THE EARLY-TARDY DISTINCT DUE DATE MACHINE SCHEDULING PROBLEM WITH JOB SPLITTING

BERNICE HO KAH YUAN

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

Acknowledgements

In the course of this project, I have replied upon the help of several people to get me through this time.

To my friends Ang Juay Chin and Ho Wee Kit, who were given the task of creating an interface for an unusual scheduling problem by our supervisor at that time, A / P Andrew Lim. It was listening to the problem specifications given to them that first piqued my interest in the project, and they have my apologies if I stepped on their toes at that time with my nuisance questions.

Also, to my family, who gave me moral support throughout the project, even if they never seemed to have any idea what I was talking about most of the time.

Last but not least, to my husband Oon Wee Chong, who has given me loving support over the years, encouraged me and scolded me when I needed it, and put up with my temperaments and almost-daily hay fever attacks.

Table of Contents

Page No.

Acknowledgements i
Table of Contents ii
Summary iv
List of Figures and Tables vi
Chapter 1
Introduction and Outline 1
Chapter 2
Scheduling Models and Notation 3
Chapter 3
Problem Description 7
3.1 Related problems 7
3.1.1 Early-Tardy Machine Scheduling 7
3.1.2 Splitting Jobs on Parallel Machines 8
3.2 The Early-Tardy Distinct Due Date Machine Scheduling Problem 9 with Splitting Jobs and Setup Times (ETDDDsplit)
Chapter 4
A Review of Basic Scheduling Heuristics 14
4.1 Greedy Techniques 14
4.2 Enumerative Techniques 16
4.3 Neighborhood Search Techniques 16
4.3.1 Tabu Search (TS) 17
4.3.1a Long-term memory in Tabu Search 18
4.3.2 Simulated Annealing (SA) 19
4.3.3 Genetic algorithms (GA) 20
4.4 Artificial Intelligence (AI) Techniques 22
4.4.1 Neural Networks (NN) 22
4.4.2 Multi-agent Systems (MAS) 23
Chapter 5
Solving the ETDDDsplit problem 24
5.1 How hard is the ETDDDsplit problem? 24
5.2 Heuristics for the ETDDDsplit scheduling problem 25
5.2.1 Greedy Scheduling Heuristic 25
5.2.2 Adjusted Greedy Scheduling Heuristic 37
5.2.3 Tabu Search (TS) 42
5.2.4 Simulated Annealing (SA) 44
5.2.5 Genetic Algorithm (GA) 46
5.2.6 Genetic Algorithm (GA) combined with Tabu Search (TS) 49
Chapter 6
Experiments and Results 50
6.1 Generation of Test Problems 50
6.2 Heuristic Variable Settings 53
6.2.1 Selection of Heuristic Variable Settings 54
6.3 Analysis of Heuristic Performances and Job Release Patterns 56
6.3.1 Experimental Results 58
6.3.2 Comparison of the Heuristics' Performances 59
6.3.3 Comparison of the Test Groups 61
Chapter 7Conclusions and Future Work62
References 64
Appendices
Appendix A Sample Test Case 69
Appendix B Sample Schedule Solution 73
Appendix C Full Experimental Results 81
Table C1 : Heuristic Variable Settings for Tabu Search 82
Table C2 : Heuristic Variable Settings for Genetic Algorithm 83
Table C3 : Heuristic Variable Settings for Simulated Annealing 84
Table C4 : Randomly spread release dates (Random) 85
Table C5 : Sequential release dates (Sequential) 86
Table C6 : Release dates follow a Gaussian Curve, ($-\sigma$ to σ) (Gauss1) 87
Table C7 : Release dates follow a Gaussian Curve, (-2σ to 2σ) (Gauss2) 88

Summary

In this thesis, we introduce a new practical scheduling problem, the early-tardy machine scheduling problem with distinct due dates and splitting jobs with setup times on uniform parallel machines (ETDDDsplit). It combines characteristics from 2 known scheduling problems - the early-tardy scheduling problem with distinct due dates (on a single machine or on parallel machines) as well as the relatively lesser known scheduling problem with splitting jobs (also called "lotsizing"). In early-tardy scheduling, the aim is to minimize the total weighted distance between each job's deadline and actual completion time. The weights are denoted by early and tardy penalties. In scheduling with job splitting, scheduling with preemption is taken a step further, such that a job's subsections can be simultaneously scheduled on different parallel machines. The ETDDDsplit problem is NP-complete, and does not appear in any literature to date.

We applied (singly and in combination) the standard search techniques of Tabu search, genetic algorithm and simulated annealing, along with a new greedy heuristic, to variations of the problem. The heuristics were run on test cases created using 200 jobs on 5 parallel machines of varying processing rates, to be scheduled over a maximum period of 2000 time units. The jobs had machine- and sequenceindependent setup times and random processing requirements. Besides the standard set of jobs, 2 additional sets of special jobs were included - maintenance jobs and breakdown jobs. In cases where the jobs were well-spread out over the entire scheduled period, the heuristics generally performed well. However, as the jobs' release dates were placed closer and closer together, the heuristics' performances
deteriorated. By comparing the heuristics' performances, it was inferred that the solution topology of this problem is very flat, making it very difficult to find the global optimal solution.

There is much room for further research in many aspects of this problem, such as a more accurate modeling of the problem and refinements of the search techniques applied to the problem.

List of Figures and Tables

Page No.

Fig. 1 Pseudo code for the greedy scheduling heuristic (overall) 28
Fig. 2 Pseudo code for the greedy scheduling heuristic (job subsection placement)29
Fig. 3 Current machine schedule for greedy heuristic example 34
Fig. 4 Pseudo code for the adjusted greedy scheduling heuristic (overall) 38
Fig. 5 Pseudo code for the adjusted greedy scheduling heuristic (job subsection placement) 39
Fig. 6 Pseudo code for the tabu search heuristic 42
Fig. 7 Pseudo code for the simulated annealing heuristic 44
Fig. 8 Pseudo code for the genetic algorithm heuristic 47
Fig. 9 Crossover operation for the genetic algorithm heuristic 48
Fig. 10 Relationship between schedule length, a Gaussian distribution 51 and jobs' release dates
Table 1: Aggregated Experimental Results for Tabu Search 54
Table 2 : Aggregated Experimental Results for Genetic Algorithm 55
Table 3 : Aggregated Experimental Results for Simulated Annealing 56
Table 4 : Aggregated Experimental Results Comparing Heuristics 58

Chapter 1

Introduction and Outline

As long as there are limited resources to achieve our aims, scheduling problems will always exist in various shapes and forms, both in our personal and professional lives. Finding the optimal way to apply our finite resources to the tasks at hand has been the focal point of much research not only in the field of computer science, but also in mathematics, operations research and engineering. The fact that so many scheduling problems are NP-complete [Garey and Johnson, 1979] means that we will probably be wrestling with this demon for many years to come. The long title of this thesis reflects the research that has been already been done on scheduling problems, and hence the extensive specifications needed to describe a unique scheduling problem.

Out of this multitude of possible scheduling problems, why did I decide to work on this particular problem? It was happenstance that I overheard others' work which piqued my interest. Some friends needed to create an interface for a T-shirt manufactory which had a non-standard scheduling problem. It incorporated some facets of a few known problems (specifically, the early-tardy machine scheduling problem and the machine scheduling problem with splitting jobs), but was different enough from all of them that a different approach to solving it needed to be considered. At that time, I was still casting about looking for a research topic that interested me, and started to investigate it. It was to my surprise that I could not find any prior research on this particular problem, despite seeming to be such a reasonable set of restrictions under real-life conditions. This work is merely starts to examine this
problem, and I hope that more work can eventually be done so that good (if not optimal) solutions can be consistently generated for it.

In this thesis, we examine a new machine scheduling problem with practical applications, and look at some heuristics that can be applied to generate solutions under varying conditions. In Chapter 2, we first look at the standard scheduling models and notation that is commonly used. In Chapter 3, we fully describe the ETDDDsplit problem together with other scheduling problems it can be related to. In Chapter 4, we review some of the standard scheduling techniques used on problems similar to the ETDDDsplit problem. In Chapter 5, we focus our attention on the heuristics that were used to tackle the ETDDDsplit problem and show that it is indeed NP-complete. Chapter 6 outlines some tests run to determine what values should be used for each heuristic, then describes the test data and heuristic variables used for the experiments, ending with a discussion on the results. In Chapter 7, we conclude with our general findings and thoughts on possible future directions for research on this problem.

Chapter 2

Scheduling Models and Notation

Scheduling problems involve the optimal allocation of resources to activities (jobs) over time. There are many scheduling models to cover a wide range of real-life and theoretical scheduling problems. Usually, each model can be defined by 3 parameters - the machine environment, the optimality criteria and the job characteristics and constraints. This is represented in the standard notation - a 3-field classification system α / β / γ as given by numerous authors [Graham et al, 1979; Lawler et al, 1993; Chen et al, 1998] where :
α denotes the machine environment and number of machines, $\alpha \in\{1, P, Q, R, O, F$, $J\}$. If we define the machine processing rate to be $r_{i j}$ (the amount of job J_{j} that M_{i} processes in 1 time unit), a machine M_{i} processing the whole of job J_{j} with a setup time s_{j} would take $\left(p_{j} / r_{i j}+s_{j}\right)$ time units to finish processing the job.

- $\alpha=1$ (a single machine with machine rate r)

In problems where more than 1 machine is present, there can be 2 types of machines parallel (where any machine can perform any task) and dedicated (where machines are specialized for different tasks). For parallel machines, the problem categories are :

- $\alpha=P$ (identical parallel machines, $p_{j} / r_{i j}=p_{j} / r$, where r is independent of job and machine)
- $\alpha=Q$ (uniform parallel machines, $p_{j} / r_{i j}=p_{j} / r_{i}$, where r_{i} is machine-dependent)
- $\alpha=R$ (unrelated parallel machines where $r_{i j}$ is both job- and machinedependent)

In a shop environment with dedicated machines, each job has up to m operations. Each operation must be processed on a different specific machine and may be of varying lengths. For dedicated machines, the problem categories are :

- $\alpha=O$ (open shop : the operations of a job can be processed in any order as long as no operations of the same job are processed simultaneously)
- $\alpha=J$ (job shop : there exists a total ordering on the operations of a job, and an operation may not commence until its predecessor is complete)
- $\alpha=F$ (flow shop : similar to job shop, but each job's operations have the same total order with respect to machine usage, though operation lengths may differ)

In all standard cases, each machine can process only 1 job (or its operations) at a time. If the problem has a fixed number of machines, that number is included in the environment specification.
β denotes various constraints and job characteristics. This relates to the following characteristics:

- whether jobs have release dates
- the relationship (if any) between release dates, due dates and processing time
- the nature of the jobs' due dates (e.g. common due dates "CDD", distinct due dates "DDD", common due windows, the due date assignment problem)
- whether preemption is allowed (i.e. an job being processed can be interrupted before completion and then continued later)
- whether precedence constraints exist (i.e. a partial order on the set of jobs is given such that $J_{i} \pi J_{j}$ implies J_{i} must be completed before J_{j} can begin being processed)
- the relationship (if any) between processing times and weights of each job
- whether machines have an idle time restriction
- whether the family scheduling model is used (also indicating the dependencies of the inter-family setup times, batch- or job-availability assumptions and batching machine assumptions if the family model is used)

Almost all research has assumed that each job can be processed on at most 1 machine at a time. However, Xing and Zhang [Xing and Zhang, 2000] referred to an additional characteristic specific to parallel machine scheduling,

- whether each job can be processed on more than 1 machine at the same time. We thus differentiate "splitting" (where each job can have subsections that are processed on more than 1 machine simultaneously) from "preemption" (where jobs can be broken into subsections and processed at non-overlapping times).
γ denotes the optimality criterion used to measure how good any given schedule is.
Some common criteria used are $\gamma \in\left\{C_{\max }, \max L_{j}, \sum C_{j}, \sum U_{j}, \sum T_{j}, \sum w_{j} C_{j}, \sum w_{j} U_{j}\right\}$. A more detailed description of all the fields' parameters can be found in Finke et al's bibliographic review [Finke et al, 2002].

Standard scheduling problems can usually be described as m machines $M_{i}(i=1, \ldots$, m) being available to process n jobs $J_{j}(j=1, \ldots, n)$. Each scheduled job J_{j} may have the following characteristics :

- processing requirement p_{j} (size of the job, the actual processing time required depends on the rate of the machine that is processing the job J_{j})
- due date or deadline d_{j}
- setup time $s_{k j}$ ("idle time" required on a machine after processing J_{k} before processing J_{j}, considered sequence-dependent if $s_{k j} \neq s_{j k}$)
- release date a_{i} (the earliest time the job can start being processed)
- actual completion time C_{j}
- lateness $L_{j}=c_{j}-d_{j}$
- tardiness $T_{j}=\max \left\{0, L_{j}\right\}$
- unit penalty $U_{j}\left(U_{j}=0\right.$ if $c_{j}<d_{j}, U_{j}=1$ otherwise $)$
- weight w_{j} (a measure of the importance of a job)

Instead of each job having an individual due date, another measure of the "goodness" of a schedule is :

- makespan or maximum completion time of all the jobs, $C_{\max }$

James and Buchanan [James and Buchanan, 1997] used an alternative to w_{j} which was replaced by 2 parameters for each job. These parameters are used when trying to minimize the total weighted distance between the due date and completion date :

- early penalty e_{j} (cost per unit time for early completion i.e. $C_{j}<d_{j}$)
- tardy penalty t_{j} (cost per unit time for late completion i.e. $C_{j}>d_{j}$)

$$
\circ \text { using this, the penalty for a job } J_{j} \text { would be }\left\{\begin{array}{cc}
e_{j}\left|L_{j}\right| & \left(C_{j}<d_{j}\right) \\
t_{j}\left|L_{j}\right| & \left(C_{j}>d_{j}\right) \\
0 & \left(C_{j}=d_{j}\right)
\end{array}\right.
$$

A completed schedule then describes for each job a set of time-units on specific machines that fulfills its processing requirements whilst satisfying the problem's other constraints.

Chapter 3

Problem Description

Before describing the problem that is the focus of this thesis, we first look at some related scheduling problems that are quite closely related.

3.1 Related problems

3.1.1 Early-Tardy Machine Scheduling

The general early-tardy (ET) machine scheduling problem closely models the Just-InTime logistical requirements of many industries today, since there are not only often penalties for completing a job too late, but also penalties for completing a job too early. ET scheduling problems in general are NP-complete [Garey et al, 1978]. There has been much research conducted on the common due date (CDD) scheduling problem and its variations, although preemption is usually not included. These include problems with job setup time requirements [Rabadi et al, 2002] and multiple parallel identical machines [Emmons, 1987; Kubiak et al, 1990].

A more general model of the ET scheduling problems uses distinct due dates (DDD). Research in this area includes work on variations where the problem

- has the same early and late penalties for all jobs on a single machine [Fry et al, 1987]
- has early and late penalties proportional to the processing time of each job on a single machine [Yano and Kim, 1991]
- has unrelated early and late penalties on a single machine [James and Buchanan, 1997]
- does not permit any idle machine times, with a single machine [Ow and Morton, 1989]
- has parallel identical machines [Hamad et al, 2002]

Baker and Scudder's review [Baker and Scudder, 1990] gives a general overview of E / T scheduling.

3.1.2 Splitting Jobs on Parallel Machines

Almost all scheduling research assumes that each job can be processed on at most one machine at a time, although preemption is allowed in certain cases. However, when the processing requirement is measured as a total demand of some product, the job fulfilling that demand can be arbitrarily split over a number of parallel machines and processed simultaneously to complete the job at the optimal time. Potts and Van Wassenhove [Potts and Van Wassenhove, 1992] referred to this process as lotstreaming or lotsizing, and the split parts as continuous sublots. Serafini [Serafini, 1996] applied this model to a scheduling problem in the manufacture of fabric in the textile industry.

Xing and Zhang [Xing and Zhang, 2000] used the term "splitting" instead of "lotsizing". They looked at the problem of splitting jobs on identical parallel machines $(\alpha \in\{P, Q\})$ with and without setup times, considering various optimality criteria γ. They proved that the problem of splitting jobs on identical parallel machines $(\alpha \in\{P, Q\})$ and $\gamma \in\left\{C_{\max }, \max L_{j}, \Sigma C_{j}, \Sigma U_{j}, \sum w_{j} C_{j}\right\}$ without setup times and early penalties is polynomially solvable. However, where $\gamma \in\left\{\Sigma T_{j}, \Sigma w_{j} U_{j}\right\}$, the
problem is NP-hard. The case when $\left(\alpha=P, \gamma=C_{\max }\right.$) with setup times (but without early penalties) is NP-hard [Xing and Zhang, 1998]. For this problem, they proposed a heuristic which has a worst-case performance ratio $\leq(7 / 4-1 / m)(\mathrm{m} \geq 2)$, by using the maximum completion time estimation procedure and setup time list scheduling.

3.2 The Early-Tardy Distinct Due Date Machine Scheduling Problem with Splitting Jobs and Setup Times (ETDDDsplit)

In real life, a problem similar to both the problems described above (the ET scheduling problem and the scheduling problem with splitting jobs) occurs in the manufacturing industry and in logistics. Often, jobs can be split into arbitrarily small subsections. Each subsection can then be processed simultaneously on separate processors, provided some cost ("setup time") is paid for each such subsection. This scheduling problem can be described as splitting jobs on parallel machines where $\alpha \in$ $\{P, Q\}$. The optimality criteria γ needs to consider both early and late penalties in completing a job before or after its due date given by the entity placing the job order. The early penalties represent the manufacturer's cost of storing the finished goods before handing off the goods at the given due date. The late penalties represent the cost of the failing to meet the set deadline, which ranges from an actual imposition of monetary cost, to the loss of customer goodwill and reputation within in the industry.

This problem was based on a real-life scenario, where a T-shirt manufacturer receives orders to produce T-shirts. Each order (which corresponds to a job J_{j}) must have the following parameters :

- The number of T-shirts required. This corresponds to the processing requirement p_{j} of the job.
- A few templates (≥ 1) of the design the machines are to copy onto the T-shirts. The number of templates given to the manufacturer limits the number of subsections of the job that be run simultaneously, as each machine processing a subsection needs a template to work from. This parameter is described as maxPara $_{j}$.
- A due date or deadline when the finished T-shirts are required, d_{j}.
- A release time when the job is first made available for processing, a_{i}.
- A sequence-and machine-independent setup time, s_{j}. The processing machine cannot have any assigned job for s_{j} time units before it can start processing a subsection of J_{j}. This time is needed for the installation and configuration of the template and raw materials into the machine before processing can start. The machine-idle setup period must occur strictly after the completion of any other section that was processed earlier on the same machine.
- A form of early penalty for completion of the job before its due date. Ideally, the early penalty should reflect the cost of storing the finished goods prior to delivery. Thus, it should actually be proportional to the quantity of finished goods being stored after each section. For simplicity however, we assume a constant early penalty e_{j} which only has an effect if the job's completion time C_{j} is after the due date d_{j}.
- Hence, the total early penalty for $J_{j}=\left\{\begin{array}{c}e_{j} \times\left(d_{j}-C_{j}\right) \text { for }\left(C_{j}<d_{j}\right) \\ 0 \text { otherwise }\end{array}\right.$
- A late penalty for completing the job after the due date, t_{j}.
- The total late penalty for $J_{j}=\left\{\begin{array}{c}t_{j} \times\left(C_{j}-d_{j}\right) \text { for }\left(C_{j}>d_{j}\right) \\ 0 \text { otherwise }\end{array}\right.$
- Each job may have a limit to the number of subsections it can be split into. This parameter is denoted by maxSplit ${ }_{j}(\geq 1)$.

