
XML QUERY PROCESSING: INDICES AND

HISTOGRAMS

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of National University of Singapore

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Qun Chen

September 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© Copyright by Qun Chen 2005

All Rights Reserved

ii

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Professor +++
(Principal Adviser)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Professor + + +

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Professor + + +

Approved for the University Committee on Graduate

Studies.

iii

Acknowledgements

I would first like to thank my mentor and research supervisor, Professor Andrew

Lim, for his enlightening guidance and consistent encouragement on my research

work. Secondly, I give special thanks to Professor Beng Chin Ooi and Professor

Chan Chee Yong for acting as my supervisors concerning amendments of this thesis.

Thirdly, I would like to thank the reviewers of this thesis, especially Professor Lee

Mong Li; their insightful comments help improve the quality of my work.

I am also owned much gratitude to many colleagues I ever worked with, Ong

Kian Win, Tang Ji Qing, Zhu Yi, Xiao Fei and Fu Zhaohui. Without them, my

research work and this dissertation could not have been done smoothly.

I also would like to give thanks to my labmates and friends, Wang Gang, Cong

Gao, Shi Rui, Zhang Gong, Zhu Xiaotian and others. Their precious friendship

and support makes my study an enjoyable experience.

Finally, I thank School of Computing, National University of Singapore for pro-

viding me with a world class study and research environment. For faculty members

who ever taught me courses and helped me professionally or administratively, I ap-

preciate you much.

i

Summary

As XML gains unprecedented popularity as the standard format for presenting

and exchanging information over the Internet in both the commercial and academic

community, the XML database floats as a suitable, semi-structured alternative to

store data. The inherent structure of XML documents renders traditional query

optimization techniques for relational databases inapplicable or inadequate in the

new context. This dissertation investigates two basic tools for query optimization

in the XML databases: indices and histograms.

It begins with an adaptive structural summary for general graph structured

data, the D(k)-index, which facilitates queries by pruning search space. As its

predecessors, 1-index and A(k)-index, D(k)-index is also based on the concept

of bisimilarity. However, as a generalization of the 1-index and A(k)-index, it

possesses the adaptive ability to adjust its structure according to the query load.

This dynamism also facilitates efficient update algorithms, which are crucial to

practical applications of structural indices, but have not been adequately addressed

in previous work. Experiments are conducted to show the improved performance

of search and update operations on D(k)-index over its predecessors.

Existing encoding schemes proposed for XML to enable element-set-based queries

mainly target the containment relationship, specifically the parent-child and ancestor-

descendant relationship. The presence of preceding-sibling and following-sibling

location steps in the XPath specification, which is the de facto query language

for XML, makes the horizontal navigation, besides the vertical navigation, among

nodes of XML documents a necessity for efficient evaluation of XML queries. Our

work enhances the existing range-based or prefix-based encoding schemes such that

all structural relationship between XML nodes can be determined from their codes

alone. Furthermore, an external memory index structure based on the traditional

B+-tree, XL+-tree(XML Location+-tree), is introduced to index element sets

such that all defined location steps in the XPath language, vertical and horizontal,

top-down and bottom-up, can be processed efficiently. The XL+-tree under the

range or prefix encoding scheme actually share the same structure; but various

search operations upon them may be different as a result of the richer information

provided by the prefix encoding scheme. Our experiments demonstrate the supe-

rior performance of the XL+-tree over existing external-memory index structures

for XML query processing.

Summary data, or histograms, on XML documents can provide critical informa-

tion for query optimizers of XML databases. Traditional histograms for relational

database fall short, since they do not address path patterns of XML documents.

The dissertation also makes contributions in this aspect. It proposes a structural

XML histogram, namely SHiX, which uses a novel framework for estimating the

selectivity of twig path expressions on graph-structured XML databases. Instead

of exploiting bisimilarity or divide-and-conquer strategy, which typify previous ap-

proaches, SHiX keeps both the numeric relationship(the average number of chil-

dren) and forward stability information in the summary graph. Efficient algorithms

to build SHiX histograms are also presented. Extensive experiments on both the

real and synthetic XML data validate the effectiveness of the SHiX approach.

i

Contents

Acknowledgements iv

Summary v

1 Introduction 1

1.1 XML Data Model . 1

1.2 The XPath Query Language . 2

1.3 Optimization Techniques for XML Query Processing 4

2 Structural Summary 7

2.1 Introduction . 8

2.2 Previous Work on Structural Summary 11

2.3 Bisimilarity . 12

2.4 D(k)-Index . 13

2.4.1 Introduction to the D(k)-Index 13

2.4.2 Construction . 17

2.5 D(k)-Index Updating . 21

2.5.1 Subgraph Addition . 22

2.5.2 Edge Addition . 23

2.5.3 Other Update Operations upon XML 27

2.5.4 The Promoting Process . 29

ii

2.5.5 The Demoting Process . 35

2.6 Experimental Study . 36

2.6.1 Evaluation Performance . 37

2.6.2 Updating Performance . 39

2.6.3 Maintaining A(k) and D(k)-Index 42

2.7 Summary . 47

3 Indexing XML for Xpath Querying in External Memory 51

3.1 Introduction . 52

3.2 Enhanced Encoding Schemes . 55

3.2.1 Range-Based Encoding Scheme 55

3.2.2 Prefix-Based Encoding Scheme 58

3.3 The XL+-Tree for Range Encoding Scheme 62

3.3.1 Search Operations on XL+-tree 63

3.3.2 Update Operations on Range-Based XL+-tree 77

3.4 The XL+-Tree for Prefix Encoding Scheme 79

3.5 Experimental Results . 82

3.5.1 XL+-Tree vs R-Tree . 84

3.6 More Related Work . 85

3.7 Summary . 89

4 SHiX: A Structural Histogram for XML Databases 90

4.1 Introduction . 91

4.2 Background . 93

4.3 SHiX Framework . 94

4.3.1 SHiX Summary Model . 95

4.3.2 SHiX Estimation Framework 96

4.4 Constructing Effective SHiX . 100

iii

4.4.1 Optimal SHiX . 100

4.4.2 A Greedy Approach . 101

4.5 More Discussion on SHiX: Estimating and Updating 103

4.5.1 Estimation on SHiX . 103

4.5.2 Updating SHiX upon Insertion of New Documents 105

4.6 Experimental Study . 107

4.6.1 Quality Metric of Estimation 107

4.6.2 SHiX Estimation Performance 108

4.6.3 Comparison with Xsketch 111

4.6.4 SHiX Updating . 112

4.7 Related Work . 114

4.8 Summary . 116

5 Conclusion and Future Research 117

Bibliography 120

i

List of Tables

1.1 Semantics of XPath Axes . 3

3.1 Query Loads on Synthetic Data . 84

List of Figures

1.1 An Example XML Data Model . 2

2.1 An XML Document with Reference Edges 8

2.2 D(K)-Index Construction Example 21

2.3 1-Index Update vs D(k)-Index Update 24

2.4 Evaluation Performance Comparison between the D(K)-index and

the A(k)-index on Xmark Data Before Updating 38

2.5 Evaluation Performance Comparison between the D(K)-index and

the A(k)-index on Nasa Data before Updating 39

2.6 Update Performance Comparison Between A(k) and D(k) on Xmark

Data . 42

2.7 Update Performance Comparison Between A(k) and D(k) on Nasa

Data . 43

2.8 Size Increase of A(k)-Index over Incremental Updates on Xmark Data 44

2.9 Size Increase of A(k)-Index over Incremental Updates on Nasa Data 44

2.10 Performance Degradation of A(k) and D(k)-index over Incremental

Updates on Xmark Data . 46

2.11 Performance Degradation of A(k) and D(k)-index over Incremental

Updates on Nasa Data . 46

2.12 Maintenance Cost of A(k) and D(k)-index on Xmark Data 48

2.13 Maintenance Cost of A(k) and D(k)-index on Nasa Data 48

i

2.14 Performance Improvement after Maintaining A(k) and D(k)-index

on Xmark Data . 49

2.15 Performance Improvement after Maintaining A(k) and D(k)-index

on Nasa Data . 49

3.1 The Range Encoding of An XML Tree 56

3.2 The Prefix Encoding of An XML Tree 59

3.3 The Overall Structure of XL+-tree 64

3.4 A working instance of searching D(v)’s first child 70

3.5 A working instance of searching D(v)’s first following sibling 73

3.6 A working instance of searching D(v)’s ancestors 77

3.7 The new approach of searching D(v)’s ancestor under the prefix

encoding scheme . 81

3.8 The DTD Definition of Synthetic Data 82

3.9 I/O Performance on Xmark Data 86

3.10 Combined I/O and CPU Performance on Xmark Data 86

3.11 I/O Performance on Synthetic Data 87

3.12 Combined I/O and CPU Performance on Synthetic Data 87

4.1 A Graph-Structured XML Data Model 93

4.2 An Example SHiX Model . 96

4.3 Computing pertb on Multiple Embedding of A Predicate 105

4.4 Performance of SHiX on Simple Path Expressions 109

4.5 Performance of SHiX on Twig Pattern Expressions 111

4.6 SHiX vs Xsketch . 113

4.7 SHiX Update Performance upon Insertion of New Document 114

ii

Chapter 1

Introduction

In recent years, the eXtensible Markup Language(XML)[8] has become the

dominant standard for exchanging and querying documents over the World Wide

Web. XML is an example of semi-structured data [4, 6]. XML data do not conform

to traditional data models, such as relational or object-oriented models. Instead,

the underlying data model of XML data is an ordered labeled tree. XML documents

consist of hierarchically nested elements, which can be either atomic, for instance

raw character data, or composite, for instance a sequence of nested subelements.

Tags stored with the elements describe the semantics of the data. Thus, XML

data, are hierarchically structured and self-describing.

1.1 XML Data Model

An XML document is usually parsed into an ordered labeled tree, with each

node in the tree corresponding to an element, an attribute or a text data. Each node

is labeled with the element or attribute name. Text data nodes are given a distin-

guish label, VALUE. Edges between nodes represent element-subelement, element-

attribute or element-value relationship. Each node is also assigned a unique id.

1

CHAPTER 1. INTRODUCTION 2

An example XML data model is shown in Figure 1.1. It is worth noting that ref-

erences can be established between XML nodes via the ID/IDREF construct or

Xlink syntax. An XML database consists of a forest of such trees.

1

2 3 4

5 6 7 8 9 10

11 12 13 14

publication

book book paper

Title

coauthor
coauthor

Title Title

coauthor

firstname lastname keyword keyword

15

VALUE
“XML Query”

Figure 1.1: An Example XML Data Model

1.2 The XPath Query Language

A variety of query languages [1, 2, 3, 4, 5] have been proposed to query XML

data. All of these query languages are built around the XPath specification [7].

The core of Xpath language, the path expression, is used to locate nodes in

a XML tree. A path expression begins with a context node(not necessarily the

root), which is the starting point of the tree traversal, and consists of a series

of location steps. Given a context node, a step’s axis establishes the subset of

document nodes that are reachable from this context node via the specified axis.

This set of nodes provides the context nodes for the next location step. There

are totally 13 different axes defined in Xpath:namely, child, parent, descendant,

CHAPTER 1. INTRODUCTION 3

Axis Results
child direct child nodes

descendant recursive closure of child
descendant-or-self descendant plus self

parent direct parent node
ancestor recursive closure of parent

ancestor-or-self ancestor plus self
following-sibling following nodes in document order, having the same parent
preceding-sibling preceding nodes in document order, having the same parent

following following nodes in document order, excluding descendant nodes
preceding preceding nodes in document order, excluding ancestor nodes
attribute attribute node

namespace namespace node
self self node

Table 1.1: Semantics of XPath Axes

ancestor, following-sibling, preceding-sibling, following, proceeding, descendant-or-

self, ancestor-or-self, self, attribute, namespace. Semantics of XPath axes are de-

scribed in Table 1.1. The document order in an XML tree orders its nodes cor-

responding to a sequential read of nodes by a preorder traversal. For instance,

in the tree representation of an XML document in Figure 1.1, the evaluation of

the path expression P1: //publication/ child::book/descendant::keyword returns

node {13}; the evaluation of P2: //publication/descendant::title/following-

sibling::coauthor returns nodes {6, 8, 10}; and the evaluation of P3: //keyword/

ancestor::paper/child::coauthor returns node {10}.
The primitive path pattern of interest to us is regular path expression. A node

path in an XML tree T is a sequence of nodes, n1n2 · · ·np, such that an edge exists

between nodes ni and ni+1, for 1 ≤ i ≤ p − 1. A label path is a sequence of labels

l1l2 · · · lp. A node path matches a label path if label(ni) = li, for 1 ≤ i ≤ p. A

label path, l1l2 · · · lp matches a node n if there is some node path ending in node n

that matches l1l2 · · · lp. A regular path expression, R, is defined in the usual way

in terms of sequence(.), alternation(|), repetition(*) and optional expression(?), as

follows:

CHAPTER 1. INTRODUCTION 4

R =
∑

G | |R.R|R|R|(R)|R?|R∗

in which the symbol matches any label in T . And we denote the regular language

specified by R as L(R). We say that R matches a node, n, if the label path for

some word in L(R) matches a node path ending in n. The result of evaluating R

on T is the set of nodes in T that match R. For example, the path expression,

publicaion.book.title, evaluated on the tree in Figure 1.1, will return {5, 7}; the

more general path expression, publication. .title, finds titles of all kinds of pub-

lication. Here, the optional allows the query to ignore the irregularities in the

data. This expression matches nodes {5, 7, 9}.

1.3 Optimization Techniques for XML Query Pro-

cessing

In this section, we only briefly review existing techniques to facilitate XML

query processing. More detailed discussion will be presented in the corresponding

chapters later.

Due to the prevalence of relational databases, there have been lots of work on

storing and querying XML documents using relational database systems [10, 11, 12,

13, 14, 15, 16, 17]. These techniques deal with how to ”shred” XML documents

into relations and translate XML queries into SQL queries over those relations.

Please note that this appoach of taking advantage of relational query engine to

optimize XML queries is beyond the scope of this dissertation. Instead, our work

focus on the optimization techniques for querying XML data ”naively” stored on

the XML data model.

Existing indexing proposals for queries on XML data models can be categorized

into two groups. One of them is to build the structural summary of the XML

document, which has the form of a labeled directed graph. Typically, each node

CHAPTER 1. INTRODUCTION 5

in the structural summary corresponds to an equivalence class. Data nodes in the

same equivalence class have the same or similar incoming paths. Therefore, path

queries on the source data can be instead performed on the structural summary,

which can be potentially much smaller depending on regularity of surce data. The

structural summary has been shown to be effective in pruning the search space

while evaluating non-branching regular path expressions. The other approach is

based on node encoding. It assigns unique codes to nodes of the XML data model

such that structural relationship between nodes can be decided from their codes

alone. Such encoding technique enables the element-set-based query processing,

which does not involve traversing the data graph. For instance, given a simple

regular path expression P , A.B, suppose that we have element sets �1 and �2

for label A and B respectively; all node elements in �1 have the label A and all

node elements in �2 have the label B. Then, all pairs of elements satisfying the

parent-child relationship in �1 and �2 can be found by the join operation, namely

structural join in the literature, since from codes of two elements we can decide

whether they are parent and child. Structural join has been established to be the

building block for more complex XML query processsing.

Another important problem of XML query optimization concerns building effec-

tive summary statistics, histogram, for XML data. Since XML queries can usually

be presented as twig patterns, it is of primary importance to estimate the size of

twig path expressions on XML data accurately and efficiently.

The remainder of this dissertation is organized as follows. In chapter 2, we

propose an adaptive structural summary for XML data, D(k)-Index. Construction

and update operations on D(k)-index and experiments results are also presented.

We investigate indexing techniques for element-set-based XML query processing in

chapter 3. Specifically, enhanced range-based and prefix-based encoding schemes

CHAPTER 1. INTRODUCTION 6

for XML data are introduced. We also propose the external-memory index struc-

ture, XL+-tree, which indexes element sets such that all location steps specified in

the XPath language can be implemented I/O efficiently. Chapter 4 is contributed

to building effective histograms for XML data. A new histogram model, SHiX,

is presented as a robust result estimater of twig path expressions over the gen-

eral graph-structured XML data. Finally, we conclude our work and give a few

suggestions for future research in chapter 5.

Chapter 2

Structural Summary

Querying XML document usually means traversing the structured data to lo-

cate target part of documents. Typically, a data node is selected by a path expres-

sion if some path to the node has a sequence of labels matched by the expression.

The navigation of the structure underlying XML is therefore an essential compo-

nent for querying these data. A naive evaluation of path expressions that scans all

data is obviously computationally expensive. A structural summary [18, 19, 20, 21]

can be used to prune the search space significantly, thus improving the evaluation

performance. Alternatively, an index graph, consisting of a structural summary

along with stored mapping from index nodes to data nodes, may be directly used

to evaluate such path expressions. This chapter considers the problem of building

an adaptive structural summary for the more general graph structured data, of

which XML tree-structured data is a special case. It was mentioned in the intro-

duction chapter that references can be established between XML tree nodes. If

these references are treated as normal edges, the underlying XML data model is

actually a graph. In Figure 2.1, a portion of an XML document about movies

with references is represented. The solid edges, which are tree edges, represent

containment relationships between nodes. Non-tree edges(shown as dashed lines)

7

CHAPTER 2. STRUCTURAL SUMMARY 8

represent reference relationships. In this chapter, these two types of edges are not

differentiated.

name

categorytitlecategorytitle

moviemovie

actor

 actortitle

moviename

title

moviename

moviedirectordirector

MovieDB

ROOT

 1

 0

title

22

name

21201918171615

1413121110 98 76

5 4 3 2

category

Figure 2.1: An XML Document with Reference Edges

2.1 Introduction

Existing structural summaries for graph-structured data are based on the notion

of bisimilarity [24, 25]. Two nodes are bisimilar if all label paths into them are the

same. Structural summaries consist of the collection of equivalence classes. Nodes

in each equivalence class are bisimilar. The 1-index [20] is an accurate structural

summary that considers incoming paths up to the root of the whole graph. The

1-index summary is safe and sound. Path expressions can be directly evaluated

in the index graph and can retrieve label-matching nodes without referring to the

original data graph. Unfortunately, 1-index structural summaries are usually quite

large and are considered not efficient enough to speed up the evaluation. Exploiting

the observation that long and complex paths tend to contribute disproportionately

CHAPTER 2. STRUCTURAL SUMMARY 9

to the complexity of an accurate summary structure, the A(k)-Index [21] relaxes

the equivalence condition and considers only incoming paths whose lengths are no

longer than k. By taking advantage of the similarity of short paths, the A(k)-Index

has been experimentally shown to have a substantially reduced index size. However,

the A(k)-Index becomes only approximate for paths longer than k. Therefore, a

validation process was introduced to extract exact answers from approximate index

graphs.

The performance of the A(k)-Index largely depends on how to choose the pa-

rameter k. If k is large, the resulting index graph tends to remain large. The big

size is a severe disadvantage for structural summaries. If we choose to use a small

k, the index graph’s size can be substantially reduced; but more queries should in-

volve validation process, which is very inefficient because it requires traversing the

source data. The key observation exploited by our new index proposal is that not

all structures are of equivalent significance. Some nodes in the source data may be

only traversing nodes, which aid in label path matching, but are never returned by

queries. There is obviously no gain in refining index equivalence classes consisting

of traversing nodes. Even for those nodes, which should be returned by query pro-

cessing, the complexity of their structures that matters in query processing may

differ. Depending on the actual query load, some type of nodes may be accessed

using short paths most of the time; the other type of nodes may be frequently

queried by long paths. Both 1-Index and A(k)-Index fail to adjust their index

graphs according to the different structure complexity of the equivalence classes

required by the query load, because of their static nature. We introduce D(k)-

Index, an adaptive structural summary for graph-structured data, which can be

tuned efficiently for specific query loads to achieve reduced index size and improved

performance. Instead of specifying the same local similarity, k, for every equiva-

lence class in the index graph, the D(k)-Index uses possibly different, but the most

CHAPTER 2. STRUCTURAL SUMMARY 10

effective local similarities for equivalence classes according to the current query

load. As the query load changes incrementally, the D(k)-Index can be efficiently

adjusted accordingly to maintain its high performance. And, not surprisingly, the

inherent dynamism of the D(k)-Index also results in efficient update operations,

which are crucial to any practical application of structural summaries, but were

not adequately addressed in the previous literature. Our major contributions can

be summarized as follows:

1. We propose the D(k)-index, an adaptive summary structure for the general

graph-structured data and present an efficient construction algorithm. Unlike

previous index structures that are regardless of the query load, our proposal

takes advantage of query load information to optimize the D(k)-index struc-

ture accordingly.

2. We present efficient algorithms to update the D(k)-Index with changes in

the source data and the query load. Believing that the update operation in

the index resulting from a small change to the source data should be done

very efficiently, we avoid the propagate partitioning strategy proposed for

updating 1-index, which refers to the source data and thus can be potentially

expensive. Instead, the D(k) index accommodates changes by adjusting the

local bisimilarities of the affected index nodes, thus achieving high efficiency.

Efficient algorithms to tune the D(k)-index as the query load changes are

also presented.

3. We show by extensive experiments that the D(k)-index is a more effective

summary structure than other static summary structures. It has a reduced

index size and an improved performance. Updates on the D(k)-index can be

executed more efficiently.

CHAPTER 2. STRUCTURAL SUMMARY 11

2.2 Previous Work on Structural Summary

Three previous summary structures have been proposed for graph-structured

data to help evaluate path expressions, the strong DataGuide [18], the 1-index [20],

and the A(k)-index [21]. We have already briefly examined the 1-index and the

A(k)-index. The strong DataGuide of a graph data is computed by interpreting

it as a non-deterministic automation and obtaining an equivalent deterministic

automation [33]. Thus, the path expression with k nodes is evaluated by matching

a sequence of exactly k nodes in the strong DataGuide. Because of this, a data

node may appear in extents of more than one index node. In the worst case, the

number of index nodes in the strong DataGuide can be exponential related to the

size of the data graph. This exponential behavior makes the strong DataGuide

inappropriate for complex graph-structured data.

Update algorithms were proposed to maintain the strong DataGuide [18]. How-

ever, because the 1-index, A(k)-index and our new D(k) index, based on graph

bisimulation, are non-deterministic if they are treated as antomata, those algo-

rithms can not be generalized to apply in this context. Most recently, update

algorithms for 1-index were presented in [26]. The authors considered the 1-index

update algorithms for the insertion of a new document and edge addition. The

propagate refinement strategy was adopted to update the 1-index incrementally.

Although the 1-index update algorithm for document insertion can be easily gen-

eralized to apply in the A(k)-index context, the generalization of the update al-

gorithm for edge addition was shown not to be clean. Very recently, the update

algorithms with provable guarantee on the resulting index quality for 1-index and

A(k)-index has been proposed in [40]. It actually involves two phases: splitting

and merging, in which the splitting phase is essentially the same as proposed in

[26].

Graph schema[27, 28] are also summary structures. However, construction and

CHAPTER 2. STRUCTURAL SUMMARY 12

update algorithms were not discussed by the authors. Instead, they focused on

structures of different schemas and explored possible applications of graph schemas

to query optimization.

The bisimulation technique comes from the verification research community

[29, 32]. It is used to compress the state space graph in a manner that preserves

some properties and behaviors of the state space. The compressed graph could

then be analyzed with higher efficiency than the original state-space graph. A sim-

ilar concept of local bisimilarity, localized stability, is also exploited to build the

XSketch statistical synopses [22, 23] for graph structured data. The XSketch syn-

opses takes advantage of different localized degrees of stability , demonstrated by

the presence of backward-stable or forward-stable sub-paths with possibly different

lengths, to achieve concise and effective summaries. Adopting the similar strat-

egy that different portions of the data require different degrees of refinement, the

D(k)-Index assigns higher bisimilarities to those nodes that are frequently accessed

through long query paths.

