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                                           Abstract  

 

Time efficiency and visual effect demand effective synthesis techniques to real time 

synthesize textures with the same statistical distribution of the texture primitives as 

the example. This paper presents an approach to generate, from an input texture, a set 

of small textures that can be tiled to synthesize large textures. Such a small set can be 

useful in, for example, real-time graphics applications to texture any large area 

realistically and efficiently while utilizing small amount of texture memory. We apply 

cutting curve to the large space to eliminate the line artifacts. The introduction of new 

image patch in each tile makes the texture information diverse. The new tile 

combination rule based on the tile indices combines the small tiles without artifacts 

and creates a stochastic distribution of the tiles. Our approach is interesting in its 

ability to generate a small number of tiles that embed many more texture patterns as 

compared to previous approaches. This feature of a small tile set can avoid generating 

highly repetitive patterns in synthesized textures. This and its attempt to preserve 

consistent local features of the synthesized textures are examined in our experiments 

with input textures of stochastic, semi-structured and structured nature. Our approach 

performs well in general and is particularly superior to previous work for input 

textures of stochastic and semi-structured nature. 

 

Keywords: texture synthesis, image tiling, cutting-path, cutting-curve, Wang tile  
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                                  Chapter 1 Introduction  

 

1.1 Background  

 

Texture synthesis in graphics can be formulated as follows: given an input texture, 

synthesize an output one, which is usually different from the input while keeping the 

underlying global distribution pattern [Liang01]. For computer graphics, a general use 

of texture synthesis is to pre-compute a large texture for mapping to a large area in an 

application while only a small sample texture is available. Most of these utilities are 

applied during the process of visualizing or rendering large-scale scenes with 

homogeneous texture patterns, such as terrains. In visualizing terrains, user often 

resorts to synthesizing image plane from samples rather than constructing the entire 

geometric model. Another use of texture synthesis is to generate a set of small 

textures that can be combined or tiled into large textures during some real time 

applications. Keeping many immense images is a burden for visualization 

applications. Therefore, user can apply tiling algorithms to texture a large plane from 

a tile set in real time speed. This use can avoid the need of physically having a large 

texture memory when texturing a large area. This second application is the focus of 

this thesis, though our results can be used in the first application.  

 

In the past decade, a wave of algorithms has been explored in texture synthesis. Many 

approaches of pixel-based [Heeger95, de.Bonet97, Efros99, Wei00, Ashikhmin01] 

can create a great variety of vivid texture patterns through matching parameters of 
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either statistical models or statistical features. However, they are not feasible to real 

time applications as they incrementally synthesize pixels in the output image, even 

though a lot of techniques have been utilized to speed up pixel sampling. Recently, 

researchers propose to synthesize texture with image patches instead of pixels [Xu00, 

Efros01, Liang01, Kwatra03, Neubeck03]. Such patch-based methods can 

approximately achieve orders of magnitude faster than pixel-based methods. However, 

they are not applicable to our focus application, as they do not generate a set of 

textures for efficient tiling. On the other hand, the work of Cohen et al. [Cohen03] 

demonstrates such a way. Each square tile, called Wang tile (adapted from [Wang65]), 

has (conceptual) a color on each of its four sides representing the texture pattern 

contributing to that side. In efficiently synthesizing a large texture, one lays Wang 

tiles such that the adjacent sides of two Wang tiles have the same color.  

 

1.2 Problem Statement  

 

In general, there are three levels of challenges to generate a set of small tiles from an 

input texture S. First, the content of each tile should be seamless as if it was a 

continuous part from S. This is generally impossible due to the next challenge of 

fitting tiles across their boundaries. Whether the artifacts in each tile can be detected 

out of their neighboring textures are determined by our human discrimination ability. 

However, the local difference of the textures directly contributes to our discrimination. 

Therefore, various techniques have been investigated in the literatures to decrease the 

local difference around the discontinuous area in image. In generating a good Wang 

tile, a cutting path approach [Efros01] is applied to combine a set of four patches that 
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is randomly selected from S.  Second, tiles should fit together seamlessly across their 

boundaries in their synthesized textures. As Cohen et al. mentioned, each side of a 

Wang tile is coded with a color and only sides of the same color can be adjacent in a 

tiling. Third, the synthesized texture should maintain the underlying global 

distribution pattern of S. High repetition or high regularity of local features will make 

the generated texture plane too artificial to be natural. Therefore, the way of laying the 

tiles in the output image will determine the overall visual effect of the created texture 

pattern. In Wang tile approach, this is addressed in a set of Wang tiles with at least 

two choices of tiles to be used at each tiling step. 

 

1.3 Main Contributions  

 

Our work proposes an alternative approach to address the above three challenges. 

Similar to Cohen et al.’s approach, it generates its tiles, called ω-tiles from a set F of 

four patches that are extracted from the input sample S. However, it is different in that 

each side of an ω-tile has effectively two colors and its interior is obtained from S, 

rather than restricted to those of F only. For a tile set of 16 small ω-tiles, we use four 

textures to contribute to four corners and 16 other textures to the interiors of the 

generated 16 tiles. 

 

Specifically, our approach first addresses the possible seams within a tile by providing 

a large search space so as to control seams that result from combining patches in F.  
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A large search space means more pre-processing time needed, but it also generates ω-

tiles with less prominent seams. A cutting curve technique is applied in the large 

space of each tile to eliminate the line seams. Current cutting path methods [Efros01, 

Cohen03, Kwatra03] always focus on eliminating the line seams in small rectangular 

overlapping regions. Although such a method can find a heuristic solution to adapt the 

pixel values among the rectangular overlapping region of the adjacent patches, the 

results are often not satisfactory. As the area in which the cut is supposed to lie tends 

to be rather small, the leeway in getting seamless transitions is restricted and 

boundaries may remain visible [Neubeck03]. Therefore we seek a transition curve in a 

lager domain and get a better visual effect.  

 

Second, seams between two ω-tiles lying adjacent to each other are avoided by having 

matching two-color sides between them. A subtle consequence of this, in any 

synthesized texture, is the result of a junction at the middle of each side of the ω-tile 

where four but not necessarily distinct patches of F meet. Such a junction in the 

method of Wang tiles appears in the middle of each tile where two cutting paths meet 

and at the four corners of each tile where cutting paths start or end. Junctions/corners 

must be treated with care, as they are particularly conspicuous to human eyes as found 

from experiments in neuroscience; see [Fahle94, Shevelev03]. In comparison, our 

approach allows more degree of control of the content at junctions as two of the four 

textures at each junction are obtained through careful searching.   

 

Third, our approach achieves good underlying global distribution pattern of S in the 

synthesized texture. In the process of constructing each tile, we search for a new patch 
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from the input texture S to replace some parts of the distribution of F. This makes the 

tiles embed more texture patterns (20 in the case of Figure 1.1). In contrast, a set of 

Wang tiles uses mainly four textures when synthesizing a large texture and thus tends 

to generate repetitive patterns in a large texture.   

 

1.4 Tiling Scheme Overview  

 

The key to design an efficient tiling algorithm is laying the tiles in such a way that the 

tiles are stochastically located in the image plane and the combination between the 

potential neighboring tiles should satisfy combination constraints. Otherwise, the 

synthesized image will either produce high repetition pattern or create visible 

intensity gap between the small tiles. In our tiling scheme, we first transfer the 

distortions from the sides of each tile to its internal area (see Figure 1.1-(a)). Then, we 

search a cutting curve in the large overlapping space of the four patches F and the 

new image patch selected from the sample to find a new pattern to cover the internal 

line seams in each tile (see Figure 1.1-(b)). To minimize the difference of pixel values 

between the four patches F and the new image patch, our algorithm can eliminate the 

line seams and preserve low difference of the intensities around the cutting curve in 

each tile. Like the tile set shown in Figure 1.1-(b), two tiles can be potentially 

neighboring only if their edge colors match.  Such a constraint can make the tiles fit 

together without line seams across their boundaries and create the potential for tiling 

the small ω-tiles stochastically as well. Therefore, our tiling scheme not only produces 

smooth combination between tiles, but also preserves the image pattern of the input 

sample S.  
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           (a)                                                                       (b) 
Figure 1.1 Schematic showing the tiling approach. Four small patches 
(represented in red, green, blue and yellow) are chosen from an input texture to 
form 16 blocks; an example of a block is shown on the left. An ω-tile (out of 16) of 
the same size as a patch is cut from the center of each block. The color at each 
corner of an ω-tile indicates the patch of that color that contributes to the corner. 
Its interior (shown within weaving closed curve) is obtained through searching the 
input texture.    
 

