

DOCUMENT CLUSTERING ON TARGET
ENTITIES USING PERSONS AND

ORGANIZATIONS

JEREMY R. KEI

National University of Singapore

2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DOCUMENT CLUSTERING ON TARGET
ENTITIES USING PERSONS AND

ORGANIZATIONS

BY

JEREMY R. KEI

(B. Sc. Hons, NUS)

A THESIS SUBMITTED
FOR THE DEGREE OF MASTER OF SCIENCE

 1

Table of Contents

List of Tables.. 3

List of Figures.. 4

Abstract.. 5

Categories and Subject Descriptors .. 7

General Terms ... 7

Key Words ... 7

1 Introduction... 8

2 Related Work... 14

2.1 Common Document Clustering Algorithms ... 14

2.2 Meta-Search Engines Compared... 17

3 Document Feature Representation.. 23

3.1 Identifying Direct Pages as Cluster Seeds .. 26

3.2 Delivering Indirect Pages to Clusters ... 34

3.3 Overall Procedure ... 38

4 Design and Implementation ... 41

4.1 Systems Architecture .. 41

4.2 Design and Implementation Methodologies ... 43

4.3 Supporting Resources ... 45

4.3.1 Test Collections... 45

4.3.2 GATE (General Architecture for Text Engineering) ... 47

 2

4.3.3 OpenNLP .. 50

4.3.4 WEKA (The Waikato Environment for Knowledge Analysis) 52

4.3.5 Web Spider.. 53

5 Experiments and Discussions ... 57

5.1 Selecting Test Samples from the Web... 57

5.2 Testing using WebPnO Collection .. 60

5.3 Testing using WT10g Collection .. 63

5.4 Our WebPnO Collection Clustering Results ... 64

5.4.1 Direct Page Clustering Results ... 64

5.4.2 Indirect Page Clustering Results and Irrelevant Pages ... 69

6 Conclusions and Future Work... 74

7 References... 79

Appendix A: TREC Web Corpus : WT10g... 84

Appendix B: Typical Document Metadata File .. 85

Appendix C: Typical Classifier Decision Tree Result .. 86

 3

List of Tables

Table 1. Features of web pages representation ... 26

Table 2. List of persons and organizations used in the PnOClassifier experiments 59

Table 3. Direct Page Detection Performance using PnOClassfier Pipeline...................... 65

Table 4. Direct Page Detection for small sample size of 200 pages 69

Table 5. The performance of assigning IDPs.. 71

 4

List of Figures

Figure 1. Typical pages when “Francis Yeoh” is submitted to Google (Partial list)... 11

Figure 2. Vivisimo Search Results.. 19

Figure 3. KillerInfo Search Results .. 21

Figure 5. Average Direct Page Detection Performance Indicators 67

Figure 6. Average Direct Page Detection Casualties for Incorrect, Missing 68

Figure 7. Average Indirect Page Delivery Performance for classifying IDP correctly.

.. 72

Figure 8. Template-based Prototype Interface for next-generation PnOClassfier

System .. 78

 5

Abstract

Web surfing often involves carrying out information finding tasks using online

search engines. These searches often contain keywords that are names, as in the case

of Persons and Organizations (abbreviated “PnOs”). Such names are often not

distinctive, commonly occurring, and non-unique. Thus, a single name may be

mapped to several named entities. The result is users having to sift through mountains

of pages and put together manually a set of information pertaining to the target entity

in query.

In an effort to circumvent this inconvenience, a new methodology to cluster

the Web pages returned by the search engine has been conceived. The PnOClassifier

system relies on innovative feature space reductions, high-quality small sample-size

classifier training, partitioning and rule inductions. This unsupervised approach works

in a way so that pages belonging to different entities are clustered into different

groups automatically. The algorithm uses a combination of named entities, link-based,

structure-based and content-based information as features to partition the document

set into direct, indirect and irrelevant pages. In the process, a general-purpose web-

page decision-tree classifier is trained and modeled after our test collections and set to

work on new queries, such that it chooses the distinct direct pages as seeds to cluster

the document set into different clusters. The PnOClassifier system also represents

 6

another important towards our objective to automatically and intuitively generate

reader-centric partitions of collections of documents. That said, the system can be

adapted to specific domains of web pages on the Internet based on user queries on

names of Persons and Organizations.

The exact contributions to document clustering techniques applicable to the

vast and varied collections of World Wide Web are therefore summarized as follows.

First, a Named Entity (NE) based feature identification and extraction strategy is

proposed. This PnO mechanism is capable of dealing with target entity related

document clustering. For our purpose, we selected text documents in the English

language on Persons and Organizations as the target of our experimentation. Second,

we combined conventional clustering techniques in hierarchical and partitioning

approaches to incrementally improve the performance of the algorithm. Third, we

programmatically realized the proposed PnO mechanism through a pipeline

implementation of PnO NE-based components. Fourth, we show that the induced

rules generated by our cross-validated training data are meaningful and

understandable. Fifth, the clusters produced by the trained PnOClassifier pipeline

when fed both small or reasonably big input data is of high-quality, with results

comparable to that of recent TREC efforts and systems in related categories. Finally,

the proposed approach to document clustering can handle “feature noise” effectively

without undue reduction in quality of resultant clusters. The document clusters

produced by the PnOClassifier pipeline is seen to be more humanized and reader-

 7

centric. Search results are also partitioned by human subjects and placed alongside

with clusters produced by the system and judged.

Our approach is unique in its PnO target entity focus, and to the best of our

knowledge there is no existing system running close to this effort. The pipeline

algorithms we have proposed and implemented is effective in addressing Web-based

document clustering. Some of the potential usage scenarios and extensions will be

covered.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval -

Selection process

General Terms

Algorithms, Performance, Experimentation

Key Words

Web clustering, persons and organizations, machine learning, text classification,

information retrieval, named entities

 8

1 Introduction

Information finding is a regular task performed during online Internet surfing.

It is ubiquitous knowledge that search engines on the web produces hits on objects,

people, companies and of other targets using terms we supply in our query. At other

times, users may use the more esoteric features offered by individual search engines

or meta crawlers to refine or narrow down their searches. For instance, search engines

such as Google, Yahoo! and Altavista offer Boolean operators on keywords supplied

as query terms. In addition, we can also supply specific names of these target entities

to further constrain the returned document set. For instance, searching for “laptop”

may return multiple hits from different vendors, whereas “IBM and laptop” produces

an immediately constrained query result set on mobile stations produced by the

aforementioned vendor.

This dissertation describes research into techniques on feature detection and

identification for target entity-based document clustering on the World Wide Web. In

particular, we focus on and compare results returned for queries about Persons and

Organizations. Top ranked results retrieved by search engines on these entities are

usually sufficiently accurate for its purpose. However, while they usually include the

target entity in the query, they encompass many observable problems and issues

outlined below:

 9

• The number of pages returned by a search engine may reach thousands.

However, most users only have patience to browse the first few pages only.

• Search results may contain several different target entities whose names are

the same as the query string. It would facilitate user browsing if the search

results can be grouped into different clusters, each containing pages about

different entities.

• Some useless pages are completely irrelevant but are displayed nonetheless as

return results because they contain phrases that are similar to the name of

requested PnOs. For example, a fable page or AI research page may appear in

the query of “Oracle”, when the user is only interested to find information

about the software company “Oracle Corp”.

• The low-ranking pages listed at the rear of the result list may often be of only

minor importance, but they are not always useless. In some cases, novel or

unexpectedly valuable information can be found in these pages.

As shown in Figure 1, when we submit the query "Francis Yeoh" to Google

(www.google.com), at least 3 different persons named " Francis Yeoh" will be

returned. Here, pages (a) and (b) are the homepages of two different persons: an

Entrepreneur in Singapore and another in Malaysia. Page (c) refers to a General

Manager in a London Studio, though its style is different from that of the earlier

 10

pages. It is however unclear whether the person in (c) is the same as the one in (a) or

(b).

It can be seen that the search engine returns a great variety of both related and

unrelated results. If we are able to identify and partition the results into clusters about

different target entities according to their ownership, for example, in this case, into

three clusters for three different individuals, it will facilitate users in browsing the

results.

The aim of this research is to develop a search utility to support PnO searches

on the Web. In particular, it partitions the search results returned by a PnO name

query into distinct clusters, with each containing document pages about a particular

target entity. For instance, for search on person named “Francis Yeoh”, we expect to

get one cluster about Francis Yeoh in Singapore, another about Francis Yeoh in

Malaysia, etc. The unknown fragment pages are discarded into an unknown cluster.

So it is different from general document and web clustering problems.

 11

(a) http://kbatsu.i2r.a-star.edu.sg/cti_bin/kbatsu/letter/07/p

(b) http://viweb.freehosting.net/viint_F-
Yeoh.htm

(c) http://www.london-studio-centre.co.uk/staff_directory.html

Figure 1. Typical pages when “Francis Yeoh” is submitted to Google (Partial list)

To support this process, we need to identify three types of pages from the returned

pages:

• Direct page (DP): Its content is almost entirely about the users’ focus.

Examples of such pages include the homepages, profiles, resumes, CVs,

biographies, synopsis, memoirs, etc. The relevance between them and the

 12

query is the highest and could be selected as the seed (center) of the

corresponding cluster.

• Indirect page (IDP): In such pages, the target entity is only mentioned

occasionally or indirectly. For instance, the person’s name may appear in a

page about the staff of a company, record of a transaction, or the homepage of

his friend.

• Irrelevant page: the page is not about any target entity named as the query

string.

We use a combination of named entities, link and structure information

extracted from the original content as features to perform the clustering. Our tests

indicate that this approach is promising. The main contribution of this research is in

providing an effective clustering methodology for PnO pages.

The contents of this effort are organized as follows. Section 2 introduces

related work and Section 3 discusses named entity based, link-based, content-based

and structure-based document features and presents the algorithm to identify DPs and

seeds of the clusters. The method of delivering IDPs into clusters is described. The

implementation of the PnOClassfier system is detailed in Section 4. The results of our

 13

experiments and the conclusions are presented in Section 5 and conclusions with

future directions outlined in Section 6.

 14

2 Related Work

2.1 Common Document Clustering Algorithms

Document Clustering algorithms attempt to identify groups of documents that

are similar to each other more than the rest of the collection. Here each document is

represented as a weighted attribute vector, with each word in the entire document

collection being an attribute in this vector (vector-space model [1]). Besides

probabilistic technique (such as Bayesian), a priori knowledge for defining a distance

or similarity among them is used to compare two documents. Common clustering

algorithms employing hierarchical and partitioning approaches are based on these

basic principles of feature vector representation [38].

One of the important tasks in our research is to develop techniques to identify

direct pages to PnO queries. Our direct page finding task is similar to but more

complex than the home (entry) page and key resource finding tasks in TREC [2] [3].

The homepage finding task [3] aims to find the home or site entry page about the

topic. The home page usually has introductory information about the site and

navigational links to other pages in the site. It is a subset of direct page as a direct

page may include other type of PnO related pages such as the resume or profile. The

key resource finding task [3] aims to find pages that contain lots of information,

usually in the form of links to relevant pages, about the topic. A key resource page

can therefore be located based on the number of out-links a page has to useful

 15

authority pages. In contrast, a direct page is more self-contained and includes useful

information about a specific PnO with links to other pages within the sites.