2.3 Bisimilarity

The core idea of building the structural summary is to preserve paths of the

data graph in the summary graph, but with far fewer nodes and edges. If we

associate an extent, which is a set of data nodes in the data graph, with a single

node in the summary graph, it is possible for us to evaluate the path expression on

the summary graph instead of the much larger data graph. We denote the index

graph for data graph, G, as IG. The result of executing a path expression, R, on

IG is the union of the extents of the index nodes in IG that match R. We require

the mapping from the data nodes to index nodes to be safe: if l1l2 · · · lm is a label

path that matches node v in G, then this label path also matches some node A

CHAPTER 2. STRUCTURAL SUMMARY 13

in IG for which v ∈ extent(A). This guarantees that the evaluation result of any

path expression, R, on G is contained in the result of evaluating R on the index

graph, IG. An index graph, IG, is said to be sound if the converse holds; that is,

if the label path, P , l1l2 · · · lm matches node A in IG, then it also matches every

data node in extent(A) in G.

Existing index structures for semi-structured or XML data are based on the

notion of bisimulation.

Definition 1 (Bisimulation) Let G be a data graph in which the symmetric, binary

relation ≈, the bisimulation, is defined as : we say that two data nodes u and v

are bisimilar(u ≈ v), if

1. u and v have the same label;

2. if u′ is a parent of u, then there is a parent v′ of v such that u′ ≈ v′, and vice

versa;

Two nodes u and v in the data graph G are bisimilar, denoted as u ≈b v, if there

is some bisimulation such that u ≈ v. For example, in Figure 2.1, nodes 7 and 10

(movie) are bisimilar, while nodes 7 and 9 are not bisimilar, because node 7 has a

parent labeled actor; but node 9 does not have any parent labeled actor. We can

easily come to the conclusion by induction that if two nodes are bisimilar, the set

of paths coming into them is the same.

2.4 D(k)-Index

2.4.1 Introduction to the D(k)-Index

We can obtain an index graph, IG, by creating an index node for each equiva-

lence class in the data graph, G. Data nodes in each equivalence class are mutually

CHAPTER 2. STRUCTURAL SUMMARY 14

bisimilar. An edge is added from index nodes A to B in IG if an edge exists in G

between some data nodes, v ∈ extent(A) and u ∈ extent(B). Such an index graph

is referred to as the 1-index structure. In the worst case, the 1-index graph can

never be larger than the data graph. It can be constructed in O(mlgn) time using

Paige and Tarjan’s algorithm [25], in which n is the number of nodes and m is the

number of edges in the data graph.

Because of the big size of the 1-index and the rarity of long queries in practice,

the A(k)-index proposal [21] takes advantage of local similarity to reduce the size

of index graph.

Definition 2 k-bisimilarity(≈k) is defined inductively:

1. For any two nodes, u and v, u ≈0 v iff u and v have the same label;

2. Node u ≈k v iff u ≈k−1 v and for every parent u′ of u, there is a parent v′ of

v such that u′ ≈k−1 v′, and vice versa.

The A(k)-index has the following properties [21]:

1. If nodes u and v are k-bisimilar, then the set of label paths of length ≤ k

into them is the same.

2. The set of label-paths of length m(m ≤ k) into an A(k)-index node is the set

of label paths of length m into any data node in its extent.

3. The A(k)-index is safe, i.e , its results on a path expression always contain

the data graph results for that query.

4. The A(k)-index is sound for any path expression of length less than or equal

to k.

The A(k)-index can be constructed in O(km) time, where m is the number of

edges in the data graph G. The evaluation result of the A(k)-index is accurate if

CHAPTER 2. STRUCTURAL SUMMARY 15

the length of a path expression is less than or equal to k. Otherwise, the index

results should be validated by referring to the data graph to return the final query

results.

Our adaptive D(k)-index is also based on local similarity. Furthermore, it takes

irregularity of query patterns into consideration. Different types of nodes in the

data graph may be queried using different query patterns. In particular, since

we expect the majority of path queries will be partial matching queries with the

self-or-descendant axis(’//’), the complexity of the relevant label paths entering

different types of data nodes may differ. For example, in the data graph in Figure

2.1, if queries are only concerned with the names of actors or directors, regard-

less of movies they direct or act in, the index node for name nodes satisfying

1-bisimilarity would be sufficient to answer these queries accurately. But the index

nodes for title nodes are required to comply with 2-bisimilarity to answer such

queries that ask for the titles of movies directed by a specific director. Therefore,

the local similarities of different types of data nodes required by the query load

may vary. The A(k)-index fails to adapt to the query load, because it assumes

the uniformity of query patterns. In contrast, by assigning different bisimilarity

requirements to different types of data nodes according to the query load, the

D(k)-index can adjust its structure optimally to achieve reduced index size and

improved evaluation performance.

For a given index node, A, in some index graph, IG, we assume that the local

similarity of A required by queries is kA. The value of kA can be obtained by mining

the current query load. The choice of kA should guarantee that the majority of

queries accessing A are less than or equal to kA in length. Thus, most queries on A

can be directly performed on the index graph without the validation process, which

is potentially inefficient because of reference to the data graph. Now we are ready

to prove the theorem that lays the foundation for the correctness of the D(k)-index

CHAPTER 2. STRUCTURAL SUMMARY 16

as a summary structure for graph-structured data. This theorem demonstrates

that given a path P of length k in an index graph, IG, n1n2 · · ·nk+1, if the index

node ni is of at least (i− 1)− bisimilarity, for each 1 ≤ i ≤ (k +1), then the label

path along P matches all data nodes in the extent(nk+1).

Theorem 1 Given an index graph, IG, and a path, P, n1n2 · · ·ns, in IG. Assume

that Label(ni)=li, for each 1 ≤ i ≤ s. If data nodes in the extent(ni) are at least

(i− 1)− bisimilar, for each 1 ≤ i ≤ s, then the label path, l1l2 · · · ls, matches each

data node in the extent(ns).

Proof: We prove by induction on the length of path P , s. The basic case when

s=0 is obviously true. Assume that the result is true for s = m − 1. When

s = m, and P = n1n2 · · ·nmnm+1, the label path l1l2 · · · lm matches all data nodes

in extent(nm) according to the assumption of case s = m − 1. Because there

is an edge between nm and nm+1 in the index graph IG, there exists some node

u in extent(nm+1), whose parents include some node v in extent(nm). Since the

label path l1l2 · · · lm matches v, one of the nodes in extent(nm), the label path

l1l2 · · · lmlm+1 matches node u. Finally, nodes in extent(nm+1) are at least m −
bisimilar, so the label path l1l2 · · · lmlm+1, whose length is equal to m, matches all

data nodes in extent(nm+1). �

According to theorem 1, given an index graph, IG, if for any two directly

connected index nodes ni → nj in IG, k(ni) ≥ k(nj)− 1, in which k(ni) and k(nj)

are local similarities of ni and nj , respectively, then the query result of a path

expression of length s on IG, n1n2 · · ·ns+1, is accurate so long as k(ns+1) ≥ s. We

call this index graph IG the D(k)-index.

Definition 3 The D(k)-index is the index graph based on local bisimilarity that

satisfies the condition that for any two nodes ni and nj, k(ni) ≥ k(nj) − 1 if there

CHAPTER 2. STRUCTURAL SUMMARY 17

is an edge from ni to nj, in which k(ni) and k(nj) are ni and nj’s local similarities,

respectively.

According to this definition, the 1-index and A(k)-index are both special cases

of the D(k)-index. In the D(k)-index, the local similarity of the parent plus one

can not be less than the local similarity of its child. Note that given a data graph,

G, the simplest index graph constructed by label splitting is a D(k)-index with the

local similarity of each index node equal to 0.

Some important properties of the D(k)-index are given as follows. Their proofs

should be obvious from the D(k)-index definition and theorem 1.

1. The set of label paths of length s(≤ k(ni)) into a node ni in the D(k)-index

is the set of label paths of length s into any data node in its extent;

2. The D(k)-index is safe, i.e , its result on a path expression always contains

the data graph result for that query;

3. The D(k)-index is sound for a path expression P of length m, l1l2 · · · lm+1,

if, for each matching index node ni of P , k(ni) ≥ m.

2.4.2 Construction

We now present the D(k)-index construction algorithm. We begin with the

simplest index graph, the label-split graph. The local similarity requirement for

each label can be obtained from the query load. The default local similarity re-

quirements of those labels that never appear in the query load are set to zero. The

resulting D(k)-index should satisfy the requirement that for each label, all nodes

in the D(k)-index with such a label have a local similarity larger than or equal to

the required one.

Besides requirements by query load, local similarities of index nodes may also be

constrained by the structure requirement of the D(k)-index. For example, for two

CHAPTER 2. STRUCTURAL SUMMARY 18

directly connected nodes, ni and nj (ni → nj), in the label-split index graph, if the

local similarities of ni and nj specified by the query load are 0 and 2 respectively,

the local similarity of ni should be reset to 1 because the local similarity of the

parent, ni, can not be less than its child nj ’s local similarity by more than 1.

Therefore, we use a broadcast algorithm to compute the actual local similarities of

labels in the D(k)-index. First, we specify a local similarity for each label in the

index graph according to the current query load. Assume there are t different local

similarities, and k1 > k2 > · · · > kt. For each local similarity ki, for 1 < i < t, a list

of labels with local similarity requirement ki is attached to it. Second, beginning

with the largest local similarity k1, the algorithm ”broadcasts” the local similarity

requirements to all parents of labels in its list. Then it continues with the second

largest local similarity and goes on until all local similarities are processed. The

detailed algorithm is described in Algorithm 2.1. It takes O(m) time, in which

m is the number of edges in the label-split index graph.

CHAPTER 2. STRUCTURAL SUMMARY 19

Algorithm 2.1: The Local Similarity Broadcast Algorithm

Input The label-split index graph, G, with initial local
similarities for label nodes in G.

Output The index graph, G, with updated local similarities
for label nodes in G, as required by the D(k)-index

1. Sort all local similarities in G, k1 > k2 > · · · > kt, and
for each local similarity ki, a list of label nodes with
local similarity ki is attached to it;

2. Beginning with the largest local similarity, k1, for each
ki, repeat the following process:

• For each label node, nj, in the list for ki, update
the local similarities of all parents of nj in
G such that their new local similarities are no
less than (ki − 1). That is, if the original local
similarity is no less than (ki − 1), the node remains
unchanged; otherwise, its local similarity should be
set to (ki − 1);

• Update the local similarity list and their attached
label nodes list;

• Select the next largest local similarity and repeat
Step 2;

With local similarities for label nodes in the label-split index graph, our D(k)-

index can be constructed using a similar algorithm as the A(k)-index construction

algorithm [21]. For a set of data nodes, A, let Succ(A) denote the set of successors

of the nodes in A, i.e., the set {v |there is a node u ∈ A with an edge from u to v}.
And given two set of data nodes, A and B, we say that B is stable with respect to

A if B is a subset of Succ(A) or B and Succ(A) are disjoint. If we have two node

sets, A and B, and we want to make B stable with respect to A, we split B into

B ∩ Succ(A) and B − Succ(A). As in the A(k)-index construction, we compute

the (k + 1)-bisimulation equivalence classes from the k-bisimulation equivalence

classes. We make a copy of the k-bisimulation equivalence classes and then split

them until they are stable with respect to the equivalence classes of k-bisimulation.

The D(k)-index construction algorithm also begins with the label-split index graph,

CHAPTER 2. STRUCTURAL SUMMARY 20

in which all index nodes are 0-bisimulation equivalence classes. Then it proceeds

to construct the 1-bisimulation equivalence classes. It repeats this process until

the local similarity requirements of all index nodes are satisfied. The D(k)-index

construction algorithm is presented in Algorithm 2.2. A construction example is

shown in Figure 2.2. Please note that:(1) Label E has a local similarity requirement

of 2, other labels have a local similarity requirement of 1;(2) the numbers besides

the nodes are actual local similarities in the D(k)-Index. It takes O(km) time in

the worst case, in which m is the number of edges in the data graph G and k is

the maximal local similarity requirement.

Algorithm 2.2: The D(k)-Index Construction Algorithm

Input The data graph G, and local similarity requirements of
label nodes specified by the query load.

Output The D(k)-index graph IG.

1. Build the label-split index graph IG from G;

2. Use the The Local Similarity Broadcast Algorithm to update
the local similarities of index nodes in IG;

3. X is a copy of IG;

4. For k = 1 to kmax (kmax is the maximal local similarity
requirement in IG)

• For each index node ni in X

– If (its local similarity requirement ≥ k)

∗ For each parent nj of ni in X

· Replace the node ni in IG with ni ∩ Succ(nj)
and ni − Succ(nj);

· Update the edges in IG;

• Set the local similarity requirements of newly
created index nodes by inheritance;

• Set X to be a copy of the updated IG;

5. Return the resulting IG.

CHAPTER 2. STRUCTURAL SUMMARY 21

0

0

0

0

A

R

{a1,a2} B

{c1,c2}

 {e1,e2,e3}

{d1,d2,d3}

C C

D

E

 {b}

{d1,d2,d3}d1 d2

e1 e2e3

A

C

D

E

{a1,a2} B

R

 {b}

{c1,c2,c3}

 {e1,e2,e3}

0

{c3}

 {e1,e2,e3}

1

1

1 2

1

(a) The Data Graph G (b) The Label−Split Graph (c) Round 1

1

(d) Round 2

1 1

1 1

1 1

{d1,d2,d3}

0 {r} {r}

1

1

1

C C

D

E

A B

R {r}

{a1,a2} {b}

{c1,c2} {c3}c3

r

a1 a2 b

c1 c2

d3

Figure 2.2: D(K)-Index Construction Example

2.5 D(k)-Index Updating

The paper [39] defines several primitive update operations upon XML docu-

ments. We use them as the target operations upon which the D(k)-Index should be

adjusted accordingly. As in [39], we use the term object to refer to any component

of XML, which can be an element, an attribute, an IDREF or a PCDATA content,

and assume the presence of tuples of references to the selected objects within XML

documents through a path expression matching operation. The defined update

operations include: (1) Delete(child): if the child is a member of the target object,

it is removed;(2)Insert(content): it inserts a new content, which can be element,

attribute, reference or PCDATA, into the target object; (3)Rename(child,name):

if the child is a non-PCDATA member of the target object, it is renamed. Note

that there are three other update operations presented in [39]. InsertBefore(ref,

content), which is defined only for ordered execution and inserts a new content di-

rectly before the target ref, poses no difference from the Insert(content) operation

concerning the update operation on D(k)-Index. Replace(child,content), which is

CHAPTER 2. STRUCTURAL SUMMARY 22

a replace operation, can be considered to be equivalent to a Insert(content) op-

eration followed by a Delete(child) operation. The Sub-Update(patternMatch,

predicates, updateOp) operation invokes a new path expression matching operation

over the target object, returns bindings filtered by predicates and recursively in-

vokes the update operation updateOp. Therefore, it is enough that we address the

update operation on D(k)-Index upon the three atomic update operation on XML

documents,Delete(child), Insert(content) and Rename(child,name).

In [26], two kinds of update operations upon XML documents are considered

for updating the structural index: the addition of a subgraph and the addition

of a new edge. The addition of a subgraph represents the insertion of a new

file into the database; the addition of a new edge represents a small incremental

change. In this section, we first present efficient update algorithms for the D(k)-

index when a new file is inserted or a new edge is added into the data graph. Then,

we proceed to demonstrate that our approaches used in these two basic cases are

flexible to accommodate other defined operations on XML. Finally, we propose

two procedures, promoting and demoting, to adjust the D(k)-index for a changing

query load.

2.5.1 Subgraph Addition

The update algorithm on the D(k)-index for a subgraph addition is a variant

of the update algorithm for the 1-index [26]. Suppose that a new subgraph, H , is

inserted under the root of the original data graph, G. We can compute the D(k)-

index, IH , on the new subgraph and add IH as a subgraph under the root of IG.

Then, simply treating the new IG as a data graph, we compute the D(k)-index for

the new data graph. Note that the index nodes with the same label in the original

IG and IH should have the same local similarity. The correctness of this procedure

is established through the following theorem. It is essentially a variant of theorem

CHAPTER 2. STRUCTURAL SUMMARY 23

1 in [26].

Theorem 2 Let G be a data graph. Let IG be the D(k)-index for G and I ′
G be an

index graph constructed from any refinement of IG. Then, the D(k)-index graph

for I ′
G is the same as the D(k)-index for G, IG.

Algorithm 2.3: Subgraph Addition Update Algorithm

Input A D(K)-Index graph IG for G and a new subgraph H.

Output A D(K)-index IG′ for the new data graph G′ consisting
of G and H.

1. Construct the D(k)-index, IH, for the new subgraph H;

2. Add IH as a subgraph under the root of the original
D(k)-index, IG;

3. Treat the new IG as a data graph and compute its
D(k)-index, IG′;

4. Set the extents of nodes of IG′ by merging the nodes’
extents in IG;

5. Return the resulting IG′.

2.5.2 Edge Addition

It has been shown that a small change in a graph can trigger large changes in

the 1-index and A(k)-index [26]. An edge insertion in the original data graph may

affect all its descendants in the 1-index or all descendants within distance k in the

A(k)-index. This is demonstrated in the example in Figure 2.3. The propagate

algorithm for the edge addition proposed in [26] essentially refines all descendant

index nodes. In the worst case, it needs to touch O(n + m) nodes and edges in

the data graph. In contrast, the D(k)-index update algorithm for edge addition

is more efficient. Instead of referring to the data graph to partition the index

nodes, the update operation on the D(k)-index simply lowers the local similarities

of the affected index nodes. When a new edge, from A to B, is added to the index

CHAPTER 2. STRUCTURAL SUMMARY 24

graph IG, we can simply bring B’s local similarity down to 0 and update the local

similarities of its neighbor index nodes accordingly. That is, all B’s children’s local

similarities should be reset to 1 if their original local similarities are larger than 1.

Generally, an index node , k distant from B in IG, should be updated such that

its local similarity is no larger than k.

FF

EEE

DDD

CC

BA

R

{f3} F

R

{f3}{f2}{f1}

{e3}{e2}{e1}

{d3}{d2}{d1}

{c3}{c1,c2}

{b}{a}

{r}

{f1,f2}

C

BA

R

f3f2f1

e3e2e1

c2

d3d2d1

c3 C

{e3}{e1,e2}

{d3}{d1,d2}

{c3}{c1,c2}

{b}{a}

{r}

FF

EE

DD

A

{f1,f2,f3}

{e3}

{d3}

{c3}

{b}

{e1,e2}

{d1,d2}

{c1,c2}

{a}

{r}

A

F

EE

D

{f1,f2,f3}

(e) Updated D(k)−Index(d) D(k)−Index(c) Updated 1−Index(b) 1−Index(a) Data Graph G and New Edge

2

1

3

3

3

22

11

0

D

{e3}

D {d3}

C {c3}

B {b}

{d1,d2}

{c1,c2}

{a}

{r}

F

E

D

C

{e1,e2}

CC

B

R

3

3
3

33

2
2

11

0

E

c1

ba

r

Figure 2.3: 1-Index Update vs D(k)-Index
Update

When a new edge is added to the D(k)-index graph, the local similarity of

the end index node would be lowered to 0 only in the worst case. There is some

possibility that its local similarity can be updated to a higher value. In the example

in Figure 2.3, the end index node, D, has a parent index node, C, in the original

D(k)-index. This means that all data nodes in D have some parent labeled C in

the old data graph. Thus, the new edge from c3 to d2 doesn’t enlarge the set of

labels of d2’s parents. Since D’s original local similarity before the edge addition is

larger than 1, the local similarity of D after the edge addition can at least remain

at 1. We therefore reset D’s local similarity to 1 and its child E’s local similarity

to 2.

CHAPTER 2. STRUCTURAL SUMMARY 25

Algorithm 2.4: Update Local Similarity

Input A D(K) index IG and a new edge from node U to node V in IG;

Output The new local similarity for node V .

1. Upbound=min{KU +1,kV }; // (V ’s new local similarity can not be
larger than KU + 1 or kV);

2. NLSim=0,Stop=false; // (NLSim denotes V ’s new local
similarity);

3. NewLabelPathSet(1)={label(U)}, OldLabelPathSet(1)={l|l is the
label of some parent(except U) of V in IG}; And for each label
path P in NewLabelPathSet, we keep a set of index nodes in IG,
Si(P), which are starting nodes of matching node paths into V
through U; Similarly, for each label path P in OldLabelPathSet,
we keep a set of index nodes, S(P), that are starting nodes of
matching node paths in the original IG;

4. While (NLSim≤Upbound and Stop=false)

• if (NewLabelPathSet(NLSim+1) ⊆ OldLabelPathSet(NLSim+1))

– NLSim = NLSim + 1;
– OldLabelPathSet(NLSim) = NewLabelPathSet(NLSim);
– Set UpdatedNewLabelPathSet to an empty set;

– Set UpdatedOldLabelPathSet to an empty set;

– For (each label path P in OldLabelPathSet(NLSim))
∗ for each index node w in S(P)

· for each parent x of w in IG(excluding U → V),
insert the label path P’=(label(x)+P) to
UpdatedOldLabelPathSet and insert x into S(P ′);

– OldLabelPathSet(NLSim + 1)=UpdatedOldLabelPathSet;

– for (each label path P in NewLabelPathSet(NLSim))
∗ for each index node w in Si(P)

· for each parent x of w in IG, insert the label
path P’=(label(x)+P) to UpdatedNewLabelPathSet
and insert x into Si(P ′);

– NewLabelPathSet(NLSim + 1)=UpdatedNewLabelPathSet;

• else Stop=true;

5. Return NewLocalSimilarity.

CHAPTER 2. STRUCTURAL SUMMARY 26

Algorithm 2.5: Edge Addition Update Algorithm

Input A D(K)-Index graph IG for G and an new edge from U to
V

Output An updated D(K)-index IG′

1. kN=Update Local Similarity(IG,(U,V));

2. Set V ’s local similarity to kN;

3. Beginning with the index node V , it traverses the nodes
in IG in breadth-first order. Suppose the edge from W
to X is being considered, the updated local similarity
of W is k1, the old local similarity of X is k2. If
(k1 + 1 < k2), it updates X’s local similarity to (k1 + 1);
otherwise, X’s local similarity remains unchanged and the
algorithm stops propagating the update request from X.

Generally, the update operation for the edge addition on the D(k)-index can

be conducted in two steps. Suppose that a new edge is added to the D(k)-index,

IG, from U to V and V ’s original local similarity is kV . We have the observation

that if all label paths of length kN(≤ kV) going into V , through U , match V in

the original IG, V ’s updated local similarity can be reset to kN . Therefore, at the

first step, the update operation decides the maximal kN , such that all label paths

of length kN into V , through U , match V in the original IG. This algorithm is pre-

sented below as the algorithm The Update Local Similarity. Beginning with

kN = 0, which is obviously true, it repeatedly checks if all label paths of length

kN = kN + 1 into V through U match V in the original IG. For a label path P ,

lkN
· · · l2l1(l2 = U and l1 = V), we denote the set of those index nodes in IG as

Si(P), which has a path into V through U matching P . Similarly, the set of index

nodes, each of which has a label path P into V in the original IG, is denoted as

S(P). We also denote the set of label paths of length kN into V through U in IG

as NewLabelPathSet(kN) and the set of label paths of length kN into V in the

original IG as OldLabelPathSet(kN). It is clear that if NewLabelPathSet(kN) ⊆
OldLabelPathSet(kN), V ’s local similarity can be reset to kN in IG. To proceed

CHAPTER 2. STRUCTURAL SUMMARY 27

from kN to (kN + 1), we need to compute both NewLabelPathSet(kN + 1) and

OldLabelPathSet(kN + 1). For each label path P in NewLabelPathSet(kN), la-

bels of parent nodes of each node in Si(P) should be appended at the head of

P ; the resulting label paths are of length (kN + 1) and should be included in

NewLabelPathSet(kN + 1). OldLabelPathSet(kN + 1) can be computed from

OldLabelPathSet(kN) in a similar way. But be cautious that it is computed in the

original IG with the absence of the edge U → V . In Algorithm 2.4, members of

sets UpdatedNewLabelPathSet, UpdatedOldLabelPathSet, Si(P) and S(P) are

all kept to be distinct.

