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Summary

Network based computing system has proven to be a power tool in processing large compu-

tationally intensive loads for various applications. In this thesis, we consider the problem of

design, analysis and application of load distribution strategies for divisible loads in linear net-

works with various real-life system constraints. We utilize the mathematical model adopted

by Divisible Load Theory (DLT) literature in the design of our strategies. We investigate

several influencing real-life scenarios and systematically derive strategies for each scenario.

In the existing DLT literature for linear networks, it is always assumed that only a single

load is given to the system for processing. Although the load distribution strategy for single

load can be directly implemented for scheduling multiple loads by considering the loads indi-

vidually, the total time of processing all the loads will not be an optimum. When designing

the load distribution strategy for multiple loads, the distribution and the finish time of the

previous load have to be carefully taken into consideration when scheduling the current load

as to ensure that no processors are left unutilized. We derive certain conditions to determine

whether or not an optimum solution exists. In case an optimum solution does not exist, we

propose two heuristic strategies. Using all the above strategies, we conduct four different

rigorous simulation experiments to track the performance of strategies under several real-life

situations.

In real-life scenario, it may happen that the processors in the system are busy with other
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computation task when the load arrives. As a result, the processors will not able to process

the arriving load until they have finished their respective tasks. The time instant after which

the processor is available, is referred as release time. We design a load distribution strategy

by taking into account the release times of the processors in such a way that the entire pro-

cessing time of the load is a minimum. We consider two generic cases in which all processors

have identical release times and when all processors have arbitrary release times. We adopt

both the single and multi-installment strategies proposed in the DLT literature in our design

of load distribution strategies, wherever necessary, to achieve a minimum processing time.

Finally, when optimal strategies cannot be realized, we propose two heuristic strategies, one

for the identical case, and the other for non-identical release times case, respectively.

Finally, as to complete our analysis on distribution strategies in liner networks, we consider

the problem of designing a strategy that is able to fully harness the advantages of the inde-

pendent links in linear networks. We investigate the problem of aligning biological sequences

in the field of bioinformatics. For first time in the domain of DLT, the problem of aligning bi-

ological sequences is attempted. We design multi-installment strategy to distribute the tasks

such that a high degree of parallelism can be achieved. In designing our strategy, we consider

and exploit the advantage of the independent links of linear networks.

Various future extensions are possible for the problems addressed in this thesis. We address

several promising extensions at the end of this thesis.
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Chapter 1

Introduction

Parallel and distributed computing systems have proven to be a power tool in processing

large computationally intensive loads for various applications such as large scale physics ex-

periments [1], biological sequence alignment [2], image feature extraction [3], Hough transform

[4], etc. These loads, which are classified under divisible loads, are made up of smaller portions

that can be processed independently by more than one processors. The theory of schedul-

ing and processing of divisible loads, referred to as divisible load theory (DLT), exists since

1988 [5], has stimulated considerable interest among researchers in the field of parallel and

distributed systems.

In DLT literature, the loads are assumed to be very large in size, homogeneous, and are arbi-

trarily divisible. This means that each partitioned portion of the load can be independently

processed on any processor on the network and each portion demands identical processing

requirements. DLT adopts a linear mathematical modelling of the processor speed and com-

munication link speed parameters. In this model, the communication time delay is assumed

to be proportional to the amount of load that is transferred over the channel, and the com-

putation time is proportional to the amount of load assigned to the processor. The primary
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objective in the research of DLT is to determine the optimal fractions of the entire load to be

assigned to each of the processors such that the total processing time of the entire load is a

minimum. A collection of all the research contributions in DLT until 1996 can be found in

the monograph [6] and a recent report consolidates all the published contributions till date

(2003) in this domain [7]. Now we present a brief survey on some of significant contributions

in this area relevant to the problem addressed in this thesis. Readers are referred to [8, 9] for

an up-to-date survey.

1.1 Related Work

In the domain of DLT, the primary objective is to determine the load fractions to be assigned

to each processor such that the overall processing time of the entire load is minimal. In all the

research so far in this domain, it has been shown that in order to obtain an optimal processing

time, it is necessary and sufficient that all the processors participating in the computation

must stop computing at the same time instant. This condition is referred to as an optimality

criterion in the literature. An analytic proof of the assumption for optimal load distribution

for bus networks also appears in [10]. Studies in [11] analyzed the load distribution problem

on a variety of computer networks such as linear, mesh and hypercube. Scheduling divisible

loads in three dimensional mesh have also been studied [12] and was recently improved by

Glazek in [13] by considering distributing the load in multiple stages. Barlas [14] presented an

important result concerning an optimal sequencing in a tree network by including the results

collection phase. Load partitioning of intensive computations of large matrix-vector products

in a multicast bus network was investigated in [15].

To determine the ultimate speedup using DLT analysis, Li [16] conducted an asymptotic

analysis for various network topologies. The paper [17] introduced simultaneous use of com-
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munication links to expedite the communication and the concept of fractal hypercube on the

basis of processor isomorphism to obtain the optimal solution with fewer processors is pro-

posed. Several practical issues addressed in conventional multiprocessor scheduling problems

in the literature were also attempted in the domain of DLT. These studies include, handling

multiple loads [18], scheduling divisible loads with arbitrary processor release times in bus

networks [19], use of affined delay models for communication and computation for scheduling

divisible loads [20, 21], and scheduling with the combination constraints of processor release

times and finite-size buffers [23]. Kim [24] presented the model for store-and-bypass com-

munication which is capable of minimizing the overall processing time. A recent works also

considered the problem of scheduling divisible load in real-time [29] and systems with memory

hierarchy [26]. The proposed algorithms in the literature were tested using experiments on

real-life application problems. In [28] rigorous experimental implementation of the matrix-

vector products on PC clusters as well as on a network of workstations (NOWs) were carried

out and in [27] several other applications such as pattern search, file compression, joining

operation in relational databases, graph coloring and genetic search using the divisible load

paradigm. Experiments have also been performed on Multicast workstation clusters [29].

Extension of the DLT approach to other areas such as multimedia was attempted in [30].

In the domain of multimedia, the concept of DLT was cleverly exploited to retrieve a long

duration movie from a pool of servers to serve a client site. In a recent paper, DLT is used in

designing mixed-media disk scheduling algorithm for multi-media server [31]. Implementation

of DLT have also been applied to the Grid for processing large scale physic experimental data

was considered in [1]. We shall now discuss our contribution in the next section.



Chapter 1 Introduction 4

1.2 Issues to Be Studied and Main Contributions

In this thesis, we consider design and analysis of load distribution strategy on linear networks.

Linear networks consist of set of processors interconnected in a linear daisy chain fashion. The

network can be considered as a subset of other much complex network topologies such as mesh,

grid and tree. As a result, strategies and solutions that are designed for linear networks can

be easily mapped/modified into these network topologies to solve much complex problems.

Although linear networks have a much complex pipelined communication pattern that may

induce a relatively large communication delay, the independent communication links between

processors in linear networks may offer significant advantages, depending on the underlying

applications. For example, in image feature extraction application [32], adjacent processors

are required to exchange boundary information and thus a linear network is a natural choice.

The independent links offer flexibility in the scheduling process as communications can be

done concurrently.

In the DLT literature, extensive studies have been carried out for the linear network topology

in determining the optimal load distribution strategy to minimize the overall processing time.

In all the works so far, it is always assumed that only a single load is given to the system

for processing. Nevertheless, in most practical situations, this may not be true always as

there may be cases where more than one load is given to the system for processing. This is

especially obvious in a grid like environment where multiple loads are given to the networked

computation system for processing. Designing a load distribution strategy for distributing

multiple loads is a challenging task as the condition for the previous loads have to been taken

into consideration when processing the next load. The optimal distribution for scheduling a

single load in linear networks using single-installment strategy [5] and closed-form solutions

[33] are derived in the literature. Although the load distribution strategy for single load can

be directly implemented for scheduling multiple loads by considering the loads individually,
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the total time of processing all the loads will not be optimum. We design a load distribution

strategy for handling multiple loads by taking into consideration of the distribution pattern

of the previous load to ensure that no processors and available communication times are left

unutilized. We derive certain conditions to determine whether or not an optimum solution

exists. In case an optimum solution does not exist, we will resolve to heuristic strategies.

In handling multiple loads in real-life scenario, it may happen that the processors in the system

are busy with other computation task when the load arrives. As a result, the processors

will not able to process the arriving load until they have finished their respective tasks.

A similar situation was considered in the literature in [19] for a bus network architecture,

which consists of only a single communication link. Nevertheless, when the similar situation

is applied to linear networks, the problem is by no means a trivial task as linear networks

have a pipelined communication pattern involving (m − 1) links, where m is the number of

processors in the system. Further, in the case of linear networks, adopting multi-installment

strategy for load distribution is very complex as there is a scope for “collision” among the

adjacent front-end operations, if communication phase is not scheduled carefully. In solving

this problem, we systematically consider different possible cases that can arise in the design

of a load distribution strategy. As done in the literature, we consider two possible cases of

interest, namely identical release times and non-identical release times. We design single and

multiple installment distribution strategies for both cases. We derive important conditions to

determine if these strategies can be used. If these conditions cannot be satisfied, we resolve

to heuristic strategies. We also propose few heuristic strategies for both the case of identical

release times and non-identical release times.

Although the linear networks have a complex pipelined communication pattern that may incur

large communication delay, the independent communication links between processors in linear

networks may offer significant advantages. We investigate some real-life applications and
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design a load distribution strategy that is able to harness these advantages. Specifically, we

consider the problem of aligning biological sequences in the field of Bioinformatics. We design

a distribution strategy that offer high degree of parallelism and clearly show the advantages

that the linear networks offer.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows.

In Chapter 2, we introduce the system model adopt in DLT and general definitions and

notations used throughout this thesis.

In Chapter 3, we investigate the problem of scheduling multiple divisible loads in linear

networks. We design and conduct load distribution strategies to minimize the processing

time of all the loads submitted to the system.

In Chapter 4, we consider the scenario where each processor has a release time after which

only it can be used to process the assigned load. As done in the literature, we consider two

possible cases of interest, namely identical release times and non-identical release times. We

derive conditions for both cases to check if optimal solution exist and resolve to heuristic

strategies when these conditions are violated.

In Chapter 5, we design load distribution strategy for the problem of aligning sequences in

the field of Bioinformatics.

In Chapter 6, we conclude the research works done and envision the possible future extensions.
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Chapter 2

System Modelling

In this chapter, we shall give a brief introduction our system model that is used in solving

the problems concerned. This model is widely used in the literature and details can be found

in [6, 7]. We will also introduce the terminology, definitions, and notations that are used

throughout the thesis.

2.1 Divisible Loads

In general, computation data, or loads (or jobs), can be classified into two categories, namely

divisible and indivisible loads. Indivisible loads are independent loads, of different sizes, that

cannot be further subdivided and hence must be processed by a single processor. There has

been intensive works done on scheduling indivisible loads such as [35, 36, 37], to quote a few.

Scheduling these loads are known to be NP-complete and hence only resolvable with heuristics

strategies that yield sub-optimal solutions.

On the other hand, divisible loads are loads that can be divided into smaller portions such

that they can be distributed to more than one processors to be process to achieve a faster
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Figure 2.1: Linear network with m processors with front-ends and (m− 1) links.

overall processing time. Large linear data files, such as those found in image processing, large

experimental processing, and cryptography are considered as divisible loads. Divisible loads

can be further categorize into modularly and arbitrary divisible loads. Modularly divisible

loads are divisible that can only be divided into smaller fixed size loads, based on the char-

acteristic of the load, while arbitrary divisible loads can be divided into smaller size loads of

any sizes.

2.2 Linear Daisy Chain Network Architecture

A linear daisy chain network architecture consists of m numbers of processors connected with

(m − 1) numbers of communication links, as illustrated in Fig. 2.1. The processors in the

system may or may not be equipped with front-ends. Front-ends are actually a co-processors

which off loads the communication duties of a processor. Thus, a processor that has a front-

end can communicate and compute concurrently. However, note that, the front-end of each

processor cannot send and receive data simultaneously. The linear networks considered in this

thesis is generally heterogenous and all processors are assumed to be equipped with front-ends.

The heterogeneities considered are the computation and communication speed.
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2.3 Mathematical Models and Some Definitions

In the DLT literatures, linear mathematical model is used to model the processors speed

and communication links speed parameters. In this model, the communication time delay

is assumed to be proportional to the amount of load that is transferred over the channel,

and the computation time is proportional to the amount of load assigned to the processor

[6]. Rigorously experiments have been done to verify the accuracy of this model [11, 28]. We

adopt this model in solving the problems concerned in this thesis.

2.3.1 Processor model

Processor computation speed is modelled by the time taken for the individual processor Pi to

compute a unit load. This parameter is denoted as wi, and is defined as

wi =
Time taken by Pi to process a unit load

Time taken by a standard processor to process a unit load
(2.1)

The speed of Pi is inversely proportional to wi and the standard processor, which serve as a

reference, will have wi = 1. To specify the time performance, a common reference denoted as

Tcp is defined as

Tcp = Time taken to process a unit load by the standard processor (2.2)

Thus, wiTcp represent the time taken by Pi to process a unit load. Example, if given a fraction

αi of the total load size of Ln to Pi to be process, the total time taken by Pi to process this

load will be αiLnwiTcp.
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2.3.2 Communication link model

Communication link speed is modelled by the time taken for the individual link li to commu-

nicate a unit load. This parameter is denoted as zi, and is defined as

zi =
Time taken by li to process a unit load

Time taken by a standard link to communicate a unit load
(2.3)

Similar to the processor model, the speed of li is inversely proportional to zi. The stan-

dard communication link, which serve as a reference, will have zi = 1. To specify the time

performance, a common reference for communication link is denoted as Tcm is defined as

Tcm = Time taken to communicate a unit load by the standard link (2.4)

Thus, ziTcm represent the time taken by li to communicate a unit load. Example, if given

a fraction αi of the total load size of Ln to be communicated over the link li, the total

communication delay of this load fraction will be αiLnziTcm.

2.3.3 Some notations and definitions

We shall now introduce the terminology, definitions, and notations that are used throughout

this thesis.

m The total number of processors in the system

Pj The processor j, where j = 1, 2, ...,m

li The communication link connecting processors Pi and Pi+1, i = 1, ..., m− 1

wi The inverse of the computation speed of the processor Pi.

Tcp Time taken by the standard processor (wi = 1) to compute a unit load.

zi The inverse of the communication speed of the link li.

Tcm Time taken by a standard link (zi = 1) to communicate a unit load.
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Chapter 3

Load Distribution Strategies for

Multiple Divisible Loads

In this chapter, we consider the problem of scheduling multiple divisible loads in hetero-

geneous linear daisy chain networks. Our objective is to design efficient load distribution

strategies that a scheduler can adopt so as to minimize the total processing time of all the

loads given for processing. The optimal distribution for scheduling a single load in linear

networks using single-installment strategy [33] and multi-installment strategy [6] are derived

in the literature. Although the load distribution strategy for single load can be directly im-

plemented for scheduling multiple loads by considering the loads individually, the total time

of processing all the loads will not be an optimum. Scheduling multiple loads in bus networks

has been considered in [18] and a recent paper [40] presents some improved multiple loads

distribution strategies for bus networks. In [40], rigorous simulation experiments are carried

out to show the performance superiority of multi-installment strategy over single-installment

strategy. Designing a multiple-load distribution strategy for linear networks is by no means

a trivial task as the loads distribution basically has a pipelined communication pattern. This

poses considerable challenge in designing strategies which maximizes the utilization of pro-
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cessor available times, front-end available times, and communication link times, respectively.

The organization of this chapter is as follows. In Section 3.1 we present the problem formula-

tion and the terminology, definitions and notations that are used throughout the chapter. In

Section 3.2, we will then present the design and analysis of our proposed strategy. In Section

3.3, we propose two heuristic strategies and present some illustrative examples. Later, in Sec-

tion 3.4, we discuss the performance of the strategies proposed through rigorous simulation

experiments. Finally, in Section 3.5, we conclude and discuss possible extensions to this work.

3.1 Problem Formulation

In this chapter, the loads for processing are assumed to arrive at one of the farthest end

processors, referred to as boundary processors, say P1 or Pm. Without loss of generality, we

assume that the loads arrive at P1. Further, we assume that the loads to be processed are

resident in the buffer of the processor P1. The process of load distribution is carried out by

a scheduler residing at processor P1. In general, the load distribution strategy is as follows.

The processor P1 (which has a scheduler) keeps a load portion for itself and then sends the

remaining portion to P2. Processor P2 upon receiving the portion from P1, will keep a portion

of the load for itself for processing and communicates the remaining load to P3 and so on.

Note that, as soon as a processor receives the load from its predecessor, it starts processing

its portion and also starts communicating the remaining load to its successor. It should be

noted that as far as the loads to be processed are concerned, the all the processors are single

tasking machines, i.e., no two loads share the CPUs at the same instant in time. We use the

optimality criterion mentioned in Chapter 1 in the design of an optimal distribution strategy.

Also, it maybe noted that, in the design of optimal distribution strategy, we may be attempt

to use multi-installment strategy [38].
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As mentioned, we consider the case where multiple loads were given to the system, stored

in the buffer of P1, to be processed. We assume that N loads are resident in the buffer of

P1. When designing the load distribution strategy for multiple loads, the distribution and

the finish time of the (n − 1)-th load are taken into consideration when scheduling the n-th

load as to ensure that no processors are left unutilized. In this chapter, we shall present the

scheduling strategy for the n-th load, 2 ≤ n ≤ N , by assuming that load distribution and the

finish time of the (n− 1)-th load are known to P1.

We shall now introduce an index of terminology, definitions and notations that are used

throughout the chapter.
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T n
cp Time taken by the standard processor (wi = 1) to compute the n-th load, of

size, Ln, where T n
cp = TcpLn

T n
cm Time taken by a standard link (zi = 1) to communicate the n-th load, of size,

Ln, where T n
cm = TcmLn.

N The number of loads that is stored the buffer of P1.

Ln Size of the n-th load, where 1 ≤ n ≤ N .

Lk,n Portion of the n-th load, Ln, assigned to the k-th installment for processing.

α
(k)
n,i The fraction of the load assigned to Pi for processing the total load Lk,n, where

0 ≤ α
(k)
n,i ≤ 1, ∀i = 1, ..., m and

m∑

i=1

α
(k)
n,i = 1

tk,n This is the time instant at which the communication for the load to be dis-

tributed (Lk,n) for the k-th installment is initiated.

Ck,n This is the total communication time of the k-th installment for the n-th load,

of size Ln, when Lk,n = 1, where, Ck,n =
T n

cm

Ln

m−1∑

p=1

zp(1−
p∑

j=1

α
(k)
n,j)

Ek,n This is the total processing time of Pm for the k-th installment for the n-th

load, of size Ln, when Lk,n = 1, where, Ek,n = α(k)
n,mwmT n

cp

1

Ln

T (k, n) This is referred to as the finish time of the k-th installment for the n-th load,

of size Ln, and it is defined as the time instant at which the processing of the

k-th installment, for the n-th load, of size Ln, ends.

T (n) This is referred to as the finish time of the n-th load, of size Ln, and it is defined

as the time instant at which the processing of the n-th load ends. Where T (n) =

T (Q,n) if Q is the total number of installments require to finish processing the

n-th load. And T (N) is the finish time of the entire set of loads resident in P1.
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3.2 Design and Analysis of a Load Distribution Strat-

egy

In this section, we shall design and analyze the load distribution strategies for processing

multiple loads. For the analysis of the load distribution strategy when there is only one load,

i.e., for N = 1, the readers are referred to [39, 33]. In this section, as a means of generalization,

we shall consider the load distribution strategies for processing two adjacent loads, say the

(n−1)-th and the n-th load. For the ease of understanding, we denote hereafter, the n-th load

by its size Ln, as well as the load portion from n-th load assigned to the k-th installment by its

size Lk,n. Example, the load Lx and Ly,z has the size of Lx and Ly,z respectively. Here we shall

consider scheduling the load Ln by assuming that the distribution and T (n − 1) are known

to P1. It may be noted that one of the issues that need to be taken into consideration while

scheduling Ln is that the load distribution, Lnα
(1)
n,i , i = 1, ..., m, should be communicated to

the respective processors Pi, i = 1, ...,m before T (n− 1) so that no processors will be left un-

utilized. Nevertheless, since the load Ln can be of any size, there may be a situation wherein

the load Ln is very large that the load fractions may not able to reach all the respective

processors before T (n − 1). As a result, we need to deal with two different distinct cases as

follows.

