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Summary 

 

 

Fleet assignment is the second airline schedule planning step that aims to maximize the 

profitability by optimally assigning fleet type to the legs. Traditionally this step ignores 

the cargo flow completely. As the revenue contributed by cargo keeps increasing for the 

last decade, the cargo flow is very important for combination carriers and should be 

properly modeled. The route of cargo is determined to a large extent by the cargo capacity 

of every leg, which depends on the fleet assignment decision. As a result, the fleet 

assignment has great influence on the cargo revenue. Incorporating the cargo routing into 

the fleet assignment can help the combination carrier to better balance its resource and the 

forecasted cargo demand.  

 

This paper proposes an integration of the fleet assignment model and the cargo routing 

model. To eliminate the complexity brought by the time window and the side constraints, 

a two phase technique was applied to formulate the cargo routing problem as a path-

oriented multicommodity network flow model, in which each column corresponds to a 

feasible path. To accommodate the uncertainty of the feasible path, the capacity 

constraints and the variables in the cargo routing model are disaggregated and all potential 

feasible paths are generated from a non-fleeted schedule to replace feasible paths.  

 

A Benders decomposition based algorithm is proposed to solve the integrated problem. 
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This algorithm decomposes the integrated formulation into a relaxed master problem of 

the fleet assignment and a subproblem of the cargo routing. These two problems are 

solved iteratively until the difference between their solutions is within a designated 

tolerance. Other than the basic algorithm, three variants, a pareto-optimal cut generation 

approach, an ε -optimal approach and a hybrid approach are applied to solve the 

integrated problem. The pareto-optimal cut generation approach selects strong cuts at each 

Benders iteration; the ε -optimal approach solves the Benders relaxed master problem 

only to a feasible integer solution rather than the integer optimum; the hybrid approach 

first employs the ε -optimal approach to find a good feasible solution, then it turns to the 

basic algorithm for the real optimum.  

 

Computational results show that the basic algorithm outperforms all the others in our 

problem. It spent only several minutes to obtain the optimal solution for all test instances. 

The hybrid approach also converges very fast and has the potential to be an efficient 

method if an appropriate turning point is selected.  
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1 Introduction 

 

 

Airline schedule planning consists of a series of planning activities that have to be made 

so that the schedule is operationally feasible and profitable. Normally these activities are 

carried out in a sequential process rather than simultaneously, which reduces the 

complexity of the planning process, but leaves scope for improvement. To generate 

improved plans these activities could be integrated together or incorporate other problems 

that have linkages with them.  

 

The recent advance in the computer hardware and the solution algorithm make possible 

the simultaneous planning. Many integrated approaches that carried out two or more 

planning activities simultaneously were developed and improved plans over the sequential 

approach were reported. The main challenge of the integrated planning is to obtain 

improved plans in reasonable time.  

 

This chapter introduces the background, motivation and main contributions of this 

research. Section 1.1 introduces the traditional airline schedule planning, followed by 

Section 1.2 that presents recent development of the integrated planning approach. Next, 

the problem we studied is described in Section 1.3 and our main contributions are reported 

in Section 1.4. This chapter ends with the organization of the rest of this thesis in Section 

1.5.  
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1.1 Traditional Airline Schedule Planning 

The flight schedule is the primary product of an airline. It defines a list of legs to be flown 

by the airline. A flight leg is a non-stop flight from an origin to a destination with specific 

departure and arrival times (Gopalan and Talluri, 1998a). The flight schedule has 

significant influence on customers’ choices and thus profit of an airline. The objective of 

airline schedule planning is then to find a schedule that best balances customers’ demand 

and an airline’s resource.  

 

Airline schedule planning includes all the planning activities that have to be carried out for 

a schedule to be considered operational and profitable. There are many factors to be taken 

into account before marketing the schedule, such as flight operations, airport facilities, and 

regulations of Federal Aviation Administration (FAA) on aircraft maintenance and crew 

rest time. The main decision problems involved in schedule planning are schedule 

development, fleet assignment, through flight selection, aircraft routing and crew 

scheduling, along with the sequence in which the decisions are made. Normally these 

problems are solved in a sequential process rather than simultaneously, even though 

simultaneous solution approaches are preferred. The primary reason is because the 

integrated problem lies beyond the capability of the current computer technology and 

solution algorithm. These decision problems have been well studied and a number of 

mathematical models have been developed to solve them individually. A thorough 

description on airline schedule planning can be found in the survey by Gopalan and 

Talluri (1998a). Here we only introduce these problems briefly.  
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1.1.1 Schedule Development 

Flight schedules are commonly constructed based on the market demand. The demand of a 

market between two cities over a period of time is estimated by traffic forecasting. Since 

the demand fluctuates greatly with lots of factors like the season, the economy status, and 

even the holidays, traffic forecasting has significant influence on the effectiveness and 

profitability of a schedule. More accurate traffic forecasting may help the airline to better 

serve markets by judiciously designing the flight network and assigning frequency to the 

legs. Currently the flight schedule is developed manually for most airlines. After the 

schedule, or a list of legs, is determined, the next step is to effectively allocate resources, 

both aircraft and personnel, to fly the schedule, which is accomplished by the four steps 

described in the following Sections 1.1.2- 1.1.5.  

 

1.1.2 Fleet Assignment 

Given a flight schedule about where and when to fly and different aircraft fleets, the fleet 

assignment is made to determine which fleet to assign to each leg. The fleet assignment 

problem is normally modeled as a multicommodity flow problem with the objective to 

minimize the total assignment cost, which consists of the operating cost, carrying related 

cost, and spill cost. Spill cost of a leg is the loss of revenue when the capacity of the 

aircraft assigned to it is not enough to satisfy all the customers’ demands on this leg. The 

airline either recaptures the excess demands by other legs in its own network, or spills 

them to another airline. Three sets of constraints must be satisfied by the fleet assignment 

solution. Firstly, each leg must be covered once and only once by a fleet type. Then, 

aircraft going into a station at a particular time must leave the same station at some time 

later. Finally, the number of aircraft in use in a fleet type can not exceed the size of this 
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fleet. The fleet assignment model is defined on a time space dynamic flight network, 

where a node represents the time and space, and an arc represents the movement between 

time and/or space. The model is often applied to the daily fleet assignment that follows the 

same schedule every day in a week. However, it can be easily extended to a weekly fleet 

assignment model by building the flight network for a week rather than for a single day. 

Many research works have been done to study the fleet assignment problem. A detailed 

literature review is provided in the next chapter. 

 

1.1.3 Through Flight Selection 

When traveling from one city to another, passengers will firstly choose the non-stop 

flights. However, an airline can not serve every market with non-stop flights because of 

resource limitation. In the absence of such flights, the connection service with two or more 

legs is provided. As a type of connection, a through flight uses the same aircraft for all the 

legs covered. Passengers prefer through flights because they do not need to leave the plane 

and locate the departure gate for their next flight through a crowded airport to make a tight 

connection. Through flights thus have an additional marketing advantage over regular 

connections. As a result, choosing a profitable set of through flights is an important step in 

the airline schedule planning. To accomplish this, the benefit of each potential through 

flight has to be evaluated first. The benefit can be measured in terms of the incremental 

revenue from making a given pair of legs a through flight. Several requirements must be 

met for a through flight to be valid. Among of them are the minimum transit time and 

maximum waiting time onboard between two connected legs, non-circuitous connection 

and some constraints at the market level. Furthermore, the selection of through flights 

must be made in such a way that the number of aircraft required to fly the schedule is not 
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increased. For a more detailed description, the reader can refer to previous works by Bard 

and Cunningham (1987) and Jarrah and Strehler (2000).  

 

1.1.4 Aircraft Routing 

After the aircraft fleet on a leg is specified by the fleet assignment, the aircraft routing 

problem is solved to determine which one of the specific aircraft in that fleet, referred by a 

tail number, actually flies that leg. In other words, aircraft routing assigns a sequence of 

legs to each individual aircraft so that appropriate aircraft maintenance is ensured. For 

safety reasons, every aircraft must regularly go through different types of maintenance 

checks with different scope, frequency, and duration. For instance, FAA requires A, B, C 

and D checks (Gopalan and Talluri, 1998a). Type A checks inspect all the major systems 

and are performed frequently. If an aircraft does not undergo this check within a specified 

period, it is forbidden to fly. The aircraft routing problem is solved mainly by two classes 

of approaches. The first one explores the structure of the underlying lines of flying (LOFs) 

to derive heuristics (Gopalan and Talluri, 1998b). For the daily aircraft routing, LOFs 

specify the origin at the start of the day and the destination at the end of the day for a 

specific aircraft. The other class of approaches uses the mathematical programming 

models. Kabbani and Patty (1992) proposed a general set partitioning formulation for the 

aircraft routing problem, with the objective to minimize the total routing cost. This 

approach generates a large number of feasible maintenance routings and selects a subset of 

them to cover every leg in the schedule. Therefore, arbitrary and complex maintenance 

rules can be easily incorporated into the routing selection.  
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1.1.5 Crew Scheduling 

After fuel costs, crew costs are the highest direct operating cost of an airline. The crew 

scheduling problem partitions a given flight schedule into crew rotations or parings and 

assigns them to flight crews, such that each pairing satisfies a set of work rules and the 

total assignment cost is minimized. A crew paring consists of a sequence of duty and rest 

periods, where a duty is a set of legs flown by a crew in a single workday. The duration of 

a duty, called duty period, is usually restricted to eight hours of flying and twelve hours of 

total duty time, including briefing before the first leg of the duty and debriefing after the 

last leg of the duty. Between duty periods, there must be enough overnight rests or 

layovers. Every paring begins and ends at the same crew base and must satisfy the many 

rules governing the legality and penalty of the pairing, such as the flying time, resting time, 

connection time, etc. Moreover, the crew pairing problem must take into account the 

number of crews available at different crew bases, the preference to keep crews on the 

same plane during a duty period, and the preference for short pairing. One of the related 

works is from Anbil et al. (1992), who presented a global approach to optimize the crew 

pairing problem. 

 

For some airlines, after parings are constructed, they are finally assigned to every 

individual crew by solving a crew bidding problem or a crew rostering problem. A bidline 

or roster consists of a sequence of pairings that a crew flies within a month. Like pairings, 

bidlines and rosters must observe all relevant rules.  
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1.2 Integrated Airline Schedule Planning  

The sequential approach considerably reduces the complexity of the airline schedule 

planning process. However, it may not yield feasible solutions due to the reduced 

flexibility by previous decisions, and even if feasible solutions are obtained, these 

solutions might be far from optimal. For instance, the solution of the fleet assignment may 

lead to the resulting aircraft routing problem infeasible, as certain maintenance constraints 

may not be satisfied. Solving the fleet assignment problem and the crew scheduling 

problem sequentially may create a situation where the saving in fleet assignment can never 

compensate the excessive crew costs. As a result, the simultaneous decision making is 

preferred because it could produce more economical plans and eliminate incompatibilities 

between decisions. By synchronizing some or all of these decisions, the integrated airline 

schedule planning reduces the overall schedule generation time and improves the 

productivity of the schedule developers. However, the development of integrated planning 

has been limited by the computer hardware and the solution algorithm for many years. 

Until recently, the integrated planning becomes possible with the great development in 

both of the two fields. Many integrated approaches that simultaneously solve two or more 

problems were developed and improved solutions over the sequential approach were 

reported in the past five years. Some of them simultaneously solve fleet assignment and 

aircraft routing, fleet assignment and crew scheduling, or crew scheduling and aircraft 

routing.  

 

Besides integrating with each other, some decision making processes also incorporate 

other problems that have linkages with them. These problems usually have great influence 
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on the profitability of an airline. Taking the fleet assignment as an example, its solutions 

determine the seat number of every leg and thus have significant influence on the 

passenger flow, which is the main source of an airline’s revenue. Therefore, a better fleet 

assignment decision can be expected if these two problems are simultaneously solved.  

 

1.3 Problem Description 

The second airline schedule planning step, fleet assignment, aims to maximize 

profitability by optimally allocating fleet types to legs. Traditionally this step considers 

only the leg based passenger flow and ignores the cargo flow completely. As all legs in a 

network are interdependent, failing to capture the network effect may cause the solution to 

be suboptimal. The incorporation of itinerary based passenger flow into the fleet 

assignment had been studied by Barnhart et al. (2002). As the revenue contributed by 

cargo keeps increasing for the last decade, the cargo flow is very important for 

combination carriers and should also be properly modeled. The route of cargo is 

determined to a large extent by the cargo capacity of every leg, which depends on the fleet 

assignment decision. As a result, the fleet assignment has great influence on the cargo 

revenue. A traditional approach to the fleet assignment may cause great loss in the cargo 

revenue and thus the total profit of an airline. Incorporating the cargo routing into the fleet 

assignment can help the combination carrier to better balance its resource and the 

forecasted cargo demand. Motivated by this reason, we propose in this thesis an integrated 

approach to simultaneously determine the assignment of fleet to each leg and the cargo 

routing over the flight network.  
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Given a non-fleeted flight schedule that defines when and where to fly, a set of various 

aircraft, and forecasted cargo demands in all markets, we introduce an integrated model 

that combines the fleet assignment and the cargo routing problems. The cargo routing 

problem is to transport goods by aircraft from different origins to different destinations 

over a given network, with maximum revenue and without exceeding either aircraft 

capacity or a designated time window. Unlike the passenger, cargo has no strong 

preference on the specific itinerary as long as it can be delivered on time. This freedom 

increases the complexity of the problem. There is also no available industry data to 

calculate the spill cost and the recapture rate for the cargo flow. Furthermore, generally 

cargo is allowed to transfer between different aircraft only at the hub, while this 

requirement is not applicable to the passenger who is indifferent about whether the transit 

station is the hub or a spoke. As a result, the cargo flow problem is modeled in a much 

different way from the passenger flow problem.  

