
THE EARLY-TARDY DISTINCT DUE DATE MACHINE
SCHEDULING PROBLEM WITH JOB SPLITTING

BERNICE HO KAH YUAN

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

In the course of this project, I have replied upon the help of several people to get me

through this time.

To my friends Ang Juay Chin and Ho Wee Kit, who were given the task of creating

an interface for an unusual scheduling problem by our supervisor at that time, A/P

Andrew Lim. It was listening to the problem specifications given to them that first

piqued my interest in the project, and they have my apologies if I stepped on their toes

at that time with my nuisance questions.

Also, to my family, who gave me moral support throughout the project, even if they

never seemed to have any idea what I was talking about most of the time.

Last but not least, to my husband Oon Wee Chong, who has given me loving support

over the years, encouraged me and scolded me when I needed it, and put up with my

temperaments and almost-daily hay fever attacks.

 i

Table of Contents

 Page No.

Acknowledgements i
Table of Contents ii
Summary iv
List of Figures and Tables vi

Chapter 1
Introduction and Outline 1

Chapter 2
Scheduling Models and Notation 3

Chapter 3
Problem Description 7
3.1 Related problems 7
 3.1.1 Early-Tardy Machine Scheduling 7
 3.1.2 Splitting Jobs on Parallel Machines 8

3.2 The Early-Tardy Distinct Due Date Machine Scheduling Problem 9
 with Splitting Jobs and Setup Times (ETDDDsplit)

Chapter 4
A Review of Basic Scheduling Heuristics 14
4.1 Greedy Techniques 14

4.2 Enumerative Techniques 16

4.3 Neighborhood Search Techniques 16
 4.3.1 Tabu Search (TS) 17
 4.3.1a Long-term memory in Tabu Search 18
 4.3.2 Simulated Annealing (SA) 19
 4.3.3 Genetic algorithms (GA) 20

4.4 Artificial Intelligence (AI) Techniques 22
 4.4.1 Neural Networks (NN) 22
 4.4.2 Multi-agent Systems (MAS) 23

 ii

 Page No.

Chapter 5
Solving the ETDDDsplit problem 24
5.1 How hard is the ETDDDsplit problem? 24

5.2 Heuristics for the ETDDDsplit scheduling problem 25
 5.2.1 Greedy Scheduling Heuristic 25
 5.2.2 Adjusted Greedy Scheduling Heuristic 37
 5.2.3 Tabu Search (TS) 42
 5.2.4 Simulated Annealing (SA) 44
 5.2.5 Genetic Algorithm (GA) 46
 5.2.6 Genetic Algorithm (GA) combined with Tabu Search (TS) 49

Chapter 6
Experiments and Results 50
6.1 Generation of Test Problems 50

6.2 Heuristic Variable Settings 53
 6.2.1 Selection of Heuristic Variable Settings 54

6.3 Analysis of Heuristic Performances and Job Release Patterns 56
 6.3.1 Experimental Results 58
 6.3.2 Comparison of the Heuristics’ Performances 59
 6.3.3 Comparison of the Test Groups 61

Chapter 7
Conclusions and Future Work 62

References 64

Appendices
Appendix A Sample Test Case 69

Appendix B Sample Schedule Solution 73

Appendix C Full Experimental Results 81
 Table C1 : Heuristic Variable Settings for Tabu Search 82
 Table C2 : Heuristic Variable Settings for Genetic Algorithm 83
 Table C3 : Heuristic Variable Settings for Simulated Annealing 84
 Table C4 : Randomly spread release dates (Random) 85
 Table C5 : Sequential release dates (Sequential) 86
 Table C6 : Release dates follow a Gaussian Curve, (-σ to σ) (Gauss1) 87
 Table C7 : Release dates follow a Gaussian Curve, (-2σ to 2σ) (Gauss2) 88

 iii

Summary

In this thesis, we introduce a new practical scheduling problem, the early-tardy

machine scheduling problem with distinct due dates and splitting jobs with setup

times on uniform parallel machines (ETDDDsplit). It combines characteristics from 2

known scheduling problems - the early-tardy scheduling problem with distinct due

dates (on a single machine or on parallel machines) as well as the relatively lesser

known scheduling problem with splitting jobs (also called “lotsizing”). In early-tardy

scheduling, the aim is to minimize the total weighted distance between each job’s

deadline and actual completion time. The weights are denoted by early and tardy

penalties. In scheduling with job splitting, scheduling with preemption is taken a step

further, such that a job’s subsections can be simultaneously scheduled on different

parallel machines. The ETDDDsplit problem is NP-complete, and does not appear in

any literature to date.

We applied (singly and in combination) the standard search techniques of Tabu

search, genetic algorithm and simulated annealing, along with a new greedy heuristic,

to variations of the problem. The heuristics were run on test cases created using 200

jobs on 5 parallel machines of varying processing rates, to be scheduled over a

maximum period of 2000 time units. The jobs had machine- and sequence-

independent setup times and random processing requirements. Besides the standard

set of jobs, 2 additional sets of special jobs were included - maintenance jobs and

breakdown jobs. In cases where the jobs were well-spread out over the entire

scheduled period, the heuristics generally performed well. However, as the jobs’

release dates were placed closer and closer together, the heuristics’ performances

 iv

deteriorated. By comparing the heuristics’ performances, it was inferred that the

solution topology of this problem is very flat, making it very difficult to find the

global optimal solution.

There is much room for further research in many aspects of this problem, such as a

more accurate modeling of the problem and refinements of the search techniques

applied to the problem.

 v

List of Figures and Tables

 Page No.

Fig. 1 Pseudo code for the greedy scheduling heuristic (overall) 28

Fig. 2 Pseudo code for the greedy scheduling heuristic (job subsection placement)
 29

Fig. 3 Current machine schedule for greedy heuristic example 34

Fig. 4 Pseudo code for the adjusted greedy scheduling heuristic (overall) 38

Fig. 5 Pseudo code for the adjusted greedy scheduling heuristic (job subsection
placement) 39

Fig. 6 Pseudo code for the tabu search heuristic 42

Fig. 7 Pseudo code for the simulated annealing heuristic 44

Fig. 8 Pseudo code for the genetic algorithm heuristic 47

Fig. 9 Crossover operation for the genetic algorithm heuristic 48

Fig. 10 Relationship between schedule length, a Gaussian distribution 51
and jobs’ release dates

Table 1 : Aggregated Experimental Results for Tabu Search 54

Table 2 : Aggregated Experimental Results for Genetic Algorithm 55

Table 3 : Aggregated Experimental Results for Simulated Annealing 56

Table 4 : Aggregated Experimental Results Comparing Heuristics 58

 vi

Chapter 1

Introduction and Outline

As long as there are limited resources to achieve our aims, scheduling problems will

always exist in various shapes and forms, both in our personal and professional lives.

Finding the optimal way to apply our finite resources to the tasks at hand has been the

focal point of much research not only in the field of computer science, but also in

mathematics, operations research and engineering. The fact that so many scheduling

problems are NP-complete [Garey and Johnson, 1979] means that we will probably be

wrestling with this demon for many years to come. The long title of this thesis reflects

the research that has been already been done on scheduling problems, and hence the

extensive specifications needed to describe a unique scheduling problem.

Out of this multitude of possible scheduling problems, why did I decide to work on

this particular problem? It was happenstance that I overheard others’ work which

piqued my interest. Some friends needed to create an interface for a T-shirt

manufactory which had a non-standard scheduling problem. It incorporated some

facets of a few known problems (specifically, the early-tardy machine scheduling

problem and the machine scheduling problem with splitting jobs), but was different

enough from all of them that a different approach to solving it needed to be

considered. At that time, I was still casting about looking for a research topic that

interested me, and started to investigate it. It was to my surprise that I could not find

any prior research on this particular problem, despite seeming to be such a reasonable

set of restrictions under real-life conditions. This work is merely starts to examine this

 1

problem, and I hope that more work can eventually be done so that good (if not

optimal) solutions can be consistently generated for it.

In this thesis, we examine a new machine scheduling problem with practical

applications, and look at some heuristics that can be applied to generate solutions

under varying conditions. In Chapter 2, we first look at the standard scheduling

models and notation that is commonly used. In Chapter 3, we fully describe the

ETDDDsplit problem together with other scheduling problems it can be related to. In

Chapter 4, we review some of the standard scheduling techniques used on problems

similar to the ETDDDsplit problem. In Chapter 5, we focus our attention on the

heuristics that were used to tackle the ETDDDsplit problem and show that it is indeed

NP-complete. Chapter 6 outlines some tests run to determine what values should be

used for each heuristic, then describes the test data and heuristic variables used for the

experiments, ending with a discussion on the results. In Chapter 7, we conclude with

our general findings and thoughts on possible future directions for research on this

problem.

 2

Chapter 2

Scheduling Models and Notation

Scheduling problems involve the optimal allocation of resources to activities (jobs)

over time. There are many scheduling models to cover a wide range of real-life and

theoretical scheduling problems. Usually, each model can be defined by 3 parameters

– the machine environment, the optimality criteria and the job characteristics and

constraints. This is represented in the standard notation - a 3-field classification

system α / β / γ as given by numerous authors [Graham et al, 1979; Lawler et al,

1993; Chen et al, 1998] where :

α denotes the machine environment and number of machines, α ∈ {1, P, Q, R, O, F,

J}. If we define the machine processing rate to be rij (the amount of job Jj that Mi

processes in 1 time unit), a machine Mi processing the whole of job Jj with a setup

time sj would take (pj/rij + sj) time units to finish processing the job.

• α = 1 (a single machine with machine rate r)

In problems where more than 1 machine is present, there can be 2 types of machines -

parallel (where any machine can perform any task) and dedicated (where machines

are specialized for different tasks). For parallel machines, the problem categories are :

• α = P (identical parallel machines, pj/rij = pj/r, where r is independent of job

and machine)

• α = Q (uniform parallel machines, pj/rij = pj/ri, where ri is machine-dependent)

• α = R (unrelated parallel machines where rij is both job- and machine-

dependent)

 3

In a shop environment with dedicated machines, each job has up to m operations.

Each operation must be processed on a different specific machine and may be of

varying lengths. For dedicated machines, the problem categories are :

• α = O (open shop : the operations of a job can be processed in any order as

long as no operations of the same job are processed simultaneously)

• α = J (job shop : there exists a total ordering on the operations of a job, and an

operation may not commence until its predecessor is complete)

• α = F (flow shop : similar to job shop, but each job’s operations have the same

total order with respect to machine usage, though operation lengths may

differ)

In all standard cases, each machine can process only 1 job (or its operations) at a time.

If the problem has a fixed number of machines, that number is included in the

environment specification.

β denotes various constraints and job characteristics. This relates to the following

characteristics:

• whether jobs have release dates

• the relationship (if any) between release dates, due dates and processing time

• the nature of the jobs’ due dates (e.g. common due dates “CDD”, distinct due

dates “DDD”, common due windows, the due date assignment problem)

• whether preemption is allowed (i.e. an job being processed can be interrupted

before completion and then continued later)

 4

• whether precedence constraints exist (i.e. a partial order on the set of jobs is

given such that Ji π Jj implies Ji must be completed before Jj can begin being

processed)

• the relationship (if any) between processing times and weights of each job

• whether machines have an idle time restriction

• whether the family scheduling model is used (also indicating the dependencies

of the inter-family setup times, batch- or job-availability assumptions and

batching machine assumptions if the family model is used)

Almost all research has assumed that each job can be processed on at most 1 machine

at a time. However, Xing and Zhang [Xing and Zhang, 2000] referred to an additional

characteristic specific to parallel machine scheduling,

• whether each job can be processed on more than 1 machine at the same time.

We thus differentiate “splitting” (where each job can have subsections that are

processed on more than 1 machine simultaneously) from “preemption” (where

jobs can be broken into subsections and processed at non-overlapping times).

γ denotes the optimality criterion used to measure how good any given schedule is.

Some common criteria used are γ ∈ {Cmax, max Lj, ∑Cj, ∑Uj, ∑Tj, ∑wjCj, ∑wjUj}.

A more detailed description of all the fields’ parameters can be found in Finke et al’s

bibliographic review [Finke et al, 2002].

Standard scheduling problems can usually be described as m machines Mi (i = 1, … ,

m) being available to process n jobs Jj (j = 1, …, n). Each scheduled job Jj may have

the following characteristics :

 5

• processing requirement pj (size of the job, the actual processing time required

depends on the rate of the machine that is processing the job Jj)

• due date or deadline dj

• setup time skj (“idle time” required on a machine after processing Jk before

processing Jj, considered sequence-dependent if skj ≠ sjk)

• release date ai (the earliest time the job can start being processed)

• actual completion time Cj

• lateness Lj = cj − dj

• tardiness Tj = max{0, Lj}

• unit penalty Uj (Uj = 0 if cj < dj, Uj = 1 otherwise)

• weight wj (a measure of the importance of a job)

Instead of each job having an individual due date, another measure of the “goodness”

of a schedule is :

• makespan or maximum completion time of all the jobs, Cmax

James and Buchanan [James and Buchanan, 1997] used an alternative to wj which was

replaced by 2 parameters for each job. These parameters are used when trying to

minimize the total weighted distance between the due date and completion date :

• early penalty ej (cost per unit time for early completion i.e. Cj < dj)

• tardy penalty tj (cost per unit time for late completion i.e. Cj > dj)

o using this, the penalty for a job Jj would be
()
()
()⎪

⎩

⎪
⎨

⎧

=
>

<

jj

jjjj

jjjj

dC
dCLt
dCLe

0

A completed schedule then describes for each job a set of time-units on specific

machines that fulfills its processing requirements whilst satisfying the problem’s other

constraints.

 6

Chapter 3

Problem Description

Before describing the problem that is the focus of this thesis, we first look at some

related scheduling problems that are quite closely related.

3.1 Related problems

3.1.1 Early-Tardy Machine Scheduling

The general early-tardy (ET) machine scheduling problem closely models the Just-In-

Time logistical requirements of many industries today, since there are not only often

penalties for completing a job too late, but also penalties for completing a job too

early. ET scheduling problems in general are NP-complete [Garey et al, 1978]. There

has been much research conducted on the common due date (CDD) scheduling

problem and its variations, although preemption is usually not included. These include

problems with job setup time requirements [Rabadi et al, 2002] and multiple parallel

identical machines [Emmons, 1987; Kubiak et al, 1990].

A more general model of the ET scheduling problems uses distinct due dates (DDD).

Research in this area includes work on variations where the problem

• has the same early and late penalties for all jobs on a single machine [Fry et al,

1987]

• has early and late penalties proportional to the processing time of each job on

a single machine [Yano and Kim, 1991]

 7

• has unrelated early and late penalties on a single machine [James and

Buchanan, 1997]

• does not permit any idle machine times, with a single machine [Ow and

Morton, 1989]

• has parallel identical machines [Hamad et al, 2002]

Baker and Scudder’s review [Baker and Scudder, 1990] gives a general overview of

E/T scheduling.

3.1.2 Splitting Jobs on Parallel Machines

Almost all scheduling research assumes that each job can be processed on at most one

machine at a time, although preemption is allowed in certain cases. However, when

the processing requirement is measured as a total demand of some product, the job

fulfilling that demand can be arbitrarily split over a number of parallel machines and

processed simultaneously to complete the job at the optimal time. Potts and Van

Wassenhove [Potts and Van Wassenhove, 1992] referred to this process as

lotstreaming or lotsizing, and the split parts as continuous sublots. Serafini [Serafini,

1996] applied this model to a scheduling problem in the manufacture of fabric in the

textile industry.

Xing and Zhang [Xing and Zhang, 2000] used the term “splitting” instead of

“lotsizing”. They looked at the problem of splitting jobs on identical parallel

machines (α ∈ {P, Q}) with and without setup times, considering various optimality

criteria γ. They proved that the problem of splitting jobs on identical parallel

machines (α ∈ {P, Q}) and γ ∈ {Cmax, max Lj, ∑Cj, ∑Uj, ∑wjCj} without setup times

and early penalties is polynomially solvable. However, where γ ∈ {∑Tj, ∑wjUj}, the

 8

problem is NP-hard. The case when (α = P, γ = Cmax) with setup times (but without

early penalties) is NP-hard [Xing and Zhang, 1998]. For this problem, they proposed a

heuristic which has a worst-case performance ratio ≤ (7/4 − 1/m) (m ≥ 2), by using the

maximum completion time estimation procedure and setup time list scheduling.

3.2 The Early-Tardy Distinct Due Date Machine Scheduling Problem with

Splitting Jobs and Setup Times (ETDDDsplit)

In real life, a problem similar to both the problems described above (the ET

scheduling problem and the scheduling problem with splitting jobs) occurs in the

manufacturing industry and in logistics. Often, jobs can be split into arbitrarily small

subsections. Each subsection can then be processed simultaneously on separate

processors, provided some cost (“setup time”) is paid for each such subsection. This

scheduling problem can be described as splitting jobs on parallel machines where α ∈

{P, Q}. The optimality criteria γ needs to consider both early and late penalties in

completing a job before or after its due date given by the entity placing the job order.

The early penalties represent the manufacturer’s cost of storing the finished goods

before handing off the goods at the given due date. The late penalties represent the

cost of the failing to meet the set deadline, which ranges from an actual imposition of

monetary cost, to the loss of customer goodwill and reputation within in the industry.

This problem was based on a real-life scenario, where a T-shirt manufacturer receives

orders to produce T-shirts. Each order (which corresponds to a job Jj) must have the

following parameters :

• The number of T-shirts required. This corresponds to the processing

requirement pj of the job.

 9

• A few templates (≥ 1) of the design the machines are to copy onto the T-shirts.

The number of templates given to the manufacturer limits the number of

subsections of the job that be run simultaneously, as each machine processing

a subsection needs a template to work from. This parameter is described as

maxParaj.

• A due date or deadline when the finished T-shirts are required, dj.

• A release time when the job is first made available for processing, ai.

• A sequence-and machine-independent setup time, sj. The processing machine

cannot have any assigned job for sj time units before it can start processing a

subsection of Jj. This time is needed for the installation and configuration of

the template and raw materials into the machine before processing can start.

The machine-idle setup period must occur strictly after the completion of any

other section that was processed earlier on the same machine.

• A form of early penalty for completion of the job before its due date. Ideally,

the early penalty should reflect the cost of storing the finished goods prior to

delivery. Thus, it should actually be proportional to the quantity of finished

goods being stored after each section. For simplicity however, we assume a

constant early penalty ej which only has an effect if the job’s completion time

Cj is after the due date dj.

o Hence, the total early penalty for Jj =
() ()

⎩
⎨
⎧ <−×

otherwise
dCforCde jjjjj

0

• A late penalty for completing the job after the due date, tj.

o The total late penalty for Jj =
() ()

⎩
⎨
⎧ >−×

otherwise
dCfordCt jjjjj

0

 10

• Each job may have a limit to the number of subsections it can be split into.

This parameter is denoted by maxSplitj (≥ 1).

The manufacturer has the following resources and knowledge :

• m parallel uniform machines Mi, each with its own machine rate ri, i ∈ {1, …,

m}. Any machine can work on any job, albeit at different processing rates. The

setup time required for each job is independent of the machine. Each machine

can only process 1 subsection of any job at a time.

• The number of people (termed machine “servers”) who do the setups for each

job subsection. Each “server” can only set up 1 machine at a time, can do the

setup for any job on any machine, and is kept occupied for the entire setup

period. This limits the number of job subsections that can have their setups

overlap or run concurrently. We describe this parameter as maxServ.

• A maintenance schedule for the machines. Each maintenance “job” Jmj

includes

o a specific machine Mi to which it must be assigned

o a fixed time length pmj which denotes how long it takes to conduct

maintenance work on the machine. This value is independent of the

machine rate. It is similar to the processing requirement of standard

jobs, as if all machine rates ri = 1.

o a narrow time window during which the maintenance job must be

scheduled. In this case, it was always fixed at dmj − amj = 1.5 * pmj and

tmj should be infinitely (or for practical purposes, just very) large.

o There is no need for early penalties for maintenance jobs, as it does not

matter if it finishes before its deadline. Hence, emj = 0.

 11

o For all maintenance jobs, maxSplitmj = 1, maxParamj = 1 and smj = 0.

o Maintenance jobs on the same machine cannot overlap.