 

1.5 Outline of this Thesis  

 

This thesis is organized in six chapters discussing various topics related to our tiling 

scheme. This chapter introduces the background and main problems of image tiling, 

our contributions, and tiling overview. Chapter 2 reviews the related previous works 

in texture synthesis. We make a classification of current texture synthesis algorithms. 

Then, we review some previous work including the technique of cutting path [Efros01, 

Kwatra03] and the approach of Wang tile [Cohen03]. Chapter 3 and Chapter 4 

illustrate the tiling process. Chapter 3 addresses the creation of each ω-tile that is 

seamless. Chapter 4 presents an approach to generate various small sets of ω-tiles that 

can fit together across their boundaries and can synthesize large textures with less 

repetitive patterns. Chapter 5 describes the implementation details and results. The 

visual effect of the synthesized images verifies the efficiency of our tiling technique. 

And Chapter 6 gives the conclusion and discusses the future work. 

 



 Chapter 2 Previous Works
 

 7

 

 

                                         Chapter 2 Previous Works   

 

Statistical texture synthesis has been investigated for more than a decade. Two main 

categories for texture synthesis are procedural methods and statistical sampling 

methods. These two approaches are complementary in their strength and weakness. In 

this chapter, we first in Section 2.1 give a classification of texture synthesis 

algorithms introduced by current literatures. Then, in Section 2.2 we discuss the 

statistical sampling method, where we focus on the main characteristics of synthesis 

process in non-parametric sampling approach. At the same time, we introduce one key 

technique to eliminate the line seams—cutting path technique [Efros01, Kwatra03]. 

Finally, in Section 2.3 we introduce the procedural methods and focus on discussing 

the approach of Wang tile [Cohen03]. 

 

2.1 Synthesis Algorithm Classification 

 

In this section, we introduce an overview of the texture synthesis algorithms and bring 

forward a classification, which generalizes other authors’ classifications [Tuceryan98, 

Xu00, Liang01, Levina02, Kwatra03].   

 

Besides the use of an explicit texture to texture a large area, the texturing algorithms 

can be classified as procedural method [Peachey85, Perlin85, Lewis89, Upstill89, 

Turk91, Witkin91, Worley96] and statistical sampling method [Heeger95, de.Bonet97, 

Portilla99, Zhu00, Efros99].  Procedural method has been proved itself valuable in 
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texture synthesis, allowing for complex surfaces to be rendered without requiring 

image mapping or modeling geometrical details. They can be fast and support 

memory efficient texture rendering by not storing the synthesized texture explicitly 

but synthesizing them on the fly [Upstill89]. However, most procedural methods are 

only specialized emulators of the generative processes of certain types of textures, 

such as marbles, seashells, and animal skins. Procedural methods are usually 

classified into procedural texturing approach and pattern based texturing approach, 

according to whether the algorithms apply patches of samples to define texture 

patterns. 

 

Statistical sampling methods can synthesize a wide variety of textures, as long as 

appropriate sample textures are provided. But they need great computational cost. The 

major problems for statistical sampling methods are: (1) modeling- how to estimate 

the stochastic process from a given finite texture sample and (2) sampling- how to 

develop an efficient sampling procedure to produce new textures from a given model. 

Both the modeling and sampling parts are essential for the success of texture synthesis: 

the visual fidelity of generated textures will depend primarily on the accuracy of the 

modeling, while the efficiency of the sampling procedure will directly determine the 

computational cost of texture generation [Wei00]. From the modeling perspective, the 

synthesis algorithms can be classified from the approaches to model texture in 

computer graphics: statistical model [Cross83, Chellappa85, Paget99, Parada01] and 

feature matching [Heeger95, Portilla99, de. Bonet97, Zhu97, Zhu00]. From the 

sampling perspective, the synthesis algorithms can be classified in view of the 

characteristics in sampling information from the given image: parametric sampling 
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[Heeger95, Portilla99, Zhu00, Soatto01, Wang02] and Non-parametric sampling [de. 

Bonet97, Efros99, Efros01, Liang01, Neubeck03]. 

 

In general, the classification of current texture synthesis algorithms can be illustrated 

in Figure 2.1. Both categories are divided into subclasses according to their specific 

characteristics in synthesis.  

Figure 2.1 Texture synthesis algorithm classification: statistical sampling 
methods are classified by the characteristics in modeling and sampling, and 
procedural methods are classified by the principle to define texture patterns. 
 

2.2 Statistical Sampling Method  

 

In statistical sampling method, parametrical sampling approach uses a number of 

parameters within a compact parametric model to describe a variety of textures and 

then sample pixels within the parametric restriction. The computation for such 

approach is especially costly. Therefore, the new trend of non-parametric sampling 

approach becomes popular in graphics field, which is also closely related to our tiling 

technique. From the inspiration of these literatures, we design our scheme to cut the 

Synthesis Methods  

Statistical Sampling Procedural Methods 

Modeling  Sampling  

Statistical Model 

Features Matching 

Non-parametric 

Parametric  

Procedural texturing Pattern based 
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patch set F  from the input sample S to construct new pattern and to eliminate the 

seams across the image patches to create small tiles. 

 

2.2.1 Non-parametric Method  

 

Non-parametric sampling method tends to estimate the local conditional probability 

density function and synthesizes pixel incrementally. Efros and Leung [Efro99] 

introduce the seminal paper that uses the non-parametric sampling method. Given all 

its neighbors synthesized, the conditional distribution of each pixel is estimated by 

searching the sample image, finding all similar neighborhoods, and then randomly 

choosing one among them. The algorithm produces good results for a wide range of 

textures, but is terribly slow, as a full search of the input image is required to 

synthesize each pixel.  

 

Many variations of their method have been published to speed up and optimize the 

original algorithm in different ways [Wei00, Wei01, Ashikhimin01]. These 

algorithms sample information from the random fields directly, without constructing 

an explicit model for the distribution. Wei and Levoy [Wei00] optimize Efros and 

Leung’s algorithm [Efros99] using neighborhood with a fixed shape so that it can 

conduct the searching deterministically. Their method (denoted as WL algorithm) can 

be accelerated by tree structured vector quantization (TSVQ). They also succeed in 

extending their algorithm to arbitrary surface [Wei01]. Ashikhmin [Ashikhmin01] 

presents a modification of the WL algorithm to perform better on a particular class of 

textures, which consists of identification primitives of irregular but similar patterns, 

such as grass, leafs, pebbles, bushes and so on. This method has made a small step 
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towards patch-based synthesis by greedily extending existing patches whenever 

possible, rather than by searching the entire sample texture. 

 

All the pixel-based sampling methods do not perform fast. They usually cost a lot of 

memories and computations on determining each pixel value. Thus these algorithms 

including accelerated versions are not appropriate to real time applications. Actually 

during synthesis process, most pixels have their values totally determined by those 

that have been synthesized so far. Thus algorithms do not need to do searching on 

each pixel. This is an important reason that researchers develop patch-based sampling 

approaches.  

