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Summary

The structures of Cu(210) and Fe(310) have been studied by quantitative low-

energy electron diffraction (LEED) analyses and first-principles pseudopotential

calculations. It is demonstrated that the layer-doubling method works well for

high-index transition metal surfaces with interlayer spacings down to about 0.8 Å.

The structures obtained from the two techniques on both surfaces show good con-

sistency. This indicates that the pseudopotential plane-wave method is a reliable

tool for studying the structures of high-index transition metal surfaces, which is

not normally studied using the pseudopotential method due to the prohibitively

large basis set needed.

By observing the existing results from several high-index Cu surfaces, an em-

pirical rule for multilayer relaxations on open metal surfaces is proposed, which

can be described as: At bulk-truncated configuration, define a surface slab in

which the nearest neighbors of all atoms are fewer than those in the bulk. In the

process of relaxation, the interlayer spacing between each pair of layers within this

slab contracts, while the spacing between this slab and the substrate expands.

For checking the validity of this rule, pseudopotential calculations have been

carried out along two directions. Firstly, taking Cu as an example, the high-index

surfaces of fcc structure with interlayer spacings down to 0.5 Å are studied. It

is shown that the proposed rule is obeyed on all these surfaces. Secondly, the

relaxations of (311), (331) and (210) surfaces of seven transition metals, including

Ni, Cu, Rh, Pd, Ag, Ir and Pt, have been studied. The results show that the sur-

faces of the same orientation, but of different materials, have the same relaxation

sequence and conform to the proposed rule.

Comparison with existing results on the open surfaces of other structures, such

as bcc, hcp and even reconstructed missing-row surfaces, also shows the validity

of the rule.
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Chapter 1. Introduction

Surface structure determination is an important branch of surface science.

Almost all quantitative studies on electronic, energetic, vibrational and magnetic

properties of a surface require detailed structural information on it. Surface struc-

tures that have been elucidated so far are mainly confined to close-packed low-

Miller-index (low-index in short) surfaces. In the past two decades, open (loosely-

packed) surfaces have received more attention than before due to the practical

interests arising from areas such as heterogeneous catalysis and crystal growth.

Nevertheless, the information on open surfaces is still limited as opposed to that

on close-packed surfaces. This thesis is devoted to the study of multilayer relax-

ations on open metal surfaces.

1.1 Open Surfaces

Open surfaces normally refer to high-index single crystal surfaces. Yet, some

low-index surfaces also exhibit “open” features, such as the bcc(111), hcp(101̄0)

and fcc(110) surfaces. A common point of high-index and open low-index surfaces

is that they all have small packing densities so that more than one atomic layer is

“exposed” to the vacuum. More strictly, the coordination of the atoms in at least

two layers is lowered when creating the surface. In this thesis, the term “open” is

adopted to describe this category of surfaces whenever a general purpose is aimed

at, while high-index metal surfaces will actually be the main subject of this thesis.

A high-index single crystal surface is obtained by cutting a crystal at a specific

angle away from a low-index plane. Even perfect high-index surfaces exhibit ter-

races that are oriented to certain low-index planes and separated by well-ordered

monoatomic steps. On some of these surfaces the steps are straight, while on others

they are in a zigzag shape. The atomic sites where the steps change direction are

called kinks. Since every high-index surface is vicinal to a certain low-index plane

and characterized by the existence of steps, a high-index surface is also referred to

as a vicinal or stepped surface. The atomic sites at the steps and kinks are highly

active due to the lower coordination, hence play an important role in catalytic

reactions [1]. This feature of high-index surfaces makes them suitable platforms

2



Chapter 1. Introduction

on which experimental and theoretical studies can be conducted for understanding

the fundamental mechanisms of heterogenous catalysis.

Another feature of high-index surfaces is the low symmetry. There is at most

a mirror plane that can be present on these surfaces. If such a mirror plane ex-

ists, the direction of the steps is perpendicular to the mirror. Studies have shown

that preferential nucleation takes place along the steps during thin film growth.

This is helpful for the self-organized growth of low dimensional structures, such

as nanowires [2–5]. Although such studies have so far been mainly conducted

on semiconductor surfaces, the potential application for the growth of magnetic

nanowires on high-index metal surfaces is promising [6], especially for high den-

sity data storage. High-index surfaces without any symmetry also have a niche

in chiral chemistry [7]. Some of these surfaces have proven to be enantioselec-

tive [8]. Studies on chiral single crystal surfaces have opened a new field for chiral

chemistry. The current reaction carriers for chiral syntheses are mainly organic

materials which cannot be used for high temperature reactions and single crystal

chiral metal surfaces are more suitable for these applications.

1.2 Structures of Surfaces

When cutting a single crystal to form two surfaces, the fresh atomic config-

uration (or the bulk-truncated configuration) in the surface region is not stable

due to the change in atomic coordination. The surface atoms undergo displace-

ments to achieve a stable configuration. Various deformations with respect to the

bulk-truncated configuration may occur on single crystal surfaces. All of them

are, from the point of view of energetics, the consequence of the minimization of

free energy of the surfaces.

The deformation that most likely occurs on clean open metal surfaces is mul-

tilayer relaxation, that is, more than one atomic layer in the surface is displaced

from the bulk-truncated configuration, while the shape and size of the original

surface unit cell remain unchanged. Open metal surfaces usually exhibit more

significant multilayer relaxations than close-packed surfaces.

3



Chapter 1. Introduction

Another type of deformation is surface reconstruction, which refers to a rear-

rangement of one or more atomic layers in the surface region resulting in a change

in the periodicity of the surface along one or both basis vectors of the substrate.

Surface reconstructions are rather common on clean semiconductor surfaces due

to the strong interactions between the dangling covalent bonds on these surfaces,

a classical example being the Si(111)-(7x7) surface. On clean metal surfaces,

however, the cases of reconstruction are fewer due to the non-local nature of

the metallic bonds which allows the surface stresses to be released easily with-

out severe change in the atomic positions. Nevertheless, surface reconstructions

have been observed on several heavy transition metal surfaces, such as Ir(110) [9],

Pt(110) [10] and W(100) [11]. Interestingly, on clean high-index metal surfaces

few reconstructions have been observed. One of the rare exceptions is the clean

Pt(311) surface on which a (2x1) reconstruction has been reported [12].

Facets are a kind of more severe deformations occurring on surfaces. They are

pyramid-like surface structures where each side of the pyramid belongs to specific

crystal planes. Faceting on clean surfaces is rarely observed in experiments. This

phenomenon is usually induced by adsorbate atoms which have strong interactions

with the substrate atoms.

1.3 Scope of Research

This thesis focuses on the multilayer relaxations of open metal surfaces. The

main techniques involved will be quantitative low-energy electron diffraction (LEED)

analysis and first-principles total-energy calculations based on density functional

theory (DFT). Quantitative LEED analysis is the principal experimental technique

for surface crystallography and DFT is the most definitive theoretical method for

structural studies on single crystal surfaces. The two techniques will be briefly

reviewed in Chapter 2.

Chapter 3 presents results on quantitative LEED analysis. It will be shown

that the layer-doubling method works well for Cu(210). This method is much more

efficient than the l-space methods which are currently dominant in the quantitative

4



Chapter 1. Introduction

LEED analysis of high-index metal surfaces.

Chapter 4 is dedicated to solving the discrepancy in the literature on the

structure of Fe(310) obtained by quantitative LEED analysis and first-principles

calculations. It will be demonstrated that the pseudopotential plane-wave method

is able to obtain consistent results with LEED.

In Chapter 5, an empirical rule for multilayer relaxations on open metal sur-

faces is proposed. A systematic evaluation of this rule is conducted on a series of

vicinal Cu surfaces.

In Chapter 6, the proposed rule will be further evaluated on the (311), (331)

and (210) surfaces of seven fcc transition metals.

Concluding remarks will be given in Chapter 7.

5
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Chapter 2. Methodology

There is a long list of techniques that are suitable for surface structure studies.

Each technique has its advantages and limitations. For experimental techniques,

various probes can be used, such as electrons (e.g., LEED and RHEED), ions (e.g.,

LEIS, MEIS and HEIS), X-rays (e.g., XPD and SEXAFS) and atomic tips (e.g.,

STM and AFM). For theoretical techniques, both empirical (or semi-empirical)

and first-principles methods are available. The technique of choice should be

decided on a case by case basis. Often, a combination of two or more techniques is

required to elucidate a surface structure. In this thesis, two techniques are used.

They are quantitative LEED analysis and first-principles DFT calculations.

2.1 Quantitative LEED Analysis

In 1927, Davisson and Germer experimentally demonstrated the wavelike prop-

erties of electrons on a single crystal Ni surface [13]. However, the usage of electron

diffraction after Davisson and Germer’s discovery is mainly confined in the high-

energy electrons until 1960’s when the development in both ultra-high vacuum

technique and multiple scattering theory makes it possible to experimentally pre-

pare a clean surface and theoretically describe a low-energy electron diffraction

process. Since then, quantitative LEED analysis has been the principal exper-

imental technique for surface crystallography. According to the NIST Surface

Structure Database (Ver. 4.0) [14], about 60% of determined surface structures

are contributed by this technique. Two reasons may account for this. Firstly, the

experimental setup of LEED is low-cost compared with other analytical surface

science techniques and can be easily incorporated in an ultra-high vacuum system.

Secondly, the computer simulation packages for quantitative LEED analysis have

been developed over three decades and are currently available for free from many

groups.

2.1.1 Low Energy Electron Diffraction

LEED is an experimental technique used to study crystalline surfaces, mainly

single crystal surfaces (often with atomic or molecular adsorptions). In LEED, a

7



Chapter 2. Methodology

surface is excited by a beam of incident electrons and the elastically back-scattered

wavefield is then analysed to obtain structural information of the surface. The in-

cident electrons are normally in the energy range from 20 eV to 500 eV. The

electrons in this range possess two good properties which make them suitable

probes for surface structures. Firstly, the inelastic mean free path of electrons in

this energy range is 5 – 10 Å, which means that the electrons can only penetrate

several atomic layers into the surface. In other words, low-energy electrons are

surface-sensitive. Beyond this range, the depth of penetration rapidly increases.

Secondly, electron energies from 20 eV to 500 eV correspond to de Broglie wave-

lengths from 2.74 Å to 0.55 Å, which are excellent for crystallographic studies on

surfaces, just like X-rays for bulk crystals.

The wavefield back-scattered from a 2-dimensional periodic system consists of

an array of diffraction beams, each of which is related to the incident electron

beam by a 2-dimensional reciprocal lattice vector g. This can be regarded as an

exchange of momentum g between the incident electrons and the lattice to conserve

the total parallel momentum of the system. The structure factor (Ref. [15], p.79)

of the periodic system (i.e., the constructive interference) prevents the beams with

the momentums other than g from contributing to the back-scattered wavefield.

Two kinds of information are available from the diffraction beams, the diffrac-

tion pattern and the beam intensities. The diffraction pattern can be used to

analyze the surface symmetry and deduce the size and shape of the surface unit

cell, while the relation between the beam intensities and the incident energy, of-

ten referred to as I-V or I(E) curves, implicitly contains the detailed structural

information of the surface.

The interpretation of the LEED pattern is normally straightforward. For ex-

ample, Figure 2.1 shows the LEED patterns from the SiC(0001), Si(001) and

Cu(210) surfaces. From these patterns, one can easily observe that the first one

has a (3× 3) reconstruction, the second a (2× 1) and the third unreconstructed.

On the contrary, extracting structural information from the beam intensities is

much more complicated and sophisticated theory is required [15,16]. The detailed

8
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(a) (b) (c)

Fig. 2.1: LEED patterns. (a) SiC(0001)-(3x3); (b) Si(001)-(2x1); (c) Cu(210)-(1x1).

structure determination by LEED is often referred to as quantitative LEED anal-

ysis, which consists of two main steps. In the first step, one needs to acquire a set

of I-V curves from the diffraction beams. In the next step, the structure of the

surface is derived from the I-V curves in a trial-and-error way. The retrieval pro-

cedure starts from a reasonably guessed trial structure (often known as a model).

The theoretical I-V curves are then calculated from the trial structure and com-

pared with the experimental ones. Whether this trial structure is accepted as the

“real” structure is decided by the agreement between the two sets of curves. If it

is rejected, a new trial structure will be generated by systematically adjusting the

old one. This procedure will be repeated until a structure which gives the best fit

to the experimental curves is found. The calculations of the theoretical I-V curves

have to be conducted within the framework of multiple scattering (or dynamical)

theory due to the large scattering cross-sections (i.e., strong interactions) between

the incident electrons and the surface atoms. This is different from the case of

X-ray diffraction, where the diffraction process is mainly determined by the ge-

ometric parameters of the system and single scattering (or kinematic) theory is

sufficient.

In the following subsections, the experimental setup of LEED and the theories

of quantitative LEED analysis will be introduced.

9
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2.1.2 Experimental Setup

Figure 2.2 shows a standard LEED setup, which is essentially made up of an

electron gun, a sample manipulator and a display system.

Filament

A1 A2 A3 A4 A5

Link

Sample

Screen
M2
M1

Fig. 2.2: A schematic LEED setup. The left part is the electron gun and the right shows
the sample and the display system. The black blocks denote the anodes, where
A2 and A4 have been linked together.

An electron gun is used to produce a well collimated monoenergetic electron

beam. At the rear end of the electron gun is a cathode, which is usually a thoria-

coated tungsten filament or a piece of LaB6 crystal. When the cathode is heated up

over a certain temperature by a current, electrons will overcome the work function

of the filament material and emit from the cathode. The cathode is housed in

a so-called Wehnelt cylinder which is applied with an adjustable negative bias

(normally shown as Grid on a standard LEED controller) with respect to the

filament in order to control the emission current. The control on the incident

energy Ep is implemented by applying a negative bias (−Ep) on the filament with

respect to the sample, which is earthed. Once passing through the aperture of

the Wehnelt cylinder, the electrons enter a focusing region formed by a series of

anodes (usually five, see Fig. 2.2) [17]. A1, the nearest anode to the filament, is

applied with a high positive voltage (e.g., +600 V) to extract the electrons. A5, the

farthest anode from the filament is earthed. The voltages applied on other anodes
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are either user-adjustable or slaved to Ep (A2 and Focus on a LEED controller).

Finally, a beam of electrons with a diameter of about 1 mm and a current of the

order 1 µA is obtained after the aperture located at the front end of the gun.

The electron beam generated from the gun passes through a vacuum region

and impinges on the sample which is mounted on a manipulator. The electrons

will undergo scattering in the surface and an array of diffracted beams as well as

a flux of electrons due to the inelastic scattering will emerge from the surface and

travel towards the display system.

The display system is formed by a series of concentric meshes and a fluorescent

screen. For a LEED experiment, two meshes are sufficient. If the same system

is also used for Auger electron spectroscopy, one (or two) more mesh is helpful

for improving the energy resolution. The mesh near the sample (M1 in Fig. 2.2)

is earthed in order to ensure that the electrons travel in a field-free region before

reaching this mesh. The mesh near the screen (M2) is biased with a retarding

potential (−Ep + ∆Vm) to filter out the electrons due to inelastic scattering (i.e.,

those with E < Ep), where ∆Vm is an adjustable tolerance potential within a

typical range 0 – 10 eV and shown as Mesh on a LEED controller. The electrons

that are able to overcome the retarding potential (i.e., those elastically back-

scattered) are accelerated by a high voltage (typically +5 kV) applied on the screen

making them energetic enough to light up the fluorescent screen. The intensities

of the diffraction beams are then measured by a rear-view video camera system.

For conducting a quantitative LEED analysis, several points on the experi-

mental setup are worth mentioning:

• The sample should be mounted on an accurately adjustable manipulator

which allows precise control of the incident angle (often normal incidence).

• A computer-controlled rapid data acquisition system should be used in order

to reduce the influence of the residual gases on the sample due to adsorption.

• It is preferred that the sample be cooled to low temperatures in order to

reduce the temperature effect, such as vibration and desorption.

11



Chapter 2. Methodology

2.1.3 Muffin-tin Approximation

Once the incident electrons approach the surface, they start to feel the potential

formed by the nuclei and the electrons in the surfaces until they are back-scattered

away from the surface. Exactly describing the scattering of the electrons in the

surface requires that the potential is known mathematically. Obtaining an accu-

rate form of this potential is possible from first-principles calculations. However,

a practical LEED theory based on such a potential is not available yet. The ex-

isting LEED theories are based on approximations to this potential. The simplest

one is the muffin-tin approximation, which originated from the band-structure

calculations in solid states.

The muffin-tin approximation takes the regions surrounded by the largest pos-

sible non-overlapping spheres centered on the nuclei as the ion-cores. The potential

inside each ion-core (the ion-core potential) is treated spherically symmetric. In

the interstitial region between the ion-cores the potential is taken constant (rep-

resented by V0), which is usually referred to as the inner potential (or the optical

potential, the muffin-tin constant) in the context of LEED. The ion-core potential

is largely determined by the nuclear charge and the core-electrons so that it is

expected not to change the scattering property significantly with the change in the

chemical environment, even near the surface. However, near the surface the poten-

tial outside the muffin-tins is no longer constant. It will gradually increase to the

vacuum level and form a surface potential step (or a barrier potential). Frequently,

this surface step is treated as only a refractive layer. Or in other words, the step

potential is a function of only the z coordinate and has no structure parallel to

the surface. Thus, the parallel component of the momentum of the electrons is

conserved when they penetrate this barrier. In a standard LEED analysis this

barrier is often neglected.

2.1.4 Inner Potential and Inelastic Process

As mentioned above, the inner potential V0 is approximated as a constant.

This, in some sense, is constrained by the fact that exactly describing this potential
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is rather difficult. In a standard quantitative LEED analysis, one firstly sets the

inner potential to a reasonably guessed value, then it is systematically adjusted in

the process of the best-fit search. Since this potential is attractive (negative), it

is equivalent to a rigid shift of the incident energy Ep towards the higher energy.

Hereafter in this section, E = Ep − V0 will be adopted.

The inner potential is regarded as mainly contributed by the valence electrons

which account for the principal mechanisms of the absorptions of the incident

electrons in the surface (e.g., surface plasmon and single-electron excitations).

Therefore, it is necessary that the inner potential should incorporate some prop-

erty of absorbing electrons. In other words, the electron waves must be damping

when propagating in the inner potential. In LEED theory, this is achieved phe-

nomenologically by assigning a negative imaginary part to the inner potential so

that V0 is expressible as a complex number, i.e., V0 = V0r+iV0i, where both V0r and

V0i are negative. The effect of the negative imaginary part V0i can be easily seen.

Consider a one-dimensional plane-wave eikx, whose energy E has a positive imag-

inary part (note that E = Ep − V0), and express the wavevector by k = kr + iki.

Since k =
√

2E, the imaginary part ki is positive too. Thus, the electron wave

eikx = e−kixeikrx has a damping factor e−kix.

The imaginary part of the inner potential V0i simulates the absorption processes

in the surface, hence decides the inelastic mean free path λ of the incident electrons,

which in turn affects the peak widths ∆E in the I-V curves. Therefore, ∆E is a

rough indicator of the magnitude of V0i.