The main approaches for finding homepages exploit content information as

well as URL and link structure [5]. It was generally found that using only content

information could achieve a mean reciprocal rank (MRR) score of only 30% based on

the top 10 ranked results. However, combining content with anchor text and URL

depth [5] could achieve an MRR of 77.4%, which is the best reported result in

TREC10 evaluations. Craswell, et al. [7] confirmed that ranking based on link anchor

text is twice as effective as ranking based on document content. Kraaij, et al. [8]

further analyzed the importance of page length, the number of incoming links and

URL form such as whether it is of type root, sub-root, index or ordinary file. They

discovered that URL form was a good predictor of home pages. Xi & Fox [9]

reported a learning–based approach that uses decision tree followed by regression

analysis to filter out homepages using the document features of URL depth, number

of in- and out-links, keywords, etc. They reported a MRR of over 80% on a subset of

WT10g corpus. These works indicate that homepage finding depends largely on

information beyond contents, where URLs, links and anchors play important roles.

For key resource task, Zhang et al. [10] employed techniques based on link

structure, link text and URL, especially the out-degree, of the pages. They achieved

the best results in TREC-11 evaluation with a precision of 25% among the top 10

 16

retrieved pages. However, the second best performing run [11] was a straightforward

content retrieval run based on Okapi BM25, and achieved a precision of about 24%.

The overall results reveal that the page content is as good as non-content features in

key resource finding task.

After we have found distinct direct pages for target entities, the second stage

is to perform clustering to deliver IDPs for the corresponding Target entities. PnO

page clustering is a special case of web document clustering, which attempts to

identify groups of documents that are more similar to each other than the rest of the

collection. Information foraging theory [12] notes that there is a trade-off between the

value of information and the time spent in finding it. The vast quantity of Web pages

returned as the search result means that clustering or summarization of the results is

essential. Several new approaches have emerged to group or cluster Web pages. These

include association rule hyper-graph partitioning, principal direction divisive

partitioning [12], and suffix tree clustering [14]. The Scatter/Gather technique [14]

clusters text documents according to their similarities and automatically computes an

overview of documents in each cluster. Steinbach et al. [15] compared a number of

algorithms for clustering web pages on a variety of test corpuses. Their reported

performance in terms of F1 measure varies from 0.59 to 0.86.

Many of these traditional algorithms employ the bag of words representation

to model each document. The resulting feature space tends to be very large, in the

 17

order of ten of thousands. As a result, most traditional clustering algorithms falter due

to the problem of data sparseness when the dimensionality of the feature space

becomes high relative to the size of document space. Because of the unpredictable

performance of clustering methods, most search engines at present do not deploy

clustering as a regular procedure during information retrieval.

2.2 Meta-Search Engines Compared

Meta-search crawlers, the multi-faceted engines that used to sift through the

mountains of web pages indexed by the web’s independent search engines are no

longer simple collators. Some modern-day meta-crawlers possess distinctive

capabilities that make them good alternatives in terms of document coverage to main-

stream reader-oriented engines as either a starting point or as a supplementary search

tool. Google, currently one of the largest search engines online, covers limited parts

of the web, albeit some portions are months out of date [39]. However, one cannot

expect to see good search results all of the time, especially when some engines are

tuned specifically for a particular methodology such as topical clustering, or into

collections of specialty databases. It is difficult to compare the effectiveness and

efficiency of different cluster approaches and systems in the absence of well-known

or authoritatively representative testing methodologies or evaluation measures. Here

an empirical approach is taken to evaluate the engines practically by submitting our

queries to them. We document the examples for the particular querying and clustering

 18

PnO pages below, which in corollary also demonstrate some benefits of our PnO NE

approach.

One of these commercial document clustering engines, Vivisimo

(www.vivisimo.com), is best known for its human-readable “folders”, or topics into

which it groups search results. This is determined by analyzing title and URL and a

short description extracted from page content, with the resulting folders or topics

arranged hierarchically. Our clustering category is however different from Vivisimo,

where the similarity is determined by word similarity, but not the ownership of target

entity. For example, the clustered results for “Francis Yeoh” by Vivisimo include 183

pages (each search returns a default of 500 results at the time of this research) shown

in first 10 clusters, such as Dato’ Francis Yeoh, Tan Sri Francis Yeoh, Business, YTL

Power, Technology, Asiaweek, and so on (Figure 2). Here we observed that the

content about the particular target entity, Francis Yeoh in Green Dot Internet Services

appear in cluster Technology, while multiple targets are spread over the first 3 clusters.

It is evident from this simple example that this presentation approach is not the best

solution for PnO query tasks when users are interested in the particular target entity.

Another example is the query about organization “Mobile Payment”. Vivisimo

provide 362 pages in first 10 clusters (Mobile Payment Forum, Payment Systems,

Card, Payment Solutions, Mobile Payment Services, Wireless, Business, Press

Releases, Phones and New Mobile Payment). Again, these clusters do not correspond

to any specific entities that we require.

 19

Figure 2. Vivisimo Search Results

Another commercial search engine that performs document clustering is

WiseGuide (http://www.wisenut.com). When we submitted “Francis Yeoh” to

WiseGuide, it returned only six pages in two clusters: “Francis Yeoh” and “Others”.

Here the web pages are not partitioned by their ownership. We need to browse both

the two clusters, though our focus is only on one particular target entity. For “Mobile

payment” query, WiseGuide returned 20,240 documents in a hierarchical category

(Figure 3), where there are four labels, Mobile Payment, Press Releases, World First

and others, listed in the first layer. Obviously, we cannot link any particular target

entity to the cluster with the above names. WiseNut uses a combination of content-

based words, links and entropy measures based features [30], thus it is unable to

cluster returned documents into separate entity groups as desired.

 20

 21

Figure 3. KillerInfo Search Results

KillerInfo (http://www.killerinfo.com/), another content aggregator, also uses

Vivisimo's clustering technology. In addition to its Vivisimo-based baseline indexes,

it also carries databases for specialty sources in news, healthcase, law, sciences, and

other subject areas. This makes it a more domain-independent crawler, unlike

Vivisimo, it does not have to be customized specifically for one index. Manual search

results however does not appear to result in any gains in performance nor

effectiveness as the final clusters are too wide from a user’s point of view.

Ez2wWw.com, a meta-search portal from Holomedia, also includes aspect-based

information databases spanning across popular reader-oriented news, weather and

currencies customizable to a particular geographical region. The global meta-search

provides for seven engines and on-page controls for number of hits and search time

allotment. The Advanced Search supports parallel searching of more than 1,000

specialty databases organized by subject, from the arts to Web design. A summary at

the bottom of the page reports the number of hits retrieved from each engine. Setting

the search at a larger depth can increase the number retrieved. Search results from the

global search (but not necessarily from advanced search) are grouped into clusters

based on frequently occurring phrases. Infonetware operates at another level of

sophistication with the use of text analysis in its results manipulation. Terms are

extracted from the results set and presented in index-style formatting with documents

 22

ranked by relevance. Infonetware offers a Quick View and Drill Down option

allowing users to narrow down and combine or exclude terms and documents,

effectively similar to query modification. The clustering features make these meta-

searchers very useful for broad, exploratory queries. The topics can bring out

alternate contexts, patterns, and main themes. Larger result sets are ideal for meta-

searchers because they provide better granularity.

However, as shown in the actual usage and screenshots of the clusters returned

by the engines, it is evident that the results are determined by bag-of-words similarity

approaches and not based on the target entities we so desire. Instead, different people

with the similar names are aggregated together in the same cluster. This does not

make it easier for the user to sift through the document results. In addition, from our

practical experiments in using these engines, we found that pages we expect to be

returned as clusters are not in the target results set. The issue of directing document

clusters at the people who will read them is a crucial factor that will make the

resultant clusters of documents useful. This makes our approach at clustering and

aggregating PnO target-based information competitively unique and more

ergonomically useful.

 23

3 Document Feature Representation

Most clustering approaches compute the similarity (distance) between a pair

of documents using the cosine of the angle between the corresponding vectors in the

feature space. Many techniques, such as TFIDF and stop word list [16], have been

used to scale the feature vectors to avoid skewing the result by different document

lengths or possibly by how common a word is across many documents. However,

they do not work well for PnOs. For instance, given two resume pages about different

persons, it is highly possible that they are grouped into one cluster because they share

many similar words and phrases, such as the words “graduate”, “university”, “work”,

“degree”, “employment” and so on. This is especially so when their style, pattern and

glossary are also similar. On the other hand, it is difficult to group together a news

page and resume page about the same target entity, due to the diversity in subject

matter, word choice, literary styles, document formats and length among them. To

solve this problem, it is essential to choose the right set of features that reflect the

essential characteristics of target entities.

In general, we observe that PnO named entities (PnO NEs) in the web pages

about PnOs are higher than that in the other type of pages. In a direct page (DP), there

is typically a large number of PnO NEs, such as the names of graduation schools,

contact information (phone, fax, e-mail, and address), working organizations and

 24

experiences (time and organizations). Here, PnO related NEs include person, location

and organization name, time and date, fax/phone number, currency, percentage, e-

mail and so on. For simplicity, we called these entities collectively as PnO NEs. We

could therefore use PnO NEs as the basis to identity PnO pages. To support our claim,

we analyzed 1,000 PnO pages together with 1,000 other type of pages that we

randomly obtained from the Web. We found that the percentage of PnO NEs in PnO

direct pages is at least 6 times higher than that in other types of pages, if we ignore

PnO NEs of type number and percentage. We could therefore use PnO NEs as the

basis to identity PnO pages.

The finding is quite consistent with intuition, as PnO NEs play important roles

in semantic expression and could be used to reflect content of the pages, especially

when human activities are depicted. The typical number of PnO NEs appearing in the

results of a search is typically around hundreds or thousands, which means that it is

feasible to use them as the features of search results about PnOs. Our analysis also

shows that PnO NEs is good in partitioning pages belonging to different persons or

organizations, and the use of frequent phrases and words, such as degree, education,

work etc, is not effective for this task.

However, not all pages with many PnO NEs are DPs. Examples of such pages

include attendee lists of conferences and stock price lists etc. We thus need to further

check the roles played by the PnO NEs in this text. The rationale is that a DP is highly

 25

likely to repeat its name in its URL, title, or at the beginning of its page. In general, if

the target entity appears in important locations, such as in HTML tags <title>, <H1>

and <H2>, or appears frequently, then the corresponding pages should be DPs and

their topic is about the users’ target. We could detect the trace of page topic using the

technology like wrapper rules [17] to decipher the structure information of the page.

