
 A WORD IMAGE CODING TECHNIQUE AND ITS

APPLICATIONS IN INFORMATION RETRIEVAL FROM

IMAGED DOCUMENTS

ZHANG LI

(B.Sc. (Hons), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 i

Acknowledgements

It is a great pleasure to render my sincere appreciation to all those people that have

generously offered their invaluable help and assistance in completing this research work.

First of all, I would like to thank Associate Professor Tan Chew Lim, for his ingenious

supervision and guidance during the whole year of my master study; and also for his

consistent encouragement and generous support in my research work.

I am also grateful to Dr. Lu Yue, who continuously provided his invaluable suggestions and

guidance to this project work. It is my great pleasure to work with him and share his insights

in document image retrieval area.

Last but not least, I would like to express my gratitude to Dr. Xiao Tao for sharing with me

his knowledge in Wavelet Transformation as well as his ingenious idea in Pattern Recognition

field.

 ii

Table of Contents

Acknowledgements i

Table of Contents ii

Summary iv

List of Tables vi

List of Figures vii

Chapter 1 Introduction 1
1.1 Background 1
1.2 Scope and Contributions 5
1.3 Organization of the Thesis 9

Chapter 2 Feature Code File Generation 11
2.1 Connected Component Analysis 11
2.2 Word Bounding 13
2.3 Skew Estimation 14
2.4 Skew Rectification 18
2.5 Word Bounding Box Regeneration 20
2.6 Italic Font Detection 21
2.7 Italic Font Rectification 22
2.8 Feature Code File Generation 22

Chapter 3 Word Image Coding 24
3.1 LRPS Feature Representation 24
3.2 Ascender-and-descender Attribute 24
3.3 Line-or-traversal Attribute 25

3.3.1 Straight Stroke Line Feature 26
3.3.2 Traversal Feature 28

3.4 Post-processing 30
3.4.1 Merging Consecutive Identical Primitives 30
3.4.2 Refinement for Font Independence 31

3.5 Primitive String Token for Standard Characters 33
3.6 Verification 34

Chapter 4 Italic Font Recognition 36
4.1 Background of Font Recognition 36
4.2 Wavelet Transformation Based Approach 38

4.2.1 Wavelet Decomposition of Word Images 39
4.2.1.1 Pyramid Transform 39
4.2.1.2 Coupled and uncoupled Wavelet Decomposition 40

 iii

4.2.2 Statistical Analysis of Stroke Patterns 43
4.2.2.1 Vertical Stroke Analysis 44
4.2.2.2 Diagonal Stroke Analysis 45

4.2.3 Experimental Results 46

Chapter 5 Feature Code Matching 48
5.1 Coarse Matching 48
5.2 Inexact String Matching 49

Chapter 6 Web-based Document Image Retrieval System 56
6.1 System Overview 56
6.2 System Implementation 58
6.3 AND/OR/NOT Operations 60

6.3.1 AND Operation 61
6.3.2 OR Operation 62
6.3.3 NOT Operation 64

6.4 System Evaluation 64

Chapter 7 Search Engine for Imaged Documents 69
7.1 Implementation 69
7.2 Performance Evaluation 71
7.3 Comparison with the Page Capture 73
7.4 Comparison with Hausdorff Distance Based Search Engine 74

7.4.1 Space Elimination and Scale Normalization 75
7.4.2 Word Matching Based on Hausdorff Distance 76

Chapter 8 Conclusions 79
8.1 Contributions 80
8.2 Future Works 81

Bibliography 83

Appendix A – How to Use the Web-based Retrieval System 87

Appendix B – How to Use the Search Engine 88

 iv

Summary

With an increasing amount of documents being scanned and archived in the form of digital

images, Document Image Retrieval, as part of information retrieval paradigm, has been

attracting a continuous attention among the Information Retrieval (IR) communities. Various

retrieval techniques based on Optical Character Recognition (OCR) have been proposed and

proved to achieve a good performance on high quality printing documents. However, many

document image databases contain poor quality documents such as those ancient books and

old newspaper in digital libraries. This draws the interest of many researchers in looking for

an alternative approach to perform retrieval among distorted document images more

effectively.

This thesis presents a word image coding technique that extracts features from each word

object and represents them using a feature code string. On top of this, two applications are

implemented. One is an experimental web-based retrieval system that efficiently retrieves

document images from digital libraries given a set of query words. Some image preprocessing

is first carried out off-line to extract word objects from those document images. Then, each

word object is represented by a string of feature codes. Consequently, feature code file for

each document image is generated containing a set of feature codes representing its word

objects. Upon receiving a user’s request, our system converts the query word into its feature

code using the same conversion mechanism as is used in producing the feature codes for the

underlying document images. Search is then performed among those feature code files

generated off-line. An inexact string matching algorithm, with the ability of matching a word

 v

portion, is applied to match the feature code of the query word with the feature codes in the

feature code files. The occurrence frequency of the query word in each retrieved document

image is calculated for relevant ranking. Second application is a search engine for imaged

documents in PDF files. In particular, a plug-in is implemented in Acrobat Reader and

performs all the preprocessing and matching procedures online when the user inputs a query

word. The matching word objects will be identified and marked in the PDF files opened by

the user either on a local machine or through a web link.

Both applications are implemented with the ability of handling skew images using a nearest

neighbor based skew detection algorithm. Italic fonts are also identified and recognized with a

wavelet transformation based approach. This approach takes advantage of 2-D wavelet

decomposition and performs statistical stroke pattern analysis on wavelet decomposed

sub-images to discriminate between normal and italic styles. A testing version of the search

engine is implemented based on Hausdorff distance matching of word images. Experiments

are conducted on scanned images of published papers and students’ thesis provided by our

digital libraries with different fonts and conditions. The results show that better recall and

precision are achieved with the word image coding based search engine with less sensitivity

towards noise affections and font variations. In addition, by storing the feature codes of the

document image in an intermediate file when processing the first search, we need to perform

the preprocessing steps only once and thus achieve a significant speed-up in the subsequent

search process.

 vi

List of Tables

Table 3-1 Primitive properties vs. Character code representation ...32

Table 3-2 Primitive string tokens of characters..34

Table 5-1 Scoring table and missing space recovery ...55

Table 6-1 A snapshot of the index table storing information of queried words60

 vii

List of Figures

TUFigure 1-1 System componentsUT ...7

TUFigure 1-2 Search engine for imaged documents in PDF filesUT..8

TUFigure 2-1 Connected componentsUT..12

TUFigure 2-2 Word bounding boxUT ...13

TUFigure 2-3 Nearest Neighbor Chains (NNCs)UT ...14

TUFigure 2-4 Skew angle (a) ∆x > ∆y (b) ∆x < ∆yUT ...15

TUFigure 2-5 NNCs for (1): (a) (d) K=2 (b) (e) K=3 (c) (f) K≥4 UT ..17

TUFigure 2-6 Nearest Neighbor Chain (NNC)UT ..18

TUFigure 2-7 Skew rectificationUT ..20

TUFigure 2-8 A portion of a rectified page imageUT ...20

TUFigure 2-9 Italic word and its rectified imageUT ...22

TUFigure 2-10 Feature code fileUT ..23

TUFigure 3-1 Primitive string extractionUT ...25

TUFigure 3-2 Refinement for LRPS representation to avoid the effect of serifUT...................................31

TUFigure 4-1 The pyramid decomposition schemeUT ...40

TUFigure 4-2 One stage of the uncoupled wavelet decomposition schemeUT...41

TUFigure 4-3 Two dimensional Discrete Wavelet DecompositionUT ..42

TUFigure 4-4 An example of one-level wavelet decomposed sub-imagesUT ..43

 viii

TUFigure 4-5 (a)(b) VSLS running through the mid zone for normal and italic styles respectively

(c)(d) CDS for normal and italic styles respectively (length ≥ 3)UT ...45

TUFigure 4-6 Examples of wavelet decomposed vertical sub-imagesUT...46

TUFigure 4-7 Recognition accuracy comparisons between traditional method and our methodUT.........47

TUFigure 6-1 Overview of the web-based document image retrieval systemUT57

TUFigure 6-2 AND operationUT...62

TUFigure 6-3 OR operationUT ...63

TUFigure 6-4 NOT operationUT ...64

TUFigure 6-5 Recall and precision chart of the word image coding based systemUT..............................67

TUFigure 6-6 Search result for pre-queried wordUT ..67

TUFigure 6-7 Search result for first-time queried wordUT...68

TUFigure 7-1 Snapshot of the search engine embedded in Acrobat Reader 6.0UT71

TUFigure 7-2 Search result for a query word located in an opened PDF document imageUT71

TUFigure 7-3 Performance vs. different thresholdsUT ...73

TUFigure 7-4 Recall and Precision wrt word length distribution and noise levelUT................................73

TUFigure 7-5 Ascender, descender and mid zone of a word imageUT ...77

TUFigure 7-6 Recall and precision chart of Hausdorff distance matching based systemUT78

Chapter 1 Introduction

 1

Chapter 1

Introduction

1.1 Background

The popularity and importance of image as an information source is evident in modern

society [J97]. The amount of visual information is increasing in an accelerating rate in many

diverse application areas. In an attempt to move towards a more paperless office, large

quantities of printed documents are digitized and stored as images in databases [D98]. As a

matter of fact, many organizations are currently using and dependent on image databases,

especially if they use document images extensively. Modern technology has made it possible

to produce, process, store and transmit document images efficiently. The mainstream now

concentrates on how to provide highly reliable and efficient retrieval functionality over these

digital images produced and utilized in different services.

With pictorial information being a popular and important resource for many human

interactive applications, it becomes a growing problem to find the desired entity from a set of

available data. When dealing with images with diverse content, no exact attributes can

directly be defined for applications and humans to use. It is thus very difficult to evaluate and

control the relevancy of the information to be retrieved from the image database. Nevertheless,

advanced retrieval techniques have been studied to narrow down the gaps between human

perception and the available pictorial information. For instance, many effective image

descriptions and indexing techniques have been used to seek information containing physical,

Chapter 1 Introduction

 2

semantic and connotational image properties. Not only is the information provided by

structural metadata or exact contents, such as annotations, captions and text associated with

the image needed, but also a multitude of information gained from other domains, such as

linguistics, pictorial information, and document category [M97].

In the past years, various ways have been studied to query on imaged documents using

physical (layout) structure and logical (semantic) structure information as well as extracted

contents such as image features. For example, Worring and Smeulders proposed a document

image retrieval method employing the information of implicit hypertext structure extracted

from original documents [WS99]. Jaisimha et al described a system with the ability of

retrieving both text and graphics information [JBN96]. Appiani et al presented a document

classification and indexing system using the information of document layouts [ACC01]. All

these are utilizing content-based image retrieval (CBIR) techniques which extract features

using different levels of abstraction.

However, for those imaged documents where text content is the dominant information, the

traditional information retrieval approach using keywords is still commonly used. It is

obvious that conventional document image processing techniques can be utilized for this

purpose. For example, many document image retrieval systems first convert the document

images into their machine readable text format, and then apply text information retrieval

strategies over the converted text documents. Based on this idea, several commercial systems

have been developed using page segmentation and layout analysis techniques, following

Optical Character Recognition (OCR). These include Heinz Electronic Library Interactive

Chapter 1 Introduction

 3

Online System (HELIOS) developed by Carnegie Mellon University [GG98], Excalibur EFS

and PageKeeper from Caere. All these systems require a full conversion of the document

images into their electronic representations, followed by text retrieval.

It is generally acknowledged that the recognition accuracy requirements for document image

retrieval are considerably lower than those for many document image processing applications

[TBCE94]. Document image retrieval (DIR) is relevant to document image processing (DIP),

though with some essential differences. A DIP system needs to analyze different text areas in

a document image page, understand the relationships among these text areas, and then convert

them to a machine-readable format using OCR, in which each character object is assigned to a

certain class. The main question that a DIR system seeks to answer is whether a document

image contains particular words that are of interest to the user, while paying no attention to

other unrelated words. In other word, a DIR system provides an answer of “yes” or “no” with

respect to the user’s query, rather than the exact recognition of a character/word like that in

DIP. Motivated by this observation, some methods with the ability of tolerating recognition

errors of OCR by using the OCR candidates have been proposed recently [KHOY99]. Some

are reported to improve the retrieval performance with the combination of OCR and

Morphological Analysis [KTK02].

Unfortunately, several reasons such as high costs and poor quality of document images may

prohibit complete conversion using OCR. Additionally, some non-text components cannot be

represented in a converted form with sufficient accuracy. Under such circumstances, it can be

advantageous to explore techniques for direct characterization, manipulation and retrieval of

Chapter 1 Introduction

 4

document images containing text, synthetic graphics and natural images.

In view of the fact that word, rather than character, is the basic meaningful unit for

information retrieval, many efforts have been made in the area of document image retrieval

based on word image coding techniques without the use of OCR. In particular, to overcome

the problem caused by character segmentation, segmentation-free approaches have been

developed. They treat each word as a single entity and identify it using features of the entire

word rather than each individual character. Therefore, directly matching word images in a

document image with the standard input query word is an alternative way of retrieving

document images without complete conversion.

So far, efforts made in this area include applications to word spotting, document similarity

measurement, document indexing, summarization, etc. Among all these, one approach is to

use particular codes to represent characters in a document image instead of a full conversion

using OCR. It is virtually a trade-off between computational complexity and recognition

accuracy. For example, Spitz presented the character shape codes for duplicate document

detection [S97], information retrieval [SS+97], word recognition [S99] and document

reconstruction [S02] without resorting to full character recognition. The character shape codes

encode whether the character in question fits between the baseline and the x-line or if not,

whether it has an ascender or descender, and the number and spatial distribution of the

connected components. Its processing to obtain the character shape codes is simple and

efficient but has the problem of ambiguity. Additionally, to get the character shape codes,

character cells must be segmented at the first step. It is therefore not applicable to the case

Chapter 1 Introduction

 5

where characters are connected to each other within a word object. Chen et al [CB98]

proposed a segmentation and recognition free approach using word shape information. In this

approach, it first identifies upper and lower contours of each word using morphology and then

extracts shape information based on the pixel locations among these contours. Next, Viterbi

decoding of the encoded word shape is used to map the word image with the given keyword.

Besides this, Trenkle and Vogt [TV93] also provided preliminary experiment on word-level

image matching, where various fonts of the image word are generated, based on which

features are extracted and compared with the input keyword. In the domain of Chinese

document image retrieval, He et al proposed an index and retrieval method based on character

codes generated from stroke density [HJLZ99].

As so many efforts have been devoted to the area of document image processing realm by

various researchers especially to OCR, it is a fact that information retrieval methods based on

document image processing techniques are still the best so far among all the available

retrieval methods. However, DIR and DIP address different needs and have different merits of

their own. DIR is tailored for directly retrieving information from document images and thus

achieves a relatively high performance in terms of recall, precision and processing speed.