• There can also be a breakdown schedule for the machines. In real life,

breakdowns obviously do not make themselves known in advance to

schedulers. It is added here merely to ensure that not all machines are always

available. Each breakdown “job” Jbj has

o a specific machine Mi to which it must be assigned

o a fixed time length pbj which denotes how long the machine is broken

down. In effect, this value is similar to a maintenance job’s pmj.

o a time window during which the breakdown job must be “scheduled”.

Hence, dbj − abj = pbj and ej and tj are infinitely large.

o For all breakdown jobs, maxSplitbj = 1, maxParabj = 1 and sbj = 0.

o Breakdowns and maintenance jobs on the same machine cannot

overlap.

In summary, the scheduling problem with splitting jobs on uniform parallel machines

and early and tardy penalties and distinct due dates (ETDDDsplit) can be defined by

the following characteristics :

global variables

• n jobs Jj, j ∈ {1, …, n}

• m machines Mi, i ∈ {1, …, m}

• maxServ

• A set of maintenance jobs Jmj and breakdown jobs Jbj (further defined below)

 12

job variables (for non-maintenance and non-breakdown jobs)

• processing requirement pj

• fixed setup time sj

• release time aj

• due date dj

• completion time Cj

• early penalty ej

• late penalty tj

• maximum number of subsections, maxSplitj

• maximum number concurrent subsections, maxParaj

job variables (maintenance or breakdown jobs)

• fixed time requirement pmj or pbj

• release time amj or abj

• due date dmj or dbj

• machine Mi which the job must be scheduled to run on

machine variables

• machine processing rate ri

optimality criteria

• where (penalty for J⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

=

n

j
jJjobforpenalty

1
min j) =

() (
() (

()⎪
⎩

⎪
⎨

⎧

=
>−
<−

jj

jjjjj

jjjjj

dCif
dCifdCt
dCifCde

0

)
)

 13

Chapter 4

A Review of Basic Scheduling Heuristics

There have a variety of heuristics which have been catered to solve scheduling

problems. When there are no early penalties, a possible starting point is to schedule

the jobs as early as possible every time a machine is free. With both early and late

penalties present, there is a need to try and complete the most heavily weighted jobs

as close to the deadline as possible to minimize the penalties. Some techniques that

have been applied to forms of scheduling closely related to ETDDDsplit scheduling

are briefly described below.

4.1 Greedy Techniques

The obvious approach to solving a scheduling problem (assigning some job to a

machine once it becomes available) can be refined by giving each job some priority

based on the optimality criteria. The job with the highest priority then becomes the

next one to be assigned provided no constraints are violated. The simplest prioritizing

dispatch rules include

• Shortest Processing Time (SPT) which schedules the jobs by non-decreasing

processing requirement; there is also Longest Processing Time (LPT) which

schedules the jobs in the opposite order to SPT

• Shortest Remaining Processing Time (SRPT) which makes allowances for

preemption by checking at each point in time for the job with the smallest

remaining processing requirement

• Earliest Due Date (EDD) which schedules the jobs by non-decreasing due date

 14

Problems that allow preemption of jobs need some heuristics to break up the jobs into

subsections. To that end, there have been some splitting and scheduling heuristics

with performance assurances) such as

• Largest-setup-time list scheduling and splitting heuristic (LSU) [Monma and

Potts, 1993]

• Largest-batch-time list scheduling and splitting heuristic (LBT) [Chen, 1993]

• Maximum completion time estimation procedure and set-up time list

scheduling (ML) [Xing and Zhang, 1998]

There has been research on heuristics (prioritizing methods) for early-tardy

scheduling problem with distinct due dates (ET DDD) that have no inserted idle time,

such as Valente and Alves’ [Valente and Alves, 2003] WPT-MS heuristic (weighted

processing time and minimum slack). However, the optimal solution for the ET DDD

problem requires that idle time be inserted between jobs [Baker and Scudder, 1990].

Moreover, in the case of the ETDDDsplit problem, the calculations determining job

priority should consider the early and late penalties, the processing size remaining and

the amount of idle machine time left between the job release time and the job deadline

(the job’s slack). The ETDDDsplit problem is also preemptive, so the priority rating

of a job can change as it is being processed, causing the preemption of the currently

running job for another of now-higher priority. That the ETDDDsplit problem has

more than 1 machine also complicates matters.

As optimal solutions for ET DDD scheduling problems require idle time to be

inserted between jobs, Baker and Scudder [Baker and Scudder, 1990] suggested that

the problem be broken down into 2 distinct phases :

• A sequencing phase which orders the jobs

• A scheduling phase which completes the schedule by inserting idle time

 15

4.2 Enumerative Techniques

Enumerative methods such as integer programming, mixed-integer programming,

dynamic programming and branch-and-bound have been applied to scheduling

problems. Generally, they have had limited success on NP-complete scheduling

problems of large size, although Lagrangian relaxation and decomposition strategies

help to increase the size of problems that can be handled within a reasonable time

using mathematical techniques. Chen and Powell [Chen and Powell, 1995] used a

mixture of decomposition methods, integer programming and branch-and-bound on

parallel machine scheduling problems (with tardy penalties but not early penalties) of

up to 100 jobs on 10 machines.

Hoogeveen and van de Velde [Hoogeveen and van de Velde, 1996] applied branch-

and-bound to the single-machine ET DDD scheduling problem, and concluded that

direct application to the problem posed problems. Firstly, the insertion of idle

machine time is a valid means to reduce the early penalties, but its inclusion in the

algorithm complicates the design substantially. Secondly, it is difficult to compute

strong lower bounds for the algorithm, which greatly reduces its effectiveness.

4.3 Neighborhood Search Techniques

In comparison to enumerative techniques, general neighborhood search techniques

can often be used to generate a viable, though probably sub-optimal schedule. They

can also be easily enhanced when combined with other heuristics. Among the most

popular of these are Tabu search, simulated annealing and genetic algorithms.

 16

4.3.1 Tabu Search (TS)

Tabu search was developed by Glover [Glover, 1989; Glover, 1990] as a search

technique for solving a wide variety of NP-hard problems. The basic idea is to explore

the local search space of feasible scheduling solutions by a sequence of moves. Like

gradient based techniques, a move from 1 schedule to another is made by evaluating

all candidates and choosing the best available, even if the move temporarily results in

a slightly inferior solution. Some moves are classified as tabu as they could lead to

cycling, or is known to trap the search at a local minimum. These moves are placed on

a Tabu List for a certain period of time (a short-term memory function), until the

current solution has moved sufficiently far away from its original position. In large

problems, Reeves [Reeves, 1993] suggested a candidate list strategy to identify and

evaluate a subset of neighbors which may contain better solutions. This allows the

search to move to new solutions more quickly, but at the cost of quality.

Three common neighborhood schemes for TS as applied to scheduling problems are :

• Adjacent pair-wise exchange (a job may be swapped with jobs directly before

or after it in the schedule)

• Swap (any 2 jobs in the schedule may be swapped)

• Insert (a job is taken from its current position and placed in a another position

in the schedule)

These can easily be used for the sequencing phase of the ET DDD problem. TS is

usually applied on some starting job sequence based on greedy criteria, then idle time

optimally inserted. There have been several idle time insertion procedures created for

the scheduling phase [Fry et al, 1987; Yano and Kim, 1991].

 17

James and Buchanan [James and Buchanan, 1997] combined the sequencing and

scheduling phases by not overtly inserting idle machine into a job sequence, but rather

by designating jobs as either early or tardy. They then used known characteristics of

the common due date problem by Baker and Scudder [Baker and Scudder, 1990] (the

optimum schedule is V-shaped with no idle time between jobs) as guidelines to

schedule all early jobs in ascending ej/pj order, then all tardy jobs in tj/pj order. A

neighbor in TS was thus defined to be a schedule that had one of its jobs’ status

changed from early to tardy or vice versa.

4.3.1a Long-term memory in Tabu Search

Long term memory in TS records attributes of the best solutions for

• diversification, to move the search to another area of the solution space, then

• intensification, to intensify the search in areas which have share some

attributes with the best solutions so far.

James [James, 1998] explored the effectiveness of long-term memory in TS. Three

types of data were stored in long term memory in this investigation − the number of

times a jobs was positioned in a given location, the number of times a job was

designated as early or tardy, and storing the entire search and all the solutions visited

in a special memory structure. He concluded that long term memory does have a

significant impact on search performance although more information stored does not

guarantee better results. It was also noted that best results came from restarting the

search from different starting points, widening the search space.

 18

4.3.2 Simulated Annealing (SA)

Simulated annealing [Kirkpatrick et al, 1983] was derived from the physical process

of annealing a liquid to its solid state. At its initial high temperature, the molecules in

a liquid are disorganized and of random orientation. Liquids that are cooled quickly

solidify with its molecules staying in their random orientation, resulting in a relatively

high energy state. This is analogous to a problem solution being caught in a local

minimum. Liquids that are cooled very slowly allow the molecules to shift into more

ordered configurations, maintaining a state of thermodynamic equilibrium. The solid

formed would thus reach the lowest energy state (and the problem solution that is

found using infinitesimally small improvements would likewise be at the global

minimum). The objective function for the problem solution is used as its “energy

value”. The probability a neighboring candidate solution is chosen as the basis for the

next iteration is proportional to ()()TKEE candidatebest ∆−∆−exp where

T = the current temperature (which drops slowly with each iteration)

∆Ebest = the greatest possible improvement of the objective function

∆Ecandidate = the improvement for the neighboring candidate solution

K = normalization factor

Since the best neighbor is not always chosen, the algorithm is able to escape local

minima. Rabadi et al [Rabadi et al, 2002] used SA to generate solutions to small- and

medium-sized instances (up to 25 jobs) of the single-machine ET CDD problem with

sequence-dependent setup times and no preemption. The results were very

satisfactory compared to actual optimal solutions which had been found using branch-

and-bound.

 19

4.3.3 Genetic algorithms (GA)

Genetic algorithms were developed by Holland [Holland, 1992] as artificial adaptive

systems to simulate natural evolution and mutation. Each solution corresponds to an

individual of a species, and an evaluation function determines which ones survive to

the next generation. It has been found to be a practical approach to generating good

solutions to difficult problems. The basic mechanics of a GA are conceptually simple,

though it may be difficult to state the problem and solution space in terms that GA can

be applied onto. After creating an initial population of valid solutions, the algorithm :

• Maintain a population of valid solutions coded as artificial chromosomes of

fixed length that have been rated as the “fittest” individuals

• Select 2 of the better solutions for recombination (“crossover”) to generate

valid “offspring” solutions. Hopefully, the new solutions will carry good traits

from both parents

• Perform mutation and other variation operators on the offspring

• Use these offspring to replace the poorer solutions in the population to

improve it overall fitness, or create an new population altogether for the

offspring.

Sivrikaya-Serifoglu and Ulusoy [Sivrikaya-Serifoglu and Ulusoy, 1999] used GA to

tackle the ET DDD uniform parallel machine scheduling problem and sequence-

dependent setup times with encouraging results. Each population member was

described by a set of n genes, each gene containing an object-selection pair and

encoding the associated job and the machine selected for its processing. The order of

the genes on the chromosome dictated the order of the jobs on the machines, i.e. for n

= 4, m =2, chromosome [3-2, 2-1, 4-1, 1-2] denoted that machine 2 processes job 3

 20

then job 1, and machine 1 processes job 2 then job 4. The offspring chromosome was

not constructed from single “crossover” operation, but by

• choosing one of the parents randomly

• finding the earliest gene/object on the parent that has not yet been assigned to

the child and setting that gene as the next one on the chromosome

• picking from either of the parents the machine selection for the child

iteratively until the child’s chromosome is complete. The mutation operators

were :

o the swap mutation, where 2 jobs’ positions are swapped

o the bit mutation, where a job’s assigned machine is reassigned to a random

machine (possibly the original machine)

They concluded that GA worked well for difficult scheduling problems, needing

relatively modest processing requirements and that it could be scaled effectively for

larger problems.

 21

4.4 Artificial Intelligence (AI) Techniques

Artificial intelligence uses knowledge of the problem to guide search for a solution,

unlike the neighborhood searches’ method of mostly blind search using an evaluation

function.

4.4.1 Neural Networks (NN)

Neural networks attempt to simulate the learning and prediction abilities of the human

brain. They are distinguished by network topology, node characteristics, and training

rules for the network weights. Through training with supplied data, supervised

learning neural networks attempt to capture the desired relationship between the

inputs and the outputs of the network. Neural networks have been used more

commonly for job-shop [Jain and Meeran, 1998] and flow-shop scheduling rather than

ET machine scheduling.

Hamad et al.[Hamad et al, 2002] was first to use a multi-layer perceptron model to

tackle the ET DDD problem on parallel identical machines. The network had 11

inputs for the 11-element vector used to represent each job, m outputs and a 9-node

hidden layer. The output node with the highest value then designated the machine the

job should be processed on. After all the jobs had been fed to the NN, the jobs were

scheduled on their assigned machines in order of increasing output values. The

network was trained using error back-propagation. The trained neural network gave

near-optimal solutions, but it was run on very small cases of up to 6 jobs on 2

machines.

 22

4.4.2 Multi-agent Systems (MAS)

An agent is a computer system that is capable of autonomous decisions and social

activity in some environment to meet its design objectives. Gozzi et al.[Gozzi et al,

2002] created a MAS for the ET DDD scheduling problem on identical parallel

machines. The MAS had job agents, machine agents, a contract coordinator agent, and

agents to produce the job and machine agents. The job and machine agents all had

their own agendas, and when created, a job agent was given a budget according to the

job’s urgency or weight. The job agents tried to minimize the ET penalties on their

given budgets by bidding for machine time, and the machine agents tried to maximize

their profit from the jobs, and the number of jobs processed. The coordinator agent

managed the evolution of time and updates the partial schedule. The authors explored

different agent behaviors and their effect on the final solutions created.

 23

Chapter 5

Solving the ETDDDsplit problem

5.1 How hard is the ETDDDsplit problem?

The parallel machine scheduling problem where (α ∈ {P, Q}, γ = ∑Tj) with splitting

jobs and setup times is NP-complete [Xing and Zhang, 1998]. It can be shown that the

ETDDDsplit scheduling is NP-complete too.

The ETDDDsplit scheduling problem is obviously in NP. The time taken to calculate

the sum of the penalties for all the jobs given any valid schedule would be of O(n)

(involving 1 simple mathematical operation each job’s Cj, dj, ej and aj values). The

problem can be phrased as a decision problem by checking whether there exists a

schedule for the given problem which has a total penalty that is less than some value.

By restriction [Garey and Johnson, 1979], the ETDDDsplit scheduling problem can

be shown to be NP-complete, as it can be transformed into the above known NP-

complete problem by applying the following restrictions :

• the tardy penalty is much larger than the early penalty for all jobs (tj >> ej)

• the release dates of the jobs are all zero (aj = 0)

• the due dates of all the jobs are the same (dj1 = dj2 for all j1, j2 where 1 ≤ j1 <

j2 ≤ j)

• the set of maintenance jobs is empty

• the set of breakdown jobs is empty

 24

5.2 Heuristics for the ETDDDsplit scheduling problem

The ETDDDsplit problem is a completely new problem that carries traits from 2

mostly disparate scheduling problems currently existing in literature - the ET

scheduling problem, and the scheduling problem with splitting jobs. Not all the

approaches described Chapter 4 were applied to the ETDDsplit problem. The ones

applied were a greedy heuristic, tabu search, simulated annealing and genetic

algorithm. As described earlier, many approaches to dealing with ET DDD scheduling

problems were divided into 2 phases; the first phase involved some form of job

ordering, and the second phase was where the solution schedule was actually created

using that job ordering, with the insertion of idle machine times that are necessary for

any (near) optimal solution. The heuristic described in this chapter follow this basic

idea.

5.2.1 Greedy Scheduling Heuristic

The first and obvious approach to the problem was to apply a some “greedy”

scheduling heuristic to the jobs, This can be done in 2 phases : by first assigning a

priority rating to each job which would dictate the overall order of importance in

which the jobs would be scheduled, and then finding a way to create a schedule using

the job ordering. The priority ratings would change as jobs are processed. Hence,

other waiting jobs’ priority ratings might overtake the current jobs’ ratings, causing

them to be preempted. The scheduling heuristic utilizing priority ratings (Rj) should

consider :

• ej and tj (both the penalties). For this problem, ej was in general set much

lower than tj but still non-zero. This reflected the general preference to

finishing a job early rather than late.

 25

• the remaining unassigned processing requirement of the job (rpj)

• the slack, or the amount of processing power still available due to unassigned

machine time between the job’s release time and deadline (slackj). This was

actually the unassigned machine time multiplied by the respective machine

rates ri except for maintenance jobs, which treated all machine rates ri =1.

• the number of subsections (sectionsj) already created, compared to maxSplitj.

If there was little leeway left to split rpj into subsections, the job was

considered more urgent.

Some of these characteristics could be related to each other. The priority rating

eventually used was :

Rj = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+

jj

j
j

j

jj
j tionsSplit

Split
ek

slack
srp

tk
secmax1

max
1 21

where

k1, k2 = constants used to adjust the relative importance of the 1st and 2nd terms.

In the 1st term, tj was associated with rpj and slackj, as the extent to which a job would

likely be tardy could be directly linked to the amount of time it had available to be

completed. Hence, the tardy penalty would be considered more important if the slack

is small. In the 2nd term, ej was associated with the freedom still available to the

scheduler to schedule the job. If the scheduler still had a great deal of freedom to

break up the job into subsections, it would be more likely to have the job be

completed close to the due date. However, if the scheduler was strongly limited by

maxSplitj, the job could be forced to complete in a single large block well before its

due date. For both the 1st and 2nd terms’ denominators, some care had to be taken as

slackj and (maxSplitj − sectionsj) could easily equal zero. Hence, the value of 1 was

 26

added to both denominators to prevent problems in calculations and comparison

between each job’s Rj value.

A higher rating Rj means that job Jj is currently more urgent. A job which has been

completed automatically has Rj = 0. As tj >> ej, the 1st part of the equation would

generally have a much greater effect on Rj than the 2nd unless sectionsj ≈ maxSplitj. A

larger slackj or smaller rpj reduced the overall priority of the job.

Since there are both early and tardy penalties, instead of working “forwards” in time

by placing jobs in a sequence and then inserting idle time to reduce early penalties, an

alternative method was to work “backwards” in time, with the starting point of

scheduling a job being its deadline. The sequencing and splitting of jobs could then be

combined by using the priority ratings to select jobs to schedule. A job would be

automatically split if another job’s priority rating overtook it at some point in time.

Idle time would be automatically inserted to allow a job to finish at its deadline rather

than before. This method would obviously work only if most or all the jobs were

known long before their respective due dates.

In the course of scheduling the current (and most urgent) job Jurgent, there would be

periodic comparisons of Jurgent’s priority rating with that of other jobs’. After

scheduling Jurgent to be processed on any machine for a certain time interval (termed

“checktime”), the current job’s priority rating was checked with that other jobs.

During a “checktime”, a job-in-progress could be preempted for another job with a

higher priority rating. The pseudo code for the greedy scheduling heuristic is in Fig. 1

and 2.

 27

1.

2.

 Place all “breakdown” jobs Jbj in the schedule. All
breakdown jobs are tagged as “complete”, all non-
breakdown jobs are tagged as not “complete”.

 While (not all jobs complete)
a. Update all Rj values. Find incomplete job Jurgent with

highest Rj.
b. Set best_section = null.
c. If there exists idle machine time between durgent and

aurgent
i. While-loop through the machines from machine with

highest to lowest machine rate ri. Note that if
Jurgent is a maintenance job, the machine to be used
is fixed.
A. Initialise tend to the latest idle time on the

current machine before durgent but after aurgent
and set section_found = false

B. While section_found = false and
tend > (aurgent + surgent)
I. Find the longest continuous section on the

current machine that starts at tearliest and
ends at tend within which no violation of
maxParaurgent would occur.

II. If the section length < sj, set tend =
tearliest then continue search.

III. If
• sectionsurgent = maxParaurgent - 1 or
• Jurgent‘s total remaining processing time on
the current machine ≤ checktime + surgent or

• Jurgent‘s total remaining processing time on
the current machine ≤ 2 * checktime
but Jurgent cannot be completed in this
section, set tend = tearliest then continue
search.

