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Summary

This thesis describes the design, simulation, and evaluation of a distributed routing pro-

tocol called RESMO (Resource-Efficient Scalable Multicast Overlay) for constructing

overlay tree to support video streaming applications. RESMO reduces network resource

usage by approximating MST and achieves low end-to-end latency between the sender

and each receiver at the same time. The resulting overlay is a compromise between

minimum spanning tree and shortest path tree.

RESMO is a mesh-first protocol – nodes in RESMO maintain a mesh and the overlay

tree is build on top of the mesh. The tree is constructed in a stepwise manner initiated

from the sender. The end-to-end latency is dynamically measured as overlay edge weight

during tree construction process. Each end host in the multicast group only maintains

states for a small number of neighbors and uses soft-state to keep them up-to-date. In

order to adapt to network conditions and group membership changes, the tree is recon-

structed periodically without suspending data transmission.

We evaluated the tree constructed by RESMO through simulations and compared

it with NICE and Narada application-layer multicast protocols, minimum spanning tree,

shortest path tree on the same network scenarios. Simulation results support that RESMO

gives significant improvement over existing protocols in terms of link stress, relative de-

lay penalty and resource usage.
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Chapter 1

Introduction

The explosive growth of the Internet and increasing demand for multimedia informa-

tion make media streaming applications a significant fraction of the Internet traffic [1].

Real-time transport of live or stored multimedia content always has real-time constraints

and consumes much bandwidth of network link due to the large amount of data con-

tent. Therefore, the network support for low latency and high bandwidth data delivery is

necessary.

The original one-to-one communication model – unicast fails to efficiently support

group media communication due to its high consumption of network bandwidth. An

alternative approach – IP-multicast [2] was introduced in the late 1980s by Deering. IP-

multicast allows an efficient one-to-many data delivery by eliminating data duplicates on

network links and therefore reduces network resource usage to the minimum. However,

due to its lack of scalability and support for higher level functionality, IP-multicast is not

widely deployed by Internet Service Providers (ISPs) [3].

In recent years, many application-layer multicast protocols [4, 5, 6, 7, 8, 9] have

been proposed to address the problems with IP-multicast. In application-layer multi-
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cast, routing and data forwarding is carried out in the application layer instead of the

network layer. The multicast tree in application-layer multicast (also known asover-

lay tree) is a virtual delivery tree built on top of underlying network where each edge

consists of a unicast route between two overlay nodes. Unlike IP-multicast, application

layer multicast introduces duplicate packets on physical links and may incur longer end-

to-end latency than IP-multicast. In order to reduce the efficiency penalty introduced by

application-layer multicast, many current researchers have proposed a variety of proto-

cols for building an efficient overlay tree.

In this thesis, we revisit the existing application-layer multicast protocols and pro-

pose the design of a new distributed protocol – RESMO (ResourceEfficient Scalable

MulticastOverlay) for constructing an overlay tree in a distributed environment with

limited topological information. The resulting tree reduces resource usage by approxi-

mating minimum spanning tree and achieves low end-to-end latency between the sender

and each receiver at the same time.

1.1 Media Streaming Applications

In recent years, real-time multimedia applications for communication and entertain-

ment have gained tremendous popularity. Advances in computer hardware, compression

technology, high-bandwidth storage devices, and high-speed networks have fostered the

growth of media streaming applications such as video conferencing and videophone, in-

ternet entertainment broadcast, distance learning, network computer games and surveil-

lance.
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Video has been an important media in multimedia streaming applications. Video

content is typically reworded in the following steps in a typical streaming application:

captured, encoded, transmitted, decoded and displayed. This thesis will focus only on

the video transmission.

Although the current compression technologies used for video streaming – H.263 V2

and MPEG-4 have increased the compression efficiency drastically [1], video transmis-

sion still consumes a large amount of network bandwidth as compared to other media.

Video content can be pre-encoded (stored) or real-time encoded (live). The application

can be either interactive or non-interactive. Video conferencing and videophones are

examples of real-time encoding and interactive applications whereas video-on-demand

(VOD) and video streaming over the internet are examples of remote stored video appli-

cations. Video streaming is different from transmission of stored video in that the video

content is not being downloaded in full before playback, but is being decoded and played

out while parts of the content are received. Receivers only buffer part of the content, and

“late” data that arrives after playback deadline (defined in terms of buffer size and link

transmission delay) may be useless. Therefore, there is a real-time constraint in video

streaming applications. In case of interactive applications, the time constraint will be

tighter.

To sum up, media streaming applications have the following major properties:

• they are bandwidth-intensive, and

• they are delay-sensitive.

Video transmission in these applications should consider optimizing bandwidth con-

3



sumption on network links and reducing end-to-end delay for each receiver.

Internet is a best effort shared network based on packet-switched mechanism where

individual packets of different applications may encounter variable delays, arrive out of

order, or may be lost if congestion happens. Recently, there is a trend in research to pro-

vide application-level QoS (e.g., congestion control, error control, etc.) for continuous

media distribution applications such as media streaming [10]. The deployment of these

techniques needs support from the application. On the other hand, although IP-mulitcast

for delivery of multicasting data is efficient by its original design, it has its own limita-

tions and deployment issues in supporting application level functionality. This has drawn

much attention from research community and the industry [3]. Due to these two reasons,

application-layer multicast which migrates data replication and forwarding from the IP

layer to the application layer was introduced around year 2000.

1.2 Multicast in Group Communication

In this section, we revisit some data delivery techniques for group communication, such

as unicast, IP-mulicast, and application-layer mulicast. We also point out the limitations

of IP-mulicast and explain the reason for introducing application-layer multicast. An

example of the above three techniques is provided.

Traditional one-to-one transmission mode – unicast is not feasible in supporting me-

dia streaming applications despite of its widely deployment in today’s Internet. Unicast

from a source to all receivers introduces duplicate data on a single link which makes the

link at the source congested. IP-multicast is an efficient data delivery mechanism that
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eliminates duplicates carried on network links. However, the current service model in

IP-multicast is designed without a commercial service in mind. This is possibly why it

is still under slow commercial deployment 20 years after its invention.

1.2.1 Problems with IP-multicast

The service model and architecture for IP-multicast has the following limitations in its

original design:

• Scalability problem in number of per-group states maintained at intermediate routers.

One widely used IP multicast protocol, DVMRP requires routers remember rout-

ing information for every group G and every source S. The number of states main-

tained at these routers isO(|S||G|), where|S| is number of sources per group and

|G| is number of multicast groups. This results in serious scaling constraints.

• Lack of sender and receiver authentication. The current IP multicast model allows

for an arbitrary source to send data to an arbitrary group. This makes the network

vulnerable to flooding attacks by malicious sources.

• Scalability and difficulty in global multicast address allocation. IP multicast re-

quires every group to dynamically obtain a globally unique address from the lim-

ited multicast address space, and it is difficult to ensure this in a scalable, dis-

tributed and consistent fashion. The address collision causes receivers to receive

unwanted data, and introduces a serious inefficiency risk for network utilization.

• Difficulty in supporting higher level functionality such as reliability, congestion

5



control, flow control, and security.

Besides the above practical difficulties of IP-mulicast in supporting wide-area group

communication, it also presents a number of challenges to streaming media systems.

Firstly, the problems of heterogeneity in today’s internet make multicast complicated.

Not only the link capacity is various throughout the network. End hosts are also hetero-

geneous with respect to CPU and storage capacity [11]. In IP-multicast, heterogeneity

is typically solved by using multiple layered multicast to provide choices for the re-

ceivers [12]. This mechanism needs support from compression technology for layered-

encoding. The receiver can therefore elect to join several layers of multicast according

to its capacity and requirement. But this is at the price of loss of compression efficiency

and additional complexity at routers. Secondly, retransmission, generally used in error

control, may cause problems when using with IP-multicast. For instance, both the re-

transmission request and actual retransmission are transmitted to all the receivers in the

multicast group, which obviously leads to a waste of link bandwidth.