Therefore, DIR that bypasses OCR still has its practical value today.

1.2 Scope and Contributions

This thesis presents a word image coding technique that can be used to perform online search

of word objects in document image files as well as to design web-based document image

retrieval systems for retrieving scanned document images from digital libraries. The

Chapter 1 Introduction

 6

differences between our technique and Spitz’s can be summarized as follows:

 Features are extracted at the word level, rather than at the character level as it appears in

Spitz’s character shape codes.

 The procedure of computing word image codes is more complicated, but shows an

advantage of eliminating ambiguity among words.

Based on the aforementioned word image coding technique, two applications are presented in

view of online and off-line execution of the word image coding mechanism. First application

is a web-based document image retrieval system with the image coding mechanism

performed off-line during the preprocessing stage. An experimental system is implemented,

which takes in user’s query words from a web interface and performs matching among the

feature codes generated from the query words and the underlying document images.

Preprocessing is carried out off-line to denoise the document images such as skew detection

and rectification, and produce the corresponding feature codes using the word image coding

technique. Feature codes of the input query words are generated using the same mechanism as

is used in the word image coding technique. An inexact matching algorithm is employed in

matching the feature codes with the property of matching word portion.

The system consists of four components as shown in Figure 1-1. The web interface is the

place where the user inputs a set of query words with AND/OR/NOT operations and gets the

retrieved documents ranked by the occurrence frequency of the query words in each

document. The users can then link to the actual document and identify the locations of the

Chapter 1 Introduction

matching words. The oracle database is used to store an index table that functions as a cache

containing information of previously queried words. This speeds up the search process as

more users come to use this system and makes it incrementally intelligent. Lastly, a server is

used to store the original imaged documents and their corresponding feature code files

generated through the off-line operations.

Figure 1-1 System components

The second application is a search engine for imaged documents packed in PDF files.

Specifically, a plug-in is implemented and embedded in Acrobat Reader to perform the online

search of word objects in the imaged documents. In this application, the word image coding

technique employed in the preprocessing phase is done online with no additional database

needed for feature code file storage. The feature code file is generated on the user’s local

machine when he/she performs search for the first time. All the subsequent searches will be

simple text matching in the feature code files. A snapshot of the search engine is shown in

Figure 1-2.

 7

Chapter 1 Introduction

Figure 1-2 Search engine for imaged documents in PDF files

For both applications, a wavelet transformation based technique is proposed for italic font

recognition. It is employed during the preprocessing phase to effectively detect italic fonts

and rectify them to normal style before generating the feature codes. This is especially helpful

in identifying those emphasized words in italic style and also helps to achieve better retrieval

performance for italic and normal fonts mixed documents. To evaluate this italic font

recognition technique, experiments are conducted on 22,384 frequently used word images in

both normal and italic fonts. Our wavelet transformation based technique shows recognition

accuracies of 95.76 percent for normal style and 96.49 percent for italic style respectively.

Comparisons are done with traditional stroke analysis based approach under the same

experimental setup. The results show a significant improvement in the recognition accuracy

for four representative fonts in normal and italic styles, namely Times New Roman, Arial,

 8

Chapter 1 Introduction

 9

Courier and Comic Sans MS. Experiments are also conducted on 5,320 normal word images

and 489 italic ones extracted from scanned document images. The accuracies achieved are

92.20 percent for normal style and 97.96 percent for italic style respectively.

Last but not least, to compare with the word image coding based search engine, another

version of the search engine is implemented based on Hausdorff distance matching of word

images. In this case, each word image object is extracted from the imaged document to match

with the template word image constructed for the input query word. The Hausdorff distance is

calculated to evaluate the distance between two word images as their similarity value.

Experiments are performed with scanned images of published papers and students’ thesis in

our digital libraries with different fonts and quality levels. The results show that better recall

and precision are achieved with the word image coding based search engine with less

sensitivity to noise affections and font style variations. In addition, by storing the feature

codes of the document image in an intermediate file when the first search is performed, we

need to perform the preprocessing steps only once and thus achieve a significant speed-up in

the subsequent search process.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows:

In chapter 2, we detail the preprocessing procedures that are performed to extract word image

objects from the original imaged document and generate their corresponding feature code

strings using the word image coding technique.

Chapter 1 Introduction

 10

In chapter 3, we discuss the word image coding technique that is used for feature code

generation and evaluate its validity as a unique coding representation at the word level.

In chapter 4, we describe the wavelet transformation based technique for italic font

recognition and how it is compared with traditional stroke pattern analysis method.

In chapter 5, we elaborate the inexact string matching algorithm exploited in matching the

feature code strings of the word images.

In chapter 6, we illustrate the implementation of the first application of the word image

coding technique, namely the web-based document image retrieval system given a set of

query words.

In chapter 7, we describe the implementation of the second application of the word image

matching technique, namely the search engine for imaged documents in PDF files.

Experiments show that our search engine is 2.6 times faster than the Page Capture provided

by Adobe Acrobat. Comparisons made with a testing search engine implemented based on

Hausdorff distance matching show much better efficiency and less sensitivity to noise and

font variations for the word image coding based system.

In chapter 8, we draw some conclusions and discuss about the future works.

Chapter 2 Feature Code File Generation

 11

Chapter 2

Feature Code File Generation

With respect to each document image, a corresponding feature code file is generated off-line

by undergoing some preprocessing procedures prior to the online search process. This feature

code file contains all the feature code strings and is stored on a server as a database for future

matching. The document images used in our system are scanned from published papers and

students’ theses packed in PDF files. Each PDF file has over 100 images in page format for

those students’ theses. Each page image needs to be preprocessed before being converted to

its corresponding feature code representation. The detailed procedures are elaborated in the

following sections.

2.1 Connected Component Analysis

Consider a particular page of a given document image, we first apply a connected component

analysis algorithm to detect all the connected components within this page. Here, we assume

all the images are binary images with black and white pixels (otherwise convert to binary

images). The connected component is defined as an area inside which all the image pixels are

connected to each other. For example, Figure 2-1 shows a portion of a page image after

applying the connected component analysis.

Chapter 2 Feature Code File Generation

Figure 2-1 Connected components

In particular, the connected component analysis algorithm we are using here is a

component-oriented method. Each time we start with a black pixel in a new connected

component and go round to mark all the black pixels in its eight neighbors (consider the

current pixel as the center of a 3 by 3 matrix). After that we set the current pixel to be white

and continue with the previously marked neighbors. The process follows the fashion of

breadth-first search and stops until all the neighbors of the marked black pixels are white. The

final rectangle area bounded by the boundary pixels is known as a connected component.

Furthermore, additional operations are carried out to remove some useless information

obtained from the detected components. In particular, those connected components with too

small area are usually punctuations or noise pixels and are therefore removed. One thing to

note in this case is the small dot detected as part of ‘i’ and ‘j’, we will group them with the

body part of ‘i’ and ‘j’ as one connected component instead of discarding them. This is done

by the observation that the gap distance between the dot and the body of ‘i’ and ‘j’ is normally

smaller than the gap distance between the dot and the line above it. This property helps us to

 12

Chapter 2 Feature Code File Generation

obtain a complete shape for ‘i’ and ‘j’. Similarly, those components with too large area (e.g.

width/height is greater than 5 times the median width/height of the components) are probably

tables or figures and are therefore eliminated as well. What we concern is mainly the text

information rather than graphics and tables.

2.2 Word Bounding

Having detected the connected components, we try to find all the word-bounding boxes based

on the locations of these connected components. To find the boundaries of each word object,

the same idea can be applied as in finding the connected components in the section 2.1. For

each connected component, we search all its eight neighboring connected components to find

the leftmost component and rightmost component until the gap between two connected

components are too large to be within one word. Based on the boundary connected

components, we determine the bounding rectangle for the word object. Furthermore, some

additional conditions are applied to remove those too large or too small word-bounding boxes

and merge those word-bounding boxes with large overlapping area. Figure 2-2 gives an

example of the word-bounding boxes detected for a portion of a page image.

Figure 2-2 Word bounding box

 13

Chapter 2 Feature Code File Generation

2.3 Skew Estimation

As we can see from Figure 2-1 and 2-2, this particular page image is not in its normal shape

in terms of the physical layout. Specifically speaking, each line has a skew angle against the

horizontal axis. In order to generate an accurate set of feature code strings for this page image,

we need to first rectify this page image back to its normal shape before applying the word

image coding scheme. To rectify the page image, we need to first find its skew angle. This is

done by using a nearest neighbor chain (NNC) algorithm [LT03] [ZLT03]. The idea lies in the

observation that the slope of an inclined line can generally be reflected by the slope of a

nearest neighbor chain that consists of several consecutive connected components of similar

height/width. For example, in the second line of Figure 2-3, ‘i’ ‘o’ ‘n’ is detected as a NNC of

length 3, because ‘i’ ‘o’ and ‘n’ are three consecutive connected components of similar size.

As we can see, the slope of this NNC is close to the slope of the whole line.

Figure 2-3 Nearest Neighbor Chains (NNCs)

In particular, for a component , we use (,) to represent its centroid; (,) and

(,) to represent the upper-left and bottom-right coordinates of the rectangle enclosing

iC
icx

icy
il

x
it

y

ir
x

iby

 14

Chapter 2 Feature Code File Generation

 15

iC ; and
ich and

icw to represent the height and width of iC respectively. Then the

centroid distance and gap distance between two components are defined as follows:

UDefinition 1 U The centroid distance between two components CB1 B and CB2B is defined as:

d BcB(CB1 B, CB2B) = ∆xP

2
P + ∆yP

2

where ∆x = |
1cx -

2cx | and ∆y = |
1cy -

2cy | as shown in Figure 2-4.

Figure 2-4 Skew angle (a) ∆x > ∆y (b) ∆x < ∆y

UDefinition 2 U The gap distance between two components CB1B and CB2B is defined as:

⎩
⎨
⎧

−−
−−

=
)yy,yymax(
)xx,xxmax(

)C,C(d
btbt

rr
g

2112

211112
21

Let m be the total number of connected components generated from a page image, then the

nearest neighbor pair is defined as follows:

UDefinition 3 U [CB1 B, CB2 B] is a nearest neighbor pair if ∆x > ∆y, and

(1) h Bc1B ≅ h Bc2B

(2) xBc2B > xBc1 B

(3) d BcB(CB1 B, CB2B) = min d BcB(CB1 B, CBmB)

Chapter 2 Feature Code File Generation

 16

(4) d BgB(CB1 B, CB2B) < β ∗ max(h Bc1 B, hBc2B)

or if ∆y > ∆x, and

(1) wBc1B ≅ wBc2 B

(2) yBc2B > yBc1 B

(3) d BcB(CB1 B, CB2B) = min d BcB(CB1 B, CBmB)

(4) d BgB(CB1 B, CB2B) < β ∗ max(wBc1 B, wBc2B)

where β is a constant, and is set to be 1.2 experimentally.

According to the definitions above, the adjacent nearest neighbor pairs with similar heights or

width will produce a nearest neighbor chain.

UDefinition 4 U K-nearest-neighbor chain (K-NNC) is defined as a string containing K

connected components []KCCC ,,, 21 L , in which 1+iC is the nearest-neighbor of iC for i

= 1, 2, …, K-1.

Based on some observations on K-NNCs for several English document images with K=2,

K=3 and K≥4 respectively (as shown in Figure 2-5), we conclude that the larger K is, the

more accurately the slope of the K-NNC can reflect the skew angle of the page image. As an

example of why shorter NNCs are not used in the estimation, Figure 2-6 shows the 2-NNC

and 3-NNC respectively for the word “complete”. Clearly, the slope of 3-NNC reflects the

skew angle more accurately than that of those 2-NNCs. This is because there may be some

noise in shorter NNCs. Therefore, what we do is to extract the longest NNC from the adjacent

nearest neighbor pairs and determine the skew angle based on the median of the slopes of all

Chapter 2 Feature Code File Generation

 17

these NNCs.

(1)

Figure 2-5 NNCs for (1): (a) (d) K=2 (b) (e) K=3 (c) (f) K≥4

Chapter 2 Feature Code File Generation

 18

Figure 2-6 Nearest Neighbor Chain (NNC)

UDefinition 5U Suppose SP

(n)
P = [CP

(n)
PB1B, CP

(n)
PB2 B, …, CP

(n)
PBKB] is the nth K-NNC (n = 1, 2, …, N), then its

slope is defined as:

⎪⎩

⎪
⎨
⎧

−<−−−

−<−−−
=

)()(if)()(

)()(if)()(
)(

1
)()(

1
)()(

1
)()(

1
)(

)(
1

)()(
1

)()(
1

)()(
1

)(
)(

n
c

n
ck

n
c

n
ck

n
c

n
ck

n
c

n
ck

n
c

n
ck

n
c

n
ck

n
c

n
ck

n
c

n
ckn

K xxyyxxyy

yyxxyyxx
slope

For a constant K, we can obtain the median of the slopes of all its NNCs. This will be the

value we use to represent the skew angle of this page image. In addition, we make use of a

predefined threshold to guarantee that there are sufficient NNCs of a particular length K in

order to avoid the noise factors and give an accurate estimation.

2.4 Skew Rectification

Having obtained the skew angle of the page image, we try to rectify each word back to its

normal shape based on this angle. The idea is to obtain an image of word-bounding box inside

which the word is in its right position. This can be visualized from Figure 2-7(a). Here,

“Application” has a skew angle of β degree with respect to the dashed word-bounding box S

that is horizontal. Now we turn this dashed box clockwise by β degree to obtain a new

word-bounding box R. Obviously, “Application” is in a right position with respect to R.

Chapter 2 Feature Code File Generation

 19

Therefore, R is the word-bounding box image that we need.

One thing worth mentioning is that the word-bounding boxes we generated at the previous

step (Section 2.2) are all horizontal. Next, we need to rotate these word-bounding boxes by

the skew angle to obtain a new word-bounding box so that inside which the word is in its

normal shape. In order to make sure all the word image pixels can be enclosed in the rotated

word-bounding box R, we give a tolerance boundary of 2 pixels for the original

word-bounding box S so that there will not be information loss due to the rotation. This

guarantees the accuracy of the feature code generation.

The following formula will map the corresponding image pixels in the original

word-bounding box S to the newly generated word-bounding box image R as shown in Figure

2-7(b):

xB2 B

 = xB0B

 – [(xB0 B

 – xB1B

) ∗ cosβ + (yB0 B – yB1 B

) ∗ cosβ]

yB2 B = yB0B

 – [(yB0 B

 – yB1B

) ∗ sinβ + (xB0 B

 – xB1 B

) ∗ cosβ]

Here, (xB0 B, yB0 B) is the center of the horizontal word-bounding box S. What we want to do is to

construct a new word-bounding box image inside which all the pixel values are allocated to

form a normal shaped word “Application”. This is done by assigning each pixel value inside

this new image to the corresponding pixel values in the word-bounding box R obtained by

rotating the original word-bounding box S by a degree of the skew angle. Now we have

obtained a new word image that is in normal shape. Next, we can operate on this small word

image to find its corresponding feature code. Figure 2-8 shows a portion of the rectified page

Chapter 2 Feature Code File Generation

image.

