
Founded 1905

Adaptive Neural Network Control of Discrete-time

Nonlinear Systems

JIN ZHANG

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor, Dr. Shuzhi

Sam Ge, for all the time and efforts he had spent on me. Without his expertise in

control engineering and patient edification, this thesis would not have been possible.

His guidance greatly helped and spurred me, not only in my research work but also

in many other aspects of my life. My thanks also go to my supervisor, Prof. Tong

Heng Lee, for his kind suggestions and help in my PhD study. Extra special thanks

go to the National University of Singapore, for allowing me to undertake the research

for this degree.

Secondly, I really appreciate the kind and tremendous help from my previous super-

visors, Prof. Xingren Wang, Prof. Shuling Dai and Prof. Qin Feng. When I was

in the advanced simulation technology laboratory, Beijing University of Aeronautics

and Astronautics, I learnt a lot from them.

I am also grateful to all other staff and students in the Control and Mechatronics

Laboratory, Department of Electrical and Computer Engineering, National University

of Singapore, who have made my working time pleasant and enjoyable. Especially, I

would like to thank Mr. Guangyong Li, Dr. Jing Wang, Dr. Tao Zhang, Dr. Cong

Wang, Dr. Youjing Cui, Dr. Zhuping Wang, Dr. Fan Hong, Mr. Feng Guan, Mr.

Tok Meng Yong, Mr. Peng Xiao and Ms. Xin Liu for their kind help and instructive

comments during my research process. Thank the staff, Mr. Tang Kok Zuea and Mr.

Tan Chee Siong, who have made my working environment comfortable.

Finally, I really appreciate my parents, Mr. Sheng Zhang and Mrs. Qiufang Jiao,

who brought me to this world, and taught me to know this world when I was a little

child. I can feel their endless love no matter where I am and at anytime. To my

brothers, Mr. Yu Zhang and Mr. Heng Zhang, my sister-in-law, Yuan Lin and my

little nephew, Keming, I really enjoy the happy times being with them. At last, I

would like to thank my family again, without their love, the life is meaningless to me.

ii



Contents

Contents

Acknowledgements ii

Contents iii

Summary vii

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Adaptive Neural Network Control of Nonlinear Systems . . . . . . . . 2

1.1.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Adaptive NN Control of Continuous-time Systems . . . . . . . 7

1.1.3 Adaptive NN Control of Discrete-time Systems . . . . . . . . 9

1.2 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 16

iii



Contents

2 NN Control of Non-affine SISO Systems 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Projection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 RBF NN Control . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 MNN Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.1 RBF Control Simulation . . . . . . . . . . . . . . . . . . . . . 42

2.5.2 MNN Control Simulation . . . . . . . . . . . . . . . . . . . . . 43

2.6 Application to Practical CSTR Systems . . . . . . . . . . . . . . . . . 44

2.6.1 Non-affine CSTR System . . . . . . . . . . . . . . . . . . . . . 45

2.6.2 Affine CSTR System . . . . . . . . . . . . . . . . . . . . . . . 50

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 NN Control of MIMO Systems with Triangular Form Inputs 60

3.1 State Feedback Control . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.1 MIMO System Dynamics . . . . . . . . . . . . . . . . . . . . . 62

3.1.2 Causality Analysis and System Transformation . . . . . . . . 65

3.1.3 Controller Design and Stability Analysis . . . . . . . . . . . . 71

3.1.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2 Output Feedback Control . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2.1 MIMO System Dynamics . . . . . . . . . . . . . . . . . . . . . 92

iv



Contents

3.2.2 System Coordinate Transformation . . . . . . . . . . . . . . . 93

3.2.3 Controller Design and Stability Analysis . . . . . . . . . . . . 109

3.2.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4 NN Control of NARMAX MIMO Systems 127

4.1 Affine MIMO NARMAX Systems . . . . . . . . . . . . . . . . . . . . 127

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.1.2 System Dynamics and Stability Notions . . . . . . . . . . . . 128

4.1.3 Controller Design and Stability Analysis . . . . . . . . . . . . 132

4.1.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.2 Non-affine MIMO NARMAX Systems . . . . . . . . . . . . . . . . . . 140

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.2.2 MIMO System Dynamics . . . . . . . . . . . . . . . . . . . . . 140

4.2.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.2.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5 Conclusions and Further Research 158

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.2 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A BIBO Stability and PE Condition 162

A.1 BIBO Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

v



Contents

A.2 Persistent Exciting Condition . . . . . . . . . . . . . . . . . . . . . . 162

Bibliography 163

Author’s Publications 177

vi



Summary

Summary

In recent years, adaptive control for nonlinear systems has been studied by many re-

searchers. State/output feedback, feedback linearization techniques, neural network

(NN) control schemes and many other techniques have been studied. These elegant

methods have been applied to different kinds of complex continuous-time nonlin-

ear systems. However, for discrete-time nonlinear systems, especially for complex

discrete-time nonlinear systems, those available schemes normally cannot be directly

implemented. Therefore, effective control of complex discrete-time systems is a prob-

lem that needs to be further investigated.

The purpose of this thesis is to develop effective adaptive control schemes for complex

nonlinear discrete-time systems using neural networks. Not only single-input single-

output (SISO) discrete-time systems are studied in this thesis, but also multi-input

multi-output (MIMO) discrete-time systems are studied in this thesis. Furthermore,

besides affine discrete-time systems, for which feedback linearization technique can

be implemented, non-affine discrete-time systems are also investigated in this thesis.

In general, the effective control schemes proposed in continuous-time domain cannot

be directly implemented in discrete-time systems due to some technical difficulties,

such as the lack of applicability of Lyapunov techniques and loss of linear parameter-

izability during the linearization process, and discrete-time adaptive control design

is far more complex than continuous-time design, due primarily to the fact that

discrete-time Lyapunov differences are quadratic in the state first difference, while

for continuous-time systems the Lyapunov derivative is linear in the state deriva-

tive. In this thesis, effective adaptive neural network control schemes are developed

for five different kinds of discrete-time nonlinear systems. They are SISO NARMAX
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(Nonlinear Auto Regressive Moving Average with eXogenous inputs) systems, MIMO

discrete-time systems with triangular form input and unknown disturbances in state

space description, MIMO discrete-time systems with triangular form input and strict

feedback form subsystems in state space description, MIMO NARMAX affine sys-

tems and MIMO NARMAX non-affine systems, which cover a wide class of nonlinear

discrete-time systems. Noting the good approximation ability of neural networks, in

this thesis, by using neural networks as the emulators of the explicit/implicit desired

controls, stable adaptive controls are developed for those systems respectively. Sin-

gle layer neural networks, including radial basis function (RBF) neural networks and

high order neural networks (HONN), as well as multi-layer neural networks (MNN)

are used. Lyapunov technique is used as the tool in system stability analysis. Back-

stepping design, state feedback and output feedback control schemes are implemented.

Numerical simulations are also carried out to show the effectiveness of those proposed

control schemes.

By using neural networks as the emulators of the desired controls and using Lyapunov

method as the tool in system stability analysis, in this thesis, the five kinds of systems

studied are proved to be semi-globally uniformly ultimately bounded (SGUUB). All

the signals in the closed-loop systems are proved to be bounded. The discrete-time

projection algorithm, the high order weight tuning algorithm proposed and the use of

backstepping method in a nested manner are proved to be effective. Furthermore, the

proposed control method for SISO system is applied to two kinds of practical chemical

processes, continuous tank reactor systems (CSTR). The numerical simulation results

show the effectiveness of the method.

In general, in this thesis, adaptive NN control schemes for different kinds of non-

linear discrete-time systems are investigated. Backstepping design, state feedback,

output feedback control are investigated respectively. Neural networks are used to

approximate the explicit/implicit desired controls. By using Lyapunov technique, the

closed-loop systems are proved to be SGUUB. Numerical simulations are carried out

for fictitious systems as well as practical processes.
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Chapter 1

Introduction

In recent years, adaptive control of nonlinear systems has received much attention

and many significant advances have been made in this field. Due to the complexity

of nonlinear systems, research on adaptive nonlinear control is still focusing on de-

velopment of the fundamental methodologies. A great number of research articles,

books, reporting inventions, control applications within the fields of adaptive, neural

network control and fuzzy logic systems, have been published in various journals and

conferences. Making a complete description for all aspects of adaptive control tech-

niques is difficult due to the vast amount of literature. This thesis investigates adap-

tive control of nonlinear discrete-time systems using neural networks, effective neural

network control schemes, corresponding weights update laws and closed-loop systems

stability are investigated for several kinds of nonlinear SISO/MIMO, affine/non-affine

discrete-time systems.

This chapter is organized as follows. Firstly, considering that neural networks are

used as an effective tool in approximation based nonlinear control in this thesis, the

definitions as well as the properties of neural networks are briefly reviewed in Section

1.1.1. Then, a brief introduction on adaptive control of continuous-time and discrete-

time systems is given to provide an outline of the historical development and present

status in these areas in Sections 1.1.2 and 1.1.3. Finally, the objectives, contributions

and organization of this thesis are presented in Sections 1.2, 1.3 and 1.4 respectively.

1



1.1 Adaptive Neural Network Control of Nonlinear Systems

1.1 Adaptive Neural Network Control of Nonlinear Systems

1.1.1 Neural Networks

Artificial neural networks (ANNs) are inspired by biological neural networks, which

usually consist of a number of simple processing elements, call neurons, that are

interconnected to each other. In most cases, one or more layers of neurons are con-

nected to each other in a feedback or recurrent way. Since McCulloch and Pitts [1]

introduced the idea of studying the computational abilities of networks composed

of simple models of neurons in the 1940s, neural network techniques have under-

gone great development and have been successfully applied in many fields such as

learning, pattern recognition, signal processing, modelling and system control. The

approximation abilities of neural networks have been proven in many research works

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The major advantages of highly parallel structure,

learning ability, nonlinear function approximation, fault tolerance and efficient ana-

log VLSI implementation for real-time applications, greatly motivate the usage of

neural networks in nonlinear system control and identification.

The early works of neural network applications for controller design were reported

in [12, 13]. The popularization of backpropagation (BP) algorithm [14] in the late

1980s greatly boosted the development of neural control and many neural control ap-

proaches have been developed [15, 16, 17, 18, 19]. Most early works on neural control

described creative ideas and demonstrated neural controllers through simulation or by

particular experimental examples, but were short of analytical analysis on stability,

robustness and convergence of the closed-loop neural control systems. The theoretical

difficulty arose mainly from the nonlinearly parametrized networks used in the ap-

proximation. The analytical results obtained in [20, 21] showed that using multi-layer

neural networks as function approximators guaranteed the stability and convergence

results of the systems when the initial network weights chosen were sufficiently close

to the ideal weights. This implies that for achieving a stable neural control system

using the gradient learning algorithms such as BP, sufficient off-line training must be

performed before neural network controllers are put into the systems.

2



1.1 Adaptive Neural Network Control of Nonlinear Systems

Because their universal approximation abilities, parallel distributed processing abili-

ties, learning, adaptation abilities, natural fault tolerance and feasibility for hardware

implementation, neural networks are made one of the effective tools in approximation

based control problems. Recently neural networks have been made particularly at-

tractive and promising for applications to modelling and control of nonlinear systems.

For neural network controller design of general nonlinear systems, several researchers

have suggested to use neural networks as emulators of inverse systems. The main idea

is that for a system with finite relative degree, the mapping between system input

and system output is one-to-one, thus allowing the construction of a “left-inverse” of

the nonlinear system using NN. Using the implicit function theory, the NN control

methods proposed in [22, 21] have been used to emulate the “inverse controller” to

achieve the desired control objectives. Based on this idea, an adaptive controller has

been developed using high order neural networks with stable internal dynamics in [23]

and applied in [24]. As an alternative, neural networks have been used to approx-

imate the implicit desired feedback controller (IDFC) in [25]. A multi-layer neural

network control method for SISO non-affine systems without zero dynamics was also

proposed in that paper. In this thesis, we mainly investigate the implementation of

neural networks as function approximators for the desired feedback control, which

can realize exact tracking.

Except that neural networks can be used as function approximators to emulate the

“inverse” control in nonlinear system research, there are many other areas, in which

neural networks play an important role. For example, neural networks combined

backstepping design are reported in [26, 27, 28, 29, 30, 31, 32], using neural networks

to construct observers can be found in [33, 34], neural network control in robot ma-

nipulators are reported in [35, 36, 37, 38, 39, 40], neural identification of chemical

processes by using dynamics neural networks can be found in [41, 42, 43], neural con-

trol for distillation column are reported in [44, 45], etc. It should be noted, similar to

neural networks, fuzzy system is another kind of system, which has “intelligence” and

has attracted many research interests. It can also be used as function approximators.

Research works in fuzzy system can be found in [46, 47, 48].

In this thesis, HONN, RBF and MNN are used, which are three kinds of frequently

used neural networks in nonlinear system control and identification [35, 49, 36, 50, 51,

3



1.1 Adaptive Neural Network Control of Nonlinear Systems

52]. HONN and RBF networks can be considered as two-layer networks in which the

hidden layer performs a fixed nonlinear transformation with no adjustable parameters,

i.e., the input space is mapped on to a new space. The output layer then combines

the outputs in the latter space linearly. Therefore they belong to a class of linearly

parameterized networks. MNN, which are also called multi-layer perception in the

literature, is a static feedforward network that consists of a number of layers, and

each layer consists of a number of McCulloch-Pitts neurons [1]. Once the neurons

have been selected, only the adjustable weights have to be determined to specify the

networks completely. Since each node of any layer is connected to all the nodes of

the following layer, it follows that a change in a single parameter at any one layer

will generally affect all the outputs in the following layers. MNNs with one or more

hidden layers are capable of approximating any continuous nonlinear function, which

was obtained independently by [4, 2, 5]. This important character makes it one of

the most widely used neural networks in system modelling and control.

Specifically, in this thesis, the following approximation representations of HONN,

RBF and MNN are used:

High Order Neural Networks: Consider the following HONN [53]

φ(W, z) = W TS(z), W ∈ Rl×p and S(z) ∈ Rl,

S(z) = [s1(z), s2(z), ..., sl(z)]
T ,

si(z) =
∏

j∈Ii

[s(zj)]
dj(i), i = 1, 2, ..., l

where z = [z1, z2, · · · , zq]
T ∈ Ωz ⊂ Rq, positive integer l denotes the NN node number,

and p is the dimension of function vector, {I1, I2,...,Il} is a collection of l not-ordered

subsets of {1, 2, ..., q} and dj(i) are non-negative integers, W is an adjustable synaptic

weight matrix, s(zj) is chosen as hyperbolic tangent function

s(zj) =
ezj − e−zj

ezj + e−zj

For a desired function u∗(z), there exist ideal weights W ∗ such that the smooth

function u∗ can be approximated by an ideal NN on a compact set Ωz ⊂ Rq

u∗ = W ∗TS(z) + εz (1.1)

4



1.1 Adaptive Neural Network Control of Nonlinear Systems

where εz is the bounded NN approximation error satisfying |εz| ≤ ε0 on the compact

set, which can be reduced by increasing the number of the adjustable weights. The

ideal weight matrix W ∗ is an “artificial” quantity required for analytical purpose, and

is defined as that minimizes |εz| for all z ∈ Ωz ⊂ Rq in a compact region, i.e.,

W ∗ , arg min
W∈Rl×m

{

sup
z∈Ωz

|u∗ −W TS(z)|
}

, Ωz ⊂ Rq (1.2)

In general, the ideal NN weight matrix, W ∗, is unknown though constant, its estimate,

Ŵ , should be used for controller design which will be discussed later.

Radial Basis Function Neural Networks: Considering the following RBF [35, 54] NN

used to approximate a function h(z) : Rq → R,

hnn(z) = W TS(z) (1.3)

where the input vector z ∈ Ωz ⊂ Rq where q is the neural network input dimension.

Weight vector W = [w1, w2, · · · , wl]
T ∈ Rl, the NN node number l > 1, and S(z) =

[s1(z), · · · , sl(z)]
T , with si(z) being chosen as the commonly used Gaussian functions,

which is in the following form

si(z) = exp

[−(z − µi)
T (z − µi)

η2
i

]

, i = 1, 2, ..., l (1.4)

where µi = [µi1, µi2, · · · , µiq]
T is the center of the receptive field and ηi is the width

of the Gaussian function.

It has been proven that network (1.3) can approximate any continuous function over

a compact set Ωz ⊂ Rq to arbitrary accuracy as

h(z) = W ∗TS(z) + εz, ∀z ∈ Ωz (1.5)

where W ∗ is ideal constant weights, and εz is the approximation error.

The ideal weight vector W ∗ is an “artificial” quantity required for analytical purposes.

W ∗ is defined as the value of W that minimizes |εz| for all z ∈ Ωz in a compact region,

i.e.,

W ∗ , arg min
W∈Rl

{

sup|h(z) −W TS(z)|
}

, z ∈ Ωz (1.6)

5



1.1 Adaptive Neural Network Control of Nonlinear Systems

It should be noted that, though HONN and RBF are used for analysis in this thesis,

they may be replaced by any other linear approximators, such as spline functions

[55] or fuzzy systems [56], which have the similar properties, while the stability and

performance properties of the adaptive system are still valid.

Multi-layer Neural Networks: When linearity in the parameters holds, the rigorous

results of adaptive control become applicable for the NN weight tuning, and eventually

result in a stable closed-loop system. However, the same is not true for the multi-

layer case, where the unknown parameters go through nonlinear activation functions.

This structure not only offers a more general case than the previous one, allowing

application to a much larger class of systems, but also avoids some limitations, such

as defining a basis function set or choosing some centers and variations of radial basis

type of activation functions. In [2, 5, 4], one of the important character of MNN, that

MNN with one or more hidden layers is capable of approximating any continuous

nonlinear function, was obtained independently.

In this thesis, the following MNN is used [50]. Define

Z̄ = [z̄1, z̄2, · · · , z̄n+1]
T = [zT , 1]T ∈ Rn+1

V = [v1, v2, · · · , vl] ∈ R(n+1)×l

with vi = [vi1, vi2, · · · , vin+1]
T , i = 1, 2, · · · , l. The term z̄n+1 = 1 in input vector z̄

allows one to include the threshold vector [θv1, θv2, · · · , θvl1 ]
T as the last column of

V T , so that V contains both the weights and thresholds of the first-to-second layer

connections. Then the MNN can be expressed as

gnn(W,V, Z) = W TS(V T Z̄) (1.7)

S(V T Z̄) = [s(vT
1 Z̄), s(vT

2 Z̄), ..., s(vT
l Z̄), 1]T

W = [w1, w2, · · · , wl+1]
T ∈ Rl+1

where the last element in S(V T Z̄) incorporates the threshold θw as wl+1 of weight

W . Any tuning of W and V then includes tuning of the thresholds as well [57]. Then

in (1.7), the total number of the hidden-layer neurons is l + 1 and the number of

input-layer neurons is n + 1. It is known that there are ideal constant W ∗ and V ∗

such that

max
Z∈Ωz

∣

∣

∣
g(Z) − gnn(W

∗, V ∗, Z)
∣

∣

∣
< µ ≤ µ̄
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1.1 Adaptive Neural Network Control of Nonlinear Systems

with constant µ̄ > 0 for all Z ∈ Ωz. The ideal weights W ∗ and V ∗ are defined as

(W ∗, V ∗) : = arg min
(W,V )

{

sup
z∈Ωz

∣

∣

∣
W TS(V T Z̄) − g(Z)

∣

∣

∣

}

(1.8)

In general, W ∗ and V ∗ are unknown and need to be estimated in function approxi-

mation. Let Ŵ and V̂ be the estimates of W ∗ and V ∗, respectively, and the weight

estimation errors be W̃ = Ŵ − W ∗ and Ṽ = V̂ − V ∗. It can be seen that MNNs

are nonlinearly parametrized function approximators, i.e., the hidden layer weight V ∗

appears in a nonlinear fashion.

1.1.2 Adaptive NN Control of Continuous-time Systems

Though the main objective of this thesis is to investigate adaptive neural network con-

trol for non-linear discrete-time systems, it is necessary to briefly review the achieve-

ments obtained in continuous-time domain, in which many classical and elegant meth-

ods have been developed, and are ready for discrete-time extension.

Research in adaptive control for continuous-time nonlinear systems have a long history

of intense activities that involve rigorous problems for formulation, stability proof,

robustness design, performance analysis and applications. The advances in stability

theory and the progress of control theory in the 1960s improved the understanding

of adaptive control and contributed to a strong interest in this field. By the early

1980’s, several adaptive approaches have been proven to provide stable operation

and asymptotic tracking. The adaptive control problem since then, was rigorously

formulated and several leading researchers have laid the theoretical foundations for

many basic adaptive schemes. In the mid 1980s, research of adaptive control mainly

focused on the robustness problem in the presence of unmodeled dynamics and/or

bounded disturbances. A number of redesigns and modifications were proposed and

analyzed to improve the robustness of the adaptive controllers, e.g., by applying

normalization techniques in controller design and modification of adaptation laws

using projection method [58], dead zone modifications [59, 60], ε-modification [61]

and σ-modification [62].

In last decades, in continuous-time domain, feedback linearization technique [63, 64,

7



1.1 Adaptive Neural Network Control of Nonlinear Systems

65], backstepping design [66], neural network control and identification [35, 50] and

tuning function design have attracted much attention. Many remarkable results in

this area have been obtained [67, 68, 69, 70, 56, 47, 71, 72, 73, 74, 75]. In the following,

some works for SISO and MIMO continuous-time systems are listed.

For SISO continuous-time nonlinear systems, the feasibility of applying neural net-

works for modelling unknown functions in dynamic systems has been demonstrated in

several studies. It was shown that for stable and efficient on-line control using the BP

learning algorithm, the identification of systems must be sufficiently accurate before

control action is initiated [41, 21, 15]. Recently, several good NN control approaches

have been proposed based on Lyapunov’s stability theory [57, 76, 77, 78, 50]. One

main advantage of these schemes is that the adaptive laws are derived based on the

Lyapunov synthesis method and therefore guaranteed the stability of continuous-time

systems without the requirement of off-line training. For strict-feedback nonlinear

SISO system, adaptive control scheme is still an active topic in nonlinear system con-

trol area. Using the backstepping design procedures, a systematic approach of adap-

tive controller design was presented for a class of nonlinear systems transformable to

a parametric strict-feedback canonical form, which guarantees the global and asymp-

totic stability of the closed-loop system [79, 66, 50]. Using the implicit function

theory, the NN control methods proposed in [22, 21] have been used to emulate the

“inverse controller” to achieve the desired control objectives. Based on this idea, an

adaptive controller has been developed using high order neural networks with stable

internal dynamics in [23] and applied in [24]. As an alternative, neural networks have

been used to approximate the implicit desired feedback controller in [25]. Multi-layer

neural network control method was also proposed for SISO non-affine systems without

zero dynamics in that paper. Furthermore, previous works on nonlinear non-affine

systems controller design [80] proposed a new control law for non-affine nonlinear

system for a class of deterministic time-invariant discrete system which is free of the

usual restrictions, such as minimum phase, known plant states etc. A general form of

control structure of adaptive feedback linearization is u = N̂(x)/D̂(x), where D̂(x)

must be bounded away from zero to avoid the possible controller singularity problem

[77]. The approach is only applicable to the class of systems whose dynamics are

linear-in-the-parameters and satisfy the so-called matching conditions. The matching
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1.1 Adaptive Neural Network Control of Nonlinear Systems

condition was relaxed to the extended matching condition in [81] and [82], and the

extended matching barrier was broken in [83] by using adaptive backstepping design

[84, 66, 50]. For single input multi outputs systems, some results can be found in

[85, 86].

For MIMO continuous-time nonlinear systems, there are few results available, due

primarily to the difficulty in handling the coupling matrix between different inputs.

In [87], a stable neural network adaptive controller was developed for a class of non-

linear multi-variable systems, the control inputs are in triangular form and integral

Lyapunov function was used to analyze the stability. In [88], a numerically robust

approximate algorithms was given for input-output decoupling nonlinear MIMO sys-

tems. Several algorithms have been proposed in the literature for solving the problem

of exact decoupling for nonlinear MIMO systems, see for examples [89, 90, 91, 92].

All these algorithms need the determination of the inverse, the so-called decoupling

matrix. In [93], the problem of semi-global robust stabilization was investigated for a

class of MIMO uncertain nonlinear system, which cannot be transformed into lower

dimensional zero dynamics representation, via change of coordinates or state feedback.

Both the partial state and dynamic output controllers were explicitly constructed via

the design tools such as semi-global backstepping and high-gain observer. In [94], an

adaptive fuzzy systems approach to state feedback input-output linearizing controller

was outlined. The analysis was based on a general nonlinear MIMO system, with

minimum phase zero dynamics and uncertainties satisfying the matching condition.

1.1.3 Adaptive NN Control of Discrete-time Systems

While fundamental physical models are almost always developed in continuous-time,

computer based process control systems function in discrete-time: measurements are

made and control actions are taken at discrete time instant, seconds, minute, hours,

or days apart. In addition, the input output data available for model identification

is generally only available at discrete time instant. It is usually easier to identify

discrete-time models and use these as a basis to design discrete-time control sys-

tems for computer implementation. This observation motivates us to concentrate

on discrete-time models, despite certain inherent differences between the behavior of

9



1.1 Adaptive Neural Network Control of Nonlinear Systems

discrete-time models and continuous-time models. In this section, the development

in adaptive NN control of discrete-time nonlinear systems is briefly reviewed.

The design methodologies for both continuous-time systems and discrete-time systems

are very different. Similar formulations in continuous-time and discrete-time domains

may describe two totally different systems. Many properties in continuous-time do-

main may disappear in discrete-time domain, and vice versa. The same concepts in

continuous-time and discrete-time domains may have different meanings. For exam-

ple, the relative degrees defined for continuous-time systems [65] and discrete-time

systems have totally different physical explanations [95]. As a consequence, results

obtained in continuous-time domain may not be obtainable in discrete-time domain.

Therefore, it is necessary to investigate them separately. Because the methods ob-

tained in continuous-time systems cannot be directly applied to discrete-time systems

due to some technical difficulties, such as lack of applicability of Lyapunov techniques

[96], the loss of linear parameterizability during the linearization process. Further-

more, discrete-time adaptive control design is more complex than continuous-time de-

sign, due primarily to the fact that discrete-time Lyapunov differences are quadratic

in the state first difference, while for continuous-time systems the Lyapunov deriva-

tive is linear in the state derivative. This has led to the traditional techniques where

the parameter identification problem is decoupled from the control problem using so-

called “certainty equivalence” assumptions. Some of the previous results in nonlinear

discrete-time NN control are listed as follows.

For SISO discrete-time nonlinear systems, some good NN controllers have been ob-

tained. In [20], a specific class of affine nonlinear systems was investigated. The plant

under study was an unknown feedback-linearizable discrete-time system, represented

by an input-output model. Single layer neural networks were used to model the un-

known system and to generate the feedback control. Based on the error between plant

output and reference signal, the neural network weights were updated, and local con-

vergence result was given. In [97], direct control of a general nonlinear dynamical

system with only weak assumptions about the order and relative degree of the plant

was discussed based on implicit function theory. The neural network control method

was firstly discussed for first order discrete-time nonlinear system, and then the con-

trol scheme was generalized to high order discrete-time nonlinear system. Recently,
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1.1 Adaptive Neural Network Control of Nonlinear Systems

discrete-time systems transformable to the parametric-strict-feedback form and the

parametric-pure-feedback form were studied in [98]. By using a time varying mapping,

the noncausal problem was elegantly solved in the backstepping design procedures.

The results therein were further extended to cases with time-varying parameters and

nonparametric uncertainties in [99]. However, for strict-feedback nonlinear systems

in a more general description form, the control construction still remains an open

problem. In [21], input output based neural network control was studied for a class

of nonlinear dynamical discrete-time systems. Further theoretical foundation and in-

sights, which are essential for the design of neural network control based on inverse

controller, were provided in [95], in which the relative degree of discrete-time systems

was well explained. In [100], a direct adaptive NN control was presented for a class

of discrete-time unknown nonlinear systems with general relative degree in the pres-

ence of bounded disturbances. The NN control scheme can be applied to the system

without off-line training. In the study of nonlinear discrete-time control, one of the

most popular representation is the NARMAX model [101]. As only input and output

sequences appear in the NARMAX model, it is straightforward to use approximation

based method to construct the “inverse” of the system to emulate the desired control

input, which can then drive the system output to the desired trajectory. Studies

on discrete-time NARMAX systems can be found in [102, 103, 104, 105, 106]. In

[107], robust control was given for a class of “set-valued” discrete-time dynamical

systems subject to persistent bounded noises. In [108], feedback limitations of linear

sampled-data periodic digital control was investigated. In [99], by using the backstep-

ping procedures with parameter projection update laws, robust adaptive control was

designed for systems with the priori range of unknown time-varying parameters. In

[109], a systematic design method was given for global stabilization and tracking of

discrete-time output feedback nonlinear systems with unknown parameters. In [110],

localization based switching adaptive control for time-varying discrete-time systems

was investigated.

Compared with those results obtained for SISO discrete-time systems, fewer results

can be found for MIMO discrete-time system. For MIMO nonlinear discrete-time

systems, how to tune the NN weights is still an open problem, especially when there
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exists unknown strong inter connections between subsystems. In [111], the NN con-

trol was studied for a very special class of discrete-time MIMO nonlinear systems

with relative degree of one and without any inter connections between subsystems.

In [112], a new controller design method for non-affine nonlinear discrete-time sys-

tem was presented. The control law is simple to implement and is based on a novel

linearization of the input-output model. Extensive empirical studies have confirmed

that the control law can be used to control a relative general class of highly nonlin-

ear MIMO plants. In [113], stable NN-based adaptive control for a class of MIMO

sampled-data nonlinear systems was studied. The control scheme is an integration of

an NN approach and the variable structure method.

In general, for both continuous-time domain and discrete-time domain, especially for

complex nonlinear systems, Lyapunov method plays an important role. The mainly

differences in the design and analysis between continuous-time domain and discrete-

time domain can be summarized as follows:

• In continuous-time domain, Lyapunov function is linear in the state derivative,

however, in discrete-time domain, Lyapunov differences are quadratic in the

state first difference;

• In continuous-time domain, there are many successful design methods that have

been reported in previous literatures, such as backstepping method, feedback

linearization techniques etc. However, for discrete-time domain, similar tech-

niques cannot be directly implemented.

The new challenges in the control of nonlinear discrete-time systems can be summa-

rized as follows:

• For complex discrete-time nonlinear systems, such as non-affine systems, MIMO

systems, little results have been obtained;

• Though backstepping design has been proved to be successful in continuous-

time domain, no similar design technique has been proposed for discrete-time

systems due to the noncausal problem;

12



1.2 Objectives of the Thesis

• For continuous-time systems, there are projection algorithms which restrict pa-

rameter estimation in a set, however, for discrete-time systems, no similar results

have been obtained;

• For output feedback control of discrete-time nonlinear systems, further investi-

gation should be carried out;

• For τ -step ahead discrete-time NARMAX models, usually one step ahead pa-

rameter update is not applicable. High order parameter update laws maybe

effective in solving this kind of systems.

1.2 Objectives of the Thesis

In general, the objective of this thesis is to develop constructive and systematic neural

adaptive control methods for discrete-time nonlinear systems.

The first objective of this thesis is to investigate direct adaptive NN control scheme for

a class of discrete-time SISO non-affine nonlinear systems. Implicit function theorem

is used to prove the existence and uniqueness of the implicit desired feedback control.

Based on the input-output model, RBF neural networks and MNN are used to emulate

the implicit desired feedback control respectively. For the MNN control, the proposed

projection algorithms are used to guarantee the boundedness of the neural network

weights. The closed-loop systems is proved to be SGUUB if the design parameters

are suitably chosen under certain mild conditions.

The second objective is to investigate adaptive NN control scheme for nonlinear

MIMO discrete-time systems with triangular form input. Firstly, a class of MIMO

systems with each subsystem in strict feedback form is studied. The lengths of differ-

ent subsystems may be different. Unknown bounded disturbances are also considered.

Through coordinate transformation, the MIMO system is firstly transformed into Se-

quential Decrease Cascade Form (SDCF), which avoids the causality problem often

met in discrete-time nonlinear system control. Then, by using backstepping design

technique in a nested manner and using HONN as emulators of the desired virtual

and practical controls, an effective neural network control scheme with corresponding
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weight update laws are developed. Noting that the developed state feedback scheme

needs all the system states are available, subsequently, a relative simple NN control

method is proposed for a class of similar systems by using output feedback, which

is easier for practical implementation. Compared with the MIMO systems in state

feedback control, in output feedback part, the lengths of each subsystems are required

to be the same. Furthermore, disturbances are neglected due to the difficulty met in

coordinate transformation. In the output feedback control part, firstly, the MIMO

system is transformed into input-output representation with the triangular form input

structure unchanged. By using HONNs as the emulators of the desired controls, an

effective output feedback control scheme with corresponding weight update laws are

developed by using backstepping design technique. The closed-loop system is proved

to be SGUUB by using Lyapunov method. The output tracking errors are guaranteed

to converge into a compact set whose size is adjustable, and all the other signals in

the closed-loop system are proved to be bounded.

The third objective of this thesis is to investigate adaptive NN control schemes for

MIMO NARMAX models. Two classes of MIMO NARMAX systems are studied.

Firstly, direct adaptive neural network control is studied for a class MIMO nonlinear

affine systems based on input-output discrete-time model with unknown interconnec-

tions between subsystems. By finding an orthogonal matrix to tune the NN weights,

the closed-loop system is proven to be SGUUB. The control performance of the closed-

loop system is guaranteed by suitably choosing the design parameters. Then adaptive

NN control scheme is developed for a class of MIMO non-affine NARMAX systems,

with triangular form inputs. By using implicit function theorem, the existence of the

implicit desired feedback control is proved. Then HONNs are used as the emulators

of the desired controls. The stability of the closed-loop system is proved by Lyapunov

method.

1.3 Contributions of the Thesis

In this thesis, several neural network control schemes are investigated for different

kinds of discrete-time nonlinear systems. They can be classified as follows:
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T1: SISO non-affine nonlinear NARMAX systems;

T2: MIMO nonlinear systems in state space representation with unknown distur-

bances and different subsystem lengths (state feedback);

T3: MIMO nonlinear systems in state space representation with each subsystem in

strict feedback form (output feedback);

T4: MIMO affine NARMAX systems with disturbances;

T5: MIMO non-affine NARMAX systems.

The contributions for each type of system have been summarized as follows:

T1: The main contributions are: (i) provide an effective neural network control

method for non-affine nonlinear discrete-time systems which feedback linearization

method is of no use; (ii) propose a different kind of neural network weight update law

for discrete-time systems; (iii) propose a modified discrete-time projection algorithm

compare to continuous-time projection algorithm used in [114]; and (iv) using multi-

layer neural networks to emulate the implicit desired feedback control of non-affine

discrete-time systems, which is not only a challenging topic but also of academic

interest.

T2: The main contributions are: (i) an effective neural network control scheme is

proposed for a class of nonlinear MIMO system with triangular form inputs, for

which feedback linearization cannot be applied; and (ii) by using neural networks

as the emulators of the desired virtual controls and desired practical controls, and

embedded using backstepping design, the closed-loop system is proved to be SGUUB

in the presence of unknown bounded disturbances.

T3: The main contributions are: (i) an effective NN control scheme is developed for

a class of complex nonlinear discrete-time non-affine MIMO systems in state space

representation, for which, feedback linearization method cannot be implemented; (ii)

only input and output sequences are used to construct the stable control, which is

simple and easy to be implemented in practical applications; (iii) a system trans-

formation technique is proposed, which can transform the system from state space
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description into input output representation, which extends our previous works in

[115] from SISO systems to MIMO systems; and (iv) τ -step update laws are imple-

mented, which is effective for this class of MIMO systems.

T4: The main contributions are: (i) an effective control scheme is proposed for a

class of MIMO discrete-time systems with complex subsystem interconnections; (ii)

in the presence of unknown bounded disturbances, SGUUB stability is guaranteed;

(iii) different from previous one step parameter update law, τ -step update laws are

essential to solve the problem of τ -step ahead predictor; and (iv) by finding an or-

thogonal matrix, Q(k), to tune the NN weights, the technical difficulty in the prove

procedure is elegantly solved.

T5: The main contributions of are: (i) an effective NN control scheme is developed

for a class of non-affine nonlinear discrete-time MIMO systems with triangular form

inputs; and (ii) the proposed method is very simple for practical implementation.

1.4 Organization of the Thesis

In Chapter 2, adaptive NN control is presented for a class of discrete-time SISO

non-affine nonlinear systems. Then adaptive NN control scheme is investigated for

MIMO discrete-time nonlinear systems in state space representation in Chapter 3.

State feedback and output feedback control schemes are proposed for two kinds of

MIMO systems respectively. In Chapter 4, MIMO NARMAX discrete-time nonlinear

systems are studied. Firstly, direct adaptive neural network control is studied for a

class of NARMAX MIMO affine nonlinear systems based on input-output discrete-

time model with unknown interconnections between subsystems and disturbances.

Then, inspired by the results obtained, a simple control scheme is proposed for a

class of non-affine MIMO discrete-time nonlinear systems. Finally, conclusions and

suggestions for further research are made in Chapter 5.

16



Chapter 2

NN Control of Non-affine SISO

Systems

2.1 Introduction

For SISO nonlinear discrete-time systems, there has been many discussions. In [20], a

specific class of nonlinear affine systems is investigated. The plant under study is an

unknown feedback-linearizable discrete-time system, represented by an input-output

model. Single layered neural networks are used to model the unknown system and

generate the feedback control. Based on the output error between plant and model,

the neural network weights are updated, and local convergence result is given. How-

ever, the developed method will lose its effect for non-affine nonlinear systems. In

[97], direct control of a general nonlinear dynamical system with only weak assump-

tions about the order and relative degree of the plant is discussed based on implicit

function theory. The neural network control method is firstly discussed for first order

discrete-time nonlinear system, and then the control scheme is generalized to high

order discrete-time nonlinear system without rigorous proof. In [95], the authors pro-

vided the theoretical foundation as well as insights that are essential for the efficient

design of neural network controllers based on inverse control. Discrete NARMAX

non-affine systems based on input-output models are discussed.

