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Summary

Data cleansing recently receives a great deal of attention in data warehousing,

database integration, and data mining etc. The mount of data handled by or-

ganizations has been increasing at an explosive rate, and the data is very likely

to be dirty. Since “dirty in, dirty out”, data cleansing is identified as of critical

importance for many industries over a wide variety of applications.

Data cleansing consists of two main components, detection method and compar-

ison method. In this thesis, we study several problems in data cleansing, discover

similarity properties, propose new detection methods, and extend existing com-

parison method. Our new approaches show better performance in both efficiency

and accuracy.

First we discover two similarity properties, lower bound similarity property (LP)

and upper bound similarity property (UP). These two properties state that, for

any three records A, B and C, Sim(A,C) (similarity of records A and C) can

be lower bounded by LB(A,C) = Sim(A,B) + Sim(B,C) − 1, and also upper

bounded by UB(A,C) = 1 − |Sim(A,B) − Sim(B,C)|. Then we show that a

similarity method, LCSS, satisfies these two properties. By employing LCSS as

viii
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the comparison method, two new detection methods, RAR1 and RAR2, are thus

proposed. RAR1 does slide a window on sorted dataset. In RAR1, an anchor

record is chosen in the window to keep the similarities information with other

records in the window. With this information, LP and UP are used to reduce

comparisons. Performance tests show that these two methods are much faster and

more efficient than existing methods.

To further improve the efficiency of our new methods, we propose a two-stage

cleansing method. Since existing similarity methods are very costly, we propose a

filtering scheme which runs very fast. The filter is a simple similarity method which

only considers the characters in fields of records and does not consider the order

of characters. However, the filter may produce some extra false positives. We thus

perform pruning with more trustworthy and costly methods on the result obtained

by the filter. This technique works because of the duplicate result obtained is

normally far less than the initial comparisons taken.

Finally, we propose a dynamic similarity method, which is an extension scheme

for existing comparison methods. Existing comparison methods do not address

fields with NULL value well, which results in a loss of correct duplicate records.

Therefore, we extend them by dynamically adjusting the similarity for field with

NULL value. The idea behind dynamic similarity is from approximate functional

dependency.



Chapter 1

Introduction

1.1 Background

Data cleansing , also called data cleaning or data scrubbing , deals with detecting

and removing errors and inconsistencies from data in order to improve the quality

of data [RD00]. It is a common problem in environments where records contain

erroneous in a single database (e.g., due to misspelling during data entry, missing

information and other invalid data etc.), or where multiple databases must be

combined (e.g., in data warehouses, federated database systems and global web-

based information systems etc.).

Motivation for Data Cleansing

The amount of data handled by organizations has been increasing at an explosive

rate. The data is very likely to be dirty because of misuse of abbreviations, data

1



1.1 Background 2

entry mistakes, duplicate records, missing values, spelling errors, outdated codes

etc [Lim98]. A list of common causes of dirty data is described in [Mos98]. As

the example shown in [LLL01], in a normal client database, some clients may be

represented by several records for various reasons: (1) incorrect or missing data

values because of data entry errors, (2) inconsistent value naming conventions

because of different entry formats and use of abbreviations such “ONE” vs ‘1’, (3)

incomplete information because data is not captured or available, (4) clients do not

notify change of address, and (5) client mis-spell their names or give false address

(incorrect information about themselves). As a result, several records may refer to

the same real world entity while not being syntactically equivalent. In [WRK95],

errors in databases have been reported to be up 10% range and even higher in a

variety of applications.

Dirty data will distort information obtained from it because of the “garbage in,

garbage out” principle. For example, in data mining, dirty data will not be able

to provide data miners with correct information. Yet it is difficult for managers

to make logical and well-informed decisions based on information derived from

dirty data. A typical example [Mon00] is the prevalent practice in the mass mail

market of buying and selling mailing lists. Such practice leads to inaccurate or

inconsistent data. One inconsistency is the multiple representations of the same

individual household in the combined mailing list. In the mass mailing market,

this leads to expensive and wasteful multiple mailings to the same household.

Therefore, data cleansing is not an option but a strict requirement for improving
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the data quality and providing correct information.