At the second step, the algorithm updates V ’s local similarity to kN . Simply

using the breadth-first search, it broadcasts this update to V ’s neighboring nodes

in IG. An index node, which is r distant from V in the breadth-first search, should

lower its local similarity to (kN + r) if its original local similarity is larger than

(kN +r) ; otherwise, its local similarity remains unchanged and the algorithm stops

propagating the update request from this node. The whole algorithm is sketched

in the update algorithm Edge Addition Update Algorithm. Note that in the

worst case, the update algorithm for edge addition with the D(k)-index can touch

nodes and edges within distance kV in the index graph IG, which has much fewer

nodes and edges than the data graph G. Thus, it can be expected to be much more

efficient than the update operation on the 1-index and A(k)-index. We validate

our claims by experiments in the experimental evaluation section.

2.5.3 Other Update Operations upon XML

In this subsection, we first consider the update algorithm on D(k)-Index when

an edge is deleted from the original XML document. It is shown to be almost the

same as the update algorithm upon an edge insertion. Then we discuss detailedly

involved operations on D(k)-Index upon three basic update operations on XML

CHAPTER 2. STRUCTURAL SUMMARY 28

documents we introduced at the beginning of this section.

Suppose that the edge from u to v is deleted in the original XML data G, and

u ∈ U and v ∈ V in IG. If v is still connected with some other data node in

extent(U), the local similarity of V remains unchanged. Otherwise, as in the case

of the edge insertion, we need to reset V ’s local similarity in IG. We have the

observation that if all label paths of length kN(≤ kV) going into V through U ,

match V in the original IG without through the edge U → V , V ’s local similarity

can be reset to kN . Therefore, a straightforward application of Algorithm 2.4 can

achieve this purpose if we assume the absence of the edge U → V in the original

IG. Unlike the case of edge insertion, where the update operation on D(k)-Index

does not need to resort to the source data, the update operation on D(k)-Index

upon edge deletion needs to check whether U and V remain connected in IG after

the edge u → v is deleted from the original data G; thus it involves checking the

connectivity between data nodes in extent(U) and in extent(V) after the deletion.

We are now ready to detail the corresponding update operations on D(k)-

Index for the defined basic update operations upon XML documents. For the

Delete(child) operation, it amounts to the edge deletion if the child is an IDREF.

Otherwise, since it is assumed that a single element can only be deleted after

all its attributes, nested subelements and edges initiating from it are deleted,

Delete(child) requires simply removing data nodes corresponding to child from

extents of index nodes on the D(k)-Index. The local similarities of index nodes

on D(k)-Index remain unchanged. The Insert(content) operation amounts to the

edge insertion if the content is a reference. Otherwise, a new index node N is

created for each inserted content in IG. Its extent contains only the new data node

and its local similarity is set to be kP + 1, in which kP is the local similarity of

its parent node in IG. Now we consider the Rename(child,name) update opera-

tion. Suppose that a data node u in extent(U) is renamed as Nnew. The update

CHAPTER 2. STRUCTURAL SUMMARY 29

operation on D(k)-Index upon Rename(u,Nnew) consists of two steps: (1) it cre-

ates a new index node N labeled Nnew for the renamed data node u and assigns

1 + min{kP1 , kP2, . . . , kPt} as its local similarity, in which Pi, for 1 ≤ i ≤ t, is the

new index node(N)’s ith parent in IG;(2) Reset local similarities of N ’s descendant

nodes in IG. In the step (2), as presented in Algorithm 2.5, we first reset local

similarities of N ’s child nodes and then broadcast the updates to other affected

descendant nodes in IG. Assume that the connectivity between N and other index

nodes has been properly updated in IG and there is an edge N → V . Again, we

have an observation similar to the one in the case of edge insertion: if all label

paths of length kN(≤ kV) going into V through U or N in the updated IG, match

V in the original IG without through the edge U → V , V ’s local similarity can be

reset to kN . If only resetting V ’s local similarity is concerned, the Rename oper-

ation amounts to an edge deletion operation(from u to data nodes in extent(V))

followed by an edge insertion operation(from the renamed u in extent(N) to data

nodes in extent(V)). Therefore, a minor variant of Algorithm 2.4 can be applied

to reset V ’s local similarity. The difference is that in step 3, the NewLabelPathSet

should be initially set to be {label(U), label(N)}.

2.5.4 The Promoting Process

As more new edges are added to the D(k)-index graph, we can expect that

local similarities of index nodes will decrease gradually. As the query load changes,

higher local similarities may be required for some index nodes. If we do not upgrade

related index nodes’ local similarities, more queries will trigger validations. Since

the validation process involves referring to the data graph to check the correctness

of the answers on the D(k)-index, it can bring down the performance of the query

processing significantly. Therefore, in this subsection, we propose a promoting

procedure to upgrade local similarities of the index nodes in the D(k)-index. The

CHAPTER 2. STRUCTURAL SUMMARY 30

promoting procedure should be executed periodically to tune the D(k)-index and

keep its high performance.

To upgrade the local similarity of an index node V in the D(k)-index IG, from

k1 to k2, we adopt the same strategy as the D(k)-index construction algorithm.

We first upgrade V ’s parents’ local similarities to (k2−1) and then split the extent

of V according to their parents. Specifically, for each parent U of V in IG, the

algorithm splits extent(V) into V ∩Succ(U) and V −Succ(U). The local similarity

upgrading on V ’s parents can be accomplished recursively. When the algorithm

reaches the index nodes with local similarities no less than the required value,

it begins the partitioning operation. The recursive promoting procedure is given

in the Single-Node Promoting Algorithm. In practical applications, there is

usually a batch of index nodes that need to be promoted. Then, we choose first to

promote index nodes with higher new local similarities, because upgrading them

involves upgrading the local similarities of their close ancestors. The result is that

some index node promotions may be saved.

Algorithm 2.6: Single-Node Promoting Algorithm(V, kn, IG)

Input A D(K)-Index IG, an index node V in IG and the new
local similarity for V , kn

Output An updated D(K)-index I ′G

1. If (kv ≥ kn) return IG;//kv is V ’s original local
similarity in IG

2. For each parent W of V in IG

• IG=Single-Node Promoting Algorithm(W,kn − 1, IG);

3. For each parent W of V in IG

• split extent(V) into V ∩ Succ(W) and V − Succ(W);

4. Return the final IG.

In case that a lot of index nodes need to be promoted in the D(k)-index, instead

CHAPTER 2. STRUCTURAL SUMMARY 31

of promoting them one by one, we propose a more efficient mass promoting algo-

rithm. Suppose that those index nodes requiring promotion have been assigned

new local similarities. Note that the new local similarities should satisfy the prop-

erties of D(k)-index. We call an index node in the D(k)-index in the stable state

if all its child index nodes have reached their target local similarities. Nk denotes

the set of index nodes that if their child index nodes are partitioned according to

them, these child nodes’ local similarities are at least promoted to (k + 1). Ini-

tially, we set the states of index nodes in the D(k)-index to be stable or unstable.

For each unstable index node X, if X has at least one child node Y satisfying

lsim(Y) < lsim(X) + 1, in which lsim represents the index node’s current local

similarity, we insert X into the set Nki
, in which ki is the minimal value of lsim(Y)

satisfying lsim(Y) < lsim(X) + 1. Next, we sequentially consider the set Nk in

the increasing order of k’s value. For each index node U in Nk, if all its child

index nodes have reached their target local similarities, U ’s state is set to be sta-

ble;otherwise, consider each U ’s child index node V , if V ’s current local similarity is

less than its target value and lsim(U)+1 > lsim(V), we split V into Succ(U) and

V −Succ(U). Since V may have several parent nodes in Nk, V may be partitioned

into multiple sub-nodes, V1V2 . . . Vt, in which Vi’s new local similarity is set to be

max{lsim(V), k+1}. And if the original node V is unstable, each Vi should be in-

serted into Nk+1. Furthermore, after all the splitting and updating operation, if an

index node W has not reached its target local similarity and its current local sim-

ilarity lsim(W) is less than (k + 1), reset its local similarity to be (k + 1). Finally,

if any node W , whose local similarity has been reset, has any child node X that

has not reached its target local similarity and satisfies lsim(W) + 1 > lsim(X),

the algorithm inserts W into the set Nk+1. The algorithm repeatedly processes

NminNmin+1 . . . Nmax−1, where min is the smallest local similarity of nodes that

has not reached their target local similarities before any promotion and max is

CHAPTER 2. STRUCTURAL SUMMARY 32

the maximal target local similarity of nodes in the D(k)-index. The whole mass

promoting algorithm is described in the Mass Promoting Algorithm.

Algorithm 2.7: Mass Promoting Algorithm(IG)

Input A D(K)-index IG and target local similarities for index
nodes in IG

Output A promoted D(K)-index I ′G in which all index nodes
possess their target local similarities

1. Initialization;

(a) (For each node U in IG)

• If (all U’s children have reached target local
similarities)

– set stable(U)=true;
• Else

– set stable(U)=false;

(b) For each node V with stable(U)==false

• if (U has at least one child V satisfying
lsim(U) + 1 > lsim(V))
– Insert U into Nki

, in which ki is the minimal
local similarity of such children;

2. (For k=min to max-1)

• (For each node U in Nk)

– (For each child V of U)

∗ Partition V into Succ(U) and V − Succ(U);
∗ Set the local similarities of new nodes as

max{lsim(V), k + 1};
• (For each new node W as a result of splitting)

– If (stable(W)==false)
∗ Insert W into the set Nk+1;

• (For each node W that has not reached its local
similarity and lsim(W) < (k + 1))

– Reset lsim(W) to be (k + 1);
– If (W has any child X that has not reached its

target local similarity and lsim(X) ≤ (k + 1))
∗ Insert W into Nk+1;

CHAPTER 2. STRUCTURAL SUMMARY 33

To prove its correctness, we have the following lemma:

Lemma 1 Before processing the set Nk, the local similarity of any index node V

that has not reach its target local similarity in the D(k)-index can be reset to k if

its current local similarity lsim(V) < k.

Proof: Suppose that k can take values of k1, k1+1, . . . , k2. We prove by induction

on the value of k.

Firstly, we consider the base case when k = k1. Suppose that the index node

V has not reached its target local similarity tlsim(V) and lsim(V) < k1. If V

has any parent index node U in the D(k)-index satisfying lsim(U) ≥ lsim(V),

the smallest value of k should be lsim(V) but not k1 according to the algorithm.

Therefore, either V has no parent index node or all its parent index nodes have

local similarities less than lsim(V)(actually should be lsim(V) − 1 according to

the definition of D(k)-index). In the first case that V has no parent index node,

obviously its local similarity can be validly reset to be k1. In the second case that

V ’s all parent index nodes have local similarities of (lsim(V)−1), we can conclude

recursively that any parent node of V ’s parent nodes, if it exists, should have local

similarities of (lsim(V) − 2). Assume that there is any path P with length larger

than lsim(V) into node V in the D(k)-index, UmUm−1 . . . U1V with m > lsim(V).

We have lsim(Ui) + 1 = lsim(Ui−1); thus lsim(Um) = lsim(V) − m < 0, which is

contradictory to the fact that any index node in the D(k)-index has local similarity

of at least 0. Therefore, we can conclude that all paths into V in the D(k)-index

graph have length no larger than lsim(V). As a result, V’s local similarity can

also be validly reset to k1.

Secondly, we assume that when k = i, the lemma is true; now we consider

the case k = i + 1. Consider index nodes that have not reached their target local

similarities before processing Ni. Their local similarities are at least i according to

the assumption for the case k = i. If it can be proved that after processing Ni, local

CHAPTER 2. STRUCTURAL SUMMARY 34

similarities of these index nodes or sub-nodes split from them can be promoted to

at least (i + 1), we complete the whole lemma proof. If any index node has local

similarity no less than (i+1) even before processing Ni, obviously local similarities

of this node or its sub-nodes remains at least (i + 1) after processing Ni. Now

we consider any index node V that has not reached its target local similarity and

satisfies lsim(V) = i before processing Ni. Any parent node U of V either has

reached its target local similarity or has local similarity at least i. Note that since

tlsim(U) ≥ tlsim(V) − 1 ≥ lsim(V) = i, in either of the above two cases we have

lsim(U) ≥ i. There are two possibilities:

1. The node U results from the split operation on some index node Ua. Suppose

that the splitting happens at the round of processing Nt(t < i). Since Ua

has child nodes that have not reached target local similarities, U should be

inserted into the set Nt+1. While processing Nt+1, the algorithm splits any

child node W of U into Succ(U) and W − Succ(U) if W has not reached

its target local similarity. Any split sub-node Wb of W should also be stable

with U . Therefore, the node V is stable with respect to U .

2. The node U exists in the original D(k)-index before any promotion. If U ’s

original local similarity is also lsim(U), U should be in some set Ns(s ≤ i)

before the first round of processing Nk1 . Otherwise, if U ’s local similarity

is promoted to be lsim(U) not through splitting but through resetting; in

this case, lsim(U) = i and U should be inserted into Ni according to the

algorithm. As in the first case, while processing Ns or Ni, the algorithm

splits any child node W of U into Succ(U) and W − Succ(U) if W has not

reached its target local similarity. Therefore, the node V is also stable with

respect to U .

Therefore, we have the conclusion that after processing Ni, V is stable with

CHAPTER 2. STRUCTURAL SUMMARY 35

respect to all its parent nodes. Since all V ’s parent nodes has local similarity of at

least i, V ’s local similarity can be promoted to (i + 1). Proof finished. �

Based on Lemma 1, we have the following theorem:

Theorem 3 The Mass Promoting Algorithm correctly promotes local similar-

ities of index nodes in the D(k)-index to their target values.

Proof: According to Lemma 1, after processing Nmax−1, in which max denotes

the maximal target local similarity specified for index nodes in the D(k)-index,

if an index nodes has not reached its target local similarity, it should have local

similarity of at least max. Since the maximal target local similarity of nodes is

max, we can conclude that all index nodes reach their target local similarities. �

2.5.5 The Demoting Process

As updates on the D(k)-index proceeds, we can expect it to become larger grad-

ually because of the refinements conducted on its index nodes. The query pattern

may also change. So it is important that the D(k) index be shrunk to a smaller size

when its size becomes a disadvantage. A smaller size means less accuracy in the

structural summary. For the D(k)-index, smaller size can be achieved by lowering

the local similarities of the index nodes, thus making it possible to merge some

index nodes with the same label. This is why the shrinking procedure is called

the demoting process. It actually downgrades the local similarities of index nodes

in the D(k)-index. Like the promoting process, the demoting process is executed

only periodically. Theorem 2 in the subsection Subgraph Addition states that

from any refinement of a D(k)-index IG, we can construct the original D(k)-index

IG. Therefore, given lower local similarities for labels in G, we do not need to re-

construct the D(k)-index IG from scratch, which is obviously very time consuming.

CHAPTER 2. STRUCTURAL SUMMARY 36

Instead, since the current D(k)-index IG’ is actually a refinement of IG, we can just

treat IG’ as a data graph and construct the new D(k)-index IG from IG’.

In case that only a few labels in D(k)-Index need to be demoted, instead of

constructing the new IG from the current I ′
G, we can directly explore the possi-

bilities of merging same-labeled index nodes in I ′
G. More specifically, we assume

that local similarities of labels, L1, L2, . . . , Lt, are supposed to be demoted, and

label Li’s local similarity(1 ≤ i ≤ t) is lowered to klow(i) from khigh(i). The de-

moting process works in three steps:(1) it assigns the new local similarity klow(i)

to each label Li in the label-split index graph, with other labels’ local similarities

remaining unchanged, and uses the local similarity broadcast algorithm presented

in Algorithm 2.1 to compute the updated local similarities required by D(k)-

Index; (2) For each label Li(1 ≤ i ≤ t), and for each Li-labeled index node NLi
in

I ′
G, it computes all label paths of length k′

low(i)(Li’s updated local similarity) into

NLi
;(3)finally, if two same-labeled index nodes have the same set of incoming label

paths, they are merged in the new IG; and connectivities between index nodes in

IG are updated correspondingly. Be cautious that the merging operation happens

in step (3) only after incoming label paths concerning all relevant index nodes have

been computed. And note that step (2) can be accomplished using the procedure

we presented in Algorithm 2.4, where we also need to compute all label paths of

some length into index nodes on D(k)-Index.

2.6 Experimental Study

In this section, we will validate the effectiveness and efficiency of our new D(k)-

index through extensive experiments. We will compare our D(k)-index with the

previous structural index A(k)-index, since the A(k)-index has been shown to out-

perform the 1-index. The purposes of our experimental study include:

CHAPTER 2. STRUCTURAL SUMMARY 37

1. To investigate the evaluation performance of D(k)-index in comparison to

the previous A(k)-index;

2. To evaluate the performance of the update operations on D(k)-index;

3. To demonstrate that the proposed promotion/demotion operations are effec-

tive in maintaining the D(K)-index for high evaluation performance.

We use two datasets in our experiments: one benchmark data and one synthetic

data.

1. Xmark Data. This is a synthetic XML data set from an XML benchmark [41],

which simulates information about activities of an auction site. It features

a regular structure. We use the benchmark data generator to generate an

Xmark file of about 100M in size.

2. Nasa Data. This data set is generated by the IBM data generator using a

real DTD file, nasa.dtd [42], which is a markup language for the data and

metadata at the astronomical data center at NASA/GSFC. It has a broader,

deeper and less regular structure than the Xmark data. It also has more

references. The resulting Nasa data is an XML file of about 100M in size.

2.6.1 Evaluation Performance

Because no standard storage scheme and query cost model exists for graph-

structured data, we adopt the simple in-memory cost model used in evaluating the

A(k)-index [21]. The cost of a query is defined to be the number of nodes visited in

the index or data graph during path expression evaluation. Note that data nodes

in the extent of a matched index node are not counted as visited; but the data

nodes visited during the validating process are counted.

We randomly generate 100 test paths with lengths between 2 and 6 for the

Xmark and Nasa data. First, the program randomly chooses some long query

CHAPTER 2. STRUCTURAL SUMMARY 38

paths; then, from these long paths, many shorter branching paths are generated.

We expect that the resulting query load basically simulates query patterns in real

XML databases. In the D(k)-index, we set a label’s local similarity requirement

to be the longest length of test path queries less one such that no validation will

be needed for evaluation on it. And we compare D(k)-index’s performance with

A(0), A(1), up to A(5). Note that evaluating test paths on the A(5)-index is

already sound; that is, no validation process is triggered because all test paths

are of length less than or equal to 6. Therefore, we do not experiment on A(k)

with k > 5 because its performance is definitely worse than A(5). The results

on the Xmark and Nasa data are presented in Figures 2.4 and 2.5, respectively.

The X-axis denotes the number of nodes in the index graph; the Y-axis denotes the

evaluation cost measured by the average number of nodes visited over all test paths.

In both figures, the D(k)-index result is well below the curve of the A(k)-index.

Therefore, these results demonstrate the superior performance of the D(k)-index

over the A(k)-index.

Figure 2.4: Evaluation Performance Comparison between the D(K)-index and the
A(k)-index on Xmark Data Before Updating

CHAPTER 2. STRUCTURAL SUMMARY 39

Figure 2.5: Evaluation Performance Comparison between the D(K)-index and the
A(k)-index on Nasa Data before Updating

2.6.2 Updating Performance

To evaluate the updating performance, we randomly choose a pair of ID/IDREF

labels in the DTD file and one data node from each label group; then, a new edge

is added between these two data nodes. Since 1-index is a special case of the A(k)-

index, we compare our D(k)-index’s updating performance with the A(k)-index’s

performance.

We adopted a variant of the 1-index update algorithm proposed in [26]. Note

that very recently, the update algorithms with provable guarantee on the resulting

index quality for 1-index and A(k)-index has been proposed in [40]. It is worthy

to point out that the new update algorithm actually involves two phases: splitting

and merging, in which the splitting phase is essentially the same as proposed in

[26]. In our experiments, instead of exploring the merging potential for newly

created index nodes whenever an new edge is inserted into the source graph data,

the update on A(k)-index only involves the splitting phase; the merging operation

is triggered only after a considerable number of updates on source data. The

adoption of this update approach for A(k)-index in our experiments is based on

CHAPTER 2. STRUCTURAL SUMMARY 40

two experimental observations: (1) even though the size of A(k)-index may increase

considerably as the result of splitting while updates are conducted on source data,

its query performance deteriorates only slightly(below 1%) in most cases in our

cost model so long as the index graph resides in main memory; (2) the merging

phase can consume a considerable portion of CPU time; for fair comparison, we

do not treat the merging phase of the A(k)-index as part of update operation, but

as a maintenance operation that is performed only periodically; in the D(k)-index,

the maintenance involves both the promotion and merging operations.

Specifically, the update operation on A(k)-index is as follows. When a new edge

is added to the A(k)-index graph from U to V as a result of an edge insertion from

node u to node v in source data, firstly it determines the maximal local similarity

that node V can be reset to; this can be achieved in the same way as described

in the updating D(k)-index section. Secondly, if V ’s reset local similarity kr is

less than k, the algorithm creates a new index node Vn with extent(Vn) = {b} and

recursively splits the data nodes, whose parents are in the new created index nodes,

from their corresponding index nodes. The second process is repeated until the

data nodes (k−kr) distant from the data node v are reached. It is easy to see that

each index node of the resulting index graph satisfies k-bisimilarity. Note that this

update algorithm is different from the one presented in the conference version of

this paper. It does not check the maximal local similarities of newly created index

nodes except Vn. Since the checking process is exponential with respect to k, our

experiments show that the new update algorithm is significantly more efficient than

the old one. Another justification of adopting the new algorithm is that even after

a considerable number of updates(for instance 300), sizes of the resulting A(k)-

indexes of two algorithms are roughly the same(the difference is no larger than

1% in our experiments). One additional detail concerning the implementation of

updating A(k)-index also need to be pointed out. To facilitate maintaining the

CHAPTER 2. STRUCTURAL SUMMARY 41

connectivity between U and V after some data nodes are split from V , we keep an

additional parameter for each edge U → V in the A(k)-index graph that records

the number of edges between extent(U) and extent(V) in the source graph data.

With this parameter, instead of scanning all data nodes in extent(U) or extent(U),

we only need to check parents of split data nodes, which are usually much less in

number than either extent(U) or extent(U), to maintaining connectivities after

splitting. Our experiments show that this additional parameter can speed up

the updating process on A(k)-index by up to 5 to 6 times in many tested cases.

Note that the results presented in the conference version of our work is based on

implementations without such parameter.

We randomly add 300, 600, 900 or 1200 new edges to data graphs, and measure

the running time of the update algorithms for A(1) up to A(5), and D(k). Note

that updating the A(0) index is trivial since it does not involve any splitting. Due

to the unavailability of more accurate cost models for structural summaries, we

assume that both the source graph data and index graph are in main memory. In

the real application scenario, we can expect that only the index graph is in main

memory, but not the source graph data; therefore, the performance advantage

of incrementally updating D(k)-index over A(k)-index should be more impressive

than what we present here. Our machine features the Linux OS, the Pentium 2.0

Ghz processor and the 512 RAM. The detailed results on the Xmark and Nasa

datasets are given in Figure 2.6 and 2.7, in which the running time is the total

accumulative time to perform all updates. On both datasets, updating D(k)-index

takes roughly the same time as updating A(1) or A(2)-index, but takes less time

than updating A(3), A(4) or A(5)-indexes. More specifically, the cost of updating

A(k)-index shoot up dramatically as k increases from 4 to 5 on the Xmark data;

on the Nasa data, the performance difference between D(k) and A(4) or A(5) is

quite significant. Noting the fact that A(5)-index achieves the best evaluation

CHAPTER 2. STRUCTURAL SUMMARY 42

performance among A(k)-indexes on both datasets(for Xmark, it is about twice

the evaluation cost of D(k)-index; for the Nasa data, it is about 1.2 times the

evaluation cost of D(k)-index), we demonstrate experimentally that updating the

D(k)-index can be accomplished much more efficiently than updating the A(k)-

index with comparable evaluation performance.