Consider the timing diagram shown in Fig. 3.1. In this figure, the communication time is

shown above the x-axis whereas the computation time is shown below the axis. This timing

diagram corresponds to the case when the load Ln can be completely distributed before

T (n− 1). For this distribution strategy, we will first derive the exact amount of load portions

to be assigned to each processor. From the timing diagram shown in Fig. 3.1, we have,

α
(1)
n,iwiT

n
cp = α

(1)
n,i+1wi+1T

n
cp, i = 1, ...,m− 1 (3.1)
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Tcmzi(1-Σj=1αn,j)
n i (1)

Tcmzi+1(1-Σj=1αn,j)
n i+1 (1)

P2

P1

Pi

Pi+1

Pm

Pm-1

Tcmz1(1-αn,1)
n (1)

Tcmz2(1-αn,1-αn,2)
n (1) (1)

Tcmzm-1(1-Σj=1αn,j)
n m-1 (1)

TcmΣp=1zp(1-Σj=1αn,j)
n m-1 p (1)

t = T(n-1)t = t1,n
t = T(n)

t
αn,1w1Tcp

n(1)

αn,2w2Tcp
n(1)

αn,iwiTcp
n(1)

αn,i+1wi+1Tcp

n(1)

αn,m-1wm-1Tcp

n(1)

αn,mwmTcp

n(1)

Figure 3.1: Timing diagram for the single-installment strategy when the load Ln can be

completely distributed before T (n− 1)

We can express each of the α
(1)
n,i in terms of α(1)

n,m as,

α
(1)
n,i = α(1)

n,m

wmT n
cp

wiT n
cp

= α(1)
n,m

wm

wi

(3.2)

Using the fact that
∑m

i=1 α
(1)
n,i = 1, we obtain,

α(1)
n,m =

1

1 +
∑m−1

i=1
wm

wi

(3.3)

Thus, using (3.3) in (3.2) we obtain,

α
(1)
n,i =


 1

1 +
∑m−1

p=1
wm

wp


 wm

wi

, i = 1, 2, ..., m (3.4)

Note that the actual load that is assigned to each Pi is Lnα
(1)
n,i . Then, we have to determine the

time instant, t1,n, at which P1 shall start distributing the load L1,n. The load distribution for

the load L1,n starts at the time instant when P1 finish delivering the load portion LQ,n−1(1−

α
(1)
n−1,1) to P2 (assuming the load Ln−1 requires Q number of installments to be distributed)

and will incur a “collision” with the front-end of P2 as it is still busy sending respective load

to P3. Similarly by initiating communication of the load when the front-end of P2 is available
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Figure 3.2: Timing diagram showing a collision-free front-end operation between the load

Ln−1 and Ln for a m = 6 system. Exclusively for this timing diagram, the diagonally shaded

area below the each processor’s axis indicate the period when the front-end is busy

may still cause similar collisions among the front-ends of other processors and this process

may continue until processor Pm−1. As a result, we need to determine tn, the starting time

that will guarantee a collision-free front-end operation for all processors to communicate to

their respective successors.

Before we describe the strategy in general, we shall consider a network with m = 6 and describe

the strategy between two adjacent loads Ln−1 and Ln as shown in the timing diagram in Fig.

3.2. From this diagram, we observe that, for the distribution of LQ,n−1, the front-end of P2

is occupied until τ2, while the front-end of P3, P4, and P5 is occupied until τ3, τ4 and τ5

respectively. On the other hand, for the distribution of L1,n, the front-end of P2 will start

receiving the load at t1,n, while the front-end of P3, P4, and P5 will start receiving at τ ′3, τ ′4
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and τ ′5, respectively (for the given t1,n). Note that, t1,n in Fig. 3.2 is slightly shifted to right

for the purpose of easy explanation. Now, in order to have a collision free operation for the

front-end of P2, i.e., t1,n ≥ τ2 , we have,

t
(2)
1,n ≥ tQ,n−1 + T n−1

cm

LQ,n−1

Ln−1

2∑

p=1

zp(1−
p∑

j=1

α
(Q)
n−1,j) (3.5)

The superscript of t1,n denotes the index of the processor from which we consider a collision

free operation. Similarly, for a collision free operation for the front-end of P3, i.e., τ ′3 ≥ τ3, we

have

t
(3)
1,n + T n

cm

1∑

p=1

zp(1−
p∑

j=1

α
(1)
n,j) ≥ tQ,n−1 + T n−1

cm

LQ,n−1

Ln−1

3∑

p=1

zp(1−
p∑

j=1

α
(Q)
n−1,j) (3.6)

Similar equations can be obtained when considering collision free front-end operations for

P4 and P5, respectively. Hence, in order to have a collision-free front-end operation for this

system, we need to determine t1,n that can satisfy these following conditions, t1,n ≥ τ2, τ ′3 ≥ τ3,

τ ′4 ≥ τ4 and τ ′5 ≥ τ5. Note that, we need not consider a collision free operation for front-end of

P1 and P6 (Pm) as can be seen from Fig. 3.2, the front-end for P1 and P6 are already taken into

consideration while we are considering collision free operations for the front-end for P2 and

P5 (Pm−1) respectively. Hence, for a m processors system, we will have t(i)n , i = 2, ..., m− 1.

In general, to obtain a distribution for a collision free front-end operation for a m processors

system, we must use the following t1,n,

t1,n = max{t(i)1,n}, i = 2, ..., m− 1 (3.7)

where, for i = 2, ..., m− 1

t
(i)
1,n = tQ,n−1 + LQ,n−1X

(i)
Q,n−1 − LnY

(i)
1,n (3.8)

and

X
(i)
k,n =

T n
cm

Ln

i∑

p=1

zp(1−
p∑

j=1

α
(k)
n,j) , Y

(i)
k,n =

T n
cm

Ln

i−2∑

p=1

zp(1−
p∑

j=1

α
(k)
n,j) (3.9)



Chapter 3 Load Distribution Strategies for Multiple Divisible Loads 19

Note that the value obtained from (3.7) guarantees a collision free scenario, as all the load

that was percolating down the network for the previous load would have been completed

before any processor communicates the next load.

As mentioned earlier, we may have two conditions where the load Ln may or may not be able

to be communicated to all processors before T (n− 1). Thus, before we schedule the load Ln,

following condition is first verified.

LnC1,n ≤ T (n− 1)− t1,n (3.10)

The left hand side of the above expression is the total communication time needed to com-

municate the load portion Lnα
(1)
n,i to Pi, i = 1, ..., m respectively where α

(1)
n,j, j = 1, ..., m in

C1,n are as defined in (3.4). On the other hand, the right hand side of the above expression is

the total available time for communication before T (n− 1) where t1,n are as defined in (3.7).

3.2.1 Case 1: LnC1,n ≤ T (n− 1)− t1,n (Single-installment strategy)

This is the case when (3.10) is satisfied. When (3.10) is satisfied, we can distribute the load

Ln in a single installment and the optimal distribution is given by (3.4) while the finish time

for Ln in this case is T (n) = T (n− 1) + L1,nE1,n, where L1,n = Ln.

3.2.2 Case 2: LnC1,n > T (n− 1)− t1,n (Multi-installment strategy)

This is the case when the entire load Ln cannot be communicated to all the processors in

a single installment, e.g., when (3.10) is violated. This prompts us to use multi-installment

strategy where the load Ln is divided into smaller fractions and distributed in multiple in-

stallments.

For this case, at the first installment, there are two issues to be considered in the design of
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the strategy. Firstly, as done in the case of single-installment strategy, we have to consider

collision-free operations among the front-ends of the system. Secondly, we have to determine

the exact amount of loads for the load L1,n, where L1,n < Ln, such that it can be completely

distributed before T (n− 1). Hence, starting from t1,n, we have the following condition to be

satisfied.

t1,n + L1,nC1,n ≤ T (n− 1) (3.11)

where α
(1)
n,j, j = 1, ..., m in C1,n is as defined in (3.4) and t1,n is as defined in (3.7), that is

t1,n = max{t(i)1,n}, i = 2, ..., m − 1. Hence, in order to satisfy (3.11) we have the following

condition,

t
(i)
1,n + L1,nC1,n ≤ T (n− 1) , i = 2, ..., m− 1 (3.12)

Solving (3.12), with equality relationship, and (3.8) for a collision-free front-ends operation,

for i = 2, .., m− 1, we have,

t
(i)
1,n =

C1,n

(
tQ,n−1 + LQ,n−1X

(i)
Q,n−1

)
− T (n− 1)Y

(i)
1,n

C1,n − Y
(i)
1,n

(3.13)

where X
(i)
k,n and Y

(i)
k,n are as defined in (3.9). We can then calculate t1,n which is defined in

(3.7), but for the multi-installment strategy, we obtain t
(i)
1,n from (3.13) instead of (3.8). After

we have determined t1,n, we can obtain L1,n by solving (3.11) with equality relationship. That

is,

L1,n =
T (n− 1)− t1,n

C1,n

(3.14)

The finish time of the first installment will then be T (1, n) = T (n − 1) + L1,nE1,n. For the

second installments onwards, the procedure is very similar to first installment. As shown in

the timing diagram of Fig. 3.3, we attempt to complete the distribution of L2,n before L1,n

is fully processed, e.g., before T (1, n). In general, we attempt to complete the distribution of

Lk,n before T (k− 1, n). Thus, we have a condition, which is similar to (3.11), where the load

Lk,n has to be such that, the total communication time for Lk,n, starting from time t = tk,n
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P2

P1

Pi

Pi+1

Pm

Pm-1

L1,nC1,n

t = T(n-1)

t = t1,n
t = T(1,n)

t

L1,nE1,n

t = t2,n
t = t3,n

t = T(2,n)

L2,nE2,n

Figure 3.3: Timing diagram for the multi-installment strategy when the distribution of the

load L2,n is completed before the computation process for load L1,n

is less than the finish time of the load Lk−1,n, that is,

tk,n + Lk,nC1,n ≤ T (k − 1, n) (3.15)

where T (k − 1, n) = tk−1,n + Lk−1,n(C1,n + E1,n). Note that we have replaced Ck,n with C1,n

in (3.15) since α
(k)
n,j, the proportions in which the load Lk,n will be distributed among m

processors remain identical in every installment, where α
(1)
n,j is given by (3.4). This condition

also applies to the Ck−1,n and Ek−1,n within T (k − 1, n) in (3.15).

Similar to the first installment, we have to consider a collision-free front-end operation between

the distribution of Lk−1,n and Lk,n. As a result, we have the following condition, which is

similar to (3.8), for i = 2, ..., m− 1,

t
(i)
k,n = tk−1,n + Lk−1,nX

(i)
1,n − Lk,nY

(i)
1,n (3.16)

where X
(i)
1,n and Y

(i)
1,n are as defined in (3.9). Similar to the replacement of Ck,n(with C1,n) in

(3.15), we use X
(i)
1,n and Y

(i)
1,n instead of X

(i)
k−1,n and Y

(i)
k,n respectively in (3.16) because X

(i)
k,n and

Y
(i)
k,n will remain constant for every installment of Ln.
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Solving (3.15) and (3.16), for i = 2, ..., m− 1, we have,

t
(i)
k,n = tk−1,n + Lk−1,nH(i) (3.17)

where,

H(i) =


X

(i)
1,nC1,n − Y

(i)
1,n(C1,n + E1,n)

C1,n − Y
(i)
1,n


 (3.18)

We denote,

H = max{H(i)}, ∀i = 2, ..., m− 1 (3.19)

For a collision-free front-end operation, we must have tk,n = max{t(i)k,n}, i = 2, ...,m− 1.

Hence, for a collision-free front-end operation, we have,

tk,n = tk−1,n + Lk−1,nH (3.20)

It may be noted that in (3.20), the value of H may be pre-computed as it involves determining

the values of H(i) for all i, which are essentially constants. Thus, (3.20) can be used to

compute the values of tk,n, for k > 1 by using the previous values and the value of H. Now,

after we obtained the value tk,n, Lk,n can then be calculated by solving (3.15) with equality

relationship with respect of Lk,n. That is,

Lk,n =
T (k − 1, n)− tk,n

C1,n

(3.21)

The finish time of each installment is given by, T (k, n) = T (k − 1, n) + Lk,nE1,n. The above

procedure will determine the start times of the installments and the amount of loads that

needs to be assigned in each installment. We will repeat the above procedure until the last

installment. The last installment can be determined by calculating the number of installments

required to process the entire load Ln, which we will discuss in the next section. Now, suppose

we assume that Q installments are required to process the entire load Ln, then for the last

installment, we have

LQ,n = Ln −
Q−1∑

p=1

Lp,n (3.22)
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Since we already obtained the amount of loads for the load LQ,n, we can then calculate tQ,n

by the following equation,

tQ,n = max{t(i)Q,n}, i = 2, ..., m− 1 (3.23)

where t
(i)
Q,n is as defined (3.16) with Q in the places of k. Then, the finish time for the load

Ln is, T (n) = T (Q − 1, n) + LQ,nE1,n Now, a final question that is left unanswered in our

analysis so far is on the number of installments require to distribute the entire load Ln, which

we address in the following section.

Calculation of an optimal number of installments

Here, we will present a strategy to calculate an optimal number of installments required, if

it exists, to process the entire load Ln. We will derive some important conditions to ensure

that the load Ln will be processed in a finite number of installments. We shall now assume

that we need Q installments to distribute the entire load Ln to be processed and determine

the conditions under which such a value of Q may exist. To derive this value of Q, we start

by solving (3.20) and (3.21) to obtain a relationship between Lk−1,n and Lk,n. Thus, Lk,n is

given by,

Lk,n =
Lk−1,n

C1,n

B (3.24)

where B = C1,n + E1,n −H. Using the above relationship, we can express each of Lk,n, k =

2, ..., Q in terms of L1,n = T (n−1)−t1,n

C1,n
, as,

Lk,n =

(
T (n− 1)− t1,n

B

) (
B

C1,n

)k

(3.25)

Note that since the load Lk,n is the fraction of the load Ln, and if Q is the last installment,

it is obvious that
∑Q

j=1 Lj,n = Ln. Hence, we have,

Ln =

(
T (n− 1)− t1,n

B

) (
B

C1,n

) Q−1∑

j=0

(
B

C1,n

)j

(3.26)
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from which we obtain,

Ln =

(
T (n− 1)− t1,n

B

) (
B

C1,n

) 
( B

C1,n
)Q − 1

( B
C1,n

)− 1


 (3.27)

Simplifying the above expression, we obtain,

Q =


 ln

(
T (n−1)−t1,n+Ln(B−C1,n)

T (n−1)−t1,n

)

ln
(

B
C1,n

)

 (3.28)

Now, from the above expression, for Q > 0, T (n − 1) − t1,n + Ln(B − C1,n) > 0, where B is

as defined above. Equivalently, we have the following relationship to be satisfied.

T (n− 1)− t1,n > Ln(H − E1,n) (3.29)

The above condition must be satisfied in order to obtain a feasible value of Q. Thus, when the

above condition is satisfied, we distribute the load in Q installments. However, if the above

condition is violated and no feasible value of Q may exist. When this happens, it means

that continuous processing of the load will not be possible, which results in processor under

utilization. In this case, we use heuristic strategies to complete the distribution of the load.

We shall present two heuristic strategies and illustrative examples in the next section.

Note that, if a system has parameters such that B = C1,n(i.e. H = E1,n), the system will

always satisfy (3.29). Nevertheless, Q cannot be obtained from (3.28). For such cases, we

note that, from (3.25), Lk,n, k = 1, ..., Q will remain constant, hence Q can be calculated

with the following equation,

Q =
Ln

L1,n

(3.30)

Lemma 3.1: When the condition (3.29) is violated, Lk,n > Lk+1,n.

Proof: When (3.29) is violated, we have,

T (n− 1)− t1,n ≤ Ln(H − E1,n) (3.31)

Substituting H = E1,n + C1,n −B, we obtain,

T (n− 1)− t1,n ≤ Ln(C1,n −B) (3.32)
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Rearranging (3.32), we have,

C1,n ≥ T (n− 1)− t1,n + LnB

Ln

(3.33)

Since T (n− 1)− t1,n > 0 and Ln > 0, we have,

B

C1,n

< 1 (3.34)

Substituting the above condition into (3.25), observe Lk,n > Lk+1,n. Hence the proof.

3.3 Heuristic Strategies

In this section, we shall present two heuristic strategies that can be used to distribute the load

when conditions for continuous processing of the load cannot be satisfied, i.e., when (3.29) is

violated.

Heuristic A: In this heuristic, we attempt to distribute the entire load Ln in a single in-

stallment. We first partition the processors into two groups as those which receive their data

before time T (n−1) and those receive their data after time T (n−1). We shall call the former

group as set S, and the processors in this set satisfy the following condition for i = 1, ...,m

t1,n +
i−1∑

p=1

(1−
p∑

j=1

α
(1)
n,j)zpT

n
cm ≤ T (n− 1) (3.35)

First, we assume that initially S = {P1}. Hence, we will have the following relationship

between Lnα
(1)
n,i and Lnα

(1)
n,i+1, for i = m− 1,m− 2, ..., 2

α
(1)
n,iwiT

n
cp =

m∑

j=i+1

α
(1)
n,jziT

n
cm + α

(1)
n,i+1wi+1T

n
cp (3.36)

Note that the set of equations obtained from (3.36) is constant for a particular system hence

can be pre-determined. Using (3.36), we can relate Lnα
(1)
n,i , i = 2, ..., m− 1, with respect to

Lnα
(1)
n,m and using the fact that

∑m
i=1 α

(1)
n,i = 1, we obtain,

α
(1)
n,1 +

m∑

i=2

α
(1)
n,i = 1 (3.37)
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Expressing each of the α
(1)
n,i , i = 2, ...,m in (3.37) with (3.36), we determine α

(1)
n,1 as a function

of α(1)
n,m. Hence, we obtained all the α

(1)
n,i , i = 1, ..., m with respect to α(1)

n,m. Then, since we

know all the processors in the set S start computing at T (n−1), we define a condition wherein

the processing time for P1, starting from T (n− 1) , is the equal to the total communication

time till Pm plus the processing time of Pm. That is,

T (n− 1) + α
(1)
n,1w1T

n
cp = t1,n + Ln (C1,n + E1,n) (3.38)

Note that, t1,n in the above equation is still unknown as it depends on the values of α
(1)
n,j, j =

1, ..., m which is yet to be calculated. Hence, initially, we shall use values of α
(1)
n,j, j = 1, ...,m

calculated from (3.4) to approximate the value of t1,n using (3.7).

Solving (3.38) using all the α
(1)
n,i , i = 1, ..., m found previously, we can then calculate α(1)

n,m.

With α(1)
n,m known, all other α

(1)
n,i , i = 1, ...,m− 1 can be immediately calculated. Substituting

these sets of α
(1)
n,i , i = 1, ...,m into (3.9), we can then find a better approximation for t1,n

using (3.7), we denote this t1,n as t∗1,n . This t∗1,n can then be use as t1,n in (3.38) to solve for

another set of α
(1)
n,i , i = 1, ..., m, which will be used to find t1,n again. This cycle will continue

until the value of t∗1,n = t1,n. We will then use this value of t1,n for rest of the procedure.

Note that, t∗1,n and t1,n may not be exactly equal to each other but both values will be almost

identical after a few iteration.

Now, we use (3.35) to identify a set of processors that can be included in the set S together with

P1. After identifying the set S, we use the following set of recursive equations to determine

the exact load portions to be assigned to the processors. Note that, for all processors in S,

we use the following equation to determine the load portion Lnα
(1)
n,i , Pi ∈ S with respect to

Lnα
(1)
n,1.

Lnα
(1)
n,i = Lnα

(1)
n,1

w1

wi

(3.39)

Then, solving (3.39) for the processors in S, (3.36) for other processors and together with

(3.37) and (3.38), we get another set of Lnα
(1)
n,i , i = 1, ..., m. These are the load fractions that
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Figure 3.4: Flow-chart diagram illustrating the workings of Heuristic A
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are to be assigned to the processors in the system. Note that although (3.39) assumes that

the processors in S start at T (n − 1), the exact communication delays are not accounted.

Therefore, as a last step, we need to verify whether or not all the processors in S indeed start

at T (n − 1) using (3.35). Thus, in case, if some processors in S violate (3.35), we will then

eliminate the last processors in S and repeat the above procedure until all processors in S

satisfy (3.35). On the other hand, if all the processors in S satisfy (3.35) it is guaranteed

that all the processors in S can indeed start from T (k − 1). Further, at this stage, as an

incentive, it may happen that few processors that do not belong to S may satisfy (3.35) and

we include all these processors in the set S. The flowchart in Fig. 3.4 and the following

example illustrates the workings of Heuristic A.

Example 3.1 (Heuristic A): Consider a linear network system with the parameters, m = 6,

T n
cp = 5, T n

cm = 1, w1 = 2, w2 = 1, w3 = 3, w4 = 2, w5 = 2, w6 = 1, z1 = 1, z2 = 2,

z3 = 1, z4 = 3, z5 = 2 and Ln = 380. Also, for the (n − 1)-th load, α
(1)
n−1,1 = 0.2594,

α
(1)
n−1,2 = 0.3989, α

(1)
n−1,3 = 0.0874, α

(1)
n−1,4 = 0.1057, α

(1)
n−1,5 = 0.0612, α

(1)
n−1,6 = 0.0874 and

T (n− 1) = 1.0341× 103.

Initially we assume S = {P1}. Then, we use (3.36) to obtain α
(1)
n,2 = 4.57α

(1)
n,6, α

(1)
n,3 = 1.00α

(1)
n,6,

α
(1)
n,4 = 1.21α

(1)
n,6 and α

(1)
n,5 = 0.70α

(1)
n,6. Using these values in (3.37), we obtain Lnα

(1)
n,1 =

Ln − 8.84Lnα
(1)
n,6. Using the value of α

(1)
n,i , i = 1, ...,m found using (3.4), we first approximate

t1,n = 7.45 × 102. Now, with t1,n and all Lnα
(1)
n,i , i = 1, ..., 6 in respect to Lnα

(1)
n,6 known, we

can immediately obtain the value Lnα
(1)
n,6 = 35.23 by solving (3.38). Other values, Lnα

(1)
n,i , i =

1, ..., 5 can then be calculated.