In most quantitative LEED analyses, V0 is kept unchanged throughout the

whole energy range. However, it does vary as the incident energy Ep changes. This

is because, as Ep increases, the correlation between the incident electrons and the

electrons in the surface becomes weakened. Thus, the screening due to the surface

electrons is reduced [15]. This makes the incident electron feel more attraction.

Therefore, the V0r normally increases with Ep, especially at high energies, and

the change is usually not linear. The energy-dependency of the inner potential

for Cu has been studied by Rundgren [18]. Some LEED studies have employed
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this potential [19] and it has been shown that the systematic error introduced by

non-consideration of the energy-dependency is rather low (0.01 Å) and negligible

by today’s standards of quantitative LEED analysis [20]. In this thesis, V0 (both

real and imaginary parts) is always taken to be energy-independent.

2.1.5 Ion-core Scattering and Phase Shifts

Consider a beam of electrons with energy E represented by eikr incident on

an isolated ion-core. This plane-wave can be decomposed into a series of spherical

waves by using the expansion

eikr =
∑

lm

4π(−1)mYl−m(k)iljl(κr)Ylm(r), (2.1)

where each iljl(κr)Ylm(r) is a spherical wave (also known as a partial wave) and

4π(−1)mYl−m(k) forms the expansion coefficient. jl and Ylm are the spherical

Bessel functions and the spherical harmonics, respectively, and κ =
√

2E. The

vector arguments in the spherical harmonics actually stand only for the angular

coordinates (i.e., θ and ϕ) of these vectors. In addition, it should be noted that

(−1)mYl−m(k) 6= Y ∗
lm(k), (2.2)

if k is a complex number, which is the case when the plane-wave travels in the

complex inner potential. The multiple scattering theory introduced later is based

on the propagation of spherical waves in the surface. With the expansion in

Eq. (2.1), the ion-core scattering problem is transformed to one like

|l′m′〉 = t |lm〉 , (2.3)

where |lm〉 and |l′m′〉 denote two wavefields expressed in the spherical wave rep-

resentation (or the l-space) and t is a l-space ion-core scattering matrix which

connects the two wavefields.

In the muffin-tin approximation, the ion-core potential is spherically symmet-
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ric. Therefore, the angular momentum of each l-component is conserved. In other

words, for a spherically symmetric potential, the scattering matrix is diagonal and

independent of the magnetic quantum number m. Two causes may break the

diagonality of the t-matrix. One is the anisotropic vibrations of the ion-cores at

finite temperature as will be discussed in next subsection. Another is the failure

of the muffin-tin approximation itself, which still cannot be handled practically in

the current LEED theory.

Once the t-matrix is known, the ion-core can be treated as a “black box” in

any scattering process. Given the muffin-tin potential Vmt and the electron energy

E, one can solve the radial Schrödinger equation

[
−1

2

d2

dr2
+

l(l + 1)

2r2
+ Vmt(r)

]
ul(r) = Eul(r) (2.4)

for the effective radial wavefunctions ul(r) which is related to the actual radial

wavefunctions φl(r) by ul(r) = rφl(r). Then, the scattering matrix element tl can

be evaluated at the muffin-tin radius Rmt by

tl =
1

2

[
Ll(Rmt)h

∗
l (κRmt)− h∗′l (κRmt)

h′l(κRmt)− Ll(Rmt)hl(κRmt)
− 1

]
= ieiδlsinδl. (2.5)

Ll is the logarithmic derivative defined by

Ll(r) ≡ φ′l(r)
φl(r)

=
u′l(r)
ul(r)

− 1

r
. (2.6)

hl and h∗l are the spherical Hankel functions of the first and second kinds, respec-

tively. The tl are complex numbers. For the sake of convenience, however, each

of them can be characterized by a real number δl, as given in Eq. (2.5), which

has a physical meaning known as the phase shift. Normally, when evaluating the

t-Matrix, the imaginary part of the inner potential is not considered. That is to

say, E, hence κ in the Hankel functions, is real. Thus, the Hankel functions of the

first and second kinds are the complex conjugates of each other, which ensures

that the phase shifts calculated from Eq. (2.5) are real.
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2.1.6 Temperature Effect

If the LEED experiment is conducted at a finite temperature, the thermal vi-

brations of the ion-cores will affect the scattering process. As the sample tempera-

ture is increased, the beam intensity becomes weaker, the background is enhanced

and the diffraction spots become diffused. In the kinematic limit, the vibrations

can be described by Debye-Waller factors as in the case of X-ray diffraction. How-

ever, within the framework of the multiple scattering theory, incorporating the

thermal effect is much more complicated. Usually, in a standard LEED analy-

sis, only isotropic vibrations are considered, which is also the scheme adopted in

this thesis. Nevertheless, attempts to include the anisotropic vibrations in LEED

analysis have been made. In the following, a general formalism for treating the

harmonic thermal vibrations, as described by Fritzsche [21], is introduced.

A harmonic vibration of an ion-core can always be described by three root-

mean-square (rms) vibration amplitudes (µx, µy and µz) along three orthogonal

axes (principal axes) of a specific coordinate system. The t-matrix at a finite

temperature, denoted by t(T ), can be obtained by a series summation

t(T ) =
∑

n

t(n). (2.7)

The t(n) are given by the recurrence relation

t(n+1) = − κ2

2(n + 1)

∑
α=x,y,z

µ2
α

[
MαMαt(n) − 2Mαt(n)Mα + t(n)MαMα

]
(2.8)

with the starting condition

t(0) = t(0), (2.9)

which is calculated by the method described in the last subsection. The matrices
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Mα are given by

Mz
l′m′,lm = il

′−l

√
4π

3

∫
Y ∗

l′m′YlmY10dΩ, (2.10a)

Mx
l′m′,lm =

1√
2
(M−

l′m′,lm −M+
l′m′,lm), (2.10b)

My
l′m′,lm =

i√
2
(M−

l′m′,lm + M+
l′m′,lm) (2.10c)

with

M±
l′m′,lm = il

′−l

√
4π

3

∫
Y ∗

l′m′YlmY1±1dΩ. (2.11)

In the limit of isotropic vibration, it has been shown that the summation in

Eq. (2.7) converges to

tl(T ) = e−κ2µ2
∑

l′l′′
il
′′
jl′′(−iκ2µ2)(2l′′ + 1)(2l′ + 1) Bl′′

l, l′ tl′(0), (2.12)

where µ is the rms isotropic vibration amplitude and the coefficients Bl′′
l, l′ can be

obtained by Adams’ formula [22]

Bl′′
l, l′ =

∫ 1

−1

Pl(u)Pl′(u)Pl′′(u)du =
2

2s + 1

A(s− l)A(s− l′)A(s− l′′)
A(s)

(2.13)

where Pl(u) is the Legendre function, s = (l + l′ + l′′)/2 and A(n) = 1·3·5···(2n−1)
1·2·3···n

with A(0) = 1. Eq. (2.12) is the standard formula in the LEED theory to evaluate

the temperature-dependent t-matrix. The calculation of non-diagonal t-matrix

scales as (lmax + 1)6 [23]. This prohibits the anisotropic vibrations from being

incorporated in a practical LEED analysis.

2.1.7 Multiple Scattering Theory

Consider an atomic slab constituted by a lattice of atoms with 2-dimensional

periodicity. The k-th atom in the j-th unit cell can be identified by a position

vector Rj +rk, where Rj is the origin of the j-th unit cell and rk the displacement

of the k-th atom relative to Rj. Let eik+
g r and eik−g r denote the incoming plane-

waves which are incident on the upper and lower faces of the slab, respectively.
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Their amplitudes are represented by A+
g and A−

g . The wavevectors k+
g and k−g are

defined by

k±g =
(
k‖ + g, k±gz

)
, (2.14a)

k±gz = ±
√

2E −
∣∣k‖ + g

∣∣2, (2.14b)

∣∣k±g
∣∣ = κ =

√
2E, (2.14c)

where k‖ is the parallel component of the wavevector of the primary electrons and

E has been corrected by the complex inner potential, i.e., E = Ep−V0. Similarly,

A+
g′ and A−

g′ denote the amplitudes of the outgoing plane-waves leaving the slab

from the lower and the upper faces, respectively.

The objective of multiple scattering theory is to deduce the reflection matrices

(R−+
g′g and R+−

g′g) and the transmission matrices (T ++
g′g and T−−

g′g) of the slab, which

connect the incident and scattered plane-waves by

A±
g′ =

∑
g

M±±
g′gA±

g , (2.15)

where a unified multiple scattering matrix in the plane-wave representation (or

the k-space) M±±
g′g has been used to represent the four matrices above by taking

note that

R−+ = M−+; T ++ = I + M++; R+− = M+−; T−− = I + M−−. (2.16)

I is the unit matrix in the k-space. The superscripts and subscripts in the matrices

above should be read from right to left.

According to Pendry [15],

M±±
g′g =

1

2iΩ
∣∣k±g

∣∣ ∣∣k±g′z
∣∣A(k±g )TA†(k±g′), (2.17)

where Ω is the area of the surface unit cell. A(k±g ), T and A†(k±g′) will be described

below.

18



Chapter 2. Methodology

A(k) is an augmented row vector having the form

A(k) =
[

A1(k) A2(k) · · · AN(k)
]
, (2.18)

where N is the number of atoms in each unit cell, i.e., the number of single-

Bravais-lattice layers in the slab. Each component vector Ak(k) represents the

expansion coefficients of the incident plane-wave eikr about the spherical waves

centered on rk (i.e., the k-th atom in the unit cell at the origin). The elements of

Ak(k) are given by

Ak
lm(k) = 4π(−1)mYl−m(k)eikrk . (2.19)

Eq. (2.1) is used here to obtain this formula. The term eikrk means a propagation

of eikr from the origin to rk.

A†(k) is similar to A(k), but a column vector having the form

A†(k) =




A†
1(k)

A†
2(k)

...

A†
N(k)




. (2.20)

If the wavevector k is real, A†(k) is exactly the conjugate transpose of A(k).

However, as discussed in Section 2.1.4, k is usually complex. In view of this, the

elements of A†
k(k) are given by

A†k
lm(k) = 4πYlm(k)e−ikrk . (2.21)

T is the l-space multiple scattering matrix which can be written as

T = [I− τG]−1 τ. (2.22)
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Here, I is the unit matrix in the l-space. The matrix τ has the form

τ =




t1 0 · · · 0

0 t2 · · · 0

...
...

. . .
...

0 0 · · · tN




(2.23)

with tk the t-matrix for the k-th ion-core in the unit cell. The matrix G includes

the propagations of the spherical waves between the ion-cores in the slab, which

has the form

G =




G11 G12 · · · G1N

G21 G22 · · · G2N

...
...

. . .
...

GN1 GN2 · · · GNN




. (2.24)

The elements of Gkk′ are given by

Gkk′
lm, l′m′ =

∑
j

′
eik‖RjĜkk′

lm, l′m′(Rj), (2.25)

Ĝkk′
lm, l′m′(Rj) =

∑

l′′m′′
4πil

′′
hl′′(κ|rkk′ −Rj|)Y ∗

l′′m′′(rkk′ −Rj)C
l′′m′′
lm, l′m′ , (2.26)

where rkk′ = rk′− rk and C l′′m′′
lm, l′m′ is a Gaunt coefficient which can be evaluated by

C l′′m′′
lm, l′m′ =

∫
YlmYl′′m′′Y ∗

l′m′dΩ =

√
(2l+1)(2l′′+1)

4π(2l′+1)
Ĉ l′0

l0, l′′0 Ĉ l′m′
lm, l′′m′′ . (2.27)

Here, Ĉ l′m′
lm, l′′m′′ is a Clebsch-Gordon coefficient, which can be expressed in a variety

of algebraic forms, e.g., the Wigner’s formula [24]

Ĉcγ
aα, bβ =

√
(a+b−c)!(a−b+c)!(−a+b+c)!

(a+b+c+1)!

√
(c+γ)!(c−γ)!(2c+1)!

(a+α)!(a−α)!(b+β)!(b−β)!

×
∑

z

(−1)b+β+z(c+b+α−z)!(a−α+z)!

z!(c−a+b−z)!(c+γ−z)!(a−b−γ+z)!
.

(2.28)
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The prime above the summation symbol in Eq. (2.25) denotes that, if k = k′, the

point at Rj = 0 will be excluded from the summation.

The number of single-Bravais-lattice layers in the slab N should be large

enough for representing the whole surface. This depends on the interlayer spacing

and the scattering species. As can be seen from the formalism above, the cal-

culation of the l-space multiple scattering matrix T involves inverting a matrix

of dimension N(lmax + 1)2, where lmax is the largest l-component included in the

expansion Eq. (2.1). Therefore, the formalism introduced above is often referred

to as the matrix inversion (or giant matrix) method. This method is rather in-

efficient since the matrix inversion is an O(N3) operation. For overcoming this

difficulty, various k-space methods have been developed, one example being the

layer-doubling method.

2.1.8 Layer-doubling Method

Due to the spherical symmetry of the ion-core potentials, it is convenient to

treat the inter-atom scatterings in the l-space. However, because the wavefield

between two atomic layers is made up of discrete diffraction beams, it is also

possible to handle the inter-layer scatterings in the k-space. The layer-doubling

method is one of the implementations of the multiple scattering theory in the

k-space.

Consider a pair of diffracting layers (A and B), each of which is characterized

by four matrices: r−+, t++, r+− and t−−. These matrices have the same meaning

as in Eq. (2.16). Each layer of A and B can be a single-Bravais-lattice layer or

a composite layer (a stack of sub-layers that have the same Bravais lattice). For

single-Bravais-lattice layers, one has r−+ = r+− and t++ = t−−. For composite

layers, however, these equalities rarely hold [16].

The multiple scattering process between the two layers is illustrated in Fig. 2.3.

In the following, it will be shown how the total reflection matrix R−+ of the double-

layer is constructed from the scattering matrices of the component layers (A and

B) in the layer-doubling method.
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Fig. 2.3: Multiple scattering between a pair of diffraction layers.

From Fig. 2.3, it can be seen that the first order reflection of the double-layer is

due to the layer A. This is given by Eq. (2.29a). The second order of the reflection

is formed by a transmission through A, a propagation to B, a reflection by B, a

propagation to A and a transmission through A. This process is formulated in

Eq. (2.29b). (Notice that the formulae should be read from right to left.) In the

same manner, the 3rd and 4th orders can be obtained by Eq. (2.29c) and (2.29d)

in which one can see that the underlined parts are a repeating block.

R−+
1st = r−+

A (2.29a)

R−+
2nd = t−−A P− r−+

B P + t++
A (2.29b)

R−+
3rd = t−−A P− r−+

B P + r+−
A P− r−+

B P + t++
A (2.29c)

R−+
4th = t−−A P− r−+

B P + r+−
A P− r−+

B P + r+−
A P− r−+

B P + t++
A (2.29d)

If carrying this procedure on to infinite order, one finally obtains a geometric

series. Add them together and the total reflection matrix of the double-layer can

be expressed as in Eq. (2.30a).

R−+ = r−+
A + t−−A P− r−+

B P +
(
I − r+−

A P− r−+
B P +

)−1
t++
A (2.30a)

T ++ = t++
B P +

(
I − r+−

A P− r−+
B P +

)−1
t++
A (2.30b)

R+− = r+−
B + t++

B P + r+−
A P− (

I − r−+
B P + r+−

A P−)−1
t−−B (2.30c)

T−− = t−−A P− (
I − r−+

B P + r+−
A P−)−1

t−−B (2.30d)
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The other diffraction matrices in Eq. (2.30) can be deduced by analogy. The

propagators P + and P− are diagonal matrices, which are given by

P±
g = e±ik±g rBA , (2.31)

where rBA is a vector connecting the origins of the layers A and B.

Normally, for a substrate calculation, this process can be accelerated by stack-

ing two identical slabs consisting of 2n−1 layers into one consisting of 2n layers at

the n-th iteration, for which the layer-doubling method is named. Thus, four or

five iterations are usually sufficient to converge the substrate calculation. However,

at surfaces, stacking has to be done layer by layer, since the interlayer spacings

there change from layer to layer due to relaxation. The number of surface lay-

ers depends on the system studied. For high-index metal surfaces, at least three

surface layers should be allowed to relax.

From the formalism above, it can be seen that the matrices to be manipulated

in an O(N3) way (i.e., multiplications and inversions) have a dimension of Nb,

which can be evaluated by

Nb =
Ω

4π
[2E + (

ln t

d
)2]. (2.32)

The second term accounts for those plane waves that decay away when propagating

from one layer to the next, i.e., the so-called evanescent waves [16], where d is the

interlayer spacing and t a user-input dimensionless quantity which serves as the

beam cutoff criterion. Typical values of Nb are from 100 to 200. These are much

smaller than the size of the matrices in the matrix inversion method (typically

greater than 1000). Hence, the layer-doubling method is much more efficient.

2.1.9 Reliability Factors

As has been mentioned, a quantitative LEED analysis is carried out by sys-

tematically searching for the surface structure which gives the best fit between the

calculated and experimental I-V curves. Therefore, there must be a measurement
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that can quantify the agreement between the two sets of curves. This is achieved

by defining a quantity called the reliablity factor (or R-factor). Various definitions

exist in the literature [25–28]. In this thesis, Pendry’s definition is employed [27].

The Pendry R-factor (RP) is designed to be sensitive mainly to the peak positions,

rather than the absolute intensities. It equally weights the strong and weak peaks.

This design is preferred for high index surfaces since weak peaks (or even long flat

regions) due to multiple scatterings dominate the I-V curves.

The Pendry’s procedure starts from the definition of function Y (E) by

Y (E) =
L(E)

1 + L2(E)V 2
0i

, (2.33)

where L(E) is the logarithmic derivative of the I-V curves given by

L(E) =
I ′(E)

I(E)
. (2.34)

Then the Pendry R-factor is defined by

RP =

∫
(Yexp − Ycal)

2dE∫
(Y 2

exp + Y 2
exp)dE

. (2.35)

In this approach, the variation of RP or the statistical error can be estimated by

var(RP) = min(RP)

√
8 |V0i|
∆E

, (2.36)

where ∆E is the total energy range of the I-V curves. With this quantity, the

error bars for the structural parameters determined can be estimated [27].

2.1.10 Best-fit Search and Tensor LEED

Quantitative LEED analysis is actually an optimization problem, where the

R-factor is taken as the cost function (or objective function) whose minimum

is sought within the hyperspace spanned by the structural and non-structural

parameters. The computing time to perform an exhaustive search through the

parameter space scales exponentially as the number of parameters. Therefore,
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one has to employ a more efficient algorithm to find the minimum of the R-factor.

The most conventional algorithm is to convert the multi-dimensional search

into a sequence of one-dimensional searches. Starting from a certain parameter

(often the one to which the R-factor is most sensitive), one first fixes all other

parameters and performs a one-dimensional optimization. Then, the current pa-

rameter is fixed and the search changes to the next parameter. This procedure is

repeated until the minimum is reached. This algorithm, hereafter referred to as

conventional grid search algorithm, is also adopted in this thesis due to its simplic-

ity. Often, whenever a change is made to the current parameter, the already-fixed

parameters need to be checked if they are affected by the current change. This

is expected to be very inefficient if the number of parameters is large and the

correlation between the parameters is strong. However, for the cases involved in

this thesis, it is still affordable.