Update Performance(Xmark)

0

500

1000

1500

2000

2500

3000

3500

4000

300 600 900 1200

Number of Updates

R
un

ni
ng

 T
im

e(
m

se
c)

A(1)
A(2)
A(3)
A(4)
A(5)
D(k)

Figure 2.6: Update Performance Comparison Between A(k) and D(k) on Xmark
Data

2.6.3 Maintaining A(k) and D(k)-Index

As the A(k)-index is incrementally updated, its evaluation performance may

suffer since its size may increase. As for the D(k)-index, its evaluation perfor-

mance may also deteriorate since its index nodes’ local similarities may have been

downgraded and the evaluation thus triggers more validations.

We track the size increase of A(k)-index over a sequence of 300 incremental

updates(edge insertions) on both datasets. Results are presented in Figure 2.8

CHAPTER 2. STRUCTURAL SUMMARY 43

Update Performance(Nasa)

0

500

1000

1500

2000

2500

300 600 900 1200

Number of Updates

R
un

ni
ng

 T
im

e A(1)
A(2)
A(3)
A(4)
A(5)
D(k)

Figure 2.7: Update Performance Comparison Between A(k) and D(k) on Nasa
Data

and 2.9. We can see that sizes of A(k)-indexes increase steadily as updates go on

and A(k)-indexes with low values of k(≤ 3) have sharper percentage size increase

than ones with high values of k(4 or 5). The total A(k) index size increases after

300 updates on Xmark data reach more than 100% when k = 2or3; but the size

increases are more moderate as k grows larger, 45% for k=4 and 13% for k=5.

On the Nasa data, our experiments show that the total A(k)-index size percentage

increases are quite moderate for all range values of k. The maximum is roughly

20% when k = 1or2; for k=3, 4 or 5, the increases are no larger than 10%.

We also track the evaluation performance of A(k) and D(k)-index over a se-

quence of 300 incremental updates. Results are presented in Figure 2.10 and 2.11.

Note that we only show A(k) for k is between 3 and 5. A(1) and A(2)-index have

the much worse evaluation performance, thus are neglected in figures; but their per-

formance degradation follow the same trend as those of A(k)-index with 3 ≤ k ≤ 5.

CHAPTER 2. STRUCTURAL SUMMARY 44

Figure 2.8: Size Increase of A(k)-Index over Incremental Updates on Xmark Data

Figure 2.9: Size Increase of A(k)-Index over Incremental Updates on Nasa Data

CHAPTER 2. STRUCTURAL SUMMARY 45

We have the observation that even though A(k)-index sizes may increase consid-

erably as demonstrated before, its performance degradation is insignificant, less

than one percent in our experiments. If k is small, A(k)-index’s evaluation cost

is dominated by the validation process on the source data; therefore, even though

the evaluation cost on the index graph may increase as the index size becomes

larger, the overall evaluation cost remains roughly unchanged since the evaluation

cost on the index graph represents only quite a small portion. Otherwise, if k

is large, the percentage increase of index size becomes small; therefore, its eval-

uation performance does not fluctuates much either. Compared with A(k)-index,

the performance degradation of the D(k)-index is sharper. On the Xmark data,

with 60 updates, the D(k)-index underperforms both the A(4) and A(5)-index. Up

to 180 updates, the performance of D(k)-index still suffers visibly; after that the

degradation gradually flattens out. We have the similar observation on Nasa data.

The D(k)-index underperforms A(5)-index after 60 updates; then its performance

gradually stabilizes. These observations experimentally verify that the downgrad-

ing of local similarities can severely affect D(k)-index’s performance; thus justify

the necessity of maintaining D(k)-index periodically.

Since sizes of A(k)-index may increase and performance of D(k)-index may

suffer as a result of incremental updates, both A(k) and D(k)-index need to be

maintained periodically. For the A(k)-index, the maintenance involves merging

index nodes with the same label if they satisfy k-bisimilarity in the index graph.

Maintaining D(k)-index involves both the promotion and merging processes: index

nodes are first promoted to their target local similarities and the merging process

is then invoked to shrink the index size. We implement the merging operation by

treating the original index graph as a data graph and building the new A(k) or

D(k)-index from it. The D(k)-index is promoted through the Mass Promoting Algorithm.

CHAPTER 2. STRUCTURAL SUMMARY 46

Figure 2.10: Performance Degradation of A(k) and D(k)-index over Incremental
Updates on Xmark Data

Figure 2.11: Performance Degradation of A(k) and D(k)-index over Incremental
Updates on Nasa Data

CHAPTER 2. STRUCTURAL SUMMARY 47

The maintainance cost comparison between A(k) and D(k)-index are shown in Fig-

ure 2.12 and 2.13. Not surprisingly, maintaining D(k)-index is more computation-

ally expensive than maintaining A(k)-index on both datasets. We think that the

relative higher maintenance cost of the D(k)-index should not be of much concern

because of two reasons: (1) in real applications, updates should be performed much

less frequently than queries; and the maintenance process is only invoked after a

considerable number of updates; (2) the maintenance operation can significantly

improve the evaluation performance of D(k)-index; if we factor the query benefit

into the consideration, it is quite a fair price to pay for the improved query per-

formance. The effectiveness of the maintenance operation to improve D(k)-index’s

evaluation performance are shown in Figure 2.14 and 2.15. For the A(k)-index, even

though the index graph can be shrunk to some extent, the overall performance re-

mains roughly the same. In contrast, the performance gain on the D(k)-index is

more striking. On the Nasa data, the evaluation cost is actually cut by half after

the maintenance; the two dots before and after maintenance appear close because

of the large value of Y-axis.

2.7 Summary

In this chapter, we propose the D(k)-index, which is a clean generalization

of the previous 1-index and A(k)-index structures. It has clear advantages over

them because of its dynamism. Subject to the changing query load, it can adjust

its structure accordingly. We have shown by experiments that it achieves a higher

evaluation performance than previous static index structures. Equally significantly,

the D(k)-index also has more flexible and efficient update algorithms, which are

crucial to such summary structure’s applications. Our experiments demonstrate

CHAPTER 2. STRUCTURAL SUMMARY 48

0

1000

2000

3000

4000

5000

6000

7000

300 600 900 1200

Number of Updates

R
un

ni
ng

 T
im

e(
m

se
c)

A(3)
A(4)
A(5)
D(k)

Figure 2.12: Maintenance Cost of A(k) and D(k)-index on Xmark Data

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

300 600 900 1200

Number of Updates

R
un

ni
ng

 T
im

e

A(3)
A(4)
A(5)
D(k)

Figure 2.13: Maintenance Cost of A(k) and D(k)-index on Nasa Data

CHAPTER 2. STRUCTURAL SUMMARY 49

Figure 2.14: Performance Improvement after Maintaining A(k) and D(k)-index on
Xmark Data

Figure 2.15: Performance Improvement after Maintaining A(k) and D(k)-index on
Nasa Data

CHAPTER 2. STRUCTURAL SUMMARY 50

the superiority of the update operations on the D(k)-index over the update oper-

ations proposed for previous summary structures.

Chapter 3

Indexing XML for Xpath

Querying in External Memory

One major shortcoming of the structural summary is that it can only be used

to evaluate the non-branching regular path expression. As the XPath specification

shows, possible XML query patterns are beyond that scope. For instance, the

presence of branching predicates in an XPath path expression can actually make

it correspond to a twig path pattern. Secondly, the evaluation of path expressions

on the structural summary still demands the possibly exhaustive traversal of the

summary graph. The element-set-based query processing has the advantage that

only related elements, whose labels are in the specified query, are involved in the

searching process. Nodes in XML tree are usually encoded such that the struc-

tural relationship between two nodes can be decided from their codes alone. As

a result, pairs of elements satisfying the specified structural relationship can be

found through structural join. It is worth noting that only the two element sets

are required for the structural join between two labels, but not the original XML

tree. Thus, the potentially time-consuming traversal of trees or graphs is avoided.

Previous encoding schemes and external-memory index structures proposed

51

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY52

for XML mainly considered the containment relationship between XML elements,

specifically parent-child or ancestor-descendant relationship. The presence of preceding-

sibling and following-sibling location steps in the XPath specification makes it clear

that the horizontal navigation, besides the vertical navigation, in XML documents,

are necessary for efficient evaluation of XPath queries. In this chapter, we en-

hance the existing two encoding schemes, range-based and prefix-based, such that

all possible structural relationship, specified in the XPath language, between two

elements can be determined from their codes alone. Next, we propose an external-

memory index structure, the XL+(XML Location)-Tree, which is based on the

B+-Tree. It indexes element sets to facilitate all location steps, vertical and hori-

zontal, top-down and bottom-up, defined in XPath. The XL+-Trees based on the

prefix-based or range-based encoding schemes basically share the same structure.

We analyze the I/O cost of the search and update operations on the XL+-Tree

and wrap up this chapter with extensive experiments validating its effectivity. We

note that previous works on supporting comprehensive XPath locating steps fo-

cused on querying XML documents by taking advantage of the popular relational

engines. Therefore, they adopted the status quo external memory index structures

in relational engines, namely B-Tree and R-Tree, for the query optimization. In

contrast, the XL+-Tree is an enhanced index structure based on the B + −Tree

that specifically supports efficient structural navigations on XML documents as

specified in the XPath query language.

3.1 Introduction

One popular type of encoding technique is the range labeling [34, 35, 45, 47],

which is inherited from the inverted list widely adopted in information retrieval(IR)[43,

44]. This scheme encodes each element, v, with a pair of integers (Lv, Rv) such

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY53

that an element v is an ancestor of u iff Lv < Lu < Ru < Rv. The other type is

the prefix labeling [46]. It labels each element with a unique string S such that an

element v is the ancestor of u iff S(v) is a prefix of S(u). These indexes enable the

element-sets-based query on XML documents. Since we can decide the contain-

ment relationship between two elements from their labels alone, structural join is

usually used to find all pairs of elements satisfying the primitive structural relation-

ship, namely, parent-child and ancestor-descendant relationships. Equipped with

advanced index data structures [47, 48, 49, 50], structural join can be performed

quite efficiently, specifically in linear or even sublinear time. We note that these

indexes were mainly designed to facilitate the containment relationship evaluation.

Besides the well studied containment relationship, the XPath language also

specifies the sibling structural relationship between XML elements. The preceding-

sibling and following-sibling axes enable the horizontal navigation among tree

nodes, which we believe is an important query pattern for XML database. There-

fore, sibling structural join, as well as the containment structural join, should be

dealt with while we build index structures for XML databases. In this chapter,

we begin with the enhanced ranged-based and prefix-based encoding schemes for

elements in XML trees. Our schemes add additional parameters to the traditional

labeling schemes such that all structural relationship specified in the XPath lan-

guage between two nodes can be determined from their codes alone. Then we

proceed to propose an B+-Tree based external-memory index structure, XL+-

Tree, which facilitates comprehensive types of structural navigation on XML trees.

The XL+-Trees based on the range or prefix encoding schemes factually share

the same structure. But their search operations are slightly different because the

richer information provided by the prefix encoding is exploited to improve the

search performance on XL+-Tree.

Our external-memory index structure, XL+-tree, is built with left positions

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY54

of ranges(under the range encoding scheme) or labeling strings(under the prefix

encoding scheme) as keys. We note that previous index structures based on the

range encoding scheme mainly considered the containment structural relationship.

Existing index structures proposed for strings [53, 54, 55, 56] was intended to

support two types of search problems: (1) prefix search and range query: prefix

search retrieves all strings whose prefix is the given string S; range query retrieves

all strings between S1 and S2 in lexicographic order; (2) substring search: sub-

string search finds all occurrences of a given string pattern in strings. To support

the XPath evaluation, the substring search operation is no longer required for the

XL+-tree. However, new string searching operations emerge because of the vari-

ety of the XPath location steps. Detailed definitions of search operations under

the range or prefix encoding schemes are described in Section 3.3. To cut short,

the XL+-tree targets three types of search problems corresponding the top-down,

bottom-up and horizontal navigations among XML tree nodes respectively. Let B

denotes the disk size. And k denotes the total number of indexed entries. Our

major results can be summarized as follows:

1. Analytical Results(regardless of the underlying encoding scheme, range or

prefix). The descendant search operation takes O(logBk+ rs
B

) worst-case disk

accesses, where rs is the size of the result; the children search operation takes

O(logBk + rd) worst-case I/Os, where rd is the number of disk pages storing

results. Please note that rd may not be equal to rs
B

because children may not

be stored contiguously in the XL+-tree. The following-sibling and preceding-

sibling search operations both take the O(logBk + rd) worst-case I/O cost as

well. The parent search operation takes O(logBk) worst-case I/O cost, while

the ancestor search takes O(lv × logBk) I/O cost in the worst case, where lv

is the level number of the input entry. For the update operations on XL+-

Tree, both the insertion and deletion operation take O(logBk) amortized I/O

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY55

cost.

2. Experimental Evaluation. As far as we know, there is no external-memory

index structure specifically designed for handling comprehensive Xpath loca-

tion steps. The Xpath query accelerator, proposed in [60], encodes each node

in an XML tree with a multi-dimensional descriptor and takes advantage of

traditional R-Tree and B-Tree to support various Xpath locating processes

on a relational engine. Since R-Tree has been shown to outperform B-Tree in

their experiments, to validate the effectivity of the XL+-tree, we compare its

performance with that of R-Tree. Our experiments on both benchmark and

synthetic XML data demonstrate that the XL+-tree outperforms R-Tree by

wide margin in most cases in term of both I/O and CPU cost.

3.2 Enhanced Encoding Schemes

3.2.1 Range-Based Encoding Scheme

In the traditional range encoding scheme, positions of nodes in XML trees are

represented by 3-tuple (DocNo,LeftPos:RightPos, LevelNo). DocNo is the identifier

of document. The pair of LeftPos and RightPos can be generated by doing a depth-

first traversal of the tree and sequentially assigning a number at each visit. Since

each no-leaf node is always traversed twice, once before all its children and once

after, it has two numbers assigned, while leaf nodes have only one number. LevelNo

is the nesting depth of nodes in the tree. An instance of the range encoding of an

XML tree is shown in Figure 3.1.

With the range encoded representation of an XML tree, the containment struc-

tural relationship between tree nodes can be determined easily: (1) containment

or ancestor-descendant: a tree node n1, (LP1 : RP1, lv1), contains a tree node n2,

(LP2 : RP2, lv2), if and only if LP1 < LP2 and RP1 > RP2; (2) direct containment

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY56

Figure 3.1: The Range Encoding of An XML Tree

or parent-child: a tree node n1 directly contains n2 if and only if LP1 < LP2,

RP1 > RP2 and lv1 = lv2 − 1. One advantage of this presentation is that checking

an ancestor-descendant structural relationship is as easy as checking a parent-child

structural relationship.

Now we consider the types of structural navigation required by XPath. Of all 13

types of location steps specified in the XPath language, attribute and namespace are

the same as child from the structural point of view since attributes and namespaces

can be treated as special types of elements; the axis self has no evaluation cost; axes

descendant-or-self and ancestor-or-self are just like axes descendant and ancestor

respectively, plus the context node. The remaining four pairs of exes are of primary

interest to us. The pair of axes, child and descendant, represent the vertical top-

down traversal. The pair of axes parent and ancestor make the vertical bottom-

up traversal. The pair of axes preceding-sibling and following-sibling typifies the

horizontal traversal. Finally, axes preceding and following make the general forward

and backward traversal respectively.

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY57

While the traditional range encoding of XML trees is sufficient to determine

the parent/child, ancestor/descendant, and following/preceding relationships be-

tween tree nodes, it does not capture the preceding-sibling/following-sibling rela-

tionship. The enhanced range encoding scheme represents each node with a three-

dimensional descriptor: < LP : RP, lv, P LP >, in which LP and RP represent

its position range, lv is its nesting level and P LP is its parent node’s left posi-

tion. Note that we assume that nodes are from the same document and ignore the

DocNo information from the descriptor. Extending it to handle nodes across mul-

tiple documents should be trivial. Based on this encoding scheme, the structural

relationship between XML tree nodes can be determined as follows:

1. descendant. Node u is a descendant node of v iff LP (v) < LP (u) and

RP (u) < RP (v);

2. child. Node u is a child node of v iff LP (v) < LP (u), RP (u) < RP (v) and

lv(u) = lv(v) + 1;

3. ancestor. Node u is an ancestor node of v iff LP (u) < LP (v) and RP (v) <

RP (u);

4. parent. Node u is a parent node of v iff LP (u) = P LP (v);

5. following-sibling. Node u is the following-sibling node of v iff LP (u) > LP (v)

and P LP (u) = P LP (v);

6. preceding-sibling. Node u is the preceding-sibling node of v iff LP (u) < LP (v)

and P LP (u) = P LP (v);

7. following. Node u is the following node of v iff LP (u) > RP (v);

8. preceding. Node u is the preceding node of v iff RP (u) < LP (v);

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY58

Note that the index XL+-Tree is built using the LP values of data nodes as

keys. Given a context node v, the following location step can be accomplished

by a simple range search that identifies those data nodes satisfying LP > RP (v).

Since node v’s preceding nodes are defined to be those nodes with LP < LP (v),

but excluding v’s ancestor nodes, the preceding location step can be accomplished

by a range search identifying data nodes with LP < LP (v) followed by a ancestor

search operation. The following three search problems, which corresponds to six

basic location steps, are critical to the XPath processing;therefore, they are of

primary interest to us. The Range Encoding Scheme is denoted by RES.

Given a set of node descriptors, D = {D1, D2, . . . , Dk}, and an input descriptor

D(v) =< LP (v) : RP (v), lv(v), P LP (v) >:

Definition 4 Top-Down Search(RES): Search Descendent(D(v)) retrieves all

descriptors in D satisfying LP (v) < LP < RP (v); Search Children(D(v)) retrieves

all descriptors in D satisfying LP (v) < LP < RP (v) and lv = lv(v) + 1.

Definition 5 Bottom-Up Search(RES): Search Ancestors(D(v)) retrieves all

descriptors in D satisfying LP < LP (v) < RP ; Search Parent(D(v)) retrieves the

descriptor satisfying LP = P LP (v).

Definition 6 Horizontal Search(RES): Search Following-Siblings(D(v)) retrieves

all descriptors in D satisfying LP > RP (v) and P LP = P LP (v); Search Preceding-

Siblings(D(v)) retrieves all descriptors in D satisfying LP < LP (v) and P LP =

P LP (v).

3.2.2 Prefix-Based Encoding Scheme

In the prefix labeling scheme, we encode each node with a unique string S such

that: (1) S(v) is before S(u) in lexicographic order iff node v is before node u in

the document order; (2) S(v) is a prefix of S(u) iff node v is the ancestor of node

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY59

u. Informally, the document order in an XML tree orders its nodes corresponding

to a sequential read of nodes by a preorder traversal. One simple example prefix

scheme works as follows. We assign to the out-going edges of each node a set

of prefix-free binary strings. From left to right, strings assigned to edges are in

lexicographic order. Then, starting from the root and going down, we define the

label of each node to be the concatenation of its parent’s label and the string

assigned to its incoming edge. Consider, for example, a node v has two children,

v1 and v2, and v1 is before v2. We can assign string ”00” to edge (v, v1), string

”01” to edge (v, v2). So the label string of v1, S(v1)=S(v) • 00; the label string of

v2, S(v2)=S(v) • 01. The labeling of the example XML tree of Figure 1.1 is given

in Figure 3.2. Please note that the problem of how to label nodes in the XML tree

using the shortest possible string in the static or dynamic setting is beyond the

scope of this dissertation. In this chapter, we use the above-mentioned scheme to

explain our results. However, our results are valid for any prefix labeling scheme

satisfying the above two conditions.

Figure 3.2: The Prefix Encoding of An XML Tree

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY60

As in the range-based labeling scheme, we record nodes’ level numbers to distin-

guish the parent-child and ancestor-descendant relationship. Another parameter

we keep for each node records the lengths of the strings assigned to its incoming

edges. We have the following two observations:

1. The basic component of strings, character(referred to as the char data type

in most programming languages), has up to 256 distinct values; therefore,

the strings with maximum length of 5 can represent up to 2565(� 1 billion)

distinct values. Thus, the length of strings assigned to edges in an XML tree

can afford to be small;

2. The maximal level of the XML tree can be expected to be small also. Authors

in [46] said that the average depth of XML files collected by a crawler over the

web is low; the trees are balanced with relatively high degrees. The popular

DBLP document and Xmark benchmark data have the maximal level no

larger than 12.

Suppose that the maximal length of labeling strings over edges of XML tree is

m. We set the base length value b to be (m+1). A node v at level k(with the root

at level 0) has the incoming path of n0n1 . . . nk, in which node n0 is the root of the

XML tree and v = nk. And the length of the labeling string over edge ni−1 → ni,

for each 1 ≤ i ≤ k, is li−1. We add an integer parameter, the edge string length

esl = l0 × bk−1 + l1 × bk−2 + . . . + lk−1 × b0, to each node v’s descriptor. Obviously,

we can determine the values of all lis from esl’s value, specifically li = � esl
b((k−1)−i)

%(modula) b. The edge string length parameter will be used to extract a node’

ancestors’ label strings. This completes our enhanced prefix encoding scheme.

Each node v in the XML tree is represented by a three-dimensional descriptor:

< S, lv, esl >, in which, lv is the nesting level of node v and esl is the edge string

length parameter defined above.

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY61

Under this prefix encoding scheme, the structural relationships between nodes

can be determined as follows. Note that the function prefix(S, i) returns the string

consisting of the first i characters in string S. And we denote it as S(v) < S(u)

iff S(v) is before S(u) in lexicographic order; S(v) > S(u) iff S(v) is after S(u) in

lexicographic order. We also denote the lengths of strings over edges of node v’s

incoming path, in the order from the root to v, as l0(v), l1(v), . . . , lk(v)(k=lv(v)−1).

1. descendant. Node u is a descendant node of v iff S(v) is a prefix of S(u);

2. child. Node u is a child node of v iff S(v) is a prefix of S(u), and lv(u) =

lv(v) + 1;

3. ancestor. Node u is an ancestor node of v iff S(u) is a prefix of S(v);

4. parent. Node u is a parent node of v iff S(u) = prefix(S(v), |S(v)| − ek(v));

5. following-sibling. Node u is the following-sibling node of v iff S(u) > S(v),

lv(u) = lv(v), and prefix(S(v), |S(v)| − lk(v)) is a prefix of S(u);

6. preceding-sibling. Node u is the preceding-sibling node of v iff S(u) < S(v),

lv(u) = lv(v), and prefix(S(v), |S(v)| − lk(v)) is a prefix of S(u);

7. following. Node u is the following node of v iff S(u) > S(v), and S(v) is

NOT a prefix of S(u);

8. preceding. Node u is the preceding node of v iff S(u) < S(v), and S(u) is

NOT a prefix of S(v).

Similar to the case of the range encoding scheme, nodes preceding a given node v

are those nodes whose labeling strings are smaller than S(v), but excluding node v’s

ancestors. Thus, the preceding location step can be solved by performing a range

string search followed by a string search corresponding to the ancestor location

step. Nodes following a given node v should have a labeling string larger than S =

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY62

prefix(S(v), |S(v)|−ek(v))•ω, in which k = lv(v)−1, • is a concatenation operator

and ω is an imaginary character larger than any other character. Therefore, the

following location step actually amounts to a range search on strings. The three

search problems under the Prefix Encoding Scheme(PES), which correspond to six

basic XPath location steps, are presented as follows.

Given a set of node descriptors, D = {D1, D2, . . . , Dk}, and an input descriptor

D(v) =< S(v), lv(v), esl(v) >:

Definition 7 Top-Down Search(PES): Search Descendent(D(v)) retrieves all

descriptors in D satisfying that their labeling strings have S(v) as a prefix; Search Children(D(v))

retrieves all descriptors in D whose labeling strings have S(v) as prefix, and whose

level number is (lv(v) + 1).

Definition 8 Bottom-Up Search(PES): Search Ancestors(D(v)) retrieves all

descriptors in D whose label strings are prefixes of S(v); Search Parent(D(v)) re-

trieves the descriptor whose labeling string is prefix(S(v), |S(v)|−ek(v))(k=lv(v)−
1).

