
PRICING MULTI-DIMENSION AMERICAN

OPTIONS BY SIMULATION

SUN JUNHUA

(B.Sc.)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICS

NATIONAL UNIVERSITY OF SINGAPORE

2004



To My Parents . . .



Acknowledgements

This thesis would not have been possible without the help, invaluable suggestion

and patient guidance from my supervisor, Dr. Jin Xing. Without him, I would not

have learned so much. Thank you very much, sir, for everything you have done for

me!

I would like to say a very special thank you to my parents. You always encourage

me and support my decision, your words give me great motivation in my study and

in my life.

Furthermore, I would like to express my sincere thanks to all my friends in Sin-

gapore. I may not list all your names here because there are really too many to be

listed, your friendship and encouragement keep me on the hard-working track to

this thesis. Thanks are also extended to others including the friendly and helpful

academic and non-academic staffs in Department of Mathematics. Last but not

least, I would also wish to thank the National University of Singapore for awarding

me the Research Scholarship which financially supports me throughout my M.Sc.

candidature.

iii



Acknowledgements iv

Thanks all!

Sun Junhua

Feb 2004



Contents

Acknowledgements iii

Summary viii

List of Tables x

List of Figures xi

Introduction 1

1 Foundations 3

1.1 Introduction to Options . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The Classical Black-Scholes Option Pricing Model . . . . . . . . . . 5

1.3 American Option: Problem Formulation . . . . . . . . . . . . . . . 6

1.4 Monte Carlo Simulation for Option Pricing . . . . . . . . . . . . . 9

2 A Review of American Option Pricing Model 12

v



Contents vi

2.1 Tree/Lattice Method . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Finite Difference Method . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Least Square Monte Carlo Method . . . . . . . . . . . . . . . . . . 15

2.4 Stochastic Mesh Method . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 State-Space Partition Method . . . . . . . . . . . . . . . . . . . . . 18

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.1 General Algorithm for Pricing American Option by DP . . . 21

2.6.2 Stopping Rules . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.3 Continuation Value . . . . . . . . . . . . . . . . . . . . . . . 22

3 Low-discrepancy sequence based State-Space Partition Algorithm 24

3.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Assumptions and Settings . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Pricing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Numerical Results 30

4.1 Classical Standard American Put Option . . . . . . . . . . . . . . 31

4.2 Minimum American Put on Two Assets . . . . . . . . . . . . . . . 32

4.3 Minimum American Put on Five Assets . . . . . . . . . . . . . . . 34

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A Low Discrepancy Sequence 36

A.1 Halton Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.2 Sobol Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B Miscellaneous Notes 41

B.1 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



Contents vii

B.2 Cumulative Normal Distribution . . . . . . . . . . . . . . . . . . . . 42

C Source of Program 44

Bibliography 51

Index 54



Summary

Pricing American-style options in high-dimension has always been a challenging

problem. Classical approaches to price options, including lattice method, finite

difference, can deal with the low-dimension options pricing well. Originally, people

thought that Monte Carlo simulation is not suitable for pricing American options

due to the early exercise characteristic. In recent years, new approaches for pricing

American option based on Monte Carlo simulation have been proposed one by one.

The most popular ones are state-space partitioning, least squares Monte Carlo, and

stochastic mesh method.

Our algorithm is based on state-space partitioning method. The main challenge in

using this kind of methods is the selection of the state-space partitions. It’s natural

to imagine that as the resolution of the partitions increase, the option value by this

approach will converge to the true value. However, as many scholars noted, “the

number of strata required to maintain the same resolution along all dimensions

grow exponentially with the number of dimension”.

The algorithm we present here uses low-discrepancy sequences as “Representative

State ” to partition the state-space, so that we can deal with the pricing in high

viii



Summary ix

dimensions. The low-discrepancy sequences, such as the sobol sequence, can fill

in the space quickly in an efficient way. By using the low-discrepancy sequences,

we can avoid the curse of high dimension. Therefore, we can practically apply the

algorithm to pricing high-dimensioned American options.
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People should not be praised for their virtue if they lack the energy to

be wicked.



Introduction

Pricing American securities has received a tremendous amount of attention in the

last 25 years, ever since the Black-Scholes model was introduced in 1973. Most

of the derivatives securities traded are American style securities, so the need for

a method that can generalize Black-Scholes analysis to allow for early exercise

opportunities has been the subject of many researchers.

The focus of this thesis is pricing multi-dimension American options by Monte

Carlo simulation methods. As the dimension of the problem increases up to 3,

simulation has been proved to be a good tool for derivatives pricing. Simulation,

first introduced by Boyle [4] to derivatives pricing, is becoming more and more

popular method for pricing complex and exotic derivatives. The main advantage

of simulation is that the computational workload grows linearly with the number

of state variables. Therefore, simulation is the most popular and efficient way to

approximate the high dimensional derivatives price.

Once, it was thought that Monte Carlo simulation cannot be extended to price

American style options. In the past years, simulation methods for pricing Ameri-

can options have been proposed one by one. The most popular ones are state-space

1



Introduction 2

partitioning, least square Monte Carlo, and stochastic mesh method.

This thesis is organized as follows. Chapter 1 gives a brief introduction to option

and option pricing with emphasis on American option. We also present the basic

idea of Monte Carlo Simulation. Chapter 2 reviews some popular option pricing

models, focusing on American options. At the end of this Chapter, we present

the American option pricing in dynamic programming framework. In Chapter 3

we present our state-space partition based algorithm. In Chapter 4, based on our

algorithm, we will give some numerical results and compare them with the results

of other methods. Appendix C is the MATLAB source code of our methods.



Chapter 1
Foundations

1.1 Introduction to Options

Option is one of the most common derivatives traded in the market. There are

2 types of options: A call option is a contract that give the holder the right to

buy an underlying asset at a predetermined price on or before a specified date

in the future. A put option is a contract that give the holder the right to sell

an underlying asset at a predetermined price on or before a specified date in the

future.

The predetermined price in the option contract is the exercise price or strike price.

The date in the contract is the maturity or expiration date. The European option

can be exercised only on the expiration date, while the American option can be

exercised at any time up to the expiration date.

For example, let us consider a put option on Microsoft (MSFT) stock: The put

option gives the right to buy one share of MSFT stock for $100 in 12 months’

time. Today’s MSFT stock price is $90. The ‘100’ is called exercise price. The

12th month is called maturity. The MSFT stock on which the option is based is

3



1.1 Introduction to Options 4

called the underlying asset. We would like to exercise the put option at maturity

if the stock price is below the strike price and not if it is above. If we use S denote

the stock price, K denote the strike price. Then at maturity, the put option is

worth:

max{K − S, 0}

This function is called payoff function. The max represents the optionality.

