort Resource Sharing Model

Consider a single node with multiple backlogged flows waiting for transmission through

a common link of capacity C. In the GPS model, all flows are assumed as fluid flows

with fixed nominal weights and the link capacity C is often considered as a constant.

During any infinitesimally small time interval ∆t, a backlogged flow i with a fixed

weight ωi should be allocated a link capacity of C ·∆t · (ωi/
∑

j∈B(∆t) ωj), where B(∆t)

is the set of backlogged flows during ∆t. If a flow is scheduled to transmit, its head of

line packet will be transmitted with the (fixed) link transmission rate. Hence the link

capacity is shared among backlogged flows in a time-multiplexed way via the packet

scheduling. Another mathematical formulation of the GPS is as follows:∣∣∣∣Wi(t1, t2)

ωi

− Wj(t1, t2)

ωj

∣∣∣∣ = 0. (6.1)

Eq. (6.1) allows that the resource granted to any two flows W (t1, t2) in a time interval

[t1, t2) during which they are continuously backlogged are proportional to their nominal

weights ω. The GPS model makes two implicit assumptions when it is used as the

fairness reference in communications. First, the resource is a public resource that

is allocated to some competing users through an allocation process. Second, users

participate passively in the resource allocation process in that they cannot impact

on the total amount of public resources they receive, and they cannot change their

resource shares without changing their nominal weights. We contend that the second

implicit assumption is not universally appropriate, especially for wireless systems where

channel interference is not uncommon. For example, consider the uplink in a CDMA-

based network. More than one user may transmit simultaneously with the use of the

spreading technique. Suppose two users have the same instantaneous data rates and

BER requirements. Then their received powers at the base station should be kept equal

with optimal power allocation [3, 68]. That is, if pi and hi are the transmission power

and path gain of user i = 1, 2 respectively, p1h1 = p2h2. However these users may have

different transmission powers due to their different path gains. For example, p1 > p2 if

h1 < h2. Since the system capacity of a CDMA network is interference limited, these
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users can influence the capacity of the system by varying their transmission powers.

Thus it is possible for the users to interact actively in the resource allocation process

in that their transmission powers affect the amount of available public resources that

can be allocated. Note that in this example, the two users get their fair share of public

resources under the GPS model in that they have the same transmission rate.

The proposed Fair-Effort Sharing (FES) model is defined as:∣∣∣∣Wi(t1, t2)

ei(t1, t2)
− Wj(t1, t2)

ej(t1, t2)

∣∣∣∣ = 0 (6.2)

In (6.2), e(t1, t2) quantifies the effort a user puts in to get W (t1, t2) amount of the

public resource during the time interval [t1, t2). We require e(t1, t2) > 0 for any back-

logged flow during the time interval [t1, t2). Compared with the GPS model, the main

difference is the use of a time-dependent measure of effort instead of a fixed nominal

weight. This simple modification allows the incorporation of the (possible) interactions

between the competing users and the resource process. Thus, if the nominal weight

of a user can be dynamically changed during the resource allocation process, the GPS

model evolves to the FES model.

Recently, F. Kelly [43, 44] has proposed a new fairness concept, proportional fair-

ness, for elastic traffic. Each data user is assigned a utility which is a function of the

allocated resources, e.g., the transmission rate. Furthermore, each user bids its resource

quota through its willingness-to-pay rate. An allocated resource vector ~x = (x1, x2, · · ·)

is said to be proportional fair if it is feasible (that is xi ≥ 0 and
∑

i xi ≤ C) and if for

any other feasible allocation vector ~x′, the aggregate proportional changes is zero or

negative: ∑
i

x′i − xi

xi

≤ 0. (6.3)

Kelly has proved that there exists a willingness-to-pay vector and a resource allocation

vector to maximize both the system total utility that is summed up over all users

and the net utility of each user which is the utility minus its willingness-to-pay, when

the system is in a long-term equilibrium (see Theorem 1 in [43]). Furthermore, Kelly

has shown that at equilibrium, the resource vector is proportional fair if the utility

function is a logarithmic function. Though Kelly has considered that users may actively

participate in the resource allocation process (through their willingness-to-pay), he
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still assumes that the available resources are constant. We note that our FES model

can also achieve the proportional fairness in the long-term equilibrium if each user

adjusts its effort (its willingness-to-pay for example) to maximize its net utility when

receiving resources. Furthermore, Kelly does not address the procedure of how to

achieve proportional fairness. However, we provide not only the abstract fairness model

but also the implementation reference.