With this set of α
(1)
n,i , i = 1, ..., 6, we calculate the new t1,n = 6.93 × 102. We then set

t∗1,n = t1,n = 6.93× 102 and repeat the above procedure. We found that t∗1,n = t1,n, hence we

will use this t1,n for the remaining calculation. Next, we check this set of α
(1)
n,i , i = 1, ..., 6 and

observed that P1, P2 and P3 satisfy (3.35). Hence, we include P2 and P3 in S and then use
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Figure 3.5: Example illustrating the working style of Heuristic A

(3.39) to get Lnα
(1)
n,2 = 2Lnα

(1)
n,1 and Lnα

(1)
n,3 = 0.67Lnα

(1)
n,1.

We repeat the above procedure again and we still obtain t∗1,n = t1,n. We then check the new

values for the set of α
(1)
n,i , i = 1, ..., 6 and found that P3 has violated (3.35), hence we remove

it from S. Repeating the above procedure, we found that t1,n remains the same and only P1

and P2 satisfy (3.35), and hence the result. The finish time is given by, 1.83 × 103 unit and

Fig. 3.5 illustrates the final solution.

Heuristic B: For this heuristic strategy, we attempt to use multiple installments to distribute

the load by intentionally introducing an additional delay such that (3.29) can be satisfied.

From (3.29), we notice that one of the reasons for the violation of (3.29) is that there is

insufficient communication time for Ln, i.e., T (n−1)− t1,n is small. Hence, in order to satisfy

(3.29), we introduce an additional delay δT to T (n− 1) such that (3.29) can be satisfied. We

choose a value of δT such that,

T (n− 1)− t1,n + δT > Ln(H − E1,n) (3.40)
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The procedure for this heuristic is almost identical to the multi-installment strategy discussed

in Section 3.2.2 except that δT is added to T (n− 1) in (3.11) and (3.14). Hence, we have the

following two equations to replace (3.11) and (3.14), respectively.

τn + L1,nC1,n ≤ T (n− 1) + δT (3.41)

t1,n + L1,nC1,n = T (n− 1) + δT (3.42)

Note that, although δT is the additional delay introduced to the system, having the smallest

possible δT may not guarantee the best solution. For example, using a smaller value of δT may

minimize the amount of processor time wasted (due to the delay introduced) and also may

minimize T (n). Nevertheless, having a small value of δT also means increasing of the number

of installments required (increase complexity) to process the load Ln while decreasing the total

available communication time for the next load Ln+1. The reason behind this is that, when

(3.29) is initially violated, it means that Lk,n is decreasing in size in each iteration (proven in

Lemma 3.1). Also note that, from (3.41), when the value of δT is small, the amount of loads

L1,n will be less as well. Hence, the amount of loads Lk,n for each of the following installments

will be subsequently lesser, thus requiring more installments to finish processing the load Ln.

In the final installment for Ln, a small amount of load implies less processing time for that

installment, which implies smaller total available communication time for Ln+1 according to

(3.11). Therefore, the value of δT needs to be tuned accordingly, that is considering the

trade-off between a larger T (n) for less complexity and allowing more communication time

for the next load. The timing diagram in Fig. 3.6 and Fig. 3.7 illustrates the effect of having

a small and large value of δT for the case of a 6 processors system.
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3.4 Simulation and Discussions of the results

As stated in Section 3.1, we assume that the set of loads is initially resident in the buffer

of P1. Hence, we have an option of sorting the given loads according to its size (either in

ascending or descending order) before distributing them. Hence, we consider three cases in

our simulation experiments where the given set of loads is (a) Unsorted (b) Sorted by smallest

load first (SLF) (c) Sorted by largest load first (LLF).

To test the performance of both the heuristic strategies A and B proposed in Section 3.3, we

have done rigorous simulations based on the 3 cases mentioned above. Further, we have also

designed four distinct simulation experiments to identify the best configuration suitable for

the two of the heuristics strategies proposed. We will present the distribution strategies used

in these simulation experiments in the next subsection.

In our simulation study, we emulate a homogenous linear network with m = 20 processors,

with wi = 1 and zi = 1, ∀i = 1, ..., 20. We carry out simulations to study the impact of the

processor speeds on the performance of the heuristic strategies. We let T i
cp = T j

cp,∀i 6= j and

assume that the communication time is directly proportional to the load size, that is T n
cm =

1×Ln sec ∀n = 1, 2..., N . Simulations are carried out for the value of T n
cp = 4Ln, 6Ln..., 40Ln

secs, respectively. For each value of T n
cp, 100 simulation test runs are carried out and we

consider an average processing time. The system is given a set of N = 50 loads where Ln are

uniformly distributed in the range [100, 100000]MBytes. For the first load, L1, obviously we

use an optimal distribution strategy presented in [5, 33]. For the remaining loads, we will use

the strategies of the four simulation experiments to be presented in the next subsection.
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3.4.1 Simulation experiments

In this section, we shall introduce different distribution strategies that are used in our four

simulation experiments. By carrying out these experiments, we will later show that it is

possible to identify the right combination while making a choice of a particular strategy. We

denote these simulation experiments as EXA1, EXB1, EXA2, and EXB2. Note that while A

and B denote the strategies discussed in Section 3.3, the numbers 1 and 2 in EXA1, EXB1,

EXA2, and EXB2, denote two distinct possible choices in using the respective strategies.

Experiment using Heuristic A, #1 (EXA1) - In this experiment, we attempt to test the

performance of Heuristic A if (3.10) and (3.29) cannot be satisfied. The following distribution

strategy is used. First, condition (3.10) is verified. If (3.10) is satisfied, the load will then

be distributed in a single installment. On the other hand, if (3.10) is violated, we will then

verify whether (3.29) is satisfied or not. Multi-installment strategy will be used to distribute

the load, if (3.29) is satisfied while Heuristic A will be used if (3.29) is violated.

Experiment using Heuristic B, #1 (EXB1) - In this experiment, we will implement

Heuristic B, using a smallest possible value for δT , when (3.10) and (3.29) cannot be satisfied.

The distribution strategy is similar to EXA1 but Heuristic B will be used rather than Heuristic

A if (3.29) is violated.

Experiment using Heuristic A, #2 (EXA2) - In this experiment, we try to exploit the

advantage of Heuristic A which renders more communication time for the next load. In this

experiment Heuristic A is used for all the loads L2, L3, ..., L49 whether or not (3.10) or (3.29)

is satisfied for these loads. For the last load, L50, distribution strategy of EXA1 will be

implemented, since we do not have any further loads to process.

Experiment using Heuristic B, #2 (EXB2) - In this experiment, we want to examine

the effect of using a larger value for δT in Heuristic B. The distribution strategy used is similar
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Figure 3.8: Average processing time when the loads are unsorted

to EXB1 but a larger value of δT is used.

Fig. 3.8, 3.9 and 3.10 are the results obtained from these simulation experiments.

3.4.2 Discussions of results

In this section, we discuss the results obtained from our simulation experiments. From Fig.

3.8, 3.9 and 3.10, we see that the processing time for EXA1, EXB1, and EXB2 yield more-

or-less the same processing time after T n
cp = 38Ln. The reason is that for m = 20, we have

H < E1,n, n = 1, ..., 50, when T n
cp > 38Ln (the exact value is T n

cp ≥ 37Ln). When H < E1,n,

we can see that (3.29) will always be satisfied for all the loads hence guaranteeing an optimum

solution for all loads, for all the three strategies. Since in EXA2, optimal distribution is not

used whether or not (3.10) or (3.29) is satisfied, optimal processing time cannot be achieved.

An interesting observation can be made at this stage is that Heuristic A (EXA1 and EXA2)

tends to perform better in general, if the loads are sorted (either by SLF or LLF). This is
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Figure 3.13: Timing diagram for Heuristic A when heuristic strategy is used in between two

optimal distributions

because when the size of the adjacent loads are more-or-less similar, the advantage of Heuristic

A, which renders more time to communicate the next load, can be fully exploited. On the

other hand, when the sizes of the loads are random(unsorted), large differences in size between

adjacent loads will not permit availing this advantage. This is illustrated in Fig. 3.11 and

3.12. As can be seen in the figures, when there is a large difference in size between the adjacent

loads, more communication time will be left unutilized and similarly, processors will go idle

for more time. The same phenomenon mentioned above also occurs when multi-installment

strategy is used after or before Heuristic A. This is illustrated in Fig. 3.13. As a result,

our earlier claim that the performance superiority for sorted loads may not be realized when

multi-installment strategy is implemented. This can be seen in Fig. 3.9 and 3.10 when there

is a sudden deterioration in performance at T n
cp ≈ 14Ln for EXA1. The reason is that, when

processor speed increases, the probability of satisfying (3.29) also increases. For our system

settings and load size variations, (3.29) will be satisfied approximately from T n
cp = 14Ln

onwards. Hence, the performance of EXA1 on sorted loads will drop to a level similar to the
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Figure 3.14: Timing diagram for EXA1

performance of EXA1 for unsorted loads when the probability of satisfying (3.29) increases

up to a certain value.

Notice that from figures 3.9 and 3.10, EXA2 does not suffer a large drop in performance

at T n
cp ≈ 16Ln as exhibited by EXA1. This is because, in EXA2, single or multi-installment

strategies will not be implemented even if conditions allow. Further, we see that EXA2

performs much better when compared to EXA1 for sorted loads in the range 14Ln ≤ T n
cp <

38Ln although, the optimal distribution is used in EXA1. This is due to the fact that the

optimal distribution can significantly deteriorate the performance of Heuristic A, as stated

above. This is illustrated in figures 3.14 and 3.15. Note that in Fig. 3.14, a shorter processing

time is achieved using an optimal distribution for the 2-nd load, however since the optimal

distribution has left less available communication time for the 3-rd load, the overall processing

time for these 3 loads is longer. In contrast, from Fig. 3.15, we observe that although the

2-nd load has a longer processing time the overall processing time for these 3 loads is much

shorter.

As for Heuristic B, we can see that from figures 3.8, 3.9 and 3.10, EXB1 always gives better
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Figure 3.15: Timing diagram for EXA2

performance when compared to EXB2. This means that, for Heuristic B, better performance

can be achieved using smaller values for δT . We conclude that, although EXB2 allows a larger

scope to satisfy (3.10) or (3.29), the processing time saved by using an optimal distribution

is smaller when compared to the processor time wasted by using a larger δT value. This

is illustrated in Fig. 3.16 and Fig. 3.17. Another interesting observation that can made

from figures 3.8, 3.9 and 3.10 is the influence of T n
cp on processing time. In general, one

would expect that as T n
cp value increases, the processing time must be increasing, as T n

cp

fundamentally quantifies the computational time of processors. However, as opposed to this

normal behavior, we observe that smaller T n
cp values have an effect of increasing the processing

time when Heuristic B is used. We prove this rigorously below in Theorem 3.1. Before that

we state an important lemma that will be used in the proof of the theorem.

Lemma 3.2: For homogenous systems, H(i) is a non-increasing function of T n
cp for any i.

Proof: From (3.18), we have,

H(i) =
X

(i)
1,nC1,n − Y

(i)
1,n(C1,n + E1,n

C1,n − Y
(i)
1,n

(3.43)



Chapter 3 Load Distribution Strategies for Multiple Divisible Loads 40

3


3


3


3


3


3


P

1


P
2


P
3


P

4


P

5


P

6


1


1


1


1


1


1


1


1
1


1


1


1


1


1


1


1


1


1


1


1


1


1


1


1


1


1


1


1


1


1


1


1


1


2


2


2


2


2


2


2


2


2


2


2


2


2


2


2


2


2


2


2


2


2


2


3


3


3


3


3


More unutilized

processing time.


Heuristic B with


large
 δ
T


Multi-installment

strategy (optimal)


Figure 3.16: Timing diagram showing a large unutilized CPU time when large δT is used
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Figure 3.17: Timing diagram showing a better performance with small δT
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For homogenous systems, we have wi = w1,∀i and zi = z1,∀i. Hence, we can express

X
(i)
1,n, Y

(i)
1,n, and C1,n as,

X
(i)
1,n =

(
m(m− 1)

2
− (m− i)(m− i− 1)

2

)
α

(1)
n,1z1T

n
cm

1

Ln

Y
(i)
1,n =

(
m(m− 1)

2
− (m− i + 1)(m− i + 2)

2

)
α

(1)
n,1z1T

n
cm

1

Ln

C1,n =
m(m− 1)

2

Hence, (3.43) can be expressed as,

H(i) =

(
(m− i + 1)(m− i + 2)− (m− i)(m− i− 1)

(m− i + 1)(m− i + 2)

) (
m(m− 1)

2

)
α

(1)
n,1z1T

n
cm

1

Ln

− m(m− 1)− (m− i + 1)(m− i + 2)

(m− i + 1)(m− i + 2)
α

(1)
n,1w1T

n
cp

1

Ln

(3.44)

The above can be then simplified as,

H(i) =

(
m(m− 1)(2(m− i) + 1)

(m− i + 1)(m− i + 2)

)
α

(1)
n,1z1T

n
cm

1

Ln

−
(

m(m− 1)

(m− i + 1)(m− i + 2)
− 1

)
α

(1)
n,1w1T

n
cp

1

Ln

(3.45)

Differentiate the above equation with respect to T n
cp, we have,

δH(i)

δT n
cp

=

(
1− m(m− 1)

(m− i + 1)(m− i + 2)

)
α

(1)
n,1w1

1

Ln

(3.46)

For H(i) to be a non-increasing function of T n
cp, the following condition must be satisfied, that

is,

m(m− 1)

(m− i + 1)(m− i + 2)
≥ 1 (3.47)

In order to violate the above condition, i must be as small as possible. Nevertheless, since the

minimum value allowable for i is 2, the above condition is always satisfied. Hence the proof.

Theorem 31: Consider two identical linear network systems, say System-A and System-

B, that processes a set of loads LA
1 , ..., LA

q , Lx and LB
1 , ..., LB

q , Ly respectively, where LA
i =

LB
i , ∀i = 1, ...q. Now, whenever Lx = Ly and T x

cm = T y
cm, if T x

cp < T y
cp, then T (x) ≥ T (y)

when using Heuristic B for processing Lx and Ly in the respective systems.
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Proof of Theorem 3.1:

From (3.40), we have the equation for δT as

δT > Ln(H − E1,n)− T (n− 1) + t1,n (3.48)

We denote the δT for T x
cp and T y

cp as δT (x) and δT (y), respectively. We also denote the H for

both cases as H(x) and H(y), respectively. With equality relationship, we have,

δT (x) = LxH
(x) − LxE1,x − T (q) + t1,x

δT (y) = LyH
(y) − LyE1,y − T (q) + t1,y

Since t1,x and t1,y are dependent on T (q), Lx, and Ly we have, t1,x = t1,y. Hence,

δT (x) − δT (y) = LxH
(x) − LxE1,x − LyH

(y) + LyE1,y (3.49)

From Figure 3.6 and 3.7, we can see that, for Heuristic B, T (N) = T (n− 1) + δT + LnE1,n,

hence we have,

T (x)− T (y) = δT (x) + LxE1,n − δT (y) − LyE1,y (3.50)

Using (3.49) in (3.50), we have

T (x)− T (y) = LxH
(x) − LyH

(y) (3.51)

Since we have Lx = Ly, T x
cp < T y

cp and H is a non-increasing function with respect to T n
cp

(from Lemma 3.2), we can see from (3.51) that T (x) ≥ T (y). Hence the proof.

The main reason behind such an anomalous behavior is due to the fact that for smaller T n
cp

values, the δT to be used in Heuristic B (in order to satisfy (3.29)) is larger than that of a

value to be used when T n
cp is large. Consequently, the amount of processor time wasted (due

to idling) will be more in the former case than in the latter case. This results in an increased

processing time for smaller T n
cp values.

From the results of our simulations, we see that, in general, for better performance, experiment



Chapter 3 Load Distribution Strategies for Multiple Divisible Loads 43

Figure 3.18: Performance gain of multiple loads distribution strategy compared with single

load distribution strategy

described in EXA2 is recommended for T n
cp < 38Ln, e.g., when (3.29) cannot be satisfied for

all loads. Further, optimal distribution can be used when T n
cp ≥ 38Ln. In general, an optimal

distribution can be used when (3.29) can always be satisfied.

Finally, as a natural curiosity, we attempt to use single installment strategy [5, 33] to process

all the loads one after other, to reflect the exact performance gain that can be achieved

when compare to using the multiple loads strategies discussed in this chapter. In order to

compare an optimal distribution for multiple loads strategy with the single load strategy, in the

following experiments, we set the parameters of a homogenous system as T n
cm = 1×Ln,∀n sec

and T n
cp = 40Ln, 42Ln, ..., 70Ln sec, respectively, as this range yields an optimal distribution

for our system settings and parameter ranges mentioned earlier. The simulation is carried

out with number of loads, N = 2, 4, ..., 30 with three different system each consisting of
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m = 6, 12, 20, processors respectively. The results of our rigorous simulation is shown in Fig.

3.18. The performance gain can be quantified by the following ratio, defined as,

Performance Gain =
Tsingle(m,N)

Tmulti(m,N)
(3.52)

where Tsingle(m,N) and Tmulti(m, N) are the respective total processing times following the

single load distribution strategy and the total processing time following the multiple loads

distribution strategy, with m processors and N loads. From this figure, we clearly notice that

the performance gain increases as the number of loads increases, which shows the benefit of

using the multiple loads distribution strategy in dealing with multiple loads. Also, from these

plots we can observe that for large values of T n
cp, the performance gain deteriorates. This is

due to the fact that the processor idling time (wasted time) in the case of single installment

strategy is lower when the ratio of communication time to the processing time is smaller. We

also observe that the gain achieved increases when m increases, for a given T n
cp value.

3.5 Concluding Remarks

In this chapter, the problem of scheduling multiple divisible loads in linear networks is ad-

dressed. Previous work [5, 33] for scheduling divisible loads in linear networks assumes that

there is only a single load submitted to the system. While this strategy can be applied for

scheduling multiple loads by considering one load at a time, the finish time of processing all

the loads need not be an optimum. As a result, there is a need for designing distribution

strategies specifically for handling multiple loads in linear networks. As mentioned in the

Section 3.1, the problem of scheduling multiple loads was addressed for bus networks [18, 40].

Nevertheless, designing load distribution strategies for linear networks is a challenging prob-

lem as the data distribution has a pipelined communication pattern involving (m− 1) links,

as opposed to a bus network which has a single communication link.
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In this chapter, a set of loads is assumed to be resident in the buffer of P1 (which has a

scheduler) and wait to be distributed. We have designed and conducted load distribution

strategies to minimize the processing time of all the loads submitted to the system. Since the

front-end of each processor cannot send and receive data simultaneously, we have considered

the possibility of a “collision” among the front-ends while distributing the loads. In this

chapter, we derived a set of conditions that will guarantee a collision-free front-end operation

among the adjacent loads for both single and multi-installment strategy. In the case where

multi-installment strategy is used, it may happen that a feasible number of installments does

not exist and we resolve this situation by using heuristic strategies. Two heuristic strategies,

referred to as A and B, are proposed in this chapter for such cases.

The choice of heuristic strategies depends on several issues. For Heuristic A, in Section 3.3,

the load will be distributed in single installment. The advantage of distributing the load

using a single installment is due to the low time complexity involved. However, for multi-

installment strategy, we need to determine the tk,n and Lk,n for every installment. Further,

using single installment will also renders a considerably longer time for communication for the

next load, which will decrease the probability that (3.29) will be violated. The disadvantage

of this heuristic is that a considerable CPU time may be left unutilized. Heuristic B, which

uses multi-installment strategy, will lower the unutilized CPU time if a small δT is used. Less

unutilized CPU time implies less total processing time for the load. Nevertheless, using a

small value for δT will increases the number of installments required, and hence, increases

the complexity of the heuristic. Further, in the last installment, the total available commu-

nication time will also be less, and hence, increases the chances of using heuristic strategies

for processing the next load.

We conducted four different simulation experiments (EXA1, EXB1, EXA2, EXB2) mentioned

in Section 3.4.1 based on the two heuristic strategies mentioned above to identify the best
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combination suitable for our multiple loads distribution strategy. Since the processing loads

are resident in P1, we have the option of sorting the given loads with respect to their sizes.

We run rigorous simulations for a homogeneous system to evaluate the performance of all

these strategies under 3 different policies, that is when the loads are (a) Unsorted (b) Sorted

with smallest load first (SLF) (c) Sorted with largest load first (LLF). The simulation results

show that experiments described for EXA2 performs better in general, when (3.29) cannot

be always be satisfied. Nevertheless, the performance of the general load distribution strat-

egy can be further improved if Heuristic B with small value of δt (EXB1) is use when the

probability of satisfying (3.29) is high enough, e.g., approximately 26Ln < T n
cp < 38Ln in our

simulation set-up. The region of value T n
cp where EXB1 may be implemented to give better

performance cannot yet be derived and can be considered as a future extension for this work.