The manufacturer has the following resources and knowledge :

- m parallel uniform machines M_{i}, each with its own machine rate $r_{i}, i \in\{1, \ldots$, $m\}$. Any machine can work on any job, albeit at different processing rates. The setup time required for each job is independent of the machine. Each machine can only process 1 subsection of any job at a time.
- The number of people (termed machine "servers") who do the setups for each job subsection. Each "server" can only set up 1 machine at a time, can do the setup for any job on any machine, and is kept occupied for the entire setup period. This limits the number of job subsections that can have their setups overlap or run concurrently. We describe this parameter as maxServ.
- A maintenance schedule for the machines. Each maintenance "job" $J_{m j}$ includes
- a specific machine M_{i} to which it must be assigned
- a fixed time length $p_{m j}$ which denotes how long it takes to conduct maintenance work on the machine. This value is independent of the machine rate. It is similar to the processing requirement of standard jobs, as if all machine rates $r_{i}=1$.
- a narrow time window during which the maintenance job must be scheduled. In this case, it was always fixed at $d_{m j}-a_{m j}=1.5 * p_{m j}$ and $t_{m j}$ should be infinitely (or for practical purposes, just very) large.
- There is no need for early penalties for maintenance jobs, as it does not matter if it finishes before its deadline. Hence, $e_{m j}=0$.
- For all maintenance jobs, $\operatorname{maxSplit} t_{j j}=1, \operatorname{maxPara}_{m j}=1$ and $s_{m j}=0$.
- Maintenance jobs on the same machine cannot overlap.
- There can also be a breakdown schedule for the machines. In real life, breakdowns obviously do not make themselves known in advance to schedulers. It is added here merely to ensure that not all machines are always available. Each breakdown "job" $J_{b j}$ has
- a specific machine M_{i} to which it must be assigned
- a fixed time length $p_{b j}$ which denotes how long the machine is broken down. In effect, this value is similar to a maintenance job's $p_{m j}$.
- a time window during which the breakdown job must be "scheduled". Hence, $d_{b j}-a_{b j}=p_{b j}$ and e_{j} and t_{j} are infinitely large.
- For all breakdown jobs, $\operatorname{maxSplit}_{b j}=1, \operatorname{maxPara}_{b j}=1$ and $s_{b j}=0$.
- Breakdowns and maintenance jobs on the same machine cannot overlap.

In summary, the scheduling problem with splitting jobs on uniform parallel machines and early and tardy penalties and distinct due dates (ETDDDsplit) can be defined by the following characteristics :
global variables

- n jobs $J_{j}, j \in\{1, \ldots, n\}$
- m machines $M_{i}, i \in\{1, \ldots, m\}$
- maxServ
- A set of maintenance jobs $J_{m j}$ and breakdown jobs $J_{b j}$ (further defined below)
job variables (for non-maintenance and non-breakdown jobs)
- processing requirement p_{j}
- fixed setup time s_{j}
- release time a_{j}
- due date d_{j}
- completion time C_{j}
- early penalty e_{j}
- late penalty t_{j}
- maximum number of subsections, maxSplit j_{j}
- maximum number concurrent subsections, maxPara $_{j}$
job variables (maintenance or breakdown jobs)
- fixed time requirement $p_{m j}$ or $p_{b j}$
- release time $a_{m j}$ or $a_{b j}$
- due date $d_{m j}$ or $d_{b j}$
- machine M_{i} which the job must be scheduled to run on
machine variables
- machine processing rate r_{i}
optimality criteria
- $\min \left(\sum_{j=1}^{n}\right.$ penalty for job $\left.J_{j}\right)$ where (penalty for $\left.J_{j}\right)=\left\{\begin{array}{c}e_{j}\left(d_{j}-C_{j}\right) \text { if }\left(C_{j}<d_{j}\right) \\ t_{j}\left(C_{j}-d_{j}\right) \text { if }\left(C_{j}>d_{j}\right) \\ 0 \\ \text { if }\end{array}\left(C_{j}=d_{j}\right)\right.$.

Chapter 4

A Review of Basic Scheduling Heuristics

There have a variety of heuristics which have been catered to solve scheduling problems. When there are no early penalties, a possible starting point is to schedule the jobs as early as possible every time a machine is free. With both early and late penalties present, there is a need to try and complete the most heavily weighted jobs as close to the deadline as possible to minimize the penalties. Some techniques that have been applied to forms of scheduling closely related to ETDDDsplit scheduling are briefly described below.

4.1 Greedy Techniques

The obvious approach to solving a scheduling problem (assigning some job to a machine once it becomes available) can be refined by giving each job some priority based on the optimality criteria. The job with the highest priority then becomes the next one to be assigned provided no constraints are violated. The simplest prioritizing dispatch rules include

- Shortest Processing Time (SPT) which schedules the jobs by non-decreasing processing requirement; there is also Longest Processing Time (LPT) which schedules the jobs in the opposite order to SPT
- Shortest Remaining Processing Time (SRPT) which makes allowances for preemption by checking at each point in time for the job with the smallest remaining processing requirement
- Earliest Due Date (EDD) which schedules the jobs by non-decreasing due date

Problems that allow preemption of jobs need some heuristics to break up the jobs into subsections. To that end, there have been some splitting and scheduling heuristics with performance assurances) such as

- Largest-setup-time list scheduling and splitting heuristic (LSU) [Monma and Potts, 1993]
- Largest-batch-time list scheduling and splitting heuristic (LBT) [Chen, 1993]
- Maximum completion time estimation procedure and set-up time list scheduling (ML) [Xing and Zhang, 1998]

There has been research on heuristics (prioritizing methods) for early-tardy scheduling problem with distinct due dates (ET DDD) that have no inserted idle time, such as Valente and Alves' [Valente and Alves, 2003] WPT-MS heuristic (weighted processing time and minimum slack). However, the optimal solution for the ET DDD problem requires that idle time be inserted between jobs [Baker and Scudder, 1990]. Moreover, in the case of the ETDDDsplit problem, the calculations determining job priority should consider the early and late penalties, the processing size remaining and the amount of idle machine time left between the job release time and the job deadline (the job's slack). The ETDDDsplit problem is also preemptive, so the priority rating of a job can change as it is being processed, causing the preemption of the currently running job for another of now-higher priority. That the ETDDDsplit problem has more than 1 machine also complicates matters.

As optimal solutions for ET DDD scheduling problems require idle time to be inserted between jobs, Baker and Scudder [Baker and Scudder, 1990] suggested that the problem be broken down into 2 distinct phases :

- A sequencing phase which orders the jobs
- A scheduling phase which completes the schedule by inserting idle time

4.2 Enumerative Techniques

Enumerative methods such as integer programming, mixed-integer programming, dynamic programming and branch-and-bound have been applied to scheduling problems. Generally, they have had limited success on NP-complete scheduling problems of large size, although Lagrangian relaxation and decomposition strategies help to increase the size of problems that can be handled within a reasonable time using mathematical techniques. Chen and Powell [Chen and Powell, 1995] used a mixture of decomposition methods, integer programming and branch-and-bound on parallel machine scheduling problems (with tardy penalties but not early penalties) of up to 100 jobs on 10 machines.

Hoogeveen and van de Velde [Hoogeveen and van de Velde, 1996] applied branch-and-bound to the single-machine ET DDD scheduling problem, and concluded that direct application to the problem posed problems. Firstly, the insertion of idle machine time is a valid means to reduce the early penalties, but its inclusion in the algorithm complicates the design substantially. Secondly, it is difficult to compute strong lower bounds for the algorithm, which greatly reduces its effectiveness.

4.3 Neighborhood Search Techniques

In comparison to enumerative techniques, general neighborhood search techniques can often be used to generate a viable, though probably sub-optimal schedule. They can also be easily enhanced when combined with other heuristics. Among the most popular of these are Tabu search, simulated annealing and genetic algorithms.

4.3.1 Tabu Search (TS)

Tabu search was developed by Glover [Glover, 1989; Glover, 1990] as a search technique for solving a wide variety of NP-hard problems. The basic idea is to explore the local search space of feasible scheduling solutions by a sequence of moves. Like gradient based techniques, a move from 1 schedule to another is made by evaluating all candidates and choosing the best available, even if the move temporarily results in a slightly inferior solution. Some moves are classified as tabu as they could lead to cycling, or is known to trap the search at a local minimum. These moves are placed on a Tabu List for a certain period of time (a short-term memory function), until the current solution has moved sufficiently far away from its original position. In large problems, Reeves [Reeves, 1993] suggested a candidate list strategy to identify and evaluate a subset of neighbors which may contain better solutions. This allows the search to move to new solutions more quickly, but at the cost of quality.

Three common neighborhood schemes for TS as applied to scheduling problems are :

- Adjacent pair-wise exchange (a job may be swapped with jobs directly before or after it in the schedule)
- Swap (any 2 jobs in the schedule may be swapped)
- Insert (a job is taken from its current position and placed in a another position in the schedule)

These can easily be used for the sequencing phase of the ET DDD problem. TS is usually applied on some starting job sequence based on greedy criteria, then idle time optimally inserted. There have been several idle time insertion procedures created for the scheduling phase [Fry et al, 1987; Yano and Kim, 1991].

James and Buchanan [James and Buchanan, 1997] combined the sequencing and scheduling phases by not overtly inserting idle machine into a job sequence, but rather by designating jobs as either early or tardy. They then used known characteristics of the common due date problem by Baker and Scudder [Baker and Scudder, 1990] (the optimum schedule is V -shaped with no idle time between jobs) as guidelines to schedule all early jobs in ascending e_{j} / p_{j} order, then all tardy jobs in t_{j} / p_{j} order. A neighbor in TS was thus defined to be a schedule that had one of its jobs' status changed from early to tardy or vice versa.

4.3.1a Long-term memory in Tabu Search

Long term memory in TS records attributes of the best solutions for

- diversification, to move the search to another area of the solution space, then
- intensification, to intensify the search in areas which have share some attributes with the best solutions so far.

James [James, 1998] explored the effectiveness of long-term memory in TS. Three types of data were stored in long term memory in this investigation - the number of times a jobs was positioned in a given location, the number of times a job was designated as early or tardy, and storing the entire search and all the solutions visited in a special memory structure. He concluded that long term memory does have a significant impact on search performance although more information stored does not guarantee better results. It was also noted that best results came from restarting the search from different starting points, widening the search space.

4.3.2 Simulated Annealing (SA)

Simulated annealing [Kirkpatrick et al, 1983] was derived from the physical process of annealing a liquid to its solid state. At its initial high temperature, the molecules in a liquid are disorganized and of random orientation. Liquids that are cooled quickly solidify with its molecules staying in their random orientation, resulting in a relatively high energy state. This is analogous to a problem solution being caught in a local minimum. Liquids that are cooled very slowly allow the molecules to shift into more ordered configurations, maintaining a state of thermodynamic equilibrium. The solid formed would thus reach the lowest energy state (and the problem solution that is found using infinitesimally small improvements would likewise be at the global minimum). The objective function for the problem solution is used as its "energy value". The probability a neighboring candidate solution is chosen as the basis for the next iteration is proportional to $\exp \left(-\left(\Delta E_{\text {best }}-\Delta E_{\text {candidate }}\right) / T K\right)$ where $T=$ the current temperature (which drops slowly with each iteration) $\Delta E_{\text {best }}=$ the greatest possible improvement of the objective function $\Delta E_{\text {candidate }}=$ the improvement for the neighboring candidate solution $K=$ normalization factor

Since the best neighbor is not always chosen, the algorithm is able to escape local minima. Rabadi et al [Rabadi et al, 2002] used SA to generate solutions to small- and medium-sized instances (up to 25 jobs) of the single-machine ET CDD problem with sequence-dependent setup times and no preemption. The results were very satisfactory compared to actual optimal solutions which had been found using branch-and-bound.

4.3.3 Genetic algorithms (GA)

Genetic algorithms were developed by Holland [Holland, 1992] as artificial adaptive systems to simulate natural evolution and mutation. Each solution corresponds to an individual of a species, and an evaluation function determines which ones survive to the next generation. It has been found to be a practical approach to generating good solutions to difficult problems. The basic mechanics of a GA are conceptually simple, though it may be difficult to state the problem and solution space in terms that GA can be applied onto. After creating an initial population of valid solutions, the algorithm :

- Maintain a population of valid solutions coded as artificial chromosomes of fixed length that have been rated as the "fittest" individuals
- Select 2 of the better solutions for recombination ("crossover") to generate valid "offspring" solutions. Hopefully, the new solutions will carry good traits from both parents
- Perform mutation and other variation operators on the offspring
- Use these offspring to replace the poorer solutions in the population to improve it overall fitness, or create an new population altogether for the offspring.

Sivrikaya-Serifoglu and Ulusoy [Sivrikaya-Serifoglu and Ulusoy, 1999] used GA to tackle the ET DDD uniform parallel machine scheduling problem and sequencedependent setup times with encouraging results. Each population member was described by a set of n genes, each gene containing an object-selection pair and encoding the associated job and the machine selected for its processing. The order of the genes on the chromosome dictated the order of the jobs on the machines, i.e. for n $=4, \mathrm{~m}=2$, chromosome [3-2, 2-1, 4-1, 1-2] denoted that machine 2 processes job 3
then job 1, and machine 1 processes job 2 then job 4 . The offspring chromosome was not constructed from single "crossover" operation, but by

- choosing one of the parents randomly
- finding the earliest gene/object on the parent that has not yet been assigned to the child and setting that gene as the next one on the chromosome
- picking from either of the parents the machine selection for the child iteratively until the child's chromosome is complete. The mutation operators were :
- the swap mutation, where 2 jobs' positions are swapped
- the bit mutation, where a job's assigned machine is reassigned to a random machine (possibly the original machine)

They concluded that GA worked well for difficult scheduling problems, needing relatively modest processing requirements and that it could be scaled effectively for larger problems.

4.4 Artificial Intelligence (AI) Techniques

Artificial intelligence uses knowledge of the problem to guide search for a solution, unlike the neighborhood searches' method of mostly blind search using an evaluation function.

4.4.1 Neural Networks (NN)

Neural networks attempt to simulate the learning and prediction abilities of the human brain. They are distinguished by network topology, node characteristics, and training rules for the network weights. Through training with supplied data, supervised learning neural networks attempt to capture the desired relationship between the inputs and the outputs of the network. Neural networks have been used more commonly for job-shop [Jain and Meeran, 1998] and flow-shop scheduling rather than ET machine scheduling.

Hamad et al.[Hamad et al, 2002] was first to use a multi-layer perceptron model to tackle the ET DDD problem on parallel identical machines. The network had 11 inputs for the 11-element vector used to represent each job, m outputs and a 9-node hidden layer. The output node with the highest value then designated the machine the job should be processed on. After all the jobs had been fed to the NN, the jobs were scheduled on their assigned machines in order of increasing output values. The network was trained using error back-propagation. The trained neural network gave near-optimal solutions, but it was run on very small cases of up to 6 jobs on 2 machines.

4.4.2 Multi-agent Systems (MAS)

An agent is a computer system that is capable of autonomous decisions and social activity in some environment to meet its design objectives. Gozzi et al.[Gozzi et al, 2002] created a MAS for the ET DDD scheduling problem on identical parallel machines. The MAS had job agents, machine agents, a contract coordinator agent, and agents to produce the job and machine agents. The job and machine agents all had their own agendas, and when created, a job agent was given a budget according to the job's urgency or weight. The job agents tried to minimize the ET penalties on their given budgets by bidding for machine time, and the machine agents tried to maximize their profit from the jobs, and the number of jobs processed. The coordinator agent managed the evolution of time and updates the partial schedule. The authors explored different agent behaviors and their effect on the final solutions created.

Chapter 5

Solving the ETDDDsplit problem

5.1 How hard is the ETDDDsplit problem?

The parallel machine scheduling problem where $\left(\alpha \in\{P, Q\}, \gamma=\sum T_{j}\right)$ with splitting jobs and setup times is NP-complete [Xing and Zhang, 1998]. It can be shown that the ETDDDsplit scheduling is NP-complete too.

The ETDDDsplit scheduling problem is obviously in NP. The time taken to calculate the sum of the penalties for all the jobs given any valid schedule would be of $O(n)$ (involving 1 simple mathematical operation each job's C_{j}, d_{j}, e_{j} and a_{j} values). The problem can be phrased as a decision problem by checking whether there exists a schedule for the given problem which has a total penalty that is less than some value.

By restriction [Garey and Johnson, 1979], the ETDDDsplit scheduling problem can be shown to be NP-complete, as it can be transformed into the above known NPcomplete problem by applying the following restrictions :

- the tardy penalty is much larger than the early penalty for all jobs $\left(t_{j} \gg e_{j}\right)$
- the release dates of the jobs are all zero $\left(a_{j}=0\right)$
- the due dates of all the jobs are the same $\left(d_{j 1}=d_{j 2}\right.$ for all $j 1, j 2$ where $1 \leq j 1<$ $j 2 \leq j)$
- the set of maintenance jobs is empty
- the set of breakdown jobs is empty

5.2 Heuristics for the ETDDDsplit scheduling problem

The ETDDDsplit problem is a completely new problem that carries traits from 2 mostly disparate scheduling problems currently existing in literature - the ET scheduling problem, and the scheduling problem with splitting jobs. Not all the approaches described Chapter 4 were applied to the ETDDsplit problem. The ones applied were a greedy heuristic, tabu search, simulated annealing and genetic algorithm. As described earlier, many approaches to dealing with ET DDD scheduling problems were divided into 2 phases; the first phase involved some form of job ordering, and the second phase was where the solution schedule was actually created using that job ordering, with the insertion of idle machine times that are necessary for any (near) optimal solution. The heuristic described in this chapter follow this basic idea.

5.2.1 Greedy Scheduling Heuristic

The first and obvious approach to the problem was to apply a some "greedy" scheduling heuristic to the jobs, This can be done in 2 phases : by first assigning a priority rating to each job which would dictate the overall order of importance in which the jobs would be scheduled, and then finding a way to create a schedule using the job ordering. The priority ratings would change as jobs are processed. Hence, other waiting jobs' priority ratings might overtake the current jobs' ratings, causing them to be preempted. The scheduling heuristic utilizing priority ratings $\left(R_{j}\right)$ should consider :

- e_{j} and t_{j} (both the penalties). For this problem, e_{j} was in general set much lower than t_{j} but still non-zero. This reflected the general preference to finishing a job early rather than late.
- the remaining unassigned processing requirement of the job $\left(r p_{j}\right)$
- the slack, or the amount of processing power still available due to unassigned machine time between the job's release time and deadline $\left(\right.$ slack $\left._{j}\right)$. This was actually the unassigned machine time multiplied by the respective machine rates r_{i} except for maintenance jobs, which treated all machine rates $r_{i}=1$.
- the number of subsections (sections $_{j}$) already created, compared to maxSplit $\mathrm{j}_{\text {. }}$. If there was little leeway left to split $r p_{j}$ into subsections, the job was considered more urgent.