Furthermore, we know from the TREC evaluations that URL, HTML structure

and link structure tend to contain important heuristic clues for web clustering and

information retrieval [17]. Links could be used to improve document ranking,

estimate the popularity of a web page, and extract the most important hubs and

authorities related to a given topic [19]. Moreover, links, URLs and anchors could

improve the results of the content-only approach for IR [5]. A short DP, even though

it may contain few PnO NEs, usually has many links to those pages referring to the

target entity. The positions of and the HTML markup tags around the PnO NEs could

provide hints to the role of these entities in the corresponding page. To better identify

the role of links in DP, we further identify the form of URLs as: root (entry page of

site), sub-root, index and ordinary file. The URL form has been found in [7] to be a

particularly good predictor for finding home pages.

Based on the above discussion, we combine three categories of features to

identify DPs and IDPs. They are the named entities, links and structure-based features.

The resulting set of features, as listed in Table 1, can be considered as original feature

 26

transformation. As the number of such features is smaller than the number of tokens

in the collection, there is considerable dimension reduction. This will alleviate the

problem of low quality of clustering because of data sparseness when the sample size

is small.

3.1 Identifying Direct Pages as Cluster Seeds

DPs (Direct pages) can be used as candidate seeds to divide the retrieved

documents into clusters of distinct target entities. In case where there is more than one

DP about a target entity, we need to select the best one as the seed for clustering. To

select the best DP of a target entity, we therefore need to solve two problems. First we

must be able to identify a DP from the collection. Second, in the case of multiple DPs

for the same target entity, we must be able to select the best one.

The process is carried out as follows. First we view the identification of DPs

as a classification problem of dividing the document collection into the DP and IDP

sets. Here we employ the decision tree to predict whether a page is a DP or IDP based

on the feature set as listed in Table 1.

Table 1. Features of web pages representation

No. Feature Explanation

1 PERSONS_COUNT Number of persons

 27

2 PERSONS_NE_RATIO

Number of persons to total number of

Named Entities ratio

3 ORGANIZATIONS_COUNT

Number of organizations

4 ORGANIZATIONS_NE_RATIO

Number of organizations to total

number of Named Entities ratio

5 EMAILS_COUNT

Number of E-Mail addresses

6 NUMBERS_COUNT

Number of numeric; fax, phone number

and zip code are included; but the series

of number list are ignored

7 PERCENTAGES_COUNT

Specific count of percentages (numbers

or alphanumeric) are included; but the

series of number list are ignored

8 DATES_COUNT

Specific count of dates (numbers or

alphanumeric) are included; but the

series of number list are ignored

9 PHONES_COUNT

Specific count of phone numbers are

included; but the series of number list

are ignored

 28

10 MONEY_COUNT

Specific count of financial figures

(numbers or alphanumeric) are

included; but the series of number list

are ignored

11 FTP_COUNT

Number of FTP links

12 FTP_URLS_RATIO

Number of FTP links to total URLS

ratio

13 HTTP_COUNT

Number of HTTP links

14 HTTP_URLS_RATIO

Number of HTTP links to total URLS

ratio

15 NE_TOTAL

Sum of the above PnO NEs

16 WORDS_TOTAL

Number of words in a page excluding

the HTML tags

17 TOKENS_TOTAL

Number of all tokens

18 NE_TOKENS_RATIO

Ratio of NE_TOTAL and

TOKENS_TOTAL

19 NE_WORDS_RATIO

Ratio of NE_TOTAL and

 29

WORDS_TOTAL

20 TARGET_TITLE

Boolean; whether target entity or its

variant appears in the title, head or the

beginning of the page; e.g. “Francis

Yeoh Homepage”

21 QUERY_TITLE_RATIO

A statistical representation of

TARGET_TITLE, determines how

many segments of the query matches the

title of the document.

22 URLS_IN

Number of incoming links to this page

23 URLS_IN_RATIO

Number of URLS_IN to sum of

URLS_IN and URLS_OUT ratio

24 URLS_OUT

Number of outgoing links from this

page

25 URLS_OUT_RATIO

Number of out-links to sum of

URLS_IN and URLS_OUT ratio

26 URLS_COUNT

The sum of URLS_IN and URLS_OUT

27 URL_SLASH_COUNT

The depth of URL

 30

28 URL_FORM

Four types of forms: root; sub-root

(roots of sub-trees); index/path; file.

Sub-roots are considered for sub-

searches only.

29 TARGET_NE_RATIO

Number of target entities appearing in

the page

30 IN_TARGET_URL

Boolean; Whether target entity or its

variant appears in URL. E.g. target is

“Francis Yeoh" and URL is

“http://somewhere.com/~francis/”

31 QUERY_URL_RATIO

A statistical representation of

TARGET_URL, determines how many

segments of the query matches the title

of the document. Sub-roots have

normalized ratios taken from the sub-

root being index “0”.

Next, we need to resolve the case of multiple DPs found for the same target

entity. If we preserved those overlapping DPs in the seed set of clusters, there would

appear more than one clusters mapping to the same target entity. We observe that if

both the homepage and resume of the same person are selected as DP, then these two

 31

pages will share many similar NEs related to this specific person, such as the

university graduated, employers, etc. Thus we could evaluate the similarity between

two DPs by examining the overlaps in the instances of unique PnO NEs. Here we use

TFIDF to estimate the weight of each unique NE as follows.

Wi,j=tfi,j*log(N/dfi) (1)

where tfi,j is the number of NE i in page j; dfi is the number of pages containing NE i;

and N is the total number of pages.

The normalized similarity of the DPs, pi and pj, could therefore be expressed by their

cosine distance as:

If sim(pi,pj) is larger than a pre-defined threshold τ1 (See Algorithm 1), then pi

and pj are considered to be similar. The page that has more NEs will be used as the

seed and the other will be removed. Because the number of DPs is a small fraction of

the search results, and the number of PnO NEs in DPs is usually less than hundreds,

thus the computational cost in eliminating redundant DPs is acceptable.

, ,

2 2
, ,

(*)
(,) (2)

() * ()

c
k i k j

k
i j c

k i k j
k k

w w
sim p p

w w
=

∑

∑ ∑

 32

Algorithm 1 summarizes the procedure to identify seeds of clusters.

Algorithm 1:

Detect_seed (page_set) {

 set page_set = {the set of all pages found};

 set seed_set=null; //the collection of candidate seeds

 //select direct pages using decision tree algorithm as follows:

 for each (page pi in page_set){

 build transformed feature set of pi

 if (decision_tree(pi) == TRUE)

 move pi from page_set into seed_set;

 }

 //eliminate the redundant elements in seed_set

 for each (pair {pi, pj} in seed_set){

 if (Sim (pi,pj)> τ1) { // are about same target entity

 if (|NE| in pi >|NE| in pj)

 move pj from seed_set into page_set;

 else

 move pi from seed_set into page_set;

 }

 return seed_set;

}

At the end of the process, the pages remaining in the seed_set could be used

as seeds for the clusters. They are representatives of distinct entities named in the

 33

query. Since the elements in seed_set are largely less than that in all page_set after the

elements in DPs are chosen using the decision tree module, the calculation cost in

comparison between all candidate pairs is acceptable.

The remaining of the candidate seeds (or remaining direct pages) are then

evaluated against the cluster seeds and appropriately sent to the closest matching seed

based on their corresponding similarity ratios (Algorithm 2). These Direct Pages then

make up our entry level bag-of-clusters to which we shall deliver the Indirect Pages.

Indirect Pages however do not share the same forthcoming characteristics as Direct

Pages, and much less the Seed Pages. Instead, they will be considered to have more

ambiguous and conflicting features, along with a host of other possibly irrelevant

information. The next section details the algorithms we use in determining how

Indirect Pages can be delivered using the 31 attributes as was outlined in the

aforementioned discussion.

Algorithm 2:

Init_cluster {

// cluster the rest of the remaining seeds

for each ({Sj} in seed_set) {

 create doc_cluster Cj

}

// Move remaining candidate pages into each appropriate cluster

// where similarity of the page to a seed is highest

 34

for each ({pi, Sj} in remaining page_set, doc_cluster Cj) {

 move pj from page_set into doc_cluster Cj

 where Sim (pi,Sj) highest

 }

 }

3.2 Delivering Indirect Pages to Clusters

Compared to DPs, IDPs provide less information about the target entity.

Nevertheless, it does not mean that they are less important. Actually, the information

extracted from IDP may be more novel and provide more valuable information to the

users. In general, IDP could provide additional information such as the activity or

experience of the target entity; and support or oppose the content in DP irrespective of

whether they are consistent or not. Most importantly, IDP may provide critical or

negative information that is not contained in the DP. For instance, a report of a

company involving in a fraud may be ranked at the bottom of thousands of returning

pages, but such pages may be significant to users in correctly evaluating the

worthiness of the company. It can thus provide important information to evaluate the

Target entities fairly and integrality.

We must therefore explore an approach to link DPs and IDPs properly. In

other words, we want to add IDPs into the clusters anchored by the seeds (DPs). We

make the assumption that clusters do not overlap and an IDP can be assigned to only

 35

one cluster. In addition, we drop pages whose cluster cannot be determined using

similarity measures. This approach will contribute positively towards Precision

figures at the expense of Recall.

As discussed earlier, we use the entities extracted from the original sources to

calculate the distance between two pages. In topic locality assumption theory [8],

pages connected by links are more likely to be about the same topic than those that

are not. It is therefore reasonable to extend cluster along links via spreading activation

or to perform probabilistic argumentation. We can also assume that pages sharing

more entities, including links, URL and PnO NEs, should be grouped together. This is

consistent with the intuition that the Target entities in two pages having same e-mail,

birth date or birth place may have some intrinsic associations. Also, pages that link to

the same root or each other may belong to the same target entity. So these evidences

provide support for them to be grouped together.

In addition, the similarity between two entities is beyond the simple exact

matching. For instance, “Francis Yeoh” is different from “Francis”, but their

similarity is not zero because the latter is an informal expression (“short-form”) of the

former. Conventional feature-based approaches are however infeasible for this task

for various reasons. Firstly, the diversity of document types means we will not be able

to pre-determine the vector space dimensionality a priori. Secondly, we are unable to

estimate beforehand the feature counts such as named entities, links and anchors,

 36

would appear in a corpus. Moreover, the similarity between different features may not

be zero (e.g. xxx.com and xxx.com/aaa). Thus we chose to use a different approach in

page similarity resolution:

Let

a1, a2, …, am denote the features extracted from page a.

b1, b2, …, bn denote the features extracted from page b.

and S(ai, b) denote the similarity between ai and its most similar features in page b:

{ }, 1 2(,) (), (,),..., (,)i i i i nS a b Max S a b S a b S a b= (3)

Where we categorize into 3 distinct sets by our definition (defining non-overlapping

sets simplifies the classification approach):

1
(,) 0

, . .

i j

i j

i j

if a is subset of b
S a b if no common terms are shared

x if a is not proper subset of b e g URL segments

⎧
⎪= ⎨
⎪
⎩

 (4)

The situation in URL and links are more complex and merits further

explanation. If the roots of URLs are the same (such as www.xxx.com and

www.xxx.com/aa), or components of URLs are similar (such as www.xxx.com and

www.aaa. xxx.com), there should have a non-zero similarity. Let ai and bj be the

respective number of segments of links i and j that is separated by dot or slash, and Sij

 37

be the number of identical segments among them. The similarity Sim(a,b) between a

and b is calculated as:

Sim(ai, bj)=Sij / (Si*Sj)1/2 (5) which is equivalent to x in equation (4)

S(a, b) denotes the similarity from page a to page b, and S(b, a) denotes the similarity

from page b to page a. S(a, b) is not equal to S(b, a) under general circumstances as

they are asymmetrical.