Finally, in this chapter, we ran simulations comparing the single load distribution strategy for

linear networks with the multiple loads distribution strategy presented in this chapter. The

results of these simulations show that significant performance gain can be achieved by using

multiple loads distribution strategy, especially when there is a large number of loads to be

processed.
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Chapter 4

Load Distribution Strategies with

Arbitrary Processor Release Times

In the domain of DLT, the primary objective is to determine the load fractions to be assigned

to each processor such that the overall processing time of the entire load is minimal. Research

efforts was then started focusing on including practical issues. Most of these works are based

on the bus and single-level tree network topologies. These studies include, handling multiple

loads [18], scheduling divisible loads with arbitrary processor release times [19], use of affined

delay models for communication and computation for scheduling divisible loads [20, 21] and

scheduling with finite-size buffers [22].

In this chapter, we consider the problem of scheduling arbitrarily divisible loads on linear

daisy chain networks with processor release times. This means that, each processor has a

release time after which it can be used to process the assigned load. For the first time in the

domain of DLT, the problem of scheduling divisible loads on linear networks with processor

release times are considered. Our objective is to design efficient load distribution strategies

that a scheduler can adopt so as to minimize the total processing time of the entire load
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submitted for processing. We consider the case in which the load originates at the boundary

processor (referred to as boundary case in the literature) and present a rigorous analysis on the

strategies designed to obtain optimal processing time. A similar formulation was considered

in the literature in [19] for a bus network architecture. Since a bus network architecture

consists of a single communication link, the design of the load distribution strategy, although

involves several phases, is fairly straightforward. However, the analysis presented in [19]

gives considerable clues to solve the problem addressed in this chapter. It will be clear later

from our analysis that the solution procedure for the case of linear networks is by no means

a trivial task and offers considerable challenge in designing load distribution strategies for

linear networks with arbitrary processor release times.

The organization of this chapter is as follows. Section 4.1 presents the network architecture

and various conditions which this chapter will be base on. Also, this section will introduce all

the terminology, definitions and notations that are used throughout the chapter. In Section

4.2, we will then present the strategy of solving the problem concerned. When our strategy

does not yield an optimal solution, in Section 4.3, we propose few heuristic strategies. Here,

we will also include some examples to demonstrate the working style of our strategies. Later,

in Section 4.4, we will discuss all the contributions of the chapter. Finally, we will conclude

this chapter in Section 4.5 pointing out to some possible extensions to the problem addressed

in this chapter.

4.1 Problem Formulation

In this section, we shall introduce the network architecture first and formally define the

problem we address. Fig. 2.1 shows a linear daisy chain network architecture consisting of

m processors denoted as P1, ..., Pm connected with (m− 1) communication links, denoted as
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l1, ..., lm−1. The first (or the last) processor in the chain, also known as the root processor, is

assumed to receive the divisible load L to be processed, at time t = 0. When the processing

load originates at one of these processors, this case is referred to as boundary case, whereas

when the processing load originates at any other processor in the network, the case is referred

to as interior case. In this chapter, we shall consider only the boundary case and assume that

the processing load originates at processor P1. In general, the load distribution strategy is as

follows.

The processor P1 (which has a scheduler) upon receiving the load L keeps a load portion Lα1

for itself and then sends the remaining L(1 − α1) portion to P2. Processor P2 will keep a

portion of the load for itself for processing and communicates the remaining load to P3 and

so on. Note that a processor starts processing its portion only after receiving the entire load

from its predecessor and also simultaneously starts communicating the remaining load to its

successor. An optimal solution to this problem using an optimality criterion, mentioned in

Section 1.1 was obtained and in this chapter, we use this criterion in the design of an optimal

load distribution strategy. Also, it may be noted that, in the design of a load distribution

strategy, we may be attempting to use multiple installments strategy [38]. In the case of

multiple installments, the processing load is distributed to the processors in more than one

installment. Thus, in this strategy, apart from determining how many number of installments

to be used to distribute the entire load, we need to determine how much load to distribute in

each installment. We shall discuss these details later.

In this chapter, we consider the problem of load distribution in linear networks when processor

release times are non-zero and are arbitrary in nature. This means that, all the processors

are engaged in some form of computation when the load arrives, say at time t = 0, and are

not available for processing the load from time t = 0 onwards. Thus, we are confronted with

a problem of designing a load distribution strategy that minimizes the processing time of the
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entire load by taking into account the arbitrary processor release times of the processors in

the problem formulation. We assume that the root processor, i.e., P1 knows the release times

of all the processors in the network. It may be noted that these release times can also be

estimates made by P1 or the processors in the system can explicitly relay their expected release

times to the boundary processor P1 before the start of the load distribution. Note that the

processors in the system, knowing the amount of current load to process, can estimate their

release times. Thus, it should be clear at this stage that we are concerned with the design

of load distribution strategies for scheduling divisible loads after knowing the release times of

the processors and we do not address the problem of how these release times are estimated

by the processors. This assumption is somewhat similar to the case of bus networks wherein

a bus controller unit arbitrates the load distribution process and assumed to know the release

times of all the processors in the system.

We shall now introduce the terminology, definitions, and notations that are used throughout

the paper.
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L The total load to be processed

Lk Portion of the load, of size, L assigned in the k-th installment to the processors

for processing.

Ei The time taken to compute a unit load on Pi, where Ei = wiTcp

Ci The time taken to communicate a unit load over the link li, where Ci = ziTcm

αi,k Fraction of the load assigned to Pi in the k-th installment, where
∑m

i=1 αi,k = 1.

Note that the actual load assigned to processor Pi in the k-th installment then

will be αi,kLk

τi This is the release time of a processor Pi and it is defined as the time instant

Pi becomes available for processing the load.

tk This is the time instant at which the communication of the load to be distributed

(Lk) for the k-th installment is initiated.

T (q, k) This is referred to as the finish time of k-th installment and it is defined as the

time instant at which the processing of the k-th installment, using q processors,

ends.

Tprocess This is referred to as the processing time of the entire load and it is defined as

the time interval between the instant at which the load arrived to the system

(at t = 0) and the time instant at which the entire load gets processed.

4.2 Design and Analysis of a Load Distribution Strat-

egy

For the analysis of the single installment strategy when τi = 0 , ∀i = 1, ...,m, readers are

referred to [5]. The formulated problem in Section 4.1 of this thesis can be categorized into 2

general cases. The first case is when the release times of all processors are identical and the

second case is when the release times are arbitrary. In the following we carry out the design
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Figure 4.1: Timing diagram for a load distribution strategy when all the load can be commu-

nicated before τ .

and analysis for each of these cases separately.

4.2.1 Identical release times

We consider a scenario in which all the processor release times are identical, i.e., τi = τ, ∀i =

1, ..., m. Further, it may be noted that the load to be processed may be of any size and hence,

the total communication time of the load, starting from time t = 0, may or may not exceed

the release time τ of the processors. This means that some of the processors may receive their

load portions after their release times while others may start exactly from their release times.

Consequently, we have to deal with two different scenarios as follows.

Consider a timing diagram shown in Fig. 4.1. In all the timing diagrams used in this chapter,

the communication process is shown above the time axis whereas the computation of the

processors are shown below the time axis, of each processor. This timing diagram corresponds

to the case when the release times of the processors are large enough to accommodate the

communication of the entire load to all the processors before τ . Also, note that the load

distribution is in such a way that all the processors start processing at time t = τ and stop at
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the same instant in time. Thus, we can distribute the entire load in just one installment. We

will first derive the exact amount of load portions to be assigned to each processor following

this distribution strategy. From the timing diagram shown in Fig. 4.1, we have,

αi,1Ei = αi+1,1Ei+1, i = 1, ..., m− 1 (4.1)

We can express each of the αi,1 in terms of αm,1 as,

αi,1 = αm,1
Em

Ei

(4.2)

Using the fact that
∑m

p=1 αi,1 = 1, we obtain,

αm,1 =
1

1 +
∑m−1

p=1
Em

Ep

(4.3)

Thus, we obtain,

αi,1 =
Em

Ei

1 +
∑m−1

p=1
Em

Ep

, i = 1, 2, ..., m (4.4)

Note that the actual load that is assigned to each Pi is αi,1L1, respectively, where αi,1

is given by the above equations and the optimal processing time in this case is given by

Tprocess = T (m, 1) = τ + αm,1Em. Thus, when a load arrives at P1 at t = 0, following condi-

tion is verified first.

Case A1: τ ≥ L
(∑m−1

p=1 (1−∑p
j=1 αj,1)Cp

)

In the right hand side of the above expression, αj,1 is given by (4.4). Note that, the expression

on the right hand side is the total communication time of the entire load following the strategy

shown in Fig. 4.1. Thus, when a given τ satisfies the above condition, the optimal distribution

and the optimal processing time is given by (4.4) and Tprocess derived above, respectively.

Case A2: τ < L
(∑m−1

p=1 (1−∑p
j=1 αj,1)Cp

)

This is the case when the entire load cannot be communicated to all the processors in a
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Figure 4.2: Timing diagram showing a collision free front-end operation between installments

n− 1 and n. The numbers inside the block denote the installment number.

single installment before τ , i.e., the load distribution given by (4.4) does not satisfy the above

condition. This prompts us to use multiple installments strategy to distribute the load to

achieve an optimal processing time. Designing a multiple installment strategy for the case of

linear networks with non-zero processor release times is a challenging task. We follow exactly

the strategy shown in Fig. 4.2 in the design of multiple installments strategy. That is, for

n-th installment, starting from say, time t = tn, we attempt to complete the distribution of

a portion of the load Ln before the completion of processing of the (n − 1)-th installment

at time T (m,n − 1). There are two issues to be considered in the design of this strategy.

Firstly, the number of installments to be used to distribute the entire load and secondly, the

amount of load to be assigned in each installment must be derived [38]. Above all, the issue

of whether or not an optimal solution exists may arise in certain cases. This is due to the

fact that the processor speeds may be extremely faster than the link speeds thus causing the

amount of load to be assigned in the consecutive installments to be of smaller and smaller

magnitudes. Consequently, the above method of distributing the load may become infeasible.

In such situations, we may need to rely on some heuristic strategies. We shall describe some

of these strategies later.
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Before we describe the multiple installment strategy in general, we shall consider a network

comprising of 6 processors and describe the entire load distribution process between two

adjacent installments (n − 1) and n, respectively, for the ease of understanding. Fig. 4.2

shows the load distribution process for this 6 processors case. Let us assume that the start

time tn−1 and the amount of load to be distributed Ln−1 for the (n − 1)-th installment are

known. We need to determine these quantities for the n-th installment. Let us assume that

communication for the n-th installment is from t = tn. Thus, the amount of load Ln that can

be distributed should not exceed the finish time of the (n−1)-th installment, i.e., T (6, n−1).

Hence, starting from, say t = tn, we have the following condition to be satisfied.

tn + Ln




5∑

p=1

(1−
p∑

j=1

αj,n)Cp


 ≤ tn−1 + Ln−1




5∑

p=1

(1−
p∑

j=1

αj,n−1)Cp


 + Ln−1α6,n−1E6 (4.5)

The left hand side of (4.5) gives the amount of communication time needed for the load Ln

to be assigned in the n-th installment, whereas the expression on the right hand side is the

available communication time from time tn−1 onwards. Further, we observe the following from

the timing diagram in Fig. 4.2. Starting from time tn−1, for a time interval of A units, the

front-end of P2 will be busy in receiving the load from P1 and distributing the remaining load

to P3. Thus, the earliest time at which the load distribution for n-th installment can start is

only after t = A. Consequently, tn ≥ A. This is given as,

tn ≥ tn−1 + Ln−1




2∑

p=1

(1−
p∑

j=1

αj,n−1)Cp


 (4.6)

Note that in (4.5) and in (4.6) the parameters tn and Ln are unknown yet. Equations (4.5)

and (4.6) can be solved together to yield tn and Ln, respectively, using equality relationships.

Let us represent the solution obtained above as a pair (t2n, L
2
n) and denote this tuple simply

as sol2. The superscript (and the subscript in the sol) in the tuple denotes the index of

the processor form which we start comparing for a collision-free front-end operation. Note

that L2
n gives the maximum amount of load that can be communicated within the available

communication time. For consistency reasons, we denote sol1 = (t1n, L
1
n), with t1n = L1

n = 0.
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It may be noted that sol2 may result in a scenario in which the operations of the front-ends of

the successive processors may collide, as we have only considered the possibility of a collision-

free front-end operation of P2 with respect to P1 and P3. So, we now need to account for

a collision-free operation of P3’s front-end. From the diagram, we observe from the start of

reception of the load from P2, the front-end of P3 will be busy for an interval of (B−A) units,

where B is the time interval between tn−1 and finish time of communication of P3. Thus, in

order to have a collision-free front-end operation, we need to have B′ ≥ B, where B′ is the

start time of communication of n-th installment for P3. This yields,

tn + Ln(1− α1,n)C1 ≥ tn−1 + Ln−1




3∑

p=1

(1−
p∑

j=1

αj,n−1)Cp


 (4.7)

Similar to procedure for obtaining sol2 above, we can solve (4.5) and (4.7) to yield another

pair given by sol3 = (t3n, L3
n). Similarly, considering a collision free operation of the front-end

of P4, from the timing diagram, we have,

tn + Ln




2∑

p=1

(1−
p∑

j=1

αj,n)Cp


 ≥ tn−1 + Ln−1




4∑

p=1

(1−
p∑

j=1

αj,n−1)Cp


 (4.8)

Following the same above steps, we can solve (4.5) and (4.8) to yield another pair given by

sol4 = (t4n, L
4
n). Thus, following this procedure, we obtain (m − 2) tuples, each accounting

for a collision-free front-end operation, starting from P2 until processor Pm−1. On the whole,

for obtaining a load distribution that results in a collision-free front-end operation within the

available communication time, we must use the following value of tn.

tn = max{tin | tin ∈ soli, i = 2, 3, 4, 5} (4.9)

Note that the value obtained in (4.9) guarantees a collision-free scenario, as all the load that

was percolating down the network from the previous installment would have been completed

before any processor communicates the next installment to its successor. Thus, the value of

Ln is given by the corresponding value in the tuple that yields a maximum tn given by (4.9).

In general, for a m processor system, we can generalize (4.5) as,
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tn + Ln




m−1∑

p=1

(1−
p∑

j=1

αj,n)Cp


 ≤

tn−1 + Ln−1




m−1∑

p=1

(1−
p∑

j=1

αj,n−1)Cp


 + Ln−1αm,n−1Em, n 6= 1 (4.10)

Following the above argument for a collision-free front-end operation scenario, starting from

P2 till Pm−1, we have the following set of inequalities for the respective cases.

tn +Ln




i−2∑

p=1

(1−
p∑

j=1

αj,n)Cp


 ≥ tn−1 +Ln−1




i∑

p=1

(1−
p∑

j=1

αj,n−1)Cp


 , i = 2, ...,m− 1 (4.11)

Note that (4.11) gives rise to (m − 2) inequality relationships, one for each value of i. Each

inequality relationship together with (4.10) needs to be solved to yield a solution solr, r =

1, ..., m− 2, as described in detail for the 6 processors case above. The value of tn that is to

be used is then given by (4.9) (with i = 2, 3, ..., m − 1) and the value of Ln is given by the

corresponding value in the tuple that yields a maximum tn . The above procedure can be

simplified by first solving (4.10) and (4.11) for each value of tin, ∀i = 2, ...,m− 1. Thus, tin is

given by

tin = tn−1 + Ln−1
X(i)Mc − Y (i)(Mc + Me)

Mc − Y (i)
, i = 2, ..., m− 1 (4.12)

where Mc =
(∑m−1

p=1 (1−∑p
j=1 αj,1)Cp

)
, Me = αm,1Em and

X(i) =




i∑

p=1

(1−
p∑

j=1

αj,1)Cp


 and Y (i) =




i−2∑

p=1

(1−
p∑

j=1

αj,1)Cp


 , i = 2, ..., m− 1 (4.13)

Note that we have replaced αj,n and αj,n−1 with αj,1 since these are the proportions in which

the load Ln will be distributed among m processors in n-th installment and remain identical

in every installment. αj,1 is given by (4.4). We denote

H(i) =

(
X(i)Mc − Y (i)(Mc + Me)

Mc − Y (i)

)
, i = 2, ..., m− 1 (4.14)

and

H = max{H(i)},∀ i = 2, ..., m− 1 (4.15)

Then, the value of tn given by (4.9) with i = 2, ..., m− 1, can be expressed as,
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tn = tn−1 + Ln−1H (4.16)

It may be noted that the above equation (4.16) can be used to compute the values of tn by

using the previous values and the value of H. The value of H may be pre-computed as it

involves determining the values of H(i) for all i, which are essentially constants. Although

H(i) is an expression comprising Mc, Me, X(i) and Y (i) (which are functions of αi,1), these

are the αi,1 that are derived using (4.4) and are fixed. Thus, parameters comprising H(i) are

constants. The value of Ln can be calculated using tn by using the following equation, which

is obtained by solving (4.10) and (4.11).

Ln =
(tn−1 − tn) + Ln−1(Mc + Me)

Mc

(4.17)

At this juncture, for any installment k, it may be verified that the value of H derived above

remains identical and can be pre-computed as it is essentially a function of speed parameters

of the system.

The above procedure described the process of determining the start times of the installments

and the amount of load that needs to be assigned in each installment. It may be recalled

that in each installment, we follow the strategy that is shown in Fig. 4.2. Thus, the amount

of load a processor Pi will be assigned in the k-th installment is given by αi,kLk, where

αi,k = αi,1 is given by (4.4). The finish time k-th installment is then given by T (m, k) =

T (m, k − 1) + Lkαm,kEm. Note that, from Fig. 4.2, the total amount of load that can be

distributed in the first installment L1 = τ
Mc

. As a final remark, we note the following. Suppose

if we know the number of installments K to be used to distribute the entire load following the

above strategy, then for the last installment K, the amount of load that is left unprocessed

is given by LK =
(
L−∑K−1

j=1 Lj

)
. Using this value of LK in (4.17) (with n = K), we can

immediately obtain the value of tK , the start time of the last installment, without following

the above procedure. Now, a final question that is left unanswered with our analysis so far is

on the number of installments required to distribute the entire load L, which we address in
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the following section.

4.2.2 Calculation of an optimal number of installments

This section presents a method used to calculate the optimal number of installments required,

if it exists, to process the entire load L and also derive some important conditions to ensure

that the load L will be able to be processed in a finite number of installments. We shall

now assume that we need K installments to distribute the entire load L to be processed and

determine the conditions under which such a value of K may exist. To derive this value of

K, we start by solving (4.16) and (4.17) to obtain a relationship between Ln−1 and Ln. Thus,

Ln is given by

Ln =
Ln−1

Mc

B (4.18)

where B = Mc+Me−H. Using the above relationship, we can express each of Li, i = 2, ..., K

in terms of L1 = τ
Mc

, as,

Li =

(
τ

M i
c

)
Bi−1 =

(
τ

B

) (
B

Mc

)i

(4.19)

Note that since Li is the fraction of the load L, and if K is the last installment, it is obvious

that
∑K

j=1 Lj = L. We note that,
(

τ

B

) (
B

Mc

) K−1∑

j=0

(
B

Mc

)j

= L (4.20)

from which we obtain,
(

τ

B

) (
B

Mc

) 
( B

Mc
)K − 1

( B
Mc

)− 1


 = L (4.21)

Simplifying the above expression, we obtain,

K =


 ln

(
τ+L(B−Mc)

τ

)

ln
(

B
Mc

)

 (4.22)

Now, from the above expression, for K > 0, τ + L(B−Mc) > 0, where B is as defined above.

Equivalently, we have the following relationship to be satisfied.

τ > L(H −Me) (4.23)
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The above condition must be satisfied in order to obtain a feasible value of K. Thus, when

the above condition is satisfied, we distribute the load in K installments. However, it may

happen that the above condition may be violated and no feasible value of K may exist. In this

case, we use heuristic strategies, which shall be discussed later, to complete the distribution

of the load. In the next section, we shall analyze the case when the processor release times

are arbitrary.

4.2.3 Non-identical release times

In this section, we shall present the analysis for the case of non-identical processor release

times. Let I = {1, 2, ..., m} denote a set of indices of the processors P1 to Pm. Also, let us

denote l = argmax{τj : j ∈ I} and s = argmin{τj : j ∈ I}, respectively. In other words, τl is

the release time of the processor with the largest release time and its speed is El. Similarly,

τs is the release time of the processor with the smallest (earliest) release time and its speed

is Es. Similar to the identical case, here too, we have the following two distinct cases to be

analyzed. We first attempt to follow a conservative approach, referred to as a conservative

strategy hereafter, for the first case. In case this conservative strategy cannot be used, we

attempt a multi-installment approach.

Conservative strategy

In this strategy, we attempt to identify a maximal number of processors that can participate

starting from their respective release times and use single-installment strategy to complete

processing of the entire load. Consider a load distribution strategy shown in timing diagram

in Fig. 4.3. Further, using this load distribution α1,1, ...αm,1, we observe that all the m

processors start computing from their respective release times and stop computing at the

same instant in time. This optimal load distribution can be derived from the timing diagram
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Figure 4.3: Timing diagram for conservative strategy.

as follows. From Fig. 4.3 we obtain the following equations.