(a) (b)

Figure 2-7 Skew rectification

Figure 2-8 A portion of a rectified page image

2.5 Word Bounding Box Regeneration

After rectifying the word to its normal shape, the previous connected components generated

for calculating NNC are no longer accurate. Since the shape of the character strictly affects its

bounding area, we cannot simply rotate the previous connected component by the skew angle

to obtain the new one. Therefore, we need to regenerate connected components for the

normalized word shape. Concerning the efficiency issue, this time we apply the connected

components analysis algorithm only for each individual word-bounding box generated in the

above step. With a smaller image area, this process will be much faster than scanning through

the whole page image.

 20

Chapter 2 Feature Code File Generation

 21

Next, the word objects are bounded by analyzing the information of relative positions among

the new connected components. The idea is the same as the word bounding step in Section 2.2,

but the connected components to be searched are only restricted to those contained within the

current word image. Therefore, it will be much faster than the previous word bounding step.

2.6 Italic Font Detection

As we noticed, in many document images certain terms are emphasized and distinguished

with italic style. These are usually important words with higher information content. As we

will see in Chapter 4, Chaudhuri and Garain conducted statistical study [CG98] on the relative

abundance and importance of italic, bold and all-capital words in technical journals,

proceedings of technical conferences, technical books, etc. It shows that italic style indeed

occupies a significant portion in many document images. Thus, it is necessary to identify the

italic styles before performing corresponding rectification to produce their normal forms and

generate the normal feature code strings for matching.

In view of our word image coding scheme, feature extraction is performed on a word level

without character segmentation. This requires the ability of identifying each italic word as an

individual entity instead of within a block of italic text. Some existing techniques are targeted

at identifying fonts and styles of large text blocks as those listed in Chapter 4. This does not

apply to individual italic word recognition as is required here. Since at this stage each word

image object is already extracted, it is easy to think of performing stroke pattern analysis on

each word image object to distinguish italic and non-italic styles. However, the traditional

stroke pattern analysis performed directly on the word image object is highly sensitive to

Chapter 2 Feature Code File Generation

noise level and typeface variations. To remedy this problem, we proposed a wavelet

transformation based technique that performs a 2-D wavelet decomposition step to extract

predominant features from the word images, followed by the stroke pattern analysis on the

sub-images generated. The predominant features extracted from the word images contain

distinguishable information of italic and non-italic styles and meanwhile are less sensitive to

noise and typeface variations. Details about this technique will be illustrated in Chapter 4.

2.7 Italic Font Rectification

If a word object is detected as in italic style, a rectification step will be carried out to

de-italicize the word before generating its feature code string. This is done by first estimating

the oblique angle of the italicized word. Experiments show that in most computer generated

fonts, the oblique angle is between 10 to 15 degrees. Next, the word object is rectified by

shifting each pixel horizontally left by a corresponding distance calculated according to the

oblique angle with respect to the left bottom boundary of the word bounding box. An example

of the rectified word “Principle” is shown in Figure 2-9. The word bounding box is relocated

with its new left and right boundaries.

Figure 2-9 Italic word and its rectified image

2.8 Feature Code File Generation

 22

Chapter 2 Feature Code File Generation

At this stage, each word object is extracted from the document image and rectified to its

normal shape if italic rectification is applicable. Next, by applying the word image coding

technique, each word image is represented using a primitive string as to be illustrated in

Chapter 3. The feature code file is then generated, which contains the information of all the

feature code strings corresponding to the word objects and their locations in the document as

well as the URL of the document image. Figure 2-10 gives a portion of a feature code file

recording the information of a PDF file with 33 pages of image.

Figure 2-10 Feature code file

 23

Chapter 3 Word Image Coding

 24

Chapter 3

Word Image Coding

Concisely speaking, our word image coding technique is to represent each word object

extracted from the document images using specially designed codes according to its features

[LZT04]. The features used in our approach are Left-to-right Primitives. Each word object is

therefore denoted by a string of these primitives sequenced from the leftmost of a word to its

rightmost referred to as Left-to-right Primitive String (LRPS). Primitives are extracted from

the word image based on line features and traversal features to be illustrated in section 3.2.

3.1 LRPS Feature Representation

To extract primitives, each word object is explicitly segmented from the leftmost to the

rightmost to discrete entities. Each entity, called a primitive here, is represented using two

definite attributes ()ωσ , , where σ is the Line-or-traversal Attribute (LTA) of the primitive

and ω is the Ascender-and-descender Attribute (ADA). Consequently, each word object is

expressed as a sequence P of spi ' .

><=><=),(),)(,(221121 nnnpppP ωσωσωσ LL

3.2 Ascender-and-descender Attribute

We assign five characters to the values of ADA, i.e. { }'Q','D','A','a','x'=Ω∈ω . Each of

these five characters reflects a typical feature of the primitive and is defined as follows:

• ‘x’: the primitive is between the x-line and the baseline;

Chapter 3 Word Image Coding

 25

• ‘a’: the primitive is between the top-boundary and the x-line;

• ‘A’: the primitive is between the top-boundary and the baseline;

• ‘D’: the primitive is between the x-line and the bottom-boundary;

• ‘Q’: the primitive is between the top-boundary and the bottom-boundary.

The definition of x-line, baseline, top and bottom-boundary can be found in Figure 3-1. Each

word object extracted from the document image already contains the information of x-line

and baseline, which is a by-product of the text line extraction in the preprocessing stage.

Figure 3-1 Primitive string extraction
 (a) straight stroke line features (b) remaining part of word image

(c) traversal TBN B= 2 (d) traversal TBN B = 4 (e) traversal TBN B = 6

3.3 Line-or-traversal Attribute

The generation of LTA is performed in two steps. First, the straight stroke line features are

Chapter 3 Word Image Coding

 26

extracted from the word image, as shown in Figure 3-1(a). Note that only the vertical stroke

lines and diagonal stroke lines are extracted at this stage. Then, the traversal features of the

remaining word image are analyzed. Finally, the features obtained from the previous two

steps are combined to generate the LTAs of the corresponding primitives. In other word, the

LTA of a primitive is represented by either a straight stroke line feature or a traversal feature

otherwise.

3.3.1 Straight Stroke Line Feature

A run-length based method is utilized to extract straight stroke lines from word images. We

use ()θ,aR to represent a directional run, which is defined by a set of concatenating pixels

that contain pixel a, along the specified direction θ. ()θ,aR is the run length of ()θ,aR ,

which is the total number of black pixels in the run.

The straight stroke line detection algorithm is summarized as follows:

• Along the middle line of the x-line and the baseline, detect the boundary pair

[]rl AA , of each stroke line segment, where lA and rA are the left and right

boundary points of the line segment respectively;

• Locate the midpoint A BmB of each line segment rl AA ;

• Calculate ()θ,mAR for a range of θ value, from which we select maxθ as the

sAm ' run direction;

• If ()maxmAR θ, is near to or larger than the x-height (distance between the x-line

and the baseline), the set of pixels between the boundary points lA and rA along

Chapter 3 Word Image Coding

 27

the direction maxθ are extracted as a straight stroke line.

As is shown in Figure 3-1, the straight stroke lines in the word “unhealthy” are extracted and

displayed in Figure 3-1(a), while the remaining image pixels are shown in Figure 3-1(b).

According to the direction of a straight stroke line, it is assigned to one of three categories:

vertical stroke line, left-down diagonal stroke line and right-down diagonal stroke line.

Associated with these three types of straight stoke lines, three basic primitives are generated.

The ADAs of these primitives can be evaluated based on their top-end and bottom-end

positions of the stoke lines. For example, the left-down diagonal stroke line in the character

‘z’ is located between the x-line and the baseline. Therefore, the primitive associated with this

left-down diagonal stroke has a value of ‘x’ for its ADA. Similarly, the right-down diagonal

stroke line in the character ‘V’ is located between the top-boundary and the baseline. Hence,

the corresponding primitive’s ADA will have the value ‘A’ accordingly.

On the other hand, the LTAs of these three types of primitives are evaluated as follows:

• ‘l’: vertical stroke line, such as those in characters ‘l’, ‘d’, ‘p’, ‘q’, ‘D’, ‘P’, etc. For

the primitive whose ADA is ‘x’ or ‘D’, we will further check whether there is a dot on

the top of the vertical stroke line. If there is, the LTA of the primitive is re-assigned

with the value ‘i’ or ‘j’ respectively.

• ‘v’: right-down diagonal stroke line, such as those in the characters ‘v’, ‘w’, ‘V’, ‘W’,

etc.

• ‘w’: left-down diagonal stroke line, such as those in the characters ‘v’, ‘w’, ‘z’, etc.

For the primitive whose ADA is ‘x’ or ‘A’. We will further check whether there are

two horizontal stroke lines connected with the stroke line at the top and bottom

respectively. If there are, the LTA of this primitive is re-assigned with the value ‘z’.

Chapter 3 Word Image Coding

 28

Additionally, it is easy to detect primitives containing two or more straight stroke lines as

follows:

• ‘x’: one left-down diagonal stroke line crosses with one right-down diagonal stroke

line at the middle line between the x-line and the baseline.

• ‘y’: one left-down diagonal stroke line meets one right-down diagonal stroke line

with additional pixels between the baseline and the bottom-boundary under the

right-down diagonal stoke.

• ‘Y’: one left-down diagonal stroke line, one right-down diagonal stroke line both with

top-end above the x-line and one vertical stroke line meet at one point between the

x-line and the baseline.

• ‘k’: one left-down diagonal stroke line, one right-down diagonal stroke line and one

vertical stroke line with top-end above the x-line meet at one point between the x-line

and the baseline.

3.3.2 Traversal Feature

After the primitives based on the straight stroke line features are extracted as described above,

the primitives of the remaining part of the word image is generated based on the traversal

features.

To extract the traversal features, we scan the remaining word image column by column. The

traversal number NT is recorded by counting the number of transitions from black pixel to

white pixel, or vice versa, along each column. According to the value of NT , different feature

codes are then assigned based on the following definition:

• 0=NT : there is no image pixel in the column. We assign it with the feature code ‘&’.

It corresponds to the inter-character space. We treat each inter-character space as a

Chapter 3 Word Image Coding

 29

special primitive. In addition, the overlap of adjacent characters caused by kerning is

easily detected by analyzing the relative positions of the adjacent connected

components. Based on this, we can insert a space primitive wherever is applicable.

• 2=NT : two parameters are used to assign its feature code. One is the ratio of its

black pixel number to the x-height, referred to as κ. The other is the relative position

of the strokes with respect to the x-line and the baseline, bm DD=ξ , where mD

is the distance from the x-line to the topmost stroke pixel in the column and bD is

the distance from the bottommost stroke pixel to the baseline. The feature codes are

assigned as follows:

 ‘n’: κ < 0.2 and 0 ≤ ξ < 0.3

 ‘u’: κ < 0.2 and ξ > 3

 ‘c’: κ > 0.5 and 0.5 < ξ < 1.5

 ‘T’: κ < 0.2 and ξ < -0.2

• 4=NT : assign it with the feature code ‘o’ or ‘O’ based on the location of the

topmost stroke pixel. If the topmost stoke pixel is near the x-line, ‘o’ is assigned.

Otherwise, if the topmost stroke pixel is near the top-boundary, ‘O’ is assigned.

• 6=NT : assign it with the feature code ‘e’ or ‘E’ based on the location of the topmost

stroke pixel.

• 8=NT : assign it with the feature code ‘g’ as there are four short stoke lines along the

column.

As a result, a series of primitives are generated and expressed as a sequence of ()ωσ , tuples

representing either straight stroke line features or traversal features as shown in Figure 3-1(a)

and Figure 3-1(c)(d)(e) respectively.

Chapter 3 Word Image Coding

 30

One thing to note is that a few columns may result in no corresponding feature code assigned

because they cannot meet any of the requirements for the aforementioned eligible feature

codes. Some of these are insignificant features or most likely caused by noise. Therefore,

these columns are eliminated automatically at this stage.

3.4 Post-processing

3.4.1 Merging Consecutive Identical Primitives

As we mentioned in section 3.1, each primitive is described by two attributes σ and ω, where

σ is assigned with different feature code values according to the type of features detected and

ω is also associated with five values to describe the ascender or descender property of the

primitive. Based on our observation, the significative combinations of σ and ω are limited.

For example, n''=σ can only correspond to x''=ω . Therefore, for conciseness, we can

replace each ()ωσ , pair in the primitive sequence generated above by one single character

as listed in Table 3-1. Consequently, the sequence of primitives can be expressed as a string of

character code representation.

Meanwhile, consecutive identical primitives may appear in the sequence such as the

continuous vertical stroke lines in the word “unhealthy”. These are redundant features that can

be combined and represented by one single character code. This reduces the length of the

feature code representation without loss of feature information. At this stage, the resultant

primitive string of the word “unhealthy” in Figure 3-1 is obtained as follows:

<nmuomuomonomu&Odomn&ceo&oemuOd&ndoOdonomu&y>

Chapter 3 Word Image Coding

3.4.2 Refinement for Font Independence

It is desirable that the retrieval system is able to retrieve document images with different fonts

and styles. To achieve this, the primitive string we obtained at the earlier stage should be

independent of typefaces. Among various fonts, a significant factor that affects the LRPS

extraction is the property of serif. This is particularly true for the extraction of traversal

features. Therefore, it is a basic necessity to avoid the effect of serif in the LRPS

representation.

Figure 3-2 Refinement for LRPS representation to avoid the effect of serif

Based on our observation, a primitive produced by serif can be eliminated by analyzing its

preceding and succeeding primitives. For instance, a primitive assigned with the character

code ‘u’ in a primitive sequence <mu&> is normally generated by a right-side serif in the

characters such as ‘a’, ‘h’, ‘m’, ‘n’, ‘u’, etc. Therefore, we can simply remove this primitive

 31

Chapter 3 Word Image Coding

 32

represented by ‘u’ from the primitive sequence <mu&>. Similarly, a primitive assigned with

the character code ‘o’ in a primitive sequence <nom> is normally generated by a serif in the

characters such as ‘h’, ‘m’, ‘n’, etc. Hence, we can directly eliminate the primitive

represented by ‘o’ from the primitive sequence <nom> as well. An illustration is shown in

Figure 3-2. More refinement rules are applied to eliminate the primitives caused by serif.