Throughout,

• the expiration date will be denoted by T ,

• the stocks price at time t by St, St can be multivariate, or vector-valued and

hence applies to American options on multiple assets,

• the strike price by K,

• the interest rate by r,

• the volatility by σ.

For simplicity, throughout this thesis, the interest and volatility are constant, how-

ever, they can be made stochastic without any difficulty.

Actually, the fair value of an option in the risk-neutral world is the present value

of the expected payoff at maturity under a risk-neutral probability measure.

Option Value = e−rT E[payoff(S)]

The option price actually is nothing but the expected discounted payoff.
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1.2 The Classical Black-Scholes Option Pricing

Model

Description of Asset price

Normally the price of assets is often modelled as a continuous-time stochastic

process. For practical use, we usually use a stochastic differential equation (SDE)

to describe this process. The general form is as follows:

dS = µ(S, t)dt + σ(S, t)dW (1.1)

where W is Brownian Motion, or Wiener process. E(dW ) = 0 and E(dW 2) = dt.

We can think of dW as a random variable, drawn from a normal distribution with

mean 0, and variance dt.

In Black-Scholes Option Pricing Model, µ(S, t) = µ and σ(S, t) = σ, (µ, σ in (1.1)

are constant). Black-Scholes Model is a continuous-time model for an asset price.

It’s the most widely used model for equites, indices, currencies and so on.

Black-Scholes Formulae

As we metioned, in Black-Scholes /Merton model [3], [13], the price of the un-

derlying asset, St is assumed to follow the Geometric Brownian Motion (GBM)

process

dSt = rStdt + σStdWt (1.2)

where r is interest rate, and σ is volatility. Both of them are assumed to be

constant. Wt is a standard Brownian Motion.

The SDE (1.2) has the closed form solution:

St = S0exp{(r − σ2

2
)t + σWt} (1.3)
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After building a risk free portfolio and applying no-arbitrage conditions, we can

derive the following PDE for call option price c(t, S), at time t, with initial stock

price S:
∂c

∂t
+ rS

∂c

∂S
+

1

2
σ2S2 ∂2c

∂S2
= rc. (1.4)

This is the Black-Scholes-Merton PDE. The terminal boundary condition, for Eu-

ropean call, is

c(T, ST ) = max{ST −K, 0} (1.5)

There is a closed form solution to the PDE (1.4) with the initial boundary con-

dition, (1.5): the European option price at time t, with initial dividend-free stock

price S, can be expressed as :

c(t, S) = SN(d1)−Ke−r(T−t)N(d2)

where N(·) is the standard cumulative normal distribution function:

N(x) =
1√
2π

∫ x

−∞
e

u2

2 du

d1 =
ln( S

K
) + (r + 1

2
σ2)(T − t)

σ
√

T − t

d2 = d1 − σ
√

(T − t)

This is the famous Black-Scholes Formulae for European option, which gives the

analytical solution to the single asset European option price.

1.3 American Option: Problem Formulation

American options are contracts that may be exercised early, prior to maturity.

The right to exercise at any time is clearly valuable. The price, or the value of an
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American option can’t be less than an equivalent European option. Although, the

American options give the option holder more rights, they also give the holder more

problems: when to exercise ? One central problem in pricing American options is

to decide when is the best time to exercise, which makes American options much

more fascinating than European cousins. The American option value is maximized

by an optimal exercise strategy.

A general class of American option pricing problem can be formulated through

an Rd-valued Markov process {St, 0 ≤ t ≤ T}, (with S0 fixed), that records

all relevant financial information, including the prices of underlying assets. We

restrict our attention to options admitting a finite set of exercise opportunities

t0 = 0, t1, ..., tN = T . Usually, such restriction ia part of the option contract, and

such option actually are called “Bermudan”. When N increases to infinity, we may

view the finite exercise date as an approximation to the continuous exercise date.

If exercised at time ti, i = 0, 1, 2, .., N , the option pays h(Sti) for some known

functions h(·) mapping Rd into [0, +∞). Let Γi denote the set of stopping times

(with respect to the history of S ) taking values in {ti, ti+1, ...tN} and define:

V ∗
i (x) = sup

τ∈Γi

EQ[e−rτh(Sτ )|Sti = x], x ∈ Rd (1.6)

for i = 0, 1, 2, .., N , where Q is an appropriate risk-neutral measure, (see Duffie [10]

for details on Q). h(·) is the payoff function, and sup is achieved by all stopping

times τ ≤ T . Then V ∗
i (x) is the value of the option at ti in the state x, given the

option was not exercised prior to ti.

The option values satisfy the dynamic programming equations:

V ∗
N(x) = hN(x) (1.7)

V ∗
i (x) = max{hi(x), EQ[e−r(ti+1−ti)V ∗

i+1(h(Sti+1
))|Sti = x]} (1.8)
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for i = 0, 1, 2, .., N . These can be rewritten in terms of continuation values.

C∗
i (x) = EQ[e−r(ti+1−ti)V ∗

i+1(h(Sti+1
))|Sti = x]

as

C∗
N(x) = 0 (1.9)

C∗
i (x) = max{h(x), EQ[e−r(ti+1−ti)V ∗

i+1(h(Si+1))|Sti = x]} (1.10)

for i = 0, 1, 2, .., N . The option values satisfy

V ∗
i (x) = max{h(x), C∗

i (x)}.

All these can be calculated from the continuation values.

In this thesis, we only consider the case, where only a finite number of discrete

exercise date t0 = 0, t1, ..., tN = T exist. In such case, the sup in (1.6) becomes

max:

V ∗
i (x) = max

τ∈Γi

EQ[e−rτh(Sτ )|Sti = x], x ∈ Rd (1.11)

where max is taken over all stopping times τ in the set Γi, i = 0, 1, 2, .., N .

The formulation (1.6) is general enough to include quite a wide range of American

style option products, such as the classical American put, two-asset minimum put,

five-asset minimum put as special cases. For example, in classical American put:

h(St) = (K − St)
+, the option value(1.6) becomes:

max
τ∈Γi

EQ[e−rτ (K − Sτ )
+|Sti = x] (1.12)
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1.4 Monte Carlo Simulation for Option Pricing

Monte Carlo Simulation Framework

Write

Option Value = e−rT E[payoff(S)]

where the expectation is with respect to the risk-neutral probability.

Monte Carlo simulation for valuing the price of the option can be implemented as

follows:

1. Simulate the risk-neutral random walk, starting at today’s value of the asset S0,

over the required time horizon. This time period starts today and continues

until the maturity of the option. This gives one sample path of the underlying

asset price path.