Some of these characteristics could be related to each other. The priority rating eventually used was :

$$
R_{j}=k_{1} t_{j}\left(\frac{r p_{j}+s_{j}}{\operatorname{slack}_{j}+1}\right)+k_{2} e_{j}\left(\frac{\max \text { Split }_{j}}{1+\operatorname{max~Split}_{j}-\sec \text { tions }_{j}}\right)
$$

where
$k_{1}, k_{2}=$ constants used to adjust the relative importance of the $1^{\text {st }}$ and $2^{\text {nd }}$ terms.
In the $1^{\text {st }}$ term, t_{j} was associated with $r p_{j}$ and slack $_{j}$, as the extent to which a job would likely be tardy could be directly linked to the amount of time it had available to be completed. Hence, the tardy penalty would be considered more important if the slack is small. In the $2^{\text {nd }}$ term, e_{j} was associated with the freedom still available to the scheduler to schedule the job. If the scheduler still had a great deal of freedom to break up the job into subsections, it would be more likely to have the job be completed close to the due date. However, if the scheduler was strongly limited by maxSplit $j_{\text {, the }}$ job could be forced to complete in a single large block well before its due date. For both the $1^{\text {st }}$ and $2^{\text {nd }}$ terms' denominators, some care had to be taken as slack $_{j}$ and (maxSplit ${ }_{j}$ - sections s_{j}) could easily equal zero. Hence, the value of 1 was
added to both denominators to prevent problems in calculations and comparison between each job's R_{j} value.

A higher rating R_{j} means that job J_{j} is currently more urgent. A job which has been completed automatically has $R_{j}=0$. As $t_{j} \gg e_{j}$, the $1^{\text {st }}$ part of the equation would generally have a much greater effect on R_{j} than the $2^{\text {nd }}$ unless sections ${ }_{j} \approx$ maxSplit . A $^{\text {. }}$ larger slack ${ }_{j}$ or smaller $r p_{j}$ reduced the overall priority of the job.

Since there are both early and tardy penalties, instead of working "forwards" in time by placing jobs in a sequence and then inserting idle time to reduce early penalties, an alternative method was to work "backwards" in time, with the starting point of scheduling a job being its deadline. The sequencing and splitting of jobs could then be combined by using the priority ratings to select jobs to schedule. A job would be automatically split if another job's priority rating overtook it at some point in time. Idle time would be automatically inserted to allow a job to finish at its deadline rather than before. This method would obviously work only if most or all the jobs were known long before their respective due dates.

In the course of scheduling the current (and most urgent) job $J_{\text {urgent }}$, there would be periodic comparisons of $J_{u r g e n t}$'s priority rating with that of other jobs'. After scheduling $J_{\text {urgent }}$ to be processed on any machine for a certain time interval (termed "checktime"), the current job's priority rating was checked with that other jobs. During a "checktime", a job-in-progress could be preempted for another job with a higher priority rating. The pseudo code for the greedy scheduling heuristic is in Fig. 1 and 2.

1. Place all "breakdown" jobs $J_{b j}$ in the schedule. All breakdown jobs are tagged as "complete", all nonbreakdown jobs are tagged as not "complete".
2. While (not all jobs complete)
a. Update all R_{j} values. Find incomplete job Jurgent with highest R_{j}.
b. Set best_section = null.
c. If there exists idle machine time between $d_{\text {urgent }}$ and $a_{\text {urgent }}$
i. While-loop through the machines from machine with highest to lowest machine rate r_{i}. Note that if $J_{\text {urgent }}$ is a maintenance job, the machine to be used is fixed.
A. Initialise $t_{\text {end }}$ to the latest idle time on the current machine before $d_{u r g e n t}$ but after $a_{u r g e n t}$ and set section_found = false
B. While section_found $=$ false and
$t_{\text {end }}>\left(a_{\text {urgent }}+s_{\text {urgent }}\right)$
I. Find the longest continuous section on the current machine that starts at $t_{\text {earliest }}$ and ends at $t_{\text {end }}$ within which no violation of maxPara ${ }_{\text {urgent }}$ would occur.
II. If the section length $<s_{j}$, set $t_{\text {end }}=$ $t_{\text {earliest }}$ then continue search.
III. If

- sections ${ }_{u r g e n t}=$ maxPara $_{\text {urgent }}-1$ or
- Jurgent's total remaining processing time on the current machine \leq checktime $+s_{u r g e n t}$ or
- Jurgent's total remaining processing time on the current machine ≤ 2 * checktime but Jurgent cannot be completed in this section, set $t_{\text {end }}=t_{\text {earliest }}$ then continue search.
IV. Else (with respect to II and III) Attempt to schedule a subsection of $J_{u r g e n t}$ (See Fig. 2 for details).
- If a job subsection can be scheduled, set section_found = true and update best_section if the newly found jobsection's endtime is later than best_section's end time.
- Otherwise set $t_{\text {end }}=t_{\text {earliest }}$ then continue search.
d. If best_section = null, schedule this job to complete as quickly as possible after $d_{\text {urgent }}$ without further splitting.
e. Else, insert best_section into the schedule.
f. Update the characteristics of all jobs.

Fig. 1 Pseudo code for the greedy scheduling heuristic (overall)

```
1. Set }\mp@subsup{t}{\mathrm{ start }}{}=-1\mathrm{ and }\mp@subsup{t}{\mathrm{ opt_start }}{\mathrm{ m }}\mp@subsup{t}{\mathrm{ end }}{}-(\mp@subsup{s}{\mathrm{ urgent }}{}+r\mp@subsup{p}{\mathrm{ urgent }}{}/\mp@subsup{r}{i}{})\mathrm{ .
2. If
    - sectionsurgent = maxSpliturgent - 1 or
    - Jurgent's total remaining processing time on the
        current machine \leq checktime + Surgent or
    - Jurgent's total remaining processing time on the
        current machine \leq 2 * checktime
    set }\mp@subsup{t}{\mathrm{ start }}{}=\mp@subsup{t}{\mathrm{ opt_start }}{}\mathrm{ .
        a. If maxServer is violated, set tstart earlier but
        always later than tearliest so that no violation
        occurs. If this is not possible, set t start = -1.
3. Else set tstart_test }=\mp@subsup{t}{\mathrm{ end }}{}-\mathrm{ checktime, searching = true.
    a. While searching = true and tstart_test }\geq\mp@subsup{t}{\mathrm{ earliest}}{
        i. Set valid_try = true.
        ii. If maxServer is violated, set tstart_test
                earlier so that no violation occurs. If this
                is not possible, try later start times. If
                neither works, set valid_try = false.
        iii. If valid_try = true, set tstart = tstart_test
                    I. Calculate temporary values for rpurgent and
                    the slack for all other incomplete jobs
                    assuming the current section is
                    processed. Calculate temporary values of
                    all the incomplete jobs' R}\mp@subsup{R}{j}{}\mathrm{ values and
                    compare the temporary }\mp@subsup{R}{\mathrm{ urgent value with}}{
                    them.
                II. If the temporary Rurgent is not one of m
                    highest priority ratings,
                    set searching = false
                iv. If tstart_test - topt_start }\leq\mathrm{ (checktime or }\mp@subsup{s}{j}{}\mathrm{ ),
                set t}\mp@subsup{t}{\mathrm{ start_test }}{}=\mp@subsup{t}{\mathrm{ opt_start }}{\mathrm{ and searching = true.}
            v. If tstart_test - tearliest }\leq\mathrm{ (checktime or }\mp@subsup{s}{j}{}\mathrm{ ), set
                tstart_test }=\mp@subsup{t}{\mathrm{ earliest and searching = true.}}{
                vi. Else (to iv and v)
                decrease tstart_test by checktime units.
4. If }\mp@subsup{t}{\mathrm{ start }}{}>-1\mathrm{ and }\mp@subsup{t}{\mathrm{ start }}{}<\mp@subsup{t}{\mathrm{ opt_start }}{
    set }\mp@subsup{t}{\mathrm{ end }}{}=\mp@subsup{t}{\mathrm{ start }}{}+\mp@subsup{s}{\mathrm{ urgent }}{}+r\mp@subsup{p}{\mathrm{ urgent }}{}/\mp@subsup{r}{i}{}
5. Return to Fig. 1 indicating success (tstart > -1) with
    details of the section found, or failure (tstart = -1).
```

Fig. 2 Pseudo code for the greedy scheduling heuristic (job subsection placement)

Some comments on the overall greedy scheduling heuristic, for Fig. 1 :

- (Step 1) The breakdown jobs were first inserted into schedule, blocking out the unavailable slots from the start. Al non-breakdown jobs were flagged as incomplete.
- (Step 2a) In each iteration of the Step 2 while-loop, one job subsection of a currently incomplete job was definitely scheduled in Step 2d or 2e. This had an effect on one job's $r p_{j}$, sections ${ }_{\text {urgent }}$ and possibly its "complete" status. Simultaneously, all jobs' slack $_{j}$ could be affected. These changes were updated in Step 2f. Hence, all jobs' R_{j} values were updated at this step before the next selection of $J_{\text {urgent }}$.
- (Step 2b) best_section contained the details of the best subsection found for $J_{u r g e n t}$ in the current iteration of the Step 2 while-loop, including which job being processed, the machine involved, and the start and end times of the subsection.. The best subsection was considered to be the subsection with the latest end time on the fastest available machine.
- (Step 2c \& 2c(i)) Tried to schedule at least a subsection of $J_{\text {urgent }}$ before $d_{\text {urgent. }}$. The fastest machine was checked first before moving on to the next fastest machine until all machines had been considered. Preferentially using the machine with the highest machine rate for the most urgent job tended to ensure that the machines with high machine rates would be used more.
- (Step 2c(i)-A \& B) A search was made on the current machine based on $t_{\text {end }}$. section_found indicated whether a suitable job subsection had been found for the current machine. The search backwards in time continues until a suitable section had been found, or until $t_{\text {end }}$ reached too small a value to be useful.
- (Step 2c(i)-B I) The longest continuous section found always ended at the current $t_{\text {end }}$, and could start at any time between $t_{\text {end }}$ and $a_{\text {urgent }}$ (any time before $J_{\text {urgent }}$ had been released could not be considered).
- (Step 2c(i)-B II \& III) If the length of time that a machine was idle was too short, $t_{\text {end }}$ was decremented and the search continued without further checks,
skipping Step 2c(i)-B IV. If the section length was less than the setup time, no subsection of $J_{\text {urgent }}$ could even be processed. If $J_{\text {urgent }}$ could or should not be split into any more subsections, the length of time that a machine was idle had to be sufficient for $J_{\text {urgent }}$ to be completed $\left(\geq s_{j}+r p_{j} / r_{j}\right)$ in order to schedule the job on that machine at that time. $J_{\text {urgent }}$ should not be further split if the processing time was less than $2 *$ checktime or $s_{j}+$ checktime. Note that a job J_{j} 's processing time on M_{i} is not equal to $r p_{j}$ (remaining processing requirement). It is actually $r p_{j} / r_{i}$, the amount of machine M_{i} 's time that is required to complete the job. The heuristic would try to minimize unnecessary job splitting, as each split results in "wasted" machine time due to the additional setup period incurred for each subsection. The most efficient use of machine time would be for each job to have only 1 subsection and hence only 1 setup period.
- (Step 2c(i)-B IV) At this point, a potential place in the schedule had been found to place at least a subsection of $J_{\text {urgent }}$. Further checks were required to determine the exact length and position of the section, and are described in Fig. 2. If the pseudo code in Fig. 2 could successfully place a job subsection in the schedule, the current iteration of the Step 2c(i)-B while-loop would be essentially completed, i.e. a suitable section of $J_{\text {urgent }}$ had been found for the current machine. This does not necessarily mean that $J_{\text {urgent }}$ could be completed with the newly found section, only that at least a subsection of $J_{u r g e n t}$ could be inserted into the schedule before $d_{\text {urgent }}$ on the current machine. The found section would be compared with the best section found so far on another machine (recorded by best_section), and the section with the later end time stored in best_section.
- (Step 2d) If best_section was empty, this meant that no part of $J_{u r g e n t}$ could be scheduled before $d_{\text {urgent }}$ in the current iteration of Step 2. $J_{\text {urgent }}$ would have to be completed after $d_{\text {urgent }}$ and forced to be completed as soon as possible. Note that it is still possible for some subsection of $J_{\text {urgent }}$ to have been placed in the schedule before $d_{\text {urgent }}$ earlier on in the overall scheduling process.
- (Step 2f) As stated in the comments for Step 2a, the characteristics of all jobs (not just of $J_{\text {urgent }}$) would have to recalculated after the insertion of a job subsection into the schedule. $J_{\text {urgent }}$ would be flagged as complete only if the all the job subsections that had been inserted into the schedule so far (including the one just inserted in this latest iteration) was sufficient to finish processing the job. Once flagged as complete, it would no longer be considered for selection as $J_{\text {urgent }}$ in future iterations of Step 2a.

Further comments on the greedy scheduling heuristic involving job subsection placement, for Fig. 2 :

- This pseudo code checks the current machine for a suitable place to insert a subsection of $J_{\text {urgent }}$, using $t_{\text {end }}$ as a starting point and both $t_{\text {end }}$ and $t_{\text {earliest }}$ as restrictions.
- (Step 1) $t_{\text {start }}$ contains to the best valid start time found so far for the subsection being placed. At the end of the pseudo code in Fig. 2, as long as $t_{\text {start }}$ was a value other than "-1", a subsection of $J_{\text {urgent }}$ could be successfully scheduled. $t_{\text {opt_start }}$ referred to the start time that would allow $J_{\text {urgent }}$ to be completed (given $t_{\text {end }}$) with this subsection, temporarily ignoring $t_{\text {earliest }}$ as a restriction.
- (Step 2) These are the same conditions as stated in Fig. 1 Step 2c(i)-B III.
- (Step 2a) Since maxServer only affects the setup period of any subsection, moving the start time of the subsection tried to fix this violation. The value of $t_{\text {start }}$ must always be later than $t_{\text {earliest }} t_{\text {start }}$ could not be moved later than its original value as it would then be impossible for $J_{\text {urgent }}$ to be completed with this subsection.
- (Step 3 and 3a) A more involved set of checks were required if $J_{\text {urgent }}$ could be further split. $t_{\text {start_test }}$ was used as an interim value in checking whether $J_{\text {urgent }}$ should be split after partial processing. The "checktime" value was the size of the steps used in a step-wise comparison with other jobs. searching was used as the flag to stop or continue the while-loop search for $t_{\text {start }}$. The search for $t_{\text {start }}$ was limited to the values between $t_{\text {earliest }}$ and $t_{\text {end }}$-checktime.
- (Step 3a(ii)) This is similar to Step 2a, except that now $t_{\text {start_test }}$ could also be moved to a later time, though no later than $t_{\text {end }}-\left(s_{\text {urgent }}+1\right)$.
- (Step 3a(iii)) $t_{\text {start }}$ was updated to store the best valid start time found so far the current $J_{\text {urgent }}$ subsection.
- (Step 3a(iii)-I \& II) The calculation of many temporary values was required to compare R_{j} values, much as if the section had already been scheduled using $t_{\text {start }}$ and $t_{\text {end }}$, and ensuring $r p_{\text {urgent }} \geq 0$. The search for a better $t_{\text {start }}$ was usually stopped if the effective value of $R_{\text {urgent }}$ has dropped past the top m values (the exception to this is indicated in the next step). Since there can be up to m different jobs processed simultaneously, as long as $R_{\text {urgent }}$ remained high enough compared to other R_{j}, there was less need to split the job and incur the additional setup costs.
- (Step 3a(iv), (v) \& (vi)) If $J_{\text {urgent }}$ was close enough to completion or there was very little available processing time left on the machine, then the search
should continue regardless of the results of Steps 3a(ii) \& (iii). This was again to prevent additional setup costs. $t_{\text {start_test }}$ was decreased by checktime, or to $t_{\text {opt_start }}$ or $t_{\text {earliest }}$ depending on the circumstances. The conditions of the Step 3a while-loop would prevent the search if $t_{\text {opt_start }}<t_{\text {earliest }}$.
- (Step 4) $t_{\text {end }}$ was set to an appropriate value if the $t_{\text {start }}$ adjustments made in Steps 2a or 3a(ii) to remove maxServer violations made the job subsection longer than would be required to complete $J_{u r g e n t}$.
- (Step 5) If a subsection of $J_{u r g e n t}$ could be placed in the schedule on the current machine, $t_{\text {start }}$ would have a non-"-1" value. The section start and end time values of the suitable section found would be returned to the pseudo code of Fig. 1.

A simple example running through 1 iteration to schedule a job subsection is described below. Consider a small scheduling problem : 3 machines M_{A}, M_{B} and M_{C} where $r_{A}>r_{B}>r_{C}$ and 4 jobs J_{1}, J_{2}, J_{3} and J_{4}. At some point in the scheduling process, some of the machine time has been taken up by job subsections already scheduled, shown as shaded sections in the diagram below. A short section showing the time period of interest (involving $J_{\text {urgent }}$) of the 3 machines is shown in Fig. 3.

Fig. 3 Current machine schedule for greedy heuristic example

Assume that $J_{u r g e n t} \equiv J_{4}$, and that sections urgent $<$ maxSpliturgent -1 . In Fig. 3, M_{A} and M_{B} are only idle at $d_{\text {urgent }}-1, M_{C}$ is idle at $d_{u r g e n t}$. Assume that there is sufficient processing time available on M_{B} to complete $J_{\text {urgent }}$ at $d_{\text {urgent }}-1$ and on M_{C} at $d_{\text {urgent }}$, but also that $J_{\text {urgent }}$ cannot be completed on M_{A} in the time between t_{1} and $d_{\text {urgent }}-1$ although $d_{\text {urgent }}-1-t_{1}$ is much larger than $s_{\text {urgent }}$ (allowing the idle time of M_{A} to be searched).

The pseudo code in Fig. 1 would first attempt to schedule a subsection of $J_{u r g e n t}$ on M_{A} with $t_{\text {earliest }}=t_{1}$ and $t_{\text {end }}=d_{\text {urgent }}-1$. Fig. 2 is then called to exactly describe a section that could be scheduled on $M_{A} . t_{\text {opt_start }}$ would be calculated to be earlier than $t_{\text {earliest }}$. The length of the subsection would first be set to checktime $\left(t_{\text {start_test }}=d_{\text {urgent }}-\right.$ checktime -1), maxServer checked for any violation and then the priority ratings of all the jobs recalculated using new values of slack ${ }_{j}$ and a new value of $r p_{u r g e n t}$ and sections $_{\text {urgent. }}$. Assuming that the priority rating of J_{4} was one of 3 highest values, the length of the subsection would be set to $2 *$ checktime and the priority ratings recalculated again. This could continue until subsection length $=4 *$ checktime. At the next iteration, since the remaining available processing time would be less than checktime, $t_{\text {start_test }}$ would be set to t_{1} and checked to make sure no maxServer violations occurred. A success would be returned to the Fig. 1 pseudo code, and bestSection updated to reflect a section on M_{A} starting at t_{1} and ending at $d_{\text {urgent }}-1$, even though $J_{\text {urgent }}$ would not be completed with this new section.