 

Recently, researchers extend the idea of pixel-based synthesis to synthesize image 

patches incrementally [Efros01, Liang01, Kwatra03]. They search for the image 

patches in the sample by computing the distance of boundary area between the 

candidate patch from the sample and those in the output. This method in theory is to 

estimate the local conditional Markov Random Field (MRF) density in the 

overlapping region of these patches. Soler [Soler02] extends this approach for 

synthesizing texture on surfaces.  This searching process can control the intensity 

gaps between the image patches. However, in most cases the line seams are still 

visible. Therefore, the critical problem left is how to eliminate the line seams between 

the image patches. For Liang et al.’s algorithm [Liang01], they just apply feathering 

technique to blend the pixels in the adjacent areas. In [Efros01] and [Kwatra03], they 

seek the cutting path in the overlapping region of the neighboring patches and adapt 

the pixel values according to the tracks of the cutting path. This technique is similar as 

ours to eliminate the seams between the set F of four patches. However, we seek a 
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close path, called cutting curve, in a quite large space of each tile. In the following, 

we give a brief introduction to the cutting path technique.  

 

2.2.2 Cutting Path Technique  

 

Efros and Freeman [Efros01] present a cutting path technique in image quilting 

method. The algorithm uses dynamical programming to choose the minimum cost 

path from one end of the overlapping region to the other. The following schematic 

figure shows the cutting path in the overlapping region across the two image patches 

(see Figure 2.2). 

 

 

 

 

Figure 2.2 Schematic drawing to show graph formulation: the red line showing the 
cutting path in the overlap between two patches. 
 

The weight of the node in the graph is the error of the pixel value in two image 

patches. 

( , , ) || ( ) ( ) ||M s A B A s B s= −                                                                                        (2-1) 

where ( )A s  and ( )B s  denotes the value of pixel s in the patch A and B, respectively.  

The vertical directional cutting path is a path with the minimum sum of the error 

computed by dynamical programming from the top to the bottom lines [Sedgewick01]. 

The horizontal directional cutting path can be sought with the same algorithm.  
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Such a criterion does not incorporate well the aim of finding a smooth transition path 

in the overlap, although it preserves the nature of minimum distance along the cutting 

path. Kwatra et al [Kwatra03] use another criterion to seek the cutting path. They 

regard the link between any two adjacent pixels as graph edge and assign each edge a 

weight as the flow capacity. The cutting path is a path with the minimum error to 

transit the pixel intensities from patch A (SOURCE) to patch B (SINK) in the 

overlapping region (see Figure 2.3). 

 

 

 

 

Figure 2.3 Schematic drawing to show graph formulation: the red line showing the 
graph cut in the overlap between two patches. 
 

The weight is the sum of the transition errors of the two nodes divided by the sum of 

their gradients in two patches, which is also the penalty value for pixels changing 

color from Patch A to Patch B, and vice-versa (see Equation 2-2).  

 

)()()()(
)()()()(

),,,(
tGsGtGsG

tBtAsBsA
BAtsM

d
B

d
B

d
A

d
A +++

−+−
=                                                 (2-2)                             

where s, t are neighboring pixels in the overlapping patches A, B; )(sG d
A  indicates the 

gradient of pixel s in the patch A along d (gradient direction between s and t), the 

same meaning as )(tG d
A , )(sG d

B  and )(tG d
B . Then the cutting path is the min-cut 

[Sedgewick01], which cuts the graph edges with the minimum sum of flow capacities. 

In implementation, the efficiency of cutting path to minimize the difference will be 

SOURCE 
( Patch A ) 

 SINK   
( Patch B ) 
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affected by the size of the overlapping region. If it is too small, the line with abrupt 

intensity change will be left at various places along the cut. 

 

Overcoming the drawback of pixel-based sampling methods in the memory and 

computational cost, the patch-based sampling algorithms often get several orders of 

magnitude faster speed. They are feasible to interactive systems. Although they are 

not in our focus, as they do not generate a set of small tiles to be combined or tiled in 

the output image plane, their technique of finding the cutting path gives us valuable 

inspirations to find the cutting curve in the small ω-tile. 

 

2.3 Procedural Method   

 

Procedural method textures arbitrary surface or large plane by a procedural means. In 

general, there are three different approaches in this category. First, procedural 

texturing ([Perlin85, Worley96, Ebert94]) can generate details at arbitrary resolutions 

with no periodicity and very low memory. However, there are certain material aspects 

of textures that cannot be generated using these techniques of low computational cost.  

 

Second, pattern based texturing uses a set of different small texture patches to define a 

pattern. These small patches are used to tile a large area while avoiding the periodicity 

and repetitiveness of a naïve tiling. Examples of this method are aperiodic tiling 

[Stam97], triangular patterns [Neyret99], virtual atlases [Soler02], sparse convolution 

[Lewis89, Ebert94], chaos mosaic [Xu00], and Wang tile [Cohen03]. These 
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approaches generally need more texture memory than those with procedural texturing, 

but lower computational cost during rendering.  

 

Third, the recent pattern based procedural texturing [Lefebvre03], which combines the 

previous two approaches, determines the texture value at any surface location by 

aperiodically combining provided patterns according to user-defined controls such as 

a probability distribution and animation of textures. This method provides a 

sophisticated control to texture a large area with the texture indirection ability of 

recent graphics boards. It requires, in general, more computation during rendering as 

compared to pattern based texturing as studied in our work. 

 

Our work is an approach close in spirit to that of Wang tiles in Cohen et al.’s 

[Cohen03], which is a pattern based texturing approach. Their differences have been 

discussed in the previous Chapter. In the following, we shall provide a short review 

on the generation of Wang tiles to facilitate subsequent discussion. 

 

2.3.1 Wang Tile Approach 

 
The approach of Wang tiles first extracts from an input texture a set of four small 

square patches, shown as red, green, blue and yellow in Figure 2.4 (a). These patches 

are rotated and arranged, with a small amount of overlap, as a diamond shape block, 

to cut a Wang tile from its center along four diagonals of the patches such as the one 

shown.  
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The overlapping regions are used to compute cutting paths shown as the black curves 

in Figure 2.4, starting and ending at the corners of the Wang tile, to define the four 

distinct areas to be contributed by each patch. Cutting paths can result in visible 

seams across patches and are thus computed with criteria, such as minimizing the 

difference in pixel values across the patches. Methods to compute cutting paths have 

been discussed, for example, [Efros01] and [Kwatra03].  

 

A set of Wang tiles can be created where each member is obtained from a different 

arrangement of four but not necessarily distinct patches into a block. The paper shows 

the sets of arrangements to generate sets of 8 (such as in Figure 2.4(b)), 12, and 18 

Wang tiles that can be used to tile any large area while maintaining no seams across 

two Wang tiles. 

 

 

                  (a)                                                   (b) 

Figure 2.4 Wang Tile Generation: (a) Four small square patches are combined 
into a diamond block to extract a Wang tile at the center; (b) A set of 8 Wang tiles 
constructed in this manner. 
 
 
 

In this chapter, we briefly review the categories of texture synthesis algorithms and 

give an overview in this field. We illustrate the characteristics of non-parametric 

sampling methods and introduce the cutting path technique applied in patch-based 
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sampling approach. We present a classification of procedure methods in texture 

synthesis and introduce the closely related approach--Wang tile approach.  In the 

following chapters, we introduce a tiling scheme that empowers users to synthesize 

nice textures using tiling algorithm.  
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                                 Chapter 3 Tile Generation  

 

In this and the next chapters, we introduce a new scheme of image tiling in detail. All 

steps from the creation of the initial ω-tiles to the process of tiling the plane with the 

tile set are presented. The process of constructing a fine ω-tile is presented in this 

chapter. We first introduce the overview of constructing ω-tiles for image tiling in 

Section 3.1. Then we discuss the difference of cutting path and cutting curve in 

Section 3.2 and finally introduce how to seek the cutting curve in each ω-tile in 

Section 3.3.  