In [Kim96], data cleansing is identified as critical importance for many indus-

tries over a wide variety of applications, including marketing communications, com-

mercial householding, customer matching, merging information systems, medical

records etc. It is often studied in association with data warehousing, data min-

ing, and database integration etc. Especially, data warehousing [CD97, JVV00]

requires and provides extensive support for data cleansing. They load and contin-

uously refresh huge amounts of data from a variety of sources so the probability

that some of the sources contain “dirty data” is high. Furthermore, data ware-

houses are used for decision making, so that the correctness of their data is vital

to avoid wrong conclusions. For instance, duplicated or missing information will

produce incorrect or misleading statistics. Due to the wide range of possible data

inconsistencies, data cleaning is considered to be one of the major problems in

data warehousing. In [SSU96], data cleansing is identified as one of the database

research opportunities for data warehousing into the 21st century.

Problem Description and Formalization

Data cleansing generally includes many tasks because the errors in databases are

wide and unknown in advance. It recently receives much attention and many

research efforts [BD83, Coh98, DNS91, GFSS00, GFS+01a, GFS+01b, GIJ+01,

GP99, Her96, HS95, HS98, Kim96, LSS96, LLL00, LLL01, Mon97, Mon00, Mon01,

ME96, ME97, Mos98, RD00, RH01, Wal98, WRK95] are focused on it. One such
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main and most important task is to de-duplicate records, which is different from,

but related to, the schema matching problem [BLN86, KCGS93, MAZ96, SJB96].

Before the de-duplication, there is a pre-processing stage which detects and re-

moves any anomalies in the data records and then provide the most consistent

data for the de-duplication. The pre-processing usually (but not limit to) does

spelling correction, data type checking, format standardization and abbreviation

standardization etc.

Given the database having a set of records, the de-duplication is to detect

all duplicates of each record. The duplicates include exact duplicates and also

inexact duplicates. The inexact duplicates are records that refer to the same real-

world entity while not being synthetically equivalent. If consider the transitive

closure, the de-duplication is to detect all clusters of duplicates and each cluster

includes a set of records that represent the same entity. The computing of transitive

closure is an option in some data cleaning methods, but an inherent requirement in

some other data cleansing methods. The transitive closure increases the number

of correct duplicate pairs, and also increases the number of false positives (two

records are not duplicate but detected as duplicate).

Formally, this de-duplication problem can be identified as follows. Let D =

{A1, A2, · · · , AN} be the database, where Ai, 1 ≤ i ≤ N , are records. Let <Ai, Aj>

= T denote that records Ai and Aj are duplicate, and

Dup(D) = {<Ai, Aj> | <Ai, Aj> = T , 1 ≤ i, j ≤ N and i 6= j}.

That is, Dup(D) is the set of all duplicate pairs in D. Then, given D, the problem
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is to find the Dup(D).

Let Ai ∼ Aj be the equivalent relation among records that Aj is a duplicate

record of Ai under transitive closure. That is Ai ∼ Aj if and only if there are

records Ai1 , Ai2 , · · ·, Aik , such that <Ai, Ai1> = T , <Ai1 , Ai2> = T , · · ·, and

<Aik , Aj> = T . Let XAi
= {Aj|Ai ∼ Aj}. Then {XAi

} are equivalent classes

under this equivalent relation. Thus for any two records Ai and Aj, we have

either XAi
= XAj

or XAi
∩ XAj

= ∅ . If the transitive closure is taken into

consideration, the problem is then to find TC(D) = {XAi
}. More strictly, it is to

find TC2(D) = {XAi
||XAi

| ≥ 2}.

Existing Solutions

Given a database, to detect exact duplicates is a simple process and is well ad-

dressed in [BD83]. The standard method is to sort the database and then check

if the neighboring records are identical. The more complex process is to detect

the inexact duplicates, which leads to two problems: (1) which records need to

be compared, and (2) how to compare the records to determine whether they are

duplicate.

Thus, the (inexact) de-duplication consists of two main components: detection

method and comparison method. A detection method determines which records

will be compared, and a comparison method decides whether two records compared

are duplicate.

In detection methods, the most reliable way is to compare every record with
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every other record. Obviously this method guarantees that all potential duplicate

records are compared and then provides the best accuracy. However, the time

complexity of this method is quadratic. It takes N(N − 1)/2 comparisons if the

database has N records, which will take very long time to execute when N is

large. Thus it is only suitable for small databases and is definitely impractical and

infeasible for large databases.