 

1.4 Research Contributions 

The main contributions in this thesis are:  

• We present an integrated model of the fleet assignment with the cargo routing and 

develop a solution approach, referred as the basic algorithm, based on Benders 

decomposition. A series of computational experiments are carried out for different 

data sets to test its performance. Results show that the basic algorithm converges 

very fast for all test instances.  

• We implement two different techniques to explore the possibility of accelerating 

the convergence of the basic algorithm. The pareto-optimal cut generation 
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approach solves an auxiliary linear programming problem at each Benders 

iteration to select a strong cut. To alleviate the burden of solving a large number of 

integer programs, the ε -optimal approach is designed to solve the Benders relaxed 

master problem to a feasible solution rather than an integer optimum. The 

objective function of the relaxed master problem is modified dynamically in each 

iteration so as to obtain a good feasible integer solution.  

• We suggest a hybrid approach to enhance the ε -optimal approach. This solution 

approach first solves the original problem to a good feasible solution by the ε -

optimal approach.  After that, it turns to the basic algorithm to obtain the true 

optimal solution or a solution with a smaller optimality tolerance.  

 

1.5 Organization of This Thesis 

The rest of this thesis is divided into 5 parts. In Chapter 2, a literature review on the fleet 

assignment and the air cargo transportation is presented, followed by a thorough survey of 

the integrated airline schedule planning, where we can find different integrations of 

optimization problems in the airline industry developed so far.  

 

Chapter 3 introduces all the mathematical formulations in our problem. A time-space 

dynamic network is constructed firstly, on the basis of which the basic fleet assignment 

model is built. After defining the commodity in our problem, we apply a two phase 

modeling technique to capture the time window and complex operational rules, and model 

the cargo routing problem as a path-oriented multicommodity network flow problem. The 
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integrated formulation is finally presented as the combination of these two problems, with 

some modifications on the variables and constraints in the cargo routing model.  

 

After a short review on Benders decomposition, Chapter 4 introduces the Benders 

reformulation of the integrated model. Then three different solution approaches are 

developed based on Benders decomposition and its two variants, Pareto-optimality cut 

generation and the ε -optimal approach, respectively. Both the solution methodologies and 

the specific solution procedures are described.  

 

In Chapter 5, we describe our test instances and report the computational results. An 

improved solution approach that combines the basic algorithm and the ε -optimal 

approach is suggested. Finally a comparison of performances between different 

approaches is presented.  

 

Chapter 6 summarizes the main results obtained from this research project, and discusses 

possible directions for future research in the integrated airline schedule planning.  
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2 Literature Review 

 

  

We first outline previous related works in the fleet assignment problem in Section 2.1 and 

the air cargo shipment delivery problem in Section 2.2. In Section 2.3 we present a 

detailed review on the integrated airline planning.  

 

2.1  Fleet Assignment 

The fleet assignment problem is of considerable importance to airlines. Much research has 

been done to solve the daily fleet assignment problem, which determines a fleeting that 

remains the same every day of a week.  

 

One of the early works is from Abara (1989), who built an integer linear programming 

model to solve the fleet assignment problem, with the objective to maximize the revenue 

of the flights minus the cost of the aircraft shortage and the cost of the stations. The model 

can be used either in the case where all legs are to be served or in the early stage of 

schedule planning when some legs may be dropped. The decision variables were defined 

for each feasible turn and aircraft combination. A feasible turn is a connection between 

two legs whose transit time is greater than a designated minimum turn time. There were 

also the balance or shortage variables and extra aircraft variables. Four out of the five 

main sets of constraints were flight coverage, continuity of equipment, schedule balance, 

and aircraft count, respectively. The fifth constraints can be lower bounds and upper 
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bounds on any flight related variables, such as the limits on the overnight aircraft for a 

group of stations.  

 

In 1995, Hane et al. modeled the daily fleet assignment as a large multicommodity flow 

problem and proposed efficient solution approaches to solve it. The formulation was 

defined on a set of time-space networks, each of which was constructed for a fleet type. 

Different from the work by Abara (1989), this paper defined two sets of decision variables. 

The binary fleet assignment variable was defined for each leg and fleet type combination, 

while the continuous ground arc variable was defined for each ground arc in the networks. 

To reduce the problem size, some adjacent nodes along a time line were aggregated and 

islands were constructed in spokes where the daily activity was very sparse. An island is 

an interval of time where there exists at least one aircraft on the ground. After testing 

different algorithms to solve the LP relaxation at branch and bound nodes, the authors 

concluded that the predictor-corrector interior point algorithm was much faster than the 

simplex method, but the time to go from an optimal non-basic solution to an optimal basic 

solution, the crossover, was even greater than the time to find the optimal solution in some 

cases. To avoid degeneracy in the problem, the cost coefficients of the ground arcs were 

perturbed after finding an optimal interior solution and before crossover. They also 

studied the branching rule in order to enhance the branch and bound. Instead of branching 

on a single variable, they suggested to branch on a cover row (flight cover constraint that 

was defined for every leg) so as to give a more balanced tree. To determine which cover 

row to branch at a node, each leg was issued a priority order that was obtained based on 

the variance in the cost coefficients of the variables covering that leg. Furthermore, if 
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several branches had the same priority, a criterion was established to find the one that had 

the least harm to the objective function.  

 

Subramanian et al. (1994) presented a fleet assignment model at the Delta airline. Other 

than the intrinsic constraints, the model also takes into account a lot of operational 

restrictions, including aircraft maintenance, pilot training, pilot hours, crew breakout, crew 

rest, and noises. Although some of the restrictions were modeled by the constraints, the 

others were coded into the input data.  

 

A new fleet assignment model defined on an event-activity network was introduced by 

Rushmeier and Kontogiorgis (1997). Each node in this network was an event that 

represented the start of an operation (i, e), a flight i operated by fleet e. Each flight activity 

arc (i, j, e) represented a feasible connection between leg i and leg j by the same fleet type 

e. There was also a set of sit activity arc. The constructed fleet assignment model was able 

to capture connection rules of arbitrary complexities. Furthermore, it modeled constraints 

of resources, such as the aircraft maintenance and crew, as piecewise linear penalty terms, 

which allowed for a profit-maximization-based tradeoff between operational goals and 

revenue.  

 

After the fleet assignment problem is solved, planners spend significant efforts in fine 

tuning and modifying the obtained solution to reflect business judgment calls that can not 

be captured by the optimization model. This process is referred as re-fleeting. Jarrah et al. 

(2000) formulated the re-fleeting problem as a multicommodity integer network flow 
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problem, which comprehensively considered the practical re-fleeting questions. Used 

together with a fleet assignment model, the re-fleeting model can produce high-quality 

fleet assignment solutions. Another work in this area is from Talluri (1996), who 

introduced a simple algorithm to swap the fleet type of some legs without violating any 

constraint.  

 

Berge and Hopperstad (1993) proposed models and algorithms for demand driven 

dispatch, which was an operational concept of fleet assignment. Taking advantage of 

improved demand forecast as flight departures approach, aircraft were assigned to legs 

dynamically to better match the predicted final demand. Demand forecasting was provided 

by the yield management system. Implementation of this concept required frequent 

solutions of the fleet assignment problem.  

 

2.2 Air Cargo Shipment Delivery 

The air cargo shipment delivery problem is seldom studied individually, but rather 

embedded into the service network design. Kim et al. (1999) modeled and solved a large 

scale service network design problem involving the express package delivery. After the 

service network was determined, the flow problem of package over the obtained service 

network was solved. The package flow problem was modeled as a multicommodity 

network flow problem in the tree formulation, which had one variable for each tree 

commodity. A commodity was defined by a single origin and possibly, multiple 

destinations. The objective was to move packages from their origin to their destinations 

with the minimum cost, satisfying service commitments and network capacity. Compared 
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with the path-oriented formulation, the tree formulation reduced the number of constraints, 

because it had a smaller number of commodities and therefore a smaller number of 

demand constraints. However, the number of variables was increased exponentially 

relative to the number in the path formulation. Column generation was used to solve the 

tree formulation. Computational results showed that the tree-oriented formulation was 

solved much faster than the path-oriented formulation, which can be attributed to the 

relative uncongested service network. Other works in this area are Barnhart and Schneur 

(1996), Grainic (2000), and Barnhart et al. (2002).  

 

Antes et al. (1998) developed a Decision- Support System (DSS) to evaluate the flight 

schedule for cargo airlines. Given the estimated market demand, a flight schedule, and 

transportation and handling capacities, their models found the maximum profit flow of 

cargo over the network. The system allowed different analysis on the flight schedule and 

the market share acquisition, which were quite useful for the tactical planning of the cargo 

airline. Two underlying models were built to enable the analysis. One was the basic 

multicommodity network flow model and another was the flexible model that included the 

time constraints.  

 

2.3 Integrated Airline Schedule Planning 

Few references can be found in the operations research literature regarding to the 

integration of optimization problems in the airline industry. The related previous works 

are classified into different categories according to the problems the integrated model 

involves.  
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2.3.1 Fleet Assignment with Aircraft Routing 

One of the early efforts in this direction is the work of Barnhart et al. (1998a), who 

proposed a string-based integrated model to simultaneously solve the fleet assignment and 

the aircraft routing problems. A string was defined as a sequence of connected legs 

beginning and ending at the same maintenance station, without violating the flow balance 

and the maintenance feasibility requirements. This model can capture aircraft connection 

costs and complicating constraints such as maintenance requirements or aircraft utilization 

restrictions. However, the flight schedule with hundreds of legs had millions of strings, 

which resulted in a huge number of variables in the model. To overcome this drawback, 

this integrated model was solved by a branch-and-price algorithm, which is developed on 

the basis of branch-and-bound, but the LP relaxation at each node is solved by column 

generation.  

 

Ioachim et al. (1999) introduced a fleet assignment and aircraft routing formulation with 

schedule synchronization constraints, which was solved by an approach based on Dantzig-

Wolfe decomposition. The master problem contained flight covering constraints and 

schedule synchronization constraints. The resulting subproblem was a shortest path 

problem with time windows and was solved by a dynamic programming algorithm. A 

special branching strategy on the time variables was devised to find an optimal integer 

solution.  
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2.3.2 Fleet Assignment with Crew Scheduling 

Another work of Barnhart et al. (1998b) is the integrated approximate modeling of the 

fleet assignment and crew pairing problems. Since the crew pairing problem takes very 

long time to solve, an approximate duty based model (Barnhart and Shenoi, 1998c) was 

used in replacement of it to maintain the solvability. This model was defined on a duty 

network, which had ground arcs and duty arcs (rather than flight arcs). Each duty arc 

represented a duty period. The integrated fleet assignment and crew pairing problem was 

solved by an advanced sequential solution approach. The approximate integrated model 

was solved first. Given its fleeting solution, an exact crew pairing problem was optimized 

for each fleet family. Therefore, it was not really a simultaneous optimization and the 

solution was not necessarily optimal.  

 

Clarke et al. (1996) incorporated the maintenance and crew considerations into fleet 

assignment so as to generate feasible or improved solutions. To accomplish it, they added 

to the basic fleet assignment model the long and short maintenance constraints. To avoid 

lonely overnight for crews, a cost was issued to each lonely overnight and the objective of 

the optimization model was designed to balance the costs between lonely overnight and 

fleeting. This model improved the quality of the solution and can be solved with a 

reasonable increase in computer time. 

 

2.3.3 Fleet Assignment with Schedule Development 

Allowing scheduled flight departure time to change within a time window may improve 

flight connection opportunities and therefore generate a more profitable fleet assignment. 
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Rexing et al. (2000) presented a generalized fleet assignment model to simultaneously 

assign aircraft to legs and schedule the departure times. To model time windows, the basic 

flight time space network was extended by placing copies of a flight arc at specified 

intervals and requiring just one of them to be flown. This model differed from the basic 

fleet assignment model in that it had more variables and slightly different coverage 

constraints. To exclude many unnecessary flight copies from the model, an iterative 

solution technique was used to solve the problem. This approach first solved a fleet 

assignment problem with one arc for each flight and fleet combination. Additional flight 

copies were added iteratively if permitting a flexible departure time to these flights may 

improve the solution. By adding flight copies only when necessary, the iterative approach 

minimized the problem size and memory usage.  

 

A similar work is from Desaulniers et al. (1997), who presented an integration of the fleet 

assignment model and time windows. Two equivalent models were constructed, a set 

partitioning formulation with side constraints and a time constrained multicommodity 

network flow formulation. Column generation and a Dantzig-Wolfe decomposition based 

approach were employed to solve the problem.  