17



2.2 Problem Formulation

In this chapter, based on implicit function theorem, RBF neural networks and MNN

neural networks are used respectively as the emulator to construct direct neural net-

work controllers for a class of discrete-time non-affine nonlinear systems. The stability

analysis method and the weight update laws are different from the literatures listed

above. Because of the unbounded residual term of multi-layer neural network approx-

imation, projection algorithms are used in this chapter to guarantee the MNN weights

bounded in compact sets. The main idea of the projection algorithms [114, 116, 117] is

that, firstly we assume the fictitious lower and upper bound for the unknown weight

vector or matrix, then the projection mapping is that, when weight estimates are

within the bound, we use the normal adaptive law, once weight estimates reach the

fictitious bounds and tend to go out of the bound, they are projected into the pre-

scribed bounds by the projection mapping. Then, all the MNN approximate weights

are bounded and their error are bounded too.

This chapter is organized as follows. The NARMAX system dynamics is described in

Section 2.2. The projection algorithms are proposed in Section 2.3. The direct neural

network inverse adaptive control and stability analysis are discussed in Section 2.4 for

RBF and MNN respectively. Simulation results are provided in Section 2.5 to show

the effectiveness of the controllers and the adaptive laws for both RBF control and

MNN control. Finally, the possible application of the proposed MNN control scheme

in practical CSTR systems is investigated in Section 2.6.

2.2 Problem Formulation

In discrete-time systems, one of the most popular nonlinear representation is NAR-

MAX model studied by Billings and Voon in [103]. Many systems can be represented

by a NARMAX model known as τ -step ahead observer equation as follows [95]

y(k + τ) =f(y(k), . . . , y(k − n+ 1), u(k), . . . , u(k − n+ 1), d(k + τ − 1), . . . , d(k))

=f(ȳk, u(k), ūk−1, d̄k+τ−1) (2.1)

where ȳk = [y(k), . . . , y(k−n+1)]T , ūk−1 = [u(k−1), . . . , u(k−n+1)]T and d̄k+τ−1 =

[d(k + τ − 1), . . . , d(k)]T . This model relates an input sequence {u(k)} to an output
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sequence {y(k)} by nonlinear difference equation. Specifically, it is the relationship

between the sequences {u(k)} and {y(k)} that is of primary importance, while the

sequence {d(k)} represents a “modelling error” in this relationship, arising from the

combined effects of unmeasured process disturbances, neglected nonlinearities, etc.

This model constitutes an extremely broad class, including many other classes of

nonlinear discrete-time models as special cases.

Considering system (2.1), it is shown that for the future output of time instant y(k+

τ), it is determined by the sequence of y(k), . . . , y(k−n+1) and u(k), . . . , u(k−n+1)

and disturbance sequence d(k + τ − 1), . . . , d(k).

Assumption 2.1 The unknown nonlinear function f(·) is continuous and differen-

tiable.

Assumption 2.2 System output y(k) can be measured and its initial values are as-

sumed to remain in a compact set Ωy0 .

Assumption 2.3 The disturbance d(k) is bounded, |d(k)| ≤ d, where d is a little un-

known constant and the partial derivative | ∂f

∂d(k)
| ≤ g2, where g2 is a positive constant.

Assumption 2.4 Assume that partial derivative g1 ≥ |∂f

∂u
| > ε > 0, where both ε and

g1 are positive constants.

This assumption states that the partial derivative ∂f

∂u
is either positive or negative.

From now onwards, without loss of generality, we assume that ∂f

∂u
> 0.

Remark 2.1 According to Assumption 2.4, the partial derivative ∂f

∂u
can be viewed as

the control gain of the normal system (2.1). Furthermore, g1 ≥ |∂f

∂u
| > ε > 0 means

that the plant gain is bounded by a positive constant, which does not pose a strong

restriction upon the class of systems. In the following design procedure, we only need

the existence of Assumption 2.4. Positive constants g1 and ε are not required to be a

priori known.

19



2.2 Problem Formulation

Assume that ym(k + τ) is the system’s desired output at time instant k + τ . Under

Assumption 2.4, adding and subtracting ym(k+ τ) to the right side of equation (2.1)

and using Mean Value Theorem, we have

y(k + τ) = ym(k + τ) + f(ȳk, u(k), ūk−1, d̄k+τ−1) − ym(k + τ)

= ym(k + τ) + f(ȳk, u(k), ūk−1, 0) + δT
f d̄k+τ−1 − ym(k + τ)

= ym(k + τ) + f(ȳk, u(k), ūk−1, 0) − ym(k + τ) + δdk
(2.2)

where

δf =

[

∂f

∂d(k + τ − 1)
|d(k+τ−1)=dξk+τ−1

, · · · , ∂f

∂d(k)
|d(k)=dξk

]

T

dξ = [dξk+τ−1
, · · · , dξk

]T

δdk
= δT

f d̄k+τ−1

and dξ ∈ L(0, d̄k+τ−1) with L(0, d̄k+τ−1) indicating a spatial line in τ dimension, which

starts from 0 ∈ Rτ and ends at d̄k+τ−1.

Remark 2.2 Noticing the disturbance items in equation (2.1), at time instant k,

the sequence d(k + τ − 1), . . . , d(k + 1) are the future unknown disturbances which

cannot be controlled even if they are known. In the following sections, we can see by

the developed direct NN control, the system tracking error can be kept in a bounded

compact set even in the presence of these unknown future and current disturbances.

Consider Assumption 2.3, we know that the disturbance item δdk
in equation (2.2) is

bounded by

δdk
= δT

f d̄k+τ−1

=
∂f

∂d(k + τ − 1)
|d(k+τ−1)=dξk+τ−1

d(k + τ − 1) + · · ·+ ∂f

∂d(k)
|d(k)=dξk

d(k)

≤ g2d+ g2d+ . . .+ g2d

= τg2d (2.3)

Define the tracking error as e(k) = y(k) − ym(k), then the tracking error dynamic

equation is given by

e(k + τ) = −ym(k + τ) + f(ȳk, u(k), ūk−1, 0) + δdk
(2.4)
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In the ideal case, there is no disturbance (δdk
= 0), we can show that if the control

input u∗(k) satisfying

f(ȳk, u
∗(k), ūk−1, 0) − ym(k + τ) = 0 (2.5)

then the system’s output tracking error will converge to 0.

Definition 2.1 If there exists a controller u∗(k) satisfy equation (2.5), then the con-

troller will drive the system output to the desired output, control input u∗(k) is called

Implicit Desired Feedback Control (IDFC).

It is obvious that if the input u(k) equals the IDFC, then the error e(k + τ) will

converge to a small value which is a function of disturbance. Furthermore, if there is

no disturbance, the tracking error will be zero. Based on implicit function theorem,

we have the following lemma to establish the existence of an implicit desired feedback

control u∗(k), which can bring the output of the system to the desired trajectory.

Lemma 2.1 According to Assumption 2.1 and 2.4 if partial derivative | ∂f

∂u(k)
| > ε > 0,

then there exists a unique and continuous function u∗(k) = αc(ȳk, ūk−1, ym(k + τ)),

such that equation (2.5) holds [50].

Because the IDFC input u∗(k) is a continuous function on the compact set Ωz, ac-

cording to the neural network theory, there exists an integer l (the number of hidden

neurons) and ideal constant weight matrices W ∗ and V ∗, such that

u∗(k) = u∗(z) = W ∗TS(V ∗T z̄) + εu(z), ∀z ∈ Ωz (2.6)

where z̄ = [z, 1]T . The following assumption is made for this function approximation.

Assumption 2.5 On the compact set Ωz, the ideal neural network weights W ∗, V ∗

and the NN approximation error are bounded by

‖W ∗‖ ≤ wm, ‖V ∗‖F ≤ vm, |εu(z)| ≤ εl (2.7)

with wm, vm and εl being positive constants.
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For the MNN we used, sigmoid function s(x) = 1
1+e−x are chosen as the activation

function. The derivative of the sigmoid activation function s(x) = 1
1+e−x with respect

to x is

s′(x) =
d[s(x)]

dx
=

e−x

(1 + e−x)2

It is easy to check that

0 ≤ s′(x) ≤ 0.25 and |xs′(x)| ≤ 0.2239 for all x ∈ R (2.8)

Hence

‖Ŝ ′‖F ≤
l

∑

i=1

s′(v̂T
i z̄) ≤ 0.25l ‖Ŝ ′V̂ T z̄‖ ≤

l
∑

i=1

|v̂T
i z̄s

′(v̂T
i z̄)| ≤ 0.2239l (2.9)

here Ŝ ′ = diag{s′(v̂T
1 z̄), . . . , s

′(v̂T
i z̄), . . . , s

′(v̂T
l z̄)} is a diagonal matrix and the Frobe-

nius Norm ‖ · ‖F is defined as follows

‖A‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij|2

with A is a matrix and aij is its element.

Using Taylor series expansion S(V ∗T z̄) about V̂ T z̄, noting abbreviation Ŝ = S(V̂ T z̄)

and Ṽ = V̂ − V ∗, we have

S(V ∗T z̄) = Ŝ − Ŝ ′Ṽ T z̄ +O(Ṽ T z̄)2 (2.10)

Using inequalities (2.9), we know that the high order term O(Ṽ T z̄)2 is bounded by

‖O(Ṽ T z̄)2‖ ≤ ‖Ŝ ′Ṽ T z̄‖ + ‖S(V ∗T z̄) − S(V̂ T z̄)‖
≤ ‖Ŝ ′V̂ T z̄‖ + ‖Ŝ ′V ∗T z̄‖ + ‖S(V ∗T z̄) − S(V̂ T z̄)‖
≤ ‖Ŝ ′V̂ T z̄‖ + ‖Ŝ ′‖F · ‖V ∗‖F · ‖z̄‖ + ‖S(V ∗T z̄) − S(V̂ T z̄)‖

Considering (2.9), ‖V ∗‖F ≤ vm and the fact that ‖S(V ∗T z̄) − S(V̂ T z̄)‖ ≤ l, we have

‖O(Ṽ T z̄)2‖ ≤ 1.2239l + 0.25vml‖z̄‖ (2.11)
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2.3 Projection Algorithm

In order to avoid the possible divergence of the online tuning of neural networks,

discontinuous projections with fictitious bounds are used in the MNN weight adjusting

law to make sure that all MNN weights are tuned within a prescribed range. By doing

so, even in the presence of approximation error and non-repeatable nonlinearities such

as disturbances, a controlled learning is achieved and the possible destabilizing effect

of online tuning of MNN weights could be avoided.

Although the weights of the ideal MNN approximating unknown nonlinearities are

unknown, they are constants and bounded by Assumption 2.5. Thus it is assumed

that each element of W ∗ and V ∗ is bounded, i.e., ρwi,min ≤ wi ≤ ρwi,max for i = 1, . . . , l

and ρvij ,min ≤ vij ≤ ρvij ,max for i = 1, . . . , n, j = 1, . . . , l, where the lower and upper

bounds ρw,min, ρw,max, ρv,min, ρv,max maybe unknown. The number n stands for the

input dimension of neural networks and the number l stands for the numbers of

neurons used. It is natural to require that the estimates of the weights should be

within the corresponding bounds. However, due to the fact that these bounds may

not be known a prior, certain fictitious bounds have to be used [118].

In this chapter, we use the following projection mapping [118]. Let ρ̂Θij ,min and

ρ̂Θij ,max be the fictitious lower and upper bound for Θij, where Θ could be any of the

unknown weight vector or matrix. Based on these fictitious lower and upper bounds,

same as in [116] and [117] a discontinuous projection mapping Proj(∗) can be defined

as ProjΘ̂(∗) = {ProjΘ̂(∗ij)} with its ijth element being

ProjΘ̂(∗ij) =















−∗ij if

{

Θ̂ij = ρ̂Θij ,max and ∗ij < 0

Θ̂ij = ρ̂Θij ,min and ∗ij > 0

∗ij otherwise

(2.12)

where ∗ denotes a vector or a matrix, then ∗ij denotes its element.

In this chapter, all parameter estimates will be updated by the projection type of

adaptation laws given by

Θ̂(k + τ) = Θ̂(k) − ProjΘ̂(Γη) (2.13)
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2.3 Projection Algorithm

where Γ = ΓT > 0 is any diagonal positive-definite adaptation matrix with proper

dimension, and η is any adaptation function. For simplicity, assume Γ = λI with

λ being a positive constant. Similar to [114], we have the following lemma which

indicates the nice properties of the above projection type of adaptation law.

Lemma 2.2 Considering the projection algorithm (2.12) and parameter adaptation

laws (2.13) used in this chapter, the following properties hold:

1. The parameter estimates are always within the known prescribed range, i.e.,

ρ̂Θij ,min ≤ Θ̂ij ≤ ρ̂Θij ,max.

2. In addition, if the true parameter Θ is actually within the prescribed range,

noting Θ̃ = Θ̂ − Θ, then

Θ̃T (Γ−1ProjΘ̂(Γη) − η) ≥ 0 if Θ is a vector.

tr{Θ̃T (Γ−1ProjΘ̂(Γη) − η)} ≥ 0 if Θ is a matrix.

Proof. According to the projection algorithm (2.12) and adaptation law (2.13), it is

obvious that the first property always holds. Now we prove the second property.

If Θ is a vector, consider the diagonal positive-definite adaptation matrix Γ, noticing

that the possible effect of projection operator ProjΘ̂(∗ij) is to change the sign of ∗ij,

we have

Θ̃T (Γ−1ProjΘ̂(Γη) − η) = Θ̃T (Γ−1ΓProjΘ̂(η) − η)

= Θ̃T (ProjΘ̂(η) − η)

=

l
∑

i=1

Θ̃i(ProjΘ̂(ηi) − ηi)

Then considering

Θ̃i(ProjΘ̂(ηi) − ηi)

= (Θ̂i − Θi)(ProjΘ̂(ηi) − ηi)
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=















































(Θ̂i − Θi)(−ηi − ηi) > 0 if























Θ̂i = ρ̂Θi,max means (Θ̂i − Θi) > 0

and ηi < 0

Θ̂i = ρ̂Θi,min means (Θ̂i − Θi) < 0

and ηi > 0

(Θ̂i − Θi)(ηi − ηi) = 0 otherwise

we have Θ̃T (Γ−1ProjΘ̂(Γη) − η) ≥ 0 holds.

If Θ is a matrix, following the same procedure, we have

tr{Θ̃T (Γ−1ProjΘ̂(Γη) − η)} ≥ 0

Its proof is omitted here for clarity. �

2.4 Controller Design

2.4.1 RBF NN Control

Because the defined IDFC controller u∗(k) is a continuous function in the compact

set Ωu, then according to the neural network theory, there exists an integer l (the

number of hidden neurons) and ideal constant weight vector W ∗, such that

u∗(k) = u∗(z) = W ∗TS(z) + εu(z), ∀z ∈ Ωz (2.14)

where z = [ȳk, ūk−1, ym(k + τ)]T , ȳk, ūk−1 and ym(k + τ) are defined in section 2.2.

Assumption 2.6 On the compact set Ωz, the ideal neural network weights W ∗ and

the NN approximation error are bounded by

‖W ∗‖ ≤ wm, |εu(z)| ≤ εl (2.15)

with wm and εl being positive constants.

Define Ŵ (k) as the actual neural network weight, then the practical control input is

u(k) = Ŵ T (k)S(z) (2.16)
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then noticing equation (2.14) the controller approximation error is

u(k) − u∗(k) = Ŵ T (k)S(z) − [W ∗TS(z) + εu(z)]

= W̃ T (k)S(z) − εu(z) (2.17)

where W̃ (k) = Ŵ (k) −W ∗ is the weight approximation error.

If we choose the weight update law as [119]

Ŵ (k + τ) = Ŵ (k) − Γ[S(z(k))e(k + τ) + σŴ (k)] (2.18)

where Γ = ΓT > 0 is a diagonal adaptation gain matrix, and σ > 0. This is the

modified gradient algorithm and the last term of the right-hand side of equation

(2.18) corresponds to σ-modification [62] introduced to improve the robustness in the

presence of the RBF NN approximation error.

Noticing that W̃ (k) = Ŵ (k) −W ∗, subtracting W ∗ to both sides of equation (2.18),

then we have

W̃ (k + τ) = W̃ (k) − Γ[S(z(k))e(k + τ) + σW̃ (k) + σW ∗] (2.19)

Substituting u(k) in to the error equation (2.4) and noticing equation (2.17), then we

have

e(k + τ) = −ym(k + τ) + f(ȳk, Ŵ
T (k)S(z(k)), ūk−1, 0) + δdk

= −ym(k + τ) + f(ȳk, Ŵ
T (k)S(z(k)), ūk−1, 0) + δdk

= −ym(k + τ) + f(ȳk, u
∗(k) + W̃ T (k)S(z) − εu(z), ūk−1, 0) + δdk

(2.20)

Using the Mean Value Theorem, noting equation (2.5) and (2.17), then above equation

becomes

e(k + τ) = −ym(k + τ) + f(ȳk, u
∗(k), ūk−1, 0) +

∂f

∂u
|u=ξ[W̃

T (k)S(z) − εu(z)] + δdk

=
∂f

∂u
|u=ξ[W̃

T (k)S(z) − εu(z)] + δdk

= [W̃ T (k)S(z) − εu(z)]fu + δdk
(2.21)

where

fu =
∂f

∂u
|u=ξ, ξ ∈ [u∗(k), u(k)]
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Remark 2.3 We have assumed that fu is bounded over the compact set Ωu, then it

is obvious that by increasing the neurons used, the neural approximation error term

εu(z) can be arbitrarily small. For the error item W̃ (k)S(z), if Ŵ (k) can get very

close to W ∗, noticing that every element of S(z) is less than 1, we can derive that

W̃ T (k)S(z) can be made very small if the neural network approximation accuracy is

sufficiently high. Therefore the error e(k+ τ) will be bounded, the bound will depends

on the neural approximation accuracy and the disturbance.

Remark 2.4 If the disturbance sequence {d(k)} equal to 0, then tracking error will

mainly depends on the neural network approximation accuracy. However, if there

exists a small disturbance sequence {d(k)}, then the tracking error will depends on

both the neural network approximate accuracy and the disturbance. We can see that

the effects of disturbance can be eliminated by the developed direct NN control scheme

as shown below.

The stability results of the RBF neural networks controller are summarized by The-

orem 2.1.

Theorem 2.1 For the non-affine discrete-time system (2.1), neural network con-

troller (2.16) and neural network weight update law (2.18). There exist compact sets

Ωy, Ωw and positive constants l∗, σ∗ and λ∗ such that if

(i) the initial parameter set Ωy0 ∈ Ωy, Ωw0 ∈ Ωw;

(ii) the neurons number l > l∗, σ-modification gain σ < σ∗ and adaptive gain λ < λ∗,

with λ∗ being the largest eigenvalue of Γ;

(iii) the initial future output sequence y(k0), . . . , y(k0+τ−1) are kept in the compact

set Ωy;

then the output of system (2.1) will track the desired trajectory and the tracking error

can be made arbitrary small by increasing the approximation accuracy of the neu-

ral network. The closed-loop system is semi-globally uniformly ultimately bounded

(SGUUB).
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Proof. Choose the Lyapunov function as follows

J(k) =
1

g1

τ−1
∑

j=0

e2y(k + j) +
τ−1
∑

j=0

W̃ T (k + j)Γ−1W̃ (k + j) (2.22)

Considering (2.19), the first difference of (2.22) is given

4J(k) = J(k + 1) − J(k)

=
1

g1

[e2(k + τ) − e2(k)] + W̃ T (k + τ)Γ−1W̃ (k + τ) − W̃ T (k)Γ−1W̃ (k)

=
1

g1
[e2(k + τ) − e2(k)] − 2W̃ T (k)[S(z(k))e(k + τ) + σŴ (k)]

+[S(z(k))e(k + τ) + σŴ (k)]T ΓT [S(z(k))e(k + τ) + σŴ (k)]

=
1

g1
[e2(k + τ) − e2(k)] − 2W̃ T (k)S(z(k))e(k + τ) − 2σW̃ T (k)Ŵ (k)

+ST (z(k))ΓTS(z(k))e2(k + τ) + 2σŴ T (k)ΓTS(z(k))e(k + τ)

+σ2Ŵ T (k)ΓT Ŵ (k)

Noticing equation (2.21), we have

W̃ T (k)S(z(k)) =
e(k + τ) − δdk

fu

+ εu(z) (2.23)

Furthermore, using the fact that

2σW̃ T (k)Ŵ (k) = σ(‖ W̃ (k) ‖2 + ‖ Ŵ (k) ‖2 − ‖W ∗ ‖2)

ST (z(k))ΓTS(z(k))e2(k + τ) ≤ λ∗le2(k + τ)

2σŴ (k)ΓTS(z(k))e(k + τ) ≤ 2σ ‖ Ŵ (k) ‖‖ Γ ‖F‖ S(z(k)) ‖ |e(k + τ)|
≤ 2σ ‖ Ŵ (k) ‖

√
lλ∗

√
l|e(k + τ)|

≤ 2σlλ∗ ‖ Ŵ (k) ‖ |e(k + τ)|
≤ σlλ∗[‖ Ŵ (k) ‖2 +e2(k + τ)]

σ2Ŵ T (k)ΓT Ŵ (k) ≤ σ2λ∗ ‖ Ŵ (k) ‖2

where λ∗ stands for the maximum eigenvalue of the matrix Γ, we obtain

4J(k) ≤ 1

g1

e2(k + τ) − 1

g1

e2(k) − 2
e2(k + τ)

fu

− 2[εu(z) −
δdk

fu

]e(k + τ)

−σ ‖ W̃ (k) ‖2 −σ ‖ Ŵ (k) ‖2 +σ ‖W ∗ ‖2 +λ∗le2(k + τ)

+σlλ∗[‖ Ŵ (k) ‖2 +e2(k + τ)] + σ2λ∗ ‖ Ŵ (k) ‖2
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that is

4J(k) ≤ [
1

g1
− 2

fu

+ (1 + σ)lλ∗]e2(k + τ) − 2[εu(z) −
δdk

fu

]e(k + τ)

+σ(lλ∗ + σλ∗ − 1) ‖ Ŵ (k) ‖2

− 1

g1
e2(k) − σ ‖ W̃ (k) ‖2 +σ ‖W ∗ ‖2

Noticing Assumption 2.4, from 0 < ε < fu < g1, we can derive that − 2
fu
< − 2

g1
. By

further noticing equation (2.3), we obtain

−2[εu(z) −
δdk

fu

]e(k + τ) ≤ 1

k1
e2(k + τ) + k1(εu(z) −

δdk

fu

)2

≤ 1

k1
e2(k + τ) + k1(εl +

τg2d

ε
)2

where k1 is a positive number. Thus, we have

4J(k) ≤ [− 1

g1

+ (1 + σ)lλ∗ +
1

k1

]e2(k + τ) + σ(lλ∗ + σλ∗ − 1) ‖ Ŵ (k) ‖2

− 1

g1
e2(k) − σ ‖ W̃ (k) ‖2 +σw2

m + k1(εl +
τg2d

ε
)2

≤ [− 1

g1

+ (1 + σ)lλ∗ +
1

k1

]e2(k + τ) + σ(lλ∗ + σλ∗ − 1) ‖ Ŵ (k) ‖2

− 1

g1
[e2(k) − β] − σ ‖ W̃ (k) ‖2

where positive number

β = g1[σw
2
m + k1(εl +

τg2d

ε
)2] (2.24)

By choosing the positive constants k1, λ and σ satisfying the following inequalities

k1 > g1 (2.25)

(1 + σ)lλ ≤ 1

g1

− 1

k1

(2.26)

(l + σ)λ ≤ 1 (2.27)

we have 4J(k) ≤ 0 once e2(k) ≥ β. This states that for all k ≥ 0, J(k) is bounded

because

J(k) = J(0) +

k
∑

j=0

4J(i) <∞
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Define compact set

Ωe , {e | e2 ≤ β}

then we can see that the tracking error e(k) will converge to Ωe if e(k) is out of

compact Ωe. Therefore, for any a priori given (arbitrarily large) bounded set Ω and

any a priori given (arbitrarily small) set Ω0, which contains (0, 0) as an interior point,

there exist a control u, such that every trajectory of the closed-loop system starting

from Ω enters the set Ω0 in a finite time and remains in it thereafter. That is to say,

the whole closed-loop system is SGUUB. �

Remark 2.5 It is shown that a smaller β might be obtained by choosing a smaller

σ or decreasing neural network approximation error εl which may lead to smaller

tracking error. In general, smaller εl will need larger number of neurons which will

lead to the need of more computational power. Positive constant k1 is a intermediate

positive variable. It is not a tuning parameter, but the tuning parameters must satisfy

the inequalities (2.25) and (2.26) which contain k1.

Remark 2.6 Consider the special character of discrete-time system, for RBF neural

network, a new simulation receptive center selection method is used, which will greatly

decrease the number of neurons, that is to say, to avoid the so-called the “curse of

dimensionality” [54, 120] to some extent. The number of Radial Basis Function for

RBF networks needed to approximate a given function is a critical factor in solving

identification and control problem. Because such a number tends to increase expo-

nentially with the dimension of the input space, the approximation approach becomes

practically infeasible when the dimensionality of the input space is high. It is obvious

that for the class of discrete-time system we are discussing, for a n = 3 order system,

the input dimension of the neural networks controller will be 6, if we choose 4 receptive

center points for every input, then there is a need of up to 46 = 4096 neurons, which

is a very large number. Considering the special character of discrete systems, we can

use following method to reduce the number of neurons. For the discrete system, the

state variables sequence {x(k)}, input sequence {u(k)} and output sequence {y(k)}
are almost the same in one or two steps, then for every sequences above, we can use
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the same neurons. That is to say the input dimension of the neural networks con-

troller will reduce to 4. Then the number of neurons will be 44 = 256, which greatly

improves the simulation performance, as can be seen in Section 2.5.

Remark 2.7 The neural networks update law consist of a modified gradient algorithm

with standard σ-modification term [62]. These laws have been proven to be passive

in [57]. No off-line training is required. No assumption on persistent excitation is

required.

Remark 2.8 It can be seen from inequality (2.27), that the upper bound of the adap-

tation gain should decreases with an increase of the number of hidden-layer nodes, so

that learning must slow down for guaranteed performance. The phenomenon of large

NN requiring very slow learning rates has often been encountered in the practical NN

literature [121, 14]. This major drawback can easily be overcome by modifying the

update rule at each layer to obtain a projection algorithm [58]. By employing a pro-

jection algorithm, it is shown that the tuning rate can be made independent of the NN

size. Modified tuning paradigms are finally proposed to make the NN robust so that

the PE is not needed.

2.4.2 MNN Control

For RBF neural networks, it is easy to use and the approximation error is bounded.

But the selection of the receptive center is a big problem, you should have the pre-

liminaries of the states varying range. Furthermore, when the states vary in a wide

range, it is difficult to approximate the IDFC control with small number of neurons,

however, too much neurons will tend to make the system unstable. Considering the

universal approximate ability of MNN, in this section, we use MNN to approximate

the IDFC control instead of RBF neural networks. The use of multi-layer neural

networks in discrete-time nonlinear system control is not only challenging but also of

academic interest.

At first, considering the multi-layer neural networks, neural weights adaptation laws

and projection algorithms used in this chapter, we have the following lemma.
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Assumption 2.7 Considering the projection algorithms we used, on the compact set

Ωz, the estimates of neural network weights Ŵ , V̂ and the weight approximation error

W̃ , Ṽ are bounded by

‖Ŵ‖ ≤ ŵm, ‖V̂ ‖F ≤ v̂m, ‖W̃‖ ≤ w̃m, ‖Ṽ ‖F ≤ ṽm (2.28)

where W̃ = Ŵ −W ∗, Ṽ = V̂ − V ∗ and w̃m, ṽm, ŵm, v̂m are positive constants.

In this chapter, we use the following adaptive function

ηw = Ŝ(k)e(k + τ) (2.29)

ηv = (zlŴ
T (k)Ŝ ′(k))e(k + τ) (2.30)

where zl is a constant vector which is dimension compatible with V̂ (k). It is defined

as zl = [ 1√
l
, . . . , 1√

l
]T with ‖z‖ = 1. Ŝ ′(k) = diag[ŝ′1(k), . . . , ŝ

′
l(k)] is a diagonal matrix

and ŝ′i(k) = s′(v̂T
i z̄(k)).

Define the multi-layer neural networks update law as follows

Ŵ (k + τ) = Ŵ (k) − ProjŴ [Γwηw] (2.31)

V̂ (k + τ) = V̂ (k) − ProjV̂ [Γvηv] (2.32)

Subtract W ∗ and V ∗ to the both sides of the equation (2.31) and (2.32), we obtain

W̃ (k + τ) = W̃ (k) − ProjŴ (Γwηw)

= W̃ (k) − ProjŴ [ΓwŜ(k)e(k + τ)] (2.33)

Ṽ (k + τ) = Ṽ (k) − ProjV̂ (Γvηv)

= Ṽ (k) − ProjV̂ [Γv(zlŴ
T (k)Ŝ ′(k))e(k + τ)] (2.34)

where Γw = ΓT
w = λwI and Γv = ΓT

v = λvI.

Remark 2.9 Noticing multi-layer neural network update laws (2.31)-(2.34), at time

instant k + τ , the MNN weight Ŵ (k + τ) and V̂ (k + τ) are relevant to the tracking

error e(k+τ), this seems to be non-causal. However, these parameters update at k+τ

will be used only in u(k + τ), thus it is causal.
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Lemma 2.3 Consider Lemma 2.2, we have the following inequalities

W̃ T (Γ−1
w ProjŴ (Γwηw) − ηw) ≥ 0 (2.35)

tr{Ṽ T (Γ−1
v ProjV̂ (Γvηv) − ηv)} ≥ 0 (2.36)

Furthermore we have

ProjT
Ŵ

Γ−1
w ProjŴ − ηT

wΓT
wηw = 0 (2.37)

tr{ProjT
V̂
Γ−1

v ProjV̂ } − tr{ηT
v ΓT

v ηv} = 0 (2.38)

where ProjŴ = ProjŴ (Γwηw) and ProjV̂ = ProjV̂ (Γvηv).

Proof. It is obvious that following Lemma 2.2, inequalities (2.35) and (2.36) hold.

Considering equation (2.37), because Γw = λwI, we have

ProjT
Ŵ

Γ−1
w ProjŴ − ηT

wΓT
wηw = ProjT

Ŵ
(ηw)ΓT

wΓ−1
w ΓwProjŴ (ηw) − ηT

wΓT
wηw

= λwProjT
Ŵ

(ηw)ProjŴ (ηw) − λwη
T
wηw

= λw[ProjT
Ŵ

(ηw)ProjŴ (ηw) − ηT
wηw]

= 0

then equation (2.37) holds.

Considering equation (2.38), because Γv = λvI, we have

tr{ProjT
V̂
Γ−1

v ProjV̂ } − tr{ηT
v ΓT

v ηv}
= tr{ProjT

V̂
(ηv)Γ

T
v Γ−1

v ΓvProjV̂ (ηv)} − tr{ηT
v ΓT

v ηv}
= λvtr{ProjT

V̂
(ηv)ProjV̂ (ηv) − ηT

v ηv}
= 0

then equation (2.38) holds. �

Choose the practical control input as

u(k) = unn(k) (2.39)

with

unn(k) = Ŵ T (k)S(V̂ T (k)z̄) (2.40)
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where z̄ = [zT , 1]T with z = [ȳk, ūk−1, ym(k+ τ)]T , ȳk, ūk−1 and ym(k+ τ) are defined

in Section 2.2.

Noticing equation (2.6), then we have

u(k) − u∗(k) = Ŵ T (k)S(V̂ T (k)z̄) −W ∗T (k)S(V ∗T (k)z̄) − εu(z)

= Ŵ T (k)S(V̂ T (k)z̄) −W ∗T (k)S(V̂ T (k)z̄)

+W ∗T (k)S(V̂ T (k)z̄) −W ∗T (k)S(V ∗T (k)z̄) − εu(z)

= W̃ T (k)S(V̂ T (k)z̄) +W ∗T (k)[S(V̂ T (k)z̄) − S(V ∗T (k)z̄)] − εu(z)

= W̃ T Ŝ +W ∗T (Ŝ − S∗) − εu(z)

Substitute u(k) into the error equation (2.4), then we have

e(k + τ) = −ym(k + τ) + f(ȳk, Ŵ
T (k)S(V̂ T (k)z̄), ūk−1, 0) + δdk

= −ym(k + τ) + f(ȳk, u
∗(k) + W̃ T Ŝ +W ∗T (Ŝ − S∗) − εu(z), ūk−1, 0)

+δdk
(2.41)

Using Mean Value Theorem, noticing equation (2.5), then the above equation becomes

e(k + τ) = −ym(k + τ) + f(ȳk, u
∗(k), ūk−1, 0)

+
∂f

∂u
|u=ξ(W̃

T Ŝ +W ∗T (Ŝ − S∗) − εu(z)) + δdk

= [W̃ T Ŝ +W ∗T (Ŝ − S∗) − εu(z)]fu + δdk
(2.42)

where

fu =
∂f

∂u
|u=ξ ξ ∈ [u∗(k), u(k)]

Theorem 2.2 For the non-affine discrete-time system (2.1), neural network con-

troller (2.39) and neural network weight update laws (2.31) and (2.32). There exist

compact sets Ωy, Ωw, Ωv and positive constants l∗, λ∗w and λ∗v such that if

(i) the initial parameter set Ωy0 ∈ Ωy, Ωw0 ∈ Ωw, Ωv0 ∈ Ωv;

(ii) the neural number l > l∗, adaptive gain λw < λ∗w, with λ∗w being the eigenvalue

of Γw, λv < λ∗v, with λ∗v being the eigenvalue of Γv;
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(iii) the initial future output sequence y(k0), . . . , y(k0+τ−1) are kept in the compact

set Ωy, initial input sequence u(k0) are kept in the compact set Ωu;

then the output of system (2.1) will track the desired trajectory and the tracking error

is bounded. The closed-loop system is semi globally uniformly ultimately bounded

(SGUUB).

Proof. Choose the Lyapunov function as follows

J(k) =
1

g1

τ−1
∑

j=0

e2(k + j) +
τ−1
∑

j=0

W̃ T (k + j)Γ−1
w W̃ (k + j)

+
τ−1
∑

j=0

tr{Ṽ T (k + τ)Γ−1
v Ṽ (k + τ)} (2.43)

The first difference of (2.43) is given

4J(k) = J(k + 1) − J(k)

=
1

g1

[e2(k + τ) − e2(k)] + W̃ T (k + τ)Γ−1
w W̃ (k + τ) − W̃ T (k)Γ−1

w W̃ (k)

+tr{Ṽ T (k + τ)Γ−1
v Ṽ (k + τ) − Ṽ T (k)Γ−1

v Ṽ (k)}

Considering the neural network weight update laws (2.33) and (2.34), we have

4J(k) =
1

g1

[e2(k + τ) − e2(k)]

−W̃ T (k)Γ−1
w ProjŴ − ProjT

Ŵ
Γ−1

w W̃ (k) + ProjT
Ŵ

Γ−1
w ProjŴ

+tr{−Ṽ T (k)Γ−1
v ProjV̂ − ProjT

V̂
Γ−1

v Ṽ (k) + ProjT
V̂
Γ−1

v ProjV̂ } (2.44)

Considering the projection algorithms used, there are four possible Conditions:

1. All the elements of Ŵ (k) and V̂ (k) are within the known prescribed fictitious

bounds;

2. Only some elements of weight vector Ŵ (k) reach the fictitious bounds, projec-

tion algorithm (2.31) is applied;

3. Only some elements of weight matrix V̂ (k) reach the fictitious bounds, projec-

tion algorithm (2.32) is applied;
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4. Some elements of both Ŵ (k) and V̂ (k) reach the fictitious bound, projection

algorithms (2.31) and (2.32) are applied.

We will discuss them one by one in details below.

Condition 1. When all the elements of weight Ŵ (k) and V̂ (k) are within the known

prescribed bounds, equation (2.44) becomes

4J(k)=
1

g1

[

e2(k + τ) − e2(k)
]

− W̃ T (k)Γ−1
w Γwηw − (Γwηw)T Γ−1

w W̃ (k)

+(Γwηw)T Γ−1
w Γwηw + tr{−Ṽ T (k)Γ−1

v Γvηv − (Γvηv)
T Γ−1

v Ṽ (k)

+(Γvηv)
T Γ−1

v Γvηv}

=
1

g1

[e2(k + τ) − e2(k)] − 2W̃ T (k)ηw + ηT
wΓT

wηw − 2tr{Ṽ T (k)ηv} + tr{ηT
v ΓT

v ηv}

From equation (2.42), we obtain

W̃ T Ŝ =
e(k + τ) − δdk

fu

−W ∗T (Ŝ − S∗) + εu(z)

Furthermore, considering the adaptive function (2.29) and (2.30), noticing that

tr{Ṽ T zlŴ
T Ŝ ′} = Ŵ T Ŝ ′Ṽ T zl

and

tr{(zlŴ
T Ŝ ′)T ΓT

v (zlŴ
T Ŝ ′)} = λv‖zlŴ

T Ŝ ′‖2
F

then

4J(k)=

[

1

g1

− 2

fu

]

e2(k + τ) − 1

g1

e2(k) + 2W ∗T (Ŝ − S∗)e(k + τ)

−2

[

εu(z) −
δdk

fu

]

e(k + τ) + ŜT ΓT
wŜe

2(k + τ) − 2Ŵ T Ŝ ′Ṽ T zle(k + τ)

+λv‖zlŴ
T Ŝ ′‖2

F e
2(k + τ)

Noticing Assumption 2.5 and the following inequalities

• − 2
fu

≤ − 2
g1

Noticing Assumption 2.4, we obtain the above inequality.
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• 2W ∗T (Ŝ − S∗)e(k + τ) ≤ 4‖W ∗‖
√
l|e(k + τ)|

Because every element of Ŝ and S∗ is less than 1, then (Ŝ−S∗) ≤ ‖Ŝ‖+‖S∗‖ =

2
√
l. The above inequality holds.

• −2
[

εu(z) −
δdk

fu

]

e(k + τ) ≤ 2
[

εl + τg2d

ε

]

|e(k + τ)|
Because εu(z) ≤ εl, δdk

≤ τg2d and ε < |fu|, the above inequality holds.

• ŜT ΓT
wŜe

2(k + τ) ≤ λwle
2(k + τ)

Because Γw = λwI is a positive diagonal matrix, ŜT ΓT
wŜ = λwŜ

T Ŝ. Further-

more, noticing every element of Ŝ is less than 1, thus the inner product of Ŝ

must be less than its dimension l.

• −2Ŵ T Ŝ ′Ṽ T zle(k + τ) ≤ 0.5ŵmlṽm|e(k + τ)|
Noticing Assumption 2.7, we have ‖Ŵ‖ ≤ ŵm and ‖Ṽ ‖F ≤ ṽm. By definition,

‖zl‖ = 1. Furthermore, noticing equation (2.9), we have ‖Ŝ ′‖F ≤ 0.25l. Thus,

the above inequality holds.

