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Abstract 
 

 

Web surfing often involves carrying out information finding tasks using online 

search engines. These searches often contain keywords that are names, as in the case 

of Persons and Organizations (abbreviated “PnOs”). Such names are often not 

distinctive, commonly occurring, and non-unique. Thus, a single name may be 

mapped to several named entities. The result is users having to sift through mountains 

of pages and put together manually a set of information pertaining to the target entity 

in query. 

 

In an effort to circumvent this inconvenience, a new methodology to cluster 

the Web pages returned by the search engine has been conceived. The PnOClassifier 

system relies on innovative feature space reductions, high-quality small sample-size 

classifier training, partitioning and rule inductions. This unsupervised approach works 

in a way so that pages belonging to different entities are clustered into different 

groups automatically. The algorithm uses a combination of named entities, link-based, 

structure-based and content-based information as features to partition the document 

set into direct, indirect and irrelevant pages. In the process, a general-purpose web-

page decision-tree classifier is trained and modeled after our test collections and set to 

work on new queries, such that it chooses the distinct direct pages as seeds to cluster 

the document set into different clusters. The PnOClassifier system also represents 
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another important towards our objective to automatically and intuitively generate 

reader-centric partitions of collections of documents. That said, the system can be 

adapted to specific domains of web pages on the Internet based on user queries on 

names of Persons and Organizations. 

 

The exact contributions to document clustering techniques applicable to the 

vast and varied collections of World Wide Web are therefore summarized as follows. 

First, a Named Entity (NE) based feature identification and extraction strategy is 

proposed. This PnO mechanism is capable of dealing with target entity related 

document clustering. For our purpose, we selected text documents in the English 

language on Persons and Organizations as the target of our experimentation. Second, 

we combined conventional clustering techniques in hierarchical and partitioning 

approaches to incrementally improve the performance of the algorithm. Third, we 

programmatically realized the proposed PnO mechanism through a pipeline 

implementation of PnO NE-based components. Fourth, we show that the induced 

rules generated by our cross-validated training data are meaningful and 

understandable. Fifth, the clusters produced by the trained PnOClassifier pipeline 

when fed both small or reasonably big input data is of high-quality, with results 

comparable to that of recent TREC efforts and systems in related categories. Finally, 

the proposed approach to document clustering can handle “feature noise” effectively 

without undue reduction in quality of resultant clusters. The document clusters 

produced by the PnOClassifier pipeline is seen to be more humanized and reader-
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centric. Search results are also partitioned by human subjects and placed alongside 

with clusters produced by the system and judged. 

 

Our approach is unique in its PnO target entity focus, and to the best of our 

knowledge there is no existing system running close to this effort. The pipeline 

algorithms we have proposed and implemented is effective in addressing Web-based 

document clustering. Some of the potential usage scenarios and extensions will be 

covered. 

 

Categories and Subject Descriptors 
 

H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval - 

Selection process 

 

General Terms 
 

Algorithms, Performance, Experimentation 

 

Key Words 
 

Web clustering, persons and organizations, machine learning, text classification, 

information retrieval, named entities 
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1 Introduction 
 

 

Information finding is a regular task performed during online Internet surfing. 

It is ubiquitous knowledge that search engines on the web produces hits on objects, 

people, companies and of other targets using terms we supply in our query. At other 

times, users may use the more esoteric features offered by individual search engines 

or meta crawlers to refine or narrow down their searches. For instance, search engines 

such as Google, Yahoo! and Altavista offer Boolean operators on keywords supplied 

as query terms. In addition, we can also supply specific names of these target entities 

to further constrain the returned document set. For instance, searching for “laptop” 

may return multiple hits from different vendors, whereas “IBM and laptop” produces 

an immediately constrained query result set on mobile stations produced by the 

aforementioned vendor. 

 

This dissertation describes research into techniques on feature detection and 

identification for target entity-based document clustering on the World Wide Web. In 

particular, we focus on and compare results returned for queries about Persons and 

Organizations. Top ranked results retrieved by search engines on these entities are 

usually sufficiently accurate for its purpose. However, while they usually include the 

target entity in the query, they encompass many observable problems and issues 

outlined below: 
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• The number of pages returned by a search engine may reach thousands. 

However, most users only have patience to browse the first few pages only. 

• Search results may contain several different target entities whose names are 

the same as the query string. It would facilitate user browsing if the search 

results can be grouped into different clusters, each containing pages about 

different entities. 

• Some useless pages are completely irrelevant but are displayed nonetheless as 

return results because they contain phrases that are similar to the name of 

requested PnOs. For example, a fable page or AI research page may appear in 

the query of “Oracle”, when the user is only interested to find information 

about the software company “Oracle Corp”. 

• The low-ranking pages listed at the rear of the result list may often be of only 

minor importance, but they are not always useless. In some cases, novel or 

unexpectedly valuable information can be found in these pages. 

 

As shown in Figure 1, when we submit the query "Francis Yeoh" to Google 

(www.google.com), at least 3 different persons named " Francis Yeoh" will be 

returned. Here, pages (a) and (b) are the homepages of two different persons: an 

Entrepreneur in Singapore and another in Malaysia. Page (c) refers to a General 

Manager in a London Studio, though its style is different from that of the earlier 
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pages. It is however unclear whether the person in (c) is the same as the one in (a) or 

(b). 

 

It can be seen that the search engine returns a great variety of both related and 

unrelated results. If we are able to identify and partition the results into clusters about 

different target entities according to their ownership, for example, in this case, into 

three clusters for three different individuals, it will facilitate users in browsing the 

results. 

 

 

The aim of this research is to develop a search utility to support PnO searches 

on the Web. In particular, it partitions the search results returned by a PnO name 

query into distinct clusters, with each containing document pages about a particular 

target entity. For instance, for search on person named “Francis Yeoh”, we expect to 

get one cluster about Francis Yeoh in Singapore, another about Francis Yeoh in 

Malaysia, etc. The unknown fragment pages are discarded into an unknown cluster. 

So it is different from general document and web clustering problems. 
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(a)   http://kbatsu.i2r.a-star.edu.sg/cti_bin/kbatsu/letter/07/p
 

 
(b) http://viweb.freehosting.net/viint_F-
Yeoh.htm 

 

 
(c)  http://www.london-studio-centre.co.uk/staff_directory.html 
 

 

Figure 1. Typical pages when “Francis Yeoh” is submitted to Google (Partial list) 

 

To support this process, we need to identify three types of pages from the returned 

pages: 

• Direct page (DP): Its content is almost entirely about the users’ focus. 

Examples of such pages include the homepages, profiles, resumes, CVs, 

biographies, synopsis, memoirs, etc. The relevance between them and the 
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query is the highest and could be selected as the seed (center) of the 

corresponding cluster. 

 

• Indirect page (IDP): In such pages, the target entity is only mentioned 

occasionally or indirectly. For instance, the person’s name may appear in a 

page about the staff of a company, record of a transaction, or the homepage of 

his friend. 

 

• Irrelevant page: the page is not about any target entity named as the query 

string. 

 

We use a combination of named entities, link and structure information 

extracted from the original content as features to perform the clustering. Our tests 

indicate that this approach is promising. The main contribution of this research is in 

providing an effective clustering methodology for PnO pages. 

 

The contents of this effort are organized as follows. Section 2 introduces 

related work and Section 3 discusses named entity based, link-based, content-based 

and structure-based document features and presents the algorithm to identify DPs and 

seeds of the clusters. The method of delivering IDPs into clusters is described. The 

implementation of the PnOClassfier system is detailed in Section 4. The results of our 
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experiments and the conclusions are presented in Section 5 and conclusions with 

future directions outlined in Section 6. 
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2 Related Work 
 

2.1 Common Document Clustering Algorithms 
 

Document Clustering algorithms attempt to identify groups of documents that 

are similar to each other more than the rest of the collection. Here each document is 

represented as a weighted attribute vector, with each word in the entire document 

collection being an attribute in this vector (vector-space model [1]). Besides 

probabilistic technique (such as Bayesian), a priori knowledge for defining a distance 

or similarity among them is used to compare two documents. Common clustering 

algorithms employing hierarchical and partitioning approaches are based on these 

basic principles of feature vector representation [38]. 

 

One of the important tasks in our research is to develop techniques to identify 

direct pages to PnO queries. Our direct page finding task is similar to but more 

complex than the home (entry) page and key resource finding tasks in TREC [2] [3]. 

The homepage finding task [3] aims to find the home or site entry page about the 

topic. The home page usually has introductory information about the site and 

navigational links to other pages in the site. It is a subset of direct page as a direct 

page may include other type of PnO related pages such as the resume or profile. The 

key resource finding task [3] aims to find pages that contain lots of information, 

usually in the form of links to relevant pages, about the topic. A key resource page 

can therefore be located based on the number of out-links a page has to useful 
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authority pages. In contrast, a direct page is more self-contained and includes useful 

information about a specific PnO with links to other pages within the sites. 

 

The main approaches for finding homepages exploit content information as 

well as URL and link structure [5]. It was generally found that using only content 

information could achieve a mean reciprocal rank (MRR) score of only 30% based on 

the top 10 ranked results. However, combining content with anchor text and URL 

depth [5] could achieve an MRR of 77.4%, which is the best reported result in 

TREC10 evaluations. Craswell, et al. [7] confirmed that ranking based on link anchor 

text is twice as effective as ranking based on document content. Kraaij, et al. [8] 

further analyzed the importance of page length, the number of incoming links and 

URL form such as whether it is of type root, sub-root, index or ordinary file. They 

discovered that URL form was a good predictor of home pages. Xi & Fox [9] 

reported a learning–based approach that uses decision tree followed by regression 

analysis to filter out homepages using the document features of URL depth, number 

of in- and out-links, keywords, etc. They reported a MRR of over 80% on a subset of 

WT10g corpus. These works indicate that homepage finding depends largely on 

information beyond contents, where URLs, links and anchors play important roles. 

 

For key resource task, Zhang et al. [10] employed techniques based on link 

structure, link text and URL, especially the out-degree, of the pages. They achieved 

the best results in TREC-11 evaluation with a precision of 25% among the top 10 
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retrieved pages. However, the second best performing run [11] was a straightforward 

content retrieval run based on Okapi BM25, and achieved a precision of about 24%. 