Lαi,1 =
τl − τi

Ei

+
El

Ei

Lαl,1, i = 1, ..., m (4.24)

Together with the equation
∑m

j=1 αj,1 = 1, we obtain,

Lαl,1 =
L−∑m

i=1
τl−τi

Ei∑m
i=1

El

Ei

(4.25)

Now, from (4.25) we observe that in order to utilize all the processors in the network a

necessary and sufficient condition is given by,

L >
m∑

i=1

τl − τi

Ei

(4.26)

Thus, when the above condition (4.26) is violated by Pl, we eliminate Pl from participating

in the computation and assign the total load to the remaining processors using the above

strategy. Thus, we iteratively use the above condition until we obtain a maximal set of pro-

cessors (m∗) to be used for computation. We refer to this maximal set of processors simply

as a qualifying set of processors, hereafter. Note that in every iteration, while using the above

condition (4.26), we replace m with the number of processors taking part in the computation

in this current iteration. Further, also observe that, we need to determine l, the index of
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the processor that has the largest release time from the set of processors participating in the

computation, in each iteration. The following example illustrates this procedure.

Example 4.1. Consider a linear network m = 6 processors, with the processing speeds given

by, E1 = 5, E2 = 10, E3 = 5, E4 = 10, E5 = 5, and E6 = 10, respectively. Let the link speeds

be C1 = 1, C2 = 2, C3 = 1, C4 = 2, C5 = 1, respectively. All processors have arbitrary release

times given by, τ1 = 4.2, τ2 = 4.6, τ3 = 8.0, τ4 = 4.0, τ5 = 7.0, τ6 = 5.0, respectively. Let the

total load be L = 1.

First, we identify τs = τ4 = 4.0 and τl = τ3 = 8.0. We then note that the condition (4.26) is

violated (
∑6

i=1
τl−τi

Ei
= 0.76 + 0.34 + 0 + 0.4 + 0.2 + 0.3 = 2 > L) and hence, we eliminate P3

from computation. Now, from the available set of processors, we note that τl = τ5 = 7.0. We

note that the condition (4.26) is still violated and hence, we eliminate P5 from participating

in computation. Next, we note that τl = τ6 = 5.0. We now verify (4.26) and observe that it

satisfies. Thus, the entire load is distributed to 4 processors m∗ = 4 processors and these are

P1, P2, P4 and P6, respectively. The optimal load distribution following the above strategy

is given by, α1,1 = 0.44, α2,1 = 0.18, α4,1 = 0.24, α6,1 = 0.14. The processors P2, P4, and P6,

will receive their load portions at times 0.56, 1.70, and 2.12, respectively (before their release

times). Hence they can process their respective load portion starting from their release times.

The optimal processing time in this example is given by, Tprocess = T (4, 1) = 6.4.

The above example demonstrates the procedure to determine a set of qualifying processors

and shows how the load is distributed among this set. It is important to realize that the

conservative strategy need not guarantee that all the processors can start at their respective

release times for processing their load fractions. In other words, we shall now show that con-

servative strategy need not produce an optimal solution as shown in Fig. 4.3. To demonstrate

this fact, we note that the load fractions recommended by (4.24) do not consider the actual

communication time of these load fractions to the respective processors. All that the above
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derivation of αj,1, j = 1, ..., m considers is only the computation part. Hence, even if (4.26)

satisfies for some r ∈ {1, ..., m} resulting in a maximal set of processors, there is no guarantee

that each processor will receive its portion on or before its release time. Hence, the condition

stated in (4.26) is not alone sufficient to assure a load distribution that generates an optimal

solution. Hence, if S = {Pr}, r ∈ {1, ..., m} is the qualifying set of processors for computing

the load after satisfying (4.26), the following set of conditions need to be verified for each

Pi ∈ S.

τi > L




i−1∑

p=1

(1−
p∑

j=1

αj,1)Cp


 , Pi ∈ S (4.27)

Thus, once (4.27) holds for each Pi ∈ S, the resulting solution is optimal. It may be verified

that in Example 4.1, for the set of qualifying processors P1, P2, P4, P6, the above conditions

given in (4.27) are satisfied and hence, yields an optimal solution. It is important to note

that in the above expression, the number of processors participating r may not be physically

adjacent to each other, and hence care must be taken while verifying the condition (4.27).

Also, note that for processors not participating, αj,1 = 0 and these processors only involve

in communicating the load to their successors. However, following example demonstrates a

scenario in which conservative strategy may not generate optimal load distribution as shown

in Fig. 4.3.

Example 4.2. Consider a linear network in Example 4.1, however, let their release times be

τ1 = 1.05, τ2 = 1.15, τ3 = 2.0, τ4 = 3.0, τ5 = 1.75, τ6 = 1.25, respectively. Let L = 1.

Using the above procedure to generate a set of qualifying processors, we have τl = τ3 = 2.0

(P4 has been eliminated from the set), which satisfies (4.26), as
∑5

i=1
τl−τi

Ei
= 0.19 + 0.085 +

0 + 0.05 + 0.075 = 0.4 < L. Nevertheless, if we calculate the communication times for each of

the load fractions to the respective processors, we observe that for Lα5,1 to reach P5, the total

communication time will be
(∑4

p=1(1−
∑p

j=1 αj,1)Cp

)
= 0.66 + 1 + 0.35 + 0.7 = 2.71, which is

larger than the release time of P5 (t5 = 1.75). In other words, the load fraction arrives at P5

only after τ5, and hence, the processor time available in the time interval between τ5 and the
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arrival of Lα5,1 will be left unutilized.

Thus, from this example we note that conservative strategy fails to generate an optimal so-

lution as shown in the timing diagram Fig. 4.3.

Remarks: When condition in (4.27) is violated for a set of qualifying processors after sat-

isfying condition (4.26), it is natural to attempt to eliminate a processor with release time

τl and continue with the conservative strategy with (r − 1) processors. Note that we use

single installment strategy in our conservative strategy proposed above. However, this may

not lead to an optimal solution, because it may happen that the total processing time with

(r − 1) processors using conservative strategy may be more than the total processing time

with r processors using multi-installment strategy. This clearly motivates us to adopt a

multi-installment strategy.

Multi-installment strategy

We first prove the following lemma that will be used in the design of this multi-installment

strategy.

Lemma 4.1: Let Q = {Pi}, i ∈ {1, ..., m} denote a set of processors sorted in the order

of increasing release times in the network, i.e., τj ≤ τj+1, j ∈ Q. Also, let S ⊆ Q, with

|S| = r, r ≤ m, denote a set of qualifying processors for computing the load after satisfying

(4.26) and (4.27) such that τj ≤ τj+1, ∀Pj ∈ S. Obviously, r = argmax{τj : Pj ∈ S}. Then,

Tprocess = T (r, 1) ≤ τr+1, where Pr+1 ∈ Q/S.

Proof: When τl does not satisfy (4.26), we will have the following condition. L <
∑r+1

i=1
τr+1−τi

Ei

Rearranging the above, we obtain the following.

(
L +

∑r
i=1

τi

Ei∑r
i=1

1
r

)
< τr+1 (4.28)
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We shall prove this lemma by contradiction. Suppose that T (r, 1) > τr+1. Then we will have,

τr + ErLαr > τr+1

Using (4.25) in the above equation, we obtain,

(
L +

∑r
i=1

τi

Ei∑r
i=1

1
r

)
> τr+1 (4.29)

Comparing (4.28) and (4.29), we see a clear contradiction, thus proving the lemma.

The significance of the lemma is as follows. When a set of processors qualify for processing

a certain amount of load after satisfying (4.26) and (4.27) conditions, these processors are

assigned respective load fractions given by (4.24). These processors start computing from

their respective release times and complete at a time T (r, 1). The above lemma shows that

this finish time will not exceed the earliest release time of a processor among the set of non-

qualified processors. This result will be widely used in the design of our multi-installment

strategy in a recursive fashion as it highlights the fact that the earliest release times of the

processors that qualify in any particular installment are indeed equal to the finish times of

the processors in the previous installment and may be at most equal to the earliest release

time of a processor among the set of non-qualified processors.

We are now set to design the multi-installment strategy. As a first step, for the first install-

ment, we need to determine the amount of load that can be assigned before time τs such that

a set of processors start at their respective release times and stop computing at the same time

instant. In order to do so, solve the following set of equations.

L1αi,1 =
τl − τi

Ei

+
El

Ei

L1αl,1, i = 1, ..., m (4.30)

τs =




m−1∑

p=1

(1−
p∑

j=1

αj)CpL1


 (4.31)

Note that (4.30) is identical to (4.24) except L is replaced with L1. The right hand side of

(4.31) is equal to the total communication time available to transmit a load L1 to all the
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processors. Thus, the amount of load L1 should be chosen in such a way that it can be

communicated on or before time τs. Hence, we equate these two quantities. Using (4.30), we

rewrite (4.31) as,

τs =
m∑

j=2




m∑

i=j

(
τl − τi

Ei

)Cj−1


 +

m∑

j=2




m∑

i=j

(
Cj−1El

Ei

)


 L1αl,1 (4.32)

From the above equation, we can obtain L1αl,1

L1αl,1 =
τs −∑m

j=2

(∑m
i=j(

τl−τi

Ei
)Cj−1

)

∑m
j=2

(∑m
i=j(

Cj−1El

Ei
)
) (4.33)

Note that the above equation (4.33) is similar to (4.25). Thus, from (4.33), we obtain a

necessary and sufficient condition for utilizing all the m processors to participate in the

computation, as follows.

τs >
m∑

j=2




m∑

i=j

(
τl − τi

Ei

)Cj−1


 (4.34)

Thus, as done in the conservative strategy, we recursively use this condition to eliminate

the redundant processors and work with a subset of processors that qualify for computation.

Hence, at the end of this process, all the processors in the qualified set will start at their

respective release times and stop computing at the same time. From second installment

onwards, we follow a similar methodology used for the case of identical release times, to

compute the start-up times for load distribution in every installment satisfying a collision-

free front-end operation, as follows.

We shall now describe the load distribution process between two adjacent installments (n−1)

and n, respectively, for the ease of understanding. Let us assume that the start time tn−1 and

the amount of load to be distributed Ln−1 for the (n− 1)-th installment are known. We need

to determine these quantities for the n-th installment. Let us assume that communication for

the n-th installment is from t = tn. Firstly, we have to ensure that the total communication

time for the load Ln for the n-th installment should be completed on or before the completion
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of processing of Ln−1. Hence, we have the following condition to be satisfied.

tn+




m−1∑

p=1

(Ln −
p∑

j=1

αj,nLn)Cp


 ≤ tn−1+Ln−1




m−1∑

p=1

(1−
p∑

j=1

αj,n−1)Cp


+Ln−1αs,n−1Es (4.35)

Note that this equation is similar to (4.10) except that we use Ln−1αs,n−1 and Es instead

of Ln−1αm,n−1 and Em, respectively. Secondly, in order to ensure a collision-free front end

operation, similar to the procedure described for identical case, we will solve (4.35) and (4.11)

(using equality relationships) for every i = 2, ...m− 1, for Ln to obtain,



i−2∑

p=1

(Ln −
p∑

j=1

αj,nLn)Cp


−




m−1∑

p=1

(Ln −
p∑

j=1

αj,nLn)Cp


 ≥

Ln−1




i∑

p=1

(1−
p∑

j=1

αj,n−1)Cp


− Ln−1(Mc + Me), i = 2, ..., m− 1 (4.36)

where, Mc =
∑m−1

p=1 (1−∑p
j=1 αj,n−1)Cp and Me = αs,n−1Es. We rewrite (4.30) as,

Lnαi,n =
τl − τi

Ei

+
El

Ei

Lnαl,n, i = 1, ...,m (4.37)

Substituting (4.37) into (4.36), and after some algebraic manipulations, we obtain, for i =

2, ..., m− 1,

Lnαl,n ≤
Ln−1

(
Mc + Me −

(∑i
p=1(1−

∑p
j=1 αj,n−1)Cp

))
−∑m

j=i

(∑m
p=j(

τl−τp

Ep
)Cj−1

)

∑m
j=i

(∑m
p=j(

Cj−1El

Ep
)
) (4.38)

Similar to the identical release times case, for a collision-free front end operation, (4.38) will

yield (m− 2) values of Lnαl,n, one for each i = 2, ..., m− 1. If there is one or more negative

values in the set, then this is implies that the load Ln is insufficient to cater to all the processors

owing to their large release times. Hence, we exclude Pl from taking part in computation of

the load Ln in this n-th installment and repeat this process with fewer number of processors

as above. On the other hand, if all the (m− 2) Lnαl,n values in the set are positive numbers,

then we will choose the minimum Lnαl,n value among the set, as the load to be distributed

in the n-th installment. From this chosen Lnαl,n value, we can then calculate other αj,n from

(4.37) immediately. Thus, assuming that there are, say r processors participating in the n-th
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installment, since
∑r

i=1 αi,n = 1, we can readily obtain Ln.

Important remark: It may be noted that if the remaining load (L−∑n−1
i=1 Li < Ln), is less

than the calculated load using the above procedure, we will use the following equation to find

the αl,n for the remaining load.

Lnαl,1 =
L−∑n−1

i=1 Li −∑m
i=1

τl−τi

Ei∑m
i=1

El

Ei

(4.39)

Note that (4.39) is similar to (4.25). If (4.39) gives a negative value for αl,n, then we will

exclude Pl from participating, and work with less number of processors until we obtain a

positive αl,n. Then, tn, the starting time of the n-th installment, can be calculated using (4.35).

Thus, the above procedure determines the exact start time tn of the load distribution for the

n-th installment (assuming tn−1 is known) and the individual load fractions αj,n j = 1, ..., r

(assuming r processors are participating in this n-th installment).

As carried out for identical release times case, it will be of immense interest to determine

the number of installments that should be used to complete the processing of the entire load.

However, deriving this is by no means a simple task, as the number of processors that can

participate in any installment is not known in advance, owing to their arbitrary release times.

Thus, we propose the following methodology to “sense” whether or not to carry out the multi-

installment strategy, or to use any heuristic method to complete the processing of the entire

load. Let us consider the n-th installment wherein only r processors are qualified in processing

the load Ln and denote this set of r processors as R. Suppose we assume that only processors

in R will be involved in processing all the load L (starting from n-th installment), then we

can calculate the number of installments required as done in the case of identical release times

analysis. First of all, we can calculate αi,n+1 for all the processors in R as follows.

αi,n+1 =
1

Ei
∑ 1

Ei

, Pi ∈ R (4.40)

The above equation is similar to (4.4), but only involves the processors in R. For other

processors, which is not in R, we have, αj,n+1 = 0, Pj 6∈ R. Hence, all the αi,n+1, i = 1, ..., m
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can be obtained. Note that since αj,n 6= αj,n+1, j = 1, ..., m, instead of (4.14), we will have,

Hn(i) =


X

(i)
(n)Mc − Y (i)(Mc(n) + Me(n))

Mc − Y (i)


 (4.41)

where, X
(i)
(n),Mc(n) and Me(n) is as defined in the case of identical release times case, using

αi,n, i = 1, ..., m from the n-th installment. Similarly, Y (i) and Mc is as defined, using

αi,n+1, i = 1, ..., m from (n + 1)-th installment. Since that the H in between the n and

(n + 1)-th installments is a special case, we denote it as,

H(n) = max{Hn(i)}, ∀i = 2, ..., m− 1 (4.42)

Similar to the case of identical release times, the values of H(n)(i) are essentially constants.

Although H(n)(i) is an expression comprising Mc, Mc(n), Me(n), X
(i)
(n) and Y (i) (which are

functions of αi,n and αi,n+1), these are the αi,n and αi,n+1 that are derived using (4.40) and

are fixed. From (n + 1)-th installment onwards, H will be given by (4.15) and it is constant

as explained earlier. Similarly, αi,n+1, i = 1, ..., m is given by (4.40) and will be constant from

(n + 1)-th installment onwards. We now generalize the load Ln+i for all installment after the

n-th installment as,

Ln+i =
Ln(Mc(n) + Me(n) −H(n))

(Mc + Me −H)

(
(Mc + Me −H)

Mc

)i

(4.43)

which is similar to (4.19) in which only the τ has been replaced with Ln(Mc(n) +Me(n)−H(n)).

Following similar steps, if (n + K) installments are needed to finish processing the load, then

to get a feasible K, we have the following condition to be satisfied.

Ln(Mc(n) + Me(n) −H(n)) > (L−
n∑

p=1

Lp)(H −Me) (4.44)

Using the condition (4.44), we can determine a feasible value for the number of installments

to process the load, starting from n-th installment onwards. Thus, upon the existence of a

feasible value of K, we will proceed to carry out the next installment as usual. Note that, even

if condition (4.44) has been satisfied for the n-th installment, in the subsequent installments,
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a feasible value of K may not exists, as the number of processors participating will tend to

increase. On the other hand, if condition (4.44) is violated at the n-th installment, then it

guarantees that there will be no feasible value of K exists to finish processing the load L. For

cases like this, we have no choice except to use heuristic algorithms.

Thus, starting from second installment onwards, (4.44) will be verified using the same number

of processors used in the previous installment. Under this condition, if a K value is feasible,

then we normally continue with the next installment with the proposed Multi-installment

strategy. However, if K value is not feasible, then starting from the current installment, we

follow any heuristic strategy, to be described later, to complete the processing of the entire

load.

4.2.4 Special Cases

As a final step, we shall now present three special cases of interest that are to be taken care

to complete our analysis.

Case 1: If m = 2. If all the analysis discussed above were to be used for this case, (4.11) (for

identical release times) cannot be used. Note that one may end up with this case even for

arbitrary release times when the number of processors that are participating is just two (P1

and P2) from any installment. However, in the latter case, if the two processors are different

from P1 and P2, then (4.38) can be used as before, since (4.38) was also derived from (4.11).

In any of these cases, the following equation will be used instead of (4.11).

tn ≥ tn−1 + Ln−1(1− α1,n−1)C1 (4.45)

Using (4.45), (4.38) can be simplified as,

Lnαl,n =
Ln−1Me − ( τl−τ2

E2
)C1

El

E2
C1

(4.46)
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Case 2: If τi = 0, for some i ∈ {1, ..., m}. In this case, initially for the set of processors

that have τi = 0, say r (as a first installment), we need to solve a set of r equations involving

r unknowns (αi,1) following the timing diagram. Complete derivation is presented in the

Appendix.

At the completion of this first installment, all the above r processors will stop at τs, where

τs is the earliest release time among the set of processors that have non-zero release times.

Thus, from the second installment onwards, if there is any load left unprocessed, analysis

presented for multi-installment strategy for arbitrary release times can be used directly, with

Me = αx,1Ex for second installment and αx,1 is obtained from the procedure presented in

appendix.

Case 3: If τi = 0, ∀i = 1, ..., m. We refer to [39, 33] for this case. We omit details.

4.3 Heuristic strategies

In this section, we shall present two heuristic strategies that can be used to distribute the

load when conditions for continuous processing of the load cannot be satisfied such as (4.23)

and (4.44). We shall design a heuristic, referred to as heuristic A, when (4.23) is violated (for

identical release times) and another heuristic, referred heuristic B, when (4.44) is violated for

non-identical release times case.

Heuristic A: This case deals with identical release times. Thus, whenever (4.23) is violated,

we shall employ this strategy. In this heuristic, the load portion will be transmitted to each

processor in a single installment. We first partition the processors into two groups as those

which receive their data before time τ and those receive their data after time τ . We shall call
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the former group as set S, and the processors in this set satisfy the following condition.

L
i−1∑

p=1

(1−
p∑

j=1

αj,1)Cp ≤ τ, i = 1, ..., m (4.47)

First, we assume that initially S = {P1}. Hence, we will have the following relationship

between Lαi,1 and Lαi+1,1.

Lαi,1Ei =
m∑

j=i+1

Lαj,1Ci + Lαi+1,1Ei+1, i = m− 1,m− 2, ..., 2 (4.48)

Using (4.48), we can relate Lαi,1, for i = 2, ..., m− 1 with respect to Lαm,1 and using the fact

that
∑m

i=1 αi,1 = 1, we obtain,

Lα1,1 + L
m∑

p=2

αp,1 = L (4.49)

Expressing each of the Lαi,1, i = 2, ..., m in (4.49) with (4.48), we determine Lα1,1 as a

function of Lαm,1. Hence, we obtained all the Lαi,1, i = 1, ...,m with respect to Lαm,1. Next,

we define a condition wherein the processing time for P1, starting from τ (τ + Lα1,1E1), is

the equal to the total communication time till Pm plus the processing time of Pm. That is,

τ + Lα1,1E1 = L
m−1∑

p=1

(1−
p∑

j=1

αp,1)Cp + Lαm,1Em (4.50)

Solving (4.50) using all the Lαi,1, i = 1, ...,m found previously, we can then calculate Lαm,1.

With Lαm,1 known, all other Lαi,1, i = 1, ...,m − 1 can be immediately calculated. Now, we

use (4.47) to identify a set of processors that can be included in the set S together with P1.

After identifying the set S, we use the following set of recursive equations to determine the

exact load portions to be assigned to the processors. Note that all the processors in the set

S start computing at τ .