Many other algorithms exist for multivariable optimization. One category of

these algorithms is the steepest descent approaches which direct the search by us-

ing the gradient of the R-factor [29]. A more robust (but sometimes less efficient)

algorithm is the simplex method [29]. In this method, there is no need for the

calculation of the gradient of the R-factor, which is sensitive to the experimental

noise and the truncation errors in the computation. These algorithms as well as

the conventional grid search algorithm suffer the problem that they can be easily

trapped in a local, rather than the global, minimum in the parameter space. To

overcome this difficulty, global minimization algorithms such as simulated anneal-

ing [30], genetic algorithm [31] and their variants [32] have been introduced. In

principle, these algorithms guarantee the global minimum only when the searched

number of grid points approaches infinity. In practice, multi-starting searches

are done to confirm the global minimum, especially when the best-fit R-factor

achieved is rather poor, e.g., larger than 0.25 if the RP is used.

A breakthrough in quantitative LEED analysis is tensor LEED theory [33].

The idea of this theory is that the full-dynamical LEED calculation is only neces-

sary for a so-called reference structure, while for the trial structures in its vicinity
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the LEED intensities can be obtained by the perturbative method. The tensor

LEED scheme can significantly speed up the structure determination compared to

conventional LEED analysis.

If a trial structure is characterized by a set of displacements {δrk} with respect

to the reference structure, the scattering from the trial structure is equivalent to

that from the reference structure except that the t-matrices of the displaced atoms

are replaced by the renormalized t-matrices

t′k = tk + δtk(δrk). (2.37)

Note that δtk are usually non-diagonal. By substituting the t′k into the formalism

introduced in Section 2.1.7 and neglecting all propagation paths where δtk occur

more than once (i.e., to the first order approximation), the difference between the

amplitudes of diffraction beam k−g′ from the reference and the trial structures,

denoted by δA−
g′ , can be expressed by

δAg′ =
1

2iΩκk+
g′z

∑

k

Ak(−k+
g )δtkA†

k(k
+
0 ). (2.38)

The evaluation of Ak(−k+
g ) and A†

k(k
+
0 ) still requires full-dynamical calculations.

However, this can be done once and for all in the reference structure calculation

since they are independent of {δrk}. Therefore, one can gain a great performance

improvement in structure determination using the tensor LEED scheme.

The implementation of tensor LEED in the matrix inversion method is straight-

forward. However, for the layer-doubling method, it is delayed until a very recent

article [34]. To date, few surfaces have been studied by the layer-doubling tensor

LEED scheme. In this thesis, conventional LEED analysis is still adopted. Nor-

mally, the error bars of a conventional LEED analysis are slightly smaller than

in a tensor LEED analysis [35] since the I-V curves from the structures in the

vicinity of the best-fit structure are calculated fully dynamically.
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2.2 First-principles Calculations

First-principles or ab initio calculations refer to calculations that do not rely

on any adjustable parameters. State-of-the-art methods for conducting first-

principles studies on materials properties and processes are based on density func-

tional theory. In this section, a brief introduction to density functional theory and

techniques for implementing this theory will be given.

2.2.1 Density Functional Theory

In terms of quantum mechanics, a system comprising N electrons and M nuclei

is described by a Hamiltonian H as:

H= −1

2

N∑
i=1

∇2
i +

N∑
i<j

1

|ri−rj| +
N∑

i=1

M∑
I=1

ZI

|ri−RI | −
1

2

M∑
I=1

∇2
I +

M∑
I<J

ZIZJ

|RI−RJ | , (2.39)

where Z denotes the nuclear charge. Exactly solving a Schrödinger equation with

such a many-body Hamiltonian is only possible in principle. For any practical sys-

tem, one has to resort to approximations. First of all, by the Born-Oppenheimer

(or adiabatic) approximation one drops the last two terms in the Hamiltonian

above and treats the nuclei separately. The grounds for this treatment are that

the nuclei are much heavier, hence move much slower than the electrons. In this

approximation, the kinetic energy of the nuclei is neglected and the interaction

between the nuclei is handled classically. Thus, the original problem in Eq. (2.39)

is reduced to one regarding a system of interacting electrons moving in an ex-

ternal potential, V (r), formed by a frozen-in ionic configuration. For such an

inhomogeneous system of interacting electrons, Hohenberg and Kohn [36] proved

two theorems with regard to the electron density function ρ(r):

Theorem I If the number of electrons in the system is conserved, the external

potential V (r) uniquely determines the ground state density ρ0(r).

Theorem II There exists a universal energy functional of ρ, E[ρ], which is mini-

mized by the ground state density ρ0.
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These two theorems form the basis of density functional theory.

Kohn and Sham [37] carried this theory further and obtained a single-particle

Schrödinger equation,

{
−1

2
∇2 +

∫
ρ(r′)
|r− r′|d

3r′ +
δExc[ρ(r)]

δρ(r)
+ V (r)

}
ψi(r) = εiψi(r), (2.40)

which is usually referred to as the Kohn-Sham equation in the literature. The

Kohn-Sham equation maps a many-electron interacting system onto a single-

electron system within an effective potential formed by the nuclei and other elec-

trons. The first term in the Kohn-Sham Hamiltonian accounts for the kinetic

energy and the following three terms are the Coulomb (or Hartree), the exchange-

correlation (xc) and the external (e.g., the ionic) potentials, respectively. Com-

paring with the many-body Hamiltonian in Eq. (2.39), solving the Kohn-Sham

equation is much easier for a practical system. Nowadays, even a system consist-

ing of several hundred atoms can be handled with density functional theory.

Due to the fact that the potential and the charge density depend on each

other, the Kohn-Sham equation has to be solved self-consistently. Starting from

an assumed density ρ(r), one first calculates the Coulomb and xc potentials, then

solves Eq. (2.40) for the Kohn-Sham orbitals ψi(r). With these orbitals, a new

density can be constructed by

ρ(r) =
∑

i

|ψi(r)|2, (2.41)

where the index i goes over all occupied orbitals. This procedure is repeated

until self-consistency (i.e., consistency between the output and input densities) is

achieved.

2.2.2 Exchange-correlation Functional

The formalism of the Kohn-Sham equation is much simpler than that of other

first-principles methods, such as the Hartree-Fock method where the exchange

effect is treated exactly by a complicated manipulation of the wavefunctions. Un-
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fortunately, for an inhomogeneous electron gas system, the explicit form of the

xc functional Exc[ρ(r)] in the Kohn-Sham equation is unknown and the xc energy

is usually a significant part in the total energy of a system. Various approxima-

tions to the xc functional have to be made. The simplest one is the local density

approximation (LDA) [37], which assumes that, for a system with slowly varying

density, the electron density in a small region near point r can be treated as if it

is homogeneous. Thus, the xc functional can be written as

Exc[ρ(r)] =

∫
εxc(r)ρ(r)d3r, (2.42)

where εxc(r) is the xc energy per electron. Despite neglecting the inhomogeneity

near point r, the LDA gives remarkably good results when calculating the prop-

erties for both isolated (e.g., atoms and molecules) and extended (e.g., solids)

systems.

Another promising approximation is the generalized gradient approximation

(GGA), which has a form like

Exc[ρ] =

∫
f(ρ,∇ρ)d3r. (2.43)

A variety of choices for f(ρ,∇ρ) can be made [38–40]. They usually give an

overall improvement on the energetic properties, such as the adsorption energies

of molecules on surfaces, over the LDA.

2.2.3 Bloch Theorem and Supercell Approximation

Bloch theorem states that, for a system of electrons moving in a periodic

potential, each wavefunction has the form,

ψk(r) = eikruk(r), (2.44)
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where uk(r) has the same periodicity as the potential. In a crystal lattice potential,

it satisfies

uk(r + R) = uk(r), (2.45)

where R is a real space lattice vector.

The wavevector k can always be confined in the first Brillouin zone (1BZ)

in the context of band-structure and total-energy calculations since the electron

energy is periodic in the k-space and each k-point outside the 1BZ can be mapped

onto a k-point inside. The number of k-points in the 1BZ is equal to the number

of unit cells in real space. Since this number is in the magnitude of 1022, the

k-points in the 1BZ are quasi-continuous.

Many systems of interest do not possess periodicity along all three dimensions.

For example, a surface system is only periodic in the plane parallel to the surface;

a carbon-nano-tube has only a 1-dimensional periodicity and an isolated atom or

molecule is completely aperiodic. To study these systems, two approximations are

available. One is to model the system by a cluster of atoms which do not employ

any periodicity. Another is to artificially impose a periodicity on the aperiodic

dimension(s) represented by a so-called supercell.

For a surface system, the supercell approximation is implemented by modeling

the surface by periodically arranged slabs which are separated by vacuum layers. A

vacuum layer, which is typically 10 Å, prevents the interaction and charge transfer

between two slabs. The thickness of the slabs depends on the system under study.

Normally, the smaller the interlayer spacing, the thicker the slabs.

2.2.4 Plane-waves and Pseudopotentials

The Kohn-Sham equation is normally solved in the reciprocal space although

attempts to solve it in real space are also in progress [41]. This means that one

has to employ some kind of basis functions to expand the Kohn-Sham orbitals. In

terms of the basis set used, there are many methods for solving the Kohn-Sham

equation, such as the LAPW, LMTO and LCAO. The most straightforward choice

is to use plane-waves. The plane-wave method has several advantages. Firstly, the
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simple mathematical formalism makes it easy to implement this method in a com-

puter program and complex algorithms, such as the Car-Parrinello approach [42],

can be easily incorporated. Secondly, the basis set itself is independent of the

ion-core positions, which is suitable for surface structures where large relaxations

are normally involved in the calculations. Thirdly, the fast Fourier transform al-

gorithm [29] can significantly facilitate the transformation between reciprocal and

real spaces. Other advantages of the plane-wave method can also be seen in the

following subsections (e.g., in the calculation of the forces).

As can be seen in Eq. (2.45), the Bloch wave has the periodicity of the crystal

lattice. Therefore, the crystal wavefunctions can be readily expanded by plane-

waves having the same periodicity,

ψn,k(r) =
∑
G

ckn,G ei (k+G)·r. (2.46)

Each plane-wave in the expansion corresponds to a reciprocal space lattice vector

G, which satisfies G ·R = 2πm (m is an integer). Since the Kohn-Sham equation

has many eigenvalues at each k-point, an auxiliary index n (i.e., the band index)

has been used to label the wavefunctions. The expansion coefficients ckn,G are the

unknowns that one needs to solve for.

With the plane-wave expansion, at each k-point one has the secular equation




Hk
G1,G1

Hk
G1,G2

· · · Hk
G1,Gmax

Hk
G2,G1

Hk
G2,G2

· · · Hk
G2,Gmax

...
...

. . .
...

Hk
Gmax,G1

Hk
Gmax,G2

· · · Hk
Gmax,Gmax







ckn,G1

ckn,G2

...

ckn,Gmax



= εk

n




ckn,G1

ckn,G2

...

ckn,Gmax




, (2.47)

where the Hamiltonian matrix elements Hk
G,G′ are obtained by the Fourier trans-

forms of the corresponding terms in the Kohn-Sham equation. For example, the

kinetic term can be written as

〈
k + G′

∣∣∣∣−
1

2
∇2

∣∣∣∣k + G

〉
= −1

2
|k + G|2δGG′ , (2.48)
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which is diagonal. The non-diagonal elements are contributed by the sum of the

Hartree, xc and ionic terms.

The size of the Hamiltonian matrix, i.e., the number of plane-waves Npw used

in the expansion, is determined by the cutoff energy 1
2
|k + Gmax|2, which is de-

noted by Ecut. Due to the nature of the fast oscillation of the core-electron wave-

functions, an extremely large Npw is required to expand the core wavefunctions.

Therefore, to apply the plane-wave method, the pseudopotential approximation

is necessary [43]. In this approximation, it is firstly assumed that, when putting

atoms together to form molecules and solids, the core-electron wavefunctions do

not overlap. Thus, the core-electrons can be separated from the electronic sys-

tem to form the ion-core potential together with the nuclei. Even by doing so,

the real valence-electron wavefunctions still oscillate too much to be expanded

by a reasonably sized plane-wave basis set. Hence, the real ion-core potential is

further replaced by a pseudopotential, which possesses at least the following two

properties:

• The valence eigenvalues as obtained from an all-electron calculation can be

reproduced by the pseudopotential.

• The pseudo wavefunctions φn,k(r) (i.e., the eigenfunctions of the pseudopo-

tential) and the real wavefunctions ψn,k(r) match beyond a chosen core ra-

dius rc.

The pseudopotentials are usually generated from isolated atoms or ions, but

can be used in other chemical environments, such as solids. This property is

referred to as the transferability of the pseudopotentials. Generally speaking, the

smaller the core radius rc, the better the transferability of the pseudopotentials,

but the larger the Ecut needed.

For improving the transferability, the norm-conserving condition [44]

∫ rc

0

|φn,k(r)|2d3r =

∫ rc

0

|ψn,k(r)|2d3r (2.49)

should normally be fulfilled. The scattering properties of the real ion-core potential
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should also be preserved. In other words, the logarithmic derivatives, hence the

phase shifts, of the real and pseudo wavefunctions agree beyond rc. Since the

phase shifts produced by the ion-core is different for each angular momentum (l-)

component of the valence wavefunction, the pseudopotentials are intrinsically non-

local, i.e., different pseudopotentials should be used for different l-components.

Formally, a non-local pseudopotential can be written as

Vnloc =
∑

l

Vl(r)P̂l, (2.50)

where P̂l is a projection operator on the l-component. This form means that a

wavefunction is firstly decomposed into l-components, each of which is then acted

by the corresponding Vl(r). A classical assembly of pseudopotentials of this form

is provided by Bachelet et al. for almost all elements in the periodic table [45]. As

pointed out by Kleinman and Bylander [46], these pseudopotentials are still semi-

local (non-local in the angular coordinates only) and can be further transformed

into a fully non-local separable form

VNL =
∑

lm

|δVlφlm〉 〈φlmδVl|
〈φlm| δVl |φlm〉 (2.51)

with δVl = Vl(r)+Varb and Varb an arbitrary function (which needs careful selection

for obtaining a high quality pseudopotential). The K-B type pseudopotentials are

more efficient than the semi-local form since they reduce the number of projections

in Eq. (2.50), which are involved in setting up the Hamiltonian matrix elements,

from O(N2
pw) to O(Npw).

The norm-conserving pseudopotentials (NCPP) enjoyed great success in cal-

culating the solid-state properties. However, applying this approach to systems

containing the first-row and transition metal elements was hindered in the past

because the highly localized valence orbitals in these elements, such as the 2p of

first-row elements and the d-band of transition metals, are difficult to represent by

plane-waves in a NCPP scheme. Fortunately, this difficulty has been overcome by

introducing the so-called ultrasoft pseudopotentials (USPP) [47]. Since this thesis
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focuses on transition metals that have to be handled by the USPP, the formalism

of this approach will be introduced in the next subsection.

2.2.5 Ultrasoft Pseudopotentials

In Vanderbilt’s formalism [47], it is also intended to generate a K-B type pseu-

dopotential with a fully non-local separable form. Instead of basing on the semi-

local pseudopotentials as proposed by Kleinman and Bylander, the construction

of a USPP starts from direct manipulation on the pseudo wavefunctions φi. The

main difference is that the constraint of norm-conserving is removed so that the

pseudo wavefunctions can be constructed as soft as possible. This treatment intro-

duces many complications to the mathematical formalism, hence the programming

efforts, compared with using a NCPP. However, as a compensation, the cutoff en-

ergy Ecut can be significantly reduced.

Since the pseudo and real wavefunctions match beyond rc, while the norm-

conserving condition is not satisfied, the pseudo wavefunctions are no longer nor-

malized and the orthonormality condition has to be replaced by

〈φi|S |φj〉 = δij (2.52)

introducing the overlap operator

S = 1 +
∑

I

∑
n,m

qI
nm

∣∣βI
n

〉 〈
βI

m

∣∣ (2.53)

where

qI
nm =

∫
QI

nm(r)d3r (2.54)

and I is the ion index. As an effect, the pseudo valence charge density cannot be

simply calculated by Eq. (2.41). An extra term

∑
i

∑
I

∑
nm

QI
nm(r)〈φi|βI

n〉〈βI
n|φi〉 (2.55)

accounting for the augmentation charge in the core region has to be added.
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Finally, one is confronted with a generalized eigenvalue problem [48]

H |φn,k〉 = εn,kS |φn,k〉 , (2.56)

where

H = −1

2
∇2 + Veff +

∑
I

∑
nm

DI
nm|βI

n〉〈βI
n|. (2.57)

Here,

Veff(r) = Vloc(r) +

∫
ρ(r′)
|r− r′|d

3r′ +
δExc[ρ(r)]

δρ(r)
(2.58)

is the screened effective potential and

DI
nm = DI,(0)

nm +

∫
Veff(r)QI

nm(r)d3r. (2.59)

The quantities Vloc, Q, D(0) and β in the preceding equations above characterize

a USPP and should be generated when creating it.

The transferability of a USPP can be systematically improved with arbitrary

accuracy by increasing the number of reference energies at which the scattering

properties of the all-electron potential are preserved. Practically, at most two such

reference energies are sufficient to generate an accurate USPP.

Since there is no rigorous rule on how to setup the construction parameters of

a USPP, generating a USPP is still more an art than a routine technique. Caution

should be given to generate a widely-applicable USPP, such as avoiding the so-

called ghost-state (i.e., a state with nodes in the core region and unphysically low

energy). In this thesis, it is not intended to generate the USPP’s involved. Instead,

the USPP’s delivered with the package which have been extensively tested will be

used.

2.2.6 k-point Sampling

Many calculations in periodic structures involve averaging a function of k,

f(k), over the 1BZ. For example, the expression for the valence electron density
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in Eq. (2.41) should be replaced by

ρ(r) =
Ω

(2π)3

∫

1BZ

ρk(r)d
3k (2.60)

with

ρk(r) =
∑

n

|ψn,k(r)|2 (2.61)

for a periodic system. Again, the band index n goes over all occupied bands at a

specific k-point. Ω is the volume of the real space unit cell.

As stated in Section 2.2.3, the k-points in the 1BZ are quasi-continuous. Car-

rying out numerical integration like Eq. (2.60) is practically impossible due to the

unaffordable computational resources required. If there is a mean-value point k0,

which satisfies f = f(k0), the problem will become simple. But, such a point does

not in fact exist [49]. Nevertheless, the integration can always be estimated by

sampling the 1BZ using a set of special k-points. A good property of the k-point

sampling technique is that the calculated physical quantities, such as the total

energy, of a system always converge with the number of k-points increasing.

Various schemes for generating a sampling k-point set have been developed [49,

50]. The most commonly used is due to Monkhorst and Pack [50]. In this scheme,

a grid of (N1 ×N2 ×N3) k-points are defined in the 1BZ by

klmn = ulb1 + umb2 + unb3 (2.62)

with

ul = (2l −N1 − 1)/2N1 (l ∈ [1, N1]);

um = (2m−N2 − 1)/2N2 (m ∈ [1, N2]);

un = (2n−N3 − 1)/2N3 (n ∈ [1, N3]),

(2.63)

where b1, b2 and b3 are the basis vectors of the reciprocal lattice. All these

k-points are equally weighted. However, by applying the point group symmetry

of the unit cell, the number of k-points can be reduced to form an irreducible

k-point set in which each k-point represents a k-star 1 in the original set. Because

1 A set of symmetry-equivalent k-points.
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the number of k-points in each star may be different from that in another, the

k-points in the irreducible set normally have different weights. Finally, one has a

solution for the 1BZ integration like

f =

∫

1BZ

f(k)d3k =

Nk∑
i=1

wif(ki), (2.64)

where the weights satisfy
Nk∑
i=1

wi = 1 (2.65)

and Nk is the number of irreducible k-points.