As with the GPS model, the FES model only serves as an abstract reference sched-

uler. The measure of effort can be defined differently for different applications. Also,

the FES model is based on the fluid flow assumption. Let 0 = t0 < t1 < t2 < · · · <

tN = T be a series of partitions over a time interval [0, T ). We can then use the

following discrete version to approximate the fluid version of the FES model.∣∣∣∣∣
N−1∑
n=0

Wi(tn, tn+1)

ei(tn)
−

N−1∑
n=0

Wj(tn, tn+1)

ej(tn)

∣∣∣∣∣ = 0 (6.4)

In (6.4), ei(tn) quantifies the effort at the time instant tn which is used to approximate

ei(tn, tn+1) during the whole time interval [tn, tn+1).

6.2.2 A Fair-Effort Crediting Algorithm

We now present a general algorithm, called the fair-effort crediting algorithm (FECA),

to implement the FES model. Without loss of generality, we consider a wireless system

where (1) a central base station allocates resources only among known backlogged

flows, (2) all flows are kept in separate queues and (3) transmissions are synchronous

and time-aligned on a frame-by-frame basis. Note that these are according with our

problem context, i.e., the system model and the transmission model in Section 6.1.

The base station maintains a sorted list L = {~l1, ~l2, · · ·} where~l is a tuple (i, σi, bi, ei)

of real values. i is the unique identification of a flow, σi is a counter which stores the

credits of flow i, bi is the record of the flow length (i.e., amount of data to transmit)

and ei is the record of the recently updated measure of effort of flow i. Suppose each

flow has a virtual reference flow which always gets its fair-effort share of resources. σi

indicates the difference in flow i’s credits relative to its virtual reference flow, i.e., σi > 0

(σi < 0) means that flow i is lagging (leading) its reference flow. σi is initialized/reset
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to zero when the flow i buffer becomes backlogged/empty. The measure of effort ei

can be computed from some effort-labelling functions. In a frame t, FECA operates as

follows.

The fair-effort crediting algorithm (FECA):

FECA-1: (Sort the list) The list L is sorted according to the credits of the entries,

from high to low. If two entries have the same credits, they are sorted according to their

efforts, from high to low. If a flow i has a zero bi (i.e., empty flow), its corresponding

entry is removed from the list. That is, L = L \ {~li} if bi(t) = 0.

FECA-2: (Calculate the total effort, E(t)) The total effort is the sum of the

effort records of all backlogged flows, i.e., E(t) =
∑

i∈L ei(t).

FECA-3: (Schedule and allocate resources) LetM(t) = {m1,m2, · · · ,mt} denote

the set of scheduled flows. We allocate resources as denoted by Wm1(t, t+1), Wm2(t, t+

1), · · ·, Wmt(t, t + 1) to these flows. We require that σm1 ≥ σm2 ≥ · · · ≥ σmt . This

means that the lagging most flow is considered first.

FECA-4: (Compute the total allocated resources, W (t, t+1)) The total allocated

resources is the sum from all allocated flows, i.e., W (t, t+ 1) =
∑

i∈MWi(t, t+ 1).

FECA-5: (Update the credits) All entries in the list have their credits updated

as follows:

σi(t+ 1) =

 σi(t) + ei(t)
E(t)

W (t, t+ 1) i 6∈ M(t)

σi(t) + ei(t)
E(t)

W (t, t+ 1)−Wi(t, t+ 1) i ∈M(t)
(6.5)

In step FECA-5, ei(t)
E(t)

W (t, t + 1) is the fair-effort share quota of flow i which is

proportional to its effort, and Wi(t, t + 1) is its actual allocated resource. In each

frame, if the actual allocated resources for each backlogged flow equals its fair effort

share, i.e., Wi(t, t+ 1) = ei(t)
E(t)

W (t, t+ 1), then such an allocation can be easily proved

to satisfy the discrete version of the FES model. We define the following convergence

measure to measure how fast (on average) a flow is leading/lagging its fair effort share.

Suppose flow i is continuously backlogged during the time interval [0, T ). Let Si(T ) be

the total amount of resources it receives during [0, T ):

Si(T ) =
∑T−1

t=0 Wi(t, t+ 1) (6.6)

Then Si(T )/T is the average throughput of flow i. Let Fi(T ) be the system resources
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that should be allocated to flow i according to the FES model during [0, T ). It is given

by:

Fi(T ) =
T−1∑
t=0

ei(t)

E(t)
W (t, t+ 1) (6.7)

The convergence rate δi(T ) of flow i which is continuously backlogged in [0, T ) is then:

δi(T ) = |Fi(T )− Si(T )|/Fi(T ) (6.8)

6.3 A Resource Allocation Scheme

In this section, we present a detailed packet level resource allocation scheme which

consists of transmission scheduling, power allocation and rate allocation for a CDMA

uplink channel supporting multiple instantaneous data rates. Power allocation deter-

mines the transmission quality while transmission scheduling together with rate allo-

cation determine both the system achievable average total throughput and the average

throughput of each flow. We use the system achievable average total throughput as the

system resources to be allocated to backlogged users, however, the resource allocation

policy is based on our fair-effort model.