 

2.3.4 Fleet Assignment with Passenger Flow 

Particularly interesting is an integrated model of the fleet assignment problem and the 

passenger mix problem introduced by Barnhart et al. (2002) to generate improved 

solutions. Given a fleeted schedule and unconstrained itinerary demand, the passenger mix 

problem optimizes the flow of passengers over this schedule with maximized revenue or 
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minimized assignment cost.  This itinerary-based fleet assignment model was able to 

capture network effects and estimate spill and recapture of passenger more accurately. In 

the integrated model, spill, recapture and their associated costs were decisions, which were 

constrained by the capacity assigned to the network. A restricted master problem (RMP) 

without passenger demand constraints and a subset of spill variables was constructed and 

the LP relaxation of RMP was solved by column and row generation. A heuristic IP 

solution approach was then employed to obtain the integrality solution.  

 

2.3.5 Aircraft Routing with Crew Scheduling 

Recently, Cordeau et al. (2001) introduced an integrated model and a solution approach 

based on Benders decomposition to optimize the crew pairing and the aircraft routing at 

the same time. The linear relaxation of the combined model was decomposed into a master 

problem that solves the aircraft routing problem in addition to a set of Benders cuts and a 

subproblem that solves the crew pairing problem. To avoid generating feasibility cuts 

from extreme rays, artificial variables with large positive costs were introduced to 

eliminate the infeasibility of the subproblem. At each Benders iteration, the special 

structure of the relaxed master problem and the subproblem enabled them to be solved by 

column generation. Optimal integer solution of the integrated model was obtained by a 

three phase approach.  

 

Other contributions to improve the crew pairing solution by incorporating other planning 

problems are the works of Klabjan et al (2002) and Cohn and Barnhart (2003). Klabjan et 

al (2002) proposed to integrate the crew pairing partially with the schedule planning by 
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allowing the shift of the departure time of every flight within a time window and the 

aircraft routing by adding plane-count constraints to the basic crew pairing model. This 

approach provided significant cost saving to the crew pairing problem compared to the 

basic model. Cohn and Barnhart (2003) presented an extended crew pairing model that 

was built upon the basic crew pairing formulation in addition to a collection of variables, 

each of which represented a complete solution to the maintenance routing problem. All the 

constraints in the original maintenance routing problem were therefore replaced by a 

single convexity constraint. However, the number of variables increased drastically 

because the number of feasible maintenance routing solutions was an exponential function 

of the number of legs. Realizing the fact that only part of the maintenance decisions 

affected the crew pairing problem, the authors reduced the problem size by including only 

one column representing a unique and maximal maintenance feasible short connect set. 

The resulting model had the flexibility to include additional airline planning decisions.  
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3 Mathematical Formulations 

 

 

This chapter describes the underlying time-space dynamic flight network and the 

mathematical models of the fleet assignment problem (Section 3.1), the cargo routing 

problem (Section 3.2) and their combination (Section 3.3).  

 

We base our models on the planning problems faced by a major Asia-pacific combination 

carrier. It operates a weekly flight schedule through a passenger network with six different 

fleets and a freighter network with only one fleet. The entire network has only one hub.  

 

3.1 Fleet Assignment Model 

Given a flight schedule and a set of fleets, the fleet assignment is made to determine which 

fleet to assign to each leg with the objective to minimize the total assignment cost or to 

maximize the total fleet assignment contribution. The fleet assignment problem is 

normally modeled as a multicommodity flow problem defined on a time-space dynamic 

flight network. Since the airline we are interested in operates a weekly schedule, the 

network covers all flights in a week and the model constructed is a weekly fleet 

assignment model.  

 

The multicommodity network flow problem (MCNF) has been studied extensively. Ahuja 

et al. (1993) presented a thorough description of MCNF. Jones et al. (1993) studied the 

impact of the formulations on decomposition solution approaches for the multicommodity 
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network flow problem. Three formulations, the node-arc, the path and the tree 

formulations were compared. The result showed the second formulation outperforms the 

other two in general cases. In our problem, both the fleet assignment and the cargo routing 

problems are modeled as MCNFs, but they are in different forms. Unlike the node-arc 

oriented fleet assignment model, the cargo routing model we build is path-oriented.  

 

3.1.1 Time-Space Dynamic Flight Network 

The weekly flight network is constructed in the same manner as the daily network. It 

contains leg arcs corresponding to legs and ground arcs corresponding to aircraft on the 

ground.  

 

Let L be the set of legs in the weekly flight schedule indexed by i, S the set of stations 

served by the schedule indexed by s and E the set of fleet types indexed by e whose size is 

denoted by eNum . To force the aircraft to circulate through the network, a time line for 

each station s and fleet e pair is constructed to model weekly activities. Along a time line 

the departure and arrival events in a week are represented as nodes in order of event time, 

which is defined as the departure time for departures and the arrival time plus the turn 

time (or ready time) for arrivals. The turn time is used for refueling, cleaning, package 

handling, etc. It varies mainly with fleet types and stations, and ranges from 30 to 60 

minutes. A node n, n∈N on a time line is denoted by (e, s, t), where t is the event time of 

this node. Let T denote the set of event times at a station, indexed by ti. The event at ti 

occurs before the event at ti+1. If |T|=m, tm is the last event before the count time, and t1 is 

the first event after the count time. The count time is a specified time point in a week used 
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to count the number of aircraft in the schedule. To facilitate the counting, the count time is 

best chosen at a time when most of the aircraft are on the ground. Connecting time lines at 

all stations by leg arcs forms a time-space network for each fleet. For every leg i, the pair 

of nodes created at its departure station and its arrival station are linked by a leg arc 

representing the assignment of a fleet to that leg. The node (e, s, tn) along the time line at 

station s for fleet e is connected to its immediate successor node (e, s, tn+1) by a ground arc. 

Since the schedule repeats itself weekly, the end of a time line is connected to the 

beginning by a cross week ground arc. Let I(n) be the set of inbound legs to node n and 

O(n) the set of outbound legs from node n. The set of legs that pass the count time and is 

flown by fleet type e is denoted by O(e). A station and fleet dependent time line is shown 

in Figure 3.1, from which we can clearly find all feasible connections between legs.  

 

 

Figure 3.1 A Station-Fleet Time Line 

 

Because the turn time varies with the fleet type, we should construct a special network for 

each fleet. In this research, however, we assume the turn times are the same for all fleets at 

all times at each station, thus only one time space network is needed for all various fleet 

types. Such an assumption simplifies the modeling process without compromising the 
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research objective, which is to explore modeling and solution approaches to the integrated 

problem.  

 

3.1.2 Basic Fleet Assignment Model 

Prior to the mathematical formulation of the basic fleet assignment model, the following 

notations are defined, some of which have been used in the previous Section 3.1.1.  

 

Sets 

 L: the set of legs in flight schedule indexed by i. 

E: the set of different fleet types indexed by e. 

S: the set of stations indexed by s.  

T: the set of arrival and departure event times at all stations in a week, 

indexed by ti.  

N: the set of nodes in the time space network indexed by n or (e, s, t), where 

TtSsEe ∈∈∈ ,, . 

O(e):  the set of legs that pass the count time and is flown by fleet type e.  

I(n):   the set of inbound legs to node n or (e, s, t). 

O(n):  the set of outbound legs from node n or (e, s, t). 

 

Parameters 

 Nume:  the number of aircraft in fleet type e.  

e
ic : the cost of assigning fleet type e to leg i, which is the operational fleet 

assignment cost minus the estimated passenger revenue, written 



   Chapter 3 Mathematical Formulations 

 26

as e
i

e
i

e
i cc τ−= )0( . The coefficient e

i
c )0( is the operational cost that includes 

the cost of fuel, handling, take-off and landing. e
iτ  is the estimated 

passenger revenue of flying leg i with fleet e, which is a linear function of 

the seat number and the block time of this leg. The revenue per seat per 

time unit is obtained from the annual financial report of the airline. We 

ignore the spill cost and the recapture but simply estimate the passenger 

revenue linearly, for this research project mainly focuses on the cargo flow 

segment.  

 

Decision variables 





=
                                              otherwise ,0

; fleet type  toassigned is  legflight  if  ,1 ei
xe

i  

),(,, 1+nn ttseg : the number of fleet type e that are on the ground at station s

 immediately after event time tn or just before event time tn+1. 

 

The mathematical formulation of the basic fleet assignment model (FAM) is:  
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The objective (3.0) minimizes the total fleet assignment costs or maximizes the total 

passenger revenue minus the operational costs. Cover constraints (3.1) ensure that each 

leg is covered once and only once by a fleet type. Balance constraints (3.2) ensure that 

aircraft going into a station at a particular time must leave the same station at some time 

later. The final set of constraints (3.3) ensures that the number of every fleet in use does 

not exceed the total number available of this fleet.  

 

Because of the large number of nodes in the network, this model has much more balance 

constraints ( EN ) than the other two constraints )( EL + . Similarly, the number of 

ground arc variables ( EN ) is much more than that of the binary variables ( EL ). The 

problems size, therefore, may reduce greatly with the reduction of the number of nodes. 

To accomplish it, Hane et al. (1995) proposed an idea of node aggregation. Since the 

model does not care about the specific arrival (departure) time as long as the correct 

connection opportunity is guaranteed, there is no use to create arrival (departure) nodes in 

the time line earlier (later) than the next departure (previous arrival). In other words, only 

one node is created in the time line for consecutive arrivals followed by consecutive 

departures. This node spans a time interval which begins with the first arrival and ends 

with the last departure. After node aggregation, the time line in Figure 3.1 has much fewer 

nodes, as shown in Figure 3.2.  
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Figure 3.2 The Station-Fleet Time Line After Node Aggregation 

 

Aggregating nodes will greatly reduce the number of balance constraints and the ground 

arc variables. A further reduction of the problem size can be achieved by constructing 

islands (Hane et al. 1995) in spokes where the daily activity is very sparse. Since there is 

no aircraft on the ground between two islands, the ground arc connecting them is removed. 

Figure 3.3 shows the time line after removing three ground arcs. Particularly, for an island 

with only one arrival followed by one departure, like the third node in Figure 3.3, the 

corresponding pair of fleet assignment variables are combined into one variable that 

represents the assignment to the path or the pair of legs. The path can be extended to 

include three or more consecutive legs. As a result, the number of binary decision 

variables is reduced.  
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Figure 3.3 The Station-Fleet Time Line  

After Node Aggregation And Removal Of Ground Arcs 
 

These two problem size reduction methods only modify the representation of the 

constraints and the decision variables. We still use the formulations (3.0)-(3.3) to 

represent the fleet assignment model in our later work.  

 

3.2 Cargo Routing Model 

Given the fleeted flight schedule and the forecasted unconstrained cargo demand in all 

markets, cargo routing maximizes the revenue of the commodity flow without exceeding 

the flight capacity and the time window. Three additional side constraints should also be 

satisfied. Firstly, the carrier allows cargo to be transferred from one aircraft to another 

only at the hub and at no other stations. Since a lot of work and time is needed to offload 

cargo from one aircraft and load on to another, it is desired to be done at the hub where the 

airline has sufficient cargo handling facilities and work forces to complete transferring 

works quickly and cheaply. Secondly, if transferring happens at the hub, the transit time 

between the two connected legs must be longer than the minimum cargo handling time. 

Finally, cargo is not allowed to backtrack between spokes.  
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In practice, the cargo network for some airlines includes not only the air network. They 

also have the trucking network, which is an important part of the entire cargo 

transportation system. Such trucking transportation is quite popular in European countries. 

For example, if a commodity needs to be shipped from Singapore to Copenhagen, it can 

be firstly transported to Frankfurt by air, and then to Copenhagen by trucking. The flow of 

air cargo will be influenced greatly by the truck capacities. Thus the trucking network 

should be included when optimizing cargo flow. However, there are many difficulties to 

model the entire cargo network. The trucking schedule is very hard to get; the demand 

becomes more complicated to forecast; the size of the problem increases drastically. In 

this thesis we mainly focus on the air network and leave the trucking network aside. 

Future research may include the trucking network if the necessary data are available.  

 

3.2.1 Definition of the Commodity 

Because we model cargo routing as a path-oriented multicommodity network flow 

problem, the commodity should be origin-destination specified. To capture the time 

requirement of the cargo delivery, time elements are added to the definition of the 

commodity.  

 

A commodity in our problem is defined by (o, t, Do, To, Tw), where: 

o: the specific origin, o∈S.  

t: the specific destination, t∈S.  

Do: the day on which the commodity is ready for shipment at the origin, from 

Monday to Sunday,  
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To: the ready time for shipment at the origin, either in the morning, at noon or 

in the evening. 

Tw: the time window for the commodity, one day (24hrs) or two days (48hrs).  

 

For example, one commodity in our problem could be the cargo that is available for 

shipment in Bangkok on Monday evening and should be transported to Tokyo within two 

days.  

 

3.2.2 Feasible Path Criteria 

A direct path for a commodity consists of a set of consecutive legs that start from the 

origin and end at the destination of this commodity. This path is feasible if the following 

requirements are satisfied.  

1 The cargo can only be transferred to another aircraft at the hub. This means all 

legs in this path must use the same aircraft or tail number unless it transits at 

the hub. In that case, at most two tail numbers can be used, one for legs prior to 

the hub and one for legs after the hub. 

2 If transferring happens, the connecting time between the two legs must be 

longer than the minimum cargo handling time at the hub.  

3 The time length of this path must be within the time window specified for the 

commodity. The time length is the elapsed time from the ready time to the 

arrival time at the destination.  