• λv‖zlŴ
T Ŝ ′‖2

Fe
2(k + τ) ≤ 0.0625λvŵ

2
ml

2e2(k + τ)

Noticing ‖zlŴ
T Ŝ ′‖F ≤ ‖zl‖‖Ŵ‖‖Ŝ ′‖F ≤ 0.25lŵm, the above inequality holds.

we have

4J(k) ≤ −
[

1

g1

− λwl − 0.0625λvŵ
2
ml

2

]

e2(k + τ) − 1

g1

e2(k)

+

[

4‖W ∗‖
√
l + 2εl +

2τg2d

ε
+ 0.5ŵmlṽm

]

|e(k + τ)|

If we choose the parameters to satisfy the following condition,

1

g1
− λwl − 0.0625λvŵ

2
ml

2 > 0 (2.45)

and define positive constants

α =
1

g1

− λwl − 0.0625λvŵ
2
ml

2

β = 4‖W ∗‖
√
l + 2εl + 2

τg2d

ε
+ 0.5ŵmlṽm
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then

4J(k) ≤ −α|e(k + τ)|2 + β|e(k + τ)| − 1

g1
e2(k)

≤ −α|e(k + τ)|2 + β|e(k + τ)|

= −α|e(k + τ)|
(

|e(k + τ)| − β

α

)

Define compact set

Ωe ,

{

e(k)
∣

∣

∣
|e(k)| < β

α

}

we can see that once |e(k+ τ)| is out of the compact set Ωe, 4J(k) < 0. That means

e(k + τ) will converge to the compact set denoted by Ωe.

Now it still remains to show that the weight estimates Ŵ (k) and V̂ (k) are bounded.

Considering the projection algorithms we used, it is obvious that Ŵ (k) and V̂ (k) are

bounded in compact sets.

Finally, for all k ≥ 0, J(k) is bounded because

J(k) =
1

g1

τ−1
∑

j=0

e2(k + j) +

τ−1
∑

j=0

W̃ T (k + j)Γ−1
w W̃ (k + j)

+
τ−1
∑

j=0

tr{Ṽ T (k + τ)Γ−1
v Ṽ (k + τ)}

as k → +∞, we have

J(∞) =
1

g1

τ−1
∑

j=0

e2(∞ + j) +
τ−1
∑

j=0

W̃ T (∞ + j)Γ−1
w W̃ (∞ + j)

+

τ−1
∑

j=0

tr{Ṽ T (∞ + τ)Γ−1
v Ṽ (∞ + τ)}

Because we have proved that e(k) is bounded, W̃ (k) and Ṽ (k) are all bounded by the

projection algorithms, we obtain J(∞) <∞, that is to say J(k) is also bounded.

Condition 2. When only some elements of Ŵ (k) reach the fictitious bounds, equation

(2.44) becomes

4J(k) =
1

g1

[e2(k + τ) − e2(k)]
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−W̃ T (k)Γ−1
w ProjŴ − ProjT

Ŵ
Γ−1

w W̃ (k) + ProjT
Ŵ

Γ−1
w ProjŴ

+tr{−Ṽ T (k)Γ−1
v Γvηv − (Γvηv)

T Γ−1
v Ṽ (k) + (Γvηv)

T Γ−1
v Γvηv}

Adding and subtracting −W̃ T (k)ηw−ηT
wW̃ (k)+ηT

wΓT
wηw to the right side of the above

equation, we obtain

4J(k) =
1

g1
[e2(k + τ) − e2(k)] − W̃ T (k)ηw − ηT

wW̃ (k) + ηT
wΓT

wηw

+tr{−Ṽ T (k)Γ−1
v Γvηv − (Γvηv)

T Γ−1
v Ṽ (k) + (Γvηv)

T Γ−1
v Γvηv}

−W̃ T (k)Γ−1
w ProjŴ − ProjT

Ŵ
Γ−1

w W̃ (k) + ProjT
Ŵ

Γ−1
w ProjŴ

+W̃ T (k)ηw + ηT
wW̃ (k) − ηT

wΓT
wηw

=
1

g1
[e2(k + τ) − e2(k)] − W̃ T (k)ηw − ηT

wW̃ (k) + ηT
wΓT

wηw

+tr{−Ṽ T (k)Γ−1
v Γvηv − (Γvηv)

T Γ−1
v Ṽ (k) + (Γvηv)

T Γ−1
v Γvηv}

−W̃ T (k)(Γ−1
w ProjŴ − ηw) − (ProjT

Ŵ
Γ−1

w − ηT
w)W̃ (k)

+ProjT
Ŵ

Γ−1
w ProjŴ − ηT

wΓT
wηw

Noticing Lemma 2.3, using equations (2.35) and (2.37), we have

4J(k) ≤ 1

g1
[e2(k + τ) − e2(k)] − W̃ T (k)ηw − ηT

wW̃ (k) + ηT
wΓT

wηw

+tr{−Ṽ T (k)Γ−1
v Γvηv − (Γvηv)

T Γ−1
v Ṽ (k) + (Γvηv)

T Γ−1
v Γvηv}

which is the same as we discussed in Condition 1. Thus, we obtain the same stability

results.

Condition 3. When only some elements of V̂ (k) reach the fictitious bounds, equation

(2.44) becomes

4J(k) =
1

g1
[e2(k + τ) − e2(k)] − W̃ T (k)ηw − ηT

wW̃ (k) + ηT
wΓT

wηw

−tr{Ṽ T (k)Γ−1
v ProjV̂ + ProjT

V̂
Γ−1

v Ṽ (k) − ProjT
V̂
Γ−1

v ProjV̂ }

Adding and subtracting tr{−Ṽ T (k)Γ−1
v Γvηv − (Γvηv)

T Γ−1
v Ṽ (k) + (Γvηv)

T Γ−1
v Γvηv} to

the right side of the above equation, we obtain

4J(k) =
1

g1
[e2(k + τ) − e2(k)] − W̃ T (k)ηw − ηT

wW̃ (k) + ηT
wΓT

wηw

+tr{−Ṽ T (k)Γ−1
v Γvηv − (Γvηv)

T Γ−1
v Ṽ (k) + (Γvηv)

T Γ−1
v Γvηv}

−tr{Ṽ T (k)[Γ−1
v ProjV̂ − ηv]} − tr{[ProjT

V̂
Γ−1

v − ηT
v ]Ṽ (k)}

+tr{ProjT
V̂
Γ−1

v ProjV̂ } − tr{ηT
v ΓT

v ηv}
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Noticing Lemma 2.3, using equations (2.36) and (2.38), the above equation can be

written as

4J(k) ≤ 1

g1

[e2(k + τ) − e2(k)] − W̃ T (k)ηw − ηT
wW̃ (k) + ηT

wΓT
wηw

+tr{−Ṽ T (k)Γ−1
v Γvηv − (Γvηv)

T Γ−1
v Ṽ (k) + (Γvηv)

T Γ−1
v Γvηv}

which is the same as we discussed in Condition 1. Thus, we obtain the same stability

results.

Condition 4. When there are elements of both Ŵ (k) and V̂ (k) reach the fictitious

bounds, equation (2.44) becomes

4J(k) =
1

g1
[e2(k + τ) − e2(k)]

−W̃ T (k)Γ−1
w ProjŴ − ProjT

Ŵ
Γ−1

w W̃ (k) + ProjT
Ŵ

Γ−1
w ProjŴ

−tr{Ṽ T (k)Γ−1
v ProjV̂ + ProjT

V̂
Γ−1

v Ṽ (k) − ProjT
V̂
Γ−1

v ProjV̂ }

Adding and subtracting tr{−Ṽ T (k)Γ−1
v Γvηv−(Γvηv)

T Γ−1
v Ṽ (k)+(Γvηv)

T Γ−1
v Γvηv} and

−W̃ T (k)ηw − ηT
wW̃ (k) + ηT

wΓT
wηw to the right side of the above equation, we obtain

4J(k) =
1

g1
[e2(k + τ) − e2(k)] − W̃ T (k)ηw − ηT

wW̃ (k) + ηT
wΓT

wηw

+tr{−Ṽ T (k)Γ−1
v Γvηv − (Γvηv)

T Γ−1
v Ṽ (k) + (Γvηv)

T Γ−1
v Γvηv}

−W̃ T (k)Γ−1
w ProjŴ − ProjT

Ŵ
Γ−1

w W̃ (k) + ProjT
Ŵ

Γ−1
w ProjŴ

+W̃ T (k)ηw + ηT
wW̃ (k) − ηT

wΓT
wηw

−tr{Ṽ T (k)[Γ−1
v ProjV̂ − ηv]} − tr{[ProjT

V̂
Γ−1

v − ηT
v ]Ṽ (k)}

+tr{ProjT
V̂
Γ−1

v ProjV̂ } − tr{ηT
v ΓT

v ηv}

=
1

g1

[e2(k + τ) − e2(k)] − W̃ T (k)ηw − ηT
wW̃ (k) + ηT

wΓT
wηw

+tr{−Ṽ T (k)Γ−1
v Γvηv − (Γvηv)

T Γ−1
v Ṽ (k) + (Γvηv)

T Γ−1
v Γvηv}

−W̃ T (k)[Γ−1
w ProjŴ − ηw] − [ProjT

Ŵ
Γ−1

w − ηT
w]W̃ (k)

+ProjT
Ŵ

Γ−1
w ProjŴ − ηT

wΓT
wηw

−tr{Ṽ T (k)[Γ−1
v ProjV̂ − ηv]} − tr{[ProjT

V̂
Γ−1

v − ηT
v ]Ṽ (k)}

+tr{ProjT
V̂
Γ−1

v ProjV̂ } − tr{ηT
v ΓT

v ηv}
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Noticing Lemma 2.3, using equations (2.35)-(2.38), the above equation can be further

written as

4J(k) ≤ 1

g1

[e2(k + τ) − e2(k)] − W̃ T (k)ηw − ηT
wW̃ (k) + ηT

wΓT
wηw

+tr{−Ṽ T (k)Γ−1
v Γvηv − (Γvηv)

T Γ−1
v Ṽ (k) + (Γvηv)

T Γ−1
v Γvηv}

which is the same as we discussed in Condition 1. Thus, we obtain the same stability

results.

We can see that Condition 2-4 can be transformed to Condition 1, in which we have

proved that the tracking error to be bounded in a compact set, then Theorem 2.2

holds. Therefore, for any a priori given (arbitrarily large) bounded set Ω and any a

priori given (arbitrarily small) set Ω0, which contains (0, 0) as an interior point, there

exist a control u, such that every trajectory of the closed-loop system starting from

Ω enters the set Ω0 in a finite time and remains in it thereafter. That is to say, the

whole closed-loop system is SGUUB. �

Remark 2.10 It is shown that the error bound β = k1(εl + τg2d

ε
)2 + β1 + β2 cannot

be made arbitrarily small. This is simply because that in the process of proof, we use

completion of square many times, which magnify the error terms. In fact, if the MNN

weight can approximate the ideal weight sufficiently close and there are no disturbances

exist, then there is only k1ε
2
l left in the expression of β. Then it is obvious that the

tracking error can be made arbitrarily small by increasing the approximation accuracy.

Remark 2.11 The aim of using projection algorithms in this chapter is to guaran-

tee the boundedness of the MNN weight. In simulation process, the fictitious upper

bound ρ̂Θ,max and lower bound ρ̂Θ,min bound can be chosen sufficiently large at the

very beginning, which can guarantee all practical weight vector or matrix element in

[ρ̂Θ,min, ρ̂Θ,max], and guarantee the convergence of the system.
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2.5 Numerical Simulation

Considering non-affine nonlinear discrete-time system described by the following dif-

ference equations

x1(k + 1) = x2(k)

x2(k + 1) =
x1(k)x2(k)(x1(k) + 2.5)

1 + x2
1(k) + x2

2(k)
+ u(k) + 0.1u3(k) + d(k)

y(k) = x1(k)

and the disturbance

d(k) = 0.1 cos(0.001k)

Its τ -steps-ahead model should be in the following form

y(k + τ) = y(k + 2) = f(y(k), y(k− 1), u(k), u(k− 1), d(k + 1), d(k))

where τ = 2.

The control gain ∂f

∂u
= 1 + 0.3u2(k) > 0, considering u(k) ∈ Ωu, it is obvious that the

control gain is 1 ≤ ∂f

∂u
≤ g1 which satisfies the assumption. Because the disturbance

is not known, then it cannot be used as the input of controller neural networks.

The inputs of neural networks are z = [ȳk, ūk−1, ym(k + τ)]T = [y(k), y(k − 1), u(k −
1), ym(k + 2)]T .

2.5.1 RBF Control Simulation

System initial conditions are chosen as follows, the neurons number l = 54 = 625

which is a large number, consider that y(k) and y(k−1) are almost the same in every

step k → k+1, then they can be approximated by using the same neurons. Thus the

RBF neurons used in simulation can be reduced to l = 53 = 125. The center of the

receptive field of RBF neural networks are chosen as follows, y(k), y(k−1), ym(k+2) ∈
{−0.8,−0.4, 0, 0.4, 0.8}, u(k − 1) ∈ {−1.0,−0.725,−0.450,−0.175, 0.1}. The width

of the Gaussian function is initialized to 1.
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The weight vector is initialized to 0, the initial states of the discrete-time system are

set to 0. The adaptive law gain diagonal matrix is Γ = 0.002I and the σ modification

gain is σ = 0.01. Reference signal is ym(k) = 0.8 sin( πk
400

). The disturbance signal is

d(k) = 0.1 cos(0.001k).

The simulation results are presented in Figures 2.3-2.5. Figure 2.3 states that the

system output following the reference model, the transient performance is bounded.

Figure 2.4 shows the Implicit Desired Feedback Control trajectory. Figure 2.5 shows

the RBF weight vector norm which is bounded.

2.5.2 MNN Control Simulation

For multi-layer neural networks controller, the design parameters are chosen as fol-

lows. The weight vector Ŵ and V̂ are initialized to 0, the initial states of the discrete-

time system are set to 0. The adaptive law gain diagonal matrix is Γw = 0.05I and

Γv = 0.05I . Reference signal is ym(k) = 0.8sin( π
400
k). The disturbance signal is

d(k) = 0.1 cos(0.001k). The multi-layer neural networks neurons number is l = 10.

The simulation results are presented in Figures 2.6-2.8. Figure 2.6 states that the

system output following the reference model, the transient performance is bounded.

Figure 2.7 shows the Implicit Desired Feedback Control trajectory. Figure 2.8 shows

the MNN weight vector norm and matrix norm which are all bounded.

Remark 2.12 Noticing the simulation results, we can see that for the control trajec-

tories of RBF and MNN controller, they are almost the same except their transient

performance. This verifies the existence and uniqueness of the Implicit Desired Feed-

back Control.

Remark 2.13 Generally speaking, no matter increasing the number of the neurons

used or choosing larger adaptation gain matrix will improve the performance. But this

increase is limited to some extent. Noticing that for RBF controller, the adaptation

gain is much smaller than that for the MNN controller, but the neuron number used

for the former is much more than latter.
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2.6 Application to Practical CSTR Systems

Many industrial processes including distillation columns, exothermic chemical reac-

tions, and PH neutralization can exhibit significant nonlinear behavior. If these

processes are operated at a nominal steady state, the effects of the nonlinearities

may not be severe and traditional control schemes based on local linearized models

provide satisfactory control performance. However, if the systems are required to

work over a wide range of conditions, conventional linear control approaches cannot

handle the system nonlinearities. In recent years, many interesting results for chem-

ical process control have been reported in the literature [122, 123, 124, 125]. Most

of these feedback linearization strategies require exact mathematical models of the

plant dynamics. However, it is generally difficult in practice to obtain an accurate

model because of the inherent complexity of the chemical processes or the lack of

informative process data. It is necessary to implement adaptive techniques or other

robust control techniques. A number of applications of on-line adaptation in feed-

back controller design have been documented in the literature that demonstrated

superior performance in the presence of unknown and time-varying process parame-

ters [126, 127, 128, 129, 89, 64, 130, 131]. In practical industrial control applications,

usually the information available are system outputs and inputs at discrete-time in-

stants. Then it is necessary to investigated discrete-time input-output based control

schemes which are different from the continuous time based control methods in the

literatures.

Finally, noting the possible application of advance control technique in industrial

processes, two CSTR systems are studied to show the effectiveness of the developed

control method. The first CSTR system is in non-affine form for which the IDFC

control cannot be expressed explicitly. The simulation results of the non-affine CSTR

system shows the effectiveness of the developed MNN controller. The second CSTR

system is in affine form, that means the IDFC control can be expressed explicitly.

Thus for the affine CSTR system, both the ideal IDFC trajectory and direct MNN

control trajectory can be obtained. The simulation results shows that the MNN

control trajectory gradually approximate the ideal IDFC control. This states that

the method of using MNN to emulate the IDFC control is effective.
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The control objective is to make the concentration y track the set-point step change

signal yd(t). In order to get a smooth reference signal, a linear reference model is

used to shape the discontinuous reference signal for providing the desired signals yd.

The following reference model is to be implemented

yd(s)

r(s)
=

ω2
n

s2 + 2ζnωns+ ω2
n

where the natural frequency ωn = 5.0rad/min and the damping ratio ζn = 1.0.

2.6.1 Non-affine CSTR System

Continuous System Description: Consider the CSTR system shown in Figure 2.1. The

process dynamics are described by [123, 128, 50]

Ċa =
q

V
(Ca0 − Ca) − a0Cae

− E
RTa

Ṫa =
q

V
(Tf − Ta) + a1Cae

− E
RTa + a3qc[1 − e−

a2
qc ](Tcf − Ta) (2.46)

where the variables Ca and Ta are the concentration and temperature of a tank,

respectively; the coolant flow rate qc is the control input and the parameters of the

plant are defined in Table 2.1. Within the tank reactor, two chemicals are mixed

and react to produce compound A at a concentration Ca with the temperature of

the mixture being Ta. The reaction is both irreversible and exothermic. The control

objective is to manipulate the coolant flow rate qc to control the Ca at a desired

value. It should be noticed that the above description of CSTR is different from

those of conventional chemical reactor control systems [125]. In most applications, the

coolant temperature is chosen as the manipulated variable and assumed to be constant

through the cooling coil [123]. There are two major advantages of choosing the flow

rate qc as the manipulated control input. Firstly, the coolant temperature is allowed

to vary along the length of the cooling coil [132]. If the cooling coil is long, which

happens in many practical plants, the assumption of constant coolant temperature

may cause significant bias in the CSTR model. Secondly, manipulation of the flow

rate yields an easily implementable control scheme compared to the manipulation of

the coolant temperature.
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PSfrag replacements

Ca0 Tf

qc Tcf

V Ca Ta

Figure 2.1: Continuously Stirred Tank Reactor System

The major challenge of this control problem is that the plant does not assume the

customary control affine system structure because the control input qc appears non-

linearly. For the case where the system model is known exactly, the application of

input-output linearization control for a large class of general nonlinear systems has

been investigated in [123]. The application of neural network to uncertain nonlinear

systems was studied in [133] and [24]. Control applications to CSTR systems were

provided to illustrate the advantage of utilizing learning and adaptation. However,

due to the high complexity of neural network system, a rigorous stability analysis

was not provided for the closed-loop control system in [133]. The scheme presented

in [24] requires the measurement of the time derivative of Ca which is difficult to

estimate in practice. In [50], adaptive neural network control scheme is presented for

this continuous CSTR system.

The state variables, the input and the output are defined as x = [x1, x2]
T = [Ca, Ta]

T ,

u = qc, y = Ca. Using this notation, the CSTR plant (2.46) can be re-expressed as

[50]

ẋ1 = 1 − x1 − a0x1e
− 104

x2

ẋ2 = 350 − x2 + a1x1e
− 104

x2 + a3u(1 − e−
a2
u )(350 − x2)
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Parameter Description Nominal value
q process flow rate 100l/min
Ca0 concentration of component A 1mol/l
Tf feed temperature 350k
Tcf inlet coolant temperature 350k
V volume of tank 100l
ha heat transfer coefficient 7 × 105J/min ·K
a0 preexponential factor 7.2 × 1010min−1

E
R

activation energy 1 × 104K
(−4H) heat of reaction 2 × 105cal/mol
ρ1, ρc liquid densities 1 × 103g/l
Cp, Cpc heat capacities 1cal/g ·K

a1 = (−4H)a0

ρ1Cp
= 1.44 × 1013 a2 = ha

ρcCpc
= 6.987 × 102 a3 = ρcCpc

ρ1CpV
= 0.01

Table 2.1: Nomenclature List (Non-affine CSTR System)

y = x1 (2.47)

The control objective is to design a controller u such that the output y follows a

desired signal yd.

Given the parameters listed in Table 2.1 and the irreversible exothermic property of

the chemical process, the operating condition of the CSTR system are restricted to

Ωx =
{

(x1, x2, u)
∣

∣

∣
0.02 < x1 < 0.8, 350 ≤ x2 < Tmax, 0 ≤ u ≤ umax

}

(2.48)

where the constants Tmax and umax are the maximum values of the coolant flow rate

and the tank temperature, respectively.

Discretized System Model: Generally speaking, the exact discretization of nonlinear

continuous dynamics is based on the Lie derivatives and leads to an infinite series

representation [134]. In fact, the exact discretization of a continuous system must

reproduce the continuous-time solution at the sampling instants, when the initial

states are equal. It is shown in [135] that the exact discretization is given by the Lie-

series. The exact discretization is an infinite power series in the input u and sampling

time T that will converge if the input signal u is bounded and the sampling period

T is sufficiently small. Various approximate discretization techniques use truncated

versions of the exact series. In this chapter, first order Taylor expansion is used to

approximate the derivative of x1 and x2, by discarding the high order error items,
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the dynamic properties of the continuous CSTR system (2.47) can be approximate

by the following discrete-time system

x1(k + 1) = x1(k) + ẋ1(k)T (2.49)

x2(k + 1) = x2(k) + ẋ2(k)T (2.50)

y(k) = x1(k) (2.51)

where T is the sampling period and k represents kT , x1(k), x2(k) stand for corre-

sponding state variables at sampling instants of continuous system (2.47) and

ẋ1(k) = 1 − x1(k) − a0x1(k)e
− 104

x2(k) (2.52)

ẋ2(k) = 350 − x2(k) + a1x1(k)e
− 104

x2(k) + a3u(k)(1 − e
− a2

u(k) )(350 − x2(k))(2.53)

Substitute equation (2.52) into (2.49), we obtain

x2(k) = − 104

ln −x1(k+1)+(1−T )x1(k)+T

a0Tx1(k)

= − 104

ln −y(k+1)+(1−T )y(k)+T

a0Ty(k)

, f1(y(k + 1), y(k)) (2.54)

Thus

x2(k − 1) = f1(y(k), y(k− 1)) (2.55)

Furthermore, noticing x2(k + 1) = x2(k) + ẋ2(k)T and equations (2.53) and (2.55),

we obtain

x2(k) = x2(k − 1) + ẋ2(k − 1)T

= f1(y(k), y(k− 1)) +
[

350 − f1(y(k), y(k− 1)) + a1y(k − 1)e
− 104

f1(y(k),y(k−1))

+a3u(k − 1)(1 − e−
a2

u(k−1) )(350 − f1(y(k), y(k− 1)))
]

T

, f2(y(k), y(k− 1), u(k − 1))

Noticing x1(k + 1) = x1(k) + ẋ1(k)T and equation (2.52), we obtain

x1(k + 1) = y(k) +

[

1 − y(k) − a0y(k)e
− 104

f2(y(k),y(k−1),u(k−1))

]

T

, f3(y(k), y(k− 1), u(k − 1)) (2.56)
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From equation (2.53), we obtain

x2(k + 1) = x2(k) + ẋ2(k)T

= f2(y(k), y(k− 1), u(k − 1)) +
[

350 − f2(y(k), y(k− 1), u(k − 1))

+a1y(k)e
− 104

f2(y(k),y(k−1),u(k−1))

+a3u(k)(1 − e
− a2

u(k) )(350 − f2(y(k), y(k− 1), u(k − 1)))
]

T

, f4(y(k), y(k− 1), u(k − 1), u(k)) (2.57)

Finally, combining equations (2.56) and (2.57), we have

y(k + 2) = x1(k + 2) = x1(k + 1) + ẋ1(k + 1)T

= f3(y(k), y(k− 1), u(k − 1)) +
[

1 − x1(k + 1) − a0x1(k + 1)e
− 104

x2(k+1)

]

T

= f3(y(k), y(k− 1), u(k − 1)) +
[

1 − f3(y(k), y(k− 1), u(k − 1))

−a0f3(y(k), y(k− 1), u(k − 1))e
− 104

f4(y(k),y(k−1),u(k−1),u(k))

]

T

, f0(y(k), y(k− 1), u(k), u(k− 1))

If the sampling time T is sufficient small, this approximation is reasonable. Then the

CSTR system can be transformed into the above τ -step ahead input-output model [95]

(here τ = 2). Consider the modelling error and disturbances, we have the following

expression

y(k + 2) = f(y(k), y(k− 1), u(k − 1), d(k + 1), d(k), u(k))

= f(ȳk, ūk−1, d̄k+τ−1, u(k)) (2.58)

where ȳk = [y(k), y(k − 1)]T , ūk−1 = [u(k − 1)]T and d̄k+1 = [d(k + 1), d(k)]T . The

sequence {d(k)} represents modelling error and disturbances.

Remark 2.14 Usually the system description is in state space, in order to get the

τ -step ahead input-output discrete-time model, iteration transform should be used. In

the above procedure, we directly transform state space model to input-output τ -step

ahead model. In Section 2.6.2, different transform method is used. Diffeomorphism

is introduced to formulate the procedure.
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Remark 2.15 For stable systems, the stability does not depend on the sampling in-

terval, however, to ensure good closed-loop performance, the sampling interval should

be small enough to capture adequately the dynamics of the process, yet large enough to

permit the online computations necessary for implementation. Large sampling inter-

val can result in ringing (excessive oscillations) between sample points. An example

of this phenomenon is provided by Garcia and Morari using a linear system in [136].

In fact, system (2.58) is just a special case of system (2.1), NARMAX model. There-

fore, we can use the MNN control scheme to control this class of CSTR systems.

Numerical Simulation: For the non-affine system (2.46), it is verified in [50] that the

control gain of the CSTR system is lower bounded by a positive constant. Therefore,

the existence of the IDFC is guaranteed. The system initial value is x(0) = [0.1, 440]T .

Number of neurons used is l = 40. Neural network weights Ŵ (0) = 0 and V̂ (0) = 0.

Γw = 0.1I and Γv = 0.15I.

Simulation results are shown in Figures 2.9-2.11. It can be seen from the simulation

results, in Figure 2.9, the system output concentration follows the desired trajectory-

step changes at the nominal operating point (x1 = 0.1 ± 0.02). Figure 2.10 shows

that the MNN weight vectors norm are bounded. Figure 2.11 shows that the actual

control input u varies around the nominal operating point.

2.6.2 Affine CSTR System

Continuous System Description: To show the existence of the IDFC controller, an

affine CSTR system is studied in this section. As a special kind of non-affine system,

for affine system, the IDFC control can be expressed explicitly. Consider an irre-

versible exothermic reaction A→B, carried out in a perfectly mixed CSTR as shown

in Figure 2.2 [137].

Taking into account that the inlet flow rate F0 is equal to the outlet flow rate F , then
dV
dt

= 0, the energy balances on the reactor and cooling jacket yield:

V
dCA

dt
= F0(CA0 − CA) − V kCA
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PSfrag replacements
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Figure 2.2: Exothermic Reaction in a CSTR

ρCpV
dT

dt
= ρCpF0(T0 − T ) − λV kCA − UA(T − Tj) (2.59)

where the variables are detailed in Table 2.2. The dynamics of non-dimensional heat

and mass balances are given by [138]:

ẋ1 = −x1 +Da(1 − x1)e
x2

1+
x2
γ

ẋ2 = −x2 +BDa(1 − x1)e
x2

1+
x2
γ − β(x2 − u) + d (2.60)

The term d is added to represent an unmeasured load disturbance.

Discretized System Model: By using this affine CSTR system, the procedure of how

to convert this system to discrete system is as follows. Firstly, using Lie derivative,

define diffeomorphism

ξ1 = x1

ξ2 = −x1 +Da(1 − x1)e
x2

1+
x2
γ

Thus x1 = ξ1, ẋ1 = ξ2 and

x2 =
γ ln ξ1+ξ2

Da(1−ξ1)

γ − ln ξ1+ξ2
Da(1−ξ1)

(2.61)
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Parameter Description
A heat transfer surface

B dimensionless heat of reaction B = −4HCA0
γ

CpT0

CA reactant concentration
CA0 feed concentration of reactant
Cp heat capacity

Da Damkohler Number Da = V k0e−γ

Qf

E activation energy
4H heat of reaction
k0 reaction rate constant
Qf mass feed flow rate
R ideal gas constant
Tj coolant temperature
T feed temperature
T0 nominal feed temperature
U overall hear transfer coefficient
V reactor volume

x1 dimensionless concentration x1 =
CA0

−CA

CA0

x2 dimensionless temperature x2 = (T−T0)γ
T0

u dimensionless coolant temperature u =
(Tj−T0)γ

T0

β dimensionless cooling rate β = UA
QfCp

γ dimensionless activation energy γ = E
RT0

Table 2.2: Nomenclature List (Affine CSTR System)

Hence,

ẋ2 = −
γ ln ξ1+ξ2

Da(1−ξ1)

γ − ln ξ1+ξ2
Da(1−ξ1)

+B(ξ1 + ξ2) − β
γ ln ξ1+ξ2

Da(1−ξ1)

γ − ln ξ1+ξ2
Da(1−ξ1)

+ βu (2.62)

Since

ξ̇2 = −ξ2 +Da(1 − ξ1)e
1

1
x2

+ 1
γ

1

(1 + x2

γ
)2
ẋ2 −Daξ2e

1
1

x2
+ 1

γ (2.63)

Substituting (2.61) and (2.62) into equation (2.63), the CSTR system can be trans-

formed to

ξ̇1 = ξ2
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ξ̇2 = f1(ξ1, ξ2) + fu(ξ1, ξ2)u

y = ξ1

where

f1(ξ1, ξ2) =
ξ1 + ξ2

[

1 +
ln

ξ1+ξ2
Da(1−ξ1)

γ−ln
ξ1+ξ2

Da(1−ξ1)

]2

[

−(1 + β)
γ ln ξ1+ξ2

Da(1−ξ1)

γ − ln ξ1+ξ2
Da(1−ξ1)

+B(ξ1 + ξ2)

]

−ξ2
ξ1 + ξ2
1 − ξ1

− ξ2

fu(ξ1, ξ2) =
ξ1 + ξ2

[

1 +
ln

ξ1+ξ2
Da(1−ξ1)

γ−ln
ξ1+ξ2

Da(1−ξ1)

]2β

Then by using sampling time T

ξ1(k + 1) = ξ1(k) + ξ̇1(k)T

= ξ1(k) + ξ2(k)T (2.64)

ξ2(k + 1) = ξ2(k) + ξ̇2(k)T

= ξ2(k) + f1(ξ1(k), ξ2(k))T + fu(ξ1(k), ξ2(k))u(k)T (2.65)

y(k) = ξ1(k) (2.66)

Thus, noticing equations (2.64), (2.65) and (2.66), we have

ξ1(k) = y(k)

ξ2(k) = ξ2(k − 1) + f1(ξ1(k − 1), ξ2(k − 1))T + fu(ξ1(k − 1), ξ2(k − 1))u(k − 1)T

=
y(k) − y(k − 1)

T
+ f1

(

y(k − 1),
y(k) − y(k − 1)

T

)

T

+fu

(

y(k − 1),
y(k) − y(k − 1)

T

)

u(k − 1)T

, f2(y(k), y(k− 1), u(k − 1))

Therefore

y(k + 2) = ξ1(k + 1) + ξ2(k + 1)T

= ξ1(k) + ξ2(k)T + ξ2(k + 1)T

= y(k) + ξ2(k)T + ξ2(k)T + f1(ξ1(k), ξ2(k))T
2 + fu(ξ1(k), ξ2(k))T

2u(k)
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= y(k) + 2f2(y(k), y(k− 1), u(k − 1))T

+f1(y(k), f2(y(k), y(k− 1), u(k − 1)))T 2

+fu(y(k), f2(y(k), y(k− 1), u(k − 1)))T 2u(k)

= f3(y(k), y(k− 1), u(k − 1))

+fu(y(k), f2(y(k), y(k− 1), u(k − 1)))T 2u(k)

where

f3(y(k), y(k− 1), u(k − 1)) = y(k) + 2f2(y(k), y(k− 1), u(k − 1))T

+f1(y(k), f2(y(k), y(k− 1), u(k − 1)))T 2

Thus, for this affine CSTR system, the IDFC control can be expressed explicitly

u∗(k) =
yd(k + τ) − f3(y(k), y(k− 1), u(k − 1))

fu(y(k), f2(y(k), y(k − 1), u(k − 1)))T 2
(2.67)

The same as in Section 2.6.1, the MNN control scheme proposed is used to control

this class of discretized affine CSTR System.

Numerical Simulation: Simulation parameters are B = 21.5, γ = 28.5, Da = 0.036

and β = 25.2. The definition of these parameters are given in Table 2.2. The

concentration of reactant A, x1, is to be controlled by manipulating the temperature

of the coolant, u.

For this affine CSTR system, it is easy to verify that the control gain is lower bounded

by a positive constant. Therefore, the existence of the desired feedback control is

guaranteed. System initial value is x(0) = [0.4, 3.3]T . Number of neurons used is

l = 10. Neural network weights Ŵ (0) = 0 and V̂ (0) = 0. Γw = 0.1I and Γv = 0.1I.

The control objective is to manipulate the coolant temperature u to control the

concentration x1 tracking set-point step change. The nominal operating point of the

CSTR was at x1 = 0.4126 ± 0.02, x2 = 3.28 and u = 3.04.

Simulation results are shown in Figures 2.12-2.14. It can be seen from the simulation

results, in Figure 2.12, the system output concentration follows the desired trajectory-

step changes at the nominal operating point (x1 = 0.4126). Figure 2.13 shows that

the MNN weight vector norms are bounded. Figure 2.14 states that the actual control
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input u varies around the nominal operating point (u=3.04). Furthermore in Figure

2.14, the dash dotted line indicates the ideal implicit desired feedback control u∗(k) in

(2.67). It is obvious that the developed discrete-time MNN controller can emulate the

ideal IDFC controller very accurately. This shows the effectiveness of the developed

method.

Remark 2.16 The procedure of how to convert a continuous system into a τ -step

ahead discrete-time system shows in Section 2.6.2. It should be noticed that the sam-

pling time should be small enough to guarantee the same dynamic property of the

continuous and discrete system. The reason that we use diffeomorphism first is that,

by using this conversion, we can easily get the relationship between the two states

ξ1(k) and ξ2(k) (equation (2.64) ξ2(k) = ξ1(k+1)−ξ1(k)
T

= y(k+1)−y(k)
T

), which will make

the following process easier.

Remark 2.17 In practical applications, the high oscillation of the output is an un-

desirable behavior and should be reduced. By training the neural network weights, the

high oscillation can be reduced. As clearly indicated in Figure 2.9, by using the neural

network weights at the end of the 1st time run as the initial value of the 2nd time

run, the oscillation peak was reduced, though was not completely eliminated.

2.7 Conclusion

In this chapter, adaptive NN control scheme was investigated for a class of non-

affine nonlinear discrete-time systems in NARMAX form. Based on implicit function

theorem, RBF neural networks and MNNs were used respectively as the emulators

to approximate the IDFC controller. All MNN weights were tuned online with no

prior training needed. Discontinuous projections with fictitious bounds were used

in the MNN weights tuning laws to guarantee that all MNN weights remain in a

prescribed range. The stability of the closed-loop system was proved rigorously by

using Lyapunov theorem and the simulation results show the effectiveness of the

developed control method.
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Figure 2.5: RBF Control - Weight Norm ‖Ŵ‖2
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Figure 2.7: MNN Control - Input Trajectory
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Figure 2.8: MNN Control - Weight Norm ‖Ŵ‖2 and ‖V̂ ‖F
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Figure 2.10: Non-affine CSTR - Weight Norm ‖Ŵ‖ and ‖V̂ ‖F
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Chapter 3

NN Control of MIMO Systems

with Triangular Form Inputs

In this chapter, adaptive NN control schemes are investigated for MIMO nonlinear

discrete-time systems in state space representation. The chapter is organized as fol-

lows. Firstly, for a class of MIMO discrete-time nonlinear systems with triangular

form inputs and disturbances, an effective state feedback control method is proposed

in Section 3.1. Then, for a class of similar MIMO discrete-time systems without

disturbances, an output feedback control scheme is investigated in Section 3.2. Con-

clusions are made in Section 3.3.

3.1 State Feedback Control

For nonlinear MIMO discrete-time systems, due to the couplings among subsystems,

the various inputs and the various outputs, the control problem is more complex and

few results are available in the literature relative to that in continuous time domain.

Besides the difficulty of input coupling in continuous time MIMO system, non-causal

problem [115] is another difficulty that is probably to be met when construct stable

adaptive controllers for discrete-time systems. Furthermore, for neural network based

MIMO nonlinear discrete-time system control, how to tune the NN weights is still a

difficult problem, especially when there is unknown strong interconnections between
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subsystems. Due to these difficulties, researches on discrete-time nonlinear MIMO

system control is not only challenging but also of academic interest. In [139] and [111],

two layer neural networks and multi-layer neural networks were used respectively to

construct stable controls for a special class of discrete-time nonlinear MIMO systems.

Improved weight tuning algorithms were derived, which removes the need of persistent

exciting (PE) condition for parameter convergence [8]. Though the methods proposed

are effective, they are only applicable to a special class of discrete-time nonlinear

MIMO systems, which can be represented in the form ofX(k+1) = F (X(k))+GU(k),

with G being a diagonal constant matrix. This is a very special class of discrete-time

MIMO nonlinear systems without any interconnections between subsystems. Another

effective neural network control scheme was developed for a class of discrete-time

nonlinear MIMO systems based on input-output model in [140]. The MIMO system

studied is in NARMAX model [101] and only past input and output data are used to

construct stable NN control.

In this section, we are considering a class of more challenging discrete-time MIMO

nonlinear system in state space description. Comparing with the systems studied in

[139, 111], the control inputs of the system studied in this section are in triangular

form that can only be represented as X(k+1) = F (X(k), U(k)) instead of X(k+1) =

F (X(k))+G(X(k))U(k). Therefore, feedback linearization method is not applicable.