To address the problems with IP-multicast, recent research has proposed to imple-

ment multicast service at the application layer instead of the IP layer.

1.2.2 Application-Layer Multicast

Application-layer multicast migrates the multicast function from the network layer to

the application layer. Therefore, routing and data forwarding is carried on end hosts,

which frees intermediate routers from maintaining per group state. The multicast tree

in this scheme is a virtual data delivery tree consisting of end-to-end unicast connec-
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Figure 1.4: Application-Layer Multicast

Tree

tions. Therefore, multicast routing information is only maintained at end hosts without

additional supporting for maintaining routing tables at underlying routers. Periodically

exchanging routing tables at intermediate routers is also eliminated. Compared to IP-

multicast, application-layer multicast can be easily deployed on Internet. In addition,

solutions for supporting higher layer functionalities such as error, flow, and congestion

control, transcoding can be significantly simplified by leveraging well understood uni-

cast solutions for these problems.

Consider Figure 1.1 which depicts an example physical network topology: R1 and

R2 are underlying routers, while A, B, C, and D are end hosts. Link delay is also speci-

fied in the figure. We assume A is the sender.

Figure 1.2 depicts how unicast tree maps onto the physical topology. It is clear that

the link near to the sender: A – R1 carries three copies of a transmission. The most
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costly link R1 – R2 carried two copies.

Figure 1.3 and Figure 1.4 highlights the contrast between IP-multicast and application-

layer multicast. The IP-multicast tree in this example is constructed by DVMRP [13].

Each path from a sender to a receiver in the IP-multicast tree is the reverse shortest path

from the receiver to the sender. R1 and R2 are responsible for copying and forwarding

data to the multiple interfaces: B, C, D. At most one copy of a packet is delivered over

any physical link. Each receiver encounters a same delay as in unicast.

Unlike IP-multicast, however application-layer multicast introduces duplicate data

on physical links. This also can be seen in Figure 1.4 where link A – R1 and R2 –

C carry two identical data packets. We know that end hosts are usually located at the

edge of networks. Data that arrives at some receivers is forwarded by other end hosts, for

example, C forwards data to D in Figure 1.4. The transmission introduces data duplicates

on the physical links near the forwarding end host (link C – D). This is not as efficient as

IP-multicast. On the other hand, the delay from sender to certain end host may also be

increased due to data forwarding by other end hosts. For example, in Figure 1.4, delay

in D is increased by 4 (double link delay of R2 – C).

To evaluate the efficiency of overlay trees, Chu et. al. [5] define several metrics

which are widely used by researchers. We introduce these metrics as follows:

• link stress: number of duplicate packets carried by each link.

• relative delay penalty(RDP): the ratio of the delay between the source to a receiver

along the overlay tree to the unicast delay between the source and the receiver.

8



• resource usage:
∑L

i=1 di∗si whereL is the number of active physical links covered

by the overlay tree,di is the delay of linki andsi is the link stress of linki.

In Figure 1.4: the maximum link stress is 2 of link A – R1 and link R2 – C; RDP

for receivers B and C is 1 since the routes for these two nodes in overlay tree are the

same with unicast routes. Delay for D is increased from 24 to 28, hence the RDP is

28/24 which is larger than 1. The network resource usage in IP-multicast is 28 whereas

in application-layer multicast is 31. Therefore, IP-mulicast has the minimum network

resource usage.

1.3 Contributions

In the rest of thesis, we will present a new distributed application-layer multicast protocol

called RESMO. By approximating a minimum spanning tree, RESMO builds an efficient

tree with less efficiency penalties (described in the previous section) compared with other

protocols. Our contribution can be summarized as follows:

1.3.1 Comparable Resource Usage with MST

By definition, minimum spanning tree (MST) has minimum resource usage among all

the overlay trees. The first contribution of this thesis is proposing a new distributed algo-

rithms to build a multicast tree with lower resource usage comparable to MST whereas

keeping the RDP much lower than other influential published schemes [5, 7].

In RESMO, we dynamically measure end-to-end latencies between relevant mem-
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bers and use them as the edge weights. Unlike existing distributed MST algorithms

(base algorithm [14] and it’s further improvements [15, 16]) which need additional frag-

ment, edge label and layer naming schemes or more complicate message content, our

algorithm is quite easy to deploy. It is a short-length message based protocol. By intro-

ducing some timers, RESMO reduces the number of messages for tree building.

1.3.2 Scalability without Depending on Hierarchical Mechanism

Scalability is the key concern of network protocol design due to the growth of Internet

and its applications. Existing protocols such as NICE [7] achieve scalability by using

cluster-based hierarchy to build the overlay. But the price of this scalability is heavier

link stress near cluster leaders and increased end-to-end latency caused by each packet

passing through cluster leaders first to reach its destinations.

Another contribution of this thesis is proposing an scalable and fully distributed

application-layer multicast protocol which has stable performance when group size in-

creases. It does not depend on hierarchical clusters to form multicast tree, hence avoids

the hot spot problems which potentially exist in the cluster leaders and rendezvous point.

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 presents some background in-

formation, including the Internet and multicast infrastructure, graph and spanning trees.

We also give introduction to related network techniques and software tools we use in our

work. Some related work on application-layer multicast is also discussed. In Chapter

10



3, we described the detailed design of our protocol. For an easy understanding, we also

provide a example tree built by RESMO given a small topology and the step-by-step

building procedures. We explain and analyze the simulation results in Chapter 4. Finally

we end with conclusions and future work in Chapter 5.
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Chapter 2

Background and Related Work

In this chapter we first provide background information about the Internet infrastructure

and a various classes of traditional multicast technologies used in Internet backbone, as a

preface for understanding how application-layer multicast is different from IP-multicast

and hence is able to get fast deployment without additional support from underlying

routers and OS. Next, we discuss the spanning trees in graph theory in an effort to un-

derstand efficient routing in finding paths connecting a sender and many receivers. Third,

we look at several related techniques commonly used in network protocol design such as

soft stateandexpanding ring search. Finally, we survey other related work in application

layer mulicast.

2.1 The Internet Infrastructure and Multicast

The Internet is a collection of individual networks known asautonomous systems(ASes).

ASes are groups of nodes that are under a common administration and share routing in-

formation. They are typically owned and operated by different Internet Service Providers

(ISPs). The Internet Protocol (IP) is the common underlying communication protocol
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shared by these networks. Individuals and smaller companies usually attach to the In-

ternet via an local ISP. Home users typically connect to Internet via modems (33.6 or

56kbps), Digital Subscriber Lines (DSL, 128kbps - 1Mbps), or cable modems (128Kbps

- 2Mbps). Corporations, universities, and service providers attach in a similar manner,

but with higher speed T1 (1.5Mbps) or T3 (45Mbps) links. In this architecture, the In-

ternet is a heterogeneous network consisting of various link bandwidth and a diversity of

user capacities. Furthermore, as an exponential increasing network, the Internet lacks of

a centralized administration which makes routing in such a huge network complicated.

In next section, we will give a model which is approved to best reflect the Internet.

2.1.1 Transit-Stub Network Model

In Transit-Stub model [17], the domains in Internet can be classified as eithertransit

domains orstubdomains. A transit domain comprises a set ofbackbonenodes, which

are core routers in Internet. Stub domains comprise ofleaf networks, which have links

to one or more transit domains. The responsibility of transit domains is to interconnect

stub domains efficiently. A stub domain can be linked to more than one transit domains.