Therefore, for large databases, approximate detection algorithms that take far

less comparisons (e.g., O(N) comparisons) are required. Some approximate meth-

ods have been proposed [DNS91, Her96, HS95, HS98, LLL00, LLL01, LLLK99,

Mon97, Mon00, Mon01, ME97]. All these methods have a common feature as they

compare each record with only a limited number of records with a good expected

probability that most duplicate records will be detected. All these methods can

be viewed as the variances of “sorting and then merging within a window”. The

sorting is to bring potential duplicate records close together. The merging is to

limit that each record is only compared with a few neighborhood records.

Based on this idea, Sorted Neighborhood Method (SNM) is proposed in [HS95].

SNM takes only O(ωN) comparisons by sorting the database on a key and making

pair-wise comparisons of nearby records by sliding a window, which has size ω,

over the sorted database. Other methods, such as Clustering SNM [HS95], Multi-

pass SNM [HS95], DE-SNM [Her96] and Priority Queue [ME97] etc., are further

proposed to improve SNM on different aspects (either accuracy or time). More

discussions and analysis on these detection methods will be shown in Section 2.2.
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Name Dept. Age Gender Email

Li Zhao Computer Science - - -

Li Zhai Computer Science - - -

Table 1.1: Two records with a few information known.

Name Dept. Age Gender Email

Li Zhao Computer Science 28 M lizhao@comp.nus.edu.sg

Li Zhai Computer Science 28 M lizhao@comp.nus.edu.sg

Table 1.2: Two records with more information known.

As the detection methods determine which records need to be compared, pare-

wise comparison methods are to decide whether two records compared are dupli-

cate.

The comparison of records to determine their equivalence is a complex inferen-

tial process that needs to consider much more information in the compared records

than the keys used for sorting. The more information there is in the records, the

better inferences can be made.

For example, for the two records in Table 1.1, the values in the “Name” field

are nearly identical, the values in the “Dept.” field are exactly the same, and the

values in the other fields (“Age”, “Gender” and “Email”) are unknown. We could

either assume these two records represent the same person with a type error in the

name of one record, or they represent different persons with similar name. Without
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any further information, we may perhaps assume the later. However, as the two

records shown in Table 1.2, with the values in the “Age”, “Gender” and “Email”

fields are known, we mostly determine that they represent the same person but

with small type error in the “Name” field.

With the complex to compare records, one natural approach is using production

rules based on domain-specific knowledge. Equational Theory [HS95] are inferences

that dictate the logic of domain equivalence. A natural approach to specifying an

equational theory is to use of a declarative rule language. In [HS95], OPS5 [For81]

is used to specify the equational theory. Java Expert System Shell (JESS) [FH99],

a rule engine and scripting environment, is employed by IntelliClean [LLL00]. The

rules are represented as declarative rules in the JESS engine. An example is given

in Section 2.3.1

An alternative approach is to compute the degree of similarity for records.

Definition 1.1 A similarity function Sim : D × D 7→ [0, 1] is a function that

satisfies

1. reflexivity: Sim(Ai, Ai) = 1.0,∀Ai ∈ D; and

2. symmetry: Sim(Ai, Aj) = Sim(Aj, Ai),∀Ai, Aj ∈ D.

Thus the similar of records is viewed as the degree of similarity, which is a value

between 0.0 and 1.0. Commonly, 0.0 means certain non-equivalence and 1.0 means

certain equivalence [Mon00]. A similarity function is well-defined if it satisfies 1)

similar records will have large value (similarity) and 2) dissimilar records will have

small value.
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To determine whether two records are duplicate, a comparison method will

typically just compare their similarity to a threshold, say 0.8. If their similarity is

larger than the threshold, then they are treated as duplicate. Otherwise, they are

treated as non-duplicate. Notice that the threshold are not given at random. It

highly depends on the domain and the particular comparison methods in use.

Notice that the definition of Sim is domain-independent and works for databases

of any kind of data type. However, this approach is generally based on the assump-

tion that the value of each field is a string. Naturally this assumption is true for

a wide range of databases, including those with numerical fields such as social

security numbers represented in decimal notation. In [ME97], this assumption is

also identified as a main domain-independent factor. Further note that rule-based

approach can be applied on various data types, but currently, their discussions and

implementations are only on string data as well since the string data is ubiquitous.

With this assumption, comparing two records is equal to compare two sets of

strings where each string is for a field. Then any approximate string matching

algorithms can be used as the comparison method.

