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SUMMARY 

 

 Many of structural mechanics problems, such as post-buckling of elastica, 

elasticity of nanotubes and DNA molecules, require the study of elastic curves. The 

first step to understand the behaviour of such elastic curve is to determine the 

configurations. In order to achieve this goal, two methods can be employed. One is to 

search for one or multiple local energy minima of this geometric nonlinear problem 

based on Bernoulli’s Principle. The other is to turn this boundary value problem into 

an initial value problem based on Kirchhoff’s analogue. The former one is 

straightforward and can be easily implemented, hence our major numerical tool in this 

work. The behaviour of a perfect elastica under various boundary conditions and 

constraints will be the main subject to be studied. 

 Instead of utilizing elliptical integration to obtain the closed form solution of 

elastica, two discrete models are developped so that we can employ the numerical 

optimization techniques to solve this geometric nonlinear problem. The key difference 

between two models is the physical meaning of variables. Both models have their own 

advantages. One gives simple form of constrained optimization problem, while the 

other is more sensitive and is thus suitable for the study of instability in post-buckling 

region. Adopting either model, the problem to determine the post-buckling 

configuration of elastica can be expressed in a standard constrained optimization form. 

In addition, a penalty term can be added to address extra constraints imposed by the 

existence of sidewalls.  

 In order to minimize the energy of the discetized elastica, sequential quadratic 

programming (SQP) and genetric algorithm (GA) are employed.  SQP is powerful to 

solve such minimization problem subject to nonlinear constraints. However, it requires 



VI 

a good initial guess to guarantee convergence. GA, on the other hand, is robust and has 

no rigid requirement on initial guess. But GA alone is not computationally effcient to 

generate fine solutions especially when the optimization involves a large number of 

variables. To improve performance, two numerical tools are combined: using GA to 

generate a rough configuration, and then passing the result to SQP to produce the final 

result. The path-following strategy employing the same algorithm will enable us to 

further understand global behaviour of elastica. Extensive numerical examples are 

carried out to cover elastica under most end conditions. The problem of elastica under 

sidewalls constraints can also be easily solved using the same algorithm. Bifurcation is 

observed in such problem of constrained Euler buckling, and it is discussed from the 

viewpoint of energy.  

 This work develops discrete model for elastica, or elastic curve, and devises an 

algorithm to minimize the energy of such system. The algorithm combines the 

robustness of GA and computational efficiency of SQP. It is also straightforward and 

can be readily adjusted to apply to problems under different constraints. 
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NOTATIONS 
 
 
a   Distance between two ends of elastica 

( )xA   Active constraint set 

kB   Approximation of Hessian 

b   Parameter defining the characteristic of sidewall 

C   A user-defined penalty weight 

c   Displacement of the moving end in z direction  

icp   The ith individual’s cumulative probability 

cr   Crossover rate 

D   Displacement of the moving end in x direction 

d   Difference of *x - x  

E   Young’s modulus 

E   Equality constraints set 

iF   The ith individual’s fitness value 

1 2,h h   Distance from either sidewall to x axis 

( )ih x   The ith active constraint function 

( ), ( )ie iIh x h x  The ith equality / inequality constraint function 

I   Moment of inertia of the cross section 

I   Inequality constraints set 

( )J x   Jacobian matrix 

iK   Spring constant of elastic rotational spring connecting  

L   Totoal length of elastica, usually normalized to 1 in this work 

L   Lagrangian function 
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N   Neighborhood of set R  

P   Load applied at the ends of elastica 

crP   Critical Euler buckling load 

r   Random number 

R  Long term memory containing all existing solutions (updating  
 continually) 

s   Arc length 

is   The ith segment length 

U   Objective function 

( , )W x λ  Hessian of Lagrangian function 

w   Maximum deflection 

,X Y   The parent in genetic algorithm mating pool 

', 'X Y   The offspring in genetic algorithm mating pool 

*x   Local minimum 

( )sα   Slope of the tangent to the deformed elastica relative to the x axis 

ε   A user defined small number 

κ   Curvature 

1λ   Lagrange multiplier, reaction force in x direction 

2λ   Lagrange multiplier, reaction force in y direction 

iψ  The ith variable, slope at the ith node with respect to x axis; Relative 
angle  

 of adjacent two segments is  and 1is −  in the alternative model 

∏   Functional, total potential energy 
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CHAPTER 1 Introduction 

This work is devoted to the post-buckling behavior of discrete elastica, or 

elastic chain. There are basically two ways to solve this problem. One is the energy 

based method, which solves this two point boundary value problem (BVP) based on 

Bernoulli’s principle with the aid of broadly recognized and available optimization 

algorithm. Another way is to transform the two point BVP into an initial value 

problem (IVP); shooting technique is the main numerical tool for the latter way. These 

two methods are complementary to each other. But the energy method is the main 

subject developed and discussed in this thesis.  

In this chapter, historical background, literature review, significance of this 

topic, and potential applications are discussed. 

1.1 Historical background 

Elastica problem has been connected to Leonhard Euler (1707-1783) since his 

investigation in 1744. He found 9 classes of solutions of elastic curve. The first one, 

which is a small excursion from the linear form and known as “Euler buckling load”, 

is of practical importance in the past years. Since then, the variational method has been 

widely accepted in the field of mechanics. Preceding the work of Euler, James 

Bernoulli made a start in 1691 on the determination of the shape of any bent elastic 

structural member. He stated that the curvature of any point of a uniform beam, whose 

initial state is straight, is proportional to the bending moment at that point. After 

Euler’s work in 1744, Daniel Bernoulli demonstrated that the resulting elastic curve of 

a bending beam gives minimum strain energy in terms of bending. It was also his 

suggestion to Euler that the calculus of variations should be applied to the inverse 

problem of finding the shape of the curve with given length, satisfying given end-
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conditions of position and direction, so that the strain energy being minimized. 

Lagrange (1770) obtained the exact analytical solution in terms of elliptic integrals. 

Navier collected all these in his work in 1826, and gave a recognizably modern 

account of the samll elastic deflections of beams. Kirchhoff found that the equation 

describing the equilibrium state of an elastic rod was mathematically identical to those 

describing the dynamics of heavy top. In twentieth century, Love and Antman also 

continually contributed to the problem of elastica.  

What is elastica? In engineering applications, when a structure member is 

slender with the longitudinal dimension being much larger than the transverse 

dimensions, we call it a rod. Elastica belongs to this category. Besides its slenderness, 

it is assumed isotropic and hyperelastic, which ensures that nonlinearity arises only 

from the geometry configuration but not from the material characteristics. Therefore, 

only the centerline of the elastica is crucial to be studied. This centerline can be non-

dimensionalized as a spatial curve. 

In the field of structural engineering, our concern of buckling arises from the 

wide use of steel structure. The study of column and beam-column problems is mostly 

based on the linearized theory; buckling under critical load marks the collapse of a 

structural member. When a column is studied in a plane, linearized critical buckling is 

well known. Linearization may account for most problems of elastic columns with 

sufficient accuracy for practical applications. However, in studying of elastica, which 

may undergo large deformation, linearized approximation is not acceptable.  
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Figure 1.1 The Augusti column 

If the critical buckling of a column with two degrees of freedom, Fig 1.1, is 

studied based on the linearization theory, as presented by Italian civil engineer Augusti 

in 1964, the column is under the interaction between two modes caused by 1K  and 2K . 

The strain energy stored in the two elastic rotational springs is given by 

2 2
1 1 2 2

1 ( ( ) ( ) )
2 2 2

K Kπ πα α− + −  [Godoy, 2000]. This problem can be approximated 

using linear theory. However, when large deformation happens, the linear 

approximation is no longer valid. In the following section, we revisit first the 

analytical solution to the planar elastica problem. 

1.2 Analytical solution of elastica 

In linearized buckling analysis, the curvature of a column is approximated by 

2

2

d y
dx

. When the critical buckling load is reached, indeterminate value, in terms of 
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lateral deflection, arises. However, the actual behaviour of elastica is not indeterminate. 

So, as a geometrically nonlinear elastic structure system, elastica requires us to use 

exact expression for curvature.  

 

Figure 1.2 Geometry of a classical elastica 

Considering the slender rod illustrated in Figure.1.2, we summarize briefly the 

classical solutions of a simple elastica [Timoshenko 1961]. The elastica considered is 

one end fixed and the other end free. Suppose the vertical load P applied at the free 

end is larger than the well known critical value 
2

24cr
EIP
l

π= . As shown in Fig. 1.2, the 

arch length is denoted as s, measuring from the upper end, O. The exact expression for 

the curvature is d
ds
α , as indicated by J. Bernoulli, M EIκ= , where κ  is the curvature. 

The length change in longitudinal dimension is negligible for most structural materials. 

The equilibrium of the moments gives: 

 dEI Py
ds
α = −  (1.1) 

Differentiating  (1.1) with respect to s and noticing the relationship sindy
ds

α= : 
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2

2 sindEI P
ds

α α= −  (1.2) 

Kirchhoff commented that the differential equation (1.2) is of the same form of the 

differential equation governing oscillations of pendulum. This analogy is well known 

as Kirchhoff’s dynamical analogy. First, we can multiply both sides of (1.2) with 1
EI

 

and integrate to obtain 

 
21 cos

2
d P C
ds EI
α α⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (1.3) 

Now, taking the boundary condition into account: 

 0 at 0; 0 at .d s s l
ds
α α= = = =  (1.4) 

At 0s = , let θ α=  as illustrated in Figure.1.2, and substitute (1.4) into (1.3): 

 cosPC
EI

θ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (1.5) 

Finally, substitute (1.5) back into (1.3), after rearranging: 

 2 cos cosd P
ds EI
α α θ

⎛ ⎞
= ± −⎜ ⎟⎜ ⎟

⎝ ⎠
 (1.6) 

In the system shown in Figure.1.2, the curvature is always negative, thus the positive 

sign can be dropped. Integrate to the total length using (1.6) about ds : 

 
0 0

2 2

1( )
2 2cos cos sin sin

2 2

EI d EI dl ds
P P

α θα α
α θ θ α

= = =
− −

∫ ∫ ∫  (1.7) 

After introducing new notation sin
2

p θ=  and φ  that satisfies sin sin sin
2 2
α θ φ= , we 

can simplify (1.7) into: 

 
/ 2

2 20
( )

1 sin
EI d EIl K p
P Pp

π φ
φ

= =
−∫  (1.8) 
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The value of ( )K p  can be obtained by the complete elliptic integration of the first 

kind. To calculate the maximum deflection ay  and distance ax , we can use the 

previous relationships and equations, and obtain: 

 2a
EIy p
P

=  (1.9) 

 
/ 2 2 2

0
2 1 sina

EIx p d l
P

π
φ φ= − −∫  (1.10) 

 The integral term in (1.10) is known as the complete elliptic integral of the second 

kind. The results derived above can be used to obtain other classes of elastic curves. 

This can be done by joining the clamped-free elastic curve of 1
2n

 to obtain a new class, 

where n is a positive integer. The shortcomings are, however, obvious. When the 

elastica is subjected to different boundary conditions or other constraints, or the 

elastica itself is non-uniform, it will be difficult and tedious, if not impossible, to 

obtain the closed-form analytical solutions.  

1.3 Literature review, significance and applications of elastica 

Although it is an old problem, the behavior of elastica has continuously 

aroused interests of researchers since it was first studied. The post-buckling behavior 

concerns the researchers not only in structural engineering, but also in various other 

fields.  

1.3.1 Kirchhoff analogy 

In the preceding section, Kirchhoff’s analogy demonstrates that the static 

system governed by (1.2) can be solved using Euler equations describing the motion of 

a rigid body with a fixed point under external force field. This analogy is not limited to 

planar system, but spatial system as well. Based on this analogy, rich literature is 
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available, which studied particular configurations of the system. Love treated the 

helices [Love 1944]. Zajac analysed the elastica with two loops [Zajac 1962]. Goriely 

and Tabor’s work was on the instability of helical rods [Goriely 1997a]. Goriely et.al 

also contributed to the loop and local buckling of nonlinear elastic filament [Goriely 

1997b] [Goriely 1998]. Wang analyzed an elastica bent between two horizontal 

surfaces, with each end of the elastica tangential to one of the surfaces [Wang 1981]. 

Iseki et.al considered a curved strip compressed by a flat plate [Iseki 1989a] [Iseki 

1989b]. 

1.3.2 Cosserat rod theory 

Another important tool, which has been widely used, is the Cosserat rod theory. 

Duhem first introduced the concept of a directed media in 1893. Later, Cosserat 

brothers presented a systematic development of the theories for directed continua in 

1909. The motion of a directed medium is characterized by the position vector as well 

as additional quantities, known as director. For a geometric nonlinear rod, the direction 

associated with the axis along the centerline is defined as the director. Two 

components constitute a Cosserat rod: directors along axis and material curves together 

with the collection of directors assigned to each particle that is able to deform 

independently.  Basically, the rod is studied as an oriented body. As summarized in 

[Antman 1995], [Rubin 2000], and [Villaggio 1997], equilibrium gives a system of 

equations:  

 0d F
ds

=  (1.11) 

 3
d M F d
ds

= ×  (1.12) 

 3
d R d
ds

=  (1.13) 
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 i i
d d u d
ds

= ×  (1.14) 

 
1

2

0 0
0 0
0 0

EI
M EI u

GJ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (1.15) 

In the above 7 equations, there are 7 unknowns to be solved. They are 

1 2 3( ), ( ), ( ), ( ), ( ), ( ), and ( )F s M s R s d s d s d s u s ; 1( )d s , 2 ( )d s  and 3( )d s  are generally 

defined as the right-handed rod-centered orthonormal co-ordinate frame. The vector 

3( )d s  is the local tangent to the rod center. While 1( )d s  and 2 ( )d s  are two vectors in 

the normal cross-section that chosen to enable us to follow the twist along the 

longitudinal dimension. As commented by Neukirch et.al [Neukirch 2001], this system 

is only integrable when 1 2EI EI= . When the rod is described as an oriented body, the 

Euler angles are indispensable in the framework of Cosserat rod theory. Manning also 

utilizes Euler parameters to investigate the conjugate points of elastic rod buckling into 

a soft wall [Manning 1998]. M. B. Rubin has provided an in-depth summerization 

In recent years, Maddocks [Maddocks 1999] [Maddocks 2000], Thompsons 

[Thompson 2000], and Heijden [Neukirch 2003] and their co-workers have 

investigated extensively spatial rods using cosserat rod theory. They also extended this 

elastic rod model into the modeling of supercoiled DNA, where the backbone of 

macromolecule was simplified using the elastic rod model. One of the typical 

implementation is introduced in section 1.3.4.  