2. For this sample path, compute the option payoff.

3. Simulate many more such sample paths over the time horizon.

4. Compute the average payoff over all sample paths.

5. Take the present value of the average, to get the approximate option price.

In the first step of this algorithm, we need to generate sample paths of underlying

stock. A simple way to approximate (1.1) is the Euler Method :

∆S = µ(S, t)∆t + σ(S, t)
√

∆tZ(0, 1)

where Z(0, 1) is drawn from a standard Normal distribution. This discretization

error is O(∆t).

Monte Carlo Method is more attractive than other methods for option pricing:
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• It’s easy to understand and simple to implement.

• Correlations can be easily modelled.

• To get better accuracy, just run more simulations.

• The models can be changed without much efforts.

• Path dependency can also be easily handled.

• The error convergence rate 1/
√

n is independent of the dimension of the

problem.

The error of the Monte Carlo method goes 1/
√

n as a consequence of the central

limit theorem. While this error may not look very impressive, it is often the best

that can be managed for S which has a high dimension. For the high-dimension

American Option pricing problem, the Monte-Carlo method is the most method.

Monte Carlo Method is very powerful and general. This technique carries over to

exotic and path-dependent contracts. Just simply simulate paths, and correspond-

ing cash flows, estimate the average payoff and take the present value. That’s all!

Pricing American Options by Simulations

Applying Monte Carlo simulation to American option is very hard, and was con-

sidered impossible. The cash flow of American options not only depend on the

price path of the underlying assets, but also depend on the decisions of the option

holder. The problem lies in the time direction in which we are solving. In The

formulation (1.6):

sup
τ∈Γi

EQ[e−rτh(Sτ )]

We need to estimate the optimal stopping time τ , which lies in the heart of the

American option pricing problem. We can use simulation to estimate the expecta-

tion in (1.6) via a recursive algorithm.
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For pricing high dimension American options, simulation method is a major tool

we can turn to. Baraquad and Martineau [2] are perhaps the first to consider

pricing high-dimension American options. Recently, appeared many new Monte

Carlo methods for American option, such as Longstaff and Schwartz’s [1] Least

Square Monte Carlo, Broadie and Glasserman’s[7] Stochastic Mesh, and Tilley’s

[18] State-Space partition and so on. All these methods are constructed within the

backward dynamic programming framework to handle the early exercise charac-

teristic.



Chapter 2
A Review of American Option Pricing

Model

For American options a solution of the Black Scholes equation in general cannot

be found analytically. The reason is that the point at which early exercise of the

option at any instant of time is optimal is a priori unknown. In the framework

of the PDE it can be treated as a free boundary problem. Let p be the standard

American put option value. We have the Black-Scholes-Merton PDE for p :

∂p

∂t
+ rS

∂p

∂S
+

1

2
σ2S2 ∂2p

∂S2
= rp

.

However, since we don’t know when the option holder will exercise the option. The

boundary condition becomes a “ free boundary ” :

p(t, S) ≥ max{E − S, 0}

for all 0 < t ≤ T . It is a free-boundary problem. Unfortunately, unlike the

European option case, we don’t have the beautiful closed form solution for p.

12



2.1 Tree/Lattice Method 13

We now turn to numerical method for pricing American option. The popular

numerical methods for pricing American options are as follows:

• Tree/Lattice Method

• Finite Difference Method

• Least Square Monte Carlo Method

• Stochastic Mesh Method

• State-Space Partition Method

All these methods have their advantages and disadvantages.

2.1 Tree/Lattice Method

Tree or Lattice method is one of the simplest and classical methods for option

pricing. The classical binomial tree methods was proposed by Cox, Ross and

Rubinstein, [9]. This method is based on the random walk approximation to the

Brownian motion.

We consider the partition of the time horizon [0, T ]: t0 = 0, t1, t2, ..., tN = T . At

each time step, it is assumed that the underlying asset follows a binomial process,

that is,it either jumps up by a proportion u with probability p or goes down by a

proportion d with probability 1− p.

Like Black-Scholes model, we can build a risk free portfolio. We refer to the jth

node at time ith time step as (i, j). The stock price at (i, j) is S0u
idi−j. The

European call option price is

V0 = e−r∆T EQ[h(ST )]
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where h(S) is the European call payoff function: h(S) = (S −K)+.

The value of the European call option price at expiration date T is(ST −K)+. We

get

VN,j = (S0u
jdN−j −K)+, j = 0, 1, 2....N

The probability of price going up in risk neutral is

p =
er∆t − d

u− d
, ∆t =

T

N
.

For European options,we assume no early exercise. The European call option price

at (i, j) node is give by

Vi,j = e−r∆t[pVi+1,j+1 + (1− p)Vi+1,j] (2.1)

For American option, we can exercise the option early. We need to compare the

exercise value and continuation value at every (i, j) node. The option price (2.1)

becomes for American Options :

Vi,j = max{e−r∆t[pVi+1,j+1 + (1− p)Vi+1,j], S0u
idi−j −K} (2.2)

The main advantage of tree methods is that it is easy to understand and simple

to implement. Also if we use large number of steps, we can get good precision.

However, tree methods can only handle low dimension pricing. The reason is that

the tree paths increase exponentially as dimension increases.

2.2 Finite Difference Method

The price of a financial derivative,like options, can often be formulated as the solu-

tion to a parabolic PDE, such as Black-Scholes-Merton PDE, subject to boundary

conditions specified by the payoff of the derivatives. The PDE can be solved nu-

merically by a suitable finite difference method.
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The first step is to introduce a grid of mesh points (ik, jh), i, j ∈ Z+ where h and

k are mesh parameters usually small. Next, approximate solutions of the PDE at

these points is obtained by solving a problem, where the partial derivatives are

replaced with finite differences.

When we choose different experssions which are centerd around time step i + 1, i,

or i+ 1
2
, we can get the explicit, implicit or Crank-Nicolson finite difference scheme.

These 3 scheme can be compared in terms of convergence, consistency, and stability,

as follows:

Scheme convergence consistency stability

Explicit O((∆x)2 + ∆t) only if ∆x >
√

2∆t only if ∆x >
√

2∆t

Implicit O((∆x)2 + ∆t) Unconditionally Unconditionally

Crank-Nicolson O((∆x)2 + (∆t
2

)2) Unconditionally Unconditionally

Table 2.1: Finite Difference Method

Just like lattice methods, finite difference methods can deal with European and

American derivatives with very good precision, if we use a fine partition of time

horizon and stock price range. But it’s very hard to extend them to path-dependent

derivatives. And also for high dimensions, the number of grid will also increase

exponentially with dimension. Monte Carlo simulation methods are then needed.