The overall results reveal that the page content is as good as non-content features in 

key resource finding task.  

 

After we have found distinct direct pages for target entities, the second stage 

is to perform clustering to deliver IDPs for the corresponding Target entities. PnO 

page clustering is a special case of web document clustering, which attempts to 

identify groups of documents that are more similar to each other than the rest of the 

collection. Information foraging theory [12] notes that there is a trade-off between the 

value of information and the time spent in finding it. The vast quantity of Web pages 

returned as the search result means that clustering or summarization of the results is 

essential. Several new approaches have emerged to group or cluster Web pages. These 

include association rule hyper-graph partitioning, principal direction divisive 

partitioning [12], and suffix tree clustering [14]. The Scatter/Gather technique [14] 

clusters text documents according to their similarities and automatically computes an 

overview of documents in each cluster. Steinbach et al. [15] compared a number of 

algorithms for clustering web pages on a variety of test corpuses. Their reported 

performance in terms of F1 measure varies from 0.59 to 0.86. 

 

Many of these traditional algorithms employ the bag of words representation 

to model each document. The resulting feature space tends to be very large, in the 
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order of ten of thousands. As a result, most traditional clustering algorithms falter due 

to the problem of data sparseness when the dimensionality of the feature space 

becomes high relative to the size of document space. Because of the unpredictable 

performance of clustering methods, most search engines at present do not deploy 

clustering as a regular procedure during information retrieval. 

 

2.2 Meta-Search Engines Compared 
 

 

Meta-search crawlers, the multi-faceted engines that used to sift through the 

mountains of web pages indexed by the web’s independent search engines are no 

longer simple collators. Some modern-day meta-crawlers possess distinctive 

capabilities that make them good alternatives in terms of document coverage to main-

stream reader-oriented engines as either a starting point or as a supplementary search 

tool. Google, currently one of the largest search engines online, covers limited parts 

of the web, albeit some portions are months out of date [39]. However, one cannot 

expect to see good search results all of the time, especially when some engines are 

tuned specifically for a particular methodology such as topical clustering, or into 

collections of specialty databases. It is difficult to compare the effectiveness and 

efficiency of different cluster approaches and systems in the absence of well-known 

or authoritatively representative testing methodologies or evaluation measures. Here 

an empirical approach is taken to evaluate the engines practically by submitting our 

queries to them. We document the examples for the particular querying and clustering 
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PnO pages below, which in corollary also demonstrate some benefits of our PnO NE 

approach. 

 

One of these commercial document clustering engines, Vivisimo 

(www.vivisimo.com), is best known for its human-readable “folders”, or topics into 

which it groups search results. This is determined by analyzing title and URL and a 

short description extracted from page content, with the resulting folders or topics 

arranged hierarchically. Our clustering category is however different from Vivisimo, 

where the similarity is determined by word similarity, but not the ownership of target 

entity. For example, the clustered results for “Francis Yeoh” by Vivisimo include 183 

pages (each search returns a default of 500 results at the time of this research) shown 

in first 10 clusters, such as Dato’ Francis Yeoh, Tan Sri Francis Yeoh, Business, YTL 

Power, Technology, Asiaweek, and so on (Figure 2).  Here we observed that the 

content about the particular target entity, Francis Yeoh in Green Dot Internet Services 

appear in cluster Technology, while multiple targets are spread over the first 3 clusters. 

It is evident from this simple example that this presentation approach is not the best 

solution for PnO query tasks when users are interested in the particular target entity. 

Another example is the query about organization “Mobile Payment”. Vivisimo 

provide 362 pages in first 10 clusters (Mobile Payment Forum, Payment Systems, 

Card, Payment Solutions, Mobile Payment Services, Wireless, Business, Press 

Releases, Phones and New Mobile Payment). Again, these clusters do not correspond 

to any specific entities that we require. 
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Figure 2. Vivisimo Search Results 

 

Another commercial search engine that performs document clustering is 

WiseGuide (http://www.wisenut.com). When we submitted “Francis Yeoh” to 

WiseGuide, it returned only six pages in two clusters:  “Francis Yeoh” and “Others”.  

Here the web pages are not partitioned by their ownership. We need to browse both 

the two clusters, though our focus is only on one particular target entity. For “Mobile 

payment” query, WiseGuide returned 20,240 documents in a hierarchical category 

(Figure 3), where there are four labels, Mobile Payment, Press Releases, World First 

and others, listed in the first layer. Obviously, we cannot link any particular target 

entity to the cluster with the above names. WiseNut uses a combination of content-

based words, links and entropy measures based features [30], thus it is unable to 

cluster returned documents into separate entity groups as desired. 
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Figure 3. KillerInfo Search Results 

 

 

KillerInfo (http://www.killerinfo.com/), another content aggregator, also uses 

Vivisimo's clustering technology. In addition to its Vivisimo-based baseline indexes, 

it also carries databases for specialty sources in news, healthcase, law, sciences, and 

other subject areas. This makes it a more domain-independent crawler, unlike 

Vivisimo, it does not have to be customized specifically for one index. Manual search 

results however does not appear to result in any gains in performance nor 

effectiveness as the final clusters are too wide from a user’s point of view. 

Ez2wWw.com, a meta-search portal from Holomedia, also includes aspect-based 

information databases spanning across popular reader-oriented news, weather and 

currencies customizable to a particular geographical region. The global meta-search 

provides for seven engines and on-page controls for number of hits and search time 

allotment. The Advanced Search supports parallel searching of more than 1,000 

specialty databases organized by subject, from the arts to Web design. A summary at 

the bottom of the page reports the number of hits retrieved from each engine. Setting 

the search at a larger depth can increase the number retrieved. Search results from the 

global search (but not necessarily from advanced search) are grouped into clusters 

based on frequently occurring phrases. Infonetware operates at another level of 

sophistication with the use of text analysis in its results manipulation. Terms are 

extracted from the results set and presented in index-style formatting with documents 
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ranked by relevance. Infonetware offers a Quick View and Drill Down option 

allowing users to narrow down and combine or exclude terms and documents, 

effectively similar to query modification. The clustering features make these meta-

searchers very useful for broad, exploratory queries. The topics can bring out 

alternate contexts, patterns, and main themes. Larger result sets are ideal for meta-

searchers because they provide better granularity. 

 

However, as shown in the actual usage and screenshots of the clusters returned 

by the engines, it is evident that the results are determined by bag-of-words similarity 

approaches and not based on the target entities we so desire. Instead, different people 

with the similar names are aggregated together in the same cluster. This does not 

make it easier for the user to sift through the document results. In addition, from our 

practical experiments in using these engines, we found that pages we expect to be 

returned as clusters are not in the target results set. The issue of directing document 

clusters at the people who will read them is a crucial factor that will make the 

resultant clusters of documents useful. This makes our approach at clustering and 

aggregating PnO target-based information competitively unique and more 

ergonomically useful. 
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3 Document Feature Representation 
 

 

Most clustering approaches compute the similarity (distance) between a pair 

of documents using the cosine of the angle between the corresponding vectors in the 

feature space. Many techniques, such as TFIDF and stop word list [16], have been 

used to scale the feature vectors to avoid skewing the result by different document 

lengths or possibly by how common a word is across many documents. However, 

they do not work well for PnOs. For instance, given two resume pages about different 

persons, it is highly possible that they are grouped into one cluster because they share 

many similar words and phrases, such as the words “graduate”, “university”, “work”, 

“degree”, “employment” and so on. This is especially so when their style, pattern and 

glossary are also similar. On the other hand, it is difficult to group together a news 

page and resume page about the same target entity, due to the diversity in subject 

matter, word choice, literary styles, document formats and length among them. To 

solve this problem, it is essential to choose the right set of features that reflect the 

essential characteristics of target entities. 

 

In general, we observe that PnO named entities (PnO NEs) in the web pages 

about PnOs are higher than that in the other type of pages. In a direct page (DP), there 

is typically a large number of PnO NEs, such as the names of graduation schools, 

contact information (phone, fax, e-mail, and address), working organizations and 
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experiences (time and organizations). Here, PnO related NEs include person, location 

and organization name, time and date, fax/phone number, currency, percentage, e-

mail and so on. For simplicity, we called these entities collectively as PnO NEs. We 

could therefore use PnO NEs as the basis to identity PnO pages. To support our claim, 

we analyzed 1,000 PnO pages together with 1,000 other type of pages that we 

randomly obtained from the Web. We found that the percentage of PnO NEs in PnO 

direct pages is at least 6 times higher than that in other types of pages, if we ignore 

PnO NEs of type number and percentage. We could therefore use PnO NEs as the 

basis to identity PnO pages. 

 

The finding is quite consistent with intuition, as PnO NEs play important roles 

in semantic expression and could be used to reflect content of the pages, especially 

when human activities are depicted. The typical number of PnO NEs appearing in the 

results of a search is typically around hundreds or thousands, which means that it is 

feasible to use them as the features of search results about PnOs. Our analysis also 

shows that PnO NEs is good in partitioning pages belonging to different persons or 

organizations, and the use of frequent phrases and words, such as degree, education, 

work etc, is not effective for this task. 

 

However, not all pages with many PnO NEs are DPs. Examples of such pages 

include attendee lists of conferences and stock price lists etc. We thus need to further 

check the roles played by the PnO NEs in this text. The rationale is that a DP is highly 
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likely to repeat its name in its URL, title, or at the beginning of its page. In general, if 

the target entity appears in important locations, such as in HTML tags <title>, <H1> 

and <H2>, or appears frequently, then the corresponding pages should be DPs and 

their topic is about the users’ target. We could detect the trace of page topic using the 

technology like wrapper rules [17] to decipher the structure information of the page. 

 

Furthermore, we know from the TREC evaluations that URL, HTML structure 

and link structure tend to contain important heuristic clues for web clustering and 

information retrieval [17]. Links could be used to improve document ranking, 

estimate the popularity of a web page, and extract the most important hubs and 

authorities related to a given topic [19]. Moreover, links, URLs and anchors could 

improve the results of the content-only approach for IR [5]. A short DP, even though 

it may contain few PnO NEs, usually has many links to those pages referring to the 

target entity. The positions of and the HTML markup tags around the PnO NEs could 

provide hints to the role of these entities in the corresponding page. To better identify 

the role of links in DP, we further identify the form of URLs as: root (entry page of 

site), sub-root, index and ordinary file. The URL form has been found in [7] to be a 

particularly good predictor for finding home pages. 