1

1

(,) (,)

(,) (,)

(,) (,) (,)

m

i i
i
n

i i
i

S a b w S a b

S b a w S a b

S a b S a b S b a

=

=

=

=

=

∑

∑ (6)

Here, (,)S a b is the Geometrical Average of S(a, b) and S(b, a), and wi is the weight.

Finally, we derive the similarity between an indirect page i and seed j,

Sim(Pagei, Seedj), by combining the similarities between PnO NEs (Equation 4), links

and URLs (Equation 5), links. To achieve this, asymmetrical similarities between

each IDP and a Seed is computed with suitable weights. This pair is then averaged

geometrically to give a final figure. Different weights are configured for named

 38

entities, links and anchors in order to balance their effects on the importance of their

roles in the Similarity matching processes.

We now outline the algorithm to select and link IDPs to a seed cluster.

Algorithm 3:

Arrange_indirect_page (page_set, cluster_set)

//clusters are represented by their seeds

{

 set unknown_set=null; //collection of unknown pages

 for each (pagei in page_set)

 {

 j = arg max sim(pagei, seedi)

if (j>τ2)

 add pagei into clusterj;

else

add pagei into unknown_set;

 }

}

where τ2 is geometric similarity threshold for an indirect page to remain relevant to any existing
cluster, otherwise it will be dropped into Irrelevant Page category.

3.3 Overall Procedure

Figure 4 shows the overall process of PnO searches and processing on the web.

The user first submits a target entity name as the query to the system. The system then

downloads the list of pages Pall related to the target. This step may involve other meta

 39

search engines. Second, a classifier is initiated to partition Pall into three groups: the

set of DPs, SDP, and the set of IDPs, SIDP. Third, only distinctive pages about different

Target entities in SDP are used as seeds of the clusters. The other redundant pages in

SDP are moved to SIDP. Fourth, each page pi in SIDP will be clustered to the closest

cluster whose seed is the nearest to the current page. If pi cannot be matched to a

sufficiently similar seed, i.e. the similarity between them is less than τ2, it will be

discarded into an unknown set. Fifth, we use the name of organization (or person) that

appears in the seed as the label to the corresponding cluster. The resulting set of

clusters found is then presented to the users.

There are many ways through which we can improve user comprehension and

acceptance of system usability. When user submits more constraints, for example,

using the term “Virginia” to constrain the query “Francis Yeoh”, the system can

utilize the constraint to rank the clusters so that the more relevant cluster appears at

the top. Information in each cluster can also be extracted into a predefined template as

concise summary to the users. It can also be presented as a set of navigable

documents ranked first by the seed of each cluster, followed by the direct pages

ascending in Direct Page similarities, and finally by the Indirect Pages.

 40

Y

N

 User issues query of a person or org

 Spider downloads pages on Web

 Rank/Select the best one

 Category?

 Indirect pages
 Is Redundant?

 Direct pages

Seeds

 Irrelevant Pages
Clusters

 Deliver into diff. clusters

 Present results to the user

Figure 4. The Process of a Web-based
Information Extractor (Page Classifier)

 41

4 Design and Implementation

This section outlines in detail the components that go into the PnOClassifier

system. It also summarizes their functionality and the many considerations that have

gone into building new components. Integration with reliable third-party, public

domain tools and the processes of tuning or enhancing the tools for our pipelines are

covered.

4.1 Systems Architecture

The PnOClassifier prototype system is engineered and developed as a cross-

platform pipeline of crawlers, aggregators, classifiers and generators. Behind the

scenes, database servers, middleware components and a host of other cutting-edge

tools and libraries supported the pipeline with operations to scaffold the downloading,

metadata excavation, feature extraction, named entity identification, decision-tree

classification, and finally evaluation and profiling of the experimental results. Almost

all of the components in the pipeline are statistically based.

All in all, there are a total of 15 major pipeline pit stops. First, a meta-crawler

takes the user’s query down the Internet to fetch relevant documents down to a local

cache. While it’s at it, the crawler also indexes the documents with relevant meta-data

and checks for document type, ignoring all others except HTML. In addition, the

 42

crawler also checks for document completeness of downloaded items and converts

them into plain text formats. An HTML validation engine then runs to convert the

HTML files into XHTML files, conforming to that of a well-formed XML file. This

step is necessary so we can rid ourselves of inconsistent, overlapping or missing tags

otherwise tolerated by visualization tools such as the web browser. Once this process

is completed, we can be sure the files are consistent and ready for additional tagging

by our name entity engine.

At the same time, a URL analyzer runs to extract and index all types of HTTP,

FTP, EMAIL links to and from the documents in the collection. This includes the ratio

of incoming and outgoing links as well as the total occurrences of these URLs. At this

point, the Name Entity analyzer goes to work by running against the documents one

at a time to extract and tag into the files PERSONS, ORGANIZATIONS, DATES,

MONEY, PHONES, and ADDRESSES. Following this, a well-formed consistency

check is again performed on the transformed documents, after which an XPATH-

based engine is fired to calculate token and entity figures. A metadata analyzer then

runs to tidy up the metadata for these documents and reconciles the final ratios and

statistical totals before going into the final step.

The last and final processing cycle involves classifiers and similarity engines.

On a training cycle, a supervised classifier is executed for manual tagging and

metadata generation. A decision-tree model is then generated as the output from this

 43

pass. On a test run, a default classifier generator is executed to perform preprocessing

on the documents before running it against the decision-tree models generated by

training pass. The results from the test run is parsed and assimilated into the

corresponding document metadata. Finally, a similarity analyzer is executed to

calculate the similarities between vectors of statistical features among the Direct

Pages, Indirect Pages and in the process sift out more irrelevant pages. The output

from this final pit stop is clusters of pages led by a Seed Page in each of them.

4.2 Design and Implementation Methodologies

The design and implementation of the PnOClassifier System architectures are

built on quick turnaround prototyping methodologies resembling that of the original

Spiral model [40]. Where appropriate in the development process, design patterns

modeled after [41] [42] [43] [44] practical to the implementations are modeled to glue

the variety of components together. One implementation is based on a client-server

design, with ports connecting perpetual clients together in a daemon-mode chain. The

alternative implementation is a loosely coupled pipeline of components. The different

implementation paradigms was made so it is easy to insert a new component into the

processing pipeline while having transient thread-safe operations on each and every

client-server-based module without having to restart.

 44

A uniform logger is also implemented so unattended and unsupervised

operations can be carried out and activities tracked and captured for forensic

investigation. Most of the components in the pipeline are based on the Java language,

with Apache Jakarta Log4J [32] and Commons Logging [33] as the bridge between

the console, log files, and remote loggers. The system currently runs on both Unix

and Win32 platforms. On windows, the Gnu Utilities are deployed as a common set

of local and web utilities among all the platforms. Environment variables are used as

the initial bootstrap configuration dataset during the initialization of all components

in the pipeline. Database handlers are derived from DBCP (Apache Jakarta’s

Database Connection Pooling) [34] away from the initial PoolMan [35]

implementation. Backend database engine used is MySQL, with the abstraction and

pooling layer based on DBCP and the PnOClassfier DatabaseAccess mechanism.

There are 2 types of storage available in the PnOClassfier. The first uses the

native file system abstracted to store metadata and other forms of information about

any downloaded web document. Filenames are generated based on the current

timestamp and a humanized suffix using a dictionary to improve readability and

navigability. Each type of information is stored in a file with the same filename but

different extensions. All extensions and formats are configured and accessed via a

shared Configuration module so components in the pipeline can import the module

and adhere to the standards set down by the previous component in the line.

 45

The second type of storage is independent of the file system and resides in an

SQL database. The aforementioned cross-platform DBCP pooling mechanism is

adapted to provide shared access via a common DatabaseAccess singleton offering

functions to all modules in the pipe.

Apart from the storage mechanism, a standard bridge is also built to exploit

functionalities already existing in standard utilities ported to various platforms. This

includes the GNU utilities (on Win32), Lynx, and a dozen of other utilities in the

same line. Threaded accesses to these functionalities are also implemented together

with exception handling routines to arrest any runaways during unattended operations.

4.3 Supporting Resources

4.3.1 Test Collections

Training and test data are mandate in all Information Retrieval experiments

and systems; the PnOClassfier System is no exception. Building on our previous

efforts, current data sources consists of primarily 3 segments: commercial, academic,

and our own collections.

Commercial offerings studied consist of both structured as well as

unstructured documents and data. Among them, we selected Google because of its

 46

cross-platform API (the Google API) was among one of the most mature and open to

multiple languages across different platforms [24]. The Google API allows up to

1,000 queries a day, but each query is limited to a certain number of retrieved

documents. At the time of evaluation, the number fluctuates from 50 to 100, and

affected our document collection efforts as we needed a count of some 1,000

documents for each query target entity, be it a person or an organization.

In line with TREC participations, we also outlined data experimentation

strategies around the more updated WT10G collections. This was because the TREC

Web Corpus (WT10G), built upon its predecessor, the WT2G collection, was a more

substantial and higher quality data set that eliminates non-English and binary data

documents. In addition, the 1.6 million sized collections also eliminate documents

from “uninteresting” servers as well as redundant or duplicate data. This allow for full

concentration on evaluating the pipeline against specific selections from the filtered

collection for Persons and Organizations.

Last but not least, in an effort to bring our pipeline results closer to reality, we

collected some 15,000 Web pages from Google on Persons and Organizations. This

we christened our WebPnO Collection, and after post-processing and filtering, were

made an important secondary training and test set (eg. Francis Yeoh, Sanjay Jain

document and data sets).

 47

Each Document in the collections outlined above consists of 3 main sets of

data. The first is document metadata. This contains primarily server information,

document title, number of links on the page, length of the page, and so on. The

second set of data is based on information processed by our pipelines. This consists of

text-based interpretation and extracted information such as the ratio of Named

Entities, incoming URLs or outgoing URLs, query-to-title-relevance, and so on. Last

but not least, the original document itself is definitely the most important part of the

data set.

Among the collections, our initial testing and evaluation criteria focused more

on the more authoritative Google API and TREC documents with emphasis on target

set rules extraction. In the most recent and updated version of our system, we

concentrated on bringing forth the system to more practical scenarios on the web, and

gave more emphasis to our WebPnO collections.

4.3.2 GATE (General Architecture for Text
Engineering)

GATE is an implemented architecture of components with a visual

environment built to scaffold research and development work in language engineering.

Within GATE, a document is represented by annotations and feature maps of name-

value pairs. Processing Resources (PRs) are GATE components within the system that

 48

operates on these documents. Specifically, the ANNIE (A Nearly New Information

Extractor) is modified for use in our PnO NE detection. The core of this research

effort hinges on the accuracy and effectiveness of a Named Entity Detection system.