Definition 9 Horizontal Search(PES): Search Following-Siblings(D(v)) retrieves

all descriptors in D satisfying S > S(v),lv = lv(v),and S has prefix(S(v), |S(v)|−
ek(v)) as a prefix; Search Preceding-Siblings(D(v)) retrieves all descriptors in D

satisfying S < S(v), lv = lv(v), and S has prefix(S(v), |S(v)|− ek(v)) as a prefix.

It is interesting to note that while the top-down search problem is similar to

the string prefix search problem well studied in previous literature; the bottom-up

and horizontal search problems are specific to the XPath evaluation.

3.3 The XL+-Tree for Range Encoding Scheme

The XL+-tree under the range encoding scheme is an extension of the B+-tree

index data structure, in which node descriptors are stored on leaf disk pages and

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY63

all leaves are linked sequentially. Entries are sorted according to left positions(LP

in our node descriptor). In the XPath specification, each location step usually

comes with a node test, specifically an element tag test. Therefore, in our design,

an XL+-tree is built for each tag in XML documents. In case that there are so

many distinct tags that XL + −Trees may flood the XML query engine, node

descriptors with different tags can be actually indexed in a single XL+−tree; but

it has a composite key, (tag,LP). For convenience of explanation, we will focus

on the XL + −tree built for a single tag in this section. Extending it to handle

multiple tags should be straightforward.

The overall structure of XL+-tree is shown in Figure 3.3. Each entry in the

XL+-tree leaf pages consists of the descriptor and two pointers, one referring to

its immediate preceding sibling and the other referring to its immediate following

sibling. The structure of the XL+-Tree’s internal page is basically the same as

in the B+-tree except that we store two additional integers on each reference to

its child page. These two integers record the minimal and maximal level(lv) of

entries(node descriptors) in the corresponding subtree respectively. As it will be

shown later, the pair of additional integers is for identifying the first child/sibling

of a given context node; the pair of pointers in each entry is for facilitating the

horizontal navigation.

3.3.1 Search Operations on XL+-tree

Given a target node descriptor,D(v) =< id(v), LP (v) : RP (v), lv(v), ParentId(v) >

, its position in the indexed descriptors is defined to be the position of the leftmost

entry whose LP is larger or equal to LP (v). We denote its position by (δi, pj), with

δi representing the ith leaf disk page and pj representing the position on this disk

page. The procedure, Find Position(D(v)), which identify D(v)’s position, can

be implemented by repeatedly performing a binary search in the integers stored

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY64

a12
a1b.....

a21 a22
a2c..... a31 a32

a3d..... ab1 ab2
abm.....

a11

al1
ali...

em1 em2
emj... en1 en2

enk...

...

...

leaf page leaf page

[lvmin, lvmax] [lvmin, lvmax] [lvmin, lvmax]

[lvmin, lvmax]
[lvmin, lvmax]

root page

<LP:RP,lv,ParentId>

immediate preceding sibling immediate following sibling

i
n
t
e
r
n
a
l

p
a
g
e
s

Figure 3.3: The Overall Structure of XL+-tree

on nodes in the XL+-tree. Its details are omitted here since it is the standard

operation on the traditional B+-tree.

Top-Down Search:Descendant and Children

Since all D(v)’s descendent satisfy LP (v) < LP < RP (v), the Search Descendant(D(v))

operation amounts to the range search operation on the XL+-tree. It can simply

be implemented by the Find Position(D(v)) operation followed by sequentially

scanning entries until LP ≥ RP (v). Therefore, the Search Descendant(D(v))

worst case I/O cost is O(rs
B

+ logBk), in which rs is the number of descendant

entries.

For the Search Children(D(v)) operation, we have the observation that, once

D(v)’s first child is found, its other children can be identified by simply follow-

ing the following-sibling pointers. D(v)’s first child can be found through the

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY65

Find Position(D(v)) operation followed by sequentially scanning entries. Unfortu-

nately, this implementation has the same worst case I/O cost as the Search Descendent(D(v))

operation. In case that there are a lot of D(v)’s descendants before its first child,

its efficiency suffers. In the scenario of Figure 3.4, it needs to scan Bd pages before

finding the first child. Instead, we present a procedure that takes O(logBk) I/Os

in the worst case to identify the first child. Our approach takes advantage of pairs

of integers stored over page references in the XL+-tree. Note that the pair of

integers over the reference to page δ keeps the minimal and maximal level(lv) of

entries in the subtree rooted at page δ. Firstly, we have the following lemma:

Lemma 2 D(v)’s first child, if it exists, is the first(leftmost) entry satisfying LP >

LP (v) and lv = (lv(v) + 1) in the XL+-Tree; and all entries before it but with

LP > LP (v) have level lv > lv(v) + 1.

Proof: Since D(v)’s first child D(u) satisfies LP (v) < LP (u) < RP (v), all entries

before D(u) but with LP > LP (v) also satisfy LP (v) < LP < RP (v); thus they

are all D(v)’s descendants, but not children because D(u) is D(v)’s first child. �

The procedure for identifying D(v)’s first child involves two phases:(1) a top-

down search; (2) if needed, backtracking and another top-down search. The first

top-down search begins with the root page of XL+-tree and recursively advances

to the next target page until it reaches a leaf page or the stop criteria is met, which

means either the end of the first phase or the non-existence of D(v)’s first child. It

goes through two steps on each page. Firstly, it chooses the leftmost page reference,

PRi, whose corresponding subtree has a range of keys(LP s) (LPmin, LPmax] satis-

fying LP (v) ≤ LPmax. Note that the values of LPmin and LPmax are two delimiting

integers of each page reference and this search process can be accomplished through

a binary search over delimiting keys as on the traditional B+-tree. Secondly, if the

chosen page reference’s range of levels [lvmin, lvmax] contains lv(v)+1, which means

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY66

that D(v)’s first child is probably in this subtree, it advances to the next page follow-

ing this page reference. Otherwise, it reaches the end of the first phase. Note that

in the case that lvmax < lv(v)+1, if it is known that some entry in this subtree has

the left position equal to LPmax(LP = LPmax), we can conclude that D(v) has no

child in the XL+−tree. This condition is satisfied if all delimiting keys stored on

internal pages are keys of entries stored on leaf pages. In the following description,

as in the traditional B+-tree context, we assume such guarantee. If a leaf page

is reached, entries stored on it should have a LP range (LPmin, LPmax] satisfying

LPmin ≤ LP (v) < LPmax, and a level range [lvmin, lvmax] containing (lv(v) + 1).

However, it does not guarantee that the first(leftmost) entry with LP > LP (v) and

lv ≤ lv(v)+1, which according to Lemma 1, either is D(v)’s first child or indicates

that there is no D(v)’s child, is on this leaf page. Therefore, the procedure contin-

ues to identify the leftmost entry, D(w), with LP > LP (v) and sequentially scan

entries after D(w) on this leaf page. If an entry with lv ≤ lv(v)+1 is found, either

it is D(v)’s first child or we can conclude that D(v) has no child in the XL+-tree.

Otherwise, if all entries after D(w)(including D(w)) have level of lv > lv(v) + 1

and the last entry of this leaf page has the left position of LP < RP (v), we invoke

the second phase of the procedure.

The second phase involves probably backtracking on the top-down search of

the first phase and then another top-down search. If the first phase ends at an

internal page, the second phase continues to sequentially consider page references

after the current page reference. There are six possible cases:

1. The page reference’s maximal level, lvmax < (lv(v) + 1); in this case, it can

be concluded that D(v) has no child entry since according to Lemma 1, all

entries before D(v)’s first child but with LP > LP (v) should have level larger

than (lv(v) + 1);

2. The page reference’s minimal level, lvmin > lv(v)+1 but LPmax ≥ RP (v); in

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY67

this case, it can be concluded that no D(v)’s child entry exist in the XL+-

tree;

3. lvmin > lv(v) + 1 and LPmax < RP (v); in this case, it can be concluded

that no D(v)’s child is in this subtree. It continues to consider the next page

reference;

4. lvmin ≤ (lv(v)+ 1) ≤ lvmax but LPmin ≥ RP (v); in this case, again it can be

concluded that D(v) has no child entry since any D(v)’s child entry should

satisfy LP < RP (v);

5. lvmin ≤ (lv(v) + 1) ≤ lvmax and LPmin < RP (v); in this case, D(v)’s first

child is probably in this subtree; it indicates the end of backtracking and the

beginning of the second top-down search;

6. The end of this page is reached; it backtracks to the current page’s parent

page; if the current page is the root page of XL+-tree, it can be concluded

that no D(v)’s child exists.

If the first phase ends at a leaf page, the second phase firstly backtracks to the

leaf page’s parent page. It then continues to consider other page references after

the current page reference on the internal page. Possible cases are the same as the

six outlined above.

In the second phase, another top-down search is required only when Case 5

occurs. We also have the observation that in the second top-down search, all en-

tries in the subtree, which corresponds to the encountered page reference, satisfy

LP > LP (v). Therefore, the procedure always sequentially scans page references

or entries on the current page beginning with the leftmost one. The operations

upon page references on the internal page are similar to the six cases just described.

Cases 1, 2 and 4 indicate that D(v)’s first child doesn’t exist. If case 5 is encoun-

tered, it advances to the next page following the current page reference. Case 6

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY68

never occurs. The search operation on the leaf page is also the same as in the first

phase except that it again scans from the leftmost entry and there should be some

entry with level of lv ≤ lv(v) + 1.

The procedure for identifying D(v)’s first child is described in Algorithm 3.1.

It is now obvious that the number of page accesses it invokes in the worst case is

O(logBk)(for the first top-down search)+O(logBk)(for the backtracking)+O(logBk)(for

the second top-down search)=O(logBk). By simply following the following-sibling

pointers, we achieve the claimed O(logBk+rd) worst case I/O cost for the Search Children(D(v))

operation, in which rd is the number of pages where D(v)’s children are stored.

Note that this result asymptotically improves the result of the straightforward so-

lution that takes O(logBk + rs
B

) I/Os in the worst case, in which rs is the number

of D(v)’s descendants, since � rs
B
� ≥ rd. A working example of this procedure is

also provided in Figure 3.4. Note that instead of scanning Bd pages to find D(v)’s

first child as of the straightforward solution, our proposed algorithm takes only

one backtracking step and one additional top-down search, totally two additional

pages, to achieve the purpose.

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY69

Algorithm 3.1: Identify D(v)’s first child, D(v) =< LP (v) : PR(v), lv(v), P LP (v) >

1. the first top-down search;

• end-of-first-phase=false;

• beginning with the root page of XL+-tree, do {
– If (the current page is an internal page)

(a) Identify the leftmost page reference, PRi, with LP (v) ≤ LPmax;

(b) If (PRi’s range level [lvmin, lvmax] covers (lv(v) + 1))

∗ advance to next page following PRi;

(c) Else

∗ end-of-first-phase=true;

– Elseif (the current page is a leaf page)

(a) identify the leftmost entry, D(w), with lv(w) > LP (v);

(b) sequentially scan entries after D(w)

∗ if (the current entry D(u)’s LP satisfies LP (u) < RP (v))

· If (lv(u) = lv(v) + 1)
terminate this algorithm; D(u) is D(v)’s first child;

∗ Elseif (LP (u) > RP (v))

· terminate this algorithm; No D(v)’s child exists;

∗ end-of-first-phase=true;

• } until (end-of-phase==true)

2. backtracking;

• if (the first phase ends at an internal page)

– sequentially consider other page references after PRi on the current page

(a) If (lvmax < (lv(v) + 1))
terminate this algorithm; no D(v)’s child exists;

(b) Elseif (lvmin > lv(v) + 1 & LPmax ≥ RP (v))
terminate this algorithm; no D(v)’s child exists;

(c) Elseif (lvmin > lv(v) + 1 & LPmax ≤ RP (v))
continue to consider next page reference;

(d) Elseif (LPmin ≥ RP (v))
terminate this algorithm; no D(v)’s child exists;

(e) Elseif (LPmin < RP (v))
it indicates the end of backtracking;

(f) Elseif (the end of page is reached)

backtrack to the current page’s parent page; if the current page is the root

page of XL+-tree, terminate this algorithm; no D(v)’s child exists;

• elseif (the first phase ends at a leaf page)

– it firstly backtracks to the leaf page’s parent page and then continues to consider

other page references after the current page reference on the internal page.

Possible cases are the same as the six outlined above.

3. the second top-down search;

the second top-down search sequentially scans page references or entries from the leftmost one

on the current page. The operations upon page references on the internal page are similar to

the six cases just described except that case 6 should never occur. Cases 1, 2 and 4 indicate

that D(v)’s first child doesn’t exist. If case 5 is encountered, it advances to the next page

following the current page reference. The search operation on the leaf page is also the same

as in the first phase except that it scans from the leftmost entry and there should be some

entry with lv ≤ lv(v) + 1.

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY70

Figure 3.4: A working instance of searching D(v)’s first child

Horizontal Search: Preceding and Following Sibling

To search D(v)’s preceding(or following) siblings, we have the observation that

once D(v)’s first preceding(or following) sibling is identified, its other preceding(or

following) siblings can be tracked through entries’ preceding-sibling(or following-

sibling) pointers. we have the following Lemma which is similar to Lemma 1.

Lemma 3 D(v)’s first following sibling D(u), if it exists, is the leftmost entry

satisfying LP > RP (v) and lv = lv(v) in the XL+-Tree; and all entries with

LP > RP (v) but before D(u) have level of lv > lv(v). Similarly, D(v)’s first

preceding sibling D(w), if it exists, is the rightmost entry satisfying LP > LP (v)

and lv = lv(v) in the XL+-Tree; and all entries with LP > LP (v) but after D(w)

have level of lv > lv(v).

Proof: Consider the leftmost entry D(u) with LP > RP (v) and lv ≤ lv(v). If

D(u) is D(v)’s following sibling, the lemma is true. Otherwise, assuming that v’s

parent is vp, since lv(u) ≤ lv(v), u is NOT vp’s descendant; from the fact that u

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY71

is after v, we have LP (u) > RP (vp). Therefore, none of entries after D(u) can be

vp’s child or v’s following sibling.

Similarly, we consider the rightmost entry D(w) with LP < LP (v) and lv ≤
lv(v). If D(w) is D(v)’s preceding sibling, the lemma is true. Otherwise, assuming

that v’s parent is vp, since lv(w) ≤ lv(v), w is NOT vp’s descendant; from the fact

that w is before v, we have LP (w) > LP (vp). Therefore, none of entries before

D(w) can be vp’s child or v’s preceding sibling. �

The strategy of efficiently searching D(v)’s first preceding or following siblings

in XL + −tree is similar to the operation of searching D(v)’s first child. It also

involves two phases: the first phase of a top-down search, and if necessary, the

second phase of backtracking and another top-down search.

Consider the procedure for identifying D(v)’s first following sibling. The first

top-down search find the leftmost page reference with LPmax > RP (v), PRi, on

each internal page. If PRi’s level range contains lv(v), the search advances to the

page of next level. Otherwise, it invokes the second phase and sequentially scans

other page references after PRi. There are totally four possible cases:

1. lvmax < lv(v). It can be concluded that D(v) has no following sibling;

2. lvmin > lv(v). D(v)’s first following sibling can not be in this subtree, con-

tinue to next page reference;

3. lvmin ≤ lv(v) ≤ lvmax. D(v)’s first following sibling is probably in this

subtree; this case indicates the end of backtracking.

4. The end of page is reached. It backtracks to the current page’s parent page;if

the current page is the root page of XL+-tree, no D(v)’s following sibling

exists;

As in the procedure of identifying the first child, after a leaf page is reached,

it determines whether the leftmost entry with LP > RP (v) and lv ≤ lv(v) is in

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY72

this page. If yes, either D(v)’s first following sibling is found or it is concluded

that no D(v)’s following sibling exists. Otherwise, it backtracks to the leaf page’s

parent page. The operations upon page references on internal pages are basically

the same as described above. The second top-down search is also the same as the

first one except that it always begins with the leftmost page reference(or entry) on

each page and case 4 should never occur.

The procedure of identifying D(v)’s first preceding sibling should be straight-

forward since it is actually symmetric to the procedure of identifying D(v)’s first

following sibling. The first top-down search find the rightmost page reference with

LPmin < LP (v), PRi, on each internal page. If PRi’s level range contains lv(v),

the search advances to the page of next level. Otherwise, it invokes the second

phase and sequentially scans other page references before PRi in the backward

manner. Four possible cases are as follows:

1. lvmax < lv(v). It can be concluded that D(v) has no preceding sibling;

2. lvmin > lv(v). D(v)’s first preceding sibling can not be in this subtree,

continue to previous page reference;

3. lvmin ≤ lv(v) ≤ lvmax. D(v)’s first preceding sibling is probably in this

subtree; this case indicates the end of backtracking.

4. The end of page is reached. It backtracks to the current page’s parent page;if

the current page is the root page of XL+-tree, no D(v)’s preceding sibling

exists;

The backtracking and second top-down search can also be accomplished in the

similar way. We do not describe further details since they are obvious.

From the above descriptions, procedures for identifying D(v)’s first preced-

ing or following sibling take O(logBk) I/Os in the worst case. Therefore, both

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY73

Figure 3.5: A working instance of searching D(v)’s first following sibling

Search Preceding-Sibling(D(v)) and Search Following-Sibling(D(v)) operations can

be accomplished consuming only O(logBk+rd) I/O cost in the worst case, in which

rd is the number of pages storing D(v)’s preceding or following siblings. A working

example of the procedure for identifying D(v) first following sibling is presented in

Figure 3.5. It takes h = O(logBk) I/Os, in which h is the height of XL + −tree.

Note that a naive solution, which searches the leftmost entry with LP > RP (v)

and then scan sequentially to find D(v)’s first following sibling, takes (h+Bd) I/Os

in this instance.

Bottom-Up Search:Ancestor and Parent

Concerning the Search Parent(D(v)) and Search Ancestors(D(v)) operations,

we have the following lemma:

Lemma 4 D(v)’s ancestor at level lva ≤ (lv(v) − 1), if it exists, is the rightmost

entry at level lva and with LP < LP (v) in the XL+-tree; and all entries after it

but before D(v) have level of lv > lva.

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY74

Proof: Consider the rightmost entry, D(u), with LP (u) < LP (v) and lv(u) ≤ lva

in the XL+-Tree. If it is D(v)’s ancestor of level lva, the lemma is true; otherwise,

there are two possible cases:

1. D(u) is D(v)’s ancestor, but has level lv(u) < lva; since D(v)’s ancestor of

level lva should be D(u)’s descendant, obviously no entry before D(u) can

be D(v)’s ancestor of level lva;

2. D(u) is not D(v)’s ancestor; in this case, ranges [LP (u), RP (u)] and [LP (v), RP (v)]

do not overlap. Note that any entry before D(u) should have a range

[LP, RP] which either contains [LP (u), RP (u)] or does not overlaps with

[LP (u), RP (u)]. If its range does contain [LP (u), RP (u)], its level satis-

fies lv < lv(u) ≤ lva; therefore, it can not be D(v)’s ancestor of level lva.

If its range does not overlap with [LP (u), RP (u)], it neither overlaps with

[LP (v), RP (v)]; thus it can not be D(v)’s ancestor.

Therefore, we have the conclusion that if D(u) is not D(v)’s ancestor of level

lva, no ancestor of level lva exists in the XL+-tree. �

Obviously, the Search Parent(D(v)) operation amounts to the key(equal to

P LP (v)) search operation on the XL+-tree.

To facilitate the Search Ancestor(D(v)) operation, we record all distinct levels

of entries indexed by an XL+-tree. As claimed in section 3.2, XML trees’ maximal

depth can be expected to be small; thus number of distinct levels in an XL+-tree is

also small. The overall idea of conducting the Search Ancestor(D(v)) operation is

similar to that of other search operations. Intuitively, it repeatedly searches, in the

decreasing order of lva, the rightmost entry of level lva(lva < lv(v)) before D(v). It

involves multiple repetitions of the top-down search followed by the backtracking.

Its first top-down search recursively identifies the rightmost page reference sat-

isfying LPmin < LP (v) on internal pages. If it reaches a leaf page, all entries with

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY75

LP < LP (v) or before D(v) are sequentially scanned in the backward manner; if

the minimal level of these entries is lvm < lv(v), according to Lemma 3, we have the

conclusion that D(v)’s ancestors of level lvm ≤ lv < lv(v) should be among them if

they exist. The procedure continues to identify D(v)’s ancestors of level lv < lvm.

It backtracks to the current leaf page’s parent page and scans page references se-

quentially in the backward manner before the current page reference. In the case

that the first top-down search ends at some internal page because lvmin ≥ lv(v), it

simply continues to consider previous page reference sequentially. If the encoun-

tered page reference’s lvmin is less than lvm, it stops the backtracking and begins

the second top-down search. The second top-down search similarly identifies the

rightmost page reference with lvmin < lvm on internal pages. Note that beginning

with the second top-down search, all entries in the corresponding subtree have

LP < LP (v). Therefore, the top-down search should reach a leaf page and the

minimal level(lv) of entries on this leaf page should be lvmin < lvm. According to

Lemma 3, we have the conclusion that all D(v)’s ancestors of level lv ∈ [lvmin, lvm)

should be on this leaf page. Therefore, the procedure scans all entries on this leaf

page in the backward manner. If it encounters an entry with level of lv′ < lvm, we

have the conclusion that either this entry is D(v)’s ancestor of level lv′ or D(v)

has no ancestor of level lv′. If an entry of level lvmin is encountered, the scanning

process on this leaf page stops. The value of lvm is now reset to be lvmin and

another round of backtracking and top-down search begins. The procedure contin-

ues this process until the value of lvm reaches the smallest level of entries indexed

by the XL+-tree. The whole procedure of the Search Ancestor(D(v)) operation

is described in Algorithm 3.2. Since each round of backtracking and top-down

search reduces the value of lvm by at least one, the maximal number of rounds

required by the operation is (lv(v) − 1). Therefore, the Search Ancestor(D(v))

operation takes O(lv(v) × logBk) I/O cost in the worst case. A working instance

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY76

of the Search Ancestor(D(v)) operation is also provided in Figure 3.6.

Algorithm 3.2: the Search Ancestor(D(v)) operation, D(v) =< LP (v) : PR(v), lv(v), P LP (v) >

1. lvm=lv(v); set lvx to be the minimal level of entries in the XL+-tree;

2. end-of-first-search=false;

3. beginning with the root page of XL+-tree, do {

• if (the current page is an internal page)

(a) Identify the rightmost page reference, PRi, with LPmin < LP (v);

(b) If (PRi’s level range lvmin < lvm)

– advance to next page following PRi;

(c) Else

– end-of-first-search=true;

• elseif (the current page is a leaf page)

(a) identify the rightmost entry, D(w), with lv < LP (v);

(b) sequentially scan entries before D(w)(including D(w)) on the current leaf page in

backward manner;

– if (the current entry D(u)’s lv(u) satisfies lv(u) < lvm)

∗ output D(u) if it is D(v)’s ancestor of level lv(u);

∗ lvm=lv(u);

– elseif (the end of leaf page is reached)

∗ end-of-first-search=true;

4. } until (end-of-first-search=true)

5. while (lvm > lvx)

(a) backtracking;

• if (the last top-down search ends at an internal page)

– sequentially scan page references before the current PRi in the backward

manner;

i. If (lvmin < lvm)

this case indicates the end of backtracking;

ii. Elseif (lvmin ≥ lvm)

continue to consider the previous page reference;

iii. Elseif (the head of page is reached)

backtrack to the current page’s parent page;

• elseif (the last top-down search ends at a leaf page)

– backtrack to the current leaf page’s parent page and sequentially scan page

references before the current page reference; all possible cases are the same

as presented above;

(b) repeated top-down search;

• The repeated top-down search operation always sequentially scan page references

or entries on each page in the backward manner beginning with the rightmost one.

Operations on the internal pages are the same as described in the backtracking

part except that it begins with the rightmost page reference and case (iii) should

never occur. Operations on the leaf page are the same as described in the first

top-down search. Also note that lvm’s value will be reduced after each round of

backtracking and top-down search.