In [115], an effective HONN control scheme for a class of strict feedback discrete-time

nonlinear SISO system was proposed. Motivated by the design procedure in [115], we

investigate a class of MIMO nonlinear discrete-time systems with unknown bounded

disturbances here, which extend the results obtained in [115]. There are n subsystems

in the MIMO system under study, with each subsystem in strict feedback form. States

interconnections between different subsystems only appear in the last equations of

each subsystems, where the corresponding controls also appear. By transforming the

MIMO system into a Sequential Decrease Cascade Form, the non-causal problem is

avoided.

The section is organized as follows. System dynamics and some stability notions

are proposed in Section 3.1.1. The causality analysis and system transformation are

proposed in Section 3.1.2. Controller design, neural network weight update law and

stability analysis are studied in Section 3.1.3 via backstepping. Simulation results are
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given in Section 3.1.4 to show the effectiveness of the proposed control scheme.

3.1.1 MIMO System Dynamics

Considering the following n inputs n outputs discrete-time MIMO nonlinear systems

Σ :















































































































Σ1 :















x1,i1(k + 1) = f1,i1(x̄1,i1(k)) + g1,i1(x̄1,i1(k))x1,i1+1(k)

1 ≤ i1 ≤ n1 − 1

x1,n1(k + 1) = f1,n1(X(k)) + g1,n1(X(k))u1(k) + d1(k)
...

Σj :















xj,ij(k + 1) = fj,ij(x̄j,ij(k)) + gj,ij(x̄j,ij (k))xj,ij+1(k)

1 ≤ ij ≤ nj − 1

xj,nj
(k + 1) = fj,nj

(X(k), ūj−1(k)) + gj,nj
(X(k))uj(k) + dj(k)

...

Σn :















xn,in(k + 1) = fn,in(x̄n,in(k)) + gn,in(x̄n,in(k))xn,in+1(k)

1 ≤ in ≤ nn − 1

xn,nn(k + 1) = fn,nn(X(k), ūn−1(k)) + gn,nn(X(k))un(k) + dn(k)

yj(k)= xj,1(k), 1 ≤ j ≤ n

(3.1)

where

xj(k) = [xj,1(k), xj,2(k), . . . , xj,nj
(k)]T ∈ Rnj

X(k) = [xT
1 (k), xT

2 (k), . . . , xT
n (k)]T

u(k) = [u1(k), . . . , un(k)]
T ∈ Rn

y(k) = [y1(k), . . . , yn(k)]
T ∈ Rn

are the state variables, the inputs and outputs respectively, d(k) = [d1(k), . . . , dn(k)]
T

is the bounded disturbance vector; ūj−1(k) = [u1(k), · · · , uj−1(k)] (j = 2, . . . , n);

x̄j,ij (k) = [xj,1(k), . . . , xj,ij(k)]
T ∈ Rij denotes the first ij states of the j-th subsystem;

fj,ij(·) and gj,ij(·) are smooth nonlinear functions; and j, ij, and nj are positive

constants. It can be seen that each subsystem of (3.1) is in strict feedback form,

which makes the use of backstepping design technique possible. Furthermore, noting

that the control inputs of the whole system are in triangular form, then we may use

backstepping in a nested manner to design stable controls for this class of systems.
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Remark 3.1 It should be noted that, different from the triangular form inputs MIMO

nonlinear discrete-time system studied in [139, 111], whose inputs can be written into

feedback linearizable form

X(k + 1) = F (X(k)) +G(X(k))U(k) (3.2)

U(k) = [u1(k), . . . , un(k)]
T

system (3.1) studied in this section cannot be written into the form of (3.2), due to

the triangular form inputs. Instead, it is in the following form

X(k + 1) = F (X(k), Ūn−1(k)) +G(X(k))U(k) (3.3)

U(k) = [u1(k), . . . , un(k)]T , Ūn−1(k) = [u1(k), . . . , un−1(k)]
T

It is obvious that feedback linearization method is not applicable for system (3.3). To

construct stable controls for this class of system which is not feedback linearizable is

more challenging.

In order to use backstepping design technique, it is required that the gains of each

virtual control are not equal to zero. Therefore, the following assumption should be

made.

Assumption 3.1 The sign of gj,ij(·) (j = 1, . . . , n, ij = 1, . . . , nj), are known and

there exist two constants g
j,ij
, ḡj,ij > 0 such that g

j,ij
≤ |gj,ij(·)| ≤ ḡj,ij , ∀X(k) ∈ Ω ⊂

R
∑n

i=1 ni.

Without losing generality, we shall assume that gj,ij(·) is positive in this section.

The control objective is to design control input u(k) = [u1(k), . . . , un(k)]
T to make

the system output y(k) = [y1(k), . . . , yn(k)]
T follow a known and bounded trajectory

yd(k) = [yd1(k), . . . , ydn(k)]T . Thus, the following assumption should be made.

Assumption 3.2 The desired trajectory yd(k) ∈ Ωy, ∀k > 0 is smooth and known,

where Ωy , {χ
∣

∣

∣
χ = y(k)}.

In [141] and [47], the definition of Uniform Ultimate Boundedness (UUB) for contin-

uous time system has been given. A standard Lyapunov theorem extension proposed

in [142] provided a method on how to judge the UUB stability. For completeness, it

is cited here.
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Theorem 3.1 Let V (x) be a Lyapunov function of a continuous time system that

satisfies the following properties:

γ1(‖x‖) ≤ V (x) ≤ γ2(‖x‖)
V̇ (x) ≤ −γ3(‖x‖) + γ3(η)

where η is a positive constant, γ1(·) and γ2(·) are continuous strictly increasing func-

tions, and γ3(·) is a continuous, nondecreasing function. Thus, if

V̇ (x) < 0, for ‖x‖ > η

then x(t) is uniformly ultimately bounded. In addition, if x(0) = 0, x(t) is uniformly

bounded [142].

Similar to the definition of UUB for continuous time system, its counterpart in

discrete-time system is as follows.

Definition 3.1 The solution of (3.1) is SGUUB, if for any Ω, a compact subset of

R
∑n

i=1 ni and all X(k0) ∈ Ω, there exist an ε > 0, and a number N(ε,X(k0)) such that

‖X(k)‖ < ε for all k ≥ k0 + N . In other words, the solution of (3.1) is said to be

SGUUB if, for any a priori given (arbitrarily large) bounded set Ω and any a priori

given (arbitrarily small) set Ω0, which contains (0, 0) as an interior point, there exist

a control u, such that every trajectory of the closed-loop system starting from Ω enters

the set Ω0 in a finite time and remains in it thereafter [141].

Lemma 3.1 Let V (x(k)) be a Lyapunov function of a discrete-time system that sat-

isfies the following properties:

γ1(‖x(k)‖) ≤ V (x(k)) ≤ γ2(‖x(k)‖)
V (x(k + 1)) − V (x(k)) = ∆V (x(k)) ≤ −γ3(‖x(k)‖) + γ3(η) (3.4)

where η is a positive constant, γ1(·) and γ2(·) are strictly increasing functions, and

γ3(·) is a continuous, non decreasing function. Thus, if

∆V (x(k)) < 0, for ‖x(k)‖ > η

then x(k) is uniformly ultimately bounded on a compact set, i.e., there exists a time

instant kT , such that ‖x(k)‖ < η, ∀ k > kT .
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Remark 3.2 It should be noted that, the operator ‖ · ‖ in Lemma 3.1 can be any

positive defined mono-increasing function or norm.

3.1.2 Causality Analysis and System Transformation

In this section, the same as in [115], coordinate transform is used to avoid the non-

causal problem, which often appears in discrete-time nonlinear system control. We

have known that each subsystem of system (3.1) is in strict feedback form. It seems

that backstepping technique can be used to construct stable control. However, dif-

ferent from that in continuous time systems, for discrete-time systems, the causality

contradiction [115] is one of the major problems that we will encounter when we con-

struct controls for strict-feedback nonlinear system through backstepping, as detailed

in the following.

Consider the first subsystem in system (3.1)

Σ1 :



































x1,1(k + 1) = f1,1(x̄1,1(k)) + g1,1(x̄1,1(k))x1,2(k)

x1,2(k + 1) = f1,2(x̄1,2(k)) + g1,2(x̄1,2(k))x1,3(k)
...

x1,n1−1(k + 1) = f1,n1−1(x̄1,n1−1(k)) + g1,n1−1(x̄1,n1−1(k))x1,n1(k)

x1,n1(k + 1) = f1,n1(X(k)) + g1,n1(X(k))u1(k) + d1(k)

(3.5)

If we design the ideal fictitious control for the first equation in (3.5) as follows:

α∗
1,2(k) = − 1

g1,1(x̄1,1(k))
[f1,1(x̄1,1(k)) − yd1(k + 1)]

the first equation in (3.5) can be stabilized. Similarly, we can construct another ideal

fictitious control

α∗
1,3(k) = − 1

g1,2(x̄1,2(k))

[

f1,2(x̄1,2(k)) − α∗
1,2(k + 1)

]

(3.6)

to stabilize the second equation in (3.5). But unfortunately, α∗
1,2(k + 1) in (3.6) is

a fictitious control of the future. This means that the fictitious control α∗
1,3(k) is

infeasible in practice. If we continue the process to construct the final desired control

u∗1(k), we end up with a u∗1(k) that is infeasible due to unavailable future information.
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However, the above problem can be avoided if we transform the system equation into

a special form which is suitable for backstepping design. The basic idea is as follows.

If we consider the original system description as a one-step ahead predictor, and then

we can transform the one-step ahead predictor into an equivalent maximum n1-step

ahead predictor which can predict the future states, x1,1(k+n1), x1,2(k+n1 − 1), . . .,

x1,n1(k+1), then the causality contradiction is avoided when controller is constructed

based on the maximum n1-step ahead predictor by backstepping. For the other n− 1

subsystems, this transformation is also applicable. The transformation procedure for

the j-th (1 ≤ j ≤ nj) subsystem is detailed as follows.

Consider the ij-th equation in j-th subsystem of system (3.1)

xj,ij(k + 1) = fj,ij(x̄j,ij (k)) + gj,ij(x̄j,ij(k))xj,ij+1(k)

1 ≤ j ≤ n and 1 ≤ ij ≤ nj − 1

It can be easily obtained that xj,ij(k + 1) is a function of x̄j,ij+1(k). For convenience

of analysis, we define

xj,ij(k + 1) , f
nj

j,ij
(x̄j,ij+1(k)) (3.7)

with

f
nj

j,ij
(x̄j,ij+1(k)) = fj,ij(x̄j,ij(k)) + gj,ij(x̄j,ij(k))xj,ij+1(k)

Thus, we have

x̄j,ij(k + 1)=









xj,1(k + 1)
...

xj,ij(k + 1)









=









f
nj

j,1(x̄j,2(k))
...

f
nj

j,ij
(x̄j,ij+1(k))









, 1 ≤ j ≤ n, 1 ≤ ij ≤ nj − 1

It can be seen that x̄j,ij(k + 1) is a function of x̄j,ij+1(k). Define function vector

x̄j,ij(k + 1) , F
nj

j,ij
(x̄j,ij+1(k)), ij = 1, . . . , nj − 1 (3.8)

After one more step, the first nj − 1 equations of each subsystem in (3.1) can be

expressed as














xj,ij (k + 2) = fj,ij(x̄j,ij(k + 1)) + gj,ij(x̄j,ij(k + 1))xj,ij+1(k + 1)

ij = 1, 2, . . . , nj − 2

xj,nj−1(k + 2) = fj,nj−1(x̄j,nj−1(k + 1)) + gj,nj−1(x̄j,nj−1(k + 1))xj,nj
(k + 1)

(3.9)

1 ≤ j ≤ n
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Substituting (3.7) and (3.8) into equation (3.9), we can obtain


































xj,ij (k + 2) = fj,ij(F
nj

j,ij
(x̄j,ij+1(k))) + gj,ij(F

nj

j,ij
(x̄j,ij+1(k)))f

nj

j,ij+1(x̄j,ij+2(k))

, f
nj−1
j,ij

(x̄j,ij+2(k))

ij = 1, 2, . . . , nj − 2

xj,nj−1(k + 2) = fj,nj−1(F
nj

j,nj−1(x̄j,nj
(k))) + gj,nj−1(F

nj

j,nj−1(x̄j,nj
(k)))xj,nj

(k + 1)

, Fj,nj−1(x̄j,nj
(k)) +Gj,nj−1(x̄j,nj

(k))xj,nj
(k + 1)

(3.10)

1 ≤ j ≤ n

where

f
nj−1
j,ij

(x̄j,ij+2(k)) = fj,ij(F
nj

j,ij
(x̄j,ij+1(k))) + gj,ij(F

nj

j,ij
(x̄j,ij+1(k)))f

nj

j,ij+1(x̄j,ij+2(k))

Fj,nj−1(x̄j,nj
(k)) = fj,nj−1(F

nj

j,nj−1(x̄j,nj
(k)))

Gj,nj−1(x̄j,nj
(k)) = gj,nj−1(F

nj

j,nj−1(x̄j,nj
(k)))

Following the same procedure, the first (nj − 2) equations in (3.10) of the j-th sub-

system of system (3.1) can be described by

x̄j,ij(k + 2) =









xj,1(k + 2)
...

xj,ij(k + 2)









=









f
nj−1
j,1 (x̄j,3(k))

...

f
nj−1
j,ij

(x̄j,ij+2(k))









, 1 ≤ ij ≤ nj − 2

which is a function of x̄j,ij+2(k) and is denoted as

x̄j,ij(k + 2) = F
nj−1
j,ij

(x̄j,ij+2(k)), ij = 1, . . . , nj − 2

Continue the above procedure recursively, after (nj − 2) steps, the first two equations

in the j-th subsystem of (3.1) can be written as

{

xj,1(k + nj − 1) = f 2
j,1(x̄j,nj

(k))

xj,2(k + nj − 1) = Fj,2(x̄j,nj
(k)) +Gj,2(x̄j,nj

(k))xj,3(k + nj − 2)
(3.11)

where

f 2
j,1(x̄j,nj

(k)) = fj,1(F
3
j,1(x̄j,nj−1(k))) + gj,1(F

3
j,1(x̄j,nj−1(k)))f

3
j,2(x̄j,nj

(k))

Fj,2(x̄j,nj
(k)) = fj,2(F

3
j,2(x̄j,nj

(k)))

Gj,2(x̄j,nj
(k)) = gj,2(F

3
j,2(x̄j,nj

(k)))
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After one more step, the first equations in the j-th subsystem of equation (3.1) be-

comes

xj,1(k + nj) = Fj,1(x̄j,nj
(k)) +Gj,1(x̄j,nj

(k))xj,2(k + nj − 1) (3.12)

where

Fj,1(x̄j,nj
(k)) = fj,1(f

2
j,1(x̄j,nj

(k)))

Gj,1(x̄j,nj
(k)) = gj,1(f

2
j,1(x̄j,nj

(k)))

Since all the equations from (3.9) to (3.12) are derived from the original system, the

j-th subsystem of original system (3.1) is equivalent to



































xj,1(k + nj) = Fj,1(x̄j,nj
(k)) +Gj,1(x̄j,nj

(k))xj,2(k + nj − 1)
...

xj,nj−1(k + 2) = Fj,nj−1(x̄j,nj
(k)) +Gj,nj−1(x̄j,nj

(k))xj,nj
(k + 1)

xj,nj
(k + 1) = fj,nj

(X, ūj−1(k)) + gj,nj
(X)uj(k) + dj(k)

yj(k) = xj,1(k)

(3.13)

Definition 3.2 The form in (3.13) is defined as Sequential Decrease Cascade Form

(SDCF).

For convenience of analysis, define (1 ≤ j ≤ n and 1 ≤ ij ≤ nj − 1)

Fj,ij(k) , Fj,ij(x̄j,nj
(k)), Gj,ij(k) , Gj,ij(x̄j,nj

(k))

and

fj,nj
(k) , fj,nj

(X, ūj−1(k)), gj,nj
(k) , gj,nj

(X)

then system (3.13) can be written as



































xj,1(k + nj) = Fj,1(k) +Gj,1(k)xj,2(k + nj − 1)
...

xj,nj−1(k + 2) = Fj,nj−1(k) +Gj,nj−1(k)xj,nj
(k + 1)

xj,nj
(k + 1) = fj,nj

(k) + gj,nj
(k)uj(k) + dj(k)

yj(k) = xj,1(k)

(3.14)
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Now, we can define the desired virtual controls and the ideal practical controls for

each subsystem as follows


















































α∗
j,2(k) , xj,2(k + nj − 1) = 1

Gj,1(k)

[

ydj
(k + nj) − Fj,1(k)

]

α∗
j,3(k) , xj,3(k + nj − 2) = 1

Gj,2(k)

[

α∗
j,2(k) − Fj,2(k)

]

...

α∗
j,nj

(k) , xj,nj
(k + 1) = 1

Gj,nj−1(k)

[

α∗
j,nj−1(k) − Fj,nj−1(k)

]

u∗j(k) , 1
gj,nj

(k)

[

α∗
j,nj

(k) − fj,nj
(k)

]

yj(k) = xj,1(k)

(3.15)

which can stabilize the system in each step without the causality problem. (3.15) can

be further written as














































α∗
j,2(k) , ϕj,1(x̄j,nj

(k), ydj
(k + nj))

α∗
j,3(k) , ϕj,2(x̄j,nj

(k), α∗
j,2(k))

...

α∗
j,nj

(k) , ϕj,nj−1(x̄j,nj
(k), α∗

j,nj−1(k))

u∗j(k) , ϕj,nj
(X, ūj−1(k), α

∗
j,nj

(k))

yj(k) = xj,1(k)

(3.16)

with the ϕj,1(·), . . ., ϕj,nj
(·), (1 ≤ j ≤ n) being nonlinear functions. It is obvious

that the desired virtual controls α∗
j,2(k), . . ., α

∗
j,nj

(k) and the ideal control u∗j(k) are

all applicable and will drive the output of the j-th subsystem to track ydj
(k + nj)

exactly provided that: (i) the exact system model is known; and (ii) the disturbance

dj(k) = 0. However, in practical applications, usually these two conditions cannot

be satisfied. In the following, neural networks will be used to emulate the desired

virtual controls as well as the desired practical controls when the exact system model

is unknown. By using Lyapunov method, the closed-loop system is also shown to be

SGUUB even in the presence of unknown bounded disturbances.

Detailed design procedure will be described in Section 3.1.3. It should be noted that,

different from the procedure in [115], in this section, embedded backstepping is used

to construct the neural network controllers due to the complexity structure of the

MIMO system. The procedure can be divided into two steps:

• Firstly, for each subsystem, by using backstepping design, the first nj − 1 (1 ≤
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j < n) equations can be stabilized if the corresponding virtual controls are

properly chosen;

• Secondly, by considering the last equations of each subsystem, we can see that

the MIMO system is in strict feedback form relative to the control inputs u1(k),

. . ., un(k). Thus, by embedded using backstepping design, the stability of the

whole closed-loop system can be guaranteed.

In the next, a simple example will be given to illustrate the detailed transformation

procedure described above. Furthermore, the desired controls are also illustrated,

which will be specifically discussed in Section 3.1.3.

Illustrative Example: To illustrate the transformation procedure, let us look at the

following simple example (n = τ = 2):

Σ :



































Σ1 :

{

x1,1(k + 1) = x1,1(k) + x1,2(k)

x1,2(k + 1) = x1,1(k)x2,1(k) + u1(k)

Σ2 :

{

x2,1(k + 1) = x2,1(k) + x2,2(k)

x2,2(k + 1) = x1,2(k)x2,2(k)u
2
1(k) + u2(k)

yj(k)= xj,1(k), 1 ≤ j ≤ 2

(3.17)

It can be easily obtained that the SDCF form of system (3.17) is

Σ :



































Σ1 :

{

x1,1(k + 2) = [x1,1(k) + x1,2(k)] + x1,2(k + 1)

x1,2(k + 1) = x1,1(k)x2,1(k) + u1(k)

Σ2 :

{

x2,1(k + 2) = [x2,1(k) + x2,2(k)] + x2,2(k + 1)

x2,2(k + 1) = x1,2(k)x2,2(k)u
2
1(k) + u2(k)

yj(k)= xj,1(k), 1 ≤ j ≤ 2

(3.18)

It can be further written as

Σ :



































Σ1 :

{

x1,1(k + 2) = F1,1(k) +G1,1(k)x1,2(k + 1)

x1,2(k + 1) = f1,2(k) + g1,2(k)u1(k)

Σ2 :

{

x2,1(k + 2) = F2,1(k) +G2,1(k)x2,2(k + 1)

x2,2(k + 1) = f2,2(k) + g2,2(k)u2(k)

yj(k)= xj,1(k), 1 ≤ j ≤ 2
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with
{

F1,1(k) = x1,1(k) + x1,2(k)

G1,1(k) = 1

{

f1,2(k) = x1,1(k)x2,1(k)

g1,2(k) = 1
{

F2,1(k) = x2,1(k) + x2,2(k)

G2,1(k) = 1

{

f2,2(k) = x1,2(k)x2,2(k)u
2
1(k)

g2,2(k) = 1

Assuming the desired trajectory is yd(k) = [yd1(k), yd2(k)]
T , therefore, the desired

virtual controls and ideal practical controls for system (3.18) can be defined as follows:























α∗
1,2(k) , x1,2(k + 1) = 1

G1,1(k)
[yd1(k + 2) − F1,1(k)]

= yd1(k + 2) − [x1,1(k) + x1,2(k)]

u∗1(k) , 1
g1,2(k)

[

α∗
1,2(k) − f1,2(k)

]

= α∗
1,2(k) − x1,1(k)x2,1(k)























α∗
2,2(k) , x2,2(k + 1) = 1

G2,1(k)
[yd2(k + 2) − F2,1(k)]

= yd2(k + 2) − [x2,1(k) + x2,2(k)]

u∗2(k) , 1
g2,2(k)

[

α∗
2,2(k) − f2,2(k)

]

= α∗
2,2(k) − x1,2(k)x2,2(k)u

∗2
1(k)

Assume system initial conditions are: α∗
1,2(0) = u∗1(0) = 0, α∗

2,2(0) = u∗2(0) = 0,

y1(0) = y1(1) = y1(2) = 0 and y2(0) = y2(1) = y2(2) = 0. The reference trajectory,

yd1(k) and yd2(k), are shown in Table 3.1. Practical control action starts at time

instant k = 1. Table 3.1, Figures 3.1 and 3.2 show the system variation from k = 0

to k = 8.

It can be seen that, for this example, the control action is started from k = 1. The

exact tracking is achieved at k = 3, as what we expected. The exact tracking is

achieved in τ = 2 steps.

3.1.3 Controller Design and Stability Analysis

The closed-loop system structure is shown in Figure 3.3. For each subsystem of system

(3.1), it can be transformed into the form of (3.14). Therefore, we can construct the

controls via embedded using backstepping technique without causality contradiction.
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k 0 1 2 3 4 5 6 7 8

α∗

1,2(k) 0 0.2 0.1 -0.2 -0.2 0.1 0.1 0.1 -0.3
u∗

1(k) 0 0.2 0.1 -0.24 -0.2 0.12 0.09 0.1 -0.3
y1(k) 0 0 0 0.2 0.3 0.1 -0.1 0 0.1

yd1
(k) -0.2 -0.1 0.1 0.2 0.3 0.1 -0.1 0 0.1

α∗

2,2(k) 0 0.2 -0.2 -0.2 0.1 0.2 -0.1 -0.1 -0.1
u∗

2(k) 0 0.2 -0.2004 -0.1988 0.0984 0.2003 -0.1002 -0.0999 -0.0991
y2(k) 0 0 0 0.2 0 -0.2 -0.1 0.1 0

yd2
(k) -0.1 0.1 0.3 0.2 0 -0.2 -0.1 0.1 0

§The numbers with underscores represent system initial conditions. The numbers in bold indicate that
exact tracking is obtained.

Table 3.1: A Simple Example - System Variation
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Figure 3.1: Example: y1 and yd1
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Figure 3.2: Example: y2 and yd2

Choosing the practical virtual controls and practical controls as follows:

αj,ij(k) = Ŵ T
j,ij−1Sj,ij−1(zj,ij−1(k)), ij = 2, . . . , nj

uj(k) = Ŵ T
j,nj

(k)Sj,nj
(zj,nj

(k)) (3.19)

with

zj,1(k) = [x̄T
j,nj

(k), ydj
(k + nj)]

T

zj,ij(k) = [x̄T
j,nj

(k), αj,ij(k)]
T , ij = 2, . . . , nj − 1

zj,nj
(k) = [X, ūj−1(k), αj,nj

(k)]T

where Ŵj,ij denotes the estimation of ideal constant W ∗
j,ij

weight (1 ≤ j ≤ n, 1 ≤
ij ≤ nj), which will be specifically discussed in the proof of Theorem 3.2, and Sj,ij(·)
denotes the hyperbolic tangent function.
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Figure 3.3: State Feedback Control - Control System Structure

The corresponding weights updating laws are chosen as

Ŵj,ij(k + 1) = Ŵj,ij(kij ) − Γj,ij

[

S(zj,ij(kij))ej,ij(k + 1) + σj,ijŴj,ij(kij)
]

(3.20)

kij = k − nj + ij, ij = 1, 2, . . . , nj

where Γj,ij = γj,ijI > 0 is diagonal adaptation gain matrix, γj,ij > 0, σj,ij > 0 are

positive constants and 0 < γj,ijσj,ij < 1. The error vector is defined as ej(k) = [ej,1(k),

ej,2(k), . . . , ej,ij(k), . . ., ej,nj
(k)]T with ej,ij(k) denotes the error of each step defined

as follows:

ej,1(k) = xj,1(k) − yd1(k)

ej,2(k) = xj,2(k) − αj,2(k − nj + 1)
...

ej,nj
(k) = xj,nj

(k) − αj,nj
(k − 1)
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It should be noted that, in the neural network weights update, σ-modification [62] is

used to improve the robustness of the proposed control scheme.

The stability of the closed-loop system is summarized in Theorem 3.2.

Theorem 3.2 Consider the closed-loop nonlinear MIMO system consists of system

(3.1), control (3.19) and adaptive law (3.20), it is semi-globally uniformly ultimately

bounded, and has an equilibrium at [e1,1(k), . . . , en,1(k)]
T = 0 provided that the design

parameters are properly chosen. This guarantees that all the signals include the states

X(k), the control input u(k) and NN weight estimates Ŵj,ij(k) (j = 1, . . . , n, ij =

1, . . . , nj), are all bounded, subsequently,

lim
k→∞

‖y(k) − yd(k)‖ ≤ ε

where ε is a positive number.

Proof: The prove procedure is as follows:

1. For the j-th (1 ≤ j ≤ n) subsystem, use backstepping technique to proof its

stability up to step nj − 1, i.e., to guarantee the UUB stability for the first

nj − 1 equations;

2. For the last equations in each subsystem, noting that the practical control inputs

are in strict feedback form, by embedded using backstepping design technique,

the closed-loop system stability can be guaranteed.

At time instant k, assume that x̄j,nj
(k) ∈ Ω, then we should prove that x̄j,nj

(k+1) ∈ Ω

and uj(k) is bounded by backstepping. Before proceeding, let ki = k − nj + i, i =

1, 2, . . . , nj − 1 for the convenience of description.

Step 1: Considering the tracking error of the j-th subsystem (1 ≤ j ≤ n), ej,1(k) =

xj,1(k) − ydj
(k), noting the first equation in (3.14), we can obtain

ej,1(k + nj) = xj,1(k + nj) − ydj
(k + nj)

= Fj,1(k) +Gj,1(k)xj,2(k + nj − 1) − ydj
(k + nj) (3.21)
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Considering xj,2(k + nj − 1) as the fictitious control for (3.21), it is obviously that

ej,1(k + nj) = 0 if we let

xj,2(k + nj − 1) = α∗
j,2(k)

= − 1

Gj,1(k)
[Fj,1(k) − ydj

(k + nj)] (3.22)

Since Fj,1(k) and Gj,1(k) are unknown, they are not available for constructing the

fictitious control α∗
j,2(k). However, Fj,1(k) and Gj,1(k) are function of system state

x̄j,nj
(k), therefore we can use high order neural networks (HONNs) to approximate

α∗
j,2(k) as follows

α∗
j,2(k) = W ∗T

j,1 Sj,1(zj,1(k)) + εzj,1
(zj,1(k))

zj,1(k) = [x̄T
j,nj

(k), ydj
(k + n)]T ∈ Ωzj1

⊂ Rnj+1 (3.23)

Letting Ŵj,1 be the estimate of W ∗
j,1, the practical virtual control, αj,2(k), is chosen

as follows

xj,2(k + nj − 1) = αj,2(k) = Ŵ T
j,1(k)Sj,1(zj,1(k)) (3.24)

and the robust updating algorithm for NN weight is chosen as

Ŵj,1(k + 1) = Ŵj,1(k1) − Γj,1

[

Sj,1(zj,1(k1))ej,1(k + 1) + σj,1Ŵj,1(k1)
]

(3.25)

Substituting fictitious control (3.24) into (3.21), the error equation (3.21) is re-written

as

ej,1(k + nj) = Fj,1(k) − ydj
(k + nj) +Gj,1(k)Ŵ

T
j,1(k)Sj,1(zj,1(k)) (3.26)

Adding and subtracting Gj,1(k)α
∗
j,2(k) to the right side of (3.26) and noting (3.23),

we have

ej,1(k + nj) = Fj,1(k) − yd1(k + n) +Gj,1(k)[Ŵ
T
j,1(k)Sj,1(zj,1(k)) −W ∗

j,1
TSj,1(zj,1(k))

−εzj,1
(zj,1(k))] +Gj,1(k)α

∗
j,2(k), ∀zj,1(k) ∈ Ωzj1

(3.27)

Substituting (3.22) into (3.27), we can obtain

ej,1(k + nj) = Gj,1(k)[W̃
T
j,1(k)Sj,1(zj,1(k)) − εzj,1

] (3.28)
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Choose the Lyapunov function candidate

Vj,1(k) =
1

ḡj,1

e2j,1(k) +

nj−1
∑

p=0

W̃ T
j,1(k1 + p)Γ−1

1 W̃j,1(k1 + p) (3.29)

where k1 = k − nj + 1.

Noting the fact that W̃ T
j,1(k1)Sj,1(zj,1(k1)) =

ej,1(k+1)

Gj,1(k1)
+εzj,1

, the first difference of (3.29)

along (3.25) and (3.28) is given by

∆Vj,1 =
1

ḡj,1

[e2j,1(k + 1) − e2
j,1(k)] + W̃ T

j,1(k + 1)Γ−1
j,1W̃j,1(k + 1) − W̃ T

j,1(k1)Γ
−1
j,1W̃j,1(k1)

=
1

ḡj,1
[e2j,1(k + 1) − e2

j,1(k)] − 2W̃ T
j,1(k1)

[

Sj,1(zj,1(k1))ej,1(k + 1) + σj,1Ŵj,1(k1)

]

+
[

Sj,1(zj,1(k1))ej,1(k + 1) + σj,1Ŵj,1(k1)
]T

Γj,1

[

Sj,1(zj,1(k1))ej,1(k + 1)

+σj,1Ŵj,1(k1)
]

=
1

ḡj,1
[e2j,1(k + 1) − e2

j,1(k)] − 2W̃ T
j,1(k1)Sj,1(zj,1(k1))ej,1(k + 1)

−2σj,1W̃
T
j,1(k1)Ŵj,1(k1) + ST

j,1(zj,1(k1))Γj,1Sj,1(zj,1(k1))e
2
j,1(k + 1)

+2σj,1Ŵ
T
j,1(k1)Γj,1Sj,1(zj,1(k1))ej,1(k + 1) + σ2

j,1Ŵ
T
j,1(k1)Γj,1Ŵj,1(k1)

≤ − 1

ḡj,1

e2j,1(k + 1) − 1

ḡj,1

e2j,1(k) − 2εzj,1
ej,1(k + 1) − 2σj,1W̃

T
j,1(k1)Ŵj,1(k1)

+ST
j,1(zj,1(k1))Γj,1Sj,1(zj,1(k1))e

2
j,1(k + 1)

+2σj,1Ŵ
T
j,1(k1)Γj,1Sj,1(zj,1(k1))ej,1(k + 1) + σ2

j,1Ŵ
T
j,1(k1)Γj,1Ŵj,1(k1)

Using the facts that

ST
j,1(zj,1(k1))Sj,1(zj,1(k1)) < lj,1

ST
j,1(zj,1(k1))Γj,1Sj,1(zj,1(k1)) ≤ γ̄j,1S

T
j,1(zj,1(k1))Sj,1(zj,1(k1)) ≤ γ̄j,1lj,1

2εzj,1
ej,1(k + 1) ≤

γ̄j,1e
2
j,1(k + 1)

ḡj,1
+
ḡj,1ε

2
zj,1

γ̄j,1

2σj,1Ŵ
T
j,1(k1)Γj,1Sj,1(zj,1(k1))ej,1(k + 1) ≤

γ̄j,1lj,1e
2
j,1(k + 1)

ḡj,1

+ ḡj,1σ
2
j,1γ̄j,1‖Ŵj,1‖2

2W̃ T
j,1(k1)Ŵj,1(k1) = ‖W̃j,1(k1)‖2 + ‖Ŵj,1(k1)‖2 − ‖W ∗

j,1‖2
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we obtain

∆Vj,1 ≤ −ρj,1

ḡj,1

e2j,1(k + 1) − 1

ḡj,1

e2j,1(k) − σj,1(1 − σj,1γ̄j,1 − ḡj,1σj,1γ̄j,1)‖Ŵj,1(k1)‖2

+βj,1

where

ρj,1 = 1 − γ̄j,1 − γ̄j,1lj,1 − ḡj,1γ̄j,1lj,1, βj,1 =
ḡj,1ε

2
zj,1

γ̄j,1
+ σj,1‖W ∗

j,1‖2

If we choose the design parameters as follows

γ̄j,1 <
1

1 + lj,1 + ḡj,1lj,1
, σj,1 <

1

(1 + ḡj,1)γ̄j,1

(3.30)

then ∆Vj,1 ≤ 0 once the error |ej,1(k)| is larger than
√

ḡj,1βj,1. This implies the

boundedness of Vj,1(k) for all k ≥ 0, which leads to the boundedness of ej,1(k) because

Vj,1(k) = Vj,1(0) +
∑k

p=0 ∆Vj,1(p) < ∞. Furthermore, the tracking error ej,1(k) will

asymptotically converge to the compact set denoted by Ωj,1 ⊂ R, where Ωj,1 ,

{χ
∣

∣

∣
|χ| ≤

√

ḡj,1βj,1}.

The adaptation dynamics (3.25) can be written as

W̃j,1(k + 1) = (I − Γj,1σj,1)W̃j,1(k1) − Γj,1[Sj,1(zj,1(k1))ej,1(k + 1) + σj,1W
∗
j,1]

= Aj,1(k)W̃j,1(k1) − Γj,1[Sj,1(zj,1(k1))ej,1(k + 1) + σj,1W
∗
j,1]

Because γj,1 > 0, σj,1 > 0 and 0 < σj,1γj,1 < 1, we know that the transition matrix

of Aj,1(k) always satisfies ‖Φ(k1, k0)‖ < 1. Furthermore, noting Sj,1(zj,1(k1)), ej,1(k+

1) and σj,1W
∗
j,1 are all bounded, by applying Lemma A.1, W̃j,1(k) is bounded in a

compact set denoted by Ωwj,1
, and hence the boundedness of Ŵj,1(k) is assured.

Step 2: As defined before, ej,2(k) = xj,2(k) − αj,2(k1). Its (nj − 1)th difference is

given by

ej,2(k + nj − 1) = xj,2(k + nj − 1) − αj,2(k)

= Fj,2(k) +Gj,2(k)xj,3(k + nj − 2) − αj,2(k) (3.31)

Similarly, consider xj,3(k + nj − 2) as a fictitious control for (3.31). It is obviously

that ej,2(k + nj − 1) = 0 if we choose

xj,3(k + nj − 2) = α∗
j,3(k) = − 1

Gj,2(k)
[Fj,2(k) − αj,2(k)] (3.32)
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Accordingly, α∗
j,3(k) can be approximated by an ideal high-order neural network

α∗
j,3 = W ∗T

j,2 Sj,2(zj,2(k)) + εzj,2
(zj,2(k))

zj,2(k) = [x̄T
j,nj

(k), αj,2(k)]
T ∈ Ωzj,2

⊂ Rnj+1 (3.33)

Consider the direct adaptive fictitious controller as

xj,3(k + nj − 1) = αj,3(k) = Ŵ T
j,2(k)Sj,2(zj,2(k)) (3.34)

and the robust updating algorithm for NN weights as

Ŵj,2(k + 1) = Ŵj,2(k2) − Γj,2

[

Sj,2(zj,2(k2))ej,2(k + 1) + σj,2Ŵj,2(k2)
]

(3.35)

Following the same procedure in Step 1, we obtain the second step error equation

ej,2(k + nj − 1) = Gj,2(k)[W̃
T
j,2(k)Sj,2(zj,2(k)) − εzj,2

] (3.36)

Choose the Lyapunov function candidate

Vj,2(k) = Vj,1(k) +
1

ḡj,2
e2j,2(k) +

nj−2
∑

p=0

W̃ T
j,2(k2 + j)Γ−1

j,2W̃j,2(k2 + j) (3.37)

where k2 = k − nj + 2. The first difference of (3.37) along (3.35) and (3.36) is given

by

∆Vj,2 ≤ −ρj,1

ḡj,1
e2j,2(k + 1) − 1

ḡj,1
e2j,1(k) −

ρj,2

ḡj,2
e2j,2(k + 1) − 1

ḡj,2
e2j,2(k)

+βj,2 − σj,2(1 − σj,2γ̄j,2 − ḡj,2σj,2γ̄j,2)‖Ŵj,2(k2)‖2

where ρj,1 is defined as in Step 1, and ρj,2 = 1 − γ̄j,2 − γ̄j,2lj,2 − ḡj,2γ̄j,2lj,2, βj,2 =

βj,1 +
ḡj,2ε2zj,2

γ̄j,2
+ σj,2‖W ∗

j,2‖2.

If we choose the design parameters as follows

γ̄j,2 <
1

1 + lj,2 + ḡj,2lj,2
, σj,2 <

1

(1 + ḡj,2)γ̄j,2
(3.38)

then ∆Vj,2 ≤ 0 once |ej,1(k)| >
√

ḡj,1βj,2 or |ej,2(k)| >
√

ḡj,2βj,2.