6.3.1 Optimal Power Allocation

A centralized optimal power allocation scheme has been proposed in [3, 68]. In a

CDMA-based mobile network, the transmission power determines the received bit-

energy-to-interference-power-spectral-density, Eb/I0, and further determines the expe-

rienced bit error rate (BER) at the receiver. Consider an uplink channel in a CDMA-

based network. The received Eb/I0 can be computed as:(
Eb

I0

)
i

=
W

Ri

Pi∑N(t)
j=1,j 6=i Pj + η0

(6.9)

where W is the system spreading bandwidth, Ri is the data rate of flow i, Pi is the

received power of flow i at the base station, N(t) is the number of flows that transmit

in frame t and η0 is the background noise spectral density at the base station. To

guarantee a minimum BER requirement, the received Eb/I0 should satisfy(
Eb

I0

)
i

≥ γ∗i , (6.10)
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where γ∗i is the target Eb/I0 corresponding to the minimum BER requirement given a

particular allocated transmission rate Ri for flow i. When (6.10) holds with equality

and from (6.9), the base station can allocate the received power level to each scheduled

flow according to [3, 68]

Optimal Power Allocation:

Pi =
giη0W

1− Σ
N(t)
j=1 gj

, (6.11)

where gi is the power index

gi =
γ∗i

γ∗i +W/Ri

. (6.12)

Eq. (6.11) is called optimal power allocation in the sense that the BER requirements

of all scheduled flows are met with equality. Such a power allocation also minimizes

the total received power, i.e.,
∑

i Pi is minimized. Also note that (6.11) is an idealized

or perfect power allocation scheme. It assumes that the base station has the up-to-

date information of each mobile user and it also assumes that the path gain of each

mobile remains constant in a frame. The effect of imperfect power allocation for voice

services has been investigated by D. Zhao [100] in a multi-code CDMA network. The

effect of imperfect power allocation for data services is beyond the scope of this thesis

and is suggested as a possible extension. We assume that path gain information of

all mobile users are known to the base station instantaneously. To guarantee feasible

solutions, we require
∑N(t)

i=1 gi < 1. Since the uplink transmission power is provided by

a mobile’s battery, another limitation related to power allocation is that the allocated

power should not be greater than the peak (maximum) transmission power limit pmax
i ,

that is,

Peak Power Limit:

Pi ≤ hip
max
i (6.13)

where hi is the path gain of flow i. Thus to achieve a feasible solution, a conservative

constraint is needed and the aggregate power index in each frame needs to be kept less

than a threshold 1−∆, i.e.,

Power Capacity Limit:
N(t)∑
j=1

gj < 1−∆ (6.14)
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In (6.14), ∆ is the reserved power index used to limit the assigned power levels. An ex-

ample for setting the value of ∆ is given by M. Arad [2] where ∆ = η0W maxi{ gi

hipmax
i
}.

Another way to avoid infeasible power allocation is by using a more conservative ad-

mission control algorithm. (6.14) can also be viewed as the power capacity of each

frame.

We use the average frame success probability fs to set the target Eb/I0 in each

frame since the minimum BER requirement has a one-to-one mapping to the average

frame success probability if the modulation, channel coding and other physical layer

techniques are the same in all frames. However, as the instantaneous rates are different,

the same minimum BER requirement for a flow may correspond to different fs values.

For example, assuming no coding scheme, perfect bit error detection and no error

correction, fs can be computed as:

fs = (1−BER)LRi (6.15)

where LRi
is the number of bits per frame given rate Ri is allocated. The target Eb/I0

can be set fixed regardless of the instantaneous data rate, which will result in different

fs values when the transmission rates are different. The target Eb/I0 can also be set

based on a fixed fs strategy and different target Eb/I0 can be derived for different

instantaneous data rates accordingly. We use the fixed fs strategy to set the target

Eb/I0 for all flows.