Practically all of the features identified to be useful in segregating Direct Pages from

the Indirect Pages and Irrelevant Pages depended on Named Entities. For instance, if

the target named entity in question is “Francis Yeoh” and “francis”, “francis_yeoh” or

any of the entities or their permutations appear partially or wholly in the URLs of

query, the chances of the page being a Direct Page will be considerably increased.

Conversely, if tokens of an entity other than the target are to be found in the URL of a

page, the chances of it being Indirect Page containing derivative information about

the target entity, or even an irrelevant page, will be much higher.

The GATE system’s class libraries are comparatively more difficult to adapt

for use in a different pipeline system. The component-based ANNIE system [29],

together with its set of PR components are coupled together in with modifications and

embedded into our pipeline. Among them includes the following CREOLE

(Collection of Reusable Objects for Language Engineering) resources:

• the English sentence splitter (gate.creole.splitter.SentenceSplitter)

• an input tokenizer that produces words

(gate.creole.tokeniser.DefaultTokeniser)

• a POS tagger (gate.creole.POSTagger)

 49

• a simple gazetteer of common terms

(gate.creole.gazetteer.DefaultGazetteer)

• Coreferencer called the orthomatcher

(gate.creole.orthomatcher.OrthoMatcher)

• entity transducers (gate.creole.ANNIETransducer)

GATE’s implementation is based on a large pool of past resources and

experiences, and is effective in addressing general NLP tasks. However, the latest

versions requires patching to its code. Among other problems, it hangs on various

kinds of documents at various stages in its component system.The GATE-based

Named Entity detection pipeline component we have incorporated thus far

demonstrates that when properly planned and designed, a module that’s loosely

coupled with the rest of the Information Extraction application can perform

surprisingly inexpensive and good performance, and can be integrated with other

modules in a pipeline execution model with minimal effort. The final question

remains as whether there is a possibility that an integrated component completely

dependent on one particular system such as the GATE architecture is more malleable

than what we have come up with. However, the intrinsic value of such integration

inevitably erodes with the complexity of the system and its learning curve, alongside

with the many issues that we have to resolve to get the system up to deal with real

world documents. For example, the parsers in both implementations are modified to

detect non-ASCII characters and filter through them allowing us to focus on English

 50

documents. These characters include accents, umlauts, circumflexes and other

possible non-standard lower and higher ASCII bytes.

4.3.3 OpenNLP

A named entity detector to work on sentence fragments, based on a Maximum

Entrophy Model was derived from an Open Source Natural Language Processing

component known as the OpenNLP. The original components and interfaces are

created by Dr Jason Michael Baldridge, at the University of Edinburgh’s Institute for

Communication and Collaborative Systems [25]. Components from the OpenNLP

project consists of Natural Language Processing components useful for parsing and

furthering work in syntactic and semantic fields of text processing. Of these, the

OpenNLP Java Interfaces, Leo - the architecture for defining XML specifications of

grammars for Natural Language parsing systems, MaxEnt – a Java-based package for

training and using Maximum Entrophy Models, and finally, Grok – the collection of

natural language processing tools based on the aforementioned are adapted for used.

In short, Grok is a collection of NLP tools that provides a library of modules

implementing the interfaces specified by OpenNLP.

The implementation was based on the following selected OpenNLP.Common

interfaces from Grok’s “preprocess” packages:

 51

• the sentence detector (sentdetect.EnglishSentenceDetectorME)

• a tokenizer (tokenize.EnglishTokenizerME)

• part of speech tagger (postag.EnglishPOSTaggerME)

• the variable Multi-Word Expression parser

(mwe.EnglishVariableLexicalMWE)

• the English language category tagger (cattag.EnglishCatterME)

• a heavily modified version of the Named Entity detection modules

(namefind.EnglishNameFinderME)

• a simple Email detector (namefind.EmailDetector)

For the OpenNLP version, version 0.51 was available over SourceForge at the

time of implementation, and quickly became the open-source choice for our

development effort. The Sheffield University’s GATE program was then

comparatively more complicated and documentation was scarce. In addition, it was a

complete package tightly coupled with their visualization component meant for

academic and research demonstrational purposes at that point in time.

Most of the development time was spent on patching the source code so it

won’t break on simple items like single quotes, and to significantly improve the

accuracy which at that time was not too good (in particular, the EnglishTokenizer and

EnglishNameFinder). As the processing time was tremendous, we packed the

modified components into a pipeline and implemented a TCP-based client-server

 52

solution from which our clients can send information into processing threads and

obtain output. Entity-based Processors were written in addition to the pipelines to

detect different classes of Persons, Organizations, Addresses (Emails, Street Names,

Building Names) and different kinds of cardinal digits (numbers). The training of the

final tool requires large amounts of training data in specific domains for the Entrophy

Models. We require a more re-targetable engine that can be adapted for different texts

without having to extensively retrain the models. The OpenNLP-based

implementation effort was later replaced in most situations for by the faster

performing GATE [29] where complete texts are encountered. At this time of writing,

the OpenNLP project has moved on to a more advanced realization of the Multi-

Modal Combinatory Categorical Grammar formalism, christened the OpenCCG

Project. It’s primary focus is now on Dialog Systems working on human speech and

sentence fragments.

4.3.4 WEKA (The Waikato Environment for
Knowledge Analysis)

Of the many automated classifiers (such as Naïve Bayes, NN), WEKA, a

collection of machine learning algorithms was selected as a learning tool for our

pipeline implementation [36] [37]. The C4.5 [21] implementation of WEKA 3

(http://www.cs.waikato.ac.nz/ml/weka/) known as the J48 was tuned to work with our

similarity algorithms and results compared with others available (such as regression,

 53

Kstar, JRIP [36]). At the end of the day, we found that our adapted C4.5 approach

gave us the best overall results in most cases.

A total of 3 components are implemented to achieve our objectives. The

“Supervised Classifier”, an ANSI text-based tool with PnO NE tagging is created to

support and scaffold manual class tagging. The “Dummy Classifier” prepares the

system for unsupervised tagging, and the “Weka Generator” creates metadata prior to

similarity analysis stage of the pipeline. All data formats are made to conform with

the ARFF (Attribute-Relation File Format) specification which defines a data set in

terms of one header list of attributes followed by relations with corresponding

columns of values (question marks represents unknown values). The C4.5 algorithm

was selected and adapted for our algorithms (1, 2, 3) because of its general

retargettability and ability to cater for various circumstances [21]. Components

created in this stage includes the WekaClassifier which is our primary workhorse for

identifying DPs, the WekaAnalyzer that calculates the rest of the similarities against

the seeds into the temporal databases, SimilarityAnalyzer which finally tags the

indirect and irrelevant pages. The significant outputs from these implementation is

presented Section 5.

4.3.5 Web Spider

 54

The pipeline’s first component is based largely on the Google API, with the

capability to launch and monitor multiple threads with timeout and metadata

collection on unlimited number of document retrievals. A Session Manager is

implemented that creates and maintains the state for the pipeline for the duration of

the retrieval in preparation for the remaining of the Named Entity processing. All

pages other than HTML and plain text are ignored. Among the other reasons, primary

consideration is the time required to parse and convert these documents, and the fact

that seeds are very unlikely to be flashy PowerPoint, lengthy WinWord or PDF files.

The initial version of the crawler engine is based on the Compaq Web

language, known as WebL at the time of initial web spider implementation. It is an

imperative, interpreted language with built-in support for common protocols on the

Internet, such as HTTP and FTP. It also supports data types like the common-place

HTML, and XML. It was selected because its service combinators and markup

algebra was useful in giving us a head start to building the first component in our

pipeline system. We then realize the limitations of the WebL language quickly made it

necessary for us to delve into its Java-based internals for tweaking. It was later

determined that the scripting language will not meet with our requirements on

functionality and performance tuning. In our case, parsing of incomplete or complex

HTML breaks often, and downloading of documents cannot be made to invoke user-

defined handling mechanisms or be threaded with more specific controls. Large

amounts of data therefore cannot be downloaded in a streamlined manner.

 55

The current implementation of the Grabber utilities are based on an interface

derived from the Google API. The implementation code however is completely

independent. Specific engine bindings can be implemented based on the search

engine in mind, for instance, Altavista, Lycos, or Yahoo!. In addition, various sections

of the interface have been designed so it can function as a component in a pipeline,

and are not limited to that of a web crawler. Features include:

• Extensible Search Engine Interface

• Pipeline capable design

• Cross-platform configurable download limits, fetch sizes

• Configurable Threading and monitoring timeouts fetching

• Supports unlimited results fetching in batches from Google (unlike the

Google API limits)

• Extensible input query optimization

• Blazing fast X-Path engine for data extraction (titles, etc)

• JavaCC, CyberNeko, and JTidy based HTML to XHTML Parser and

Converter

• Humanized filename suffixes with timestamps via dictionaries

• File-type filtering and fetching

• Options for number of retries (or unlimited) on unreliable servers

• Configurable options for recursive fetch (down to N levels)

 56

• Configurable for spanning servers (internal and external links) with follow

options

• Configurable for Robots compliance

• Supports HTTP, HTTPS, FTP

• Option to save headers

• Configurable directory options

• Text extraction utility

• Links (HTTP, EMAIL, FTP, MAILTO, etc) Extractor

• Formatted HTML to Formatted Text Converter

• Visible and Invisible Links (img, cgi, mailto, etc) extractor

• Metadata extraction using above functionalities, as well as ratios (eg.

query_title_ratios), and so on.

The Grabber is a very important tool because the documents it fetches and the

metadata it constructs are the basis on which all other modules and components in the

rest of the pipe operates upon. For this reason the variety of configurable options and

threading support is built in with a high degree of reliability and robustness.

The preprocessed metadata and other information are used as inputs into the

next component along the pipeline for named entity detection and structural analysis.

 57

5 Experiments and Discussions

This section covers the empirical results of the experiments. Various aspects

of the results are discussed alongside the variants in the input data and conclusions

derived.

5.1 Selecting Test Samples from the Web

Experiment of web information processing is a time-consuming task, where

each search typically returns hundreds, or even thousands of pages. Moreover,

evaluating the effectiveness of clustering is notorious even though there are many

guidelines to measure the quality of clustering such as the entropy measures,

clustering error, and average precision [20]. Because of the general lack of standard

authoritative test data sets for our specific task involving the clustering of web pages

concerning Persons and Organizations on the World Wide Web, we have resorted to

deriving a set of web pages for testing based on the following methodology:

a. In our experiments, we collected the names of 12 persons and 12 organizations

(such as companies, governments and schools) from Yahoo (www.yahoo.com)

and MSN (www.msn.com). In order to conduct meaningful tests, we removed

PnOs that belong to large companies and famous persons (such as Microsoft or

 58

George W. Bush). This is because there would be too many pages in the search

results for such PnO names. For example, Google returns 2,880,000 pages for

Microsoft, and the first hundreds of pages are about only one specific target. To

ensure that there is sufficient data for the analysis, we also excluded those PnOs

that return less than 30 pages (table 2).

b. We used every PnO name as the query string to Google. We downloaded the first

500 pages of each search, with the web spider filtering out files whose formats are

not HTML and plain text (i.e. PDF, PS, PPT formats and DOC), and those whose

lengths are less than 100 or more than 10,000 characters. The average number of

validated text pages returned per PnO is about 421 (421.21).

c. We manually examined and tagged the returned pages to provide the ground truth

for the tests. We determined the number of distinct Target entities for each query,

and tagged all the DPs belonging to each target entity.

d. Further experimental results are cross-validated against previous test runs and

results averaged.