 

Based on the above discussion, we combine three categories of features to 

identify DPs and IDPs. They are the named entities, links and structure-based features. 

The resulting set of features, as listed in Table 1, can be considered as original feature 
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transformation. As the number of such features is smaller than the number of tokens 

in the collection, there is considerable dimension reduction. This will alleviate the 

problem of low quality of clustering because of data sparseness when the sample size 

is small. 

 
 

3.1 Identifying Direct Pages as Cluster Seeds 
 

 

DPs (Direct pages) can be used as candidate seeds to divide the retrieved 

documents into clusters of distinct target entities. In case where there is more than one 

DP about a target entity, we need to select the best one as the seed for clustering. To 

select the best DP of a target entity, we therefore need to solve two problems. First we 

must be able to identify a DP from the collection. Second, in the case of multiple DPs 

for the same target entity, we must be able to select the best one. 

 

The process is carried out as follows. First we view the identification of DPs 

as a classification problem of dividing the document collection into the DP and IDP 

sets. Here we employ the decision tree to predict whether a page is a DP or IDP based 

on the feature set as listed in Table 1. 

 
Table 1. Features of web pages representation 

No. Feature Explanation 

1 PERSONS_COUNT Number of persons 
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2 PERSONS_NE_RATIO 

 

Number of persons to total number of 

Named Entities ratio 

3 ORGANIZATIONS_COUNT 

 

Number of organizations 

4 ORGANIZATIONS_NE_RATIO 

 

Number of organizations to total 

number of Named Entities ratio 

5 EMAILS_COUNT 

 

Number of E-Mail addresses 

6 NUMBERS_COUNT 

 

Number of numeric; fax, phone number 

and zip code are included; but the series 

of number list are ignored 

7 PERCENTAGES_COUNT 

 

 

Specific count of percentages (numbers 

or alphanumeric) are included; but the 

series of number list are ignored 

8 DATES_COUNT 

 

 

Specific count of dates (numbers or 

alphanumeric) are included; but the 

series of number list are ignored 

9 PHONES_COUNT 

 

 

Specific count of phone numbers are 

included; but the series of number list 

are ignored 
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10 MONEY_COUNT 

 

 

Specific count of financial figures 

(numbers or alphanumeric) are 

included; but the series of number list 

are ignored 

11 FTP_COUNT 

 

Number of FTP links 

12 FTP_URLS_RATIO 

 

Number of FTP links to total URLS 

ratio 

13 HTTP_COUNT 

 

Number of HTTP links 

14 HTTP_URLS_RATIO 

 

Number of HTTP links to total URLS 

ratio 

15 NE_TOTAL 

 

Sum of the above PnO NEs 

16 WORDS_TOTAL 

 

Number of words in a page excluding 

the HTML tags 

17 TOKENS_TOTAL 

 

Number of all tokens 

18 NE_TOKENS_RATIO 

 

Ratio of NE_TOTAL and 

TOKENS_TOTAL 

19 NE_WORDS_RATIO 

 

Ratio of NE_TOTAL and 
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WORDS_TOTAL 

20 TARGET_TITLE 

 

 

Boolean; whether target entity or its 

variant appears in the title, head or the 

beginning of the page; e.g. “Francis 

Yeoh Homepage” 

21 QUERY_TITLE_RATIO 

 

 

A statistical representation of 

TARGET_TITLE, determines how 

many segments of the query matches the 

title of the document. 

22 URLS_IN 

 

Number of incoming links to this page 

23 URLS_IN_RATIO 

 

Number of URLS_IN to sum of 

URLS_IN and URLS_OUT ratio 

24 URLS_OUT 

 

Number of outgoing links from this 

page 

25 URLS_OUT_RATIO 

 

Number of out-links to sum of 

URLS_IN and URLS_OUT ratio 

26 URLS_COUNT 

 

The sum of URLS_IN and URLS_OUT 

27 URL_SLASH_COUNT 

 

The depth of URL 
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28 URL_FORM 

 

Four types of forms: root; sub-root 

(roots of sub-trees); index/path; file. 

Sub-roots are considered for sub-

searches only. 

29 TARGET_NE_RATIO 

 

Number of  target entities appearing in 

the page 

30 IN_TARGET_URL 

 

 

Boolean; Whether target entity or its 

variant appears in URL. E.g. target is 

“Francis Yeoh" and URL is  

“http://somewhere.com/~francis/” 

31 QUERY_URL_RATIO 

 

 

A statistical representation of 

TARGET_URL, determines how many 

segments of the query matches the title 

of the document. Sub-roots have 

normalized ratios taken from the sub-

root being index “0”. 

 
 

Next, we need to resolve the case of multiple DPs found for the same target 

entity. If we preserved those overlapping DPs in the seed set of clusters, there would 

appear more than one clusters mapping to the same target entity. We observe that if 

both the homepage and resume of the same person are selected as DP, then these two 
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pages will share many similar NEs related to this specific person, such as the 

university graduated, employers, etc. Thus we could evaluate the similarity between 

two DPs by examining the overlaps in the instances of unique PnO NEs. Here we use 

TFIDF to estimate the weight of each unique NE as follows. 

 

Wi,j=tfi,j*log(N/dfi) (1) 

 

where tfi,j is the number of NE i in page j; dfi is the number of pages containing NE i; 

and N is the total number of pages. 

 

The normalized similarity of the DPs, pi and pj, could therefore be expressed by their 

cosine distance as: 

 

 

If sim(pi,pj) is larger than a pre-defined threshold τ1 (See Algorithm 1), then pi 

and pj are considered to be similar. The page that has more NEs will be used as the 

seed and the other will be removed. Because the number of DPs is a small fraction of 

the search results, and the number of PnO NEs in DPs is usually less than hundreds, 

thus the computational cost in eliminating redundant DPs is acceptable. 
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Algorithm 1 summarizes the procedure to identify seeds of clusters. 

Algorithm 1: 

 

Detect_seed (page_set)  { 

  set page_set = {the set of all pages found}; 

  set seed_set=null;  //the collection of candidate seeds 

 

  //select direct pages using decision tree algorithm as follows: 

  for each (page pi  in page_set){ 

    build transformed feature set of pi 

    if (decision_tree(pi) == TRUE) 

      move pi from page_set into seed_set; 

  } 

 

  //eliminate the redundant elements in seed_set 

  for each (pair {pi, pj} in seed_set){ 

    if (Sim (pi,pj)> τ1) { // are about same target entity 

      if ( |NE| in pi >|NE| in pj) 

        move pj from seed_set into page_set; 

      else 

        move pi from seed_set into page_set; 

    } 

 

  return seed_set; 

} 

 

At the end of the process, the pages remaining in the seed_set could be used  

as seeds for the clusters. They are representatives of distinct entities named in the 
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query. Since the elements in seed_set are largely less than that in all page_set after the 

elements in DPs are chosen using the decision tree module, the calculation cost in 

comparison between all candidate pairs is acceptable. 

 

The remaining of the candidate seeds (or remaining direct pages) are then 

evaluated against the cluster seeds and appropriately sent to the closest matching seed 

based on their corresponding similarity ratios (Algorithm 2). These Direct Pages then 

make up our entry level bag-of-clusters to which we shall deliver the Indirect Pages. 

Indirect Pages however do not share the same forthcoming characteristics as Direct 

Pages, and much less the Seed Pages. Instead, they will be considered to have more 

ambiguous and conflicting features, along with a host of other possibly irrelevant 

information. The next section details the algorithms we use in determining how 

Indirect Pages can be delivered using the 31 attributes as was outlined in the 

aforementioned discussion. 

 

Algorithm 2: 

Init_cluster { 

 

// cluster the rest of the remaining seeds 

for each ({Sj} in seed_set) { 

  create doc_cluster Cj 

} 

 

// Move remaining candidate pages into each appropriate cluster 

// where similarity of the page to a seed is highest 
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for each ({pi, Sj} in remaining page_set, doc_cluster Cj) { 

    move pj from page_set into doc_cluster Cj  

     where Sim (pi,Sj) highest 

  } 

 } 

 

3.2 Delivering Indirect Pages to Clusters 
 

 

Compared to DPs, IDPs provide less information about the target entity. 

Nevertheless, it does not mean that they are less important. Actually, the information 

extracted from IDP may be more novel and provide more valuable information to the 

users. In general, IDP could provide additional information such as the activity or 

experience of the target entity; and support or oppose the content in DP irrespective of 

whether they are consistent or not. Most importantly, IDP may provide critical or 

negative information that is not contained in the DP. For instance, a report of a 

company involving in a fraud may be ranked at the bottom of thousands of returning 

pages, but such pages may be significant to users in correctly evaluating the 

worthiness of the company. It can thus provide important information to evaluate the 

Target entities fairly and integrality. 

 

We must therefore explore an approach to link DPs and IDPs properly. In 

other words, we want to add IDPs into the clusters anchored by the seeds (DPs). We 

make the assumption that clusters do not overlap and an IDP can be assigned to only 
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one cluster. In addition, we drop pages whose cluster cannot be determined using 

similarity measures. This approach will contribute positively towards Precision 

figures at the expense of Recall. 

 

As discussed earlier, we use the entities extracted from the original sources to 

calculate the distance between two pages. In topic locality assumption theory [8], 

pages connected by links are more likely to be about the same topic than those that 

are not. It is therefore reasonable to extend cluster along links via spreading activation 

or to perform probabilistic argumentation. We can also assume that pages sharing 

more entities, including links, URL and PnO NEs, should be grouped together. This is 

consistent with the intuition that the Target entities in two pages having same e-mail, 

birth date or birth place may have some intrinsic associations. Also, pages that link to 

the same root or each other may belong to the same target entity. So these evidences 

provide support for them to be grouped together. 