1.3.3 Other study tools and discussion 

Kehrbaum and Maddocks also gave a Hamiltonia formulation in [Kehrbaum 

1997]. G. Domokos and Philipe Holmes studied the chaotic behavior of discrete planar 

elastica. They applied the tool of symbolic dynamics and standard map to this problem. 
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Domokos also applied a group theory approach to the elastic ring. Shi and Hearst have 

obtained a closed form of the general solution of the static Kirchhoff equations for 

circular cross-section elastic rod using Schröndinger euqation [Shi 1994]. 

The Kirchhoff’s analogy only solves the initial value problem of a thin 

symmetric rod in equilibrium. It does not address the boundary value problem with the 

boundary points specified in a Cartesian coordinate, and the direction of force in the 

member is not known. Bifurcation phenomena may arise while following the path of 

equilibrium as the loading condition changes gradually. Kirchhoff’s analogy also does 

not account for this problem.  

To the author’s knowledge, it was not until Kuznetsov’s work [Kuznetsov 

2002], has the stability of the equilibrium configurations of the column in the region of 

postcritical bending been investigated. In his work, pin-pin planar elastica is studied as 

Sturm-Liouville boundary value problem. Later, Heijdan and Neukirch studied the 

instability spatial elastic rod [Heijden 2003]. 

Most of the methods used in the previous works studying the spatial elastica 

employ Euler angles to describe the system equilibrium: balance of momenta and 

director momenta. It results highly nonliear forms of equations, and the closed form 

solution is elusive to obtain. Cosserat rod theory is also applicable to planar 

configurations of elastica. However, most of literature assumes readers’ familiarity 

with tensor analysis in general curvilinear coordinates. They are not intelligible to 

many practicing structural engineers. Often, the constitutive equations are not in forms 

for nonlinear deformations, which are of interests in practical applications. In addition, 

although some closed-form solutions to certain continum elasticity problem are 

available, the using of elliptical integration is not helpful when numerical results are 
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desired, especially when these numerical results are controlled rigidly by displacement 

or loading. 

1.3.4 Significance and applications 

Buckling and post-buckling behavior of the elastica has various applications 

and potential applications. On the one hand, these works are closely related to the 

engineering problems such as in ocean engineering. The formation of loop of under sea 

cable may cause the cable fail to function. Therefore, the study of configurations of 

elastica is important to the understanding of formation and elimination of the loops. 

The related literature can be found in [Coyne 1990] and [Tan 1992].  

In fields other than civil engineering, post-buckling behaviours may be more 

widely observed. First of all, the behaviours of structures in micro and nano scales, for 

example, nano-tubes demonstrate geometrically nonlinearity. DNA as a kind of 

polymer is of great significance and focus of recent research. The elastic property of 

DNA is vital to our understanding toward how this macromolecule functions in vivo. 

Apart from the modelling of supercoiled DNA, post-buckling of elastica is also used to 

address the problems of fiber preparation of nonwoven fabrics such as polypropylene 

fibers [Domokos 1997]. In image processing of CAD, both the true nonlinear spline 

and image in painting process are closely related to elastica as well [Tony 2002], 

[Bruckstein 1996].  

As the experimental techniques developing, manipulation in micro scale even 

nano scale becomes feasible. Structures under such scales usually demonstrate 

geometrical nonlinearity, whereas materially is still linearly elastic. Single walled 

nanotubes have been observed under high-resolution transmission electron 

microscopes to exhibit that they are capable of resisting compression, while fracture 
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are less likely to happen like normal carbon fibre. Under compression, buckling modes 

are observed and shown in Figure 1.3 and Figure 1.4 [Wagner 1999]. 

 

Figure 1.3 Planar Post-buckling of Nanotube [Wagner 1999] 

 

Figure.1.4 Spatial Post-buckling of Nanotube [Wagner 1999] 
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Figure 1.5 DNA modeling using elastic rod [Balaeff 1999] 

In modeling the supercoiled structure of DNA, most works are done by 

assuming DNA as a naturally straight, inextensible elastic rod. An interesting model 

has been proposed by Kratky and Porod in 1949. The model describes all states 

between the two extreme models of the perfectly flexible chain with free rotation and 

perfectly rigid rod-shaped chain. It is known as the worm-liken chain. Zhang et.al  

provided a model for DNA, and used Monte-Carlo simulations to study the elasticity 

of DNA structure [Zhang 2000]. These models include entropy as an important factor, 

but they are not within the scope of this work. However, the static equilibrium 

conformations of DNA are also of great importance. For example, Balaeff and his 

coworkers studied the lac repressor, one of the key enzymes in the lactose digestion 

chain of E. coli bacteria, using the theory of elasticity [Balaeff 1999]. The lac repressor 

works only through clamping two out of the three DNA sites. And between these sites, 
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the DNA must form a loop to interfere with reading the genes by another protein, the 

RNA polymerase. This is demonstrated in Figure.1.5. Shi and Hearst [Shi 1994] have 

obtained a closed form solution for time-independent, non-contact, one dimensional 

circular super-coiled DNA. 

Elastica is also known as nonlinear splines in the industrial design context. The 

curve with functional form 2( )dsακ β+∫ , where κ  is curvature of the curve, 

minimizes energy. The actual computation of nonlinear spline usually turns out to be 

quite difficult. Accordingly, simpler polynomial splines or rational curves, such as 

NURBS, are used to address the problem of shape design. On the other hand, it is also 

applicable to generate a discrete version of curve. Another application is the inpainting 

process. Inpainting is a set of techniques for making undetectable modifications to 

images. It can be used to reverse deterioration (e.g., cracks in photographs, scratches 

and dust spots in film), or to add or remove elements from a digital image. To a certain 

extent, the inpainting process can be viewed as a boundary value problem.  

Not only rod itself can be related to elastica, some thin wall structures are 

closely related to elastica as well. For example, a long duct with circular cross-section 

subject to external load or self weight is closely related to the nonlinear curve after 

deformation. A sheet under different boundary condition is also within the scope of 

elastica. These problems also involve the contact phenomena. For example, the long 

pipe or duct as cylindrical shell usually rests on rigid ground. This category of problem 

is studied by Wang and Plaut et.al in [Wang 1981] and [Plaut 1999]. Another example 

in bio-engineering is the study of lipsome, a kind of drug delivery structure. Lipsome 

is modelled as an initial spherical membrane and subjected to point loads at antipodes 

[Pamplona 1993]. Assuming axis-symmetry, study of sphere will reduce to the planar 

revolution curve that generates the spherical surface. 
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From the above examples, we can see the importance of the study of this old 

problem even today. And the configuration of elastica is a necessity to our further 

comprehension of specific problems.  

1.4 Scope and objective 

This work is trying to investigate the post-buckling behaviours of elastica 

under various boundary conditions in a different perspective. An elastica is discretized 

to N rigid segments. Then this structural system is treated as a minimization problem 

subjected to different geometric constraints. We try to find out the post-buckling 

configurations of this system. Corresponding reaction forces can be obtained in terms 

of Lagrange multipliers.  However, only static equilibrium configuration is computed 

and discussed. Dynamics is not within the scope of this work. Self contact is also not 

included in this text.  

This work attempts to treat the post-buckling problem of elastica in a more 

straight-forward manner. It will be shown that the energy method developed here is 

efficient, universal and can be easily applied to problems with non-uniform system. As 

the numerical tools utilized are widely available, they can also be modified to meet 

specific requirement.  

Main examples are trying to search the planar configurations. They will give 

the solutions under most geometric boundary conditions that encountered in 

applications. To demonstrate the capability of the energy based method proposed in 

this work, spatial configurations of both end clamped elastica are also addressed.  

1.5 Organization of thesis 

In this chapter, both historical background and literatures concerning elastica 

has been introduced. Then the significance of this topic and potential applications are 
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discussed. In chapter 2, the model of discretized planar elastica is defined and justified. 

Based on the model in chapter 2, numerical techniques employed are introduced in 

chapter 3. Genetic algorithm, sequential quadratic programming and shooting method 

will be presented separately. The framework of algorithm is then developed. In chapter 

4, configurations of elastica with various geometric boundary conditions are computed. 

Their corresponding behavior is also discussed. Numerical examples include planar 

elastica and spatial elastica. Planar elastica comprise three mostly encountered cases: 

pin-pin elastica, clamp-pin elastica, and clamp-clamp elastica. When both ends of 

elastica are clamped, and the system is not confined in a plane, the elastica can deform 

out of plane at a certain stage. Therefore, we also study the spatial elastica whose both 

ends are clamped. Two different cases will be studied. One is that the tangents of both 

ends are located on one axis, x axis in this work. Another case is that the two tangents 

of both ends are parallel with each other while x-axis cannot connect them. In chapter 

5, conclusions will be reached and suggestions for further study will be discussed. 
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CHAPER 2 Modeling: Continuum and Discrete Models 

 
In this chapter, we consider a slender rod, which possesses the material 

property of linear elasticity. For simplicity, the rod will be taken to be inextensible, 

unshearable and initially straight (no intrinsic curvature). It can be uniform or non-

uniform, but we firstly model this structure with uniform cross-section and bending 

stiffness EI, where E denoting Young’s modulus and I the moment of inertia of the 

cross-section. The total length of the rod is normalized to 1 without losing generality. 

The rod is subjected to end load P, whose load line passes through ends. The boundary 

conditions can be various: both ends simply supported; both ends clamped; one end-

clamped while the other simply supported. Here, we will first demonstrate the more 

classical and well studied case: both ends simply supported. The other boundary 

conditions will be discussed in the following sections. In the last section of this chapter, 

we will also discuss the planar elastica constrained between two side walls. The aim of 

this chapter is to develop discrete models of elastica for the later search of 

configurations. Configuration of a structural system is defined as the simultaneous 

positions of all the material points of the system. Dynamic effect is neglected 

throughout this work. Only modelling of planar elastica is introduced in this chapter. 

Spatial elastica can be considered as extension of planar one. The modeling of spatial 

elastica will be given in chapter 4 as an example. 

2.1 Continuum model 

2.1.1 Formulation based on equilibrium 

Euler provided an essentially complete analysis of the classical problem [Euler 

1774], which will be summarized below.  
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Figure 2.1 Geometry of Euler strut 

 As shown in Figure 2.1, the deformed configuration of Euler strut is modeled 

by a plane curve ( ( ), ( )x s y s ) parameterized by the arc length [0,1]s ∈ . Assuming that 

the structure has infinite shear and axial stiffness, which implies the rod is inextensible 

and unshearable, the equilibrium equations may be reduced to the single second-order 

ODE in terms of the slope 1tan ( )dy
dx

α −= : 

 '' sin 0EI Pα α+ =  (2.1) 

, where  ( ) '  denotes /d ds . The boundary conditions for this simply supported case 

are zero moment at both ends: 

 '(0) 0 '(1)α α= =  (2.2) 

 As pointed out in [Kirchhoff 1859], the elastica equilibrium problem is 

analogous to the pendulum equation. The analogy suggests that the results for the 

dynamic initial value problem can be used in studying continuous model of the static 

boundary value problem.  

2.1.2 Formulation based on energy method 

 Instead of using equilibrium to obtain governing equation, a classical way to 

obtain (2.1) is energy method. As stated in Bernoulli’s principle, such a nonlinear 

elastic system possesses stationary potential energy when in static equilibrium 

configuration. The total potential energy of the system, neglecting dynamic effect, is  



Chaper 2. Modeling: Continuum and discrete models 18 

 
1 2

0

1 '
2

V EI ds PDα= −∫  (2.3) 

 
1

0
1 cosD dsα= − ∫  (2.4) 

( )sα  is treated here as a function of arc length along the elastica, [0,1]s ∈ . However, 

we require that ( )sα  satisfies the relationship 

 
1

0
sin 0dsα =∫  (2.5) 

, which express the equal ordinates of the two ends. 

 Using (2.3), (2.4) and (2.5), we can construct the functional 

 
1 1 12

20 0 0

1 ' (1 cos ) sin 0
2

EI ds P ds dsα α λ αΠ = − − + =∫ ∫ ∫  (2.6) 

, where 2λ  is a Lagrange multiplier. Set the first variation of (2.6) equal to zero, we get: 

 2'' sin cos 0EI Pα α λ α+ + =  (2.7) 

, with the boundary conditions (2.2). If we integrate (2.7) and take (2.5) and boundary 

conditions (2.2) into account, we obtain 

 
1

2 0
cos 0dsλ α =∫  (2.8) 

Equation (2.8) is satisfied with the following three cases: 

 
1

2 0
0, cos 0 (case A)dsλ α= ≠∫  (2.9) 

 
1

2 0
0, cos 0 (case B)dsλ α= =∫  (2.10) 

 
1

2 0
0, cos 0 (case C)dsλ α≠ =∫  (2.11) 

Note that 
1

0
cos dsα∫  has the meaning of 1 D−  or a, thus case A is when the two ends 

of elastica don’t meet. While case B and case C are when two supports meet. For case 

A, (2.7) and (2.1) unifies.  
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 The solutions to the above continuum model can be found in two ways as 

presented in chapter 1. One is via elliptic integration. The other can be obtained by 

numerical solution of the Sturm-Liouville problem. [Kuznetsov 2002] 

2.2 Discrete model 

 Although the solutions of closed form to continuums model are well studied 

and available, when the problems are non-uniform or other extra constraints exist, a 

discrete model for computational convenience is necessary. The discretized model is 

also convenient to obtain numerical results. 