Lαi,1 = Lα1,1
E1

Ei

(4.51)

Then, solving (4.51) for the processors in S, (4.48) for other processors and together with

(4.49) and (4.50), we get another set of Lαi,1, i = 1, ..., m. These are the load fractions that

are to be assigned to the processors in the system. Note that although (4.51) assumes that

the processors in S start at τ , the exact communication delays are not accounted. Therefore,
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Figure 4.4: Flow chart illustrating Heuristic A.

as a last step, we need to verify whether or not all the processors in S indeed start at τ

using (4.47). Thus, in case, if some processors in S violate (4.47), we will then eliminate the

processor with largest index and repeat the above procedure until all processors in S satisfy

(4.47). On the other hand, if all the processors in S satisfy (4.47) it is guaranteed that all

the processors in S can indeed start from τ . Further, at this stage, as an incentive, it may

happen that few processors that do not belong to S may satisfy (4.47) and we include all these

processors in the set S. The flow chart presented in Fig. 4.4 shows the complete description

and the following example illustrates the workings of heuristic A.

Example 4.3 (Heuristic A): Consider a linear network system with the parameters C1=1,

C2=1, C3=4, C4=2, C5=5, E1=5, E2=5, E3=15, E4=15, E5=10, E6=5 with identical release

time τ=10, and the system is given a load L=10. Initially we assume S = {P1}. Therefore,

for Pi, i = 2, ..., 6, we use (4.48) to relate Lαi,1, i = 2, ..., 6 with respect to Lα6,1. Expressing

each Lαi,1, i = 2, ..., 6 with respect to Lα6,1 in (4.49), we can then relate Lα1,1 as a function

of Lα6,1. Now with all Lαi,1, i = 1, ..., 6 in respect to Lα6,1, we can immediately obtain the

value of Lα6,1 by solving (4.50). Other values, Lαi,1, i = 1, ..., 5 can then be calculated using

Lα6,1.

Now, using all the Lαi,1, i = 1, ..., 6, we observe that P2 and P3 satisfy (4.47). Hence, we

include P2 and P3 in S and then use (4.51) to express Lα2,1 and Lα3,1 in terms of Lα1,1. Then,
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using the expression obtained for Lα2,1, Lα3,1 and Lαi,1, i = 4, ..., 6 into (4.49) to determine

Lα1,1 as a function of Lα6,1. Then, we solve (4.50) to obtain Lα6,1 = 0.639. Next, we deter-

mine the remaining Lαi,1, i = 1, ..., 5 values. With all these values obtained, we verify that

both P2 and P3 satisfy (4.47) and no other processors except P1, P2 and P3 satisfy (4.47), and

hence the result. The distribution is given by α1 = 0.3394, α2 = 0.3394, α3 = 0.1131, α4 =

0.0662, α5 = 0.0710, α6 = 0.0710. The processors P2, P3, P4, P5, and P6 will receive their

respective loads at times 6.606, 9.818, 18.142, 20.98, and 24.525. Hence, P1, P2, and P3 can

start processing their load portions starting from their release times while others remains idle

until their load portions arrive. The processing time is given by, Tprocess = T (6, 1) = 26.97.

Heuristic B: This heuristic will be used when (4.44) is violated for the case of non-identical

release times. Let (4.44) be satisfied in n-th installment. If, for example, (4.44) is violated

at the (n + 1)-th installment, then we consider n-th installment. Since condition (4.44) is

satisfied at the n-th installment, this means that the remaining load (L − ∑n
j=1 Lj) can be

processed using a set of processors qualified in the n-th installment. This heuristic basically

exploits this property to guarantee that the remaining load can be completely processed. If

at the n-th installment, r processors were used, then we will continue using r processors for

all the successive installments. We denote this r processors as set R. First, we will determine

Lj, j = n + 1, n + 2, ..., n + K (assuming that we need (n + K) installments to finish the

remaining load) with (4.43) and then determine αi,j, i ∈ R, j = n + 1, n + 2, ..., n + K with

(4.40) for all the successive installments, respectively. Next, tn+1 the starting time for the

(n + 1)-th installment, is given as,
tn+1 = tn + LnH(n) (4.52)

where, H(n) is as defined in (4.42). Further, the following installments, the starting time tj,

is given by,

tj = tj−1 + Lj−1H, j = n + 2, ..., n + K (4.53)
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Figure 4.5: Example for Heuristic B: Arbitrary release times. The numbers appearing in

communication blocks of P1 denote the installment number.

where, H is as defined in (4.15). Note that, for this heuristic, the value (n + K) (number of

installment needed) can be determined with the following equation, which is similar to (4.22),

however, now, it is derived from (4.43) instead of (4.19).

n + K =




ln(
Q+(L−

∑n

p=1
Lp)(B−Mc)

Q
)

ln( B
Mc

)


 (4.54)

where, Q = Ln(Mc(n) + Me(n) −H(n)) and B = Mc + Me −H.

This heuristic is simple to implement however, since not all of the available processors are used,

this heuristic will have a low system (processors) utilization, which is an obvious disadvantage.

However, when the demands of the application requiring the processed load are not time

critical, this strategy can be readily used. The timing diagram shown in Fig. 4.5 demonstrates

the workings of this heuristic. The table in Fig. 4.5 shows the number of processors that are
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Figure 4.6: Flow chart showing the entire scheduling of a divisible load by a scheduler at P1.

qualified in every iteration and the number of installments required to complete the processing

of the entire load using these set of qualified processors. Note that so long as K value exists

at each iteration, need for heuristic strategies does not arise. In this example, it may be

noted that at the 8-th iteration, K value ceases to exist and hence, we attempt to utilize the

4 processors that participated in the 7-th iteration. Thus, in this case, the processing time is

given by, 4.1343 units. We will discuss on other details in the next section.

4.4 Discussions of the Results

In this section, we shall discuss our contributions in this chapter. As mentioned, designing

divisible load distribution strategies for linear networks when processors having non-zero

release times is never attempted in the literature so far. Although the problem of release
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times were addressed for bus networks [19], designing load distribution strategies for linear

networks is a challenging problem as the data distribution has a pipelined communication

pattern involving (m−1) links, as opposed to a bus network which has a single communication

link. The load is assumed to arrive at P1 (boundary processor) where our scheduler resides.

The function of the scheduler in generating a load distribution is completely described in

Fig. 4.6. Further, in the case of linear networks, adopting multi-installment strategy for load

distribution is very complex as there is a scope for “collision” among the adjacent front-end

operations, if communication phase is not scheduled carefully. Clearly, a load distribution

strategy must be such that it must recommend a load distribution that is free of any possible

collisions among the front-end operations. Thus, it becomes imperative to check this collision-

free requirement in the design of any load distribution strategy for linear networks. Note that

this collision-free requirement arises only in the case of multi-installment strategy.

In this chapter, we systematically consider different possible cases that can arise in the design

of a load distribution strategy. If the processors are idle at the time of arrival of the load

(τi = 0,∀i = 1, ..., m), the idle case algorithm presented in the literature [39, 33] can be

immediately used. On the other hand, if the processors are engaged in some computational

work when the load arrives, we follow the load distribution strategies described in this chapter.

We consider the boundary case for analysis and hence, our scheduler which carries out the

load distribution process as per the strategies designed in this chapter, resides on P1. As

mentioned in Section 4.1, the scheduler on P1 will first determine the release times, either

through explicit communication with the processors in the system or it can estimate the

release times. Of course, each processor in the system can also estimate their respective

release times and convey the estimated information to P1. We assume that P1 knows the

respective release times.

As done in the literature, we consider two possible cases of interest, namely identical release
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times and non-identical release times. When the release times are identical and satisfy the

condition for Case A1, then an optimum load distribution is guaranteed by using (4.4), i.e.,

we simply use single-installment strategy. However, if condition for Case A1 is violated, then

(4.23) will be used to check for an optimum solution. (4.23) opens up the possibility for using

multi-installment strategy to achieve an optimum solution. Thus, when (4.23) is satisfied,

multi-installment strategy (discussed for Case A2) will give an optimum solution. On the

other hand, when (4.23) fails to hold, we attempt to use heuristic strategies, presented in

Section 4.3. The choice of heuristic strategies depends on several issues. As mentioned in

Section 4.3, Heuristic A is customized to handle identical release times case and the load will

be distributed in a single installment. The strategy guarantees (by solving the equations in

Section 4.3) that a maximal set of processors will start computing at time τ while the rest

will start after τ . This ensures that only a minimum amount of processor time is wasted

during this processor idling phase for those processors that start after τ , thus yielding a good

solution. Thus, if the number of such processors is small compared to the total number of

processors that start at τ , the solution proposed by this heuristic can very well be accepted.

In Example 4.3, we observe that processors 1, 2 and 3 start at τ = 10 whereas the rest of the

processors start after the release time. It may be observed that for larger τ values for which

(4.23) continues to violate, the number of processors that will start at τ will be increasing and

hence, the processing time decreases. Finally, it may be noted that one can attempt to use

multi-installment to further reduce the processing time, however, it may be a very complex

procedure.

When the processor release times are arbitrary, (4.26) can be used to determine whether or

not all the m processors can be used to participate in computing the entire load as described

in the conservative strategy, i.e., the strategy in which we first attempt to distribute the entire

load in a single installment using m processors. In case (4.26) fails with m processors, we

recursively use (4.26) to determine the maximal set of qualified processors that are able to
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participate in processing the load. Thereafter, if all the qualified processors can satisfy (4.27),

then an optimum distribution is given by (4.24). At this stage, an important observation to

make is the result of Lemma 4.1. Lemma 4.1 clearly testifies the fact that it is sufficient to

consider a maximal set of processors governed by (4.26) for processing the entire load instead of

waiting for processors who release times are farthest. In fact, Lemma 4.1 shows that the entire

processing time will be completed on or before the first earliest release time of a processor that

was not qualified to participate in the computation. Hence, with the choice of using single

installment policy, the proposed solution is indeed optimal. The solution approach becomes

very complicated when (4.27) is violated, and we are forced to use multi-installment strategy

to improve the performance. Similar to the case of identical release times, (4.44) is used to

check if multi-installment strategy can yield an optimal solution. If (4.44) is satisfied for all

the K installments, then the multi-installment strategy presented in this chapter will give an

optimum distribution. However, if (4.44) is violated, we attempt to use heuristic strategies

as before.

The workings of our heuristic strategy B is shown via an example in Fig. 4.5, wherein it may

be noted that before the commencement of 8-th iteration, we check for a feasible K value. We

observe that K value ceases to exist and hence, we attempt to utilize only the 4 processors

that participated in the 7-th iteration. It may be noted that for the first few iterations, until

iteration 3, the number of processors that qualify remains as 3 and the number of installments

required to complete the processing the load with 3 processors decreases steadily. However,

during 4-th iteration, we observe that P2 participates in the computation and recalculating

K, we observe that the number of installments required to complete processing now increases.

Thus, whenever the same set of processors participate K decreases steadily. However, it may

be noted that increase in K value does not imply that the processing time increases.
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4.5 Concluding Remarks

The problem of scheduling a divisible load on a linear network of processors, by taking into

account their release times, is addressed in this chapter. This chapter presents a number

of useful results on the problem attacked. Firstly, conditions for a collision-free front-end

operation for the case of multi-installment strategy are explicitly derived. Use of single, as

well as multi-installment policies are adopted in the design of load distribution strategies.

A systematic approach is followed in the design of strategies. Firstly, the case when all

the processors have identical release times is considered. We have attempted to use single

installment strategy and if it fails to hold, we attempt to obtain an optimal solution using

multi-installment. Here, when condition (4.23) is satisfied, we derived the total number

of installments to be used to distribute the total load. In case the above condition fails,

we attempt to use heuristic strategy A. Secondly, we considered non-identical release times

case and derived certain conditions to obtain an optimal solution. When conditions derived

in Section 4.2 for single and multi-installment strategies cannot be satisfied, possible, we

attempt to use heuristic strategy B. It may be noted that there may be a number of heuristic

strategies possible, however, the choice of our strategies are based on certain features such as,

attempting to employ all the processors in the system before the release time τ , in the case

of heuristic strategy A and attempting to use a maximal set of processors in computation,

in the case of heuristic strategy B. In multi-installment strategy for the case of non-identical

release times, we attempt to use as many processors as possible to minimize the processing

time in every installment, however, when continuing the computation of the load without

any processor idling is no longer possible in the “near future” (with the estimated value of

K), we simply utilize the number of processors used in the previous installment to complete

processing the load (heuristic strategy B). While this strategy may underutilize the processors

available, coupled with the result of Lemma 4.1, it guarantees an acceptable solution.
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Chapter 5

Aligning Biological Sequences: A

Divisible Load Scheduling Approach

Comparative analysis is often used in biological researches. For example, determining the

similarity between a newly discovered gene sequence and a known gene (from a database),

may gives significant understanding on the function, structure, as well as the origin of the

new gene. Biological sequences are made up of residues. In DNA (DeoxyriboNucleic Acid) se-

quences, these residues are nucleic acids, while in protein sequences, these residues are amino

acid. In comparing two sequences, commonly known as aligning two sequences, residues from

one sequence are compared with the residues of the other while taking into account of the

position of the residues. Residues can be inserted, deleted or substituted from either two

sequences to achieve maximum similarity, or optimum alignment, between the two sequences

[41]. There are as much as (1 +
√

2 )2x+1
√

x combinations [42] for these insertion, deletion,

and substitution operations, where x is the length of the sequences. Hence, aligning sequences

is a time consuming procedure especially in the case of aligning multiple sequences.

In 1970, Needleman and Wunsch [43] introduced an algorithm for comparing two biological
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sequences for similarities without the need of going through all the combinations of insertion,

deletion or substitution operations. This algorithm is then improved by Sellers [44] and later

generalized by Smith and Waterman [45, 46]. These algorithms are still popular today in

aligning DNA (Needleman-Wunsch) and protein (Smith-Waterman) sequences.

Although the Needleman-Wunsch algorithm does not go through all the possible combina-

tions, it still has a complexity of O(x2). The Smith-Waterman algorithm, on the other hand,

has a complexity of O(x3) but was later improved by Gotoh [47] to just O(x2). Nevertheless,

as longer sequences are generated with ever advancing sequencing technology, a complexity of

O(x2) may still be unacceptable in many cases. This is especially true if considering the vast

amount of sequences available today available from databases such as [48, 49, 50]. Further,

these gigantic databases are growing rapidly, i.e., the GenBank is growing at an exponential

rate, with rate as much as of 1.2 million new sequences a year [51]. As a result, a wide variety

of heuristic methods have been proposed for aligning sequences, such as FASTP [52], FASTA

[53, 54], BLAST [55], and FLASH [56]. These heuristics obtain computation speed-up at the

cost of less sensitivity. Other methods, such as [57], are able achieve speed-ups without losing

sensitivity. Nevertheless, the speed-ups achievable are heavily dependant on the similarity of

the sequences. Further this method does not generate the complete Smith-Waterman matrix

that may be useful to detect multiple subsequence similarities.

Meanwhile, other researchers on the other hand, attempt to gain speed-up by exploiting the

advantages of parallel processing systems. The native way of parallelling the Needleman-

Wunsch (or Smith-Waterman) algorithm is to compute the matrix elements in a diagonal

fashion [58]. The level of parallelism that can be achieved in this manner is limited by the

heavy communication cost due to the data dependency. As a result, this method is only practi-

cal when implemented in expensive, customized MIMD (Multiple-Instruction Multiple-Data)

systems. Other more cost effective approaches that utilized general-purpose processors are
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presented in [59, 60, 61]. In [59], Yap et al., presented a speculative computation approach

where he exploit the independency characteristic of the Beger-Munson [62] algorithm for

multi-sequence alignment. As illustrated in his paper, the speculative computation approach

can reduce a 28 computation steps process to just 13 steps, hence achieving speed-up. Nev-

ertheless, speed-up is dependant to the similarities of the group of sequences being compared

and homogenous processors are required in order achieve high level of parallelism. Further,

due to the working of this speculative approach and only small amount of processors can be

utilized as using more processors may not be efficient.

In [60], Trelles et al., presented a new clustering strategy for multi-sequence alignment that

is able to achieve speed-up by significantly reduce the number computational steps (pairwise

alignments). Further, this clustering strategy also able to incur independent processes that

are able to be processed in parallel, hence achieving more speed-up. The disadvantage of this

parallel processing strategy is that the number of idle processors are considerably more in the

early stage of the alignment process and utilizing non-homogenous processors may heavily

cripple the overall speedup.

In a recent paper [61], Torbjorn et al., presented a method that is able to utilize a generic

Intel processor with MultiMedia eXtensions (MMX) and Streaming SIMD Extensions (SSE)

technology to achieve speed-up by parallelism. The major draw back of this method is that

the amount of speed-up that can be achieve is restricted by the processor’s technology, i.e. a

Pentium III processor can only allow a 8-way parallelism.

In this chapter, we present a parallel implementation of Smith-Waterman algorithm that

utilized Divisible Load Theory (DLT) to achieve high level of parallelism by pipelining the

computational process. Our strategy can be easily modified to be used with the Needleman-

Wunsch algorithm or other similar algorithm. One of the advantages of our approach is that

we are able to utilize non-homogenous (heterogenous) processors as we will determine the
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amount of load to be assigned to each processors such that the level of parallelism will not

be deteriorated, i.e., slower processors will receive less amount of load. Further, since our

strategy achieve speed-up at the Smith-Waterman (or Needleman-Wunsch) matrix genera-

tion level, it can be easily implemented/integrated in either 3 of the strategies mentioned

above [59, 60, 61] and more, i.e., the Divide and Conquer method [63] that is able to reduce

the amount of memory required to align long sequences.

The organization of the chapter is as follow, in Section 5.1, we will briefly introduce some pre-

liminaries knowledge and formally define the problem we address here. We will then present

our strategy for the problem concerned in Section 5.2. In this section, we also be deriving

certain conditions that needs to be satisfied in order to guarantee an optimal solution. In

cases where these conditions cannot be satisfied, we will then resolve to heuristic strategies.

We will present three heuristic strategies in Section 5.3 for such cases. In Section 5.4, we

will discuss the performance of our strategy using rigorous simulation study. Finally, we will

conclude this chapter in Section 5.5.

5.1 Preliminaries and Problem Formulation

5.1.1 Smith-Waterman Algorithm

We first briefly introduce an improved version of Smith-Waterman algorithm by Gotoh [47]

as well as some characteristics of the matrix generated by the algorithm. In aligning two

sequences, denoted as SqA and SqB, of length α and β respectively, the algorithm basically

generates 3 separate matrices, denoted as matrix S, h and f. Each row and column of these

matrices represent a residue of SqA and SqB, respectively. Given s(ax, by) as the substitution
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score1 by replacing the x-th residue from SqA with the y-th residue from SqB, z as the penalty

for introducing a gap, and v as the penalty for extending a gap. The S, h and f matrices are

related by the following recursive equations.

S0,y = Sx,0 = h0,y = fx,0 = 0 (5.1)

Sx,y = max





hx,y

Sx−1,y−1 + s(ax, by)

fx,y





(5.2)

hx,y = max





Sx−1,y + z

hx−1,y + v





(5.3)

fx,y = max





Sx,y−1 + z

fx,y−1 + v





(5.4)

for the range 1 ≤ x ≤ α, 1 ≤ y ≤ β where Sx,y, hx,y, and fx,y represent the matrix elements in

the x-th row, y-th column of the matrices S, h and f respectively. In this computation process,

residues in SqA and SqB are tested for a best possible alignment in a recursive fashion. The

computation of the above mentioned matrices leads to possible alignment of the respective

sequences. The score of the matrix element, Sx,y, quantifies on the quality of alignment (from

the 1-st residue of SqA and SqB respectively) until x-th residue of SqA and y-th residue of

SqB. Thus, higher the score at Sx,y, better the alignment between the sequences until those

residues. The details on the workings of this algorithm can be found in [58].

The S matrix contains all these alignment score of SqA and SqB and it is used to determine

the optimal alignment. As we can see from the equations above, the matrix element Sx,y

is dependant to the (x − 1, y − 1), (x − 1, y), and (x, y − 1) elements from the S, h and f

matrices, respectively. This is illustrated in Fig. 5.1. Due to this dependency, the S matrix

1Score defines the similarities between two residues. The scores can be found in substitution score matrices

such as the identity score matrix for DNA or the PAM250 matrix for protein [64]. These substitution scores

matrices are predefined based on biological factors.



Chapter 5 Aligning Biological Sequences: A Divisible Load Scheduling Approach 86

b

y-1


b

y


b

1


b

2


b

3


b

y+1


b
β


a

1


a

2


a

x-1


a

x


a

x+1


a
α


SqB


SqA


Figure 5.1: Illustration of the computational dependency of the element (x,y) in the S matrix

elements cannot be computed independently, either column-wise or rows-wise. Nevertheless,

the elements along the diagonal line given by, Sx+1,y−1, Sx,y, and Sx−1,y+1, are independent to

each other and hence, they can be calculated independently. In our strategy we exploit this

property and attempt to distribute the computations of the matrix elements across several

processors in our cluster system.

5.1.2 Trace-back process

The trace-back process is used to determine the optimal alignment between two sequences.