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY77

Figure 3.6: A working instance of searching D(v)’s ancestors

3.3.2 Update Operations on Range-Based XL+-tree

When the entry of a new element is inserted or deleted from the XL+-tree,

the pointers of related entries and the level ranges stored over page references need

be maintained effectively. It turns out that both deletion and insertion operations

upon XL+-tree take the amortized I/O cost of O(logBk). We first present the

insertion operation and then the deletion operation.

As described in [31], we use slots to store entries’s positions on leaf pages. The

advantage of implementing slots is that when a new entry is inserted into a leaf

page and positions of all entries after it in this page are shifted forward, we only

need to update position values of shifted entries stored in slots; since the preceding-

sibling or following-sibling pointers actually refer to slots, they do not need to be

updated upon such shifting.

A new entry D(w) can be inserted at the right position on XL+-tree just as

on a typical B+-tree. D(w)’s immediate preceding and following siblings in the

XL+-Tree can also be identified using presented search operations with the worst-

case I/O cost of O(logBk). To maintain the level ranges over page references,

we check the level range over the page reference pointing to the leaf page where

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY78

D(w) is inserted. If the level range [lvmin, lvmax] contains D(w)’s level lv(w), it

remains unchanged and no other level range on the XL+-tree needs to be updated;

otherwise, either lvmin or lvmax should be updated to accommodate lv(w) and such

update should be recursively propagated to the current page’ parent page. Note

that only level ranges of page references on the path from the root page to the target

leaf page can be affected by the insertion operation. Therefore, in the worst case,

the required I/O cost to maintain level ranges is O(logBk). Finally, if an insertion

operation results in the overcapacity of a leaf page, this leaf page needs to be split

into two. For each moved entry, pointers to it should be updated properly. Since

each entry is only referred by its immediate preceding sibling or following sibling

entry, only constant I/Os are required to update pointers referring to each shifted

entry. Additionally, only page references on the paths from the root page to two

new sub-page can be affected by such splitting. Therefore, the amortized I/O cost

of the insertion operation is O(logBk).

Next we turn to the deletion operation. After an entry D(w) is deleted from

XL+-tree, its immediate preceding sibling entry’s following-sibling pointer should

be redirected to its immediate following sibling;and its immediate following sibling

entry’s preceding-sibling pointer should be redirected to its immediate preceding

sibling. Maintaining the level ranges over page references is similar to what was

described in the insertion operation. If the deleted entry D(w)’s level satisfies

lvmin < lv(w) < lvmax, in which lvmin and lvmax are minimal and maximal levels

recorded over the page reference pointing to the leaf page where D(w) is stored

before deletion, the level range [lvmin, lvmax] over this page reference does not

need to be changed; thus no other level ranges in XL+-tree needs to be updated.

Otherwise, lv(w) is equal to lvmin or lvmax;in this case, we need to sequentially

scan all remaining entries on this leaf page to determine if there is any one with

level of lv(w). If there is an entry of level lv(w), the level range over this page

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY79

reference again does not need to be updated and it also indicates the end of the

process to maintain level ranges. Otherwise, the target level range should be

updated correspondingly and such update is propagated up one level. On each

internal page, the level range over the page reference pointing to it is set to be

[lvi, lva], where lvi is the minimal of all lvmins over page references initiating from

this page and lva is the maximal of all lvmaxs. This process is continued until the

level range of the target page reference remains unchanged or the root page of

XL+-tree is reached. It is not hard to see that the I/O cost of this procedure to

maintain level ranges on XL+-tree is O(logBk). If a deletion operation results in

the undercapacity of a leaf page, it should be merged with another leaf page or

some entries from another leaf page should be moved onto this leaf page. For each

moved entry, it takes only constant I/Os to maintain pointers. Note that only page

references over paths from the root page to the affected pages(at most two) need

to be updated in the worst case. Therefore, the amortized I/O cost of the deletion

operation on XL+-tree is O(logBk).

We conclude this subsection with the following theorem, whose proof is straight-

forward from our above analysis.

Theorem 4 The amortized I/O cost of the insertion and deletion operation on

the XL+-tree are both O(logBk).

3.4 The XL+-Tree for Prefix Encoding Scheme

The XL+-tree based on the prefix encoding scheme has exactly the same struc-

ture as the one based on the range encoding scheme. The only difference is that

entries on XL+-tree are represented by descriptors of format, < S, lv, esl >. Keys

on the XL+-tree are label strings(S) instead of left positions(LP) and entries on

leaf pages are sorted in the increasing lexicographic order of label strings. All the

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY80

analytical results of I/O cost concerning the search and update operations under

the range encoding scheme also apply under the prefix encoding scheme.

In this section, we focus on the potential improvements of search operations on

the XL+-tree as a result of the richer information provided by the prefix encoding

scheme. Note that even though these improvements are not so significant to lead

to an analytically improved big O results of I/O cost, they do reduce the I/O and

CPU cost of search operations on XL+-tree. Our claim will also be verified by

experimental results presented in the next section.

Under the prefix encoding scheme, the Search Ancestor(D(v)) operation can

be accomplished by conducting multiple key searches since label strings of D(v)’s

ancestors can be extracted from D(v). Since the XL+-tree also stores the level

range over each page reference, an additional requirement is enforced while advanc-

ing from one page to the next-level page: [lvmin, lvmax] should contain the level(lv)

of target entry; otherwise, it can be concluded that no such entry exists in the

XL+-tree. The potential improvement of the new approach can be illustrated by

the example in Figure 3.7. The previous approach requires to read the leaf page

P1 into main memory and then scan the entries before D(v) on this page; next, it

backtracks to P1’s parent page and reads the second leaf page P2 into main mem-

ory; finally it scans all entries on P2 in the backward manner to identify D(v)’s

ancestor D(u1). In contrast, the new approach only requires to search the label

string of D(u1) in the XL+-tree. Its first advantage is that, it don’t need to read

P1 into main memory, but directly reads P2, which has the result D(u1), into main

memory. Secondly, searching on the P2 page can be accomplished through the

binary search, which is more CPU efficient than the linear scanning search.

The second potential improvement is on the Search Following-Sibling(D(v))

and Search Preceding-Sibling(D(v)) operation. Note that under the range encoding

scheme, two nodes’s non-overlapping intervals [LP, RP] gives no clue about their

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY81

Figure 3.7: The new approach of searching D(v)’s ancestor under the prefix en-
coding scheme

sibling relationship, which can only be determined by checking their P LP s. Under

the prefix encoding scheme, label strings of D(v)’s following or preceding siblings

should have the label string of D(v)’s parent as their prefix. We denote the label

string of D(v)’s parent as S(vp). Any entry with the label string larger than

S(vp)•ω thus can not be D(v)’s following sibling. This observation can be exploited

to further prune the search space. Note that the similar strategy has been used

under the range encoding scheme to prune search space while searching D(v)’s

first child. Over there, any entry with LP > RP (v) can not be D(v)’s first child.

Therefore, while searching D(v)’s first following sibling, if we encounter some page

reference with Smin ≥ S(vp) • ω, it can be concluded that no D(v)’s following

sibling exists in the XL+-tree.

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY82

3.5 Experimental Results

In this section, we experimentally evaluate the performance of the XL+-tree on

both the benchmark and synthetic XML data. The two datasets we use are:

1. Xmark Benchmark Data.

2. Synthetic XML Data. We use the IBM XML data generator to generate

this synthetic data of size 20MB according to the DTD definition in Figure

3.8. Note that same-label nodes represent the same element definition. The

asterisk(*) at the right-top of label nodes specifies the zero-or-more numerical

relationship. This DTD is deliberately designed such that the resulting XML

data has the following properties:(1) the first D-labeled child of an A-labeled

data node ai may not be right after the position of ai on the XL+-tree TD

indexing D-labeled data nodes;(2)the first D-labeled following-sibling of an

E-labeled data node ei may not be right after the position of ei in TD;(3) the

A-labeled ancestors of a H-labeled data node hi may not be right before the

position of hi on the XL+-tree TA.

Figure 3.8: The DTD Definition of Synthetic Data

We compare the performance of the XL+-tree with that of the R-tree approach

used in [60]. In [60], data nodes in an XML tree are represented as multidimensional

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY83

data points based on their pre and post positions. Specifically, we represent each

data node v by (pre(v), pos(v), par(v)), in which par(v) is v’s parent node’s pre

position. Note that, since we do not differentiate attribute nodes from element

nodes and the XL+-tree or R-tree indexes same-label nodes, we do not include

the additional two dimensions used in [60], att(v) and tag(v), in our representation.

We implement both structures on the TPIE platform(written in C++) [72], which

is a software environment for external-memory algorithms. To fully explore the

potential of R-tree approach, we also run the queries in the batch mode on R-trees.

Instead of searching next location nodes from the current context nodes one by

one, we bound a group of data points in a multidimensional box, which is then run

on the R-tree. As a result, in the batch running mode, the query process involves

one additional step: validating returned entries from R-tree. Depending on the

type of locating axis, we also optimize the validation algorithm accordingly. We

first sort the data points of current context nodes by some appropriate dimension

in the increasing order and then validate the returned entries one by one. Suppose

that we want to validate the returned entry u,

1. child: data points are sorted by pre; the validation is accomplished through

the binary search of par(u).

2. parent: data points are sorted by par; the validation is accomplished through

the binary search of pre(u).

3. preceding − sibling: data points are sorted by par; the validation is accom-

plished through the binary search of par(u);

4. following − sibling: data points are sorted by par; the validation is accom-

plished through the binary search of par(u);

5. descendant: data points are sorted by pre; the validation linearly scans data

points until pre > pre(u);

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY84

Top-Down Patterns //A/child::D, //A/descendant::D
Bottom-Up Patterns //D/parent::A, //H/ancestor::A
Horizontal Patterns //B/following-sibling::D, //F/preceding-sibling::E

Table 3.1: Query Loads on Synthetic Data

6. ancestor: data points are sorted by pre; the validation identifies the first data

point with pre > pre(u) and then linearly scans the list until pos > pos(v).

Our machine features the OS of Linux 2.4 and a Pentium 2.2 Ghz processor.

Three query loads, which correspond to the top-down, bottom-up and horizontal

navigations respectively, are tested on each dataset. The query loads for Xmark

data are randomly generated from its DTD definition and each consists of 10 binary

patterns. The query loads for the synthetic data are presented in Table 3.1.

3.5.1 XL+-Tree vs R-Tree

Since it is observed in our experiments that additional cache above 1MB has

little effect on the overall performance of the XL + −tree and R-tree on both

datasets, all presented results of I/Os and running time are virtually independent

of the size of available cache. Their comparative I/O performance and running

time on both datasets are presented in Figure 3.9, 3.10, 3.11 and 3.12. In them,

R-tree(k) represents the batch query mode on the R-tree with the size of batch

set to be the total capacity of k pages. Since our experiments show that on the

R-tree, the batch approach performs significantly better than the one-node-at-a-

time approach, only results of the batch R-tree approach are presented. Note that

the vertical axes of all figures follow a logarithmic scale, since there are marked

differences in performance.

Our experiments show that compared with the range-based XL+-tree, the

prefix-based XL+-tree has a worse performance in term of either the I/O cost or

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY85

the running time on all settings. Note that since the prefix-based XL+-tree actu-

ally shares the same structure as the range-based one, the observed performance

differences result from the underlying encoding schemes instead of the index struc-

ture design. Between the range-based XL+-tree and the R-tree, it is clear that

on either dataset, the XL+-tree performs considerably better than the R-tree ap-

proach in term of both I/O and running time. On both datasets, increasing the

batch size of the R-Tree approach consistently results in the reduced I/O cost; how-

ever, the overall running time may increase as the validation may consume more

CPU time. On the Xmark data, the running time of the up and down queryloads

increase as the batch size is increased from 64-pages to 128-pages. On the synthetic

data, the running time of the up and down queryloads also increase as the batch

size is increased from 64-pages to 128-pages, the running time of the horizontal

queryload increase as the batch size reaches 256-pages. Finally, we have the obser-

vation that the prefix XL+-tree also performs better than the R-tree approach in

term of both the I/O cost and running time in most cases.

3.6 More Related Work

The range labeling scheme was first used to index XML tree nodes in [34]. We

note that the later proposed durable numbering scheme [35, 51, 52], which is more

friendly to update operations, is also range-based. Given two range labeled element

sets, it has been shown that the containment structural join can be performed in the

linear I/O and CPU cost [45]. Later on, with the help of the advanced B+-tree [48,

49], its performance was improved to be sublinear because unrelated descendent or

ancestors can be skipped. Similar approaches have also been successfully applied

in the more complicated twig pattern XML queries [47, 50]. The B+-tree based

external memory index structures have also been proposed for XML under the

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY86

1000

10000

100000

 up down horz

Query Load

A
ve

ra
ge

 I/
O

 P
er

 Q
ue

ry
 (P

ag
es

)

Range XL+-Tree Prefix XL+-Tree R-Tree(16) R-Tree(32) R-Tree(64) R-Tree(128)

Figure 3.9: I/O Performance on Xmark Data

1

10

100

1000

10000

 up down horz

Query Load

A
ve

ra
ge

 T
im

e
P

er
 Q

ue
ry

 (m
se

c)

Range XL+-Tree Prefix XL+-Tree R-Tree(16) R-Tree(32) R-Tree(64) R-Tree(128)

Figure 3.10: Combined I/O and CPU Performance on Xmark Data

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY87

1000

10000

100000

1000000

 up down horz

Query Load

A
ve

ra
ge

 I/
O

 P
er

 Q
ue

ry
 (P

ag
es

)

Range XL+-Tree Prefix XL+-Tree R-Tree(16) R-Tree(32) R-Tree(64) R-Tree(128) R-Tree(256)

Figure 3.11: I/O Performance on Synthetic Data

1

10

100

1000

10000

100000

 up down horz

Query Load

A
ve

ra
ge

 T
im

e
P

er
 Q

ue
ry

 (m
se

c)

Range XL+-Tree Prefix XL+-Tree R-Tree(16) R-Tree(32) R-Tree(64) R-Tree(128) R-Tree(256)

Figure 3.12: Combined I/O and CPU Performance on Synthetic Data

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY88

range labeling scheme [48, 49]. Unfortunately, only the containment relationship

was considered.

We note that there are much less work on the prefix-based labeling scheme.

The solution proposed in [36] encodes paths as strings and inserts them into a

special index called Index Fabric. It is worth pointing out that the Index Fabric is

actually a compact path summary of the XML tree. Its indexing technique is not

the type of the prefix-based encoding we discussed in this paper.

Our idea of storing level ranges over page references on the XL+-tree was

inspired by [30], where authors proposed a succinct XML physical storage for effi-

ciently matching next-of-kin(NoK) patterns with only parent/child and preceding-

/following-sibling relationships. Their technique represents an XML tree as a string

on the external memory, and stores the minimal and maximal levels of nodes on

each page.

Theoretical aspects of labeling the tree-structured data in the static or dynamic

settings were studied in [46, 61, 62, 63, 67, 68]. Specifically, they considered how

to encode nodes in the tree using the shortest labels such that we can decide the

ancestor-descendant relationship between two nodes from their labels only.

The existing index structures to manipulate the external-memory strings, such

as inverted files [64], B-tree [53, 55] and its variants (prefix B-trees [54] and string

B-tree [56]), mainly target the prefix search and substring search problems. Es-

pecially, [56] assumed that strings are arbitrarily long and addressed the string

search problems on B-tree where strings are represented by their logical pointers

in external memory; their proposed technique can also be applied on the XL+-

tree based on the prefix encoding scheme. There are also effective techniques to

index strings in main memory with the aim of perform string matching, such as

compacted tries [65], suffix trees [66, 69, 70] and suffix arrays [66, 71]. Note that

these data structures did not consider new string search problems specific to Xpath

CHAPTER 3. INDEXING XML FOR XPATH QUERYING IN EXTERNAL MEMORY89

query processing.

3.7 Summary

In this chapter, we enhance the traditional range-based and prefix-based encod-

ing schemes for XML documents and based on them, propose an external-memory

index structure, the XL+-tree, which efficiently implements the comprehensive

location steps specified in the Xpath query language. We analyze the I/O per-

formance of both the search and update operations on XL+-tree. Finally, our

experimental evaluation results on the benchmark and synthetic data validate the

effectiveness of the XL+-tree proposal.

Chapter 4

SHiX: A Structural Histogram for

XML Databases

Histograms are by far the most popular summary data structures used for ap-

proximating the result size of selection operations in relational databases [82, 83,

78, 80]. They usually divide the value range into several buckets based on col-

lected statistical information, such as minimal value, maximal value and numbers

of unique values. Assuming the uniform distribution within buckets, histograms

were experimentally shown to be able to achieve high accuracy to support effective

query optimization. Applied in the XML context, these techniques can actually be

used to estimate the number of nodes satisfying a specified p redicate. However,

the histogram for XML demands more if it could be useful. Most XML queries can

be expected to combine content and structural searches. We need to find those

nodes not only satisfying the specified predicate, but their position in documents

matching some kind of path pattern. In this chapter, we introduce SHiX, a novel

Structural Histogram for the general graph-structured XML databases. SHiX

serves as a robust size estimator of XML twig patterns by exploring the numeric

relationship information between node groups in the summary graph. SHiX also

90

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES91

possesses the adaptivity upon a typical update operation to XML databases, in-

serting new documents. Our extensive experiments on both real and benchmark

XML data demonstrate its effectivity for approximating the result size of XML

twig patterns.

4.1 Introduction

We note that proposals for XML result estimators have appeared in the lit-

erature. Even though most of previous work focus on simplified versions of the

problem targeted by this chapter since they either assume the tree data model or

only consider non-branching path expressions, the recently proposed Xsketch syn-

opsis supports the branching path expression selectivity estimation on the general

graph-structured XML data model; thus is closely related to ours. It is worthy

to point out that, compared with XSketch, our proposed SHiX targets a slight

richer class of path expressions, termed twig pattern expression, and is based on a

different framework for estimating selectivity. SHiX has also an attractive prop-

erty, being adaptive to a typical update operation that can cause a major change

to XML databases: inserting new documents. As far as we know, how to adjust

the XSketch synopsis for accommodating newly inserted XML documents without

building it up from scratch remains unaddressed and seems not to be an easy task.

We propose SHiX, a novel Structural Histogram for the general graph-structured

XML databases. We have the finding pointed out by [53] that the average depth

of XML documents collected by a crawler over web is low; the parsed trees are bal-

anced with relatively high degrees. Intuitively, our approach is motivated by the

observation that the selectivity of a path expression can be estimated through the

numeric relationship between neighboring labels in the path. As an example, in an

XML document about some university’s publications, there may be many books in

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES92

the directory of publication and each book may have several authors. Given that

each publication averagely has six book elements and each book element averagely

has three author elements and that there are totally two publication elements in

the document, the selectivity of the path expression publication/book/author can

be estimated as 2×6×3 = 36. To handle branching predicates, besides the average

numeric information on each directed edge, for instance A → B, in SHiX, we also

keep the forward-stability percentage information recording how many percent of

nodes in group A have at least one child node in group B.

Our major contributions can be summarized as follows:

1. We propose a structural histogram, SHiX, for estimating the selectivity of

path expressions with twig pattern on graph-structured XML databases.

Compared with previous works, SHiX is based on a novel selectivity esti-

mation framework. It records the average numeric relationship and forward-

stability percentage information between summary nodes in the histogram

graph.

2. With the problem of building the optimal SHiX given a limited memory

trivially shown to be NP -hard, we present a greedy algorithm for efficiently

building an effective SHiX. It consists of a sequence of refinement operations

on the coarse SHiX structure. We also provide an effective algorithm for

updating SHiX without building it up from scratch in the case that new

documents are inserted into the XML database.

3. We conduct an extensive experimental study, using both real and benchmark

XML data, to validate the effectivity of our new approach. Our compara-

tive experiments demonstrate its superior performance over the previous XS-

KETCH proposal. Finally, we also verify experimentally that SHiX adapts

well to the update operation of inserting new documents to XML databases.

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES93

4.2 Background

In this chapter, as in the second chapter, we assume the general graph model of

XML documents. Reference links between elements are treated as normal edges.

We use the XML data model of Figure 4.1 to illustrate SHiX throughout the whole

chapter.

Figure 4.1: A Graph-Structured XML Data Model

The common feature among query languages proposed for XML is the use of

path expressions for navigation in the XML document structure. In [22], a sim-

ple path expression is defined to be L1/L2/ . . . /Ln, where each Li is a document

label. The focus of Xsketch [22] is the branching path expression with the form

P = L1[B1]/L2[B2]/ . . . Ln[Bn], where each Bi is a simple path expression or ε.

Our SHiX proposal targets a slightly wider class of path expressions, termed twig

pattern expression. Generally speaking, twig pattern expressions are those path

expressions that can be presented as twig patterns with parent-child edges. It

represents a more versatile class of query patterns than the branching path ex-

pression because it allows:(1) predicates themselves be a twig pattern; (2) each

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES94

label in the navigation path have more than one predicate. As an example, the

XPath query Q1 : //paper[author[interest][department]] returns elements paper

that have author as his child, which in turn has both interest and department as

its child. If it is run on data in Figure 4.1, nodes {4, 5} will be returned. The query

pattern Q1 can be represented as a twig pattern expression, but not branching path

expression.

Formally, the twig pattern expressions are the path expressions with the form

of L1[B11] · · · [B1b1]/L2[B21] · · · [B2b2]/ . . . Ln[Bn1] · · · [Bnbn], in which Li is the doc-

ument label and has bi predicates, each being a twig pattern. Given a twig pattern

expression TP , its selectivity is defined to be the total number of distinct matches

on a graph data G. Each match of TP is a node path u1u2 . . . un on G satisfying

that each data node ui has the label Li and from ui there exists bi node paths on

G matching patterns Bi1Bi2 . . . Bibi
respectively. Note that in XSketch paper, a

path expression P ’s selectivity on G is defined to be the number of nodes that can

be reached through P . Even though these two definitions of the path expression

selectivity converge on tree-structured data, the results on graph-structured data

are probably different since two parent nodes may have the same child node. The

number of distinct matches was also used as the selectivity criteria in previous

work, such as [22].

4.3 SHiX Framework

In this section, we present the SHiX structural model and the estimation frame-

work based on it.

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES95

4.3.1 SHiX Summary Model

The SHiX summary model shares some similarities with Xsketch in that it is

a node-labeled directed graph GH where each node corresponds to a subset of

identically-labeled data nodes of the original graph data G and an edge (u′, v′) in

G should be represented in GH by an edge between the summary nodes whose

extents contain them. But, instead of the backward-stability or forward-stability

indicators, two types of relationship information between summary nodes are stored

over each edge, A → B, in SHiX: (1) the average number of child data nodes in B

for each data node in A, which is exploited to estimate the selectivity of the pattern

label(A)/label(B) along the navigation path; (2)the percentage of data nodes in

A that have at least one child data node in B, which is exploited to estimate the

selectivity of the pattern label(A)[label(B)] along the branching predicate.

Definition 10 (The SHiX Summary Model) A SHiX structural histogram for

an XML graph data G = (VG, EG) is a node-labeled directed graph, GH = (VH , EH),

where each node v ∈ VH corresponds to a set extent(v) ⊆ VG such that: (1)

all elements in extent(v) have the same label; (2) ∪v∈VH
extent(v) = VG and

extent(u) ∩ extent(v) = ∅ for each u, v ∈ VH ; (3) (u, v) ∈ EH if and only if

there exist u′ ∈ extent(u) and v′ ∈ extent(v) such that (u′, v′) ∈ EG; (4) each

node v ∈ VH stores a field |extent(v)|, which is the total number of data nodes in

v; (5) for each edge (u, v) ∈ EH , there store two fields aver(u, v) and pert(u, v),

which records the average number of children in extent(v) for each data node in

extent(u) and the percentage of data nodes in u that have at least one child in v.

An example SHiX structure for the date model of Figure4.1 is provided in

Figure 4.2. The numbers inside circles represents the |extent|s of summary nodes;

the pair over edges represents (aver, pert). It actually represents the coarsest SHiX,

the label-split graph.

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES96

Figure 4.2: An Example SHiX Model

4.3.2 SHiX Estimation Framework

The following theorem explains the mechanism of SHiX serving as a size esti-

mator.