In this case, it is called multi-homed. Nodes from different stub domains can also be

connected by Stub-Stub edge.

Figure 2.1 gives an example of Transit-Stub domain structure. Edges within each

domain is considered as intra-domain links whereas edges connecting different domains

are considered as inter-domain links.
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Figure 2.1: Example of Transit-Domain structure

2.1.2 Multicast Techniques

We have discussed in Chapter 1 that many fast increasing applications (media streaming

applications) fall in the category of group communications which have several sources

and a number of receivers. These applications drove the development of the multicast

service. Multicast communication is capable of distribute information to one or many

receivers in such a way that each link carries only one data packet.

In IP-mulicast, mulitcast routers are responsible for building and managing the mul-

ticast distribution tree. These routers can be classified as either leaf routers (i.e. with

end-hosts connected) or core routers (i. e. on a transit network). Edge routers use In-

ternet Group Management Protocol (IGMP) to discover the presence of local receivers

which are hosts willing to receive traffic destined to a multicast group. Core routers

participate in the distribution tree management and multicast packet forwarding. Dis-

tance Vector Multicast Routing Protocol (DVMRP) is a classical protocol running on
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core routers. It is used in the MBONE (Multicast Backone), where the data delivery tree

consists of reverse shortest paths from sender to each receiver.

Multicast protocols fall into eitherdense mode protocolsor sparse mode protocols.

Dense mode protocols always usebroadcast-and-prunemechanism. The multicast tree

is a reverse shortest path tree rooted at the source; Sparse mode protocols are based on

explicit joinmechanism. In this mode, either a reverse shortest path tree or a shared tree

can be used. A shared tree uses a core or a rendezvous point to connect senders and

receivers together.

Detailed description of all the IP-multicast protocols is out of scope of this thesis.

We give the brief introduction above of IP-multicast in order to note that there is no a

common protocol used in the networks. It is difficult for ISPs to make agreement in

using a standard multicast protocol. This is also the current deployment issue with IP-

mulicast besides the ones we talked in Chapter 1. All of the limitations with IP-multicast

drove the emerging of application-layer multicast.

2.2 Theory for Multicast Routing Problems

Graphs are commonly used to model the structure of networks, for the study of problems

from routing to resource reservation. Routing is, in essence, an art of graph theory [18].

Consider a graphG = (V, E), consisting of a set of nodes (vertices)V and a set of

links (edges)E. M is a subset of setV , including the nodes of a multicast group.

The multicast routing problem can be defined as finding one or more interconnection

topologies that span all nodes included inM . Typically, such topology is a source-
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specific tree or a shared tree for multiple sources.

There are two well known spanning trees in an edge-weighted graph, namely,mini-

mum spanning tree(MST) andshortest path tree(SPT). We will give definitions of the

two trees as following. In real network, the edge weight is always defined as link latency

between a pair of nodes.

Minimum Spanning Tree The minimum spanning tree of a weighted graph is a set

of edges of minimum total weight which form a spanning tree of the graph. In a cen-

tralized manner, the minimum spanning tree can be found in polynomial time. Common

algorithms include those from Prim (1957) and Kruskal (1956).

By definition of resource usagedescribed in Chapter 1, we can easily deduce that

in an application-level overlay, it is equivalent to the sum of virtual edge delays in the

overlay multicast tree. MST rooted at the sender therefore is the optimal tree for mini-

mizing resource usage, but it may not be suitable for streaming applications due to the

long end-to-end latency it introduced.

Shortest Path Tree Another well-known tree is Shortest Path Tree, which consists of

shortest paths between source and each receiver. The shortest path is defined as a path

with minimum end-to-end delay.

In application-layer multicast, SPT is optimal with respect to end-to-end delay from

the source. But is has its own limitation: SPT will lead to more resource usage by intro-

ducing heavier link stress, and the sender’s bandwidth may also become a bottleneck.

As we have argued in Chapter 1 that media streaming applications are delay sensitive
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and bandwidth intensive. A good routing for this kind of application therefore should

optimize end-to-end latency and network resource usage as well (balance between MST

and SPT).

2.3 Related Network Techniques

In this section, we look at various techniques crucial in network protocol design. Our

protocol also uses these techniques to achieve better performance.

2.3.1 Soft States

In network protocols design,staterefers to information stored by network nodes. The

content of information can be various. For example, Internet Group Management Pro-

tocol (IGMP) in a host stores the information of the multicast groups which the host

joins; Some multicast protocols such as DVMRP [13], Protocol Independent Multicast

(PIM) [19] and Core Based Tree (CBT) store multicast routing state in the routers. The

network nodes exchange with each other the states in order to adapt to the network con-

dition. Therefore, the states must reflect the changes in network conditions quickly and

accurately.

Soft stateuses refresh messages to keep it alive and is discarded after some time

interval if the state is not refreshed [20]. The term is first introduced in [21]. Unlike

hard statewhich is installed in nodes upon receiving a set-up message and is discarded

on receiving an explicit tear-down message, soft state is controlled only by periodically

arriving refresh messages. The refresh message sender sends message periodically after
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a refresh period. In general, the receiver which maintains corresponding state waits for

a period of small multiple of the refresh period before discarding that state. Soft state

protocols can achieve great robustness and faster adaption to the changes in the network

condition. Therefore, it is commonly used in writing light-weight protocols such as

Resource Reservation Protocol (RSVP) and PIM.

2.3.2 Expanding Ring Search

“Expanding Ring Searching” is first introduced by Boggs in his dissertation on inter-

network broadcasting [22]). The main mechanism in searching related nodes is broad-

casting query to increasingly larger concentric circles with a scope constrain in order to

limit the distance a searching packet may travel. An example of its use is in multicast

protocol design. Some protocols include atime-to-live(TTL) field in the packet header

for the purpose of bounding the amount of time a packet may travel in a large scaled and

multi-hop internetworks [23]. By using a very small TTL value, a sender may limit the

packet to reach only nearby neighbors and also reduce the number of responses when

multicasting to a large group.

2.4 Software Tools

2.4.1 Tcl and OTcl

Tcl, or Tool Command Language was originally designed as a reusable command lan-

guage and evolved to a widely used scripting language. As an interpreted, scripting
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language, Tcl has very simple syntax which treats all data types as a string. The distin-

guished feature of Tcl is that it has the best interaction with C. Tcl is the first scripting

language which has simple and clean interface with C. Another feature is the extensibil-

ity using C language.

OTcl [24] is the object-oriented extension of Tcl. It is built on Tcl syntax and con-

cepts but added object-oriented features. OTcl inherits the extensibility and interactions

with C. It is used as base language for NS-2 [25] which we will introduce later.

2.4.2 GT-ITM

Georgia Tech Internetwork Topology Models [26] is a software toolkit to generate graphs

that models a variety of internetworks topologies. The graphs are generated in Donald

Knuth’s SGB (Stanford GraphBase [27]) format. GT-ITM assigns edge weights rep-

resenting delay based on Euclidean distance between nodes placed on a plane with a

uniform random distribution.

GT-ITM can generate three kinds of topologies: Flat random graphs, N-level hi-

erarchical graphs, and Transit-Stub graphs. The authors in their paper [17] compared

properties of graphs generated using various method with those of real Internet. They

concluded that Transit-Stub model is an efficient method for generating topologies with

properties correlated well with Internet structure.

Flat random graphs GT-ITM provides a variety of flat random graphs used to model

internetworks, such as Pure Random, Waxman [28], Doar-Leslie [29]. These models

all distribute vertices at random locations in a plane. The difference exists in how to
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decide the edge probability of pairs of vertices. Pure Random uses a constantα as

edge probability. The other models define a probability function in terms of Euclidean

distance of each pair of vertices, maximum distance between any two nodes and other

parameters.