2.3 Least Square Monte Carlo Method

As we know, the main problem for pricing American options is that the options can

be exercised early. The option holder must decide, at each exercise date, whether

to exercise the option or to wait. This decision depends on the comparison of
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exercise value and continuation value. The exercise value is normally easy to de-

termine. The “simple yet powerful” Least Square Monte Carlo Method proposed

by Longstaff and Schwartz [1] attempts to approximate the price of American op-

tion using cross-sectional information from simulated paths. The optimal exercise

strategy is successively approximated backwards in time on the paths by compar-

ing the intrinsic values to the continuation values projected onto a number of basis

functions over the states. In this regression analysis, they use a set of basis func-

tions whose arguments are based on the underlying assets prices. The fitted value

of these regressions is taken as the expected continuation values. By comparing

these estimated continuation values with the immediate exercise values, the opti-

mal stopping rule will be found. Experimental success is reported for the Least

Square Monte Carlo method. However, in high dimension, the basis function must

be chosen carefully. Clément, Lamberton, Protter [11] provided proofs of the con-

vergence for the LSM. They show that the convergence is
√

n in the number of

paths used. The convergence behaviour in the number of basis function has not

been determined.

As before, we assume a finite number of exercise dates 0 < t1 < t2 < ... < tN = T

in the time horizon [0, T ]. We have a probability space,(Ω,F , P), and a risk-neutral

equivalent martingale measure (EMM) Q. Let C(ω, s; t, T ), ω ∈ Ω, s ∈ (t, T ] denote

the path of option cash-flows, condition on the option being exercised after t and

the option holder following the optimal stopping strategy at any time after t.

The continuation value is, then, under no-arbitrage conditions, the risk-neutral

expectation of the future discounted cash flows C((ω, s; ti, T ):

F (ω; ti) = EQ[
N∑

j=i+1

exp(−
∫ tj

ti

r(ω, s)ds)C(ω, tj; ti, T )|Fti ] (2.3)

where r(ω, s) is the risk-free interest rate and Fti is the information set at time ti.
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The idea underlying the Least Square Monte Carlo Methods (LSM) algorithm is

that this conditional expectation can be approximated by a least-square regression

for each exercise date. At time tN−1, it is assumed that F (ω, tN−1) can be expressed

as a linear combination of basis functions Lj(S) in L2 space.

F (ω; ti) =
+∞∑
j=0

ajLj(S), aj ∈ R

That is approximated by

FM(ω; ti) =
M∑

j=0

ajLj(S), aj ∈ R. (2.4)

This procedure is repeated backward in time until the first exercise date.

2.4 Stochastic Mesh Method

Broadie and Glasserman [6] use a stochastic tree algorithm to give both a low-

biased and high-biased estimator of the option price, both asymptotically unbi-

ased. Their method requires an exponentially increasing amount of work in the

number of exercise opportunities. In their subsequent paper [7], they present a re-

lated method based on a stochastic mesh which does not suffer from this problem.

However, this method has been found by a few authors to be slow and to have a

large finite-sample bias.

Like tree methods, the stochastic mesh methods approximate the American option

price by solving a randomly sampled dynamic programming (DP) problem. The

difference is that in valuing the option at a node at ith time step, the mesh use

values from all nodes at time step i + 1, not just those that are successors of the

current node. That’s why it is called mesh not tree. It keeps the number of nodes
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at each time step fixed, avoiding the exponential growth characteristic of a tree.

The main idea of Stochastic Mesh Method goes like this. In the mesh, we use

Sij to denote the jth node at ith time step, i = 1, ...,m and j = 1, ..., b. We use

Vi,j to denote the estimated value at this node. At the terminal nodes, we set

Vm,j = h(Xmj), we work backward by computing

Vi,j = max{h(Sij),
1

b

b∑
k=1

W i
jkVi+1,k} (2.5)

where h(·) is the payoff function, and W i
jk is some set of weight. At the root node,

we get the option value at time 0

V0 =
1

b

b∑
k=1

V1k.

Boyle [15] recently extended the stochastic mesh method of Broadie and Glasser-

man [7] with their low discrepancy mesh method. This involves generating a set of

low discrepancy interconnected paths and using a dynamic programming approach

to find prices on the mesh.

2.5 State-Space Partition Method

In [18], Tilley first proposed a ”bundling algorithm”. This is the first kind of ”State

space partition” method, to use simulation for American option pricing. Also an-

other ”state space partition” algorithm proposed by Barraquand and Martineau

in [2] is ”stratified state aggregation (SSA)” algorithm.

We still use the settings, symbols S = (S(t1), S(t2), ..., S(tN)) , S may be multi-

dimensional Markov process. There are 0 = t0 < t1 < t2 < ... < tN = T , N

exercise dates.
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For each exercise date, ti, i = 1, ..., N , let Ai1, ..., Aibi
be a partition of the state

space of S(ti) into bi subsets. We define the transition probabilities :

pi
jk = P{S(ti+1) ∈ Ai+1,k|S(ti) ∈ Aij} (2.6)

for all j = 1, ..., bi, k = 1, ..., bi+1, i = 0, ..., N . Take this to be 0, if P (S(ti) ∈

Aij) = 0. For t = 0, just let b0 = 1, A01 = S0. Then define:

hij = E[h(S(ti))|S(ti) ∈ Aij]

for i = 1, ..., N ,j = 1, ..., bi. Take this to be 0, if P (S(ti) ∈ Aij) = 0. We recursively

have

VNj = hNj (2.7)

Vij = max{hij,

bi+1∑
k=1

pi
jkVi+1,k} (2.8)

Here, the continuation value is computed as
∑bi+1

k=1 pi
jkVi+1,k.

We can use Monte Carlo simulation to compute the transition probabilities. First,

we denote N i
jk as the number of paths at time ti that move from Aij to Ai+1,k.

Then we can estimate the pi
jk by:

p̃i
jk =

N i
jk∑i

l=0 N i
jbl

By using p̃i
jk to approximate pi

jk in (2.7),and work backward, we can get an ap-

proximation of option price: V01.

Paul Glasserman pointed out “the main challenge in using any variant of this

approach (state space partition methods) lies in the selection of the state-space

partitions.” and “...the number of strata required to maintain the same resolution

along all dimensions grows exponentially with the number of dimensions.”
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2.6 Summary

A numerical valuation of an American option using the (1.6) involves a sup. For

finite exercise date, it becomes maximization over the set of all stopping times τ .

Since the set of possible candidates for this stopping time function τ is so huge,

direct maximization is almost impossible.

Therefore, we turn to Bellman’s principle of Dynamic Programming. We assume

the underlying asset to be Markov process : {St, 0 ≤ t ≤ T} and the optimal

stopping time τ only depends on the time and and current St. Most approaches

to pricing American options is based on this dynamic programming framework,

evaluating backward from maturity of the option to today.