The Fig. 1 pseudo code would proceed to the next fastest machine M_{B}, with $t_{\text {earliest }}=$ $a_{\text {urgent }}$ and $t_{\text {end }}=d_{\text {urgent }}-1$. In this case, Fig. 2 would return a success with the section on M_{B} starting at $t_{\text {opt_start }}$ calculated in Fig. 2 and ending at $d_{\text {urgent }}-1$. However, since the end time of this section was the same as that of bestSection, there would be no change in bestSection.

Finally, the slowest machine M_{C} would be searched, using $t_{\text {end }}=d_{\text {urgent }}$ and $t_{\text {earliest }}=$ $a_{\text {urgent }}$. The pseudo code of Fig. 2 would be able to find a suitable section on M_{C} starting at $t_{\text {opt_start }}$ and ending at $d_{\text {urgent }}$. Since the ending time of this section is later than that in bestSection (and not because the job can be completed with this new section), bestSection is updated.

With all the machines searched, the schedule would be updated with the job subsection details stored in bestSection, and all jobs' priority ratings updated with the new slack values, remaining processing requirements and number of job sections. The next $J_{\text {urgent }}$ would have to be found (which could be J_{4} again) in order to schedule the next job subsection.

The greedy scheduling heuristic could be randomized somewhat by multiplying some random modifier with each job's priority rating. The random modifier was changed each time a priority rating calculation was done and kept quite small. Hence, at any point during the scheduling, the modifier could allow a job $J_{j 1}$ whose rating $R_{j 1}$ was only slightly less than another job $J_{j 2}$'s rating $R_{\mathrm{j} 2}$ to be selected next for scheduling next in place of $J_{j 2}$. This was the simplest version of searching the area of the solution space closest to the solution found by the greedy heuristic.

5.2.2 Adjusted Greedy Scheduling Heuristic

In order to implement broader and more directed searches from the initial greedy solution, the solutions first had to be represented in a manner that could be easily manipulated. We first observe that if the maxSplit j_{j} values are not very high, the initial priority rating tends to dictate quite strongly the eventual overall order that the jobs are scheduled. Although this assumption does not always hold, it serves as the basis for the adjustment described below. To apply the searches described later, a starting job queue was first derived from the initial priority rating of all jobs, with the head of the queue being the job with the highest R_{j} and subsequent jobs ordered by nonincreasing R_{j}. The scheduling heuristic then needed to be changed to utilize this priority job queue. Jobs were removed from the queue upon completion. The pseudo codes for the adjusted greedy scheduling heuristic that used a priority job queue are shown in Figs. 4 and 5. They follow the format used to describe the greedy scheduling heuristic in section 5.2.1 with amendments to reflect the required changes. The main adjustment comes from only allowing a subset of the jobs (a "pool" of $m+1$ jobs) to be available for scheduling at any time, instead of all jobs being available as in the original dispatch policy. With this heuristic, any initial queue of jobs could be used to generate a valid schedule.

1. Place all "breakdown" jobs $J_{b j}$ in the schedule. Create a queue of incomplete jobs in non-increasing order ($q_{\text {current }}$); the job at the head of the queue has the highest R_{j}. All breakdown jobs are tagged as "complete", all nonbreakdown jobs are tagged as not "complete".
2. Remove the first ($m+1$) jobs from the queue. These ($m+1$) jobs constitute the "pool" of available jobs from which $J_{\text {urgent }}$ can be selected.
3. While (not all jobs complete)
a. Update the R_{j} values of all jobs in the pool. Find incomplete job Jurgent with highest R_{j} of all jobs in the pool.
b. Set best_section = null.
c. If there exists idle time between $d_{u r g e n t}$ and $a_{u r g e n t}$
i. While-loop through the machines from highest to lowest machine rate r_{i}.
A. Initialise $t_{\text {end }}$ to the latest idle time on eth current machine before $d_{\text {urgent }}$ but after $a_{\text {urgent }}$ and set section_found = false
B. While section_found = false and
$t_{\text {end }}>\left(a_{\text {urgent }}+s_{\text {urgent }}\right)$
I. Find the longest continuous section on the current machine that starts at $t_{\text {earliest }}$ and ends at $t_{\text {end }}$ within which no violation of maxPara ${ }_{\text {urgent }}$ would occur.
II. If the section length $<s_{j}$, set $t_{\text {end }}=$ $t_{\text {earliest }}$ then continue search.
III. If

- sectionsurgent $=$ maxPara urgent $^{\text {- }} 1$ or
- Jurgent's total remaining processing time on the current machine \leq checktime $+s_{\text {urgent }}$ or
- Jurgent's total remaining processing time on the current machine ≤ 2 * checktime but Jurgent cannot be completed in this section, set $t_{\text {end }}=t_{\text {earliest }}$ then continue search.
IV. Else (with respect to II and III) Attempt to schedule a subsection of $J_{u r g e n t}$ (See Fig. 5 for details).
- If a job subsection can be scheduled, set section_found $=$ true and update best_section if the newly found jobsection's endtime is later than best_section's end time.
d. Otherwise set $t_{\text {end }}=t_{\text {earliest }}$ then continue search.
e. If best_section = null, schedule this job to complete as quickly as possible after $d_{u r g e n t}$ without further splitting.
f. Else insert best_section into the schedule.
g. If Jurgent was completed with the addition of the newest job subsection, remove Jurgent from the available pool. If the queue is non-empty, remove the job at the head of the queue and place it in the pool. Update the characteristics of all jobs.

Fig. 4 Pseudo code for the adjusted greedy scheduling heuristic (overall)

```
1. Set }\mp@subsup{t}{\mathrm{ start }}{}=-1\mathrm{ and }\mp@subsup{t}{\mathrm{ opt_start }}{\mathrm{ m }}\mp@subsup{t}{\mathrm{ end }}{}-(\mp@subsup{s}{\mathrm{ urgent }}{}+r\mp@subsup{p}{\mathrm{ urgent }}{}/\mp@subsup{r}{i}{})\mathrm{ .
2. If
    - sectionsurgent = maxSpliturgent - 1 or
    - Jurgent's total remaining processing time on the
        current machine \leq checktime + Surgent or
    - Jurgent's total remaining processing time on the
        current machine \leq 2 * checktime
    set }\mp@subsup{t}{\mathrm{ start }}{}=\mp@subsup{t}{\mathrm{ opt_start }}{}\mathrm{ .
        a. If maxServer is violated, set tstart earlier but
        always later than tearliest so that no violation
        occurs. If this is not possible, set t start = -1.
3. Else set tstart_test = tend - checktime, searching = true.
    a. While searching = true and tstart_test }\geq\mp@subsup{t}{\mathrm{ earliest}}{
                i. Set valid_try = true.
                ii. If maxServer is violated, set tstart_test
                earlier so that no violation occurs. If this
                is not possible, try later start times. If
                neither works, set valid_try = false.
        iii. If valid_try = true, set tstart }=\mp@subsup{t}{\mathrm{ start_test }}{\mathrm{ .}
                    I. Calculate temporary values for rpurgent and
                    the slack for all other incomplete jobs
                    in the available queue, assuming the
                    current section is processed. Calculate
                    temporary }\mp@subsup{R}{j}{}\mathrm{ values of all the incomplete
                    jobs in the available pool and compare
                        the temporary Rurgent value with them.
                II. If the temporary Rurgent is the smallest of
                    the R R values checked,
                        set searching = false
                iv. If tstart_test - t topt_start }\leq\mathrm{ (checktime or }\mp@subsup{s}{j}{}\mathrm{ ),
                set t}\mp@subsup{t}{\mathrm{ start_test }}{}=\mp@subsup{t}{\mathrm{ opt_start }}{}\mathrm{ and searching = true.
                v. Else decrease tstart_test by checktime units.
4. If }\mp@subsup{t}{\mathrm{ start }}{}>-1\mathrm{ and }\mp@subsup{t}{\mathrm{ start }}{}<\mp@subsup{t}{\mathrm{ opt_start }}{
    set }\mp@subsup{t}{\mathrm{ end }}{}=\mp@subsup{t}{\mathrm{ start }}{}+\mp@subsup{s}{urgent }{*}+r\mp@subsup{p}{\mathrm{ urgent }}{}/\mp@subsup{r}{i}{}
5. Return to Fig. 4 indicating success (tstart > -1) with
    details of the section found, or failure (tstart = -1).
```

Fig. 5 Pseudo code for the adjusted greedy scheduling heuristic (job subsection placement)

Figs. 4 and 5 for the adjusted greedy scheduling heuristic correspond almost exactly with those of the greedy scheduling heuristic described earlier (Figs. 1 and 2). The main differences and some comments are described below :

- (Fig. 4, Step 1) The priority job queue never included breakdown jobs, all of which were always scheduled before any other jobs in the heuristic. Once the order of the queue had been fixed at this step, it is not changed for the rest of
the scheduling process. $q_{\text {current }}$ represents the job ordering used, and is subject to manipulation in the heuristics described later in this chapter.
- (Fig. 4, Step 2) A subset of all jobs, an available "pool" of jobs from which $J_{u r g e n t}$ is always selected, is used. This available pool always contains $m+1$ jobs until at least $n-m$ jobs have been completed. If a job is completed after an iteration, it is removed from the pool, then job at the head of the queue is moved into the pool. In this way, the starting sequence of jobs in the queue created at Step 1 will have a very large impact on the actual order in which the jobs are eventually scheduled.
- (Fig. 4, Step 3) The whole section basically follows the same process the greedy scheduling heuristic earlier described in Fig. 1, Step 2. The main differences are that the selection of $J_{\text {urgent }}$ is limited to the jobs in the pool (jobs still in the priority queue are not considered), and that updating the characteristics of the jobs after insertion of a new subsection includes the contents of the available pool and the queue.
- (Fig. 5, Step 3a(iii)-II) This step contains the only change from Fig. 2. At this point, the new (and temporary) value of $R_{\text {urgent }}$ is compared to the new R_{j} values belonging to the jobs in the available pool only. The rest of the jobs in the priority queue are again not considered. Only if $R_{\text {urgent }}$ is the smallest of all R_{j} values checked is $J_{u r g e n t}$ pre-empted for another job. As with the original greedy heuristic, the pre-emption is ignored if $J_{\text {urgent }}$ is sufficiently close to completion.

A second way was also used to represent the relative urgencies of the jobs as given by the initial R_{j}. Instead of using a priority queue, an integer array of length n stored the
order given by the initial R_{j} 's. For example, if the $j^{\text {th }}$ array integer value was 10 , this meant that job J_{j} would have the $10^{\text {th }}$ highest initial R_{j} value of all uncompleted jobs (i.e. non-breakdown jobs). All breakdown jobs' corresponding array values were set to -1 so that they would not be considered as part of the job queue. Like the queue, this array could also be acted upon by a search heuristic to give a valid schedule as long as all cells with " -1 " values were left alone and no other integer contents were repeated. The use of an array instead of a priority queue was necessary for implementation of the genetic algorithm in section 5.2.5. The algorithm would be able to manipulate the starting point of the search - the order in which the jobs would be scheduled - by making changes to the array. The resulting manipulated array could then easily be transformed into its equivalent priority job queue, and the same adjusted dispatch policy used to generate a valid schedule.

The aim of creating the adjusted greedy heuristic was to create a template onto which different search techniques could be applied. The following sections of chapter 5 describe the application of tabu search, simulated annealing and genetic algorithm to the scheduling heuristic. In all these cases, the searches made changes in the initial ordering of jobs in the priority queue or its associated array. After the queue or array had been manipulated, the steps outlined in Figs. 3 and 4 would always be run on the manipulated queue ($q_{\text {current }}$ or its corresponding array) to generate the final schedule.

5.2.3 Tabu Search (TS)

Tabu search (without long-term memory) was used to broaden the search around the initial solution found by the greedy dispatch policy. The pseudo code for the TS heuristic used is shown in Fig. 6.

```
Set queue(current = queuefrom initial ratings;
    queue best = queue current;
    cost best = cost of queue best;
Repeat n times
    bestNeighborFound = false;
        While (!bestNeighborFound)
            Create TS_NEIGHBOR neighboring solutions, each
            neighbor created by swapping 2 jobs in queuecurrent
            without violating the Tabu List;
            Calculate the penalties for all neighboring
            solutions;
            If (cost of best neighbor \leq ALLOWANCE * cost cest)
                        Add best neighbor's swap to Tabu List;
                    queue
                    bestNeighborFound = true;
                        If (cost of queue current < cost best)
                            cost best = cost of queuecurrent;
                            queue best = queuecurrent;
Return (queue best) as the best solution;
```

Fig. 6 Pseudo code for the tabu search heuristic

Some comments on the TS heuristic :

- There are 3 variables that can be manipulated :
- TS_NEIGHBOR is the size of a subset of the neighborhood of queue current that is searched. Unless no suitable solution can be found for the next step of the search from this subset, the rest of the neighboring space is not searched.
- TABU_TENURE is the number of search steps a swap remains tabu.
- ALLOWANCE is the leeway granted to the search heuristic in choosing a solution for the next step of the search. As long as a solution is at least

ALLOWANCE times within the best solution, it can be used as the focal point of the next search step.

- The job queue derived from the initial R_{j} values (as described earlier) was used as the starting point of the search, and initially set to be the best solution queue.
- To determine the cost of a given job queue, the adjusted greedy scheduling heuristic had to be run on the job queue. The sum of early and late penalties on the resulting schedule would be the cost of that job queue.
- For any point in the solution space, a neighbor was defined to be another job queue with 2 of the jobs' places in the original queue swapped. Hence, each solution job queue would have up to ${ }^{n} \mathrm{C}_{2}$ neighbors (slightly less, if there are breakdown jobs). To reduce search time, a random subset of size
- TS_NEIGHBOR of the full neighborhood was explored. If a suitable neighbor was found from this subset, it was chosen immediately without exploring more of the neighborhood. The best of this neighborhood subset would then be chosen as the basis of the next step. In practice, the maximum number of neighborhoods the heuristic searched was 100 , in order to limit the processing time required.
- A suitable neighbor did not always have to improve on the best solution found so far. A slight worsening of the solution penalties with respect to the best solution found so far (by ALLOWANCE times) could be accepted.
- As the heuristic ran for n steps, the final solution could be up to n swaps away from the original solution.

5.2.4 Simulated Annealing (SA)

An alternative to using Tabu search to widen the search area is to apply simulated annealing to the problem. In principle, SA could be able to produce near-optimal solutions for a problem, though usually at high processing cost. Applying a format similar that used in [Rabadi et al. 2002], in the course of the search, if there was an improvement in the cost of a neighboring schedule S ' over the current schedule S, a transition from S to S^{\prime} would automatically occur. If the cost of S^{\prime} was higher than S, then the probability that the transition would occur was defined by :

$$
\operatorname{prob}_{a}=\exp \left(-\frac{\text { difference in } \cos t}{T}\right)
$$

The pseudo code for the SA heuristic is shown in Fig. 7.

```
Set S = schedule from initial }\mp@subsup{R}{j}{}\mathrm{ (a priority job queue);
    T = START_TEMP;
    costs = Cost of S;
    iter = 0;
While (iter < MAX ITERS) and (successive iter without
transitions < MAX_STAGNANT ITERS)
    Set trial = 0;
    While (trial < MAX_TRIALS) and (trials with improvement <
    MAX_SUCC_TRIALS)
        Generate schedule S' (a neighbor to S);
        cost\mp@subsup{S}{}{\prime}}=\mathrm{ Cost of S';
        If (cost }\mp@subsup{\mp@code{S}}{}{\prime}<\mp@subsup{\operatorname{cost}}{s}{}) \mp@subsup{\operatorname{cost}}{s}{}=\mp@subsup{cost}{\mp@subsup{s}{}{\prime}}{\prime}\mathrm{ and S = S';
        Else (\mp@subsup{costs }{\prime}{\prime}=\mp@subsup{\operatorname{cost}}{\mp@subsup{S}{}{\prime}}{}\mathrm{ and }S=\mp@subsup{S}{}{\prime}\mathrm{ with probability proba});
        trial++;
    iter++;
    T = TEMP_DECAY * T;
```

Fig. 7 Pseudo code for the simulated annealing heuristic

Some comments on the SA heuristic :

- The term "iterations" (represented by the variable iter)has been used for each step of the outer while-loop and "trials" (variable trial) for each step of the inner while-loop.
- Variables used in the heuristic are listed below. In general, high values for these variables improve solution quality but increase the computational cost.
- START_TEMP is the starting temperature (T).
- TEMP_DECAY $\in(0,1)$ is the temperature decay rate. As T drops with each iteration, the heuristic becomes less likely to accept worse schedules than the current schedule S (prob $_{a}$ gets smaller).
- MAX_TRIALS is the maximum number of trials that can be done at a single temperature T , even if no successful transitions occur.
- MAX_SUCC_TRIALS is the maximum number of trials (transitions) resulting in a better schedule that can occur at one temperature T. If this is reached, the next iteration at a lower T starts immediately.
- MAX_ITERS is the maximum number of different temperatures the heuristic iterates over, even if the schedule is still improving at the end.
- MAX_STAGNANT_ITERS is the maximum number iterations (each at a different temperature) where no transitions from S to S^{\prime} occur. If for MAX_STAGNANT_ITERS iterations, all MAX_TRIALS trials for the inner loop fail, then it is assumed that the probability of obtaining a transition with further iterations is extremely low, and thus the search is terminated.
- The priority job queue derived from the initial R_{j} values (as described earlier) was used as the starting point of the search and set to be S.
- To determine the cost of a given job queue, the adjusted greedy scheduling heuristic had to be run on the job queue. The sum of early and late penalties on the resulting schedule would be the cost of that job queue.
- As in Tabu Search, a neighbor was defined to be another job queue with 2 of the jobs' places in the original queue swapped.

5.2.5 Genetic Algorithm (GA)

Using a genetic algorithm could help to widen the search beyond the immediate vicinity of the initial solution created by the greedy priority ratings. In order to represent each possible solution as a chromosome which must be of a constant length, the n-length integer-array representation of the job priority queue was used.