N-level hierarchical graphs This model constructs a hierarchical topology recursively.

It starts with a connected graph, at each step in the recursion the nodes in the current

topology is replaced by a connected graph. The nodes which are replaced by graphs are

selected at random.

Transit-Stub graphs This is a hybrid graph generation method, capable of creating

large graphs by composing smaller random graphs. We have explained definition of this

model in section 2.1.1. By imposing a domain structure resembling that of the Internet,

the Transit-Stub model allows creation of large random graphs having realistic average

node degree. Moreover, by generating Transit-Transit, Transit-Stub and Stub-Stub edges

in a controllable manner, it can add intra- and interdomain paths in the graph.

2.4.3 NS-2

Ns-2 [25] is the second version of a discrete event simulator targeted at networking

research. The simulator has a list of events scheduled in advance and uses single thread

of control. NS-2 is designed for research and education in network protocols design,

traffic studies, routing and queueing techniques.

NS-2 is written in C++ and OTcl. C++ code is fast to run and used for data ma-
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nipulating such as packet processing. It is the core of ns. OTcl code is fast to write and

easy to change and understand. It is used for control purpose such as simulation scenario

configuration, event scheduling, manipulating existing C++ objects. In Ns-2, OTcl and

C++ share class hierarchy and each of them can be mapped onto the other. NS-2 also

provides a linkage between C++ and OTcl.

A project implemented with NS-2 has the following components:

• Pre-processing: topology and traffic generators.

• Ns: the simulator itself.

• Post-processing: Simple trace analysis, often written in Awk, Perl or Tcl.

• Nam: the network animator to visualize ns output.

The typical steps for programming are: create network topology (using GT-ITM), set

up routing, create the event scheduler, turn on tracing, create transport connection and

create traffic.

2.5 Related Work

There are many application-layer multicast protocols published. The general classifi-

cation has two categories: tree-first (ALMI [4], HMTP [8], TBCP [30], NICE [7]) and

mesh-first protocols (Narada [5], Gossamer [6]).

In the mesh-first approach, overlay nodes first distribute organize themselves into

the overlay mesh topology. This mesh is used as a control topology maintaining group
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membership. A source-specific tree is built on top of the mesh. In contrast, protocols

based on the tree-first approach distribute construct the data delivery tree directly.

2.5.1 Narada

Narada [5], or End-system multicast builds the overlay tree on top of a pre-built mesh.

The mesh is built with node degree constrains so as the node degree reflects the outgoing

bandwidth of each node. When building the tree, Narada runs existing DVMRP [13] on

top of the mesh. Hence, the resulting tree is a sender-specific shortest path tree on the

underlying mesh. Since the tree is built absolutely on top of this overlay mesh, the mesh’s

quality is crucial to maintain the tree’s efficiency. Narada improves the mesh’s quality

in a local way by each member randomly selecting an edge either inside or outside

the mesh, computing the utility gain and deciding whether to drop or accept it after

comparing with a certain threshold. Narada approach has limited scalability because of

each member must maintain states for all other members.

2.5.2 ALMI

ALMI, an Application Level Multicast Infrastructure, provides many-to-many multi-

cast for large number of communication groups with small number of members (tens of

nodes) [4]. It is a Java based implementation of multicast middleware above the sockets

layer. Unlike distributed protocols such as Narada, ALMI uses a centralized scheduler to

compute its multicast trees. The participated group members are connected via a virtual

minimum spanning tree using application level round-trip delay between them as the

22



cost metric.

Since ALMI is a centralized approach, the overlay nodes can be classified asses-

sion controllerandsession member. Session controller handles member registration and

maintains the multicast tree by ensuring connectivity when network or host failures oc-

cur and by ensuring the efficiency of the multicast tree through periodically calculating

a minimum spanning tree. The tree is built on the measurement updates collected from

all session members. Session members monitor the performance of unicast paths to and

from its neighbors and report to the session controller in order to serve as the cost used to

calculate the minimum spanning tree. After calculation, the controller disseminates the

results in the forms of a (parent, children) list to all members. Obviously, a centralized

control may lead to a single point of failure for all control operations related to the group

at the controller site. ALMI solves this problem in a way that it introduces multiple

backupcontrollers, operating in “stand-by” mode.

2.5.3 NICE

NICE[7] is a hierarchical clustering-based protocol which is more scalable in average.

The sender sends data to its cluster peers in the basic layer. The leader of this cluster

then forwards data to its cluster peers in upper layer and this action continues until all

the members receive data. For robustness reason, NICE also provides multiple paths

by sending data to a Rendezvous Point(which is the leader of the single cluster in the

highest layer in their implementation). RP then forwards data layer by layer down to the

lowest layer. This scheme is useful in fault tolerance but will cause much link stress and
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resource usage also. NICE is designed for low bandwidth application with large group

size. The main problem of NICE is the dependence on some special nodes, such as RP

and cluster leaders of each layer. Failure of these hot spots will damage the tree a lot.

Another problem with NICE is that if group membership changes frequently, the perfor-

mance will suffer from no longer center-location of cluster leaders. The cluster grouping

is based on network locality, if the group membership changes with new members join-

ing and old members leaving, after a certain time the original leader of each cluster may

not be the graph center, which will cause much delay penalty.

2.5.4 Priority-Based Distribution Trees

Priority-Based Distribution Trees (PBDT) [9] is an application-layer multicast protocol

aimed at trading minimum spanning tree with shortest path tree in its resulting data

delivery tree. In PBDT, the sender assigns a priority to each receiver with respect to

their application-level features and then uses this priority to balance between end-to-

end delay and resource usage. The metric function in calculating the tree is in terms

of MST and SPT cost with each of them having a priority coefficient. For example:

C = (1−p)∗CMST +p∗CSPT , whereCMST is the MST cost andCSPT is the SPT cost.

By defining the priority valuep, PBDT can easily adjust the tree to be close to MST or

SPT. The two extremes exist whenp = 0 or p = 1, where the tree is absolute MST or

SPT. Like ALMI, PBDT is a centralized protocol and designed for small group size also

such as network computer games.
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2.5.5 LAST on Hierarchical Overlay

Light Approximate Shortest-path Trees (LAST) [31] is another algorithm that trades off

latency with cost. This approach traverses a MST in a depth-first fashion, whenever it

encounters a node with MST delay larger than SPT delay by a factor ofα, it adds links

from the node’s shortest path to the current tree. LAST is evaluated on a hierarchical

overlay in [32]. The authors find that LAST allow application developers to flexibly

trade resource usage with delay.

2.5.6 Distributed MST

The basic Distributed MST algorithms [14] constructs a spanning tree consisting of

rooted sub-trees, each subtree being a fragment with a label indicating its level. Each

node is initially a fragment. When two fragments find a “best” edge among themselves

and want to unite through this edge, they follows a rule that only a higher-level frag-

ment can “absorb” the lower level one to avoid forming cycles. This algorithm also uses

delaying response to certain kind of messages to reduce number of messages required.

The subsequent improved algorithms [15, 16] balance between number of messages ex-

changed and building time consumed. But they did not reduce the orders of magnitude of

communication complexity, which remainsO(E+N log(N)). These algorithms require

more complicate message content and extra processing at each node.
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2.6 Conclusion

We have described the Internet infrastructure and the various techniques for multicast.

For better understanding of multicast routing and laying a foundation for the description

of our protocol in next chapter, we consider the network as a graph and look at some

theory of spanning trees supporting multicast service. Next, we introduced two common

network techniques which will be used in our design. This is followed by introduction to

the software tools we used for simulation. Finally, we gave an overview of related work

on application-layer multicast and address some of its strength and also weakness.