Let h(·) be the payoff function. Vi(S) denotes the value of the option at time ti

given Sti = S, assuming the option has not been exercised early. What we want to

know ultimately, is V0(S0) at t = 0. At maturity time tN = T , we have the value

of VN :

VN(ST ) = h(ST ) (2.9)

The rest of Vi can be computed backward by dynamic programming recursively:

Vt−1(x) = max{h(x), E[e−r∆tVt(St)|St−1 = x]} (2.10)

Actually, the conditional expectation in (2.10) is the continuation value, or holding

value for the American options. Using (2.10), we will finally get the value V0(S0).
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2.6.1 General Algorithm for Pricing American Option by

DP

We assume that the underlying asset S are Markov process S = {S(t1), S(t2), ..., S(tN)}.

S can be multivariate. For example, S can be 2 dimensions S = (S1, S2) =

{(S1(t1), S
2(t1)), ..., (S

1(tN), S2(tN))}. There are 0 = t0 < t1 < t2 < ... < tN = T ,

N exercise dates.

General Algorithm

A general algorithm for pricing American option by Monte Carlo simulation and

dynamic programming is composed of the following steps:

Step 1. Simulate n independent replications (paths) of the Markov chain {Sj(t1), Sj(t2),

..., Sj(tN)}, j = 1, 2, ...n for every underlying asset S.

Step 2. At time T , compute discounted exercise value: e−r∆th(S(tN)) of every

simulated path. In standard American put option case, h(S) = max{K −

S, 0}, where K is the strike price. Let YT be a n× 1 vector:

YT = (e−r∆th(S(tN)))n×1 and VT = YT .

Step 3. For t = tN−1, tN−2..., t1, recursively, compute the continuation value

Ct(x) = E[e−r∆tVt+1(S(t + 1))|S(t) = x] (2.11)

Let Ht be a n× 1 vector: (Ct(x))n×1 and update Vt = max{Yt, Ht} for every

timestep t.

Step 4. Finally, the optimal value , V ∗
0 can be approximated as

V0 =
1

n
IV1 (2.12)
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where I = [1, 1, ..., 1]1×n row vector.

We have got an approximation of American option: V0.

2.6.2 Stopping Rules

Now we define a n×N matrix of continuation values H = [H1, H2, ...HN ] = {Hij}

and a n×N matrix of exercise values Y = [Y1, Y2, ..., YN ] = {Yij}. For each path,

i = 1, ..., n the stopping time τi can be calculated as follows:

Step 1. Set τi = 1 if Yi1 ≥ Hi1,

Step 2. For k = 2, ..., N − 1, set τi = k, if Yi1 < Hi1, ..., Yi,k−1 < Hi,k−1 and

Yik ≥ H,

Step 3. Finally, τi = N , if Yit < Hit for all t = 1, ...,m− 1

Now we have an approximation of optimal stopping time τ ∗. Meanwhile, we get

another approximation for the optimal value, denoted as Ṽ0:

Ṽ0 =
1

n

n∑
i=1

Yi,τi
=

1

n

n∑
i=1

N∑
j=1

Yij1(τi = j). (2.13)

In most cases, Ṽ0 is at least as good as V0. For small number of sample paths, it’s

better than V0.

2.6.3 Continuation Value

Continuation value (2.11) is expressed as a conditional expectation. Estimation of

this conditional expectation is one of the most important problems in American

option pricing.
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In the dynamic programming framework, different approximations to the continu-

ation value (2.11) will lead to the different pricing methods for American option,

as introduced in the pervious chapter.

This is true for binomial tree method, in which the continuation value (2.11) be-

comes the average of the 2 children nodes in (2.2):

e−r∆t[pVi+1,j+1 + (1− p)Vi+1,j]

And if the continuation value (2.11) is approximated by kind of regression equation,

like (2.4),

FM(ω; ti) =
M∑

j=0

ajLj(S), aj ∈ R

then it is the Least-Square Monte Carlo Method. In Stochastic Mesh method,

(2.11) is estimated by (2.5)

1

b

b∑
k=1

W i
jkVi+1,k.

For State-space partition method, we use the following estimation

bi+1∑
k=1

pi
jkVi+1,k

to approximate (2.11).



Chapter 3
Low-discrepancy sequence based

State-Space Partition Algorithm

3.1 Challenges

In [18], Tilley proposed “bundling algorithm” for one dimension. Tilley didn’t ex-

tend his approach to the high dimension case. This is the corresponding algorithm

DP1, in Fu [12]. Fu [12] also pointed out that in extending this ”bundling algo-

rithm” to high dimension case, there are two problem that need to be considered:

the bundling procedure and sorting procedure. See Broadie and Glasserman [6],

Clewlow and Strickland [8] for more discussion on this.

We try to solve this exension by applying Yakowitz’s “Representative State ” idea

to Tilley ’s “bundling algorithm”. We use low-discrepancy sequence as “Represen-

tative State ”. The low-discrepancy sequences, such as the Sobol sequence, can fill

in the space quickly in an efficient way, even in high dimension case.

24
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Our Algorithm’s main idea comes from Yakowitz’s “Representative State ”. Yakowitz,

in [20] and its counterpart theoretical work [19], gave the basic algorithm to use

“Representative State ” approach to approximate the transition probabilities, a

similar kind of conditional expectation like our continuation value (2.11). In [20],

Yakowitz proposed a idea of the state partition and give a form like (2.6) in one

dimension case. However, we noticed that the choice of “Representative State” is

a problem for applying this idea to high dimension case:

In Yakowitz’s method, the representative states{cj} should be “ found” by solving

the following problem:

Choose N-tuples{cv}m
v=1 so that the value of

J(c1, c2, ..., cm) =
n∑

j=N

[min ‖xj − cv‖2]

is “not great”. xj is the sample point in the Monte Carlo simulation.

It is time-consuming to find all the representative states, especially in high di-

mension case. Our algorithm won’t find such representative state. Instead, we

predetermine them using low discrepancy sequence.

3.2 Assumptions and Settings

We will simulate n underlying asset price paths. We consider a complete and

arbitrage free market. The assets prices all follow GBM:

dSt = rStdt + σStdWt.

We assume:

• There are t = 1, 2, ..., N , N exercise dates.
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• Let CQ = {ct,1, ..., ct,m} be a low-discrepancy, or quasi-Monte Carlo sequence

to be used as representative points in t-th period, t = 1, ..., N, where m =
√

n,

n is the number of paths and N is the number of periods.

• Let St,i denote the stock price on i-th path and t-th period, i = 1, ..., n,

t = 1, ..., N .

• Let {Ct,j} be the set of nearest points of {St,i}.

• Let h(t, s) be the payoff from exercise at time t in state s.

• Let q(t, s) be the option value at (time, state) pair (t, s).

Here are the assumption for our algorithm :

Assumption 1: The underlying assets price St are all Markov processes.

Assumption 2: St and q(t, St) are all bounded for t = 1, ..., N.

This assumption can be easily relaxed.