IV. Else (with respect to II and III)
Attempt to schedule a subsection of Jurgent
(See Fig. 2 for details).
• If a job subsection can be scheduled,

set section_found = true and update
best_section if the newly found
jobsection’s endtime is later than
best_section’s end time.

• Otherwise set tend = tearliest then
continue search.

d. If best_section = null, schedule this job to
complete as quickly as possible after durgent without
further splitting.

e. Else, insert best_section into the schedule.

f. Update the characteristics of all jobs.

Fig. 1 Pseudo code for the greedy scheduling heuristic (overall)

28

1. Set tstart = -1 and topt_start = tend - (surgent + rpurgent/ri).
2. If

• sectionsurgent = maxSpliturgent - 1 or
• Jurgent‘s total remaining processing time on the

current machine ≤ checktime + surgent or
• Jurgent‘s total remaining processing time on the

current machine ≤ 2 * checktime
set tstart = topt_start.

a. If maxServer is violated, set tstart earlier but
always later than tearliest so that no violation
occurs. If this is not possible, set tstart = -1.

3. Else set tstart_test = tend - checktime, searching = true.
a. While searching = true and tstart_test ≥ tearliest

i. Set valid_try = true.
ii. If maxServer is violated, set tstart_test

earlier so that no violation occurs. If this
is not possible, try later start times. If
neither works, set valid_try = false.

iii. If valid_try = true, set tstart = tstart_test.
I. Calculate temporary values for rpurgent and

the slack for all other incomplete jobs
assuming the current section is
processed. Calculate temporary values of
all the incomplete jobs’ Rj values and
compare the temporary Rurgent value with
them.

II. If the temporary Rurgent is not one of m
highest priority ratings,
set searching = false

iv. If tstart_test - topt_start ≤ (checktime or sj),
set tstart_test = topt_start and searching = true.

v. If tstart_test - tearliest ≤ (checktime or sj), set
tstart_test = tearliest and searching = true.

vi. Else (to iv and v)
decrease tstart_test by checktime units.

4. If tstart > -1 and tstart < topt_start

set tend = tstart + surgent + rpurgent/ri.

5. Return to Fig. 1 indicating success (tstart > -1) with
details of the section found, or failure (tstart = -1).

Fig. 2 Pseudo code for the greedy scheduling heuristic (job subsection placement)

Some comments on the overall greedy scheduling heuristic, for Fig. 1 :

• (Step 1) The breakdown jobs were first inserted into schedule, blocking out

the unavailable slots from the start. Al non-breakdown jobs were flagged as

incomplete.

 29

• (Step 2a) In each iteration of the Step 2 while-loop, one job subsection of a

currently incomplete job was definitely scheduled in Step 2d or 2e. This had

an effect on one job’s rpj, sectionsurgent and possibly its “complete” status.

Simultaneously, all jobs’ slackj could be affected. These changes were updated

in Step 2f. Hence, all jobs’ Rj values were updated at this step before the next

selection of Jurgent.

• (Step 2b) best_section contained the details of the best subsection found for

Jurgent in the current iteration of the Step 2 while-loop, including which job

being processed, the machine involved, and the start and end times of the

subsection.. The best subsection was considered to be the subsection with the

latest end time on the fastest available machine.

• (Step 2c & 2c(i)) Tried to schedule at least a subsection of Jurgent before durgent.

The fastest machine was checked first before moving on to the next fastest

machine until all machines had been considered. Preferentially using the

machine with the highest machine rate for the most urgent job tended to

ensure that the machines with high machine rates would be used more.

• (Step 2c(i)-A & B) A search was made on the current machine based on tend.

section_found indicated whether a suitable job subsection had been found for

the current machine. The search backwards in time continues until a suitable

section had been found, or until tend reached too small a value to be useful.

• (Step 2c(i)-B I) The longest continuous section found always ended at the

current tend, and could start at any time between tend and aurgent (any time before

Jurgent had been released could not be considered).

• (Step 2c(i)-B II & III) If the length of time that a machine was idle was too

short, tend was decremented and the search continued without further checks,

 30

skipping Step 2c(i)-B IV. If the section length was less than the setup time, no

subsection of Jurgent could even be processed. If Jurgent could or should not be

split into any more subsections, the length of time that a machine was idle had

to be sufficient for Jurgent to be completed (≥ sj + rpj/rj) in order to schedule the

job on that machine at that time. Jurgent should not be further split if the

processing time was less than 2*checktime or sj+checktime. Note that a job

Jj’s processing time on Mi is not equal to rpj (remaining processing

requirement). It is actually rpj/ri, the amount of machine Mi’s time that is

required to complete the job. The heuristic would try to minimize unnecessary

job splitting, as each split results in “wasted” machine time due to the

additional setup period incurred for each subsection. The most efficient use of

machine time would be for each job to have only 1 subsection and hence only

1 setup period.

• (Step 2c(i)-B IV) At this point, a potential place in the schedule had been

found to place at least a subsection of Jurgent. Further checks were required to

determine the exact length and position of the section, and are described in

Fig. 2. If the pseudo code in Fig. 2 could successfully place a job subsection in

the schedule, the current iteration of the Step 2c(i)-B while-loop would be

essentially completed, i.e. a suitable section of Jurgent had been found for the

current machine. This does not necessarily mean that Jurgent could be

completed with the newly found section, only that at least a subsection of

Jurgent could be inserted into the schedule before durgent on the current machine.

The found section would be compared with the best section found so far on

another machine (recorded by best_section), and the section with the later end

time stored in best_section.

 31

• (Step 2d) If best_section was empty, this meant that no part of Jurgent could be

scheduled before durgent in the current iteration of Step 2. Jurgent would have to

be completed after durgent and forced to be completed as soon as possible. Note

that it is still possible for some subsection of Jurgent to have been placed in the

schedule before durgent earlier on in the overall scheduling process.

• (Step 2f) As stated in the comments for Step 2a, the characteristics of all jobs

(not just of Jurgent) would have to recalculated after the insertion of a job

subsection into the schedule. Jurgent would be flagged as complete only if the

all the job subsections that had been inserted into the schedule so far

(including the one just inserted in this latest iteration) was sufficient to finish

processing the job. Once flagged as complete, it would no longer be

considered for selection as Jurgent in future iterations of Step 2a.

Further comments on the greedy scheduling heuristic involving job subsection

placement, for Fig. 2 :

• This pseudo code checks the current machine for a suitable place to insert a

subsection of Jurgent, using tend as a starting point and both tend and tearliest as

restrictions.

• (Step 1) tstart contains to the best valid start time found so far for the subsection

being placed. At the end of the pseudo code in Fig. 2, as long as tstart was a

value other than “-1”, a subsection of Jurgent could be successfully scheduled.

topt_start referred to the start time that would allow Jurgent to be completed (given

tend) with this subsection, temporarily ignoring tearliest as a restriction.

• (Step 2) These are the same conditions as stated in Fig. 1 Step 2c(i)-B III.

 32

• (Step 2a) Since maxServer only affects the setup period of any subsection,

moving the start time of the subsection tried to fix this violation. The value of

tstart must always be later than tearliest. tstart could not be moved later than its

original value as it would then be impossible for Jurgent to be completed with

this subsection.

• (Step 3 and 3a) A more involved set of checks were required if Jurgent could be

further split. tstart_test was used as an interim value in checking whether Jurgent

should be split after partial processing. The “checktime” value was the size of

the steps used in a step-wise comparison with other jobs. searching was used

as the flag to stop or continue the while-loop search for tstart. The search for

tstart was limited to the values between tearliest and tend−checktime.

• (Step 3a(ii)) This is similar to Step 2a, except that now tstart_test could also be

moved to a later time, though no later than tend−(surgent+1).

• (Step 3a(iii)) tstart was updated to store the best valid start time found so far the

current Jurgent subsection.

• (Step 3a(iii)-I & II) The calculation of many temporary values was required to

compare Rj values, much as if the section had already been scheduled using

tstart and tend, and ensuring rpurgent ≥ 0. The search for a better tstart was usually

stopped if the effective value of Rurgent has dropped past the top m values (the

exception to this is indicated in the next step). Since there can be up to m

different jobs processed simultaneously, as long as Rurgent remained high

enough compared to other Rj, there was less need to split the job and incur the

additional setup costs.

• (Step 3a(iv), (v) & (vi)) If Jurgent was close enough to completion or there was

very little available processing time left on the machine, then the search

 33

should continue regardless of the results of Steps 3a(ii) & (iii). This was again

to prevent additional setup costs. tstart_test was decreased by checktime, or to

topt_start or tearliest depending on the circumstances. The conditions of the Step 3a

while-loop would prevent the search if topt_start < tearliest.

• (Step 4) tend was set to an appropriate value if the tstart adjustments made in

Steps 2a or 3a(ii) to remove maxServer violations made the job subsection

longer than would be required to complete Jurgent.

• (Step 5) If a subsection of Jurgent could be placed in the schedule on the current

machine, tstart would have a non-“-1” value. The section start and end time

values of the suitable section found would be returned to the pseudo code of

Fig. 1.

A simple example running through 1 iteration to schedule a job subsection is

described below. Consider a small scheduling problem : 3 machines MA, MB and MC

where rA > rB > rC and 4 jobs J1, J2, J3 and J4. At some point in the scheduling

process, some of the machine time has been taken up by job subsections already

scheduled, shown as shaded sections in the diagram below. A short section showing

the time period of interest (involving Jurgent) of the 3 machines is shown in Fig. 3.

durgent

Fig. 3 Current machine schedule for greedy heuristic example

MA

MB

MC

aurgent t1

checktime

 34

Assume that Jurgent ≡ J4, and that sectionsurgent < maxSpliturgent − 1. In Fig. 3, MA and

MB are only idle at durgent − 1, MC is idle at durgent. Assume that there is sufficient

processing time available on MB to complete Jurgent at durgent − 1 and on MC at durgent,

but also that Jurgent cannot be completed on MA in the time between t1 and durgent − 1

although durgent − 1 − t1 is much larger than surgent (allowing the idle time of MA to be

searched).

The pseudo code in Fig. 1 would first attempt to schedule a subsection of Jurgent on MA

with tearliest = t1 and tend = durgent − 1. Fig. 2 is then called to exactly describe a section

that could be scheduled on MA. topt_start would be calculated to be earlier than tearliest.

The length of the subsection would first be set to checktime (tstart_test = durgent −

checktime − 1), maxServer checked for any violation and then the priority ratings of

all the jobs recalculated using new values of slackj and a new value of rpurgent and

sectionsurgent. Assuming that the priority rating of J4 was one of 3 highest values, the

length of the subsection would be set to 2 * checktime and the priority ratings

recalculated again. This could continue until subsection length = 4 * checktime. At

the next iteration, since the remaining available processing time would be less than

checktime, tstart_test would be set to t1 and checked to make sure no maxServer

violations occurred. A success would be returned to the Fig. 1 pseudo code, and

bestSection updated to reflect a section on MA starting at t1 and ending at durgent − 1,

even though Jurgent would not be completed with this new section.

 35

The Fig. 1 pseudo code would proceed to the next fastest machine MB, with tearliest =

aurgent and tend = durgent − 1. In this case, Fig. 2 would return a success with the section

on MB starting at topt_start calculated in Fig. 2 and ending at durgent − 1. However, since

the end time of this section was the same as that of bestSection, there would be no

change in bestSection.

Finally, the slowest machine MC would be searched, using tend = durgent and tearliest =

aurgent. The pseudo code of Fig. 2 would be able to find a suitable section on MC

starting at topt_start and ending at durgent. Since the ending time of this section is later

than that in bestSection (and not because the job can be completed with this new

section), bestSection is updated.

With all the machines searched, the schedule would be updated with the job

subsection details stored in bestSection, and all jobs’ priority ratings updated with the

new slack values, remaining processing requirements and number of job sections. The

next Jurgent would have to be found (which could be J4 again) in order to schedule the

next job subsection.

The greedy scheduling heuristic could be randomized somewhat by multiplying some

random modifier with each job’s priority rating. The random modifier was changed

each time a priority rating calculation was done and kept quite small. Hence, at any

point during the scheduling, the modifier could allow a job Jj1 whose rating Rj1 was

only slightly less than another job Jj2’s rating Rj2 to be selected next for scheduling

next in place of Jj2. This was the simplest version of searching the area of the solution

space closest to the solution found by the greedy heuristic.

 36

5.2.2 Adjusted Greedy Scheduling Heuristic

In order to implement broader and more directed searches from the initial greedy

solution, the solutions first had to be represented in a manner that could be easily

manipulated. We first observe that if the maxSplitj values are not very high, the initial

priority rating tends to dictate quite strongly the eventual overall order that the jobs

are scheduled. Although this assumption does not always hold, it serves as the basis

for the adjustment described below. To apply the searches described later, a starting

job queue was first derived from the initial priority rating of all jobs, with the head of

the queue being the job with the highest Rj and subsequent jobs ordered by non-

increasing Rj. The scheduling heuristic then needed to be changed to utilize this

priority job queue. Jobs were removed from the queue upon completion. The pseudo

codes for the adjusted greedy scheduling heuristic that used a priority job queue are

shown in Figs. 4 and 5. They follow the format used to describe the greedy scheduling

heuristic in section 5.2.1 with amendments to reflect the required changes. The main

adjustment comes from only allowing a subset of the jobs (a “pool” of m + 1 jobs) to

be available for scheduling at any time, instead of all jobs being available as in the

original dispatch policy. With this heuristic, any initial queue of jobs could be used to

generate a valid schedule.

 37

1.

2.

3.

Fi

 Place all “breakdown” jobs Jbj in the schedule. Create a
queue of incomplete jobs in non-increasing order(qcurrent);
the job at the head of the queue has the highest Rj. All
breakdown jobs are tagged as “complete”, all non-
breakdown jobs are tagged as not “complete”.

 Remove the first (m+1) jobs from the queue. These (m+1)
jobs constitute the “pool” of available jobs from which
Jurgent can be selected.

 While (not all jobs complete)
a. Update the Rj values of all jobs in the pool. Find

incomplete job Jurgent with highest Rj of all jobs in
the pool.

b. Set best_section = null.
c. If there exists idle time between durgent and aurgent

i. While-loop through the machines from highest to
lowest machine rate ri.
A. Initialise tend to the latest idle time on eth

current machine before durgent but after aurgent
and set section_found = false

B. While section_found = false and
tend > (aurgent + surgent)
I. Find the longest continuous section on the

current machine that starts at tearliest and
ends at tend within which no violation of
maxParaurgent would occur.

II. If the section length < sj, set tend =
tearliest then continue search.

III. If
• sectionsurgent = maxParaurgent - 1 or
• Jurgent‘s total remaining processing time on
the current machine ≤ checktime + surgent or

• Jurgent‘s total remaining processing time on
the current machine ≤ 2 * checktime
but Jurgent cannot be completed in this
section, set tend = tearliest then continue
search.

IV. Else (with respect to II and III)
Attempt to schedule a subsection of Jurgent
(See Fig. 5 for details).
• If a job subsection can be scheduled,

set section_found = true and update
best_section if the newly found
jobsection’s endtime is later than
best_section’s end time.

d. Otherwise set tend = tearliest then continue search.

e. If best_section = null, schedule this job to complete
as quickly as possible after durgent without further
splitting.

f. Else insert best_section into the schedule.
g. If Jurgent was completed with the addition of the newest

job subsection, remove Jurgent from the available pool.
If the queue is non-empty, remove the job at the head
of the queue and place it in the pool. Update the
characteristics of all jobs.
g. 4 Pseudo code for the adjusted greedy scheduling heuristic (overall)

38

1. Set tstart = -1 and topt_start = tend - (surgent + rpurgent/ri).
2. If

• sectionsurgent = maxSpliturgent - 1 or
• Jurgent‘s total remaining processing time on the

current machine ≤ checktime + surgent or
• Jurgent‘s total remaining processing time on the

current machine ≤ 2 * checktime
set tstart = topt_start.

a. If maxServer is violated, set tstart earlier but
always later than tearliest so that no violation
occurs. If this is not possible, set tstart = -1.

3. Else set tstart_test = tend - checktime, searching = true.
a. While searching = true and tstart_test ≥ tearliest

i. Set valid_try = true.
ii. If maxServer is violated, set tstart_test

earlier so that no violation occurs. If this
is not possible, try later start times. If
neither works, set valid_try = false.

iii. If valid_try = true, set tstart = tstart_test.
I. Calculate temporary values for rpurgent and

the slack for all other incomplete jobs
in the available queue, assuming the
current section is processed. Calculate
temporary Rj values of all the incomplete
jobs in the available pool and compare
the temporary Rurgent value with them.

II. If the temporary Rurgent is the smallest of
the Rj values checked,

 set searching = false
iv. If tstart_test - topt_start ≤ (checktime or sj),

set tstart_test = topt_start and searching = true.
v. Else decrease tstart_test by checktime units.

4. If tstart > -1 and tstart < topt_start

set tend = tstart + surgent + rpurgent/ri.

5. Return to Fig. 4 indicating success (tstart > -1) with
details of the section found, or failure (tstart = -1).

Fig. 5 Pseudo code for the adjusted greedy scheduling heuristic
(job subsection placement)

Figs. 4 and 5 for the adjusted greedy scheduling heuristic correspond almost exactly

with those of the greedy scheduling heuristic described earlier (Figs. 1 and 2). The

main differences and some comments are described below :

• (Fig. 4, Step 1) The priority job queue never included breakdown jobs, all of

which were always scheduled before any other jobs in the heuristic. Once the

order of the queue had been fixed at this step, it is not changed for the rest of

 39

the scheduling process. qcurrent represents the job ordering used, and is subject

to manipulation in the heuristics described later in this chapter.

• (Fig. 4, Step 2) A subset of all jobs, an available “pool” of jobs from which

Jurgent is always selected, is used. This available pool always contains m+1 jobs

until at least n−m jobs have been completed. If a job is completed after an

iteration, it is removed from the pool, then job at the head of the queue is

moved into the pool. In this way, the starting sequence of jobs in the queue

created at Step 1 will have a very large impact on the actual order in which the

jobs are eventually scheduled.

• (Fig. 4, Step 3) The whole section basically follows the same process the

greedy scheduling heuristic earlier described in Fig. 1, Step 2. The main

differences are that the selection of Jurgent is limited to the jobs in the pool

(jobs still in the priority queue are not considered), and that updating the

characteristics of the jobs after insertion of a new subsection includes the

contents of the available pool and the queue.

• (Fig. 5, Step 3a(iii)-II) This step contains the only change from Fig. 2. At this

point, the new (and temporary) value of Rurgent is compared to the new Rj

values belonging to the jobs in the available pool only. The rest of the jobs in

the priority queue are again not considered. Only if Rurgent is the smallest of all

Rj values checked is Jurgent pre-empted for another job. As with the original

greedy heuristic, the pre-emption is ignored if Jurgent is sufficiently close to

completion.

A second way was also used to represent the relative urgencies of the jobs as given by

the initial Rj. Instead of using a priority queue, an integer array of length n stored the

 40

order given by the initial Rj’s. For example, if the jth array integer value was 10, this

meant that job Jj would have the 10th highest initial Rj value of all uncompleted jobs

(i.e. non-breakdown jobs). All breakdown jobs’ corresponding array values were set

to -1 so that they would not be considered as part of the job queue. Like the queue,

this array could also be acted upon by a search heuristic to give a valid schedule as

long as all cells with “-1” values were left alone and no other integer contents were

repeated. The use of an array instead of a priority queue was necessary for

implementation of the genetic algorithm in section 5.2.5. The algorithm would be able

to manipulate the starting point of the search - the order in which the jobs would be

scheduled - by making changes to the array. The resulting manipulated array could

then easily be transformed into its equivalent priority job queue, and the same

adjusted dispatch policy used to generate a valid schedule.

The aim of creating the adjusted greedy heuristic was to create a template onto which

different search techniques could be applied. The following sections of chapter 5

describe the application of tabu search, simulated annealing and genetic algorithm to

the scheduling heuristic. In all these cases, the searches made changes in the initial

ordering of jobs in the priority queue or its associated array. After the queue or array

had been manipulated, the steps outlined in Figs. 3 and 4 would always be run on the

manipulated queue (qcurrent or its corresponding array) to generate the final schedule.