 59

Table 2. List of persons and organizations used in the PnOClassifier experiments

The resulting set of web pages contains about 10,109 pages for 12 person and

12 organization names. We christened this set of web pages our WebPnO collection.

Persons Pages Organizations Pages

frank herbert 445 multisoft corporation 426

francis yeoh 402 innovision corporation 411

sanjay jain 423 yunnan agency 424

david beckham 411 suntec industries 423

mabel ong 431 famosa pte ltd 418

george bush 415 singapore university 432

catherine lim 429 singapore polytechnic 404

stanley ho 408 shaw corporation 419

stefanie sun 417 intuit enterprise 409

john doe 455 advantech 398

michael owens 442 indigo systems 428

harry lee 425 creative technologies 414

Total 5,103 Total 5,006

 60

In order to compare our results with other reported systems for general web

searches, we adopted the WT10g data set used in the homepage finding task of

TREC-2001 evaluations. It consists of 10-gigabyte subset of the VLC2 collection and

is designed to have a relatively high density of inter-server hyperlinks.

5.2 Testing using WebPnO Collection

We used a subset of the WebPnO collection to train and test our classifier for

direct pages. For actual experiments, 90% of the pages are used for training, and the

rest of the 10% for testing. Each sample is represented using 31 features, metadata of

which are listed in Table 1, together with one decision class attribute

(PAGE_CATEGORY). The current adaptive version of our WebPnO modified

learning component is built based on the machine-learning algorithm C4.5

(http://www.cse.unsw.edu.au/~quinlan/) and WEKA 3

(http://www.cs.waikato.ac.nz/ml/weka/).

Training sets of 3 retrieval classes for persons are drawn from our WebPnO

collection (Direct, Indirect and Irrelevant). The pages are then pre-parsed for meta-

data extraction and categorized by hand with complete information including page

category. These collections are then fed into our decision-tree engine with emphasis

on cross-validation, where results obtained are averaged over 10 folds randomly

selected from and partitioned within the WebPnO collection.

 61

In order to provide insights into the roles of features and the set of rules

extracted for finding DPs, we list some of the decision rules found as follows:

1) URLS_COUNT <= 19 & PERSONS_COUNT <= 63 & NE_TOTAL >

67 Class DP

2) NE_TOTAL > 4 & NE_TOKENS_RATIO > 0.06883 &

NE_TOKENS_RATIO <= 0.22727 & WORD_COUNT <= 91 Class

DP

3) ORGANIZATIONS_COUNT > 1 & NE > 14 & NE_TOTAL <= 67 &

URL_SLASH_COUNT > 3 Class IDP

4) URLS_COUNT > 19 & URL_SLASH_COUNT > 3 Class IDP

5) NE_TOTAL <= 4 Class IDP

6) QUERY_TITLE_RATIO <= 0 & URL_LEN <= 50 & TOKENS >

588 & URLS_IN_RATIO <= 0 & PERSONS > 2 & URL_LEN > 42 &

TOKENS <= 1532: Class DP

7) QUERY_TITLE_RATIO > 1 & PERSONS > 9: Class DP

where DP – Direct Page, IDP - Indirect Page, IRP - Irrelevant Page*

* pages which are classified to be a DP or an IDP becomes an IRP.

 62

Here, Rule 1 implies that good DPs should have many PnO NEs but relatively

few links and person names. Otherwise, they may be index pages or attendee lists.

Rule 2 indicates that good DPs tend to be shorter, but contain a high percentage of

PnO NEs. In general, they are home pages of persons. Rule 3 and Rule 4 show that

IDPs have deeper URL depth. In addition, Rule 5 indicates that those pages that have

fewer NEs must be IDPs. These two rules reveal that PnO NEs do play important

roles in the classification of pages into DPs and IDPs. Rule 6 reflects one of the more

complicated rules which is essentially a consolidation of the aforementioned (1 to 5);

additionally, it also mentions that the Length of the URL should be generally short

(somewhere between 42 to 50 characters), and that the number of tokens (excluding

tags) should be constrained. Among others on Organizations, rules 7 also suggests

that if the Person’s tokens from the query is found in the title, that even if there are

many person names on the page, it may well be a set of web pages describing a list of

people, in detail, one on each page.

We used representative folds of 10 partitions from the person or organization

categories to test the trained classifiers. We achieved an F1 measure of about 87.77%

(precision 88.26% and recall 87.27%). Our result is comparable to the best results

reported for the homepage finding task (92%) in TREC-2001, a task which can be

seen as a subset of our current classifier in the case where home pages are direct

pages. We are encouraged by this result as we believe that DP detection is a more

difficult task than homepage finding. This is because the latter deals only with a

 63

relatively simple task, where the decision depends mostly on URL length and whether

the URL ends with a keyword or “/”. Our experiment uses 8 of the URL based

features from a total of 31.

5.3 Testing using WT10g Collection

In order to compare the performance of our system with others on similar

tasks, we first compared the performance of our decision model with that reported in

[9] on the homepage finding task. [9] performed the document analysis by employing

decision tree and regression analysis using the feature set based mostly on URL depth,

number of in- and out-links, and keywords. They tested on a subset of WT10g

collection and reported a F1 measure of 92%. We conducted similar test using our

algorithm based on our original feature set “without tuning”, where a larger balanced

test set rather than the unbalanced set in [9] was used. We obtained a F1 measure of

about 91%, which is comparable to that reported in [9]. Although the results are not

strictly comparable, the results do indicate that our technique is effective, even for the

home page finding task which our system is not tuned to perform.

In our second test, we randomly selected about 50 DPs and 50 IDPs for

organizations from the WT10g collection. We did not conduct a similar test for

persons as there are very few (about 10) direct pages about persons. Our classification

 64

shows that we could achieve an F1 measure of about 94%. This is higher than that

achieved using on our larger WebPnO collection. The test demonstrates that our

WebPnO collection is representative and demanding, and we could obtain better

results from the random subset of the WT10g collection.

5.4 Our WebPnO Collection Clustering Results

We now discuss the full experiments on clustering web pages based on our

WebPnO collection. We evaluated the performance of our clustering approach

according to two aspects. First, we evaluate the quality of seeds. This involves the

detection of candidate seeds from all direct pages derived from our experiments and

the statistical discrepancies. Second, we evaluate the quality of the entire set of

clusters. This is accomplished by measuring the average number of clusters formed

through candidate seed detection and Indirect Page deliveries.

5.4.1 Direct Page Clustering Results

Table 3 gives the detailed performance of detecting seeds. As shown, the

average ratio of missing clusters and redundant clusters (Nm / N) is lower than 10%

(8.67% for Persons and 9.75% for Organizations). The number of missing clusters is

represented by the number of DP Seeds undetected by the engine. This indicates that

 65

the seeds are stable and reliable. The number of seeds found varies from 4 to 10.

From our experiments, we found that the number of seeds for a person tends to be

higher than that for an organization, leading us towards the inclination that the

number of persons with the same name is larger than that of organizations. This

hypothesis can be concluded in subsequent experiments tabulating results from a

larger corpus.

The quality of seeds is pivotal because it controls the distribution of

segmentation. Missing a seed will mean the loss of a cluster and cause some IDPs to

be assigned into wrong or unknown (Irrelevant Pages) set. On the other hand, if there

are redundant seeds, IDPs about the same target may be delivered into different

clusters, resulting in the need to perform non-trivial merging of the similar sets

together. Fortunately, the results indicate that our technique is effective in

differentiating between DPs and IDPs, and in removing redundant DPs. In addition,

the implemented pipeline is able to perform multi-pass IRP filtering, thus further

streamlining the cluster differentiation process.

Table 3. Direct Page Detection Performance using PnOClassfier Pipeline

Type N Nc Ni Nm Precision Recall F-Measure

Person 196 168 28 17 85.71% 90.81% 88.26%

Organization 277 235 42 27 84.84% 89.69% 87.27%

 66

Overall* 520 458 25 30 85.28% 90.25% 87.77%

* Overall N, Nc, Ni, Nm denotes arithmetic total for the sole purpose of calculating F-Measure

only. N gives the number of candidate seed samples, NC, NI, NM respectively denotes the number

of correct, incorrect and missing DPs found. Recall = Nc / Nc + Nm, Precision = Nc / Nc + Ni.

Results are averaged from runs over several queries under the same category. Nc counts include

redundant seeds. Redundant seeds are DPs with Similarity of >= 0.95 <= 1.00

For practical real-world searches, the PnOClassfier pipeline performs within

the aforementioned results. There is a general count of 3.84 Direct Pages (candidate

seeds) for every 100 web documents found. Figure 5 shows the average direct page

detection performance indicators. The averages are based on empirical results derived

from the runs derived from our WebPnO Collection of 12 persons and 12

organizations. The overall trend indicates an encouraging F-Measure of some 87.77%,

with Precision and Recall at 88.26% and 87.27% respectively. From derivative

experiements, we also observed that there is a drop in Precision and Recall values

across the board as the sample size, or number of web documents increases. This is

most evident among web pages on Organizations, where duplicate documents with

almost identical contents are found from different publications or web portals

covering a particular event. It is also possible that these articles are written by

journalists on a particular company who has them published on multiple sites. Our

experiments shows that the features such as MONEY, PERCENT, and other specific

 67

RATIOS in the empirical test suites contributed towards the detection of seeds

pertaining to Organizations. This is consistent with intuition that economic figures are

more relevant to some types of firms than to some persons.

Figure 5. Average Direct Page Detection Performance Indicators

The empirical results show that our techniques and pipeline implementation is

effective in addressing the correct detection of Direct Pages and Candidate Seeds. We

can see that the number of correctly identified Direct Pages increases proportionately

with an increase in the number of total web documents in each sample sets (Figure 6),

maintaining an average Precision of 85.28%.

The scores on the incorrectly classified pages deserve some attention (Table 3).

In particular, it is observed that there is a steady increase of incorrectly identified

Person

Average Direct Page Detection Performance Indicators

81.00%

82.00%

83.00%

84.00%

85.00%

86.00%

87.00%

88.00%

89.00%

90.00%

91.00%

92.00%

Person Organization

Precision
Recall
F-Measure

 68

pages as the sample size N increases. This can be attributed to an expected increase in

the “noise” of the samples when we increase the set of test or training documents, and

averages out to be increasing less than proportionately in relation to N. The number of

redundant direct pages however, appears to increase more than proportionately

relative to the total sample pages in a set. As with the case of organizations, duplicates

tend to be published in part or wholly on different web portals, newspapers and other

aggregator sites.