One member of the initial population of valid solutions was always the array generated from the solution created by the greedy priority ratings. The rest of the members were created by a random ordering of all the non-breakdown jobs. The best and worst solutions of the entire population, together with their costs, were always noted. From this starting population of array solutions, the genetic algorithm heuristic shown in Fig. 8 was run.

```
Repeat GENERATIONS times
    Repeat (1/2 * POPULATION_SIZE) times
        Randomly select 2 parents from Pop (Par 1, Par 2);
        Create 2 offspring (Off 1 and Off ) from Par_ and Par w with a
        single crossover at a random point between n/4 and 3n/4;
        Ensure Off f and Off ''s arrays give legal solutions;
        Off1 and Off f may be randomly mutated depending on mutation
        rate MUTATION;
        Repeat for Off ci and Off 2
            If (cost of Off < cost worst)
                Remove arrayworst from Pop;
                Add Off to Pop;
                Find the worst array solution in Pop, then set
                arrayworst and cost worst;
                If (cost of Off < cost best) {
                array best = Off;
                cost best = cost of arraybest;
```

Fig. 8 Pseudo code for the genetic algorithm heuristic

Some comments on the GA heuristic :

- There are 3 variables that can be manipulated :
- POPULATION_SIZE is the number of members in Pop. It is kept constant at all times as the worst members in Pop are progressively replaced by fitter offspring that have lower penalty costs.
- GENERATIONS is used to dictate the length of time the heuristic is run for. In total, number of offspring generated throughout the heuristic $=$ POPULATION_SIZE * GENERATIONS.
- MUTATION is the chance that an offspring is changed from its initial configuration resulting from the crossover of its parents. When mutation occurs, the contents of 2 randomly-chosen cells in the array (neither of which have " -1 " stored) are swapped.
- In a crossover operation, some value between $n / 4$ and $3 n / 4$ is chosen as the crossover point. The values in the array of $O f f_{1}$ are drawn from Par $_{1}$ before the
crossover point and from Par_{2} after the crossover point. The reverse is true for Off 2 . As long as all parents (starting from the initial population generation) have " -1 " in the cells representing breakdown jobs, the offspring will also have "-1" in the same cells. The crossover operation is illustrated in Fig. 9.
- The crossover operation does not immediately guarantee a valid solution array, although all the breakdowns are correctly designated by "- 1 " in the offspring. There may be duplicates in the array (i.e. 2 jobs may both be designated the same ranking) due to the values inherited by the parents. To ensure legal offspring, the array must be checked so that no entries are repeated. Tied ranks are broken randomly.
- To calculate the penalty cost of a given solution array, the array must be converted to a priority job queue, which is then subjected to the adjusted greedy scheduling heuristic. The total costs of early and late penalties on the resulting schedule is the cost of the solution.

Fig. 9 Crossover operation for the genetic algorithm heuristic

5.2.6 Genetic Algorithm (GA) combined with Tabu Search (TS)

In difficult problems, the greedy scheduling heuristic is less likely to do well. A combination of GA search and TS could combine both elements of the GA's wide search for a reasonable approximate solution with the TS's search for a local best solution. Procedurally, it was simply a matter of running GA as described above, then running TS on the best result generated by the GA (instead of running the TS on the initial job queue based on starting R_{j} values).

Chapter 6

Experiments and Results

6.1 Generation of Test Problems

As there are no benchmark cases for this ETDDDsplit scheduling problem, a variety of test cases were generated. The distribution of the maintenance and breakdown jobs (m / b jobs) had to be hard-coded into the generation of test cases. As there obviously cannot be overlapping m / b jobs on the same machine, the m / b jobs had to be released in an approximately sequential manner.

For the non-breakdown and non-maintenance jobs (non-m/b jobs), the pattern of the release dates $\left(a_{j}\right)$ could be subjected to some variation. Based on that variation, 4 groups of test cases were created (listed and explained below). In all cases, the release dates of the jobs had to be at least $\left(p_{j}+s_{j}\right)$ before the end of the set schedule length. Other than that limitation, the release dates had no effect on the other characteristics of each non-m/b job. An example of a test case is included in Appendix A. (The following comments on the release dates of the jobs are applicable only to the nonm/b jobs) :

1. The release dates of the jobs were randomly spread out over the entire period being scheduled. If the ratio of the total schedule length to the number of jobs is less than about $6: 1$, then this case is more sparsely populated (hence easier to solve) than case (2), based the stated time intervals used in case (2).
2. The jobs were released singly at predictable time intervals of 3-10 time units apart. This tended to concentrate the jobs towards the start of the schedule.
3. The jobs' release dates followed a Gaussian distribution over the entire period being scheduled. The total schedule length corresponded to a normal distribution from $-\sigma$ to σ (where $\sigma=$ standard deviation of the curve), and the distribution corresponded to the probability that a job's release time would be set at a specific time in the schedule. Fig. 10 below highlights this concept. This distribution would spread out the jobs over the whole schedule, but with the centre part of the schedule having a greater load.
4. The jobs' release dates also followed a Gaussian distribution, but with the total schedule length corresponding to the normal distribution's range of -2σ to 2σ. This increased the concentration of jobs towards the centre of the schedule compared to case (3), and is also indicated in Fig. 10 below.

Fig. 10 Relationship between schedule length, a Gaussian distribution and jobs' release dates

The characteristics of the test cases generated were :
Global variables

- 5% of all jobs were maintenance jobs, a further 5% were breakdown jobs
- there were n jobs, $n=200$
- there were m machines, $m=5$
- the total period being scheduled was from time $=0$ to time $=2000$, for an overall schedule length to job ratio of slightly under $10: 1$
- maxServer $\in[1,4]$

Machine variables

- $\quad r_{i} \in[1,5]$ for all machines $M_{i}, i \in\{1, \ldots, m\}$

Job variables (for non-maintenance and non-breakdown jobs) for job $J_{j}, \mathrm{j} \in\{1, \ldots, n\}$

- setup time, $s_{j} \in[1,5]$
- processing requirement, $p_{j} \in[20,100]$
- time window, $d_{j}-a_{j} \in[200,250]$
- early penalty, $e_{j} \in[5,10]$
- late penalty, $t_{j} \in[50,60]$
- maximum number of subsections allowed, maxSplit $_{j} \in[5,10]$
- maximum number of simultaneous setups allowed, maxParallel ${ }_{j} \in[1,5]$

Job variables (for maintenance and breakdown jobs)

- setup time, $s_{m j}$ or $s_{b j}=0$
- processing requirement, $p_{m j}$ or $p_{b j} \in[10,40]$
- time window for
- maintenance job, $d_{m j}-a_{m j}=1.5 * p_{m j}$ (small time window)
- breakdown job, $d_{b j}-a_{b j}=p_{b j}$ (exact time window)
- early penalty for
- maintenance job, $e_{m j}=0$
- breakdown job, $e_{b j}=1000000$
- late penalty, $t_{m j}$ or $t_{b j}=1000000$
- maximum subsections allowed, $\operatorname{maxSplit}_{m j}$ or $\operatorname{maxSplit}{ }_{b j}=1$
- maximum simultaneous setups allowed, $\operatorname{maxParallel}_{m j}$ or maxParallel $l_{b j}=1$ 10 instances of each test case were generated and the heuristics described in Chapter 5 were run on them. All experiments were run on a Pentium 42.4 GHz processor with 512MB RAM and coded using Java JDK 1.4. A sample of the result obtained using tabu search on the test case in Appendix A is given in Appendix B. The tabu search variables were chosen based on the results obtained in the tests described in section 6.2 below.

6.2 Heuristic Variable Settings

The tabu search, genetic algorithm and simulated annealing heuristics each involved a few variables which dictated the rate at which the solution space was explored. A few experiments varying the variables were run to determine which values would give a reasonable representation of the heuristic's performance. The eventual choice of values used to compare the heuristics' performances was based not only on the quality of the resulting solutions generated, but also on the additional amount of processing time required to return a significantly better result.

The scheduling problem used to test the variable values was one where the jobs' release dates followed a Gaussian distribution with schedule length corresponding to 2σ to 2σ of a normal curve. This problem was found to be moderately difficult and
thus most suitable as a gauge of heuristic performance. Based on the results reported in section 6.3, the easier problems (with randomly spread job release dates and with the release dates following $-\sigma$ to σ of a Gaussian distribution) would not sufficiently differentiate the quality of a heuristic, and the most difficult problem (with sequential release dates) made it too hard for any heuristic to create a good schedule.

6.2.1 Selection of Heuristic Variable Settings

The full experimental results for these tests are shown in Tables C1, C2 and C3 of Appendix C. The variable values used for each heuristic and the aggregate results are shown below in Tables 1, 2 and 3. All values in the tables represent the summed results of the 10 test cases run for each case, and all schedule penalty values shown are in thousands. The variable values shown the first row of each table were the values used to later compare the performance of the heuristics in section 6.3.

The results for the tabu search heuristic tests are shown below in Table 1. Each test was run 10 times with the listed values, and the best result returned as the solution. TABU_TENURE was set at 10 , and each search was run using $n(=200)$ iterations. The variables subject to change were TS_NEIGHBOR, ALLOWANCE, and ITERATIONS.

	TS_NEIGHBOR	ALLOWANCE	ITERATIONS	Schedule Penalty	Early Jobs	Tardy Jobs
1	100	1.1	100	198	143	23
2	300	1.1	100	189	138	24
3	50	1.1	100	246	142	32
4	100	1.2	100	282	175	35
5	100	1.1	200	186	149	22

Table 1: Aggregated Experimental Results for Tabu Search

Compared with the top row, it is clear that increasing the size of the neighborhood searched (TS_NEIGHBOR) or increasing the breadth of the search (ITERATIONS)
improved the results. However, the improvement was rather small in relation to additional amount of processing time required to create a solution schedule compared to the first case. Worse solution schedules clearly resulted from a smaller TS_NEIGHBOR which searched less of the neighborhood space at each step, and larger ALLOWANCE, which gave the heuristic too much leeway in selecting poorer solutions as the basis for the next step.

The results for the genetic algorithm tests are shown below in Table 2. Each test was run 10 times with the listed values and the best result returned as the solution.

POPULATION_SIZE was kept constant at 100 for all tests. The variables subject to change were GENERATIONS and MUTATION.

	GENERATIONS	MUTATION	Schedule Penalty	Early Jobs	Tardy Jobs
1	100	$0.15(15 \%$ mutation rate $)$	159	176	13
2	100	0 (no mutation)	328	212	30
3	100	0.01	285	182	33
4	100	0.1	176	161	24
5	100	0.2	152	172	11
6	300	0.15	142	144	12

Table 2 : Aggregated Experimental Results for Genetic Algorithm

From these results, if the heuristic can search longer (larger GENERATIONS), a better results can be obtained. However, given the amount of additional processing time required for relatively small gain, it did not seem worthwhile to increase GENERATIONS for later comparisons. The MUTATION value had a strong effect on the solution quality, although even without any mutation, the crossover function did manage to improve the solution compared to the greedy and randomized greedy heuristics. (The values can be compared in Table 4.) To a point, higher mutation rates resulted in better solutions. However, the results when MUTATION $=0.15$ and $M U T A T I O N=0.2$ were quite similar.

The results for the simulated annealing algorithm tests are shown below in Table 3. Following the rule-of-thumb applied by [Rabadi et al., 2002], MAX_SUCC_TRIALS = 0.1 * MAX_TRIALS and MAX_STAGNANT_ITERS = MAX_ITERS and were kept fixed at MAX_TRIALS $=1000$, MAX_SUCC_TRIALS $=100$, MAX_ITERS $=100000$ and MAX_STAGNANT_ITERS $=10000$. Each test was run 10 times with the listed values and the best result returned as the solution. The variables subject to change were START_TEMP and TEMP_DECAY.

	START_TEMP	TEMP_DECAY	Schedule Penalty	Early Jobs	Tardy Jobs
1	1000	0.99	386	196	43
2	700	0.99	437	205	43
3	1500	0.99	377	203	36
4	1000	0.95	421	193	38

Table 3 : Aggregated Experimental Results for Simulated Annealing

From these results, a faster cooling rate (smaller TEMP_DECAY) or a lower starting temperature (START_TEMP) generated a slightly worse solution schedule. On the other hand, starting with a higher value of START_TEMP, while probably better allowing the heuristic to leave any local minimum it might be trapped at to find a better solution elsewhere, took a much longer time to complete its search. Hence, the set of values in the first row of Table 3 were used for later tests.

6.3 Analysis of Heuristic Performances and Job Release Patterns

Once the values for the variables of the tabu search, genetic algorithm and simulated annealing heuristics had been fixed, attention could be focused on the relative performances of the heuristics with each other. The constants k_{1} and k_{2} used in the calculation of the jobs' priority ratings R_{j} were both set to 1 , and the length of checktime set at 10 . The heuristics and the final values for their associated variables were :

1. The greedy scheduling heuristic. (No variables, and it is only run once for each problem.)
2. The randomized scheduling heuristic. The modifier used to adjust the ratings R_{j} was a random value $\in[1,2)$. This was run 1000 times for each test case, and the best result returned as the solution.
3. The tabu search heuristic was run 10 times with the variable values finalized in section 6.2 and the best result returned as the solution. The variable values were TABU_TENURE $=10$, ALLOWANCE $=1.1(10 \%$ allowance $)$ and TS_NEIGHBOR $=100$, with each search run using $n(=200)$ iterations. Since a maximum of 100 neighborhoods were searched, the heuristic would search a maximum of 5% of the actual neighborhood for the next step $\left(\approx 0.5 \%\right.$ of ${ }^{n} \mathrm{C}_{2}=$ 19900 actual neighbors) .
4. The simulated annealing heuristic was run 10 times with the variable values finalized in section 6.2 and the best result returned as the solution. The variable values were START_TEMP $=1000.0$, TEMP_DECAY $=0.99$, $M A X _T R I A L S=1000, M A X _S U C C _T R I A L S=100, M A X _I T E R S=100000$ and MAX_STAGNANT_ITERS $=10000$.
5. The genetic algorithm heuristic was run 10 times with the variable values finalized in section 6.2 and the best result returned as the solution. The variable values used were POPULATION_SIZE $=100$, GENERATIONS $=100$ and MUTATION $=0.15$ (15% mutation rate $)$.
6. The genetic algorithm followed by the tabu search heuristic. This was run 10 times with the listed values and the best result returned as the solution. The variable values used were same as those used for the genetic algorithm alone and the tabu search heuristic alone : POPULATION_SIZE $=100$,

$$
\text { GENERATIONS }=100, \text { MUTATION }=0.15, \text { TS_NEIGHBOR }=100,
$$

$$
\text { TABU_TENURE = } 10 \text { and } A L L O W A N C E=1.1 .
$$

6.3.1 Experimental Results

The full experimental results are shown in Tables C4 to C7 of Appendix C. The aggregate results are shown below in Table 4. All values in the table represent the summed results of the 10 test cases generated for each test group and run by each heuristic.

	Greedy		Random Greedy		TS		SA		GA		GA+TS	
	Pen	E										
		T		T		T		T		T		T
Random	10	87	2	30	0	0	1	31	7	1	0	0
		1		0		0		0		0		0
Gauss1	78	143	19	96	5	21	13	62	5	23	4	18
		8		2		0		0		1		0
Gauss2	1038	194	585	185	198	143	386	196	159	176	156	153
		80		57		23		43		13		17
Sequential	1942	199	806	240	128	146	573	221	182	165	117	158
		141		53		20		36		20		13

Table 4 : Aggregated Experimental Results Comparing Heuristics

Notation for Table 2 :

Greedy	$=$ the greedy scheduling heuristic
Random Greedy	$=$ the randomized greedy scheduling heuristic
TS	$=$ the tabu search heuristic
SA	$=$ the simulated annealing heuristic
GA	$=$ the genetic algorithm heuristic
GA+TS	$=$ the genetic algorithm followed by tabu search heuristic
Random	$=$ release dates were randomly spread out over the entire schedule
Gauss1	$=$ release dates were spread in a normal distribution from $-\sigma$ to σ
Gauss2	$=$ release dates were spread in a normal distribution from -2σ to 2σ
Sequential	$=$ release date were released at predictable intervals at the start of the schedule

$\mathrm{E}=$ total number of (non-m/b) jobs that completed before their due dates
$\mathrm{T}=$ total number of (non $-\mathrm{m} / \mathrm{b}$) jobs that completed after their due dates
Pen $=$ total penalty of the solution schedule (values are in thousands)

6.3.2 Comparison of the Heuristics' Performances

In order of performance, with the heuristic that performed the best first :

1. The genetic algorithm followed by tabu search heuristic. (GA+TS)
2. The tabu search heuristic. (TS)
3. The genetic algorithm heuristic. (GA)
4. The simulated annealing heuristic. (SA)
5. The randomized greedy scheduling heuristic. (Random Greedy)
6. The greedy scheduling heuristic. (Greedy)

The fact that Random Greedy consistently out-performed Greedy indicates that the priority rating equation has room for improvement. On the other hand, since the modifier multiplier used is always a small value (between 1 and 2), it also implies that the priority rating has probably managed to correctly capture some aspect of the problem that determines which job should be scheduled first. The main effect of the random modifier was to allow the job order to be shifted slightly so that more jobs finished early rather than late, taking advantage of $e_{j} \ll t_{j}$. For instance, for the Sequential test group, the number of jobs that ended before their deadlines actually increased, but that was offset by the large drop in tardy jobs.

It is interesting that SA consistently performed worse than both TS and GA. In fact, there were several cases when even the Random Greedy heuristic did better than SA (e.g. Table C4 Case 10, Table C5 Case 9, Table C7 Case 3). This is despite the fact that processing time of SA at any of the variable settings tested was very much longer than any other heuristic, including GA+TS. There could be a few reasons for this :

- The SA variables have not been fully optimized for this problem. Although high values have been allocated to the variables, the heuristic does not converge to a very good solution. Despite the different starting temperatures and temperature decay rates used, a lot more time might would probably be needed to run the search, e.g. the rule-of-thumb applied by [Rabadi et al, 2002], MAX_SUCC_TRIALS $=0.1 *$ MAX_TRIALS and MAX_STAGNANT_ITERS $=$ MAX_ITERS, might be inappropriate.
- The problem itself is not suitable for an SA approach. SA assumes that, like in the physical world, the global solution-landscape tends to "tilt" towards a global minimum. With this assumption, a form of very slow reverse-hillclimbing heuristic with sufficient allowance to jump over for local "bumps" should eventually reach the best solution. This analogy to the physics may not hold for the ETDDDsplit problem. Compared to SA, TS's allowance for "bumps" does not decrease over time, and GA's search can fluctuate wildly over the solution landscape due to the mutations. This could mean that the solution landscape is too flat for SA to work effectively.

The performance of GA+TS was somewhat better than the performance of TS alone, but not by very much. The GA alone performed quite similarly to TS alone. That both the wide search alone (GA) and narrow search alone (TS) performed similarly, but that the combination of both was only slightly better supports the theory that the global landscape is rather flat, and does not tend to tilt towards a global minimum (the optimum solution) when using this representation of the problem and solution neighborhoods. It also means that it could be very difficult to find the best global
solution, as it could have very little relation to the quality of the solutions in its immediate neighborhood.

6.3.3 Comparison of the Test Groups

In order of difficulty, with the easiest test group first :

1. The release dates were randomly spread out over the entire schedule. (Random)
2. The release dates were spread out in a normal distribution from $-\sigma$ to σ. (Gauss1)
3. The release dates were spread out in a normal distribution from -2σ to 2σ. (Gauss2)
4. The release date were released at predictable intervals at the start of the schedule. (Sequential)

The relative difficulty of Gauss2 and Sequential were about the same. Both had a congestion of jobs. Gauss2' congestion was at the centre of the schedule, and Sequential's was at the start of the schedule. A congestion at the start of the schedule would obviously increase the overall tardiness of the jobs, driving up the total schedule penalties, even the sum of the absolute differences between the deadlines and actual completion times were similar for both cases. For both Gauss2 and Sequential, the congestion of jobs would logically make it more difficult to generate a good solution, no matter what heuristic was used. The best results occurred when the jobs are evenly spread out over the scheduled time period.