 
 
3.1 Constructing a Tile  

 
 
Our approach first creates a block from an arrangement of four small patches obtained 

from the input texture S, but without overlapping of the patches. Figure 3.1 shows an 

example of four such blocks A, B, C and D with different arrangements of the four 

patches and the intermediate tiles Ai, Bi, Ci and Di cut from the center of these blocks. 

The seams across patches in each intermediate tile are removed by replacing the 

interior, other than the four corners, of the tile with another pattern from S. This 

generates one out of the 16 ω-tiles in our experiment for texturing any large area; see 

Figure 3.1 where four such ω-tiles are shown as Aω, Bω, Cω and Dω,  and they are used 

to tile a 2-by-2 area. The remaining part of this chapter discusses our approach to 

remove the vertical and horizontal seams across the patches.  
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Figure 3.1 Tiling Process with ω-tiles. Four intermediate tiles Ai, Bi, Ci and Di 
cut from blocks A, B, C and D, respectively, are used to generate four ω-tiles 
Aω, Bω, Cω and Dω . These are used to tile the center 2-by-2 area.  

 
 
 
3.2 Cutting Path and Cutting Curve 

 
 
We recall that the Wang tile approach minimizes the visibility of seams by 

overlapping patches to compute cutting paths. The effectiveness of a cutting path 

depends on the content at the overlapping region of patches. In general, the larger the 

overlapping region, the better the chance a good cutting path can be computed. It is, 

however, not clear how one should pick a fixed overlapping amount that is good for 

all the cutting paths in generating a set of Wang tiles.  

 

In addition, we observe that the middle of each Wang tile is a junction where four 

patches meet. Such a kind of junction also indirectly occurs at the corners of each 

Wang tile in a tiling of a large area (see Figure 3.2(b)). They are seams that can be 

prominent to the naked eyes; contents around them should be controlled if possible. 

To avoid visible seams in a tile’s center, one may compute a cutting path for a pair of 

diagonal corners, and then compute two good “half” cutting paths starting from the 

other pair of diagonal corners till they end at the first cutting path. This, however, may 
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not necessarily be effective to avoid visible seams. For junctions at corners of four 

Wang tiles, there is no good way known to control the cutting paths to minimize the 

visibility of junctions. The authors call this the corner problem, and suggest 

expanding from, for example, a set of 8 Wang tiles to at least 64 Wang tiles with 

matching corners. This demands more texture memory during rendering. 

 

Our approach aims to minimize the above corner problem, and in general, reduce the 

visibility of junctions. It thus generates ω-tiles of matching pattern at four corners. 

And, it removes the vertical and horizontal seams between patches by searching for a 

good pattern C to replace the interior portion inclusive of the seams in each 

intermediate tile. Such a pattern C is enclosed by a closed curve, termed cutting curve, 

passing through the middle point of each side of the tile. As a result, when these tiles 

are laid into a large area with matching sides, junctions where four textures meet 

appear at the middle point of each side (see Figure 3.2(a)). Due to the amount of four 

junctions per ω-tile, the total number of junctions is the same as that of Wang tile 

when synthesizing a large texture. However, the content at each junction in our 

approach can be controlled better. This is because two out of four patches meeting at a 

junction are obtained through searching a good C from S  and thus are of good 

chances to minimize the visibility of junctions. 
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                                       (a)                                                     (b) 
Figure 3.2 Schematic drawing to show the corner problem: (a) artifacts in 
junctions controlled in ω-tile approach (b) artifacts in corners and junctions 
appear in Wang tile approach.  
 

Variable  Meaning 
S 2D input sample image 

F the set of four image patches to create the initial block 

 I intermediate tile cut from the central of initial block 

O target patch searching from S , to compute a cutting curve 

C 
content in the circle of  O  to replace the corresponding content 
in I 

I , O two given neighboring image patches which have an overlapping 
area  

s, t two adjacent pixels/nodes in the overlapping area 
I(s), O(s) pixel value of  s in image patch I , O respectively  

d gradient direction from s to t 
( )d

IG s  the gradient of pixel s in the patch I  along d 
        
                           Table 3.1 List of used variables and terms 

 

3.3 Cutting Curve from a Graph 

 
Now, we give a description of our algorithm for constructing a cutting curve from a 

graph.  For variables/terms and their meanings, see Table 3.1. Specifically, for an 

intermediate tile I (Figure 3.3(a)), one way is to go through each pixel of S to extract 
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a candidate O starting from it, which has the same size as I, (Figure 3.3(b)). Each 

candidate O is then superimposed onto I  to compute a cutting curve (Figure 3.3(c)), 

passing through the middle points of the four sides of  I. The curve is also restricted 

to lie within a (pink) circle with the same center as I  and having the diameter equal 

to the width of I. The area of I within the cutting curve is to be replaced by the 

corresponding content C in O.  The best C, among all candidates O, is one where the 

seams along the cutting curve are least prominent.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.3 Tile Generation in our Technique. (a) Intermediate tile with vertical 
and horizontal seams across patches. (b) A candidate O extracted from S. (c) 
The intermediate tile of (a) with its interior removed along a cutting curve. (d) 
The removed part is replaced by the corresponding part C of O  to obtain an 
ω-tile.  

 
We adapt Kwatra et al. [KSET03] to derive C. Very briefly, their work computes a 

cutting path for a given pair of patches I and O that overlap at some pixels as a graph 

(a) (b) 

(d) 
(c) 
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problem. It regards pixels in the overlap as graph nodes, and the link between any two 

neighboring pixels as graph edge. Each edge is assigned a weight as a flow capacity, 

which is the sum of the transition errors of the two nodes divided by the sum of their 

gradients in the patches:  

 

( ) ( ) ( ) ( )
( , )

( ) ( ) ( ) ( )d d d d
I I O O

I s O s I t O t
Weight s t

G s G t G s G t

− + −
=

+ + +
                                     (3-1) 

 

where s, t are neighboring pixels in the overlap; ( )d
IG s  denotes the gradient of pixel s 

in the patch I along d (gradient direction from s to t), and ( ),d
IG t ( ),d

OG s  ( )d
OG t are 

similarly defined. Then, the cutting path is the min-cut which cuts the graph edges 

with the minimum sum of flow capacities from source pixels of I to sink pixels of O.  

 

Applying the above to our I and O to compute a (green) cutting curve (as in Figure 

3.4), we have (red) pixels of  I outside the (pink) circle defined as sources, two 

vertical columns and two horizontal rows of (blue) pixels at the center of O defined as 

sinks, and weights of edges incident to white pixels defined as in Equation (3-1). 

Notice that the area involved in the search for a cutting curve is generally larger than 

that of overlapping region in generating a Wang tile. Thus, the consequence of less 

visible seams within an ω-tile is expected here, though with higher pre-processing 

cost. 
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Figure 3.4 Cutting curve (green) generation in the graph.  
 

In practice, the above cutting curve computations for all choices of O can be costly. 

We can adapt heuristics to choose just one or a few O  to perform the computation of 

a cutting curve to obtain a good C . One possible choice is to pick O with the smallest 

sum of weights for pixels around the (pink) circle. This is an attempt to select O that 

is similar to I and thus with a good chance of obtaining a cutting curve with less 

visible seams. We use this in our experiments reported in Chapter 5. Another choice is 

to pick O with the smallest sum of weights for pixels near the middle of the four sides. 

This is to emphasize the importance of having matching content at junctions.  