2.2.1 Discrete system based on energy principle 

 The elastica illustrated in Figure 2.1 can be discretized into n rigid segments, 

joined by linear rotational spring as in Fig 2.2. The length of each segment is 

( 1, , )is i n= … . And the spring constant of elastic rotational spring connecting 1is −  and 

is  is iK . For a simply supported case, 1K is zero. We adopt the variables, slopes at 

each node with respect to x axis, as ( 1, , )i i nψ = … . With all the variables determined, 

the configuration of elastica is determined. The convention of sign of each variable is 

illustrated in Figure 2.2.  
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Fig 2.2 Geometry of discretized model 

From solid mechanics, we know that the relationship between bending moment 

and the change of curvature is  

 M EIκ=  (2.12) 

 

Figure 2.3 Curvature 

EI  is the bending stiffness of the rod, while 1 d
ds
ψκ

ρ
= =  is curvature for a continual 

bar as shown in Figure 2.3. s  is the arc length measured from a starting point, and 

ψ∆  is the change of inclination angle with respect to x axis. 
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  The expression (2.12) can be therefore approximated in the form of finite 

difference: 

 
0

lim
s

d EIM EI EI EI
ds s s s
ψ ψ ψ ψ

∆ →

∆ ∆= = = ∆
∆ ∆ ∆

 (2.13) 

We can define the stiffness of the elastic moment spring as 

 
1

2
( )i

i i

EI EIK
s s s−

=
∆ +

 (2.14) 

Finally, we can write the strain energy of the system as the sum of elastic energy in 

each linear moment spring 

 
1

2 2
1

1 2

1 1 ( )
2 2

n n

m i i i i i
i i

U K Kψ ψ ψ
−

−
= =

= ∆ = −∑ ∑  (2.15) 

Compare the above expression for a discrete system with the strain energy expression 

for a continuous system, we can see 

 2 2 21 1 1( ) ( ')
2 2 2

n n
i

m m i
i i

U K EI s EI ds
s
ψψ ψ∆= ∆ = ∆ →

∆∑ ∑ ∫  (2.16) 

when 0s∆ →  and n →∞ . 

Different from the continuum model, we treat the nonlinear elastic system with 

discrete model as a minimization problem subjected to geometric constraints. Under 

the same geometric constraints, such a nonlinear system may possess different 

configurations corresponding to different energy levels. With a specified end 

displacement D , which will be considered a geometric constraint, we hope to find 

various configurations based on energy method. The reaction forces at ends will also 

be obtained. Setting the origin at the left side of the initial straight elastica, two 

geometric constrains are expressed in terms of Cartesian coordinates of the other end: 

1( )nx s a+ = , and 1( ) 0ny s+ = .  As we start from origin, 1nx +  and 1ny +  depend on all the 

varialbes ( 1, )i i Nψ = … .  
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Now we express the objective function and geometric constraints in the 

standard form, i.e.:  

 2
1

2

1: ( )
2

n

i i i
i

obj U K ψ ψ−
=

= −∑  (2.17) 

 
1

1

2
1

. . : cos( ) 0

sin( ) 0

n

e i i
i

n

e i i
i

s t h a s

h s

ψ

ψ

=

=

=− + =

= =

∑

∑
 (2.18) 

U is the strain energy we want to minimize, 1eh  and 2eh  are the equality constraints we 

need to be satisfied. Both objective function and constraints are nonlinear, therefore, an 

efficient nonlinear constraints satisfying optimizaiton method is needed. SQP will be 

employed to tackle this nonlinear minimization problem. GA will also be an assistant 

method. They will be introduced in chapter 3. 

2.2.2 Mechanical analogue of the discrete system based on 

equilibrium 

 

Figure 2.4 Free body of discretized pin-pin elastica 
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Using the discrete model illustrated in Figure 2.2, we may solve this system 

from equilibrium as well. This method is not the main concern of this work. But it is 

useful to study elastica under higher mode. For complete reason, it will be discussed 

here. 

We take any segment is  out of the simply supported discrete elastica. From 

equilibrium condition, and noticing that at each nodal point, the force in x direction is 

P, while the force in y direction is zero, we can write: 

 1 sini i i iy y s ψ+ = +  (2.19) 

 1 1( ) 0i i i iK Pyψ ψ+ +− + =  (2.20) 

Substitute (2.19) into (2.20) and rearrange, we get 

 ( )1 sini i i i i
i

P y s
K

ψ ψ ψ+ = − +  (2.21) 

(2.21) can be viewed as an implicit euler scheme to integrate forward with step-size is . 

Considering the whole system illustrated in Figure.2.2, boundary conditions are stated 

as 

 1 10 ny y += =  (2.22) 

Since one end of elastica is set at origin of x-y coordinate, we can solve this two-point 

boundary value problem as an initial value problem. Shooting method is applicable. 

2.3 Castigliano’s first theorem and Lagrange multipliers 

 To solve a constrained optimization problem such as shown in (2.17) and 

(2.18), the main strategy is to turn the constraint satisfying problem (CSP) into 

unconstraint problem. One can construct either a weighted penalty function or a 

Lagrangian function. As will be discussed in the next chapter, Lagragian function is 
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adopted in solving the problem. We demonstrate here the physical meaning of 

Lagrange multipliers.  

To our interests, the Lagrange multiplier method is preferred due to the 

physical meaning of Lagrange multipliers. The Lagrangian function is constructed: 

 1 1 2 2( , ) ( ) ( ) ( )e eU h hψ λ ψ ψ ψλ λ= − −L  (2.23) 

The necessary condition for a local minimum is that the first order gradient of 

Lagrange function at a local minimum equals to zero, i.e.   

 * * * *( , ) ( ) ( ) 0U∇ = − =ψ ψ ψψ λ ψ h ψ λL  (2.24) 

where the subscript ( )ψ  denotes differentiation; *ψ  and *λ  are the local optimum and 

corresponding Lagrange multipliers. Comparing (2.24) with (2.7), we can see that they 

agree exactly in form. From the analogue, 1λ  and 2λ  apparently have the physical 

meaning of reaction forces at supports in x and y direction respectfully. In another 

strict manner, we can prove with Castigliano’s first theorem.  

Cotterill-Castigliano’s first theorem: Differentiating the internal work of a 

system with respect to the deformation at a certain point gives the singular force at the 

same point. 

Let  *ψ  be a local minimum, the differential of the objective function is then:  

 
1

0

* *( ) ( )
n

i

UdU d U di
i

ψ
ψ

+

=

∂= =
∂∑ψ ψ ψψ  (2.25) 

From Eq (2.24), we have * *( ) ( )Uψ ψψ h ψ λ= , which can be substituted into Eq (2.25) 

to give: 

 * *( ) ( )dU d=ψ h ψ λ  (2.26) 

In this case, the function U  is the strain energy, while the constraints h  can be related 

to the displacements in x and y directions. Therefore, the Lagrange multipliers 
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λ should be the forces needed for the system to satisfy the corresponding displacement 

constraints or, in other words, the reaction forces. Unless stated otherwise, 1λ  will be 

associated with the reaction force in x  direction; while 2λ  will be associated with the 

reaction force in y  direction. 

2.4 Alternative model 

Different from the discrete model in Figure.2.2, we can set the unknowns as the 

relative change of angle from previous segment.  

 

Figure.2.5 Geometry of alternative discrete model 

We can see that 1 1, , nψ ψ +…  are the relative angle of adjacent two segments is  

and 1is − . 0ψ  is however the initial angle with respect to x  axis. And two fictitious 
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segments are added at two ends. For this model, we can express the problem in 

standard form of optimization as: 

 
1

2

1

1:
2

n

i i
i

obj U K ψ
+

=

= ∑  (2.27) 

 
1

1 0

2
1 0

. . : cos( ) 0

sin( ) 0

n i

e i i
i j

n i

e i i
i j

s t h a s

h s

ψ

ψ

= =

= =

=− + =

= =

∑ ∑

∑ ∑
 (2.28) 

The key difference between this model and the previous model is the physical 

meaning of variables. Because the relative angles are small in magnitude, the searching 

procedure will be more susceptible to perturbations. If the aim is to find as many local 

optima as possible under the same boundary conditions and constraints, this model is 

preferable. In addition, it is more convenient to describe the boundary conditions. 

However, it is apparent from a comparison between equations (2.18) and (2.28) that 

the latter equality constraints are more complicated in form. Therefore, it is likely that 

the numerical error will be higher.  

With Eqns (2.27) and (2.28), a Lagrangian function can also be constructed. 

Since the two equality constraints have the same meaning as (2.17) and (2.18), the 

Lagrange multipliers has the same meaning as proved in section 2.3. 

2.5 Boundary conditions 

In the above models, boundary conditions are not directly included. For 

equilibrium considerations, we need to check the boundary conditions. For a pin-pin 

case, if we include the boundary conditions directly as constraints, additional 

constraints will cause computational difficulty, and it may not be efficient to do so. 

Because there are no constraints to confine rotation at the two ends for pin-pin case, 

the solutions obtained, which are the local minima under current geometrical equality 
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constraints, should have lower energy than the ones of elastica with one end or both 

clamped. The boundary conditions should already be fulfilled.  

For the model illustrated in Figure.2.5, we can check the boundary conditions 

for a pin-pin case: 

 1 1 2 1; ; /nψ ε ψ ε λ λ ε+≤ ≤ ≤  (2.29) 

where ε  is a small number. The first two terms in (2.29) ensure that the moments at 

both ends are zero. The third term checks if the reaction force at support is zero. 

 The other boundary conditions are studied in this work as well, and they are 

summarized below: 

 

Clamped-Clamped: 

 
1

0
0

0; 2 ( 0, 1, 2, )
n

i
i

k kψ ψ π
+

=

= = = ± ±∑ …  (2.30) 

Clamped-Pin: 

 0 10; nψ ψ ε+= ≤  (2.31) 

The boundary condition for a clamp-free case is: 

 0 0ψ =  (2.32) 

Note that the geometric constrains stated in (2.18) or (2.28) should be revised. Since 

one end is fixed at origin, and we still have the moving end displacement D as control 

parameter, the constraint is only in x direction but not in y direction. Different from the 

pin-pin end condition, wherever the clamp end condition is to be imposed, (2.30) or 

the first expression in (2.31) should be included as geometric constraints. 0ψ  is not 

necessary 0, but can be arbitrary angle according to how the coordinate system is 

defined.  
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2.6 Extra constraints by sidewalls 

 

Figure 2.6 Elastica with sidewall constraints 

In engineering application, elastica may be subjected to constraints from 

sidewalls. The sidewall may be either on one side or on both sides. If only one side- 

wall exists, elastica is free to deflect to the side where no sidewall exists. We will 

demonstrate the use of numerical strategy to approximate the solution.  

The geometry of this problem is illustrated in Figure 2.6. The sidewall on either 

side of x axis has distance 1h  and 2h  from x respectively. The other notations have 

exactly the same meaning stated in preceeding sections. It is pointed out that due to the 

existence of sidewalls, 2 (0)λ  may not equal to 2 (1)λ . Detailed discussion can be found 

in Chapter 4.  

Generally, the sidewall is assumed rigid and frictionless. But an approximation 

is made by constructing a penalty function of (2.17): 

 2
1

2 2 1 2

1: ( ) ( )
2

n n

i i i
i i i i

b bobj U K
y h y h

ψ ψ−
= =

= − + −
+ −∑ ∑  (2.33) 

in which b can be considered a characteristic of the sidewall. The sidewall is no longer 

perfectly rigid, but “soft”. And b describes how “soft” or how “hard” the sidewalls are.  
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Figure 2.7 Characteristics of the added penalty term 

Figure.2.7 demonstrates the effect of the added penalty term on the objective 

function. When the deformed elastica approaches either or both sides of the sidewalls, 

the potential energy, which is the objective function to be minimized, will arise sharply. 

In such a way, the configurations of elastica searched are still based on the energy 

principle.  

Nevertheless, it is apparent that the characteristic parameter, b, is critical to 

how close equation (2.33) approximates the real situation. The smaller in magnitude b 

is, the closer equation (2.33) approximates to rigid wall. On the other hand, if we set b 

too small, the computation will be difficult to continue. As we evaluate the potential 

energy at each nodal point, there will be a number of segments affected. If within a 

certain interval d the potential energy arises largely, while the discrete segment length 

is  is not small enough, the solution may show that the elastica can penetrate into the 
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sidewalls. For example, when is  is more than twice the interval d, the “penetration” 

can happen. The penalty term can only force the points away from the sidewall, but 

cannot prevent the penetration if the segment length is not small enough. Therefore, 

the parameter b needs to be tuned according to the number of segments. Another 

unsatisfactory comes from the approximation itself. The elastica is never impossible to 

contact the sidewalls. The point contact, line contact and secondary buckling happen at 

a fictitious wall with a distance h smaller than the real one. Consequently, if we require 

a better approximation concerning the distance of sidewall, we need to adjust the h in 

equation (2.33) slightly larger than what we expect. It may be necessary for us to fine-

tune this constant to achieve what we expect.   



31 

CHAPTER 3 Numerical Techniques 

 The problem of elastica can be presented in two manners. One is based on 

Bernoulli’s principle, while the other is based on equilibrium of the system. To study 

the system using a discrete model, we employ genetic algorithm and sequential 

quadratic programming as the numerical techniques to minimize the total potential 

energy. Concerning the equilibrium of the system, Kirchhoff’s analogue suggests that 

we can handle this boundary value problem as an initial value problem. Naturally, the 

shooting method will be the choice. First, in this chapter, these three numerical 

techniques are briefly introduced. Then they are associated with the model described in 

the Chapter 2.  