2.2.7 Metallic System and Smearing Method

At absolute zero point, the band structure energy (a portion of the total-

energy) is defined as

Ω

(2π)3

∑
n

∫

1BZ

εn,kδ(εn,k − EF)d3k, (2.66)

where EF is the Fermi energy and

δ(εn,k − EF) =





1 if εn,k ≤ EF

0 if εn,k ≥ EF

(2.67)

As discussed in the last subsection, this integration has to be carried out by sam-

pling the 1BZ using a set of special k-points. For semiconducting and insulating

systems, there is no discontinuity in the occupancy, i.e., for all occupied bands,

at all k-points the occupancies are exactly 2. However, for metallic systems, the

occupancies jump from 2 to 0 at the Fermi level. That is, for the same band, at

different k-points the occupancies may be different. This causes the convergence

of the integration against the number of sampling k-points to be much slower.

A solution for this difficulty is to replace the step function in the integral

by a smoothly varying function f(
εn,k−EF

σ
). A smearing energy σ is introduced
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here, which is related to the smearing temperature 2 by σ = kBT . With this

replacement, the total energy minimum is no longer located at the electronic

ground state. Instead, a generalized free-energy functional

F (σ) = E(σ)−
∑

n

σS(
εn,k − EF

σ
) (2.68)

replaces the total-energy functional as the variational quantity, where S is a gen-

eralized entropy term due to the elevated temperature.

In the scheme of Methfessel and Paxton [51], the N -th order smearing function

and its corresponding entropy term are expressed as

fN(x) =
1− erf(x)

2
+

N∑
m=1

AmH2m−1(x)e−x2

(2.69)

and

SN(x) =
1

2
ANH2N(x)e−x2

(2.70)

with

x =
εn,k − EF

σ
(2.71)

and H(x) the Hermite polynomials.

With the smearing method, the number of k-points can be significantly reduced

by a carefully selected smearing energy (typically 0.1 – 1.0 eV depending on the

DOS structure near the Fermi level). The total energy at zero temperature can

be obtained by extrapolating to σ = 0 according to the relation

Eσ=0 =
1

N + 2
[(N + 1)F (σ) + E(σ)]. (2.72)

Note that the Gaussian smearing is the zeroth order approximation of Methfessel-

Paxton method. For higher orders, unphysical negative occupancies may occur.

2 Only when the smearing function is the Fermi-Dirac distribution does the “temperature”
have a physical meaning.
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2.2.8 Iterative Methods for Eigenproblems

The eigenproblem in Eq. (2.47) is traditionally solved by direct diagonalization

methods, such as the Choleski-Householder algorithm [29]. In terms of computa-

tional effort, however, these methods have two drawbacks:

• The computation time for direct diagonalization of an (Npw × Npw) ma-

trix scales as N3
pw and is independent of the number of eigenvalues sought

since direct diagonalization methods obtain all Npw eigenvalues at the same

time even though only the lowest Nband eigenvalues are required. (Normally,

Nband ¿ Npw.)

• The direct diagonalization methods need much non-sequential access to both

the Hamiltonian and overlap matrices. This property causes the “cache

thrashing” effect [52] which is one of the main issues in high-performance

computing.

With recent studies concentrating more and more on large systems, these draw-

backs become more severe. The iterative methods, in this context, become more

and more appealing due to the contrary properties they possess:

• The computation time scales as N2
pw with a coefficient equal to the number

of iterations Niter needed for convergence. (Niter ¿ Npw)

• The iterative methods mainly rely on sequential access to the Hamiltonian

and overlap matrices.

• Only the lowest Nband eigenvalues that are required and the corresponding

eigenfunctions are solved for.

Nowadays, all state-of-the-art computer program packages for first-principles cal-

culations employ some kind of iterative method for the eigenvalue problem.

In this thesis, the residual minimization method with direct inversion in the

iterative subspace (RMM-DIIS) [53] is used throughout. For very large systems,

the RMM-DIIS is superior to other iterative algorithms in terms of performance

(see VASP manual). A brief introduction to this algorithm is given below.
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The RMM-DIIS includes three steps: initialization, preconditioning and cor-

rection, where the latter two steps are to be iterated.

Assume a generalized eigenvalue problem

H |ψi〉 = εiS |ψi〉 , (2.73)

where H is the Hamiltonian matrix and S is the overlap matrix which describes

the non-orthogonality of the eigenvectors. Only the lowest Nband eigenvalues

and the corresponding eigenvectors are sought. The RMM-DIIS starts with a

(Nband ×Nband) Hamiltonian H0 which is constructed from H in some way, e.g.,

Loẅdin’s method [54]. Since the eigenvectors of H0 will be used as the initial trial

vectors for finding the corresponding real eigenvectors of H, H0 should be chosen

so that the level structure (the ordering and degeneracy of eigenvalues) of the

lowest Nband eigenvalues of H is preserved. Since Nband ¿ Npw, the eigenvectors

of H0, {|ai〉 , i = 1, . . . , Nband}, can be obtained by direct diagonalization. Then,

a set of trial vectors {
∣∣∣ψ̃(0)

i

〉
, i = 1, . . . , Npw} are constructed by:

•
∣∣∣ψ̃(0)

i

〉
= |ai〉 (with augmented zeros), for i = 1, . . . , Nband;

•
∣∣∣ψ̃(0)

i

〉
= |ei〉, for i = Nband + 1, . . . , Npw.

|ei〉 is a unit vector with only a one at the i-th position and zeros at all others.

This vector set is referred to as a complete set. After this initialization step, the

trial vectors in the complete set will be refined one by one (band-by-band) to

the real eigenvectors. For each trial vector, a vector set called expansion set, is

constructed, which will be used in the correction step. At first, it has only one

vector,
∣∣∣ψ̃(0)

i

〉
. It evolves as the iteration progresses.

For the i-th trial vector and the m-th iteration, the preconditioning step starts

with calculating the Rayleigh quotient

ε̃
(m)
i =

〈
ψ̃

(m)
i

∣∣∣H
∣∣∣ψ̃(m)

i

〉
〈
ψ̃

(m)
i

∣∣∣S
∣∣∣ψ̃(m)

i

〉 , (2.74)
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which is an estimation to the i-th correct eigenvalue εi. Then, a quantity of central

importance in all iterative methods, the residual vector, is evaluated by

|R〉 =
H− ε̃

(m)
i S〈

ψ̃
(m)
i

∣∣∣S
∣∣∣ψ̃(m)

i

〉
∣∣∣ψ̃(m)

i

〉
. (2.75)

The norm of residual vector R2 = 〈R| R〉 (or the residual) is an accepted measure

for the error in the current trial vector. Next, a correction vector
∣∣∣δψ(m)

i

〉
is

generated by preconditioning the residual vector with a matrix K

∣∣∣δψ(m)
i

〉
= K |R〉 , (2.76)

where the preconditioning matrix K is given by

K = −
Npw∑
i=1

∣∣∣ψ̃(m)
i

〉〈
ψ̃

(m)
i

∣∣∣
∣∣∣ψ̃(m)

i

〉
(H− ε̃

(m)
i S)

〈
ψ̃

(m)
i

∣∣∣
. (2.77)

Once generated, the m-th correction vector will be appended to the expansion

set. Note that, to this point, the expansion set has evolved to one including m+1

vectors, {
∣∣∣δψ(0)

i

〉
,
∣∣∣δψ(1)

i

〉
, . . . ,

∣∣∣δψ(m)
i

〉
}, where

∣∣∣δψ(0)
i

〉
=

∣∣∣ψ̃(0)
i

〉
. The expansion

vector set spans the iterative subspace.

Now, one enters the correction step. A new trial vector will be constructed by

a linear combination of the vectors in the expansion set

∣∣∣ψ̃(m+1)
i

〉
=

m∑
j=0

αj

∣∣∣δψ(j)
i

〉
(2.78)

with the expansion coefficients {αj} obtained by solving the eigenproblem

P |α〉 = R2Q |α〉 (2.79)
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for the eigenvector with the lowest eigenvalue, where the (m+1)×(m+1) matrices

P and Q are given by

Prs =
〈
(H− ε̃

(m)
i S)δψ

(r)
i |(H− ε̃

(m)
i S)δψ

(s)
i

〉
(2.80)

and

Qrs =
〈
δψ

(r)
i

∣∣∣S
∣∣∣δψ(s)

i

〉
, (2.81)

respectively. This small eigenproblem can be solved by direct diagonalization. In

other words, the choice of the expansion coefficients tries to minimize the residual

R2, hence the name RMM. Also, finding these expansion coefficients involves direct

inversion in the iterative subspace, hence the name DIIS.

The preconditioning and correction steps are iterated until the residual R2 is

smaller than a preset tolerance. Different iterative methods and their variances are

characterized by the choice on the complete set and the evolution scheme for the

expansion set. Also, the preconditioning matrix in Eq. (2.77) and the correction

expansion in Eq. (2.78) are not unique.

2.2.9 Density Mixing and Self-consistency Loop

As mentioned in Section 2.2.1, the Kohn-Sham equation has to be solved self-

consistently. Starting from random charge density (or the superposition of atomic

charge densities), one may directly use the output density from the current it-

eration as the input of the next iteration. However, an efficient mixing of the

output density with some of the previous input densities can improve the stability

of iteration and accelerate the convergence to self-consistency.

Various mixing schemes have been developed. The scheme proposed by Pulay

and improved by Kresse and Furthmüller using Kerker’s preconditioning matrix

is demonstrated to be the most efficient [55–57]. Given an initial charge density,

this scheme generates a new input charge density after the m-th iteration by

ρ
(m+1)
in = ρopt

in + KR[ρopt
in ] (2.82)
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with

ρopt
in = ρ

(m)
in +

m−1∑
i=1

αi∆ρ(i), (2.83)

where

R[ρin] = ρout[ρin]− ρin, (2.84)

which is the residual charge density with respect to the input density ρin, and

∆ρ(i) = ρ
(i+1)
in − ρ

(i)
in . (2.85)

The preconditioning matrix K is given by Kerker’s scheme,

K(G) =
A|G|2

|G|2 + λ2
(2.86)

in which K is diagonal. A and λ are adjustable parameters. A = 0.8 and λ =

1.0 Å−1 are usually suitable for most systems. The coefficient αi is optimized by

αi = −
m−1∑
j=1

〈
∆R(j)

∣∣∣ R[ρ
(m)
in ]

〉
〈
∆R(i)

∣∣∣ ∆R(j)
〉 (2.87)

with

∆R(i) = R[ρ
(i+1)
in ]−R[ρ

(i)
in ]. (2.88)

The density mixing scheme described above will be used throughout the thesis.

2.2.10 H-F Forces and Relaxation of Ionic System

The equilibrium configuration of an ionic system is characterized by the mini-

mum total-energy. Since the force on the I-th ion is defined by

fI = − ∂E

∂RI

, (2.89)

the equilibrium configuration is also a zero force configuration. In most ionic re-

laxation calculation, moving the ions in a non-equilibrium configuration is directed

by the forces calculated on them. However, numerical evaluation of forces by di-
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rectly using the definition above involves the calculations of the total-energies of

not only the configuration under consideration, but also its neighbors. All these

calculations have to be done self-consistently, which is very inefficient from the

point of view of computational time. Fortunately, Hellmann and Feynman [58]

proved a theorem with which the problem can be greatly simplified.

Formally, the total energy of a system is given by

E = 〈ψ|H |ψ〉 . (2.90)

For the sake of simplicity, the orbital index has been dropped here. Thus, the

force can be written as

fI = − ∂E

∂RI

= −〈 ∂ψ

∂RI

|H|ψ〉 − 〈ψ| ∂H

∂RI

|ψ〉 − 〈ψ|H| ∂ψ

∂RI

〉. (2.91)

Hellmann and Feynman proved that the first and third terms in the right-hand

side of the equation above cancel each other when ψ is the eigenstate of H. Hence,

an ionic relaxation is usually conducted according to the Hellmann-Feynman (H-

F) forces, i.e., the second term in Eq. (2.91), after the electronic iteration has

converged. The H-F forces can be calculated without consideration of neighboring

ionic configurations and the computational time can be greatly saved.

A problem associated with the H-F force is that, if the basis set is not complete,

the first and third term in Eq. (2.91) do not cancel each other exactly and an extra

term called Pulay force [59] has to be added to the H-F force. Fortunately, it has

been shown that the Pulay force vanishes if the derivatives of all basis functions

can also be expanded by the basis set [60]. This is true for a plane-wave basis set.

However, even though the Pulay forces are zero when using a plane-wave basis set,

the Pulay stresses on the unit cell may be nonzero. Therefore, the relaxation of the

unit cell parameters has to be done with caution. Fortunately, this is usually not

necessary in a surface relaxation calculation because the thickness of the vacuum

region can be varied to some extent without loss of accuracy.

If the Vanderbilt-type ultrasoft pseudopotentials are employed, the formalism
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for calculating the forces will be considerably complicated. Two principal reasons

account for this. One is the introduction of the overlap operator S in Eq. (2.53),

which does not appear in the case of norm-conserving pseudopotentials. Another

is that the charge density in Vanderbilt’s scheme explicitly depends on the ion po-

sitions through Q and β as shown in Eq. (2.55). Nevertheless, efficient formalisms

for calculating the H-F forces have been developed [48].
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Multilayer Relaxation of Cu(210)
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3.1 Introduction

High-index transition metal surfaces are of practical interest in areas such as

catalytic chemistry. They have received attention since the early days of surface

science [61,62]. However, detailed structure analyses on high-index surfaces started

rather late in contrast to those on low-index surfaces. The main reason for this

is that the principal technique for surface crystallography, quantitative LEED

analysis, encounters methodological difficulty when treating the closely spaced

atomic layers in most high-index surfaces.

For a quantitative LEED analysis, the most efficient and extensively used k-

space method for calculating the I-V curves is the renormalized forward scattering

(RFS) method [63]. However, the RFS method does not converge well for inter-

layer spacings less than about 1 Å [64]. Currently, the most practical solution for

circumventing this difficulty is either to group several atomic layers throughout

the surface into medium-sized slabs [65] or to simulate the whole surface region by

a thick slab [19]. A common point in both solutions is that l-space methods are

involved in the multiple scattering calculations within the slabs. The main diffi-

culty of using l-space methods, e.g., the Beeby-type matrix-inversion method [66]

as re-formalized in Section 2.1.7, is the prohibitively long computing time which

scales as the cube of the number of layers in the slabs. This scaling property makes

l-space methods quite cumbersome for thick slabs. In this sense, another k-space

method, the layer-doubling method (cf. Section 2.1.8), may help. The layer-

doubling method delays the divergence against the interlayer spacing due to the

exact treatment of the multiple scatterings between two layers as opposed to the

perturbative treatment in the RFS method. Interest in the layer-doubling method

has been recently renewed. The tensor-LEED scheme has been implemented in

this method by Materer [34]. However, few high-index surfaces have been success-

fully studied by the layer-doubling method. In this chapter, the Cu(210) surface

is investigated using the layer-doubling method. This surface has an interlayer

spacing of 0.808 Å which is the smallest studied by the layer-doubling method.

This chapter also aims to investigate the accuracy of first-principles calcu-
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lations on predicting structures of high-index metal surfaces. Clean high-index

metal surfaces are suitable benchmarks for checking the current theoretical frame-

work since reliable experimental data on these surfaces are available. The results

of multilayer relaxations on several high-index Cu surfaces from both quantita-

tive LEED analysis and first-principles calculations have been reported. They

include Cu(311) [67, 68], Cu(331) [69, 70], Cu(211) [70–72], Cu(511) [68, 73] and

Cu(711) [19,68] surfaces. In terms of the interlayer spacing, Cu(210) lies between

Cu(331) and Cu(211). The first-principles result on this surface, however, is still

absent. In this chapter, a pseudopotential DFT study on Cu(210) is conducted to

see if consistent results with quantitative LEED analysis can be obtained.

3.2 Cu(210) Surface

The Cu(210) surface is obtained by cutting a copper crystal at 26.6◦ away

from the (100) plane in the [001] azimuth. The top and side views of this surface

are shown in Fig. 3.1. From the top view it can be seen that there is only one
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Fig. 3.1: Top view of Cu(210) surface and side view at the mirror plane.

symmetry operation present on this surface, i.e., the mirror plane. Four layers are

“visible” from the top view, which demonstrates the openness of this surface. The

registry repeats at every eleventh layer as seen from the side view. The interlayer
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registries (rij) and the interlayer spacings (dij) of the topmost three layers are

illustrated in the top and side views, respectively. The interlayer registry and

spacing in the bulk-truncated configuration, denoted by r0 and d0, are equal to

1√
5
a0 and 1

2
√

5
a0, respectively. Two equivalent surface unit cells are shown in the

top view. The left one is used in the slab DFT calculations, the right one in the

quantitative LEED analysis.

The coordination number of the atoms in the first layer is only 6. Those in

the second and the third layers are 9 and 11 coordinated, respectively. From the

fourth layer downwards, the coordination number recovers to the bulk value, i.e.,

12. This surface is characterized by steps along the [001] direction and very narrow

terraces in-between. The atoms on each step line do not contact each other and

are separated by a0 in terms of the hardball model. The inter-step distance is
√

5
2

a0.

3.3 Layer-doubling LEED Analysis

3.3.1 Experimental I-V Dataset

The multilayer relaxations on Cu(210) have been investigated by two previous

quantitative LEED studies [74, 75]. The experimental I-V dataset used in this

study is provided by Dr. Ismail [75]. The dataset was collected at 130 K with a

normal incidence of the primary electrons. The combined-space method [76] was

used in the study by Ismail et al. for the multiple scattering calculation. In this

study the tensor-LEED approximation was not employed. Therefore, to facilitate

the analysis, the previous dataset has been cut into a shorter energy range, i.e.,

from 60 eV to 350 eV . Finally, nine beams spanning a ∆E=2000 eV energy range

were used. Since only six structural parameters were optimized in this work, this

dataset is believed to be sufficient. The beam labels are given in Fig. 3.2. They

are consistent with the basis vectors (the right unit cell) shown in Fig. 3.1.
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Fig. 3.2: Schematic LEED pattern for Cu(210).

3.3.2 Computer Program

The program used in this thesis for layer-doubling LEED analysis was written

in Fortran 90 language adopting the dynamic allocation of memory space, which

is important for implementing the energy-dependent features introduced later.

This program implements the formalism of the layer-doubling method given in

Section 2.1.8 with the scattering matrices of individual layer calculated by the

matrix inversion scheme described in Section 2.1.7. In view of the fact that the

calculations of phase shifts take negligible computer cycles compared with the

full-dynamical LEED intensity calculations, the phase shift generation code is

integrated into this program. Thus, no interpolation of the tabulated phase shifts

is needed.