 

 

In this Chapter, we introduce the process of constructing an ω-tile. From the 

constructing scheme, we ensure the potential neighboring ω-tile is combined without 

line seams across the patches. Then, the cutting curve is computed in the large space 

of each ω-tile to remove the internal seams in each ω-tile. Through this technique, we 
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can find our approach is better to control the corner problem than Cohen et al.’s Wang 

tile approach. In the next chapter, we will present how to form the sets from the ω-

tiles and make them stochastically distributed in the output image.  
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                               Chapter 4 Tile Set Formation  

 

In this chapter, we introduce how to form various tile sets that can be tiled to 

synthesize large textures. We focus on introducing the 16-tile set formation. We use 

the approach introduced in Chapter 3 to generate a set of ω-tiles from different 

arrangements of the four sample patches. Recall our goal is to use such a small set 

while preserving the global distribution pattern of the input texture in a synthesized 

texture. In texture synthesis, ω-tiles are used to tile a large area from left to right and 

top to bottom. We use the set of patches F={R,G,B,Y} obtained from S to form blocks 

and then to extract intermediate tiles to derive ω-tiles.  

 

 

4.1 Sets of 1, 4, and 8 Tiles 

 
 
It is clear that the smallest such set with only 1 ω-tile that is generated from a block 

with the same four patches will not serve our purpose, while the largest such set with 

44 is unnecessary. Figure 4.1 shows examples of a set of 4 ω-tiles, and a set of 8 ω-

tiles that can tile any large area. However, for the former, once the top-leftmost ω-tile 

is laid, the rest of the ω-tiles are also determined from left to right, top to bottom; for 

the latter, there is an additional choice of ω-tile for each one at the leftmost column. 

Thus, both tend to generate undesirable repetitive patterns. One approach to overcome 

this is to take the intermediate tile that generates each ω-tile in Figure 4.1 to compute 



 Chapter 4 Tile Set Formation
 

 27

another ω-tile using a different O. This way effectively doubles the number of ω-tiles, 

but provides at least two choices of tiles at each tiling step. 
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(a) A set of ω-tiles of size 4

(b) A set of ω-tiles of size 8  
 

Figure 4.1 Sets of ω-tiles of size 4 and size 8. 
 

 
 
4.2 Sets of 16 and 32 Tiles 

 
 
Alternatively, we discuss in the following an approach to generate directly a set of 16 

ω-tiles that is effective in synthesizing textures that preserve the global distribution of 

the input texture. With such a set, there are always at least two choices of ω-tiles at 

each tiling step of the top row and the leftmost column. We can again have a variant 

to this where each intermediate tile is used to generate two ω-tiles using two different 

O  to obtain a total of 32 ω-tiles. This larger set provides at least 2 choices of ω-tiles 

at each tiling step to synthesize a texture.   
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Figure 1.1 shows a possible set of ω-tiles of size 16, and Figure 4.2 shows two other 

examples of the same size created with the same design principle. The following 

details such principle as four properties of the sets of 16 ω-tiles that can tile any large 

area without seams across the boundaries of ω-tiles. One can possibly devise other 

properties to obtain different kinds of ω-tile sets of possibly different sizes too. 

 

An ω-tile has four corners contributed by patches in F. We use a tuple , , ,− − − −  of 

four elements to capture the four corners where the first element captures its top-left 

corner; second element, bottom-left; third element, top-right; and fourth element, 

bottom-right. We use “–” in a tuple to mean “don’t know currently”. For example, we 

have , , ,R G − −  to mean a tile with left column occupied by R on top of G, while we 

have no information about its right column. Let a b↓ , where ,a b∈F, denotes there 

is no tuple of the form , , , .a b − − For example, we use R Y↓  to mean no tuple of the 

form , , ,R Y − −  in the set of ω-tiles. In generating a set of ω-tiles, we adopt the 

following four properties:  

(1) Each ω-tile , , ,a b c d where , , ,a b c d ∈ F is such that ,  ,a b a c≠ ≠  

b d≠ and .c d≠  That is, no two quadrants sharing a side are from the same 

patch of F.   

 

(2) (i) For any a ∈F, there is one 'a ∈F, such that  'a a↓  and 'aa ≠ ; (ii) for any 

,a b∈ F and ,a b≠ we have 'a a↓  and 'b b↓  where ', 'a b ∈F and ' '.a b≠  In 
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other words, each patch placed at the top-left quadrant of a ω-tile has a 

forbidden counterpart at the bottom-left quadrant, and two different patches 

have different forbidden counterparts.  

 

With the above two properties, we have two types of situations for distinct 

members , , ,a b c d ∈F: (i) ,  ,  a b b c c d↓ ↓ ↓ and d a↓  in one (such as Figure 4.2(a)) 

and (ii) ,  ,a b b a↓ ↓   and c d d c↓ ↓  (such as Figure 4.2(b)) in the other. Also, there 

are only 4 2 8× =  possible tuples , , ,a b − − where .a b≠   

 

(3) For each , , ,a b − − in the set, we can find a tuple , , ,a b− − in the set too, and 
vice-versa.  

 
 

From property (3), we have, for example, , , , ,R G G −  , , , ,R G B −  , , ,R B G − and 

, , ,R B B −  as in Figure 4.2(a). There are now 16 tuples with “don’t know currently” 

their fourth elements. The next property defines them: 

 

(4) For each of the 16 tuples , , , ,a b c − we select a d, where neither b d↓ nor 

c d↓ is true, to obtain one ω-tile , , , .a b c d   

 
 

Continuing with the example up to property (3), we get , , , ,R G G Y , , , ,R G B Y  

, , ,R B G Y and , , ,R B B R where the first and the last tuples have the alternative 

choices of , , ,R G G B and , , , ,R B B Y respectively. Formally, we show in the next 
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paragraph that property (4) is well defined in generating sets of ω-tiles such as those 

in Figure 4.2. 

 

There are two types of tuples obtained from properties (1) to (3): , , ,a b b −  and 

, , ,a b c −  where , ,a b c ∈F and .a b c≠ ≠  For , , , ,a b b −  it is clear that property (4) 

has two choices to assign a patch to the fourth element, and thus there is no issue. 

For , , , ,a b c − we derive from property (3) that a c↓  is not true. Thus, by property 

(2)(i), a d↓  for a unique d ∈ F { , , }.a b c−  By property (2)(ii), neither b d↓  nor 

c d↓ is true, so property (4) can thus generate , , ,a b c d  (and possibly , , ,a b c a  if 

neither b a↓  nor c a↓  is true).  

 

We next show that a set W of ω-tile obeying the four properties can tile any large area 

without seams across boundaries of ω-tiles. That is, at any tiling step to place a tile at 

position (i, j), i.e. row i and column j, we can find one in W to match (if any) the 

bottom side of the tile at (i–1, j), and (if any) the right side of the tile at (i, j–1). If the 

needed tile is of the form , , , ,a b b −  then property (4) applying to the tile at (i, j–1) 

means that a b↓ is not true, and thus the needed tile is in W by properties (1) to (3). If 

the needed tile is of the form , , ,a b c −  where ,a b c≠ ≠ then we have as before 

a b↓  is not true, and a c↓  is not true by property (4) applying to the tile at (i–1, j), 

and thus the needed tile is in W by properties (1) to (3). 
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(b)  

Figure 4.2 Examples of ω-tile sets obeying properties (1) to (4). In (a), we use 
,R Y↓  ,G R↓  ,B G↓  and ;Y B↓ in (b), we use ,R Y↓  ,Y R↓  ,B G↓  and .G B↓  

 
 
 
4.3 Sets of 36 and 72 Tiles 

 
Here we still use a tuple , , ,− − − −  of four elements to capture the four corners of an 

ω-tile.  We use “ | ” to denotes there are some options for choosing the elements. For 
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example, we have | , , ,a b − − −  to mean we can choose either a or b for the first 

element of this tuple. To form the sets of 36 and 72 tiles, we still adopt the property (1) 

of the Section 4.2. That is, each ω-tile , , ,a b c d where , , ,a b c d ∈ F is such that 