With this post-processing step, the primitive string of the word image in Figure 3-1 becomes:

<mumuomnm&dom&ceo&oemd&ndodnm&y>

Besides the ability of dealing with serif, our coding mechanism also features in its

independence of bold faces. This is because the earlier step of merging consecutive identical

primitives combines redundant features and many of these redundant features are actually

caused by bold faces.

Primitive Properties

()ωσ ,

Character Code
Representation

Primitive Properties

()ωσ ,

Character Code
Representation

(o, x) o (z, x) Z
(e, x) e (l, A) d
(l, x) m (l, D) q
(c, x) c (u, a) T
(n, x) n (c, a) P
(u, x) u (o, A) O
(v, x) v (e, A) E
(w, x) w (c, A) C
(g, D) g (v, A) V
(i, A) i (w, A) W
(i, Q) j (k, A) K
(k, x) k (x, A) X
(x, x) x (Y, A) Y
(y, D) y (z, A) Z
(e, Q) Q

Table 3-1 Primitive properties vs. Character code representation

Chapter 3 Word Image Coding

 33

3.5 Primitive String Token for Standard Characters

Based on the feature extraction mechanism described above, we can associate each of the 26

characters with a standard primitive string token (PST). For example, the primitive string

token of character ‘b’ is <doc> and the PST of ‘p’ is <qoc>. Table 3-2 lists the corresponding

PSTs for all the characters. Consequently, the standard primitive string of a word can be

generated by synthesizing the primitive string token of each character in the word and

inserting a special primitive <&> in between to indicate character gap.

Generally speaking, due to many noise factors such as connections between adjacent

characters, the resulting primitive string generated from a real word image is usually not as

perfect as that synthesized from the standard PST of the corresponding characters. As the

example in Figure 3-1 shows, due to noise effect, the primitive substring with respect to the

character ‘h’ is extracted as <dom> instead of <dnm> as in the standard representation.

Similarly, the connected characters ‘al’ and ‘th’ also result in the variations of the primitive

substring generated from the original document image. To solve this problem, an inexact

string matching algorithm is employed during the feature code matching step, which

compensates for the misgenerated feature code (to be illustrated in Chapter 5).

Character Primitive Sting Token Character Primitive String Token
a oem A WV
b doc B dEd
c co C CO
d cod D dOC
e ceo E dE
f ndT F dOT
g g G COEO
h dnm H dnd

Chapter 3 Word Image Coding

 34

i i I d
j j J ud
k k K K
l d L du
m mnmnm M dVWd
n mnm N dVd
o coc O COC
p qoc P dOP
q coq Q COQC
r mn R dOEO
s oeo S OEO
t ndo T TdT
u mum U dud
v vw V VW
w vwvw W VWVW
x x X X
y y Y Y
z z Z Z

Table 3-2 Primitive string tokens of characters

3.6 Verification

We use a dictionary containing 25,133 commonly used English words to evaluate the validity

of the proposed word image coding scheme. Each word is represented by its corresponding

word primitive token (WPT) generated by concatenating its characters’ primitive string tokens

described above. Character gaps are denoted by the special primitive <&> inserted between

two adjacent PSTs. For example, the WPT of the word “health” is generated as:

<dnm&ceo&oem&d&ndo&dnm>

The investigation found that each word in the dictionary has a unique coding representation

which is distinguishable from all the other words, although there is ambiguity at the character

level, e.g. the PSTs of the character ‘l’ and ‘I’ are the same. This proves that our coding

Chapter 3 Word Image Coding

 35

scheme produces no ambiguity in its representation for word images, but at the cost of more

computational burden comparing to Spitz’s character coding scheme.

Chapter 4 Italic Font Recognition

 36

Chapter 4

Italic Font Recognition

As we noticed in many scanned document images such as those conference papers, it often

appears that the “Abstract” section is written in italic font as required. Moreover, there are

also some italic words that are scattered in the document for emphasizing purpose or as

scientific names. These are usually keywords that carry significant information content in

view of retrieving documents based on query words. In this chapter, we compare several

traditional italic font recognition methods and propose a wavelet transformation based

technique that features in detecting italic font at the word level and with less sensitivity to

noise and typeface variations.

4.1 Background of Font Recognition

Font recognition is a fundamental issue in document analysis and recognition, and is also a

difficult and time-consuming task. Nowadays many commercial OCR systems have claimed

to achieve high recognition accuracy in identifying English and related scripts. Some of the

products can accommodate font variations to a reasonable extent. Many are observed to have

a deteriorated performance with style variations. Baird and Nagy demonstrated that a

significant improvement in recognition accuracy can be achieved by utilizing font information,

where a 100-font classifier was automatically adapted to a specific font [BN94].

Generally speaking, there are two complementary approaches that are used to address the font

recognition problem: the a priori approach, in which the characters of the analyzed text are

Chapter 4 Italic Font Recognition

 37

not yet known and the a posteriori approach, where the content of the given text is used to

identify the font. Zramdini and Ingold proposed a novel a priori font recognition approach

that identifies the typeface, weight, slope and size of a text image block by extracting global

typographical features and feeding them into a multivariate Bayesian Classifier [ZI98]. In this

approach, a set of known fonts are given as a font model base for classification purpose.

Khoubyari and Hull also introduced a method that identifies the predominant font of a

document image by matching clusters of word images to a pre-generated database of function

words derived from fonts and document images [KH96]. Cooperman used a set of local

detectors to estimate font attributes such as serifness and boldness in an OCR system [C97].

Zhu et al. described a global texture-analysis-based font recognition method on normalized

text blocks. This content-independent approach avoids connected component analysis for

detailed local feature extractions [ZTW01].

Having said that many OCR systems’ performance is subject to font variations, it is observed

that the performance degradation is more drastic with italic style, which increases with the

increase of the slant angle of the italicized characters. One possibility to improve the

performance is to detect the italicized words in the document, compute the slant angle and

rectify them by a shearing transform corresponding to the slant angle and feed them to the

OCR system. Shi and Pavlidis proposed a method of discriminating between italic and

non-italic font by analyzing the histogram of stroke slopes for a whole block of text [SP97].

Sun and Si used histogram analysis on gradient oriented grey-level images to detect the slant

angle of the characters and further rectify the image using a shear operation [SS97].

Chapter 4 Italic Font Recognition

 38

Detection of italic words is not only useful in improving OCR performance, but also helpful

in automatically retrieving information from the document. This is because many important

terms are often printed in italic style and thus the information content is higher in italicized

words than in normal ones. Chaudhuri and Garain conducted a statistical study on the relative

abundance and importance of italic, bold and all-capital words in 6,000 document pages

ranging from technical journals, proceedings of technical conferences to technical books, etc

[CG98]. The observations are summarized as follows:

• Almost all paper titles, section or chapter titles are written in Bold style;

• In 49% cases, the paper abstract section is printed in Italic style;

• In 30% cases, the figure or table captions are printed in Bold style and in 19% cases,

in Italic style;

• Out of 970 reference sections in those documents, 57% use Italic style for the referred

journals, proceedings or publishers; 26% use Italic style for the title of the referred

papers or books;

• In 30% cases, the referred author’s name is written in Bold cases, and in 5% cases, in

Italic style;

4.2 Wavelet Transformation Based Approach

In view of the available techniques for italic font recognition, some are based on image

analysis and attribute evaluation of large text blocks. These techniques are not feasible in

identifying the font and style of a few words scattered in the document. On the other hand,

some methods are based on feature analysis of individual characters, which cause problems

when characters are inter-connected in certain distorted document images. Moreover, shape

Chapter 4 Italic Font Recognition

 39

properties and gradient information of the original slant image are usually subject to font

variations such as typefaces, size, serifness, boldness, etc. Therefore, with reference to our

word image coding technique that directly extracts individual word features without character

segmentation, it is necessary to find an efficient and accurate approach to detect italic words

scattered in the document images with less sensitivity to noise and font variations.

4.2.1 Wavelet Decomposition of Word Images

To identify italic words scattered in the normal text, stroke pattern analysis can be applied to

each word image to compare with a set of predefined criteria for differentiation. However,

stroke patterns obtained from original word images are largely dependent on font styles such

as typefaces, size, serifness, boldness, etc. Therefore, to reduce the sensitivity of stroke

pattern analysis with respect to font variations as well as noise and distortions, wavelet

decomposition is carried out prior to the analysis step to extract dominant word features in

horizontal, vertical and diagonal directions for analysis use.

As we mentioned in chapter 2, before applying the italic font recognition technique, each

word object has been extracted from the document image. Now for each extracted word

image object, a 2-D discrete wavelet transformation (2-D DWT) is performed to extract

dominant stroke patterns. According to Heijmans [HG98], wavelet decomposition is based on

the pyramid transform.

4.2.1.1 Pyramid Transform

Consider a family Vj of signal spaces. Here, j may range over a finite or an infinite index set.

Chapter 4 Italic Font Recognition

 40

Assume that we have two families of operators, a family ↑
jϕ of analysis operators mapping

VBj B into VBj+1B, and a family ↓
jϕ of synthesis operators mapping VBj+1B back into VBjB. Here, the

upward arrow indicates that the corresponding operator that maps a signal to the higher level,

whereas the downward arrow indicates that the operator maps a signal to a lower level. Refer

to Figure 4-1 for an illustration. The analysis operator ↑
jϕ is chosen to reduce information

from a signal jj Vx ∈ , yielding a scaled signal)(1 jjj xx ↑
+ = ϕ in VBj+1B. The synthesis

operator ↓
jϕ maps the scaled signal 1+jx back to)(ˆ 1+

↓= jjj xx ϕ in VBjB, in such a way that

)(jjj x↑↓ϕϕ is “close” to jx .

Figure 4-1 The pyramid decomposition scheme

4.2.1.2 Coupled and uncoupled Wavelet Decomposition

The coupled wavelet decomposition extends the pyramid transform scheme. Assume that

there exist sets VBj B and W BjB. We refer to VBjB as the signal space at level j and to WBj B as the detail

space at level j. Signal analysis consists of decomposing a signal in the direction of increasing

j by means of signal analysis operators 1: +
↑ → jjj VVϕ and detail analysis operators

1: +
↑ → jjj WVω . On the other hand, signal synthesis proceeds in the direction of decreasing j,

by means of synthesis operators jjjj VWV →× ++
↓

11:ψ . When there exists a binary

↓
jϕ ↑

jϕ

VBj+1B

VBj

VB1

Analysis Synthesis

VB0

Chapter 4 Italic Font Recognition

 41

operation ⊕ on VBjB, which we call addition and operators jjj VV →+
↓

1:ϕ and

jjj VW →+
↓

1:ω such that 11 ,),()(),(++
↓↓↓ ∈∈⊕= jjjjj WyVxyxyx ωϕψ .

We refer to ↓↓
jj ωϕ , as the signal synthesis and the detail synthesis operators respectively.

This is illustrated in Figure 4-2. The analysis operators ↑
jϕ , ↑

jω and the synthesis operators

↓
jϕ , ↓

jω satisfy conditions similar to the biorthogonality conditions known from the theory

of wavelet. In other word, ↑
jϕ , ↓

jϕ are referred to as lowpass operators and ↑
jω , ↓

jω are

referred to as highpass operators [HG00].

Figure 4-2 One stage of the uncoupled wavelet decomposition scheme

The simplest non-trivial linear uncoupled wavelet decomposition is the Haar wavelet. As in

the previous definition, choose VB0B = VB1 B = W B1B =)(2 Ζl . The analysis operators are defined as:

()

())12()2(
2

1))((

)12()2(
2

1))((

+−=

++=

↑

↑

nxnxnx

nxnxnx

ω

ϕ

The 1-D Haar wavelet decomposition scheme can be easily extended to two and higher

dimensions by using a separable filter bank, e.g. by sequentially applying the 1-D

decomposition on the columns and rows of a 2-D image [M98]. We can also define a

Synthesis

Analysis Analysis

VBj+1B

VBj

↑
jϕ ↑

jω

W Bj+1B

⊕

↓
jϕ ↓

jω

Chapter 4 Italic Font Recognition

 42

non-separable 2-D version of the Haar wavelet. Let n, 2n denote the points (m, n), (2m, 2n),

and +
++

+ nnn 2,2,2 denote the points (2m, 2n+1), (2m+1, 2n) and (2m+1, 2n+1)

respectively, then we have:

()

()

()

())()2()2()2()2(
2
1))((

)()2()2()2()2(
2
1))((

)()2()2()2()2(
2
1))((

)2()2()2()2(
2
1))((

1

1

1

1

dcDnxnxnxnxnx

vcDnxnxnxnxnx

hcDnxnxnxnxnx

cAnxnxnxnxnx

jd

jv

jh

j

+
+
++

+↑

+
+
++

+↑

+
+
+

+
+

↑

+
+
++

+↑

⇒+−−=

⇒−+−=

⇒−+−=

⇒+++=

ω

ω

ω

ϕ

Various wavelet filters such as Haar, Daubechies and Symlets can be employed in a 2-D

Discrete Wavelet Transformation (2-D DWT) step [M89]. Essentially, the transformation step

decomposes the original word image into an approximation sub-image and three detailed

sub-images in vertical, horizontal and diagonal directions. Experiments show that one-level

decomposition using symlet of order two (sym2) works particularly well in extracting vertical,

horizontal and diagonal stroke patterns of word images. Sym2 employs a low-pass filter with

coefficients [-0.1294, 0.2241, 0.8365, 0.4830] and a high-pass filter with coefficients [-0.4830,

0.8365, -0.2241, -0.1294] as illustrated in Figure 4-3.

Figure 4-3 Two dimensional Discrete Wavelet Decomposition

Chapter 4 Italic Font Recognition

 43

Figure 4-4 shows an example of the one-level wavelet decomposed sub-images in horizontal,

vertical and diagonal directions. The sample word image “European” is of size 37×154 pixels

and is extracted from scanned paper document with noise and distortions. It is obvious that

vertical strokes come out especially in the vertical channel, horizontal strokes in the

horizontal channel, and diagonal strokes in the diagonal channel. These are strong and

distinguishable features of a typical word image, which are less sensitive to distortions and

font style variations such as size, serifness, boldness, etc.

Figure 4-4 An example of one-level wavelet decomposed sub-images

4.2.2 Statistical Analysis of Stroke Patterns

The sub-images generated from the wavelet decomposition contain ample information in

terms of vertical, horizontal and diagonal stroke patterns of the word image. This can be

Chapter 4 Italic Font Recognition

 44

effectively utilized to distinguish italic and non-italic fonts. In particular, statistical analysis of

both vertical and diagonal stroke patterns is performed on the corresponding sub-images

generated above and is combined to produce a discriminative recognition measure.

4.2.2.1 Vertical Stroke Analysis

It is observed through our experiments among 22,384 frequently used English words that in

over 99% of normal word images and over 14% of italic word images, at least two vertical

straight line segments (VSLS) would run through the mid zone, as indicated by the arrows in

Figure 4-5(a) and (b). Some even go up to the ascender zone or down to the descender zone.