3.1 Sequential quadratic programming (SQP) 

 The sequential quadratic programming is widely accepted as one of the most 

efficient optimization techniques for constrained nonlinear optimization problems. 

SQP outperforms other optimization approach especially when constraints are 

nonlinear, which is the characteristic of the model presented in chapter 2. Before the 

overall framework of algorithm is depicted, we revisit some basic concepts on 

optimization and constraints satisfaction that related to the discrete model of elastica. 

3.1.1 Necessary and sufficient conditions 

 From Taylor’s series expansion including only the linear term, we can have the 

approximate expression of function ( )f x  about a local minimum *x : 

 * * *( ) ( ) ( )( )f f fx x x x - x≈ +∇  (3.1) 

For *x  to be a local minimum, the following expression must be satisfied for all x  in 

the small neighborhood of *x : 
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 *( ) ( ) 0f x f x− ≥  (3.2) 

Substitute the approximation of ( )f x  in (3.1) into (3.2), and define *=d x - x  to get: 

 *( ) 0Tf∇ ≥x d  (3.3) 

Since d  can be either positive or negative, in order to satisfy the above condition, the 

gradient of ( )f x  at *x , *( )f∇ x , must be zero. Thus, the first order necessary 

condition is  

 *( ) 0f∇ =x  (3.4) 

However, following the above procedure, one can derive the same necessary condition 

even if *x  is a maximum or inflection. Therefore, to ensure one point in the solution 

space to be a local minimum, sufficient condition must be satisfied as well. 

Again, expand ( )f x  about *x  using Taylor’s series, but in quadratic form this 

time: 

 * * * * 2 * *1( ) ( ) ( ) ( ) ( ) ( )( )
2

T Tf x f f f≈ +∇ + ∇x x x - x x - x x x - x  

or 

 * * 2 *1( ) ( ) ( ) ( )
2

T Tf x f f f= +∇ + ∇x x d d x d  (3.5) 

Substitute (3.5) into (3.2): 

 * 2 *1( ) ( ) 0
2

T Tf f∇ + ∇ ≥x d d x d  (3.6) 

From necessary condition derived above, which states that *( )f∇ x =0, (3.6) yields: 

 2 *1 ( ) 0
2

T f∇ ≥d x d  (3.7) 

In the quadratic form on the left hand side of (3.7), the sign is decided by the Hessian 

matrix 2 *( )f∇ x . Corresponding to different status of Hessian matrix, one can write 

the corresponding sufficient conditions: 
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a) *x  is a local minimum, if Hessian matrix 2 *( )f∇ x  is positive definite; 

b) *x  is a local maximum, if Hessian matrix 2 *( )f∇ x  is negative definite; 

c) *x  is a inflection point, if Hessian matrix 2 *( )f∇ x  is indefinite; 

d) status of *x  cannot be determined at this order, if Hessian matrix 2 *( )f∇ x  

is semidefinite. 

3.1.2 Karush-Kuhn-Tucker conditions 

 In the previous section, the necessary and sufficient conditions of optimization 

problems are summarized briefly. However, the discrete model of elastica should be 

viewed as a constraints-satisfying minimization problem with (2.17) subject to (2.18). 

The two geometric constraints are equality constraints. Thus, it is necessary to 

introduce Lagrangian function and Karush-Kuhn-Tucker conditions (KKT conditions).  

The constraint satisfying optimization has the standard form of  

 
min ( )

( ) 0,
. .

( ) 0,
i

i

f x
h x i

s t
h x i

= ∈⎧
⎨ ≤ ∈⎩

E
I

 (3.8) 

Considering the optimization problem of (3.8), Lagrangian function is expressed as: 

 ( , ) ( ) ( )i i
i

f hλ
∈

= − ∑x λ x x
E I

L
∪

 (3.9) 

In the above equation, x  is the vector of unknowns, λ  is the vector of Lagrange 

multipliers, ( )f x  is the objective function, E  is the set of equality constraints, I  is 

the set of inequality constraints, while ( )ih x  and iλ  are the constraint and the 

corresponding Lagrange multiplier. The active set ( )xA  is the union of the equality 

constraints set E  with the indices of the active inequality constraints: 

( ) { | ( ) 0}iIi h= ∈ =x xA E I∪ . If the set of active constraint gradients 
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* *{ ( ), ( )}ih i A∇ ∈x x  is linearly independent, we say that *x  at active set *( )xA , the 

linear independence constraint qualification holds. 

 Suppose that *x  is a local solution of (3.8), and the linear independence 

constraint qualification holds, there is a Lagrange muliplier vector *λ , with 

components *
iλ , i ∈E I∪ , such that the following conditions are satisfied at * *( , )x λ  

 

* *

*

*

*

* *

( , ) 0,

( ) 0, for all ,

( ) 0, for all ,

0, for all ,

( ) 0, for all

x

i

i

i

i i

h i
h i

i
h i

λ
λ

∇ =

= ∈

≤ ∈

≥ ∈

= ∈

x λ
x
x

x

L

E

I

I

E I∪

 (3.10) 

 As in our model of (2.17) and (2.18), only the equality constraints are of our 

interests. The next sections develop algorithm address only equality constraints. The 

methods are, however, not only restricted to equality constraints problems. When 

inequality constraints are necessary to meet, the basic idea is to transform the 

inequality constraints into equality constraints by relaxation coefficients. [Nocedal 

1999] 

3.1.3 Quasi-Newton approximation 

Bearing in mind that SQP is an iterative optimization technique for smooth 

problem, we need to find the search direction and step length at each iteration utilizing 

the derivative information of Lagrangian function. Steepest descent method is a line 

search method that utilizes only the gradients, but not the second derivatives. This 

brings the disadvantage of slow convergence. Newton’s direction is preferred, but it 

uses the second derivatives, Hessian. And when 2
kf∇  or 2

k∇ L  is not positive definite, 

the Newton direction cannot even be defined, since 2 1
kf

−∇  may not exist. Quasi-

Newton method is invented to avoid the excessive computational cost of Hessian. 
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Quasi-Newton method approximates the Hessian with the information gained at each 

step. There are several updating schemes. Named after its inventors, Broyden, Fletcher, 

Goldfarb, and Shanno, BFGS formula is defined as 

 1

T T
k k k k k k

k k T T
k k k k k

B s s B y yB B
s B s y s+ = − +  (3.11) 

In (3.11), k  is the current iterate index, kB  is the approximation of Hessian, while ky  

and ks  are defined as  

 1k k ks x x+= −  (3.12) 

 1k k ky f f+= ∇ − ∇  (3.13) 

The initial approximation 0B  must be chosen by the user. To satisfy the equality 

constraints, (3.13) need to be modified using Lagrangian function: 

 1 1( , ) ( , )k x k k x k ky L+ += ∇ − ∇x λ x λL  (3.14) 

3.1.4 Framework of SQP 

We denote Jacobian matrix of the constraints in (3.9) as  

 1 2( ) [ ( ), ( ), , ( )]T
mJ x h x h x h x= ∇ ∇ ∇…  (3.15) 

Since only equality constraints are considered, i.e., only the terms involving equality 

constraints in KKT conditions (3.10), we can obtain a system of n m+  equations with 

n  and m  standing for the number of unknowns and constraints respectively:  

 
( ) ( )

( , ) 0
( )

Tf x J x
F x

h x
λλ

⎡ ⎤∇ −
= =⎢ ⎥
⎣ ⎦

 (3.16) 

Denote the Hessian of the Lagrangian with: 

 2( , ) ( , )xxW x xλ λ= ∇ L  (3.17) 

Jacobian of (3.16) is: 
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( , ) ( )
( ) 0

TW x J x
J x

λ⎡ ⎤−
⎢ ⎥
⎣ ⎦

 (3.18) 

The Newton step from the iterate ( , )k kx λ  is thus given by 

 1

1

k k k

k k

x x p
pλλ λ

+

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (3.19) 

, where kp  and pλ  can be found by solving the KKT system 

 
( , ) ( ) ( ) ( )
( ) 0 ( )

T T
kpW x J x f x J x

pJ x h xλ

λ λ⎡ ⎤ ⎡ ⎤⎡ ⎤− −∇ +
=⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎣ ⎦ ⎣ ⎦

 (3.20) 

Both kx  and kλ  are updated simultaneously until the convergence criterion is reached. 

The convergence criterion is set as  

 ,k ikf and hε ε∇ < <  (3.21) 

In (3.21), ε  is a user-defined small number. The framework of the algorithm is 

depicted in the following flowchart. 
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Figure 3.1 Flowchart of SQP 

 Powell suggested that Hessian should be kept positive definite even though the 

Hessian might be positive indefinite at a local solution. A positive definite Hessian is 

maintained providing T
k ky s  is positive at each update and that kB  is initialized with a 

positive definite matrix. When T
k ky s  is not positive, ky  is modified on an element-by-

element basis so that 0T
k ky s > . At the initial stage, the smallest element of T

k ky s  is 
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halved until T
k ky s ε> , with ε  being a small number. If T

k ky s  is still not positive, we 

modify ky  in the following way: 

 k ky y wv= +  (3.22) 

Here, w is a scalar, while the vector v is 

 1 1( ) ( ) ( ) ( ), if ( ) 0 ( ) ( ) 0
0, otherwise

i k i k i k i k k i k i k i
i

h x h x h x h x y w and q s
v + +∇ ⋅ − ∇ ⋅ ⋅ < ⋅ <⎧

= ⎨
⎩

(3.23) 

And we increase w systematically until T
k ky s  is positive. (cf. [Powell 1978], 

[MathWorks 2003]) 

 For SQP, it may be efficient to converge to a local solution, but a good initial 

guess plays critical role in the searching procedure. Convergence is not guaranteed 

when the initial guess strays away from a local minimum. 

3.2 Genetic algorithm 

Inspired by the Nature, genetic algorithm (GA) embraces the doctrine that “the 

fittest survies”. Basically, GA is a stochastic sampling method. Unlike the descent 

methods, such as SQP, GA utilizes no characteristics of the problem itself to determine 

the next sampling point. Instead, GA utilizes the rule of selection among a population, 

and simulates the evolution. Two genetic operators, crossover and mutation, especially 

the latter, play important roles in the procedure of this kind of simulated evolution. We 

can describe GA as a population based search strategy, because in every generation, a 

population is maintained with certain number of individuals. Generation by generation, 

the population reproduce themselves, and mutate, approaching the optimum.  

Chromosome represents and describes each individual of our interests. Based 

on the type of chromosome, there are two versions of GA. One is binary version, 

which represents the individual as binary digits, i.e. 0 and 1, and operates bit by bit. 
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This requires the transformation of real unknowns into binary strings and manipulates 

the binary strings during crossover and mutation operations. Then, we need to 

transform the binary string back into real values to evaluate the fitness values and 

make the selection based on these fitness values. The other is the real version. During 

the simulated evolution, we maintain the real value unknowns as they are, and utilize 

specially designed crossover and mutation operations. Michalewicz has done extensive 

numerical experimentations to compare real-valued and binary GA [Michalewicz 

1994]. His work demonstrates that real value GA outperforms its counterpart in terms 

of CPU time required. Accordingly, we choose the real value GA in this work.  

Since we employ GA as a mechanism to provide reasonable initial guess, only 

the operations we exercised in this work are introduced. But before that, the following 

figure is a simple flowchart that involves the entire essential elements in GA. More 

detailed introduction and discussion are availabe in these references: [Goldberg 1989], 

[Michalewicz 1994], and [Haupt 1997]. 
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Figure 3.2 Flowchart of Genetic Algorithm 

3.2.1 Selection 

Since GA lets the strongest individuals to survive and to have higher possibility 

to reproduce, the selection function is undoubtedly critical to the success of GA 

optimization. There are several types of selection function: the roulette wheel selection, 

scaling techniques, tournament and ranking methods. [Goldberg 1989; Michalewicz 

1994]  
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First developed by Holland [Holland 1975], the roulette wheel selection is used 

in this work. The probability of each individual in population is defined as: 

 

1

i
i m

j
j

Fp
F

=

=
∑

 (3.24) 

where m is the population size, iF  is the ith individual’s fitness value. Then, the 

cumulative probability is calculated: 

 
1

i

i j
j

cp p
=

=∑  (3.25) 

where icp  is the cumulative probability for the ith individual. Each time, we select a 

single chromosome for a new population in this way: 

 Generate a random number r within the range [0, 1]; 

 If 1r cp< , then select the first chromosome; otherwise, select the ith 

chromosome such that 1i icp r cp− < < . 

Note that we must make sure the fitness values being positive. Otherwise, we should 

utilize the scaling mechanism. 

3.2.2 Genetic operators 

Genetic operators are used to manipulate the chromosomes selected by the 

selection function to generate the new population. We call the new population as 

offspring and the former selected chromosomes as parents. As the real value GA is 

used, the crossover may not be identical to the biology concept of “crossover” as in 

binary GA. A simple arithmetic crossover operator is used and defined as  

 
' (1 )
' (1 )

X crX cr Y
Y cr X crY

= + −
= − +

 (3.26) 
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where 'X  and 'Y  are the offspring, X  and Y  are the parents, and (0,1)cr ∈  is the 

crossover rate chosen by the user. Another plausible crossover operation is heuristic 

crossover. Heuristic crossover applies a linear extrapolation to create new offsprings. 