4 Cargo is not allowed to backtrack between spokes. If a path does not pass 

through the hub, the legs in it must fly roughly towards one direction, which is 

enforced by restricting the number of passenger/freighter legs in this path to 
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2/4. For a path transferring at the hub, the legs can change flying direction only 

when leaving the hub, which is enforced by restricting the number of 

passenger/freighter legs before (after) the hub to 2/4 in this path. 

 

If a flight schedule segment in Table 1 is available and SIN is the hub, the above 

commodity example may have two feasible paths, as shown in Figure 3.4. If SIN is a 

spoke, the path f1-f2 becomes infeasible, because two different tail numbers are assigned 

to these two legs.  

Table 3.1 A Fight Schedule Segment 

Leg Origin 
Departure  

Day 
Departure  

Time Destination 
Arrival  
Time Plane Tail # 

f1 BKK 2 1440 SIN 1805 NA01 
f2 SIN 2 2220 NRT 0545 NA02 
f3 BKK 2 1205 NRT 1955 NA03 

 

 

 
Figure 3.4 Feasible Path Examples 

 

The feasible paths are generated based on the given fleeted air network, which will change 

with the fleet assignment decision. As we will address later, this characteristic adds 

complexity to the integrated model construction.  
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3.2.3 Modeling Approach 

Cargo routing is typically modeled as a multicommodity network flow problem, but 

explicitly modeling the time window constraints and the side constraints will result in a 

very complicated model. To capture these complex rules while maintaining the tractability, 

we apply a two phase modeling approach.  

 

1. All feasible paths are generated for all commodities.  

2. A MCNF path formulation with only the columns of feasible paths and rows of 

capacity and demand constraints is built.  

 

Compared with explicitly modeling every constraint in the path formulation, this approach 

not only simplifies the cargo routing model by removing the difficult constraints, but also 

greatly reduces the number of columns by excluding infeasible paths. The resulting model 

can be solved directly by the simplex algorithm. 

 

3.2.4 Path-Oriented Cargo Routing Model 

The following notations are defined for the cargo routing model.  

 K: set of commodities indexed by k.  

 L: set of legs in flight schedule indexed by i. 

Pf(k): set of feasible paths for commodity k, indexed by p. 

di: cargo capacity of leg i, which depends on the fleet assigned to it.  

Bk: unconstrained demand of commodity k. 

k
pr : per unit selling price or revenue of flowing commodity k on path p;  
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Decision variable:  

k
py : the amount of commodity k flown on path p.  

 

The mathematical formulation of the cargo routing model (CRM) is:  
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The objective of CRM (3.4) maximizes the total cargo revenue. The capacity constraints 

(3.5) restrict the total cargo flown on a leg to its cargo capacity. By flow constraints (3.6), 

the cargo actually shipped is less than or equal to the unconstrained demand.  

 

The coefficient k
pr  is determined in the following way.  

1. For every commodity, there is a unit rate kρ , which is dependent on the 

characteristics of the commodity, specifically, the origin-destination distance and 

the time window. The longer the distance, the higher the rate. The shorter the time 
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window, the higher the rate. We ignore the discount for large demand and assume 

the unit rate is the same for whatever demand quantities.  

2. There may be different feasible paths with different elapsed time for a commodity. 

We introduce a pseudo cost k
pc  to account for such a difference and to give 

incentives for the optimizer to choose the shorter path. This can be translated to 

improving the service level. That is, the service level will be improved if the 

commodity is shipped on shorter paths. The pseudo cost k
pc  for commodity k on 

path p is computed by (T/Tw)*0.001, where T is the elapsed time of the path, and 

Tw is the time window of the commodity.  

3. For commodity k on path p, the per unit revenue k
p

kk
p cr −= ρ  

 

3.3 Integrated model 

The objective of the integrated model is to maximize the estimated total cargo and 

passenger profit by incorporating the cargo routing into the fleet assignment. Usually the 

network of a combination carrier can be divided into two subnetworks according to the 

fleet type, one for the passenger fleet flow and the other for the cargo fleet flow. Since the 

freighter can not be assigned to passenger flights, and vice visa, the fleet assignment 

should be done separately for these two networks. However, cargo routing must take 

account of the capacity available on both simultaneously, because cargo can also flow on 

passenger flights, in the belly of the passenger aircraft. The feasible paths are thus 

constructed over the entire network. The conceptual general integrated fleet assignment 

and cargo routing model for multiple passenger fleet types and multiple freighter types is 
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shown in Figure 3.5.  The passenger FAM and the freighter FAM are independent of each 

other, but they interact with the CRM by the capacity constraints and the feasible paths.  

 

 
Figure 3.5 Conceptual Integrated Model 

 

To obtain the integrated model we combine the passenger FAM, the freighter FAM and 

CRM together and link them by multiplying the capacity constant in the CRM capacity 

constraints by the fleet assignment variable. As the combination carrier in question has 

only one type of freighter, the fleet assignment is not required for the freighter flights. The 

integrated model thus includes only the passenger FAM and the CRM.  

 

3.3.1 Justification of the Integrated Model 

This integrated formulation comprises the fleet assignment model and the cargo routing 

model, but ignores the aircraft routing problem. We know that one side constraint for the 

cargo routing problem requires cargo can be transferred to other aircraft only at the hub. 

Therefore, an integrated model should be able to identify different physical aircraft or tail 

number by incorporating the aircraft routing, which leads to a three stage problem. The 
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first stage would deal with the fleet assignment, the second stage the aircraft routing, and 

the third stage the cargo routing. Nevertheless, we can justify our two stage integrated 

model approximates the actual three stage problem very well for the carrier in question. 

For most spoke stations, the frequency of legs is quite low. The typical activity at a spoke 

consists of an arrival followed by a departure. For instance, the airline flies 98 legs a week 

to and from a busy station. The first leg departs at 0655 in Monday morning, followed by 

48 pairs of inbound and outbound legs. The last leg arrives at 2150 in Sunday evening. 

Figure 3.6 depicts the time line in this station after removing the ground arc.  

 

 
Figure 3.6 Time line at A Spoke 

 

To minimize the number of aircraft used at this station and to avoid having unnecessary 

aircraft on the ground overnight, the aircraft flying the arrival flight is usually assigned to 

the immediate departure flight. At spokes islands are constructed and most of them have 

only one arrival followed by one departure. As a result, the same fleet types for the two 

connecting legs of an island will be reasonably taken to imply the same physical aircraft. 

Although this is not the case for the hub, we do not care about the physical aircraft 

because cargo can transfer at the hub. This observation justifies that our two stage 
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integrated model is a reasonable approximation to the actual problem, which could be too 

complicated to be solved efficiently.  

 

3.3.2 Model Dynamic Feasible Paths 

Since the fleet assignment and the cargo routing are determined simultaneously, the 

feasible paths are not fixed but altered whenever the fleet assignment changes. To 

accommodate this uncertainty, all potential feasible paths must be included in the 

integrated model. A direct path from the origin to the destination of a commodity is 

regarded as potentially feasible if it meets the last three criteria of a feasible path. Let P(k) 

denote the set of potential feasible paths for commodity k. The potential feasible path is 

generated based on the non-fleeted flight schedule and becomes feasible as soon as its any 

two constituent legs connected at a spoke are assigned with the same fleet.  

 

The dynamic character of the feasible path is captured by disaggregating the cargo 

capacity constraints and the flow decision variables. There is one capacity constraint for 

each leg and each fleet type combination. To define the disaggregated variables, we divide 

the set P(k) into two subsets. The set PT(k) contains the paths transferring at the hub, and 

the other set PD(k) contains the rest of the paths. Since every path p in the set PT(k) may be 

assigned with two different fleet types, we split it into two subpaths (as shown in Figure 

3.7), i(p) arriving at the hub and o(p) departing the hub, each of which can be assigned 

with only one fleet type. Accordingly, the set PT(k) is divided into )(kPI T  and )(kPOT , 

which contain all i(p) and o(p) for commodity k, respectively.  
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Figure 3.7 A transferring Path 

 

All the paths in PD(k) are further classified into two groups by their constituent legs. 

Passenger path group )(kP D
pax contains paths flowing through only passenger legs, and 

freighter path group )(kP D
frt contains paths flowing through only freighter legs. Similarly, 

sets )(kPI T  and )(kPOT are divided into )(),( kPIkPI T
frt

T
pax and )(),( kPOkPO T

frt
T
pax , 

respectively. The disaggregated flow variables are then defined for every path or subpath 

and fleet combination.  

 

To understand how the disaggregation solves the issue of the dynamic feasible path, let us 

take an example of a direct passenger path p0, which consists of two legs i1 and i2. The 

disaggregated flow variables are then )(,,
0 paxEey ek

p ∈∀ and the disaggregated capacity 

constraints for this path are:  
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These constraints will force the two legs in this path to be assigned with the same fleet. 

Otherwise the variables )(,0,
0 paxEey ek

p ∈∀= , which means the path is infeasible and no 

commodity is allowed to be shipped through it. Therefore, no matter what the fleet 

assignment is, only the feasible paths are active and all infeasible ones are excluded from 

DestinationOrigin 

HUB

i(p) o(p)
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the cargo routing solution. The infeasible paths can not be detected by the following 

aggregated constraints.  
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As long as a fleet is assigned to each leg, the commodity can be shipped along this path. 

 

3.3.3 Mathematical Formulation 

The additional notations used in the integrated formulation are defined below.  

Sets 

 L(pax):  the set of passenger legs. 

N(pax): the set of nodes in the passenger time-space network. 

E(pax): the set of passenger fleets.  

L(frt):  the set of freighter legs.  

f :  the freighter.  

Parameters 

de:  the cargo capacity of passenger fleet )( paxEe∈ . 

df:  the cargo capacity of the freighter f . 

k
Pir )(  per unit revenue of flowing commodity k on subpath i(p), 

where )(kPp T∈ . Since the revenue is generated by the path p and 

not its subpath i(p), we have k
p

k
Pi rr =)( . 

Decision variables 
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ek
py , : flow variable corresponding to the direct passenger path 

)(kPp D
pax∈ and KkpaxEe ∈∈ ),( .  

 fk
py , : flow variable corresponding to the direct freighter path )(kPp D

frt∈ and Kk ∈ . 

ek
po

ek
pi yy ,

)(
,

)(  , : flow variable corresponding to the passenger 

subpath )()(),()( kPOpokPIpi T
pax

T
pax ∈∈ , where p is a transferring path 

)(kPp T∈ and KkpaxEe ∈∈ ),( .  

fk
po

fk
pi yy ,

)(
,

)(  , : flow variable corresponding to the freighter 

subpath )()(),()( kPOpokPIpi T
frt

T
frt ∈∈ , where p is a transferring path 

)(kPp T∈ and Kk ∈ .  

 

The integrated formulation is: 

 

∑ ∑∑ ∑∑

∑ ∑ ∑∑ ∑

∈ ∈∈
∈
∈∈

∈
∈
∈ ∈∈ ∈

−++

+

)( )(
)(

)()(

,
)()(

)(

,

)(
),()( )(

,
)()(

)( )(

,

)(

)(max

paxLi paxEe

e
i

e
i

Kk
kPp

kPIpi

fk
pi

k
pi

kPp

fk
p

k
p

Kk
kPp

kPIpi paxEe

ek
pi

k
pi

kPp paxEe

ek
p

k
p

xcyryr

yryr

T

T
frt

D
frt

T

T
pax

D
pax

    (3.8) 

subject to:  

),(,1
)(

paxLix
paxEe

e
i∑

∈

∈∀=
        (3.9) 

)(),(,
)(

),(,,
)(

),(,, 11
paxEepaxNnxgxg

nOi

e
ittse

nIi

e
ittse nnnn

∈∈∀+=+ ∑∑
∈∈

+−

  (3.10) 

)(,
)(

),(,, 1
paxEeNumxg e

eOi

e
i

s
ttse m

∈∀≤+ ∑∑
∈      (3.11) 



   Chapter 3 Mathematical Formulations 

 42

)(),(,

)( ,
)(

)()(

)(,
)(

,
)(

)()(

)(,
)(

,

paxEepaxLidx

yyy

ee
i

Kk kPp Kk
kPp

kPOpo

po
i

ek
po

Kk
kPp

kPIpi

pi
i

ek
pi

p
i

ek
p

D
pax

T

T
pax

T

T
pax

∈∈∀≤

++∑ ∑ ∑ ∑∑ ∑
∈ ∈ ∈

∈
∈∈

∈
∈

δδδ
    (3.12) 

)(,
)(

)(
)()(

)(,
)(

,
)(

)()(

)(,
)(

, frtLidyyy f

Kk kPp Kk
kPp

kPOpo

po
i

fk
po

Kk
kPp

kPIpi

pi
i

fk
pi

p
i

fk
p

D
frt

T

T
frt

T

T
frt

∈∀≤++∑ ∑ ∑ ∑∑ ∑
∈ ∈ ∈

∈
∈∈

∈
∈

δδδ  (3.13) 

KkB

yyyy

k

kPp
kPIpi

kPp
kPIpi paxEe

ek
pi

fk
pi

kPp kPp paxEe

ek
p

fk
p

T

T
frt

T

T
pax

D
frt

D
pax

∈∀≤

+++ ∑ ∑ ∑∑ ∑ ∑
∈
∈

∈
∈ ∈∈ ∈ ∈

,
)(

)()(
)(

)()( )(

,
)(

,
)(

)( )( )(

,,

  (3.14) 