6.3.2 Transmission Scheduling and Rate Allocation

Transmission scheduling determines which flow(s) to transmit in the next frame and

rate allocation prescribes the instantaneous rate (the spreading code) for each scheduled

flow. Transmission scheduling together with rate allocation determine the achievable

total instantaneous data rate in a frame. They also determine the average throughput

of each backlogged flow. As our resource allocation scheme uses the FES model as

our fairness reference, we use the FECA algorithm in Section 6.2.2 for transmission

scheduling (including the queueing strategy), i.e., in each frame, the flows are scheduled

based on their effort credits. To complete the resource allocation scheme, we still need
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to clarify two other aspects. One is how to compute the effort and the other is the

instantaneous rate allocation algorithm.

We use path gain as a measure of the effort expended by a flow in order to receive

its resource quota since the achievable system total throughput may be dependent on

the users’ channel conditions. However, we do not need to use the path gain values

directly but can partition the range of path gains into a finite set of intervals. We then

use a numeric score to represent a path gain interval and the better the path gain the

higher the score. Fig. 6.3 plots some example scoring functions.

Figure 6.3: Different path gain scoring functions

We use an exhaustive instantaneous rate allocation algorithm as it helps to improve

resource utilization efficiency (in a saturated network). Note that different instanta-

neous data rates can be easily realized by using different spreading codes. In real

systems, the available spreading codes are finite and hence the available instantaneous

data rates are also finite. Let the set of available instantaneous data rates be denoted

as R = {R1, R2, · · · , RK} with R1 being the minimum and RK being the maximum

rate, respectively, and γ = {γ1, γ2, · · · , γK} being the corresponding target Eb/I0. The

algorithm is briefly described as follows.
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Figure 6.4: Flow chart of the instantaneous data rate allocation algorithm

All backlogged flows are sorted before the rate allocation process according to their

effort credits, cf. Section 6.2.2. Let L denote such a sorted list and let L denote the

number of backlogged flows. The allocation of instantaneous data rates to backlogged

flows is performed one by one starting from the head flow in the sorted list as follows.

The flow is first allocated the highest instantaneous data rate R (and corresponding γ)

less than b/Tf , where b is the length of the flow and Tf is the frame length. Conformance

to the power capacity limit (6.14) is then checked. If this is satisfied, conformance to

the peak power limit (6.13) is then checked. If this is also satisfied, the next flow in the

list is scheduled and allocated its instantaneous data rate. On the other hand, if either

of the above checks fails, the next lower instantaneous data rate and corresponding

Eb/I0 are allocated and the above checks for conformance of (6.14) and (6.13) are

repeated. If the flow in consideration has been allocated the lowest instantaneous data
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rate but the conformance to the power capacity (6.14) fails, the allocation procedure

stops. If the flow in consideration has been allocated the lowest instantaneous data

rate but the conformance to the peak power limit (6.13) fails, the flow in consideration

is then skipped. These steps are repeated until all flows in the list have been considered

or until it is not possible to allocate a flow any rate in the set of available instantaneous

data rates. The flow chart in Fig. 6.4 shows this allocation procedure.

The algorithm is called exhaustive in that it tries to schedule as many flows as

possible to transmit in each frame until the power capacity limitation is violated or

until all backlogged flows have been considered. When the limitations are violated, the

algorithm tries to reduce the instantaneous data rate to be allocated to a flow before

skipping the flow.

6.4 Numerical Examples

In this section, we provide some simulation results to compare the performance of

our resource allocation scheme with that of some other schemes. The simulations are

to explore the relationship between the system utilization efficiency and the fairness

among users and to investigate the average delay performance of different schemes.

We use Scheme-A to represent our allocation scheme described in Section 6.3. When

we only change the transmission scheduling strategy while keeping the optimal power

allocation and the exhaustive instantaneous data rate allocation, we readily have two

other schemes, labelled as Scheme-B and Scheme-C. Scheme-B uses a simple round

robin transmission scheduling strategy which is independent of the path gains of back-

logged flows and provides the GPS model based fairness among users. Scheme-C uses

a biased transmission scheduling strategy which schedules the flows in the order of

their path gains, from high to low, in all frames. Scheme-C does not provide fairness

guarantees but it can maximize the system utilization efficiency. We also can use a

simple round robin transmission scheduling strategy but with fixed instantaneous data

rate (fixed spreading code) strategy for rate allocation to form an allocation scheme

and two such schemes, labelled as Scheme-D and Scheme-E, use fixed rate of 120kbps

and 240kbps for all scheduled flows in all frames, respectively.
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Table 6.1: Some simulation parameters and their values