26



Chapter 3

RESMO Protocol Design

In this chapter, we present the design of our protocol – RESMO ( Resource Efficient

Scalable Multicast Overlay). We first overview the protocol with an example and com-

pare the resulting tree’s quality with MST and SPT to see how RESMO achieves a com-

promise between them. Next, we describe the control and data topology in our design,

including neighbor searching and tree construction. The full protocol description is fol-

lowed by protocol analysis in which we introduce the mechanism behind our protocol

and explain why RESMO achieves a better performance. Finally, we will describe the

procedures in building the example tree step by step.

3.1 Protocol Overview

RESMO is a mesh-first protocol – nodes in RESMO maintains a mesh and the overlay

tree is build on top of the mesh. The mesh can be regarded as control topology above

which overlay nodes exchange information for group membership management. Data

topology in RESMO is a source-specific multicast tree used for data delivery from sender

to each recipient. We use source-specific tree instead of shared tree is to balance the
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traffic load when several sessions are concurrently active. Moreover, each source with

an individual tree is the best solution for achieving low end-to-end latency.

To construct the control topology, we use expanding ring search (we have introduced

in Chapter 2) to discover neighboring nodes and form the mesh. We will give further

explanation in Section 3.2.1. RESMO constructs the overlay tree step-by-step, “grow-

ing” the tree from the sender. At each step, the current leaf nodes in the tree are actively

involved in constructing the tree by sending out invitations to its neighbors to join the

tree. This process stops when a leaf node has no neighbors that is interested in the given

session. The involved states and messages will be described in Section 3.3.1.

RESMO considers link latency only during the tree construction process, and does

not consider link bandwidths. Links that do not meet the bandwidth requirement of a

session are filtered out when selecting neighbours. In other words, only links that are

“fat enough” are considered by RESMO.

The resulting tree is a compromise between minimum spanning tree and shortest path

tree. As a result, all aspects of the tree properties are in-between MST and SPT, avoiding

the limitations of the two extremes. We will see this clearly in the following example.

3.1.1 RESMO by Example

In order to give an clear view of the tree built by RESMO, we simulate a small topology

with 8 overlay nodes out of totally 35 nodes using GT-ITM and NS-2. The underlying

topology with involved nodes and links only is represented in Figure 3.1. The edge

weight in the figure is physical link delay. On this underlying topology, we build MST,
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Figure 3.1: Underlying Topology

SPT and RESMO trees respectively. The corresponding data delivery paths are indicated

in Figure 3.2, 3.4, 3.6.

From these figures, we can see that the three overlay trees have occupied the same

physical links, but the link load distributions are different. MST and RESMO have

more balanced traffic load distribution on physical links than SPT (in SPT, links near the

source encounter higher traffic load). The data delivery path in RESMO has much simi-

larity to MST than to SPT. From all of the recipients, only C and H have different paths

from the sender in RESMO and SPT. This confirms our original design to approximate

MST.

The virtual trees of above three approaches are abstracted in Figure 3.3, 3.5, 3.7. We

can see that SPT has largest node degree – 6 at the sender whereas MST and RESMO

both have 3 as the maximum node degree. Therefore, MST and RESMO excel SPT in

terms of node stress.

Till now we have compared the three trees glancingly. We then give quantitative
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Figure 3.2: MST Path
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Figure 3.3: MST Tree
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Figure 3.4: SPT Path
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Figure 3.5: SPT Tree
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Figure 3.6: RESMO Path
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Figure 3.7: RESMO Tree
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Table 3.1: Comparison between MST, SPT, RESMO

Method RU Max link stress Mean link stress Max RDP Mean RDP

MST 348 4 1.46 1.75 1.38

SPT 468 6 1.92 1 1

RESMO 399 4 1.69 1.57 1.27

analysis of the tree qualities according to the performance metrics introduced in Chapter

1. The results are summarized in Table 3.1. From this table, we can see that RESMO has

a compromise performance between MST and SPT in all metrics. It has low resource

usage comparable to MST (15% over MST) whereas SPT has 35% excess resource usage

over MST. The mean link stress for RESMO is 1.69, which is between 1.46 (MST) and

1.92 (SPT). In this example, SPT has the same paths with unicast, therefore, relative

delay penalties (RDP) in SPT are all unit. MST has the largest maximum and mean RDP.

RESMO is in-between. Recipient experiences different delays from the source in each

multicast tree, the differences are listed in Table 3.2 with minimum delay highlighted. It

is clear that SPT always has the minimum end-to-end delays. As for RESMO, the delay

is improved much from MST for receiver C and H.

Now we have an overview of RESMO, its resulting tree and the tree’s quality. In the

following sections we will describe the control topology and data topology followed by

a description of the procedures in constructing the example tree.
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Table 3.2: Delays in MST, SPT, RESMO

Receiver delay in MST delay in SPT delay in RESMO

B 45 45 45

C 130 92 92

D 61 61 61

E 105 67 105

F 116 78 116

G 127 89 127

H 179 103 141

3.2 Control Topology

Control topology is used for group membership management and also the mesh for tree

building. Each overlay node exchangesalive message with its neighbours on the control

topology periodically to make their neighbours up to date. Unlike existing mesh-first

protocols such as Narada [5]and Gossamer [6] which make efforts to maintain a mesh

with good quality and run existing multicast protocols such as DVMRP to build a tree,

our focus is the construction of an efficient tree on any overlay mesh. A mesh with min-

imum function to serve as a control topology for exchanging neighboring information is

enough. Hence, a simple method for building mesh can be used here. In RESMO, we

use expanding ring search to discover neighboring nodes so as to form the mesh.
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3.2.1 Expanding Ring Search

It is desirable if each participant reaches all of its neighbors and get full information of

the group membership. This is feasible when group and topology size is small but may

not scalable when group size increases. The long searching time is also intolerable when

topology is huge. In RESMO, every overlay node performs an expanding ring search

[22] by broadcasting query to increasingly larger concentric circles. The searching scope

is constrained by a so calledtime-to-live(TTL) value. For example: ifTTL = 10, one

only searches within 10 hops from itself. Only those members within this range can

be regarded as neighbors. TheTTL value should be configured for different network

scenario.

After neighbor searching, each overlay node obtains a list of their neighbors on the

overlay mesh and begin to exchangealive messages on the control topology. The neigh-

boring information is maintained in soft states.

3.3 Data Topology

Data topology in RESMO is the multicast data delivery tree built on top of the con-

trol topology. The tree is built in a distribute manner and based on messages send-

ing/listening mechanism. During the tree building process, each participant will expe-

rience a sequence of states before it goes into stable. The states they are in at one time

reflect the current progress in their way to being part of the tree.

In this section, we first introduced the involved messages and states. Then we de-
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Table 3.3: A Summary of Message Types in RESMO

phase type description

construction invite Invitation to join the session

thanks Response to an invite message

be-my-child Asking the recipient to be its child

be-my-parent Asking the recipient to be its parent

maintenance join Request from a new joining member

welcome Response to a join message

bye Farewell from a leaving member

alive Periodic heart beat message

scribe our tree building protocol in three parts: (a)Tree construction covers a full

description of the process and state transitions involved in building a multicast tree.

(b) Tree Maintenancewill talks about group membership management with respect to

member joining, leaving and failure. (c)Tree Improvement gives solution to adapting

the tree to the network conditions.

3.3.1 States and Messages

There are eight messages involved in RESMO. They are from two phases, namely tree

construction and tree maintenance. The messages are listed in Table 3.3.