)(,

)( and )( if,

)( and )( if,

)( and )( if,

)( and )(if,

,
)(

,
)(

)(

,
)(

,
)(

)(

,
)(

,
)(

)( )(

,
)(

,
)(

kPp

kPOo(p)kPIi(p)yy

kPOo(p)kPIi(p)yy

kPOo(p)kPIi(p)yy

kPOo(p)kPI i(p)yy

T

T
frt

T
frt

fk
po

fk
pi

T
pax

T
frt

paxEe

ek
po

fk
pi

T
frt

T
pax

paxEe

fk
po

ek
pi

T
pax

T
pax

paxEe paxEe

ek
po

ek
pi

∈∀





























∈∈=

∈∈=

∈∈=

∈∈=

∑
∑

∑ ∑

∈

∈

∈ ∈

 (3.15) 

{ }

.),(),()(),()(,0,

);(,),(),()(),()(,0,

;),(,0);(,),(,0

;,,),(,0
);(),(,1,0

,
)(

,
)(

,
)(

,
)(

,,

1),(,, 1

KkkPpkPOpokPIpiyy

paxEeKkkPpkPOpokPIpiyy

KkkPpypaxEeKkkPpy

TttSspaxEeg
paxEepaxLix

TT
frt

T
frt

fk
po

fk
pi

TT
pax

T
pax

ek
po

ek
pi

D
frt

fk
p

D
pax

ek
p

nnttse

e
i

nn

∈∈∈∈∀≥

∈∈∈∈∈∀≥

∈∈∀≥∈∈∈∀≥

∈∈∈∀≥
∈∈∀∈

++

 

 

The objective (3.8) maximizes the total cargo and passenger profit. Its first two parts are 

cargo revenue contributed by the passenger network and the freighter network, 

respectively. The third part is net passenger revenue by the passenger flights. Since the 

freighter legs’ assignment costs are constant, they are excluded from the objective 

function. We include only variables for subpath i(p), but not o(p), in the objective function 

to avoid double counting. For the same reason constraints (3.14) include only flow 

variables for i(p).  
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The first three sets of constraints (3.9)-(3.11) are the constraints of the passenger FAM 

and the rest are the constraints of the CRM. Disaggregated capacity constraints (3.12)-

(3.13) are defined individually for the passenger network and the freighter network. The 

right hand sides of constraints (3.13) are constant because only one type of freighter is 

available. Constraints (3.14) are the demand constraints. By Constraints (3.15), the flow 

consistency along a transferring path is ensured. For every path )(kPp T∈ , one of the four 

constraints is defined, according to the type of its subpaths. For instance, if its subpath i(p) 

flows through the passenger network and o(p) flows through the freighter network, the 

second constraint of (3.15) is defined for this transferring path p.  

 

In comparison with those in the individual CRM model, the demand and capacity 

constraints in the integrated formulation are much more complicated. Moreover, a set of 

additional constraints—transferring constraints are defined. This is because we have no 

knowledge about the fleet type of passenger legs. These complex constraints will reduce 

to the simple form once the fleet assignment is known. Such a feature is utilized in our 

solution approach where the cargo routing model is set up and solved after the fleet 

assignment problem.  
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4 Solution Methodology 

 

 

The real-life applications of problem (3.8)-(3.15) are too large to be solved economically 

by general mixed integer programming codes. The largest application presented later has 

about 8,400 binary variables, 1,200,000 continuous variables and 150,000 constraints. 

Fortunately however, the integrated model naturally decomposes into two subproblems 

that are relatively easy to solve. For any feasible solution to constraints (3.9) – (3.11) that 

involves only fleet assignment variables, problem (3.8)-(3.15) reduces to a cargo routing 

problem involving only cargo flow variables. This observation motives the development 

of the solution approach based on Benders decomposition (Benders, 1962).  

 

Section 4.1 presents a review of the Benders decomposition algorithm. Section 4.2 

reformulates our integrated formulation following this algorithm. Then three solution 

approaches based on Benders decomposition and its two variants are developed in Section 

4.3 to Section 4.5.  

 

4.1 Review of Benders Decomposition 

Consider the following mixed-integer problem. 

++ ∈∈

≥+
+=

RyZx
bGyAxst

dycxz

,
    .

   min
        (4.1) 

In some applications, if complicating variables, such as x, are fixed, the resulting problem 

becomes a relative easy problem. The Benders decomposition method assigns trial values 



   Chapter 4 Solution Methodology 

 45

to these variables and finds the corresponding best solution. In the process either an 

optimal solution of the original problem is found or an infeasibility/unboundedness is 

detected.  

 

Benders decomposition begins with reformulating (4.1) as a problem that includes only a 

subset of variables by projecting out the others. Fix x at x , the problem becomes:  

+∈

−≥
+=

Ry
xAbGyst

xcdyxz

         
      .

)(    min
                                      (4.2)                              

We eliminate y from constraints first. Since only the feasibility of the above problem 

needs to be considered, the objective function is left aside and replaced by a constant zero.  

+∈

−≥

Ry
xAbGyst       .

0    min
        (4.3) 

Its dual is:  

+∈

≤
−

R
Gst

xAb

ν

ν
ν

0    .
)(max

        (4.4) 

The primal problem (4.3) is feasible if its dual objective value is less or equal to 0 for allν , 

and the equality holds for at least oneν . (Note the dual is always feasible.) That is,  

+∈≤≤− RGxAb ννν ;0:0)(       (4.5) 

Let { }Jjj ∈,*ν be the collection of extreme rays of the cone { }0,0 ≥≤= vGC ν . The 

condition (4.5) is equivalent to  

JjAxbj ∈∀≤− ,0)(*ν        (4.6) 
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The specific x is replaced by the general x variables because the extreme rays of C are 

independent of x. Condition (4.6) is then the sufficient condition for the primal to be 

feasible. Multiply the constraint in (4.3) by all extreme rays of { }0,0 ≥≤= vGC ν . After 

relaxing variable x to general values, we have 

Jj Axb

AxbGyv

j

jj

∈∀−≥⇒

−≥

),(0

)(
*

**

ν

ν
.  

Therefore (4.6) is also the necessary condition for the primal to be feasible. The 

constraints in the original problem (4.1) is equivalent to the condition (4.6) that contains 

only x variables. For this reason, (4.6) is called the Benders feasibility cut.  

 

Next we eliminate y from the objective function. Problem (4.2) can be expressed as  

+∈
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+=
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dyst
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)(   min
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Its dual is 
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0

1      .
)(   max

0

0

0

≥
≤−
=
−

µµ
µµ
µ
µ

dG
st

xAb

 or equivalently,  
0
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µ
µ
µ

dGst
xAb

  (4.8) 

As xc is a constant, it is not included in the dual objective function. If the primal problem 

(4.7) is feasible for the given x , the dual (4.8) is either infeasible or has an optimal 

solution. In the case of dual infeasibility, (4.7) will be unbounded ( ∞− ), and so is the 

original problem (4.1). If the dual has an optimal solution, according to the strong duality 

the primal must have the same optimal value as the dual. That is 
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IiAxbi ∈∀−≥ ),(*µη        (4.9) 

where { }Iii ∈,*µ is the collection of the extreme points of { }dGR ≤∈= + µµ ,Q  and the 

equality holds for at least one extreme point. Since the extreme point of Q does not 

depend on the value of x, x  is relaxed in (4.9).  

 

This condition is also necessary for the primal problem to be optimal. Multiply the 

constraints in (4.7) by{ }*,1 iµ , we get 
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Now we also eliminate variable y from the objective function. (4.9) is referred to as the 

Benders optimality cut.  

 

Given the above results, the original problem (4.1) can be reformulated to include only x 

variables. The Benders reformulation is written as follows:  
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Compared to the original problem, the reformulation (4.10) generally contains a huge 

number of constraints. However, only a subset of them is active in an optimal solution. 

Instead of enumerating all constraints explicitly, the decomposition algorithm generates 

them on the fly, that is, on an as needed basis.  
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The Benders decomposition algorithm proceeds as follows. At each iteration H the 

Benders cuts generated so far are added to the following Benders relaxed master problem.  
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The solution of the relaxed maser problem provides a new value of Hx , based on which a 

Benders subproblem is set up, which contains only the variables y.  
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        (4.12) 

If the solution of the relaxed master problem is equal to the best subproblem solution, the 

optimality of the original problem is reached. Otherwise, new Benders cuts are generated 

from the dual solution of the subproblem. At this point the procedure repeats.  

 

4.2 Benders Reformulation of the Integrated Formulation 

Now we apply the Benders decomposition algorithm to reformulate our integrated model 

and decompose it into two problems. The relaxed master problem contains fleet 

assignment variables and the subproblem contains cargo routing variables.  

 

For any given value ),,),(),((, 1),(,, 1
TttSspaxEepaxLigx nnttse

e
i nn

∈∈∈∈ ++
satisfying 

passenger fleet assignment constraints (3.9)-(3.11), the integrated model reduces to the 

following Benders primal subproblem:  
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After the values of passenger the fleet assignment variables are fixed, the cargo capacity 

of every passenger leg is fixed accordingly. With the knowledge of the fleet assignment, 

the infeasible paths are found and excluded from the model. For a feasible path p, at most 
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one of the flow variables ek
py , for all e or fk

py ,  is non-zero, because only one fleet type is 

assigned to a leg. They are combined together and replaced by a single flow variable k
py , 

which is defined for every feasible path. Similarly, since all but one capacity constraints 

defined for a passenger leg have zero right hand sides, we aggregate them together to form 

a single capacity constraint. Constraints (4.17) are removed because the transferring paths 

need not to be split any more once the fleet type is determined and the feasibility of the 

path is known. The variables corresponding to subpaths i(p) and o(p) are also eliminated. 

Furthermore, it is no longer necessary to differentiate the direct path and transferring path.  

 

After these simplifications the primal subproblem becomes equivalent to the individual 

cargo routing model of Section 3.2.4, except that the capacity constraints are defined for 

passenger and freighter legs separately. Note that the set of potential paths )(kP for 

commodity k is replaced by )(kPf , the feasible path set for this commodity. Instead of 

(4.13)-(4.17), the following simplified subproblem will be used to construct Benders cuts.  
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Let )(, paxLipax
i ∈π , )(, frtLifrt

i ∈π and Kkk ∈,σ  be the dual variables associated with 

constraints (4. 19), (4.20), and (4.21), respectively. The dual subproblem is written as:  
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The primal subproblem (4.18)-(4.21) is always feasible and bounded for any given fleet 

assignment. We can set all variables to zeros as one feasible solution. The objective value 

will be at most the unconstrained revenue. Therefore, no Benders feasibility cuts are 

required. At each Benders iteration the dual subproblem will generate a Benders 

optimality cut in the form of (4.24) for one extreme point of the dual polyhedron until the 

optimality is reached. Note that the feasible region of the dual subproblem does not 

depend on the fleet assignment solution )(),(, paxEepaxLix e
i ∈∈ , which will only affect 

the dual objective function.  
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where )( σ,π,π frtpax is an extreme point of the dual polyhedron Q, defined by 
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extreme points of Q.   

 

After introducing the additional free variableη , the integrated mixed integer model (3.8)-

(3.15) can be reformulated as the following Benders master problem:   
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A Benders relaxed master problem is defined by (4.25), (4.27)-(4.29) with only a subset 

of Benders optimality cuts (4.26).  
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4.3 Basic Algorithm 

This algorithm is developed based on Benders decomposition. We iterate to solve a 

relaxed master problem and a subproblem. The solution of the relaxed master problem 

determines a feasible fleet assignment that is used to update the columns and rows in the 

subproblem or the cargo routing model. As we have discussed above, the feasible paths 

change with the fleet assignment. Because of the huge number of paths, generating them 

dynamically is very expensive. Instead, we only generate the potential feasible paths at the 

beginning of the algorithm according to the non-fleeted schedule. Then at each iteration 

we check the fleet type of legs in the paths to exclude from the model those infeasible 

ones under the current fleet assignment decision. The specific solution approach is 

described below. 

 

Initialization: Generate all potential feasible paths based on the non-fleeted flight 

schedule including the passenger and freighter networks. Set the upper 

bound ∞←UB , lower bound −∞←LB  and choose a relative optimality 

toleranceε . Let H=0 represent the iteration number.  

Step 0: Solve the initial Benders relaxed master problem, the basic FAM, to integer 

optimality by Branch-and-Cut. We obtain a set of fleet assignment Hx .  

Step 1: For the current fleet assignment decision Hx , check the fleet type of all 

potential feasible paths and only add those valid to the primal subproblem. As 

we have discussed, the primal subproblem must have an optimal solution. Let 

Hy  be a solution and )( Hv x the objective value. If the current LB is less 
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than ))(( ∑∑−
He

i
e
i

H xcv x , update LB by this quantity and store ),( HH yx as the 

incumbent solution.  If ε<− LBLBUB /)( , terminate and the optimal solution 

is obtained. Otherwise determine an optimal dual subproblem solution and 

generate a Benders optimality cut to the relaxed master problem.  Increase H 

by 1 and go to Step 2.  

Step 2: Re-optimize the relaxed master problem to integer optimality by Branch-and-

Cut. Store the optimal solution Hx . Set the optimal value to be the new UB. If   

ε<− LBLBUB /)( , terminate and the optimal solution of the original problem 

is obtained; otherwise go to Step 1.  