3.3 Pricing Algorithm

We present our algorithm within the dynamic programming framework in Chapter

2. The option value at (time, state) pair (t, s) is obtained by backward dynamic

programming:

q(N, s) = h(N, s),

for all s and for t = N − 1, ..., 1,

q(t, s) = max{h(t, s), E[q(t + 1, St+1)|St = s]}.

Algorithm: Our algorithm proceeds as follows:
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STEP 1. (Path Generation) We simulate n independent replications (paths)

of the underlying asset {St,i}, i = 1, ..., n, t = 1, ..., N , that follow GBM:

∆St,i = µ∆t + σ
√

∆tZ(0, 1)

where Z(0, 1) is drawn from a standard normal distribution.

At the same time, we use low-discrepancy sobol sequence CQ = {ct,1, ..., ct,m}

and Normal inverse function N−1(x) to generate our representative stock

price {Ct,j}:

∆Ct,j = µ∆t + σ
√

∆tN−1(ct,j)

Ct,j = Ct−1,j + ∆Ct,j

where at t = 0, C0,j = S0.

STEP 2. At maturity T, we first compute

qn(N, s) = h(N, s),

for all s.

STEP 3.(Continuation Value) Then, recursively, for for t = N − 1, ..., 1, and

every path n

qn(t, s) = max{h(t, s), cn(t, s)}, (3.1)

where cn(t, s) is called the continuation value, which, by our algorithm, is

calculated by
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cn(t, s) =
1

|Cn(s)|
∑

y∈Cn(s)

qn(t + 1, St+1(y)). (3.2)

Here Cn(s) is the nearest points set containing s to be constructed below and

St+1(y) is the stock price at period t+1 following y. |Cn(s)| is the cardinality

of cn(t, s).

STEP 4. Finally, the American option price at t = 0 can be approximated as

V0 =
1

n

n∑
i=1

qi(0, S0) (3.3)

Cn(s) is constructed as follows: Define:

For every ct,j,

Aj,n = {St,i : 1 ≤ i ≤ n and ||St,i − ct,j|| ≤ ||St,i − ct,k||, 1 ≤ k ≤ n1/2};

Cn is a set of ct,j:

Cn = {ct,j : 1 ≤ j ≤ n1/2 such that Aj,n has ≥ [n1/3] elements};

cn(x) = ct,v where ct,v is element of least index in Cn such that

||x− ct,v|| ≤ ||x− ct,k||, all ct,k ∈ Cn,

and Cn(s) is the nearest points set containing s:

Cn(s) = {St,i ∈ Av,n : cn(s) = ct,v}

For stopping rules, we have already detailed at the end of Chapter 2. We continue

to use (2.13):

Ṽ0 =
1

n

n∑
i=1

Yi,τi
=

1

n

n∑
i=1

N∑
j=1

Yij1(τi = j).
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And at last we our approximation to the American option price Ṽ0.

This is our algorithm for pricing American options, low-discrepancy sequence based

state-space partition algorithm.



Chapter 4
Numerical Results

In this section, we present computational results from our algorithm and compare

them with results of other authors. We choose 3 examples from other authors’

papers:

1. Rogers[17] standard American put.

2. Rogers[17] 2-dim min-American put.

3. Fu [12] 5-dim min-American put.

In the following, we will consider pricing options for which the underlying state

variable are log-normally distributed stock prices. The simulated paths were gen-

erated using closed form solution to the SDE:

dSt = rStdt + σStdWt

i.e.

St = St−1exp{(r − σ2

2
)∆t + σ

√
∆tZ(0, 1)}

where time step ∆t is the time step used in approximation, ∆t = ti− ti−1, r is the

interest rate, σ is the volatility. Both are assumed to be constant.

30
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4.1 Classical Standard American Put Option

Consider the standard Black-Scholes model, in which the price of the underlying

asset follows a log-normal distribution. A put option has payoff funtion

h(St, t) = max{St −K, 0}

with a finite set of N exercise opportunities. Put options on single underlying asset.

Parameter settings

K=100; r=0.06; T=0.5; σ=0.4

Number of simulation paths= 10000;

Time Step: N=50;

Simulation prices of standard American put options on single underlying asset.

S0 European (Black-Scholes) American( True ) Our Results Standard Error

80 20.6893 21.6059 21.5012 0.21

85 17.3530 18.0374 17.9921 0.19

90 14.4085 14.9187 14.8655 0.22

95 11.8516 12.2314 12.2012 0.23

100 9.6642 9.9458 9.8532 0.33

105 7.8183 8.0281 8.0009 0.15

110 6.2797 6.4352 6.3013 0.11

115 5.0113 5.1265 5.0619 0.12

120 3.9759 4.0611 4.0019 0.10

Table 4.1: Classical standard American put option
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4.2 Minimum American Put on Two Assets

We consider options on n log-normal assets, given by:

Si(t) = Si(0)exp{σiWi(t) + (r − σ2
i /2)t}

for i = 1, ....n

The assets are assumed to be independent. The payoff function is:

max
i=1,...,n

{K − Si(t), 0}

Parameter settings

K=100; r=0.06; T=0.5; σ1 = σ2 = 0.6

Number of simulation paths= 10000;

Time Step: N=50;

Minimum American put on two assets: (σ1 = σ2 = 0.6)

S01 S02 European (Black-Scholes) FD Price Our Results Std Error

80 80 36.859 37.30 37.1648 0.31

80 100 31.639 32.08 31.9598 0.26

80 120 28.652 29.14 29.0720 0.27

100 100 24.728 25.06 24.8799 0.25

100 120 20.610 20.91 20.7756 0.22

120 120 15.704 15.92 15.8526 0.20

Table 4.2: Minimum American put on two sssets -1

FD price is finite difference methods price.
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Parameter settings

K=100; r=0.06; T=0.5; σ1 = 0.4, σ2 = 0.8

Number of simulation paths= 10000;

Time Step: N=50;

Minimum American put on two assets: (σ1 = 0.4,σ2 = 0.8)

S01 S02 European (Black-Scholes) FD price Our Results std Error

80 80 37.5540 38.01 38.00 0.22

80 100 31.8075 32.23 32.10 0.21

80 120 28.0900 28.54 28.44 0.19

100 80 32.8564 33.34 33.23 0.16

100 100 25.4666 25.81 25.74 0.18

100 120 20.4767 20.75 20.66 0.14

120 80 30.6872 31.21 31.11 0.13

120 100 22.4413 22.77 22.60 0.12

120 120 16.7641 16.98 16.86 0.14

Table 4.3: Minimum American put on two assets -2
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4.3 Minimum American Put on Five Assets

We consider options on n log-normal assets, given by:

Si(t) = Si(0)exp{σiWi(t) + (r − δ − σ2
i /2)t}

for i = 1, ....5

The assets are assumed to be independent. The payoff function is:

max
i=1,...,5

{K − Si(t), 0}

Parameter settings

K=100; r=0.05; T=1.0; σ = 0.20, δ = 0.10

Number of simulation paths= 10000;

Time Step: N=3;

S0 American( True ) Our Results std error

70 0.55 0.46 0.01

80 2.7 2.59 0.01

90 7.8 7.23 0.02

100 15.9 15.52 0.15

110 25.8 25.50 0.19

120 36.5 36.11 0.21

130 47.4 47.10 0.33

Table 4.4: Minimum American put on five assets

5-dim min-American put, BG prices in Michael C. Fu [12], Table 21 are reported

as our ”true value”. Compared with earlier work’s results, the accuracy of our

method is not bad. Also in our experiment, we found with the increase of number

of path, the option price converges.
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4.4 Conclusions

The use of Monte Carlo methods for pricing derivatives is crucial not only for

high-dimensional options. Pricing other exotic options such as barrier, knockout

options,and path dependent options also need Monte Carlo methods.