The process utilize the characteristic of the S matrix where every matrix elements represents

the maximum alignment score of the sequences until the respective residues. For example,

when aligning SqA and SqB, the Sx,y in the S matrix represent the maximum score of aligning

a1, ..., ax and b1, ..., by where ax and by are the x-th and y-th are the residues of SqA and SqB

respectively. Hence, to obtain the optimum alignment, we start from the bottom right of the

S matrix and move towards the upper left of the matrix. At each matrix element, we are

only allow to move to the adjacent element in three different directions, they are, up, left
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T G C G G A A T

T 10 10 10 10 10 10 10 15

G 10 20 20 25 30 30 30 30

C 10 20 30 30 30 35 35 35

A 10 20 30 35 35 40 45 45

A 10 20 30 35 40 45 50 50

C 10 20 35 35 40 45 50 55

G 10 25 35 45 50 50 50 55

A 10 25 35 45 50 60 65 65

Table 5.1: Example 5.1: Trace-back process

or diagonally (upper-left). The choices are determined by the largest values among them.

Moving up and left represent the introduction of a ‘gap’ in SqA and SqB respectively while

moving diagonally represent a ‘substitution’ where no gap is added. Hence, moving diagonally

is preferred if there is a tie in between score for the direction up/left and diagonal.

Example 5.1 : Consider the arbitrary S matrix given in Table 5.1 where SqA and SqB have

the residues TGCAACGA and TGCGGAAT respectively.

According to the result from the trace-back process the optimal alignment is

T G C A A C G A

T G C G G A A T
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Figure 5.2: Linear network with m processors interconnected by (m−1) communication links

5.1.3 Problem Formulation

In this section, we will formally defined the linear network architecture as well as the problem

we address. We consider a loosely coupled multiprocessor system, interconnected in a linear

daisy chain fashion, as shown in Fig. 5.2, with m processors denoted as P1, P2, P3, ..., Pm, and

(m − 1) links, denote as l1, l2, l3, ..., lm−1. All the processors in the system are assumed to

have front-end. A front-end is a coprocessor that off loads the communication task from the

processor such that the processor can compute and communicate at the same time instant.

Nevertheless, the front-end cannot send and receive data simultaneously.

As stated, we consider the problem of aligning two sequences. Our objective is to design a

strategy such that the processing time, defined as the time when the computation starts until

it ends, is minimum. The computation process involves generating the S, h, and f matrices,

as presented in Section 5.1.1. In this work, we do not consider the computation time of post-

processes, i.e., the trace-back process that is required to determine the optimal alignment

between the two sequences.

We denote the two sequences being aligned as SqA and SqB. We assume that all processors,

P1, ..., Pm, already have SqA and SqB in their local memory. This is a practical assumption

as sequences can be broadcasted to all processors. Further, in the case of multi-sequence

alignment, sequences are often compared with each other more than once where only slight

differences are made each time the sequences are being compared, i.e., the Berger-Munson

algorithm [62]. Hence, it would be feasible for all the processors to keep a copy of all se-
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quences in their local memory and only modifications on the sequences are broadcasted. It

should be clear at this stage that we are concerned with the design of the strategy after the

processors already had the sequences to be aligned and we do not address the problem how

these sequences are broadcasted to the processors.

We shall now introduce an index of definitions and notations that are used throughout this

chapter.

m The total number of processors in the system

Pi The i-th processor, where i = 1, .., m

li The communication link between Pi and Pi+1

Ei The time taken for Pi to compute one matrix element in the S matrix, including

the necessary two matrix elements in h and f matrices

Ci Time taken for li to communicate one matrix element

α Length of SqA or the number of residues in SqA

β Length of SqB or the number of residues in SqB

Q Number of iteration used to compute the S, h, and f matrices

αj Number of residues of SqA assigned to Pj, where
m∑

j=1

αj = α

β(k) Number of residues of SqB assigned in the k-th iteration, where
Q∑

k=1

β(k) = β

Li,k Sub-matrix of S that is assigned to Pi in the k-th iteration

T (m) The processing time, defined as the time period when the process of generating

the S matrix starts until the end, with m processors.
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5.2 Design and Analysis of Parallel Processing Strategy

In this section, we will present our multiprocessor strategy. Firstly, let us consider the dis-

tribution of the task of generating the S matrix. It may be noted that when we mention

generating the S matrix, we also take into the generation of other two required matrices h,

and f, as generating Sx,y demands computing the entries of hx,y, and fx,y elements as well.

The S matrix is partitioned into sub-matrices Li,k, i = 1, ..., m, k = 1, ..., Q, where each sub-

matrix consist of a portion of SqA and SqB. We assign the computation of the sub-matrices

Li,k, i = 1, ..., m, k = 1, ..., Q respectively, in Q iterations, to processor Pi. The distribution

pattern is as illustrated in Fig. 5.3. Due to the characteristic of the S matrix (as discussed in

Section 5.1.1), sub-matrices Li,k with the same value of (i+k) can be calculated concurrently.

Thus, for instance, sub-matrices L1,3, L2,2, and L3,1 can be calculated in parallel as all three

Li,k have the same value (i + k) = 4.

Note that computing the values of a sub-matrix Li,k means we compute the values of the

sub-matrices of the matrices S, h, and f, respectively. At this stage, it may be noted that,

due to data dependency, Pi needs the values of sub-matrix Li−1,k from Pi−1 in order to start

computing Li,k. To be more precise, Pi requires only the data from the last row of Li−1,k (of

the S and h matrices) to start computing Li,k. Note that the size of the last row (number of

columns) of each sub-matrices of S and h, with processor Pi−1, is β(k), respectively. Hence,

on the whole we need to transmit 2β(k) values (last rows of S and h matrices from Li−1,k) to

Pi, before initiating the computation of Li,k. Lastly, it may be noted that Pi does not require

the values of f from Pi−1 as the computation Li,k in every iteration uses values of f generated

within the same processor.

Now, the question that remains unanswered is the amount of residues from SqA, i.e., the

value αi, i = 1, ..., m, that should be assigned for each processor Pi such that a high degree of

parallelism can be achieved. Further, we need to determine the amount of residues of SqB,
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Figure 5.3: Distribution pattern for matrices S, h, and f
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the value β(k), k = 1, ..., Q, that should be considered in each iteration for matching with

each of the assigned residues of SqA. We shall discuss these in the next section.

5.2.1 Load distribution strategy

In the design of our strategy, we utilize DLT to determine the amount of residues of SqA that

should be given to each processor, as well as the amount of residues that should be considered

from SqB in each iteration. The distribution strategy is as shown the timing diagram in Fig.

5.4. In the timing diagram, the x-axis represents the time and the y-axis represent the proces-

sors. We represent the communication by a block above each of the x-axis and computation

by a block below the x-axis of a processor. The block Li,k represent the computation of Li,k,

that is the sub-matrix to be computed by Pi at the k-th iteration. The distribution strategy

is as follows. First, P1 will compute L1,1. After it has finished computing L1,1, it will continue

processing L1,2, since it only requires the results from L1,1. At the same time, it will send the

last row of L1,1 to P2 so that P2 may start processing L2,1 from time α1β
(1)E1 + 2β(1)C. Note

that by the time P2 finishes computing L2,1, it would have received the last row of L1,2 (from

P1), hence it can start computing L2,2 continuously right after completing the computation of

L2,1. At the same time instant, it will send the last row of L2,1 to P3. This process continues

until Pm.

From the timing diagram, we may observe that there are two phases of communication pro-

cesses involved for Pi, i = 1, ..., m − 1: (a) sending the last row of Li,k, (S and h ma-

trices), of total size 2β(k), to Pi+1 and (b) sending Li,k (S matrix only), of size αiβ
(k),

via Pi+1, Pi+2..., Pm−1 to Pm. As stated in the previous section, phase (a) is required for

Pi+1, i = 1, ..., m − 1 to start its computation. On the other hand, phase (b) is required

such that Pm can have the complete S matrix to perform any necessary post-processing such

as the trace-back process to determine an optimal alignment. In our strategy, each of the
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Figure 5.4: Timing diagram when m = 6

sub-matrices that was computed by the respective processors will be transmitted to Pm right

after the phase (a) mentioned above. Thus, whenever the communication link is available and

after phase (a), the results of a processor are communicated to Pm. This may be observed

from the timing diagram. It may also be noted that (b) may not be required in some cases

as it is possible to perform post-processing (i.e. trace-back process) at individual processors.

We shall discuss this later in this chapter.

Now we shall derive the amount of residues that should be given to Pi, i = 1, ..., m according

to the distribution strategy described above. From the timing diagram, we see that,

αi−1β
(k)Ei−1 + 2Ci−1β

(k) = 2Ci−1β
(k−1) + αiβ

(k−1)Ei , i = 2, ..., m , k = 2, ..., Q

Alternatively,

αi = αi−1
β(k)

β(k−1)

Ei−1

Ei

+ 2
β(k)

β(k−1)

Ci−1

Ei

− 2
Ci−1

Ei

, i = 2, ..., m , k = 2, ..., Q (5.5)

As stated in Section 5.1.3, the front-ends cannot send and communicate at the same time

instant. We can observe from Fig. 5.4, in order to avoid front-end collisions, the following
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condition needs to be satisfied.

m−3∑

j=1

2β(k−j)Cj + αm−2β
(k−m+2)Em−2 ≥

2βk−1C1 + max(2β(k−i)Ci, i = 2, ..., m− 1) +
m−1∑

j=1




j∑

i=1

αiβ
(k−j)Cj


 , k = 1, ..., Q (5.6)

The above inequality is captured using the fact that during k-th iteration k = 1, ..., Q, the

communication phases (a) and (b) described above by Pm−1 must complete on or before the

computation process of Pm−2, as Pm−2 needs to send the last row of Lm−2,k immediately after

processing Lm−2,k to Pm−1.

The set of equations (5.5) satisfying (5.6), are difficult to solve to yield an optimal solution, as

the equations may generate inconsistent values for the unknowns αi and β(k). However, this

does not inhibit from deriving a practically realizable solution in which one may attempt to

fix the number of residues to be considered in each iteration in order to deliver an acceptable

quality solution. Thus, if we set β(k) =
β

Q
, k = 1, ..., Q, then this means that we consume

identical number of residues in each iteration. With this modification, we will be able to solve

(5.5) together with the fact that
m∑

i=1

αi = α, to determine the value of αi, i = 1, ..., m as,

αi =
1

Ei

α∑m
j=1

1
Ej

, i = 1, ..., m (5.7)

However to solve (5.5) we assumes that Q is a fixed or a known parameter. As far as the

choice on the value of Q is concerned, we set it to largest possible value, i.e., Q = β (implying

that β(k) = 1), to maximize the degree of parallelism that can be achieved. Note that one

may have Q < β, which will only degrade the quality of the solution (speed-up) as shown in

Theorem 5.1 below.

Theorem 5.1: The processing time for a m-processor system consuming q iterations is strictly

greater than the processing time for the system consuming q + 1 iterations.

Proof: Let us redenote the processing time as T (m, q) when q iterations are consumed in
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aligning two sequences using our strategy. We need to show that T (m, q) > T (m, q+1). From

the timing diagram, we see that the processing time using m processors to align the sequences

in q number of iterations, includes the computation time of L1,k, k = 1, ..., q, communication

time for 2β(q)C (of (m − 1) processors) and computation time for Li,q, i = 2, ..., m. Hence,

we have

T (m, q) =
q∑

k=1

α1β
(k)E1 +

m−1∑

j=1

2β(q)Cj +
m∑

i=2

αiβ
(q)Ei (5.8)

where β(k) =
β

q
, k = 1, ..., q. Substituting these in the above equation, we have,

T (m, q) = α1βE1 + H
β

q
(5.9)

where H =
m−1∑

j=1

2Cj +
m∑

i=2

αiEi. Using (5.9), we have,

T (m, q)− T (m, q + 1) =
Hβ

q(q + 1)
> 0 (5.10)

Hence the proof.

As for the condition (5.6) mentioned above, since we consider β(k) = 1, k = 1, ..., Q (as we

have set Q = β), we have,

m−3∑

j=2

2Cj + αm−2Em−2 ≥ max(2Ci, i = 2, ..., m− 1) +
m−1∑

j=1




j∑

i=1

αiCj


 (5.11)

Hence, before we begin aligning SqA and SqB, we first check if (5.11) can be satisfied. If (5.11)

holds, then we will distribute and compute the S matrix as proposed above. The processing

time is,

T (m) = α1βE1 +
m−1∑

j=1

2Cj +
m∑

i=2

αiEi (5.12)

with αi derived from (5.7). However, it may happen that (5.11) may not be satisfied, i.e.,

typically when communication links are too slow. This is also equivalent to a situation

wherein processor speeds are extremely faster than the link speeds. In such cases, we will

need to resolve using alternate (heuristic) strategies. We shall propose two heuristic strategies
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in the later section of this chapter and an illustrative example to demonstrate their workings.

As mentioned earlier in this section, in some cases, it is possible to execute post-processing,

i.e. trace-back process, at individual processors without the need of having entire S matrix.

Hence the S matrix is not required to be sent to Pm for post-processing. Performing post-

processes in individual processors, or distributed post-processing will significantly relax the

condition (5.11) as transmissions of S matrix is the prime influential factor in (5.11). In

the next section, we shall demonstrate how the trace-back process can be done at individual

processors without the entire matrix S as well as the improvement that can be achieved.

5.2.2 Distributed post-processing : Trace-back process

In this section we shall demonstrate how the trace-back process can be done at individual

processors, eliminating the need to send the S matrix to Pm. This may act as a template for

any other post-processes that maybe done at individual processors with only the partial S

matrix.

As mentioned in the Section 5.1.2, the trace-back process starts at the bottom-right of S

and move towards the top-left by taking the maximum score among the adjacent matrix

element on the left, top and top-left. This essentially generate a ‘path’, in S, starting from

the bottom-right to top-left. If the trace-back process is to be done at individual processors,

each processors has only a portion of the trace-back path, with a starting point (bottom)

and an ending point (top) as shown in Figure 5.5. We denote the starting point (bottom)

and an ending point (top) of the trace-back path portion in Li,k, k = 1, ..., Q as S
(b)
i and S

(t)
i

respectively.

We shall now describe the distributed trace-back process between two adjacent processors, Pi

and Pi−1, for the ease of understanding. Let us assume that optimum alignment from S(b)
m
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Figure 5.5: Distributed trace-back process between Pi and Pi−1

until S
(b)
i as well as the point S

(b)
i is known by Pi. The trace-back process can be carried out

in Pi until the path reaches the top row of Li,k, k = 1, ..., Q. The point S
(t)
i can be determined

by Pi with the previous information given by Pi−1 when calculating S, that is the last row of

S in Li−1,k, k = 1, ..., Q. After S
(t)
i has been identified, Pi can then determine S

(b)
i−1 and then

transmit this information to Pi−1 together with the optimum alignment from S(b)
m until S

(b)
i−1.

With distributed trace-back process, all the processors no longer required to send the their

respective S matrix to Pm, reducing the overall communication overhead. The timing diagram

is as shown in Fig. 5.6. From the timing diagram, we can see that, in order to avoid front-end

collision, at the k-th installment, the total communication time for Pi to transmit data to

Pi+1 (via li) and Pi+1 to transmit data to Pi+2 (via li+1), cannot exceed the total processing

time of Pi at k-th installment, i.e. αiEi. This is due to the fact that, at k-th installment,

when Pi finish processing Li,k, it will need to transmit the respective data to Pi+1. At the

same time instant, if Pi+1 is still busy transmitting data to Pi+2 (via li+1), front-end collision

will occur. Hence, in order to avoid front-end collision the following conditions needs to be
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Figure 5.6: Timing diagram when S is not required to be sent to Pm

satisfied,

αiEi ≥ 2(Ci + 2Ci+1) , ∀i = 1, ...,m− 2 (5.13)

If the above condition is violated, we have to resolve to heuristic strategies. Nevertheless,

as we can see, the above condition is much easier to satisfy compared to (5.11). Hence,

performing distributed post-processes can significantly improve the overall performance as

the probability of using heuristic strategies decreases. We shall further elaborate this point

later in Section 5.4.

5.3 Heuristic Strategy

In this section, we shall propose three heuristic strategies that shall be used to aligned the

two sequences in the case when (5.11) and (5.13) cannot be satisfied.
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Figure 5.7: Timing diagram for the idle time insertion heuristic when m = 6

5.3.1 Idle time insertion

This heuristic strategy can be used in the case where distributed post-processing is not possible

and (5.11) cannot be satisfied. In this heuristic strategy, we attempt to insert redundant idle

time into the computation process to compensate the slow communication links. The timing

diagram of this strategy is as shown in Fig. 5.7. From the timing diagram, we can see that,

2β(k−1)C1 + α2β
(k−1)E2 + (2 +

∑2
j=1 αj)β

(k−1)C2 = α1β
(k)E1 , k = 2, ..., Q

Alternatively, taking into account that βk = 1 for k = 1, ..., Q, we have

α2 =
α1

E2 + C2

(E1 − C2)− 2C1 + 2C2

E2 + C2

, k = 2, ..., Q (5.14)

Similarly, from timing diagram, we have the relationship of Pi and Pi−1 where i = 3, ..., m−1,

we have

αiβ
(k−1)Ei + (2 +

∑i
j=1 αj)β

(k−1)Ci = αi−1β
(k)Ei−1 +

i−1∑

j=1

αjβ
(k−1)Ci−1 + 2Ci−2β

(k)
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Alternatively

αi = αi−1
Ei−1

Ei + Ci

+
i−1∑

j=1

αj

(
Ci−1 − Ci

Ei + Ci

)
+

2Ci−2 − 2Ci

(Ei + Ci)
, i = 3, ..., m− 1 (5.15)

Finally, from timing diagram, we have the relationship of Pm−1 and Pm

αmβ(k−1)Em = αm−1β
(k)Em−1 + (2 +

m−1∑

j=1

αj)β
(k−1)Cm−1 + 2β(k)Cm−2

Alternatively

αm =
(αm−1Em−1 + 2(Cm−1 + Cm−2))

Em

+
m−1∑

j=1

αj
Cm−1

Em

(5.16)

Solving (5.14), (5.15) and (5.16) together with the fact that
∑m

j=1 αj = α, we will able to

obtain the value αi , i = 1, ..., m.

For this heuristic, the conditions that needs to be satisfied are,

αiEi ≥ ∑i−1
j=1 αjCi−1 + 2Ci−2 , i = 2, ..., m (5.17)

where C0 = 0. As we can see, the condition (5.17) is easier to satisfy than (5.11), hence this

heuristic strategy may be able to implement even if (5.11) is not satisfied. When (5.17) is

satisfied, the processing time will be

T (m) = α1(β − 1)E1 +
m∑

j=1

(αjEj + 2Cj) (5.18)

If (5.17) cannot be satisfied, we will then attempt to use the next heuristic strategy.

5.3.2 Reduced set processing

This heuristic strategy can be used in both the cases where (5.11) and (5.13) cannot be sat-

isfied. For ease of understanding, we only discuss the case where distributed post-processing

is not possible and (5.11) cannot be satisfy. In the case where distributed post-processing is
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possible and (5.13) cannot be satisfy, the heuristic strategy is identical.

In this heuristic strategy, we attempt to use less processors to process the load such that (5.11)

can be satisfied. From (5.11), we can see that the major cause for the violation of (5.11) is

due to the large amount of communication time involved as compare with the computation

time. Using less than available processors is able to solve the problem as it will increase the

computation time of each processor. The procedure is as follow. First, when (5.11) is violated,

we will exclude the last processor from computing the load, i.e., m = m − 1. We will then

recalculate αi, i = 1, ..., m of the reduced processors set and check (5.11) again. If (5.11) is

still violated, we will exclude another processor and repeat the above procedure until (5.11)

can be satisfied. When (5.11) is satisfied with the reduced processors set, we will compute

the load as proposed.

5.3.3 Hybrid strategy

In this heuristic strategy, we attempt to utilize both heuristic strategies presented above, for

the case when (5.11) cannot be satisfied, in an alternating fashion. Initially, when (5.11) is

violated, we will use the Idle time insertion strategy. If (5.17) is satisfied, we will align the

sequences as proposed. On the other hand, if (5.17) is violated, we will use the Reduced set

processing strategy. In Reduced set processing strategy, we eliminate the last processor from

participating in the computation process and check if (5.11) can be satisfied. If (5.11) is

satisfied, we will align the sequences as proposed by the distribution. However, when (5.11)

is violated, we will attempt to use the Idle time insertion strategy on this reduced processors

set to check if (5.17) can be satisfied. If (5.17) is violated, we will repeat the Reduced set

processing strategy and eliminate the last processor (from the reduced processors set) from

participating the computation process. The procedure is repeated until either (5.11) or (5.17)
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is satisfied.

In this heuristic strategy, we attempt to utilize the maximum number of processors possible

by continuously checking both the conditions (5.11) and (5.17) before eliminating the last

processors from the set. Thus this methodology avoids any inadvertent use of all the processors

(due to first strategy) and at the same time attempts to use a maximal (optimal) number of

processors (as proposed by the second strategy), thus exploiting the advantages of the two

strategies. This method is particulary recommended when the system can affords to spend

additional computational time, especially while handling non-time-critical jobs. The following

example illustrates the workings of these heuristics strategies.