 

This algorithm uses a relative ε  optimal termination criterion. The incumbent solution 

),( HH yx is demonstrated to be ε -optimal when the relative difference of the available 

upper and lower bounds on the optimal value of the original problem is within ε  upon 

termination. Prior to termination the incumbent solution is known only within (UB-LB)/LB 

of the optimal value.  

 

In the worst cases all Benders cuts will be enumerated. Applications of Benders 

decomposition to the practical problems are not universally successful. Magnanti and 

Wong (1981) reported a case of very slow convergence of Benders decomposition when 

applied to network design problems. The major computational bottleneck is the huge 

number of integer programs to be solved. Many suggestions have been made to accelerate 

the Benders algorithm. For example, Magnanti and Wong (1981) proposed to choose 

strong cuts at each iteration, if the dual subproblem has multiple optima. Geoffrion and 
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Graves (1974) suggested an ε -optimal method where the relaxed master problem was not 

solved to optimality, but instead stopped at good feasible integer solutions. To further 

explore the performance of Benders decomposition and find a fast way to obtain 

convergence, we develop two other solution approaches based on these acceleration 

techniques.  

 

4.4 Pareto-Optimal Cut Generation Approach 

The concepts of dominance and pareto-optimality were introduced by Magnanti and 

Wong (1981) for the following general problem.  

 

YyRz
Uuuygufz
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The cut  

)()( 11 uygufz +≥  

is stronger than or dominates the cut 

)()( 22 uygufz +≥   

iff  

)()()()( 1111 uygufuyguf +≥+  

holds for all Yy∈ with a strict inequality for at least one point Yy ∈0 .  
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A cut is called pareto-optimal if it is not dominated by any other cut. Since any point 

Uu∈ determines a Benders cut, u1 is said to dominate u2 if the associated cut is stronger, 

and u is said pareto-optimal if the corresponding cut is pareto optimal.  

 

If a selection of Benders cuts is possible, the judicious choice of the dual solution and the 

corresponding Benders cut will affect the convergence speed. Our subproblem is a 

multicommodity network flow problem, which is generally degenerate and its dual has 

alternate optimal solutions. Thus the strong cut selection method is applicable to our 

problem. Magnanti and Wong (1981) introduced a linear programming model in their 

works to generate the pareto-optimal cut. We derive this auxiliary model for our problem 

as:  
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{ }0,0 e
ix=x , a relative interior point, is any point contained in the relative interior of the 

convex hull of the solution set{ })( e
ix . { }e

ix=x solves the current relaxed master problem 

and )(xv is the optimal objective value of the current subproblem. This formulation uses 
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the dual variables and is in the dual form. It is quite similar to the dual subproblem (4.22)-

(4.23), but with one more constraint (4.32) and different objective coefficients 

for )(, paxLipax
i ∈π . The solution of this program defines a pareto-optimal cut.  

 

Instead of solving this model, we are interested in solving its primal formulation, which 

can be easily built from the primal subproblem that we use in the basic algorithm. Let 

k
py and w be the dual corresponding to the two sets of constraints respectively. The primal 

formulation is:  
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The solution approach only differs from the basic algorithm in the cut generation in step 1. 

If ε>− LBLBUB /)( , instead of constructing a cut by the dual subproblem solution, the 

auxiliary linear model (4.33)-(4.36) is built with the current solutions of the relaxed 

master problem and the subproblem. Solve this model and obtain its dual solution. The 
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pareto-optimal Benders cut is then constructed from this dual solution and is added into 

the relaxed master problem. In comparison with the basic approach, this procedure must 

solve one more linear programming problem at every iteration. However, the strong cuts 

will tighten the relaxed master problem or the upper bound and therefore reduce the 

number of iterations required to reach the optimality. The total convergence time depends 

on the combined effect of the reduced iteration number and the increased solution time of 

each iteration. According to the tradeoff, we can choose to generate pareto-optimal cuts at 

every iteration, or possibly, to generate cuts only periodically in the implementation of the 

strong cut generation method.  

 

4.5 ε -Optimal Approach 

Given any feasible fleet assignment, a Benders cut can be obtained by solving the 

resulting subproblem. This observation motivates a method that solves the relaxed master 

problem not to integer optimality, but rather stops as soon as a feasible integer solution is 

produced. This method alleviates the burden of optimizing an exorbitant number of 

integer programming problems, at the cost of the increased number of iterations required 

because of the weak Benders cut generated at each iteration. Geoffrion and Graves (1974) 

proposed such a modified Benders algorithm, where the relaxed master problem was 

solved to only a feasible solution with the objective value beyond the lower bound plus a 

toleranceε . This means the solution of the relaxed master problem no longer defines an 

upper bound on the optimal value of the original problem, and the termination criteria of 

ε≤− LBUB should be inactivated. Instead, the algorithm terminates whenever the relaxed 

master has no feasible solution beyond ε+LB . It still converges to an ε -optimal solution 
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within a finite number of iterations. For this reason, this technique is referred to as the ε -

optimal method (Magnanti and Wong, 1990).  

 

We use a relative tolerance in our optimality test, thus the termination criterion becomes 

that the relaxed master problem has no feasible solution beyond )1( ε+LB . On our 

problem, the ε -optimal approach constructs the following relaxed master problem at 

iteration H.  
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LB (h) is the lower bound at iteration h, and ),( )()()( hhh σπ,π frtpax is the dual subproblem 

solution at this iteration. Benders Cuts (4.41) are derived by eliminating η  from the 

following two expressions.  
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Since the relaxed master problem becomes feasibility seeking only, its objective function 

can take any form as long as it enables the production of useful feasible solutions that can 

greatly improve the lower bound and therefore accelerate the convergence. According to 

Geoffrion and Graves (1974), the expression of the right hand side of the latest cut of 

(4.41) is chosen as the current objective function )(xφ . The corresponding solution 

approach works as follows.  

 

Initialization: Generate all potential feasible paths based on the non-fleeted flight 

schedule including the passenger and freighter networks. Set the lower 

bound −∞←LB  and choose the relative convergence tolerance ε . Let H=0 

represent the iteration number.  

Step 0: Solve the initial Benders relaxed master problem—the basic FAM to integer 

optimality by Branch-and-Cut. We obtain a set of fleet assignment Hx .  

Step 1: For the current fleet assignment decision Hx , check the fleet type of all 

potential feasible paths and only add those valid to the Benders primal 

subproblem. Let Hy  be the solution of the subproblem and )( Hv x the objective 

value. If the current LB is less than ))(( ∑∑−
He

i
e
i

H xcv x , update LB by this 

quantity and store ),( HH yx as the incumbent solution. Determine an optimal 
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dual subproblem solution and generate one Benders cut to the relaxed master 

problem. Increase H by 1 and go to Step 2.  

Step 2: Update the objective function of the relaxed master problem as the latest cut‘s 

right hand side function. Solve it to the first integer feasible solution found, 

denoted by Hx . If there is no feasible solution, terminate and the optimal 

solution of original problem is obtained. Otherwise go to Step 1.  

 

The algorithm will terminate at step 2 whenever the relaxed master problem is infeasible, 

with the ε -optimal solution ),( HH yx .  
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5 Computational Results 

 

 

We have presented a Benders decomposition approach and its two variants to solve the 

integrated problem. To measure and compare their performances, computational 

experiments were performed on a set of test instances based on available data about the 

airline. We first describe in Section 5.1 the test instances used, and then in Section 5.2 

report results of different solution approaches, including an improved method to enhance 

the ε -optimal approach. A comprehensive comparison between performances of these 

approaches is presented in Section 5.3.  

 

5.1 Description of Data Sets 

The weekly flight schedule of the airline contains 1,404 passenger legs and 201 freighter 

legs, which serve 74 stations around the world. Six passenger fleets and one freighter fleet 

are used to cover all legs. Based on this schedule we generated five test instances, each of 

which contains subsets of passenger legs and freighter legs. The main difficulty is to make 

sure the subnetwork is balanced, that is, it has the same number of arrivals and departures 

at each station, and uses the aircraft within the available number. Given a current fleet 

assignment of the schedule, this is accomplished by selecting the legs currently assigned 

to the same subset of fleets. It is straightforward to construct the passenger subnetworks 

through this approach. The balanced freighter subnetwork, however, can not be built in 

this way because only one freighter fleet is employed to fly all freighter legs. To construct 

the subset of freighter legs, we start with the full freighter network. Then we drop the 
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balanced islands that have the same number of arrivals and departures at some stations and 

their connected stations. This approach maintains the balance of the resulting freighter 

subnetwork.  

 

The commodities and their demands are generated from the historical data of the airline. 

Based on the daily shipment between any pair of stations, we generate commodities with 

different shipment day, shipment time and time windows. The demand of the commodity 

available for shipment at the end of a business day is assumed to be higher than that of 

commodities at the other two time slots. Once the commodities are generated and the 

subnetworks are constructed, the potential feasible paths for all commodities over each 

subnetwork (both passenger and freighter subnetworks) are generated based on Section 

3.3.2. All costs are estimated from the airline’s annual financial report.   

 

Table 5.1 describes our test data instances. The first two instances are quite small and 

contain only passenger legs. Instances D3 to D5 contain both passenger and freighter legs, 

and D5 covers the full network the airline operates. We assume all passenger fleets are 

available for different test instances. The commodities are generated based on the 

unconstrained market demand, which is independent of the network. Thus the number of 

commodities is the same for all 5 data instances. However, the number of potential 

feasible paths for all commodities varies greatly with the size of the subnetwork. For the 

small network, lots of commodities have no potential feasible paths, which mean they can 

not be shipped through this subnetwork. For the full network, however, every commodity 

has 2.7 potential feasible paths on average. This follows from the fact that the connection 

opportunities reduce quickly with the reduction of legs.  
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Table 5.1 The Characteristics Of Data Instances 
Instance Total Number 

of Passenger 
Legs 

 |L(pax)| 

Total Number 
of Freighter 

Legs  
|L(frt)| 

Total Number 
of Passenger 

Fleets  
|E(pax)| 

Total 
Number of  
Freighter 

types 

Total 
Number of  

Commodities 
|K| 

Total Number of  
Potential feasible 
paths ∑

k

kp )(   

D1 62 0 6 0 63,798 573 
D2 102 0 6 0 63,798 2,051 
D3 520 201 6 1 63,798 28,221 
D4 884 151 6 1 63,798 73,880 
D5(Full) 1,404 201 6 1 63,798 173,285 

 

 

5.2 Computational Results  

All solution approaches were coded in C++. CPLEX8.1 and Concert Technology 1.3 were 

employed to model and solve the relaxed master problems and the subproblems. The 

relaxed master problem was solved by the mixed integer optimizer that uses the Branch-

and-Cut method. The cuts generated by CPLEX include clique cuts, cover cuts, 

disjunctive cuts, Gomory fractional cuts, etc. The dual simplex algorithm with steepest 

edge pricing was employed to solve the LP relaxation at each node in the Branch-and-

Bound tree. A priority order was generated according to the increasing cost per coefficient 

count and issued to every variable to control the branching direction, when the variables 

have fractional values. For a column or a variable, the more the ratio of the objective 

coefficient over the number of nonzero entries, the lower priority value the variable will 

get. At each node, variables with a higher priority are branched before variables with a 

lower priority. The subproblem was solved by the primal simplex optimizer. All 

experiments were carried out on the computer with 866 MHz CPU and 256 MB of RAM. 

The relative convergence tolerance ε  is set to 0.1%. To speed up the solving of the 
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relaxed master problem, some CPLEX parameters that have much influence on the Branch 

& Cut procedure are set to appropriate values, as shown in Table 5.2.  

 

Table 5.2 CPLEX Parameters 
Parameter Description Set Value Meaning 

BtTol Backtracking Tolerance 0.1 
Force Branch & Cut not to dive deep into the 
tree.  

EpGap 
Relative Mip Gap 
Tolerance.  0.002 

CPLEX stops as soon as a feasible integer 
solution proved to be within 0.2% of optimal. 

HeurFreq MIP Heuristic Frequency 20 

Apply the heuristic to find integer solutions at 
every 20 nodes during branch & Cut 
procedure. 

MIPEmphasis MIP Emphasis Indicator 0 
Emphasize balanced optimality and 
feasibility. 

MIPOrdType 
MIP Priority Order 
Generation 3 Use increasing cost per coefficient count. 

RelObjDif 
Relative Objective 
Difference 0.0001 

Speed up the proof of optimality. CPLEX 
skips any potential solution with its objective 
value within 0.01% of the best integer 
solution so far.  