Chapter 7

Conclusions and Future Work

In this thesis, we introduced a new NP-complete scheduling problem, the early-tardy distinct due date machine scheduling problem with splitting jobs and setup times (ETDDDsplit). Although it is not yet well-researched, it has practical applications in the manufacturing industry. This problem carries some characteristics from both the standard early-tardy machine scheduling problem, and from the scheduling problem with lotsizing or job splitting.

We have successfully adapted 3 of the standard search heuristics to the ETDDDsplit problem. A priority rating is first used to rate the jobs in order of urgency, which a greedy heuristic can then used to create an initial solution. Tabu search, genetic algorithms and simulated annealing can be applied onto the job orderings and a heuristic used to generate reasonable solutions for problems of moderate size. The results show that the solution space does not easily lend itself to any hill-climbing approach to finding the optimal solution schedule. The characteristics of the job release dates have also been found to have a strong effect on the quality of the solution schedules that can be found. In terms of real life situations, this means that some care needs to be taken in accepting jobs for processing, based on the jobs that have already been accepted or are predicted to be offered to the factory work floor.

There is much room for further research in the ETDDDsplit problem. For instance, the model representing the problem could be further refined by making e_{j} non-
constant. It could instead reflect the incremental storage cost of partially completed orders, by being proportional to the size of the completed subsections. Thus, an early penalty would be applied to each subsection as it is completed instead of only being applied to the completed job.

The work here represents one possible way break down the problem into 2 distinct phases, the job ordering phase and the scheduling phase to insert idle machine time. Other ways to order, schedule and split the jobs should also be examined. The conclusions drawn here about the difficulty of the problem and the topology of the solution space may be changed by a different representation of the problem and its potential solutions. Different search or AI heuristics could also be tested to see if better solutions emerge. Some were highlighted in Chapter 4, but other possibilities include Ant Colony and "Squeaky Wheel" optimizations.

References

K.R.Baker, G.D.Scudder, (1990) "Sequencing with Earliness and Tardiness Penalties: A Review", Operations Research 38 (1) pp22-36
B.Chen, (1993) "A better heuristic for preemptive parallel machine scheduling with setup times", SIAM Journal on Computing 22, pp1303-1318
B.Chen, C.N.Potts, G.J.Woeginger, (1998) "A review of machine scheduling : complexity, algorithms and approximability", "Handbook of Combinatorial Optimization", Kluwer, Dordretch, pp21-169
Z.L.Chen, W.B.Powell, (1995) "Solving Parallel Machine Scheduling Problems by Column Generation", Technical Report, Statistics and Operation Research, Princeton University
H.Emmons, (1987) "Scheduling to a common due date on parallel uniform processors", Naval Research Logistics 34, pp803-810
G.Finke, V.Gordon, J.M.Proth, (2002) "Scheduling with due dates (Annotated bibliography of complexity and algorithms)", available from http://www-
leibniz.imag.fr/LEIBNIZ/LesCahiers/2002/Cahier42/ResumCahier42.html
T.D.Fry, R.D.Armstrong, J.H.Blackstone, (1987) "Minimizing Weighted Absolute Deviation in Single Machine Scheduling" IIE Transactions 19, pp445-450
M.R.Garey, R.L.Graham, D.S.Johnson, (1978) "Performance Guarantees for Scheduling Algorithms", Operations Research 26, pp3-21
M.R.Garey, D.S.Johnson, (1979) "Computers and Intractability, A Guide to the Theory of NP-Completeness", Murray Hill
F.Glover, (1989) "Tabu Search - Part I", ORSA Journal on Computing 1 (3), pp190206
F.Glover, (1990) "Tabu Search - Part II", ORSA Journal on Computing 2 (1), pp4-32
A.Gozzi, M.Paolucci, A.Boccalatte, (2002) "Autonomous Agents Applied to Manufacturing Scheduling Problems : A Negotiation-Based Heuristic Approach" in V.Marik, O.Stepankova, H.Krautwurmova, M.luck (Eds.): Multi-Agent Systems and Application II, Selected Revised Papers: 9 $^{\text {th }}$ ECCAI-ACAI/EASSS 2001, AEMAS 2001, HoloMAS 2001, LNAI 2322, Springer Verlag, pp194-203
R.L.Graham, E.L.Lawler, J.K.Lenstra, A.H.G.Rinnooy Kan, (1979) "Optimization and approximation in deterministic sequencing and scheduling: a survey", Annals of Discrete Mathematics 5, pp287-326
A.Hamad, B.Sanugi, S.Salleh, (2002) "A Neural Network Approach for Distinct Due Date Job Scheduling Problems on Parallel Identical Machines", Journal of Theoretics 4 No. 3
J.H.Holland, (1992) "Adaptation in natural and artificial systems" $2^{\text {nd }}$ Ed., Cambridge MA : The MIT Press
J.A.Hoogeveen, S.L.van de Velde, (1996) "A Branch-and-Bound Algorithm for Single-Machine Earliness-Tardiness Scheduling with Idle Time", INFORMS Journal on Computing 8, pp402-412
A.Jain, S.Meeran, (1998) "Job-Shop Scheduling Using Neural Networks", International Journal of Production Research 36 (5), pp1249-1272
R.J.W.James, J.T.Buchanan, (1997) "A neighbourhood scheme with a compressed solution space for the early/tardy scheduling problem", European Journal of Operational Research 102, pp513-527
R.James, (1998) "Long Term Memory Strategies for Solving the Early/Tardy Scheduling Problem", available from http://citeseer.nj.nec.com/367151.html
S.Kirkpatrick, C.D.Gelatt Jr., M.P.Vecchi, (1983) "Optimization by Simulated Annealing", Science 220, pp671-680
W.Kubiak, S.Lou, R.Sethi, (1990) "Equivalence of mean flow time problems and mean absolute deviation problems", Operations Research Letters 9, pp37-374
E.L.Lawler, J.K.Lenstra, A.H.G.Rinnooy Kan, D.B.Shmoys, (1993) "Sequencing and scheduling: algorithms and complexity", In Handbooks in operations research and management science (4), Amsterdam, pp445-522
C.L.Monma, C.N.Potts, (1993) "Analysis of heuristics for preemptive parallel machine scheduling with job setup times", Operations Research 41, pp981-993
P.S.Ow, T.W.Morton, (1989) "The Single-Machine Early/Tardy Problem", Management Science 35, pp177-191
C.N.Potts, L.N.Van Wassenhove, (1992) "Integrating scheduling with batching and lotsizing: a review of algorithms and complexity", Journal of the Operational Research Society 43 (5) , pp395-406
G.Rabadi, G.Anagnostopoulos, M.Mollaghasemi, (2002) "A Simulated Annealing Algorithm for a Scheduling Problem with Setup Times", Proc. of The Industrial Engineering Research Conference, Florida
C.R.Reeves, (1993) "Improving the Efficiency of Tabu Search for Machine Scheduling Problems", Journal of the Operational Research Society 44, pp375-392
P.Serafini, (1996) "Scheduling jobs on several machines with the job splitting property", Operations Research 44 (4), pp617-628
F.Sivrikaya-Serifoglu, G.Ulusoy, (1999) "Parallel machine scheduling with earliness and tardiness penalties", Computers and Operations Research 26, pp773-787
J.M.S.Valente, R.A.F.S.Alves, (2003) "Improved Heuristics for the Early/Tardy Scheduling Problem with No Idle Time", working paper from www.fep.up.pt/investigacao/workingpapers/wp126.pdf
W.Xing, J.Zhang, (1998) "Splitting parallel machine scheduling", Operations Research Tradnsactions 2, pp30-41
W.Xing, J.Zhang, (2000) "Parallel machine scheduling with splitting jobs", Discrete Applied Mathematics 103, pp259-269
C.A.Yano, Y.D.Kim, (1991) "Algorithms for a class of single-machine weighted tardiness and earliness problems", European Journal of Operational Research 52, pp167-178

Appendices

Appendix A Sample Test Case

A sample test case is shown below. In this test case, the jobs were released at time intervals of 3-10 time units. The other variables are described in Chapter 6.

Global variables

```
#max_server|schedule_length
#max server: maximum number of parallel setups for any job (int)
#schedule length: total length of schedule (int)
4|2000
```


Machine Variables

\#mid|mname। rate
\#mid: Machine ID (int)
\#mname: Machine name (string)
\#rate: Workrate of machine (int)
1|Machine 1|2
2|Machine 2|2
3|Machine 3|2
4|Machine 4|4
5|Machine 5|3

Job Variables

\#jid|jname|setup_time|release_time|deadline|size|early_pen|late_pen|max_split|max_para
llel|paying_job|mid
\#jid: Job ID (int)
\#jname: Job name (string)
\#setup_time: Setup time in hours (int)
\#release_time: Release time of job (int) - when the job can be started
\#deadline: Latest end time without penalty (int)
\#size: Number of time units required to complete the job at workrate 1 (int) -
significant only for paying jobs||||||||||
\#early_pen: Penalty for early completion in cost per hour (int)
\#late_pen: Penalty for tardiness in cost per hour (int)
\#max split: Maximum number of sections for this job can be split into (int)
"\#max_parallel: Maximum number of sections of this job that can run concurrently, also affects for setup time (int)"
\#paying_job: Whether machine workrate is a factor for this job (Y/N) - N implies
maintenānce/breakdown
"\#mid : is paying_job=N, the required Machine ID, else -1"
1|Job $1|2| 6|218| 82|7| 51|5| 3|Y|-1$
2|BreakDown $1|0| 16|45| 29|1000000| 1000000|1| 1|N| 5$
3|Job 2|1|21|221|33|5|52|5|3|Y|-1
4|Job 3|1|25|228|95|7|58|9|3|Y|-1
5|Job 4|3|31|255|71|6|52|6|4|Y|-1
$6 \mid$ Job $5|3| 38|258| 87|8| 60|10| 1|Y|-1$
$7 \mid$ Job 6|5|46|288|94|7|50|8|4|Y|-1
8|Job 7|5|50|254|27|10|59|6|5|Y|-1
9|Job 8|5|59|268|88|10|59|9|4|Y|-1
10|Job 9|4|65|291|28|7|60|9|2|Y|-1
$11 \mid$ Job $10|5| 70|301| 61|6| 57|7| 3|Y|-1$
$12 \mid$ Job $11|4| 79|315| 40|10| 57|8| 1|Y|-1$
13|Job 12|5|86|299|66|10|52|5|4|Y|-1
14|Job 13|3|92|324|20|10|54|10|5|Y|-1
15|Job 14|1|97|297|85|5|60|6|3|Y|-1
$16 \mid$ Job 15|2|105|328|72|9|51|7|4|Y|-1
17|Job $16|2| 110|354| 26|9| 51|5| 4|Y|-1$

18|Job 17|2|117|366|98|8|57|9|3|Y|-1 19|Job 18|4|120|368|90|10|56|5|4|Y|-1 20|Job 19|3|123|346|24|6|56|6|4|Y|-1 21|Job 20|2|133|380|88|8|50|9|3|Y|-1 22|Job 21|5|136|379|51|8|58|9|5|Y|-1 23|Maintenance 1|0|135|184|33|0|1000000|1|1|N|3 24|Job 22|3|149|372|68|5|51|5|2|Y|-1 25|Job 23|4|154|364|45|6|60|7|4|Y|-1 26|Job 24|4|164|412|35|9|56|7|5|Y|-1 27|Job 25|2|167|412|75|5|60|8|1|Y|-1 28|Job 26|4|177|421|42|7|52|6|5|Y|-1 29|Job 27|4|182|427|71|6|58|9|5|Y|-1 30|Job 28|2|192|397|93|8|54|6|1|Y|-1 31|Job 29|1|201|437|45|9|57|8|1|Y|-1 32|Job 30|1|204|418|77|8|57|10|4|Y|-1 33|Job 31|5|208|448|26|9|56|10|4|Y|-1 34|Job 32|2|217|434|20|8|55|8|1|Y|-1 35|Job 33|3|222|430|23|10|58|5|3|Y|-1 36|Maintenance 2|0|224|262|26|0|1000000|1|1|N|4 37|BreakDown 2|0|238|253|15|1000000|1000000|1|1|N|1 38|Job 34|5|241|481|81|7|59|7|3|Y|-1 39|Job 35|1|250|451|43|7|56|8|5|Y|-1 40|Job 36|3|260|492|21|5|56|6|3|Y|-1 41|Job 37|3|263|491|42|7|56|7|3|Y|-1 42|Job 38|1|266|476|69|5|52|6|4|Y|-1 43|Job 39|5|270|511|48|6|53|8|2|Y|-1 44|Job 40|1|277|498|60|5|53|5|2|Y|-1 45|Job 41|4|281|505|71|10|58|7|4|Y|-1 46|Job 42|1|291|510|34|9|53|9|3|Y|-1 47|Job 43|2|301|531|26|9|57|9|5|Y|-1 48|Job 44|4|305|515|66|8|51|8|1|Y|-1 49|Job 45|4|311|528|85|10|53|7|5|Y|-1 50|Job 46|1|317|523|99|9|54|6|5|Y|-1 51|Job 47|5|324|541|36|6|51|8|4|Y|-1 52|Job 48|1|331|541|21|7|59|7|1|Y|-1 53|Job 49|5|336|539|59|6|59|5|3|Y|-1 54|Job 50|1|340|551|92|5|60|6|5|Y|-1 55|BreakDown 3|0|344|383|39|1000000|1000000|1|1|N|2 56|Job 51|4|354|562|32|6|52|6|5|Y|-1 57|Job 52|4|361|569|29|9|50|10|3|Y|-1 58|Job 53|5|368|571|54|8|53|6|1|Y|-1 59|Job 54|4|371|576|37|7|59|7|3|Y|-1 60|Job 55|5|378|613|60|5|57|8|4|Y|-1 61|Job 56|5|388|625|28|9|50|8|3|Y|-1 62|Job 57|2|391|621|35|8|55|8|4|Y|-1 63|Job 58|5|394|618|88|8|60|5|4|Y|-1 64|Job 59|1|403|615|74|9|58|6|4|Y|-1 65|Job 60|4|406|607|23|9|52|7|3|Y|-1 66|Job 61|4|413|626|97|9|50|8|1|Y|-1 67|Maintenance 3|0|414|457|29|0|1000000|1|1|N|2 68|Job 62|4|427|654|84|9|55|9|1|Y|-1 69|Job 63|5|430|675|52|6|50|10|5|Y|-1 70|Maintenance 4|0|424|478|36|0|1000000|1|1|N|3 71|Job 64|3|436|675|92|6|58|6|4|Y|-1 72|Job 65|1|439|680|29|9|53|8|1|Y|-1 73|Job 66|3|446|651|69|5|53|8|2|Y|-1 74|Job 67|3|456|669|92|6|50|6|5|Y|-1 75|Job 68|2|461|691|64|7|55|6|2|Y|-1 76|Job 69|1|471|705|69|10|51|5|3|Y|-1 77|Job 70|5|478|684|70|6|56|7|5|Y|-1 78|BreakDown 4|0|488|503|15|1000000|1000000|1|1|N|2 79|BreakDown 5|0|493|529|36|1000000|1000000|1|1|N|1 80|Job 71|5|498|734|64|6|53|5|4|Y|-1 81|Job 72|4|502|732|22|10|56|6|2|Y|-1 82|Job 73|4|511|750|35|8|54|10|1|Y|-1 83|Maintenance 5|0|507|556|33|0|1000000|1|1|N|5 84|Job 74|2|520|727|97|6|57|8|2|Y|-1 85|Job 75|2|526|760|65|10|50|7|3|Y|-1 86|Job 76|4|534|734|59|8|54|6|1|Y|-1 87|Job 77|5|542|747|23|6|53|10|4|Y|-1 88|Job 78|1|548|772|51|9|59|7|3|Y|-1 89|Job 79|4|558|766|73|10|57|9|1|Y|-1 90|Job 80|5|564|786|96|7|50|5|3|Y|-1 91|Job 81|3|574|802|75|8|55|9|2|Y|-1 92|Job 82|5|582|832|94|5|56|8|5|Y|-1

93|Job 83|5|590|791|59|7|52|9|5|Y|-1 94|Job 84|2|596|831|42|8|54|8|4|Y|-1 95|Job 85|4|606|808|62|7|54|10|2|Y|-1 96|Job 86|5|613|842|43|10|51|6|5|Y|-1 97|Job 87|5|619|853|61|5|59|8|5|Y|-1 98|Job 88|3|624|854|24|8|59|6|3|Y|-1 99|Job 89|4|629|874|55|5|55|6|5|Y|-1 100|Maintenance 6|0|635|661|18|0|1000000|1|1|N|1 101|Job 90|1|649|898|33|5|57|7|2|Y|-1 102|Job 91|1|655|860|71|6|50|8|3|Y|-1 103|Job 92|5|660|887|71|7|52|5|2|Y|-1 104|Job 93|1|664|864|38|6|59|7|1|Y|-1 105|Job 94|1|668|903|88|5|55|6|5|Y|-1 106|Job 95|3|674|903|86|7|56|8|2|Y|-1 107|Job 96|3|677|916|80|10|51|10|1|Y|-1 108|Job 97|5|685|898|49|7|53|7|1|Y|-1 109|Job 98|1|693|940|73|5|59|10|1|Y|-1 110|Job 99|3|700|907|60|8|56|8|3|Y|-1 111|Job 100|1|704|918|72|9|57|7|1|Y|-1 112|Job 101|5|707|938|34|5|55|6|4|Y|-1 113|Job 102|5|716|949|61|8|53|6|4|Y|-1 114|Job 103|2|724|944|83|5|52|8|3|Y|-1 115|Job 104|5|727|927|24|7|50|9|3|Y|-1 116|BreakDown 6|0|731|748|17|1000000|1000000|1|1|N|4 117|Job 105|2|734|960|89|5|56|7|1|Y|-1 118|Job 106|2|744|951|22|6|53|9|5|Y|-1 119|BreakDown 7|0|750|782|32|1000000|1000000|1|1|N|3 120|Job 107|5|755|1003|86|6|58|9|1|Y|-1 121|Job 108|1|761|979|92|9|53|5|5|Y|-1 122|Job 109|1|771|1006|30|8|60|9|4|Y|-1 123|Job 110|4|775|1002|85|10|60|5|3|Y|-1 124|Job 111|1|785|1019|66|5|51|7|1|Y|-1 125|Job 112|5|788|989|59|5|57|5|3|Y|-1 126|Job 113|4|794|1026|25|7|51|8|2|Y|-1 127|Job 114|1|797|1028|64|7|53|8|3|Y|-1 128|Job 115|1|802|1039|80|8|54|7|4|Y|-1 129|Job 116|1|811|1026|86|9|57|10|3|Y|-1 130|BreakDown 8|0|819|834|15|1000000|1000000|1|1|N|3 131|Job 117|3|829|1048|97|10|52|7|2|Y|-1 132|Job 118|5|833|1057|23|9|51|7|4|Y|-1 133|Job 119|2|840|1078|84|10|57|5|5|Y|-1 134|Job 120|5|850|1080|36|6|53|9|1|Y|-1 135|Job 121|4|855|1099|24|6|55|6|4|Y|-1 136|Job 122|4|860|1072|74|9|52|10|3|Y|-1 137|Job 123|4|864|1112|46|9|51|7|3|Y|-1 138|Maintenance 7|0|868|888|14|0|1000000|1|1|N|4 139|Maintenance 8|0|869|905|24|0|1000000|1|1|N|5 140|Job 124|4|885|1135|26|6|58|9|4|Y|-1 141|Job 125|1|890|1122|24|5|56|7|1|Y|-1 142|Job 126|3|896|1128|53|9|59|10|3|Y|-1 143|Job 127|4|902|1139|88|8|57|6|3|Y|-1 144|Job 128|5|910|1117|74|8|57|6|1|Y|-1 145|Job 129|2|917|1142|71|9|60|5|1|Y|-1 146|Job 130|1|922|1132|56|5|51|5|5|Y|-1 147|Job 131|5|926|1138|69|10|53|5|1|Y|-1 148|Job 132|3|929|1134|35|7|50|8|5|Y|-1 149|Job 133|4|937|1146|61|8|60|5|1|Y|-1 150|Job 134|3|944|1192|87|7|51|8|3|Y|-1 151|Job 135|3|949|1194|42|10|58|7|1|Y|-1 152|Job 136|1|959|1195|63|5|58|5|1|Y|-1 153|Job 137|3|963|1163|67|7|52|7|4|Y|-1 154|Job 138|2|972|1212|80|5|50|6|1|Y|-1 155|Job 139|5|975|1181|28|8|50|5|3|Y|-1 156|Job 140|5|979|1203|89|10|50|10|1|Y|-1 157|Maintenance 9|0|983|1007|16|0|1000000|1|1|N|2 158|Job 141|1|996|1241|85|9|59|7|4|Y|-1 159|Job 142|3|999|1206|78|10|59|8|3|Y|-1 160|Job 143|2|1007|1219|97|9|53|6|4|Y|-1 161|Job 144|5|1013|1252|26|6|56|10|3|Y|-1 162|Job 145|5|1021|1227|52|5|56|9|1|Y|-1 163|Job 146|4|1031|1278|35|9|53|10|3|Y|-1 164|Job 147|2|1039|1284|28|6|51|7|3|Y|-1 165|Maintenance 10|0|1045|1060|11|0|1000000|1|1|N|3 166|Job 148|1|1053|1275|43|7|54|9|1|Y|-1 167|Job 149|1|1063|1300|32|6|58|6|5|Y|-1