 41

5.2.3 Tabu Search (TS)

Tabu search (without long-term memory) was used to broaden the search around the

initial solution found by the greedy dispatch policy. The pseudo code for the TS

heuristic used is shown in Fig. 6.

Som

Set queuecurrent = queuefrom initial ratings;
 queuebest = queuecurrent;
 costbest = cost of queuebest;

Repeat n times
 bestNeighborFound = false;
 While (!bestNeighborFound)
 Create TS_NEIGHBOR neighboring solutions, each
 neighbor created by swapping 2 jobs in queuecurrent
 without violating the Tabu List;
 Calculate the penalties for all neighboring
 solutions;
 If (cost of best neighbor ≤ ALLOWANCE * costbest)
 Add best neighbor’s swap to Tabu List;
 queuecurrnt = best neighboring solution;
 bestNeighborFound = true;
 If (cost of queuecurrent < costbest)
 costbest = cost of queuecurrent;
 queuebest = queuecurrent;

Return (queuebest) as the best solution;
Fig. 6 Pseudo code for the tabu search heuristic

e comments on the TS heuristic :

• There are 3 variables that can be manipulated :

o TS_NEIGHBOR is the size of a subset of the neighborhood of queuecurrent

that is searched. Unless no suitable solution can be found for the next step

of the search from this subset, the rest of the neighboring space is not

searched.

o TABU_TENURE is the number of search steps a swap remains tabu.

o ALLOWANCE is the leeway granted to the search heuristic in choosing a

solution for the next step of the search. As long as a solution is at least

42

ALLOWANCE times within the best solution, it can be used as the focal

point of the next search step.

• The job queue derived from the initial Rj values (as described earlier) was used

as the starting point of the search, and initially set to be the best solution

queue.

• To determine the cost of a given job queue, the adjusted greedy scheduling

heuristic had to be run on the job queue. The sum of early and late penalties on

the resulting schedule would be the cost of that job queue.

• For any point in the solution space, a neighbor was defined to be another job

queue with 2 of the jobs’ places in the original queue swapped. Hence, each

solution job queue would have up to nC2 neighbors (slightly less, if there are

breakdown jobs). To reduce search time, a random subset of size

• TS_NEIGHBOR of the full neighborhood was explored. If a suitable neighbor

was found from this subset, it was chosen immediately without exploring more

of the neighborhood. The best of this neighborhood subset would then be

chosen as the basis of the next step. In practice, the maximum number of

neighborhoods the heuristic searched was 100, in order to limit the processing

time required.

• A suitable neighbor did not always have to improve on the best solution found

so far. A slight worsening of the solution penalties with respect to the best

solution found so far (by ALLOWANCE times) could be accepted.

• As the heuristic ran for n steps, the final solution could be up to n swaps away

from the original solution.

 43

5.2.4 Simulated Annealing (SA)

An alternative to using Tabu search to widen the search area is to apply simulated

annealing to the problem. In principle, SA could be able to produce near-optimal

solutions for a problem, though usually at high processing cost. Applying a format

similar that used in [Rabadi et al. 2002], in the course of the search, if there was an

improvement in the cost of a neighboring schedule S’ over the current schedule S, a

transition from S to S’ would automatically occur. If the cost of S’ was higher than S,

then the probability that the transition would occur was defined by :

⎟
⎠
⎞

⎜
⎝
⎛−=

T
tindifferenceproba

cosexp

The pseudo code for the SA heuristic is shown in Fig. 7.

Set S = schedule from initial Rj (a priority job queue);
 T = START_TEMP;
 costS = Cost of S;
 iter = 0;

While (iter < MAX_ITERS) and (successive iter without
transitions < MAX_STAGNANT_ITERS)
 Set trial = 0;
 While (trial < MAX_TRIALS) and (trials with improvement <
 MAX_SUCC_TRIALS)
 Generate schedule S’ (a neighbor to S);
 costS’ = Cost of S’;
 If (costS’ < costS) costS = costS’ and S = S’;
 Else (costS = costS’ and S = S’ with probability proba);
 trial++;
 iter++;
 T = TEMP_DECAY * T;
Fig. 7 Pseudo code for the simulated annealing heuristic

44

Some comments on the SA heuristic :

• The term “iterations” (represented by the variable iter)has been used for each

step of the outer while-loop and “trials” (variable trial) for each step of the

inner while-loop.

• Variables used in the heuristic are listed below. In general, high values for

these variables improve solution quality but increase the computational cost.

o START_TEMP is the starting temperature (T).

o TEMP_DECAY ∈ (0, 1) is the temperature decay rate. As T drops with

each iteration, the heuristic becomes less likely to accept worse

schedules than the current schedule S (proba gets smaller).

o MAX_TRIALS is the maximum number of trials that can be done at a

single temperature T, even if no successful transitions occur.

o MAX_SUCC_TRIALS is the maximum number of trials (transitions)

resulting in a better schedule that can occur at one temperature T. If

this is reached, the next iteration at a lower T starts immediately.

o MAX_ITERS is the maximum number of different temperatures the

heuristic iterates over, even if the schedule is still improving at the end.

o MAX_STAGNANT_ITERS is the maximum number iterations (each at a

different temperature) where no transitions from S to S’ occur. If for

MAX_STAGNANT_ITERS iterations, all MAX_TRIALS trials for the

inner loop fail, then it is assumed that the probability of obtaining a

transition with further iterations is extremely low, and thus the search

is terminated.

• The priority job queue derived from the initial Rj values (as described earlier)

was used as the starting point of the search and set to be S.

 45

• To determine the cost of a given job queue, the adjusted greedy scheduling

heuristic had to be run on the job queue. The sum of early and late penalties on

the resulting schedule would be the cost of that job queue.

• As in Tabu Search, a neighbor was defined to be another job queue with 2 of

the jobs’ places in the original queue swapped.

5.2.5 Genetic Algorithm (GA)

Using a genetic algorithm could help to widen the search beyond the immediate

vicinity of the initial solution created by the greedy priority ratings. In order to

represent each possible solution as a chromosome which must be of a constant length,

the n-length integer-array representation of the job priority queue was used.

One member of the initial population of valid solutions was always the array

generated from the solution created by the greedy priority ratings. The rest of the

members were created by a random ordering of all the non-breakdown jobs. The best

and worst solutions of the entire population, together with their costs, were always

noted. From this starting population of array solutions, the genetic algorithm heuristic

shown in Fig. 8 was run.

 46

Repeat GENERATIONS times
 Repeat (½ * POPULATION_SIZE) times
 Randomly select 2 parents from Pop (Par1, Par2);
 Create 2 offspring (Off1 and Off2) from Par1 and Par2 with a
 single crossover at a random point between n/4 and 3n/4;
 Ensure Off1 and Off2’s arrays give legal solutions;
 Off1 and Off2 may be randomly mutated depending on mutation
 rate MUTATION;
 Repeat for Off1 and Off2
 If (cost of Off < costworst)
 Remove arrayworst from Pop;
 Add Off to Pop;
 Find the worst array solution in Pop, then set
 arrayworst and costworst;
 If (cost of Off < costbest) {
 arraybest = Off;
 costbest = cost of arraybest;

Fig. 8 Pseudo code for the genetic algorithm heuristic

Some comments on the GA heuristic :

• There are 3 variables that can be manipulated :

o POPULATION_SIZE is the number of members in Pop. It is kept

constant at all times as the worst members in Pop are progressively

replaced by fitter offspring that have lower penalty costs.

o GENERATIONS is used to dictate the length of time the heuristic is run

for. In total, number of offspring generated throughout the heuristic =

POPULATION_SIZE * GENERATIONS.

o MUTATION is the chance that an offspring is changed from its initial

configuration resulting from the crossover of its parents. When

mutation occurs, the contents of 2 randomly-chosen cells in the array

(neither of which have “-1” stored) are swapped.

• In a crossover operation, some value between n/4 and 3n/4 is chosen as the

crossover point. The values in the array of Off1 are drawn from Par1 before the

 47

crossover point and from Par2 after the crossover point. The reverse is true for

Off2. As long as all parents (starting from the initial population generation)

have “-1” in the cells representing breakdown jobs, the offspring will also

have “-1” in the same cells. The crossover operation is illustrated in Fig. 9.

• The crossover operation does not immediately guarantee a valid solution

array, although all the breakdowns are correctly designated by “-1” in the

offspring. There may be duplicates in the array (i.e. 2 jobs may both be

designated the same ranking) due to the values inherited by the parents. To

ensure legal offspring, the array must be checked so that no entries are

repeated. Tied ranks are broken randomly.

• To calculate the penalty cost of a given solution array, the array must be

converted to a priority job queue, which is then subjected to the adjusted

greedy scheduling heuristic. The total costs of early and late penalties on the

resulting schedule is the cost of the solution.

crossover point

Par1

Par2

Off1

Off2

Fig. 9 Crossover operation for the genetic algorithm heuristic

 48

5.2.6 Genetic Algorithm (GA) combined with Tabu Search (TS)

In difficult problems, the greedy scheduling heuristic is less likely to do well. A

combination of GA search and TS could combine both elements of the GA’s wide

search for a reasonable approximate solution with the TS’s search for a local best

solution. Procedurally, it was simply a matter of running GA as described above, then

running TS on the best result generated by the GA (instead of running the TS on the

initial job queue based on starting Rj values).

 49

Chapter 6

Experiments and Results

6.1 Generation of Test Problems

As there are no benchmark cases for this ETDDDsplit scheduling problem, a variety

of test cases were generated. The distribution of the maintenance and breakdown jobs

(m/b jobs) had to be hard-coded into the generation of test cases. As there obviously

cannot be overlapping m/b jobs on the same machine, the m/b jobs had to be released

in an approximately sequential manner.

For the non-breakdown and non-maintenance jobs (non-m/b jobs), the pattern of the

release dates (aj) could be subjected to some variation. Based on that variation, 4

groups of test cases were created (listed and explained below). In all cases, the release

dates of the jobs had to be at least (pj + sj) before the end of the set schedule length.

Other than that limitation, the release dates had no effect on the other characteristics

of each non-m/b job. An example of a test case is included in Appendix A. (The

following comments on the release dates of the jobs are applicable only to the non-

m/b jobs) :

1. The release dates of the jobs were randomly spread out over the entire period

being scheduled. If the ratio of the total schedule length to the number of jobs

is less than about 6 : 1, then this case is more sparsely populated (hence easier

to solve) than case (2), based the stated time intervals used in case (2).

2. The jobs were released singly at predictable time intervals of 3-10 time units

apart. This tended to concentrate the jobs towards the start of the schedule.

 50

3. The jobs’ release dates followed a Gaussian distribution over the entire period

being scheduled. The total schedule length corresponded to a normal

distribution from -σ to σ (where σ = standard deviation of the curve), and the

distribution corresponded to the probability that a job’s release time would be

set at a specific time in the schedule. Fig. 10 below highlights this concept.

This distribution would spread out the jobs over the whole schedule, but with

the centre part of the schedule having a greater load.

4. The jobs’ release dates also followed a Gaussian distribution, but with the total

schedule length corresponding to the normal distribution’s range of -2σ to 2σ.

This increased the concentration of jobs towards the centre of the schedule

compared to case (3), and is also indicated in Fig. 10 below.

 probability that aj will be
 placed at corresponding
 time in the schedule

 schedule length for case (3)

 schedule length for case (4)

Fig. 10 Relationship between schedule length, a Gaussian distribution
and jobs’ release dates

 51

The characteristics of the test cases generated were :

Global variables

• 5% of all jobs were maintenance jobs, a further 5% were breakdown jobs

• there were n jobs, n = 200

• there were m machines, m = 5

• the total period being scheduled was from time = 0 to time = 2000, for an

overall schedule length to job ratio of slightly under 10 : 1

• maxServer ∈ [1, 4]

Machine variables

• ri ∈ [1, 5] for all machines Mi, i ∈ {1, …, m}

Job variables (for non-maintenance and non-breakdown jobs) for job Jj, j ∈ {1, …, n}

• setup time, sj ∈ [1, 5]

• processing requirement, pj ∈ [20, 100]

• time window, dj − aj ∈ [200, 250]

• early penalty, ej ∈ [5, 10]

• late penalty, tj ∈ [50, 60]

• maximum number of subsections allowed, maxSplitj ∈ [5, 10]

• maximum number of simultaneous setups allowed, maxParallelj ∈ [1, 5]

Job variables (for maintenance and breakdown jobs)

• setup time, smj or sbj = 0

• processing requirement, pmj or pbj ∈ [10, 40]

• time window for

o maintenance job, dmj − amj = 1.5 * pmj (small time window)

o breakdown job, dbj − abj = pbj (exact time window)

 52

• early penalty for

o maintenance job, emj = 0

o breakdown job, ebj = 1000 000

• late penalty, tmj or tbj = 1000 000

• maximum subsections allowed, maxSplitmj or maxSplitbj = 1

• maximum simultaneous setups allowed, maxParallelmj or maxParallelbj = 1

10 instances of each test case were generated and the heuristics described in Chapter 5

were run on them. All experiments were run on a Pentium4 2.4GHz processor with

512MB RAM and coded using Java JDK 1.4. A sample of the result obtained using

tabu search on the test case in Appendix A is given in Appendix B. The tabu search

variables were chosen based on the results obtained in the tests described in section

6.2 below.

6.2 Heuristic Variable Settings

The tabu search, genetic algorithm and simulated annealing heuristics each involved a

few variables which dictated the rate at which the solution space was explored. A few

experiments varying the variables were run to determine which values would give a

reasonable representation of the heuristic’s performance. The eventual choice of

values used to compare the heuristics’ performances was based not only on the quality

of the resulting solutions generated, but also on the additional amount of processing

time required to return a significantly better result.

The scheduling problem used to test the variable values was one where the jobs’

release dates followed a Gaussian distribution with schedule length corresponding to -

2σ to 2σ of a normal curve. This problem was found to be moderately difficult and

 53

thus most suitable as a gauge of heuristic performance. Based on the results reported

in section 6.3, the easier problems (with randomly spread job release dates and with

the release dates following -σ to σ of a Gaussian distribution) would not sufficiently

differentiate the quality of a heuristic, and the most difficult problem (with sequential

release dates) made it too hard for any heuristic to create a good schedule.

6.2.1 Selection of Heuristic Variable Settings

The full experimental results for these tests are shown in Tables C1, C2 and C3 of

Appendix C. The variable values used for each heuristic and the aggregate results are

shown below in Tables 1, 2 and 3. All values in the tables represent the summed

results of the 10 test cases run for each case, and all schedule penalty values shown

are in thousands. The variable values shown the first row of each table were the

values used to later compare the performance of the heuristics in section 6.3.

The results for the tabu search heuristic tests are shown below in Table 1. Each test

was run 10 times with the listed values, and the best result returned as the solution.

TABU_TENURE was set at 10, and each search was run using n (=200) iterations. The

variables subject to change were TS_NEIGHBOR, ALLOWANCE, and ITERATIONS.

 TS_NEIGHBOR ALLOWANCE ITERATIONS Schedule Penalty Early Jobs Tardy Jobs
1 100 1.1 100 198 143 23
2 300 1.1 100 189 138 24
3 50 1.1 100 246 142 32
4 100 1.2 100 282 175 35
5 100 1.1 200 186 149 22

Table 1 : Aggregated Experimental Results for Tabu Search

Compared with the top row, it is clear that increasing the size of the neighborhood

searched (TS_NEIGHBOR) or increasing the breadth of the search (ITERATIONS)

 54

improved the results. However, the improvement was rather small in relation to

additional amount of processing time required to create a solution schedule compared

to the first case. Worse solution schedules clearly resulted from a smaller

TS_NEIGHBOR which searched less of the neighborhood space at each step, and

larger ALLOWANCE, which gave the heuristic too much leeway in selecting poorer

solutions as the basis for the next step.

The results for the genetic algorithm tests are shown below in Table 2. Each test was

run 10 times with the listed values and the best result returned as the solution.

POPULATION_SIZE was kept constant at 100 for all tests. The variables subject to

change were GENERATIONS and MUTATION.

 GENERATIONS MUTATION Schedule Penalty Early Jobs Tardy Jobs
1 100 0.15 (15% mutation rate) 159 176 13
2 100 0 (no mutation) 328 212 30
3 100 0.01 285 182 33
4 100 0.1 176 161 24
5 100 0.2 152 172 11
6 300 0.15 142 144 12

Table 2 : Aggregated Experimental Results for Genetic Algorithm

From these results, if the heuristic can search longer (larger GENERATIONS), a

better results can be obtained. However, given the amount of additional processing

time required for relatively small gain, it did not seem worthwhile to increase

GENERATIONS for later comparisons. The MUTATION value had a strong effect

on the solution quality, although even without any mutation, the crossover function

did manage to improve the solution compared to the greedy and randomized greedy

heuristics. (The values can be compared in Table 4.) To a point, higher mutation

rates resulted in better solutions. However, the results when MUTATION = 0.15

and MUTATION = 0.2 were quite similar.

 55

The results for the simulated annealing algorithm tests are shown below in Table 3.

Following the rule-of-thumb applied by [Rabadi et al., 2002], MAX_SUCC_TRIALS =

0.1 * MAX_TRIALS and MAX_STAGNANT_ITERS = MAX_ITERS and were kept

fixed at MAX_TRIALS = 1000, MAX_SUCC_TRIALS = 100, MAX_ITERS = 100000

and MAX_STAGNANT_ITERS = 10000. Each test was run 10 times with the listed

values and the best result returned as the solution. The variables subject to change

were START_TEMP and TEMP_DECAY.

 START_TEMP TEMP_DECAY Schedule Penalty Early Jobs Tardy Jobs
1 1000 0.99 386 196 43
2 700 0.99 437 205 43
3 1500 0.99 377 203 36
4 1000 0.95 421 193 38

Table 3 : Aggregated Experimental Results for Simulated Annealing

From these results, a faster cooling rate (smaller TEMP_DECAY) or a lower starting

temperature (START_TEMP) generated a slightly worse solution schedule. On the

other hand, starting with a higher value of START_TEMP, while probably better

allowing the heuristic to leave any local minimum it might be trapped at to find a

better solution elsewhere, took a much longer time to complete its search. Hence, the

set of values in the first row of Table 3 were used for later tests.

6.3 Analysis of Heuristic Performances and Job Release Patterns

Once the values for the variables of the tabu search, genetic algorithm and simulated

annealing heuristics had been fixed, attention could be focused on the relative

performances of the heuristics with each other. The constants k1 and k2 used in the

calculation of the jobs’ priority ratings Rj were both set to 1, and the length of

checktime set at 10. The heuristics and the final values for their associated variables

were :

 56

1. The greedy scheduling heuristic. (No variables, and it is only run once for

each problem.)

2. The randomized scheduling heuristic. The modifier used to adjust the ratings

Rj was a random value ∈ [1, 2). This was run 1000 times for each test case,

and the best result returned as the solution.

3. The tabu search heuristic was run 10 times with the variable values finalized

in section 6.2 and the best result returned as the solution. The variable values

were TABU_TENURE = 10, ALLOWANCE = 1.1 (10% allowance) and

TS_NEIGHBOR = 100, with each search run using n(=200) iterations. Since a

maximum of 100 neighborhoods were searched, the heuristic would search a

maximum of 5% of the actual neighborhood for the next step (≈ 0.5% of nC2 =

19900 actual neighbors) .

4. The simulated annealing heuristic was run 10 times with the variable values

finalized in section 6.2 and the best result returned as the solution. The

variable values were START_TEMP = 1000.0, TEMP_DECAY = 0.99,

MAX_TRIALS = 1000, MAX_SUCC_TRIALS = 100, MAX_ITERS = 100000

and MAX_STAGNANT_ITERS = 10000.

5. The genetic algorithm heuristic was run 10 times with the variable values

finalized in section 6.2 and the best result returned as the solution. The

variable values used were POPULATION_SIZE = 100, GENERATIONS = 100

and MUTATION = 0.15 (15% mutation rate).

6. The genetic algorithm followed by the tabu search heuristic. This was run 10

times with the listed values and the best result returned as the solution. The

variable values used were same as those used for the genetic algorithm alone

and the tabu search heuristic alone : POPULATION_SIZE = 100,

 57

GENERATIONS = 100, MUTATION = 0.15, TS_NEIGHBOR = 100,

TABU_TENURE = 10 and ALLOWANCE = 1.1.