 

In addition, the similarity between two entities is beyond the simple exact 

matching. For instance, “Francis Yeoh” is different from “Francis”, but their 

similarity is not zero because the latter is an informal expression (“short-form”) of the 

former. Conventional feature-based approaches are however infeasible for this task 

for various reasons. Firstly, the diversity of document types means we will not be able 

to pre-determine the vector space dimensionality a priori. Secondly, we are unable to 

estimate beforehand the feature counts such as named entities, links and anchors, 
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would appear in a corpus. Moreover, the similarity between different features may not 

be zero (e.g. xxx.com and xxx.com/aaa). Thus we chose to use a different approach in 

page similarity resolution: 

 

Let 

a1, a2, …, am denote the features extracted from page a. 

b1, b2, …, bn denote the features extracted from page b. 

 

and S(ai, b) denote the similarity between ai and its most similar features in page b: 

 

{ }, 1 2( , ) ( ), ( , ),..., ( , )i i i i nS a b Max S a b S a b S a b=  (3) 

 

Where we categorize into 3 distinct sets by our definition (defining non-overlapping 

sets simplifies the classification approach): 
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 (4) 

 

The situation in URL and links are more complex and merits further 

explanation. If the roots of URLs are the same (such as www.xxx.com and 

www.xxx.com/aa), or components of URLs are similar (such as www.xxx.com and 

www.aaa. xxx.com), there should have a non-zero similarity. Let ai and bj be the 

respective number of segments of links i and j that is separated by dot or slash, and Sij 
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be the number of identical segments among them. The similarity Sim(a,b) between a 

and b is calculated as: 

 

Sim(ai, bj)=Sij / (Si*Sj)1/2 (5) which is equivalent to x in equation (4) 

 

S(a, b) denotes the similarity from page a to page b, and S(b, a) denotes the similarity 

from page b to page a. S(a, b) is not equal to S(b, a) under general circumstances as 

they are asymmetrical. 
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Here, ( , )S a b  is the Geometrical Average of S(a, b) and S(b, a), and wi is the weight. 

 

Finally, we derive the similarity between an indirect page i and seed j, 

Sim(Pagei, Seedj), by combining the similarities between PnO NEs (Equation 4), links 

and URLs (Equation 5), links. To achieve this, asymmetrical similarities between 

each IDP and a Seed is computed with suitable weights. This pair is then averaged 

geometrically to give a final figure. Different weights are configured for named 
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entities, links and anchors in order to balance their effects on the importance of their 

roles in the Similarity matching processes. 

 

We now outline the algorithm to select and link IDPs to a seed cluster. 

 

Algorithm 3: 

Arrange_indirect_page (page_set, cluster_set) 

//clusters are represented by their seeds 

{ 

 set unknown_set=null;  //collection of unknown pages 

 for each (pagei in page_set) 

 { 

  j = arg max sim(pagei, seedi) 

if (j>τ2) 

   add pagei into clusterj; 

else 

add pagei into unknown_set; 

  } 

} 

where τ2 is geometric similarity threshold for an indirect page to remain relevant to any existing 
cluster, otherwise it will be dropped into Irrelevant Page category. 
 

3.3 Overall Procedure 
 

 

Figure 4 shows the overall process of PnO searches and processing on the web. 

The user first submits a target entity name as the query to the system. The system then 

downloads the list of pages Pall related to the target. This step may involve other meta 
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search engines. Second, a classifier is initiated to partition Pall into three groups: the 

set of DPs, SDP, and the set of IDPs, SIDP. Third, only distinctive pages about different 

Target entities in SDP are used as seeds of the clusters. The other redundant pages in 

SDP are moved to SIDP. Fourth, each page pi in SIDP will be clustered to the closest 

cluster whose seed is the nearest to the current page. If pi cannot be matched to a 

sufficiently similar seed, i.e. the similarity between them is less than τ2, it will be 

discarded into an unknown set. Fifth, we use the name of organization (or person) that 

appears in the seed as the label to the corresponding cluster. The resulting set of 

clusters found is then presented to the users.  

 

There are many ways through which we can improve user comprehension and 

acceptance of system usability. When user submits more constraints, for example, 

using the term “Virginia” to constrain the query “Francis Yeoh”, the system can 

utilize the constraint to rank the clusters so that the more relevant cluster appears at 

the top. Information in each cluster can also be extracted into a predefined template as 

concise summary to the users. It can also be presented as a set of navigable 

documents ranked first by the seed of each cluster, followed by the direct pages 

ascending in Direct Page similarities, and finally by the Indirect Pages. 
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Figure 4. The Process of a Web-based 
Information Extractor (Page Classifier) 
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4 Design and Implementation 
 

This section outlines in detail the components that go into the PnOClassifier 

system. It also summarizes their functionality and the many considerations that have 

gone into building new components. Integration with reliable third-party, public 

domain tools and the processes of tuning or enhancing the tools for our pipelines are 

covered. 

 
 

4.1 Systems Architecture 
 

The PnOClassifier prototype system is engineered and developed as a cross-

platform pipeline of crawlers, aggregators, classifiers and generators. Behind the 

scenes, database servers, middleware components and a host of other cutting-edge 

tools and libraries supported the pipeline with operations to scaffold the downloading, 

metadata excavation, feature extraction, named entity identification, decision-tree 

classification, and finally evaluation and profiling of the experimental results. Almost 

all of the components in the pipeline are statistically based. 

 

All in all, there are a total of 15 major pipeline pit stops. First, a meta-crawler 

takes the user’s query down the Internet to fetch relevant documents down to a local 

cache. While it’s at it, the crawler also indexes the documents with relevant meta-data 

and checks for document type, ignoring all others except HTML. In addition, the 
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crawler also checks for document completeness of downloaded items and converts 

them into plain text formats. An HTML validation engine then runs to convert the 

HTML files into XHTML files, conforming to that of a well-formed XML file. This 

step is necessary so we can rid ourselves of inconsistent, overlapping or missing tags 

otherwise tolerated by visualization tools such as the web browser. Once this process 

is completed, we can be sure the files are consistent and ready for additional tagging 

by our name entity engine. 

 

At the same time, a URL analyzer runs to extract and index all types of HTTP, 

FTP, EMAIL links to and from the documents in the collection. This includes the ratio 

of incoming and outgoing links as well as the total occurrences of these URLs. At this 

point, the Name Entity analyzer goes to work by running against the documents one 

at a time to extract and tag into the files PERSONS, ORGANIZATIONS, DATES, 

MONEY, PHONES, and ADDRESSES. Following this, a well-formed consistency 

check is again performed on the transformed documents, after which an XPATH-

based engine is fired to calculate token and entity figures. A metadata analyzer then 

runs to tidy up the metadata for these documents and reconciles the final ratios and 

statistical totals before going into the final step. 

 

The last and final processing cycle involves classifiers and similarity engines. 

On a training cycle, a supervised classifier is executed for manual tagging and 

metadata generation. A decision-tree model is then generated as the output from this 
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pass. On a test run, a default classifier generator is executed to perform preprocessing 

on the documents before running it against the decision-tree models generated by 

training pass. The results from the test run is parsed and assimilated into the 

corresponding document metadata. Finally, a similarity analyzer is executed to 

calculate the similarities between vectors of statistical features among the Direct 

Pages, Indirect Pages and in the process sift out more irrelevant pages. The output 

from this final pit stop is clusters of pages led by a Seed Page in each of them. 

 
 
 

4.2 Design and Implementation Methodologies 
 

 

The design and implementation of the PnOClassifier System architectures are 

built on quick turnaround prototyping methodologies resembling that of the original 

Spiral model [40]. Where appropriate in the development process, design patterns 

modeled after [41] [42] [43] [44] practical to the implementations are modeled to glue 

the variety of components together. One implementation is based on a client-server 

design, with ports connecting perpetual clients together in a daemon-mode chain. The 

alternative implementation is a loosely coupled pipeline of components. The different 

implementation paradigms was made so it is easy to insert a new component into the 

processing pipeline while having transient thread-safe operations on each and every 

client-server-based module without having to restart. 
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A uniform logger is also implemented so unattended and unsupervised 

operations can be carried out and activities tracked and captured for forensic 

investigation. Most of the components in the pipeline are based on the Java language, 

with Apache Jakarta Log4J [32] and Commons Logging [33] as the bridge between 

the console, log files, and remote loggers. The system currently runs on both Unix 

and Win32 platforms. On windows, the Gnu Utilities are deployed as a common set 

of local and web utilities among all the platforms. Environment variables are used as 

the initial bootstrap configuration dataset during the initialization of all components 

in the pipeline. Database handlers are derived from DBCP (Apache Jakarta’s 

Database Connection Pooling) [34] away from the initial PoolMan [35] 

implementation. Backend database engine used is MySQL, with the abstraction and 

pooling layer based on DBCP and the PnOClassfier DatabaseAccess mechanism. 

 

There are 2 types of storage available in the PnOClassfier. The first uses the 

native file system abstracted to store metadata and other forms of information about 

any downloaded web document. Filenames are generated based on the current 

timestamp and a humanized suffix using a dictionary to improve readability and 

navigability. Each type of information is stored in a file with the same filename but 

different extensions. All extensions and formats are configured and accessed via a 

shared Configuration module so components in the pipeline can import the module 

and adhere to the standards set down by the previous component in the line. 
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The second type of storage is independent of the file system and resides in an 

SQL database. The aforementioned cross-platform DBCP pooling mechanism is 

adapted to provide shared access via a common DatabaseAccess singleton offering 

functions to all modules in the pipe. 

 

Apart from the storage mechanism, a standard bridge is also built to exploit 

functionalities already existing in standard utilities ported to various platforms. This 

includes the GNU utilities (on Win32), Lynx, and a dozen of other utilities in the 

same line. Threaded accesses to these functionalities are also implemented together 

with exception handling routines to arrest any runaways during unattended operations. 

 

 

4.3 Supporting Resources 
 

4.3.1 Test Collections 
 

 

Training and test data are mandate in all Information Retrieval experiments 

and systems; the PnOClassfier System is no exception. Building on our previous 

efforts, current data sources consists of primarily 3 segments: commercial, academic, 

and our own collections. 

 

Commercial offerings studied consist of both structured as well as 

unstructured documents and data. Among them, we selected Google because of its 
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cross-platform API (the Google API) was among one of the most mature and open to 

multiple languages across different platforms [24]. The Google API allows up to 

1,000 queries a day, but each query is limited to a certain number of retrieved 

documents. At the time of evaluation, the number fluctuates from 50 to 100, and 

affected our document collection efforts as we needed a count of some 1,000 

documents for each query target entity, be it a person or an organization. 