A RESMO node can be in one of the following five states at one time: (a)sleep: a

node is in thesleepstate (with respect to a session) if it has not been invited to join the

session. (b)awake: a node isawakeif it has received one invitation to join the tree,
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but has not yet become part of the tree. (c)weighing: a node is in theweighingstate if

it has received more than one invitations to join the tree, and is deciding which inviter

should be its parent. (d)inviter: a node is aninviter if it has a parent but has no children.

Overlay nodes in this state will send invitations to its neighbors to expand the overlay

tree, constructing the tree recursively. (e)parent: a node is said to be in theparentstate

when it has one or more children.

3.3.2 Tree Construction

For convenience of description, we present the symbols and terminology used in our

description:

• S is the sender of given session.Gi, (1 < i ≤ m) is any overlay node wants to

join the session except the sender.

• neighborlist is a list of neighbors after expanding ring search from each node.

• rtttable is a table storing round trip time values from neighbors every overlay

node should maintain.

• prev− hop andnext− hops store the node’s parent and children’s list in the tree.

Tree Building and State Transition

RESMO is a self-organized, distributed tree building protocol initiated at the sender.

Like other distributed application-level protocols design (such as AGLP[33]) does, our

protocol adoptssoft stateto store information for robustness and scale.
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All overlay participants will traverse all of or part of the five states before it’s be

linked to the tree and go to stable. The sequence of state transitions depends on the

network topology and the mechanism behind RESMO (discussed later). Figure 3.8 gives

the state diagram where each node will follow a certain path before going stable. The

stable states can be eitherinviter or parent. If a node hasinviter as its final stable state,

it is a leaf node in the resulting tree. On the contrary, a node withparentas its final state

will be an intermediate node in the tree. The state transition is triggered when overlay

node receives a message or one of the timers it maintains timeouts. We will give the

detailed explanation in the following paragraphs.

SenderS is different from other nodes in that when initiating the tree construction it

goes directly toinviter, other nodes have to follow the pathsleep⇒ awakefirst to get to

eitherinviter or weighing. At the beginning of tree construction, all nodes exceptS are

in sleep. We describe how the state transitions happen:

sleep⇒ awake

The senderS sendsinvite message to neighborsGi, Gj, ... according to itsneighborlist.

If a participant insleepstateGi receives it, it replies the sender right away with athanks

message and goes intoawakestate. It then computes the delaydS,i by deducting the

timestamp in the message content from current time and record this one-wayrtt into

rtttable. Gi also sets a timer for this first incoming invitation. If the timer timeouts and

Gi is still in awake, Gi sendsbe-my-parent to S. We will explain why setting this timer

later in Section 3.4.
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inviter ⇒ parent(I)

When the firstthanks which we assume to be fromGj reaches senderS, S acceptGj

as its child and goes intoparentstate. At the same time it sendsbe-my-child to Gj to

inform it and addGj to itsnext− hops. There are otherthanks messages arriving atS

consequently,S just ignore them. IfS receivesbe-my-parent from Gi, it just appends

Gi to itsnext− hops.

awake⇒ inviter

Gj should be inawakestate now. Once upon receivingbe-my-child from S it sets

prev − hop to S and goes intoinviter state. Whenever a participant goes intoinviter,

it carries on the inviting task.Gj therefore sendsinvite messages to itssilent neigh-

bors(neighbors they haven’t received any messages exceptalive before) as the senderS

does and waits for any incoming message.

awake⇒ weighing

It is possible that a node receives multiple invitations. For example,Gk first receives

invite from S and turns intoawakestate, during its stay atawake,it may receive another

invite from Gj sinceGj is already been linked to the tree and isGk’s neighbor.Gk then

should decide which one to be its parent. It goes intoweighingstate. The weighing time

is also controlled by a timerTwgh,j. If Gk stays in this state and keeps receivinginvite

from any other neighbors:Gm, Gn, ..., it will set timers for all of them as following:

Twgh,m, Twgh,n... and keepweighing.
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weighing⇒ inviter

If Gk is in weighingand receivesbe-my-child from Gb, it addsGb as parent and goes

into inviter. All the other pending timers inGk will be discarded.

This state transition can be done in another situation:Gw is assumed to be inweigh-

ing and one of itsTwgh timer timeouts,Gw then searches through itsrtttable for a nearest

neighborGn (neighbor has minimum one-wayrtt) which has sent invitation to it before.

Gw addsGn as its parent and sendsbe-my-parent to Gn. Note thatrtttable has indi-

cations for the neighbors from which it receivesinvite. OnceGw goes intoinviter, it

continues on inviting others to join the tree by sendinginvite to its silent neighbors.

inviter ⇒ parent(II)

This state transition is a little different from (I). It is for other nodes except sender

S. We assumeGj is an inviter. Upon receiving either firstthanks or be-my-parent,

it becomesparent. If the first incoming message isthanks from Gt, Gj appendsGt to

its next − hops and sendsbe-my-child to Gt. If the first incoming message isbe-my-

parent from Gr, it just appendsGr to its next − hops. The difference between (I) and

(II) is that (I) is special for senderS which could only receivesthanks first.

For ease of understanding, we provide a state diagram (Figure 3.8) and give a sum-

mary of the state transition rules.

Summary

• An overlay node must pass byinviter to reachparent.
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Figure 3.8: State Diagram for RESMO

• If an overlay node goes intoinviter either fromawakeor weighing, it must carry

on inviting new members. If it has no neighbors to invite or none of the invitation

is accepted, it will be a leaf node in the tree.

• If a node has ever been ininviter, upon receivinginvite it will record the invitation

to rtttable regardless of its current state. All of the invitation will be treated at

parent candidates information.

• rtttable has indication for those neighbors who have sentinvite to it. This infor-

mation is very useful for tree partition recovery. We will talk about it in section

3.3.3.

• One accepts those who sendbe-my-parent to it as children regardless of its cur-

rent state.

Besides those so called “tree building” messages, note that overlay nodes also ex-

changealive periodically. Once upon receivingalive, overlay nodes refresh their corre-
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spondingprev − hop, next− hops, and update thertttable.

3.3.3 Tree Maintenance

Member Join

When a new nodeGnew wants to join the session, it must have finished expanding ring

search for the neighbors. Our aim is quick connection to new joiner.Gnew sendsjoin

to everyone in itsneighorlist and waits for the firstwelcome response. If the first

response is fromGoffer, it takesGoffer as parent and informsGoffer also by sending

be-my-parent to it. OnceGoffer receives this message, it addsGnew to itsnext− hops

and starts forwarding packet toGnew. After joining the tree,Gnew will start exchanging

alive messages with its neighbours also.

Member Leave and Failure Recovery

If a node wants to leave the session, it must inform its parent and children by sending

bye to them. The parent removes the leaving node from its children list. The children of

the leaving node will look throughrtttable and sendbe-my-parent to the nearest parent

candidate (which sent invitation to them before).

Neighbor failures can be detected by not receivingalive messages for a certain time.

Parent failure is treated as if the parent has left the session.
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3.3.4 Tree Improvement

As network conditions and group memberships change continuously, RESMO must

adapt since the overlay tree may not be efficient anymore. Our solution is to reconstruct

the tree periodically. During reconstructions, nodes continue to receive and forward data

along the current tree, and switch over to the new tree when reconstructions is completed.

This procedure should occur rarely.

3.4 Protocol Analysis

After describing the involved states and messages, we now explain how our algorithm

can produce an efficient tree by balancing between MST and SPT. The subtleties lies in

the two kinds of timer mentioned above.

Firstly, Gi sets aTivt,s timer when it first receivesinvite from Gs. SinceGi is in

awake, if its thanks message wasn’t the first one to reachGs and it hasn’t any other

neighbors from which it can receivebe-my-child, it may never be linked to the tree.