,  ,a b a c≠ ≠  b d≠ and .c d≠   

 

We construct the tile set by counting the number of possible tuples occurring in each 

position (i, j). Once the tile set is formed such that in each tiling step user can find at 

least a feasible tile, a large plane can be textured without seams using it. For the tuple 

, , ,− − − −  at position (i, j) where i ≠1 and j ≠1, the tuples at positions (i–1, j) and (i, j-

1) become joint constraints for us to choose its four elements. For its first two 

elements in tuple , , ,a b − − , where ba ≠ , there are in total 12 choices. According to 

our tiling scheme, the third element of the tuple in position (i, j-1) is the same as the 

second element of tuple in the position (i-1, j).  Due to their joint constraint, for the 

tuple in position (i, j) which has chosen its first two elements, there are 

correspondingly three choices for its third element. Therefore, determined by the first 

three elements (in the format of , , ,a b c −  and , , ,a b b − ), we need 12×3 types of 

tuples to form the tile set for all positions. These tuples can be divided into two 

patterns , , , |a b c a d  and , , , | |a b b a c d  (according to whether the second and third 

elements are the same), where a, b, c and d are distinct members of F.  For each of 

such 36 types of tuples, to determine its fourth element we can choose one format 

from its corresponding pattern. For example, tuple , , ,R G G Y  is one chosen from 

the pattern , , , | | ,R G G R B Y  and tuple , , ,R G B Y  is one chosen from the 
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pattern , , , |R G B R Y . Although this step randomly chooses one from the 

corresponding pattern, it will not create irresolvable constraints for the following 

tiling steps, because during defining the first three elements of the tuples, we have 

counted and created all possible combinations. Thus, we form the set of 36 tiles, and 

during each tiling step, user can use at least one feasible tile from the tile set for each 

position (i, j), where i ≠1 and j ≠1 as the tile set of 36 tiles satisfies all possible 

constraints in positions (i–1, j) and (i, j-1). In this way, for the position in the leftmost 

column and top row except that in top left corner, there are 3 available tiles from the 

tile set as there is only one directional constraint for user to choose its four elements.  

 

To form the tile set with at least 2 choices of ω-tiles at each tiling step, we can apply 

two methods. First, as we have discussed, for each intermediate tile, we generate two 

ω-tiles using different C to obtain a total of 72 ω-tiles from the above 36 ω-tiles. 

Second, for the two patterns , , , |a b c a d  and , , , | |a b b a c d , we choose both 

formats from the former and two out of three from the latter. Therefore, using the 

predefined first three elements, we have two choices for the fourth element for each 

tuple. In this way, we create the set of 72 ω-tiles, which has the same property as that 

created with the first approach.  

 

In this chapter, we present methods to form various tile sets, from which we can tile 

the whole plane. We focus on our presentation about the formation of tile set of 16 

tiles, as we apply this method to synthesize various images of different patterns in our 

experiment.  In the following chapter, we will introduce our experimental details and 

results.  
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                                  Chapter 5 Experimental Results  

 

We implement our ω-tile generation algorithm using C++ under MS Windows on a 

Pentium P4 1.6GHz with 256 MB main memory.  The sample textures are from MIT 

VisTex set [MIT] and Texture Library of Paul Bourke [Bourke]. Section 5.1 shows our 

tiling process in a graphics user interface (GUI). Section 5.2 presents the synthesized 

results for samples of various patterns, the result comparison between ω-tile approach 

and Wang tile approach, and the results created with the tile sets of different size. 

Section 5.3 discusses some limitations of this algorithm and the possible solutions. 

Refer to our project webpage: http://www.comp.nus.edu.sg/~tants/w-tile/ for more 

results of larger synthesized textures and comparisons.  

 

Compared with other techniques, this algorithm is quite trivial to be implemented. 

Although the results currently shown in our experiments are synthesized without 

hardware support, the synthesis speed is still very fast. Usually, the process of tiling a 

4-by-4 area from 16 ω-tiles each of 64×64 pixels only needs about one minute. Most of 

the time is spent on searching the appropriate patches O to replace the area of C within 

the cutting curve of each tile. In application, users can synthesize large space textures 

by using our algorithm to generate ω-tiles in the preprocessing stage. That is, user can 

create the set of tiles of appropriate size in the preprocessing stage, keep the tile 

combination rule and then tile the plane on the run.  
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5.1 Tiling Process Overview  

 

In implementation, we provide a friendly and easy-to-use graphics user interface (GUI) 

to synthesize the images. In this section, we present this GUI showing the whole 

process of the tiling framework from uploading the input sample to generating the 

output image plane (see Figure 5.1).  

 

 

Figure 5.1 Overview of tiling process in graphics user interface (GUI) 
 

Figure 5.1 demonstrates that a user can easily synthesize a nice image with our 

technique. User first loads one sample (or two samples to create multiple patterns) in 

the North West window. Then four image patches are extracted from the sample in the 

West South window. The pop-up dialog bar is for user to choose the number of tiles in 
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the tile set. The Size controls the dimension (width and height) of the image patch 

obtained from the source. The dialog bar docked at the bottom shows the indices on 

each intermediate tile I, which are listed in the SW, SE, NW, NE order. Then in the 

North East part, for each tile, the windows show the intermediate tile I, the targeted 

image patch O from the sample, the shape of the cutting curve and the final seamless 

tile after cutting. User can choose searching the target patch or randomly cutting them 

from the sample. At the same time, in the pop-up menu, user can choose various 

methods to assign the weights for the graph in seeking the cutting curve. The dialog bar 

shows the file names of the seamless tiles after cutting. Finally in the South East 

window, it shows the synthesized image created by the tile set. User can save the 

generated results in .BMP format.    

 

5.2 Synthesized Results  

 

The results of the synthesis process for a wide range of input textures and some result 

comparisons are shown in this section. This algorithm is particularly effective for 

stochastic textures, and the performance is also good on semi-structured textures. For 

structured textures, such as bricks, mostly due to the way that we randomly combine 

image patches F to create the tiles, the results may not appear fine.  

 

5.2.1 Stochastic Texture Samples 

 
The following figures show a group of synthesized results of stochastic pattern. All the 

results are generated by tiling a 4-by-4 area with the set of 16 tiles. The tile choice in 
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the leftmost column and top row is stochastic from two options, while the tile choice in 

the other place is deterministic. The samples are all positioned at top left corner.  

 

 

 

 

                          

  

               

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2 Texture synthesis results of our ω-tile approach with input of stochastic 
pattern. In each case, top left corner is the input texture of 256×256 pixels, and the 
result is a 4-by-4 area tiled with 16 ω-tiles each of 128×128 pixels.  
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Figure 5.3 Texture synthesis results of our ω-tile approach with input of stochastic 
pattern. In each case, top left corner is the input texture of 256×256 pixels, and the 
result is a 4-by-4 area tiled with 16 ω-tiles each of 128×128 pixels. 
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     (g)                                                                     (h) 

 
 
Figure 5.4 Texture synthesis results of our ω-tile approach with input of stochastic 
pattern. In each case, left is the input texture of 128×128 pixels, and right is the 
result of a 4-by-4 area from 16 ω-tiles each of 64×64 pixels. 
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From these examples, it can be illustrated that our approach is quite effective to tile 

stochastic textures. The synthesized images are quite naturally smooth without local 

line seams and the pattern of high repetition. At the same time the cutting curve can 

efficiently preserve the pattern of the primitives in the sample images S. In some 

samples such as (d) and (h) in Figure 5.4, the cutting curve may not have a better choice 

but cut through the primitives of the image. The visual effects of such results are still 

quite good because the stochastic distribution of such a lot of small primitives can mask 

the artifacts in the image. Then in the following subsection, we present some semi-

structured examples created with our technique.  