The Gaunt coefficients used in Section 2.1.7 are slightly different from those

in the existing LEED codes [15,16]. A subroutine GAUNT is developed to gener-
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ate these coefficients. Also, the traditional 1-dimensional storage scheme has been

replaced by a new scheme employing a 3-dimensional array with its first index cor-

responding to the pair (l′′m′′) in Eq. (2.27) and another two indices corresponding

to the pairs (lm) and (l′m′), respectively. This scheme makes it easier to do the in-

dexing. In addition, by using the formulas in Eqs. (2.27) and (2.28), GAUNT can

work well for lmax = 13 even without using double-precision computer arithmetic.

To improve the performance of the program, several schemes have been em-

ployed:

• Firstly, the number of propagating beams Nb is made energy-dependent. At

each energy point, the required Nb for representing the wavefield between

two layers is estimated by Eq. (2.32). By using the energy-dependent Nb,

the computing time for a full-dynamical calculation can be reduced by a

factor of about 2. This scheme also results in a uniform error introduced

by the beam cutoff throughout the whole energy range. For implementing

this scheme, the beams required at the highest energy are sorted and stored

according to their kinetic energies 1
2
|k‖+g|2. At each energy point, only the

first Nb beams are used.

• Secondly, the basic linear algebra subroutines (BLAS) are called to do the

multiplications and inversions of the matrices involved in the layer-doubling

formalism. On most modern computer architectures, there are implemen-

tations of BLAS, e.g., Intel’s Math Kernel Library (MKL), HP’s Compaq

Extended Math Library (CXML), SGI’s Scientific Computing Software Li-

brary (SCSL) and IBM’s Essential Scientific Software Library (ESSL). Since

each implementation of BLAS is specially optimized for a specific architec-

ture (mainly for the cache structure) by the hardware provider, calling BLAS

subroutines to execute the same function is much faster than self-developed

subroutines, especially for large scale matrices.

• Thirdly, the number of ion-core scattering phase shifts Nl is also made

energy-dependent. Two choices are available for determining Nl. One is
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to use the classical formula lmax = κRmt [15]. Another is to define a small

value ε and include only the phase shifts with their absolute values larger

than ε. Numerical results show that [77] the two approaches actually give

very similar results for ε=0.001.

• Lastly, it is intended to make the number of lattice points involved in the

summation of Eq. (2.25) as small as possible. This summation decides the

computing time for setting up the l-space propagator. As the property of

the spherical Hankel function guarantees the convergence of the summation,

only a finite number of lattice points need to be included. The cutoff crite-

rion rmax = 5.0
√

2E/|V0i| introduced in Van Hove/Tong’s program [16] was

adopted in this program so that all propagations between two atoms with

distances larger than rmax are neglected.

It should be noted that the major performance gain is due to the first two schemes,

while the last two become critical only when thick composite layers are involved,

which can be avoided in this thesis.

3.3.3 Details of Analysis

As stated in Section 2.1.4, the inner potential of Cu was taken to be energy-

independent. V0i was fixed at −4.5 eV, while V0r was optimized during the course

of the best-fit structure search.

The beam cutoff criterion t in Eq. (2.32) was set at 0.002, which corresponds

to about 90 propagating beams at the low energy end (60 eV) and about 180 at

the high energy end (350 eV).

Only phase shifts with absolute values larger than 0.001 were included. This

corresponds to 7 phase shifts at the low energy end and 13 at the high energy end.

The muffin-tin potential for Cu tabulated by Morruzi, Janak and Williams [78]

was used to generate the phase shifts. The first seven phase shifts calculated from

this potential are illustrated in Fig. 3.3.

The temperature effect was taken into account by considering the isotropic

thermal vibrations of the ion-cores, which were incorporated in the temperature-
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Fig. 3.3: Phase shifts for Cu up to lmax=6.

dependent phase shifts. A Debye temperature of 343 K for Cu was used in this

study, which corresponds to a vibration amplitude (µbulk) of 0.086 Å for the bulk

atoms at 130 K, the temperature at which the experimental data was collected.

The vibration amplitudes of the atoms in the topmost three layers (µ1, µ2 and µ3)

were enhanced by factors that were optimized in the best-fit search.

The Pendry R-factor (RP) [27] was adopted in this study to ascertain the

agreement between the experimental and the theoretical I-V curves. Both the

interlayer spacings (dij) and the interlayer registries (rij) of the topmost three

layers as shown in Fig. 3.1 were optimized. The minimum RP was located by a

conventional grid search with a spacing of 0.01 Å.

3.3.4 Results and Discussion

The parameters which give the best-fit to the experimental I-V curves are

listed in Table 3.1. Also listed are the corresponding parameters from Ref. [75].

∆dij and ∆rij are the relaxations of dij and rij, respectively. They are defined as

∆dij = (dij − d0)/d0 and ∆rij = (rij − r0)/r0. d0 and r0 are the corresponding

bulk values of dij and rij. It can be seen that the current full-dynamical LEED
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Tab. 3.1: Optimized structural and non-structural parameters which give the best-fit
to the experimental I-V curves.

This work Ref. [75]
∆d12 (%) −11.1 ± 1.9 −11.1 ± 2.0
∆d23 (%) −5.0 ± 1.6 −5.7 ± 2.3
∆d34 (%) +3.7 ± 1.7 +3.8 ± 2.5
d0 (Å) 0.808 0.808

∆r12 (%) −1.9 ± 2.9 −1.8 ± 3.0
∆r23 (%) −1.9 ± 2.5 −2.5 ± 3.2
∆r34 (%) +0.6 ± 2.6 +1.7 ± 3.5
r0 (Å) 1.616 1.616

µ1 (Å) 0.138 0.134
µ2 (Å) 0.112 0.096
µ3 (Å) 0.103 -
µbulk (Å) 0.086 0.086

V0r (eV) −6.0 −5.99
V0i (eV) −4.5 −4.0

RP 0.12 0.15
var(RP) 0.016 0.017

analysis using the layer-doubling method and the previous tensor-LEED analysis

using the combined-space method give basically identical results.

The best-fit calculated I-V curves are compared with the experimental ones in

Fig. 3.4. The beam-averaged RP between the two sets of curves is 0.12 and the vari-

ance of RP, var(RP), is 0.016 as evaluated by Pendry’s formula, Equation (2.36).

This result is comparable to the best achieved on high-index surfaces, i.e., on the

Cu(711) surface where RP = 0.12 and var(RP) = 0.013 were reported [19].

The error bars for the structural parameters in Table 3.1 are also evaluated by

Pendry’s approach [27]. A plot of RP versus the deviations of the six structural

parameters from their best-fit values is given in Fig. 3.5. The dashed line indicates

the level of min(RP)+var(RP). The two intersections of a parabola with the dashed

line are the upper and lower limits of the corresponding structural parameter.

From this figure, it can be seen that quantitative LEED analysis is more sensitive

to the change in vertical relaxations (∆d’s) than lateral relaxations (∆r’s). The
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Fig. 3.4: Comparison of experimental (solid line) and best-fit theoretical (dashed line)
I-V curves for Cu(210) surface. The experimental curves were measured at
130 K.

error bars for ∆d’s are all within 0.01 – 0.02 Å, while larger than 0.04 Å for all

∆r’s. This is mainly due to the fact that most quantitative LEED studies adopt

the normal incidence geometry.

A direct inspection of Fig. 3.4 also confirms the excellent agreement between

the two sets of I-V curves. All detailed features exhibited in the experimental

curves have been reproduced by the calculations except for several regions where

a small peak becomes a shoulder or vice versa. This agreement was not achieved

in the previous studies [74,75].

Dynamical (multiple scattering) features, such as weak peaks and shoulders,

in I-V curves are crucial for quantitative LEED analysis. In the current study the

accurate reproduction of both the kinematic (single scattering) and the dynamical

features in the experimental I-V curves implies that the layer-doubling method

works well for high-index metal surfaces with the interlayer spacings down to at

least 0.8 Å, in particular, for materials in which the multiple scattering is not very
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Fig. 3.5: Plot of RP versus the deviations of the structural parameters from their best-fit
values.

strong.

When conducting structural studies on chemisorption systems, sufficient mod-

els have to be considered. Quantitative LEED analysis on these systems using the

l-space methods is usually tedious even with the tensor-LEED scheme [79]. This

work should pave the way for future studies on various chemisorption systems on

Cu(210) surface and other similar surfaces, such as Ni(210).

3.4 First-principles Calculations

3.4.1 Computer Program

Self-consistent periodic slab calculations within the framework of DFT were

conducted by the Vienna ab initio simulation package (VASP) [56, 80, 81] to find

the equilibrium ionic configuration of the Cu(210) surface. VASP is one of the

most popular DFT packages employing the pseudopotential plane-wave method.

Many research groups over the world are using this package to perform first-

principles studies of many kinds of materials properties. The reliability of the
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results produced by this package has been confirmed by numerous publications in

the literature.

For carrying out a surface relaxation study, VASP iteratively solves the Kohn-

Sham equation for the electronic ground state of an initial ionic configuration setup

by the user. After this calculation the ions are moved according to Hellmann-

Feynman forces to predict a new trial ionic configuration. This process is re-

peated until the forces become less than a prescribed criterion. In VASP, the in-

teractions between the ion-cores and valence electrons can be described by either

the Vanderbilt-type ultrasoft pseudopotential (USPP) or the projector augmented

wave (PAW) method [82]. A variety of approximations to the xc functional are

available in this package.

3.4.2 Details of Calculations

The USPP’s provided in the VASP package [83] were used in this study. The

generalized gradient approximation (GGA) of Perdew-Wang [38] was used for the

exchange-correlation (xc) functional. To investigate the effects of different ion-core

representations and different xc approximations on the prediction of multilayer

relaxations by first-principles calculations, the PAW method was compared with

the USPP and the local density approximation (LDA) of Perdew-Zunger [84] was

compared with the GGA.

The lattice constant (a0) of fcc Cu was firstly obtained by performing bulk

calculations. Three combinations of the pseudopotentials and the xc function-

als, namely USPP-GGA, PAW-GGA and USPP-LDA, were used. The obtained

a0 is 3.64 Å for USPP-GGA, 3.64 Å for PAW-GGA and 3.53 Å for USPP-LDA.

(Experimental a0 = 3.61 Å.) These values were used in the following slab cal-

culations accordingly. A plot of total energy versus lattice constant (the case of

USPP-GGA) is given in Fig. 3.6.

In the bulk calculations, a grid of (8×8×8) k-points used for the Brillouin zone

integration was generated according to the scheme of Monkhorst and Pack [50].

This grid corresponds to 60 irreducible k-points in the reduced BZ. Only the plane-
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waves with kinetic energies below 340 eV were included in the basis set. From
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Fig. 3.7: Convergence testing for the number of k-points and the cutoff energy for Cu.

Fig. 3.7, it can be seen that both the number of grids and the cutoff energy could

converge the total energy per bulk Cu atom to about 1 meV, which is sufficiently

accurate for almost all kinds of first-principles calculations.

The supercell (slab) approximation was employed in this study to model the

Cu(210) surface, where each slab consists of 21 atomic layers and a 10 Å thick

vacuum layer was used to separate adjacent slabs. For testing purposes, 19-layer

slabs were also used.

For the slab calculations, a (8×8×1) grid, which corresponds to 20 irreducible

k-points, was used. The surface unit cell used in the slab calculations is rhombic
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as illustrated in Fig. 3.1 (the left one). The cutoff energy is the same as in the

bulk calculations. The relaxations were stopped when the forces became less than

10 meV/Å.

The smearing method of Methfessel and Paxton [51] was used in this study to

reduce the number of k-points for total energy convergence. A smearing width (σ)

of 0.5 eV was used for Cu. As obtained from the calculation on the relaxed

structure, the entropy term per Cu atom is less than 1 meV by using this σ. The

zero temperature total energies were obtained by extrapolating to σ = 0 eV.

3.4.3 Results and Discussion

Tab. 3.2: Multilayer relaxations of Cu(210) surface from pseudopotential DFT calcula-
tions using different setups.

USPP USPP PAW USPP
GGA GGA GGA LDA

21-layer 19-layer 21-layer 21-layer

a0 (Å) 3.64 3.64 3.64 3.53

∆d12 (%) −16.4 −16.5 −17.1 −17.0
∆d23 (%) −4.5 −6.2 −4.8 −4.2
∆d34 (%) +7.2 +7.4 +7.0 +6.6
∆d45 (%) −0.6 −0.5 −1.2 −1.3
∆d56 (%) −0.9 −1.3 −0.9 −0.8
∆d67 (%) +1.4 +0.7 +0.8 +0.9

∆r12 (%) −1.1 −1.2 −1.0 −0.9
∆r23 (%) −1.0 −1.2 −0.8 −1.0
∆r34 (%) +2.0 +2.4 +2.4 +2.0
∆r45 (%) −1.0 −0.5 −0.8 −0.9
∆r56 (%) −1.2 −1.0 −1.2 −1.3
∆r67 (%) −0.3 −0.1 −0.4 −0.4

The multilayer relaxations of the Cu(210) surface by pseudopotential DFT

calculations using four different setups are listed in Table 3.2. For the USPP-

GGA calculation with a 21-layer slab, it can be seen that only the topmost three

layers relax significantly and the relaxation sequence is consistent with the LEED

analyses, i.e., − − + · · · , where “−” denotes a contraction, “+” an expansion and

“· · · ” means that the sequence followed is not definite due to the small relaxations.
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However, quantitative differences from the relaxations in Table 3.1 are observed.

Comparing the second and third columns in Table 3.2, it can be seen that the

largest difference between the results calculated from a 19-layer slab and a 21-layer

slab is 1.7% for ∆d’s and 0.5% for ∆r’s. This implies that the error introduced by

a finite thickness slab is about 0.015 Å. In view of other approximations employed

in the calculations, such as the non-zero residual forces, the k-point sampling

and the plane-wave cutoff, it is estimated that the total errors in the final ionic

positions are about 0.02 Å.

As can be seen from Table 3.1, LEED is less sensitive to ∆r as compared to

∆d. The error bars for the ∆r’s are always larger than 0.04 Å. In view of this, the

discrepancies in ∆r’s are acceptable, while only discrepancies in ∆d smaller than

0.04 Å are acceptable excluding the temperature effect discussed later. Judged by

this criterion, only the discrepancy in ∆d12 (about 0.043 Å) is slightly large.

The result using the PAW method is listed in the fourth column of Table 3.2.

It can be seen that the PAW does not improve the discrepancy. Table 3.2 also

shows that the LDA gives similar relative results to the GGA even though the

difference between the bulk lattice constants is larger than 0.1 Å.

Another possible reason that may account for the discrepancies is the temperature-

dependency of relaxations, which is recently attracting more attention. Both ther-

mal expansion and contraction of relaxations have been observed on open metal

surfaces [85–87]. However, due to the limited number of temperature-dependent

studies on multilayer relaxations of high-index surfaces, the picture of the depen-

dency is not clear yet. Nevertheless, due to the low temperature (130 K) at which

the LEED dataset for Cu(210) is collected, the temperature effect should not be

very significant.

3.5 Conclusion

The multilayer relaxation of the Cu(210) surface has been studied by layer-

doubling LEED analysis and pseudopotential DFT calculations. The best-fit

structure obtained from the current layer-doubling LEED analysis is identical
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to that obtained from a previous study using combined space method. The cal-

culated I-V curves from the best-fit structure show excellent agreement with the

experimental ones as judged by both visual inspection and a small RP (0.12).

These results imply that the layer-doubling method is a suitable choice for quanti-

tative LEED analyses on high-index metal surfaces with interlayer spacings down

to 0.8 Å. Based on this reliable LEED result, the accuracy of the DFT calculations

on prediction of the structure of Cu(210) is investigated. The correct relaxation

sequence of this surface, i.e., − − + · · · , has been obtained by the pseudopo-

tential DFT calculations. The largest quantitative discrepancy in the structural

parameters is about 0.04 Å.
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4.1 Introduction

Determination of surface crystallographic structures is a fundamental topic in

surface science. Without the structural information, studies on electronic, ener-

getic, magnetic and vibrational properties of surfaces, such as density of states,

work function, spin magnetic moment, and surface phonons, can only be quali-

tative. Quantitative LEED analysis is the principal experimental technique for

surface crystallography, while parameter-free first-principles calculations based on

DFT are the most definitive theoretical method for predicting surface structures.

Obtaining mutually consistent results has become a common goal for researchers

working in both LEED and DFT. This consistency has been achieved on many

clean metal surfaces, including low-index and high-index surfaces. However, in-

consistencies still exist, an example being the Fe(310) surface.

In one of the pioneering studies on detailed structure determination of high-

index metal surfaces, Sokolov, Jona and Marcus (SJM) studied the Fe(310) surface

by quantitative LEED analysis [88]. They obtained the structure of Fe(310) as: the

relaxation of the first interlayer spacing (∆d12) is −16.1±3.3%, the second (∆d23)

+12.6±3.3% and the third (∆d34) −4.0±4.4%; the relaxation of the first interlayer

registry (∆r12) is +7.2±2.8% and the second (∆r23) +1.6±2.8%, where the − sign

denotes a contraction and + an expansion. The interlayer spacing (d) and the

interlayer registry (r) of Fe(310) are illustrated in Fig. 4.1. In a recent article,

Geng, Kim and Freeman (GKF) studied the structure and magnetism of Fe(310)

by full-potential linearized augmented plane-wave (FLAPW) method [89]. In this

study, the authors obtained a ∆d12 of about −14.4%, while all other structural

parameters (d23, d34, r12 and r23) have very small relaxations (less than 2%). It

can be seen that significant discrepancies, beyond the accuracy of both LEED

analysis and DFT calculations, exist for ∆r12 and ∆d23.

The cause of the discrepancy may be two-fold. With regard to the LEED

analysis, GKF postulated three possible reasons [89]. The first is the limited size

of the I-V dataset. The second is the insufficient number of structural parameters

that were allowed to relax. The third is the non-consideration of the temperature-
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dependent surface vibrational effect. As for the FLAPW study, the results are

also unexpected. GKF deduced significant relaxation only for the first interlayer

spacing, which is unusual for such an open surface as Fe(310) (see Fig. 4.1) since

multilayer relaxation on high-index surfaces is usually more significant than on

low-index surfaces.

In this chapter, a refined quantitative LEED analysis and a pseudopotential

DFT study are conducted on Fe(310). The aim of this study is to investigate

if the pseudopotential plane-wave method can produce consistent results with

LEED analysis since this has been achieved on other high-index metal surfaces

[71,72,90–93].

4.2 Fe(310) Surface

The Fe(310) surface is obtained by cutting the crystal at 18.4◦ away from the

(100) plane in the [001] azimuth. The top and side views of this surface are shown

in Fig. 4.1. The depth of layers from the surface are indicated by the gray scale.
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Fig. 4.1: Top view of Fe(310) surface and side view at the mirror plane.

Four layers are shown in the top view. The gaps between the “atoms” (circles)

reflect the openness of this surface, and deeper layers are “visible” through these

gaps from the top view. The registry repeats at every 11th layer as seen from the

side view. The dashed circles represent another layer of atoms that can be seen

from the side view.
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The interlayer registry (r) and the interlayer spacing (d) are illustrated in the

side view. r0 and d0 equal to 2√
10

a0 and 1√
10

a0, respectively. The (310) surface

is the fourth closest-packed surface of bcc structure and has a d0 smaller than

(110), (100) and (211) surfaces. The coordination number of the atoms in the

first layer is only 4. Those in the second layer are 6-fold coordinated. From the

third layer downwards, the coordination number recovers to the bulk value, i.e., 8.