Parameter Value

spreading bandwidth 3.84MHz

frame length 10ms

total background noise 1.0× 10−12 Watt

peak transmission power 0.1 Watt

fs 0.95

minimum/maximum velocity (if move) 3/80 km/h

We consider a single cell of 1km radius with the base station located at the center of

the cell. An uplink transmission channel is shared among several data users. The avail-

able instantaneous data rates are chosen from the setR = {15, 30, 60, 120, 240, 480, 960}

(in kbps) 1 and the corresponding target Eb/I0 are set as {5.8, 6.5, 7.1, 7.8, 8.4, 9.1, 9.7}

(in dB). In our simulations, the length of a frame is set the same as a radio transmission

frame of 10ms. Two scenarios are considered: one is that all users stay stationary and

the other is that users either move within the cell or stay stationary randomly. The

path gains are simulated as mutually independent random processes determined by

distance path loss and slow fading (shadowing). Lee’s model [81] is used to compute

the path loss and a correlation model [33] is used to compute shadowing when users

are moving. The path gain (in dB) is given as

− h = L+ 10n log10(d) +X (6.16)

where L is a constant, n is the path loss exponential and X is the fading process. In

our simulations, we set L = 71 dB and n = 4. The slow fading process X is modelled

as an autoregressive process. Let X t = (1−β)X t−1+βY t be the fading level at frame t,

where Y is an independent sequence of log normal random variables with log standard

deviation of 10 (dB) and β is a weighting factor which is determined by the ratio of the

velocity of a user to the maximum velocity in our simulations. If a user is stationary, the

slow fading level is constant and a user with high velocity has less correlated successive

fading levels. We assume that path gains remain constant during a frame. To relate

1These transmission formats are according to the UMTS standard [15]
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the path gain experienced by a flow, we use a discrete scoring function, as shown in

Fig 6.3. Other simulation parameters and their values are summarized in Table 6.1.

We first consider a stationary scenario. 8 data users are uniformly distributed in

the cell and the distances between users 1, 2, · · · , 8 and the base station are set at

200, 300, · · · , 900(m), respectively. Each user is assumed to have infinite data back-

logged for transmission. Fig. 6.5 plots the achievable system capacity (average total

system throughput in total error-free bits received) for different number of active data

users. Not unexpectedly, exhaustive instantaneous data rate allocation (Schemes A,

B and C) improves the achievable system capacity compared with fixed instantaneous

data rate allocation (Scheme D and E) since the former tries to pack as many flows as

possible in a frame until the power capacity is achieved. The achievable system capac-

ity of Scheme-A and that of Scheme-B are seen to decrease with increasing number of

active users. This is due to the increased likelihood of users with poor path gains trans-

mitting, thereby increasing the level of interference in the cell. Nevertheless, note that

Scheme-A results in a higher system capacity than Scheme-B. Since Scheme-C always

selects users in the order of their channel conditions, its resulting system capacity is

the best. However, Scheme-C may cause starvation to some users as shown in Fig. 6.6,

which plots the individual user throughput when there are 8 active users. Scheme-B

results in all users having the same throughput. This is obtained at the expense of

a reduced system capacity as shown in Fig. 6.5. Scheme-A is seen as a compromise

between Scheme-B and Scheme-C, yielding improved system capacity over Scheme-B

without starving any user of transmission compared with Scheme-C.

Next, when users are not stationary, resulting in time-varying measures of effort, we

use the convergence rate (6.8) to illustrate the effectiveness of the FECA algorithm. We

model user mobility as follows. A user moves randomly in a cell. The velocities of users

are independent random variables uniformly distributed between 3km/h (minimum)

and 80km/h (maximum). The directions of users are independent random variables

uniformly distributed between 0 and 2π. We also assume that a mobile user randomly

changes its speed and/or direction every few seconds. If a user moves out of the border

of a cell, we assume that it reappears at a point that is symmetric to the exiting point.

We measure the convergence rate, δi(T ), and use ∆(T ) = maxi{δi(T )} for different
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Figure 6.5: Achievable system capacity vs the number of active users. The system load

increases with the increase of the number of active users

T as the worst case analysis for verifying the effectiveness of the FECA algorithm.

Fig. 6.7 plots the worst case convergence rate for different numbers of data users. We

see that the FECA algorithm approximates the discrete FES model well: the worst

case normalized leading/lagging percentage reduces quickly when the number of frame

increases. When the number of backlogged users increases, a lagging user takes a longer

time to obtain its fair share of system resources. This is shown in the figure where it

converges faster when there are fewer competing users.