As explained in Step 1, Vj,2(k) is bounded for all k ≥ 0, and the tracking errors

ej,1(k) and ej,2(k) are also bounded and will asymptotically converge to the compact
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set denoted by Ωj,2 ⊂ R2, where Ωj,2 , {χ
∣

∣

∣
χ = [χ1, χ2]

T , |χ1| ≤
√

ḡj,1βj,2, |χ2| ≤
√

ḡj,2βj,2}. The boundedness of Ŵj,2(k), or equivalently of W̃j,2(k) can be proved as

in Step 1.

Step i(2 < i < nj): Following the same procedure as in Step 2, for ej,i(k) = xj,i(k)−
αj,i(ki−1), its (nj − i+ 1)th difference is

ej,i(k + nj − i + 1) = xj,i(k + nj − i+ 1) − αj,i(k)

= Fj,i(k) +Gj,i(k)xj,i+1(k + nj − i) − αj,i(k)

Similarly, we have the direct adaptive fictitious controller and the robust updating

algorithm for NN weights as follows:

xj,i+1(k + nj − i) = αj,i+1(k) = Ŵ T
j,i(k)Sj,i(zj,i(k)) (3.39)

Ŵj,i(k + 1) = Ŵj,i(ki) − Γj,i

[

Sj,i(zj,i(ki))ej,i(k + 1) + σj,iŴj,i(ki)
]

zj,i(k) = [x̄T
j,nj

(k), αj,i(k)]
T ∈ Ωzj,i

⊂ Rnj+1 (3.40)

Accordingly, we obtain the ith error equation

ej,i(k + nj − i+ 1) = Gj,i(k)[W̃
T
j,i(k)Sj,i(zj,i(k)) − εzj,i

] (3.41)

Choose the Lyapunov function candidate

Vj,i(k) = Vj,i−1(k) +
1

ḡj,i

e2j,i(k) +

nj−i
∑

p=0

W̃ T
j,i(ki + p)Γ−1

j,i W̃j,i(ki + p) (3.42)

where ki = k − nj + i. The first difference of (3.42) along (3.40) and (3.41) is given

∆Vj,i ≤ −
i

∑

p=1

ρj,p

ḡj,p

e2j,p(k + 1) −
i

∑

p=1

1

ḡj,p

e2j,p(k) + βj,i

−σj,i(1 − σj,iγ̄j,i − ḡj,iσj,iγ̄j,i)‖Ŵj,i(ki)‖2

where ρj,p, p = 1, 2, . . . , i − 1, are defined in previous (i − 1) steps, ρj,i = 1 − γ̄j,i −
γ̄j,ilj,i − ḡj,iγ̄j,ilj,i and βj,i = βj,i−1 +

ḡj,iε
2
zj,i

γ̄j,i
+ σj,i‖W ∗

j,i‖2. If we choose the design

parameters as follows

γ̄j,i <
1

1 + lj,i + ḡj,ilj,i
, σj,i <

1

(1 + ḡj,i)γ̄j,i

(3.43)
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then ∆Vj,i ≤ 0 once any one of the i errors satisfies |ej,p(k)| >
√

ḡj,pβj,i, p = 1, 2, . . . , i.

This demonstrates that the tracking error ej,1(k), ej,2(k), . . ., ej,i(k) are bounded for

all k ≥ 0, and will asymptotically converge to the compact set denoted by Ωj,i ⊂
Ri, where Ωj,i , {χ

∣

∣

∣
χ = [χ1, χ2, . . . , χi]

T , χp ≤
√

ḡj,pβj,i p = 1, 2, . . . , i}. The

boundedness of Ŵj,i(k), or equivalently of W̃j,i(k) can be proved as in Step 1.

Step nj: By now, we have shown that for the first nj−1 equations of each subsystem,

by suitable chosen the virtual controls’ design parameters, they can be stabilized

by the virtual controls. Now, by carefully examining the last equations of all the

subsystems, we can see that they are in strict feedback form relative to the practical

control inputs, u1(k), u2(k), . . . , un(k). This motivates us to use the backstepping

design technique again to guarantee the stability of the whole closed-loop system.

Sub-step 1: Considering the first subsystem of system (3.1), according to (3.14), it

can be written as


































x1,1(k + n1) = F1,1(k) +G1,1(k)x1,2(k + n1 − 1)
...

x1,n1−1(k + 2) = F1,n1−1(k) +G1,n1−1(k)x1,n1(k + 1)

x1,n1(k + 1) = f1,n1(k) + g1,n1(k)u1(k) + d1(k)

y1(k) = x1,1(k)

(3.44)

For the first n1−1 equations of (3.44), we have shown their stability can be guaranteed

by suitable chosen the virtual control design parameters. Now, let us consider the

last equation. The error e1,n1(k) can be written as e1,n1(k) = x1,n1(k) − α1,n1(k − 1),

its first difference is given by

e1,n1(k + 1) = x1,n1(k + 1) − α1,n1(k)

= f1,n1(k) + g1,n1(k)u1(k) + d1(k) − α1,n1(k)

It is obviously that e1,n1(k + 1) = 0 if we choose

u1(k) = u∗1(k) = − 1

g1,n1(k)
[f1,n1(k) − α1,n1(k)]

and there are no disturbances, i.e. d1(k) = 0. If d1(k) 6= 0, we obtain e1,n1(k +

1) = d1(k). Thus, exact tracking cannot be obtained though bounded due to the
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boundedness of the disturbances. Similarly, u∗1(k) can be approximated by an high-

order neural network

u∗1(k) = W ∗T
1,n1

S1,n1(z1,n1(k)) + εz1,n1
(z1,n1(k)) (3.45)

z1,n1(k) = [X,α1,n1(k)]
T ∈ Ωz1,n1

⊂ R1+
∑n

i=1 ni

Following the same procedure as in Step i or 2, we choose the direct adaptive con-

troller and robust updating algorithm for NN weights as

u1(k)=Ŵ T
1,n1

(k)S1,n1(z1,n1(k)) (3.46)

Ŵ1,n1(k + 1)=Ŵ1,n1(k) − Γ1,n1

[

S1,n1(z1,n1(k))e1,n1(k + 1) + σ1,n1Ŵ1,n1(k)
]

(3.47)

For the n1-th step error equation

e1,n1(k + 1) = g1,n1(k)[W̃
T
1,n1

(k)S(z1,n1(k)) − εz1,n1
] + d1(k)

= g1,n1(k)

[

W̃ T
1,n1

(k)S(z1,n1(k)) − εz1,n1
+

d1(k)

g1,n1(k)

]

= g1,n1(k)
[

W̃ T
1,n1

(k)S(z1,n1(k)) − ε′z1,n1

]

(3.48)

with ε′z1,n1
= εz1,n1

− d1(k)
g1,n1 (k)

. It is obvious that ε′z1,n1
is bounded because of the

boundedness of εz1,n1
, d1(k) and g1,n1(k). Choosing the Lyapunov function candidate

V1,n1(k) = V1,n1−1(k) +
1

ḡ1,n1

e21,n1
(k) + W̃ T

1,n1
(k)Γ−1

1,n1
W̃1,n1(k) (3.49)

The first difference of (3.49) along (3.47) and (3.48) is given

∆V1,n1 ≤ −
n1
∑

p=1

ρ1,p

ḡ1,p

e21,p(k + 1) −
n1

∑

p=1

1

ḡ1,p

e21,p(k)

+β1,n1 − σ1,n1(1 − σ1,n1 γ̄1,n1 − ḡ1,n1σ1,n1 γ̄1,n1)‖Ŵ1,n1(k)‖2 (3.50)

where ρ1,p, p = 1, 2, . . . , n1 − 1, are defined as previous (n1 − 1) steps, and ρ1,n1 =

1 − γ̄1,n1 − γ̄1,n1l1,n1 − ḡ1,n1 γ̄1,n1l1,n1 , β1,n1 = β1,n1−1 +
ḡ1,n1 ε′2z1,n1

γ̄1,n1
+ σ1,n1‖W ∗

1,n1
‖2.

If we choose the design parameters as follows

γ̄1,n1 <
1

1 + l1,n1 + ḡ1,n1l1,n1

, σ1,n1 <
1

(1 + ḡ1,n1)γ̄1,n1

(3.51)
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then ∆V1,n1 ≤ 0 once any one of the n1 errors satisfies |e1,p(k)| >
√

ḡ1,pβ1,n1 , p =

1, 2, . . . , n1. This demonstrates that the tracking error e1,1(k), e1,2(k), . . ., e1,n1(k) are

bounded for all k ≥ 0, and will asymptotically converge to the compact set denoted

by Ω1,n1 , where Ω1,n1 , {χ
∣

∣

∣
χ = [χ1, χ2, . . . , χn]T , |χj| ≤

√

ḡ1,pβ1,n1 p = 1, 2, . . . , n1}
The boundedness of Ŵ1,n1(k), or equivalently of W̃1,n1(k) can be proved as in Step 1.

Based on the procedure above, we can conclude that x̄1,n1(k + 1) ∈ Ω and u1(k)

are bounded if x̄1,n1(k) ∈ Ω. Finally, if we initialize x̄1,n1(0) ∈ Ω, and choose the

design parameters according to (3.30), (3.38), (3.43) and (3.51), we know here exists

a k∗, such that all errors e1,1(k), e1,2(k), . . ., e1,n1(k) asymptotically converge to Ω1,n1 .

Furthermore, by applying Lemma A.1 and following the same procedure in Step 1,

the boundedness of the weights Ŵ1,p (p = 1, 2, . . . , n1) can be proved. Thus, the

closed-loop system is SGUUB and x̄1,n1(k) ∈ Ω will hold for all k > 0.

Sub-step 2: For e2,n2(k) = x2,n2(k) − α2,n2(k − 1), its first difference is given by

e2,n2(k + 1) = x2,n2(k + 1) − α2,n2(k)

= f2,n2(k) + g2,n2(k)u2(k) + d2(k) − α2,n2(k)

It is obviously that e2,n2(k + 1) = 0 if we choose

u2(k) = u∗2(k) = − 1

g2,n2(k)
[f2,n2(k) − α2,n2(k)]

and there are no disturbances, i.e. d2(k) = 0. If d2(k) 6= 0, we obtain e2,n2(k +

1) = d2(k). Thus, exact tracking cannot be obtained though bounded due to the

boundedness of the disturbances. Similarly, u∗2(k) can be approximated by an high-

order neural network

u∗2(k) = W ∗T
2,n2

S2,n2(z2,n2(k)) + εz2,n2
(z2,n2(k))

z2,n2(k) = [X, u1(k), α2,n2(k)]
T ∈ Ωz2,n2

⊂ R2+
∑n

i=1 ni

Following the same procedure in Sub-step 1, in this step, we will design control u2(k)

to stabilize the first two subsystems of system (3.1). Choosing the following Lyapunov

candidate

V2,n2(k) = V1,n1(k) + V2,n2−1(k) +
1

ḡ2,n2

e22,n2
(k) + W̃ T

2,n2
(k)Γ−1

2,n2
W̃2,n2(k) (3.52)
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By following the same procedure in Sub-step 1, we can obtain (for clarity of pre-

sentation, detail procedure is omitted here) that the first difference of V2,n2(k) is as

follows

∆V2,n2(k) ≤ −
n1
∑

p=1

ρ1,p

ḡ1,p

e21,p(k + 1) −
n1

∑

p=1

1

ḡ1,p

e21,p(k)

+β1,n1 − σ1,n1(1 − σ1,n1 γ̄1,n1 − ḡ1,n1σ1,n1 γ̄1,n1)‖Ŵ1,n1(k)‖2

−
n2
∑

p=1

ρ2,p

ḡ2,p

e22,p(k + 1) −
n2

∑

p=1

1

ḡ2,p

e22,p(k)

+β2,n2 − σ2,n2(1 − σ2,n2 γ̄2,n2 − ḡ2,n2σ2,n2 γ̄2,n2)‖Ŵ2,n2(k)‖2 (3.53)

where ρ2,n2 = 1 − γ̄2,n2 − γ̄2,n2l2,n2 − ḡ2,n2 γ̄2,n2l2,n2 and β2,n2 = β2,n2−1 +
ḡ2,n2 ε′2z2,n2

γ̄2,n2
+

σ2,n2‖W ∗
2,n2

‖2. By noting (3.51) and choosing γ̄2,n2 and σ2,n2 as follows

γ̄2,n2 <
1

1 + l2,n2 + ḡ2,n2l2,n2

, σ2,n2 <
1

(1 + ḡ2,n2)γ̄2,n2

(3.54)

we obtain

∆V2,n2(k) ≤ −
n1
∑

p=1

1

ḡ1,p

e21,p(k) −
n2
∑

p=1

1

ḡ2,p

e22,p(k) + β1,n1 + β2,n2 (3.55)

It is obvious that for the first two subsystems of system (3.1), ∆V2,n2(k) ≤ 0 once

e21,p > ḡ1,p(β1,n1 + β2,n2), p = 1, . . . , n1

or

e22,p > ḡ2,p(β1,n1 + β2,n2), p = 1, . . . , n2

It indicates that the errors e2
1,p (p = 1, . . . , n1) and e2

2,p (p = 1, . . . , n2) are all bounded

in a compact set.

Sub-step j (2 < j < n): For ej,nj
(k) = xj,nj

(k) − αj,nj
(k − 1), its first difference is

given by

ej,nj
(k + 1) = xj,nj

(k + 1) − αj,nj
(k)

= fj,nj
(k) + gj,nj

(k)uj(k) + dj(k) − αj,nj
(k) (3.56)

It is obviously that ej,nj
(k + 1) = 0 if we choose

uj(k) = u∗j(k) = − 1

gj,nj
(k)

[fj,nj
(k) − αj,nj

(k)] (3.57)

83



3.1 State Feedback Control

and there are no disturbances, i.e. dj(k) = 0. If dj(k) 6= 0, we obtain ej,nj
(k +

1) = dj(k). Thus, exact tracking cannot be obtained though bounded due to the

boundedness of the disturbances. Similarly, u∗j(k) can be approximated by an high-

order neural network

u∗j(k) = W ∗T
j,nj

Sj,nj
(zj,nj

(k)) + εzj,nj
(zj,nj

(k)) (3.58)

zj,nj
(k) = [X, ūj−1(k), αj,nj

(k)]T ∈ Ωzj,nj
⊂ Rj+

∑n
i=1 ni

Following the same procedure as in Sub-Step 1 or 2, we choose the direct adaptive

controller and robust updating algorithm for NN weights as

uj(k)=Ŵ T
j,nj

(k)Sj,nj
(zj,nj

(k)) (3.59)

Ŵj,nj
(k + 1)=Ŵj,nj

(k) − Γj,nj

[

Sj,nj
(zj,nj

(k))ej,nj
(k + 1) + σj,nj

Ŵj,nj
(k)

]

(3.60)

For the nj-th step error equation

ej,nj
(k + 1) = gj,nj

(k)[W̃ T
j,nj

(k)S(zj,nj
(k)) − εzj,nj

] + dj(k)

= gj,nj
(k)

[

W̃ T
j,nj

(k)S(zj,nj
(k)) − εzj,nj

+
dj(k)

gj,nj
(k)

]

= gj,nj
(k)

[

W̃ T
j,nj

(k)S(zj,nj
(k)) − ε′zj,nj

]

(3.61)

with ε′zj,nj
= εzj,nj

− dj(k)

gj,nj
(k)

. It is obvious that ε′zj,nj
is bounded because of the bound-

edness of εzj,nj
, dj(k) and gj,nj

(k). Choosing the Lyapunov function candidate

Vj,nj
(k) =

j−1
∑

p=1

Vp,np(k) + Vj,nj−1(k) +
1

ḡj,nj

e2j,nj
(k) + W̃ T

j,nj
(k)Γ−1

j,nj
W̃j,nj

(k) (3.62)

It is obvious that Vj,nj
(k) includes three parts. The first part,

∑j−1
p=1 Vp,np(k) cor-

responds to the summation of the first j − 1 subsystems’ Lyapunov functions, the

second part Vj,nj−1(k) corresponds to the first nj − 1 equations of the j-th subsystem

and 1
ḡj,nj

e2j,nj
(k) + W̃ T

j,nj
(k)Γ−1

j,nj
W̃j,nj

(k) corresponds to the last equation of the j-th

subsystem.

The first difference of (3.62) along (3.60) and (3.61) is given

∆Vj,nj
≤

j−1
∑

p=1

∆Vp,np(k) −
nj

∑

p=1

ρj,p

ḡj,p

e2j,p(k + 1) −
nj

∑

p=1

1

ḡj,p

e2j,p(k)

+βj,nj
− σj,nj

(1 − σj,nj
γ̄j,nj

− ḡj,nj
σj,nj

γ̄j,nj
)‖Ŵj,nj

(k)‖2 (3.63)
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where ρj,p, p = 1, 2, . . . , nj − 1, are defined as previous (nj − 1) steps, and ρj,nj
=

1 − γ̄j,nj
− γ̄j,nj

lj,nj
− ḡj,nj

γ̄j,nj
lj,nj

, βj,nj
= βj,nj−1 +

ḡj,nj
ε′

2
zj,nj

γ̄j,nj

+ σj,nj
‖W ∗

j,nj
‖2.

Similar to the procedure in derivation of inequality (3.55), if we choose the design

parameters as follows

γ̄j,nj
<

1

1 + lj,nj
+ ḡj,nj

lj,nj

, σj,nj
<

1

(1 + ḡj,nj
)γ̄j,nj

(3.64)

then inequality (3.63) can be further written as

∆Vj,nj
(k) ≤ −

n1
∑

p=1

1

ḡ1,p

e21,p(k) − . . .−
nj

∑

p=1

1

ḡj,p

e2j,p(k) + β1,n1 + . . .+ βj,nj

then ∆Vj,nj
≤ 0 once any one of the errors

e2q,p(k) > ḡq,p

(

β1,n1 + . . .+ βj,nj

)

, q = 1, . . . , j and p = 1, . . . , nq

This demonstrates that the errors eq,p (q = 1, . . . , j, p = 1, . . . , nq) are bounded for

all k ≥ 0, and will asymptotically converge to the compact set denoted by Ωj,nj
. The

boundedness of Ŵj,nj
(k), or equivalently of W̃j,nj

(k) can be proved as in Step 1.

Based on the procedure above, we can conclude that x̄j,nj
(k + 1) ∈ Ω and uj(k)

are bounded if x̄j,nj
(k) ∈ Ω. Finally, if we initialize x̄j,nj

(0) ∈ Ω, and choose the

design parameters according to (3.30), (3.38), (3.43) and (3.64), there exists a k∗,

such that all errors asymptotically converge to Ωj,nj
, and NN weight errors are all

bounded. This implies that the closed-loop system is SGUUB. Then x̄j,nj
(k) ∈ Ω,

Ŵj,p, p = 1, 2, . . . , nj will hold for all k > 0.

Sub-step n: Finally, in this step, by combining the Lyapunov functions of each sub-

system to give the whole system’s Lyapunov function candidate, we can claim that

the closed-loop system is SGUUB.

For en,nn(k) = xn,nn(k) − αn,nn(k − 1), its first difference is given by

en,nn(k + 1) = xn,nn(k + 1) − αn,nn(k)

= fn,nn(k) + gn,nn(k)un(k) + dn(k) − αn,nn(k)

It is obviously that en,nn(k + 1) = 0 if we choose

un(k) = u∗n(k) = − 1

gn,nn(k)
[fn,nn(k) − αn,nn(k)] (3.65)
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and there are no disturbances, i.e. dn(k) = 0. If dn(k) 6= 0, we obtain en,nn(k +

1) = dn(k). Thus, exact tracking cannot be obtained though bounded due to the

boundedness of the disturbances. Similarly, u∗n(k) can be approximated by an high-

order neural network

u∗n(k) = W ∗T
n,nn

Sn,nn(zn,nn(k)) + εzn,nn
(zn,nn(k))

zn,nn(k) = [X, ūn−1(k), αn,nn(k)]T ∈ Ωzn,nn
⊂ Rn+

∑n
i=1 ni

Choosing the direct adaptive controller and robust updating algorithm for NN weights

as

un(k) = Ŵ T
n,nn

(k)Sn,nn(zn,nn(k))

Ŵn,nn(k + 1) = Ŵn,nn(k) − Γn,nn

[

Sn,nn(zn,nn(k))en,nn(k + 1) + σn,nnŴn,nn(k)
]

Considering the following Lyapunov candidate

Vn,nn(k) =
n−1
∑

p=1

Vp,np(k) + Vn,nn−1(k) +
1

ḡn,nn

e2n,nn
(k) + W̃ T

n,nn
(k)Γ−1

n,nn
W̃n,nn(k)(3.66)

By following the same procedure in Sub-step j (2 < j < n), if the design parameters

are suitable chosen as

γ̄n,nn <
1

1 + ln,nn + ḡn,nnln,nn

, σn,nn <
1

(1 + ḡn,nn)γ̄n,nn

(3.67)

we have

∆Vn,nn(k) ≤ −
n1
∑

p=1

1

ḡ1,p

e21,p(k) − . . .−
nn
∑

p=1

1

ḡn,p

e2n,p(k) + β1,n1 + . . .+ βn,nn

Define β =
∑n

j=1 βj,nj
= β1,n1 + · · · + βn,nn, we obtain

∆Vn,nn(k) ≤
n

∑

j=1

{

−
nj

∑

i=1

1

ḡj,i

e2j,i(k)
}

+ β (3.68)

then ∆V (k)n,nn ≤ 0 once any one of the
∑n

j=1 nj errors satisfies |ej,i(k)| >
√

ḡj,iβ,

j = 1, . . . , n and i = 1, . . . , nj. This demonstrates that the tracking errors eq,p

(q = 1, . . . , n, p = 1, . . . , nq) are all bounded for all k ≥ 0, and will asymptotically

converge to the compact set denoted by Ωn,nn , where Ωn,nn , {χ
∣

∣

∣
χ = [χj,i], j =
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1, . . . , n, i = 1, . . . , nj, |χj,i| ≤
√

ḡj,iβ}. Now, we can conclude that all the errors are

bounded.

We have proved that all the errors eq,p (q = 1, . . . , n, p = 1, . . . , nq) are bounded in a

compact set, now we should prove that the neural network weights are also bounded.

Considering the weights update law in equation (3.20), it can be rewritten as

Ŵj,ij(k + 1) = (I − Γj,ijσj,ij )Ŵj,ij(kij ) − Γj,ijS(zj,ij(kij))ej,ij(k + 1)

, Aj,ijŴj,ij(kij) − Γj,ijS(zj,ij(kij ))ej,ij(k + 1) (3.69)

kij = k − nj + ij, ij = 1, 2, . . . , nj

where Aj,ij = I − Γj,ijσj,ij . Because the eigenvalues of matrix Aj,ij are all in the

unit circle, it is easy to obtain that the eigenvalues of the transition matrix of system

(3.69) are all in unit circle too. By using Lemma A.1, we concluded that the neural

network weights are bounded.

In summary, the closed-loop nonlinear MIMO system consists of system (3.1), con-

troller (3.19) and adaptive law (3.20) is semi-globally uniformly ultimately bounded,

and has an equilibrium at [e1,1(k), . . . , en,1(k)]
T = 0 provided that the design pa-

rameters are properly chosen. All the signals include the states X(k), the control

inputs uj(k) (j = 1, . . . , n), the tracking errors ej,1(k) (j = 1, . . . , n) and NN weight

estimates Ŵj,ij(k) (j = 1, . . . , n, ij = 1, . . . , nj), are all bounded.

Therefore, for any a priori given (arbitrarily large) bounded set Ω and any a priori

given (arbitrarily small) set Ω0, which contains (0, 0) as an interior point, there exist a

control u, such that every trajectory of the closed-loop system starting from Ω enters

the set Ω0 in a finite time and remains in it thereafter. That is to say, the whole

closed-loop system is SGUUB. �

Remark 3.3 Considering the parameter conditions in equation (3.64). It can be

seen that faster learning rate (increasing γ̄j,nj
) requires the neurons number lj,nj

to

decrease. Thus, the approximation accuracy will be affected. In practical applications,

how to choose the adaptation gain γ̄j,nj
and the neurons number lj,nj

is a problem that

needs to be dealt with carefully.
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Remark 3.4 In adaptive nonlinear system control, PE condition is important for

parameter convergence and system robustness. However, it is usually very difficult to

verify its existence in practical applications [62]. Noticing Appendix A.2, the defini-

tion of PE condition in discrete-time system, we can see that to check its existence

is not an easy task. In this section, by combing a standard σ-modification term [62]

in the weight update laws (3.20). The need of PE condition for weights update is

removed.

Remark 3.5 In Theorem 3.2, by using the neural network emulator (3.19) and the

weight update laws (3.20), through Lyapunov analysis, we can only obtain the bound-

edness of the closed-loop signals, include the states, the outputs and the neural network

weights.

3.1.4 Simulation

In order to illustrate the effectiveness of the proposed schemes, a simulation example

is studied in this section. Considering the following MIMO discrete-time system with

triangular form inputs















































x1,1(k + 1) = f1,1(x̄1,1(k)) + g1,1(x̄1,1(k))x1,2(k)

x1,2(k + 1) = f1,2(x̄1,2(k)) + g1,2(x̄1,2(k))u1(k) + d1(k)

x2,1(k + 1) = f2,1(x̄2,1(k)) + g2,1(x̄2,1(k))x2,2(k)

x2,2(k + 1) = f2,2(x̄2,2(k), u1(k)) + g2,2(x̄2,2(k))u2(k) + d2(k)

y1(k) = x1,1(k)

y2(k) = x2,1(k)

where


















f1,1(x̄1,1(k)) =
x2
1,1(k)

1+x2
1,1(k)

, g1,1(x̄1,1(k)) = 0.3

f1,2(x̄1,2(k)) =
x2
1,1(k)

1+x2
1,2(k)+x2

2,1(k)+x2
2,2(k)

, g1,2(x̄1,2(k)) = 1

d1(k) = 0.1 cos(0.05k) cos(x1,1(k))
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f2,1(x̄2,1(k)) =
x2
2,1(k)

1+x2
2,1(k)

, g2,1(x̄2,1(k)) = 0.2

f2,2(x̄2,2(k), u1(k)) =
x2
2,1(k)

1+x2
1,1+x2

1,2(k)+x2
2,2(k)

u2
1(k), g2,2(x̄2,2(k)) = 1

d2(k) = 0.1 cos(0.05k) cos(x2,1(k))

The control objective is to drive the output y(k) = [y1(k), y2(k)]
T of the system to

follow desired reference signals

yd1(k) = 0.5 +
1

4
cos(

πTk

4
) +

1

4
sin(

πTk

2
)

yd2(k) = 0.5 +
1

4
sin(

πTk

4
) +

1

4
sin(

πTk

2
)

with T = 0.01.

The initial condition for system states is x1,1(0) = 0, x1,2(0) = 0, x2,1(0) = 0 and

x2,2(0) = 0. The neurons used are l1,1 = 12, l1,2 = 20, l2,1 = 12 and l2,2 = 30. All

the elements of the neural network weights Ŵ1,1(0), Ŵ1,2(0), Ŵ2,1(0) and Ŵ2,2(0) are

initialized to be random numbers between 0.00 and 0.01, and the active functions

S1,1(0), S1,2(0), S2,1(0) and S2,2(0) are initialized to be random numbers between 0.00

and 0.02. The initial values of the virtual controls are α1,2(0) = 0 and α2,2(0) = 0.

σ modification gains are σ1,1 = σ1,2 = σ2,1 = σ2,2 = 0.01, and adaptive gain matrices

are Γ1,1 = Γ1,2 = Γ2,1 = 0.025I and Γ2,2 = 0.010I.

For clarity, the formulas used in the simulation are listed here. The virtual controls

and the practical controls for subsystem Σi (i = 1, 2) are as follows:

αi,2(k) = Ŵi,1(k)Si,1(zi,1(k)), zi,1(k) = [xi,1(k), xi,2(k), ydi
(k + 2)]T

ui(k) = Ŵi,2(k)Si,2(zi,2(k)), zi,2(k) = [x1,1(k), x1,2(k), x2,1(k), x2,2(k), αi,2(k)]
T

The errors’ definitions for subsystem Σi (i = 1, 2) are:

Σi : ei,1(k) = yi(k) − ydi
(k), ei,2(k) = xi,2(k) − αi,2(k − 1)

The weights update law are as follows (i = 1, 2):

Σi :

{

Ŵi,1(k) = Ŵi,1(k − 2) − Γi,1[Si,1(zi,1(k − 2))ei,1(k) + σi,1Wi,1(k − 2)]

Ŵi,2(k) = Ŵi,2(k − 1) − Γi,2[Si,2(zi,2(k − 1))ei,2(k) + σi,2Wi,2(k − 1)]
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Simulation results are shown in Figure 3.7-Figure 3.10. Figure 3.7 and Figure 3.8

show the tracking performances of the first subsystem and the second subsystem

respectively. It can be seen that, in the initial period of simulation, the tracking

errors are large. Then, as the time increases, the practical outputs converge to

the neighborhoods of the desired signals. The control input trajectories u1(k) =

Ŵ1,2(k)S1,2(z1,2(k)) and u2(k) = Ŵ2,2(k)S2,2(z2,2(k)) are shown in Figure 3.9. Their

corresponding neural network weights norms ‖Ŵ1,2(k)‖ and ‖Ŵ2,2(k)‖ are shown in

Figure 3.10. From Figure 3.9 and 3.10, we can see that both the control inputs and

their corresponding weights norms are all bounded. The dynamics of the tracking

errors are shown in Figure 3.11. It can be seen that the tracking errors are also

bounded.

3.2 Output Feedback Control

For MIMO discrete-time systems, some results can be found in [139, 111, 140, 113].

However, all of the works studied affine MIMO systems, i.e., the control inputs ap-

pear linearly, which makes feedback linearization method applicable. For non-affine

discrete-time MIMO systems, due to the inputs are in non-affine form, feedback lin-

earization method cannot be used. Therefore, how to find the “inverse” control, if

there is, is a problem that needs to be investigated. In [112], a new method was

proposed for a class of non-affine MIMO NARMAX systems. Firstly, SISO plants

were studied, then the results were extended to MIMO cases. By first order Taylor

linearization, neural networks were used to construct the inverse model for the lin-

earized systems. Though the proposed method is effective in dealing with non-affine

NARMAX models, there are some restrictions: (i) there is no input coupling in the

system studied in [112], which avoided one of the major difficulties in MIMO non-

linear system control; and (ii) neural network identification should be carried out in

advance in order to make the control implementable if the plant model is unknown.

In Section 3.1, the first part of this chapter, state feedback control scheme was investi-

gated for a class of discrete-time nonlinear MIMO system with triangular form inputs

and bounded disturbances by using neural networks. Though the method proposed

is effective, all the system states are needed in order to construct the stable control.
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In this section, we are considering a class of MIMO nonlinear discrete-time systems

with triangular form inputs [50]. Each subsystem of the MIMO system is in strict

feedback form. Though the j-th input appears linearly in the j-th subsystem, the

other j−1 inputs appear nonlinearly in the j-th subsystem, which leads to the whole

system in non-affine form. Firstly, by coordinate transformation, the system stud-

ied is transformed from state space model into input output representation, with

each subsystem is in τ -step (τ is the system delay) predictor form and the triangular

form inputs remains unchanged. Then, backstepping design is implemented. Neural

networks and input output sequences are used to construct the stable control. Com-

paring with the MIMO non-affine system studied in [112], we can see that: (i) there

are complex inputs coupling; and (ii) neural network identification is not needed in

this section.

This section is organized as follows. System dynamics as well as some stability notions

are proposed in Section 3.2.1. The detailed transformation procedure is shown in

Section 3.2.2. Controller design and stability analysis are discussed in Section 3.2.3.

In Section 3.2.4, a simulation example is used to illustrate the effectiveness of the

proposed scheme.
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3.2.1 MIMO System Dynamics

Considering the following discrete-time MIMO system in state space representation

Σ :















































































































Σ1 :















x1,i1(k + 1) = f1,i1(x̄1,i1(k)) + g1,i1(x̄1,i1(k))x1,i1+1(k)

1 ≤ i1 ≤ τ − 1

x1,τ (k + 1) = f1,τ (X(k)) + g1,τ (X(k))u1(k)
...

Σj :















xj,ij(k + 1) = fj,ij(x̄j,ij(k)) + gj,ij(x̄j,ij(k))xj,ij+1(k)

1 ≤ ij ≤ τ − 1

xj,τ (k + 1) = fj,τ (X(k), ūj−1(k)) + gj,τ(X(k))uj(k)
...

Σn :















xn,in(k + 1) = fn,in(x̄n,in(k)) + gn,in(x̄n,in(k))xn,in+1(k)

1 ≤ in ≤ τ − 1

xn,τ (k + 1) = fn,τ(X(k), ūn−1(k)) + gn,τ (X(k))un(k)

yj(k)= xj,1(k), 1 ≤ j ≤ n

(3.70)

where X(k) = [xT
1 (k), xT

2 (k), . . . , xT
n (k)]T with xj(k) = [xj,1(k), xj,2(k), . . . , xj,τ(k)]

T ∈
Rτ (τ is the system delay), uj(k) ∈ Rn and yj(k) ∈ Rn are the state variables, the

system inputs and outputs respectively; ūj−1(k) = [u1(k), · · · , uj−1(k)] (j = 2, . . . , n);

x̄j,ij (k) = [xj,1(k), . . . , xj,ij(k)]
T ∈ Rij denotes the first ij states of the j-th subsystem;

fj,ij(·) and gj,ij(·) are smooth nonlinear functions. Noting that the control inputs of

the whole system are in triangular form, then backstepping design technique may be

implemented to design stable controls for this class of systems. It is obvious that

there are n subsystems in system (3.70), with the length of each subsystem is τ and

system (3.70) has n inputs and n outputs.

Before proceed to the next section, the following assumptions are made.

Assumption 3.3 The sign of gj,ij(·) (j = 1, . . . , n and ij = 1, . . . , τ), are known and

there exist two constants g
j,ij
, ḡj,ij > 0 such that g

j,ij
≤ |gj,ij(·)| ≤ ḡj,ij , ∀X(k) ∈ Ω ⊂

Rn×τ .

Without losing generality, we shall assume that gj,ij(·) is positive in this section.
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The control objective is to design control input u(k) = [u1(k), . . . , un(k)]
T to make

the system output y(k) = [y1(k), . . . , yn(k)]
T follow a known and bounded trajectory

yd(k) = [yd1(k), . . . , ydn(k)]T . Thus, the following assumption should be made.

Assumption 3.4 The desired trajectory yd(k) ∈ Ωy, ∀k > 0 is smooth and known,

where Ωy , {χ
∣

∣

∣
χ = y(k)}.

Remark 3.6 Different from the triangular form inputs discrete-time MIMO non-

linear system studied in [139] and [111], whose inputs can be written into feedback

linearizable form

Ξ(k + 1) = F (Ξ(k)) +G(Ξ(k))U(k) (3.71)

U(k) = [u1(k), . . . , un(k)]
T

in this section, the triangular inputs cannot be written in the form of (3.71). Instead

it is in the following form

Ξ(k + 1) = F (Ξ(k), U(k)) (3.72)

U(k) = [u1(k), . . . , un(k)]
T

It is obvious that feedback linearization method is not applicable to system (3.72). To

construct stable controls for this class of system which is not feedback linearizable is

more challenging.

3.2.2 System Coordinate Transformation

In this section, the procedure of how to transform system (3.70) from state space

description into input output description is illustrated. In general, the transformation

procedure can be divided into two phases.

Coordinate Transformation: Phase One Considering the i-th (1 ≤ i ≤ n) subsystem
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of system (3.70), we have

Σi :



































xi,1(k + 1) = fi,1(x̄i,1(k)) + gi,1(x̄i,1(k))xi,2(k)

xi,2(k + 1) = fi,2(x̄i,2(k)) + gi,2(x̄i,2(k))xi,3(k)
...

xi,τ−1(k + 1) = fi,τ−1(x̄i,τ−1(k)) + gi,τ−1(x̄i,τ−1(k))xi,τ (k)

xi,τ (k + 1) = fi,τ (X(k), ūi−1(k)) + gi,τ (X(k))ui(k)

(3.73)

Define new coordinates (1 ≤ i ≤ n)

ξi = [ξi,1, ξi,2, . . . , ξi,τ ]
T (3.74)

with each element of ξi is defined as follows


























ξi,1(k) = xi,1(k)

ξi,2(k) = xi,1(k + 1)
...

ξi,τ(k) = xi,1(k + τ − 1)

(3.75)

Therefore, we know that the original system state X = [x1, x2, . . . , xn]T ∈ Rn×τ can

be transformed into Ξ, with Ξ is defined as

Ξ = [ξT
1 , ξ

T
2 , . . . , ξ

T
n ]T ∈ Rn×τ (3.76)

Define this mapping as

T (X) : X → Ξ (3.77)

In order to guarantee that this transformation is valid, in the following, we should

prove that the mapping is diffeomorphism [143, 65].

Considering (3.75), it can be easily obtained that



































ξi,1(k + 1) = ξi,2(k)

ξi,2(k + 1) = ξi,3(k)
...

ξi,τ−1(k + 1) = ξi,τ(k)

ξi,τ(k + 1) = xi,1(k + τ)

(3.78)
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Considering the last equation in (3.78), because











































































































































xi,1(k + 1) = fi,1(x̄i,1(k)) + gi,1(x̄i,1(k))xi,2(k)

, pi,1(x̄i,1(k)) + qi,1(x̄i,1(k))xi,2(k)

, αi,1(x̄i,2(k))

xi,1(k + 2) = fi,1(x̄i,1(k + 1)) + gi,1(x̄i,1(k + 1))xi,2(k + 1)

= fi,1(αi,1(x̄i,2(k))) + gi,1(αi,1(x̄i,2(k)))

× [fi,2(x̄i,2(k)) + gi,2(x̄i,2(k))xi,3(k)]

, pi,2(x̄i,2(k)) + qi,2(x̄i,2(k))xi,3(k)

, αi,2(x̄i,3(k))

xi,1(k + 3) = fi,1(αi,1(x̄i,2(k + 1))) + gi,1(αi,1(x̄i,2(k + 1)))

× [fi,2(x̄i,2(k + 1)) + gi,2(x̄i,2(k + 1))xi,3(k + 1)]

, pi,3(x̄i,3(k)) + qi,3(x̄i,3(k))xi,4(k)

, αi,3(x̄i,4(k))
...

xi,1(k + τ − 1) , pi,τ−1(x̄i,τ−1(k)) + qi,τ−1(x̄i,τ−1(k))xi,τ (k)

, αi,τ−1(x̄i,τ (k))

(3.79)

with pi,j(·), qi,j(·) and αi,j(·) (j = 1, . . . , τ − 1) being nonlinear functions.