These are distinctive features between italic and non-italic styles. Therefore, by analyzing the

horizontal histogram of the combined horizontal and vertical sub-images, the mid zone is

detected and VSLSs are identified. Suppose a word of width W (in pixels) has N VSLS with

height ()Nhhh ,,, 21 L respectively, their normalized total height H is obtained as follows:

∑
=

=
N

i
ih

W
H

1

1

The total height is used because it carries higher weights for longer VSLSs. Experiments

show that over 99% of the normal word images satisfy the criterion that N ≥ NB0B and H ≥ HB0 B,

where NB0 B and HB0B are predefined thresholds with experimental values 2 and 1.6 respectively.

However, some italic words such as those containing characters ‘w’, ‘v’ or ‘y’ might also

satisfy this criterion. To distinguish these words, diagonal stroke analysis is then taken into

consideration.

Chapter 4 Italic Font Recognition

 45

Figure 4-5 (a)(b) VSLS running through the mid zone for normal and italic styles respectively
(c)(d) CDS for normal and italic styles respectively (length ≥ 3)

4.2.2.2 Diagonal Stroke Analysis

It is observed that italic font produces a great number of long continuous diagonal strokes

(CDS) in the diagonal sub-image comparing to the normal font, as illustrated in Figure 4-5(c)

and (d). The normal font of “watermelon” produces 4 CDSs with length greater than two

while the italic font produces 14 such CDSs. Suppose M is the number of CDSs with length

()Mlll ,,, 21 L respectively, their normalized total length L is obtained as follows:

∑
=

=
M

i
ilW

L
1

1

Experiments show that over 98% of italic word images satisfy the criterion that M ≥ µ and

L≥L B0B, while only about 2% of normal word images satisfy this criterion. Here, µ and L B0B are

predefined threshold with value 3 and 0.33 respectively. Therefore, by combining the vertical

Chapter 4 Italic Font Recognition

stroke analysis and the diagonal stroke analysis, a set of statistics is obtained to effectively

differentiate between italic and non-italic fonts.

4.2.3 Experimental Results

Experiments have been carried out to test the proposed method with 22,384 frequently used

word images in both italic and non-italic styles for four different fonts (Times New Roman,

Arial, Courier and Comic Sans MS). For simplicity, the word images are computer-generated

256-color bitmap images in various sizes. An example of wavelet decomposed sub-images

generated for the word image “Client” in the four different fonts of size 12pt are shown in

Figure 4-6.

Figure 4-6 Examples of wavelet decomposed vertical sub-image in normal and italic styles
(a)(b) Times New Roman (c)(d) Arial (e)(f) Courier (g)(h) Comic Sans MS

Comparisons between the traditional stroke analysis method and our wavelet transformation

based approach are carried out with experiments conducted on documents with mixed normal

 46

Chapter 4 Italic Font Recognition

and italic words in four commonly used fonts. The average recognition accuracies are shown

in Figure 4-7. Experiments are also conducted on 5,320 normal word images and 489 italic

images extracted from scanned paper documents. The accuracies achieved are 92.20% for

normal style and 97.96% for italic style, as shown in Figure 4-7.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Tim
es

_N

Aria
l_N

Couri
er_

N

San
s_

N

Tim
es

_I

Aria
l_I

_B
old

Aria
l_I

San
s_

I_B
old

Im
age

_N

Im
age

_I

Tradition Ours

Figure 4-7 Recognition accuracy comparisons
between traditional stroke analysis method and our method

 47

Chapter 5 Feature Code Matching

 48

Chapter 5

Feature Code Matching

For a word image in a printed text, two characters could be separated apart by a few white

columns caused by inter-character spaces in general. On the other hand, it is also common

that one character overlaps with another by a few columns caused by kerning. Things may

become even worse, when two or more adjacent characters touch each other due to condensed

spacing. This poses a challenge to separate such touching characters. Nevertheless, we utilize

an inexact feature string matching algorithm to resolve this problem.

5.1 Coarse Matching

As the name indicates, coarse matching is essentially a refinement step, which serves the

purpose of restricting the number of word objects to be compared in the feature code files to a

smaller range. This effectively speeds up the subsequent inexact string matching algorithm.

The main criterion used in coarse matching is the word’s x-feature and the number of

primitive codes in the feature code string. The x-feature is defined as follows:

• 0: there is neither ascender nor descender in the word;

• 1: there is ascender but no descender in the word;

• 2: there is no ascender but descender in the word;

• 3: there are both ascender and descender in the word.

In consideration of the case where a word object could contain portion of the query word and

should also be selected as a match, e.g. the word “unhealthy” should be matched if the query

Chapter 5 Feature Code Matching

 49

word is “health”, the following criteria are used for coarse matching:

• If the x-feature of the query word is 0, all the word objects in the document image are

possibly matched;

• If the x-feature of the query word is 1, only the words whose x-features are either 1 or

3 are possibly matched;

• If the x-feature of the query word is 2, only the words whose x-features are either 2 or

3 are possibly matched;

• If the x-feature of the query word is 3, only the words whose x-features are 3 are

possibly matched.

For example, if the query word is “health”, any word objects without ascenders (i.e. x-feature

is 0 or 2) will be ruled out for the next step.

Next, the number of the primitive codes in the feature code string is used to eliminate more

words. Suppose the number of the query word’s primitive codes is NBQB, and the number of a

word object’s primitive codes is NBWB. The ratio of NBWB to NBQB is considered. If NBWB/NBQB < δ, where

δ is a predefined threshold (e.g. 0.8 in our experiments), the word object will be eliminated

for further matching since the word object is too short to match with the query word.

5.2 Inexact String Matching

Following the coarse matching step, an inexact string matching algorithm is applied to

measure the similarity between two primitive code strings. The string matching problem can

be stated as finding a particular sequence/sub-sequence in the primitive code string of a word

object. The procedure of matching word images hence becomes a measurement of the

similarity between the string >=< naaaA ,,, 21 L representing the features of the query

Chapter 5 Feature Code Matching

 50

word and the string >=< mbbbB ,,, 21 L representing the features of a word object

extracted from the document image. Matching partial words becomes evaluating the

similarity between the feature string A and a sub-sequence of the feature string B. For

example, the problem of matching the word “health” with the word “unhealthy” is to find

whether there exists a sub-sequence closest to A=<dnm&ceo&oem&d&ndo&dnm> in the

primitive code sequence of the word “unhealthy”.

In a word image, it is common that two or more adjacent characters are connected to each

other. It is possibly caused by low scanning resolution or poor printing quality. This results in

the deletion of the feature <&> in the corresponding feature code string comparing to the

primitive string generated from the standard PSTs of the query word. Moreover, noise effect

also produces substitution or insertion of features in the primitive string of the word image.

The deletion, insertion and substitution are very similar to the course of evolutionary

mutations of DNA sequences in molecular biology [AG99].

Lopresti and Zhou applied the inexact string matching strategy to information retrieval [LZ96]

and duplicate document detection for dealing with imprecise text data generated from OCR

[L01]. Drawing inspiration from the alignment problem of two DNA sequences and the

research done by Lopresti and Zhou, we apply the technique of inexact string matching to

evaluate the similarity between two primitive code strings, one from the input query word and

the other from the word image extracted from the document image.

Informally, an alignment of two strings A and B is obtained by first inserting chosen spaces,

either into or at the ends of A and B so the length of the strings will match, and then placing

Chapter 5 Feature Code Matching

 51

the two resulting strings one above the other so that every character or space in one of the

strings is matched to a unique character or a unique space in the other string [G97].

Specifically speaking, two differing features that mismatch correspond to a substitution; a

space in the first string corresponds to an insertion of the extra feature into the second string;

and a space in the second string corresponds to a deletion of the extra feature from the first

string. A dash ‘-’ is used to represent a space primitive inserted into the corresponding

positions of the strings in the case of deletion.

Now the problem we are going to solve is: Given two feature code strings A and B of length n

and m respectively, establish the optimal alignment according to the weight δ (a BiB

, bBjB

) assigned

to the alignment of character a BiB and b BjB (including spaces). Here, we define V(i,j) to be the

optimal score of aligning the prefixes [a B1B, a B2B, …, aBi B] and [b B1B, b B2B, …, b BjB]. Then the optical score

of aligning A and B is precisely the value V(n,m).

The optimal alignment score of two strings A and B can be computed by a dynamic

programming with recurrences. The base conditions are:

⎩
⎨
⎧

−=
−=

∀
)b,δ(j)V(0,

),δ(aV(i,0)
:ji,

j

i

δ (a Bi B

, -) is defined to be the matching value between the ith element of A and the space

character, since string B is empty. Similarly,)b,(k−δ is defined to be the matching value

between the jth element of B and the space character.

The general recurrence relation is:

Chapter 5 Feature Code Matching

 52

⎪
⎪

⎩

⎪
⎪
⎨

⎧

−+−
−+−

+−−
=

)b,δ(1)jV(i,
)δ(aj)1,V(i

)b,δ(a1)j1,V(i
0

maxj)V(i,

j

i

ji
 (1)

The zero in the above recurrence implements the operation of restarting the recurrence, which

ensures that the unmatched prefixes are discarded from the computation. The following three

operations can be interpreted as follows:

• Aligning ABi B with B BjB: the score in this case is the score of the operation δ (ai, bj) plus

the score of aligning i-1 elements of A with j-1 elements of B.

• Aligning ABi B with a space character in string B: the score in this case is the score of the

operation δ (ai, -) plus the score of aligning the previous i-1 elements of A with j

elements of B (i.e. a space character is inserted into string B).

• Aligning BBjB with a space character in string A: similar to the previous case, a space

character is inserted to string A.

Following the above recurrence relation, a table can be constructed to evaluate the optimal

matching score of string A and B. Each table entry records the optimal matching score for the

corresponding prefixes. The table is constructed starting from the upper-left corner and

increasing in a row-wise manner. The following pseudo code describes the algorithm:

for j=1 to m do

begin

 for i=1 to n do

 begin

Chapter 5 Feature Code Matching

 53

 Calculate V(i, j) using V(i-1, j-1), V(i-1, j), V(i, j-1)

 end

end

Finally, the maximum scoring is normalized as:

n)(n,Vj)V(i,maxscore *
Aji,∀

= (2)

where)n,n(V *
A is the matching score between the string A and itself. This can be obtained

by generating a table with two identical feature code strings as row and column attributes. The

maximum operation in Equation (2) and the restarting recurrence operation in Equation (1)

ensure the partial matching.

If the score is greater than a predefined threshold λ, then we recognize that the word image

(or its portion) matches the user-specified query word.

On the other hand, the similarity of two entire words, i.e. without portion matching, is

calculated as:

()),(),,(min),(**
2 mmVnnVmnVS BA=

The problem can be evaluated systematically using a tabular computation. In particular, a

bottom-up approach is used to compute V(i, j) with i and j starting from the smallest values up

to n and m respectively. This computation ends up with a table of size (n+1) × (m+1). The

table holds the values of V(i, j) at different values of i and j (as shown in Table 5-1). The

values in row zero and column zero are filled in directly from the base conditions of V(i, j).

Chapter 5 Feature Code Matching

 54

Then, the remaining n × m cells are filled in one row at a time in the order of increasing i. For

each row i, the cells are filled in the order of increasing j. Table 5-1 shows the table computed

for the primitive string of the word image “unhealthy” extracted from the document image

and the primitive string of the query word “health”. It is observed that the maximum score

obtained from the table corresponds to the matching of character sequence “health” in the

word “unhealthy”. This shows that the partial matching property actually simulates the

function of word stemming which is normally performed in the text retrieval approaches. It is

also feasible to reinforce the functionality of word stemming by translating the stemming

rules into their corresponding LPRS representations for the refinement of the LPRS

representation during the feature code generation step. Computing the entire table using

dynamic programming for two strings of length n and m can be done in O(nm) time, since

only three arithmetic operations and comparisons are needed for each cell.

The match may be imprecise in the sense that certain primitives are missing or miscoded. As

we mentioned earlier, some adjacent characters in a word image may be connected to each

other due to various reasons. This results in less number of inter-character spaces being

detected and thus less number of spacing primitives <&> being translated in the primitive

string. Looking again at table 5-1, we find the best matching sequence by backtracking from

the maximum score obtained. Our experiments show that the maximum score obtained

decreases if there are missing spacing primitives in the primitive string of the word image. To

remedy this problem, we modify the scoring function to take the missing spaces into

consideration as follows:

Chapter 5 Feature Code Matching

 55

),()(),(max *

,
nnVNjiVS Agjim ⎟

⎠
⎞⎜

⎝
⎛ +=

∀
τ

where NBg B is the number of missing spacing primitives included in the backtracking sequence.

In our experiments, we have gg NN ×= 2)(τ .

 un h e al th y

m u m u o m n m & d o m & c e o & o e m d & n d o d n m & y

 0

d 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 2 1 0 2 1 2 1 0 0 0

n 0 0 0 0 0 0 0 2 1 0 1 2 1 0 0 0 0 0 0 0 0 1 1 3 2 2 1 4 3 2 1

d 0 2 1 2 1 0 2 1 4 3 2 1 4 3 2 1 0 0 0 0 2 1 0 2 3 2 2 3 6 5 4

& 0 1 1 1 1 0 1 1 3 6 5 4 3 6 5 4 3 2 1 0 1 1 3 1 2 2 1 2 5 8 7

c 0 0 1 1 1 1 0 1 1 5 4 5 4 5 8 7 6 5 4 3 2 1 2 3 2 2 1 1 4 7 6

e 0 0 0 1 1 1 1 0 1 4 3 4 5 4 7 10 9 8 7 6 5 4 3 2 1 2 1 1 3 6 5

o 0 0 0 0 1 3 2 1 0 3 2 5 4 4 6 9 12 11 10 9 8 7 6 5 4 3 2 1 2 5 4

& 0 0 0 0 0 2 2 1 0 2 2 4 4 6 5 8 11 14 13 12 11 10 9 8 7 6 5 4 3 4 4

o 0 0 0 0 0 2 2 2 1 1 1 4 4 5 6 7 10 13 16 15 14 13 12 11 10 9 8 7 6 5 4

e 0 0 0 0 0 1 2 2 2 1 0 3 4 4 5 8 9 12 15 18 17 16 15 14 13 12 11 10 9 8 7

m 0 2 1 2 1 0 3 2 4 3 2 2 5 4 4 7 8 11 14 17 20 19 18 17 16 15 14 13 12 11 10

& 0 1 1 1 1 0 2 2 3 6 5 4 4 7 6 6 7 10 15 16 19 19 21 20 19 18 17 16 15 14 13

d 0 0 0 1 0 0 1 1 2 5 8 7 6 6 5 5 6 9 14 15 18 21 20 19 22 21 20 19 18 17 16

& 0 0 0 0 0 0 0 0 1 4 7 7 6 8 7 6 5 8 13 14 17 20 23 22 21 20 20 19 18 20 19

n 0 0 0 0 0 0 0 2 1 3 6 7 7 7 8 7 6 7 12 13 16 19 22 25 24 23 22 22 21 20 19

d 0 0 0 0 0 0 0 1 2 2 5 6 7 6 7 6 5 6 11 12 15 18 21 24 27 26 25 24 23 22 21

o 0 0 0 0 0 2 1 0 1 1 4 7 6 6 6 7 8 7 10 11 14 17 20 23 26 29 28 27 26 25 24

& 0 0 0 0 0 1 1 0 0 3 3 6 6 8 7 6 7 7 9 10 13 16 19 22 25 28 28 27 26 28 27

d 0 0 0 0 0 0 1 0 0 2 5 5 6 7 6 5 6 6 8 9 12 15 18 21 24 27 30 29 28 27 26

n 0 0 0 0 0 0 0 3 2 1 4 4 5 6 7 6 5 5 7 8 11 14 17 20 23 26 29 32 31 30 29

 h e a l t h m 0 2 1 2 1 0 2 1 2 1 3 3 6 5 6 7 6 5 6 7 10 13 16 19 22 25 28 31 34 33 32

Table 5-1 Scoring table and missing space recovery

Chapter 6 Web-based Document Image Retrieval System

 56

Chapter 6

Web-based Document Image Retrieval System

In this chapter, we detail the implementation of the first application of our word image coding

technique, namely the web-based document image retrieval system given a set of query words

[ZLT03]. First, we give a structural overview of the retrieval system (shown in Figure 6-1)

and briefly describe how the various components are combined to make the system an

efficient web application for digital libraries. Then, we detail the implementation and the

AND/OR/NOT operations supported by the query statement.