 

 

5.2.1 Basic Algorithm 

Table 5.3 reports the computational results for all test instances solved by the basic 

algorithm. During the experiments we found the solution time was greatly effected by the 

unit cargo selling price. In order to explore the underlying reason we vary this coefficient, 

which is reduced by 50% in data sets with one asterisk, and is increased by 50% in data 

sets with two asterisks.  
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Table 5.3 Computational Results Of The Basic Algorithm 

Instances Convergence 
CPU time (s) 

No. Benders 
Iteration 

Time (s) Per 
Iteration 

Benders final 
Relative gap 

D1 3.1 11 0.3 0.02% 
D1* 0.4 1 0.4 0.00% 
D1** 9.8 20 0.5 0.09% 
D2 1.3 3 0.4 0.09% 
D2* 0.8 2 0.4 0.00% 
D2** 1.3 3 0.4 0.09% 
D3 14.7 4 3.7 0.08% 
D3* 7.5 2 3.7 0.02% 
D3** 19.2 5 3.8 0.07% 
D4 103.5 13 8.0 0.08% 
D4* 45.7 6 7.6 0.08% 
D4** 158.0 17 9.3 0.09% 
D5 116.7 4 30.0 0.09% 
D5* 107.0 3 35.7 0.09% 
D5** 177.7 9 19.8 0.09% 

*:   Unit cargo selling price is decreased by 50% 
**: Unit cargo selling price is increased by 50% 

 

Table 5.3 shows that the number of iterations before reaching optimality is quite small and 

the convergence is very fast for every test instance. D2 spent only 1.3 seconds and 3 

iterations to obtain the optimal solution. Even for the full instance D5, the optimality was 

reached within 116.7 seconds by 4 iterations. The basic algorithm is therefore proven to be 

efficient to our problem. One comparable data set to D5 in Barnhart et al. (2002) took 

3,400 seconds (about 30 times longer than the time we spent on D5) to find the best 

solution, even though they used the solution enhanced key-path formulation. Our fast 

solution may be attributed to the single hub character of the flight network and the fast 

solution speed of CPLEX8.1.  

 

Another finding is that the solution time increases/reduces with the increase/reduction of 

the unit cargo selling price. This phenomenon is especially obvious for the large instances 

D4 and D5. For D4, the number of iterations increased from 13 to 17 and the 
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corresponding solution time increased from 105.3s to 158.0s when the price was 50% 

higher. Similar for D5, the increased price led to 60 seconds more to reach the optimality. 

On the contrary, when the price was 50% off, fewer iterations and shorter times were 

required for the two instances to converge. They spent only 45.7 seconds with 6 iterations 

and 107.0 seconds with 3 iterations, respectively.   

 

Although the application of the basic algorithm was successful to our problem, the other 

two variants were still implemented in order to, if possible, further accelerate the 

convergence and obtain some insights on their applications to realistic problems.  

 

5.2.2 Pareto-Optimal Cut Generation Approach 

We first implemented the pareto-optimal cut generation method. A relative interior point 

in the convex hull of the solution set { })( e
ix was found as the convex combination of six 

feasible integer fleet assignment solutions and one feasible fractional solution. As the total 

number of the available aircraft is more than that required to fly the schedule, we reduced 

the size of one passenger fleet by one and solved the resulting FAM, which provided a 

feasible fleet assignment solution. By repeating the same procedure for the other five 

passenger fleets we obtained the other five feasible fleet assignment solutions. The convex 

combination of these six feasible integer solutions will make the strict less hold for the 

constraints (3.3). The feasible fractional solution was obtained by assigning every 

variable e
ix a value as the number of the aircraft available in the fleet e over the total 

number of the aircraft available in all the fleet types. Obviously this fractional solution 

satisfies the cover constraint (3.1). The balance constraints (3.2) are easily satisfied 
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because for every fleet e, the variable e
ix  assumes the same value for every leg i. As only a 

small number of legs are crossed by the count time, the constraints (3.3) are always 

satisfied for this fractional solution. This fractional solution does not lie on any facet of 

the convex hull where the convex combination of the six integer solutions lies. As a result, 

the convex combination of these seven solutions does not lie on any facet and is a relative 

interior point in the convex hull.  

 

The primal simplex algorithm was employed to solve the auxiliary linear programming in 

the primal form. Initially we found this auxiliary model was unbounded or its dual was 

infeasible. This was attributed to the numerical rounding error of the computer, which 

caused the constraint (4.32) violated. Instead of strict equality, we permitted the left hand 

side of (4.32) very small fluctuation within 



 ∆+)(),(

__
xx vv to accommodate this error, 

where∆  is a small enough positive value. The modified auxiliary model in the dual form 

is:  
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Let w be the dual variable corresponding to constraint (5.3). The primal model becomes:  
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The computational results by this strong cut selection approach are reported in Table 5.4.  

 
Table 5.4 Computational Results Of  

Pareto Optimal Cut Generation Approach 
Instances Convergence 

CPU time (s) 
No. Benders 
Iterations 

Time (s) 
per Iteration 

Benders Final 
Relative Gap 

D1 4.2 11 0.4 0.02% 
D1* 0.6 1 0.6 0.00% 
D1** 14.3 20 0.7 0.09% 
D2 1.9 3 0.6 0.09% 
D2* 1.6 2 0.8 0.00% 
D2** 2.4 3 0.8 0.09% 
D3 36.8 4 9.2 0.09% 
D3* 20.6 2 10.3 0.05% 
D3** 50.3 5 10.2 0.05% 
D4 870.9 11 79.2 0.06% 
D4* 534.2 6 89.0 0.08% 
D4** 1394.3 18 77.5 0.01% 
D5 2254.2 5 450.8 0.07% 
D5* 1105.5 2 552.8 0.07% 
D5** 4367.4 9 485.3 0.09% 

*:   Unit cargo selling price is decreased by 50% 
**: Unit cargo selling price is increased by 50% 
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By comparing the results with those in Table 5.3, we found that there was no 

improvement with the selection of strong cuts. On the contrary, the convergence became 

even slower for all test instances. The number of iterations remained the same for D1 to 

D3, but their solution times were increased. The only exception was D4, which spent 2 

less iterations to generate a better solution. D5 was the worst case where the number of 

iterations increased by 1. This extra iteration was used to improve the final solution with a 

relative gap at 0.07%, compared with 0.09% of the solution by the basic algorithm. No 

matter what changes in the iteration number, the average time per iteration increased 

greatly, especially for D4 and D5. The main reason is that at each iteration, one more 

linear program must be solved, and the solution time increases very quickly with the 

problem size. For example, the full instance D5 took 250 seconds on average to solve an 

auxiliary model at each iteration, more than half of the total time of the iteration.  

 

Similar to the results in Table 5.3, the solution time increases/reduces with the 

increase/reduction of the unit cargo selling price. However, every instance spent longer 

time to converge than their counterparts did by the basic algorithm, even though the 

number of iterations required was almost the same.  

 

To explore the reason why the performance of the pareto-optimal cut generation method is 

so poor in our problem, we compared two cuts from instance D4 for a series of feasible 

fleet assignments solutions. Cut1 is directly generated from the dual solution of a 

subproblem, while cut2 from the dual solution of the corresponding auxiliary model. For 

each feasible fleet assignment solution x , the values of the two cuts’ right hand 
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Table 5.5 Comparison Of  Two Cuts’ Right Hand Values 

Index of Feasible 
Fleet Assignment 

Solution  

RHS Value of 
Cut1 

 

RHS Value of 
Cut2 

 

Absolute 
Difference 

 

Relative 
Difference 

 
1 20987129.26 20987121.42 -7.839299999 -0.00004% 
2 20421106.28 20421105.7 -0.574999999 0.00000% 
3 20607237.96 20607234.24 -3.7172 -0.00002% 
4 20552858.41 20552857.84 -0.574700002 0.00000% 
5 20540869.37 20540869.13 -0.239699997 0.00000% 
6 20584393.32 20584391.31 -2.017000001 -0.00001% 
7 20594521.32 20594521.08 -0.2355 0.00000% 
8 20655740.98 20655739.48 -1.506299999 -0.00001% 
9 20609321.88 20609318.92 -2.953700002 -0.00001% 
10 20669920.26 20669917.31 -2.9549 -0.00001% 
11 20514162.91 20514160.63 -2.279200003 -0.00001% 

 

Table 5.5 shows that although the RHS of cut2 is always less than that of cut1, the 

difference is too small to justify the strong cut2. The relative differences are almost zero 

for all cases so that there is not much difference between these two cuts. We have checked 

the dual solutions corresponding to these two cuts and found that they were definitely 

different. This fact excluded the possibility that the two cuts were constructed from the 

same dual solution and the small difference between them was caused only by the round 

off errors. The effect of the strong cut generation, therefore, is not significant in our 

problem. We checked the degeneracy degree (the percent of basic variables at or near zero 

in the basic solution) of the subproblem, which is at most 15%. This low degree of 

degeneracy may be a result of the fractional values of the right hand sides of the demand 

constraints and the big variation among them. In this case, the excess number (over the 

number of variables) of constraints or hyperplanes passing through an extreme point is 
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small, and thus the degeneracy is not severe. As a result, the alternate dual subproblem 

solutions only differ a little from each other, causing the cuts defined by them to be almost 

the same. The extra time of selecting such a “strong” cut is not offset by its quality.  

 

5.2.3 ε -Optimal Approach 

Set the parameter “MIPEmphasis” in Table 5.2 to “1”, emphasizing feasibility. The results 

of this variant are shown in Table 5.6. Since the upper bound is not available in this 

method, the relative gap between the upper and lower bounds can not be obtained.  

 

Table 5.6 Computational Results 
Of Theε -Optimal Approach 

Instances Convergence 
CPU time (s) 

No. Benders 
Iteration 

Time (s) 
per Iteration 

D1 5.4 18 0.3 
D1* 0.4 1 0.4 
D1** 24.4 39 0.6 
D2 1.4 3 0.5 
D2* 0.9 2 0.5 
D2** 1.4 3 0.5 
D3 14.8 5 3.0 
D3* 7.4 2 3.7 
D3** 16.4 5 3.3 
D4 Does not converge in 24 hours 
D4* 6600.0 37 178.4 
D4** Does not converge in 24 hours 
D5 565.0 14 40.4 
D5* 121.6 4 30.4 
D5** 3423.8 17 201.4 

*:   Unit cargo selling price is decreased by 50% 
**: Unit cargo selling price is increased by 50% 

 

The comparatively small instances D1 to D3 converged quite fast. Although more 

iterations, with respect to the results in Table 5.3 and Table 5.4, were spent to reach the 

optimality, they were compensated by the reduced solution time of each iteration. For the 

full instance D5, both the number of iterations and the time per iteration increased, which 
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resulted in the total solution time being several times more than that by the basic 

algorithm. Even worse, the instance D4 can not converge in 24 hours. However, it found 

an optimal solution in 6600s with 37 iterations when the unit cargo selling price was 

reduced by 50%.  

 

After observing the computing process of D4 and D5, we found that most time was spent 

in the last several iterations, especially the last one, which took extremely long time to 

prove the infeasibility of the relaxed master problem. To find ways overcoming this 

difficulty, we tried to relax the relative convergence toleranceε  gradually from 0.1% to 

0.5%. The corresponding results for D4 are described in Table 5.7.  

 

Table 5.7 Results Of D4 With  
The Different Relative Convergence Tolerance 

ε  (%) 0.5 0.4 0.3 0.2 0.19 0.18 0.15 
Number of iteration 4 4 7 15 14 25 30 
Convergence time (s) 35 35 66 180 174 17,144 6,534 
Time of the last iteration (s) 1 1 2 10 6 12,700 3,900 

 

It is very clear that the relative convergence tolerance has a significant influence on the 

solution time. Whenε  is greater than 0.2% the ε -optimal approach works well, but it 

suddenly deteriorates once ε  becomes less than 0.19%. For the small tolerance, the 

algorithm spent more than 2/3 of the total solution time to prove the last relaxed master 

problem had no feasible solution. On the contrary, very short time was required to 

accomplish it when ε  was large. This phenomenon is not obvious for small problems like 

D1 to D3 because they are relatively easy to solve.  
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5.2.4 Proposed Hybrid Approach 

Although relaxing ε  accelerates the convergence, the solution quality is compromised. In 

order to generate good solutions quickly, we suggest a hybrid approach. First the ε -

optimal approach is employed to find a good feasible solution, whereε  is set to a larger 

value. After that, we decreaseε and turn to the basic algorithm to generate the solution 

closer to the optimality. At each iteration in phase1 two Benders cuts are constructed from 

the same dual subproblem solution. One cut is in the form (4.41) and is added to the 

relaxed master problem of the ε -optimal approach, while the other cut is in the form (4.24) 

and is not used in phase1. Instead, it is retained and utilized by the basic algorithm in 

phase2. This approach takes advantage of the quick solution by the ε -optimal approach in 

the early iterations, and eliminates the burden of proving infeasibility in the last iterations.  