In addition, simulation methods lend themselves to the use parallel computing.

There are obvious approaches in which the algorithm can be partitioned so that

computations could be carried out in parallel.

In this thesis, we have present a new method for pricing multi-dimensional Amer-

ican options. Our algorithm is Low-discrepancy sequence based state-space par-

tition algorithm. Our main idea lies in using low discrepancy sequence as repre-

sentative state, so that we can price high dimension American options. Numerical

results show that the algorithm can be applied successfully.



Appendix A
Low Discrepancy Sequence

Low discrepancy sequence is a sequence of N distributed vectors X1, X2, X3, ... in

the m-dimensional hypercube Im = [0, 1]m ⊂ Rm. It’s also called Quasi Monte

Carlo sequence, or Quasi random sequence.

Now given a sequence of such vectors, if they are well distributed, the number of

points included in any subset G of Im should be roughly proportional to its volume

vol(G). Given a vector X = x1, x2, x3, ..., xm consider the rectangular subset GX

as defined as

Gx = [0, x1)× [0, xm)× · · · × [0, xm)

which has a volume x1x2 · · · xN . If we denote by SN(G) the function counting

the number of points in the sequence, which are contained in a subset G ⊂ Im, a

possible definition of discrepancy is

D(X1, X2, X3, ...XN) = sup
X∈Im

|SN(GX)−Nx1x2 · · · xm|

Actually, the Quasi random sequence term is a bit misleading, as there is no ran-

domness at all. Some theoretical results show that low discrepancy sequences may

perform better than random Monte carlo sequence obtained through a LCG. The

estimation error with Monte Carlo simulation is something like O(1/
√

N), where

36
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N is the number of samples. With certain low discrepancy sequences, it can be

show that the error is something like O((lnN)m/N), where m is the dimension of

the low discrepancy sequences.

There are 4 popular kind of low discrepancy sequences:Halton sequence, Faure

sequence, Sobol sequence, and Niederreiter. sequence. Here we introduce the basic

idea of Halton and Sobol sequence. Niederreiter’s [14] is a comprehensive book on

low discrepancy sequences.

A.1 Halton Sequence

Halton low discrepancy sequences can be generated as follows:

Step 1 Representing an integer number n in a base b, where b is a primer number:

n = (· · ·d4d3d2d1d0)b

Step 2 Reflecting the digits and adding a radix point to obtain a number within

the unit interval:

h = (0.d0d1d2d3d4d5 · ··)b

More formally, if we represent an integer number n as

n =
m∑

k=0

dkb
k

the nth number in the Halton’s sequence with base b is

h(n, b) =
m∑

k=0

dkb
−(k+1)

Halton sequence is the simplest to generate. However, it’s not the best. For

Halton sequence, the points in successive dimensions are highly correlated and in

high dimensions, the initial points in the Halton sequence are clustered near zero.
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The same problem arises in Faure sequence. The Faure sequence is also a general

s-dimensional sequence. The first dimension of the Faure sequence is in the base

p. Higher dimension are permutation of the sequence of the first dimension.

Therefore, Sobol sequence is our best choice in practice.

A.2 Sobol Sequence

In the general s-dimensional Sobol sequence, all dimensions use the primer number

2 as the base. The higher dimensions are permutation of the sequence in the first

dimension. The permutation depends on a set of direction numbers and the Sobol

Sequence is not uniquely defined until all these direction numbers are determined.

Consider the generation of an one-dimensional sequence xn in the [0, 1] interval.

To get the nth number in the sequence, consider the binary representation of the

integer n:

n = (· · ·d4d3d2d1)2

The result is obtained by computing the bitwise exclusive or of the direction num-

bers vi for which bi 6= 0:

xn = b1v1 ⊕ b2v2 ⊕ · · · (A.1)

If the direction numbers are chosen properly, a low-discrepancy sequence will be

generated. A direction number maybe though as a binary fraction:

vi = (0.vi1vi2vi3 · ··)2

or as

vi =
mi

2i

where mi < 2i is an odd integer.
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To get direction numbers, we need to consider the primitive polynomials over the

field Z2, i.e. polynomials with binary coefficients:

P = xd + a1x
d−1 + · · ·+ ad−1x + 1, ak ∈ {0, 1}

Some primitive polynomials over the field Z2 are listed in [16]. Now, given the

primitive polynomial of degree d, the direction numbers can be generated as :

vi = a1vi−1 ⊕ a2vi−2 ⊕ · · · ⊕ ad−1vi−d+1 ⊕ vi−d ⊕ [vi−d/2
d].

This is better expressed in integer arithmetics:

mi = 2a1mi−1 ⊕ 22a2mi−2 ⊕ · · · ⊕ 2d−1ad−1mi−d+1 ⊕ 2dmi−d ⊕mi−d.

After computing the direction numbers, we could generate a Sobol sequence ac-

cording to (A.1). But, an improved method was proposed in ([5]). It has been

proved that the discrepancy is not changed by using the Gray code representation

of n. Gray code are :

1. A Gray code is a function mapping an integer i to a corresponding binary

representation G(i); the function, for a given N , is one to one for 0 ≤ i ≤

2N − 1.

2. A Gray code representation for a integer n is obtained from its binary repre-

sentation by computing

...g3g2g1 = (...b3b2b1)2 ⊕ (...b4b3b2)2

3. The main feature of such code is that the code for consecutive numbers n

and n+1 diff only in one position.

Using the Gray code, we may streamline generation of a Sobol sequence. Given

xn, we have

xn+1 = xn ⊕ vc
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where c is the index of the rightmost zero bit bc in the binary representation of n.

Now we put it all together. First, we generate the direct in numbers. Secondly,

we initialize the sequence in some way, and apply Gray code to generate the Sobol

sequence. Note the longer the sequences, the more generating numbers are needed.