Theorem 5 Suppose that GH is a SHiX structural histogram for an XML graph

data G, and for each edge (u, v) in GH , each data node in u has the same number of

children in v and pert(u, v) = 100%, then the estimation result of any twig pattern

expression on GH is exact.

In practice, the SHiX with such uniform structure may not be very helpful

because of its large size. Instead, we present the estimation framework to approx-

imate the selectivity of twig pattern expressions on SHiX without the structural

uniformity requirement. As previous proposals, our approach relies on several sta-

tistical independence and uniformity assumptions to compensate for the lack of

detailed distribution information.

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES97

Estimation over Navigation Path

Consider the match of a simple path expression P = L1L2 . . . Ln on the SHiX

GH , M = u1u2 . . . un. P ’s selectivity on the data graph G according to M can

be exactly calculated as |extent(u1)| × aver′(u1, u2) . . . × aver′(un−1un), where

aver′(ui, ui+1) is the average number of children in ui+1 for those data nodes in ui

that can be reached through some node path u′
1u

′
2 . . . u′

i in G, each u′
j being a data

node in uj for 1 ≤ j ≤ i. For the estimation purpose, we replace aver′(ui, ui+1)

with aver(ui, ui+1) stored over the edge (ui, ui+1) in GH by exploiting the following

two statistical assumptions.

Estimation Assumption 1 (Frequency Uniformity) EA 1: Given any incom-

ing path u1u2 . . . ui into ui on GH , for data nodes in ui, their frequencies in dis-

tinct matches of L1L2 . . . Li on G, u′
1u

′
2 . . . u′

i(each u′
j being a data node in uj for

1 ≤ j ≤ i), are uniformly distributed.

Estimation Assumption 2 (Path Independence) EA 2: The distribution of

data nodes in ui, concerning either the number of children or the forward-stability

with respect to any child of ui, is independent of any incoming path into ui in GH .

The Frequency Uniformity assumption says that for each matching data

node u′
i in ui, an equal number of matches of L1L2 . . . Li end with it; the Path

Independence assumption guarantees that for these data nodes in ui, their aver-

age number of children in ui+1 is actually the same as aver(ui, ui+1), which is the

average information for all nodes in ui. Thus, the selectivity of P is estimated

as |extent(u1)| × aver(u1, u2) . . . aver(un−1un). In the case that one of these two

assumptions fails, the estimation accuracy may be sacrificed as a result.

Take the example of estimating the selectivity of the pattern book/author/name

on the SHiX presented in Figure 4.1. Its embedding is u2/u4/u5. The data nodes

in u4 with incoming paths from u2 actually have an average number of children in

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES98

u5 of 1, aver′(u4, u5)=1; instead the estimation uses aver(u4, u5)=0.5; these two

values are different because the Path Independence assumption is not satisfied.

In another instance, if we estimate the selectivity of book/author/interest, its

embedding on the SHiX is u2/u4/u6. Even though aver(u4, u6) = aver′(u4, u6) = 2,

the estimation result is not exact because data node id = 7 happens twice in

matches of book/author and distribution of numbers of children in u6 among nodes

id = 7 and id = 6 is not uniform. It does not satisfy the Frequency Uniformity

assumption. The estimation value is 2×1.5×1.5 = 4.5; but the accurate selectivity

is 5.

Estimation over Predicate Branch

Consider the path expression of P = Li[[Li1][Li2]], and its embedding on SHiX

M = ui[[ui1][ui2]]. The exact selectivity of P is SP =|extent(ui)| × prob(ui, ui1) ×
prob(ui[ui1], ui2), where prob(ui, ui1) is the probability of data nodes in ui hav-

ing at least one child in ui1, and prob(ui[ui1], ui2) is the probability that the

data nodes having at least one child in uii have at least one child in ui2. Even

though prob(ui, ui1)=pert(ui, ui1) on SHiX, the value of prob(ui[ui1], ui2) is un-

known. By exploiting the following statistical assumption, we estimate the value

of prob(ui[ui1], ui2) with pert(ui, ui2).

Estimation Assumption 3 (Branch Independence) EA 3: The distribution of

data nodes in ui, concerning either the number of children or the forward-stability

with respect to any child of ui, is independent of the existence of other outgoing

paths from ui in GH .

As long as the Branch Independence assumption is valid, prob(ui[ui1], ui2)=prob(ui, ui2)=pert(ui

But the estimation inaccuracy may occur if this assumption is not satisfied. As an

instance, consider the pattern of author[[name][department]] on the SHiX of Figure

4.2. Its mapping is u4[[u5][u7]]; thus its selectivity is estimated as 4× 0.5× 0.5 = 1

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES99

. But actually no author element has both the name and department element as its

predicates in the graph data of Figure 4.1. The estimation on the GH is not exact

because the forward-stability percentage distribution of data nodes in u4 over edge

u4 → u7 is not independent of the existence of the edge u4 → u5 in GH .

Note that in twig pattern expressions, each predicate branch Bi itself may be

a twig pattern. For a pattern match ui[Bj] in GH , where Bj is a simple path ex-

pression uj/uj+1 . . . /uk, the probability of data nodes in ui matching the branch

Bj in G is estimated to be pert(ui, uj) × pert(uj, uj+1) × · · · pert(uk−1, uk) by as-

suming the Path Independence concerning the forward-stability percentage along

the path Bj . Generally, if Bj is a twig pattern, uj[Bj1][Bj2] . . . [Bjk], assum-

ing both the Path Independence and Branch Independence assumptions, we

recursively estimate the probability of data nodes in ui matching Bj in G by

prob(ui[Bj])=pert(ui, uj) × prob(uj[Bj1]) × prob(uj[Bj2]) · · · prob(uj[Bjk]).

Summary: Estimation over Twig Pattern Expression

Summarizing the above analysis, we estimate the selectivity of a twig pattern

expression embedding on SHiX,

u1[B11] · · · [B1b1]/u2[B21] · · · [B2b2]/ . . . un[Bn1] · · · [Bnbn]

as

|extent(u1)| × ∏b1
k=1 prob(u1[B1k]) × aver(u1, u2) × ∏b2

k=1 prob(u2[B2k]) · · · ×
aver(un−1, un) × ∏bn

k=1 prob(un[Bnk])

by assuming EA 1, 2 and 3. As an example, on the SHiX of Figure 4.2, the se-

lectivity of paper/author[department]/interest, whose embedding is u3/u4[u7]/u6,

is estimated as extent(u3) × aver(u3, u4) × pert(u4, u7) × aver(u4, u6) = 2 × 1.5 ×
0.5 × 1.5 = 2.25.

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES100

4.4 Constructing Effective SHiX

In this section, we describe SHiX construction algorithms. Note that given

a graph data, its corresponding label-split graph represents the coarsest SHiX

structure; therefore is used as the starting point of the construction process. The

construction algorithm consists of a sequence of refinement operations on SHiX,

with the purpose of minimizing the dependence on statistical assumptions, thus

achieving higher estimation accuracy. The result of Theorem 1 provides us with

an unified approach for this, since it implies that the estimation accuracy depends

on the extent of distribution uniformity over edges in the SHiX GH , concerning

the number of children and the forward-stability.

4.4.1 Optimal SHiX

Before proceeding to describe the refinement operation, we present a metric,

independent of the workload, to measure the effectiveness of SHiX as a twig pattern

expression size estimator. We use the Sum Squared Error(SSE) metric, proposed

in [22] to evaluate the accuracy of a histogram in relational databases, to capture

the skewedness of distributions of numbers of children and forward stability over

edges on GH . The backward SSE over an edge (u, v) is defined to be SSEb =

∑
u′∈u(f(u′) − aver(u, v))2, where f(u′) is the number of children in v of the data

node u′. The forward SSE is defined to be SSEf =
∑

u′∈u(st(u
′) − pert(u, v))2,

where st(u′) indicates whether u′ has at least one child in v, 1 for true and 0 for

false.

Definition 11 Given a graph data G and a limited memory size, the optimal

SHiX is a SHiX graph GH satisfying that: (1)it takes the memory with size

no more than available; (2) it has the minimal value of the SHiX Error Metric

SEM=
∑

(u,v)∈GH
(SSEb(u, v) + aver(u, v)2SSEf(u, v)).

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES101

Note that in Definition 2, we normalize the SSEf with the factor aver(u, v)2.

Since the standard deviation δf =
√

SSEf , it amounts to normalizing the standard

deviation of the forward stability with aver(u, v). The intuition is that the forward

stability percentage is a relative estimation parameter; thus the normalized δf more

accurately reflects the relative importance of the backward and forward relationship

on the edge (u, v).

The above definition of optimality of SHiX also allows a flexible way to take

the query load into consideration. We can normalize SSEb(u, v) and SSEf(u, v)

with weights wb(u, v) and wf(u, v) respectively; the value of wb(u, v) reflects the

frequency of the backward binary pattern label(u)/label(v) in the query load and

the value of wf(u, v) reflects the frequency of the forward pattern label(u)[label(v)].

Thus, SEM is adjusted to be
∑

(u,v)∈GH
(wb(u, v)×SSEb(u, v)+wf ×aver(u, v)2×

SSEf(u, v)).

It can be trivially shown that the problem of building the optimal SHiX is even

harder than building the V -optimal multidimensional histogram in the relational

database context. Consider a simple SHiX model consisting of only one parent

and k children; and the parent node’s forward-stability distribution is uniform

according to any of its child nodes. It is obvious that the problem of building the

optimal SHiX is equal to building the V -optimal k-dimensional histogram. Since

the later problem has been shown to be NP-hard [84], constructing the optimal

SHiX is also NP-hard.

4.4.2 A Greedy Approach

Since the intractability of building the optimal SHiX, we introduce a greedy

approach to efficiently refine summary nodes in GH with the target of reducing

SEM , thus improving the estimation accuracy. It repeats the following two steps

until the memory size limit is reached: (1) choose the summary node in GH that is

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES102

in the most critical need of being refined; (2) partition the chosen node according

its children.

The criticality of a summary node u in GH is measured by SEM over all its out-

going edges. We define SEM(u) =
∑

(u,v)∈GH
(SSEb(u, v)+aver(u, v)2SSEf(u, v)).

At each step, the node u with the maximal SEM(u) is chosen as the refinement

node.

The second step is closely related to the problem of building the V -optimal

histogram for multidimensional data. The MHIST technique, proposed in [79] for

building the multi-dimensional histogram without the attribute value independence

assumption, was shown to be superior to other approaches in various experiments.

MHIST works in two steps repeatedly: 1) from the m dimensions of data points,

we choose one dimension whose distribution is the most in need of partitioning; 2)

Next, data points are split along this dimension into a small number of buckets,

t. By picking a dimension based on its criticality to the partition constraint at

each step, MHIST-2(t = 2) was shown to result in desirable results in most cases

[79]. Our partitioning operation is a variant of the MHIST-2 technique. Instead

of choosing the most critical edge to partition along at each step, the refinement

operation considers all outgoing edges from u in GH . On each such edge (u, v),

data nodes in u are sorted by their numbers of children in v and are partitioned

into two continuous sets in all possible ways. The one resulting in the minimal

value of SEMnew = SEM(u1)+SEM(u2), where u1 and u2 are two new summary

nodes resulting from the partition of u, are accepted as the candidate partition

along this edge. Finally, among all candidate partitions over edges, the one with

the minimal SEMnew is adopted to refine the summary node u.

It is worthy to point out that usually the structures of documents in XML

databases are not totally random; instead, they may conform to some DTD or

schema definition. In the DTD specification, the number of same-label sub-element

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES103

nodes that an element node may have, can be defined as: optional (?), one-or-more

(+), or zero-or-more (*). In the XML schema definition, it is represented by two

parameters, minOccurs and maxOccurs, which mean the minimum and maximum

respectively;the default values of both parameters are one. Analyzing both the

real and benchmark XML DTDs or schemas [89], we expect that in most element

definitions, the {?,+,*} operators or minOccurs and maxOccurs parameters are

only present in a small subset of all defined sub-elements. Therefore, the structural

irregularities, concerning the numbers of children and forward stability, are actually

limited to some part of XML data. As a result, even though, as most of proposed

heuristics for constructing the optimal multidimensional histogram, analytically

the greedy construction algorithm has no quality guarantee for the resulting SHiX,

empirically it is quite effective in constructing SHiX with good performance for

XML data. This claim will be verified by our experimental study.

4.5 More Discussion on SHiX: Estimating and

Updating

4.5.1 Estimation on SHiX

Given a twig pattern expression P , the sum of estimations of P ’s embeddings

on the SHiX GH with distinct navigation paths is the selectivity of P on the data

graph G. Note that estimating the forward-stability percentage on a summary

node with multiple embeddings of a predicate branch on GH is not so straightfor-

ward. Consider an embedding u[v1][v2](label(v1) = label(v2)) on GH of the pattern

label(u)[label(v)]. Estimating the percentage of data nodes in u having at least

one child with label label(v) with (pert(u, v1) + pert(u, v2)) results in the double

counting error: data nodes in u having children in both v1 and v2 are counted

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES104

twice. Instead, we present an approach estimating the percentage of data nodes

in u having children in both v1 and v2, which is denoted as pertb. As a result, the

percentage of data nodes in u with children in either v1 or v2 can be estimated to

be (pert(u, v1) + pert(u, v2) − pertb).

We denote the set of data nodes in v1 and v2 as Sv. A data node in u has

averagely avu = aver(u, v1) + aver(u, v2) children in Sv. Assuming that the prob-

abilities of these children being in v1 or v2 are proportional to the numbers of

connectivities, (u, v1) and (u, v2), we estimate them to be prob(u, v1) = aver(u,v1)
avu

and prob(u, v2) = aver(u,v2)
avu

respectively. Therefore, for each data node in u, the

probability of all its children being in v1(or v2) is prob(u, v1)
avu(or prob(u, v2)

avu).

Thus, the percentage of data nodes in u with children in both v1 and v2, pertb, is

estimated to be probb = (1 − prob(u, v1)
avu − prob(u, v2)

avu). Since the estimation

of pertb should not be less than 0, nor be larger than pert(u, v1) or pert(u, v2),

pertb is normalized to be min(pert(u, v1), pert(u, v2), max(probb, 0)). Finally, if

the number of embeddings are larger than two, the estimation of the percentage is

calculated in a recursive way by considering two embeddings at each step. An in-

stance of two embeddings is provided in Figure 4.3. Note that the estimation result

of the new approach, 50%, is more accurate than the naive one which estimates

the percentage as (50% + 50% = 100%).

It’s interesting to mention that SHiX always estimates the selectivity of direct

containment binary patterns (L1/L2) exactly, no matter how skewed the distri-

butions of numbers of children or forward-stability of data nodes inside summary

nodes are. This is because to estimate such binary pattern, SHiX does not depend

on the validity of any statistical assumption. But be cautious that for the predicate

binary pattern, L1[L2], SHiX may incur estimation error because of the presence

of multiple embeddings of L2 on the SHiX structure.

Theoretically, SHiX can be also applied to estimate the selectivity of binary

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES105

Figure 4.3: Computing pertb on Multiple Embedding of A Predicate

containment patterns, which have two labels connected through parent-child or

ancestor-descendant axes. The problem of estimating the containment join size

was first put forward by [85]. Authors assumed the tree structure of the underlying

XML data model and only considered binary patterns. However, the effectiveness

of SHiX to estimate the selectivity of path expressions with ancestor-descendant

axes need to be further explored both analytically and empirically in the future

research. This is beyond the scope of this dissertation.

4.5.2 Updating SHiX upon Insertion of New Documents

In this subsection, we present the updating operation for SHiX without building

it up from scratch in the case that new documents are inserted into the XML

database. Note that such updates may cause dramatic change to the selectivity of

path expressions.

Our solution is to build a separate SHiX GH2 for the newly inserted documents

and then merge it with the existing SHiX GH1 . Because of lack of detailed dis-

tribution information of data nodes inside summary nodes in SHiX, the updating

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES106

procedure assumes the uniform distribution among data nodes in the same sum-

mary node in GH1 or GH2. It begins with a label-split SHiX GH of combining GH1

with GH2 , and consists of a sequence of partitioning operations to refine summary

nodes in GH until the memory size limit is reached.

Beginning with the label-split SHiX GH , the refinement operations partition

summary nodes in GH in a greedy way similar to the approach presented in Section

4.2. But there are some subtle differences between them. Firstly, data nodes in

each summary node of the original GH1 or GH2 are considered as a unit, therefore

would never be partitioned in the refinement process. Because of the uniform

distribution assumption, data nodes in a unit have the same number of children

and forward-stability with respect to any of its child unit. Secondly, if several

units are grouped in the same summary node in the new GH , the aver and pert

information of this summary node with respect to its child or parent in GH should

be calculated properly. Suppose that two separate units v1 and v2 have the same

label. Consider the summary node v consisting of v1 and v2, and the summary

node w consisting of v1 and v2’s common child unit w1 on the new GH . Obviously,

aver(v, w) = |extent(v1)|×aver(v1,w1)+|extent(v2)|×aver(v2,w1)
|extent(v1)|+|extent(v2)|

pert(v, w) = |extent(v1)|×pert(v1,w1)+|extent(v2)|×pert(v2,w1)
|extent(v1)|+|extent(v2)|

As for the relationship between v and the summary node u consisting of v1

and v2’s common parent unit u1, we have aver(u, v)=aver(u1, v1) + aver(u2, v2).

However, the exact value of pert(u, v) is not available; therefore, it is estimated to

be (pert(u1, v1) + pert(u1, v2) − pertb) as described in the last subsection. For the

general case that summary nodes consist of multiple(maybe > 2) same-label units

on GH , their aver and pert information with respect to child or parent summary

nodes can be straightforwardly calculated from the above two basic cases.

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES107

4.6 Experimental Study

In this section, we experimentally evaluate the performance of SHiX on both

real and benchmark XML data. The datasets we use are:

1. DBLP Data. This is a very popular real XML dataset used in numerous

experiments. It contains bibliographic data from the DBLP database. It

features a relatively simple tree structure. The XML document is a 130MB

file.

2. Xmark Data [41]. We generate Xmark documents of size 50MB through the

provided data generator.

3. Bibliography HyperText(BHT) Data [90]. This is a real XML data describing

the hypertext used in DBLP papers’ bibliographies. Since there is no refer-

ence defined in its DTD file, its underlying data model is a tree. Compared

with DBLP and Xmark data, it has a less regular structure;in its DTD defi-

nition, the zero-or-more(*) is specified over many sub-elements. We conduct

experiments on a document with the size of 47MB.

4.6.1 Quality Metric of Estimation

As in the Xsketch proposal [22], we measure the performance of SHiX by the

average absolute relative error between the estimated and real selectivity over all

path expressions in a workload, D. Specifically, the average absolute relative error

is defined to be

AverError(D) = 1
|D| ×

∑
pi∈D(

|countGH
(pi)−countG(pi)|

countG(pi)
)

where countGH
(pi) is the path expression pi’s estimated selectivity on the SHiX

GH and countG(pi) is pi’s exact selectivity on the data graph G. Since the zero

or low-count path expressions may contribute disproportionally high estimation

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES108

error percentage to AverError(D), a “sanity” bound was also introduced in [22]

to equate all zero or low-selectivity of path expressions with a default value s,

which is usually set to be a small percentile of the exact selectivity distribution of

the path expressions in D. Therefore, our estimation quality metric is defined as:

Accuracy(D) = 1 − 1
|D| ×

∑
pi∈D(

|countGH
(pi)−countG(pi)|

max(countG(pi),s)
)

In our experiments, s is set to be the 10-percentile of the selectivity distribution;

in other words, 90% of paths’ selectivity are larger than s.

4.6.2 SHiX Estimation Performance

On each dataset, we randomly generate two workloads from the source graph

data, one(Ds) consisting of only simple path expressions and the other(Dt) consist-

ing of twig pattern expressions. Because of the simplicity of structures in the DBLP

data, the generated Dt barely contains any path with predicates;therefore, we only

evaluate the performance of the simple path query load on it. We set the range of

simple paths’ lengths to be [1, 3]; note that the binary path A/B are considered to

be of length 1. In the workload of twig pattern expressions, lengths of navigation

paths are also randomly between 1 and 3; each label along the navigation path may

have 0− 2 predicate branches and their total size is maximally 3. On all datasets,

we use the workload Ds with 300 test paths and Dt with 500. Our experiments

show that if we varies the number of test paths between 100 and 1000 in either

workload, the overall performance of SHiX only fluctuates slightly. Therefore, we

believe that our chosen workloads effectively capture the overall structures present

in tested XML data.

The SHiX GH on all datasets are constructed using the unweighted version of

SEM in our experiments. We track the histogram GH ’s estimation performance

as its size in memory increase gradually. Note that all label names are hashed and

stored as 2-Byte integer numbers in GH . We think that the 2-Byte integer type

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES109

(a) On Xmark Data

(b) On BHT Data

Figure 4.4: Performance of SHiX on Simple Path Expressions

should satisfy requirements in most XML databases since it can represent up to

65536 distinct values. As for the pair (aver,pert) over edges in SHiX, their values

are represented by the 4-Byte integer type(intav) and the 2-Byte integer type(intpe)

respectively. Specifically, aver = intav

1000
and pert = intpe

10000
, where intav and intpe are

the integer values stored over edges in GH . Our representation of aver’s value

is accurate by the measurement of 1
1000

and allows the maximum of more than

4 millions. The representation of pert’s value is accurate by the measurement of

1
10000

.

Performance on Simple Path Expressions

The estimation performance of SHiX on simple path expressions is shown in

Figure 4.4. Note that the result on DBLP data is presented in Figure 4.6(a),

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES110

along with Xsketch’s result. On the DBLP and BHT data, the initial label-split

GH achieves only about 82% and 70% estimation accuracy respectively. Its per-

formance improves steadily as the size grows. On the DBLP data, its accuracy

approaches 90% with only 20KB size. On the BHT data, it similarly achieves the

93% accuracy at size 25KB. This fact demonstrates that our proposed partitioning

operation is quite effective in refining summary nodes for better estimation results.

On the Xmark dataset, even the initial label-split GH achieves the extremely high

estimation accuracy, about 99%. This observation validates the effectiveness of

our new approach of estimating path selectivity through the numerical relation-

ship between summary nodes. We can expect that, in many XML databases, the

numerical relationship between two types of elements is more or less regular. SHiX

is shown to be quite effective in exploiting such regularity. The following refinement

operations on Xmark data are shown to have little effect on the performance.

Performance on Twig Pattern Expressions

The performance of SHiX on twig pattern expressions is presented in Figure 4.5.

Even though the overall performance of SHiX is not as good as that on simple path

expressions, our results demonstrate that refinement operations on GH steadily

improve its estimation accuracy on both datasets. On the Xmark data, similar to

the result on the simple path query load, even the label-split GH achieves the 97%

accuracy; further refinements improve its performance to 98% within 20KB size.

On the BHT data, the original label-split GH only achieves the 45% accuracy;

its accuracy is improved to 75% at the size of 40KB. Our experiments show

that further refinements after that, up to 100KB, do not result in considerable

improvement. Noting that at 10-percentile, the sanity bound is only 23, a very

small count. If we set the sanity bound to 30-percentile(367), which is still a

reasonably small number, the accuracy percentage reaches 82%. Considering that

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES111

(a) On Xmark Data

(b) On BHT Data

Figure 4.5: Performance of SHiX on Twig Pattern Expressions

SHiX is estimating selectivity of the general twig pattern expressions on highly

irregular data, we believe that this performance is reasonably good.

4.6.3 Comparison with Xsketch

Since the Xsketch proposal for graph-structured XML databases was shown to

be superior to other estimation techniques in performance and memory require-

ment, we compare our SHiX approach with the Xsketch synopses on the BHT and

Xmark datasets in this subsection. Note that in the Xsketch proposal, (1) authors

targeted the branching path expressions, where each label in the navigation path

has at most one predicate branch and each branch should be a simple path; (2)

the selectivity of a path expression pi was defined to be the number of nodes that

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES112

can be reached through the node path matching pi in G. Their defined selectivity

actually converges with ours on tree-structured data.