168|Job 150|2|1072|1321|66|9|50|7|3|Y|-1
169|Job 151|3|1078|1313|27|10|60|5|4|Y|-1
170|BreakDown 9|0|1085|1101|16|1000000|1000000|1|1|N|5
171|Job 152|2|1089|1310|80|7|55|9|5|Y|-1
172|Job 153|1|1092|1337|20|5|59|9|2|Y|-1
173|Job 154|1|1098|1326|73|6|54|5|5|Y|-1
174|Job 155|3|1105|1343|26|8|53|9|4|Y|-1
175|Job 156|4|1108|1339|69|10|56|8|5|Y|-1
176|Job 157|5|1116|1319|48|9|58|6|1|Y|-1
177|Job 158|3|1120|1366|49|8|57|9|4|Y|-1
178|Job 159|1|1128|1362|38|9|60|10|2|Y|-1
179|Job 160|5|1133|1379|41|9|52|9|3|Y|-1
180|Job 161|1|1137|1358|43|10|57|6|4|Y|-1 181|Job 162|4|1145|1375|86|10|56|10|2|Y|-1 182|Job 163|5|1152|1359|91|6|50|6|2|Y|-1 183|Job 164|2|1155|1388|25|10|54|9|3|Y|-1 184|Job 165|2|1161|1390|45|9|58|8|5|Y|-1 185|BreakDown 10|0|1165|1190|25|1000000|1000000|1|1|N|3 186|Job 166|4|1174|1407|61|6|51|10|3|Y|-1 187|Job 167|2|1180|1386|47|9|56|5|5|Y|-1 188|Job 168|3|1188|1426|85|9|51|10|5|Y|-1 189|Job 169|1|1198|1424|83|10|56|9|5|Y|-1 190|Job 170|1|1206|1410|74|9|58|5|3|Y|-1 191|Job 171|1|1216|1421|33|10|55|7|2|Y|-1 192|Job 172|4|1221|1470|35|10|57|10|2|Y|-1
193|Job 173|2|1225|1450|84|7|55|6|5|Y|-1
194|Job 174|1|1235|1446|93|8|51|5|3|Y|-1
195|BreakDown 11|0|1245|1263|18|1000000|1000000|1|1|N|2
196|Job 175|2|1251|1488|38|6|51|10|3|Y|-1
197|Job 176|1|1255|1472|63|8|50|8|3|Y|-1
198|Job 177|5|1263|1465|65|6|60|8|4|Y|-1
199|Job 178|2|1268|1516|27|7|59|10|3|Y|-1
200|Maintenance 11|0|1268|1287|13|0|1000000|1|1|N|1

Appendix B Sample Schedule Solution

A sample schedule solution is shown below. This is the result of a tabu search
 (without the genetic algorithm) on the sample test case given in Appendix A. The
 variable values used are given in section 6.2.1, first row of Table 1.

Schedule for Machine 1

Job 136 Section 31153 to 1170 with setup time of 1
Job 135 Section 11170 to 1194 with setup time of 3 Job 140 Section 11194 to 1203 with setup time of 5 Job 138 Section 21203 to 1206 with setup time of 2 Job 143 Section 11206 to 1219 with setup time of 2 Maintenance 11 Section 11274 to 1287 with setup time of 0 Job 151 Section 11296 to 1313 with setup time of 3 Job 157 Section 11313 to 1319 with setup time of 5 Job 156 Section 11319 to 1339 with setup time of 4 Job 159 Section 11342 to 1362 with setup time of 1 Job 158 Section 11362 to 1366 with setup time of 3 Job 166 Section 11372 to 1407 with setup time of 4 Job 170 Section 11407 to 1410 with setup time of 1 Job 171 Section 11410 to 1421 with setup time of 1 Job 174 Section 21427 to 1446 with setup time of 1 Job 177 Section 11446 to 1465 with setup time of 5

Schedule for Machine 2

Schedule for Machine 2
Job 5 Section 2209 to 254 with setup time of 3
Job 8 Section 4254 to 266 with setup time of 5
Job 6 Section 2266 to 288 with setup time of 5
Job 10 Section 3288 to 301 with setup time of 5 Job 23 Section 2323 to 344 with setup time of 4 BreakDown 3 Section 1344 to 383 with setup time of 0 Job 27 Section 1387 to 427 with setup time of 4 Maintenance 3 Section 1428 to 457 with setup time of 0 Job 50 Section 5457 to 459 with setup time of 1 Job 44 Section 5459 to 488 with setup time of 4 BreakDown 4 Section 1488 to 503 with setup time of 0
Job 44 Section 2503 to 510 with setup time of 4
Job 46 Section 2510 to 519 with setup time of 1
Job 45 Section 2519 to 528 with setup time of 4
Job 48 Section 1529 to 541 with setup time of 1
Job 50 Section 2541 to 551 with setup time of 1
Job 54 Section 4558 to 571 with setup time of 4
Job 61 Section 4571 to 576 with setup time of 4
Job 59 Section 1577 to 615 with setup time of 1
Job 66 Section 1615 to 651 with setup time of 3
Job 67 Section 3651 to 667 with setup time of 3
Job 65 Section 2667 to 675 with setup time of 1
Job 70 Section 3675 to 684 with setup time of 5
Job 74 Section 2716 to 727 with setup time of 2
Job 73 Section 1728 to 750 with setup time of 4
Job 80 Section 1750 to 786 with setup time of 5
Job 85 Section 4786 to 791 with setup time of 4
Job 82 Section 2805 to 832 with setup time of 5
Job 87 Section 2833 to 853 with setup time of 5
Job 93 Section 2853 to 860 with setup time of 1
Job 94 Section 3860 to 868 with setup time of 1
Job 97 Section 1868 to 898 with setup time of 5
Job 94 Section 1898 to 903 with setup time of 1
Job 102 Section 1913 to 949 with setup time of 5
Job 111 Section 4976 to 979 with setup time of 1
Job 112 Section 1979 to 989 with setup time of 5
Maintenance 9 Section 1991 to 1007 with setup time of 0
Job 113 Section 11009 to 1026 with setup time of 4
Job 129 Section 51038 to 1053 with setup time of 2
Job 120 Section 21053 to 1072 with setup time of 5
Job 129 Section 41072 to 1091 with setup time of 2
Job 127 Section 11091 to 1139 with setup time of 4
Job 140 Section 21148 to 1194 with setup time of 5
Job 138 Section 31194 to 1203 with setup time of 2
Job 143 Section 21203 to 1219 with setup time of 2
BreakDown 11 Section 11245 to 1263 with setup time of 0
Job 152 Section 11268 to 1310 with setup time of 2
Job 156 Section 21316 to 1339 with setup time of 4
Job 158 Section 21339 to 1366 with setup time of 3
Job 167 Section 21368 to 1386 with setup time of 2
Job 170 Section 21386 to 1410 with setup time of 1
Job 171 Section 21413 to 1421 with setup time of 1
Job 177 Section 21441 to 1465 with setup time of 5

Schedule for Machine 3

Schedule for Machine 4

Schedule for Machine 4
Job 3 Section 1203 to 228 with setup time of 1
Maintenance 2 Section 1236 to 262 with setup time of 0
Job 8 Section 1262 to 268 with setup time of 5
Job 14 Section 3268 to 277 with setup time of 1
Job 12 Section 1277 to 299 with setup time of 5
Job 11 Section 1301 to 315 with setup time of 4
Job 13 Section 1316 to 324 with setup time of 3
Job 15 Section 1324 to 328 with setup time of 2
Job 22 Section 2328 to 341 with setup time of 3
Job 18 Section 1341 to 368 with setup time of 4
Job 20 Section 1368 to 380 with setup time of 2
Job 28 Section 1380 to 397 with setup time of 2
Job 30 Section 1397 to 418 with setup time of 1
Job 49 Section 4418 to 424 with setup time of 5
Job 29 Section 1424 to 437 with setup time of 1

```
Job 35 Section 1 439 to 451 with setup time of 1
Job 50 Section 6 452 to 455 with setup time of 1
Job 34 Section 1 455 to 481 with setup time of 5
Job 46 Section 4 481 to 483 with setup time of 1
Job 41 Section 1 483 to 505 with setup time of 4
Job 45 Section 1 505 to 528 with setup time of 4
Job 47 Section 1 528 to 541 with setup time of 5
Job 50 Section 1 541 to 551 with setup time of 1
Job 53 Section 1 552 to 571 with setup time of 5
Job 54 Section 1 571 to 576 with setup time of 4
Job 58 Section 1 }591\mathrm{ to 618 with setup time of 5
Job 57 Section 1 618 to 621 with setup time of 2
Job 61 Section 1 621 to 626 with setup time of 4
Job 67 Section 4 639 to 649 with setup time of 3
Job 64 Section 1 649 to 675 with setup time of 3
Job 65 Section 1 675 to 680 with setup time of 1
Job 68 Section 3 680 to 684 with setup time of 2
Job 69 Section 1 686 to 705 with setup time of 1
Job 74 Section 1 705 to 727 with setup time of 2
BreakDown 6 Section 1 731 to 748 with setup time of 0
Job 79 Section 1 748 to 766 with setup time of 4
Job 78 Section 1 766 to 772 with setup time of 1
Job 80 Section 2 772 to 780 with setup time of 5
Job 81 Section 1 780 to 802 with setup time of 3
Job 85 Section 1 802 to 808 with setup time of 4
Job 94 Section 6 813 to 826 with setup time of 1
Job 86 Section 1 826 to 842 with setup time of 5
Job 94 Section 5 842 to 845 with setup time of 1
Job 88 Section 1 845 to 854 with setup time of 3
Job 91 Section 1 854 to 860 with setup time of 1
Job 89 Section 1 860 to 874 with setup time of 4
Maintenance 7 Section 1 874 to 888 with setup time of 0
Job 99 Section 1 889 to 907 with setup time of 3
Job 100 Section 1 907 to 918 with setup time of 1
Job 103 Section 1 921 to 944 with setup time of 2
Job 105 Section 1 944 to 960 with setup time of 2
Job 110 Section 1 976 to 1002 with setup time of 4
Job 116 Section 1 1003 to 1026 with setup time of 1
Job 117 Section 1 1026 to 1048 with setup time of 3
Job 119 Section 1 1055 to 1078 with setup time of 2
Job 130 Section 2 1078 to 1085 with setup time of 1
Job }132\mathrm{ Section 2 1085 to 1096 with setup time of 3
Job 123 Section 1 1096 to 1112 with setup time of 4
Job 129 Section 3 1112 to 1115 with setup time of 2
Job 125 Section 1 1115 to 1122 with setup time of 1
Job 130 Section 1 1122 to 1124 with setup time of 1
Job 124 Section 1 1124 to 1135 with setup time of 4
Job 133 Section 1 1135 to 1146 with setup time of 4
Job 137 Section 1 1146 to 1163 with setup time of 3
Job 138 Section 4 1163 to 1167 with setup time of 2
Job 134 Section 1 1167 to 1192 with setup time of 3
Job 142 Section 1 1192 to 1206 with setup time of 3
Job 138 Section 1 1206 to 1212 with setup time of 2
Job 143 Section 4 1212 to 1218 with setup time of 2
Job 141 Section 1 1218 to 1241 with setup time of 1
Job 144 Section 1 1241 to 1252 with setup time of 5
Job 146 Section 1 1265 to 1278 with setup time of 4
Job 147 Section 1 1278 to 1284 with setup time of 2
Job 149 Section 1 1291 to 1300 with setup time of 1
Job 154 Section 1 1306 to 1326 with setup time of 1
Job 155 Section 1 1333 to 1343 with setup time of 3
Job 162 Section 1 1349 to 1375 with setup time of 4
Job 165 Section 1 1376 to 1390 with setup time of 2
Job 169 Section 1 1402 to 1424 with setup time of 1
Job 173 Section 1 1427 to 1450 with setup time of 2
Job 176 Section 1 1455 to 1472 with setup time of 1
Job 175 Section 1 1476 to 1488 with setup time of 2
Job 178 Section 1 1507 to 1516 with setup time of 2
```


Schedule for Machine 5

Job 147 Section 21278 to 1284 with setup time of 2
Job 150 Section 11297 to 1321 with setup time of 2 Job 153 Section 11329 to 1337 with setup time of 1 Job 161 Section 11342 to 1358 with setup time of 1 Job 160 Section 11360 to 1379 with setup time of 5 Job 167 Section 11379 to 1386 with setup time of 2 Job 168 Section 11394 to 1426 with setup time of 3 Job 174 Section 11426 to 1446 with setup time of 1 Job 172 Section 11454 to 1470 with setup time of 4

Performance Statistics Recorded

JobIndex JobIndex 1 JobIndex 2 JobIndex 3 JobIndex 4 JobIndex 5 JobIndex 6 JobIndex 7 JobIndex 8 JobIndex 9 JobIndex 10 JobIndex 11 JobIndex 12 JobIndex 13 JobIndex 14 JobIndex 15 JobIndex 16 JobIndex 17 JobIndex 18 JobIndex 19 JobIndex 20 JobIndex 21 JobIndex 22 JobIndex 23 JobIndex 24 JobIndex 25 JobIndex 26 JobIndex 27 JobIndex 28 JobIndex 29 JobIndex 30 JobIndex 31 JobIndex 32 JobIndex 33 JobIndex 34 JobIndex 35 JobIndex 36 JobIndex 37 JobIndex 38 JobIndex 39 JobIndex 40 JobIndex 41 JobIndex 42 JobIndex 43 JobIndex 44 JobIndex 45 JobIndex 46 JobIndex 47 JobIndex 48 JobIndex 49 JobIndex 50 JobIndex 51 JobIndex 52 JobIndex 53 JobIndex 54 JobIndex 55 JobIndex 56 JobIndex 57 JobIndex 58 JobIndex 59 JobIndex 60 JobIndex 61 JobIndex 62
 has 2 of max 8, -_-- $0(621->621)$ Job 57