6.3.1 Experimental Results

The full experimental results are shown in Tables C4 to C7 of Appendix C. The

aggregate results are shown below in Table 4. All values in the table represent the

summed results of the 10 test cases generated for each test group and run by each

heuristic.

Greedy Random

Greedy TS SA GA GA+TS

E E E E E E
Pen T Pen T Pen T Pen T Pen T Pen T

87 30 0 31 1 0 Random 10
1

2
0

0
0

1
0

7
0

0
0

143 96 21 62 23 18 Gauss1 78 8 19 2 5 0 13 0 5 1 4 0
194 185 143 196 176 153 Gauss2 1038 80 585 57 198 23 386 43 159 13 156 17
199 240 146 221 165 158 Sequential 1942 141 806 53 128 20 573 36 182 20 117 13

Table 4 : Aggregated Experimental Results Comparing Heuristics

Notation for Table 2 :
Greedy = the greedy scheduling heuristic
Random Greedy = the randomized greedy scheduling heuristic
TS = the tabu search heuristic
SA = the simulated annealing heuristic
GA = the genetic algorithm heuristic
GA+TS = the genetic algorithm followed by tabu search heuristic
Random = release dates were randomly spread out over the entire schedule
Gauss1 = release dates were spread in a normal distribution from -σ to σ
Gauss2 = release dates were spread in a normal distribution from -2σ to 2σ
Sequential = release date were released at predictable intervals at the start of the
 schedule
E = total number of (non-m/b) jobs that completed before their due dates
T = total number of (non-m/b) jobs that completed after their due dates
Pen = total penalty of the solution schedule (values are in thousands)

 58

6.3.2 Comparison of the Heuristics’ Performances

In order of performance, with the heuristic that performed the best first :

1. The genetic algorithm followed by tabu search heuristic. (GA+TS)

2. The tabu search heuristic. (TS)

3. The genetic algorithm heuristic. (GA)

4. The simulated annealing heuristic. (SA)

5. The randomized greedy scheduling heuristic. (Random Greedy)

6. The greedy scheduling heuristic. (Greedy)

The fact that Random Greedy consistently out-performed Greedy indicates that the

priority rating equation has room for improvement. On the other hand, since the

modifier multiplier used is always a small value (between 1 and 2), it also implies that

the priority rating has probably managed to correctly capture some aspect of the

problem that determines which job should be scheduled first. The main effect of the

random modifier was to allow the job order to be shifted slightly so that more jobs

finished early rather than late, taking advantage of ej << tj. For instance, for the

Sequential test group, the number of jobs that ended before their deadlines actually

increased, but that was offset by the large drop in tardy jobs.

It is interesting that SA consistently performed worse than both TS and GA. In fact,

there were several cases when even the Random Greedy heuristic did better than SA

(e.g. Table C4 Case 10, Table C5 Case 9, Table C7 Case 3). This is despite the fact

that processing time of SA at any of the variable settings tested was very much longer

than any other heuristic, including GA+TS. There could be a few reasons for this :

 59

• The SA variables have not been fully optimized for this problem. Although

high values have been allocated to the variables, the heuristic does not

converge to a very good solution. Despite the different starting temperatures

and temperature decay rates used, a lot more time might would probably be

needed to run the search, e.g. the rule-of-thumb applied by [Rabadi et al,

2002], MAX_SUCC_TRIALS = 0.1 * MAX_TRIALS and

MAX_STAGNANT_ITERS = MAX_ITERS, might be inappropriate.

• The problem itself is not suitable for an SA approach. SA assumes that, like in

the physical world, the global solution-landscape tends to “tilt” towards a

global minimum. With this assumption, a form of very slow reverse-hill-

climbing heuristic with sufficient allowance to jump over for local “bumps”

should eventually reach the best solution. This analogy to the physics may not

hold for the ETDDDsplit problem. Compared to SA, TS’s allowance for

“bumps” does not decrease over time, and GA’s search can fluctuate wildly

over the solution landscape due to the mutations. This could mean that the

solution landscape is too flat for SA to work effectively.

The performance of GA+TS was somewhat better than the performance of TS alone,

but not by very much. The GA alone performed quite similarly to TS alone. That both

the wide search alone (GA) and narrow search alone (TS) performed similarly, but

that the combination of both was only slightly better supports the theory that the

global landscape is rather flat, and does not tend to tilt towards a global minimum (the

optimum solution) when using this representation of the problem and solution

neighborhoods. It also means that it could be very difficult to find the best global

 60

solution, as it could have very little relation to the quality of the solutions in its

immediate neighborhood.

6.3.3 Comparison of the Test Groups

In order of difficulty, with the easiest test group first :

1. The release dates were randomly spread out over the entire schedule.

(Random)

2. The release dates were spread out in a normal distribution from -σ to σ.

(Gauss1)

3. The release dates were spread out in a normal distribution from -2σ to 2σ.

(Gauss2)

4. The release date were released at predictable intervals at the start of the

schedule. (Sequential)

The relative difficulty of Gauss2 and Sequential were about the same. Both had a

congestion of jobs. Gauss2’ congestion was at the centre of the schedule, and

Sequential’s was at the start of the schedule. A congestion at the start of the schedule

would obviously increase the overall tardiness of the jobs, driving up the total

schedule penalties, even the sum of the absolute differences between the deadlines

and actual completion times were similar for both cases. For both Gauss2 and

Sequential, the congestion of jobs would logically make it more difficult to generate a

good solution, no matter what heuristic was used. The best results occurred when the

jobs are evenly spread out over the scheduled time period.

 61

Chapter 7

Conclusions and Future Work

In this thesis, we introduced a new NP-complete scheduling problem, the early-tardy

distinct due date machine scheduling problem with splitting jobs and setup times

(ETDDDsplit). Although it is not yet well-researched, it has practical applications in

the manufacturing industry. This problem carries some characteristics from both the

standard early-tardy machine scheduling problem, and from the scheduling problem

with lotsizing or job splitting.

We have successfully adapted 3 of the standard search heuristics to the ETDDDsplit

problem. A priority rating is first used to rate the jobs in order of urgency, which a

greedy heuristic can then used to create an initial solution. Tabu search, genetic

algorithms and simulated annealing can be applied onto the job orderings and a

heuristic used to generate reasonable solutions for problems of moderate size. The

results show that the solution space does not easily lend itself to any hill-climbing

approach to finding the optimal solution schedule. The characteristics of the job

release dates have also been found to have a strong effect on the quality of the

solution schedules that can be found. In terms of real life situations, this means that

some care needs to be taken in accepting jobs for processing, based on the jobs that

have already been accepted or are predicted to be offered to the factory work floor.

There is much room for further research in the ETDDDsplit problem. For instance,

the model representing the problem could be further refined by making ej non-

 62

constant. It could instead reflect the incremental storage cost of partially completed

orders, by being proportional to the size of the completed subsections. Thus, an early

penalty would be applied to each subsection as it is completed instead of only being

applied to the completed job.

The work here represents one possible way break down the problem into 2 distinct

phases, the job ordering phase and the scheduling phase to insert idle machine time.

Other ways to order, schedule and split the jobs should also be examined. The

conclusions drawn here about the difficulty of the problem and the topology of the

solution space may be changed by a different representation of the problem and its

potential solutions. Different search or AI heuristics could also be tested to see if

better solutions emerge. Some were highlighted in Chapter 4, but other possibilities

include Ant Colony and “Squeaky Wheel” optimizations.

 63

References

K.R.Baker, G.D.Scudder, (1990) “Sequencing with Earliness and Tardiness Penalties:

A Review”, Operations Research 38 (1) pp22-36

B.Chen, (1993) “A better heuristic for preemptive parallel machine scheduling with

setup times”, SIAM Journal on Computing 22, pp1303-1318

B.Chen, C.N.Potts, G.J.Woeginger, (1998) “A review of machine scheduling :

complexity, algorithms and approximability”, “Handbook of Combinatorial

Optimization”, Kluwer, Dordretch, pp21-169

Z.L.Chen, W.B.Powell, (1995) “Solving Parallel Machine Scheduling Problems by

Column Generation”, Technical Report, Statistics and Operation Research, Princeton

University

H.Emmons, (1987) “Scheduling to a common due date on parallel uniform

processors”, Naval Research Logistics 34, pp803-810

G.Finke, V.Gordon, J.M.Proth, (2002) “Scheduling with due dates (Annotated

bibliography of complexity and algorithms)”, available from

http://www-

leibniz.imag.fr/LEIBNIZ/LesCahiers/2002/Cahier42/ResumCahier42.html

 64

http://www-leibniz.imag.fr/LEIBNIZ/LesCahiers/2002/Cahier42/ResumCahier42.html
http://www-leibniz.imag.fr/LEIBNIZ/LesCahiers/2002/Cahier42/ResumCahier42.html

T.D.Fry, R.D.Armstrong, J.H.Blackstone, (1987) “Minimizing Weighted Absolute

Deviation in Single Machine Scheduling” IIE Transactions 19, pp445-450

M.R.Garey, R.L.Graham, D.S.Johnson, (1978) “Performance Guarantees for

Scheduling Algorithms”, Operations Research 26, pp3-21

M.R.Garey, D.S.Johnson, (1979) “Computers and Intractability, A Guide to the

Theory of NP-Completeness”, Murray Hill

F.Glover, (1989) “Tabu Search - Part I”, ORSA Journal on Computing 1 (3), pp190-

206

F.Glover, (1990) “Tabu Search - Part II”, ORSA Journal on Computing 2 (1), pp4-32

A.Gozzi, M.Paolucci, A.Boccalatte, (2002) “Autonomous Agents Applied to

Manufacturing Scheduling Problems : A Negotiation-Based Heuristic Approach” in

V.Marik, O.Stepankova, H.Krautwurmova, M.luck (Eds.): Multi-Agent Systems and

Application II, Selected Revised Papers: 9th ECCAI-ACAI/EASSS 2001, AEMAS

2001, HoloMAS 2001, LNAI 2322, Springer Verlag, pp194-203

R.L.Graham, E.L.Lawler, J.K.Lenstra, A.H.G.Rinnooy Kan, (1979) “Optimization

and approximation in deterministic sequencing and scheduling: a survey”, Annals of

Discrete Mathematics 5, pp287-326

 65

A.Hamad, B.Sanugi, S.Salleh, (2002) “A Neural Network Approach for Distinct Due

Date Job Scheduling Problems on Parallel Identical Machines”, Journal of Theoretics

4 No.3

J.H.Holland, (1992) “Adaptation in natural and artificial systems” 2nd Ed., Cambridge

MA : The MIT Press

J.A.Hoogeveen, S.L.van de Velde, (1996) “A Branch-and-Bound Algorithm for

Single-Machine Earliness-Tardiness Scheduling with Idle Time”, INFORMS Journal

on Computing 8, pp402-412

A.Jain, S.Meeran, (1998) “Job-Shop Scheduling Using Neural Networks”,

International Journal of Production Research 36 (5), pp1249-1272

R.J.W.James, J.T.Buchanan, (1997) “A neighbourhood scheme with a compressed

solution space for the early/tardy scheduling problem”, European Journal of

Operational Research 102, pp513-527

R.James, (1998) “Long Term Memory Strategies for Solving the Early/Tardy

Scheduling Problem”, available from http://citeseer.nj.nec.com/367151.html

S.Kirkpatrick, C.D.Gelatt Jr., M.P.Vecchi, (1983) "Optimization by Simulated

Annealing", Science 220, pp671-680

 66

http://citeseer.nj.nec.com/367151.html

W.Kubiak, S.Lou, R.Sethi, (1990) “Equivalence of mean flow time problems and

mean absolute deviation problems”, Operations Research Letters 9, pp37-374

E.L.Lawler, J.K.Lenstra, A.H.G.Rinnooy Kan, D.B.Shmoys, (1993) “Sequencing and

scheduling: algorithms and complexity”, In Handbooks in operations research and

management science (4), Amsterdam, pp445-522

C.L.Monma, C.N.Potts, (1993) “Analysis of heuristics for preemptive parallel

machine scheduling with job setup times”, Operations Research 41, pp981-993

P.S.Ow, T.W.Morton, (1989) “The Single-Machine Early/Tardy Problem”,

Management Science 35, pp177-191

C.N.Potts, L.N.Van Wassenhove, (1992) “Integrating scheduling with batching and

lotsizing: a review of algorithms and complexity”, Journal of the Operational

Research Society 43 (5) , pp395-406

G.Rabadi, G.Anagnostopoulos, M.Mollaghasemi, (2002) “A Simulated Annealing

Algorithm for a Scheduling Problem with Setup Times”, Proc. of The Industrial

Engineering Research Conference, Florida

C.R.Reeves, (1993) “Improving the Efficiency of Tabu Search for Machine

Scheduling Problems”, Journal of the Operational Research Society 44, pp375-392

 67

P.Serafini, (1996) “Scheduling jobs on several machines with the job splitting

property”, Operations Research 44 (4), pp617-628

F.Sivrikaya-Serifoglu, G.Ulusoy, (1999) "Parallel machine scheduling with earliness

and tardiness penalties", Computers and Operations Research 26, pp773-787

J.M.S.Valente, R.A.F.S.Alves, (2003) “Improved Heuristics for the Early/Tardy

Scheduling Problem with No Idle Time”, working paper from

www.fep.up.pt/investigacao/workingpapers/wp126.pdf

W.Xing, J.Zhang, (1998) “Splitting parallel machine scheduling”, Operations

Research Tradnsactions 2, pp30-41

W.Xing, J.Zhang, (2000) “Parallel machine scheduling with splitting jobs”, Discrete

Applied Mathematics 103, pp259-269

C.A.Yano, Y.D.Kim, (1991) “Algorithms for a class of single-machine weighted

tardiness and earliness problems”, European Journal of Operational Research 52,

pp167-178

 68

http://www.fep.up.pt/investigacao/workingpapers/wp126.pdf

Appendices

Appendix A Sample Test Case

A sample test case is shown below. In this test case, the jobs were released at time

intervals of 3-10 time units. The other variables are described in Chapter 6.

Global variables
#max_server|schedule_length
#max_server: maximum number of parallel setups for any job (int)
#schedule length: total length of schedule (int)
4|2000

Machine Variables
#mid|mname|rate
#mid: Machine ID (int)
#mname: Machine name (string)
#rate: Workrate of machine (int)
1|Machine 1|2
2|Machine 2|2
3|Machine 3|2
4|Machine 4|4
5|Machine 5|3

Job Variables
#jid|jname|setup_time|release_time|deadline|size|early_pen|late_pen|max_split|max_para
llel|paying_job|mid
#jid: Job ID (int)
#jname: Job name (string)
#setup_time: Setup time in hours (int)
#release_time: Release time of job (int) - when the job can be started
#deadline: Latest end time without penalty (int)
#size: Number of time units required to complete the job at workrate 1 (int) -
significant only for paying jobs|||||||||||
#early_pen: Penalty for early completion in cost per hour (int)
#late_pen: Penalty for tardiness in cost per hour (int)
#max_split: Maximum number of sections for this job can be split into (int)
"#max_parallel: Maximum number of sections of this job that can run concurrently, also
affects for setup time (int)"
#paying_job : Whether machine workrate is a factor for this job (Y/N) - N implies
maintenance/breakdown
"#mid : is paying_job=N, the required Machine ID, else -1"

1|Job 1|2|6|218|82|7|51|5|3|Y|-1
2|BreakDown 1|0|16|45|29|1000000|1000000|1|1|N|5
3|Job 2|1|21|221|33|5|52|5|3|Y|-1
4|Job 3|1|25|228|95|7|58|9|3|Y|-1
5|Job 4|3|31|255|71|6|52|6|4|Y|-1
6|Job 5|3|38|258|87|8|60|10|1|Y|-1
7|Job 6|5|46|288|94|7|50|8|4|Y|-1
8|Job 7|5|50|254|27|10|59|6|5|Y|-1
9|Job 8|5|59|268|88|10|59|9|4|Y|-1
10|Job 9|4|65|291|28|7|60|9|2|Y|-1
11|Job 10|5|70|301|61|6|57|7|3|Y|-1
12|Job 11|4|79|315|40|10|57|8|1|Y|-1
13|Job 12|5|86|299|66|10|52|5|4|Y|-1
14|Job 13|3|92|324|20|10|54|10|5|Y|-1
15|Job 14|1|97|297|85|5|60|6|3|Y|-1
16|Job 15|2|105|328|72|9|51|7|4|Y|-1
17|Job 16|2|110|354|26|9|51|5|4|Y|-1

 69

18|Job 17|2|117|366|98|8|57|9|3|Y|-1
19|Job 18|4|120|368|90|10|56|5|4|Y|-1
20|Job 19|3|123|346|24|6|56|6|4|Y|-1
21|Job 20|2|133|380|88|8|50|9|3|Y|-1
22|Job 21|5|136|379|51|8|58|9|5|Y|-1
23|Maintenance 1|0|135|184|33|0|1000000|1|1|N|3
24|Job 22|3|149|372|68|5|51|5|2|Y|-1
25|Job 23|4|154|364|45|6|60|7|4|Y|-1
26|Job 24|4|164|412|35|9|56|7|5|Y|-1
27|Job 25|2|167|412|75|5|60|8|1|Y|-1
28|Job 26|4|177|421|42|7|52|6|5|Y|-1
29|Job 27|4|182|427|71|6|58|9|5|Y|-1
30|Job 28|2|192|397|93|8|54|6|1|Y|-1
31|Job 29|1|201|437|45|9|57|8|1|Y|-1
32|Job 30|1|204|418|77|8|57|10|4|Y|-1
33|Job 31|5|208|448|26|9|56|10|4|Y|-1
34|Job 32|2|217|434|20|8|55|8|1|Y|-1
35|Job 33|3|222|430|23|10|58|5|3|Y|-1
36|Maintenance 2|0|224|262|26|0|1000000|1|1|N|4
37|BreakDown 2|0|238|253|15|1000000|1000000|1|1|N|1
38|Job 34|5|241|481|81|7|59|7|3|Y|-1
39|Job 35|1|250|451|43|7|56|8|5|Y|-1
40|Job 36|3|260|492|21|5|56|6|3|Y|-1
41|Job 37|3|263|491|42|7|56|7|3|Y|-1
42|Job 38|1|266|476|69|5|52|6|4|Y|-1
43|Job 39|5|270|511|48|6|53|8|2|Y|-1
44|Job 40|1|277|498|60|5|53|5|2|Y|-1
45|Job 41|4|281|505|71|10|58|7|4|Y|-1
46|Job 42|1|291|510|34|9|53|9|3|Y|-1
47|Job 43|2|301|531|26|9|57|9|5|Y|-1
48|Job 44|4|305|515|66|8|51|8|1|Y|-1
49|Job 45|4|311|528|85|10|53|7|5|Y|-1
50|Job 46|1|317|523|99|9|54|6|5|Y|-1
51|Job 47|5|324|541|36|6|51|8|4|Y|-1
52|Job 48|1|331|541|21|7|59|7|1|Y|-1
53|Job 49|5|336|539|59|6|59|5|3|Y|-1
54|Job 50|1|340|551|92|5|60|6|5|Y|-1
55|BreakDown 3|0|344|383|39|1000000|1000000|1|1|N|2
56|Job 51|4|354|562|32|6|52|6|5|Y|-1
57|Job 52|4|361|569|29|9|50|10|3|Y|-1
58|Job 53|5|368|571|54|8|53|6|1|Y|-1
59|Job 54|4|371|576|37|7|59|7|3|Y|-1
60|Job 55|5|378|613|60|5|57|8|4|Y|-1
61|Job 56|5|388|625|28|9|50|8|3|Y|-1
62|Job 57|2|391|621|35|8|55|8|4|Y|-1
63|Job 58|5|394|618|88|8|60|5|4|Y|-1
64|Job 59|1|403|615|74|9|58|6|4|Y|-1
65|Job 60|4|406|607|23|9|52|7|3|Y|-1
66|Job 61|4|413|626|97|9|50|8|1|Y|-1
67|Maintenance 3|0|414|457|29|0|1000000|1|1|N|2
68|Job 62|4|427|654|84|9|55|9|1|Y|-1
69|Job 63|5|430|675|52|6|50|10|5|Y|-1
70|Maintenance 4|0|424|478|36|0|1000000|1|1|N|3
71|Job 64|3|436|675|92|6|58|6|4|Y|-1
72|Job 65|1|439|680|29|9|53|8|1|Y|-1
73|Job 66|3|446|651|69|5|53|8|2|Y|-1
74|Job 67|3|456|669|92|6|50|6|5|Y|-1
75|Job 68|2|461|691|64|7|55|6|2|Y|-1
76|Job 69|1|471|705|69|10|51|5|3|Y|-1
77|Job 70|5|478|684|70|6|56|7|5|Y|-1
78|BreakDown 4|0|488|503|15|1000000|1000000|1|1|N|2
79|BreakDown 5|0|493|529|36|1000000|1000000|1|1|N|1
80|Job 71|5|498|734|64|6|53|5|4|Y|-1
81|Job 72|4|502|732|22|10|56|6|2|Y|-1
82|Job 73|4|511|750|35|8|54|10|1|Y|-1
83|Maintenance 5|0|507|556|33|0|1000000|1|1|N|5
84|Job 74|2|520|727|97|6|57|8|2|Y|-1
85|Job 75|2|526|760|65|10|50|7|3|Y|-1
86|Job 76|4|534|734|59|8|54|6|1|Y|-1
87|Job 77|5|542|747|23|6|53|10|4|Y|-1
88|Job 78|1|548|772|51|9|59|7|3|Y|-1
89|Job 79|4|558|766|73|10|57|9|1|Y|-1
90|Job 80|5|564|786|96|7|50|5|3|Y|-1
91|Job 81|3|574|802|75|8|55|9|2|Y|-1
92|Job 82|5|582|832|94|5|56|8|5|Y|-1