We randomly generate workloads consisting of 300 branching path expressions

on the DBLP, Xmark and BHT datasets;the range of navigation paths’ lengths is

set to be [1, 3] and the range of branching paths’ length is set to be [1, 3]. As noted

before, the query load on DBLP actually consists of only simple path expressions.

We use the Xsketch binary code from its original authors to run the experiments.

A path sample of size 200 is used to construct the full bisimulation(forward and

backward) Xsketch on all datasets. The results are presented in Figure 4.6. Our

experiments show that the performance of both SHiX and Xsketch flatten out after

the 30KB size. We have the observation that SHiX clearly outperforms Xsketch

on all three datasets. Although Xsketch also achieves the relative high estima-

tion accuracy(90%) after the first iterations of refinements on DBLP data, further

refinements do not yield higher performance. On Xmark data, its performance

stabilizes at about 72%; on the BHT, it is at about 65%. As for SHiX, it achieves

the high estimation accuracy of 91% and 98% on the DBLP and Xmark data re-

spectively. On the BHT data, similar to the results presented on twig pattern

expressions, refinements on SHiX steadily result in higher estimation accuracy, up

to 72% within 25KB size. After that, its performance also stabilizes.

4.6.4 SHiX Updating

In this subsection, we investigate the performance of our proposed updating

operation on SHiX upon the insertion of new documents into XML databases.

On the Xmark, we sequentially insert new documents of sizes, 25MB, 20MB,

15MB, 10MB and 5MB, which are generated through the data generator. On

the BHT, since we do not have other real data, we divide the original data into

parts of sizes, 20MB, 15MB, 10MB and 5MB; they are then sequentially inserted

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES113

(a) On DBLP Data

(b) On Xmark Data

(c) On BHT Data

Figure 4.6: SHiX vs Xsketch

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES114

(a) On Xmark Data (b) On BHT Data

Figure 4.7: SHiX Update Performance upon Insertion of New Document

into databases. Suppose that the original data is empty, and Xmark’s histogram

memory limit is 20KB, BHT’s is 40KB. Upon the insertion of a new document,

we construct its own GHnew of the maximal size and then merge GHnew with the

existing GHold
. Beginning with the label-split GH as a result of merging GHnew

and GHold
, we refine GH iteratively until its size reaches the limit. The results are

presented in Figure 4.7. The Y-axis represents the new estimation accuracy on the

twig pattern expression query load after each insertion. We can see that on both

datasets, the overall performance of SHiX only fluctuates slightly. This observation

experimentally testify that SHiX adapts well to the insertion update operation on

XML databases. Note that on the BHT data, upon the second insertion, the GH

even achieve a higher estimation accuracy. This phenomenon results from the fact

that the second BHT file’s inherent structure is more regular than the first one’s.

4.7 Related Work

Most of previous estimating proposals for XML focus on the tree-structured

data, such as the path tree, the Markov Table [73], correlated subpath tree [74], the

position histogram [76] and StatiX [75]. The path tree and Markov Table further

limit the estimated path expression to be simple, or non-branching. The path

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES115

tree is based on the concept of bisimilarity [20, 21]. Since the path tree is usually

larger than the available memory, it needs to be summarized using a special tag

name “*”, which can be matched to any tag. The selectivity of a path expression is

estimated through navigating the summary data structure to find a set of matching

summary nodes. The total frequency of these summary nodes is the selectivity.

The correlated subpath tree and the position histogram proposals take a divide-

and-conquer approach. They store statistics of short and simple path patterns and

the correlation information between them. To estimate a long and complex path

query, it first decomposes the query into a set of subquery pieces and estimates

the size of each piece using the summary structure; and then finally, taking their

correlations into consideration, “stitch”s them together. Statix also supports the

estimation of twig query patterns by summarizing the structure and values in an

XML document through one-dimensional histograms. The beneficial difference is

that it is scheme-aware, leveraging XML schema validators for gathering statistics.

More recently, a novel bloom histogram was proposed for estimating simple path

selectivity over tree XML data in [86]. It has the advantages of possessing an

analytical upper bound on estimation error and being sensitive to the incremental

updates(for instance, inserting of deleting nodes) on XML data.

As mentioned in the introduction, the work most related to us is the Xsketch

synopsis [22]. It exploits the localized graph stability to approximate the path

and branching distribution on a graph-structured data. In their follow-up work

[23], authors also proposed an extended version of Xsketch to incorporate the

value selection on predicates by capturing the correlation pattern between the

path structure and values elements in the graph data. Over the tree-structured

data model, the Xsketch synopsis augmented with a summarization method for

approximating the cardinality of structural joins was experimentally shown to be

effective in estimating the selectivity of twig pattern queries [87].

CHAPTER 4. SHIX: A STRUCTURAL HISTOGRAM FOR XML DATABASES116

The MHIST technique for constructing the multi-dimensional histogram was

mainly the work of [79]. Probably the operation on histograms most similar in pur-

pose to our updating on SHiX is building dynamic multidimensional histograms for

continuous data stream [88]. It actually maintains a dynamic summary structure

approximating the distribution of underlying continuous streams. The histogram

is derived from this dynamic structure.

4.8 Summary

In this chapter, we propose a novel framework, SHiX, for estimating the se-

lectivity of twig pattern expressions on graph-structured XML databases. The

SHiX histogram captures the inherent structures present in XML data through the

numerical relationship and forward-stability percentage information between two

summary nodes. With the NP-hardness result of constructing the optimal SHiX,

we present a greedy approach of refining summary nodes gradually to achieve

an effective SHiX within a small memory requirement. We also show that when

new documents are inserted into XML databases, the SHiX can be updated ac-

cordingly without building it up from scratch. Our extensive experiments on XML

data demonstrate that SHiX is an effective selectivity estimator of twig pattern ex-

pressions, and adapts well to the insertion of new documents into XML databases.

Chapter 5

Conclusion and Future Research

XML, an example of semi-structured data, poses many new challenges to database

communities, which include designing indexing techniques and histograms specifi-

cally for semi-structured data. In this dissertation, we push forward the research

on XML query processing on several fronts.

First, we propose an adaptive structural summary for XML data, D(k)-Index.

D(k)-Index is a clean generalization of the previous 1-index and A(k)-index. It has

clear advantages over them because of its dynamism. It can adjust its structure

accordingly, subject to the changing query load. We have shown by experiments

that it achieves improved evaluation performance over previous static structural

summaries. Equally significantly, the D(k)-index has more flexible and efficient

update algorithms, which are crucial to such structural summary’s application.

Our experiments also demonstrate the superiority of the update operations on

D(k)-index over update operations proposed for previous structural summary.

Secondly, we introduce the enhanced range-based and prefix-based encoding

schemes for XML data and an external-memory index structure, XL+-tree, which

efficiently implements the various location steps specified by the XPath query lan-

guage. We define all search problems required by the XPath locating process under

117

CHAPTER 5. CONCLUSION AND FUTURE RESEARCH 118

both schemes and present their corresponding search operations on the XL+-trees.

The worst case I/O cost of all search operations are analyzed, along with the amor-

tized I/O cost of the insertion and deletion operations on the XL+-tree. We also

experimentally investigate the performance of the proposed XL+-tree by compar-

ing it with existing indexing techniques for XML data. Results show that XL+-tree

outperforms by a wide margin.

Thirdly, we propose a novel framework for estimating the size of twig path

expressions over XML data. The SHiX structual histogram keeps the information

of numeric relationship and forward stability between summary nodes. We define

the problem of building the optimal SHiX and, because of its intractability, present

a greedy approach to construct effective SHiX efficiently. It is also shown that SHiX

possesses the adaptivity upon a typical update operation upon XML database,

inserting a new document. Our comparative experiments with previous proposals

validate the effectiveness of the SHiX framework.

As for the future research, there are lots of interesting problems on indices and

histograms for XML that need to be further explored. Here we list a few that are

considered important and related to our work.

1. How the structural summary can handle branching path queries effectively,

or more generally how a structural summary can be incorporated into an

XML query engine to facilitate more complex XML queries, remains unclear.

The work of [37] is the first effort of this direction. But Authors reminded

that intriguing questions remained, for instance, how to select an optimal set

of indices given a query workload and how to update indices efficiently.

2. we expect that there are better techniques to process an XPath expression

based on XL+-tree than the naive approach, which simply locates the context

nodes step by step. Furthermore, the XL+-tree only considers the structural

navigation among XML data. The Xpath language, or the full-blown XQuery

CHAPTER 5. CONCLUSION AND FUTURE RESEARCH 119

language, defines various syntax beyond location steps; for instance, it also

involves value predicates. How to incorporate these definitions into the XL+-

tree framework remains a interesting question.

3. Since SHiX is proposed to estimate sizes of structural twig path expressions,

how to extend it to handle the twig expressions with value predicates remains

unaddressed. The second interesting question about SHiX is how to make

it adaptive to the changing query load. Given the fact that XML queries

are possibly posed in the big stock of XML documents over the Internet,

it becomes important that SHiX, which should be accomodated in limited

memory space, stores only staticstics of query patterns in the recent query

load.

Bibliography

[1] D.Chamberlin, D.Florescu, J. Robie, J.Simeon, and M.Stefanescu,

XQuery: A Query Language for XML, World Wide Web Consortium,

http://www.w3.org/TR/xquery.

[2] A.Deutsch, M. Fernandez, D.Florescu, A.Levy, and D.Suciu, A Query Language

for XML, Proceedings of the Eighth World Wide Web Conference, 1999.

[3] D.Chamberlin, D.Florescu, and J.Robie, Quilt: An XML Query Language for

Heterogeneous Data Sources, Proceedings of WebDB, 2000.

[4] S.Abiteboul, D.Quass, J.McHugh, J.Widom, and J.Wiener, The Lorel Query

Language for Semistructured Data, International Journal on Digital Libraries,

1(1):68-88, April 1997.

[5] S.Ceri, S.Comai, E.Damiani, P.Fraternali, S.Paraboschi and L.Tanca, XML-

GL: A Graphical Language for Querying and Restructuring XML, in Proceed-

ings of WWW, 1999.

[6] S.Abiteboul, Query Semi-structured Data, in Proceedings of ICDT, 1997.

[7] J.Clark and S.Derose, XML Path Language(XPath) Version 1.0, World Wide

Web Consortium, http://www.w3.org/TR/xpath.

120

BIBLIOGRAPHY 121

[8] T.Bray, J.Paoli, C.M.Sperberg-McQueen, and E.Maler, Extensible

Markup Language(XML) 1.0(Second Edition) ,W3C Recommendation,

http://www.w3.org/TR/REC-xml.

[9] S.Derose, E.Maler, and D.Orchard, XML Linking Language(XLink), version

1.0, W3C Recommendatio, http://www.w3.org/TR/xlink.

[10] P.Bohannon, J.Freire, P.Roy, and J.Simeon, From XML Schema to Relations:

A Cost-based Approach to XML storage, in Proceedings of ICDE, 2002.

[11] A.Deutsch, M.Fernandez, and D.Suciu, Storing Semistructured Data with

STORED, in Proceedings of ACM SIGMOD, 1999.

[12] D.Florescu and D.Kossmann, Storing and Querying XML Data Using an

RDBMS, IEEE Data Engineering Bulletin 22(3), 1999.

[13] J.Shanmugasundaram et al. Relational Databases for Querying XML Docu-

ments: Limitations and Opportunites, in Proceedings of VLDB, 1999.

[14] J.Shanmugasundaram et al. A General Technique for Querying XML Docu-

ments using a Relational Database System, SIGMOD Record, September 2001.

[15] T.Shimura, M.Toshikawa, and S.Uemura, Storage and Retrieval of XML Doc-

uments using Object-Relational Databases, in Proceedings of DEXA, 1999.

[16] M.Yoshikawa et al., XREL:A Path-Based Approach to Storage and Retrieval of

XML Documents Using Relational Databases, in ACM Transactions on Internet

Technology, August 2001.

[17] I.Tatarinov and S.D.Viglas, Storing and Querying Ordered XML Using a Re-

lational Database System, in Proceedings of ACM SIGMOD, 2002.

[18] R.Goldman and J.Widom, Dataguides: Enabling Query Formulation and Op-

timization in Semistructured Databases, in Proceedings of VLDB, 1997.

BIBLIOGRAPHY 122

[19] J.McHugh, J.Widom, S.Abiteboul, Q.Luo and A.Rajamaran, Indexing

Semistructured Data, Technical Report, Stanford University, January 1998.

[20] T.Milo and D.Suciu, Index Structures for Path Expressions, in Proceedings of

ICDT, 1999.

[21] R.Kaushik, P.Shenoy, P.Bohannon and Ehud Gudes, Exploiting Local Simi-

larity for Efficient Indexing of Paths in Graph Structured Data, in Proceedings

of ICDE, 2002.

[22] N.Polyzotis, M.Garofalakis, Statistical Synopses for Graph-Structured XML

Databases, in Proceedings of ACM SIGMOD, 2002.

[23] N.Polyzotis, M.Garofalakis, Structure and Value Synopses for XML Data

Graphs, in Proceedings of VLDB, 2002.

[24] M.Henzinger, T.Henzinger, and P.Kopke, Computing Simulations on Finite

and Infinite Graphs, in Proceedings of FOCS, 1995.

[25] R.Paige and R.Tarjan, Three Partition Refinement Algorithms, SIAM Journal

of Computing, 16:973-988, 1987.

[26] R.Kaushik, P.Bohannon, J.F.Naughton, and P.Shenoy, Updates for Structure

Indexes, in Proceedings of VLDB, 2002.

[27] P.Buneman, S.B.Davidson, M.F.Fernandez, and D.Suciu, Adding Structure to

Unstructured Data, in Proceedings of ICDT, 1997.

[28] T.Milo and D.Suciu, Optimizing Regular Path Expressions Using Graph

Schemas, in Proceedings of ICDE, 1998.

[29] M.Roggenbach and M.Majster-Cederbaum, Towards A Unified View of Bisim-

ulation: A Comparative Study, Theoretical Computer Science, 238(1-2):81-130,

May 2000.

BIBLIOGRAPHY 123

[30] N.Zhang, V.Kacholia and M.T.Ozsu, A Succinct Physical Storage Scheme for

Efficient Evaluation of Path Queries in XML, ICDE 2004.

[31] R.Ramakrishnan and J.Gehrke, Database Management Systems(Third Edi-

tion), McGraw-Hill, 2002.

[32] D.Lee and M.Yannakakis, Online Minimization of Transition Systems (ex-

tended abstract), in Proceedings of ACM Symposium on the Thoery of Com-

puting(STOC), 1992.

[33] S.Abiteboul, P.Buneman and D.Suciu, Data on the Web: From Relations to

Semistructured Data and XML, Morgan Kaufmann Publishers, 1999.

[34] C.Zhang, J.Naughton, D.Dewitt, Q.Luo, and G.Lohman, On Supporting Con-

tainment Queries in Relational Database Management Systems,in Proceedings

of ACM SIGMOD, 2001.

[35] Q.Li and B.Moon, Indexing and Querying XML Data for Regular Path Ex-

pressions, in Proceedings of VLDB, 2001.

[36] B.Cooper, N.Sample, M.J.Franklin, G.R.Hjaltason, and M.Shadmon, A Fast

Index for Semistructured Data, in Proceedings of VLDB, 2001.

[37] R.Kaushik, P.Bohannon, J.F.Naughton and H.F.Korth, Covering Indexes for

Branching Path Queries, in Proceedings of ACM SIGMOD 2002.

[38] C.W.Chung, J.K.Min and K.Shim, APEX:An Adaptive Path Index for XML

Data, in Proceedings of ACM SIGMOD, 2002.

[39] I.Tatarinov, Z.G.Ives, A.Y.Halevy and D.S.Weld, Updating XML,

SIGMOD, 2001.

[40] K.Yi, H.He, I.Stanoi, and J.Yang, Incremental Maintenance of XML Struc-

tural Indexes, ACM SIGMOD, 2004.

BIBLIOGRAPHY 124

[41] R.Busse, M.Carey, D.Florescu, M.Kersten, A.Schmidt,

I.Mauolescu,and F.Waas, The XML Benchmark Project, Available at

http://monetdb.cwi.nl/xml/index.html.

[42] NASA is available at http://xml.gsfc.nasa.gov/.

[43] M.P.Consens and T.Milo, Optimizing Queries on Files, in Proceedings of ACM

SIGMOD, 1994.

[44] M.P.Consens and T.Milo, Algebras for Querying Text Regions, in Proceedings

of ACM PODS , 1995.

[45] D.Srivastava, S.Al-Khalifa, H.V.Jagadish, N.Koudas, J.M.Patel, and Y.Wu,

Structural Joins: A Primitive for Efficient XML Query Pattern Matching, in

Proceedings of ICDE, 2002.

[46] E.Cohen, H.Kaplan and T.Milo,Labeling Dynamic XML Trees, in Proceedings

of ACM PODS 2002.

[47] N.Bruno,N.Koudas,and D.Srivastava,Holistic Twig Joins: Optimal XML Pat-

tern Matching, in Proceedingws of ACM SIGMOD, 2002.

[48] S-Y.Chien, Z.Vagena, D.Zhang, V.Tsotras, and C.Zaniolo, Efficient Structural

Joins on Indexed XML Documents, in Proceedings of VLDB, 2002.

[49] H.F.Jiang, H.J.Lu, W.Wang and B.C.Ooi, XR-Tree: Indexing XML Data For

Efficient Structural Joins, in Proceedings of ICDE, 2003.

[50] H.F.Jiang, W.Wang and H.J.Lu, Holistic Twig Joins on Indexed XML Docu-

ments, in Proceedings of VLDB, 2003.

[51] S-Y.Chien, V.J.Tsotras and C.Zaniolo, Efficient Management of Multiversion

Documents by Object Referencing, in Proceedings of VLDB, 2001.

BIBLIOGRAPHY 125

[52] S-Y.Chien, V.J.Tsotras, C.Zaniolo and D.Zhang, Efficient Complex Query

Support for Multiversion XML Documents, in Proceedings of EDBT, 2002.

[53] R.Bayer, and C.McCreight, Organization and Maintenance of Large Ordered

Indexes, Acta Informatica 1, 3(1972).

[54] R.Bayer, and K.Unterauer, Prefix B-trees, ACM Transactions on Database

Systems 2,1(1977).

[55] D.Comer, The Ubiquitous B-Tree, Computing Survey 11(1979),121-137.

[56] P.Ferragina and R.Grossi, The String B-Tree: A New Data Structure for

String Search in External Memory and Its Applications, Journal of ACM 46(2),

1999.

[57] A.Guttman, R-trees: A Dynamic Index Structure for Spatial Searching, in

Proceedings of ACM SIGMOD, 1984.

[58] N.Beckmann, H.P.Kriegel, R.Schneider and B.Seeger, The R*-tree: An Effi-

cient and Robust Access Method for Points and Rectangles, in Proceedings of

ACM SIGMOD, 1990.

[59] Q.Chen, A.Lim and O.K.Win, D(k)-Index:An Adaptive Structural Summary

for Graph-Structured Data, in Proceedings of ACM SIGMOD, 2003.

[60] T.Grust, Accelerating XPath Location Steps, In Proceedings of ACM SIG-

MOD, 2002.

[61] S.Abiteboul, H.Kaplan and T.Milo, Compact Labeling Schemes for Ancestor

Queries, in Proceedings of SODA, 2001.

[62] S.Alstrup and T.Rauhe, Improved Labeling Scheme for Ancestor Queries, in

Proceedings of SODA, 2002.

BIBLIOGRAPHY 126

[63] H.Kaplan, T.Milo and R.Shabo, A Comparison of Labeling Schemes for An-

cestor Queries, in Proceedings of SODA, 2002.

[64] N.S.Prywes and H.J.Gray, The Organization of a Multilist-Type Associative

Memory, IEEE Transactions on Communication and Electronics 68, 1963.

[65] G.H.Gonnet, R.A.Baeza-Yates and T.Snider, Information Retrieval: Data

Structures and Algorithms, Charpter 5: New Indices for Text, Prentice-Hall,

1992.

[66] A.Amir, M.Farach, Z.Galil, R.Giancarlo and K.Park, Dynamic Dictionary

Matching, Journal of Computer and System Science 49, 1994.

[67] T.C.Hu and C.Tucker, Optimum Computer Search Trees, SIAM Journal of

Applied Mathematics, 21:514-532, 1971.

[68] P.Buneman, S.Davidson, G.Hillebrand and D.Suciu, A Query Language and

Optimization Techniques for Unstructured Data, in Proceedings of ACM SIG-

MOD, 1996.

[69] D.Gusfield, G.M.Landau and B.Schieber, An Efficient Algorithm for All Pairs

Suffix-Prefix Problem, Information Processing Letter 41, 1994.

[70] E.M.McCreight, A Space-Economical Suffix Tree Construction Algorithm,

Journal of ACM 23(2), 1976.

[71] U.Manber and G.Myers, Suffix Arrays: A New Method for On-Line String

Searches, SIAM Journal on Computing 22(5), 1993.

[72] The TPIE project is available at http://www.cs.duke.edu/ tpie/.

[73] A. Aboulnaga, A.R.Alameldeen, and J.F.Naughton, Estimating The Selectiv-

ity of XML Path Expressions for Internet Scale Applications, in Proceedings of

VLDB, 2001.

BIBLIOGRAPHY 127

[74] Z.Chen, H.V.Jagadish, F.Korn, N.Koudas, S.Muthukrishnan, R.Ng, and

D.Srivastava, Counting Twig Matches in A Tree, in Proceedings of ICDE, 2001.

[75] J. Freire, J.R.Haritsa, M.Ramanath, P.Roy, StatiX:Making XML Count, in

Proceedings of ACM SIGMOD, 2002.

[76] W.Yuqing, J.M.Patel, H.V.Jagadish, Estimating Answer Sizes for XML

Queries, in Proceedings of EDBT, 2002.

[77] H.V.Jagadish, Linear Clustering of Objects with Multiple Attributes, in Pro-

ceedings of ACM SIGMOD, 1990.

[78] M.Muralikrishna, D.J.Dewitt, Equi-depth Histograms for Estimating Selectiv-

ity Factors for Multi-dimensional Queries, in Proceedings of ACM SIGMOD,

1988.

[79] V.Poosala, Y.E.Ioannidis, Selectivity Estimation Without The Attribute Value

Independence Assumption, in Proceedings of VLDB, 1997.

[80] Y.E.Ioannidis, V.Poosala, Balancing Histogram Optimality and Practicality

for Query Result Size Estimation, in Proceedings of ACM SIGMOD, 1995.

[81] Y.E.Ioannidis, Universality of Serial Histograms, in Proceedings of VLDB,

1993.

[82] G.P.Shapiro, C.Connell, Accurate Estimation of The Number of Tuples Satis-

fying a condition, in Proceedings of ACM SIGMOD, 1984.

[83] M.V.Mannino, P.Chu, T.Sager, Statistical Profile Estimation in Database Sys-

tems, ACM Computing Surveys, 20(3):192-221, September 1988.

[84] S.Muthukrishnan, V.Poosala, and T.Suel, On Rectangular Partitionings in

Two Dimensions: Algorithms, Complexity, and Applications, ICDT, 1999.

[85] W.Wang, H.F.Jiang, H.J.Lu, and J.X.Yu, Containment Join Size Estimation:

Models and Methods, SIGMOD, 2003.

[86] W.Wang, H.F.Jiang, H.J.Lu, and J.X.Yu, Bloom Histogram: Path Selectivity

Estimation for XML Data with Updates, VLDB 2004.

[87] N.Polyzotis, M.Garofalakis, and Y.Ioannidis, Selectivity Estimation for XML

Twigs, ICDE 2004.

[88] L.Qiao, D.Agrawal, and A.E.Abbadi, RHist: Adaptive Summarization over

Continuous Data Streams, CIKM 2002.

[89] XML Data Repository, http://www.cs.washington.edu/research/xmldatasets

/www/repository.html.

[90] The DBLP BHT file is available at http://dblp.uni-trier.de/xml/.

[91] J.Naughton, C.Jianjun, D. DeWitt, C.Zhang, The Niagara Internet Query

System, Technical Report. Available at http://www.cs.wisc.edu/niagara/.