Figure 6. Average Direct Page Detection Casualties for Incorrect, Missing

Candidate Seeds, Direct Pages

Average Direct Page Detection Casualties

196

277

168

235

28 42
17 27

0

50

100

150

200

250

300

Experimental Runs

Pa
ge

 C
ou

nt
s

Series1 Series2 Series3 Series4

Series1 196 277

Series2 168 235

Series3 28 42

Series4 17 27

1 2

Persons Organizations

N Nc Ni Nm

Nc

N

Ni

Nm

 69

Given a sample size of 200 pages, we have a yield of 26 direct pages of

clustered document delivery hits with bias set to 10 (meaning, at least 10 baseline

entity matches for either NE (Per, Org, Loc (Address, Email)). If we release the bias,

all pages will be classified (unless they're irrelevant), giving high recall, but much

lower precision. This is because when the lowest matching pages are used for direct

page seed clusters may not be accurate. Increasing the bias drops some of the more

statistically ambiguous samples (Table 5), reducing recall and increasing precision of

page delivery ratios. The prototype engine works well on small collections with the

trained data (Table 4).

Table 4. Direct Page Detection for small sample size of 200 pages

Type N Nc Ni Nm Precision Recall F-Measure

Person 8 5 3 1 62.50% 83.33% 72.92%

Organization 18 15 3 2 83.33% 88.24% 85.79%

Overall* 26 20 5 3 72.92% 85.79% 79.36%

5.4.2 Indirect Page Clustering Results and Irrelevant
Pages

Secondly, we clustered IDPs into each cluster using Algorithm 3. We found

that the average number of IDPs in clusters about organizations is considerably higher

 70

than that about persons. The number of redundant pages (pages with Similarity >=

0.95) are also higher for organizations compared to persons. The quality for the entire

set of clusters is evaluated as follows. Table 5 lists the performance of assigning IDPs

to clusters. The Table shows that we could deliver over 50% of IDPs to the clusters

(53.59% for Persons and 46.87% for Organizations). The rest of less than 50% of

pages are placed in the unknown and irrelevant page set. As there are no comparable

results available on our specific task, it is hard to compare our results in comparison

to other reported systems. However, the results reported in [15] showed that the state-

of-the-art clustering methods could achieve a performance of between 59% and 87%

in F1-measure on a range of test corpuses. This places the performance of our system

near the top range, suggesting that tuning can bring us up towards the top end of the

performance scale. Despite the lack of comparative experiments in this specific area,

our results strongly suggest that the PnOClassifier approach is effective and reliable

on practical web tasks.

Our analysis on the pages assigned to the unknown set shows that they tend to

be dispersed pages that lack evidence for their assignments. This may be caused by

missing heuristic information, when some target entities do not have DPs or the

contents related to target entities are only expressed indirectly. We conducted another

experiment in clustering IDPs without using the NE features. We found that the F1-

measure decreased by nearly 15%. The results again show that the NE features are

important for this task.

 71

The performance of the pipeline features reaches up to an average of 46.87%

for Organization-based IDP delivery (Table 5). There is a considerable increase in the

number of irrelevant pages detected. This contributes to higher quality Indirect Page

delivery ratio. The stricter criteria set by the increase in the high number of feature set

and an effective final IDP similarity threshold adjustment factor τ1 and τ2 in

Algorithms 1 and 3 (“Bias”) is an additional positive contribution factor. Figure 7

presents this information (Table 5) visually.

Table 5. The performance of assigning IDPs

IDP page NTotal NIndirect NDelivered NIrrelevant Delivery Bias

Person 5,103 2,644 1,417 3,518 53.59% 10

Organization 5,006 2,010 942 3,829 46.87% 50

Overall 5,054.5 2,327 1,179.5 3,673.5 50.23% -

 72

Figure 7. Average Indirect Page Delivery Performance for classifying IDP
correctly.

The quality of Indirect Pages that lie at the boundaries of the unknown sets (or

Irrelevant Pages) is not high. That is to say, they are not likely to actually shift from

normal clusters to being an irrelevant page if we actually do tune these parameters,

simply because the overlapping features are very low. They are most relevantly

spurious or illegitimate Indirect Pages in many cases we have studied and

experimented with. Therefore, whether or not these pages are included does not

actually affect to any significant extent the information we really extract from the

corresponding cluster. In fact much of the extracted information comes from the

higher-quality pages such as the Direct Pages and candidate Seeds sharing highest

similarity counts relative to the actual Seeds, which in turn are the ones that really

represents the target entities detailed in the original query.

Under real world conditions, the “Bias” parameter settings for in practical

applications are dependent on the users’ preferences. Increase the ratio of delivery to

detected clusters will reduce missing clusters/pages, thereby increasing Recall. If they

Average Indirect Page Delivery

0

1,000

2,000

3,000

4,000

5,000

6,000

Person Organization

NTotal

NIndirect

NDelivered

NIrrelevant

 73

need higher Precision, we can choose to drop the deliveries’ performance thus

ignoring lower-quality pages.

The extensiveness of these experiments took a considerable amount of time to

complete under pipeline components. Many repeated sets of experiments are

conducted to ensure coherence and consistency of the generated clusters and the

statistics derived. On to performance, it is estimated that the speed of pipeline

processing can be considerably reduced by about 75% through proper indexing and

PnO Named Entities detection on pre-compiled pages on domain-specific Collections.

A noteworthy observation on the empirical clustering experiments shows that

search results deemed indecipherable eventually by human judges through manual

partitioning within a result set also expectedly drew ambiguous conclusions from the

PnOClassifier.

 74

6 Conclusions and Future Work

PnO is one of the common types of queries posed by users when surfing the

Internet. The problems with normal web search engines are that they return too many

irrelevant pages and are unable to distinguish between different entities having the

same name. An effective PnO crawler and aggregator for the web is one of the first

efforts in clustering different target entities of the same name correctly and naturally.

The clustering algorithm described and implemented herein uses Named Entities as

the basis for most of its statistical functions. In short, PnO NEs are the key to the

entire picture.

Empirical results on the actual web using the names of approximately 12

persons and 12 organizations show that the current algorithmic and implementation

method is effective for practical PnO retrieval. It has achieved an F1 measure of

87.77% for finding the cluster seeds, which are direct pages of distinct target entities

expressed in the query. The embedded techniques can also practically assign over

50% of indirect pages to the clusters (Table 5).

This approach is regarded as being reader-centric and thus more naturally

acceptable with higher comprehension rates than that of machine-generated folder

names. It provides an effective way for users to summarize information pertaining to

 75

specific targets. It also provides tracking capabilities over various feature aspects of

these PnOs as we relied on a fresh method of weighed sum reconciliation similar but

different to the features in Xi [45] and Crofts [46] and more directed at the task at

hand. These included query-related keywords and duplicate detection, addressing the

fact firstly, different target queries may use the same feature-vocabulary to represent

their content-category, for instance, “education”, “working experience”, “address”,

“phone number”, and secondly, the pages presenting the target query in question may

be using quite different terms in many aspects, which lead us to the fact that they will

be divided into different clusters when standard approaches are employed, thus

creating a new requirement for further reconciliation/merging of these otherwise

related clusters.

The current prototype implementation works on full-featured web pages.

Snippets and fragments of text, on the other hand, could prove to be a more efficient

form of source information. The baseline algorithms however are Named Entity based.

The use of these fragments may give rise to a myriad of “fake” PnO NEs, due in large

part to the arbitrary manner in which many colloquial statements and truncated

sentences are interpreted. The clustering quality may therefore be aversely impacted.

Further research in this area is needed before any conclusive directions can be

identified.

 76

Calculations and detections of Named Entities is currently the most time-

consuming task next to web page fetching from the web. It will be nice to have an

index of entities on a specific domain catered for our clustering purposes. Pre-indexed

databases, abstracts and summaries can all contribute positively towards the

clustering pipeline.

We believe the initial query data sets can be considerably improved by using

various query optimization techniques which are not incorporated at this moment by

our system. This will guarantee us more accurate search engine results to begin with.

For instance, constraints such as “National University of Singapore” will lead us to

more pages about the person, if the query user knows that the person is currently

employed under the University. From this lead, we can be reasonably assured that the

search engine results are ranked according to these criteria, with possibly more

candidate Seeds and Direct Pages upfront nearer to the top of the returned results and

Indirect Pages thereafter.

Future research can also be carried out as follows. Firstly, the existing

classifier algorithms can be improved especially in areas of real-time performance on

large document sets. In the aforementioned sections, I touched on the necessity for a

search engine that can wholly or partially serve NE-based meta-data to our classifiers.

This very important and critical component relieves the pipeline from having to crawl

and download pages from different engines. In specific time-critical deployment

 77

scenarios, such an engine also proved to be the key in moving towards a real-time

implementation.

Secondly, information extraction can be performed using template-based

algorithms on the clustering results (namely, the DPs and IDPs) and the aggregated

information presented to end-users to afford an at-one-glance view of the data. This

area of research will involve competent word-sense disambiguation and co-

referencing. This is a separate research area on its own and can be taken in a different

direction.

Thirdly, we plan to extend our techniques to organize and extract information

in other domains such as research documents in specific areas of expertise. More

research on the effective set of features for other domains needs to be carried out. The

expected enhancements to the current PnOClassfier system includes bias threshold

adjustments as well as a more elaborate similarity algorithm to bring the Indirect

Pages up to an even higher catch-all rate. Multi-pass functions are expected to be

required for these enhancement stages.

Finally, an ideal prototype application for a proof-of-concept showcase to this

effort is depicted in the Figure 8, with an information template carrying the extracted

data neatly displayed with the relevant source links and a browser window to preview

the document source. The generated information aggregated from documents

 78

clustered with the PnOClassifier system will be closer to and more effective in

addressing reader-oriented information extraction requirements.

Figure 8. Template-based Prototype Interface for next-generation PnOClassfier
System

 79

7 References

[1] G. Salton, Automatic Text Processing. Addison-Wesley, New York, (1989)

[2] Text REtrieval Conference (TREC) Home Page, http://trec.nist.gov/

[3] Ellen M. Voorhees, Donna Harman, Overview of TREC 2001, NIST, TREC

2001, pp1-15

[4] N. Craswell, D Hawking, Overview of the TREC-2002 Web Track, TREC 2002,

pp1-16

[5] D. Hawking and N. Craswell, Overview of the TREC-2001 Web Track, TREC

2001, pp61-67

[6] T. Westerveld, Wessel Kraaij, and Djoerd Hiemstra, Retrieving Web pages using

Content, Links, URLs and Anchors, TREC 2001, pp663-672

[7] N. Craswell, D. Hawking, S. Robertson, Effective Site Finding using Link Anchor

Information; SIGIR, 2001

[8] W. Kraaij, T. Westerveld, D. Hiemstra, The Importance of Prior Probabilities for

Entry Page Search, SIGIR2002

[9] W. Xi, E. A. Fox, Machine Learning Approach for Home Page Finding Task,

TREC 2001, pp686-697

[10] Min Zhang, et al, THU at TREC2002: Novelty, Web and Filtering, TREC 2002,

pp29-42

[11] MacFarlane, A. MacFarlane, Pliers at TREC 2002, page 311, TREC 2002, pp311-

313

 80

[12] Pirolli, P. & Card, S. Information foraging in information access environments.