 70

93|Job 83|5|590|791|59|7|52|9|5|Y|-1
94|Job 84|2|596|831|42|8|54|8|4|Y|-1
95|Job 85|4|606|808|62|7|54|10|2|Y|-1
96|Job 86|5|613|842|43|10|51|6|5|Y|-1
97|Job 87|5|619|853|61|5|59|8|5|Y|-1
98|Job 88|3|624|854|24|8|59|6|3|Y|-1
99|Job 89|4|629|874|55|5|55|6|5|Y|-1
100|Maintenance 6|0|635|661|18|0|1000000|1|1|N|1
101|Job 90|1|649|898|33|5|57|7|2|Y|-1
102|Job 91|1|655|860|71|6|50|8|3|Y|-1
103|Job 92|5|660|887|71|7|52|5|2|Y|-1
104|Job 93|1|664|864|38|6|59|7|1|Y|-1
105|Job 94|1|668|903|88|5|55|6|5|Y|-1
106|Job 95|3|674|903|86|7|56|8|2|Y|-1
107|Job 96|3|677|916|80|10|51|10|1|Y|-1
108|Job 97|5|685|898|49|7|53|7|1|Y|-1
109|Job 98|1|693|940|73|5|59|10|1|Y|-1
110|Job 99|3|700|907|60|8|56|8|3|Y|-1
111|Job 100|1|704|918|72|9|57|7|1|Y|-1
112|Job 101|5|707|938|34|5|55|6|4|Y|-1
113|Job 102|5|716|949|61|8|53|6|4|Y|-1
114|Job 103|2|724|944|83|5|52|8|3|Y|-1
115|Job 104|5|727|927|24|7|50|9|3|Y|-1
116|BreakDown 6|0|731|748|17|1000000|1000000|1|1|N|4
117|Job 105|2|734|960|89|5|56|7|1|Y|-1
118|Job 106|2|744|951|22|6|53|9|5|Y|-1
119|BreakDown 7|0|750|782|32|1000000|1000000|1|1|N|3
120|Job 107|5|755|1003|86|6|58|9|1|Y|-1
121|Job 108|1|761|979|92|9|53|5|5|Y|-1
122|Job 109|1|771|1006|30|8|60|9|4|Y|-1
123|Job 110|4|775|1002|85|10|60|5|3|Y|-1
124|Job 111|1|785|1019|66|5|51|7|1|Y|-1
125|Job 112|5|788|989|59|5|57|5|3|Y|-1
126|Job 113|4|794|1026|25|7|51|8|2|Y|-1
127|Job 114|1|797|1028|64|7|53|8|3|Y|-1
128|Job 115|1|802|1039|80|8|54|7|4|Y|-1
129|Job 116|1|811|1026|86|9|57|10|3|Y|-1
130|BreakDown 8|0|819|834|15|1000000|1000000|1|1|N|3
131|Job 117|3|829|1048|97|10|52|7|2|Y|-1
132|Job 118|5|833|1057|23|9|51|7|4|Y|-1
133|Job 119|2|840|1078|84|10|57|5|5|Y|-1
134|Job 120|5|850|1080|36|6|53|9|1|Y|-1
135|Job 121|4|855|1099|24|6|55|6|4|Y|-1
136|Job 122|4|860|1072|74|9|52|10|3|Y|-1
137|Job 123|4|864|1112|46|9|51|7|3|Y|-1
138|Maintenance 7|0|868|888|14|0|1000000|1|1|N|4
139|Maintenance 8|0|869|905|24|0|1000000|1|1|N|5
140|Job 124|4|885|1135|26|6|58|9|4|Y|-1
141|Job 125|1|890|1122|24|5|56|7|1|Y|-1
142|Job 126|3|896|1128|53|9|59|10|3|Y|-1
143|Job 127|4|902|1139|88|8|57|6|3|Y|-1
144|Job 128|5|910|1117|74|8|57|6|1|Y|-1
145|Job 129|2|917|1142|71|9|60|5|1|Y|-1
146|Job 130|1|922|1132|56|5|51|5|5|Y|-1
147|Job 131|5|926|1138|69|10|53|5|1|Y|-1
148|Job 132|3|929|1134|35|7|50|8|5|Y|-1
149|Job 133|4|937|1146|61|8|60|5|1|Y|-1
150|Job 134|3|944|1192|87|7|51|8|3|Y|-1
151|Job 135|3|949|1194|42|10|58|7|1|Y|-1
152|Job 136|1|959|1195|63|5|58|5|1|Y|-1
153|Job 137|3|963|1163|67|7|52|7|4|Y|-1
154|Job 138|2|972|1212|80|5|50|6|1|Y|-1
155|Job 139|5|975|1181|28|8|50|5|3|Y|-1
156|Job 140|5|979|1203|89|10|50|10|1|Y|-1
157|Maintenance 9|0|983|1007|16|0|1000000|1|1|N|2
158|Job 141|1|996|1241|85|9|59|7|4|Y|-1
159|Job 142|3|999|1206|78|10|59|8|3|Y|-1
160|Job 143|2|1007|1219|97|9|53|6|4|Y|-1
161|Job 144|5|1013|1252|26|6|56|10|3|Y|-1
162|Job 145|5|1021|1227|52|5|56|9|1|Y|-1
163|Job 146|4|1031|1278|35|9|53|10|3|Y|-1
164|Job 147|2|1039|1284|28|6|51|7|3|Y|-1
165|Maintenance 10|0|1045|1060|11|0|1000000|1|1|N|3
166|Job 148|1|1053|1275|43|7|54|9|1|Y|-1
167|Job 149|1|1063|1300|32|6|58|6|5|Y|-1

 71

168|Job 150|2|1072|1321|66|9|50|7|3|Y|-1
169|Job 151|3|1078|1313|27|10|60|5|4|Y|-1
170|BreakDown 9|0|1085|1101|16|1000000|1000000|1|1|N|5
171|Job 152|2|1089|1310|80|7|55|9|5|Y|-1
172|Job 153|1|1092|1337|20|5|59|9|2|Y|-1
173|Job 154|1|1098|1326|73|6|54|5|5|Y|-1
174|Job 155|3|1105|1343|26|8|53|9|4|Y|-1
175|Job 156|4|1108|1339|69|10|56|8|5|Y|-1
176|Job 157|5|1116|1319|48|9|58|6|1|Y|-1
177|Job 158|3|1120|1366|49|8|57|9|4|Y|-1
178|Job 159|1|1128|1362|38|9|60|10|2|Y|-1
179|Job 160|5|1133|1379|41|9|52|9|3|Y|-1
180|Job 161|1|1137|1358|43|10|57|6|4|Y|-1
181|Job 162|4|1145|1375|86|10|56|10|2|Y|-1
182|Job 163|5|1152|1359|91|6|50|6|2|Y|-1
183|Job 164|2|1155|1388|25|10|54|9|3|Y|-1
184|Job 165|2|1161|1390|45|9|58|8|5|Y|-1
185|BreakDown 10|0|1165|1190|25|1000000|1000000|1|1|N|3
186|Job 166|4|1174|1407|61|6|51|10|3|Y|-1
187|Job 167|2|1180|1386|47|9|56|5|5|Y|-1
188|Job 168|3|1188|1426|85|9|51|10|5|Y|-1
189|Job 169|1|1198|1424|83|10|56|9|5|Y|-1
190|Job 170|1|1206|1410|74|9|58|5|3|Y|-1
191|Job 171|1|1216|1421|33|10|55|7|2|Y|-1
192|Job 172|4|1221|1470|35|10|57|10|2|Y|-1
193|Job 173|2|1225|1450|84|7|55|6|5|Y|-1
194|Job 174|1|1235|1446|93|8|51|5|3|Y|-1
195|BreakDown 11|0|1245|1263|18|1000000|1000000|1|1|N|2
196|Job 175|2|1251|1488|38|6|51|10|3|Y|-1
197|Job 176|1|1255|1472|63|8|50|8|3|Y|-1
198|Job 177|5|1263|1465|65|6|60|8|4|Y|-1
199|Job 178|2|1268|1516|27|7|59|10|3|Y|-1
200|Maintenance 11|0|1268|1287|13|0|1000000|1|1|N|1

 72

Appendix B Sample Schedule Solution

A sample schedule solution is shown below. This is the result of a tabu search

(without the genetic algorithm) on the sample test case given in Appendix A. The

variable values used are given in section 6.2.1, first row of Table 1.

Schedule for Machine 1
Schedule for Machine 1
Job 2 Section 2 206 to 221 with setup time of 1
BreakDown 2 Section 1 238 to 253 with setup time of 0
Job 6 Section 1 253 to 288 with setup time of 5
Job 10 Section 2 288 to 301 with setup time of 5
Job 28 Section 3 309 to 327 with setup time of 2
Job 22 Section 3 327 to 339 with setup time of 3
Job 16 Section 1 339 to 354 with setup time of 2
Job 23 Section 1 354 to 364 with setup time of 4
Job 22 Section 1 364 to 372 with setup time of 3
Job 20 Section 3 372 to 380 with setup time of 2
Job 25 Section 1 380 to 412 with setup time of 2
Job 33 Section 1 415 to 430 with setup time of 3
Job 49 Section 3 430 to 440 with setup time of 5
Job 38 Section 1 440 to 476 with setup time of 1
Job 46 Section 5 476 to 478 with setup time of 1
Job 36 Section 1 478 to 492 with setup time of 3
BreakDown 5 Section 1 493 to 529 with setup time of 0
Job 50 Section 4 529 to 534 with setup time of 1
Job 47 Section 2 534 to 541 with setup time of 5
Job 51 Section 1 542 to 562 with setup time of 4
Job 52 Section 2 564 to 569 with setup time of 4
Job 54 Section 3 569 to 576 with setup time of 4
Job 61 Section 3 576 to 606 with setup time of 4
Job 56 Section 1 606 to 625 with setup time of 5
Job 68 Section 4 625 to 643 with setup time of 2
Maintenance 6 Section 1 643 to 661 with setup time of 0
Job 67 Section 2 661 to 668 with setup time of 3
Job 63 Section 2 668 to 675 with setup time of 5
Job 70 Section 2 675 to 684 with setup time of 5
Job 68 Section 2 684 to 691 with setup time of 2
Job 76 Section 1 700 to 734 with setup time of 4
Job 77 Section 2 734 to 740 with setup time of 5
Job 75 Section 2 740 to 760 with setup time of 2
Job 80 Section 3 761 to 777 with setup time of 5
Job 83 Section 2 777 to 791 with setup time of 5
Job 85 Section 3 791 to 802 with setup time of 4
Job 82 Section 1 802 to 832 with setup time of 5
Job 87 Section 1 832 to 853 with setup time of 5
Job 94 Section 4 853 to 857 with setup time of 1
Job 95 Section 1 857 to 903 with setup time of 3
Job 100 Section 3 903 to 905 with setup time of 1
Job 96 Section 1 905 to 916 with setup time of 3
Job 101 Section 1 916 to 938 with setup time of 5
Job 106 Section 1 938 to 951 with setup time of 2
Job 107 Section 2 959 to 979 with setup time of 5
Job 111 Section 3 979 to 998 with setup time of 1
Job 115 Section 1 998 to 1039 with setup time of 1
Job 118 Section 1 1040 to 1057 with setup time of 5
Job 122 Section 2 1061 to 1072 with setup time of 4
Job 130 Section 4 1074 to 1083 with setup time of 1
Job 121 Section 1 1083 to 1099 with setup time of 4
Job 126 Section 2 1099 to 1114 with setup time of 3
Job 133 Section 2 1114 to 1135 with setup time of 4
Job 129 Section 2 1135 to 1138 with setup time of 2

 73

Job 136 Section 3 1153 to 1170 with setup time of 1
Job 135 Section 1 1170 to 1194 with setup time of 3
Job 140 Section 1 1194 to 1203 with setup time of 5
Job 138 Section 2 1203 to 1206 with setup time of 2
Job 143 Section 1 1206 to 1219 with setup time of 2
Maintenance 11 Section 1 1274 to 1287 with setup time of 0
Job 151 Section 1 1296 to 1313 with setup time of 3
Job 157 Section 1 1313 to 1319 with setup time of 5
Job 156 Section 1 1319 to 1339 with setup time of 4
Job 159 Section 1 1342 to 1362 with setup time of 1
Job 158 Section 1 1362 to 1366 with setup time of 3
Job 166 Section 1 1372 to 1407 with setup time of 4
Job 170 Section 1 1407 to 1410 with setup time of 1
Job 171 Section 1 1410 to 1421 with setup time of 1
Job 174 Section 2 1427 to 1446 with setup time of 1
Job 177 Section 1 1446 to 1465 with setup time of 5

Schedule for Machine 2
Schedule for Machine 2
Job 5 Section 2 209 to 254 with setup time of 3
Job 8 Section 4 254 to 266 with setup time of 5
Job 6 Section 2 266 to 288 with setup time of 5
Job 10 Section 3 288 to 301 with setup time of 5
Job 23 Section 2 323 to 344 with setup time of 4
BreakDown 3 Section 1 344 to 383 with setup time of 0
Job 27 Section 1 387 to 427 with setup time of 4
Maintenance 3 Section 1 428 to 457 with setup time of 0
Job 50 Section 5 457 to 459 with setup time of 1
Job 44 Section 5 459 to 488 with setup time of 4
BreakDown 4 Section 1 488 to 503 with setup time of 0
Job 44 Section 2 503 to 510 with setup time of 4
Job 46 Section 2 510 to 519 with setup time of 1
Job 45 Section 2 519 to 528 with setup time of 4
Job 48 Section 1 529 to 541 with setup time of 1
Job 50 Section 2 541 to 551 with setup time of 1
Job 54 Section 4 558 to 571 with setup time of 4
Job 61 Section 4 571 to 576 with setup time of 4
Job 59 Section 1 577 to 615 with setup time of 1
Job 66 Section 1 615 to 651 with setup time of 3
Job 67 Section 3 651 to 667 with setup time of 3
Job 65 Section 2 667 to 675 with setup time of 1
Job 70 Section 3 675 to 684 with setup time of 5
Job 74 Section 2 716 to 727 with setup time of 2
Job 73 Section 1 728 to 750 with setup time of 4
Job 80 Section 1 750 to 786 with setup time of 5
Job 85 Section 4 786 to 791 with setup time of 4
Job 82 Section 2 805 to 832 with setup time of 5
Job 87 Section 2 833 to 853 with setup time of 5
Job 93 Section 2 853 to 860 with setup time of 1
Job 94 Section 3 860 to 868 with setup time of 1
Job 97 Section 1 868 to 898 with setup time of 5
Job 94 Section 1 898 to 903 with setup time of 1
Job 102 Section 1 913 to 949 with setup time of 5
Job 111 Section 4 976 to 979 with setup time of 1
Job 112 Section 1 979 to 989 with setup time of 5
Maintenance 9 Section 1 991 to 1007 with setup time of 0
Job 113 Section 1 1009 to 1026 with setup time of 4
Job 129 Section 5 1038 to 1053 with setup time of 2
Job 120 Section 2 1053 to 1072 with setup time of 5
Job 129 Section 4 1072 to 1091 with setup time of 2
Job 127 Section 1 1091 to 1139 with setup time of 4
Job 140 Section 2 1148 to 1194 with setup time of 5
Job 138 Section 3 1194 to 1203 with setup time of 2
Job 143 Section 2 1203 to 1219 with setup time of 2
BreakDown 11 Section 1 1245 to 1263 with setup time of 0
Job 152 Section 1 1268 to 1310 with setup time of 2
Job 156 Section 2 1316 to 1339 with setup time of 4
Job 158 Section 2 1339 to 1366 with setup time of 3
Job 167 Section 2 1368 to 1386 with setup time of 2
Job 170 Section 2 1386 to 1410 with setup time of 1
Job 171 Section 2 1413 to 1421 with setup time of 1
Job 177 Section 2 1441 to 1465 with setup time of 5

 74

Schedule for Machine 3
Schedule for Machine 3
Maintenance 1 Section 1 151 to 184 with setup time of 0
Job 4 Section 1 216 to 255 with setup time of 3
Job 8 Section 3 255 to 268 with setup time of 5
Job 14 Section 2 268 to 279 with setup time of 1
Job 10 Section 4 279 to 291 with setup time of 5
Job 14 Section 1 291 to 297 with setup time of 1
Job 25 Section 3 320 to 328 with setup time of 2
Job 28 Section 2 328 to 331 with setup time of 2
Job 19 Section 1 331 to 346 with setup time of 3
Job 21 Section 1 348 to 379 with setup time of 5
Job 26 Section 2 388 to 406 with setup time of 4
Job 46 Section 6 406 to 431 with setup time of 1
Maintenance 4 Section 1 431 to 467 with setup time of 0
Job 40 Section 1 467 to 498 with setup time of 1
Job 44 Section 3 498 to 503 with setup time of 4
Job 39 Section 1 503 to 511 with setup time of 5
Job 46 Section 3 511 to 516 with setup time of 1
Job 43 Section 1 516 to 531 with setup time of 2
Job 49 Section 1 531 to 539 with setup time of 5
Job 50 Section 3 539 to 551 with setup time of 1
Job 61 Section 5 551 to 571 with setup time of 4
Job 55 Section 1 578 to 613 with setup time of 5
Job 61 Section 2 613 to 621 with setup time of 4
Job 70 Section 5 630 to 646 with setup time of 5
Job 66 Section 2 646 to 651 with setup time of 3
Job 67 Section 1 651 to 669 with setup time of 3
Job 70 Section 4 669 to 684 with setup time of 5
Job 71 Section 1 697 to 734 with setup time of 5
Job 77 Section 1 734 to 747 with setup time of 5
BreakDown 7 Section 1 750 to 782 with setup time of 0
Job 96 Section 2 784 to 819 with setup time of 3
BreakDown 8 Section 1 819 to 834 with setup time of 0
Job 93 Section 3 836 to 846 with setup time of 1
Job 92 Section 1 846 to 887 with setup time of 5
Job 90 Section 1 887 to 898 with setup time of 1
Job 94 Section 2 898 to 902 with setup time of 1
Job 98 Section 1 902 to 940 with setup time of 1
Job 112 Section 2 959 to 989 with setup time of 5
Job 109 Section 1 990 to 1006 with setup time of 1
Job 111 Section 1 1006 to 1019 with setup time of 1
Maintenance 10 Section 1 1049 to 1060 with setup time of 0
Job 128 Section 1 1075 to 1117 with setup time of 5
Job 126 Section 1 1117 to 1128 with setup time of 3
Job 132 Section 1 1128 to 1134 with setup time of 3
Job 138 Section 5 1141 to 1163 with setup time of 2
BreakDown 10 Section 1 1165 to 1190 with setup time of 0
Job 136 Section 1 1190 to 1195 with setup time of 1
Job 143 Section 5 1195 to 1199 with setup time of 2
Job 145 Section 2 1199 to 1206 with setup time of 5
Job 143 Section 3 1206 to 1219 with setup time of 2
Job 157 Section 2 1280 to 1308 with setup time of 5
Job 163 Section 1 1308 to 1359 with setup time of 5
Job 164 Section 1 1373 to 1388 with setup time of 2
Job 170 Section 3 1397 to 1410 with setup time of 1