 

In line with TREC participations, we also outlined data experimentation 

strategies around the more updated WT10G collections. This was because the TREC 

Web Corpus (WT10G), built upon its predecessor, the WT2G collection, was a more 

substantial and higher quality data set that eliminates non-English and binary data 

documents. In addition, the 1.6 million sized collections also eliminate documents 

from “uninteresting” servers as well as redundant or duplicate data. This allow for full 

concentration on evaluating the pipeline against specific selections from the filtered 

collection for Persons and Organizations. 

 

Last but not least, in an effort to bring our pipeline results closer to reality, we 

collected some 15,000 Web pages from Google on Persons and Organizations. This 

we christened our WebPnO Collection, and after post-processing and filtering, were 

made an important secondary training and test set (eg. Francis Yeoh, Sanjay Jain 

document and data sets). 

 



 47

Each Document in the collections outlined above consists of 3 main sets of 

data. The first is document metadata. This contains primarily server information, 

document title, number of links on the page, length of the page, and so on. The 

second set of data is based on information processed by our pipelines. This consists of 

text-based interpretation and extracted information such as the ratio of Named 

Entities, incoming URLs or outgoing URLs, query-to-title-relevance, and so on. Last 

but not least, the original document itself is definitely the most important part of the 

data set. 

 

Among the collections, our initial testing and evaluation criteria focused more 

on the more authoritative Google API and TREC documents with emphasis on target 

set rules extraction. In the most recent and updated version of our system, we 

concentrated on bringing forth the system to more practical scenarios on the web, and 

gave more emphasis to our WebPnO collections. 

 
 

4.3.2 GATE (General Architecture for Text 
Engineering) 

 
 

GATE is an implemented architecture of components with a visual 

environment built to scaffold research and development work in language engineering. 

Within GATE, a document is represented by annotations and feature maps of name-

value pairs. Processing Resources (PRs) are GATE components within the system that 
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operates on these documents. Specifically, the ANNIE (A Nearly New Information 

Extractor) is modified for use in our PnO NE detection. The core of this research 

effort hinges on the accuracy and effectiveness of a Named Entity Detection system. 

Practically all of the features identified to be useful in segregating Direct Pages from 

the Indirect Pages and Irrelevant Pages depended on Named Entities. For instance, if 

the target named entity in question is “Francis Yeoh” and “francis”, “francis_yeoh” or 

any of the entities or their permutations appear partially or wholly in the URLs of 

query, the chances of the page being a Direct Page will be considerably increased. 

Conversely, if tokens of an entity other than the target are to be found in the URL of a 

page, the chances of it being Indirect Page containing derivative information about 

the target entity, or even an irrelevant page, will be much higher. 

 

The GATE system’s class libraries are comparatively more difficult to adapt 

for use in a different pipeline system. The component-based ANNIE system [29], 

together with its set of PR components are coupled together in with modifications and 

embedded into our pipeline. Among them includes the following CREOLE 

(Collection of Reusable Objects for Language Engineering) resources: 

 

• the English sentence splitter (gate.creole.splitter.SentenceSplitter) 

• an input tokenizer that produces words 

(gate.creole.tokeniser.DefaultTokeniser) 

• a POS tagger (gate.creole.POSTagger) 
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• a simple gazetteer of common terms 

(gate.creole.gazetteer.DefaultGazetteer) 

• Coreferencer called the orthomatcher 

(gate.creole.orthomatcher.OrthoMatcher) 

• entity transducers (gate.creole.ANNIETransducer) 

 

GATE’s implementation is based on a large pool of past resources and 

experiences, and is effective in addressing general NLP tasks. However, the latest 

versions requires patching to its code. Among other problems, it hangs on various 

kinds of documents at various stages in its component system.The GATE-based 

Named Entity detection pipeline component we have incorporated thus far 

demonstrates that when properly planned and designed, a module that’s loosely 

coupled with the rest of the Information Extraction application can perform 

surprisingly inexpensive and good performance, and can be integrated with other 

modules in a pipeline execution model with minimal effort. The final question 

remains as whether there is a possibility that an integrated component completely 

dependent on one particular system such as the GATE architecture is more malleable 

than what we have come up with. However, the intrinsic value of such integration 

inevitably erodes with the complexity of the system and its learning curve, alongside 

with the many issues that we have to resolve to get the system up to deal with real 

world documents. For example, the parsers in both implementations are modified to 

detect non-ASCII characters and filter through them allowing us to focus on English 
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documents. These characters include accents, umlauts, circumflexes and other 

possible non-standard lower and higher ASCII bytes. 

 

4.3.3 OpenNLP 
 
 

A named entity detector to work on sentence fragments, based on a Maximum 

Entrophy Model was derived from an Open Source Natural Language Processing 

component known as the OpenNLP.  The original components and interfaces are 

created by Dr Jason Michael Baldridge, at the University of Edinburgh’s Institute for 

Communication and Collaborative Systems [25]. Components from the OpenNLP 

project consists of Natural Language Processing components useful for parsing and 

furthering work in syntactic and semantic fields of text processing. Of these, the 

OpenNLP Java Interfaces, Leo - the architecture for defining XML specifications of 

grammars for Natural Language parsing systems, MaxEnt – a Java-based package for 

training and using Maximum Entrophy Models, and finally, Grok – the collection of 

natural language processing tools based on the aforementioned are adapted for used. 

In short, Grok is a collection of NLP tools that provides a library of modules 

implementing the interfaces specified by OpenNLP. 

 

The implementation was based on the following selected OpenNLP.Common 

interfaces from Grok’s “preprocess” packages: 
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• the sentence detector (sentdetect.EnglishSentenceDetectorME) 

• a tokenizer (tokenize.EnglishTokenizerME) 

• part of speech tagger (postag.EnglishPOSTaggerME) 

• the variable Multi-Word Expression parser 

(mwe.EnglishVariableLexicalMWE) 

• the English language category tagger (cattag.EnglishCatterME) 

• a heavily modified version of the Named Entity detection modules 

(namefind.EnglishNameFinderME) 

• a simple Email detector (namefind.EmailDetector) 

 

For  the OpenNLP version, version 0.51 was available over SourceForge at the 

time of implementation, and quickly became the open-source choice for our 

development effort. The Sheffield University’s GATE program was then 

comparatively more complicated and documentation was scarce. In addition, it was a 

complete package tightly coupled with their visualization component meant for 

academic and research demonstrational purposes at that point in time. 

 

Most of the development time was spent on patching the source code so it 

won’t break on simple items like single quotes, and to significantly improve the 

accuracy which at that time was not too good (in particular, the EnglishTokenizer and 

EnglishNameFinder). As the processing time was tremendous, we packed the 

modified components into a pipeline and implemented a TCP-based client-server 
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solution from which our clients can send information into processing threads and 

obtain output. Entity-based Processors were written in addition to the pipelines to 

detect different classes of Persons, Organizations, Addresses (Emails, Street Names, 

Building Names) and different kinds of cardinal digits (numbers). The training of the 

final tool requires large amounts of training data in specific domains for the Entrophy 

Models. We require a more re-targetable engine that can be adapted for different texts 

without having to extensively retrain the models. The OpenNLP-based 

implementation effort was later replaced in most situations for by the faster 

performing GATE [29] where complete texts are encountered. At this time of writing, 

the OpenNLP project has moved on to a more advanced realization of the Multi-

Modal Combinatory Categorical Grammar formalism, christened the OpenCCG 

Project. It’s primary focus is now on Dialog Systems working on human speech and 

sentence fragments. 

 

4.3.4 WEKA (The Waikato Environment for 
Knowledge Analysis) 

 
Of the many automated classifiers (such as Naïve Bayes, NN), WEKA, a 

collection of machine learning algorithms was selected as a learning tool for our 

pipeline implementation [36] [37]. The C4.5 [21] implementation of WEKA 3 

(http://www.cs.waikato.ac.nz/ml/weka/) known as the J48 was tuned to work with our 

similarity algorithms and results compared with others available (such as regression, 
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Kstar, JRIP [36]). At the end of the day, we found that our adapted C4.5 approach 

gave us the best overall results in most cases. 

 

A total of 3 components are implemented to achieve our objectives. The 

“Supervised Classifier”, an ANSI text-based tool with PnO NE tagging is created to 

support and scaffold manual class tagging. The “Dummy Classifier” prepares the 

system for unsupervised tagging, and the “Weka Generator” creates metadata prior to 

similarity analysis stage of the pipeline. All data formats are made to conform with 

the ARFF (Attribute-Relation File Format) specification which defines a data set in 

terms of one header list of attributes followed by relations with corresponding 

columns of values (question marks represents unknown values). The C4.5 algorithm 

was selected and adapted for our algorithms (1, 2, 3) because of its general 

retargettability and ability to cater for various circumstances [21]. Components 

created in this stage includes the WekaClassifier which is our primary workhorse for 

identifying DPs, the WekaAnalyzer that calculates the rest of the similarities against 

the seeds into the temporal databases, SimilarityAnalyzer which finally tags the 

indirect and irrelevant pages. The significant outputs from these implementation is 

presented Section 5. 

 
 

4.3.5 Web Spider 
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The pipeline’s first component is based largely on the Google API, with the 

capability to launch and monitor multiple threads with timeout and metadata 

collection on unlimited number of document retrievals. A Session Manager is 

implemented that creates and maintains the state for the pipeline for the duration of 

the retrieval in preparation for the remaining of the Named Entity processing. All 

pages other than HTML and plain text are ignored. Among the other reasons, primary 

consideration is the time required to parse and convert these documents, and the fact 

that seeds are very unlikely to be flashy PowerPoint, lengthy WinWord or PDF files. 

 

The initial version of the crawler engine is based on the Compaq Web 

language, known as WebL at the time of initial web spider implementation. It is an 

imperative, interpreted language with built-in support for common protocols on the 

Internet, such as HTTP and FTP. It also supports data types like the common-place 

HTML, and XML. It was selected because its service combinators and markup 

algebra was useful in giving us a head start to building the first component in our 

pipeline system. We then realize the limitations of the WebL language quickly made it 

necessary for us to delve into its Java-based internals for tweaking. It was later 

determined that the scripting language will not meet with our requirements on 

functionality and performance tuning. In our case, parsing of incomplete or complex 

HTML breaks often, and downloading of documents cannot be made to invoke user-

defined handling mechanisms or be threaded with more specific controls. Large 

amounts of data therefore cannot be downloaded in a streamlined manner. 