Remark 3.7 Due to the boundedness of gj,ij(·) (1 ≤ j ≤ n 1 ≤ ij ≤ τ) in Assumption

3.3, we know that qi,j(·) is also bounded.

Furthermore, due to the boundedness of gi,ij(·) in Assumption 3.3, we can see that

qi,j(·) (j = 1, . . . , τ − 1) are also bounded.

Now considering xi,1(k + τ − 1), we know that

xi,1(k + τ − 1) = pi,τ−1(x̄i,τ−1(k)) + qi,τ−1(x̄i,τ−1(k))xi,τ (k) (3.80)

with pi,τ−1(·) and qi,τ−1(·) are highly entangled nonlinear functions. Proceeding one

more step and noting the last equation in (3.73), we have

xi,1(k + τ) = pi,τ−1(x̄i,τ−1(k + 1)) + qi,τ−1(x̄i,τ−1(k + 1))xi,τ (k + 1)

, pi,τ (x̄i,τ (k)) + qi,τ (x̄i,τ (k)) [fi,τ (X(k), ūi−1(k)) + gi,τ(X(k))ui(k)]

, pi(X(k), ūi−1(k)) + qi(X(k))ui(k) (3.81)
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with

pi(X(k), ūi−1(k)) , pi,τ (x̄i,τ (k)) + qi,τ (x̄i,τ (k))fi,τ (X(k), ūi−1(k))

qi(X(k)) , qi,τ (x̄i,τ (k))gi,τ(X(k))

Remark 3.8 Noting Assumption 3.3, Remark 3.7 and that we have assumed the

positiveness of gj,ij(·), it can be easily obtained that qi(X(k)) = qi,τ (x̄i,τ (k))gi,τ (X(k))

is also bounded. Specifically, there are two positive constants, q
i

and q̄i, such that,

q
i
≤ qi(·) ≤ q̄i (1 ≤ i ≤ n).

Therefore, the original system (3.70) becomes (1 ≤ i ≤ n)

Σi :



































ξi,1(k + 1) = ξi,2(k)

ξi,2(k + 1) = ξi,3(k)
...

ξi,τ−1(k + 1) = ξi,τ(k)

ξi,τ(k + 1) = pi(X(k), ūi−1(k)) + qi(X(k))ui(k)

(3.82)

provided that the coordinate transformation, T (X), is diffeomorphism. In the next,

we will show that the mapping T (X) is diffeomorphism actually.

Considering equations (3.75) and (3.79), the mapping from

xi(k) = [xi,1(k), xi,2(k), . . . , xi,τ (k)]
T ⇒ ξi(k) = [ξi,1(k), ξi,2(k), . . . (k), ξi,τ(k)]

T

can be expressed as follows














































ξi,1(k) = xi,1(k)

ξi,2(k) = xi,1(k + 1) = pi,1(x̄i,1(k)) + qi,1(x̄i,1(k))xi,2(k)

ξi,3(k) = xi,1(k + 2) = pi,2(x̄i,2(k)) + qi,2(x̄i,2(k))xi,3(k)
...

ξi,τ−1(k) = xi,1(k + τ − 2) = pi,τ−2(x̄i,τ−2(k)) + qi,τ−2(x̄i,τ−2(k))xi,τ−1(k)

ξi,τ(k) = xi,1(k + τ − 1) = pi,τ−1(x̄i,τ−1(k)) + qi,τ−1(x̄i,τ−1(k))xi,τ (k)

(3.83)

From equation (3.83), it can be seen that the coordinate transformation is

• subsystem decoupled, i.e., the coordinate transformation from xi(k) to ξi(k) are

independent to each other for different subsystems;
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• independent of the control input ui(k), i.e., the coordinate transformation has

nothing to do with the control input.

Define this mapping as follows (1 ≤ i ≤ n)

Ti(xi(k)) : xi(k) → ξi(k) (3.84)

then we know that the whole system coordinate transformation from X(k) to Ξ(k)

defined in (3.77) can be written as follows:

T (X(k)) =















T1(x1(k)) 0 · · · 0

0 T2(x2(k)) · · · 0
...

...
. . .

...

0 · · · 0 Tn(xn(k))















(3.85)

If we can verify that the mapping Ti(xi(k)) in equation (3.83) is diffeomorphism

[143, 65], then owing to the independent property of Ti(xi(k)) (1 ≤ i ≤ n), we

know that the whole system coordinate transformation, T (X(k)) in (3.85) is also

diffeomorphism.

Lemma 3.2 Let U be an open subset of Rn and let ϕ = (ϕ1, . . . , ϕn) : U → Rn be a

smooth map. If the Jacobian Matrix

dϕ

dx
=









∂ϕ1

∂x1
· · · ∂ϕ1

∂xn

...
. . .

...
∂ϕn

∂x1
· · · ∂ϕn

∂xn









is nonsingular at some point p ∈ U , or equivalently, Rank( dϕ

dx
) = n at some point

p ∈ U , then there exists a neighborhood V ⊂ U of p such that ϕ : V → ϕ(V ) is a

diffeomorphism [143, 65, 115].

By using Lemma 3.2, we will show that T (X(k)) in (3.85) is a diffeomorphism, as

detailed in Lemma 3.3.

Lemma 3.3 Considering the mapping T (X(k)) : X(k) → Ξ(k), defined as

T (X(k)) = diag[T1(x1(k)), T2(x2(k)), . . . , Tn(xn(k))]
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in (3.77) and (3.84), it is a diffeomorphism.

Proof: The proof that Ti(xi(k)) is a diffeomorphism can be found in [115], for com-

pleteness, it is also detailed here.

Considering the i-th subsystem (1 ≤ i ≤ n), we have ξi(k) = Ti(xi(k)), it is shown

in Lemma 3.2 that once (i) the map Ti(·) is invertible; and (ii) Ti(·) and T−1
i (·) are

both continuously differentiable, the map Ti(·) is a diffeomorphism.

Because that

xi,1(k) = ξi,1(k)

xi,1(k + 1) = ξi,2(k)

and we know that

xi,2(k) =
xi,1(k + 1) − fi,1(x̄i,1(k))

gi,1(x̄i,1(k))

then we have

xi,2(k) =
ξi,2(k) − fi,1(x̄i,1(k))

gi,1(x̄i,1(k))
=
ξi,2(k) − fi,1(ξ̄i,1(k))

gi,1(ξ̄i,1(k))

Therefore, we can define that

xi,2(k) , ti,2(ξi,1(k), ξi,2(k)) , ti,2(k) (3.86)

with

ti,2(k) =
ξi,2(k) − fi,1(ξ̄i,1(k))

gi,1(ξ̄i,1(k))

It is clear that

xi,2(k + 1) = ti,2(k + 1)

∂ti,2(k)

∂ξi,2(k)
=

1

gi,1(ξ̄i,1(k))

∂ti,2(k + 1)

∂ξi,3(k)
= ∂

[

ξi,2(k + 1) − fi,1(ξ̄i,1(k + 1))

gi,1(ξ̄i,1(k + 1))

]

/∂ξi,3(k) =
1

gi,1(ξ̄i,2(k))

(noting ξi,2(k + 1) = ξi,3(k))

Because we know that

xi,3(k) =
xi,2(k + 1) − fi,2(x̄i,2(k))

gi,2(x̄i,2(k))
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Therefore, we can obtain

xi,3(k) =
ti,2(k + 1) − fi,2([ξi,1(k), ti,2(k)]

T )

gi,2([ξi,1(k), ti,2(k)]T )

, ti,3(k)

It is obvious that

∂ti,3(k)

∂ξi,3(k)
=

∂ti,2(k + 1)/∂ξi,3(k)

gi,2([ξi,1(k), ti,2(k)]T )

=
1

gi,1(ξ̄i,2(k)) × gi,2([ξi,1(k), ti,2(k)]T )

Continue this process recursively, finally, we can obtain

xi,τ (k) = ti,τ (ξ̄i,τ(k)) , ti,τ (k)

∂ti,τ (k)

ξi,τ(k)
=

1

gi,1(ξ̄i,2(k))gi,2([ξi,1(k), ti,2(k)]T ) · · ·gi,τ([ξi,1(k), ti,2(k), . . . , ti,τ−1(k)]T )

Therefore, we can see that the inverse transformation, T−1
i (ξi(k)), for the i-th sub-

system can be denoted as

T−1
i (ξi(k)) =















xi,1(k)

ti,2(k)
...

ti,τ (k)















=















xi,1(k)

xi,2(k)
...

xi,τ (k)















and consequently we have

∂T−1
i (ξi(k))

∂ξi(k)
=















1 0 · · · 0

? 1
g1,1(ξ̄1,2(k))

· · · 0
...

...
. . .

...

? ? ? ?















(3.87)

Similarly, for the other subsystems, this coordinate transformation still holds. There-

fore, for the whole system, the inverse transformation from Ξ(k) to X(k) can be

expressed as

T−1(Ξ) =















T−1
1 (ξ1) 0 · · · 0

0 T−1
2 (ξ2) · · · 0

...
...

. . .
...

0 0 0 T−1
n (ξn)















(3.88)
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Noting (3.87), it can be concluded that the Jacobian matrix of T−1(Ξ) is both non-

singular and differentiable. Therefore, we conclude that both the mapping T (X(k))

and its inverse, T−1(Ξ(k)) are all nonsingular and differentiable. Therefore, we have

the following equation

X(k) = T−1(Ξ(k)) (3.89)

and T (X(k)) is a diffeomorphism actually. This completes the proof. �

Therefore, considering (3.82), we know that the i-th subsystem of (3.70) is in the

following form



































ξi,1(k + 1) = ξi,2(k)

ξi,2(k + 1) = ξi,3(k)
...

ξi,τ−1(k + 1) = ξi,τ (k)

ξi,τ(k + 1) = pi(X(k), ūi−1(k)) + qi(X(k))ui(k)

(3.90)

Noting (3.89), equation (3.90) can be written as



































ξi,1(k + 1) = ξi,2(k)

ξi,2(k + 1) = ξi,3(k)
...

ξi,τ−1(k + 1) = ξi,τ(k)

ξi,τ(k + 1) = fi(Ξ(k), ūi−1(k)) + gi(Ξ(k))ui(k)

(3.91)

with

fi(Ξ(k), ūi−1(k)) , pi(T
−1(Ξ(k)), ūi−1(k))

gi(Ξ(k)) , qi(T
−1(Ξ(k)))

This completes the first phase of system coordinate transformation.

Coordinate Transformation: Phase Two Now, the original system (3.70) has been
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transferred into the following form

Σ :















































































Σ1 :

{

ξ1,i1(k + 1) = ξ1,i1+1(k), 1 ≤ i1 ≤ τ − 1

ξ1,τ(k + 1) = f1(Ξ(k)) + g1(Ξ(k))u1(k)
...

Σj :

{

ξj,ij(k + 1) = ξj,ij+1(k), 1 ≤ ij ≤ τ − 1

ξj,τ(k + 1) = fj(Ξ(k), ūj−1(k)) + gj(Ξ(k))uj(k)
...

Σn :

{

ξn,in(k + 1) = ξn,in+1(k), 1 ≤ in ≤ τ − 1

ξn,τ(k + 1) = fn(Ξ(k), ūn−1(k)) + gn(Ξ(k))un(k)

yj(k)= ξj,1(k), 1 ≤ j ≤ n

(3.92)

with fj(·) and gj(·) (1 ≤ j ≤ n) being smooth nonlinear functions. Noting Remark

3.8, we have the following assumption

Assumption 3.5 There are two positive constants g
i

and ḡi > 0, such that g
i
≤

gi(·) ≤ ḡi (1 ≤ i ≤ n), ∀Ξ(k) ∈ Ω ⊂ Rn×τ .

Motivated by the design procedure in [115], coordinate transformation is used to

transform system (3.92) from state space description to input output description.

Considering the j-th (1 ≤ j ≤ n) subsystem in system (3.92)

Σj :



































ξj,1(k + 1) = ξj,2(k)

ξj,2(k + 1) = ξj,3(k)
...

ξj,τ−1(k + 1) = ξj,τ(k)

ξj,τ(k + 1) = fj(Ξ(k), ūj−1(k)) + gj(Ξ(k))uj(k)

(3.93)

In order to develop the output feedback control scheme, define the following new

variables

y
1
(k) = [y1(k − τ + 1), · · · , y1(k − 1), y1(k)]

T

y
2
(k) = [y2(k − τ + 1), · · · , y2(k − 1), y2(k)]

T

...

y
n
(k) = [yn(k − τ + 1), · · · , yn(k − 1), yn(k)]

T
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and

uk−1
1 (k) = [u1(k − 1), · · · , u1(k − τ + 1)]T

uk−1
2 (k) = [u2(k − 1), · · · , u2(k − τ + 1)]T

...

uk−1
n (k) = [un(k − 1), · · · , un(k − τ + 1)]T

Furthermore, define

z1(k) = [yT

1
(k), uk−1

1

T
(k)]T

z2(k) = [yT

2
(k), uk−1

2

T
(k)]T

...

zn(k) = [yT

n
(k), uk−1

n

T
(k)]T

z(k) = [zT
1 (k), zT

2 (k), · · · , zT
n (k)]T ∈ R(2τ−1)×n

According to the definition of the new states, we know that

y
1
(k) = [ξ1,1(k − τ + 1), · · · , ξ1,1(k − 1), ξ1,1(k)]

T

y
2
(k) = [ξ2,1(k − τ + 1), · · · , ξ2,1(k − 1), ξ2,1(k)]

T

...

y
n
(k) = [ξn,1(k − τ + 1), · · · , ξn,1(k − 1), ξn,1(k)]

T

Noting (3.93), we obtain

yj(k + 1) = ξj,2(k) = ξj,3(k − 1) = · · · = ξj,τ(k − τ + 2)

= fj(Ξ(k − τ + 1), ūj−1(k − τ + 1))

+gj(Ξ(k − τ + 1))uj(k − τ + 1) (3.94)

Noting that

Ξ(k − τ + 1) =
[

ξ1,1(k − τ + 1), . . . , ξ1,τ (k − τ + 1),

ξ2,1(k − τ + 1), . . . , ξ2,τ(k − τ + 1),

. . . ,

ξn,1(k − τ + 1), . . . , ξn,τ(k − τ + 1)
]T
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=
[

y1(k − τ + 1), . . . , y1(k),

y2(k − τ + 1), . . . , y2(k),

. . . ,

yn(k − τ + 1), . . . , yn(k)
]T

=
[

yT

1
(k), yT

2
(k), . . . , yT

n
(k)

]T

and define

Y (k) =
[

yT

1
(k), yT

2
(k), · · · , yT

n
(k)

]T

we have

Ξ(k − τ + 1) = Y (k) (3.95)

Now, equation (3.94) becomes

yj(k + 1) = fj(Y (k), ūj−1(k − τ + 1)) + gj(Y (k))uj(k − τ + 1) (3.96)

This means that ξj,2(k) is a function of Y (k), ūj−1(k − τ + 1) and uj(k − τ + 1). It

should be noted that although the right hand side of (3.96) does not contain all the

elements of z(k), for convenience of analysis, we can denote (3.96) as follows without

any ambiguity:

yj(k + 1) = ξj,2(k) = fj(Y (k), ūj(k − τ + 1)) + gj(Y (k))uj(k − τ + 1)

, ψ1,2(z(k)) (3.97)

It is obvious that

y1(k + 1) = ξ1,2(k)

= f1(Y (k)) + g1(Y (k))u1(k − τ + 1)

, ψ1,2(z(k))

y2(k + 1) = ξ2,2(k)

= f2(Y (k), u1(k − τ + 1)) + g2(Y (k))u2(k − τ + 1)

, ψ2,2(z(k))
...
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yn(k + 1) = ξn,2(k)

= fn(Y (k), u1(k − τ + 1), . . . , un−1(k − τ + 1)) + gn(Y (k))un(k − τ + 1)

, ψn,2(z(k))

Thus, we obtain

Y (k + 1) = [yT

1
(k + 1), · · · , yT

n
(k + 1)]T , Ψ1(z(k)) (3.98)

Similarly, noting equation (3.95) and (3.96), we can obtain

yj(k + 2) = ξj,3(k)

= fj(Ξ(k − τ + 2), ūj(k − τ + 2)) + gj(Ξ(k − τ + 2))uj(k − τ + 2)

= fj(Y (k + 1), uj(k − τ + 2)) + gj(Y (k + 1))uj(k − τ + 2) (3.99)

Substituting (3.98) into (3.99), we obtain

yj(k + 2) = ξj,3(k) , ψj,3(z(k)) (3.100)

Therefore, we can obtain

y1(k + 2) = ξ1,3(k) , ψ1,3(z(k)) (3.101)

y2(k + 2) = ξ2,3(k) , ψ2,3(z(k))
...

yn(k + 2) = ξn,3(k) , ψn,3(z(k))

Noting equation (3.101) and so on, it can be easily obtained that

Y (k + 2) = [yT

1
(k + 2), · · · , yT

n
(k + 2)]T , Ψ2(z(k)) (3.102)

Repeat the above procedure recursively, we can prove that

yj(k + τ − 1) = ξj,τ(k) , ψj,τ (z(k)) (3.103)

This implies that ξj,τ(k) is a function of z(k). Similarly, the following equations hold

y1(k + τ − 1) = ξ1,τ (k) , ψ1,τ (z(k))

y2(k + τ − 1) = ξ2,τ (k) , ψ2,τ (z(k))
...

yn(k + τ − 1) = ξn,τ(k) , ψn,τ (z(k)) (3.104)
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By noting equations (3.97), (3.100) and so on, we can conclude that

ξj(k) = [ξj,1(k), ξj,2(k), · · · , ξj,τ(k)]T = [yj(k), ψj,2(z(k)), · · · , ψj,τ(z(k))]
T

, ψj(z(k))

Therefore, we have

ξ1(k) = [ξ1,1(k), ξ1,2(k), · · · , ξ1,τ(k)]
T , ψ1(z(k))

ξ2(k) = [ξ2,1(k), ξ2,2(k), · · · , ξ2,τ(k)]
T , ψ2(z(k))

...

ξn(k) = [ξn,1(k), ξn,2(k), · · · , ξn,τ(k)]
T , ψn(z(k))

Then, the system state Ξ(k) = [ξT
1 (k), ξT

2 (k), · · · , ξT
n (k)]T is also depend on z(k), that

means

Ξ(k) = Ψ(z(k)) (3.105)

with Ψ(·) being a vector nonlinear function. Up to this step, Ψ(·) contains all the

elements of z(k).

Noting equation (3.103) and the last equation in system (3.93), we have

yj(k + τ) = ξj,τ(k + 1) = fj(Ξ(k), ūj−1(k)) + gj(Ξ(k))uj(k) (3.106)

Substituting (3.105) into (3.106), we have

yj(k + τ) = fj(Ψ(z(k)), ūj−1(k)) + gj(Ψ(z(k)))uj(k)

Now we can obtain the input output representation of system (3.92) as follows



































y1(k + τ) = f1(Ψ(z(k))) + g1(Ψ(z(k)))u1(k)
...

yj(k + τ) = fj(Ψ(z(k)), ūj−1(k)) + gj(Ψ(z(k)))uj(k)
...

yn(k + τ) = fn(Ψ(z(k)), ūn−1(k)) + gn(Ψ(z(k)))un(k)

(3.107)
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For the convenience of analysis, define

f1(k) = f1(Ψ(z(k))), g1(k) = g1(Ψ(z(k)))

f2(k, ū1(k)) = f2(Ψ(z(k)), ū1(k)), g2(k) = g2(Ψ(z(k)))
...

...

fn(k, ūn−1(k)) = fn(Ψ(z(k)), ūn−1(k)), gn(k) = gn(Ψ(z(k)))

Remark 3.9 By now, we have successfully transformed the original MIMO system

from state space representation (3.92) into input output representation (3.107), with

the triangular form inputs structure unchanged. Considering the input output rep-

resentation (3.107), it can be regarded as a τ -step ahead predictor model, in which,

the current outputs are determined by system information of τ steps earlier. Thus,

different from those traditional one step parameter update law [58] used for one-step

ahead predictor, high order update laws should be used to deal with this τ -step predictor

model, which will be discussed later.

In the next, a simple example will be given to illustrate the detailed transformation

procedure described above. Furthermore, the desired controls are also illustrated,

which will be specifically discussed in Section 3.2.3.

Illustrative Example: To illustrate the transformation procedure, let us look at the

following simple example (n = τ = 2):

Σ :



































Σ1 :

{

x1,1(k + 1) = x1,1(k) + x1,2(k)

x1,2(k + 1) = x1,1(k)x2,1(k) + u1(k)

Σ2 :

{

x2,1(k + 1) = x2,1(k) + x2,2(k)

x2,2(k + 1) = x1,2(k)x2,2(k)u
2
1(k) + u2(k)

yj(k)= xj,1(k), 1 ≤ j ≤ 2

(3.108)

Define
{

ξ1,1(k) = x1,1(k)

ξ1,2(k) = x1,1(k + 1)
and

{

ξ2,1(k) = x2,1(k)

ξ2,2(k) = x2,1(k + 1)
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The original system can be easily transformed into the follows:














































Σ1 :

{

ξ1,1(k + 1) = ξ1,2(k)

ξ1,2(k + 1) = ξ1,2(k) + ξ1,1(k)ξ2,1(k) + u1(k)

Σ2 :















ξ2,1(k + 1) = ξ2,2(k)

ξ2,2(k + 1) = ξ2,2(k) + [ξ1,2(k) − ξ1,1(k)] [ξ2,2(k) − ξ2,1(k)] u
2
1(k)

+u2(k)

yj(k)= ξj,1(k), 1 ≤ j ≤ 2

Consequently, we can easily obtain that
{

ξ1,1(k + 2) = ξ1,2(k) + ξ1,1(k)ξ2,1(k) + u1(k)

ξ2,1(k + 2) = ξ2,2(k) + [ξ1,2(k) − ξ1,1(k)] [ξ2,2(k) − ξ2,1(k)]u
2
1(k) + u2(k)

(3.109)

Noting that
{

ξ1,1(k) = y1(k)

ξ1,2(k) = y1(k + 1)
and

{

ξ2,1(k) = y2(k)

ξ2,2(k) = y2(k + 1)

Therefore, we can obtain that

ξ1,2(k) = ξ1,2(k − 1) + ξ1,1(k − 1)ξ2,1(k − 1) + u1(k − 1)

= y1(k) + y1(k − 1)y2(k − 1) + u1(k − 1)

, fa(k)

ξ2,2(k) = ξ2,2(k − 1) + [ξ1,2(k − 1) − ξ1,1(k − 1)] [ξ2,2(k − 1) − ξ2,1(k − 1)]u2
1(k − 1)

+u2(k − 1)

= y2(k) + [y1(k) − y1(k − 1)] [y2(k) − y2(k − 1)] u2
1(k − 1) + u2(k − 1)

, fb(k)

Hence, equation (3.109) can be rewritten as
{

y1(k + 2) = fa(k) + y1(k)y2(k) + u1(k)

y2(k + 2) = fb(k) + [fa(k) − y1(k)] [fb(k) − y2(k)]u
2
1(k) + u2(k)

(3.110)

Assuming the desired trajectory is yd(k) = [yd1(k), yd2(k)]
T , therefore, we can get the

desired control as

u∗1(k) = yd1(k + 2) − y1(k)y2(k) − fa(k)

u∗2(k) = yd2(k + 2) − [fa(k) − y1(k)] [fb(k) − y2(k)] u
∗2

1 (k) − fb(k)

= yd2(k + 2) − [fa(k) − y1(k)] [fb(k) − y2(k)] [yd1(k) − y1(k)y2(k)]
2 − fb(k)
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which can realize the exact tracking in 2 steps.

Assume system initial conditions are: u∗1(0) = 0, u∗2(0) = 0, y1(0) = y1(1) = y1(2) = 0

and y2(0) = y2(1) = y2(2) = 0. The reference trajectory, yd1(k) and yd2(k), are shown

in Table 3.2. Practical control action starts at time instant k = 1. Table 3.2, Figures

3.4 and 3.5 show the system variation from k = 0 to k = 8.

k 0 1 2 3 4 5 6 7 8

u∗

1(k) 0 0.2 0.1 -0.24 -0.2 0.12 0.09 0.1 -0.3
y1(k) 0 0 0 0.2 0.3 0.1 -0.1 0 0.1

yd1
(k) -0.2 -0.1 0.1 0.2 0.3 0.1 -0.1 0 0.1

u∗

2(k) 0 0.2 -0.2004 -0.1988 0.0984 0.2003 -0.1002 -0.0999 -0.0991
y2(k) 0 0 0 0.2 0 -0.2 -0.1 0.1 0

yd2
(k) -0.1 0.1 0.3 0.2 0 -0.2 -0.1 0.1 0

§The numbers with underscores represent system initial conditions. The numbers in bold indicate that
exact tracking is obtained.

Table 3.2: A Simple Example - System Variation

0 1 2 3 4 5 6 7 8 9 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

    control action started at k=1
exact tracking obtained at k=3  

y
d1

(k) 

y
1
(k) 

Figure 3.4: Example: y1 and yd1

0 1 2 3 4 5 6 7 8 9 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

y
d2

(k) 

y
2
(k) 

    control action started at k=1
exact tracking obtained at k=3 

Figure 3.5: Example: y2 and yd2

It can be seen that, for this example, the control action is started from k = 1. The

exact tracking is achieved at k = 3, as what we expected. The exact tracking is

achieved in τ = 2 steps.
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Figure 3.6: Output Feedback Control - Control System Structure

3.2.3 Controller Design and Stability Analysis

The closed-loop system structure is shown in Figure 3.6. Now, consider the input

output representation (3.107) of system (3.92), we have illustrated that if (3.107) is

stable, the stability of (3.92) will be guaranteed. In the next, we will develop stable

adaptive NN controls and corresponding weight tuning laws for system (3.107), which

will also stabilize system (3.92).

Define tracking error as e(k) = [e1(k), . . . , en(k)]T , with

ei(k) = yi(k) − ydi
(k), i = 1, . . . , n (3.111)

then the error dynamics can be obtained



























e1(k + τ) = f1(k) + g1(k)u1(k) − yd1(k + τ)

e2(k + τ) = f2(k, ū1(k)) + g2(k)u2(k) − yd2(k + τ)
...

en(k + τ) = fn(k, ūn−1(k)) + gn(k)un(k) − ydn(k + τ)

(3.112)

Consider the first equation in error dynamics (3.112), if we choose the desired control
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u∗1(k) as

u∗1(k) =
yd1(k + τ) − f1(k)

g1(k)
(3.113)

we can obtain e1(k + τ) = 0. Therefore, the tracking error e1(k) will reach zero in

τ steps. However, in practical applications, normally, exact system model cannot be

obtained. Therefore, the desired control u∗
1(k) is not applicable. Instead, we can use

high order neural networks to approximate u∗
1(k)

u∗1(k) = W ∗T
1 S1(z1(k)) + εz1(z1(k)) (3.114)

z1(k) = [z(k), yd1(k + τ)]T ∈ Ωz1 ⊂ R1+(2τ−1)×n

Choose the practical adaptive control input u1(k) and robust updating algorithm for

NN weights as

u1(k) = Ŵ T
1 (k)S1(z1(k)) (3.115)

Ŵ1(k) = Ŵ1(k − τ) − Γ1

[

S1(z1(k − τ))e1(k) + σ1Ŵ1(k − τ)
]

(3.116)

where ΓT
1 = Γ1 > 0 is the adaptation diagonal gain matrix and Ŵ1(k) denotes the

estimation of W ∗
1 (k).

Once u1(k) is confirmed, the desired control u∗2(k) can be chosen as

u∗2(k) =
yd2(k + τ) − f2(k, ū1(k))

g2(k)
(3.117)

which will drive e2(k+ τ) = 0. Similar, we know that there exists a high order neural

network, such that

u∗2(k) = W ∗T
2 S2(z2(k)) + εz2(z2(k)) (3.118)

z2(k) = [z(k), ū1(k), yd2(k + τ)]T ∈ Ωz2 ⊂ R2+(2τ−1)×n

Choose the direct adaptive control and corresponding neural weight update law as

u2(k) = Ŵ T
2 (k)S2(z2(k)) (3.119)

Ŵ2(k) = Ŵ2(k − τ) − Γ2

[

S2(z2(k − τ))e2(k) + σ2Ŵ2(k − τ)
]

(3.120)

where ΓT
2 = Γ2 > 0 is the adaptation diagonal gain matrix and Ŵ2(k) denotes the

estimation of W ∗
2 (k).
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Repeat the above procedure recursively, at step i, we know that the desired control

u∗i (k) is

u∗i (k) =
ydi

(k + τ) − fi(k, ūi−1(k))

gi(k)
(3.121)

Its HONN approximation is

u∗i (k) = W ∗T
i Si(zi(k)) + εzi

(zi(k)) (3.122)

zi(k) = [z(k), ūi−1(k), ydi
(k + τ)]T ∈ Ωzi

⊂ Ri+(2τ−1)×n

Accordingly, the practical control input ui(k) and its NN weight update law are chosen

as follows

ui(k) = Ŵ T
i (k)Si(zi(k)) (3.123)

Ŵi(k) = Ŵi(k − τ) − Γi

[

Si(zi(k − τ))ei(k) + σiŴi(k − τ)
]

(3.124)

where ΓT
i = Γi > 0 is the adaptation diagonal gain matrix and Ŵi(k) denotes the

estimation of W ∗
i (k). In the final step, we know that the desired control u∗

n(k) is

u∗n(k) =
ydn(k + τ) − fn(k, ūn−1(k))

gn(k)
(3.125)

Its HONN approximation is

u∗n(k) = W ∗T
n Sn(zn(k)) + εzn(zn(k)) (3.126)

zn(k) = [z(k), ūn−1(k), ydn(k + τ)]T ∈ Ωzn ⊂ R2τn

Accordingly, the practical control input un(k) and its NN weight update law are

chosen as follows

un(k) = Ŵ T
n (k)Sn(zn(k)) (3.127)

Ŵn(k) = Ŵn(k − τ) − Γn

[

Sn(zn(k − τ))en(k) + σnŴn(k − τ)
]

(3.128)

where ΓT
n = Γn > 0 is the adaptation diagonal gain matrix and Ŵn(k) denotes the

estimation of W ∗
n(k).

Summarize equations (3.115) and (3.116), (3.119) and (3.120), (3.123) and (3.124),

(3.127) and (3.128), we propose the HONN controls and weight update laws for system
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(3.107) as follows

ui(k) = Ŵ T
i (k)Si(zi(k)) (3.129)

zi(k) = [z(k), ūi−1(k), ydi
(k + τ)]T ∈ Ωzi

⊂ Ri+(2τ−1)×n

Ŵi(k) = Ŵi(k − τ) − Γi

[

Si(zi(k − τ))ei(k) + σiŴi(k − τ)
]

(3.130)

i = 1, . . . , n

where Γi = diag[γi1, γi2, . . . , γin] > 0 is diagonal adaptation gain matrix with its every

element, 0 < γi1, γi2, . . . , γin < 1 and 0 < σi < 1 are positive constants. It should be

noticed that, in the neural network weights update laws (3.130), σ-modification [62]

is used to improve the robustness of the controller. For the ease of analysis, equation

can also be written as

Ŵi(k + τ) = Ŵi(k) − Γi

[

Si(zi(k))ei(k + τ) + σiŴi(k)
]

, i = 1, . . . , n(3.131)

The stability of the closed-loop system is summarized in Theorem 3.3.

Theorem 3.3 Consider the closed-loop nonlinear MIMO system consists of system

(3.70), NN controls (3.129) and NN weight update laws (3.130), it is semi-globally

uniformly ultimately bounded, and has an equilibrium at [e1(k), . . . , en(k)]T = 0 pro-

vided that the design parameters are properly chosen. This guarantees that all the

signals include the state vector X(k), the control inputs ui(k) and NN weight esti-

mates Ŵi(k), i = 1, . . . , n are all bounded, subsequently,

lim
k→∞

‖y(k) − yd(k)‖ ≤ ε

where ε is a small positive number.

Proof: The prove procedure is as follows:

1. In the first step, for the first subsystem, by choosing neural network controller

u1(k), its stability is guaranteed by using Lyapunov analysis;

2. In the second step, once u1(k) is determined, by choosing u2(k), we prove the

SGUUB stability for the first two subsystems Σ1 and Σ2;
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3. Repeat this procedure recursively, in step i, choose ui(k) to stabilize subsystems

Σ1 to Σi;

4. Finally, in step n, choose un(k) to guarantee the stability of all the subsystems.

Suppose that Y (k − τ), Y (k − τ + 1), . . . , Y (k − 1) ∈ Ω, ∀k ≥ 0 and Ω denotes the

compact set in which NN approximation (3.114), (3.118), (3.122) and (3.126) are

valid. Now we prove that Y (k) ∈ Ω and u(k) is bounded by backstepping.

Step 1: Noting that e1(k) = y1(k) − yd1(k), its τth difference is given by

e1(k + τ) = y1(k + τ) − yd1(k + τ)

= f1(k) + g1(k)u1(k) − yd1(k + τ) (3.132)

Adding and subtracting g1(k)u
∗
1(k) on the right side of equation (3.132) and noting

equation (3.113), we have

e1(k + τ) = g1(k) (u1(k) − u∗1(k))

= g1(k)
[

W̃ T
1 (k)S1(z1(k)) − εz1

]

with W̃ T
1 (k) = Ŵ T

1 (k) −W ∗
1 (k) denotes the estimation error of the NN weight. Con-

sequently, we obtain

W̃ T
1 (k)S1(z1(k)) =

e1(k + τ)

g1(k)
+ εz1 (3.133)

Choose the following Lyapunov function candidate

V1(k) =
1

ḡ1

τ−1
∑

j=0

e21(k + j) +
τ−1
∑

j=0

W̃ T
1 (k + j)Γ−1

1 W̃1(k + j) (3.134)

Its first difference is

∆V1(k) = V1(k + 1) − V1(k)

=
1

ḡ1

e21(k + τ) − 1

ḡ1

e21(k) + W̃ T
1 (k + τ)Γ−1

1 W̃1(k + τ) − W̃ T
1 (k)Γ−1

1 W̃1(k)

Noting the weight update algorithm (3.131) and equation (3.133), we have

∆V1(k) =
1

ḡ1

e21(k + τ) − 1

ḡ1

e21(k) − 2W̃ T
1 (k)S1(z1(k))e1(k + τ) − 2σ1W̃

T
1 (k)Ŵ1(k)
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+ST
1 (z1(k))Γ

T
1 S1(z1(k))e

2
1(k + τ) + 2σ1Ŵ

T
1 (k)ΓT

1 S1(z1(k))e1(k + τ)

+σ2
1Ŵ

T
1 (k)ΓT

1 Ŵ1(k)

=
1

ḡ1
e21(k + τ) − 1

ḡ1
e21(k) − 2

1

g1(k)
e21(k + τ) − 2εz1e1(k + τ)

−2σ1W̃
T
1 (k)Ŵ1(k) + ST

1 (z1(k))Γ
T
1 S1(z1(k))e

2
1(k + τ)

+2σ1Ŵ
T
1 (k)ΓT

1 S1(z1(k))e1(k + τ) + σ2
1Ŵ

T
1 (k)ΓT

1 Ŵ1(k)

≤ − 1

ḡ1
e21(k + τ) − 1

ḡ1
e21(k) − 2εz1e1(k + τ) − 2σ1W̃

T
1 (k)Ŵ1(k)

ST
1 (z1(k))Γ

T
1 S1(z1(k))e

2
1(k + τ) + 2σ1Ŵ

T
1 (k)ΓT

1 S1(z1(k))e1(k + τ)

+σ2
1Ŵ

T
1 (k)ΓT

1 Ŵ1(k)

Using the following facts

ST
1 (z1(k))S1(z1(k)) < l1

ST
1 (z1(k))Γ

T
1 S1(z1(k)) ≤ γ̄1S

T
1 (z1(k))S1(z1(k)) ≤ γ̄1l1

2εz1e1(k + τ) ≤ γ̄1e
2
1(k + τ)

ḡ1
+
ḡ1ε

2
z1

γ̄1

2σ1Ŵ
T
1 (k)Γ1S1(z1(k))e1(k + τ) ≤ γ̄1l1e

2
1(k + τ)

ḡ1
+ ḡ1σ

2
1 γ̄1‖Ŵ1‖2

2W̃ T
1 (k)Ŵ1(k) = ‖W̃1(k)‖2 + ‖Ŵ1(k)‖2 − ‖W ∗

1 ‖2

where l1 denotes the neurons used and γ̄1 = max{γ11 , γ12, . . . , γ1n} denotes the biggest

eigenvalue of Γ1, we obtain

∆V1 ≤ −ρ1

ḡ1

e21(k + τ) − 1

ḡ1

e21(k) + β1 − σ1(1 − σ1γ̄1 − ḡ1σ1γ̄1)‖Ŵ1(k)‖2

−σ1‖W̃1(k)‖2

where

ρ1 = 1 − γ̄1 − γ̄1l1 − ḡ1γ̄1l1, β1 =
ḡ1ε

2
z1

γ̄1

+ σ1‖W ∗
1 ‖2

If we choose the design parameters as follows

γ̄1 <
1

1 + l1 + ḡ1l1
, σ1 <

1

(1 + ḡ1)γ̄1

(3.135)

then we have

∆V1 ≤ − 1

ḡ1

e21(k) + β1
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Then ∆V1 ≤ 0 once the error |e1(k)| is larger than
√
ḡ1β1. This implies the bounded-

ness of e1(k), and we know that the tracking error e1(k) will asymptotically converge

to a compact set denoted by Ω1 ⊂ R, where Ω1 , {χ
∣

∣

∣
χ ≤

√
ḡ1β1}.

The adaptation dynamics (3.116) can be written as

Ŵ1(k + τ) = (I − Γ1σ1)Ŵ1(k) − Γ1[S1(z1(k))e1(k + τ) + σ1W
∗
1 ]

= A1(k)Ŵ1(k) − Γ1[S1(z1(k))e1(k + τ) + σ1W
∗
1 ]

Because 0 < γ11 , γ12, . . . , γ1n < 1 and 0 < σ1 < 1, we know that the transition matrix

‖Φ(k1, k0)‖ of A1(k) always satisfies ‖Φ(k1, k0)‖ < 1. Furthermore, noting S1(z1(k)),

e1(k + τ) and σ1W
∗
1 are all bounded, by applying Lemma A.1, Ŵ1(k) is bounded in

a compact set denoted by Ωw1 , and hence the boundedness of Ŵ1(k) is assured.