Schedule for Machine 4
Schedule for Machine 4
Job 3 Section 1 203 to 228 with setup time of 1
Maintenance 2 Section 1 236 to 262 with setup time of 0
Job 8 Section 1 262 to 268 with setup time of 5
Job 14 Section 3 268 to 277 with setup time of 1
Job 12 Section 1 277 to 299 with setup time of 5
Job 11 Section 1 301 to 315 with setup time of 4
Job 13 Section 1 316 to 324 with setup time of 3
Job 15 Section 1 324 to 328 with setup time of 2
Job 22 Section 2 328 to 341 with setup time of 3
Job 18 Section 1 341 to 368 with setup time of 4
Job 20 Section 1 368 to 380 with setup time of 2
Job 28 Section 1 380 to 397 with setup time of 2
Job 30 Section 1 397 to 418 with setup time of 1
Job 49 Section 4 418 to 424 with setup time of 5
Job 29 Section 1 424 to 437 with setup time of 1

 75

Job 35 Section 1 439 to 451 with setup time of 1
Job 50 Section 6 452 to 455 with setup time of 1
Job 34 Section 1 455 to 481 with setup time of 5
Job 46 Section 4 481 to 483 with setup time of 1
Job 41 Section 1 483 to 505 with setup time of 4
Job 45 Section 1 505 to 528 with setup time of 4
Job 47 Section 1 528 to 541 with setup time of 5
Job 50 Section 1 541 to 551 with setup time of 1
Job 53 Section 1 552 to 571 with setup time of 5
Job 54 Section 1 571 to 576 with setup time of 4
Job 58 Section 1 591 to 618 with setup time of 5
Job 57 Section 1 618 to 621 with setup time of 2
Job 61 Section 1 621 to 626 with setup time of 4
Job 67 Section 4 639 to 649 with setup time of 3
Job 64 Section 1 649 to 675 with setup time of 3
Job 65 Section 1 675 to 680 with setup time of 1
Job 68 Section 3 680 to 684 with setup time of 2
Job 69 Section 1 686 to 705 with setup time of 1
Job 74 Section 1 705 to 727 with setup time of 2
BreakDown 6 Section 1 731 to 748 with setup time of 0
Job 79 Section 1 748 to 766 with setup time of 4
Job 78 Section 1 766 to 772 with setup time of 1
Job 80 Section 2 772 to 780 with setup time of 5
Job 81 Section 1 780 to 802 with setup time of 3
Job 85 Section 1 802 to 808 with setup time of 4
Job 94 Section 6 813 to 826 with setup time of 1
Job 86 Section 1 826 to 842 with setup time of 5
Job 94 Section 5 842 to 845 with setup time of 1
Job 88 Section 1 845 to 854 with setup time of 3
Job 91 Section 1 854 to 860 with setup time of 1
Job 89 Section 1 860 to 874 with setup time of 4
Maintenance 7 Section 1 874 to 888 with setup time of 0
Job 99 Section 1 889 to 907 with setup time of 3
Job 100 Section 1 907 to 918 with setup time of 1
Job 103 Section 1 921 to 944 with setup time of 2
Job 105 Section 1 944 to 960 with setup time of 2
Job 110 Section 1 976 to 1002 with setup time of 4
Job 116 Section 1 1003 to 1026 with setup time of 1
Job 117 Section 1 1026 to 1048 with setup time of 3
Job 119 Section 1 1055 to 1078 with setup time of 2
Job 130 Section 2 1078 to 1085 with setup time of 1
Job 132 Section 2 1085 to 1096 with setup time of 3
Job 123 Section 1 1096 to 1112 with setup time of 4
Job 129 Section 3 1112 to 1115 with setup time of 2
Job 125 Section 1 1115 to 1122 with setup time of 1
Job 130 Section 1 1122 to 1124 with setup time of 1
Job 124 Section 1 1124 to 1135 with setup time of 4
Job 133 Section 1 1135 to 1146 with setup time of 4
Job 137 Section 1 1146 to 1163 with setup time of 3
Job 138 Section 4 1163 to 1167 with setup time of 2
Job 134 Section 1 1167 to 1192 with setup time of 3
Job 142 Section 1 1192 to 1206 with setup time of 3
Job 138 Section 1 1206 to 1212 with setup time of 2
Job 143 Section 4 1212 to 1218 with setup time of 2
Job 141 Section 1 1218 to 1241 with setup time of 1
Job 144 Section 1 1241 to 1252 with setup time of 5
Job 146 Section 1 1265 to 1278 with setup time of 4
Job 147 Section 1 1278 to 1284 with setup time of 2
Job 149 Section 1 1291 to 1300 with setup time of 1
Job 154 Section 1 1306 to 1326 with setup time of 1
Job 155 Section 1 1333 to 1343 with setup time of 3
Job 162 Section 1 1349 to 1375 with setup time of 4
Job 165 Section 1 1376 to 1390 with setup time of 2
Job 169 Section 1 1402 to 1424 with setup time of 1
Job 173 Section 1 1427 to 1450 with setup time of 2
Job 176 Section 1 1455 to 1472 with setup time of 1
Job 175 Section 1 1476 to 1488 with setup time of 2
Job 178 Section 1 1507 to 1516 with setup time of 2

 76

Schedule for Machine 5
Schedule for Machine 5
BreakDown 1 Section 1 16 to 45 with setup time of 0
Job 1 Section 1 188 to 218 with setup time of 2
Job 2 Section 1 218 to 221 with setup time of 1
Job 8 Section 5 222 to 240 with setup time of 5
Job 7 Section 1 240 to 254 with setup time of 5
Job 5 Section 1 254 to 258 with setup time of 3
Job 8 Section 2 258 to 268 with setup time of 5
Job 14 Section 4 268 to 277 with setup time of 1
Job 9 Section 1 277 to 291 with setup time of 4
Job 10 Section 1 291 to 301 with setup time of 5
Job 15 Section 2 304 to 328 with setup time of 2
Job 25 Section 2 328 to 331 with setup time of 2
Job 17 Section 1 331 to 366 with setup time of 2
Job 20 Section 2 366 to 380 with setup time of 2
Job 49 Section 5 380 to 396 with setup time of 5
Job 24 Section 1 396 to 412 with setup time of 4
Job 26 Section 1 412 to 421 with setup time of 4
Job 32 Section 1 425 to 434 with setup time of 2
Job 31 Section 1 434 to 448 with setup time of 5
Job 49 Section 2 448 to 455 with setup time of 5
Job 39 Section 2 455 to 474 with setup time of 5
Job 37 Section 1 474 to 491 with setup time of 3
Job 44 Section 4 491 to 497 with setup time of 4
Job 42 Section 1 497 to 510 with setup time of 1
Job 44 Section 1 510 to 515 with setup time of 4
Job 46 Section 1 515 to 523 with setup time of 1
Maintenance 5 Section 1 523 to 556 with setup time of 0
Job 52 Section 1 556 to 569 with setup time of 4
Job 54 Section 2 569 to 576 with setup time of 4
Job 60 Section 1 595 to 607 with setup time of 4
Job 57 Section 2 608 to 621 with setup time of 2
Job 62 Section 1 622 to 654 with setup time of 4
Job 63 Section 1 654 to 675 with setup time of 5
Job 70 Section 1 675 to 684 with setup time of 5
Job 68 Section 1 684 to 691 with setup time of 2
Job 77 Section 4 714 to 720 with setup time of 5
Job 72 Section 1 720 to 732 with setup time of 4
Job 77 Section 3 732 to 738 with setup time of 5
Job 79 Section 2 738 to 748 with setup time of 4
Job 75 Section 1 748 to 760 with setup time of 2
Job 78 Section 2 760 to 772 with setup time of 1
Job 83 Section 1 772 to 791 with setup time of 5
Job 85 Section 2 791 to 808 with setup time of 4
Job 84 Section 1 815 to 831 with setup time of 2
Job 100 Section 4 832 to 842 with setup time of 1
Job 91 Section 2 842 to 860 with setup time of 1
Job 93 Section 1 860 to 864 with setup time of 1
Job 89 Section 2 865 to 874 with setup time of 4
Job 90 Section 2 875 to 881 with setup time of 1
Maintenance 8 Section 1 881 to 905 with setup time of 0
Job 100 Section 2 905 to 907 with setup time of 1
Job 104 Section 1 914 to 927 with setup time of 5
Job 105 Section 2 931 to 944 with setup time of 2
Job 108 Section 1 947 to 979 with setup time of 1
Job 107 Section 1 979 to 1003 with setup time of 5
Job 111 Section 2 1003 to 1005 with setup time of 1
Job 114 Section 1 1005 to 1028 with setup time of 1
Job 117 Section 2 1038 to 1048 with setup time of 3
Job 122 Section 1 1048 to 1072 with setup time of 4
Job 120 Section 1 1072 to 1080 with setup time of 5
Job 130 Section 3 1080 to 1085 with setup time of 1
BreakDown 9 Section 1 1085 to 1101 with setup time of 0
Job 126 Section 3 1102 to 1110 with setup time of 3
Job 131 Section 1 1110 to 1138 with setup time of 5
Job 129 Section 1 1138 to 1142 with setup time of 2
Job 143 Section 6 1152 to 1156 with setup time of 2
Job 137 Section 2 1156 to 1163 with setup time of 3
Job 139 Section 1 1166 to 1181 with setup time of 5
Job 136 Section 2 1181 to 1190 with setup time of 1
Job 142 Section 2 1191 to 1206 with setup time of 3
Job 145 Section 1 1206 to 1227 with setup time of 5
Job 144 Section 2 1246 to 1252 with setup time of 5
Job 148 Section 1 1259 to 1275 with setup time of 1

 77

Job 147 Section 2 1278 to 1284 with setup time of 2
Job 150 Section 1 1297 to 1321 with setup time of 2
Job 153 Section 1 1329 to 1337 with setup time of 1
Job 161 Section 1 1342 to 1358 with setup time of 1
Job 160 Section 1 1360 to 1379 with setup time of 5
Job 167 Section 1 1379 to 1386 with setup time of 2
Job 168 Section 1 1394 to 1426 with setup time of 3
Job 174 Section 1 1426 to 1446 with setup time of 1
Job 172 Section 1 1454 to 1470 with setup time of 4

Performance Statistics Recorded
JobIndex sections diff from deadline (Cj->dj) JobName
JobIndex 1 has 1 of max 5, ---- 0 (218->218) Job 1
JobIndex 2 has 1 of max 1, ---- 0 (45->45) BreakDown 1
JobIndex 3 has 2 of max 5, ---- 0 (221->221) Job 2
JobIndex 4 has 1 of max 9, ---- 0 (228->228) Job 3
JobIndex 5 has 1 of max 6, ---- 0 (255->255) Job 4
JobIndex 6 has 2 of max 10, ---- 0 (258->258) Job 5
JobIndex 7 has 2 of max 8, ---- 0 (288->288) Job 6
JobIndex 8 has 1 of max 6, ---- 0 (254->254) Job 7
JobIndex 9 has 5 of max 9, ---- 0 (268->268) Job 8
JobIndex 10 has 1 of max 9, ---- 0 (291->291) Job 9
JobIndex 11 has 4 of max 7, ---- 0 (301->301) Job 10
JobIndex 12 has 1 of max 8, ---- 0 (315->315) Job 11
JobIndex 13 has 1 of max 5, ---- 0 (299->299) Job 12
JobIndex 14 has 1 of max 10, ---- 0 (324->324) Job 13
JobIndex 15 has 4 of max 6, ---- 0 (297->297) Job 14
JobIndex 16 has 2 of max 7, ---- 0 (328->328) Job 15
JobIndex 17 has 1 of max 5, ---- 0 (354->354) Job 16
JobIndex 18 has 1 of max 9, ---- 0 (366->366) Job 17
JobIndex 19 has 1 of max 5, ---- 0 (368->368) Job 18
JobIndex 20 has 1 of max 6, ---- 0 (346->346) Job 19
JobIndex 21 has 3 of max 9, ---- 0 (380->380) Job 20
JobIndex 22 has 1 of max 9, ---- 0 (379->379) Job 21
JobIndex 23 has 1 of max 1, ---- 0 (184->184) Maintenance 1
JobIndex 24 has 3 of max 5, ---- 0 (372->372) Job 22
JobIndex 25 has 2 of max 7, ---- 0 (364->364) Job 23
JobIndex 26 has 1 of max 7, ---- 0 (412->412) Job 24
JobIndex 27 has 3 of max 8, ---- 0 (412->412) Job 25
JobIndex 28 has 2 of max 6, ---- 0 (421->421) Job 26
JobIndex 29 has 1 of max 9, ---- 0 (427->427) Job 27
JobIndex 30 has 3 of max 6, ---- 0 (397->397) Job 28
JobIndex 31 has 1 of max 8, ---- 0 (437->437) Job 29
JobIndex 32 has 1 of max 10, ---- 0 (418->418) Job 30
JobIndex 33 has 1 of max 10, ---- 0 (448->448) Job 31
JobIndex 34 has 1 of max 8, ---- 0 (434->434) Job 32
JobIndex 35 has 1 of max 5, ---- 0 (430->430) Job 33
JobIndex 36 has 1 of max 1, ---- 0 (262->262) Maintenance 2
JobIndex 37 has 1 of max 1, ---- 0 (253->253) BreakDown 2
JobIndex 38 has 1 of max 7, ---- 0 (481->481) Job 34
JobIndex 39 has 1 of max 8, ---- 0 (451->451) Job 35
JobIndex 40 has 1 of max 6, ---- 0 (492->492) Job 36
JobIndex 41 has 1 of max 7, ---- 0 (491->491) Job 37
JobIndex 42 has 1 of max 6, ---- 0 (476->476) Job 38
JobIndex 43 has 2 of max 8, ---- 0 (511->511) Job 39
JobIndex 44 has 1 of max 5, ---- 0 (498->498) Job 40
JobIndex 45 has 1 of max 7, ---- 0 (505->505) Job 41
JobIndex 46 has 1 of max 9, ---- 0 (510->510) Job 42
JobIndex 47 has 1 of max 9, ---- 0 (531->531) Job 43
JobIndex 48 has 5 of max 8, ---- 0 (515->515) Job 44
JobIndex 49 has 2 of max 7, ---- 0 (528->528) Job 45
JobIndex 50 has 6 of max 6, ---- 0 (523->523) Job 46
JobIndex 51 has 2 of max 8, ---- 0 (541->541) Job 47
JobIndex 52 has 1 of max 7, ---- 0 (541->541) Job 48
JobIndex 53 has 5 of max 5, ---- 0 (539->539) Job 49
JobIndex 54 has 6 of max 6, ---- 0 (551->551) Job 50
JobIndex 55 has 1 of max 1, ---- 0 (383->383) BreakDown 3
JobIndex 56 has 1 of max 6, ---- 0 (562->562) Job 51
JobIndex 57 has 2 of max 10, ---- 0 (569->569) Job 52
JobIndex 58 has 1 of max 6, ---- 0 (571->571) Job 53
JobIndex 59 has 4 of max 7, ---- 0 (576->576) Job 54
JobIndex 60 has 1 of max 8, ---- 0 (613->613) Job 55
JobIndex 61 has 1 of max 8, ---- 0 (625->625) Job 56
JobIndex 62 has 2 of max 8, ---- 0 (621->621) Job 57

 78

JobIndex 63 has 1 of max 5, ---- 0 (618->618) Job 58
JobIndex 64 has 1 of max 6, ---- 0 (615->615) Job 59
JobIndex 65 has 1 of max 7, ---- 0 (607->607) Job 60
JobIndex 66 has 5 of max 8, ---- 0 (626->626) Job 61
JobIndex 67 has 1 of max 1, ---- 0 (457->457) Maintenance 3
JobIndex 68 has 1 of max 9, ---- 0 (654->654) Job 62
JobIndex 69 has 2 of max 10, ---- 0 (675->675) Job 63
JobIndex 70 has 1 of max 1, early 11 (467->478) Maintenance 4
JobIndex 71 has 1 of max 6, ---- 0 (675->675) Job 64
JobIndex 72 has 2 of max 8, ---- 0 (680->680) Job 65
JobIndex 73 has 2 of max 8, ---- 0 (651->651) Job 66
JobIndex 74 has 4 of max 6, ---- 0 (669->669) Job 67
JobIndex 75 has 4 of max 6, ---- 0 (691->691) Job 68
JobIndex 76 has 1 of max 5, ---- 0 (705->705) Job 69
JobIndex 77 has 5 of max 7, ---- 0 (684->684) Job 70
JobIndex 78 has 1 of max 1, ---- 0 (503->503) BreakDown 4
JobIndex 79 has 1 of max 1, ---- 0 (529->529) BreakDown 5
JobIndex 80 has 1 of max 5, ---- 0 (734->734) Job 71
JobIndex 81 has 1 of max 6, ---- 0 (732->732) Job 72
JobIndex 82 has 1 of max 10, ---- 0 (750->750) Job 73
JobIndex 83 has 1 of max 1, ---- 0 (556->556) Maintenance 5
JobIndex 84 has 2 of max 8, ---- 0 (727->727) Job 74
JobIndex 85 has 2 of max 7, ---- 0 (760->760) Job 75
JobIndex 86 has 1 of max 6, ---- 0 (734->734) Job 76
JobIndex 87 has 4 of max 10, ---- 0 (747->747) Job 77
JobIndex 88 has 2 of max 7, ---- 0 (772->772) Job 78
JobIndex 89 has 2 of max 9, ---- 0 (766->766) Job 79
JobIndex 90 has 3 of max 5, ---- 0 (786->786) Job 80
JobIndex 91 has 1 of max 9, ---- 0 (802->802) Job 81
JobIndex 92 has 2 of max 8, ---- 0 (832->832) Job 82
JobIndex 93 has 2 of max 9, ---- 0 (791->791) Job 83
JobIndex 94 has 1 of max 8, ---- 0 (831->831) Job 84
JobIndex 95 has 4 of max 10, ---- 0 (808->808) Job 85
JobIndex 96 has 1 of max 6, ---- 0 (842->842) Job 86
JobIndex 97 has 2 of max 8, ---- 0 (853->853) Job 87
JobIndex 98 has 1 of max 6, ---- 0 (854->854) Job 88
JobIndex 99 has 2 of max 6, ---- 0 (874->874) Job 89
JobIndex 100 has 1 of max 1, ---- 0 (661->661) Maintenance 6
JobIndex 101 has 2 of max 7, ---- 0 (898->898) Job 90
JobIndex 102 has 2 of max 8, ---- 0 (860->860) Job 91
JobIndex 103 has 1 of max 5, ---- 0 (887->887) Job 92
JobIndex 104 has 3 of max 7, ---- 0 (864->864) Job 93
JobIndex 105 has 6 of max 6, ---- 0 (903->903) Job 94
JobIndex 106 has 1 of max 8, ---- 0 (903->903) Job 95
JobIndex 107 has 2 of max 10, ---- 0 (916->916) Job 96
JobIndex 108 has 1 of max 7, ---- 0 (898->898) Job 97
JobIndex 109 has 1 of max 10, ---- 0 (940->940) Job 98
JobIndex 110 has 1 of max 8, ---- 0 (907->907) Job 99
JobIndex 111 has 4 of max 7, ---- 0 (918->918) Job 100
JobIndex 112 has 1 of max 6, ---- 0 (938->938) Job 101
JobIndex 113 has 1 of max 6, ---- 0 (949->949) Job 102
JobIndex 114 has 1 of max 8, ---- 0 (944->944) Job 103
JobIndex 115 has 1 of max 9, ---- 0 (927->927) Job 104
JobIndex 116 has 1 of max 1, ---- 0 (748->748) BreakDown 6
JobIndex 117 has 2 of max 7, ---- 0 (960->960) Job 105
JobIndex 118 has 1 of max 9, ---- 0 (951->951) Job 106
JobIndex 119 has 1 of max 1, ---- 0 (782->782) BreakDown 7
JobIndex 120 has 2 of max 9, ---- 0 (1003->1003) Job 107
JobIndex 121 has 1 of max 5, ---- 0 (979->979) Job 108
JobIndex 122 has 1 of max 9, ---- 0 (1006->1006) Job 109
JobIndex 123 has 1 of max 5, ---- 0 (1002->1002) Job 110
JobIndex 124 has 4 of max 7, ---- 0 (1019->1019) Job 111
JobIndex 125 has 2 of max 5, ---- 0 (989->989) Job 112
JobIndex 126 has 1 of max 8, ---- 0 (1026->1026) Job 113
JobIndex 127 has 1 of max 8, ---- 0 (1028->1028) Job 114
JobIndex 128 has 1 of max 7, ---- 0 (1039->1039) Job 115
JobIndex 129 has 1 of max 10, ---- 0 (1026->1026) Job 116
JobIndex 130 has 1 of max 1, ---- 0 (834->834) BreakDown 8
JobIndex 131 has 2 of max 7, ---- 0 (1048->1048) Job 117
JobIndex 132 has 1 of max 7, ---- 0 (1057->1057) Job 118
JobIndex 133 has 1 of max 5, ---- 0 (1078->1078) Job 119
JobIndex 134 has 2 of max 9, ---- 0 (1080->1080) Job 120
JobIndex 135 has 1 of max 6, ---- 0 (1099->1099) Job 121
JobIndex 136 has 2 of max 10, ---- 0 (1072->1072) Job 122
JobIndex 137 has 1 of max 7, ---- 0 (1112->1112) Job 123