Example 5.2: We consider aligning two sequences, SqA and SqB, with length of (number of

residues) 150, 000 and 100, 000 respectively. To demonstrate the workings of the heuristics, we

consider a homogenous system with parameters m = 7, Cj = Ci = 10ns/element, Ej = Ei =

50ns/element ∀j 6= i. First, we calculate the values of αi, i = 1, ..., 7 as described in Section

5.2. The values found are α1 = 21429, α2 = 21429, α3 = 21428, α4 = 21429, α5 = 21428,

α6 = 21429, and α7 = 21428. With these values, we observe that (5.11) is violated. We

now attempt to use the Idle time insertion strategy. The values of αi, i = 1, ..., 7 are, 34150,

22766, 18971, 15810, 13175, 10978, and 34150 respectively. With these values, it may be noted

that (5.17) does not hold. As a result, we use Reduced set processing strategy and eliminate

P7 from participating in the computation. Now, with m = 6, we repeat the procedure and

obtain α1 = 25000, α2 = 25000, α3 = 25000, α4 = 25000, α5 = 25000, and α6 = 25000,

which still violates (5.11). We repeat the procedure until m = 3, with values α1 = 50, 000,

α2 = 50, 000, and α3 = 50, 000, respectively, satisfying (5.11). Hence, we will distribute the

number of residues of SqA according to these αi, i = 1, 2, 3 and the processing time is given by,

T (3) = 250 seconds. Finally, to see the speed-up delivered using the multiprocessor solution,

the time taken on a single processor is T (1) = 750 seconds, which amounts to a speed-up
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factor of 3.

Suppose we wish to use the hybrid strategy as described above, we proceed as follows. After

the first step of the above reduced set strategy, we observe that (5.11) continues to violate.

Now, we use the Idle time insertion strategy and found that (5.17) is also violated. Then

we invoke reduced set strategy and proceed. When m = 5, (5.11) is again violated hence

we continue using the Idle time insertion strategy. Using the heuristic, we found values

αi, i = 1, ..., 5 are 40704, 27135, 22613, 18844, and 40704 respectively which satisfies (5.17).

Hence we will align the sequences as proposed and the processing time of the heuristic strategy

is T (5) = 203.53 seconds, which amounts to a speed-up factor of 3.68. As can be seen from

this example, although the Idle time insertion strategy heuristic is not able to efficiently

utilized the processors, it is able to achieve better processing time as it is able to utilize more

processors.

5.4 Performance Evaluation and Discussions

To quantify and understand the performance of our strategy, we perform rigorous simulation

experiments to compare the processing time of our strategy with the direct implementation of

Smith-Waterman algorithm using a single machine (non-parallel version). We define speed-up

as,

Speed-up =
T (1)

T (m)
(5.19)

where T (m) is the processing time of our strategy on a system using m-processors. T (1) is

the processing time using a single processor and is given by,

T (1) = αβE1 (5.20)

In our experiments, we consider the influencing parameters of communication link speeds and

number of available processors. Further, in order to show the effectiveness of our strategy
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in exploiting the advantages of linear networks, we perform comparative experiments against

similar strategy in bus network. We categorize the experiments in a systematic fashion and

describe them as follows.

5.4.1 Effects of communication links speeds and number of proces-

sors

As stated in Section 5.1.3, in this paper, we consider a loosely coupled multiprocessors system

where communication delays are taken into account. From (5.11) and (5.13), we can sense

large delays, owing to the presence of slow communication links, is one of the major factors

that limits the use of processors, i.e., when the ‘Reduced set processing’ heuristic strategy is

used. We perform rigorous experiments to observe the effects of communication links speeds

on the performance of our strategy with, in systems with different number of processors.

In this experiments, we consider case when distributed post-processing is not possible, i.e.

the result, S, is required to be sent to Pm. We consider a homogenous system with number of

processors varied between m = 3 to 25 with Ex = Ey = E chosen in the range [15.0, 45.0] time

units/element, ∀x 6= y following a uniform probability distribution. We vary the link speed

parameter in the range [0.5, 10.0] time units/element. We consider two real-life DNA samples

in our experiments. First sample is the DNA of house mouse mitochondrion (Mus Musculus

Mitochondrion, NC 001569, denoted as SqA) consisting of 16,295 residues and the DNA of

human mitochondrion (Homo sapiens mitochondrion, NC 001807, denoted as SqB) consisting

of 16,571 residues, obtainable from the GenBank [48], in our experiments. The choice of these

DNA samples are very typical in such sequence alignment studies reported elsewhere as drug

manufacturers often use mouse model to test their products and understanding the differences

and similarities between the two species is utmost important. The results are as shown in

Fig. 5.8.
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Figure 5.8: Effect of communication link speed and number of processors on the speed-up

when S is required to be sent to Pm

It may be noted that when the communication delays are dominate (owing to a slow links)

heuristic strategies may be in place for processing, as (5.11) may not hold. This fact can be

captured from our experiments when C > 7 time units/element, where the speed-up saturated

at 4 due to the fact when the communication links are slow, both (5.11) and (5.17) cannot

be easily satisfied and hence the number of processors that can be utilized is limited. On the

other hand, when the links are relatively fast, the strategy is able to give a linear speed up

with respect to the number of processors available in the system. This can be see from the

figure when C ≤ 2. It may be noted that, at C ≈ 2 and m ≈ 7, we observe that there are

changes in the slope of the speed up. This changes are due to the use of Idle time insertion

strategy (when (5.11) cannot be satisfied) which is less efficient compared to the optimal

distribution strategy proposed in Section 5.2.

We perform the identical study in the case where distributed post-processing is possible, i.e.

the resulting matrix S is not required to be sent to Pm (distributed trace-back process) as
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Figure 5.9: Effect of communication link speed and number of processors on the speed-up

when S is not required to be sent to Pm

discussed in Section 5.2.2. The results are as shown in Fig. 5.9. We observe that the speed-

up generated in this case is linear with respect to the number of processors in the system.

This is due to the fact that slow communication links has insignificant effect on the overall

performance as the data required to be transmitted are small in size. As a result, the condition

(5.13) can always be satisfy in the experiment and hence none of the heuristic strategies have

been executed.

From the experiments above, we observe that the transmitting large amount of data, i.e.

the S matrix, is the major factor in determining the performance of the strategy. This is

particularly obvious in the case of linear networks as the data being transfer (i.e. from P1

to Pm) are required to percolate through the system and increasing in size as it passes from

processor to processor. Nevertheless, in the case where data are only required to be sent in

between adjacent processors, i.e. in cases where distributed post-processing is possible, the

independent communication links in linear networks are able to provide significant advantages.
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Figure 5.10: Extreme case when the condition (5.13) is at the verge of being satisfied

This can be clearly seen in extreme cases where conditions such as (5.13) is at the verge of

being satisfied, i.e. when

αiEi ≈ 2(Ci + Ci+1) , ∀i = 1, ..., m− 2 (5.21)

In such cases, the independent links in linear network are able to transmit data concurrently,

as shown in Fig. 5.10. From the figure, we observe that at time interval X, maximal number

of links (m
2
) are being utilized at the same time instant, i.e. links l1, l3, and l5 are transmitting

concurrently.

5.4.2 Performance evaluation against the bus network architecture

As stated in the Chapter 1, although the linear networks have a complex pipelined communi-

cation pattern that may incurs large communication delay, the independent communication

links between processors in a linear network may offers significant advantages, depending on

the underlying applications. In order to evaluate these advantages, we design similar strategy



Chapter 5 Aligning Biological Sequences: A Divisible Load Scheduling Approach 108

P

m
P
1
 P
3
P
2


Figure 5.11: Bus network architecture with m processors

L1,1

L2,1

L1,2

L3,1

L2,2

L1,3

L3,2

L2,3

L1,4

L4,1

L5,1

L4,2

L3,3

L2,4

L5,2

L4,3

L3,4

L5,3

L4,4

L5,4

P1

P2

P3

P4

P5

2Cβ(1)

2C(β(1)+β(2))

2C Σ4
n=1β

(n)

α1β
(1)E1

α2β
(1)E2

α1β
(1)C

2C Σ3
n=1β

(n)

2C Σ4
n=2β

(n)

L1,5

L2,5

L3,5

L4,5

L5,5

C(α1β
(2)+α2β

(1))

CΣ3
n=1αnβ

(4-n)

CΣ4
n=1αnβ

(5-n)

T(5)

Figure 5.12: Timing diagram of the distribution strategy when m = 5, and Q = 5

for the Bus network (single level tree) topology, which has a simple communication pattern

but only allow a pair processors are to communicate at any time instant.

5.4.2.1 Load distribution strategy in bus networks

In this section, we consider design of load distribution strategy for a multiprocessor system,

interconnected by a bus communication link, as shown in Fig. 5.11, with m processors denoted

as P1, P2, P3, ..., Pm. The distribution strategy for the bus network is as shown in the timing

diagram in Fig. 5.12. Similar to Section 5.2.1, we derive following equation from the timing
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diagram.

αi =
1

Ei

α∑m
j=1

1
Ej

, i = 1, ..., m (5.22)

As stated above, in the bus network architecture, only one pair of processors can communicate

at any time instant. Hence, we observe that, from Fig. 5.12, in order to avoid communication

overlap/contention, the following condition needs to be satisfied.

C ≤ α
∑m

i=1
1
Ei

(
∑m−1

j=1 αj + 2(m− 1))
(5.23)

In the case where distributed post processing is possible, the above equation can be simplified

as

C ≤ α1E1

2(m− 1)
(5.24)

The conditions (5.23) and (5.24) will be used to verify if the optimal solution is feasible. If

these conditions are violated, we will then resolve to heuristic strategy. The heuristic strategy

Reduced set processing described in Section 5.3, will be use for the case of bus networks

when the conditions (5.23) and (5.24) are violated.

5.4.2.2 Performance evaluation

Experiments were performed to determine the performance of the strategy in bus networks

with identical system parameters in the experiment described in Section 5.4.1. The experi-

ments include the case where (a) distributed post processing is not possible (b) distributed

post processing is possible, respectively. The results are as shown in Fig. 5.13 and Fig. 5.14,

respectively. As we can observe from both Fig. 5.9 (linear networks) and Fig. 5.14 (bus

networks), for the case when distributed post processing is possible, both architecture perform

equally well. To differentiate the performance, we increase the number of processors to the

range of [150 : 350] and repeat the experiments. The results is as shown in Fig. 5.15 and Fig.

5.16.
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Figure 5.13: Effect of communication link speed and number of processors on the speed-up

when S is required to be sent to Pm, in bus network

Figure 5.14: Effect of communication link speed and number of processors on the speed-up

when S is not required to be sent to Pm, in bus network
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Figure 5.15: Effect of communication link speed and large number of processors on the speed-

up when S is not required to be sent to Pm

From the results of these experiments, we observe that in the case where distributed post

processing is not possible, Fig. 5.8 and Fig. 5.13, the strategy implemented in bus network

is able to perform better than linear network. This is due to the pipeline communication

pattern in linear networks where data are percolated down the system inducing long commu-

nication delays. This restrict the number of processors that can be used to compute the load.

On the other hand, in the case where distribute post processing is possible, linear networks

out perform bus networks. This is due to the fact that the mentioned disadvantage of linear

networks do not have any effect in this case as the data are not required to be percolated to

Pm. Further, the independent links in linear networks enable more processors to participate

in processing the load. This can be observed from the conditions (5.13) and (5.24) for the

linear and bus networks respectively. From these equations, we can see that condition (5.13)

is much easier to be satisfied than (5.24), as a result more processors can be used to process

the load.
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Figure 5.16: Effect of communication link speed and large number of processors on the speed-

up when S is not required to be sent to Pm, in bus network

5.5 Concluding Remarks

The problem of aligning two biological sequences is addressed in this chapter. We proposed

an efficient multiprocessor solution that uses a loosely coupled linear daisy chain networks,

where communication delays are non-zero and are taken into consideration. In the design

of our strategy, we utilized DLT paradigm to determine the exact amount of residues to be

assigned to each of the processors such that the processing time is minimal. In our strategy,

we employ the Smith-Waterman algorithm, a widely used algorithm, to achieve a high degree

of parallelism. Our strategy can be easily implemented with other algorithms which uses

Smith-Waterman algorithm as well as with other similar procedures.

A systematic approach is presented in deriving our strategy. Firstly, we divide the S matrix

into sub-matrices, where the processors in the system will compute the respective sub-matrices

in more than one iteration. We derived equations that will determine the size of these sub-
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matrices according to the processors speeds and communication links speeds. In designing

our strategy, we exploit the advantage of the linear networks’ independent communication

links by enabling concurrent data transmission. Finally, we derived a condition to check if an

optimal solution can be achieved. We then considered the cases of distributed post-processing

where post-processing can be done at individual processors. Distributed post-processing offer

significant advantages as the communication overhead is substantially reduced. Similarly, a

condition is also derived to determine if optimal solution can be guaranteed.

In cases where optimal solution cannot be achieved, we will then resolve to heuristic strategies.

In designing heuristic strategies, there are a lot of factors that can be taken into consideration.

In the design of our first heuristic strategy, we introduce redundant idle time in the computa-

tion process to compensate the slow communication links. Whereas, in our second heuristic

strategy, we use only a subset of processors in the computation process. This will provide

more communication time at the cost of longer processing time. The key difference between

the strategies is that the first one attempts to retain all the available processors in the hope

of achieving maximum possible speed-up whereas, the second strategy attempts to carefully

considers the number of processors that can be used at every step whenever necessary. In

the first strategy, we derive a condition similar to (5.11) which in this case, by and large, is

simple to satisfy. However, it may be possible that sometime even this simple condition may

not hold. In this case, we choose the second strategy for processing which guarantees that

processing will be completed, as in this second strategy there will be at least one processor

to complete the processing in the worst case scenario.

In Section 5.4, we studied the performance of our strategy in the effect of slow communication

links. From (5.11) and (5.13), we can see that slow communication links is one of the major

factors that limits the performance of the strategies, i.e., the number of processors used is

restricted when ‘Reduced set processing’ heuristic strategy is used. We performed simulated
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experiments to evaluate the performance of our strategies (both with and without distributed

post-processing) in various scenarios with different number of available processors and com-

munications link speeds. The experiments results showed that, for fast communication links,

our strategies are able to achieve linear speed-up. Further, it also shows the significant im-

provements in the case when distributed post-processing is possible.

We also performed experiments to evaluate the performance of our strategy in exploiting the

advantages of linear networks. Experiments are performed to compare the performance of

the strategy when implemented in linear and bus networks respectively. Results show that

when the strategy is executed in linear networks, more processors are able to participate in

computing the load. This is due to the fact that our strategy is able to exploit the advantages

of linear networks where processors are able to communicate concurrently.
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Chapter 6

Conclusions and Future Work

The design and analysis of load distribution strategies for linear networks with various real-

life constraints are considered in this thesis. Designing load distribution strategies for linear

networks is a challenging task as the communication of linear networks involved a complex

pipelined communication pattern through the m − 1 independent links. In designing these

strategies, the communication pattern has to be taken into consideration to avoid any colli-

sion among the communication resources, i.e. the front-ends. Although linear networks may

incur unnecessary complexity into the design of load distribution strategies, the independent

links in linear networks may be able to provide some significant advantages as concurrent

communications are possible.

In the DLT literature, extensive studies and experiments [5, 11, 33] have been carried out for

load distribution strategies in linear networks for a single divisible load. However, in reality,

the dedicated network based parallel processing system is most likely to be given more than

one load to be processed. Further, in real-life scenario, it may also occur that the processors

in the system are busy with other form of computational tasks such that it will not able to

process the arriving loads when the loads arrive.



Chapter 6 Conclusions and Future Work 116

In Chapter 3, we designed a load distribution strategy for handling multiple divisible load in

linear networks. In designing the strategy, the conditions of the previous load are taken into

consideration when scheduling the current load in order to minimize the unutilized computa-

tional time. Further, we take into consideration of the availability of the front-ends and derived

a set of conditions that will guarantee a collision-free front-end operation among the adjacent

loads for both single and multi-installment strategies. In the case where multi-installment

strategy is used, it may happen that a feasible number of installments does not exist and we

resolve this situation by using heuristic strategies. Two heuristic strategies, referred to as A

and B, are proposed. The choice of heuristic strategies depends on several issues. Heuristic

A, which utilizes single-installment distribution strategy, may offer computation simplicity;

while for Heuristic B, which utilized multi-installment distribution strategy, may offer better

performance. Rigorous simulated experiments have been performed to evaluate the perfor-

mance of these heuristic strategies under various conditions. In our experiments, we designed

a number of strategies that utilized the combinations of Heuristic A, Heuristic B, and the op-

timal distribution strategy. We also considered the cases where the set of loads may be sorted

with the largest load first or last. Finally, simulations are performed to show the significant

improvements that can be achieved using our proposed strategy as compared to using the

strategy for single load, when processing multiple loads.

As an important extension of the work in Chapter 3, we considered the problem of designing

load distribution strategy for linear network with arbitrary processor release times, in Chapter

4. In this work, we considered the practical situation where the processors in the system are

occupied with other computational tasks such that the processors are not able to process any

in coming load instantly when the load arrive. In this work, we systematically considered

all possible cases that can arise. If the processors are idle at the time of arrival of the load,

the idle case algorithm presented in the literature [5, 33] can be immediately used. As done

in the literature, we considered two possible cases of interest, namely identical release times
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and non-identical release times. In the case of identical release times, we derived a condition

to determine if the load can be fully distributed to all processors within a single-installment

and will resolve to multi-installment strategy when this condition is violated. For the case of

non-identical release times, the problem becomes much more challenging as utilizing all the

available processors may not be beneficial, i.e. using processors with significantly large re-

lease time will increase the overall processing time. As such, we designed a recursive algorithm

that is able to determine the optimal (qualified) set of processors that should participate in

processing the load. We have also proved that the load can be fully processed by the set of

processors before the release times of any of the un-qualified processors. Similar to the work

in Chapter 3, conditions have been derived to determine if these strategies can be used and

we will then resolve to heuristic strategies if these conditions are violated.

Finally, as to complete our analysis on distribution strategies in liner networks, we designed

a strategy that is able to fully harness the advantages of the independent links in linear net-

works. We studied various possible applications of DLT and considered the bioinformatics

problem of aligning biological sequences. For the first time in the domain of DLT, bioin-

formatics problems were attempted. Our objective is to design a load distribution strategy

such that the overall processing time is a minimal. In designing our strategy, we utilized the

popular Smith-Waterman algorithm which is able to determine the optimal alignment of two

biological sequences. We exploited the characteristic of the algorithm and designed a parallel

implementation of the Smith-Waterman algorithm with high degree of parallelism. We con-

sider two possible cases of aligning sequences where the results are required and not required,

to be collected at a processor. We also proposed a method that enables the trace-back process

to be performed at individual processor such that the results need not be collected at any

processor. Finally, as to highlight the advantages of the independent links in linear networks,

we implemented the similar strategy in bus networks and compare the performance between

these two network topologies.
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There are several possible future extensions for the works in this thesis. Firstly, we can con-

sider designing load distribution strategies under a combined influence of both the processor

release times and communication link release times constraints. Clearly, in this case, design-

ing load distribution strategies will be more challenging. Another extension that was not yet

attempted in the literature is to attack the similar problem with the load originates at an in-

terior processor. Since there exists two possible sequences of load distribution in this case [6],

attempting to derive optimal load distribution will be an interesting problem and finally, it

may be noted that the solution and the strategies for the interior case may also be applicable

to boundary case situation addressed in this thesis. Alternatively, one may consider extending

the bioinformatics works presented in this thesis by performance real-life experiments with

large scale biological sequence database. Finally, performance evaluations can also be done

between the presented strategies and existing strategies in the bioinformatics literature.
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Appendix

Derivation for Case 2 in Chapter 4, Section 4.2.4

Consider a set of processors S0 = {Pg, Pg+1, ..., Px−1, Px} such that the release time of Pi ∈ S0

is given by τi = 0. Note that the actual indices of the processors may be actually different.

That is, Pg = P3, Pg+1 = P11, and so on. We generate a set of equations to determine the

load fractions to be assigned to these processors as follows.

L1αx−1,1Ex−1 =
x∑

p=x−1

(L1αx,1)Cp + L1αx,1Ex (A.1)

Rearranging the above equation, we obtain,

L1αx,1 = L1αx−1,1

(
Ex−1∑x

p=x−1 Cp + Ex

)
(A.2)

Note that in the above equation, the
∑x

p=x−1 Cp accounts for all the communication delays

incurred between the processors Px and Px−1. Similarly,

L1αx−2,1Ex−2 =
x−1∑

p=x−2

(L1(αx,1 + αx−1,1))Cp + L1αx−1,1Ex−1 (A.3)

L1αx−1,1 = L1αx−2,1




Ex−2∑x
p=x−1(

Ex−1∑x

p=x−1
Cp+Ex

+ 1)Cp + Ex − 1


 (A.4)

Repeating the procedure above, we obtain L1αi,1, i = (g + 1), ..., (x − 1), x with respect to

L1αg,1. To determine L1αg,1, we have a condition wherein the total communication and

processing time is equated to τs, where τs is the smallest release time among the processors

that have τi 6= 0.
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g−1∑

p=1

(
x∑

i=g

L1αi,1)Cp + L1αg,1Eg = τs (A.5)

If there are r processors with release times equal to 0, then with the above approach, we

can have r equations with r unknowns. Hence, we will be able to solve for all L1αi,1, i =

g, (g + 1), ..., (x− 1), x.