By exploring new area to check whether a point with better fitness value exists, 

offspring produced by this method may exceed the boundary set by parents. The 

extrapolation direction is decided by the fitness value of parents. If X outperforms Y, 

the fitness value tends to decrease in the direction from Y to X. Hence this direction 

should be tried. The hueristic crossover is expressed as below: 

 ' ( )X X cr Y X= + −  (3.27) 

 'Y X=  (3.28) 

We choose 0.6 as the crossover rate and the uniform mutation schedule, which 

randomly selects one variable, k, and sets it equal to an uniform random ( , )i iU a b : 

 
( , ), if

'
, otherwise
i i

i
i

U a b i j
x

x
=⎧

= ⎨
⎩

 (3.29) 

Here, ix  is a real value unknown of the problem, ia  and ib  are lower and upper bound 

of ix  respectively.  

3.2.3 Initialization and termination 

An initial population must be provided for GA to start. Since we assume that 

we have no prior knowledge toward the optimum, the initial population is just 

generated randomly within the bounds of each unknown.  

Termination criterion is generally set as either maximum generation number or 

an anticipated fitness value that the problem should converge to. However, it will be 

too costly to do so. Because the aim to utilize GA is to provide a good initial guess for 

SQP, we set the criterion as the lack of improvement. That is, when the evolution does 
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not improve further in terms of fitness value within a pre-defined generation number, 

the search will be terminated. 

3.2.4 Constraints handling 

 Normally, GA is efficient and widely used for unconstraint optimization 

problems. For constraints satisfying problems, which are common in many engineering 

problems, one common approach is to convert the original problem into an 

unconstrained one by either a weighted penalty function or a Lagrangian function. 

Another approach is to manipulate the searching region to allow only feasible solutions 

in the population. The latter approach excludes infeasible solutions by either 

discarding the infeasible solutions whenever they appear, or using specialized 

operators that maintain the feasibility. This technique may be very effective on certain 

specialized problems. But when the infeasible solutions arise too frequently, or the 

portion of the infeasible searching region outnumbers that of the feasible region, it will 

be over costly to maintain the feasibility. The situation may be worse for a problem 

with nonlinear equality constraints. This is largely due to stochastic nature of GA. On 

the other hand, a more direct way is to transform the constrained satisfying problem 

into an unconstrained problem by adding a penalty term. The penalty can be either 

constant or adaptive. If a constant penalty weight is used, the magnitude of the penalty 

can significantly affect the search procedure. When the penalty weight is too “heavy”, 

many individuals in the mating pool that are not strictly compatible with the 

constraints will become extinct too early in the GA evolution. The population will lose 

diversity and premature convergence will result. Penalty will also cause the searching 

region being too “rugged” to find a good solution in. In contrast, if the weight is too 

“light”, the searching procedure will be very hard to converge to the correct solution. 

Therefore, the choice of weight depends largely on the user’s experience and judgment. 
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It is almost sure that re-tuning of the weight either before or during searching 

procedure is inevitable. 

In this work, an adaptive penalty function is utilized. The fitness evaluation 

function is composed of the gradient of the Lagrangian function and the constraints; 

the Lagrange multipliers are evaluated from the least squares condition of the local 

minimum [Moerder and Pamadi, 1994]. Following the same approach, we construct 

the fitness evaluation function based on the model presented in chapter 2. From (2.17) 

and (2.18), but not limited to them, we construct the Lagrangian function as: 

 ( , ) ( )U= −ψ λ ψ hλL  (3.30) 

in which U, ψ , h , λ  are the objective function, vector of variables, vector of equality 

constraints, and vector of Lagrange multipliers respectively. If * *( , )ψ λ  is a local 

solution, the following equation can be obtained from KKT condition (3.10): 

 * * * * *( , ) ( ) ( ) 0U∇ = − =ψ ψ ψψ λ ψ h ψ λL  (3.31) 

where the subscript indicates differentiation with respect to ψ . In this approach, the 

Lagrange multipliers are not treated as independent variables as in SQP. From (3.31), 

we estimate the value of Lagrange multipliers at each evaluation by: 
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⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (3.32) 

in which ( ) ( 1, , )jh j mψ = …  is the j-th equality constraint, m is the number of 

equality constraints, and n is the number of variables. The operator †  denotes Moor-

Penrose inversion or pseudo-inversion defined as: 

 † 1( )T T−= ψ ψ ψh h h h  (3.33) 

The fitness evaluation function is constructed as follows: 
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1 1

( , ) ( , ) ( )
i

n m

j
i j

F hψ
= =

= +∑ ∑ψ λ ψ λ ψL  (3.34) 

Once the Lagrange multipliers are estimated using (3.32), the fitness evaluation 

function is only a function of ψ . This constructed fitness evaluation function has the 

advantage that we know the anticipated fitness value for a local solution should be zero. 

Even though, we cannot afford to have GA terminated when the fitness values 

approaches zero. This is because of the nonlinearity in both the objective function and 

equality constraints. Numerical experiments also demonstrate that it is inefficient to do 

so.  

3.3 Framework of energy based search strategy 

Two numerical techniques have already been introduced in the preceding 

sections. We can find that both techniques have their own advantages and 

disadvantages. SQP is efficient to produce a satisfying local solution provided that it 

starts from a promising initial guess. However, SQP does not guarantee the 

convergence. If we want to find the global minimum, SQP is well known for its easily 

being trapped at a local minimum. On the other hand, due to its stochastic nature, the 

results of GA search are often not satisfactory for problems with a large number of 

unknowns and nonlinear constraints, such as the problem studied in this work. The 

difficulty is actually twofold: firstly, the search with GA alone can hardly yield a 

reasonable result when the number of unknowns is large; secondly, if the resolution of 

the searching space is high, which is a necessary condition for getting reasonable 

results, the computation cost will be prohibitive.  

The advantages of SQP and GA are what we want to utilize. By utilizing the 

gradient information of the objective function and constraints, SQP is effective and 

efficient for searching a local optimum. GA has two advantages. One is that we do not 
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need to know the characteristics of the solution and can start with randomly selected 

initial guesses and then let GA evolves toward the solution. The other advantage is that 

it can possibly jump out of a local minimum and find the global minimum. This latter 

advantage benefits from GA’s population-based search strategy. 

Viewing these attributes, we can combine the two methods and utilize them at 

different stage of our search. We first use GA to roughly optimize the model with a 

randomly generated start point. When GA cannot achieve the improvement for a 

certain generations, we let SQP take over. The result obtained by GA is then set as the 

initial guess for SQP. If the aim is just to find one local optimum, this will be all. If 

more local optima are required under the same constraints, we can start GA again with 

a newly randomly generated initial population. To avoid GA generating results close to 

those have been obtained, a penalty term can be added to the fitness evaluation 

function defined in (3.34): 

 
1 1

( , ) ( , ) ( )
i

n m

j
i j

F h Cψ ζ
= =

= + +∑ ∑ψ λ ψ λ ψL  (3.35) 

where C is a user-defined penalty weight, ζ  is defined as 

 
1 if
0 otherwixe

ζ
∈⎧

= ⎨
⎩

ψ N
 (3.36) 

where N  is the neighborhood of the set R  containing all existing solutions. R  is a 

long-term memory including the randomly generated initial population for GA, 

terminated population of GA, and the solutions obtained after SQP is terminated 

successfully. This set will be updated continually.  

 Assume that we do not know the characteristics of solutions; direct search is 

performed using the following flow chart. 
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Figure 3.3 Framework of direct search using energy principle 

Comparing with the shooting method introduced in the next section, this 

method will be more universal and especially suitable for elastica under different the 

boundary conditions or subject to other constraints are involved. 

3.4 Shooting method 

In chapter 2, the analogue of a discrete system based on the equilibrium 

condition suggests that we can utilize shooting method to solve this problem. The idea 

of shooting method is to use the numerical method of initial value problem to integrate 
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forward from one boundary and check the boundary conditions when the other 

boundary is reached. Various special techniques have been invented to solve different 

problems. We only adopt the simple and straightforward “pure shooting”. The pure 

shooting is to start “shoot” from one point with an initial guess of one or more 

variables of the differential equations. The setting of the starting point is manipulated 

to satisfy the boundary conditions at the start point. Then the integration proceeds from 

the start point employing one of the numerical methods in IVP. In this study the 

implicit Euler’s method is used as the analogue suggested. After the other point is 

reached, we must adjust our initial guess of variables for another “shoot” if boundary 

conditions are not satisfied. The adjustment is made to eliminate the difference 

between the boundary values obtained in the current “shoot” and the boundary 

conditions at this point. These procedures are repeated until the boundary conditions at 

the second point are satisfied. To produce a new initial guess based on the information 

gathered from the previous “shoot”, iterative method is employed. Suppose that at the 

starting point, there are N unknowns and 1n  boundary conditions. The number of 

unknowns to be specified is 2 1n N n= − . The problem remaining now is to find the 

root of a nonlinear system with 2n  unknowns. Generally, there are three types of 

updating scheme: bisection, Newton-Raphson’s method, and secant method. Bisection 

method is stable but with a slow convergence rate. Newton-Raphson’s method is the 

most widely used. Secant method can be viewed as a kind of Newton’s method, which 

is easy to implement when 2 1n = . 

For example, if a pin-pin elastica is studied, the system is summarized in (2.19), 

(2.21) and (2.22). Global equilibrium path is to be plotted as diagram of 0ψ  v.s P , 

where 0ψ  is the initial angle at starting point of the “shoot”, and P is the applied load. 
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If we take 0ψ  as the controlling parameter, it can be set from 0 to π . P is then the 

parameter needs to be guessed. Using the secant method, two guesses of P are first 

made. Denoting the boundary value obtained with 1( )ky P −  and ( )ky P , 1kP +  are updated 

using: 

 1
1

1

( )
( ) ( )

k k
k k k

k k

P PP P y P
y P y P

−
+

−

−= −
−

 (3.37) 

 
Apparently, with different guessed value of P, the obtained configurations 

might be at different mode. This example will be computed in chapter 4. 

3.5 Path following strategy 

In the previous discussion, we are trying to form a strategy that directly 

searches the configuration of elastica given certain boundary conditions and 

constraints. However, if we want to get a better understanding of the elastica’s post-

buckling behavior, the complete solution family of a certain class is necessary to be 

generated. 

Throughout this work, the complete solution family of a class solution is 

obtained by changing (increasing or decreasing) the geometric constraints: the end 

displacement D  for energy based method; initial angle 0ψ  for shooting method. Since 

this procedure is performed gradually, we can view the change as a small perturbation 

based on the previous configuration. The geometric constraint in terms of D is also 

known as “hard loading” in other literatures studying elastica. As SQP and the 

shooting method both employ Newton’s method to find solutions, it will be 

computationally efficient to use the previous configuration as the initial guess. 

When treating the elastica as a constraint-satisfying problem, we still need to 

specify a configuration firstly using the algorithm in Figure 3.3. After that, the part of 
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GA can be taken out, and only SQP is necessary to continue. The flowchart is 

displayed in Figure 3.4. When solving the problem with the shooting method, we can 

always start from the straight configuration. If a class of the first mode configurations 

is to be generated, it will be easier to set the well known Euler critical buckling load as 

the first initial guess. After the shooting method is terminated successfully, the 

corresponding kP  can then be set as the next initial guess to generate new 

configuration with larger 0ψ .  

Set problem parameters

Generate initial population

Genetic algorithm

Set initial guess=GA result

Sequential Quadratic 
Programming

Generate configurations and
Calculate reaction force

Terminate?

End

No

Yes

Change end-
displacement D

Set current solution 
as initial guess

 

Figure 3.4 Framework of path following strategy using energy principle 
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CHAPTER 4 Numerical Examples and Applications 

 
 In this chapter, we will demonstrate the use of the numerical techniques 

introduced in chapter 3 to solve the problems of chapter 2. The first section will cover 

the pin-pin elastica. Since this simple elastica has been studied using other methods, 

we can use the widely available solution to compare and verify our numerical results. 

The other sections will deal with different geometric boundary conditions. Using path-

following strategy, the quantitative characteristics of several typical or critical 

configurations of the first mode will be discussed. To demonstrate the universality of 

the energy method, spatial elastica and elastica with side walls are also studied. 

Formulation of spatial clamp-clamp elastica is firstly developed. Their configurations 

and qualitative behavior will be discussed. 

4.1 Elastica with two ends simply supported 

 When an elastica is simply supported at two ends as shown in Figure.2.1, both 

energy based method and shooting method are used. First, we identify the 

configurations corresponding to several critical points and compare the results with the 

available analytical solutions. 

4.1.1 Comparison study with analytical results 

 To compare the results with the analytical ones obtained by Kuznetsov et al. 

and by Timoshenko’s method using the elliptical integration, we compute four basic 

configurations. Let a L D= − , and set 0.3879a = . Divide the elastica into 50 segments, 

that is 50N = , 0.02is = . The stiffness of the elastic moment spring 1K = . The value 

of K  only affects the magnitude of the end load, but not the planar configurations. For 
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the convenience of comparison, 1λ  and 2λ  with the physical meaning of reaction 

forces in x  direction and y  direction respectively are normalized with respect to Euler 

buckling load crP . For this example, 
2

2cr
EIP

L
π= , where EI  can be obtained as is K . 

The maximum displacement in y  direction is denoted as w . Again, we normalize this 

result as w
L

. After the direct search method is implemented, we have the results shown 

in Figure.4.1 and Table.4.1. In this chapter, the X and Y in the configuration plot 

denote the rectangular coordinates of the system. 

 

Figure 4.1 Basic Configurations with a=0.3879 (1,3,4) and a=0 (2) 

Table 4.1 Comparison with analytical solutions 

Solutions by Kuznetsov et al 
(2002) and Timoshenko (1963)

Solutions using energy based 
direct search Configuration 

1 / crPλ  2λ  /w L  1 / crPλ 2λ  /w L  
1 1.47129 0 0.39159 1.4707 -7.2588e-006 0.3935 
2 2.18338 0 0.39159 2.1819 3.2904e-017 0.3917 
3 4.56625 0 0.29494 4.5697 5.9309e-005 0.2943 
4 5.87698 0 0.19569 5.8770 -0.0011 0.1954 
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 From the results listed in Table.4.1, it is oberserved that the proposed approach 

of combining GA and SQP, can produce accurate result. The algorithm is also efficient. 