Proc. of Conf. on Human Factors in Computing Sys., 51-58, 1995

[13] Daniel Boley, et al, Partitioning-based Clustering for Web Document

Categorization, in: Decision Support System 27, 329-341, 1999

[14] O. Zamir and O. Etzioni. Web document clustering: A feasibility demonstration.

In: Proc. ACM SIGIR'98, pp46-54, 1998

[15] O. Zamir, O., Etzioni, Grouper: a dynamic clustering interface to Web search

results, in Computer Networks, 31(11), pp1361-1374, 1999

[16] M. Steinbach, G. Karypis, and V. Kumar, A comparison of document clustering

techniques. Text Mining Workshop, KDD, 2000.

[17] G. Salton, M. J. McGill, Introduction to Modern Information Retrieval, McGraw-

Hill, NY, 1983

[18] Mark Craven, Dan DiPasquo, et al, Learning to Extract Symbolic Knowledge

from the WWW, Proc. of AAAI-98, Madison, USA, pp509-516, 1998

[19] K. Yang, Combining Text-, Link-, and Classification-based Retrieval Methods to

Enhance Information Discovery on the Web, Ph D. thesis, UNC-CH., 2002

[20] J. Picard, J. Savoy, Using Probabilistic Argumentation Systems to Search and

Classify Web Sites, 24(3), pp33-41, IEEE Data Engineering Bulletin,2001

[21] Quinlan, J. R. Learning decision tree classifiers. ACM Computing Surveys,

28(1):71-72, 1996

[22] A.K. Jain, M. N. Murty, and P.J. Flynn, Data clustering: A review, ACM

Computing Surveys, 31(3), pp264-323, 1999

 81

[23] TREC Web Corpus, WT10g:

http://www.ted.cmis.csiro.au/TRECWeb/wt10g.html

[24] The Google Web API: http://www.google.com/apis/

[25] Jason Michael Baldridge’s OpenNLP Project:

http://www.iccs.informatics.ed.ac.uk/~jmb/

[26] The OpenNLP Organizational Center: http://opennlp.sourceforge.net/

[27] The OpenNLP Maximum Entrophy Effort:

http://maxent.sourceforge.net/about.html

[28] The OpenCCG Dialog Parsing Realizer System: http://openccg.sourceforge.net/

[29] Hamish Cunningham, Diana Maynard, et. Al.: GATE: an Architecture for

Development of Robust HLT Applications

[30] WiseNut Multi-Level Categorization Engine:

www.wisenut.com/pdf/WISEnutWhitePaper.pdf

[31] S. M. Ruger and S. E. Gauch: Feature reduction for document clustering and

classification, Imperial Colledge of London, Technical Reports, 2000

[32] The Apache Jakarta Project’s Log4J:

http://jakarta.apache.org/log4j/docs/index.html

[33] The Apache Jakarta Project’s Commons Logger:

http://jakarta.apache.org/commons/logging.html

[34] The Apache Jakarta Project’s DBCP: http://jakarta.apache.org/commons/dbcp

[35] PoolMan v2.0: http://sourceforge.net/projects/poolman/

 82

[36] WEKA: The waikato environment for knowledge analysis: Stephen R. Garner,

Department of Computer Science, University of Waikato, Hamilton.

[37] Data Mining: Practical Machine Learning Tools and Techniques with Java

Implementations: Ian H. Witten, Eibe Frank, Morgan Kaufmann, October 1999

[38] A Comparison of Document Clustering Techniques: Michael Steinbach, et. Al.

Department of Computer Science and Engineering, University of Minnesota;

Technical Report #00-034

[39] Design and Implementation of a High-Performance Distributed Web Crawler:

Vladislav Shkapenyuk, Torsten Suel; CIS Department, Polytechnic University,

Brooklyn, NY 11201.

[40] B. Boehm. A spiral model of software development and enhancement. IEEE

Computer, 21(5):61-72, 1988.

[41] Design Patterns: Elements of Reusable Object-Oriented Software; Erich Gamma,

Richard Helm, Ralph Johnson, and John Vlissides; October 1994, Addison-

Wesley ISBN 0-201-63361-2.

[42] Antipatterns: Refactoring Software, Architectures, and Projects in Crisis;

W.J.Brown,R.C.Malveau,W.H.Brown,H.W.IIIMcCormick,andT.J.Mowbray;

John Wiley & Sons, 1998

[43] The Pattern Depot: A Repository of Practical Software Patterns;

www.patterndepot.com

 83

[44] Applied Java Patterns: Stephen A. Stelting (Author), Olav Maassen (Author);

Pearson Higher Education; 1st edition (December 31, 2001), ISBN: 0130935387

[45] Jack G. Conrad , Xi S. Guo , Cindy P. Schriber, Online duplicate document

detection: signature reliability in a dynamic retrieval environment, Proceedings of

the twelfth international conference on Information and knowledge management,

November 03-08, 2003, New Orleans, LA, USA

[46] S. Cronen-Townsend, Y. Zhou, and W.B. Croft, "Predicting Query Performance",

in the Proceedings of ACM SIGIR 2002, 299-306, 2002.

 84

Appendix A: TREC Web Corpus : WT10g

http://www.ted.cmis.csiro.au/TRECWeb/wt10g.html

Note (2002-10-11): The following description of WT10g was last updated in March
2000. To obtain WT10g and/or the more recent .GOV test collection, see our access
to data page.

Goals in the preparation of WT10g
There were a number of goals in the preparation of WT10g. These included:

• A more substantial quantity of Web data than was available in WT2g.
• A higher "quality" of Web data than is present in either WT2g or VLC2. This

meant trying to eliminate non-English and binary data documents. (Foreign
language documents are not uninteresting, but retrieval over mixed language
collections is currently served by the cross-language track in TREC and the
new cross-language workshop.) It also meant trying to eliminate
"uninteresting" servers and/or documents.

• Elimination of large quantities of redundant or duplicate data.
• A larger number of inter-server links than was present in WT2g.
• Better support for distributed information retrieval experiments.
• Preservation of certain statistical properties from the VLC2, such as server

size distribution.

Properties of WT10g

• 1 692 096 documents
• 11 680 servers
• an average of 144 documents per server
• a minimum of 5 documents per server
• 171 740 inter-server links (within the collection)
• 9977 servers with inter-server in-links (within the collection)
• 8999 servers with inter-server out-links (within the collection)
• 1 295 841 documents with out-links (within the collection)
• 1 532 012 documents with in-links (within the collection)

 85

Appendix B: Typical Document Metadata File

Sample WebPnO Web Page Document Metadata file

#Wed Oct 12 07:17:16 SGT 2003
money.count=0
urls.in=0
timestamp=1068401251199
emails.count=0
phones.count=0
persons.count=24
url=http\://www.comp.nus.edu.sg/~leews/learning.html
query=sanjay jain
percentages.count=0
persons.ne.ratio=0.8
urls.out.ratio=0.0
query.url.ratio=0.0
urls.out=0
tokens.total=1097
ftp.count=0
url.base=http\://www.comp.nus.edu.sg
ne.tokens.ratio=0.03
organizations.ne.ratio=0.2
page.category=irrelevant
organizations.count=6
url.slash.count=2
weka.id=1
http.count=6
urls.in.ratio=0.0
ne.total=30
ftp.urls.ratio=0.0
url.length=47
urls.count=6
date=Mon Nov 10 02\:07\:31 SGT 2003
http.urls.ratio=1.0
query.title.ratio=0.0
dates.count=9
title=

 86

Appendix C: Typical Classifier Decision Tree
Result

Typical Sample Run of C4.5 (WEKA J48) Adaptive WebPnO Modified Classifier
Pruned Tree Results over approx 250+ random samples with cross-validation
partitions set to 10. The algorithm prunes the final trees produced using
“subtree-raising” [21] which in turn increases general retargetability of the
decision trees.

query_title_ratio <= 1
| http <= 32
| | query_title_ratio <= 0
| | | tokens <= 113: irrelevant (17.0/1.0)
| | | tokens > 113
| | | | url_len <= 38: irrelevant (5.0/1.0)
| | | | url_len > 38
| | | | | url_slashes <= 3
| | | | | | org_ratio <= 0.36
| | | | | | | persons <= 17: indirect (9.65/3.24)
| | | | | | | persons > 17: irrelevant (9.65/3.41)
| | | | | | org_ratio > 0.36: indirect (62.71/16.53)
| | | | | url_slashes > 3: irrelevant (30.0/10.0)
| | query_title_ratio > 0: irrelevant (9.0)
| http > 32
| | http <= 37
| | | tokens <= 495: indirect (3.0/1.0)
| | | tokens > 495: direct (29.0/1.0)
| | http > 37
| | | tokens <= 779: irrelevant (13.0/1.0)
| | | tokens > 779
| | | | tokens <= 1892: indirect (12.0/2.0)
| | | | tokens > 1892: irrelevant (7.0)
query_title_ratio > 1
| persons <= 9: indirect (2.0/1.0)
| persons > 9: direct (30.0)

Number of Leaves : 14

Size of the tree : 27

Time taken to build model: 0.15 seconds

 87

Time taken to test model on training data: 0.01 seconds

=== Error on training data ===

Correctly Classified Instances 199 83.2636 %
Incorrectly Classified Instances 40 16.7364 %
Kappa statistic 0.7456
K&B Relative Info Score 16366.8055 %
K&B Information Score 255.406 bits 1.0686 bits/instance
Class complexity | order 0 372.8138 bits 1.5599 bits/instance
Class complexity | scheme 131.0766 bits 0.5484 bits/instance
Complexity improvement (Sf) 241.7371 bits 1.0115 bits/instance
Mean absolute error 0.1667
Root mean squared error 0.285
Relative absolute error 38.1617 %
Root relative squared error 60.9892 %
Total Number of Instances 239

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class
0.951 0.006 0.983 0.951 0.967 direct
0.852 0.165 0.726 0.852 0.784 indirect
0.742 0.092 0.847 0.742 0.791 irrelevant

=== Confusion Matrix ===

a b c <-- classified as
58 2 1 | a = direct
0 69 12 | b = indirect
1 24 72 | c = irrelevant

=== Stratified cross-validation ===

Correctly Classified Instances 166 69.4561 %
Incorrectly Classified Instances 73 30.5439 %
Kappa statistic 0.5382
K&B Relative Info Score 13138.6461 %
K&B Information Score 204.9549 bits 0.8576 bits/instance
Class complexity | order 0 372.8872 bits 1.5602 bits/instance

 88

Class complexity | scheme 14120.4635 bits 59.0814 bits/instance
Complexity improvement (Sf) -13747.5764 bits -57.5212 bits/instance
Mean absolute error 0.2282
Root mean squared error 0.3739
Relative absolute error 52.2211 %
Root relative squared error 79.9988 %
Total Number of Instances 239

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class
0.967 0.028 0.922 0.967 0.944 direct
0.654 0.272 0.552 0.654 0.599 indirect
0.557 0.176 0.684 0.557 0.614 irrelevant

=== Confusion Matrix ===

a b c <-- classified as
59 2 0 | a = direct
3 53 25 | b = indirect
2 41 54 | c = irrelevant