Like Cu(210) surface, Fe(310) is also characterized by steps along [001] direction

and atomic terraces in-between. These steps are more widely separated compared

with Cu(210). The inter-step distance is
√

10
2

a0.

4.3 Quantitative LEED Analysis

4.3.1 Details of Analysis

The experimental I-V dataset used in this study is from the previous LEED

study by SJM [88]. 9 beams from the normal incidence case, which span a ∆E =

1200 eV, were used. In Fig. 4.2, a schematic LEED pattern from Fe(310) is

illustrated.
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Fig. 4.2: Schematic LEED pattern for Fe(310).
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The layer-doubling method was adopted to carry out the multiple scattering

analysis. This method has demonstrated convergence on Fe(111) which has a

smaller interlayer spacing [34]. The number of propagating beams (Nb) and the

number of ion-core scattering phase shifts (Nl) were made energy-dependent in this

analysis. At the low energy end (20 eV), Nb is about 55 and Nl is 5; at the high

energy end (200 eV), Nb is about 105 and Nl is 11. The muffin-tin potential for Fe

used to generate the phase shifts was also from Morruzi, Janak and Williams [78].

In Fig. 4.3 the first seven phase shifts calculated from this potential are shown.

The inner potential was taken to be energy-independent. The imaginary part (V0i)
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Fig. 4.3: Phase shifts for Fe up to lmax=6.

was fixed at −4.0 eV, while the real part (V0r) was optimized during the course of

the best-fit structure search.

The temperature effect was taken into account by considering the isotropic

thermal vibrations of the ion-cores, which were incorporated in the temperature-

dependent phase shifts. A Debye temperature of 467 K for Fe was used in this

study, which corresponds to a vibration amplitude of 0.102 Å for the bulk atoms

at room temperature (the temperature at which the I-V data was collected). The

positions and vibration amplitudes of the ion-cores down to the fourth layer were
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optimized in this analysis. Three more structural parameters (i.e., r34, r45 and d45)

and four more non-structural parameters (i.e., the vibration enhancement factors

for the topmost four layers) than the previous LEED analysis [88] were allowed to

relax.

Another important factor that may affect the best-fit structure is the R-factor

used to ascertain the agreement between the measured and calculated I-V curves.

The inconsistency between the results obtained from using different R-factors may

indicate a far deviation from the global minimum in the parameter space. In this

study, the Pendry R-factor (RP) [27] was adopted to see if consistent results can

be achieved by using a different R-factor. RP is different from the Zanazzi-Jona R-

factor, which was used by SJM [88], in the sense that the former is more sensitive

to the weak peaks. The best-fit structure is found by a conventional grid search

with a spacing of 0.01 Å.

4.3.2 Results and Discussion

The multilayer relaxation results of Fe(310) obtained from the new LEED

analysis are given in Table 4.1. Also listed are the corresponding results from

SJM. It can be seen that the current LEED results are essentially the same as

those of SJM. The largest difference in ∆d’s is 1.6%. The large relaxation of

r12 as obtained by SJM was also confirmed by the new LEED analysis. Allowing

three more structural parameters to relax has only a marginal effect on the best-fit

structure except for ∆r23 where a small expansion from SJM’s analysis has been

changed to a small contraction. The V0r for iron as optimized from the current

analysis is −10.1 eV. This value is identical to that obtained by SJM.

The I-V curves calculated from the best-fit structure are compared with the

experimental ones in Fig. 4.4. The beam notation used in Fig. 4.4 is that by SJM

as illustrated in Fig. 4.2. It should be noted that these labels are not consistent

with the unit cell shown in Fig. 4.1 (the left one) which is actually used in the

current LEED analysis.

The beam-averaged RP between the two sets of curves in Fig. 4.4 is 0.14 and
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Tab. 4.1: Multilayer relaxation of Fe(310) determined by LEED analyses.
This work SJM

∆d12 (%) −17.7± 3.1 −16.1± 3.3
∆d23 (%) +12.1± 1.8 +12.6± 3.3
∆d34 (%) −5.5± 2.0 −4.0± 4.4
∆d45 (%) +1.1± 2.2 -
d0 (Å) 0.906 0.906

∆r12 (%) +6.6± 3.4 +7.2± 2.8
∆r23 (%) −1.1± 3.1 +1.6± 2.8
∆r34 (%) +2.8± 3.1 -
∆r45 (%) −1.1± 3.0 -
r0 (Å) 1.813 1.813

V0r (eV) −10.1 −10.1
V0i (eV) −4.0 −4.0

R-factor RP=0.14 RZJ=0.116

var(RP) is 0.02. A plot of RP versus the deviations of the structural parameters

from their best-fit values is given in Fig. 4.5, from which the error bars of the

structural parameters, as given in Table 4.1, are estimated.

The relatively narrow energy range of the dataset used in this study is com-

pensated by the numerous I-V curve features considered. The number of peaks

and shoulders included in this dataset is comparable to those from other high-

index metal surfaces with wider energy range [19,75]. The features of I-V curves,

especially the dynamical (multiple scattering) features, are often more important

than the spanned energy range for an accurate LEED analysis. Direct inspection

of Fig. 4.4 shows that almost all features in the experimental I-V curves have been

reproduced by the calculations. The uncertainty in the structural parameters due

to a finite size of dataset has been considered in the error bars.

The optimized vibration amplitudes are 0.194 Å for the first layer, 0.163 Å the

second, 0.184 Å the third and 0.143 Å the fourth. The vibration enhancement is

more significant compared with that on Cu(117) [19] and Cu(210) [35, 75] since

the I-V data of Fe(310) was collected at a higher temperature. However, it is

found that the enhanced vibrations have little impact on the best-fit structural
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Fig. 4.4: Comparison of experimental (solid line) and best-fit theoretical (dotted line)
I-V curves for Fe(310) surface. The experimental curves were measured at
room temperature.

parameters (about 1%), but only improve the beam-averaged RP from 0.20 to

0.14.

The consistency between the present and SJM’s LEED results implies that the

global minimum in the parameter space has been reached in both analyses. In this

case, choosing different R-factors has only little effect on the best-fit structure.

4.4 Pseudopotential DFT Calculations

4.4.1 Details of Calculations

The VASP code was used in this study to carry out the periodic slab calcu-

lations using the pseudopotential plane-wave method. The USPP for Fe is pro-

vided in the VASP package. The generalized gradient approximation of Perdew-

Wang [38] was taken for the exchange-correlation functional. A cutoff energy of

340 eV was used in all calculations. The positions of the ion-cores are relaxed

according to the Hellmann-Feynman forces. The relaxation is terminated when

the forces on all ion-cores become less than 10 meV/Å. The smearing method of

Methfessel and Paxton [51] was used in this study to handle the abrupt jump of
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Fig. 4.5: Plot of RP versus the deviations of the structural parameters from their best-fit
values.

occupancies from 1 to 0 at the Fermi level. A smearing width of 0.2 eV was used

for iron.

The bulk calculations on bcc Fe give a lattice constant of 2.86 Å. This value

is slightly smaller than the experimental value of 2.87 Å and was used in the

following slab calculations. The plot of total energy versus lattice constant for bcc

Fe is given in Fig. 4.6. In the bulk calculations, a grid of (12× 12× 12) k-points

used for the Brillouin zone integration was generated according to the scheme of

Monkhorst and Pack [50]. This grid corresponds to 68 irreducible k-points in

the reduced BZ. Only the plane-waves with kinetic energies below 340 eV were

included in the basis set. From Fig. 4.7, it can be seen that both the number of

grids and the cutoff energy could converge the total energy per bulk Fe atom to

about 1 meV.

The Fe(310) surface was represented by a slab consisting of 21 atomic layers.

Adjacent slabs were separated by a vacuum layer of about 10 Å thick. A (8×8×1)

Monkhorst-Pack grid [50], which corresponds to 20 irreducible k-points, was used

for the Brillouin zone integration. The surface unit cell used in the slab calculations
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Fig. 4.7: Convergence testing for the number of k-points and the cutoff energy for Fe.

is shown in Fig. 4.1 (the right one). All layers except for the center one in the 21-

layer slab were allowed to move in the relaxation calculations. Spin-polarization

effect was taken into account in both the bulk and slab calculations due to the

strong ferromagnetism of iron.

To confirm the reliability of the current pseudopotential DFT results, another

pseudopotential plane-wave package, CASTEP, was also used to study the struc-

ture of Fe(310). All setups in the CASTEP calculations are the same as described

above except that CASTEP uses the Gaussian smearing method rather than the

method of Methfessel and Paxton. A smearing width of 0.1 eV was used in the

CASTEP calculations. In addition, the bulk calculations using CASTEP give a
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Tab. 4.2: Multilayer relaxation of Fe(310) obtained from DFT calculations.
This work (VASP) This work (CASTEP) GKF (FLAPW)

∆d12 (%) −14.9 −14.2 −14.4
∆d23 (%) +8.0 +7.8 +1.1
∆d34 (%) −1.4 −2.8 0.0
∆d45 (%) +4.1 +2.8 0.0
d0 (Å) 0.904 0.895 0.900

∆r12 (%) +4.9 +4.6 +1.7
∆r23 (%) +0.4 +0.1 −0.6
∆r34 (%) +1.4 +1.3 -
∆r45 (%) −0.4 −0.4 -
r0 (Å) 1.808 1.790 1.800

lattice constant of 2.83 Å for bcc Fe.

4.4.2 Results and Discussion

In Table 4.2 multilayer relaxations of Fe(310) obtained from various first-

principles calculations are shown. It can be firstly seen that the pseudopotential

calculations by VASP and CASTEP give very close results. Both of them repro-

duce the relaxation sequence of the interlayer spacings obtained by the LEED

analyses, i.e., − + − +. The largest discrepancy in the structural parameters

obtained from the current LEED analysis and pseudopotential calculations is less

than 0.04 Å. This quantitative agreement is acceptable if considering the error bars

in the LEED analysis as listed in Table 4.1 and the approximations employed in

the pseudopotential calculations, such as the finite slab thickness and the non-zero

residual forces on the ion-cores, which result in errors of about 0.01– 0.02 Å. From

Table 4.2 it can also be seen that the large relaxation of r12 as obtained by both the

previous and current LEED analyses was also confirmed by our pseudopotential

calculations.

In pseudopotential calculations, the total energy of a valence electron system is

typically three orders of magnitude smaller than that in full-potential all-electron

calculations. Therefore, in the pseudopotential method, the accuracy required on

calculating the energy differences between ionic configurations is much less strict

than that in full-potential methods. This feature may reduce the technical errors in
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the relaxation calculations, which are based on the total energy or force (derivative

of total energy) minimizations. On the aspect of the basis set, the plane-waves

are decided only by the shape and size of the supercell (atomic slab plus vacuum

layer) and independent of the positions of the ion-cores. Hence, the plane-wave

basis set can be kept fixed throughout the relaxation process. This feature is

unique to the plane-wave method and also helpful for accurately calculating the

energy differences between ionic configurations. The advantages discussed above

make the pseudopotential plane-wave method a competitive tool for relaxation

studies on surfaces. This has been demonstrated on open metal surfaces by the

consistency between LEED analysis and pseudopotential calculations achieved on

Fe(310) in this study as well as on other open metal surfaces, such as Cu(211) [71,

72], Mo(211) [90, 91] and Al(331) [92,93].

4.5 Conclusion

In summary, the structure of the Fe(310) surface has been studied by a refined

quantitative LEED analysis and pseudopotential DFT calculations. Similar re-

sults to the previous LEED study by SJM have been obtained by our new LEED

analysis. It is found that allowing more structural parameters to relax has only a

marginal effect on the best-fit structure. Considering the enhanced vibrations of

surface atoms and using a different R-factor do not significantly affect the LEED

analysis. The pseudopotential DFT calculations reproduce the relaxation sequence

of the interlayer spacings determined by the LEED analysis, i.e., − + − + with

the largest discrepancy in the structural parameters less than 0.04 Å. A large

lateral relaxation of the first interlayer registry has been confirmed by both the

LEED analysis and pseudopotential calculations.
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5.1 Introduction

Many attempts to understand the mechanism of ionic relaxations on single

crystal metal surfaces have been made in the past three decades. Based on exper-

imental results, the topmost atomic layer on low-index metal surfaces can relax

both inwards and outwards. Extensive theoretical studies have concentrated on

drawing a general rule on top layer relaxations observed experimentally [94]. As

made clear by Feibelman [95], a physical picture and a chemical picture exist to

describe the top layer relaxations. The former originated from the theory of Fin-

nis and Heine [96] using the concept of charge smoothing by Smoluchowski [97].

The latter was put forward by Feibelman [95] and is based on the bond-order–

bond-length relation [98]. Recently, high-index metal surfaces have received much

attention due to their importance in areas such as catalytic chemistry. In con-

trast to low-index surfaces, all high-index metal surfaces experimentally studied

exhibit, without exception, a contraction on the first interlayer spacing. Another

feature of high-index metal surfaces is that multilayer relaxations on them are usu-

ally more significant. Predicting a priori the relaxation sequence on a high-index

metal surface has become a new focus of the theoretical studies. Both the physical

and chemical pictures have been adopted to explain the multilayer relaxations on

high-index metal surfaces [70,93]. A general rule, which relates the relaxation se-

quence to the number of atomic steps on the terrace, has also been proposed [69].

However, as will be shown, this rule is not consistent with first-principles results

on some surfaces, e.g., Cu(320) and Cu(410).

In this chapter, an empirical rule of multilayer relaxations on open metal sur-

faces is postulated based on experimental results on high-index Cu surfaces. A

systematic evaluation on this rule is then conducted on a series of vicinal Cu

surfaces. Finally, a physical explanation in the light of Smoluchowski’s charge

smoothing picture is given.
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5.2 The Rule Proposed

The single crystal surfaces of copper are the most extensively studied by both

quantitative LEED analysis and first-principles calculations. Hence, it will be

meaning to review these surfaces. In Table 5.1 the multilayer relaxations of high-

index Cu surfaces obtained by quantitative LEED analysis and slab DFT calcu-

lations are shown. Although the extent of quantitative agreement between LEED

and DFT results differs from one study to another, the relaxation sequence ob-

tained by both techniques are consistent on all these surfaces.

Tab. 5.1: Comparison of multilayer relaxations of high-index Cu surfaces from quanti-
tative LEED analysis and slab DFT calculations.

Cu(311) Cu(331)
LEED USPP LEED FLAPW

Ref. [67] Ref. [68] Ref. [69] Ref. [70]
∆d12 (%) −11.9 −15.0 −13.8 −22.0
∆d23 (%) +1.8 +4.0 +0.4 +1.6
∆d34 (%) +4.0 +6.9
∆d45 (%) −4.0 −2.4

Cu(210) Cu(211)
LEED USPP LEED PP

This work This work Ref. [71] Ref. [72]
∆d12 (%) −11.1 −16.4 −14.9 −14.4
∆d23 (%) −5.0 −4.5 −10.8 −10.7
∆d34 (%) +3.7 +7.2 +8.1 +10.9

Cu(511) Cu(711)
LEED USPP LEED USPP

Ref. [73] Ref. [68] Ref. [19] Ref. [68]
∆d12 (%) −14.2 −11.1 −13.0 −9.3
∆d23 (%) −5.2 −16.4 −2.0 −7.7
∆d34 (%) +5.2 +8.4 −10.0 −21.8
∆d45 (%) −1.2 −4.6 +7.0 +14.3
∆d56 (%) +3.2 +2.3 −1.0 −3.0
∆d67 (%) −3.1 −1.5 −4.0 −9.1
∆d78 (%) −3.3 +0.2 +7.0 +5.6

In Table 5.1 it can be noticed that (210), (211) and (511) have the same

relaxation sequence for the first three interlayer spacings. Inspired by this hint, a

general rule of the multilayer relaxations on open metal surfaces can be postulated,

which states:
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At bulk-truncated configuration, define a surface slab in which the

nearest neighbors (nn’s) of all atoms are fewer than those in the bulk.

In the process of relaxation, the interlayer spacing between each pair

of layers within this slab contracts, while the spacing between this slab

and the substrate expands.

In this rule, the relaxation sequence of a surface is related to the change in the

number of nn’s. The nn sequences for the six fcc surfaces in Table 5.1 are given

in Table 5.2. Taking (210) as an example, the nn sequence (6,9,11,12 · · · ) means

Tab. 5.2: Relation between nn sequence and postulated relaxation sequence of high-
index surfaces of fcc structure. N is the number of layers in the surface slab
(see text).

Orientation nn sequence N Relaxation sequence
(311) (7,10,12 · · · ) 2 − + · · ·
(331) (7, 9,11,12 · · · ) 3 − − + · · ·
(210) (6, 9,11,12 · · · ) 3 − − + · · ·
(211) (7, 9,10,12 · · · ) 3 − − + · · ·
(511) (7, 8,10,12 · · · ) 3 − − + · · ·
(711) (7, 8, 8,10,12 · · · ) 4 − − − + · · ·

that, at bulk-truncated configuration, the atoms in the first layer have 6 nn’s, the

second layer 9 and the third 11. From the fourth layer downwards, the number

recovers to 12, the value in the bulk. Thus, according to the proposed rule, the

surface slab of fcc (210) consists of three layers and the interlayer spacings within

this slab (i.e., d12 and d23) contract, while the spacing between this slab and the

substrate (i.e., d34) expands. Hence, the relaxation sequence is − − + · · · . The

rest of Table 5.2 can be deduced by analogy.

A violation to this rule in Table 5.1 is Cu(331), where a relaxation sequence

of − + + · · · was deduced from a LEED study [69] and was reproduced by a

FLAPW study [70]. Discussion on this will be given later in the next chapter.

5.3 The Rule Evaluated

Systematic evaluation of the rule postulated in the last section by experiments

such as LEED is costly. Fortunately, from Chapters 3 and 4, it has been shown

77



Chapter 5. Rule of Multilayer Relaxations on Open Metal Surfaces

that the pseudopotential DFT calculations are reliable in studying the multilayer

relaxations quantitatively. In this section, this technique will be solely employed

to evaluate this rule on a series of vicinal Cu surfaces.

A pseudopotential DFT study on eight vicinal Cu surfaces has been conducted

in a recent paper [68], while a more systematic study will be conducted in this

chapter. Since, in the postulated rule, the multilayer relaxations are related to the

reduction in the number of nn’s, it is more suitable to perform the evaluation on

the surfaces ranked by their openness, or in other words, the interlayer spacing.

In Table 5.3, the open Cu surfaces with their interlayer spacings down to about

0.5 Å are given. The interlayer spacings can be evaluated by

dbulk =
a0

δ
√

h2 + k2 + l2
, (5.1)

where (hkl) are the Miller indices of the surface and δ equals to two if there is at

least an even number in the indices and one otherwise. The postulated relaxation

sequences for these surfaces are also given in Table 5.3.