Step 2: As defined in equation (3.111), e2(k) = y2(k) − yd2(k), its τth difference is

given by

e2(k + τ) = y2(k + τ) − yd2(k + τ)

= f2(k, ū1(k)) + g2(k)u2(k) − yd2(k + τ) (3.136)

Adding and subtracting g2(k)u
∗
2(k) on the right side of equation (3.136) and noting

equation (3.117), we have

e2(k + τ) = g2(k) [u2(k) − u∗2(k)]

= g2(k)
[

W̃ T
2 (k)S2(z2(k)) − εz2

]

with W̃2(k) = Ŵ2(k) −W ∗
2 (k) denotes the estimation error of the NN weight W ∗

2 (k).

Consequently, we obtain

W̃ T
2 (k)S2(z2(k)) =

e2(k + τ)

g2(k)
+ εz2 (3.137)

Choose the following Lyapunov function candidate for subsystems Σ1 and Σ2

V2(k) = V1(k) +
1

ḡ2

τ−1
∑

j=0

e22(k + j) +

τ−1
∑

j=0

W̃ T
2 (k + j)Γ−1

2 W̃2(k + j) (3.138)

Its first difference is

∆V2(k) = ∆V1(k) +
1

ḡ1
e22(k + τ) − 1

ḡ1
e22(k)

+W̃ T
2 (k + τ)Γ−1

2 W̃2(k + τ) − W̃ T
2 (k)Γ−1

2 W̃2(k) (3.139)

115



3.2 Output Feedback Control

Noting the weight update algorithm (3.131) and equation (3.137), by following the

similar procedure as in Step 1, we obtain

∆V2(k) ≤ ∆V1(k) −
ρ2

ḡ2
e22(k + τ) − 1

ḡ2
e22(k) + β2 − σ2(1 − σ2γ̄2 − ḡ2σ2γ̄2)‖Ŵ2(k)‖2

−σ2‖W̃2(k)‖2

where

ρ2 = 1 − γ̄2 − γ̄2l2 − ḡ2γ̄2l2, β2 =
ḡ2ε

2
z2

γ̄2
+ σ2‖W ∗

2 ‖2

If we choose the design parameters as follows

γ̄2 <
1

1 + l2 + ḡ2l2
, σ2 <

1

(1 + ḡ2)γ̄2

(3.140)

then we have

∆V2(k) ≤ ∆V1(k) −
1

ḡ2

e22(k) + β2

≤ − 1

ḡ1
e21(k) + β1 −

1

ḡ2
e22(k) + β2

Thus ∆V2(k) ≤ 0 once the error |ei(k)| (i = 1, 2) is larger than
√

ḡi(β1 + β2). This

implies the boundedness of e1(k) and e2(k). Furthermore, the tracking error ei(k)

(i = 1, 2) will asymptotically converge to the compact set denoted by Ω2 ⊂ R, where

Ω2 , {χ
∣

∣

∣
χ ≤ max

{

√

ḡ1(β1 + β2),
√

ḡ2(β1 + β2)
}

}.

The adaptation dynamics (3.120) can be written as

Ŵ2(k + τ) = (I − Γ2σ2)Ŵ2(k) − Γ2[S2(z2(k))e2(k + τ) + σ2W
∗
2 ]

= A2(k)Ŵ2(k) − Γ2[S2(z2(k))e2(k + τ) + σ2W
∗
2 ]

Because 0 < γ21 , γ22, . . . , γ2n < 1 and 0 < σ2 < 1, we know that the transition matrix

‖Φ(k1, k0)‖ of A2(k) always satisfies ‖Φ(k1, k0)‖ < 1. Furthermore, noting S2(z2(k)),

e2(k + τ) and σ2W
∗
2 are all bounded, by applying Lemma A.1, Ŵ2(k) is bounded in

a compact set denoted by Ωw2 , and hence the boundedness of Ŵ2(k) is assured.

Step i(1 < i < n): Following the same procedures in Step 1 or Step 2, for ei(k) =

yi(k) − ydi
(k), its τth difference is given by

ei(k + τ) = yi(k + τ) − ydi
(k + τ)

= fi(k, ūi−1(k)) + gi(k)ui(k) − ydi
(k + τ) (3.141)
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Adding and subtracting gi(k)u
∗
i (k) on the right side of equation (3.141) and noting

equation (3.121), we have

ei(k + τ) = gi(k) (ui(k) − u∗i (k))

= gi(k)
[

W̃ T
i (k)Si(zi(k)) − εzi

]

with W̃ T
i (k) = Ŵ T

i (k)−W ∗
i (k) denotes the estimation error of the NN weight W ∗

i (k).

Consequently, we obtain

W̃ T
i (k)Si(zi(k)) =

ei(k + τ)

gi(k)
+ εzi

(3.142)

Similarly, choosing the following Lyapunov function candidate for subsystems Σ1 to

Σi

Vi(k) =

i−1
∑

j=1

Vj(k) +
1

ḡi

τ−1
∑

j=0

e2i (k + j) +

τ−1
∑

j=0

W̃ T
i (k + j)Γ−1

i W̃i(k + j) (3.143)

By following the same procedure as in step 1, we have

∆Vi(k) ≤
i−1
∑

j=1

∆Vj(k) −
ρi

ḡi

e2i (k + τ) − 1

ḡi

e2i (k) + βi

−σi(1 − σiγ̄i − ḡiσiγ̄i)‖Ŵi(k)‖2 − σi‖W̃i(k)‖2

where

ρi = 1 − γ̄i − γ̄ili − ḡiγ̄ili, βi =
ḡiε

2
zi

γ̄i

+ σi‖W ∗
i ‖2

If we choose the design parameters as follows

γ̄i <
1

1 + li + ḡili
, σi <

1

(1 + ḡi)γ̄i

(3.144)

then we have

∆Vi(k) ≤
i

∑

j=1

{

− 1

ḡj

e2j(k)

}

+
i

∑

j=1

βj

Thus ∆Vi(k) ≤ 0 once |ej(k)| (j = 1, 2, . . . , i) is larger than
√

ḡj(β1 + · · ·+ βi). This

implies the boundedness of ej(k) (j = 1, 2, . . . , i). Furthermore, the tracking error
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ej(k) (j = 1, 2, . . . , i) will asymptotically converge to the compact set denoted by

Ωi ⊂ R, where

Ωi , {χ
∣

∣

∣
χ ≤ max

{

√

ḡ1(β1 + · · · + βi), . . . ,
√

ḡi(β1 + · · · + βi)
}

}

By following the similar procedure as in Step 1, we know that Ŵi(k) is bounded in a

compact set denoted by Ωwi
, and hence the boundedness of Ŵi(k) is assured.

Step n: In the final step, following the same procedure as in Step i, we have the

following Lyapunov function candidate (For clarity of presentation, details are omitted

here)

Vn(k) =

n−1
∑

j=1

Vj(k) +
1

ḡn

τ−1
∑

j=0

e2n(k + j) +

τ−1
∑

j=0

W̃ T
n (k + j)Γ−1

n W̃n(k + j) (3.145)

Its first difference is

∆Vn(k) ≤
n−1
∑

j=1

∆Vj(k) −
ρn

ḡn

e2n(k + τ) − 1

ḡn

e2n(k) + βn −

σn(1 − σnγ̄n − ḡnσnγ̄n)‖Ŵn(k)‖2 − σn‖W̃n(k)‖2

with

ρn = 1 − γ̄n − γ̄nln − ḡnγ̄nln, βn =
ḡnε

2
zn

γ̄n

+ σn‖W ∗
n‖2

If we choose the design parameters as follows

γ̄n <
1

1 + ln + ḡnln
, σn <

1

(1 + ḡn)γ̄n

(3.146)

then we have

∆Vn(k) ≤
n

∑

j=1

{

− 1

ḡj

e2j(k)

}

+

n
∑

j=1

βj

Thus ∆Vn(k) ≤ 0 once ej(k) (j = 1, 2, . . . , n) is larger than
√

ḡj(β1 + · · · + βn). This

implies the boundedness of ej(k) (j = 1, 2, . . . , n). Furthermore, the tracking error

ej(k) (j = 1, 2, . . . , n) will asymptotically converge to the compact set denoted by

Ωn ⊂ R, where

Ωn ,

{

χ
∣

∣

∣
χ ≤ max

{

√

ḡ1(β1 + · · · + βn), . . . ,
√

ḡn(β1 + · · · + βn)
}}
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Following the procedures in previous steps, we know that Ŵn(k) is bounded in a

compact set denoted by Ωwn , and hence the boundedness of Ŵn(k) is assured.

In summary, for the closed-loop nonlinear MIMO system consists of system (3.70),

controller (3.129) and adaptive law (3.130), if the design parameters are chosen as

γ̄i <
1

1 + li + ḡili
, σi <

1

(1 + ḡi)γ̄i

(i = 1, . . . , n)

then the closed-loop system is semi-globally uniformly ultimately bounded, and has an

equilibrium at [e1(k), . . . , en(k)]
T = 0. This guarantees that all the signals include the

state vector X(k), the control input u(k) and NN weight estimates Ŵi(k), i = 1, . . . , n

are all bounded. Subsequently,

lim
k→∞

‖y(k) − yd(k)‖ ≤ ε

where ε is a small positive number.

Therefore, for any a priori given (arbitrarily large) bounded set Ω and any a priori

given (arbitrarily small) set Ω0, which contains (0, 0) as an interior point, there exist a

control u, such that every trajectory of the closed-loop system starting from Ω enters

the set Ω0 in a finite time and remains in it thereafter. That is to say, the whole

closed-loop system is SGUUB. �

Remark 3.10 In Theorem 3.3, by using neural network controls (3.129) and weights

update laws (3.130), through Lyapunov analysis, we can only obtain the boundedness

of the closed loop signals, include the states, the outputs and the neural network

weights.

3.2.4 Simulation

In order to illustrate the effectiveness of the proposed schemes, a simulation example

is studied in this section. Considering the following MIMO discrete-time system with
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triangular form inputs















































x1,1(k + 1) = f1,1(x̄1,1(k)) + g1,1(x̄1,1(k))x1,2(k)

x1,2(k + 1) = f1,2(x̄1,2(k)) + g1,2(x̄1,2(k))u1(k)

x2,1(k + 1) = f2,1(x̄2,1(k)) + g2,1(x̄2,1(k))x2,2(k)

x2,2(k + 1) = f2,2(x̄2,2(k), u1(k)) + g2,2(x̄2,2(k))u2(k)

y1(k) = x1,1(k)

y2(k) = x2,1(k)

where






f1,1(x̄1,1(k)) =
x2
1,1(k)

1+x2
1,1(k)

, g1,1(x̄1,1(k)) = 0.3

f1,2(x̄1,2(k)) =
x2
1,1(k)

1+x2
1,2(k)+x2

2,1(k)+x2
2,2(k)

, g1,2(x̄1,2(k)) = 1







f2,1(x̄2,1(k)) =
x2
2,1(k)

1+x2
2,1(k)

, g2,1(x̄2,1(k)) = 0.2

f2,2(x̄2,2(k), u1(k)) =
x2
2,1(k)

1+x2
1,1+x2

1,2(k)+x2
2,2(k)

u2
1(k), g2,2(x̄2,2(k)) = 1

The control objective is to drive the output y(k) = [y1(k), y2(k)]
T of the system to

follow desired reference signals

yd1(k) = 0.5 +
1

4
cos(

πTk

4
) +

1

4
sin(

πTk

2
)

yd2(k) = 0.5 +
1

4
sin(

πTk

4
) +

1

4
sin(

πTk

2
)

with T = 0.01.

The initial condition for system states is x1,1(0) = x1,1(1) = 0.5, x1,2(0) = x1,2(1) = 0,

x2,1(0) = x2,1(1) = 0.5 and x2,2(0) = x2,2(1) = 0. The neurons used are l1 = 28 and

l2 = 36. All the elements of the neural network weights Ŵ1(0), Ŵ1(1), Ŵ2(0) and

Ŵ2(1) are initialized to be random numbers between 0.00 and 0.01, and the active

functions S1(z1(0)), S1(z1(1)), S2(z2(0)) and S2(z2(1)) are initialized to be random

numbers between 0.00 and 0.02. σ modification gains are σ1 = σ2 = 0.01, and

adaptive gain matrices are Γ1 = Γ2 = 0.015I.
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For clarity, the formulas used in the simulation are listed here. The practical controls

are as follows:

u1(k) = Ŵ1(k)S1(z1(k))

z1(k) = [y1(k − 1), y1(k), y2(k − 1), y2(k), u1(k − 1), u2(k − 1), yd1(k + 2)]T

u2(k) = Ŵ2(k)S2(z2(k))

z2(k) = [y1(k − 1), y1(k), y2(k − 1), y2(k), u1(k − 1), u2(k − 1), u1(k), yd2(k + 2)]T

The errors’ definitions are (i = 1, 2):

Σi : ei(k) = yi(k) − ydi
(k)

The weights update law are as follows (i = 1, 2):

Ŵi(k) = Ŵi(k − 2) − Γi[Si(zi(k − 2))ei(k) + σiWi(k − 2)]

Simulation results are shown in Figure 3.12-Figure 3.15. Figure 3.12 and Figure 3.13

show the tracking performances of the first sub-system and the second sub-system

respectively. It can be seen that, in the initial period of simulation, the tracking errors

are large. Then, as the time increases, the practical outputs converge to the neighbor-

hoods of the desired signals. The control input trajectories u1(k) = Ŵ1(k)S1(z1(k))

and u2(k) = Ŵ2(k)S2(z2(k)) are shown in Figure 3.14. Their corresponding neural

network weights norms ‖Ŵ1(k)‖ and ‖Ŵ2(k)‖ are shown in Figure 3.15. From Figure

3.14 and 3.15, we can see that both the control inputs and their corresponding weights

norms are all bounded.

3.3 Conclusion

In this chapter, firstly, neural network control scheme was investigated for a class

of MIMO nonlinear discrete-time systems with disturbances. In order to avoid the

non-causal problem in backstepping design, the MIMO system under study was firstly

transformed into SDFC form, which completely solved the non-causal problem. Then,

HONNs were used to approximate the desired controls. By using backstepping design

in a nested manner, the closed-loop system was proved to be SGUUB based on Lya-

punov analysis. Secondly, a simple output feedback NN control scheme was developed
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for a class of similar MIMO nonlinear discrete-time systems without disturbances. By

coordinate transformation, the system was firstly transformed into input output de-

scription. Then the input and output sequences were used to construct the effective

neural network control. HONNs were used to approximate the desired controls. The

closed-loop system was proved to be SGUUB based on Lyapunov analysis.
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Figure 3.7: State Feedback Control - Tracking Performance y1(k) and yd1(k)
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Figure 3.8: State Feedback Control - Tracking Performance y2(k) and yd2(k)
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Figure 3.9: State Feedback Control - Control Inputs u1(k) and u2(k)
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Figure 3.10: State Feedback Control - Weight Norms ‖Ŵ12(k)‖ and ‖Ŵ22(k)‖
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Figure 3.11: State Feedback Control - Error dynamics
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Figure 3.12: Output Feedback Control - Tracking Performance y1(k) and yd1(k)
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Figure 3.13: Output Feedback Control - Tracking Performance y2(k) and yd2(k)
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Figure 3.14: Output Feedback Control - Control Inputs u1(k) and u2(k)
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Figure 3.15: Output Feedback Control - Weight Norms ‖Ŵ1(k)‖ and ‖Ŵ2(k)‖
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Figure 3.16: Output Feedback Control - Error dynamics
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Chapter 4

NN Control of NARMAX MIMO

Systems

In this chapter, adaptive NN control schemes are investigated for MIMO NARMAX

systems. The chapter is organized as follows. Firstly, for a class of MIMO NARMAX

systems in affine form, a simple and effective NN control scheme is proposed in Section

4.1. Subsequently, for a class of MIMO NARMAX non-affine systems, by using

implicit function theory, another NN control scheme is developed in Section 4.2.

Finally, conclusions are made in Section 4.3.

4.1 Affine MIMO NARMAX Systems

4.1.1 Introduction

In this section, using HONNs, adaptive controller design is investigated for a class of

affine discrete-time MIMO nonlinear systems with unknown interconnections between

subsystems. The controller can be applied directly to the system without the require-

ment of off-line training if the node number of the neural networks is sufficient large.

By finding an orthogonal matrix to tune the NN weight matrix, the overall system is

proved to be SGUUB, and the tracking error converges to a small neighborhood of

the origin.
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This section is organized as follows. Section 4.1.2 describes the nonlinear systems

under study and the control objective, as well as some stability notions. An ideal

control is also presented if there are no uncertainties. A direct NN controller is

proposed in Section 4.1.3, which guarantees the stability of the closed-loop system

and the boundedness of all signals in the closed-loop system.

4.1.2 System Dynamics and Stability Notions

In discrete-time formulations, one of the most popular nonlinear representations is

the NARMAX model [101]. Many p×p multi-inputs and multi-outputs processes can

be represented by a NARMAX model known as τ -step ahead observer equation as

follows

y(k + τ) = Fτ (Y (k), Uk−1(k), Dk−1(k), d̄(k)) +Gτ (Y (k), Uk−1(k))u(k)

+d(k + τ − 1) (4.1)

where τ is system delay, y(k) = [y1(k), . . . , yp(k)]
T and u(k) = [u1(k), . . . , up(k)]

T are

system output and input respectively, d(k) = [d1(k), d2(k), . . . , dp(k)]
T denotes the

external unmeasured disturbance vector bounded by a known constant d0 > 0, i.e.,

‖d(k)‖ ≤ d0, Y (k) is a vector containing current and past outputs, Uk−1(k) is a vector

containing only past inputs, and Dk−1(k) is a vector containing the past disturbances,

Fτ (∗) is a nonlinear function vector, and Gτ (∗) is a nonlinear function matrix. In

particular, they are defined as

d̄(k)= [d(k + τ − 2), . . . , d(k)]T , if τ ≥ 2

Uk−1(k)= [u1(k − 1), . . . , u1(k −m1), u2(k − 1), . . . , u2(k −m2), . . . ,

up(k − 1), . . . , up(k −mp)]
T

Y (k)= [y1(k), . . . , y1(k − n1 + 1), y2(k), . . . , y2(k − n2 + 1), . . . ,

yp(k), . . . , yp(k − np + 1)]T

Dk−1(k)= [d1(k − 1), . . . , d1(k − t1 + 1), d2(k − 1), . . . , d2(k − t2 + 1), . . . ,

dp(k − 1), . . . , dp(k − tp + 1)]T

Fτ (k)= [fτi
(Y (k), Uk−1(k), Dk−1(k), d̄(k))] ∈ Rp

Gτ (k)= [gτij
(Y (k), Uk−1(k))] ∈ Rp×p
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with ni denotes the length of the i-th subsystem’s outputs, and mi is the length of the

i-th subsystem’s inputs, which satisfies mi < ni, i = 1, . . . , p; ti is the length of the i-

th disturbance, i = 1, . . . , p; fτi
(Y (k), Uk−1(k), Dk−1(k), d̄(k)) and gτij

(Y (k), Uk−1(k)),

i, j = 1, . . . , p, are smooth nonlinear functions.

Assumption 4.1 Fτ (Y (k), Uk−1(k), Dk−1(k), d̄(k)) is locally Lipschitz in d̄(k) and

Dk−1(k) at (0, 0), i.e., there are Lipschitz constants L1 and L2 such that

‖Fτ (Y (k), Uk−1(k), Dk−1(k), d̄(k)) − Fτ (Y (k), Uk−1(k), 0, 0)‖
≤ L1‖Dk−1(k)‖ + L2‖d̄(k)‖

with L1 and L2 being positive constants.

Suppose the objective is to design control u(k) to drive the system output y(k) follow

a known and bounded trajectory yd(k) = [yd1(k), yd2(k), . . . , ydp(k)]
T .

Definition 4.1 The future outputs, y(k+ i), i > 0, of discrete-time system (4.1) are

said to be semi-determined future outputs, if the future outputs are independent of the

current control u(k).

From Definition 4.1, it is clear that future outputs y(k + 1),. . ., y(k + τ − 1) in (4.1)

are all semi-determined future outputs as they are independent of the current control

u(k) though they are influenced by the unknown external disturbances of the past

and the future. As the external disturbances are unknown, their effects could not be

cancelled through control action. Thus, we are interested in designing robust control

for (4.1) by using the results for the ideal case when the unknown disturbances are

isolated.

Assumption 4.2 The desired trajectory yd(k) ∈ Ωyd ⊂ Rp, ∀k > 0 is smooth and

known, where Ωyd is a small subset of Ωy and Ωy , {χ(k)|χ(k) = y(k)} ⊂ Rp.

Define error vector e(k) = y(k) − yd(k) = [e1(k), e2(k), . . . , ep(k)]
T . Noting equation

(4.1), the error equation of e(k) can then be written as

e(k + τ) = Fτ (k) − yd(k + τ) +Gτ (k)u(k) + d(k + τ − 1) (4.2)
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Definition 4.2 The solution of (4.2) is semi-globally uniformly ultimately bounded

(SGUUB), if for any Ωy and Ωu, compact subsets of Rp and all y(k0 − i) ∈ Ωy,

i = 0, . . . ,max{n1, . . . , np}− 1, u(k0 − j) ∈ Ωu, j = 1, . . . , τ + max{m1, . . . , mp}, and

all semi determined future outputs are in Ωy, there exist an ε > 0, and a number N

such that ‖e(k)‖ < ε for all k ≥ k0 +N .

Error dynamics (4.2) can be written as

e(k + τ) = F (Y (k), Uk−1(k)) − yd(k + τ) +Gτ (Y (k), Uk−1(k))u(k)

+∆F (k) + d(k + τ − 1) (4.3)

where

F (Y (k), Uk−1(k)) = Fτ (Y (k), Uk−1(k), 0, 0)

∆F (k) = Fτ (Y (k), Uk−1(k), Dk−1, d̄(k)) − F (Y (k), Uk−1(k))

We can see that ∆F (k) is generated by the external disturbances. By Assumption 4.1

and the boundedness of disturbances, we can conclude that ∆F (k) ≤ L1‖Dk−1(k)‖+

L2‖d̄(k)‖ is bounded.

If F (Y (k), Uk−1(k)) and Gτ (Y (k), Uk−1(k)) are known and G−1
τ (Y (k), Uk−1(k)) exists,

then we can choose the ideal control input as

u∗(k) = G−1
τ (Y (k), Uk−1(k))[yd(k + τ) − F (Y (k), Uk−1(k))] (4.4)

Thus, we have the closed-loop error equation

‖e(k + τ)‖ = ‖∆F (k) + d(k + τ − 1)‖ ≤ L1‖Dk−1(k)‖ + L2‖d̄(k)‖ + ‖d(k + τ − 1)‖

If there are no disturbances, i.e., Dk−1(k) = 0 and d(k+τ−1) = 0, we have e(k+τ) =

0, which is achieved in τ steps. Under this condition, the desired control, u∗(k), is

the so-called τ -step deadbeat control, or exact tracking control, which is well defined

and has been proven to be unique in [95]. In practice, u∗(k) is not realizable as F (k)

and Gτ (k) are unknown. In the following, adaptive neural networks shall be used to

approximate the unknown desired control u∗(k), which is introduced for analytical

purpose only. Note that saturation control is out of the scope of the technical notes,

and further research will be carried out for other types of ideal controls rather than

deadbeat control.
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Remark 4.1 It is obvious that if there is no disturbances in the system, i.e., d(k) = 0

and Dk−1(k) = 0, the tracking error e(k + τ) = 0. If Dk−1(k) 6= 0 and d(k) 6= 0, the

error equation is e(k + τ) = ∆F (k) + d(k + τ − 1), thus, exact tracking cannot be

obtained though bounded due to Assumption 4.1. Instead, we propose SGUUB stability

of the system in the presence of the unknown bounded disturbances.

Assumption 4.3 The desired control u∗(k) is within the compact set Ωu∗ ⊂ Ωu,

∀y(k − i) ∈ Ωy ⊂ Rp, i = 0, . . . ,max{n1, . . . , np} − 1 and ∀u(k − j) ∈ Ωu ⊂ Rp, j =

1, . . . , τ + max{m1, . . . , mp}.

The desired trajectory is assumed to be chosen such that the system can achieve since

it is meaningless to ask the system to track an unrealistic trajectory. Assumption 4.3

is only introduced for mathematical rigor (stating that the desired control u∗ is within

the capability of the control system) as the boundedness of the actual control u(k) is

establish via Lyapunov analysis later.

By examining expression (4.4), the desired control input u∗(k) is a function of Y (k),

Uk−1(k) and yd(k + τ). Thus, there exist ideal weights W ∗ such that the smooth

function vector u∗(k) can be approximated by an ideal NN on a compact set Ωz ⊂ Rq

u∗(k) = W ∗TS(z̄(k)) + εz (4.5)

where

z̄(k) =









Y (k)

Uk−1(k)

yd(k + τ)









∈ Ωz ⊂ Rq, q =
∑p

i=1(ni +mi + 1)

εz = [εz1 , . . . , εzp]
T

and εz is the bounded NN approximation error vector satisfying ‖εz‖ ≤ ε0 on the

compact set, which can be reduced by increasing the number of the adjustable weights.

The ideal weight matrix W ∗ is an “artificial” quantity required for analytical purpose,

and is defined as that minimizes ‖εz‖ for all z̄ ∈ Ωz ⊂ Rq in a compact region, i.e.,

W ∗ , arg min
W∈Ωw

{

sup
z∈Ωz

|u∗(k) −W TS(z̄(k))|
}

(4.6)

Ωz ⊂ Rq and compact set Ωw ⊂ Rl×p
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In general, the ideal NN weight matrix, W ∗, is unknown though constant, its estimate,

Ŵ , should be used for controller design which will be discussed in Section 4.1.3.

Though HONN is used for analysis, other linear-in-parameters function approximators

such as polynomials, splines, fuzzy systems and wavelet networks, among others, can

also be used to construct the controller without any difficulty.

4.1.3 Controller Design and Stability Analysis

In this section, we present the robust adaptive NN controller for (4.1) under some

mild conditions.

Assumption 4.4 For system (4.1), assume Gτ (k) is a full rank matrix, and there

exists an orthogonal matrix Q(k) ∈ Rp×p, such that the eigenvalues of Q(k)G−1
τ (k)

are upper and lower bounded by 0 < b
(1−σγ)

≤ λ{Q(k)G−1
τ (k)} ≤ a, where a and b are

constant numbers, σ > 0, γ > 0 and 0 < σγ < 1 (γ is the adaptation gain and σ is

a positive constant indicates the leakage term of σ-modification used in weight update

and λ{M} denotes the eigenvalue of M).

Remark 4.2 If Gτ (k) is totally unknown, there is no valid method to construct such

a Q(k). However, if we known some properties of Gτ (k), then we may select such a

Q(k) that satisfies the requirement. For example, if all the eigenvalues of Gτ (k) are

larger than zero, then we can select identity matrix Q(k) = I; if all the eigenvalues of

Gτ (k) are less than zero, then we can choose Q(k) = −I. In practice, there are some

physical systems possessing such a nice property, which include rigid robotic arms, and

flexible joint robots, where the input matrix Gτ = M−1(q), 0 < α1I ≤ M(q) ≤ α2I

with q denotes the coordinates, M denotes the inertia matrix and constants α1 and

α2 > 0.

Once we find such an orthogonal matrix Q(k), we are ready to present the direct

adaptive controller and the weights updating law as

u(k)=Ŵ T (k)S(z̄(k)) (4.7)

Ŵ (k + 1)=Ŵ (k − τ + 1)
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−Γ[S(z̄(k − τ + 1))eT (k + 1)Q(k − τ + 1) + σŴ (k − τ + 1)] (4.8)

where Γ = γI is a diagonal matrix with γ > 0, σ is a positive constant number,

Ŵ (k) ∈ Rp×l and S(z̄(k)) ∈ Rl. The σ-modification is used here to eliminate the need

of persistent exciting (PE) condition for parameter convergence. In comparison with

the standard parameter adaptation algorithms, it should be noted that parameter

adaptation algorithm (4.8) is of τ steps ahead in order to solve the control problem

of general τ order nonlinear systems. In fact, the current estimate, Ŵ (k), is deviated

from the estimate, Ŵ (k− τ), of τ steps earlier rather than that of the previous step.

Substituting controller (4.7) into (4.3), the error equation (4.3) can be re-written as

e(k + τ) = F (Y (k), Uk−1) − yd(k + τ) +Gτ (k)Ŵ
T (k)S(z̄(k))

+∆F (k) + d(k + τ − 1) (4.9)

Adding and subtracting Gτ (k)u
∗(z̄(k)) on the right side of (4.9) and noting (4.5), we

have

e(k + τ) = F (Y (k), Uk−1) − yd(k + τ) +Gτ (k)u
∗(k)

+Gτ (k)[Ŵ
T (k)S(z̄(k)) −W ∗TS(z̄(k)) − εz] + ∆F (k) + d(k + τ − 1)

Substituting (4.4) into (4.10) leads to

e(k + τ) = Gτ (k)[W̃
T (k)S(z̄(k)) − εz] +D(k) (4.10)

where W̃ (k) = Ŵ (k)−W ∗ and D(k) = ∆F (k)+d(k+τ−1). Since ∆F (k), dk+τ−1 are

due to the existence of external disturbances and they are bounded, we can consider

that D(k) is bounded by a positive constant D0, i.e. ‖D(k)‖ < D0.

Control input (4.7) can be rewritten as

u(k) = (W̃ (k) +W ∗)TS(z̄(k)) = u∗(k) + W̃ T (k)S(z̄(k)) − εz

Due to u∗(k) ∈ Ωu∗ and Ωu∗ is a subset of Ωu under Assumption 4.3, there must exist

a nonzero compact set Ωw ⊂ Rl×p such that any W̃ (k) ∈ Ωw guarantees u(k) ∈ Ωu.

Since Ωyd is a small subset of Ωy under Assumption 4.2, there must exist a large

enough compact set Ωe ⊂ Rp, such that for any e(k) ∈ Ωe guarantees that y(k) ∈ Ωy.
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Theorem 4.1 Consider the closed-loop system consisting of system (4.2), controller

(4.7) and adaptation law (4.8). There exist compact sets Ωy0 ⊂ Ωy, Ωw0 ⊂ Ωw and

positive constants l∗, γ∗ and σ∗ such that if

(i) Assumptions 4.2-4.4 being satisfied, the condition at time instant k0 is initialized

as
y(k0 − j) ∈ Ωy0 , j = 0, . . . ,max{n1, . . . , np} − 1

u(k0 − j) ∈ Ωu, j = 1, . . . , τ + max{m1, . . . , mp}
W̃ (k0 − j) ∈ Ωw0, j = 0, . . . , τ − 1

(ii) the semi determined future outputs at time instant k0, y(k0+1), . . . , y(k0+τ−1)

are all in compact set Ωy, and

(iii) the design parameters are suitably chosen such that l > l∗, σ < σ∗ and γ < γ∗

with γ being the eigenvalue of Γ,

then, the closed-loop system is SGUUB.

Proof: We have illustrated that there exists an ideal control u∗(k) which guarantees

that e(k + τ) = 0 if there is no unknown disturbance. Since all the assumptions

are only valid in compact set Ωy and Ωu, we must prove that the system outputs

and inputs will remain in these compact sets all the time indeed. At time instant k,

suppose that all past inputs are in Ωu, current output and all past outputs are in Ωy,

the semi determined future outputs, y(k + 1), . . . , y(k + τ − 1), are all in Ωy, all past

NN weight errors are in Ωw, we will prove that all these conditions still hold after

time instant k and the tracking error converges into a small neighborhood of zero.

Choose the Lyapunov function candidate as

J(k) = b

τ−1
∑

j=0

tr{e(k + j)eT (k + j)} +

τ−1
∑

j=0

tr{W̃ T (k + j)Γ−1W̃ (k + j)} (4.11)

where b is a positive constant, defined in Assumption 4.4. Apparently, the Lyapunov

function candidate J(k) contains the states of the error dynamics of the systems

(4.10), and the parameter adaptation (4.8). Note that the future variables, e(k +

1), . . . , e(k + τ − 1) and W̃ (k + 1), . . . W̃ (k + τ − 1), are all semi-determined at time
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instant k as they are independent of current control u(k). We have shown that

y(k+ τ −1), . . . , y(k+1) are all independent of u(k), so are e(k+ τ −1), . . . , e(k+1).

For the same reason, it can be shown that W̃ (k+τ−1), . . . , W̃ (k+1) are all determined

at time instant k. For example,

W̃ (k + τ − 1) = W̃ (k − 1) − Γ
[

S(z̄(k − 1))eT (k + τ − 1)Q(k − 1) + σŴ (k − 1)
]

is uniquely determined since (i) eT (k + τ − 1) is semi-determined, and (ii) all other

signals are well defined at time instant k.

The first difference of (4.11) along (4.7), (4.8) and (4.10) is given by

∆J(k) = beT (k + τ)e(k + τ) − beT (k)e(k)

+tr{W̃ T (k + τ)Γ−1W̃ (k + τ)} − tr{W̃ T (k)Γ−1W̃ (k)}
= beT (k + τ)e(k + τ) − beT (k)e(k) − 2σtr{W̃ T (k)Ŵ (k)}

+σ2tr{Ŵ T (k)ΓŴ (k)} − 2tr{W̃ T (k)S(z̄(k))eT (k + τ)Q(k)}
+2σtr{Ŵ T (k)ΓS(z̄(k))eT (k + τ)Q(k)}
+tr{QT (k)e(k + τ)ST (z̄(k))ΓS(z̄(k))eT (k + τ)Q(k)}

Noting that

−2σtr{W̃ T (k)Ŵ (k)} = −σ‖W̃‖2
F − σ‖Ŵ‖2

F + σ‖W ∗‖2
F

σ2tr{Ŵ T (k)ΓŴ (k)} = σ2γ‖Ŵ‖2
F

−2tr{W̃ T (k)S(z̄(k))eT (k + τ)Q(k)} = −2eT (k + τ)Q(k)W̃ T (k)S(z̄(k))

2σtr{Ŵ T (k)ΓS(z̄(k))eT (k + τ)Q(k)} = 2σγeT (k + τ)Q(k)Ŵ T (k)S(z̄(k))

tr{QT (k)e(k+τ)ST (z̄(k))ΓS(z̄(k))eT (k+τ)Q(k)}=ST (z̄(k))ΓS(z̄(k))eT (k+τ)e(k+τ)

Q(k)QT (k) = QT (k)Q(k) = I

We can obtain

∆J(k) = beT (k + τ)e(k + τ) − beT (k)e(k) − σ‖W̃‖2
F − σ(1 − σγ)‖Ŵ‖2

F + σ‖W ∗‖2
F

−2eT (k + τ)Q(k)W̃ T (k)S(z̄(k)) + 2σγeT (k + τ)Q(k)Ŵ T (k)S(z̄(k))

+ST (z̄(k))ΓS(z̄(k))eT (k + τ)e(k + τ)
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Noticing equation (4.10), we can obtain

W̃ TS(z̄(k)) = G−1
τ (k)[e(k + τ) −D(k)] + εz

Ŵ TS(z̄(k)) = G−1
τ (k)[e(k + τ) −D(k)] + εz +W ∗TS(z̄(k))

Thus

∆J(k) = beT (k + τ)e(k + τ) − beT (k)e(k) − σ‖W̃‖2
F − σ(1 − σγ)‖Ŵ‖2

F

+σ‖W ∗‖2
F − 2eT (k + τ)Q(k)G−1

τ (k)e(k + τ) + 2eT (k + τ)β(k)

+2σγeT (k + τ)Q(k)G−1
τ (k)e(k + τ) + 2σγeT (k + τ)α(k)

+ST (z̄(k))ΓS(z̄(k))eT (k + τ)e(k + τ)

where

α(k) , Q(k)[−G−1
τ (k)D(k) + εz +W ∗TS(z̄(k))]

β(k) , Q(k)[−G−1
τ (k)D(k) + εz]

Since εz, D(k) and W ∗TS(z̄(k)) are all bounded, it is reasonable to assume that

both α(k) and β(k) are bounded. For convenience of analysis, let αi(k) ≤ α0i and

βi(k) ≤ β0i, where α0i and β0i denote the i-th elements of constant vectors α0 and β0

respectively, which are only introduced to establish the stability results rather than

for controller design.

Remark 4.3 From Assumption 4.4, we know that Q(k)G−1
τ (k) has p linearly inde-

pendent eigenvectors, and can be written in the form Q(k)G−1
τ (k) = T (k)Λ(k)T−1(k),

where Λ(k) is a diagonal matrix with the eigenvalues of Q(k)G−1
τ (k) as its entries and

T (k) is the corresponding invertible matrix consists of the eigenvectors. The techni-

cal benefit due to the existence of matrix Q(k), subsequently, the existence of matrix

T (k), is also apparent in merging the three items, 2(1−σγ)
b

Q(k)G−1
τ (k), I and γ 1+σ+l

b
I

in (4.12), to continue the meaningful stability deduction as shown below.

Combining with the following facts

ST (z̄(k))ΓS(z̄(k)) = γST (z̄(k))S(z̄(k)) and ST (z̄(k))S(z̄(k)) < l

2eT (k + τ)β(k) ≤ γeT (k + τ)e(k + τ) +
1

γ
βT

0 β0

136



4.1 Affine MIMO NARMAX Systems

2σγeT (k + τ)α(k) ≤ σγeT (k + τ)e(k + τ) + σγαT
0 α0

we further obtain

∆J(k) ≤ −beT (k + τ){2(1 − σγ)

b
Q(k)G−1

τ (k) − I − γ
1 + σ + l

b
I}e(k + τ) (4.12)

−beT (k)e(k) − σ‖W̃‖2
F − σ(1 − σγ)‖Ŵ‖2

F + C0

≤ −beT (k + τ)T (k){2(1 − σγ)

b
Λ(k) − I − γ

1 + σ + l

b
I}T−1(k)e(k + τ)

−beT (k)e(k) + C0

with C0 = σ‖W ∗‖2
F + σγαT

0 α0 + 1
γ
βT

0 β0 being a positive constant. From Assumption

4, we know that

1 − σγ

b
Λ(k) > I and 0 < σγ < 1 (σ > 0 and γ > 0)

we have

∆J(k) ≤ −beT (k + τ)T (k){I − γ
1 + σ + l

b
I}T−1(k)e(k + τ) − beT (k)e(k) + C0

≤ −{b− γ(1 + σ + l)}eT (k + τ)e(k + τ) − beT (k)e(k) + C0

If we choose the design parameters as follows

γ <
b

1 + σ + l
(4.13)

then ∆J(k) ≤ 0 once any of the tracking errors |ei(k)|, i = 1, . . . , p is larger than
√

C0

b
. Furthermore, the tracking error e(k) will converge to the compact set denoted

by

Ωe0 , {e(k)
∣

∣

∣
|ei(k)| ≤

√

C0

b
, i = 1, 2, . . . , p} (4.14)

Due to negativeness of ∆J(k), we can conclude that e(k + τ) must converges to the

compact set Ωe0 if e(k) outside of Ωe0 and all other conditions hold. Thus y(k+τ) ∈ Ωy

will still hold if Ωe0 ⊂ Ωe.