Another consideration is that: if we set the timer to a bigger value, during this time

period there is no otherbe-my-child arrives, we can deduce that the delay betweenGi

andGs though other route is very long and in order to achieve a lower delay we letGi be

linked toGs directly by sendingbe-my-parent to Gs. Usually we setTivt,i = k × ds,i,

wherek is a constant.

Secondly, nodes set severalTwgh timers when they are inweighingand receiving

multiple invite messages. The key to approximating MST lies in the setting of this kind
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of timers. An efficient tree should take tradeoffs between resource usage and end-to-end

delay into consideration. Bearing this in mind we define a value as following: the time

period that is sufficient for overlay node, sayGk to get necessary delay information from

its neighbors and select the “best” one to be its parent. Here we definebestasnearestis

to approximate MST.

The selection of parent with smallest RTT is crucial to the approximation of MST

in RESMO. The value ofTwgh,∗ can be tuned to trade-off resource usage with RDP of

the resulting overlay tree. A largeTwgh,∗ allowsG to wait for more invitations, hence

increasing the chance of selecting a parent with lower RTT. While selecting parent with

lowest RTT reduces resource usage, it does not guarantee that the end-to-end delay from

S to G is also small. The key to reducing end-to-end delay is to use smallerTwgh,∗.

Since RESMO construct the tree in a stepwise fashion, a node that is closer to the source

is more likely to become an inviter and send out invitations sooner. By using smaller

Twgh,∗, a node will select those who becomes inviters sooner, thus reducing the end-to-

end delay fromS to itself.

We setTwgh,p to be a random value in[a×dp,k, b×dp,k], wherea, b are both constants.

By adjusting the value of the timer, we can tune the tolerable end-to-end delays in the

tree.

For a better understanding of the timers, messages and states in RESMO protocol,

we will describe the building procedures in the example tree (Figure 3.6 and 3.7).
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Figure 3.9: An Example Tree Building Steps

3.5 A Tree Construction Example

In Section 3.1.1, we give an example network topology and RESMO tree built on top of

it. Now we explain how the tree is built step-by-step. Since this is a small topology, after

expanding ring search, all of the overlay nodes have the others as neighbors except F,

which has only one neighbor E. In our following description, we assume the time used

in message processing at each node is 0.

(1) At time 0, sender A as aninviter sendsinvite to its neighbours: B, C, D, E, G

and H. These neighbours respond withthanks when they receive invitations from A and

changes their states toawake. Since B is the nearest neighbbour of A,thanks from B
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arrives first at A at time 90. A takes B as its first child, informing B by sendingbe-my-

child to it. A is a parentnow and ignores the lately arrivingthanks messages from C,

D, E, G and H.

(2) At time 135, B receivesbe-my-child from A. It goes intoinviter and sends invi-

tations to neighbours: C, D, E, G and H (B has not received messages from them). Now,

B has been part of the tree (see Figure 3.9 (a)).

(3) D, E, G, C and H receiveinvite from B at time 209, 215, 237, 240 and 251

respectively. Since they are already inawake, they will all setTwgh timer for B and go

into weighing.

(4) At time 399, timerTwgh at D timeouts. D looks through itsrtttable and selects

an inviter with minimumrtt – A as its parent by sendingbe-my-parent to A. It goes

into inviter state and sends invitations to the left neighbours: C, E, G and H. After A

receiving requestbe-my-parent from D, it adds D as one of its children. Now the tree

is expanded to three nodes: A, B and D (see Figure 3.9 (b)).

(5) At time 459, one of theTwgh timer at C timeouts. C selects a parent as D does

before and becomes aninviter. This time also A is selected and requested by abe-

my-parent message. This selection is different from MST in which C is linked to D

instead of A. The difference is caused by the timer used in RESMO. Note that D’sinvite

message will arrive at time 528, long time after the timer timeouts. C has no information

about D when it must make a decision, hence cannot request D as its parent although D

is the nearest neighbour. We sacrifice resource usage at this point, but the delay from

source A to C is improved from 130 to 92. Here is the trade-off in RESMO. The current
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tree is in Figure 3.9 (c).

(6) E, G and H are inweighingnow and they just keep setting the weighing timers

for incominginvite messages from D and C.

(7) At time 468, E finishes its weighing. Now he has information from A, B and

D. Since D is the nearest neighbour, it sendsbe-my-parent request to D and goes into

inviter. After D takes E as its child, the tree has five nodes now ( see Figure 3.9 (d)).

(8) F is invited by E and itsthanks is the first response arrived at E. E will sends

be-my-child to F and becomes aparent, see Figure 3.9 (e).

(9) G and H at last finish their weighing task and are linked to the tree. Note that H

is not a child of G as in MST, this is also due to the timer mechanism (G’s invitation has

not arrived when H timeouts). The complete tree is in Figure 3.9 (f).

3.6 Conclusion

We have present the design of RESMO, including control and data topology construc-

tion. In order to provide a quick view of the compromise between MST and SPT in

RESMO, we gave an example tree built by RESMO as well as MST and SPT. A detailed

comparison with respect to some tree efficiency metrics among these trees is also pro-

vided. The key to compromise between MST and SPT is the settings of timers during

tree construction process. We elaborate on the timers setting mechanism which makes

RESMO tree achieve a better performance. For easy understanding of the state transi-

tions involved in RESMO tree building, we listed the procedures in building an example

tree.
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Chapter 4

Simulation and Evaluation

In order to evaluate the performance of RESMO, we simulate our protocol using NS-2

[25] network simulator. The topologies are generated with GT-ITM toolkit [26]. This

chapter will first talk about the methodology and implementation matters in the simula-

tion. Next, we give the simulation results and discussion.

4.1 Simulation Methodology

We wrote Otcl codes to simulate RESMO in NS-2. The experiment topologies were

generated in GT-ITM and reformatted to *.tcl as NS-2 will accept usingsgb2ns .

The unicast delay between two nodes in NS-2 is determined by the underlying rout-

ing algorithm which may give suboptimal route. In our overlay tree building we ignore

this and assume unicast delay is the minimal delay between any two nodes when calcu-

lating round trip time.
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Table 4.1: Combination of Flags and State

F1 (invited) F2 (be child) F3 (be parent) State

0 0 0 sleep

1 0 0 awake

1 0 0 weighing

1 1 0 inviter

1 1 1 parent

Table 4.2: RESMO Message Format

resmo message type sender addresstimestamp

4.1.1 Design Matters

In order to specify the current state of a node, we use three kinds of flags, namelyinvited,

be childandbe parent. The combinations of these flags can determine the node’s current

state. Table 4.1 gives a list of the flags combinations and their corresponding states. Note

thatawakeandweighinghave the same group of flags. This would not be problem since

we can easily distinguish them by checking the type of pending timers.

In our simulation, we use a simple format of the messages. All of the message

packets have a common format described in Table 4.2:resmostates that the message is

from RESMO protocol;message typeis one of the type we have introduced in Chapter

3; sender addresscontains the message sender’s address;timestamp is the sending

time.

Using simulations, we (i) determined the effects of weighting timer on the con-
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structed tree, (ii) compared the performance of RESMO with five other schemes, namely

NICE, Narada, MST, SPT and Unicast, using RDP, resource usage, link stress and max-

imum node degree as comparison metrics. Simulations of NICE and Narada are based

on themynssimulator provided by the authors of NICE, while the rest of the schemes

are simulated in ns-2.

4.1.2 Simulation Scenario

We randomly generated ten 1000-nodes topologies using one set of parameters. The

results are averaged over these ten. The topologies all use transit-stub method with 0.42

as the edge connection probability within stub domains. There is no extra transit-stub or

stub-stub edges. Since overlay nodes are end hosts which are located only on the edge

of the network, in our simulation we randomly locate the nodes at stub domains. The

sender is randomly selected from gateways. In each experiment, group size is varied

between 25 and 150.