 

5.2.2 Semi-structured Texture Samples  

 

The following figures show the results of semi-structured samples. From the examples 

shown here, we can find the advantage of our technique to tile textures with such 

distribution. Same as the above section, all the results are generated by tiling the 4-by-4 

area with the set of 16 tiles; the tile choice in the leftmost column and top row is 

stochastic from two options, while in the other places is deterministic. 
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Figure 5.5 Texture synthesis results of our ω-tile approach with input of semi-
structured pattern. In each case, top left corner is the input texture of 256×256 
pixels, and the result is a 4-by-4 area tiled with 16 ω-tiles each of 128×128 pixels. 
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Figure 5.6 Texture synthesis results of our ω-tile approach with input of semi-
structured pattern. In each case, top left corner is the input texture of 256×256 
pixels, and the result is a 4-by-4 area tiled with 16 ω-tiles each of 128×128 pixels. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 5.7 Texture synthesis results of our ω-tile approach with input of semi-
structured pattern. In each case, left is the input texture of 128×128 pixels, and 
right is the result of a 4-by-4 area from 16 ω-tiles each of 64×64 pixels. 
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Semi-structured textures are always the hardest for statistical texture synthesis 

[Efros01]. Because such textures have repetitions while without excessive repetitions, 

the pixel based statistical sampling method cannot efficiently find appropriate 

neighborhood for the local pixels and thus leads to “wrong” targets. At the same time, 

simple tilting cannot create good results for this class either, as for the distortions across 

the combined patches. Our technique efficiently preserves the patterns of the sample 

images by using patches to synthesize image, and preserves the smooth transition 

across the patches using the tile combination scheme. Therefore, the synthesized results 

are quite natural to human visual perception. For the last category, we present some 

synthesized results for structured textures.   

 

5.2.3 Structured Texture Samples  

 

The following figures show the results for structured textures. We can find the results 

are fairly good for some samples. Same as the above section, all the results are 

generated by tiling the 4-by-4 area with the set of 16 tiles; the tile choice in the leftmost 

column and top row is stochastic from two options, while in the other place is 

deterministic. 
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Figure 5.8 Texture synthesis results of our ω-tile approach with input of 
structured pattern. In each case, top left corner is the input texture of 256×256 
pixels, and the result is a 4-by-4 area tiled with 16 ω-tiles each of 128×128 pixels. 
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Figure 5.9 Texture synthesis results of our ω-tile approach with input of 
structured pattern. In each case, left is the input texture of 128×128 pixels, and 
right is the result of a 4-by-4 area from 16 ω-tiles each of 64×64 pixels. 
 
 
Usually, for structured texture that has highly repetitive pattern, simple tiling has been 

able to create good results. Due to requirement of our method that user randomly 

combines four image patches to create the intermediate tiles, it will create mismatch in 

structure between the four image patches. Cutting curve as well as cutting path is not 

effective to adapt such mismatch. Therefore, the generated image cannot show quite 

regular pattern. Examples of (a), (c), (d) in Figure 5.9 and keyboard in Figure 5.8 

illustrate this problem. However, if the pattern of sample image is quite complicated, 

such as the wire netting and wallpaper in Figure 5.8 or the patterns have slim horizontal 

and vertical lines, such as the right fabric in the second row of Figure 5.8, the mismatch 

distortions will be masked by such details and can not be easily detected by human eyes. 

(a) (b)

(c) (d)



 Chapter 5 Experimental Results
 

 46

Therefore, in some of the structured examples, our technique can also create good 

results. 

 

From our tests on input textures of stochastic, semi-structured to structured nature, we 

observe in general that synthesized textures from ω-tiles can preserve well the global 

distribution of the underlying pattern of the input textures, especially for the first two 

types. For input texture of structured nature, such as a brick texture of a wall, the 

alignment of the bricks may not be good in a set of ω-tiles. In such a case, it may be 

necessary to interactively rather than randomly select the four patches in F when 

creating ω-tiles. In general, for a highly structured input texture, our approach can be 

inferior, as it tends to “destroy” the structure with more patterns embedded in each ω-

tile.   

 

5.2.4 Result Comparison   

 

Two comparisons are presented in the subsection. First we compare results generated in 

Wang tile approach and ours. Then for the variation of the size of the tile set, we 

present one example to show their visual difference. More examples of result 

comparison can also be found in our project webpage [Wen04]. 

 

Wang tile Vs ω-tile 

 

Burke has implemented Cohen’s Wang tile approach in [Burke03]. In the following 

Figure 5.10, the results of Wang tile approach are generated by the code from 

http://www.mle.ie/~rob/wang/.  
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            (a) 

  

 
            (b) 

  

     
           (c) 

  

 
           (d) 

  
 
Figure 5.10 Comparison of synthesized textures by Wang tiles and ω-tiles. In each 
case, left shows input texture of 128×128 pixels, middle shows a result of tiling a 4-
by-4 area selected from 18 Wang tiles each of size 64×64 pixels, and right shows a 
result of tiling a 4-by-4 area selected from 16 ω-tiles of size 64×64 pixels. 
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Note that we do not use the function of one pixel overlap across the tiles designed in 

Paul’s GUI as this overlap creates obvious line seams in the output image. The tile code 

list for placing the Wang tiles in his GUI is created by us according to the tile 

combination rule of Wang tile approach. Our approach uses four patches each of size 

64×64 pixels whereas Wang tile approach uses four patches each of size 45×45 (45 is 

the integer most close to 2/64 ). Both approaches generate tiles of size 64×64 pixels. 

  

In general, our approach works quite well when applied to texture synthesis and 

produce results that are equal or better than those created by Wang tile approach for 

stochastic and semi-structured textures. For the sample (a) in Figure 5.10, the objects 

are small and stochastically distributed in the plane, thus the corner problem is hard to 

be detected. Therefore, both approaches achieve good visual effects. However, for all 

the first three samples, it is obvious that our approach can better preserve the 

distribution of objects in the image than Wang tile approach. Furthermore, the seams in 

ω-tiles are generally not very visible, especially for those input textures of stochastic 

and semi-structured nature. As for the fourth sample, the result of our approach may be 

no better than that of Wang tile approach because it embeds more patterns in each ω-

tile and thus breaks the structure.  

 

Furthermore, Figure 5.11 can illustrate obvious advantages of ω-tile approach over 

Wang tile approach. In this example, abrupt color changes occur at the narrow 

overlapping areas of the four patches in Wang tiles and they are quite noticeable as 

such seams always occur in the diagonal direction. It is also quite obvious that in the 

junctions of four patches in each Wang tile and the corners of adjacent Wang tiles, this 

approach cannot preserve continuous texture feature of the colorful waves and even 
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generates four discontinuous wave segments of distinct colors in some of these 

junctions/corners. However, the internal seams in ω-tiles are replaced by a wave texture 

from the wave sample to keep its feature continuous through cutting curve technique. 

The mismatches of the junctions in each side of ω-tile are also well controlled by 

careful searching for the texture O  from the large wave texture.  

 

  

 Figure 5.11 Visual comparison of two approaches to deal with corner problems. 
Left is the result by Wang tile approach and right is by ω-tile approach.   
 