By subtracting W ∗ to both sides of weights updating equation (4.8), it can be rewrit-

ten as

W̃ (k + 1) = (1− σγ)W̃ (k− τ + 1)− σγW ∗ − ΓS(z̄(k− τ + 1))eT (k+ 1)Q(k− τ + 1)
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Since e(k+1) converges to the small compact set Ωe0 and all the elements of S(z̄(k))

are less than 1, Q(k− τ + 1) and W ∗ are also bounded, thus, noting Lemma A.1 and

0 < 1−σγ < 1 , W̃ (k) will be bounded in a compact set denoted by Ωwe by recursive

computation if its initial value W̃ (k0) is bounded. It is obvious that we can initialize

W̃ (k0) to be in the compact set Ωw0 ⊂ Ωw. Hence, according to Ŵ (k) = W̃ (k)+W ∗,

we conclude Ŵ (k) is bounded without the need of PE condition. Thus u(k) ∈ Ωu

will still hold if Ωwe ⊂ Ωw.

Finally, if we initialize system at time instant k0 as follows

y(k0 − j) ∈ Ωy0 , j = 0, . . . ,max{n1, . . . , np} − 1,

u(k0 − j) ∈ Ωu, j = 1, . . . ,max{m1, . . . , mp} + τ,

W̃ (k0 − j) ∈ Ωw0 , j = 0, . . . , τ − 1,

and we choose suitable parameters γ, l and σ according to (4.13), there exists a

constant k∗ > k0 + τ such that tracking error converge to Ωe0 , and NN weight error

converges to Ωwe for all k > k∗. This implies the closed-loop system is SGUUB. Then

y(k) ∈ Ωy, and u(k) ∈ Ωu will hold for all k > k0.

Therefore, for any a priori given (arbitrarily large) bounded set Ω and any a priori

given (arbitrarily small) set Ω0, which contains (0, 0) as an interior point, there exist a

control u, such that every trajectory of the closed-loop system starting from Ω enters

the set Ω0 in a finite time and remains in it thereafter. That is to say, the whole

closed-loop system is SGUUB. �

Remark 4.4 It should be noted that the size of Ωe0 indicates the possible maximum

bound that the tracking error can reach. Considering Ωe0 defined in (4.14), we can

see that the size of Ωe0 cannot be made arbitrarily small and it cannot be known a

priori also. Noting that C0 = σ‖W ∗‖2
F + σγαT

0 α0 + 1
γ
βT

0 β0, by choosing sufficient

small σ, we can see that C0 (Ωe0) is approximately proportional to 1
γ

provided that b

is fixed. Furthermore, noting (4.13), we know γ is of order 1/l. Therefore, the larger

the approximator size, the larger the error peak maybe be expected, as C0 grows in

proportion to l.
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Remark 4.5 Note that the size of Ωw is not predetermined, and it is introduced for

analytical purpose because neural network approximation is only valid on a compact

set. In fact, Ωw can be made arbitrary large to guarantee Ŵ (k) ∈ Ωw, even in the

transient period, as we have proved that Ŵ (k) is bounded. In practical implementa-

tion, we can initialize Ŵ (0) = 0 (thus u(0) = 0, which must be within Ωu), and the

corresponding parameter estimation error, W̃ (0) = Ŵ (0) −W ∗ = −W ∗, is obviously

bounded, and within the compact set Ωw as it can be made arbitrarily large. As the

control system needs to be initialized for the first τ steps, they could be simply set to

be 0. For better performance, especially the transient performance, off-line training

could be used to initialize the controller [20].

4.1.4 Simulation

Consider the following discrete-time MIMO system

x1(k + 1) = x2(k)

x2(k + 1) =
x2(k)x4(k)

1 + x2
1(k) + x2

3(k)
+

u1(k)

1 + x2
1(k) + x2

3(k)
− 0.5u2(k)

1 + x2
1(k) + x2

3(k)

x3(k + 1) = x4(k)

x4(k + 1) =
x4(k)

1 + x2
1(k) + x2

3(k)
+

0.5u1(k)

1 + x2
1(k) + x2

3(k)
− u2(k)

1 + x2
1(k) + x2

3(k)
+ d(k)

y1(k) = x2(k)

y2(k) = x2
1(k) + x4(k)

The control objective is to control the system outputs y1(k) and y2(k) tracking the

reference trajectories yd1(k) = 0.25 sin( kπ
200

) + 0.25 sin( kπ
100

), yd2(k) = 1 − 0.25 sin( kπ
300

)

and disturbance d(k) = 0.05 cos(0.05k) respectively.

Simulation parameters are chosen as follows: neural number l1 = l2 = 142, orthogo-

nal matrix Q(k) = [1, 0; 0,−1], system initial states and neural network weights are

initialized to zero, σ = 0.01 and adaptation gain matrix Γ = 0.025I142×142,

Simulation results are shown in Figure 4.1-Figure 4.5. Figure 4.1 and Figure 4.2

show the tracking performances of the first sub-system and the second sub-system

respectively. The control input trajectories u1(k) and u2(k) are shown in Figure 4.3.
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The weight matrix norm ‖Ŵ (k)‖F is shown in Figure 4.4. Tracking errors are shown

in Figure 4.5.

4.2 Non-affine MIMO NARMAX Systems

4.2.1 Introduction

In Section 4.1, neural network control scheme was investigated for a class of MIMO

NARMAX discrete-time systems. The τ -step weight update laws was proved to be

effective in handling the τ -step predictor model in the presence of unknown bounded

disturbances. However, the system studied is in affine form and an orthogonal matrix

should be found in order to update the NN weights. In this section, the system studied

is in non-affine MIMO NARMAX form. For the n × n MIMO systems, the inputs

of the system are in triangular form. Due to this property and by implicit function

theorem [50], we can firstly define the IDFC control in a nested manner, then using

neural networks to emulate those IDFC.

This section is organized as follows. System dynamics as well as some stability notions

are proposed in Section 4.2.2. In Section 4.2.4, a simulation example is used to

illustrate the effectiveness of the proposed scheme.

4.2.2 MIMO System Dynamics

Considering the following n inputs n outputs non-affine nonlinear NARMAX MIMO

systems with triangular form inputs


































y1(k + τ) = f1(Y (k), Uk−1(k), u1(k))
...

yj(k + τ) = fj(Y (k), Uk−1(k), u1(k), . . . , uj(k))
...

yn(k + τ) = fn(Y (k), Uk−1(k), u1(k), . . . , uj(k), . . . , un(k))

(4.15)

where τ is the system delay; y(k) = [y1(k), . . . , yn(k)]
T and u(k) = [u1(k), . . . , un(k)]

T

are system outputs and inputs, respectively; Y (k) is a vector containing current and
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past outputs, Uk−1(k) is a vector containing only past inputs. In particular, they are

defined as

Uk−1(k) = [u1(k − 1), . . . , u1(k −m1), u2(k − 1), . . . , u2(k −m2), . . . ,

un(k − 1), . . . , un(k −mn)]T

Y (k) = [y1(k), . . . , y1(k − n1 + 1), y2(k), . . . , y2(k − n2 + 1), . . . ,

yn(k), . . . , yn(k − nn + 1)]T

with ni denotes the length of the i-th subsystem’s outputs, and mi is the length of

the i-th subsystem’s inputs, which satisfies mi < ni, i = 1, . . . , n. fj(·) are nonlinear

functions; ūj−1(k) = [u1(k), . . . , uj−1(k))]
T .

The control objective is to design control input u(k) for system (4.15) to drive the

system output y(k) follow a known and bounded trajectory

yd(k) = [yd1(k), yd2(k), . . . , ydn(k)]T ∈ Rn

Assumption 4.5 The desired trajectory yd(k) ∈ Ωyd ⊂ Rp, ∀k > 0 is smooth and

known, where Ωyd is a small subset of Ωy and Ωy , {χ(k)|χ(k) = y(k)} ⊂ Rp.

Assumption 4.6 There are positive constants di and d̄i (i = 1, . . . , n), such that

0 < di ≤ |∂fi(Y (k),Uk−1(k),u1(k),...,ui(k))

∂ui
| ≤ d̄i.

Remark 4.6 The partial derivative ∂fi(·)
∂ui(k)

can be considered as the controller gain of

the i-th input for the i-th subsystem. Assumption 4.6 indicates that this control gain

is either positive or negative, and is also upper and lower bounded. The sign does not

need to be known a priori.

Assumption 4.7 The nonlinear functions fi(·) (i = 1, . . . , n) are differentiable.

In the following, Lemma 4.1 (Mean Value Theorem for multi variables), Lemma 4.2

(Implicit Function Theorem) and Lemma A.1 (Bounded Input Bounded Output) are

given, which will be used later.
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Lemma 4.1 Let f : Rn → R be differentiable at every point in an open set containing

the line segment L joining two vectors ā and b̄ in Rn, then there is a vector ξ̄ on L

such that

f(b̄) − f(ā) = Of(ξ̄) · (b̄− ā)

with Of(·) denotes the gradient of f(·) [144].

Lemma 4.2 Assume that f(x, y) : Rn ×R → R is continuously differentiable ∀(x, y)

∈ Rn × R, and there is a positive constant d such that ∂f(x, y)/∂y(x, y) > d > 0,

∀(x, y) ∈ Rn × R. Then there exists a continuous (smooth) function y∗ = g(x) such

that f(x, y∗) = 0. For the case ∂f(x, y)/∂y(x, y) < −d < 0, ∀(x, y) ∈ Rn × R. The

result still holds [50].

Define the tracking error e(k) = y(k) − yd(k) as

e(k) = [e1(k), . . . , en(k)]T

= [y1(k) − yd1(k), . . . , yn(k) − ydn(k)]T (4.16)

Considering the first equation in (4.15), subtracting yd1(k+ τ) on both sides, we have

e1(k + τ) = f1(Y (k), Uk−1(k), u1(k)) − yd1(k + τ)

Noting Assumption 4.6, we can obtain

|∂ [f1(Y (k), Uk−1(k), u1(k)) − yd1(k + τ)]

∂u1
| > d1 > 0

by Lemma 4.2, we know that there is

u∗1(k) , α′
1(Y (k), Uk−1(k), yd1(k + τ))

, α1(Y (k), Uk−1(k), yd(k + τ)) (4.17)

such that

e1(k + τ) = f1(Y (k), Uk−1(k), u
∗
1(k)) − yd1(k + τ) = 0

142



4.2 Non-affine MIMO NARMAX Systems

Remark 4.7 It should be noted that though u∗
1(k) only depends on Y (k), Uk−1(k)

and yd1(k + τ), for the ease of analysis, we regard it as a function of Y (k), Uk−1(k)

and yd(k + τ).

Considering the second equation in (4.15), we have

e2(k + τ) = f2(Y (k), Uk−1(k), u1(k), u2(k)) − yd2(k + τ)

Let u1(k) = u∗1(k), noting Assumption 4.7 and by Lemma 4.2, we know that there is

a ideal control

u∗2(k) , α′
2(Y (k), Uk−1(k), yd1(k + τ), yd2(k + τ))

, α2(Y (k), Uk−1(k), yd1(k + τ), yd(k + τ)) (4.18)

such that

e2(k + τ) = f2(Y (k), Uk−1(k), u
∗
1(k), u

∗
2(k)) − yd2(k + τ) = 0

Similarly, we know that there are ideal controls



































u∗3(k) , α3(Y (k), Uk−1(k), yd(k + τ))

. . .

u∗j(k) , αj(Y (k), Uk−1(k), yd(k + τ))

. . .

u∗n(k) , αn(Y (k), Uk−1(k), yd(k + τ))

such that



































e3(k + τ) = f3(Y (k), Uk−1(k), u
∗
1(k), . . . , u

∗
3(k)) − yd3(k + τ) = 0

...

ej(k + τ) = fj(Y (k), Uk−1(k), u
∗
1(k), . . . , u

∗
j(k)) − ydj

(k + τ) = 0
...

en(k + τ) = fn(Y (k), Uk−1(k), u
∗
1(k), . . . , u

∗
n(k)) − ydn(k + τ) = 0

Definition 4.3 The ideal controls u∗
1(k), u

∗
2(k), . . ., u

∗
n(k), which can realize exact

tracking in τ steps and cannot be explicitly spelt out, are called implicit desired feedback

control (IDFC).
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Summarizing equations (4.17), (4.18) and (4.19), we can see that the i-th IDFC,

u∗i (k), can be expressed as follows

u∗i (k) = αi(z(k)), i = 1, 2, . . . , n (4.19)

z(k) , [Y T (k), UT
k−1(k), y

T
d (k + τ)]T ∈ R

∑n
j=1(mj+nj)+n

Its vector form is as follows

u∗(k) =















α1(z(k))

α2(z(k))
...

αn(z(k))















∈ Rn×1 (4.20)

It can be seen that system (4.15) is in non-affine form. For the convenience of analysis,

denote system (4.15) in the following vector form

y(k + τ) = F (Y (k), Uk−1(k), u(k)) (4.21)

with nonlinear vector function F (·) ∈ Rn×1 is defined as

F (Y (k), Uk−1(k), u(k)) =



















f1(Y (k), Uk−1(k), u1(k))
...

fj(Y (k), Uk−1(k), u1(k), . . . , uj(k))
...

fn(Y (k), Uk−1(k), u1(k), . . . , uj(k), . . . , un(k))



















Therefore, we have

e(k + τ) = F (Y (k), Uk−1(k), u(k)) − yd(k + τ) (4.22)

Adding and subtracting F (Y (k), Uk−1(k), u
∗(k)) to the right side of equation (4.22),

we have

e(k + τ) = F (Y (k), Uk−1(k), u(k)) − yd(k + τ) + F (Y (k), Uk−1(k), u
∗(k))

−F (Y (k), Uk−1(k), u
∗(k))

= F (Y (k), Uk−1(k), u(k)) − F (Y (k), Uk−1(k), u
∗(k)) (4.23)
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Considering the i-th 1 ≤ i ≤ n equation in the error dynamics (4.23), we have

ei(k + τ) = fi(Y (k), Uk−1(k), u1(k), . . . , ui(k))

−fi(Y (k), Uk−1(k), u
∗
1(k), . . . , u

∗
i (k)) (4.24)

By noting Lemma 4.1, the Mean Value Theorem for multi variables, equation (4.24)

can be written as

ei(k + τ) = Ofi(Y (k), Uk−1(k), ūξi
) [ūi(k) − ū∗i (k)] (4.25)

with

ūξi
= [uξi1

, uξi2
, . . . , uξii

]T

Ofi(Y (k), Uk−1(k), uξi
) = [

∂fi

∂u1
,
∂fi

∂u2
, . . . ,

∂fi

∂ui

]T ∈ Ri×1

with ūξi
∈ [ū∗i (k), ūi(k)].

Then equation (4.23) can be written as

e(k + τ) = OF (k) · [u(k) − u∗(k)] (4.26)

with

OF (k) ,



















∂f1

∂u1
|u1(k)=uξ11

0 0 . . . 0
∂f2

∂u1
|u1(k)=uξ21

∂f2

∂u2
|u2(k)=uξ22

0 . . . 0
∂f3

∂u1
|u1(k)=uξ31

∂f3

∂u2
|u2(k)=uξ32

∂f3

∂u3
|u3(k)=uξ33

. . . 0
...

...
...

. . . 0
∂fn

∂u1
|u1(k)=uξn1

∂fn

∂u2
|u2(k)=uξn2

∂fn

∂u3
|u3(k)=uξn3

. . . ∂fn

∂un
|un(k)=uξnn



















(4.27)

and OF (k) ∈ Rn×n. For the ease of analysis, define

G(k) , OF (k) (4.28)

Therefore, we have

e(k + τ) = G(k) [u(k) − u∗(k)] (4.29)

It can be easily obtained that the matrix G(k) possess the following properties:
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1. G(k) is full rank and |G(k)| = Πn
i=1

(

∂fi

∂ui
|ui(k)=uξii

)

;

2. G(k) is upper and lower bounded, i.e, there are two constants a = Πn
i=1di and

b = Πn
i=1d̄i, such that aI ≤ G(k) ≤ bI (a, b > 0) or bI ≤ G(k) ≤ aI (a, b < 0) .

It can be seen that the matrix G(k) is either positive or negative, which depends on

the signs of its diagonal elements. In the following, without losing of generality, we

assume that G(k) is positive, i.e, aI ≤ G(k) ≤ bI (a, b > 0). Therefore, we can obtain

1

b
I ≤ G−1(k) ≤ 1

a
I, a, b > 0 (4.30)

4.2.3 Stability Analysis

Considering the implicit desired feedback controls (IDFCs) defined in equation (4.20),

they are continuous nonlinear functions. Therefore, there are ideal weights W ∗ such

that the smooth function vector u∗(k) can be approximated by an ideal NN on a

compact set Ωz ⊂ Rq

u∗(k) = W ∗TS(z(k)) + εz (4.31)

where z(k) has been defined in equation (4.19) as follows

z(k) =









Y (k)

Uk−1(k)

yd(k + τ)









∈ Ωz ⊂ Rq, q =
∑n

i=1(ni +mi) + n

εz = [εz1 , . . . , εzn ]T

and εz is the bounded NN approximation error vector satisfying ‖εz‖ ≤ ε0 (ε0 is a

constant vector) on the compact set, which can be reduced by increasing the number

of the adjustable weights. The ideal weight matrix W ∗ is required for analytical

purpose only, and is defined as that minimizes ‖εz‖ for all z(k) ∈ Ωz ⊂ Rq in a

compact region, i.e.,

W ∗ , arg min
W∈Ωw

{

sup
z∈Ωz

|u∗(k) −W TS(z̄(k))|
}

(4.32)

Ωz ⊂ Rq and compact set Ωw ⊂ Rl×p
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In general, the ideal NN weight matrix, W ∗, is unknown though constant, its estimate,

Ŵ , should be used for controller design which will be discussed in the following.

Choosing the practical neural network controls and corresponding weight update laws

as follows

u(k) = Ŵ T (k)S(z(k)) (4.33)

Ŵ (k + 1) = Ŵ (k − τ + 1)

−Γ[S(z(k − τ + 1))eT (k + 1) + σŴ (k − τ + 1)] (4.34)

where Γ = γI is a diagonal matrix with γ > 0, σ is a positive constant number,

Ŵ (k) ∈ Rp×l and S(z(k)) ∈ Rl. For the ease of analysis, we rewrite equation (4.34)

as follows

Ŵ (k + τ) = Ŵ (k) − Γ
[

S(z(k))eT (k + τ) + σŴ (k)
]

(4.35)

Noting equation (4.29), we can obtain that

e(k + τ) = G(k)[Ŵ T (k)S(z(k)) −W ∗T

(k)S(z(k)) − εz]

= G(k)W̃ T (k)S(z(k)) −G(k)εz (4.36)

Thus, we can obtain

W̃ T (k)S(z(k)) = G−1(k)e(k + τ) + εz (4.37)

Theorem 4.2 Consider the closed-loop system consisting of system (4.15), controller

(4.33) and adaptation law (4.34). There exist compact sets Ωy0 ⊂ Ωy, Ωw0 ⊂ Ωw and

positive constants l∗, γ∗ and σ∗ such that if

1. Assumptions 4.6, 4.7 and 4.5 being satisfied, the condition at time instant k0 is

initialized as

y(k0 − j) ∈ Ωy0 , j = 0, . . . ,max{n1, . . . , nn} − 1

u(k0 − j) ∈ Ωu, j = 1, . . . , τ + max{m1, . . . , mn}
W̃ (k0 − j) ∈ Ωw0 , j = 0, . . . , τ − 1
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2. the semi determined future outputs at time instant k0, y(k0+1), . . . , y(k0+τ−1)

are all in compact set Ωy, and

3. the design parameters are suitably chosen such that l > l∗, σ < σ∗ and γ < γ∗

with γ being the eigenvalue of Γ,

then, the closed-loop system is SGUUB.

Proof: Choose the Lyapunov function candidate as

J(k) =
1

b

τ−1
∑

j=0

tr{e(k + j)eT (k + j)} +

τ−1
∑

j=0

tr{W̃ T (k + j)Γ−1W̃ (k + j)} (4.38)

where b is the positive constant, which denotes the upper bound of the matrix G(k).

Apparently, the Lyapunov function candidate J(k) contains the states of the error dy-

namics of the systems, and the parameter adaptation. Note that the future variables,

e(k + 1), . . . , e(k+ τ − 1) and W̃ (k+ 1), . . . W̃ (k + τ − 1), are all semi-determined at

time instant k as they are independent of current control u(k). We have shown that

y(k+τ−1), . . . , y(k+1) are all independent of u(k), so are e(k+τ−1), . . . , e(k+1). For

the same reason, it can be shown that W̃ (k+ τ − 1), . . . , W̃ (k+1) are all determined

at time instant k. For example,

W̃ (k + τ − 1) = W̃ (k − 1) − Γ
[

S(z(k − 1))eT (k + τ − 1) + σŴ (k − 1)
]

is uniquely determined since (i) eT (k + τ − 1) is semi-determined, and (ii) all other

signals are well defined at time instant k.

The first difference of (4.38) along (4.35) is given by

∆J(k) =
1

b
eT (k + τ)e(k + τ) − 1

b
eT (k)e(k)

+ tr{W̃ T (k + τ)Γ−1W̃ (k + τ)} − tr{W̃ T (k)Γ−1W̃ (k)}

=
1

b
eT (k + τ)e(k + τ) − 1

b
eT (k)e(k) − 2σtr{W̃ T (k)Ŵ (k)}

+σ2tr{Ŵ T (k)ΓŴ (k)} − 2tr{W̃ T (k)S(z(k))eT (k + τ)}
+2σtr{Ŵ T (k)ΓS(z(k))eT (k + τ)}
+tr{e(k + τ)ST (z(k))ΓS(z(k))eT (k + τ)}
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Noting that

−2σtr{W̃ T (k)Ŵ (k)} = −σ‖W̃‖2
F − σ‖Ŵ‖2

F + σ‖W ∗‖2
F

σ2tr{Ŵ T (k)ΓŴ (k)} = σ2γ‖Ŵ‖2
F

−2tr{W̃ T (k)S(z(k))eT (k + τ)} = −2eT (k + τ)W̃ T (k)S(z(k))

2σtr{Ŵ T (k)ΓS(z(k))eT (k + τ)} = 2σγeT (k + τ)Ŵ T (k)S(z(k))

tr{e(k + τ)ST (z(k))ΓS(z(k))eT (k + τ)} = ST (z(k))ΓS(z(k))eT (k + τ)e(k + τ)

We can obtain

∆J(k) =
1

b
eT (k + τ)e(k + τ) − 1

b
eT (k)e(k) − σ‖W̃‖2

F − σ(1 − σγ)‖Ŵ‖2
F

+σ‖W ∗‖2
F − 2eT (k + τ)W̃ T (k)S(z(k)) + 2σγeT (k + τ)Ŵ T (k)S(z(k))

+ST (z(k))ΓS(z(k))eT (k + τ)e(k + τ)

Noting equation (4.37) and Ŵ (k) = W̃ (k) +W ∗, we can obtain

∆J(k) =
1

b
eT (k + τ)e(k + τ) − 1

b
eT (k)e(k) − σ‖W̃‖2

F − σ(1 − σγ)‖Ŵ‖2
F

+σ‖W ∗‖2
F − 2eT (k + τ)G−1(k)e(k + τ) − 2eT (k + τ)εz

+2σγeT (k + τ)G−1(k)e(k + τ) + 2σγeT (k + τ)α(k)

+ST (z(k))ΓS(z(k))eT (k + τ)e(k + τ)

where α(k) = W ∗TS(z(k)) + εz. Since εz and W ∗TS(z(k)) are all bounded, it is

reasonable to assume that α(k) is bounded. For convenience of analysis, let αi(k) ≤
α0i, where α0i denotes the i-th element of constant vector α0, which is only introduced

to establish the stability results rather than for controller design.

Combining with the following facts

ST (z(k))ΓS(z(k)) = γST (z(k))S(z(k)) and ST (z(k))S(z(k)) < l

2eT (k + τ)εz ≤ γeT (k + τ)e(k + τ) +
1

γ
εT0 ε0

2σγeT (k + τ)α(k) ≤ σγeT (k + τ)e(k + τ) + σγαT
0 α0
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we further obtain

∆J(k) ≤ −1

b
eT (k + τ){2b(1 − σγ)G−1(k) − I − γb(1 + σ + l)I}e(k + τ)

−1

b
eT (k)e(k) − σ‖W̃‖2

F − σ(1 − σγ)‖Ŵ‖2
F + C0

≤ −1

b
eT (k + τ){2(1 − σγ)I − I − γb(1 + σ + l)I}e(k + τ)

−1

b
eT (k)e(k) + C0

with C0 = σ‖W ∗‖2
F + σγαT

0 α0 + 1
γ
εT0 ε0 being a positive constant. We have

∆J(k) ≤ −1

b
eT (k + τ){1 − 2σγ − γb(1 + σ + l)}e(k + τ) − beT (k)e(k) + C0

If we choose the design parameters as follows

1

γ
> 2σ + b(1 + σ + l) (4.39)

then we can obtain

∆J(k) ≤ −beT (k)e(k) + C0

then ∆J(k) ≤ 0 once any of the tracking errors |ei(k)|, i = 1, . . . , p is larger than
√

C0

b
. Furthermore, the tracking error e(k) will converge to the compact set denoted

by

Ωe0 , {e(k)
∣

∣

∣
|ei(k)| ≤

√

C0

b
, i = 1, 2, . . . , p} (4.40)

Due to negativeness of ∆J(k), we can conclude that e(k + τ) must converges to the

compact set Ωe0 if e(k) outside of Ωe0 and all other conditions hold. Thus y(k+τ) ∈ Ωy

will still hold if Ωe0 ⊂ Ωe.

By subtracting W ∗ to both sides of weights updating equation (4.34), it can be

rewritten as

W̃ (k + 1) = (1− σγ)W̃ (k− τ + 1)− σγW ∗ − ΓS(z(k− τ + 1))eT (k+ 1)Q(k− τ + 1)

Since e(k+1) converges to the small compact set Ωe0 and all the elements of S(z(k))

are less than 1, Q(k− τ + 1) and W ∗ are also bounded, thus, noting Lemma A.1 and
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0 < 1−σγ < 1 , W̃ (k) will be bounded in a compact set denoted by Ωwe by recursive

computation if its initial value W̃ (k0) is bounded. It is obvious that we can initialize

W̃ (k0) to be in the compact set Ωw0 ⊂ Ωw. Hence, according to Ŵ (k) = W̃ (k)+W ∗,

we conclude Ŵ (k) is bounded without the need of PE condition. Thus u(k) ∈ Ωu

will still hold if Ωwe ⊂ Ωw.

Finally, if we initialize system at time instant k0 as follows

y(k0 − j) ∈ Ωy0 , j = 0, . . . ,max{n1, . . . , nn} − 1,

u(k0 − j) ∈ Ωu, j = 1, . . . ,max{m1, . . . , mn} + τ,

W̃ (k0 − j) ∈ Ωw0 , j = 0, . . . , τ − 1,

and we choose suitable parameters γ, l and σ according to (4.39), there exists a

constant k∗ > k0 + τ such that tracking error converge to Ωe0 , and NN weight error

converges to Ωwe for all k > k∗. This implies the closed-loop system is SGUUB. Then

y(k) ∈ Ωy, and u(k) ∈ Ωu will hold for all k > k0.

Therefore, for any a priori given (arbitrarily large) bounded set Ω and any a priori

given (arbitrarily small) set Ω0, which contains (0, 0) as an interior point, there exist a

control u, such that every trajectory of the closed-loop system starting from Ω enters

the set Ω0 in a finite time and remains in it thereafter. That is to say, the whole

closed-loop system is SGUUB. �

4.2.4 Simulation

Considering the following discrete-time non-affine MIMO system with triangular form

inputs






y1(k + 2) = y1(k−1)+y2(k)u2(k−1)
1+y2

2(k)
+ sin(u1(k)) + 2u1(k)

y2(k + 2) = u1(k)+y1(k)u1(k−1)

1+u2
1(k)+y2

2(k−1)
+ sin(u2(k)) + 2u2(k)

we can see that the system delay τ = 2 and the order of the system is n = 2. The

control objective is to drive the output y(k) = [y1(k), y2(k)]
T of the system to follow

desired reference signals

yd1(k) = 0.5 +
1

4
cos(

πTk

4
) +

1

4
sin(

πTk

2
)
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yd2(k) = 0.5 +
1

4
sin(

πTk

4
) +

1

4
sin(

πTk

2
)

with T = 0.01.

System initial conditions are as follows, y1(0) = y1(1) = 0.0 and y2(0) = y2(1) = 0.

The neurons used are l = 36. All the elements of the neural network weights Ŵ (0)

and Ŵ (1) are initialized to zero, and the active functions S(z(0)) and S(z(1)) are

initialized to be zero. σ modification gain is σ = 0.01, and adaptive gain matrix is

Γ = 0.015I.

For clarity, the formulas used in the simulation are listed here. The practical controls

are as follows:






















u(k) = Ŵ T (k)S(z(k)), W (k) ∈ Rl×n and S(·) ∈ Rl×1

Y (k) = [y1(k), y1(k − 1), y2(k), y2(k − 1)]T ∈ R4

Uk−1(k) = [u1(k − 1), u2(k − 1)]T ∈ R2

z(k) = [Y T (k), UT
k−1(k), yd1(k + 2), yd2(k + 2)]T ∈ R8

The errors’ definitions are (i = 1, 2):

Σi : ei(k) = yi(k) − ydi
(k)

The weights update law are as follows (i = 1, 2):

Ŵ (k) = Ŵ (k − 2) − Γ[S(z(k − 2))e(k) + σW (k − 2)]

Simulation results are shown in Figure 4.6-Figure 4.10. Figure 4.6 and Figure 4.7

show the tracking performances of the first sub-system and the second sub-system

respectively. It can be seen that, in the initial period of simulation, the tracking

errors are large. Then, as the time increases, the practical outputs converge to the

neighborhoods of the desired signals. The control input trajectories u1(k) and u2(k)

are shown in Figure 4.8. The weight matrix norm ‖Ŵ (k)‖F is shown in Figure 4.9.

Tracking errors are shown in Figure 4.10.

4.3 Conclusion

In this chapter, firstly, for a class of nonlinear discrete-time MIMO systems with

unknown interconnections between subsystems, adaptive direct NN control scheme
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was presented using neural networks. By finding an orthogonal matrix to update the

NN weight matrix, it was shown that for appropriately chosen controller parameters,

stability of the closed-loop adaptive system can be guaranteed.

Secondly, a simple neural network control scheme was developed for a class of discrete-

time nonlinear non-affine MIMO systems. The inputs of the MIMO system are in

triangular form. By implicit function theorem, firstly, the existence of the IDFC was

shown. Then HONNs were used as the emulators of the IDFCs. Only input and

output sequences were used to construct the effective neural network control, which

is simple to be implemented in practical applications. Finally, the closed-loop system

was proved to be SGUUB based on Lyapunov analysis.
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Figure 4.1: Affine NARMAX - Tracking Performance y1(k) and yd1(k)
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Figure 4.2: Affine NARMAX - Tracking Performance y2(k) and yd2(k)
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Figure 4.3: Affine NARMAX - Control Inputs u1(k) and u2(k)

154



4.3 Conclusion

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

||W(k)||
F
 

Figure 4.4: Affine NARMAX - Weight Norm ‖Ŵ (k)‖F
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Figure 4.5: Affine NARMAX - Error dynamics
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Figure 4.6: Non-affine NARMAX - Tracking Performance y1(k) and yd1(k)
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Figure 4.7: Non-affine NARMAX - Tracking Performance y2(k) and yd2(k)

0 200 400 600 800 1000 1200 1400 1600 1800
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

u
1
(k) 

u
2
(k) 

Figure 4.8: Non-affine NARMAX - Control Inputs u1(k) and u2(k)
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Figure 4.9: Non-affine NARMAX - Weight Norm ‖Ŵ (k)‖F
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Figure 4.10: Non-affine NARMAX - Error dynamics
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Chapter 5

Conclusions and Further Research

5.1 Conclusions

In this thesis, NN control schemes were investigated for five kinds of nonlinear discrete-

time systems, HONN, RBF and MNN were used as the function approximators re-

spectively. SGUUB stability was proposed for each kind of system. Specifically, in

each chapter, the studied problem is as follows:

In Chapter 2, adaptive NN control scheme for a class of non-affine nonlinear SISO

discrete-time systems was investigated. Based on the implicit function theorem, RBF

neural networks and MNNs were used respectively as the emulators to approximate

the IDFC controller. Projection algorithm was used to guarantee the boundedness of

the multi-layer neural network weights. In order to guarantee all multi-layer neural

networks tuned within a prescribed range, a newly proposed discontinuous projections

with fictitious bounds were used in the MNN weights updating laws. Therefore, a

controlled learning may be achieved and the possible destabilizing effect of online

tuning of MNN weights can be avoided. The stability of the closed-loop system is

proved rigorously by using Lyapunov technique.

Considering the lack of NN control schemes for MIMO nonlinear discrete-time sys-

tems, in Chapter 3, state feedback control scheme was investigated for a class of

non-affine nonlinear discrete-time MIMO systems with triangular form inputs and
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bounded disturbances. Because each subsystem of the system studied is in strict

feedback form, backstepping design technique was implemented. In order to avoid

the non-causal problem in backstepping design, the MIMO system under study was

firstly transformed into sequential decrease cascade form, for which, the non-causal

problem can be completely removed. Then, HONNs were used to approximate the de-

sired virtual and practical controls. By using backstepping design in a nested manner,

the closed-loop system was proved to be SGUUB based on Lyapunov analysis.

Consequently, in the second part of Chapter 3, a simple output feedback control

scheme was proposed for a class of MIMO non-affine nonlinear systems with triangular

form input, which is similar to the class of systems studied in the first part. However,

compared with the first class system studied, two simplifications were introduced due

to the need of system coordinate transformation. Firstly, the lengths of different

subsystems are required to be equal. Secondly, there are no bounded disturbances’s

interference. By coordinate transformation, the system was firstly transformed into

input output description. Then, the input and output sequences were used to con-

struct the effective neural network control by backstepping technique. HONNs were

used to approximate the desired controls. The closed-loop system was proved to be

SGUUB based on Lyapunov analysis.

The systems studied in Chapter 3 are all in state space description. However, in

the research of discrete-time systems, NARMAX models are also a class of often

used discrete-time system representation, for which, only future/current/past input

and output sequences appear in the system description. In Chapter 4, two kinds of

MIMO NARMAX systems were studied. Firstly, a class of MIMO NARMAX systems

in affine form with unknown interconnections between subsystems and bounded dis-

turbances was investigated. By finding an orthogonal matrix to update the NN weight

matrix, it was shown that for appropriately chosen controller parameters, SGUUB

stability of the closed-loop adaptive system can be guaranteed. Secondly, a simple NN

control scheme was developed for a class of non-affine MIMO NARMAX systems. By

implicit function theorem, firstly, the existence of the IDFC was shown. Then HONNs

were used as the emulators of the IDFCs. Only input and output sequences were used

to construct the effective neural network control, which is simple to be implemented

in practical applications. Finally, the closed-loop system was proved to be SGUUB
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based on Lyapunov analysis.

5.2 Further Research

In this section, some research topics are proposed for further investigation:

• Extension to output feedback control in the presence of unknown bounded dis-

turbances and different lengths of each subsystems.

In Chapter 3, we investigated state feedback control scheme for a class of MIMO

systems in state space representation with each subsystem is in strict feedback

form, and the lengths of different subsystems are different. Then, output con-

trol scheme, which is easier for practical implementation, was investigated in

the same Chapter. However, due to the transformation difficulty, the lengths

of different subsystem are all the same and disturbances were not considered.

Thus, it is meaningful to further investigate output feedback control schemes

for the first class of system studied in Chapter 3.

• NN control for general non-affine MIMO NARMAX model.

In Chapter 4, we investigated two kinds of MIMO NARMAX systems. Though

the second class of MIMO systems studied is in non-affine form, it is a special

class of non-affine MIMO systems due to the triangular form control inputs.

Therefore, it is meaningful to further investigate NN control schemes for MIMO

NARMAX systems in general form, i.e., the control gain matrix is in general

form instead of in triangular form. For this class of MIMO systems, if the

approximation based control schemes are to be implemented, the existence of

the desired feedback controls should be guaranteed. For SISO non-affine sys-

tems studied in Chapter 2, by implicit function theorem, we know there is an

IDFC, which can realize the exact tracking. However, for MIMO cases, the ex-

istence of the matrix form implicit function theorem is not clear yet. Therefore,

the approximation based NN control for general MIMO non-affine system is a

problem which needs to be further investigated. The major difficulty of that

160



5.2 Further Research

problem is how to guarantee/find the implicit desired feedback controls and

develop corresponding weight tuning laws.

• The implementation of MNN in the control schemes proposed.

Except RBF and MNN was used as function approximator in Chapter 2, HONNs

were used as function approximators in the other chapters. However, HONN,

the same as RBF NN, is a kind of so-called linear in the parameter (LIP)

networks [50]. Noting the universal approximation ability of MNN, the use of

MNN in those schemes is not only challenging but also of academic interest.
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Appendix A

BIBO Stability and PE Condition

A.1 BIBO Stability

Consider the linear time varying discrete-time system given by

x(k + 1) = A(k)x(k) +Bu(k), y(k) = Cx(k) (1.1)

where A(k), B and C are appropriately dimensional matrices with B and C are con-

stant matrices. Let Φ(k1, k0) be the state-transition matrix corresponding to A(k) for

system (1.1), i.e. Φ(k1, k0) =
∏k1−1

k=k0
A(k). If ‖Φ(k1, k0)‖ < 1, ∀k1 > k0 ≥ 0, then sys-

tem (1.1) is (i) globally exponentially stable for the unforced system (i.e. u(k) = 0);

and (ii) bounded input bounded output (BIBO) stable [102].

A.2 Persistent Exciting Condition

The sequence S(k) is said to be persistent exciting if there is λ̄ > 0 and integer L > 0

such that

λmin

[

k0+L−1
∑

k=k0

S(k)ST (k)
]

≥ λ̄, ∀k0 ≥ 0 (1.2)

where λmin(M) denotes the smallest eigenvalue of M [8].
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