Tab. 5.3: Open Cu surfaces ranked by their interlayer spacings.
Orientation dbulk nn sequence N Relaxation sequence

(110) a0/2
√

2 (7, 11, 12 · · · ) 2 − + · · ·
(311) a0/

√
11 (7, 10, 12 · · · ) 2 − + · · ·

(331) a0/
√

19 (7, 9, 11, 12 · · · ) 3 − − + · · ·
(210) a0/2

√
5 (6, 9, 11, 12 · · · ) 3 − − + · · ·

(211) a0/2
√

6 (7, 9, 10, 12 · · · ) 3 − − + · · ·
(511) a0/

√
27 (7, 8, 10, 12 · · · ) 3 − − + · · ·

(531) a0/
√

35 (6, 8, 10, 11, 12 · · · ) 4 − − − + · · ·
(221) a0/2

√
9 (7, 9, 9, 11, 12 · · · ) 4 − − − + · · ·

(310) a0/2
√

10 (6, 8, 9, 11, 12 · · · ) 4 − − − + · · ·
(533) a0/

√
43 (7, 9, 9, 10, 12 · · · ) 4 − − − + · · ·

(711) a0/
√

51 (7, 8, 8, 10, 12 · · · ) 4 − − − + · · ·
(551) a0/

√
51 (7, 7, 9, 11, 11, 12 · · · ) 5 − − − − + · · ·

(320) a0/2
√

13 (6, 7, 9, 11, 11, 12 · · · ) 5 − − − − + · · ·

It is worth noting that Cu(711) and Cu(551) have the same interlayer spacing

and the same shape of surface unit cell, but different stacking, i.e., different in-

terlayer vector. The different stacking results in a different nn sequence, i.e., (7,
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8, 8,10,12 · · · ) for (711) and (7, 7, 9,11,11,12 · · · ) for (551). This means that the

surface slab of Cu(711) consists of four atomic layers, while Cu(551) five. Hence,

different relaxation sequences are expected on the two surfaces.

In order to evaluate the postulated rule, pseudopotential DFT calculations

were employed here. VASP is used to carry out the calculations. The setup of the

calculations has been described in the previous two chapters. In brief, the USPP

was used for Cu and the GGA for xc functional. The cutoff energy for the plane-

waves was set to 340 eV and the termination criterion for the ionic relaxations

was 10 meV/Å. The slab thickness, the k-points setup and the surface unit cells

used are given in Table 5.4.

Tab. 5.4: The slab thickness (Nt, i.e., the number of atomic layers in the slab) and the
number of irreducible k points (Nk) used in the calculations. The surface unit
cells are defined by vectors a1 and a2, which are given by a1 = a0(a11x̂+a12ŷ)
and a2 = a0(a21x̂ + a22ŷ), respectively.

Surface Nt k-points (Nk) a11 a12 a21 a22

Cu(110) 15 (16×12×1) - 48
√

2
2

0 0 1

Cu(311) 17 (10×10×1) - 30
√

2
4

√
22
4

−
√

2
4

√
22
4

Cu(331) 21 (10×10×1) - 30
√

2
4

√
38
4

−
√

2
4

√
38
4

Cu(210) 21 (10×10×1) - 30 1
2

√
5

2
−1

2

√
5

2

Cu(211) 23 (16× 8×1) - 32
√

2
2

0 0
√

3

Cu(511) 25 (10×10×1) - 30
√

2
4

√
54
4

−
√

2
4

√
54
4

Cu(531) 27 ( 8× 8×1) - 32
√

6
2

0 −
√

6
12

√
210
12

Cu(221) 29 (16× 6×1) - 24
√

2
2

0 0 3
√

2
2

Cu(310) 29 (12× 8×1) - 24 1 0 0
√

10
2

Cu(533) 31 ( 6× 6×1) - 12
√

2
4

√
86
4

−
√

2
4

√
86
4

Cu(711) 33 ( 6× 6×1) - 12
√

2
4

√
102
4

−
√

2
4

√
102
4

Cu(551) 33 ( 6× 6×1) - 12
√

2
4

√
102
4

−
√

2
4

√
102
4

Cu(320) 33 ( 6× 6×1) - 12 1
2

√
13
2

−1
2

√
13
2

The calculated multilayer relaxations of open Cu surfaces are listed in Ta-

ble 5.5. Since the lateral relaxations of all these surfaces are relatively small

(about 2% or less),1 only the relaxations of the interlayer spacings are given.

Comparing the two tables and the last column of Table 5.3, it can be seen that

1 The Cu(310) has a somewhat larger lateral relaxation on ∆d45. It is about 3.5%. The
Cu(531) is a surface having no mirror plane. The lateral relaxations were not evaluated.
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the relaxation sequences on all the 13 surfaces comply with the proposed rule, i.e.,

Ns − 1 contractions followed by an expansion. Note that, as expected, Cu(711)

and Cu(551) exhibit different relaxation sequences although they have the same

interlayer spacing and surface unit cell.

Tab. 5.5: Multilayer relaxations of vicinal Cu surfaces.
(110) (311) (331) (210) (211) (511)

∆d12 (%) −9.9 −13.7 −13.6 −16.2 −13.1 −10.4
∆d23 (%) +4.4 +4.5 −5.1 −5.6 −9.9 −13.6
∆d34 (%) −1.0 −0.4 +8.0 +6.9 +9.5 +9.4
∆d45 (%) +0.7 −0.2 −2.5 −0.5 −1.6 −3.8
∆d56 (%) +0.1 +0.9 −0.2 −0.6 −1.0 +2.0
∆d67 (%) +0.2 −0.5 +0.2 +0.3 +0.8 −0.3

(531) (221) (310) (533) (711) (551) (320)
∆d12 (%) −16.7 −14.3 −11.8 −15.9 −12.3 −7.5 −11.5
∆d23 (%) −12.3 −6.8 −15.4 −2.2 −4.1 −18.0 −16.5
∆d34 (%) −1.3 −5.9 −4.1 −13.0 −18.0 −5.5 −6.3
∆d45 (%) +8.6 +12.7 +10.2 +14.6 +15.7 −1.3 −3.9
∆d56 (%) −0.3 −4.6 −2.0 −0.4 −3.1 +13.9 +13.7
∆d67 (%) −1.0 −1.4 −0.8 −4.4 −4.6 −1.8 −1.4
∆d78 (%) −1.0 +1.8 +0.2 −0.4 +3.4 −3.3 −1.4
∆d89 (%) +0.8 −0.5 +0.8 +1.7 +2.5 −1.9 −0.5
∆d90 (%) +0.9 +0.0 +0.4 +0.2 −1.2 +1.6 −1.2

However, some of the relaxations in Table 5.5, such as ∆d34 on Cu(531), ∆d23

on Cu(533) and ∆d45 on Cu(551), are too small to be said unambiguously as

having a contraction. Nevertheless, it can be noticed the relaxation sequences are

actually characterized by the positions where the expansions take place. From this

point of view, there is no ambiguity since the expansions on all the 13 surfaces are

significant.

5.4 The Rule Explained

According to the physical picture of surface relaxations, the ionic relaxations

are induced by the charge redistribution near the surface region. Hence, the

relaxation rule proposed can be understood from the charge redistribution on

these surfaces. For this purpose, we calculated the electric charge within a sphere

centered at the nuclei of all atoms in the simulating slabs. The sphere radius
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is chosen to be the Wigner-Seitz radius, i.e., the radius that makes the volume

of the sphere equal to that of the Wigner-Seitz unit cell. This is in the spirit

of the atomic sphere approximation in the linear muffin-tin orbital method [99].

For Cu, this radius is 1.42 Å. All calculations were done on slabs at bulk-truncated

configurations. This choice is also made for studying the forces applied on the ion-

cores due to the charge redistribution since these forces drive the ionic relaxations.

The plots of the number of charges within a sphere against the layer depth are

given in Fig. 5.1.
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Fig. 5.1: Charge smoothing on vicinal Cu surfaces at bulk-truncated configurations.
(a)-(d) are the surfaces with surface slab thickness 2, 3, 4 and 5, respectively.

In Fig. 5.1, the 13 surfaces are divided into four groups according to their

relaxation sequences (or number of atomic layers in their surface slabs). It can be

seen that the number of layers in which the charge per atomic sphere considerably

decreases, coincide with the number of layers in the surface slab defined in the last

section. This indicates a direct relation of the relaxation sequence to the charge
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redistribution on these surfaces. By performing site-projected calculations, it was

found that about 90 % charge loss in the surface slab is due to the 4p electrons

that are promoted from 4s orbitals and are located in the outermost shell.

This charge redistribution can be understood in the light of Smoluchowski’s

concept of charge smoothing. According to this concept, at metal surfaces, the

nearly-free electrons tend to spread towards regions of low charge density and

smooth the corrugation formed by the ion-cores in order to reduce the kinetic

energy. With the picture of charge smoothing in mind, the relaxation sequence

can be understood as follows. In the process of charge smoothing, the ion-cores in

deeper layers shift towards the surface, induced by the movement of the electrons,

and result in contraction of the interlayer spacings near the surface. For more

open surfaces, electrons from the deeper layers contribute to the smoothing, hence

more spacings contract. The number of contractions in the relaxation sequence

depends on the number of layers in the surface slab (i.e., N in Table 5.3).

Tab. 5.6: Initial forces (component perpendicular to the surface) on the ion-cores calcu-
lated at the bulk-truncated configurations. fn denotes the forces on the atoms
in the n-th layer. The unit used is eV/Å.

Surface f1 f2 f3 f4 f5 f6

Cu(110) +0.41 −0.38 −0.04
Cu(311) +0.46 −0.27 −0.23
Cu(331) +0.45 −0.06 −0.32 −0.06
Cu(210) +0.60 −0.08 −0.41 −0.19
Cu(211) +0.45 +0.01 −0.23 −0.22
Cu(511) +0.45 +0.16 −0.26 −0.28
Cu(531) +0.64 +0.14 −0.27 −0.34 −0.23
Cu(221) +0.44 +0.02 −0.01 −0.31 −0.07
Cu(310) +0.58 +0.19 −0.07 −0.41 −0.27
Cu(533) +0.40 −0.01 +0.04 −0.21 −0.15
Cu(711) +0.41 +0.15 +0.15 −0.25 −0.25
Cu(551) +0.42 +0.38 −0.07 −0.35 −0.31 −0.00
Cu(320) +0.60 +0.38 −0.07 −0.43 −0.34 −0.17

The effect of the charge redistribution can be seen from the calculated initial

forces on the ion-cores at bulk-truncated configurations as listed in Table 5.6,

where a + sign denotes a force pointing into the surface and − out of the surface.

From this table, it can be seen that, for all the surfaces, the topmost layer feels
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an inward force and the N -th layer feels an outward force, while the forces on the

layers in between are not definite. This means that the two sides of the surface slab

feel compression forces, which lead to contractions within the surface slab. If the

magnitude of fN+1 is always smaller than fN , the expansion of the spacing between

the surface slab and the substrate can also be explained readily. However, we found

|f4| > |f3| on Cu(511) and |f5| ≈ |f4| on Cu(711). This implies that dynamically

monitoring the forces in the process of the simulated relaxation, instead of solely

studying the initial forces, is necessary in order to explain the expansion. Fig. 5.2

illustrates the force changes in simulated relaxations on Cu(511) and Cu(711).

It can be seen that all forces vanish in a monotonic way except for fN+1, which

changes from negative to positive after two relaxation steps. This illustration

using Cu(511) and Cu(711) is representative of all other surfaces studied and

independent of the algorithm (conjugate gradient and variable metric methods

are tested) used in the relaxation. It is the opposite sign of fN and fN+1 that is

responsible for the expansion.

1 2 3 4 5 6 7 8 9 10
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5

 

 

Fo
rc

es
 (e

V/
An

gs
tro

m
)

Relaxation Step

 f1
 f2
 f3
 f4

Cu(511)

1 2 3 4 5 6 7 8 9 10
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5

 

 

Fo
rc

es
 (e

V/
An

gs
tro

m
)

Relaxation Step

 f1
 f2
 f3
 f4
 f5

Cu(711)

Fig. 5.2: Force changes in simulated relaxations on Cu(511) and Cu(711).

As mentioned in the introduction, another rule [69], which relates the relax-

ation sequence to the number of atomic steps on the terrace, is also proposed.

According to this rule, if there are N atomic steps on a terrace, the relaxation se-

quence will be N−1 contractions followed by an expansion. However, the number

of atomic rows on a terrace can not be decided unambiguously. Moreover, this

rule predicts a relaxation sequence of − − + · · · for fcc(320) and − − − + · · ·
for fcc(410). Yet, according to Table 5.5, Cu(320) has a relaxation sequence of

− − − − + · · · . And fcc(410) has an nn sequence of (6, 8, 8, 9, 11, 12 · · · ), hence

a relaxation sequence of − − − − + · · · according to the newly proposed rule.
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This is also confirmed by pseudopotential DFT calculations on Cu(410), where

the relaxations of the first five interlayer spacings are −14.4%, −6.1%, −16.8%,

−3.5% and +13.9%.

Finally, it is noted that the proposed rule is also consistent with the bond-

order–bond-length relation, i.e., the chemical picture [95]. Based on this relation,

when the number of neighbors of an atom is reduced, the bonds become stronger,

hence the bond-length is shortened. In the surface slab, all atoms have less nearest

neighbors than those in the bulk. Hence, the interlayer spacings (the bond-length)

within it become shorter. If considering the surface slab as a whole with respect

to the substrate, the top layers of the substrate actually see more neighbors due to

the contractions in the surface slab. This results in a weakened bonding between

the surface slab and the substrate and may explain the expansion between them.

5.5 Conclusion

An empirical rule of the multilayer relaxations on open metal surfaces is pro-

posed. Pseudopotential DFT calculations are employed to evaluate this rule sys-

tematically on a series of vicinal Cu surfaces with interlayer spacings down to

about 0.5 Å. The relaxation sequences obtained on all the surfaces conform to the

postulated rule. It has been illustrated that the Smoluchowski’s charge smooth-

ing effect in the bulk-truncated surface accounts for the first N − 1 contractions

and the following expansion. This rule can be understood using both physical and

chemical arguments, which warrants an extension of this rule in the understanding

of all open metal surfaces.
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6.1 Introduction

An empirical rule of multilayer relaxations on open metal surfaces has been

proposed and evaluated on a series of vicinal Cu surfaces in the last chapter. To

be a universal rule, it should be further checked whether the surfaces of different

metals with the same orientation follow the same relaxation sequence and whether

the open surfaces of other structures (such as bcc, hcp and even reconstructed)

obey this rule. There have been about 20 high-index metal surfaces elucidated

by experimental techniques [14]. Unfortunately, these results are not sufficient

to establish a general rule of multilayer relaxations. For example, the relaxation

sequence of Cu(331) has been determined by quantitative LEED analysis to be

− + + [69], which is different from − − + on Al(331) [92,93] although they have

the same orientation. Since Al is a simple metal and Cu a transition metal (TM),

a logical question is whether other fcc (331) TM surfaces follow the same sequence

as Cu(331). Yet, performing a detailed structure determination by LEED is not

an easy task, especially on stepped surfaces as has been stated in Chapter 3.

Fortunately, pseudopotential DFT calculations have proven to be a powerful tool

in determining the structures of stepped metal surfaces not only qualitatively but

quantitatively (see Chapters 3–4) and can be employed to systematically study

the relaxation trends of a series of stepped TM surfaces.

In this Chapter, the multilayer relaxations of (311), (331) and (210) surfaces

of seven TM’s of fcc structure, namely Ni, Cu, Rh, Pd, Ag, Ir and Pt are studied

by pseudopotential DFT calculations. (311), (331) and (210) are the fourth, fifth

and sixth most close-packed surfaces of the fcc structure, respectively. Most pre-

vious LEED studies focused on these three orientations. All the seven TM’s have

important catalytic applications in chemical engineering, environment control or

scientific research. Among these surfaces, some have been studied by other DFT

calculations, such as Ni(210) [100], Cu(311) [68], Cu(331) [70], Pd(210) [101] and

Pt(311) [102]. For consistency, these surfaces are reinvestigated in this chapter.

Also, it will be shown that this rule is consistent with the existing results on the

open surfaces of bcc and hcp metals and even reconstructed surfaces.
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Fig. 6.1: Top views of fcc (311), (331) and (210) surfaces at bulk-truncated configura-
tions. The depth of layers from the surface are indicated by the gray scale.
The interlayer spacing (d) is a0√
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for (311),

(331) and (210), respectively.

6.2 (311), (331) and (210) Surfaces of fcc Transition Metals

6.2.1 Calculations

The supercell approximation was used to model the surface. The fcc (311),

(331) and (210) surfaces were represented by 16, 20 and 21 atomic layers, re-

spectively. The thickness of the vacuum region was always larger than 10 Å.

Pseudopotential DFT calculations were carried out using VASP. A plane wave

cutoff energy of 340 eV was used in all calculations. The structure optimizations

were stopped when the force on each ion became smaller than 10 meV/Å. The

generalized gradient approximation (GGA) of Perdew-Wang [38] was taken for the

exchange-correlation functional throughout this study. The smearing method of

Methfessel and Paxton [51] was used to calculate the partial occupancies of metal-

lic materials at a finite temperature. The smearing width (σ) for each element was

chosen so that it can be as large as possible while keeping the entropy term [81]

in the total free energy less than 1 meV per atom. Based on this criterion, a σ of

0.2 eV was used for Rh and Ir; 0.1 eV for Ni, Pd and Pt; 0.5 eV for Cu and Ag.

The zero temperature total energies were obtained by extrapolating to σ = 0 eV.

The lattice constants (a0) of the seven fcc metals obtained from the bulk cal-

culations are shown in Table 6.1. These values were used in the following slab

calculations. For comparison, the experimental lattice constants are also listed in
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Tab. 6.1: Calculated (acal
0 ) and experimental (aexp

0 ) lattice constants of seven fcc tran-
sition metals.

acal
0 (Å) aexp

0 (Å) ∆a0 (%)
Ni 3.532 3.524 +0.2
Cu 3.644 3.615 +0.8
Rh 3.850 3.803 +1.2
Pd 3.962 3.891 +1.8
Ag 4.168 4.085 +2.0
Ir 3.887 3.839 +1.3
Pt 3.992 3.924 +1.7

Table 6.1. All calculated values are slightly larger than the corresponding experi-

mental values as given in the last column of Table 6.1. This is normal when using

the GGA.

For all slab calculations, surface unit cells were rhombic as illustrated in Fig. 6.1

and a (8 × 8 × 1) Monkhorst-Pack grid [50], which corresponds to 20 irreducible

k-points, was used for the Brillouin zone integration. For (311) and (331) slabs,

the center two layers were fixed and all the others were allowed to move in the

course of structure optimization, while for (210), only the center layer was fixed.

All calculations on Ni (bulk and slab) are spin-polarized. An initial magnetic

moment of 0.63 µB obtained from the bulk calculations was assigned to all atoms

in the slab calculations.