 55

 

The current implementation of the Grabber utilities are based on an interface 

derived from the Google API. The implementation code however is completely 

independent. Specific engine bindings can be implemented based on the search 

engine in mind, for instance, Altavista, Lycos, or Yahoo!. In addition, various sections 

of the interface have been designed so it can function as a component in a pipeline, 

and are not limited to that of a web crawler. Features include: 

 

• Extensible Search Engine Interface 

• Pipeline capable design 

• Cross-platform configurable download limits, fetch sizes 

• Configurable Threading and monitoring timeouts fetching 

• Supports unlimited results fetching in batches from Google (unlike the 

Google API limits) 

• Extensible input query optimization 

• Blazing fast X-Path engine for data extraction (titles, etc) 

• JavaCC, CyberNeko, and JTidy based HTML to XHTML Parser and 

Converter 

• Humanized filename suffixes with timestamps via dictionaries 

• File-type filtering and fetching 

• Options for number of retries (or unlimited) on unreliable servers 

• Configurable options for recursive fetch (down to N levels) 
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• Configurable for spanning servers (internal and external links) with follow 

options 

• Configurable for Robots compliance 

• Supports HTTP, HTTPS, FTP 

• Option to save headers 

• Configurable directory options 

• Text extraction utility 

• Links (HTTP, EMAIL, FTP, MAILTO, etc) Extractor 

• Formatted HTML to Formatted Text Converter 

• Visible and Invisible Links (img, cgi, mailto, etc) extractor 

• Metadata extraction using above functionalities, as well as ratios (eg. 

query_title_ratios), and so on. 

 

The Grabber is a very important tool because the documents it fetches and the 

metadata it constructs are the basis on which all other modules and components in the 

rest of the pipe operates upon. For this reason the variety of configurable options and 

threading support is built in with a high degree of reliability and robustness. 

 

The preprocessed metadata and other information are used as inputs into the 

next component along the pipeline for named entity detection and structural analysis. 
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5 Experiments and Discussions 
 

 

This section covers the empirical results of the experiments. Various aspects 

of the results are discussed alongside the variants in the input data and conclusions 

derived. 

 
 

5.1 Selecting Test Samples from the Web 
 

 

Experiment of web information processing is a time-consuming task, where 

each search typically returns hundreds, or even thousands of pages. Moreover, 

evaluating the effectiveness of clustering is notorious even though there are many 

guidelines to measure the quality of clustering such as the entropy measures, 

clustering error, and average precision [20]. Because of the general lack of standard 

authoritative test data sets for our specific task involving the clustering of web pages 

concerning Persons and Organizations on the World Wide Web, we have resorted to 

deriving a set of web pages for testing based on the following methodology: 

 

a. In our experiments, we collected the names of 12 persons and 12 organizations 

(such as companies, governments and schools) from Yahoo (www.yahoo.com) 

and MSN (www.msn.com). In order to conduct meaningful tests, we removed 

PnOs that belong to large companies and famous persons (such as Microsoft or 
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George W. Bush). This is because there would be too many pages in the search 

results for such PnO names. For example, Google returns 2,880,000 pages for 

Microsoft, and the first hundreds of pages are about only one specific target. To 

ensure that there is sufficient data for the analysis, we also excluded those PnOs 

that return less than 30 pages (table 2). 

 

b. We used every PnO name as the query string to Google. We downloaded the first 

500 pages of each search, with the web spider filtering out files whose formats are 

not HTML and plain text (i.e. PDF, PS, PPT formats and DOC), and those whose 

lengths are less than 100 or more than 10,000 characters. The average number of 

validated text pages returned per PnO is about 421 (421.21). 

 

c. We manually examined and tagged the returned pages to provide the ground truth 

for the tests. We determined the number of distinct Target entities for each query, 

and tagged all the DPs belonging to each target entity. 

 

d. Further experimental results are cross-validated against previous test runs and 

results averaged. 
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Table 2. List of persons and organizations used in the PnOClassifier experiments 
 

 

The resulting set of web pages contains about 10,109 pages for 12 person and 

12 organization names. We christened this set of web pages our WebPnO collection. 

 

 
Persons Pages Organizations Pages 

frank herbert 445 multisoft corporation 426 

francis yeoh 402 innovision corporation 411 

sanjay jain 423 yunnan agency 424 

david beckham 411 suntec industries 423 

mabel ong 431 famosa pte ltd 418 

george bush 415 singapore university 432 

catherine lim 429 singapore polytechnic 404 

stanley ho 408 shaw corporation 419 

stefanie sun 417 intuit enterprise 409 

john doe 455 advantech 398 

michael owens 442 indigo systems 428 

harry lee 425 creative technologies 414 

Total 5,103 Total 5,006 
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In order to compare our results with other reported systems for general web 

searches, we adopted the WT10g data set used in the homepage finding task of 

TREC-2001 evaluations. It consists of 10-gigabyte subset of the VLC2 collection and 

is designed to have a relatively high density of inter-server hyperlinks. 

 
 

5.2 Testing using WebPnO Collection 
 

 

We used a subset of the WebPnO collection to train and test our classifier for 

direct pages. For actual experiments, 90% of the pages are used for training, and the 

rest of the 10% for testing. Each sample is represented using 31 features, metadata of 

which are listed in Table 1, together with one decision class attribute 

(PAGE_CATEGORY). The current adaptive version of our WebPnO modified 

learning component is built based on the machine-learning algorithm C4.5 

(http://www.cse.unsw.edu.au/~quinlan/) and WEKA  3 

(http://www.cs.waikato.ac.nz/ml/weka/). 

 

Training sets of 3 retrieval classes for persons are drawn from our WebPnO 

collection (Direct, Indirect and Irrelevant). The pages are then pre-parsed for meta-

data extraction and categorized by hand with complete information including page 

category. These collections are then fed into our decision-tree engine with emphasis 

on cross-validation, where results obtained are averaged over 10 folds randomly 

selected from and partitioned within the WebPnO collection. 
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In order to provide insights into the roles of features and the set of rules 

extracted for finding DPs, we list some of the decision rules found as follows: 

 
 
1) URLS_COUNT <= 19 & PERSONS_COUNT <= 63 & NE_TOTAL > 

67  Class DP 

2) NE_TOTAL > 4 & NE_TOKENS_RATIO > 0.06883 & 

NE_TOKENS_RATIO <= 0.22727 & WORD_COUNT <= 91  Class 

DP 

3) ORGANIZATIONS_COUNT > 1 & NE > 14 & NE_TOTAL <= 67 & 

URL_SLASH_COUNT > 3  Class IDP 

4) URLS_COUNT > 19 & URL_SLASH_COUNT > 3  Class IDP 

5) NE_TOTAL <= 4   Class IDP 

6) QUERY_TITLE_RATIO <= 0 & URL_LEN <= 50 & TOKENS > 

588 & URLS_IN_RATIO <= 0 & PERSONS > 2 & URL_LEN > 42 & 

TOKENS <= 1532: Class DP 

7) QUERY_TITLE_RATIO > 1 & PERSONS > 9: Class DP 

 

where DP – Direct Page, IDP - Indirect Page, IRP - Irrelevant Page* 

* pages which are classified to be a DP or an IDP becomes an IRP. 
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Here, Rule 1 implies that good DPs should have many PnO NEs but relatively 

few links and person names. Otherwise, they may be index pages or attendee lists. 

Rule 2 indicates that good DPs tend to be shorter, but contain a high percentage of 

PnO NEs. In general, they are home pages of persons. Rule 3 and Rule 4 show that 

IDPs have deeper URL depth. In addition, Rule 5 indicates that those pages that have 

fewer NEs must be IDPs. These two rules reveal that PnO NEs do play important 

roles in the classification of pages into DPs and IDPs. Rule 6 reflects one of the more 

complicated rules which is essentially a consolidation of the aforementioned (1 to 5); 

additionally, it also mentions that the Length of the URL should be generally short 

(somewhere between 42 to 50 characters), and that the number of tokens (excluding 

tags) should be constrained. Among others on Organizations, rules 7 also suggests 

that if the Person’s tokens from the query is found in the title, that even if there are 

many person names on the page, it may well be a set of web pages describing a list of 

people, in detail, one on each page. 

 

We used representative folds of 10 partitions from the person or organization 

categories to test the trained classifiers. We achieved an F1 measure of about 87.77% 

(precision 88.26% and recall 87.27%). Our result is comparable to the best results 

reported for the homepage finding task (92%) in TREC-2001, a task which can be 

seen as a subset of our current classifier in the case where home pages are direct 

pages. We are encouraged by this result as we believe that DP detection is a more 

difficult task than homepage finding. This is because the latter deals only with a 
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relatively simple task, where the decision depends mostly on URL length and whether 

the URL ends with a keyword or “/”. Our experiment uses 8 of the URL based 

features from a total of 31. 

 

 

5.3 Testing using WT10g Collection 
 

 

In order to compare the performance of our system with others on similar 

tasks, we first compared the performance of our decision model with that reported in 

[9] on the homepage finding task. [9] performed the document analysis by employing 

decision tree and regression analysis using the feature set based mostly on URL depth, 

number of in- and out-links, and keywords. They tested on a subset of WT10g 

collection and reported a F1 measure of 92%. We conducted similar test using our 

algorithm based on our original feature set “without tuning”, where a larger balanced 

test set rather than the unbalanced set in [9] was used. We obtained a F1 measure of 

about 91%, which is comparable to that reported in [9]. Although the results are not 

strictly comparable, the results do indicate that our technique is effective, even for the 

home page finding task which our system is not tuned to perform. 

 

In our second test, we randomly selected about 50 DPs and 50 IDPs for 

organizations from the WT10g collection. We did not conduct a similar test for 

persons as there are very few (about 10) direct pages about persons. Our classification 
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shows that we could achieve an F1 measure of about 94%. This is higher than that 

achieved using on our larger WebPnO collection. The test demonstrates that our 

WebPnO collection is representative and demanding, and we could obtain better 

results from the random subset of the WT10g collection. 