 79

JobIndex 138 has 1 of max 1, ---- 0 (888->888) Maintenance 7
JobIndex 139 has 1 of max 1, ---- 0 (905->905) Maintenance 8
JobIndex 140 has 1 of max 9, ---- 0 (1135->1135) Job 124
JobIndex 141 has 1 of max 7, ---- 0 (1122->1122) Job 125
JobIndex 142 has 3 of max 10, ---- 0 (1128->1128) Job 126
JobIndex 143 has 1 of max 6, ---- 0 (1139->1139) Job 127
JobIndex 144 has 1 of max 6, ---- 0 (1117->1117) Job 128
JobIndex 145 has 5 of max 5, ---- 0 (1142->1142) Job 129
JobIndex 146 has 4 of max 5, early 8 (1124->1132) Job 130
JobIndex 147 has 1 of max 5, ---- 0 (1138->1138) Job 131
JobIndex 148 has 2 of max 8, ---- 0 (1134->1134) Job 132
JobIndex 149 has 2 of max 5, ---- 0 (1146->1146) Job 133
JobIndex 150 has 1 of max 8, ---- 0 (1192->1192) Job 134
JobIndex 151 has 1 of max 7, ---- 0 (1194->1194) Job 135
JobIndex 152 has 3 of max 5, ---- 0 (1195->1195) Job 136
JobIndex 153 has 2 of max 7, ---- 0 (1163->1163) Job 137
JobIndex 154 has 5 of max 6, ---- 0 (1212->1212) Job 138
JobIndex 155 has 1 of max 5, ---- 0 (1181->1181) Job 139
JobIndex 156 has 2 of max 10, ---- 0 (1203->1203) Job 140
JobIndex 157 has 1 of max 1, ---- 0 (1007->1007) Maintenance 9
JobIndex 158 has 1 of max 7, ---- 0 (1241->1241) Job 141
JobIndex 159 has 2 of max 8, ---- 0 (1206->1206) Job 142
JobIndex 160 has 6 of max 6, ---- 0 (1219->1219) Job 143
JobIndex 161 has 2 of max 10, ---- 0 (1252->1252) Job 144
JobIndex 162 has 2 of max 9, ---- 0 (1227->1227) Job 145
JobIndex 163 has 1 of max 10, ---- 0 (1278->1278) Job 146
JobIndex 164 has 2 of max 7, ---- 0 (1284->1284) Job 147
JobIndex 165 has 1 of max 1, ---- 0 (1060->1060) Maintenance 10
JobIndex 166 has 1 of max 9, ---- 0 (1275->1275) Job 148
JobIndex 167 has 1 of max 6, ---- 0 (1300->1300) Job 149
JobIndex 168 has 1 of max 7, ---- 0 (1321->1321) Job 150
JobIndex 169 has 1 of max 5, ---- 0 (1313->1313) Job 151
JobIndex 170 has 1 of max 1, ---- 0 (1101->1101) BreakDown 9
JobIndex 171 has 1 of max 9, ---- 0 (1310->1310) Job 152
JobIndex 172 has 1 of max 9, ---- 0 (1337->1337) Job 153
JobIndex 173 has 1 of max 5, ---- 0 (1326->1326) Job 154
JobIndex 174 has 1 of max 9, ---- 0 (1343->1343) Job 155
JobIndex 175 has 2 of max 8, ---- 0 (1339->1339) Job 156
JobIndex 176 has 2 of max 6, ---- 0 (1319->1319) Job 157
JobIndex 177 has 2 of max 9, ---- 0 (1366->1366) Job 158
JobIndex 178 has 1 of max 10, ---- 0 (1362->1362) Job 159
JobIndex 179 has 1 of max 9, ---- 0 (1379->1379) Job 160
JobIndex 180 has 1 of max 6, ---- 0 (1358->1358) Job 161
JobIndex 181 has 1 of max 10, ---- 0 (1375->1375) Job 162
JobIndex 182 has 1 of max 6, ---- 0 (1359->1359) Job 163
JobIndex 183 has 1 of max 9, ---- 0 (1388->1388) Job 164
JobIndex 184 has 1 of max 8, ---- 0 (1390->1390) Job 165
JobIndex 185 has 1 of max 1, ---- 0 (1190->1190) BreakDown 10
JobIndex 186 has 1 of max 10, ---- 0 (1407->1407) Job 166
JobIndex 187 has 2 of max 5, ---- 0 (1386->1386) Job 167
JobIndex 188 has 1 of max 10, ---- 0 (1426->1426) Job 168
JobIndex 189 has 1 of max 9, ---- 0 (1424->1424) Job 169
JobIndex 190 has 3 of max 5, ---- 0 (1410->1410) Job 170
JobIndex 191 has 2 of max 7, ---- 0 (1421->1421) Job 171
JobIndex 192 has 1 of max 10, ---- 0 (1470->1470) Job 172
JobIndex 193 has 1 of max 6, ---- 0 (1450->1450) Job 173
JobIndex 194 has 2 of max 5, ---- 0 (1446->1446) Job 174
JobIndex 195 has 1 of max 1, ---- 0 (1263->1263) BreakDown 11
JobIndex 196 has 1 of max 10, ---- 0 (1488->1488) Job 175
JobIndex 197 has 1 of max 8, ---- 0 (1472->1472) Job 176
JobIndex 198 has 2 of max 8, ---- 0 (1465->1465) Job 177
JobIndex 199 has 1 of max 10, ---- 0 (1516->1516) Job 178
JobIndex 200 has 1 of max 1, ---- 0 (1287->1287) Maintenance 11
Total schedule cost = 40
Early penalty = 40 from 1 jobs
Late penalty = 0 from 0 jobs

 80

Appendix C Full Experimental Results

The full experimental results are tabulated on the following pages :

Table C1 : Heuristic Variable Settings for Tabu Search

Table C2 : Heuristic Variable Settings for Genetic Algorithm

Table C3 : Heuristic Variable Settings for Simulated Annealing

Table C4 : Randomly spread release dates (Random)

Table C5 : Sequential release dates (Sequential)

Table C6 : Release dates follow a Gaussian Curve, (-σ to σ) (Gauss1)

Table C7 : Release dates follow a Gaussian Curve, (-2σ to 2σ) (Gauss2)

 81

Table C1 : Heuristic Variable Settings for Tabu Search

 (1) (2) (3) (4) (5)
Case Pen E T Pen E T Pen E T Pen E T Pen E T

1 229 9 0 116 3 0 305 9 0 537 15 0 17 2 0
2 10663 26 4 8746 26 2 12482 30 1 15767 30 4 9171 29 2
3 168 2 0 154 1 0 263 4 0 423 9 0 147 1 0
4 133812 32 13 130902 30 16 148396 35 14 175974 34 20 135656 30 16
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 28582 33 3 20076 38 1 36639 23 7 42795 40 6 22029 37 3
7 23710 32 3 28502 34 5 46567 23 1 45746 30 5 18983 42 1
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 460 8 0 58 4 0 730 13 0 493 12 0 176 8 0
10 35 1 0 24 2 0 167 5 0 182 5 0 0 0 0

Total 197659 143 23 188578 138 24 245549 142 32 281917 175 35 186179 149 22
Approx. (198 k) (189 k) (246 k) (282 k) (186 k)

Notation:
(1) = Values used for comparison between heuristics

TS_NEIGHBOR = 100 ALLOWANCE = 1.1 ITERATIONS = 100
(2) = TS_NEIGHBOR = 300 ALLOWANCE = 1.1 ITERATIONS = 100
(3) = TS_NEIGHBOR = 50 ALLOWANCE = 1.1 ITERATIONS = 100
(4) = TS_NEIGHBOR = 100 ALLOWANCE = 1.2 ITERATIONS = 100
(5) = TS_NEIGHBOR = 100 ALLOWANCE = 1.1 ITERATIONS = 200
E = number of (non-maintenance non-breakdown) jobs that completed before their due dates
T = number of (non-maintenance non-breakdown) jobs that completed after their due dates
Pen = Total penalty of the solution schedule

 82

Table C2 : Heuristic Variable Settings for Genetic Algorithm

 (1) (2) (3) (4) (5) (6)
Case Pen E T Pen E T Pen E T Pen E T Pen E T Pen E T

1 417 11 0 2160 22 0 1203 17 0 552 15 0 493 9 0 124 5 0
2 7663 28 0 17456 39 1 14540 44 1 9288 29 0 7306 29 0 7081 20 0
3 304 2 0 1106 11 0 912 13 0 263 4 0 186 4 0 75 3 0
4 106046 41 10 182697 29 15 162511 25 18 115982 33 14 103417 40 9 100173 41 8
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 22969 39 2 67874 31 8 51712 31 6 20284 34 3 22063 39 1 19258 35 2
7 21015 33 1 52492 34 6 50944 20 8 29048 26 7 17793 35 1 15209 33 2
8 0 0 0 235 5 0 105 4 0 0 0 0 0 0 0 0 0 0
9 820 16 0 2759 23 0 2224 16 0 717 12 0 527 10 0 496 5 0
10 156 6 0 1692 18 0 978 12 0 342 8 0 125 6 0 12 2 0

Total 159390 176 13 328471 212 30 285129 182 33 176476 161 24 151910 172 11 142428 144 12
Approx. (159 k) (328 k) (285 k) (176 k) (152 k) (142 k)

Notation:
(1) = Values used for comparison between heuristics

GENERATIONS = 100 MUTATION = 0.15 (15% mutation rate)
(2) = GENERATIONS = 100 MUTATION = 0 (no mutation)
(3) = GENERATIONS = 100 MUTATION = 0.01
(4) = GENERATIONS = 100 MUTATION = 0.1
(5) = GENERATIONS = 100 MUTATION = 0.2
(6) = GENERATIONS = 300 MUTATION = 0.15
E = number of (non-maintenance non-breakdown) jobs that completed before their due dates
T = number of (non-maintenance non-breakdown) jobs that completed after their due dates
Pen = Total penalty of the solution schedule

 83

Table C3 : Heuristic Variable Settings for Simulated Annealing

 (1) (2) (3) (4)
Case Pen E T Pen E T Pen E T Pen E T

1 2210 26 0 2717 25 0 2558 23 0 2911 24 0
2 29001 24 6 36637 30 6 26898 34 6 39489 32 6
3 1348 14 0 1679 13 0 1218 18 0 1275 15 0
4 189142 34 19 208862 27 16 176899 23 15 211014 21 16
5 0 0 0 0 0 0 0 0 0 0 0 0
6 72073 26 7 90712 33 11 77814 35 6 74681 27 6
7 86445 27 11 88870 24 9 84516 24 9 85623 24 10
8 396 8 0 426 8 0 260 6 0 286 7 0
9 3504 20 0 3703 30 0 4769 22 0 3955 26 0
10 1836 17 0 2917 15 1 1909 18 0 1854 17 0

Total 385955 196 43 436523 205 43 376841 203 36 421088 193 38
Approx. (386 k) (437 k) (377 k) (421 k)

Notation:
(1) = Values used for comparison between heuristics

START_TEMP = 1000 TEMP_DECAY = 0.99
(2) = START_TEMP = 700 TEMP_DECAY = 0.99
(3) = START_TEMP = 1500 TEMP_DECAY = 0.99
(4) = START_TEMP = 1000 TEMP_DECAY = 0.95
E = number of (non-maintenance non-breakdown) jobs that completed before their due dates
T = number of (non-maintenance non-breakdown) jobs that completed after their due dates
Pen = Total penalty of the solution schedule

 84

Table C4 : Randomly spread release dates

 Greedy Randomized
Greedy

TS SA GA GA + TS

Case Pen E T Pen E T Pen E T Pen E T Pen E T Pen E T
1 901 8 0 153 3 0 0 0 0 57 2 0 0 0 0 0 0 0
2 398 6 0 20 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1295 13 0 357 4 0 0 0 0 436 10 0 0 0 0 0 0 0
4 1848 11 0 235 5 0 0 0 0 102 4 0 0 0 0 0 0 0
5 372 7 0 25 2 0 0 0 0 0 0 0 0 0 0 0 0 0
6 367 5 0 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0
7 537 8 0 20 1 0 0 0 0 0 0 0 0 0 0 0 0 0
8 452 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 398 7 0 17 2 0 0 0 0 0 0 0 0 0 0 0 0 0
10 3297 16 1 738 11 0 0 0 0 858 15 0 7 1 0 0 0 0

Total 9865 87 1 1575 30 0 0 0 0 1453 31 0 7 1 0 0 0 0
Approx. (10 k) (2 k) (0 k) (1 k) (0 k) (0 k)

Notation:
Greedy = Greedy scheduling heuristic
Randomized Greedy = Randomized Greedy scheduling heuristic
TS = Tabu Search heuristic
SA = Simulated Annealing heuristic
GA = Genetic Algorithm heuristic
GA + TS = Genetic Algorithm followed by Tabu Search heuristic
E = number of (non-maintenance non-breakdown) jobs that completed before their due dates
T = number of (non-maintenance non-breakdown) jobs that completed after their due dates
Pen = Total penalty of the solution schedule

 85

Table C5 : Sequential release dates

 Greedy Randomized
Greedy

TS SA GA GA + TS

Case Pen E T Pen E T Pen E T Pen E T Pen E T Pen E T
1 247932 15 31 116914 36 13 20122 42 6 61488 41 7 13519 31 3 9174 38 1
2 595 9 0 100 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1841 15 0 300 9 0 0 0 0 364 8 0 0 0 0 0 0 0
4 5774 28 1 2298 21 1 0 0 0 1449 18 0 105 3 0 28 2 0
5 966 13 0 308 8 0 0 0 0 77 4 0 0 0 0 0 0 0
6 924017 22 42 486807 40 23 85095 34 12 305658 36 15 140548 54 13 75708 46 8
7 70351 22 9 2873 23 0 151 5 0 2659 27 0 321 10 0 181 5 0
8 4755 23 1 1536 22 0 0 0 0 992 14 0 30 3 0 0 0 0
9 345817 28 25 87066 46 7 20346 33 1 112336 40 7 21772 35 3 25349 37 3
10 340413 24 32 107454 31 9 2760 32 1 87959 33 7 5355 29 1 6338 30 1

Total 1942461 199 141 805656 240 53 128474 146 20 572982 221 36 181650 165 20 116778 158 13
Approx. (1942 k) (806 k) (128 k) (573 k) (182 k) (117 k)

Notation:
Greedy = Greedy scheduling heuristic
Randomized Greedy = Randomized Greedy scheduling heuristic
TS = Tabu Search heuristic
SA = Simulated Annealing heuristic
GA = Genetic Algorithm heuristic
GA + TS = Genetic Algorithm followed by Tabu Search heuristic
E = number of (non-maintenance non-breakdown) jobs that completed before their due dates
T = number of (non-maintenance non-breakdown) jobs that completed after their due dates
Pen = Total penalty of the solution schedule

 86

Table C6 : Release dates follow a Gaussian Curve, (-σ to σ)

 Greedy Randomized
Greedy

TS SA GA GA + TS

Case Pen E T Pen E T Pen E T Pen E T Pen E T Pen E T
1 201 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1343 13 0 326 6 0 0 0 0 159 2 0 0 0 0 0 0 0
3 762 8 0 106 5 0 0 0 0 28 1 0 0 0 0 0 0 0
4 543 7 0 168 5 0 0 0 0 0 0 0 0 0 0 0 0 0
5 62832 23 8 13983 26 2 5306 20 0 10780 28 0 4831 23 1 4324 18 0
6 1760 13 0 1001 10 0 25 1 0 511 7 0 0 0 0 0 0 0
7 2963 21 0 1047 10 0 0 0 0 382 6 0 0 0 0 0 0 0
8 2512 17 0 1034 12 0 0 0 0 705 8 0 0 0 0 0 0 0
9 3158 20 0 648 10 0 0 0 0 359 5 0 0 0 0 0 0 0
10 1779 17 0 517 12 0 0 0 0 226 5 0 0 0 0 0 0 0

Total 77853 143 8 18830 96 2 5331 21 0 13150 62 0 4831 23 1 4324 18 0
Approx. (78 k) (19 k) (5 k) (13 k) (5 k) (4 k)

Notation:
Greedy = Greedy scheduling heuristic
Randomized Greedy = Randomized Greedy scheduling heuristic
TS = Tabu Search heuristic
SA = Simulated Annealing heuristic
GA = Genetic Algorithm heuristic
GA + TS = Genetic Algorithm followed by Tabu Search heuristic
E = number of (non-maintenance non-breakdown) jobs that completed before their due dates
T = number of (non-maintenance non-breakdown) jobs that completed after their due dates
Pen = Total penalty of the solution schedule

 87

Table C7 : Release dates follow a Gaussian Curve, (-2σ to 2σ)

 Greedy Randomized
Greedy

TS SA GA GA + TS

Case Pen E T Pen E T Pen E T Pen E T
1 8641 27 1 2815 23 0 229 9 0 2210 26 0 417 11 0 237 10 0
2 154184 24 13 66181 20 12 10663 26 4 29001 24 6 7663 28 0 7656 34 0
3 3979 22 0 1161 13 0 168 2 0 1348 14 0 304 2 0 141 2 0
4 338990 28 27 255086 25 21 133812 32 13 189142 34 19 106046 41 10 104885 36 11
5 507 6 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0
6 251647 15 16 133382 29 10 28582 33 3 72073 26 7 22969 39 2 19643 40 2
7 236602 14 18 117322 25 13 23710 32 3 86445 27 11 21015 33 1 22796 19 4
8 1036 13 0 600 7 0 0 0 0 396 8 0 0 0 0 0 0 0
9 17739 28 2 3691 24 0 460 8 0 3504 20 0 820 16 0 794 10 0
10 24435 17 3 4549 18 1 35 1 0 1836 17 0 156 6 0 73 2 0

Total 1037760 194 80 584792 185 57 197659 143 23 385955 196 43 159390 176 13 156225 153 17
Approx. (1038 k) (585 k) (198 k) (386 k) (159 k) (156 k)

Notation:
Greedy = Greedy scheduling heuristic
Randomized Greedy = Randomized Greedy scheduling heuristic
TS = Tabu Search heuristic
SA = Simulated Annealing heuristic
GA = Genetic Algorithm heuristic
GA + TS = Genetic Algorithm followed by Tabu Search heuristic
E = number of (non-maintenance non-breakdown) jobs that completed before their due dates
T = number of (non-maintenance non-breakdown) jobs that completed after their due dates
Pen = Total penalty of the solution schedule

 88

	Appendices
	Appendix A Sample Test Case