We then evaluate the delay performance. We use the UMTS web surfing traffic

model [14] as the data model for each mobile. According to [14], a web surfing session

consists of several packet bursts and between two consecutive packet bursts is the

reading time modelled as geometrically distributed. We assume that each mobile has

a web surfing session consisting of an infinite number of packet bursts. The length of

network layer packets is modelled as Pareto distributed. The network layer packets

are segmented into equal length (150bits) RLC PDUs (Radio Link Control Protocol

Data Units) and the maximum number of retransmission is 5 for each RLC PDU. The
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Figure 6.6: Individual user’s throughput

buffer length of each mobile is set as 5000 RLC PDUs. We use the UDD 144kbps

web surfing model in simulations and other detailed parameters can be found in [14].

The delay of an arbitrary network layer packet is computed as the time of its service

completion minus its arrive time. We only compare the delay performance of Schemes

A, B and C. In each frame, we run all schemes consecutively and record the delay

statistics for different schemes separately. This is done by copying an arriving packet of

a flow and enqueueing/dequeueing it to/from the separate queues for different schemes

accordingly. All flows initiate a packet bursts at the beginning of a simulation run. A

simulation run has 100000 frames and all results are averaged over 100 runs. In the

mobility scenario, the initial position and the mobility pattern of a user is set/reset

randomly at the beginning of a simulation run.

We first present simulation results in a stationary scenario. 80 stationary data users

are uniformly distributed in a cell and the distance between users 10, 20, · · ·, 80 and the

base stationary are set at 200, 300, · · ·,900 (m), respectively. We use a large number of

users in order to simulate a loaded system situation. Fig. 6.8 plots the system average

delay (averaged over all active users) for different number of active users. Fig. 6.9 plots
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Figure 6.7: Worst case analysis of convergence rate

the delays of users with different locations when there are different active users in the

system. Note that in Scheme C, the users with poor channel conditions still have the

chance to transmit when the users with good channel conditions have depleted their

buffers. As Scheme B does not discriminate users and schedules users on a round robin

basis, it results in similar delays of all active users. Schemes A and C discriminate

users according to their distances to the base station, thus users far away from the

base station experience larger delays compared with users closer to the base station.

Both are shown in Fig. 6.9. As Scheme B does not suffer from reduced system capacity

in an unloaded or lightly-loaded system, it also results in a smaller system average

delay due to its round robin scheduling, as shown in Fig. 6.8. However, when the

system becomes loaded, Scheme B results in some reduction of system capacity which

in turn increases the average delays of all active users.

We next present simulation results under the mobility scenario. Fig. 6.10 plots

the system average delay (averaged over all active users) for different numbers of data

users. We see from Fig. 6.10 that Scheme C has the smallest average delay. We

explain it as follows. In the mobility scenario, a user may experience time-varying
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Figure 6.8: System average delay vs the number of active users. The system load

increases with the increase of the number of active users.

and location-dependent path gains resulting from its random movements. Recall that

Schemes C and A favor users with high path gains by prioritizing their transmissions

ahead of users with low path gains. By such transmission prioritization, Schemes A and

C can exploit the time-varying channel conditions to some extent in that some users

might improve their channel conditions some time later. Also such exploitation of time

varying channel conditions may lead to some gains of system capacity improvement

(cf. Fig. 6.5), and such gains then can be translated into the decrease of average delay

compared with Scheme B in simulations. On the other hand, Scheme B may fail to

maintain a high system capacity due to its GPS model based fairness constraint in case

of loaded and over-loaded situations (cf. Fig. 6.5). Thus the loss of system capacity,

which is at the expense of its fairness enforcement, can be translated into the increase of

the system average delay of Scheme B. As Scheme A still has to take care of users with

poor channel conditions by not starving them too long, it may experience some losses

of system capacity. Thus the average delay of Scheme A is in the middle of Scheme

B and Scheme C. However, we should mention that the improvements of Scheme C in
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Figure 6.9: Average delay of data users with different locations in stationary scenario

(the number of simulated data users is labelled below each sub-figure)

Fig. 6.10 (compared with Scheme B and Scheme A) need to be understood only from

the statistical average point of view. This is because although the exploitation of time-

varying channel conditions can capture some gains in terms of the increased system

capacity (or in terms of the decreased average delay in our simulations), such gains may

be at the expense of additional delay of some particular packets of a particular user

(cf. Fig 6.11). Fig. 6.11 plots the average delay of some selected data users and the

average delay of all simulated data users from only one run of simulation. Note that

the arriving packets of a user have the same arrival time for all schemes but they may

have different service completion times in different schemes. We see from Fig. 6.11 that

some users may experience very large delays in Scheme C due to its biased scheduling

scheme.