6.1 System Overview

First of all, some image processing procedures are carried out on the original document

images embedded in the PDF files. These include connected component detection, word

object bounding, skew estimation and rectification (if applicable), etc. After each word image

object is extracted from the document image, italic font detection algorithm is applied to

check for italic property and rectification is done before generating the corresponding feature

codes using the word image coding technique illustrated in Chapter 3. For each PDF file, a

feature code file is generated, containing the URL of the corresponding PDF file and the

information of each word object such as its location, feature codes and so on. This feature

code file is stored on a server and is used during the feature code matching step discussed in

Chapter 5. All the above image processing operations are carried out off-line prior to the

online search process, which reduces the query response time during retrieval.

Chapter 6 Web-based Document Image Retrieval System

Convert Query Word
to Code Representation

Search Feature
Code Files

Merge results based on “AND”
“OR” or “NOT” Operation
that the user has specified

Search
 Index Table

Index
Table

(Oracle
Database)

Add to
 Index Table Y

Search Results

Client

 Database

Server
Imaged

Document
Archive

(PDF Files)

Word Object
Bounding

Offline Operations

Coding Files

Image
Preprocessing

Matched?

Matched?

 Y

 N

Internet

Display
Results

Input
Query Words &

Logical Operation
(AND,OR, NOT)

Figure 6-1 Overview of the web-based document image retrieval system

On the client side, users can input a set of query words and choose to perform AND/OR/NOT

operations among these query words. Once the request is submitted to the server, the server

will start processing each query word and merge the search result at the end of each iteration

based on the logical operations chosen. Finally, a temporary result table that stores all the

matching documents with their URLs and the normalized occurrence frequencies of the query

words will be returned to the user for display. Users can then link to the actual document and

check out the exact locations of the query words with the help of the plug-in search tool we

embedded in Acrobat as to be described in Chapter 7.

As for the processing of each query word, it is done as follows: First, the server tries to search

for the query word in an index table stored in the oracle database. This index table is used to

store information of the words that have previously been searched and succeeded. Hence, if

 57

Chapter 6 Web-based Document Image Retrieval System

 58

there are matches, information of the corresponding documents that contain this query word

will be retrieved directly from the index table and stored in a temporary table for subsequent

merging. This information includes the documents’ URLs as well as the normalized

occurrence frequency of the query word in each of these documents. Otherwise, if no matches

are found in the index table, we generate the feature codes of the query word by matching

each character with a standard feature code string as is defined based on the word image

coding mechanism. Then, an inexact string matching algorithm is employed to perform

feature codes matching in the underlying feature code files stored on the server.

With the purpose of constructing an incremental intelligent system to speed up the retrieval

process for subsequent searches, the results of earlier queries are stored in the index table for

efficient retrieval for future queries. If there are newly found matches, the index table will be

updated accordingly by adding the corresponding information related to the current query

word such as the URL of the matching document and the normalized occurrence frequency.

6.2 System Implementation

An experimental platform of the proposed web-based document image retrieval system has

been implemented.

• Its HTUweb interfaceUTH is developed in Active Server Pages (ASP) hosted on Microsoft

Internet Information Server (IIS) 5.1. It allows the user to input a set of query words

and perform AND/OR/NOT operations among them.

• Operations such as feature code matching described in Chapter 5 are implemented as

COM Component using C++ so that the matching functions can be used inside the

ASP program.

Chapter 6 Web-based Document Image Retrieval System

 59

• The index table containing information about queried words is stored on an Oracle

database server. A snapshot of a portion of the index table is given in Table 6-1. The

corresponding three fields are the keyword, the URL of the document containing this

keyword and the normalized occurrence frequency of this word in the current

document. The occurrence frequency is normalized so that for those rare words

(usually more meaningful and significant), the frequency value will be significant

enough to be represented using a limited number of digits. In particular, when “AND”

operation is performed, the frequency values will be multiplied together to obtain the

new frequency value. This may result in a very small percentage value. Therefore, it

is necessary to perform some normalization on the frequency value, for example,

scaling by 10 times.

• The temporary result table used for merging among the intermediate search result for

each query word is also stored in the Oracle server. It contains only two fields: the

URL of the document that contains the query words up to the current round and the

corresponding occurrence frequency.

• The off-line preprocessing operations described in Chapter 2 are implemented using

C++, which include connected component analysis, skew detection, skew

rectification, italic detection, italic rectification and feature code generation.

• Lastly, the original document images and their corresponding underlying feature code

files are stored on a server for the use of feature code matching.

• Totally 478 document image files provided by the digital library of our university are

included in the test. These document images were scanned from the published

conference papers, earlier students' theses and packed in PDF files. Each of them

contains about 100 to 200 pages.

A brief system workflow is as follows: On the client side, the user inputs a set of query words

through a web interface and meanwhile indicates AND/OR/NOT operations to be performed

among the query words. Next, on the server side, each query word will be processed by the

Chapter 6 Web-based Document Image Retrieval System

 60

server as follows: First, it will be looked up in an index table stored in the Oracle database. If

there are exact matches, the corresponding entries will be retrieved directly and stored in a

temporary table for subsequent merging; otherwise, the system will convert the query word

into feature code string and match it with the feature code strings in the feature code files

pre-generated. If there are newly found matches, the index table will be updated accordingly.

Moreover, a result-merging step will be carried out at the end of each query word processing

step based on the AND/OR/NOT operation the user has chosen. In the end, the user will

obtain a list of matching documents with their URLs, and the normalized occurrence

frequency of the query words appearing in it. He/She can then link to the actual document

images for further reading and verification.

Keyword Document URL Frequency (%)
… … …

approach Soccf-chim3-003.comp.nus.edu.sg/ASP/test/1.pdf 0.012
assembly Soccf-chim3-003.comp.nus.edu.sg/ASP/test/1.pdf 0.234
assembly Soccf-chim3-003.comp.nus.edu.sg/ASP/test/2.pdf 0.143
assembly Soccf-chim3-003.comp.nus.edu.sg/ASP/test/3pdf 0.003

… … …

Table 6-1 A snapshot of the index table storing information of queried words

6.3 AND/OR/NOT Operations

Basically our system supports all AND/OR/NOT operations over a set of query words. Users

are prompted through a web interface to input a set of query words separated by an empty

space and then choose to perform AND/OR operation on them, then followed by a set of

query words that should not be included in the resulting documents. The “NOT” operation is

performed after the AND/OR operations, which removes those documents that contain those

Chapter 6 Web-based Document Image Retrieval System

 61

words specified in the “NOT” query input box.

6.3.1 AND Operation

Generally speaking, if the “AND” operation is chosen, the system will do as follows: It starts

from the first word, processes it to obtain a result table and stores the table temporarily in the

Oracle database. It then joins this table with the resulting record set of each subsequent round

to obtain a new result table. In this manner, at the end of each round, the result table will store

information of the documents that contain all the query words up to now and the

multiplication of their corresponding normalized frequencies appearing in this document. In

the end, only those documents that contain all the specified query words will be left in the

result table for merging with the subsequent result of “NOT” operation. However, in the case

where no single document contains all the query words, the search will stop right at the round

when either the result table or the current record set is empty. Hence, no time-wasting search

will be performed for the subsequent words. The user will be notified that no image

documents are found that match the query input expression.

To be more specific, let's consider an example “AND” operation on “approach analysis

assembly technique”. Suppose there are five underlying documents in total that we will

perform our search on, namely 1.pdf, 2.pdf, 3.pdf, 4.pdf and 5.pdf. If “approach” is contained

in 1, 2 and 3; “analysis” is contained in 2, 3 and 4; “assembly” is contained in 5; “technique”

is contained in 3. Figure 6-2 shows the result table at the end of each round and also the

merging process.

Chapter 6 Web-based Document Image Retrieval System

0.12% 3.pdf

2.56% 2.pdf

3.45% 1.pdf

OccurrenceDocuments

1.22% 4.pdf

3.12% 3.pdf

4.67% 2.pdf

Occurrence Documents

Result table after round 1 (“approach”) Records found for “analysis”

Join on “Documents”

0.0037% 3.pdf

0.12% 2.pdf

Occurrence Documents

6.48% 5.pdf

Occurrence Document

Join on “Documents”

Result table after round 2
Records found for “assembly”

Empty Table (search stops)

Figure 6-2 AND operation

As we can see from the figure, both “approach” and “analysis” are contained in 2.pdf and

3.pdf. Therefore, after round 2, the result table will only have two entries. Moreover, the

corresponding normalized frequency is the multiplication of the normalized frequencies that

each of these two words appears in this document. Subsequently, we obtain the set of

documents that contain “assembly” and join them with the result table after round 2. Since the

join operation is performed on “Documents” field, there is no common file that contains all

the first three words. So after round 3, the result table is empty and the search will stop here

without further search on the last word “technique”. Finally, the user will be informed that no

documents are found for the current input query.

6.3.2 OR Operation

Similarly, for the “OR” operation, the procedures are the same except for the merging step. In

this case, we will do a union instead of join. That is, the new result table will contain all the

 62

Chapter 6 Web-based Document Image Retrieval System

documents that appear either in the previous result table or in the current record set. Moreover,

the normalized frequency will be the summation of the respective normalized frequencies if

two words both appear in the same document. Figure 6-3 shows the search process for the

same example above under the “OR” operation.

Result table after round 1 (“approach”) Records found for “analysis”

Union on “Documents”

Records found for “assembly”

Union on “Documents”

Union on “Documents” Result table after round 3

Records found for “technique”

1.22% 4.pdf

3.12% 3.pdf

4.67% 2.pdf

OccurrenceDocuments

1.22% 4.pdf

3.24% 3.pdf

7.23% 2.pdf

3.45% 1.pdf

OccurrenceDocuments

0.12% 3.pdf

2.56% 2.pdf

3.45% 1.pdf

Occurrence Documents

3.48% 5.pdf

Occurrence Documents

1.22% 4.pdf

3.48% 5.pdf

3.24% 3.pdf

7.23% 2.pdf

3.45% 1.pdf

OccurrenceDocuments

Result table after round 2

3.52% 3.pdf

OccurrenceDocuments

1.22% 4.pdf

3.48% 5.pdf

6.76% 3.pdf

7.23% 2.pdf

3.45% 1.pdf

Occurrence Documents

Result table after round 4

Figure 6-3 OR operation

 63

Chapter 6 Web-based Document Image Retrieval System

6.3.3 NOT Operation

The “NOT” operation is carried out after the AND/OR operations. In particular, after

AND/OR operations, we will get a list of matching documents stored in a temporary result

table. If the result table is not empty and there are some more query words in the “NOT” input

box, we will go on processing each of these words and remove those common documents that

contain these words not to be included. Finally, the result table will contain all those

documents that satisfy the user’s input query. We can then directly retrieve those

corresponding information and return them back to the user for display. Figure 6-4 shows an

example of the “NOT” operation.

Result table after round 1 (“approach”) Records found for “analysis”

Remove 2.pdf, 3.pdf from
result table

Records found for “assembly”

Nothing is removed from
result table

1.22%4.pdf

3.12% 3.pdf

4.67% 2.pdf

OccurrenceDocuments

0.12% 3.pdf

2.56% 2.pdf

3.45% 1.pdf

OccurrenceDocuments

3.48% 5.pdf

Occurrence Documents

Result table after round 2

3.45%1.pdf

OccurrenceDocuments

3.45%1.pdf

OccurrenceDocuments

Figure 6-4 NOT operation

6.4 System Evaluation

In order to develop a good retrieval system, it is important to be able to evaluate the overall

 64

Chapter 6 Web-based Document Image Retrieval System

 65

system performance and the performance of each system component separately. Basically,

there are two large components to consider for evaluating our document image retrieval

system based on word image coding technique, i.e. Preprocessing and Online Retrieval.

Preprocessing involves five steps: connected component analysis, word bounding box

identification, skew detection and rectification, italic font detection and rectification, feature

code generation. Due to its computationally intensive nature, this is done off-line prior to the

online search process. The underlying document images provided by our digital library are

first fed into an automatic system to undergo all these preprocessing procedures and produce

the feature code files. The feature code files are then stored on a server for the use of online

matching. Experiments are conducted to evaluate each of the embedded algorithms, such as

connected component analysis, word image coding and italic font detection as illustrated in

Chapter 2, 3 and 4 respectively. The connected component analysis encompasses the process

of merging overlapping components and removing noise and punctuation components. This

reduces the noise affection in the feature code generation step. The word image coding

technique is tested over a standard dictionary containing 25,133 frequently used English

words and shown to be a unique and efficient coding scheme with less sensitivity to font and

style variations. The italic font detection approach based on wavelet transformation is also

evaluated over datasets containing both computer generated word images and distorted

images extracted from scanned paper documents. The results show an advantage in

identifying scattered italic fonts in different typefaces and sizes at the word level.