 

Tile Set Variation  

 

One key parameter for our algorithm is the number of tiles in the tile set. As we have 

discussed in Chapter 4, 16 ω-tiles can tile the plane and in each of the tiling step except 

in the position of top row and leftmost column, there are only one tile available. We can 

obtain 32 ω-tiles, where each intermediate tile of the former tile set is replaced by 

different O. Using the approach introduced in Chapter 4, we can also create the tile set 

of 36 ω-tiles. By the same means, we can create the tile set of 72 tiles.  For the set of 36 

tiles, we still have only one option for each tiling step in the place except top row and 

leftmost column. While, for the set of 32 and 72 ω-tiles, there are two options for these 
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tiling places. In this section, we present one example in Figure 5.12 to show the visual 

difference of the synthesized images selected from different tile sets. The size of the 

sample is 128×128 pixels, ω-tiles are 64×64 pixels, and the synthesized results are 

512×512 pixels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 Synthesized leaves by tile sets of various size: input sample (a), tiling 
results created by tile set of 16 tiles (b), 32 tiles (c), 36 tiles (d) and 72 tiles (e) 

(b) (c) 

(d) (e) 

(a) 
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From the presented results, we can find the stochastic tiling with 16 ω-tiles has 

already created quite good visual result. Tiling with more ω-tiles such as 36 tiles does 

not show great difference, as we only texture an 8×8 area from the tile set. However 

when we select the tile sets of 32 or 72 tiles, as it texture the plane with each tiling 

step at least two optional ω-tiles, the results seem more natural. 

 
 
5.2.5 Multiple Source Images  

 

As our tile generation approach searches a new patch O to replace the central 

information of each intermediate tile I from the input sample S, we can create 

different image patterns by using multiple source images to replace some of the 

intermediate tile information. A valuable and interesting experiment is to create ω-

tiles with different levels of density or different shapes of primitives. In this way, the 

generated image plane will seem more natural or of more diverse patterns. One 

interesting example is shown in the following Figure 5.13. 

 

 

 

Figure 5.13 Image plane created by multiple sources  

(b) (a) 
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In this image, the background of the plane is textured from the image source of while 

flowers. Then in the appropriate positions, the tiles will use image patch from the 

yellow flowers to create the four characters of “PG04”. We can find the background 

plane is a naturally tiling with the white flower sample and the yellow flowers are 

elaborately decorated in the while flower plane.  

 

 

Although our tiling scheme is effective to synthesize images, it is also not a general 

approach that can synthesize all kinds of texture patterns. In the following section, we 

discuss some patterns that are not suitable to be tiled with our method.  

 
 
5.3 Limitations and Solutions   

 

There are two classes of images from which we cannot obtain satisfactory synthesized 

results. The first one is those samples that have quite fine texture primitives so that the 

whole image seems very smooth, but do not have the same distribution of intensity, 

such as the brown sugar in Figure 5.14 (a). The image has quite fine small grains of 

sugar, while intensity of the image gradually changes from bright to dark. Therefore in 

the synthesized result, the intensity gap across the image patches is visible. With the 

constraint of the intensity distribution, the tiling algorithm may not be a good solution, 

while the pixel based method would be a better choice as it can create each pixel 

prudentially. At the same time, for the input textures with a mess of relatively large 

tubes of 3 distinct bright colors -- cutting curve in such a case does not perform well 

either and the seams will be visible. The corresponding Wang tiles for this input have 

the same problem. 
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 (a)                                                 (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.14 Unsatisfactory examples  
 
 

The other class of sample is those that have inhomogeneous patterns, such as the input 

sample of Figure 5.14 (b). Our algorithm first randomly extracts four image patches. 

Therefore, the image patches cannot be smoothly combined. Even after eliminating the 

line seams, they may have quite different properties, such as colors, gradients. Pixel 

based method determines each pixel value from their neighborhood. While for this class 

of samples, the pixel has no direct relationship with its neighborhood and thus the 

mapping of pixel value between them is hard to be determined. Therefore, pixel based 

synthesis method cannot be applied to this class of samples either.  For such texture 

sample, we may segment it into several homogeneous components first and then extract 

image patches of F within each domain of distinct texture pattern. Such an approach 

will create the ω-tiles with multiple patterns from different domains of the sample 
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image. Through stochastically placing these ω-tiles of multiple patterns, we could 

preserve the color distribution of the sample image. 

 

In this chapter, we present comprehensive synthesized results created by our ω-tile 

approach. The efficiency of our technique has been verified by the examples, which 

have the nature of stochastic, semi-structured and structured patterns. We also 

compare the results created by Wang tile approach and our approach, and the results 

created by the sets of different size. At the same time, we introduce a method to create 

images using multiple sources. We discuss two unsuccessful cases with our approach 

and also propose proper solutions to them. In the next chapter, we summarize our 

thesis and discuss the improvement for our future work. 
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                                 Chapter 6 Conclusion 

 

In this chapter, characteristics of our tiling algorithm and its advantages are first 

summarized in Section 6.1. Then Section 6.2 discusses some directions for future 

research.  

 

6.1 Algorithm Summary  

 

Plenty of methods have been proposed to synthesize textures. However these 

algorithms often lay particular stress either on synthesis speed or on visual effect and 

hardly achieve satisfactory results on both aspects. This paper presents a novel 

technique to empower user to generate a small set of ω-tiles to real time synthesize a 

large texture. It proposes the use of cutting curve to be found in a large area to generate 

a seamless tile, and discusses a few schemes to generate a small set of 8, 16, 32, 36, or 

72 ω-tiles that can tile any large area without seams across the boundaries of ω-tiles. 

The approach allows the embedding of many more texture patterns of the input texture 

into the generated ω-tiles to synthesize textures with the underlying global distribution 

pattern of the input texture.   

 

We create small tiles in a novel means that guarantees the potential matching tiles to be 

combined smoothly in structure. Through searching new image patch and applying 

cutting curve, our approach not only successfully eliminates the visible seams in each 
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tile but also makes the corner contents under control. In addition, we adapt the graph 

cut technique to seek image cuts in a great domain to achieve more satisfactory results 

for visual perception. Furthermore, the tile combination rule investigated in this thesis 

can make the small ω-tiles stochastically placed in the output image, which can to a 

great extent preserve the natural pattern of the sample image. The experimental results 

presented in this thesis have also verified the efficiency of our technique. Generally, it 

can be concluded that this tiling approach has the following two special advantages 

over other algorithms, regarding to the synthesis criteria of the speed of synthesis 

process and the visual quality of synthesis result: applicable to real time applications 

where image synthesis are utilized when a small set of ω-tiles are generated in the 

preprocessing stage and able to create natural visual effect from the global perspective. 

 

6.2 Future Work  

 

There are some limitations and potential improvements for our future work.  

 

• Weighting Function for Graph Edge  

 

During seeking current cutting curve, we divide the intensity gap of pixels in adjacent 

edges by their gradients in two image patches. Therefore, we have taken the structure 

of primitives in the texture into account in defining the weights for the edges. 

However, we need to analyze more specifically the structure of patterns in the texture. 

For example, intuitively, the penalty value of such weights should be accumulated 

corresponding to the boundary length of the objects in the texture and finally 

determined by the size of objects.  
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One possible future work is to investigate the possibility of incorporating pattern 

detection in searching good cutting curves.  

 

• Tracks for Cutting Curve  

 

Currently, each ω-tile is created by superimposing a selected candidate patch O onto 

the intermediate tile I to compute the cutting curve. At the same time, to minimize the 

prominence of seams across and in the tiles, our approach needs to balance the 

demands of keeping the contents around the four sides of I and removing the two line 

seams in I. Thus the cutting curve is enforced to pass through the middle points of the 

four sides of I.  Therefore from a global view some good choices for the track of 

cutting curve may be lost. A good improvement for our approach is to free such a 

restriction. That is, we may need to modify the current combinations of the patches in 

F or shape of the tile I to modify the source and sink area in the overlapping graph of 

each tile. 

 

• Properties for Global Patterns 

 

To realize the objective of making the generated image globally smooth, we currently 

only consider avoiding periodic effect. There are some other factors such as scale and 

orientation to be explored. While, by the constraint of the approach of creating tiles, 

our algorithm is not very effective to deal with structured textures. One improvement 

can be interactively specifying the image patches of our interest when extracting the 
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patches to create intermediate tiles  I. However, it is not necessary for us to apply 

such procedure to textures of other patterns.     
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