We summarize our simulations as follows. We first show that the GPS model

based fairness criterion may lead to significant decrease in system capacity when the

system becomes loaded, while the FES model based fairness criterion can avoid this

by allocating resource shares to users according to their efforts, i.e., their path gains in

139



CHAPTER 6. Fair-effort Based Resource Allocation Page 140

Figure 6.10: System average delay vs the number of data users. The system load

increases with the increase of the number of users.

our simulations. Our simulations also clearly illustrate the (possible) tradeoff between

system utilization efficiency and fairness among users. We then verify the effectiveness

of the FECA algorithm. Although individual users may suffer from the transmission

prioritization, they may also benefit from high system utilization efficiency by such

transmission prioritization, especially when users have time-varying channel conditions

due to their random mobility. Our final simulations provide such examples.

6.5 Summary

In this chapter, we have investigated packet level resource allocation policies for data

users from a system operator viewpoint. We focus on two policy design objectives:

fairness among users and system utilization efficiency. Unlike the commonly used GPS

fairness model, we propose a new FES fairness model. Given any infinitesimally small

time interval, the FES has the same objective as that of the GPS model, i.e., to

minimize the difference in weighted allocated resources between any two backlogged
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Figure 6.11: Average delay of selected individual data users and average delay of all

simulated data users in one run of simulation under mobility scenario (the number of

simulated data users is labelled below each sub-figure)

users. However, the nominal weight of a flow is considered time-dependent in the

FES model while it is fixed in the GPS model. By this simple modification, we can

incorporate the (possible) interaction between users and the resource allocation process.

We have also proposed a simple credit-based FECA algorithm to approximate the FES

model at the packet level. Based on the FES model and the FECA algorithm, we have

also presented a detailed packet level resource allocation scheme for CDMA-based

wireless networks. The scheme consists of mechanisms for resource share assignment,

transmission scheduling, rate and power allocation. We use exhaustive instantaneous

data rate allocation in order to fully utilize the system capacity, while optimal power

allocation can provide required guarantees of the transmission quality. We evaluate

our proposals via simulations. The simulation results show the advantages of using the

FES model as the fairness reference in terms of the system utilization efficiency and

verify the effectiveness of the FECA algorithm.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have studied several important radio resource management issues in

a cellular mobile network for data services at the packet level. Radio resource man-

agement is very important in that it improves the resource utilization efficiency while

meeting QoS requirements. With the proliferation of the Internet and its applications,

data services will form a large part of the traffic in next generation wireless networks.

Many current literature mainly focus on realtime services and few are dedicated to

data services. When designing a control policy, we often have to face different costs

and an ideal policy should optimally balance these costs. This thesis is devoted to

data services and further devoted to studying how to balance different costs. In this

thesis, we have studied the following resource management issues, namely, power con-

trol, transmission scheduling and rate allocation. We first study these issues separately

from a single user’s point of view and then jointly from an operator’s viewpoint.

The first set of problems is modelled from the stochastic decision theoretic frame-

work and solved by using the MDP mathematical tool. In Chapter 3, a power control

policy is required to save transmission energy while meeting the file transfer delay re-

quirement. We have shown how to convert such a constrained stochastic optimization

problem to a standard Markov decision problem via the Lagrangian approach. The

resulting optimal power control policy is independent of time with the average delay
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constraint while is time dependent with the strict delay constraint. Numerical exam-

ples have shown that besides meeting the delay constraint, the optimal policy greatly

reduces transmission energy compared to a fixed power persistent transmission policy.

This happens because the channel variations have been opportunistically exploited by

the optimal policy.

In Chapter 4, a transmission control policy is required to optimally balance between

the transmission cost, the delay cost and the throughput cost. We directly model the

problem as an average cost optimal Markov decision problem. We prove the existence

of stationary average optimal policies for our problem and explore the property of the

optimal policies. The resulting optimal policy is proven to have a structural property:

when the buffer occupancy is low, the sender can suspend transmission in some bad

channel states to save transmission power; however, when the buffer occupancy ex-

ceeds some thresholds, the sender has to transmit in some bad channel states to avoid

increasing the delay cost.