The performance of Online Retrieval is evaluated based on three measured parameters:

Chapter 6 Web-based Document Image Retrieval System

 66

precision, recall and retrieval speed. Figure 6-5 shows the recall and precision obtained for

different sets of scanned document images with queries on different fonts and styles. There

are totally 478 documents ranging from scanned conference papers to students’ theses

provided by the digital library of NUS. In general, our retrieval system achieves a very good

performance in terms of recall and precision. Regarding the retrieval speed, our system

records the elapsed time from the point when the user specifies the query words until he/she

gets the retrieved results. Generally speaking, there are two scenarios to consider. One is

when all the input query words have been queried before. In this case, all the corresponding

information about the query words is already stored in the index table. The time to search for

these words is merely to retrieve the corresponding entries from the Oracle database and

hence trivial (usually less than 0.1 second for each word). An example of this scenario is

shown in Figure 6-6. The other scenario is when some of the query words are not stored in the

index table. In this case, we need to perform feature code matching in the underlying feature

code files for each of these words. If there are newly found matches, the index table will be

updated and the users will be informed. This is usually time-consuming because for each

word we have to search every underlying feature code file in order to identify the matches.

The experiment shows that the time needed for this scenario is relatively longer. An example

of this scenario is shown in Figure 6-7.

Chapter 6 Web-based Document Image Retrieval System

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

d1 d2 d3 d4 d5

recall
precision

Figure 6-5 Recall and precision chart of the word image coding based system
for different categories of documents

d1=clean documents, d2=noisy documents, d3=query on normal fonts,
d4= query on bold fonts, d5=query on italic fonts

Figure 6-6 Search result for pre-queried word

 67

Chapter 6 Web-based Document Image Retrieval System

Figure 6-7 Search result for first-time queried word

 68

Chapter 7 Search Engine for Imaged Documents

 69

Chapter 7

Search Engine for Imaged Documents

As we noticed, the normal word search tool provided by Adobe Acrobat Reader does not

work for imaged documents packed in PDF format. Currently, there are two popular ways for

word searching in imaged documents, namely OCR and Page Capture. Today’s OCR, as

represented by Caere OmniPage and Xerox TextBridge, does a far better job of reproducing

all the elements of a page including both text and graphics, than previous generations of OCR.

The accuracy of both packages far surpasses earlier offerings. However, the output of OCR is

primarily designed to be edited and modified because of the heritage of the many data entry

applications [M96]. On the other hand, Page Capture does a good job in retaining the

appearance of the document in terms of both font and layout information. A preferable feature

of Page Capture is that it paints a snippet of the image of questionable text into the output

PDF document. This makes the unrecognized text readable by the human reader who is using

the PDF file; while OCR simply represents the unrecognized text by tildes or noise in its

output. However, it is always time consuming to fully convert the imaged documents into its

ASCII format before performing the search. In view of this, our search engine is designed to

perform direct search on the imaged documents without any loss of information during

conversion [LZT+04]. Experiments show that it is approximately 2.6 times faster than the

Page Capture provided by Adobe Acrobat.

7.1 Implementation

Chapter 7 Search Engine for Imaged Documents

 70

The search engine works just like the normal word search tool provided by Adobe Acrobat

Reader. When a PDF file is opened in Acrobat Reader, a plug-in search tool is shown in the

toolbar that allows the user to input a query word and locates the matching words in the

document. An example snapshot of the search tool is shown in Figure 7-1. The plug-in is

developed using Acrobat SDK with the underlying preprocessing and matching steps

implemented in C++. In particular, our search tool works on PDF files opened by Acrobat

Reader either from a local PC or from the web through a link. This is therefore a typical

supplementary to our web-based document image retrieval system, which allows the user to

open the retrieved documents to actually locate the matching words in the documents using

our embedded search tool.

When an imaged document is presented to the search engine, it goes through the

preprocessing steps as illustrated in Chapter 2. All the connected components in the image are

detected and word objects are bounded using a merger operation. Extracted word bitmaps are

then represented using a feature code string based on the feature coding mechanism described

in Chapter 3. When a user inputs a query word through the search prompt, the search engine

generates its corresponding primitive code string by concatenating the characters’ PSTs

according to the character sequence of the word. This feature code string is then matched with

the code strings stored in the feature code files generated for each imaged document. The

matching is based on the string matching algorithm presented in Chapter 5. Figure 7-2 shows

an example of the search result of the word “Character” located in the PDF document image.

Chapter 7 Search Engine for Imaged Documents

Figure 7-1 Snapshot of the search engine embedded in Acrobat Reader 6.0

Figure 7-2 Search result for a query word located in an opened PDF document image

7.2 Performance Evaluation

To evaluate the performance of our search engine, two resources of imaged documents packed

 71

Chapter 7 Search Engine for Imaged Documents

 72

in PDF files are used. One is provided by the digital library of NUS. They include 113 PDF

files with 3,250 pages of imaged documents scanned from students’ theses and 15 PDF files

with 328 pages of imaged documents scanned from old books. Other documents are journal

and conference papers downloaded from the online databases such as IEEExplore and

ScienceDirect. We obtained totally 39 such documents with 294 pages. Therefore, in total,

167 PDF files with 3,872 pages of imaged documents are involved in the test. We selected

150 words as queries and searched for their corresponding words and variations in the

documents. The search engine achieves a precision ranging from 88.97% to 99.03% and a

recall ranging from 86.21% to 99.15%, depending on the threshold θ used in the feature code

matching process. Figure 7-3 shows the average precision and recall as well as the FB1B rating.

On average, the best FB1 B rating that the system can achieve is 0.9699, where the precision and

recall are 98.15% and 95.85% with the threshold set at 0.85. In addition, the precision and

recall achieved for words in different length and noise level are analyzed and shown in Figure

7-4. As we can see, the precision and recall for shorter length words are lower than those for

longer words due to the edit distance measure used for matching the string features. That the

precision for shorter length words is higher than its recall is because we explicitly used full

word matching for shorter length words. This avoids some meaningless partial matching like

“as” in “gas”. On the other hand, for longer query word, the recall is higher than precision.

This is because the partial matching sometimes generates matches that are undesired such as

matching “format” with “information”. The retrieval performance degrades when the noise

level of the documents increases, but it still achieves fairly good recall and precision for

Chapter 7 Search Engine for Imaged Documents

longer query words with an appropriate threshold chosen.

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0.7 0.75 0.8 0.85 0.9 0.95

Recall
Precision
F1

Figure 7-3 Performance vs. different thresholds

0

10

20

30

40

50

60

70

80

90

100

Length<4 Length=4 Length>4

Normal(Pr)
Normal(Re)
Noisy(Pr)
Noisy(Re)

Figure 7-4 Recall and Precision wrt word length distribution and noise level

7.3 Comparison with the Page Capture

The experiments on computer generated page images show that the precision and recall

 73

Chapter 7 Search Engine for Imaged Documents

 74

achieved by the Page Capture of Adobe Acrobat, which basically uses an OCR engine at the

back end, are 99.93% and 94.17% respectively. It is noticed that the precision of Page Capture

is very high while the recall is a little lower comparing to our search engine. The reason is

that the Page Capture tool provided by Adobe Acrobat is lexicon dependent. A lexicon is built

into its recognition engine that helps in achieving a high precision. However, it does not

perform well in terms of recognition of those uncommon words such as technical terms and

people’s names. Our search engine here does not rely on any language or lexicon information.

This adds in additional flexibility and scalability. Experiments on some noisy documents as

illustrated in Figure 7-4 show that our search engine achieves a precision and recall of

89.22% and 91.46%, which is higher than that of Page Capture, 88.12% and 80.34%

respectively. This shows that our search engine has a better performance than OCR based

approach for degraded documents because of the special treatment for inter-connected

characters. In addition, experiments show that our search engine surpasses the Page Capture

tool of Adobe Acrobat at about 2.6 times in terms of efficiency because no lexicon or

language model is needed. On the other hand, OCR is generally meant for “recognition”

problems whereas our word image coding technique is mainly targeted to “retrieval”. Hence,

a direct comparison between the two may be like comparing oranges and apples.

7.4 Comparison with Hausdorff Distance Based Search

Engine

To show the performance advantages of our word image coding based search engine, we also

implemented another version based on Hausdorff distance matching of the word images. In

Chapter 7 Search Engine for Imaged Documents

 75

general, word matching may be either at the feature level or at the pixel level. As a low-level

matching, the pixel-level matching such as Hausdorff distance is simple but sensitive to

changes of image characteristics such as fonts and noise. The main difference between this

second system and our first system is that no features are extracted from the word images in

the Hausdorff distance based system, instead, direct matching of two word images are used

with the Hausdorff distance used as the similarity measure. A typical workflow of this second

system can be illustrated as follows:

• The system takes in each query word, maps each character to a standard template

image and combines all the character images to obtain a template word image;

• The preprocessing steps including connected components analysis, word bounding

box identification, skew detection and rectification, italic font detection and

rectification are carried out to extract the word image objects;

• Space elimination and scale normalization are further carried out on the extracted

word image objects for best matching;

• Hausdorff distance between the template word image and each word image object is

calculated to measure their similarity level as the matching criterion;

• If the distance is greater than a predefined threshold, the word images are identified

as a match.

7.4.1 Space Elimination and Scale Normalization

In a word image, it is common that two or more adjacent characters are connected to each

other. This is possibly caused by low scanning resolution or poor printing quality. It is so far

still a challenging problem to separate them effectively. On the other hand, the templates of

the word images used for the input query words are synthesized directly from the standard

Chapter 7 Search Engine for Imaged Documents

 76

bitmap images of each character, in which each character occupies a uniform size of image

pixels, e.g. 32×32 per character. This results in a non-uniform spacing between adjacent

characters. To remedy this problem, we condense the characters in the word image by

eliminating all the spaces between the adjacent characters in both the template image and the

word image object extracted from the document image. Finally, the processed word image

objects will be normalized to the size of the template image for matching.

7.4.2 Word Matching Based on Hausdorff Distance

Hausdorff distance has been widely used in two-dimensional image matching, especially in

the area of object matching. Named after Felix Hausdorff, Hausdorff distance is the maximum

distance of a set to the nearest point in the other set. More formally, Hausdorff distance from

set A to set B is a maximum function, defined as

() { }{ }),(minmax, badBAh
BbAa ∈∈

=

where a and b are points of sets A and B respectively, and d(a,b) is any metric (e.g. Euclidean

distance) between these points. It is noted that Hausdorff distance is asymmetric, which

means that most of the time h(A, B) is not equal to h(B, A). This asymmetry is a property of

maximum functions, while minimum functions are symmetric. Thus, a more general

definition of Hausdorff distance would be:

{ }),(),,(max),(ABhBAhBAH =

which defines the Hausdorff distance between two sets A and B. The two distances h(A, B)

and h(B, A) are sometimes referred to as forward and backward Hausdorff distance of A to

Chapter 7 Search Engine for Imaged Documents

 77

B. In terms of word matching, H(A, B) measures the degree of mismatch between two point

sets A and B.

In particular, Y. Lu et al. observed that a word image can be divided into different regions,

namely the ascender, the descender, and the mid zone, as shown in Figure 7-4. A weighted

Hausdorff distance (WHD) is thus proposed for applications of Hausdorff distance in word

image matching. By defining different weight for the contribution of different regions of the

word image, the directed distance of WHD is computed as:

∑
∈

⋅=
Aa

WHD Badaw
Na

BAh),()(1),(

where ∑
∈

=
Aa

a awN)(, the weight w(a), w(m) and w(d) for three regions, namely ascender,

mid zone and descender are defined as:

w(a) = w(d) = 2*w(m)

Figure 7-5 Ascender, descender and mid zone of a word image

To compare the two versions of the search engine, same experiment setup is used with a wide

range of documents and queries on different set of fonts and styles. Figure 7-5 shows the

recall and precision chart for the image coding based version and the Hausdorff distance

matching based version. We can see that matching based on Hausdorff distance also produces

Chapter 7 Search Engine for Imaged Documents

a pretty high recall and precision as our word image coding based matching when working on

clean Times New Roman documents. However, its performance deteriorates severely when

working on Arial documents and bold styles. This is because a standard set of template image

in Times New Roman font is used to generate the image for the input query word. Therefore,

Hausdorff distance matching is sensitive to font and style variations. In addition, pixel level

matching is more time consuming comparing to simple text matching. This also accounts for

a much better efficiency in the image coding based version. On the other hand, the Hausdorff

distance based approach applies to not only English documents but also documents in other

languages such as Chinese documents. This is clearly an advantage of the Hausdorff distance

based version.

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

d1 d2 d3 d4 d5

recall_1 precision_1 recall_2 precision_2

Figure 7-6 Recall and precision chart of Hausdorff distance matching based system
for different categories of documents

d1=clean documents in Times New Roman font, d2=noisy documents,
d3=documents in Arial font, d4= query on bold style, d5=query on italic style

 78

Chapter 8 Conclusions

 79

Chapter 8

Conclusions

In this thesis, we presented a novel word image coding technique that represents each word

image object extracted from imaged documents using a feature code string. This coding

mechanism avoids the character segmentation step commonly used in current OCR

technology and achieves a better performance in dealing with degraded document images. On

top of this word image coding technique, two experimental applications are implemented to

perform information retrieval in imaged documents and have potential employment in digital

libraries. In particular, the first application is a web-based document image retrieval system

with the word image coding technique employed during the off-line preprocessing step. This

system is used to retrieve relevant document images based on a set of input query words

specified by the user through a web interface. The second application is a search engine for

imaged documents in PDF format. It is a typical plug-in search tool embedded in Adobe

Acrobat Reader that explicitly locates the query word in the opened PDF file either from a

local machine or through a web link. Both applications are implemented with the ability of

recognizing word objects in various fonts and styles, such as bold and italic. In addition, skew

and noisy images are taken care of during the preprocessing step with a robust skew detection

and rectification algorithm proposed earlier on. In the following two sections, we will first

review the major contributions of this thesis and then discuss the additional work that should

be done in the future.

Chapter 8 Conclusions

 80

8.1 Contributions

This thesis presented a novel word image coding technique that can be used in designing and

developing applications to retrieve information from imaged documents. Our word image

coding technique can be viewed as an alternative to the current OCR technology with a main

difference that our technique extracts features on a word level instead of explicitly

recognizing each individual character as in OCR. Two experimental applications are

implemented which showed an encouraging performance in terms of recall, precision and

retrieval efficiency.

The main contributions of this thesis are summarized as follows:

• Presented a word image coding technique that extracts features from word objects

and represents them using a typical coding string. Refinement is done to incorporate

italic font identification and retrieval.

• Employed a connected component detection algorithm and a nearest-neighbor based

skew detection algorithm during the preprocessing step to rectify the skew images

and extract the word objects with a normal upright style.

• Proposed and implemented an italic font recognition algorithm based on wavelet

transformation to detect italic words scattered in the document images and rectify

them before generating the feature code strings. Comparisons are done with

traditional stroke pattern analysis approaches and show a better performance in terms

of accuracy and efficiency.