6.2.2 Results and Discussion

Tab. 6.2: Multilayer relaxations of (311) surfaces of seven fcc transition metals.
Ni(311) Cu(311) Rh(311) Pd(311) Ag(311) Ir(311) Pt(311)

∆d12 (%) −16.1 −13.9 −16.2 −12.4 −12.1 −22.7 −24.0
∆d23 (%) +6.0 +4.4 +6.2 +6.9 +4.6 +10.6 +13.4
∆d34 (%) −2.7 −0.8 −2.6 −3.0 −0.9 −4.1 −5.0
∆d45 (%) +1.1 −0.3 −0.0 +1.2 −0.1 +0.2 +1.3

∆r12 (%) −0.2 −0.2 −0.6 +1.1 +0.1 −1.2 −0.1
∆r23 (%) −1.8 −1.6 −1.8 −1.9 −1.2 −3.1 −6.6
∆r34 (%) +0.6 +1.0 +0.9 −0.1 +1.0 +1.4 −0.8
∆r45 (%) +0.2 +0.2 +0.3 −0.6 +0.4 +0.1 −1.0

The multilayer relaxation results of the (311), (331) and (210) surfaces of
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Tab. 6.3: Multilayer relaxations of (331) surfaces of seven fcc transition metals.
Ni(331) Cu(331) Rh(331) Pd(331) Ag(331) Ir(331) Pt(331)

∆d12 (%) −13.0 −14.2 −9.8 −14.2 −12.6 −10.0 −25.5
∆d23 (%) −6.0 −4.8 −10.2 −4.4 −4.3 −15.0 −8.8
∆d34 (%) +5.3 +7.5 +7.5 +9.7 +7.8 +12.2 +22.5
∆d45 (%) −0.5 −3.0 −1.5 −4.0 −3.8 −2.1 −11.4
∆d56 (%) −0.3 −0.3 −2.1 +1.4 +0.5 −3.1 +4.0
∆d67 (%) −0.9 −0.7 −0.8 −1.0 −1.1 −0.5 −2.2

∆r12 (%) −1.1 −1.0 −2.3 −1.3 −0.9 −3.9 −3.3
∆r23 (%) −1.8 −1.8 −1.3 −2.9 −1.9 −0.9 −4.6
∆r34 (%) +1.4 +1.6 +1.7 +1.0 +1.2 +2.1 +1.8
∆r45 (%) +1.0 +0.7 +1.2 +0.9 +1.0 +1.1 +1.8
∆r56 (%) −0.5 −0.5 −0.7 −0.8 −0.5 −1.0 −2.3
∆r67 (%) −0.4 +0.2 −0.8 +0.4 +0.4 −0.7 +1.2

Tab. 6.4: Multilayer relaxations of (210) surfaces of seven fcc transition metals.
Ni(210) Cu(210) Rh(210) Pd(210) Ag(210) Ir(210) Pt(210)

∆d12 (%) −12.7 −16.4 −11.5 −17.3 −16.0 −14.9 −28.9
∆d23 (%) −8.1 −5.9 −10.2 −3.7 −4.3 −11.3 −2.9
∆d34 (%) +5.6 +6.7 +6.9 +9.4 +7.5 +8.3 +15.2
∆d45 (%) +0.4 −0.9 −0.6 −4.6 −1.7 −0.0 −7.7
∆d56 (%) −1.2 −0.7 −2.4 +0.7 −0.3 −4.0 +1.5
∆d67 (%) +0.2 +0.0 +0.7 −0.3 +0.1 +1.5 −1.1

∆r12 (%) −0.8 −0.9 −0.3 −2.5 −1.2 −0.2 −2.3
∆r23 (%) −1.1 −1.0 −1.5 −2.7 −1.4 −1.3 −2.6
∆r34 (%) +1.8 +2.2 +2.3 +2.0 +2.3 +3.6 +5.4
∆r45 (%) +0.5 −0.3 +0.6 +0.6 −0.2 −0.2 +1.1
∆r56 (%) −0.6 −0.8 −1.0 −0.3 −1.0 −1.3 −1.2
∆r67 (%) −0.4 −0.1 −0.4 +0.5 +0.0 +0.0 +0.4

seven fcc TM’s obtained from the pseudopotential DFT calculations are given in

Tables 6.2–6.4. From these tables, it can be observed that:

Firstly, the relaxations of the interlayer spacings (∆d’s) of all (311) surfaces

follow the sequence − + · · · , while (331) and (210) surfaces follow − − + · · · .
Here, “· · · ” means that the sequence following the topmost two or three layers is

not definite due to the small relaxations.

Secondly, except for the two heavy metals, i.e., Ir and Pt, the relaxations of

the interlayer registries (∆r’s) are relatively small (less than 3%) compared with

the ∆d’s.
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Thirdly, Ir and Pt, especially Pt, have more significant relaxations, both par-

allel and perpendicular to the surface normal, than the other five TM’s.

With respect to the relaxations of the interlayer spacings, the sequence − + · · ·
for (311) and − − + · · · for (331) and (210) conform to the rule proposed in the

last chapter. For fcc (311), the atoms in the topmost layer have 7 nn’s and 10

in the second layer. From the third layer downwards, the number recovers to the

bulk value, i.e., 12. In other words, fcc (311) has a nn sequence of (7,10,12 · · · ).
According to the definition above, the surface slab for fcc (311) consists of 2 layers.

The spacing within this slab, i.e., d12 contracts; while the spacing between this slab

and the substrate, i.e., d23 expands. Therefore, the relaxation sequence is − + · · · .
The nn sequences for fcc (331) and (210) are (7,9,11,12 · · · ) and (6,9,11,12 · · · ),
respectively, that is to say, the surface slabs consist of 3 layers. According to

the rule, the spacings within the slabs, i.e., d12 and d23 contract and the spacing

between the slabs and the substrates, i.e., d34 expand. Therefore, the relaxation

sequence is − − + · · · .
As for the relaxations of the interlayer registries, Tables 6.2–6.4 show that, on

(331) and (210) surfaces, ∆r’s have the same trend as ∆d’s for the topmost three

layers, while no obvious trend can be observed on (311) surfaces. However, since

most of the ∆r’s are small and at the limit of the accuracy of DFT calculations, it

is not practical to draw a meaningful conclusion on the trends of the relaxations

of the interlayer registries from the current results.

The large relaxations on the surfaces of Ir and Pt can be understood from the

point of view of surface energy (Esurf). The surface energies of all the surfaces at

the bulk-truncated (unrelaxed) and the equilibrium (relaxed) configurations were

calculated using Esurf = (Eslab −NEbulk)/2, where Eslab is the total energy of the

slab, Ebulk the total energy per bulk atom and N the number of atoms in the

slab. The factor 2 takes into account the two surfaces of the slab. The results

are given in Table 6.5. It can be seen that the surfaces of Ir and Pt have much

higher energy differences (∆E) between the relaxed and unrelaxed configurations

than the other surfaces. Since multilayer relaxation is a process of minimizing
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Tab. 6.5: Surfaces energies of (311), (331) and (210) surfaces of seven fcc transition
metals.

Esurf (eV/atom) relaxed unrelaxed ∆E
Ni(311) 1.45 1.50 0.05
Ni(331) 1.86 1.91 0.05
Ni(210) 2.07 2.13 0.06
Cu(311) 1.09 1.12 0.03
Cu(331) 1.40 1.43 0.04
Cu(210) 1.48 1.53 0.05
Rh(311) 1.85 1.92 0.07
Rh(331) 2.35 2.44 0.10
Rh(210) 2.57 2.68 0.11
Pd(311) 1.27 1.30 0.03
Pd(331) 1.63 1.68 0.05
Pd(210) 1.76 1.82 0.06
Ag(311) 0.80 0.82 0.02
Ag(331) 1.03 1.06 0.02
Ag(210) 1.08 1.12 0.04
Ir(311) 2.24 2.40 0.16
Ir(331) 2.79 2.99 0.20
Ir(210) 3.12 3.33 0.21
Pt(311) 1.49 1.61 0.12
Pt(331) 1.85 2.04 0.19
Pt(210) 2.04 2.24 0.20

the surface free energy, the surfaces of Ir and Pt are expected to undergo large

relaxations to release the extra energy. In certain cases, the large energy difference

may result in surface reconstruction as has been observed on clean Pt(311) [12].

6.2.3 Comparisons with LEED Results

Comparisons of calculated relaxations with corresponding LEED results on

Ni(311) [103], Cu(311) [67] and Rh(311) [104] are made in Table 6.6. It can

be seen that the agreement between DFT and LEED for both ∆d’s and ∆r’s is

excellent. The largest difference comes from ∆d23 on Cu(311) surface, which is

less than 0.03 Å. This value is within the accuracy of LEED and DFT.

Among the (331) fcc TM surfaces, only Cu(331) has been studied by LEED [69].

It was deduced from the LEED study that Cu(331) had an anomalous relaxation

sequence since an expansion of d23 as shown in Table 6.7 was unexpected. However,

the pseudopotential calculations obtained a sequence of− − + · · · for all the seven

91



Chapter 6. Further Evaluation of the Proposed Rule

Tab. 6.6: Comparison of multilayer relaxations of Ni(311), Cu(311) and Rh(311) sur-
faces with LEED results. The DFT results are from this work.

Ni(311) Cu(311) Rh(311)
LEED [103] DFT LEED [67] DFT LEED [104] DFT

∆d12 (%) −15.9 −16.1 −11.9 −13.9 −14.5 −16.2
∆d23 (%) +4.1 +6.0 +1.8 +4.4 +4.9 +6.2
∆d34 (%) −1.6 −2.7 - −0.8 −1.0 −2.6

∆r12 (%) −0.8 −0.2 - −0.2 0.0 −0.6
∆r23 (%) −1.4 −1.8 - −1.6 −1.5 −1.8
∆r34 (%) +0.5 +0.6 - +1.0 - +0.9

Tab. 6.7: Comparison of multilayer relaxation of Cu(331) with the LEED and FLAPW
results.

This work LEED [69] FLAPW [70]
∆d12 (%) −14.2 −13.8 −22.0
∆d23 (%) −4.8 +0.4 +1.6
∆d34 (%) +7.5 +3.6 +6.9
∆d45 (%) −3.0 −4.3 −2.4

(331) fcc TM surfaces. No anomalous behavior was observed on Cu(331). From

the LEED result, ∆d23 is +0.4% (about 0.003 Å), which is much smaller than

the error bars associated with the LEED analysis (about 0.03 Å) [69]. Regarding

the discrepancy in d23, it is postulated that d23 has a small relaxation at room

temperature (either contraction or expansion), but a noticeable contraction at

zero temperature (possibly, also at low temperature). Temperature dependence of

relaxations is usually not a negligible effect when making a comparison between

LEED and DFT [85]. Another fcc (331) surface that has been studied by both

LEED and DFT is Al(331). The LEED experiment on this surface was conducted

at low temperature [92] (115 K) and the agreement between the results from the

LEED analysis and pseudopotential DFT calculations [93] is excellent.

Tab. 6.8: Comparison of multilayer relaxation results of Cu(211) from different studies.
LEED [71] FLAPW [70] PP [72] This work

∆d12 (%) −14.9 −28.4 −14.4 −13.3
∆d23 (%) −10.8 −3.0 −10.7 −10.5
∆d34 (%) +8.1 +15.3 +10.9 +10.0

It is also noticed that a FLAPW study [70] reproduced the relaxation sequence
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obtained by LEED as shown in Table 6.7. Yet, the large relaxation of d12 (−22.0%)

obtained from the FLAPW study is unusual. The contraction (about 0.18 Å) is

larger than the LEED result by about 0.07 Å. Such a large relaxation has never

been experimentally observed on stepped Cu surfaces. The over-contraction of

d12 may influence the other parameters. This can be seen from Table 6.8, where

the multilayer relaxation results of Cu(211) from various studies are listed. The

FLAPW result is from the same reference [70] as Cu(331). It can be seen that

the ∆d12 of Cu(211) from the FLAPW study is also significantly larger than the

LEED result [71] as in the case of Cu(331), and the agreement on ∆d23 and ∆d34 is

not convincing either. On the contrary, it can be seen that a pseudopotential (PP)

study [72] shows excellent agreement with the LEED result. A reinvestigation of

Cu(211) using the ultrasoft pseudopotential as described in the previous chapters

was also conducted. A 25-layer slab and 21 irreducible k-points were used. The

result is given in the last column of Table 6.8. It can be seen that the result also

agrees with the LEED data and is consistent with the previous PP study.

Tab. 6.9: Comparison of multilayer relaxations of Cu(210), Pd(210) and Pt(210) sur-
faces with LEED results. The DFT results are from this work.

Cu(210) Pd(210) Pt(210)
LEED [75] DFT LEED [91] DFT LEED [105] DFT

∆d12 (%) −11.12 −16.4 −3 −17.3 −23 −28.9
∆d23 (%) −5.68 −5.9 +7 −3.7 −12 −2.9
∆d34 (%) +3.83 +6.7 +3 +9.4 +4 +15.2
∆d45 (%) +0.06 −0.9 −1 −4.6 −3 −7.7
∆d56 (%) −0.66 −0.7 - +0.7 - +1.5

∆r12 (%) −1.83 −0.9 −2 −2.5 +1 −2.3
∆r23 (%) −2.51 −1.0 −1 −2.7 −2 −2.6
∆r34 (%) +1.68 +2.2 - +2.0 −5 +5.4
∆r45 (%) −0.48 −0.3 - +0.6 −1 +1.1
∆r56 (%) +0.06 −0.8 - −0.3 - −1.2

Three fcc (210) TM surfaces have been investigated by LEED. They are Cu(210)

[75], Pd(210) [91] and Pt(210) [105]. In Table 6.9, the results from LEED are com-

pared with the pseudopotential calculations. It can be seen that the agreement

obtained on Cu(210) is good for all the parameters except for a slightly larger

difference (about 0.04 Å) on ∆d12. However, on Pd(210), the LEED results give
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a relaxation sequence of − + + for the first three interlayer spacings. From the

LEED results of Pd(210) in Table 6.9, one can notice that the relaxation of d12

is considerably smaller (−3%), which has been questioned by the authors of the

LEED study. From a pseudopotential DFT study, Lischka and Groß [101] have

concluded that subsurface hydrogen could be the cause for the small relaxation of

d12 observed in the experiment since Pd is a well-known hydrogen-storage material.

As for Pt(210), the relaxation sequences of the interlayer spacings obtained from

the LEED analysis and the pseudopotential calculations are consistent. The large

relaxation of d12 is also reproduced by the pseudopotential calculations. However,

quantitative comparisons of other parameters show weaker agreement. The dis-

crepancies may be partly due to the small I-V dataset employed in the LEED

analysis, where only the data below 120 eV was used. The small I-V dataset is

reflected by the large error bars associated with that study, which are up to 0.06

Å (7%) for ∆d’s and 0.10 Å (6%) for ∆r’s.

6.3 Open Metal Surfaces of Other Structures

In Table 6.10, we list the relaxation sequences on all open Fe surfaces studied

by quantitative low-energy electron diffraction analysis [88, 106–108]. It can be

seen that these relaxation sequences are consistent with the proposed rule. This

implies that the rule may also apply to open surfaces of bcc metals although the

bcc structure is relatively less close-packed and the bulk atoms have only 8 nn’s.

Tab. 6.10: Testing of the proposed rule on open Fe surfaces.
Orientation nn sequence N Relaxation sequence Reference

Fe(211) (5, 7, 8 · · · ) 2 − + · · · [106]
Fe(310) (4, 6, 8 · · · ) 2 − + · · · [88]
Fe(111) (4, 7, 7, 8 · · · ) 3 − − + · · · [107]
Fe(210) (4, 6, 6, 8 · · · ) 3 − − + · · · [108]

Compared with fcc and bcc metals, fewer open surfaces of hcp metals have been

studied. Nevertheless, it is found that the relaxations on Be(101̄0) and Mg(101̄0)

obey the proposed rule. The atoms in the first layer of hcp(101̄0) surface have 8

nn’s, the second 10 and from the third layer downwards, the number recovers to the
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bulk value, 12. Hence, the relaxation sequence is expected to be − + · · · . This

has been confirmed by quantitative LEED analysis on Be(101̄0) and Mg(101̄0)

surfaces [86,87,109].

For missing-row (110)-(1x2) and (311)-(1x2) surfaces of fcc metals, the surface

slabs consist of one more atomic layer than those in the unreconstructed config-

urations due to the missing rows. The expansions are, therefore, expected to be

delayed to one layer deeper, i.e. to ∆d34. Indeed, this is found to be true for Pt

by first-principles calculations [102].

6.4 Conclusion

The multilayer relaxation rule proposed in last chapter has been evaluated on

(311), (331) and (210) surfaces of Ni, Cu, Rh, Pd, Ag, Ir and Pt by pseudopotential

DFT calculations. The calculations show a relaxation sequence of − + · · · for the

interlayer spacings of all the (311) surfaces and − − + · · · for all (331) and (210)

surfaces. These results are consistent with the proposed rule. This implies that

the surfaces of the same orientation, but of different metals, tend to have the same

relaxation sequence. Moreover, it has been shown that the proposed rule may also

apply to bcc and hcp metals and even reconstructed missing-row surfaces.
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The structures of Cu(210) and Fe(310) have been studied by quantitative

LEED analyses and first-principles pseudopotential calculations. It is demon-

strated that the layer-doubling method works well for high-index transition metal

surfaces with interlayer spacings down to at least 0.8 Å. This study suggest that,

in future quantitative LEED analysis on similar surfaces, especially those with

chemical (or physical) adsorptions, the layer-doubling method can be adopted to

save computational efforts. It is also shown that the agreement on the structural

parameters obtained from the two techniques with a tolerance of about 0.04 Å can

be achieved on both surfaces. This indicates the plane-wave method using ultrasoft

pseudopotentials is a reliable tool for studying the structures of high-index tran-

sition metal surfaces, which are traditionally inaccessible using norm-conserving

pseudopotentials due to the prohibitively large cut-off energy for the basis set.

A general rule of the multilayer relaxations on open metal surfaces has been

proposed. This rule relates the relaxation sequence to the reduction in the number

of the nearest neighbors in the surface region. With this rule, the relaxation

sequence of an open metal surface can be known a priori. This rule is consistent

with both the physical picture based on Smoluchowski’s charge smoothing and the

chemical picture based on Pauling’s bond-order–bond-length relation.

To check the validity of this rule, pseudopotential calculations have been car-

ried out. Firstly, taking Cu as an example, the high-index surfaces of the fcc

structure with interlayer spacings down to 0.5 Å are studied. It is shown that

the proposed rule is obeyed on all these surfaces. Secondly, the relaxations of

(311), (331) and (210) surfaces of seven transition metals (namely, Ni, Cu, Rh,

Pd, Ag, Ir and Pt) have been studied. The results show that the surfaces of the

same orientation, but of different materials, have the same relaxation sequence

and conform to the proposed rule. Moreover, it has been demonstrated that this

rule may also apply to open surfaces of other structures, such as bcc, hcp and

even reconstructed missing-row metal surfaces. Based on the evidence above, it is

expected that the proposed rule is universally applicable to open metal surfaces.
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Despite the consistency between the proposed rule and the pseudopotential

calculations, discrepancy with LEED results on several surfaces has been noticed.

Therefore, further evaluation of this rule on more surfaces by both quantitative

LEED analysis and first-principle calculations are needed.

Finally, it is worth mentioning that this rule addresses only the relaxations

within the surface slab and the relaxation between the surface slab and the sub-

strate. Sometimes, deeper interlayer spacings do relax significantly and oscillatory

relaxations have been found on some low-index surfaces, which has been attributed

to the Friedel oscillations of the charge density near the surfaces [110,111]. How-

ever, this oscillatory relaxation is not routinely found on high-index surfaces. The

relation of the relaxation sequence to the Friedel oscillation is, therefore, an inter-

esting topic for future work.
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