4.1.3 Performance Metrics

Through comparison we want to confirm that RESMO excels other schemes in following

properties:

• Relative Delay Penalty

• resource usage

• link stress
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• maximum node degree

Relative Delay Penalty (RDP), resource usage and link stress is as defined in Chapter

1. Node degree is the fan-out of the overlay node. Since lots of nodes in the tree are leaf

nodes, it is not feasible to calculate the mean node degree. We will use maximum node

degree to evaluate this metric. Moreover, maximum node degree will reflect the load of

an overlay node, this is also one aspect we want to discover.

4.2 Simulation Results and Discussion

It is crucial to set the values of the timers in RESMO since the value can be tuned to

trade-off resource usage with RDP of the resulting overlay tree. A largeTwgh,∗ allows

G to wait for more invitations, hence increasing the chance of selecting a parent with

lower RTT. While selecting parent with lowest RTT reduces resource usage, it does not

guarantee that the end-to-end delay fromS to G is also small. The key to reducing

end-to-end delay is to use smallerTwgh,∗. Since RESMO construct the tree in a stepwise

fashion, a node that is closer to the source is more likely to become an inviter and send

out invitations sooner.

4.2.1 Effects of Weighting timer

In our experiments, we set the value ofTivt to 8d, whered is the estimated one-way delay

(obtained fromrtttablebetween the inviter and the receiving node).Twgh,∗ is set tok×d,

for some constantk. To find reasonable values ofk, we varyTwgh,∗ between0.2d and6d
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and plot the different performance metrics for group size 100 (we found similar curves

for other group sizes). As expected, increasingk reduces average link stress (Figure 4.1),

resource usage (Figure 4.2), but it also deteriorates RDP (Figure 4.3) and increases the

tree construction time. Values ofk between 2 and 4 shows a good compromise between

the various performance metrics. We therefore setTwgh,∗ to a uniform random value

between[2d, 4d].

4.2.2 Comparing with Other Schemes

Now we comparing RESMO with other schemes of related work. Our findings can be

summarized as follows:

(a) Link stress of RESMO is significant lower than those of NICE and Narada and is

comparable to MST. Figure 4.4 shows that for each group size, RESMO has around 1.46

mean stress, which is about50% of NICE (2.33 - 3.30) on average although they have
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similar number of active physical links. This is because RESMO is a fully distributed

protocol where each node shares the forwarding task evenly; whereas NICE is a hierar-

chical protocol and leaders at each level will forward more packets. The large confidence

interval of NICE supports our analysis. The mean link stress of RESMO is about60%

of Narada (2.01 - 3.02) on average. Narada uses DVMRP to produce lower delay, thus it

uses fewer number of physical links which in turn introduces more link stress.

(b) RESMO has RDP values between those of MST and SPT. For 100 nodes topol-

ogy, the 90% RDP for these trees are: 2.0 (RESMO), 2.8 (MST), and 1.4 (SPT) respec-

tively (see Figure 4.5). We also compare the RDP with NICE and Narada: NICE has

more overlay nodes with RDP less than 1.4 than other schemes, but the 90% RDP is up

to 4.0 which is twice of RESMO. Furthermore, increasing the group size from 25 to 150

does not degrade RDP of RESMO (Figure 4.6).

(c) RESMO also has resource usage comparable to MST (9%-15% more, see Figure
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Table 4.3: Penalty Reducing with Group Size Increasing

Group Size Mean States States Ratio

25 11.08 0.4432

50 21.62 0.4324

75 28.62 0.3816

100 22.26 0.2236

150 14.03 0.0935

4.7). NICE and Narada have much higher resource usage, possibly due to the existence

of multiple paths in both protocols. When the group size increases, their relative resource

usage increases also while the relative resource usage of RESMO remains stable.

(d) The maximum node degree of RESMO is close to MST and slightly increases

with the group size (Figure 4.8). Narada has lowerest maximum node degree due to the

degree constrains in its protocol.

We also evaluate other penalties such as average number of states maintained at each

gateway. It is natural that when the group size increases, the topology is denser, hence

the number of searched neighbors will also increases(from 11 to 28). We can see from

Table 4.3 that the mean number of states decreases after the group size is over 75, this

is due to smallerTTL value we applied. In order to evaluate the scalability of RESMO

with number of states maintained at each member, we calculate the ratio of them over

group size. The ratio is decreasing from 0.44 to 0.09. Therefore, we can conclude that

in RESMO the number of states maintained at each member is scalable.
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4.3 Conclusion

In this chapter, we presented the simulation of RESMO from simulation scenario gener-

ating to design implementation. We also simulate MST, SPT, NICE and Narada proto-

cols to compare with RESMO. Our simulation results support that RESMO can achieve

a comparable low resource usage to MST. The relative delay penalty is the second low-

est among these five approaches. The most exciting result is that RESMO shows a good

scalability when group size increases.
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Chapter 5

Conclusions and Future Work

In this thesis we have presented a new distributed application-layer multicast protocol for

building resource-efficient tree by approximating MST. The resulting tree is comparable

to MST with respect to resource usage, link stress and node degree. It also improves

end-to-end latency as well. However, there is still further room for improvement of

RESMO.

5.1 Considering Bandwidth and Other Network Char-

acteristics

In RESMO we only take link delay into consideration when building the tree. However,

this routing measure is incomplete. Network condition is measured in terms of various

characteristics including link delay, bandwidth, end-to-end reliability, loss rate, node

stability and security. Routing in such a complicated network should consider as many

characteristics as possible to obtain optimal paths.

Maximizing throughput under high load condition and achieving fairness are the
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goals for many transmission application on network. Our future work should consider

them also. Since media streaming applications can easily saturate link bandwidth and

cause congestion, building an overlay tree with “load-balance” physical links is crucial.

By load-balance, we mean: (a) involving more physical links to “fairly” share the traffic

load in an effort to reduce link stress implicitly; (b) number of copies carried on each

physical link should reflect the the bandwidth of the involved link so as links with higher

bandwidth can share more traffic load according to their capacity.

5.2 Heterogeneity of Network

Heterogeneity is the most notable characteristic of today’s Internet. Not only the link

bandwidth varies throughout the network, end hosts are also more heterogeneous with

respect to CPU and storage capacity as [11] argues. For example a PDA and a high res-

olution desktop will require different quality of data stream. Transcoding in application-

level gateways is under current research to address this problem. Since application-layer

multicast is implemented in the user space, encompassing application level transcoding

in application-layer multicast is straightforward. We propose a two-tier overlay approach

for the future work. The first tier consists of application level media gateways [34] which

form a multicast tree first. Clients can select to attach to a set of gateways according to

their capacity or requirement and location. This attachment should also consider the

global tree efficiency such as network resource usage. It is ideal that clients with similar

capacity can be grouped together which in turn increases the efficiency of transcoding at

gateways.
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5.3 Transience of Overlay Nodes

RESMO, like other protocols in application-layer multicast follows the early proposed

approach to reduce the efficiency penalties incurred in migrating multicast functional-

ity from the network layer to the application layer. However, the current performance

measures are incomplete since they fail to notice the differences between the overlay

nodes (end hosts) and the infrastructure routing units (underlying routers) [35]. End host

are less stable than routers, the transience of end hosts caused by their arbitrary join-

ing and leaving the multicast group leads to challenge in group maintenance and tree

partition recovery. Moreover, packets transmitted when the tree is being repaired will

be lost. Therefore, when evaluating the tree quality, we should measure if the tree can

handle such transience gracefully with minimum packets loss and time for tree partition

recovery.
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