It takes less than 30 seconds to obtain one configuration. If only SQP is employed with 

a reasonable initial guess, the computation time needed for each configuration is within 

5 seconds on a Pentium-4 1.4GHz computer. 

 We can use this method to directly obtain different configurations under same 

boundary conditions and constraints. The results are shown in Figure 4.2. 

 

Figure 4.2 Configurations of elastica with a=0.5, both ends simply supported  

4.1.2 Path following study of the pin-pin elastica 

To the applications interests, the most important mode is the first mode. It is 

generally more stable than the other modes. This enables us to follow its path easily. 

Since the coordinate system can be defined as will, we fix the left end A of the initially 

straight elastica at origin, while the other end B is moved toward A before both ends 
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meet. If the moving end is allowed to continue moving along the x axis away from 

origin, a loop will eventually form. Let D denotes the displacement of the moving end, 

we can divide the full path into two stages: [0,1]D ∈  and (1, 2]D ∈ . In the second 

stage, the configuration is defined as the 7th class by Euler.  
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Figure 4.3 Diagram of 1 / crD Pλ−  (pin-pin elastica) 
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Figure 4.4 Diagram of D M−  (pin-pin elastica) 
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Figure 4.5 Diagram of /D w L−  (pin-pin elastica) 
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Figure 4.6 Diagram of D − Strain Energy (pin-pin elastica) 
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Figure 4.7 Several typical configurations of pin-pin elastica 
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Table 4.2 Numerical results at configurations shown in Figure 4.7 (pin-pin) 

Configuration D  1 / crPλ  2 / crPλ  /w L  M PE 

(i) 0.01 -1.0091 -2.07e-7 0.0631 -0.0125 0.0020 

(ii) 0.2 -1.1146 9.57e-6 0.2664 -0.0585 0.0416 

(iii) 0.5 -1.3517 3.54e-4 0.3734 -0.0994 0.1140 

(iv) 0.8 -1.7425 9.71e-4 0.4033 -0.1383 0.2043 

(v) 1 -2.1867 7.63e-4 0.3918 -0.1688 0.2810 

(vi) 1.2 -2.9810 2.77e-4 0.3550 -0.2085 0.3811 

(vii) 1.5 -6.6007 1.63e-5 0.2477 -0.3221 0.6379 

(viii) 1.8 -40.0661 2.25e-6 0.1014 -0.8001 1.5929 

 

The results shown as configurations and diagrams as we change D step by step 

are illustrated from Figure 4.3 to Figure 4.7. The numerical results in terms of reaction 

forces, maximum deflection, moment, and strain energy are listed in Table 4.2. One 

critical configuration is configuration (iv), at which the deflection /w L  reaches its 

maximum, 0.4033. When the two ends of pin-pin elastica meet, the reaction force in x 

direction is 2.1867 crP . This is also a critical point where the structural system 

demonstrates instability. The instability will be discussed in next section.  

To display how elastica evolves from 0D =  to 2D = , each configuration with 

step size 0.01 is superimposed in Figure 4.8. 



Chapter 4. Numerical examples and applications 58 

 

Figure 4.8 Superimposition of configurations of pin-pin elastica 

 

4.1.3 Stability of post-puckling region 

The previous section has shown the results obtained using the path-following strategy. 

These results are obtained using the model in Figure 2.2. However, when the two ends 

coincide, rigid rotation of the whole system around pin supports is possible.  If the 

instability is to be studied, this model is no longer suitable. In path-following strategy, 

the configuration before two ends coincide is used as initial guess. But the previous 

configuration is stable and symmetric about the perpendicular bisect line of a. In this 

model, each variable iψ  is the angle with respect to x axis. When rigid rotation 

happens, each variable will change greatly in magnitude. Therefore, small perturbation 

is not likely to produce rigid rotation of the whole system. This model is inadequate to 

describe the real situation. Hence, the alternative model illustrated in Figure 2.5 is 

preferred. 
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 In the alternative model, only perturbation to the first variable 1ψ  will 

introduce rotation of the whole system when two ends coincide. The other variables 

with the meaning of relative change of angle from previous segment will not change. 

The configurations are similar; only their planar positions are different. This 

phenomenon is illustrated in Figure 4.9. Corresponding diagram of 1 / crD Pλ−  is 

shown in Figure 4.10. It shows 1λ , or P , can change within the range 

[ 2.1867 , 2.1867 ]cr crP P− . Accordingly, the reaction force in y direction is also within 

the range [ 2.1867 , 2.1867 ]cr crP P−  at 1D = . We also superimpose these configurations 

in Figure 4.11 to show how this procedure evolves.  
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Figure 4.9 Several configurations of pin-pin elastica when two ends coincide 
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Figure 4.10 Diagram of / crD P P−  (pin-pin elastica, snap through happens when 
D=1) 

 

Figure 4.11 Superimposition of configurations of pin-pin elastica [0.5,1.5]D ∈  
(Snap-through when D = 1) 
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4.1.4 Shooting method 

In Chapters 2 and 3, the shooting method is introduced as a complementary 

numerical technique to solve the geometric nonlinear structure of elastica. For the 

example in this section, the shooting method is utilized for the model introduced in 

Section 2.2. It has been shown that the modelling of discrete elastica is analogous to 

the implicit Euler integration in shooting method. And the implicit Euler method has 

the advantage that it will guarantee convergence provided the step-size is small enough. 

Another advantage of shooting method to solve this problem is that it is easy to obtain 

the configurations at higher modes. As stated in Sections 2.2 and 3.4, the control 

parameter is taken as 0ψ , the “shooting” angle at the start point. Then an initial guess 

needs to be given to the corresponding P . Because we can start from the straight 

configuration, the initial guess of P  can be set as the critical Euler buckling load. 

Starting with different buckling load at different mode, higher mode configurations can 

be obtained. The elastica is also divided into 50 segments. In the path-following 

procedure, control parameter 0ψ  is changed from 0 to π . The increment is set as 

0.01π . The configurations and global behaviour demonstrated as diagram of 

0/ crP P ψ−  are plotted in Figures 4.12 to 4.15. The 9 configurations are plotted at 

0 0.1 , 0.2 , ,0.9ψ π π π= … . In this model, the instability occurring when two ends 

coincide cannot be simulated. Since the shooting method is not the focus of this work, 

it will not be employed in the following sections.  
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Figure 4.12 Configurations at first mode 
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Figure 4.13 Configurations at second mode 
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Figure 4.14 Configurations at third mode 
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Figure 4.15 Configurations at fourth mode 
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Figure 4.16 Diagram of 0 / crP Pψ −  (shooting method) 

 

4.2 Elastica with one end clamped, one end pinned 

 
 

Figure 4.17 Geometry of Clamp-pin elastica 

 

In the numerical example of this section, we utilize the energy-based algorithm 

to study elastica with one end clamped and the other pinned as illustrated in Figure 

4.17. When the end load P is equal to the critical buckling load crP , lateral buckling 

happens. And the reaction force 2λ  in y-direction at the pin support appears; it will 
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balance the moment M at the clamped end. The critical Euler buckling load is given by 

Timoshenko (1961): 
2

2(0.699 )cr
EIP

l
π= .  In the setting of our example, i.e. l  is 

normalized to 1, and divided into 50N =  segments, the critical buckling load has the 

magnitude of 0.404 . Therefore, the obtained reaction forces at supports can be 

normalized to 0.404; M is calculated by 2aλ . The numerical results are plotted in the 

following figures. Note that the moment at the clamped end is only normalized with L. 

Strain energy is not normalized. The magnitudes of these two results only demonstrate 

the quality characteristics and show the global path. The clamp condition at O is 

fulfilled by confining 1 0ψ = . 
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Figure 4.18 Diagram of / crD P P−  (clamp-pin elastica) 
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Figure 4.19 Diagram of 2 / crD Pλ−  (clamp-pin elastica) 
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Figure 4.20 Diagram of D M−  (clamp-pin elastica) 
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Figure 4.21 Diagram of D PE−  (clamp-pin elastica) 
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Figure 4.22 Several critical configurations of clamped-pin elastica 
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Table 4.3 Numerical results at configurations shown in Figure 4.22 (clamp-pin) 

Configuration D  1 / crPλ  2 / crPλ  /w L  M PE 

(i) 0.33 -1.2915 0.1393 0.3075 0.0377 0.1444 

(ii) 0.51 -1.5393 0.2240 0.3367 0.0443 0.2285 

(iii) 0.74 -1.0101 -0.7386 0.2464 -0.0776 0.3210 

(iv) 0.8 -0.1895 -1.1013 0.1580 -0.0890 0.3296 

(v) 1 0.6960 -0.8117 0.2972 0.000 0.2810 

(vi) 1.35 -0.2458 -1.1827 0.3004 0.1672 0.2283 

 

With all the plots and Table 4.3 above, we can now discuss the behavior of the 

elastica whose one end is clamped at O, while the other is pinned. As in the previous 

section, the discussion of the behaviour of elastica is divided to two stages: 0 1D< ≤  

and 1 2D< < . First, the configuration (i) shown in Figure 4.17 is when the pin end 

rotates about  
2
π− . Configuration (ii) is when the elastica has the maximum deflection 

in y  direction. The value of /w L  is 0.3367. And the corresponding end-displacement 

D  is 0.51. For configuration (iii), the moving end has rotated about the pin end for π− . 

As the moving end continues to move toward fixed end, an important configuration, 

(iv) shown in Figure 4.17, appears. When 0.8D = , both the potential energy and the 

reaction force in y-direction 2λ  reach their maximum in the first stage. It is also at this 

point that the moment at the clamped end is the largest within range [0,1]D ∈ . At this 

point, the reaction force in x-direction changes to the opposite direction for the first 

time, i.e. 2 0λ ≈  at 0.8D = . The fifth configuration is when the two ends coincide. 

Different from the pin-pin elastica, snap-through cannot happen. This is due to the 

clamped end, which limits free rotation of the elastica. Rigid body rotation is thus not 

possible. Note that when the two ends coincide, the moment at the clmap end vanishes. 
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The reaction forces in x and y directions are also within the reange of 

[ 2.1867 , 2.1867 ]cr crP P− .  Not suprisingly, the strain energy is same as the one of pin-

pin elastica under the same geometric constraints.  

If we permit the moving end to continue in the same direction, the elastica 

enters the second stage (1, 2]D ∈ . The only critical configuration of interest in this 

stage is configuration (vi). Strain energy of this system comes to a local minimum. 

Afterwards, the energy will increase in a rapid rate. The reaction forces in x and y 

directions and moment at clamped end also increase in magnitude. Figure 4.23 shows 

the superimposition of all configurations during the procedure when we change D from 

0 to 2. 

 

Figure 4.23 Superimposition of all configurations of clamp-pin elastica 
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4.3 Elastica with both ends clamped 

 

Figure 4.24 Geometry of palnar clamp-clamp elastica 

Apart from the two examples in the previous sections, the elastica with both 

ends clamped is another important situation frequently encountered in application. The 

geometry of this situation is drawn in Figure 4.24. The setting to solve this problem is 

same as the previous examples. The critical buckling load crP  is 
2
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4 EI
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π . 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-12

-10

-8

-6

-4

-2

0

Displacement of the moving end: D

R
ea

ct
io

n 
fo

rc
e 

in
 x

-d
ire

ct
io

n

 

Figure 4.25 Diagram of / crD P P−  (clamp-clamp elastica) 
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Figure 4.26 Diagram of 2 / crD Pλ−  (clamp-clamp elastica) 
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Figure 4.27 Diagram of /D w L−  (clamp-clamp elastica) 
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Figure 4.28 Diagram of D M−  (clamp-clamp elastica) 
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Figure 4.29 Diagram of D PE−  (clamp-clamp elastica) 
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Figure.4.30 Several typical configurations of clamp-clamp elastica 

Table 4.4 Numerical results at configurations shown in Figure 4.30 (clamp-clamp) 

Configuration D  1 / crPλ  2 / crPλ  /w L  M PE 

(i) 0.2 1.1597 0.000 0.2632 -0.1205 0.1733 
(ii) 0.79 -1.821 0.0009 0.3951 -0.2841 0.8416 
(iii) 0.83 -1.897 0.0006 0.3944 -0.2955 0.9003 
(iv) 1 -2.332 0.0005 0.3813 -0.3510 1.1819 
(v) 1.5 -7.676 0.0003 0.2288 -0.6935 2.7686 

 

 Because the elastica is approximated by rigid segments, the two ends will 

gradually demonstrate discontinuity. At the second stage that 1D > , the reaction 

forces at supports, potential energy and maximum displacement in y-direction all 

increase or decrease monotonically. Around D=0.8, we find the maximum deflection 

/ 0.3951w L =  .  
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Figure.4.31 Superimposition of all the configurations of clamp-clamp elastica 

( [0,1.8]D ∈ ) 

 

4.4 Spatial elastica with both ends clamped 

 

 
Figure 4.32 Geometry of spatial elastica with both ends clamped 

The model and numerical framework proposed in this work are not limited to 

planar problems. They can also be extended to spatial cases. A typical example is 

illustrated in Figure 4.31 where clamp-clamp elastica can buckle out of the x y−  plane. 

As an extension of planar examples, we consider the elastica or the discrete elastic 
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chain is free to twist. The elastica is also assumed to have circular section and isotropic 

material. The tangents of both clamp ends locate along the x axis.   