JobIndex 63 JobIndex 64 JobIndex 65 JobIndex 66 JobIndex 67 JobIndex 68 JobIndex 69 JobIndex 70 JobIndex 71 JobIndex 72 JobIndex 73 JobIndex 74 JobIndex 75 JobIndex 76 JobIndex 77 JobIndex 78 JobIndex 79 JobIndex 80 JobIndex 81 JobIndex 82 JobIndex 83 JobIndex 84 JobIndex 85 JobIndex 86 JobIndex 87 JobIndex 88 JobIndex 89 JobIndex 90 JobIndex 91 JobIndex 92 JobIndex 93 JobIndex 94 JobIndex 95 JobIndex 96 JobIndex 97 JobIndex 98 JobIndex 99 JobIndex 100 JobIndex 101 JobIndex 102 JobIndex 103 JobIndex 104 JobIndex 105 JobIndex 106 JobIndex 107 JobIndex 108 JobIndex 109 JobIndex 110 JobIndex 111 JobIndex 112 JobIndex 113 JobIndex 114 JobIndex 115 JobIndex 116 JobIndex 117 JobIndex 118 JobIndex 119 JobIndex 120 JobIndex 121 JobIndex 122 JobIndex 123 JobIndex 124 JobIndex 125 JobIndex 126 JobIndex 127 JobIndex 128 JobIndex 129 JobIndex 130 JobIndex 131 JobIndex 132 JobIndex 133 JobIndex 134 JobIndex 135 JobIndex 136 JobIndex 137

```
has 1 of max 5, ---- 0 (618->618) Job 58
has 1 of max 6, ---- 0 (615->615) Job 59
has 1 of max 7, ---- 0 (607->607) Job 60
has 5 of max 8, ---- 0 (626->626) Job 61
has 1 of max 1, ---- 0 (457->457) Maintenance 3
has 1 of max 9, ---- 0 (654->654) Job 62
has 2 of max 10, ---- 0 (675->675) Job 63
has 1 of max 1, early 11 (467->478) Maintenance 4
has 1 of max 6, ---- 0 (675->675) Job 64
has 2 of max 8, ---- 0 (680->680) Job 65
has 2 of max 8, ---- 0 (651->651) Job 66
has 4 of max 6, ---- 0 (669->669) Job 67
has 4 of max 6, ---- 0 (691->691) Job 68
has 1 of max 5, ---- 0 (705->705) Job 69
has 5 of max 7, ---- 0 (684->684) Job 70
has 1 of max 1, ---- 0 (503->503) BreakDown 4
has 1 of max 1, ---- 0 (529->529) BreakDown 5
has 1 of max 5, ---- 0 (734->734) Job 71
has 1 of max 6, ---- 0 (732->732) Job 72
has 1 of max 10, ---- 0 (750->750) Job 73
has 1 of max 1, ---- 0 (556->556) Maintenance 5
has 2 of max 8, ---- 0 (727->727) Job 74
has 2 of max 7, ---- 0 (760->760) Job 75
has 1 of max 6, ---- 0 (734->734) Job 76
has 4 of max 10, ---- 0 (747->747) Job 77
has 2 of max 7, ---- 0 (772->772) Job 78
has 2 of max 9, ---- 0 (766->766) Job 79
has 3 of max 5, ---- 0 (786->786) Job 80
has 1 of max 9, ---- 0 (802->802) Job 81
has 2 of max 8, ---- 0 (832->832) Job 82
has 2 of max 9, ---- 0 (791->791) Job }8
has 1 of max 8, ---- 0 (831->831) Job 84
has 4 of max 10, ---- 0 (808->808) Job }8
has 1 of max 6, ---- 0 (842->842) Job }8
has 2 of max 8, ---- 0 (853->853) Job }8
has 1 of max 6, ---- 0 (854->854) Job 88
has 2 of max 6, ---- 0 (874->874) Job }8
has 1 of max 1, ---- 0 (661->661) Maintenance 6
has 2 of max 7, ---- 0 (898->898) Job 90
has 2 of max 8, ---- 0 (860->860) Job 91
has 1 of max 5, ---- 0 (887->887) Job 92
has 3 of max 7, ---- 0 (864->864) Job 93
has 6 of max 6, ---- 0 (903->903) Job 94
has 1 of max 8, ---- 0 (903->903) Job 95
has 2 of max 10, ---- 0 (916->916) Job 96
has 1 of max 7, ---- 0 (898->898) Job 97
has 1 of max 10, ---- 0 (940->940) Job 98
has 1 of max 8, ---- 0 (907->907) Job 99
has 4 of max 7, ---- 0 (918->918) Job 100
has 1 of max 6, ---- 0 (938->938) Job 101
has 1 of max 6, ---- 0 (949->949) Job 102
has 1 of max 8, ---- 0 (944->944) Job 103
has 1 of max 9, ---- 0 (927->927) Job 104
has 1 of max 1, ---- 0 (748->748) BreakDown 6
has 2 of max 7, ---- 0 (960->960) Job 105
has 1 of max 9, ---- 0 (951->951) Job 106
has 1 of max 1, ---- 0 (782->782) BreakDown 7
has 2 of max 9, ---- 0 (1003->1003) Job 107
has 1 of max 5, ---- 0 (979->979) Job 108
has 1 of max 9, ---- 0 (1006->1006) Job 109
has 1 of max 5, ---- 0 (1002->1002) Job 110
has 4 of max 7, ---- 0 (1019->1019) Job 111
has 2 of max 5, ---- 0 (989->989) Job 112
has 1 of max 8, ---- 0 (1026->1026) Job 113
has 1 of max 8, ---- 0 (1028->1028) Job 114
has 1 of max 7, ---- 0 (1039->1039) Job 115
has 1 of max 10, ---- 0 (1026->1026) Job 116
has 1 of max 1, ---- 0 (834->834) BreakDown 8
has 2 of max 7, ---- 0 (1048->1048) Job 117
has 1 of max 7, ---- 0 (1057->1057) Job 118
has 1 of max 5, ---- 0 (1078->1078) Job 119
has 2 of max 9, ---- 0 (1080->1080) Job 120
has 1 of max 6, ---- 0 (1099->1099) Job 121
has 2 of max 10, ---- 0 (1072->1072) Job }12
has 1 of max 7, ---- 0 (1112->1112) Job 123
```

JobIndex 138 JobIndex 139 JobIndex 140 JobIndex 141 JobIndex 142 JobIndex 143 JobIndex 144 JobIndex 145 JobIndex 146 JobIndex 147 JobIndex 148 JobIndex 149 JobIndex 150 JobIndex 151 JobIndex 152 JobIndex 153 JobIndex 154 JobIndex 155 JobIndex 156 JobIndex 157 JobIndex 158 JobIndex 159 JobIndex 160 JobIndex 161 JobIndex 162 JobIndex 163 JobIndex 164 JobIndex 165 JobIndex 166 JobIndex 167 JobIndex 168 JobIndex 169 JobIndex 170 JobIndex 171 JobIndex 172 JobIndex 173 JobIndex 174 JobIndex 175 JobIndex 176 JobIndex 177 JobIndex 178 JobIndex 179 JobIndex 180 JobIndex 181 JobIndex 182 JobIndex 183 JobIndex 184 JobIndex 185 JobIndex 186 JobIndex 187 JobIndex 188 JobIndex 189 JobIndex 190 JobIndex 191 JobIndex 192 JobIndex 193 JobIndex 194 JobIndex 195 JobIndex 196 JobIndex 197 JobIndex 198 JobIndex 199 JobIndex 200 Total schedul Early penalty $=40$ = 40 Late penalty $=0$ from 0 jobs

Appendix C Full Experimental Results

The full experimental results are tabulated on the following pages :
Table C1: Heuristic Variable Settings for Tabu Search
Table C2 : Heuristic Variable Settings for Genetic Algorithm
Table C3 : Heuristic Variable Settings for Simulated Annealing
Table C4 : Randomly spread release dates (Random)
Table C5 : Sequential release dates (Sequential)
Table C6 : Release dates follow a Gaussian Curve, ($-\sigma$ to σ) (Gauss1)
Table C7 : Release dates follow a Gaussian Curve, (-2σ to 2σ) (Gauss2)

Table C1: Heuristic Variable Settings for Tabu Search

	(1)			(2)			(3)			(4)			(5)		
Case	Pen	E	T												
1	229	9	0	116	3	0	305	9	0	537	15	0	17	2	0
2	10663	26	4	8746	26	2	12482	30	1	15767	30	4	9171	29	2
3	168	2	0	154	1	0	263	4	0	423	9	0	147	1	0
4	133812	32	13	130902	30	16	148396	35	14	175974	34	20	135656	30	16
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	28582	33	3	20076	38	1	36639	23	7	42795	40	6	22029	37	3
7	23710	32	3	28502	34	5	46567	23	1	45746	30	5	18983	42	1
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	460	8	0	58	4	0	730	13	0	493	12	0	176	8	0
10	35	1	0	24	2	0	167	5	0	182	5	0	0	0	0
Total	197659	143	23	188578	138	24	245549	142	32	281917	175	35	186179	149	22
Approx.	(198 k)			(189 k)			(246 k)			(282 k)			(186 k)		

Notation:

	= Values used for comparison between heuristics		
	TS_NEIGHBOR $=100$	ALLOWANCE $=1.1$	ITERATIONS $=100$
(2)	TS_NEIGHBOR $=300$	ALLOWANCE $=1.1$	ITERATIONS $=100$
(3)	TS_NEIGHBOR $=50$	ALLOWANCE $=1.1$	ITERATIONS $=100$
(4)	TS_NEIGHBOR $=100$	ALLOWANCE $=1.2$	ITERATIONS $=100$
(5)	$=$ TS_NEIGHBOR $=100$	ALLOWANCE $=1.1$	ITERATIONS $=200$
E	$=$ number of (non-maintenance non-breakdown) jobs that completed before their due dates $=$ number of (non-maintenance non-breakdown) jobs that completed after their due dates		
T			
Pen	al penalty of the solutio		

Table C2 : Heuristic Variable Settings for Genetic Algorithm

	(1)			(2)			(3)			(4)			(5)			(6)		
Case	Pen	E	T															
1	417	11	0	2160	22	0	1203	17	0	552	15	0	493	9	0	124	5	0
2	7663	28	0	17456	39	1	14540	44	1	9288	29	0	7306	29	0	7081	20	0
3	304	2	0	1106	11	0	912	13	0	263	4	0	186	4	0	75	3	0
4	106046	41	10	182697	29	15	162511	25	18	115982	33	14	103417	40	9	100173	41	8
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	22969	39	2	67874	31	8	51712	31	6	20284	34	3	22063	39	1	19258	35	2
7	21015	33	1	52492	34	6	50944	20	8	29048	26	7	17793	35	1	15209	33	2
8	0	0	0	235	5	0	105	4	0	0	0	0	0	0	0	0	0	0
9	820	16	0	2759	23	0	2224	16	0	717	12	0	527	10	0	496	5	0
10	156	6	0	1692	18	0	978	12	0	342	8	0	125	6	0	12	2	0
Total	159390	176	13	328471	212	30	285129	182	33	176476	161	24	151910	172	11	142428	144	12
Approx.	(159 k)			(328 k)			(285 k)			(176 k)			(152 k)			(142 k)		

Notation:

(1)	$=$ Values used for comparison b	en heuristics
	GENERATIONS $=100$	MUTATION $=0.15$ (15% mutation rate)
(2)	GENERATIONS $=100$	MUTATION $=0$ (no mutation)
(3)	GENERATIONS $=100$	MUTATION $=0.01$
(4)	GENERATIONS $=100$	MUTATION $=0.1$
(5)	GENERATIONS $=100$	MUTATION $=0.2$
(6)	$=$ GENERATIONS $=300$	MUTATION $=0.15$
E	= number of (non-maintenance non-breakdown) jobs that completed before their due dates	
T	$=$ number of (non-maintenance non-breakdown) jobs that completed after their due dates	
en	= Total penalty of the solution	

Table C3 : Heuristic Variable Settings for Simulated Annealing

| | (1) | | | (2) | | | (3) | | | (4) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Case | Pen | E | T |
| 1 | 2210 | 26 | 0 | 2717 | 25 | 0 | 2558 | 23 | 0 | 2911 | 24 | 0 |
| 2 | 29001 | 24 | 6 | 36637 | 30 | 6 | 26898 | 34 | 6 | 39489 | 32 | 6 |
| 3 | 1348 | 14 | 0 | 1679 | 13 | 0 | 1218 | 18 | 0 | 1275 | 15 | 0 |
| 4 | 189142 | 34 | 19 | 208862 | 27 | 16 | 176899 | 23 | 15 | 211014 | 21 | 16 |
| 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6 | 72073 | 26 | 7 | 90712 | 33 | 11 | 77814 | 35 | 6 | 74681 | 27 | 6 |
| 7 | 86445 | 27 | 11 | 88870 | 24 | 9 | 84516 | 24 | 9 | 85623 | 24 | 10 |
| 8 | 396 | 8 | 0 | 426 | 8 | 0 | 260 | 6 | 0 | 286 | 7 | 0 |
| 9 | 3504 | 20 | 0 | 3703 | 30 | 0 | 4769 | 22 | 0 | 3955 | 26 | 0 |
| 10 | 1836 | 17 | 0 | 2917 | 15 | 1 | 1909 | 18 | 0 | 1854 | 17 | 0 |
| | | | | | | | | | | | | |
| Total | 385955 | 196 | 43 | 436523 | 205 | 43 | 376841 | 203 | 36 | 421088 | 193 | 38 |
| Approx. | $(386 \mathrm{k})$ | | | $(437 \mathrm{k})$ | | | $(377 \mathrm{k})$ | | | $(421 \mathrm{k})$ | | |

Notation:

(1)	= Values used for comparison between heuristics	
	START_TEMP $=1000$	TEMP_DECAY $=0.99$
(2)	START_TEMP $=700$	TEMP_DECAY $=0.99$
(3)	START_TEMP $=1500$	TEMP_DECAY $=0.99$
(4)	START_TEMP $=1000$	TEMP_DECAY $=0.95$
E	$=$ number of (non-maintenance non-breakdown) jobs that completed before their due dates	
T	$=$ number of (non-maintenance non-break	
Pen		

Table C4 : Randomly spread release dates

	Greedy			Randomized Greedy			TS			SA			GA			$\mathrm{GA}+\mathrm{TS}$		
Case	Pen	E	T															
1	901	8	0	153	3	0	0	0	0	57	2	0	0	0	0	0	0	0
2	398	6	0	20	1	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1295	13	0	357	4	0	0	0	0	436	10	0	0	0	0	0	0	0
4	1848	11	0	235	5	0	0	0	0	102	4	0	0	0	0	0	0	0
5	372	7	0	25	2	0	0	0	0	0	0	0	0	0	0	0	0	0
6	367	5	0	10	1	0	0	0	0	0	0	0	0	0	0	0	0	0
7	537	8	0	20	1	0	0	0	0	0	0	0	0	0	0	0	0	0
8	452	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	398	7	0	17	2	0	0	0	0	0	0	0	0	0	0	0	0	0
10	3297	16	1	738	11	0	0	0	0	858	15	0	7	1	0	0	0	0
Total	9865	87	1	1575	30	0	0	0	0	1453	31	0	7	1	0	0	0	0
Approx.	(10 k)			(2 k)			(0 k)			(1 k)			(0 k)			(0 k)		

[^0]Table C5 : Sequential release dates

	Greedy			Randomized Greedy			TS			SA			GA			$\mathrm{GA}+\mathrm{TS}$		
Case	Pen	E	T															
1	247932	15	31	116914	36	13	20122	42	6	61488	41	7	13519	31	3	9174	38	1
2	595	9	0	100	4	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1841	15	0	300	9	0	0	0	0	364	8	0	0	0	0	0	0	0
4	5774	28	1	2298	21	1	0	0	0	1449	18	0	105	3	0	28	2	0
5	966	13	0	308	8	0	0	0	0	77	4	0	0	0	0	0	0	0
6	924017	22	42	486807	40	23	85095	34	12	305658	36	15	140548	54	13	75708	46	8
7	70351	22	9	2873	23	0	151	5	0	2659	27	0	321	10	0	181	5	0
8	4755	23	1	1536	22	0	0	0	0	992	14	0	30	3	0	0	0	0
9	345817	28	25	87066	46	7	20346	33	1	112336	40	7	21772	35	3	25349	37	3
10	340413	24	32	107454	31	9	2760	32	1	87959	33	7	5355	29	1	6338	30	1
Total	1942461	199	141	805656	240	53	128474	146	20	572982	221	36	181650	165	20	116778	158	13
Approx.	(1942 k)			(806 k)			(128 k)			(573 k)			(182 k)			(117 k)		

[^1]Table C6 : Release dates follow a Gaussian Curve, ($-\sigma$ to σ)

	Greedy			Randomized Greedy			TS			SA			GA			GA + TS		
Case	Pen	E	T															
1	201	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1343	13	0	326	6	0	0	0	0	159	2	0	0	0	0	0	0	0
3	762	8	0	106	5	0	0	0	0	28	1	0	0	0	0	0	0	0
4	543	7	0	168	5	0	0	0	0	0	0	0	0	0	0	0	0	0
5	62832	23	8	13983	26	2	5306	20	0	10780	28	0	4831	23	1	4324	18	0
6	1760	13	0	1001	10	0	25	1	0	511	7	0	0	0	0	0	0	0
7	2963	21	0	1047	10	0	0	0	0	382	6	0	0	0	0	0	0	0
8	2512	17	0	1034	12	0	0	0	0	705	8	0	0	0	0	0	0	0
9	3158	20	0	648	10	0	0	0	0	359	5	0	0	0	0	0	0	0
10	1779	17	0	517	12	0	0	0	0	226	5	0	0	0	0	0	0	0
Total	77853	143	8	18830	96	2	5331	21	0	13150	62	0	4831	23	1	4324	18	0
Approx.	(78 k)			(19 k)			(5 k)			(13 k)			(5 k)			(4 k)		

Notation:

Greedy	$=$ Greedy scheduling heuristic
Randomized Greedy	$=$ Randomized Greedy scheduling heuristic
TS	$=$ Tabu Search heuristic
SA	$=$ Simulated Annealing heuristic
GA	$=$ Genetic Algorithm heuristic
GA + TS = Genetic Algorithm followed by Tabu Search heuristic E $=$ number of (non-maintenance non-breakdown) jobs that completed before their due dates T = number of (non-maintenance non-breakdown) jobs that completed after their due dates Pen = Total penalty of the solution schedule	

Table C7 : Release dates follow a Gaussian Curve, (-2σ to 2σ)

	Greedy			Randomized Greedy			TS			SA			GA			GA + TS		
Case	Pen	E	T															
1	8641	27	1	2815	23	0	229	9	0	2210	26	0	417	11	0	237	10	0
2	154184	24	13	66181	20	12	10663	26	4	29001	24	6	7663	28	0	7656	34	0
3	3979	22	0	1161	13	0	168	2	0	1348	14	0	304	2	0	141	2	0
4	338990	28	27	255086	25	21	133812	32	13	189142	34	19	106046	41	10	104885	36	11
5	507	6	0	5	1	0	0	0	0	0	0	0	0	0	0	0	0	0
6	251647	15	16	133382	29	10	28582	33	3	72073	26	7	22969	39	2	19643	40	2
7	236602	14	18	117322	25	13	23710	32	3	86445	27	11	21015	33	1	22796	19	4
8	1036	13	0	600	7	0	0	0	0	396	8	0	0	0	0	0	0	0
9	17739	28	2	3691	24	0	460	8	0	3504	20	0	820	16	0	794	10	0
10	24435	17	3	4549	18	1	35	1	0	1836	17	0	156	6	0	73	2	0
Total	1037760	194	80	584792	185	57	197659	143	23	385955	196	43	159390	176	13	156225	153	17
Approx.	(1038 k)			(585 k)			(198 k)			(386 k)			(159 k)			(156 k)		

Notation:

Greedy	$=$ Greedy scheduling heuristic
Randomized Greedy	$=$ Randomized Greedy scheduling heuristic
TS	= Tabu Search heuristic
SA	$=$ Simulated Annealing heuristic
GA	= Genetic Algorithm heuristic
GA + TS	= Genetic Algorithm followed by Tabu Search heuristic
E \quad number of (non-maintenance non-breakdown) jobs that completed before their due dates	
T \quad = number of (non-maintenance non-breakdown) jobs that completed after their due dates	
Pen \quad = Total penalty of the solution schedule	

[^0]: Notation:
 Greedy $\quad=$ Greedy scheduling heuristic
 Randomized Greedy $=$ Randomized Greedy scheduling heuristic
 TS $\quad=$ Tabu Search heuristic
 SA $\quad=$ Simulated Annealing heuristic
 GA $\quad=$ Genetic Algorithm heuristic
 GA + TS $\quad=$ Genetic Algorithm followed by Tabu Search heuristic
 $\mathrm{E} \quad=$ number of (non-maintenance non-breakdown) jobs that completed before their due dates
 $\mathrm{T}=$ number of (non-maintenance non-breakdown) jobs that completed after their due dates
 Pen = Total penalty of the solution schedule

[^1]: Notation:
 Greedy $\quad=$ Greedy scheduling heuristic
 Randomized Greedy $=$ Randomized Greedy scheduling heuristic
 TS $\quad=$ Tabu Search heuristic
 SA $\quad=$ Simulated Annealing heuristic
 GA $\quad=$ Genetic Algorithm heuristic
 GA + TS $\quad=$ Genetic Algorithm followed by Tabu Search heuristic
 $\mathrm{E} \quad=$ number of (non-maintenance non-breakdown) jobs that completed before their due dates
 $\mathrm{T}=$ number of (non-maintenance non-breakdown) jobs that completed after their due dates
 Pen = Total penalty of the solution schedule