In Chapter 5, a rate control policy is designed to minimize the resource usage cost

and the delay cost. The resulting optimal policy is shown to have a monotone property,

i.e., the optimal action is nondecreasing with the system state. We have also analyzed

two extreme policies that give the upper and lower delay bounds among all allowable

policies. The analysis is based on the stochastic processes comparison technique. We

then propose a class of one-threshold based simple policies to approximate the optimal

policy and analyze the upper delay bound for such a simple policy. We also extend the

rate control problem against the existence of competitions among multiple users. We

then identify the characteristic of value functions and the property of optimal policies

for such an extended problem.

We have also studied resource allocation from the viewpoint of an operator. In

Chapter 6, we present an integrated resource allocation scheme covering power control,

transmission scheduling and rate allocation mechanisms. We propose a new fairness

model, the fair-effort resource sharing model, and a simple credit based algorithm to

implement the proposed fairness model. According to our fairness model, the resource

share (quota) allocated to a user is proportional to the user’s effort which is considered

as time dependent rather than as fixed. Based on our fairness model, we provide a
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detailed packet level resource scheme which consists of optimal power allocation, ex-

haustive instantaneous data rate allocation and fair-effort resource sharing. Numerical

results are also provided to show the advantages of using our fairness model in terms of

the increased system utilization efficiency compared to that of the generalized processor

sharing model.

There are still some possible extensions to this thesis which deserve further research.

We list some of these issues in the next section.

7.2 Some Future Research Directions

We have successfully applied the MDP theory to model and to solve some resource

allocation problems. However, their real applications have some restrictions as we may

not always know all quantities beforehand. In this case, adaptive control techniques

can be used for online control. When multiple users are considered, competitions arise

across users. Another important technique, game theory, can be used to model such

a situation. When the topology of a wireless network changes, the available resources

may also change accordingly. In such a case, we may need to reconsider the fairness

definition and investigate its impact to resource allocation. We briefly discuss these

issues and some very recent related works.

Adaptive Control

The theory of Markov decision processes provides a solid mathematical basis for finding

an optimal policy, while reinforcement learning (see [82] for introduction) provides

implementable method to approximate an optimal policy. Some classical reinforcement

learning methods include Temporal Difference learning, Q-learning and R-learning [7,

9, 82]. For example, the simplest one-step Q-learning is defined by

Q(s, a)← Q(s, a) + α

{
C(s, a) + min

a′∈As′
Q(s′, a′)−Q(s, a)

}
, (7.1)

where Q(s, a) is the Q-factor and α ∈ (0, 1] is a step size parameter. From 7.1, we

see that we may not need to know the transition probabilities beforehand when find-

ing an optimal policy. Recently, reinforcement learning has been used for admission
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control [11, 51] and rate control [52, 66] in a wireless network. We believe that if the

property of an optimal policy has been identified and exploited, the efficiency and the

convergence rate of the learning algorithm can be greatly improved.

Game Theory

Game theory (see [24, 25] for introduction) provides the theoretical foundation to

model how a user adjusts its strategy to maximize its return from competing with

other users. The outcome of a game is an equilibrium, the Nash Equilibrium [55],

that no participant can benefit more by changing its strategy separately. Recently,

C. Saraydar et al. have applied game theory to solve the power control problem in

a CDMA network [31, 69, 70, 71]. Each user is assigned a utility function of its own

power and the others, Ui(pi,P−i) and the game is defined as:

max
pi

Ui(pi,P−i) for all i. (7.2)

This game is a static game while the characteristics of a mobile user are not included,

e.g., the time-varying channel. We believe that the theory of competitive Markov

decision processes, the combination of MDP theory and game theory, could be a more

appropriate mathematical tool to model and to solve the competitive and dynamic

resource allocation problems.

Fairness Reconsideration

Fairness has always been an important and hot topic in resource allocations. However,

the definition of fairness may need to be reconsidered in wireless networks. An example

is the fairness in a mobile ad-hoc network. The topology of a mobile ad-hoc network

may change in a small time scale and the time-varying connectivity may impact the

available resources for allocation [83]. Recently, many new fairness definitions have

been proposed, for example, relative fairness in [72], statistical fairness in [47], for

wireless networks. Statistical fairness is defined by

Pr

(∣∣∣∣Wi(t1, t2)

ωi

− Wj(t1, t2)

ωj

∣∣∣∣ ≥ x

)
≤ f(i, j, x). (7.3)
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Another issue is the fairness measurement. Throughput is often chosen as the fairness

measurement but in wireless networks, the power used to achieve the same throughput

may not be the same for different mobile users due to their different geographical

locations. To address such a problem, some researchers have proposed to use utility

functions as the fairness metric [46, 95]. We believe that there should be much research

work to do with the definition, measurement, and evaluation of fairness in wireless

networks.
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