A spatial elastica’s deformation is the combination of three kinds of 

deformations: bending, opening and twist. They are shown in Figure 4.33. We define 

the bending happens in ' 'x y−  plane; opening in ' 'x z−  plane; and twist in ' 'y z−  

plane. The frame of ' ' 'x y z− −  is the local coordinate in reference to the previous 

segment. 

 

Figure 4.33 Three kinds of deformation of spatial elastica 
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In this example, elastica is still discretized into N=50 segments. Each segment 

is also assumed to be rigid without extensibility. If the effect of twisting is not taken 

into account, the frame of coordinates can be fixed. The position of each node needs 

two variables to be determined. These two variables can be different combinations of 

iα , iβ , iγ  and iθ  as illustrated in Figure 4.34. In the figure below, iα  is the angle 

between x axis and projection of is  on x y−  plane; iβ  is the angle between x axis and 

projection of is  on x z−  plane; iγ  is the angle between y axis and projection of is  on 

y z−  plane; and iθ  is the spatial angle between is  and x axis. Let x ys −  denote the 

length of the projection of is  in x y−  plane and y zs −  be the counterpart in y z−  plane. 

Next, we derive the formulas needed in a minimization problem.  

 

Figure 4.34 Geometry of a spatial rigid segment 

It is easy to notice that  

 2 2 2 2
1 1 1( ) ( ) ( )i i i i i i ix x y y z z s+ + +− + − + − =  (4.1) 

With the aid of Figure 4.34, we can write 
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 1 cosi i x y ix x s α+ −= +  (4.2) 

 1 sin cosi i x y i i y z iy y s y sα γ+ − −= + = +  (4.3) 

 1 cosi i y z iz z s γ+ −= +  (4.4) 

From (4.1) to (4.4), x ys −  and y zs −  can be expressed by is . Thus we have: 

 
2

1 2 2

coscos
1 cos sin

i
i i i i

i i

x x s γα
α γ+ = +

−
 (4.5) 

 
2

1 2 2

cossin
1 cos sin

i
i i i i

i i

y y s γα
α γ+ = +

−
 (4.6) 

 
2

1 2 2

sinsin
1 cos sin

i
i i i i

i i

z z s αγ
α γ+ = +

−
 (4.7) 

In (4.5), (4.6) and (4.7), the terms under square root sign are always greater or equal to 

zero therefore guarantee 1ix + , 1iy +  and 1iz +  to be real. The signs of 1( )i ix x+ − , 

1( )i iy y+ −  and 1( )i iz z+ −  are determined by iα  and iγ .  In addition, we can obtain the 

relationship that  

 tan tan tani i iβ α γ=  (4.8) 

With the four equations (4.5)-(4.8), and assuming the discrete elastic chain is free to 

twist, the problem can be expressed in standard optimization formulation: 

2 1 1 2
1 1 2 1 1

2

1: [ ( ) (tan (tan tan ) tan (tan tan )) ]
2

N

m i i i m i i i i i
i

obj K Kα α α γ α γ− −
− − −

=

− + −∑  (4.9) 

 
2

2 2
1

cos. . : cos 0
1 cos sin

N
i

i i
i i i

s t a s γα
α γ=

− + =
−∑  (4.10) 

 
2

2 2
1

cossin 0
1 cos sin

N
i

i i
i i i

s γα
α γ=

=
−∑  (4.11) 

 
2

2 2
1

sinsin 0
1 cos sin

N
i

i i
i i i

s αγ
α γ=

=
−∑  (4.12) 
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In these equations, 1m iK  and 2m iK  are elastic spring constants of x-y plane and x-z 

plane respectively. Equations (4.9)-(4.12) give a general nonlinear optimization 

description to the problem of spatial elastica that is free to twist. The formulation is 

straight-forward: determining the configuration of elastica by minimizing the bending 

energy. However, on the computational aspect, the disadvantage lies in the calculation 

of 1tan−  terms. In addition at initial stage of searching, the denominator terms may also 

cause problem when 2 2cos sini iα γ  approaches 1.With careful manipulation, the 

solution can still be obtained. But we will not use these formulae to solve the problem. 

Further simplification is made next. 

If the cross-section of elastica is circular and material is isotropic, the bending 

stiffness EI will be consistent in every direction. Hence the bending energy at the ith 

node is only related to constant miK . This simplification is never trivial. Many real 

application problems have such characteristics. Apparently, iα  and iβ  are not suitable 

to model the elastica. Instead, we use iγ  and iθ . The bending curvature is now defined 

by i

is
ψ . We need to express iψ  in terms of iγ  and iθ .  
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Figure 4.35 Geometry of a spatial rigid segment with circular section 

As illustrated in Figure 4.35, iψ  is the spatial angle between is  and 1is − .  The 

segment is  starts from iO  and points to iA . In the above figure, extension line of 1iS −  

intersect the plane i i iA B C , which is parallel to y-z plane, at iC . To define iψ , the 

i iO C  and i iA C  are necessary to be obtained first. From trigonometric formulae, they 

can be expressed in terms of 1iγ − , iγ , 1iθ −  and iθ . Neglecting the detailed prcedure, we 

can finally get these formulae: 

 1 cosi i i ix x s θ+ = +  (4.13) 

 1 sin cosi i i i iy y s θ γ+ = +  (4.14) 

 1 sin sini i i i iz z s θ γ+ = +  (4.15) 

and  

 1
1 1 1cos (cos cos sin sin cos( ))i i i i i i iψ θ θ θ θ γ γ−

− − −= + −  (4.16) 
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The boundary of iθ  must be set as [0, ]π . This will guarantee the signs in (4.13) 

- (4.16) to be correct. If we set 1 0iγ − =  and 0iγ = . Then equations (4.13) to (4.15) for 

spatial elastica will become the same equations for planar elastica. And (4.16) becomes 

1
1 1cos (cos( ))i i i i iψ θ θ θ θ−

− −= − = − .  

With equation (4.13) to (4.16) the standard form of this constrained 

optimization problem can be expressed as: 

 2

2

1:
2

N

mi i
i

obj K ψ
=
∑  (4.17) 

 
1

. . : cos 0
N

i i
i

s t a s θ
=

− + =∑  (4.18) 

 sin cos 0
N

i i i
i

s θ γ =∑  (4.19) 

 sin sin 0
N

i i i
i

s θ γ =∑  (4.20) 

In this example, we change the control parameter D from 0 to 1. The 

configurations and diagram of numerical results are plotted in the following figures. 

The configurations are arranged in each figure as 
x y plane x z plane
y z plane perspective view

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

. 
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Figure 4.37 Diagram of 1 / crD Pλ−  (spatial clamp-clamp elastica) 
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Figure 4.38 Diagram of 3 / crD Pλ−  (spatial clamp-clamp elastica) 
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Figure 4.39 Diagram of D − Strain energy (spatial clamp-clamp elastica) 

When the control parameter D starts from zero, the reaction force in x-direction 

starts from the critical buckling load 
2

2

4 EI
L

π . Before 0.4D = , the elastica is 

maintained in a plannar configuration. The diagram of 1 / crD Pλ−  is same as the 

example in section 4.3. A representative configuration (i) in Figure 4.36 is when 

0.1D = . Since 0.4D = , the path of 1 / crD Pλ−  does not follow the one of planar 

clamp-clamp elastica. This is because the out-of-plane-buckling happens. The point is 

marked 1J  in Figure 4.37 and Figure 4.38. The reaction force in x-direction begins to 

decrease in magnitude, while the reaction force in z-direction appears. Increasing D, 

the configuration of elastica will evolves back to a planar configuration with a loop. 

During this procedure, 1λ  will change direction and 3λ  will gradually change back to 0. 

Around 0.69D = , the post-buckling behaviour will be in-plane. Configuration (v) is 
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when 0.7D = . Afterwards, the post-buckling will remain in the x y−  plane. When 

1D = , the configuration (vi) in Figure 4.36 is obtained. Comparing Figure 4.39 and 

Figure 4.29, the strain energy that permitting out-of-plane buckling is lower than that 

the elastica is confined in x y−  plane.  

 

4.5 Spatial elastica with two ends clamped but not locate on x-axis 

 

Figure 4.40 Geometry of clamp-clamp spatial elastica (two ends paralell) 

 The example presented in this section is similar to the problem in section 4.4. 

But this time we fix D, and move the end in z-direction away from x-axis. The 

displacement in z-direction is denoted with c as illustrated in Figure 4.40. The main 

settings are same as the ones in the previous section. But we fix D this time, and 

change c instead. Correspondingly, (4.19) will be revised as  

 sin sin
N

i i i
i

s cθ γ =∑  (4.21) 

The path following strategy is still used here to obtain the path of 1λ  and 3λ . They are 

also normalized by Euler buckling load 
2

2

4 EI
L

π . 

The first example is started from 0.3D = , and change c from 0 to 0.5 with 

increment 0.001. The numerical results as reaction forces in x, and z direction and 

configurations when c=0, 0.18 and 0.36 are plotted in Figure 4.41 to Figure 4.43. 
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Figure 4.41 Diagram of 1 / crc Pλ−  (spatial clamp-clamp elastica, D=0.7) 
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Figure 4.42 Diagram of 3 / crc Pλ−  (spatial clmap-clamp elastica, D=0.7) 
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 As we can see from Figure 4.41, 1λ  will change direction around c=0.16. And 

3λ  will change its trend during this procedure. Before c=0.12, 3λ  increase from 0 to 

0.6 crP . Then it will decrease slowly. 

 Another more interesting and familiar example is when 1D = . We fix 1D = , 

and change displacement in z-direction c with increment of 0.002. The numerical 

results and configurations are plotted in Figure 4.44 to Figure 4.46. 
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Figure 4.44 Diagram of 1 / crc Pλ− (spatial clamp-clamp elastica, D=1) 
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Figure 4.45 Diagram of 3 / crc Pλ−  (spatial clamp-clamp elastica, D=1) 
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 The most important result of this example is plotted in Figure 4.45. The 

reaction force in z-direction is almost linear when c is small. From configurations in 

Figure 4.46, we can easily connect this problem to an elastic spring. Each 

configuration can be viewed as a filament of a helix elastic spring. This also explains 

why the force in z-direction varies linearly with the displacement c. When c is not 
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small enough, 3λ  will vary nonlinearly. It is also noticed that the paths of 1 / crc Pλ−  

and 3 / crc Pλ−  have different characteristics when D is different.  

4.6 Pin-pin elastica with side-wall constraints 

 

Figure 4.47 Geometry of pin-pin elastica with side-wall constraints 

In the previous examples, we have used the numerical method introduced in 

Chapter 3 to obtain configurations of elastica with different boundary conditions. Since 

we model the problem as a constraints-satisfying optimization, it is easy to add 

additional geometric constraints as in the example shown in Figure 4.47. As modeled 

in section 2.6, a penalty term is added to the original objective function (2.17). By 

taking this as a constrained optimization problem, Eq. (2.33), subject to constraints, Eq. 

(2.18), the configuration of a pin-pin elastica with side-wall constraints can be found 

using the same method developped in Chapter 3. The corresponding reaction force in 

x-direction and y-direction can also be found. In this section, the sudden change among 

symmetric, asymmetric and antisymmetric configuration is called a jump. 

Firstly, we consider an elastica confined in x-y plane and divided into 50 

segments. The two sidewalls are located on the opposite sides of x-axis with a distance 

0.25 /h L= . And the value b is defined as 0.00001 to describe the characteristic of the 

“soft” wall. Changing D from 0 to 2 with increment 0.01, the numerical results are 

plotted in the following figures. In Figure 4.48, the side-walls are plotted as solid lines. 
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Figure 4.48 Several configurations of pin-pin elastica with side-wall constraints  
(h=0.25/L) 
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Figure 4.49 Diagram of 1 / crD Pλ−  (pin-pin elastica, h=0.25/L) 
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Figure 4.50 Diagram of 2 / crD Pλ−  (pin-pin elastica, h=0.25/L) 

From Figure 4.49 and Figure 4.50, we can observe that there is a jump of 1λ  

and 2λ  at D=0.39. The corresponding configuration changes abruptly from symmetric 

one to asymmetrical one. As we increase continuously the value of D to 1, the two pin 

ends coincide. This configuration is identical to one of the configurations shown in 

Figure 4.9. And at D=1, the reaction force in x direction approaches 0, while the 

reaction force in y direction approaches 2.1867 crP , as discussed in section 4.1.3.  

At the second stage (1, 2]D ∈ , the elastica has contact with the opposite wall. 

The elastica’s behaviour, which is described in terms of reaction forces, demonstrates a 

similar behaviour as in the first stage. However, because the configuration jumps to an 

asymmetric configuration, the reaction forces in y direction at two ends are not equal. 

Here, 2λ  is the reaction force at the moving end. When the elastica sacrifices 

symmetry to reach lower energy, it can jump to either side. Therefore, the curve of 
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load-displacement relationship will be different. Figure 4.49 and Figure 4.50 show the 

load-displacement path when elastica jumps to left. While Figure 4.51 shows the 

counterpart when elastica jumps to right. The load-displacement curves of reaction 

force in x direction are identical for two cases (left and right). Due to asymmetry, the 

two diagrams of  2 / crD Pλ−  are not same but share some common features. Figure 

4.51 can be obtained when we rotate Figure 4.50 about origin for π . Because the left 

asymmetric configuration and the right one are mirror to each other at a given D, 

reaction force at the moving end 2 (1)λ  for left asymmetric configuration equals to the 

reaction force 2 (0)λ  at the fixed end O for the right one under the same geometric 

constraints. Therefore, the summation of 2 (0)λ  and 2 (1)λ  of these two cases gives the 

reaction force at the rigid wall. When the two ends coincide, 2λ  for both cases are 

2.1867 crP  and 2.1867 crP− . The summation gives zero. Physically, it is at this point 

that there is no contact between the elastica and the side-wall. From the solutions in 

Section 4.1, it is obvious that unless h of the sidewall is within the range (0.3918, 

0.4033), the elastica will have contact with sidewalls after contact happens and when 

1D ≠ . However, when (0.3918, 0.4033)h∈ , jumping could not be observed.  
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Figure 4.51 Diagram of 2 / crD Pλ− (the elastica jumps to asymmetric 
configuration that is opposite to the one shown in Fiugre 4.50) 

 

 Apart from jumping to asymmetric configuration, the elastica can also jump to 

an antisymmetric configuration at a critical point. Here, we set h=0.15/L. Repeating 

the numerical procedures, the configurations are obtained and plotted in Figure 4.52. 