 
 

5.4 Our WebPnO Collection Clustering Results 
 

 

We now discuss the full experiments on clustering web pages based on our 

WebPnO collection. We evaluated the performance of our clustering approach 

according to two aspects. First, we evaluate the quality of seeds. This involves the 

detection of candidate seeds from all direct pages derived from our experiments and 

the statistical discrepancies. Second, we evaluate the quality of the entire set of 

clusters. This is accomplished by measuring the average number of clusters formed 

through candidate seed detection and Indirect Page deliveries. 

 
 

5.4.1 Direct Page Clustering Results 
 

 

Table 3 gives the detailed performance of detecting seeds. As shown, the 

average ratio of missing clusters and redundant clusters (Nm / N) is lower than 10% 

(8.67% for Persons and 9.75% for Organizations). The number of missing clusters is 

represented by the number of DP Seeds undetected by the engine. This indicates that 
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the seeds are stable and reliable. The number of seeds found varies from 4 to 10. 

From our experiments, we found that the number of seeds for a person tends to be 

higher than that for an organization, leading us towards the inclination that the 

number of persons with the same name is larger than that of organizations. This 

hypothesis can be concluded in subsequent experiments tabulating results from a 

larger corpus. 

 

The quality of seeds is pivotal because it controls the distribution of 

segmentation. Missing a seed will mean the loss of a cluster and cause some IDPs to 

be assigned into wrong or unknown (Irrelevant Pages) set. On the other hand, if there 

are redundant seeds, IDPs about the same target may be delivered into different 

clusters, resulting in the need to perform non-trivial merging of the similar sets 

together. Fortunately, the results indicate that our technique is effective in 

differentiating between DPs and IDPs, and in removing redundant DPs. In addition, 

the implemented pipeline is able to perform multi-pass IRP filtering, thus further 

streamlining the cluster differentiation process. 

 

 

Table 3. Direct Page Detection Performance using PnOClassfier Pipeline 

Type N Nc Ni Nm Precision Recall F-Measure 

Person 196 168 28 17 85.71% 90.81% 88.26% 

Organization 277 235 42 27 84.84% 89.69% 87.27% 
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Overall* 520 458 25 30 85.28% 90.25% 87.77% 

 

* Overall N, Nc, Ni, Nm denotes arithmetic total for the sole purpose of calculating F-Measure 

only. N gives the number of candidate seed samples, NC, NI, NM respectively denotes the number 

of correct, incorrect and missing DPs found. Recall = Nc / Nc + Nm, Precision = Nc / Nc + Ni. 

Results are averaged from runs over several queries under the same category. Nc counts include 

redundant seeds. Redundant seeds are DPs with Similarity of >= 0.95 <= 1.00 

 

 

For practical real-world searches, the PnOClassfier pipeline performs within 

the aforementioned results. There is a general count of 3.84 Direct Pages (candidate 

seeds) for every 100 web documents found. Figure 5 shows the average direct page 

detection performance indicators. The averages are based on empirical results derived 

from the runs derived from our WebPnO Collection of 12 persons and 12 

organizations. The overall trend indicates an encouraging F-Measure of some 87.77%, 

with Precision and Recall at 88.26% and 87.27% respectively. From derivative 

experiements, we also observed that there is a drop in Precision and Recall values 

across the board as the sample size, or number of web documents increases. This is 

most evident among web pages on Organizations, where duplicate documents with 

almost identical contents are found from different publications or web portals 

covering a particular event. It is also possible that these articles are written by 

journalists on a particular company who has them published on multiple sites. Our 

experiments shows that the features such as MONEY, PERCENT, and other specific 
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RATIOS in the empirical test suites contributed towards the detection of seeds 

pertaining to Organizations. This is consistent with intuition that economic figures are 

more relevant to some types of firms than to some persons. 

 

 

Figure 5.  Average Direct Page Detection Performance Indicators 
 
 
The empirical results show that our techniques and pipeline implementation is 

effective in addressing the correct detection of Direct Pages and Candidate Seeds. We 

can see that the number of correctly identified Direct Pages increases proportionately 

with an increase in the number of total web documents in each sample sets (Figure 6), 

maintaining an average Precision of 85.28%. 

 

The scores on the incorrectly classified pages deserve some attention (Table 3). 

In particular, it is observed that there is a steady increase of incorrectly identified 
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pages as the sample size N increases. This can be attributed to an expected increase in 

the “noise” of the samples when we increase the set of test or training documents, and 

averages out to be increasing less than proportionately in relation to N. The number of 

redundant direct pages however, appears to increase more than proportionately 

relative to the total sample pages in a set. As with the case of organizations, duplicates 

tend to be published in part or wholly on different web portals, newspapers and other 

aggregator sites. 

 
 
 
 

 
 

Figure 6. Average Direct Page Detection Casualties for Incorrect, Missing 

Candidate Seeds, Direct Pages 
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Given a sample size of 200 pages, we have a yield of 26 direct pages of 

clustered document delivery hits with bias set to 10 (meaning, at least 10 baseline 

entity matches for either NE (Per, Org, Loc (Address, Email)). If we release the bias, 

all pages will be classified (unless they're irrelevant), giving high recall, but much 

lower precision. This is because when the lowest matching pages are used for direct 

page seed clusters may not be accurate. Increasing the bias drops some of the more 

statistically ambiguous samples (Table 5), reducing recall and increasing precision of 

page delivery ratios. The prototype engine works well on small collections with the 

trained data (Table 4). 

 

 

Table 4. Direct Page Detection for small sample size of 200 pages 

Type N Nc Ni Nm Precision Recall F-Measure 

Person 8 5 3 1 62.50% 83.33% 72.92% 

Organization 18 15 3 2 83.33% 88.24% 85.79% 

Overall* 26 20 5 3 72.92% 85.79% 79.36% 

 

 

5.4.2 Indirect Page Clustering Results and Irrelevant 
Pages 

 
Secondly, we clustered IDPs into each cluster using Algorithm 3. We found 

that the average number of IDPs in clusters about organizations is considerably higher 
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than that about persons. The number of redundant pages (pages with Similarity >= 

0.95) are also higher for organizations compared to persons. The quality for the entire 

set of clusters is evaluated as follows. Table 5 lists the performance of assigning IDPs 

to clusters. The Table shows that we could deliver over 50% of IDPs to the clusters 

(53.59% for Persons and 46.87% for Organizations). The rest of less than 50% of 

pages are placed in the unknown and irrelevant page set. As there are no comparable 

results available on our specific task, it is hard to compare our results in comparison 

to other reported systems. However, the results reported in [15] showed that the state-

of-the-art clustering methods could achieve a performance of between 59% and 87% 

in F1-measure on a range of test corpuses. This places the performance of our system 

near the top range, suggesting that tuning can bring us up towards the top end of the 

performance scale. Despite the lack of comparative experiments in this specific area, 

our results strongly suggest that the PnOClassifier approach is effective and reliable 

on practical web tasks. 

 

Our analysis on the pages assigned to the unknown set shows that they tend to 

be dispersed pages that lack evidence for their assignments. This may be caused by 

missing heuristic information, when some target entities do not have DPs or the 

contents related to target entities are only expressed indirectly. We conducted another 

experiment in clustering IDPs without using the NE features. We found that the F1-

measure decreased by nearly 15%. The results again show that the NE features are 

important for this task. 
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The performance of the pipeline features reaches up to an average of 46.87% 

for Organization-based IDP delivery (Table 5). There is a considerable increase in the 

number of irrelevant pages detected. This contributes to higher quality Indirect Page 

delivery ratio. The stricter criteria set by the increase in the high number of feature set 

and an effective final IDP similarity threshold adjustment factor τ1 and τ2 in 

Algorithms 1 and 3 (“Bias”) is an additional positive contribution factor. Figure 7 

presents this information (Table 5) visually. 

 

Table 5. The performance of assigning IDPs 

IDP page NTotal NIndirect NDelivered NIrrelevant Delivery Bias 

Person 5,103 2,644 1,417 3,518 53.59% 10 

Organization 5,006 2,010 942 3,829 46.87% 50 

Overall 5,054.5 2,327 1,179.5 3,673.5 50.23% - 
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Figure 7. Average Indirect Page Delivery Performance for classifying IDP 
correctly. 
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need higher Precision, we can choose to drop the deliveries’ performance thus 

ignoring lower-quality pages. 

 
The extensiveness of these experiments took a considerable amount of time to 

complete under pipeline components. Many repeated sets of experiments are 

conducted to ensure coherence and consistency of the generated clusters and the 

statistics derived. On to performance, it is estimated that the speed of pipeline 

processing can be considerably reduced by about 75% through proper indexing and 

PnO Named Entities detection on pre-compiled pages on domain-specific Collections. 

 

A noteworthy observation on the empirical clustering experiments shows that 

search results deemed indecipherable eventually by human judges through manual 

partitioning within a result set also expectedly drew ambiguous conclusions from the 

PnOClassifier. 
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6 Conclusions and Future Work 
 
 

PnO is one of the common types of queries posed by users when surfing the 

Internet. The problems with normal web search engines are that they return too many 

irrelevant pages and are unable to distinguish between different entities having the 

same name. An effective PnO crawler and aggregator for the web is one of the first 

efforts in clustering different target entities of the same name correctly and naturally. 

The clustering algorithm described and implemented herein uses Named Entities as 

the basis for most of its statistical functions. In short, PnO NEs are the key to the 

entire picture. 

 

Empirical results on the actual web using the names of approximately 12 

persons and 12 organizations show that the current algorithmic and implementation 

method is effective for practical PnO retrieval. It has achieved an F1 measure of 

87.77% for finding the cluster seeds, which are direct pages of distinct target entities 

expressed in the query. The embedded techniques can also practically assign over 

50% of indirect pages to the clusters (Table 5). 

 

This approach is regarded as being reader-centric and thus more naturally 

acceptable with higher comprehension rates than that of machine-generated folder 

names. It provides an effective way for users to summarize information pertaining to 



 75

specific targets. It also provides tracking capabilities over various feature aspects of 

these PnOs as we relied on a fresh method of weighed sum reconciliation similar but 

different to the features in Xi [45] and Crofts [46] and more directed at the task at 

hand. These included query-related keywords and duplicate detection, addressing the 

fact firstly, different target queries may use the same feature-vocabulary to represent 

their content-category, for instance, “education”, “working experience”, “address”, 

“phone number”, and secondly, the pages presenting the target query in question may 

be using quite different terms in many aspects, which lead us to the fact that they will 

be divided into different clusters when standard approaches are employed, thus 

creating a new requirement for further reconciliation/merging of these otherwise 

related clusters. 