 

We implemented this hybrid solution approach and setε  to be 0.5% and 0.1% in the two 

phases, respectively. The results are described in Table 5.8, where the values inside 

parentheses are the results of phase 1.  
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Table 5.8 Computational Results Of The Hybrid Approach. 
Instances Convergence 

CPU time (s) 
No. Benders 
Iterations 

Time (s) 
per Iteration 

Benders Final  
Relative Gap 

D1 (2.0) 3.7 (7) 11 0.3 0.03% 
D1* (0.5) 0.5 (1) 1 0.5 0.00% 
D1** (3.5) 13.7 (9) 19 0.7 0.09% 
D2 (0.9) 1.4 (2) 3 0.5 0.09% 
D2* (1.1) 1.1 (2) 2 0.6 0.00% 
D2** (1.0) 1.6 (2) 3 0.5 0.09% 
D3 (7.3) 15.6 (2) 5 3.0 0.08% 
D3* (9.1) 9.1 (2) 2 4.6 0.02% 
D3** (7.3) 15.3 (2) 4 3.8 0.06% 
D4 (35.3) 76.1 (4) 9 8.5 0.03% 
D4* (20.4) 50.7 (2) 6 8.5 0.08% 
D4** (57.5) 302.9 (6) 28 10.8 0.08% 
D5 (140.2)178.6 (4) 5 35.7 0.09% 
D5* (87.0)) 123.7 (2) 3 41.2 0.09% 
D5** (146.3) 416.8 (4) 10 41.7 0.01% 

*:   Unit cargo selling price is decreased by 50% 
**: Unit cargo selling price is increased by 50% 

 

It is shown that the convergence of D4 and D5 was accelerated greatly. D5 took only 5 

iterations and 178.6 seconds to reach the optimality, compared with 14 iterations and 

565.0 seconds in Table 5.7. For D4 that can not converge by the ε -optimal approach, the 

0.03%-optimal solution was generated in 76.1 seconds, which was even shorter than that 

(103s) by the basic algorithm. Similarly, it took D4** 28 iterations and 302.9 seconds to 

reach the optimality. The improvement for D1 to D3 is negligible. The hybrid approach, 

therefore, works well especially for the large instance that has a difficult mixed integer 

relaxed master problem. One critical step in this hybrid approach is to choose an 

appropriateε or the turning point between the two phases. Ifε  is too big, the approach 

turns to phase2 very early and is more like the basic algorithm, and vice versa.  Hence, by 

judiciously setting ε  we can take full advantage of the strengths of both the ε -optimal 

approach and the basic algorithm.  
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5.3 Comparison of the Four Solution Approaches 

All above reported computational results by the four solution approaches are summarized 

in the three tables below. Table 5.9, Table 5.10, and Table 5.11 list the results with the 

original, 50% off and 50% higher unit cargo selling price, respectively. 

 

Among all four solution approaches, the basic algorithm spent the least time and smallest 

number of iterations for all test instances to converge, no matter what unit cargo selling 

price is designated. Thus it is the best one to solve the integrated fleet assignment and 

cargo routing problem. What comes next is the hybrid approach, which reaches optimality 

by a little longer time than and almost the same number of iterations as the basic algorithm. 

For the instances D4 and D3** it is even better than the basic algorithm. Therefore the 

hybrid approach has the potential to become an efficient method to solve the integrated 

problem. Spending a large number of iterations and quite long time, the ε -optimal 

approach performs poorly in our problem. For the pareto-optimal cut generation approach, 

lots of time is used per iteration to solve the auxiliary model, which results a very long 

convergence time even though only several iterations are required.  

 

Results also demonstrate that the unit cargo selling price has significant influence on the 

solution time for all instances, especially for large instances D4 and D5. They spent much 

more time and iterations to converge when the price is increased. In this case, the lower 

bound improves very slowly from an early iteration till reaching optimality. This may 

result from that the increased passenger revenue cannot compensate the decrease of cargo 

revenue, because small cargo capacity reduction may cause large loss of cargo revenue. 
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As a result, the summation of passenger and cargo revenue, namely the lower bound, can 

hardly improve. Reversely, the reduced unit cargo selling price leads to much shorter 

solution time and less iteration. 
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Table 5.9 Computational Results With The Original Unit Cargo Selling Price 

Approach Instance Convergence  
CPU time (s) 

No. Benders 
Iterations 

Time (s) per 
Iteration 

Benders Final 
Relative Gap 

D1 3.1 11 0.3 0.02% 
D2 1.3 3 0.4 0.09% 
D3 14.7 4 3.7 0.08% 
D4 103.5 13 8.0 0.08% 

 
Basic 
Algorithm 

D5 116.7 4 29.2 0.09% 
D1 4.2 11 0.4 0.02% 
D2 1.9 3 0.6 0.09% 
D3 36.8 4 9.2 0.09% 
D4 870.9 11 79.2 0.06% 

 
Pareto-
Optimal 
Cut Generation 
Approach D5 2254.2 5 450.8 0.07% 

D1 5.4 18 0.3 N/A 
D2 1.4 3 0.5 N/A 
D3 14.8 5 3.0 N/A 
D4 Does not converge in 24 hours 

 
ε -optimal 
Approach  

D5 565.0 14 40.4 N/A 
D1 (2.0) 3.7 (7) 11 0.3 0.03% 
D2 (0.9) 1.4 (2) 3 0.5 0.09% 
D3 (7.3) 15.6 (2) 5 3.1 0.08% 
D4 (35.3) 76.1 (4) 9 8.5 0.03% 

 
Hybrid 
Approach 

D5 (140.2) 178.6 (4) 5 35.7 0.09% 
 
 

Table 5.10 Computational Results With The 50% Off Unit Cargo Selling Price 
Approach Instance Convergence  

CPU time (s) 
No. Benders 

Iterations 
Time (s) per 

Iteration 
Benders Final 
Relative Gap 

D1* 0.4 1 0.4 0.00% 
D2* 1.8 2 0.9 0.00% 
D3* 7.5 2 3.8 0.02% 
D4* 45.7 6 7.6 0.08% 

 
Basic 
Algorithm 

D5* 107.0 3 35.9 0.09% 
D1* 0.6 1 0.6 0.00% 
D2* 1.6 2 0.8 0.00% 
D3* 20.6 2 10.3 0.05% 
D4* 534.2 6 89.0 0.08% 

 
Pareto-
Optimal 
Cut Generation 
Approach D5* 1105.5 2 552.8 0.07% 

D1* 0.4 1 0.4 N/A 
D2* 0.9 2 0.5 N/A 
D3* 7.4 2 3.7 N/A 
D4* 6600.0 37 178.4 N/A 

 
ε -optimal 
Approach  

D5* 121.6 4 30.4 N/A 
D1* (0.5) 0.5 (1) 1 0.5 0.00% 
D2* (1.1) 1.1 (2) 2 0.6 0.00% 
D3* (9.1) 9.1 (2) 2 4.6 0.02% 
D4* (20.4) 50.7 (2) 3 16.9 0.08% 

 
Hybrid 
Approach 

D5* (87.0) 123.7 (4) 5 24.7 0.09% 
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Table 5.11 Computational Results With The 50% Higher Unit Cargo Selling Price 

Approach Instance Convergence  
CPU time (s) 

No. Benders 
Iterations 

Time (s) per 
Iteration 

Benders Final 
Relative Gap 

D1** 9.8 20 0.5 0.09% 
D2** 1.3 3 0.4 0.09% 
D3** 19.2 5 3.8 0.07% 
D4** 158.0 17 9.3 0.09% 

 
Basic 
Algorithm 

D5** 177.7 9 19.7 0.09% 
D1** 14.3 20 0.7 0.09% 
D2** 2.4 3 0.8 0.09% 
D3** 50.3 5 10.1 0.05% 
D4** 1394.3 18 77.5 0.01% 

 
Pareto-
Optimal 
Cut Generation 
Approach D5** 4367.4 9 485.3 0.09% 

D1** 24.4 39 0.8 N/A 
D2** 1.4 3 0.4 N/A 
D3** 16.4 5 3.3 N/A 
D4** Does not converge in 24 hours 

 
ε -optimal 
Approach  

D5** 3423.8 17 201.4 N/A 
D1** (3.5) 13.7 (9) 19 0.7 0.09% 
D2** (1.0) 1.6 (2) 3 0.5 0.09% 
D3** (7.3) 15.3 (2) 4 3.8 0.06% 
D4** (57.5) 302.9 (6) 28 10.8 0.08% 

 
Hybrid 
Approach 

D5** (146.3) 416.8 (4) 10 41.7 0.01% 
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6 Conclusions and Future Research 

 

 

This chapter concludes this thesis in Section 6.1 and proposes directions for future 

research in Section 6.2.  

 

6.1 Conclusions 

Fleet assignment is the second airline schedule planning step that is made to maximize the 

profitability by optimally allocating fleet types to the legs. Traditionally this step ignores 

the cargo flow and may not fully utilize the resource of a combination carrier. The revenue 

contributed by cargo keeps increasing for the last decade, and hence the cargo routing 

should be properly modeled so as to maximize the revenue. The route of cargo is 

determined to a large extent by the cargo capacity of every leg, which depends on the fleet 

assignment decision. As a result, the fleet assignment has great influence on the cargo 

revenue. Incorporating the cargo routing into the fleet assignment can better balance the 

resource of a combination carrier and the forecasted cargo demand. Different from the 

passenger, cargo has no strong preference on the specific itinerary as long as its 

commitment is satisfied. There is also no available industry data to calculate the spill cost 

and the recapture rate for the cargo flow. Moreover, cargo is allowed to transfer between 

different aircraft only at the hub, while this requirement is not applicable to the passenger. 

The cargo flow is thus modeled in a way different from the passenger flow model.  
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Given this motivation, we proposed an integrated approach that simultaneously 

determines the assignment of fleet to legs and the cargo routing over the flight network. 

An integrated formulation combing the fleet assignment model and the cargo routing 

model was presented. To eliminate the complexity brought by the time window and the 

side constraints, a two phase technique was applied to model the cargo routing problem. 

The resulting cargo routing model is a path oriented MCNF, in which each column is a 

feasible path. Since the fleet type of every leg is determined together with the routing of 

cargo, the feasible path can not be generated in advance. To accommodate the uncertainty 

of the feasible path, we disaggregated the capacity constraints and the variables in the 

CRM and generated all the potential feasible paths from a non-fleeted schedule to replace 

feasible paths. The integrated formulation obtained is a large scale mixed integer program 

that contains a huge number of variables and constraints.  

 

A Benders decomposition based algorithm was proposed to solve the integrated problem. 

This algorithm decomposes the integrated formulation into a relaxed master problem of 

the fleet assignment and a subproblem of the cargo routing. These two problems are 

solved iteratively until the difference between their solutions is within a designated 

tolerance. Since at each iteration the cargo routing model is set up and solved after the 

fleet assignment model, the feasible paths can be generated with the knowledge of the 

fleet type of every leg. As a result, the subproblem reduces to the individual CRM, whose 

size is much smaller than that in the integrated formulation. Other than the basic algorithm, 

two variants, the pareto-optimal cut generation approach and the ε -optimal approach 

were applied to solve the integrated problem. The pareto-optimal cut generation method 

selects strong cuts at each Benders iteration, while the ε -optimal approach solves the 
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Benders relaxed master problem only to a feasible integer solution rather than an integer 

optimum.  

 

A series of computational experiments were carried out for several data sets to test and 

compare performances of different solution approaches. Results show that the basic 

algorithm worked very well and outperformed others in our problem. It took only several 

minutes to generate optimal solutions, which provided an improved estimate of total profit 

in comparison with the isolated fleet assignment. The performances of the other two 

variants turned out unsatisfactory. The pareto-optimal cut generation approach spent very 

long time to converge, even though the number of iterations required was quite small. 

Every iteration of it took a large amount of time to solve the auxiliary model to select a 

“strong” cut, which was almost the same as the cut generated directly by the subproblem. 

Possibly this follows from the low degeneracy degree of the primal subproblem. The main 

drawback of the ε -optimal approach was the infeasibility proof of the last relaxed master 

problem. Especially for the large instances, this part of time accounted for 2/3 of the total 

solution time. To overcome it a hybrid approach was suggested, which first employs the 

ε -optimal approach to obtain a good feasible solution, and then turns to the basic 

algorithm for a solution closer to the real optimum. It is shown that this hybrid approach 

converged very fast with few iterations. Although it was faster than the basic algorithm 

only in several cases, the hybrid approach has the potential to generate better results if an 

appropriate turning point is chosen.  
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6.2 Future Research 

It is worth to restate that the passenger revenue is only estimated linearly in our integrated 

formulation. For a combination carrier passenger is still its main source of profit, thus the 

passenger flow problem should be properly modeled. An enhanced integrated model could 

also incorporate the passenger mix problem, which finds the passenger flow of maximal 

revenue over a given fleeted flight schedule. The resulting model will simultaneously 

allocate fleet types to legs and determine the flow of cargo and passengers over the 

network. This approach is able to balance the resource of an airline (the available cargo 

capacities and passenger seats) and the demands of both cargo and passengers at all 

markets. An improved estimate of total passenger and cargo profit is therefore expected to 

obtain. This extended integrated formulation can still be solved by Benders decomposition. 

The master problem solves the fleet assignment, and the subproblem solves the cargo 

routing and the passenger mix. Since the passengers’ luggage will compete with cargo for 

the space, the models of passenger mix and cargo routing are coupled together by the 

cargo capacity constraints. This leads to a block-diagonal structured subproblem that can 

be solved by Dantzig-Wolfe decomposition. In this case, the main question to be answered 

is how to construct the Benders cut from the subproblem solution.  

 

Also recall that our integrated model is just an approximation of the actual three stage 

problem. Another model enhancement is to incorporate the physical aircraft routing. A 

more comprehensive integrated model could combine all the four problems together, fleet 

assignment, aircraft routing, cargo routing and passenger mix. How to formulate and solve 

such an extremely large problem raises big challenges for future research.  
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The forecasted cargo demand is static in our problem. This simplification may cause the 

solution less convincing because the demand actually fluctuates randomly all the time. 

Therefore, another interesting research direction is to capture the demand uncertainty.  

 

Also interesting is to choose a good turning point of the hybrid approach. The solution 

time by the ε -optimal approach changes greatly with the designated optimality tolerance. 

An appropriate tolerance value or a turning point could instruct the solution process to 

switch the basic algorithm at appropriate time, and therefore accelerate the convergence 

and enhance the hybrid approach.  
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