• Designed and developed a web-based document image retrieval system that takes in a

set of users’ query words through a web interface and returns a list of relevant

documents ranked according to the occurrence frequency of the query words in the

documents. Preprocessing steps are first carried out off-line to generate the

Chapter 8 Conclusions

 81

corresponding feature code files for the document images. String matching is then

used to match the feature code string of the users’ query word with the feature code

strings stored in the feature code files. If matches are found, the corresponding

document images will be returned to the user. The user can link to the actual

documents opened using Adobe Acrobat Reader and explicitly locate the matching

words spotted.

• Designed and developed a search engine for imaged documents packed in PDF files.

The search engine is essentially a plug-in search tool embedded in Adobe Acrobat

Reader that performs word search in the opened PDF document either from a local

machine or through a web link. When a document is presented to Acrobat Reader, it

goes through a series of preprocessing steps which extract the word objects and

represent them using a string of feature codes for a later matching. When a user inputs

a query word, its feature code string representation will be generated and matched

with the code strings of the word objects in the document image. As a result, the most

relevant words will be marked in the documents based on a similarity threshold.

• Developed another version of the search engine based on Hausdorff distance

matching of word images. Comparisons are done with the word image coding based

search engine and show that our word image coding based system achieves a better

recall and precision with less sensitivity to font style variations. In addition, a better

efficiency is achieved in terms of the online search process since the preprocessing

steps are performed off-line. On the other hand, pixel matching with gap processing

within each word object appears to be time consuming for the Hausdorff distance

matching based system.

8.2 Future Works

• As we mentioned in the thesis that the two applications of our word image coding

technique are basically two experimental models, therefore, further scaled and

comprehensive testing are needed to make robust applications for the use of our

digital library.

Chapter 8 Conclusions

 82

• The web-based document image retrieval system with the underlying index table

stored in an Oracle database needs to be well trained in order to show its retrieval

efficiency and intelligence.

• Currently, finding imaged documents of relevant contents still has to rely on painful

downloading of individual scanned documents for local viewing. Our search engine

opens up the possibility of screening imaged documents for selective downloading.

• The search engine for PDF document images currently can only work with single

query word on the current page image. It can be extended with the ability of

searching multiple words on a range of pages.

• The word image coding technique can be further improved to be case insensitive by

constructing a map between the PSTs of lowercase letters and its corresponding

uppercase letters.

• The word image coding technique currently only works on English documents. With

a different set of feature associative mapping, the technique can be extended to deal

with documents in other languages as well. This will eventually extend our

applications to handle multi-lingual documents.

• Our wavelet transformation based italic font recognition algorithm currently is only

tested on an extensive English dictionary. It can be extended to deal with documents

in other languages as well such as Chinese documents and other Asian or European

languages.

 83

Bibliography

[ACC01] E. Appiani, F. Cesarini, A. M. Colla, Automatic Document Classification and
Indexing in High-volumn Applications, Int’l Journal on Document Analysis
and Recognition, vol. 4, pp. 69-83, 2001.

[AG99] A. Apostolico, R. Giancarlo, Sequence Alignment in Molecular Biology,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 47, pp. 85-115, 1999.

[BN94] H. S. Baird, G. Nagy, A Self-Correction 100-Font Classifier, Proc. of SPIE
conf. on Document Recognition, 106-115, 1994.

[C97] R. Cooperman, Producing Good Font Attribute Determination Using
Error-Prone Information, Int’l Society for Optical Eng. J., vol. 3027, pp. 50-57,
1997.

[CB98] F. R. Chen, D. S. Bloomberg, Summarization of Imaged Documents without
OCR, Computer Vision and Image Understanding, vol. 70, no. 3, pp. 307-319,
1998.

[CG98] B. B. Chaudhuri and U. Garain, Automatic Detection of Italic, Bold and
All-Capital Words in Document Images, Proc. 14th Int’l Conf. on Pattern
Recognition (ICPR), vol. 1, pp. 610-612, 1998.

[CG01] B. B. Chaudhuri, U. Garain, Extraction of Type Style-based Meta-information
from Imaged Documents, Int’l Journal on Document Analysis and Recognition,
no. 3, pp. 138-149, 2001.

[CWB93] F. R. Chen, L. D. W, D. S. Bloomberg, Detecting and Locating Partially
Specified Keywords in Scanned Images Using Hidden Markov Models, Proc.
of the 2nd Int’l Conf. on Document Analysis and Recognition, pp. 133-138,
1993.

[D98] D. Doermann, The Indexing and Retrieval of Document Images: A Survey,
Computer Vision and Image Understanding, vol. 70, no. 3, pp. 287-298, 1998.

[G97] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge
University Press, 1997.

[GG98] E. A. Galloway, V. M. Gabrielle, The Heinz Electronic Library Interactive
On-line System: An Update, The Public-Access Computer Systems Review, vol.
9, no. 1, 1998.

[HG98] H. J. A. M. Heijmans, J. Goutsias, Some Thoughts on Morphological Pyramids
and Wavelets, Signal Processing IX: Theories and Applications, pp. 133-136,
1998.

[HG00] H.J.A.M. Heijmans, J. Goutsias, Multiresolution Signal Decomposition
Schemes, Part 2: Morphological Wavelets, IEEE Transactions on Image
Processing, Vol. 9, No. 11, pp. 1897-1913, 2000.

 84

[HJLZ99] Y. He, Z. Jiang, B. Liu, H. Zhao, Content-based Indexing and Retrieval Method
of Chinese Document Images, Proc. of the 5th Int’l Conf. on Document Analysis
and Recognition, pp. 685-688, 1999.

[J97] R. Jain, Visual Information Management, Communications of the ACM 40(12):
31-32.

[JBN96] M. Y. Jaisimha, A. Bruce, T. Nguyen, DocBrowse: A System for Information
Retrieval from Document Image Data, Proceeding of the SPIE, vol. 2670, pp.
350-361, 1996.

[KH96] S. Khoubyari, J. J. Hull, Font and Function Word Identification in Document
Recognition, Computer Vision and Image Understanding, vol. 63, no. 1, pp.
66-74, 1996.

[KHOY99] T. Kameshiro, T. Hirano, Y. Okada, F. Yoda, A Document Image Retrieval
Method Tolerating Recognition and Segmentation Errors of OCR Using
Shape-feature and Multiple Candidates, Proc. of 5th Int’l Conf. on Document
Analysis and Recognition, pp.681-684, 1999.

[KTK02] K. Katsuyama, H. Takebe, K. Kurokawa, Highly Accurate Retrieval of
Japanese Document Images Through a Combination of Morphological Analysis
and OCR, Proc. SPIE, Document Recognition and Retrieval, vol. 4670, pp.
57-67, 2002.

[L01] D. Lopresti, A Comparison of Text-based Methods for Detecting Duplication in
Scanned Document Databases”, Information Retrieval, vol. 4, no. 2, pp.
153-173, 2001.

[LT03] Y. Lu, C. L. Tan, Improved Nearest Neighbor Based Approach to Accurate
Document Skew Estimation, International Conference on Document Analysis
and Recognition, ICDAR 2003, 3-6 August, Edinburgh, UK.

[LZ96] D. Lopresti, J. Zhou, Retrieval Strategies for Noisy Text, Proc. of the Fifth
Annual Symposium on Document Analysis and Information Retrieval, LA, NV,
pp. 255-269, 1996.

[LZT04] Y. Lu, L. Zhang, C. L. Tan, Retrieving Imaged Documents in Digital Libraries
Based on Word Image Coding, International Workshop on Document Image
Analysis for Libraries, CA, USA, 2004.

[LZT+04] Y. Lu, L. Zhang, C. L. Tan, A Search Engine for Imaged Documents in PDF
Files, 27th Annual International ACM SIGIR Conference, Sheffield, UK, 2004.

[M89] S. Mallat, A Theory for Multiresolution Signal Decomposition: the Wavelet
Representation, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.
11, no. 7, pp. 674-693, Jul. 1989.

[M96] T. Mckinley, Acrobat Capture vs. OCR: Apples and Oranges, Intelligent
Imaging, 1996.

[M98] S. Mallat, A Wavelet Tour of Signal Processing, San Diego, CA: Academic,

 85

1998.

[M97] M. T. Maybury, Intelligent Multimedia Information Retrieval, AAAI/The MIT
Press.

[S97] A. L. Spitz, Duplicate Document Detection, Proc. of SPIE, Document
Recognition IV (L. M Vincent and J. J. Hull edit), vol. 3027, San Jose, CA,
USA, pp. 88-94, 1997.

[S99] A. L. Spitz, Shape-based Word Recognition, Int’l Journal on Document
Analysis and Recognition, vol. 1, no. 4, pp. 178-190, 1999.

[S02] A. L. Spitz, Progress in Document Reconstruction, Proc. of 16th Int’l Conf. on
Pattern Recognition, vol. 1, pp. 464-467, 2002.

[SP97] H. Shi and T. Pavlidis, Font Recognition and Contextual Processing for More
Accurate Text Recognition, Proc. Fourth Int’l Conf. Document Analysis and
Recognition, (ICDAR ’97), pp. 39-44, Aug. 1997.

[SS97] C. Sun and D. Si, Skew and Slant Correction for Document Images Using
Gradient Direction, Proc. Int’l Conf. on Document Analysis and Recognition
(ICDAR), vol. 1, pp. 142-146, 1997.

[SS+97] A. F. Smeaton, A. L. Spitz, Using Character Shape Coding for Information
Retrieval, Proc. of the Fourth Int’l Conf. on Document Analysis and
Recognition, pp. 974-978, 1997.

[TBCE94] K. Tagvam, J. Borsack, A. Condir, S. Erva, The Effects of Noisy Data on Text
Retrieval, Journal of the American Society for Information Science, vol. 45, no.
1, pp. 50-58, 1994.

[TV93] J. M. Trenkle, R. C. Vogt, Word Recognition for Information Retrieval in the
Image Domain, Symposium on Document Analysis and Information Retrieval,
pp. 105-122.

[WS99] M. Worring, A. W. Smeulders, Content Based Internet Access to Paper
Documents, Int’l Journal on Document Analysis and Recognition, vol. 1, pp.
209-220, 1999.

[ZI98] A. Zramdini and R. Ingold, Optical Font Recognition Using Typographical
Features, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 20,
no. 8, pp. 877-882, Aug. 1998.

[ZLT03] L. Zhang, Y. Lu, C. L. Tan, A Web-based System for Retrieving Document
Images from Digital Library, Workshop on Document Image Analysis and
Retrieval, in conjunction with CVPR2003, 16-22 June 2003, Madison,
Wisconsin, USA.

[ZLT04] L. Zhang, Y. Lu, C. L. Tan, Italic Font Recognition Using Stroke Pattern
Analysis on Wavelet Decomposed Word Images, International Conference of
Pattern Recognition, Cambridge, UK, 2004.

[ZTW01] Y. Zhu, T. N. Tan, Y. H. Wang, Font Recognition Based on Global Texture

 86

Analysis, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23,
no. 10, 2001.

Appendix A

 87

Appendix A – How to Use the Web-based Retrieval

System

• Access the web interface through the following URL (as shown in Figure A-1):

HTUhttp://soccf-chim3-014.ddns.comp.nus.edu.sg/ASP/FindDoc14.aspUTH

Figure A-1 Web-based document image retrieval system

• Input a set of query words in the first AND/OR input box, separated by spaces, e.g.

“intelligent simulation algorithm”.

• Indicate either to perform AND or OR operation by clicking the radio button.

• Input a set of query words in the second NOT input box, also separated by spaces, e.g.

“computational approach”.

• Click “Search”, then the retrieved documents will be returned and ranked according

to the occurrence frequency of the query word in each document.

• Link to the actual document images through the hyperlink over the retrieved

documents’ name for online reading and verification.

Appendix B

 88

Appendix B – How to Use the Search Engine

• Create a folder called AcrobatSDK under your Adobe Acrobat installation directory,

e.g. C:\Program Files\Adobe\Acrobat 6.0\Acrobat\Plug_ins\AcrobatSDK

• Put the NUSFind.api under the AcrobatSDK directory.

• Open the document image using Acrobat Reader from the local machine.

• The new plug-in will appear on the toolbar as shown in Figure B-1.

Figure B-1 Plug-in drop down menu

• Select “Find Word By NUS method” from the drop down menu and you will be

prompted with the search dialog box as shown in Figure B-2.

Figure B-2 Search prompt dialog box

Appendix B

 89

• Input the query word that you would like to search in the dialog box and select

“current page” as the Find Range.

• If “Match Whole Word Only” is selected, only the exactly matched words will be

identified.

• The matching words will be identified and marked in black as shown in Figure B-3.

Figure B-3 Spotted words in the documents

	Introduction
	Background
	Scope and Contributions
	Organization of the Thesis

	Feature Code File Generation
	2.1 Connected Component Analysis
	2.2 Word Bounding
	2.3 Skew Estimation
	2.4 Skew Rectification
	2.5 Word Bounding Box Regeneration
	2.6 Italic Font Detection
	2.7 Italic Font Rectification
	2.8 Feature Code File Generation

	Word Image Coding
	3.1 LRPS Feature Representation
	3.2 Ascender-and-descender Attribute
	3.3 Line-or-traversal Attribute
	3.3.1 Straight Stroke Line Feature
	3.3.2 Traversal Feature

	3.4 Post-processing
	3.4.1 Merging Consecutive Identical Primitives
	3.4.2 Refinement for Font Independence

	3.5 Primitive String Token for Standard Characters
	3.6 Verification

	Italic Font Recognition
	4.1 Background of Font Recognition
	4.2 Wavelet Transformation Based Approach
	4.2.1 Wavelet Decomposition of Word Images
	4.2.1.1 Pyramid Transform
	4.2.1.2 Coupled and uncoupled Wavelet Decomposition

	4.2.2 Statistical Analysis of Stroke Patterns
	4.2.2.1 Vertical Stroke Analysis
	4.2.2.2 Diagonal Stroke Analysis

	4.2.3 Experimental Results

	Feature Code Matching
	5.1 Coarse Matching
	5.2 Inexact String Matching

	Web-based Document Image Retrieval System
	6.1 System Overview
	6.2 System Implementation
	6.3 AND/OR/NOT Operations
	6.3.1 AND Operation
	6.3.2 OR Operation
	6.3.3 NOT Operation

	6.4 System Evaluation

	Search Engine for Imaged Documents
	7.1 Implementation
	7.2 Performance Evaluation
	7.3 Comparison with the Page Capture
	7.4 Comparison with Hausdorff Distance Based Search Engine
	7.4.1 Space Elimination and Scale Normalization
	7.4.2 Word Matching Based on Hausdorff Distance

	Conclusions
	8.1 Contributions
	8.2 Future Works