Appendix B
Miscellaneous Notes

B.1 Brownian Motion

If the value of a variable changes over time in an uncertain way it is said to follow

a stochastic process. This process can be discrete or continuous in time (discrete

time or continuous time process) and in “space” (discrete or continuous variable).

Although trading in financial markets is not continuous in time (there is no trading

outside business hours at exchanges) and asset price (e.g. stock prices are quoted

in fixed ticks), the continuous-time, continuous-variable process is a useful model

of financial asset prices for many purposes.

A Markov process is a stochastic process where only the present value of a stochastic

variable is relevant for the next value. The next value is independent of the path

the present value is obtained. A Brownian Motion is a particular Markov process

with a mean change of 0 and variance 1. It is also called Wiener process. If a

random variable X follows a Wiener process,its changes ∆X in discrete time steps

∆t can be written as

41
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∆X = ε
√

∆t

where ε is a standard Normal random variable. If ∆t → 0, it can be rewritten as

dX = ε
√

dt.

If the development of a stochastic variable S with time t can be described as a

generalized Wiener process, its differential equation can be written as:

dS = µdt + σdW

where the parameters µ and σ are constant. µ describes the drift of the process,

and σ is a measure of its variation. The differential dX is a random variable drawn

from a normal distribution with mean 0 and variance dt (i.e. a Wiener process ).

The values of dX for different times are independent.

The prices of financial assets are usually assumed to follow more general processes

where the parameters can depend on S and t.

dS = µ(S, t)dt + σ(S, t)dW

These processes are called Itô processes.

B.2 Cumulative Normal Distribution

N(x) is the cumulative normal distribution:

N(x) =
1√
2π

∫ x

−∞
e

u2

2 du

One numerical approximation of N(x) is :
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N(x) = 1−N ′(x)
5∑

i=1

aik
i, if, x ≥ 0

N(x) = 1−N(−x), if, x ≤ 0

where

N ′(x) =
1√
2π

e
x2

2

and

k =
1

1 + γx

γ = 0.2316419

a1 = 0.319381530

a2 = −0.356563782

a3 = 1.781477937

a4 = −1.821255978

a5 = 1.330274429



Appendix C
Source of Program

%------------------------------------------------------------

%------------------------------------------------------------

clear

t11=cputime;

S01=80;

S02=80;

mu=0.06;

sigma=0.6;

T=0.5;

N=25;

n=5000;

r=0.06;

X=100;

m=floor(n^(1/2));

dt = T/N;

discount = exp(-r*dt);
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%-------Generating Path -------------------------------------

%---S1-----------

load sob101;

Sobolsq=sob101(1:m,1:2*N);

nudt = (mu-0.5*sigma^2)*dt;

sidt = sigma*sqrt(dt);

RandMat = Sobolsq(:,1:2:2*N-1);

Increments = [nudt + sidt*norminv(RandMat)];

LogPaths = cumsum([log(S01)*ones(m,1) , Increments] , 2);

C1 = exp(LogPaths);

Increments = [nudt + sidt*randn(n,N)];

LogPaths = cumsum([log(S01)*ones(n,1) , Increments] , 2);

SPaths1 = exp(LogPaths);

%--------------------------------------------------------------

%----S2-------------

RandMat = Sobolsq(:,2:2:2*N);

Increments = [nudt + sidt*norminv(RandMat)];

LogPaths = cumsum([log(S02)*ones(m,1) , Increments] , 2);

C2 = exp(LogPaths);

Increments = [nudt + sidt*randn(n,N)];
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LogPaths = cumsum([log(S01)*ones(n,1) , Increments] , 2);

SPaths2 = exp(LogPaths);

%--------------------------------------------------------------------------

discountVet = exp(-r*dt*(1:n)’); % discount rates over different time intervals

SPaths1(:,1) = []; % get rid of starting prices

C1(:,1)=[];

SPaths2(:,1) = []; % get rid of starting prices

C2(:,1)=[];

%==========================================================================

ExerciseTime = N*ones(n,1); % first set exercise time at expiration for convenienc

NN=zeros(m,N-1);

NNCindex=zeros(m,N-1);

Vt=zeros(n,N);

Yt=zeros(n,N);

Ht=zeros(n,N);

Temp2=repmat(1:N,n,1);

Yt=exp(-Temp2*dt*r).*max(0, X - min(SPaths1,SPaths2));

%Yt(:,NSteps)=exp(-r*dt*NSteps).*max(0, X - SPaths(:,NSteps));

Vt(:,N)=exp(-r*dt*N).*max(0, X - min(SPaths1(:,N),SPaths2(:,N)));
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%-------------------------------------------------------------------------

for step = N-1:-1:1

NN=zeros(m,1);

NNCindex=zeros(m,1);

InMoney = find(SPaths1(:,step) >0);

XData1 = SPaths1(InMoney,step);

XData2 = SPaths2(InMoney,step);

LXData=length(XData1);

Q = Vt(:,step+1);

LXData=n;

%Q = Vt(InMoney,step+1);

Q = Vt(:,step+1);

%Q = Vt;

%----------------------------------------------------------

%-------Compute Continuation Value--------------------------

%----------------------------------------------------------

Qsum=zeros(m,1);

for i1=1:LXData

r1=(XData1(i1)-C1(:,step)).^2+(XData2(i1)-C2(:,step)).^2;
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[r1_min,position] = min(r1);

Cindex=position;

NNCindex(i1)=Cindex;

NN(Cindex)=NN(Cindex)+1;

end

for i1=1:LXData

Cindex1=NNCindex(i1);

Qsum(Cindex1)=Qsum(Cindex1)+Q(i1);

end

aa=zeros(LXData,1);

for i1=1:LXData

Cindex2=NNCindex(i1);

aa(i1)=Qsum(Cindex2)/(NN(Cindex2));

end

aa;

Ht(:,step)=aa;

Vt(:,step)=max(Yt(:,step),aa);

end % for
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%--------------------------------------------------------------------

%--Stopping Times-----------------------------

CashFlows = max(0, X - min(SPaths1(:,1),SPaths2(:,1)));

Stopping = zeros(n,1); %Stopping Rules

ExerciseTime = ones(n,1); % first set exercise time at time step 1 for convenience

for t = 1:N

if t~=N

temp1=find(Stopping==0);

Exercise = find(Yt(temp1,t) > Ht(temp1,t));

k = temp1(Exercise);

CashFlows(k) = Yt(k,t);

ExerciseTime(k) = t;

Stopping(k)=1;

else

Exercise = find(Yt(temp1,t) >= Ht(temp1,t));

k = temp1(Exercise);

CashFlows(k) = Yt(k,t);

ExerciseTime(k) = t;

Stopping(k)=1;

end %if

end %for

price = mean(CashFlows);

[price,cputime-t11]
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