 

The current prototype implementation works on full-featured web pages. 

Snippets and fragments of text, on the other hand, could prove to be a more efficient 

form of source information. The baseline algorithms however are Named Entity based. 

The use of these fragments may give rise to a myriad of “fake” PnO NEs, due in large 

part to the arbitrary manner in which many colloquial statements and truncated 

sentences are interpreted. The clustering quality may therefore be aversely impacted. 

Further research in this area is needed before any conclusive directions can be 

identified. 
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Calculations and detections of Named Entities is currently the most time-

consuming task next to web page fetching from the web. It will be nice to have an 

index of entities on a specific domain catered for our clustering purposes. Pre-indexed 

databases, abstracts and summaries can all contribute positively towards the 

clustering pipeline. 

 

We believe the initial query data sets can be considerably improved by using 

various query optimization techniques which are not incorporated at this moment by 

our system. This will guarantee us more accurate search engine results to begin with. 

For instance, constraints such as “National University of Singapore” will lead us to 

more pages about the person, if the query user knows that the person is currently 

employed under the University. From this lead, we can be reasonably assured that the 

search engine results are ranked according to these criteria, with possibly more 

candidate Seeds and Direct Pages upfront nearer to the top of the returned results and 

Indirect Pages thereafter. 

 

Future research can also be carried out as follows. Firstly, the existing 

classifier algorithms can be improved especially in areas of real-time performance on 

large document sets. In the aforementioned sections, I touched on the necessity for a 

search engine that can wholly or partially serve NE-based meta-data to our classifiers. 

This very important and critical component relieves the pipeline from having to crawl 

and download pages from different engines. In specific time-critical deployment 
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scenarios, such an engine also proved to be the key in moving towards a real-time 

implementation. 

 

Secondly, information extraction can be performed using template-based 

algorithms on the clustering results (namely, the DPs and IDPs) and the aggregated 

information presented to end-users to afford an at-one-glance view of the data. This 

area of research will involve competent word-sense disambiguation and co-

referencing. This is a separate research area on its own and can be taken in a different 

direction. 

 

Thirdly, we plan to extend our techniques to organize and extract information 

in other domains such as research documents in specific areas of expertise. More 

research on the effective set of features for other domains needs to be carried out. The 

expected enhancements to the current PnOClassfier system includes bias threshold 

adjustments as well as a more elaborate similarity algorithm to bring the Indirect 

Pages up to an even higher catch-all rate. Multi-pass functions are expected to be 

required for these enhancement stages. 

 

Finally, an ideal prototype application for a proof-of-concept showcase to this 

effort is depicted in the Figure 8, with an information template carrying the extracted 

data neatly displayed with the relevant source links and a browser window to preview 

the document source. The generated information aggregated from documents 
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clustered with the PnOClassifier system will be closer to and more effective in 

addressing reader-oriented information extraction requirements. 

 

 

Figure 8. Template-based Prototype Interface for next-generation PnOClassfier 
System 
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Appendix A: TREC Web Corpus : WT10g 
 
http://www.ted.cmis.csiro.au/TRECWeb/wt10g.html 

Note (2002-10-11): The following description of WT10g was last updated in March 
2000. To obtain WT10g and/or the more recent .GOV test collection, see our access 
to data page. 

Goals in the preparation of WT10g 
There were a number of goals in the preparation of WT10g. These included: 

• A more substantial quantity of Web data than was available in WT2g. 
• A higher "quality" of Web data than is present in either WT2g or VLC2. This 

meant trying to eliminate non-English and binary data documents. (Foreign 
language documents are not uninteresting, but retrieval over mixed language 
collections is currently served by the cross-language track in TREC and the 
new cross-language workshop.) It also meant trying to eliminate 
"uninteresting" servers and/or documents. 

• Elimination of large quantities of redundant or duplicate data. 
• A larger number of inter-server links than was present in WT2g. 
• Better support for distributed information retrieval experiments. 
• Preservation of certain statistical properties from the VLC2, such as server 

size distribution. 

Properties of WT10g 

• 1 692 096 documents 
• 11 680 servers 
• an average of 144 documents per server 
• a minimum of 5 documents per server 
• 171 740 inter-server links (within the collection) 
• 9977 servers with inter-server in-links (within the collection) 
• 8999 servers with inter-server out-links (within the collection) 
• 1 295 841 documents with out-links (within the collection) 
• 1 532 012 documents with in-links (within the collection) 
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Appendix B: Typical Document Metadata File 
 
Sample WebPnO Web Page Document Metadata file 
 
#Wed Oct 12 07:17:16 SGT 2003 
money.count=0 
urls.in=0 
timestamp=1068401251199 
emails.count=0 
phones.count=0 
persons.count=24 
url=http\://www.comp.nus.edu.sg/~leews/learning.html 
query=sanjay jain 
percentages.count=0 
persons.ne.ratio=0.8 
urls.out.ratio=0.0 
query.url.ratio=0.0 
urls.out=0 
tokens.total=1097 
ftp.count=0 
url.base=http\://www.comp.nus.edu.sg 
ne.tokens.ratio=0.03 
organizations.ne.ratio=0.2 
page.category=irrelevant 
organizations.count=6 
url.slash.count=2 
weka.id=1 
http.count=6 
urls.in.ratio=0.0 
ne.total=30 
ftp.urls.ratio=0.0 
url.length=47 
urls.count=6 
date=Mon Nov 10 02\:07\:31 SGT 2003 
http.urls.ratio=1.0 
query.title.ratio=0.0 
dates.count=9 
title= 
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Appendix C: Typical Classifier Decision Tree 
Result 
 
Typical Sample Run of C4.5 (WEKA J48) Adaptive WebPnO Modified Classifier 
Pruned Tree Results over approx 250+ random samples with cross-validation 
partitions set to 10. The algorithm prunes the final trees produced using 
“subtree-raising” [21] which in turn increases general retargetability of the 
decision trees. 
 
query_title_ratio <= 1 
|   http <= 32 
|   |   query_title_ratio <= 0 
|   |   |   tokens <= 113: irrelevant (17.0/1.0) 
|   |   |   tokens > 113 
|   |   |   |   url_len <= 38: irrelevant (5.0/1.0) 
|   |   |   |   url_len > 38 
|   |   |   |   |   url_slashes <= 3 
|   |   |   |   |   |   org_ratio <= 0.36 
|   |   |   |   |   |   |   persons <= 17: indirect (9.65/3.24) 
|   |   |   |   |   |   |   persons > 17: irrelevant (9.65/3.41) 
|   |   |   |   |   |   org_ratio > 0.36: indirect (62.71/16.53) 
|   |   |   |   |   url_slashes > 3: irrelevant (30.0/10.0) 
|   |   query_title_ratio > 0: irrelevant (9.0) 
|   http > 32 
|   |   http <= 37 
|   |   |   tokens <= 495: indirect (3.0/1.0) 
|   |   |   tokens > 495: direct (29.0/1.0) 
|   |   http > 37 
|   |   |   tokens <= 779: irrelevant (13.0/1.0) 
|   |   |   tokens > 779 
|   |   |   |   tokens <= 1892: indirect (12.0/2.0) 
|   |   |   |   tokens > 1892: irrelevant (7.0) 
query_title_ratio > 1 
|   persons <= 9: indirect (2.0/1.0) 
|   persons > 9: direct (30.0) 
 
Number of Leaves  :  14 
 
Size of the tree :  27 
 
 
Time taken to build model: 0.15 seconds 
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Time taken to test model on training data: 0.01 seconds 
 
=== Error on training data === 
 
Correctly Classified Instances         199               83.2636 % 
Incorrectly Classified Instances        40               16.7364 % 
Kappa statistic                          0.7456 
K&B Relative Info Score              16366.8055 % 
K&B Information Score                  255.406  bits      1.0686 bits/instance 
Class complexity | order 0             372.8138 bits      1.5599 bits/instance 
Class complexity | scheme              131.0766 bits      0.5484 bits/instance 
Complexity improvement     (Sf)        241.7371 bits      1.0115 bits/instance 
Mean absolute error                      0.1667 
Root mean squared error                  0.285 
Relative absolute error                 38.1617 % 
Root relative squared error             60.9892 % 
Total Number of Instances              239 
 
 
=== Detailed Accuracy By Class === 
 
TP Rate   FP Rate   Precision   Recall  F-Measure   Class 
0.951     0.006      0.983     0.951     0.967    direct 
0.852     0.165      0.726     0.852     0.784    indirect 
0.742     0.092      0.847     0.742     0.791    irrelevant 
 
 
=== Confusion Matrix === 
 
a  b  c   <-- classified as 
58  2  1 |  a = direct 
0 69 12 |  b = indirect 
1 24 72 |  c = irrelevant 
 
 
 
=== Stratified cross-validation === 
 
Correctly Classified Instances         166               69.4561 % 
Incorrectly Classified Instances        73               30.5439 % 
Kappa statistic                          0.5382 
K&B Relative Info Score              13138.6461 % 
K&B Information Score                  204.9549 bits      0.8576 bits/instance 
Class complexity | order 0             372.8872 bits      1.5602 bits/instance 
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Class complexity | scheme            14120.4635 bits     59.0814 bits/instance 
Complexity improvement     (Sf)     -13747.5764 bits    -57.5212 bits/instance 
Mean absolute error                      0.2282 
Root mean squared error                  0.3739 
Relative absolute error                 52.2211 % 
Root relative squared error             79.9988 % 
Total Number of Instances              239 
 
 
=== Detailed Accuracy By Class === 
 
TP Rate   FP Rate   Precision   Recall  F-Measure   Class 
0.967     0.028      0.922     0.967     0.944    direct 
0.654     0.272      0.552     0.654     0.599    indirect 
0.557     0.176      0.684     0.557     0.614    irrelevant 
 
 
=== Confusion Matrix === 
 
a  b  c   <-- classified as 
59  2  0 |  a = direct 
3 53 25 |  b = indirect 
2 41 54 |  c = irrelevant 
 
 