Firstly, we increase D. Point contact, line contact and secondary buckling happens in 

sequence. After secondary buckling, the elastica gradually goes to the third mode (ii). 

At a critical point D=0.47, the elastica jumps from configuration (ii) to an 

antisymmetric configuration (iii) in Figure 4.52. In this case, elastica has contact with 

both side-walls. If D is continuously increased to 1, the configuration plotted in Figure 

4.53 is obtained. Next, we decrease D. However, at the previous jumping point 

D=0.47, the load-displacement relationship will not follow the previous path where we 
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increase D. Rather, it will remain at the second mode. Configurations (iv) and (v) will 

appear in this procedure. And 1λ  will approach buckling load for second mode 
2

2

4 EI
L

π .   
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Figure 4.52  Critical configurations of pin-pin elastica with side-wall constraints 

(h=0.15/L) 
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Figure 4.53 Configuration of second mode when two pin ends coincide 

 Next, the global behaviours are given in Figure 4.54 and Figure 4.55.  They 

combine the load-displacement curves for symmetric configurations, asymmetric 

configurations and antisymmetric configurations. Figure 4.56 demonstrates the strain 

energy of the corresponding configurations. 
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Figure 4.54 Diagram of 1 / crD Pλ−  (constrained pin-pin elastica, h=0.15/L) 
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Figure 4.55 Diagram of 2 / crD Pλ−  (constrained pin-pin elastica, h=0.15/L) 
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Figure 4.56 Diagram of D − Strain energy, (constrained pin-pin elastica, h=0.15/L) 

 If the control parameter D is increased from 0, 1λ  will start from 
2

2

EI
L

π  when 

buckling happens. As D is gradually increased with step-size 0.002, the elastica’s 

center begins to contact one wall. There should be a sudden change of 1λ  and 2λ . 

However, since the model used here is an approximation with penalty term, the change 

happens continually. Nonetheless, provided b is set small enough, 1e-5 in this example, 

the approximation can give reasonable results. In a real structure, some imperfection 

exists. So the approximation used here can be very close to the real situation. After the 

point-contact, denoted as C1 in above figures, line-contact develeps. During this 

procedure, both 1λ  and 2λ  increase dramatically in magnitudes. The descent of 

reaction force in x-direction at S1 marks the occurrence of secondary buckling. From 

this point on, the reaction force in y-direction increases slowly. And the instability 

builds up. Continuing the increment of D, bifurcation happens. The elastica can jump 
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to either asymmetric configuration or antisymmetric one. A possible point where 

bifurcation happens is J in the above three figures. Figure 4.56 demonstrates a good 

explaination for this phenomenon. After D=0.222, the strain energy of symmetric 

configurations will be higher than those of both asymmetric configurations and 

antisymmetric configurations. Small perturbation may cause the elastica to jump to 

configurations with lower strain energy.  Note that depending on where the jumping 

happens, the reaction forces will become either higher or lower than those before 

jumping. The behaviour of this structural system after jumping, either to asymmetric 

configuration or to antisymmetric one, has been discussed previously. As for the 

antisymmetric case, one point to pay attention to is S2, where the line contact shifts to 

point contact gradually: . 

 When we reverse the displacement, the complete load-displacement curve of 

the second mode will be obtained. It is easy to understand the reverse procedure, and 

1λ  will approach the second class of Euler buckling load. If we reverse the path of 

asymmetric case, the elastica will gradually change back to symmetric secondary 

buckling configuration. Figuer 4.54 and Figure 4.56 show how 1λ  and strain energy of 

asymmetric configurations converge gradually back. However, the reaction force in y-

direction experiences a jump at D=0.222. Figure 4.57 shows how the configuration 

evolves asymmetric single-point-contact configuration to symmetric two-point-contact 

secondary buckling configuration during this process.   
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Figure 4.57 Demonstration of how asymmetric configuration evolves to 
symmetric configuration 

 

4.7 Other applications concerning elastic curve 

 We have focused our numerical examples and discussion on the well known 

elastica structure. As discussed in Chapter 1, many applications can be categorized into 

the study of such elastic curve. The modelling and algorithm developped in this work 

can easily be implemented to solve such problems. In their paper, Pamplona et.al 

utilized shooting method to obtain the configurations of lipsomes under different point 

loads [Pamplona 1993]. Due to the axisymmetry of lipsome, we can study only half of 

the structure. And this can be represented with a clamp-clamp elastica as demonstrated 

in Figure 4.58. However when the point load is not applied, the initial configuration of 

lipsome is a sphere, i.e. the revolution curve is a circle instead of a streaight line. Thus 

it is necessary to generate this initial configuration first, and set it as the reference 

configuration. Nevertheless, note that EI  is a key parameter to determine in order to 

reduce the study of such spherical strucutre using planar elastic curve. It will not be 

discussed here. Rather, we only present only a general family of curves in Figure 4.59. 
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Both the initial configuration and the one when two clamp ends coincide are 

highlighted in Figure 4.59. 

 

Figure 4.58 Using clamp-clamp elastica to represent half the revolution curve of  
Lipsome 
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Figure 4.59 Configurations of revolution curve of Lipsome 

By changing the distance between the two ends, the structure is under tension 

or compression in reference of the initial configuration. Interestingly, when the two 
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points coincide at origin, left/right half of the configuration can be viewed as a well-

known intermediate configuration of DNA with racquet shape. 

Any other problems that can be represented in terms of elastica can easily adopt 

the model and algorithm developped in this work. Even though some curves may not 

be symmetric, they can also be studied using the combination of clamp-pin elastica and 

clamp-clamp elastica. It is also convenient to define a non-uniform elastica having 

variable EI  along its longitudinal direction without altering the program.  

All these examples are studied using “hard loading” D. If the forces applied at 

two ends are known, we can reduce the number of constraints. For example, if P 

applied at ends in x-direction, the constraints for a planar elastica will reduce to 1ny +  

equals to the distance between two ends in y-direction. But the objective function will 

include the work done by P. 
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CHAPTER 5 Conclusions and Recommendations 

 

5.1 Conclusions 

 In this work, the post-buckling behavior of elastica under various boundary 

conditions and constraints is investigated using constrained optimization methods. 

Two discrete models of elastica are developed. The variables of the first model are the 

angles with respect to the axis connecting the two ends of the elastica. This model is 

mainly used in the numerical examples due to its simplicity when expressing the 

problem in standard optimization form. An alternative model is also developed with 

the first variable as the angle with respect to the axis at one end, while the other 

variables are the relative angles of two adjacent segments. It is easy to transform one 

model to another. But during the searching procedure, the alternative model is more 

sensitive to numerical perturbation. Therefore, when instability of post-buckling 

happens, it is easy to observe such phenomenon using the alternative model than the 

first discrete model. However, the numerical error will be higher when the alternative 

model is employed. Accordingly, the first model is preferred unless we want to study 

the instability in post-buckling region.  

 Based on Bernoulli’s principle, the configuration of elastica can be obtained 

using the constrained optimization techniques. Sequential quadratic programming is 

the main numerical tool employed. It is efficient when a promising guess is provided. 

But when the initial guess is not good enough, this gradient-based algorithm cannot 

guarantee a feasible solution or even convergence. Suppose we have no prior 

knowledge on the configurations, a robust algorithm is necessary to generate the initial 

guesses. Genetic Algorithm, which is a stochastic population based numerical tool, 



Chapter 5. Conclusions and recommendations 102 

does not depend on the gradient information to determine the next move during the 

searching procedure. Such advantage makes GA an ideal method to perform search at 

the initial stage. With a random start, GA will not be stuck at an infeasible solution as 

SQP does. However, GA cannot provide an exact solution. Hence, it is only used as an 

auxiliary method to provide initial guesses for SQP to continue. In both optimization 

tools, a Lagrangian function is constructed. From the Castigliano’s first theorem, it is 

shown that the reaction forces at supporting end are the Lagrange multipliers of the 

corresponding equality geometric constraints. To understand the post-buckling 

behaviour of elastica, path-following strategy is employed to generate the diagram of 

load-displacement history. The control parameters in this procedure are the respective 

displacements of one end with respect to another end in x-direction or y-direction. So 

the geometric constraints are changed step by step. 

 The comparison study of planar pin-pin elastica with analytical solutions shows 

that the algorithm proposed in this work can produce accurate results. The discrete 

model and algorithm developed here can easily be implemented to elastica under other 

boundary conditions. The critical parameter values of the elastica, such as when 

maximum deflection happens and when the load change directions, are discussed.  The 

instability of pin-pin elastica when D=1 are also observed using the alternative model. 

The diagram of 1D λ−  demonstrates a snap-through at D=1. The reaction forces in 

both x-direction and y-direction are within the range of 
2 2

2 2[ 2.1867 , 2.1867 ]EI EI
L L

π π− .  

 As an extension of the planar elastica, the spatial elastica problem can also be 

solved using the same algorithm. Only the discrete models are different. Here we have 

only addressed the problem of clamp-clamp spatial elastica with circular section and 

isotropic material. It is also assumed that the elastica is free to twist. By minimizing 

the bending energy, the configurations and corresponding reaction forces at supports 
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can also be calculated. But the out-of-plane buckling will happen after a critical point 

(around D=0.4) is reached. Continuing to increase D, the into-plane jumping will also 

happen around D=0.68.  Finally the open rod will form a close rod at D=1. Since we 

formulate the elastica as an optimization problem subject to geometric constraints, the 

constraints can be easily modified according to our need. Two examples to change the 

distance in z-direction between two supports are studied. The example with D fixed at 

1 gives an approximation to helix. The diagram of 3D λ−  shows the force of elastic 

spring varies linearly when c, the deformation in z-direction, is small and nonlinearly 

when c is large. 

 Another important application studied is the post-buckling of planar elastica 

with sidewall constraints. By adding an adaptive penalty term to the objective function, 

we can study the global behaviour of elastica. Due to the existence of sidewall, the 

point contact, line contact, secondary buckling and jumping to either asymmetric 

configuration or antisymmetric configuration will happen in sequence. These are 

demonstrated in diagrams in section 4.6. The jumping phenomenon can be explained 

in terms of energy. By breaking symmetry, the structural system can possess lower 

energy. The path of this kind of problem is not necessarily reversible. If the elastica 

starts to buckle in the first mode and jumps to the antisymmetric configurations, it will 

go to the second mode when the loading process is reversed. 

 The numerical results presented in Chapter 4 are systematic summary of 

behaviour of elastica. Unlike other numerical tools, this energy-based optimization 

algorithm requires no re-modelling when boundary conditions and constraints are 

changed. For example when treating the presence of sidewall constraints, shooting 

method will require different numerical model in two stages: pre-secondary-buckling 
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and post-secondary-buckling. In contrast, the model and algorithm presented in this 

work is straight forward, and can be easily implemented in various applications.  

5.2 Recommendations to further study 

 Throughout this work, the length of elastica is normalized to 1. Bending 

stiffness iK  is also taken as 1. For a real application, the configuration can be 

magnified by L. And the corresponding forces are obtained by multiplying crP , which 

is calculated using the real parameters.   

 Elongation of elastica is neglected in this study. It is justified for the usual 

structural materials [Timoshenko 1961]. However, in some newly emerged fields, the 

characteristics of materials may be quite different from our assumed structural 

materials. It would then be wise not to neglect such effects. In such case, the objective 

function to be minimized should include the strain energy due to change of length at 

each segment. The geometric equality constraints should also be revised accordingly.  

 In chapter 4, the spatial elastica is supposed to freelly twist. Only bending 

energy is minimized. In practical applications, torsional resistance should be taken into 

account. The fixed frame of coordinates may not be suitable to describe the twist 

angles. Euler angles or Euler parameters are necessary to address such problems. 

When the effect of torsional resistance is considered, D of the critical point where out-

of-plane buckling happens should be larger than the one without torsional resistance. 

In addition, further study can also be carried out on the extendable elastica. 

 In the study of constrained Euler buckling, the effect of sidewall is 

approximated by a penalty term. As discussed in Chapter 2, the parameter b describes 

how “hard” the side-wall is. To obtain more accurate results, b should be small enough. 

And the number of discrete segments N should be large enough to prevent 
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“penetration” from happening. Another way is to construct adaptive constraints. A 

tentative algorithm is given in Figure 5.1. In this algorithm we first calculate the 

configuration of elastica, then check if every node along the elastica contact or 

penetrate the sidewall. If contact or penetration happens, extra constraints will be 

added to the nodes where penetration happens and re-calculate until the penetration 

does not happen. After that, it is necessary to check whether the secondary buckling 

happens. Comparing the penalty method in this work, the tentative algorithm proposed 

in Figure 5.1 will involve more computation cost. However, the obtained Lagrange 

multipliers corresponding to the contact points give contact forces. 

 The sidewall on either side of x-axis can have different distance from the axis. 

It is also interesting to study the behaviours of elastica when D is fixed and the 

sidewall distance h changed. On the other hand, when h is very small and we change D 

from 0, the higher mode will emerge. The jumping to higher mode antisymmetric 

configuration or symmetric configuration is more likely to happen when h is much 

smaller than the length of elastica. The sidewalls can also be curved. We need only 

construct a different penalty function that can describe the geometric features of 

sidewalls.  
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Figure 5.1 A tentative algorithm for constrained Euler buckling 
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