Edit Distance [WF74] is a classic method in comparing two strings and has

received much attention and widely used in many applications. It is the mini-

mum number of insertions, deletions, and substitutions needed to transform one

string into another. Edit distance returns an integer value but this value can be

easily transfered (normalized) to a similarity value. The Smith-Waterman algo-

rithm [SW81], a variant of edit distance, was employed in [ME97]. Longest Com-
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mon Subsequence [Hir77], to find the maximum length of a common substring of

two strings, is also used to compare two strings. Longest Common Subsequence is

often studied associated with Edit Distance, and both can be solved by Dynamic

Programming in O(nm) time. Record Similarity (RS) was introduced in [LLLK99],

in which record equivalence is determined by viewing records similarity at three

levels: token, field and record. The string value in each field is parsed as tokens

by using a set of delimiters such as space and punctuations. Field weightage was

introduced on each field to reflect the different importance. In Section 2.3, we will

discuss these comparison methods in more details.

One issue should be addressed is that whether two records are equivalent (du-

plicate) is a semantical problem, i.e., whether they represent the same real-world

entity. However, the record comparison algorithms which solve this problem de-

pend on the syntax of the records. The syntactic calculations performed by the

algorithms are only approximates of what we really want - semantic equivalence.

In such calculations, errors are possible to occur, that is, correct duplicate records

compared may not be discovered and false positives may be introduced.

All feasible detection methods, as we have shown, are approximate. Since none

of the detection methods can guarantee to detect all duplicate records, it is possible

that two records are duplicate but will not be detected. Further, all comparison

methods are also approximate, as shown above, and none of them is completely

trustworthy. Thus, no data cleansing method (consisting of detection methods

and comparison methods) guarantees that it can find out exactly all the duplicate
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pairs, Dup(D). It may not find some correct duplicate pairs and also introduce

some false positives.

The accuracy of algorithms corresponding to retrieval effectiveness can be mea-

sured by recall and precision [LLL00]. Recall is the proportion of relevant informa-

tion (i.e. truly matching records) actually retrieved (i.e. detected), while precision

is the proportion of retrieved information that is relevant. More precisely, given

a data cleansing method, let DR(D) be the duplicate pairs found by it, then

DR(D)∩Dup(D) is the set of correct duplicate pairs and DR(D)−Dup(D) is the

set of false positives. Thus the recall is |DR(D)∩Dup(D)|
|Dup(D)| and false-positive error is

|DR(D)−Dup(D)|
|DR(D)| . The false positive error is the antithesis of the precision measure.

The recall and precision are two important parameters to determine whether a

method is good enough, and whether a method is superior to another one. In

addition, time is another important parameter and must be taken into considera-

tion. Surely, comparing each record with every other record and using the most

complicate rules as the data cleansing method will obtain the best accuracy. How-

ever, it is infeasible for large database since it cannot finish in reasonable time.

Generally, more records compared and a more complicate comparison method used

will obtain a more accuracy result, but this takes more time. Therefore, there is a

tradeoff between accuracy and time and each data cleansing method has its own

tradeoff.
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1.2 Contributions

Organizations today are confronted with the challenge of handling an everincreas-

ing amount of data. It’s not uncommon that that the data handled by organiza-

tions has several hundred Megabytes or even several Terabytes. Thus the database

may have several millions or even billions records. As the size of the database in-

creases, the time in data cleansing grows linearly. For very large databases, the

data cleansing may take a very long time. As the example shown in [HS95], a

database with 2,639,892 records was processed in 2172 seconds by SNM. Given

a database with 1,000,000,000 records, SNM will need to process approximately

1×109× 2172
2639892

s = 8.2276×105s ≈ 10 days. Therefore, more efficient and scalable

data cleansing methods are definitely required.

Further, existing comparison methods prove to have good performances in cap-

turing duplicate records. However, they all have a common drawback, i.e., they

implicitly assume that the values in all fields are known, and NULL values on fields

are simply treated as empty strings. But, in practice, databases to be cleansed

very likely have records with NULL values. Treating the NULL values as empty

strings is then not a good method and will result in a loss of correct duplicate

records. Therefore, more considerations on fields with NULL values are required.

In this thesis, the comparison methods discussed are similarity-based. The

major contributions of this thesis are summarized as follows:

(1) We propose two new data cleansing methods, called RAR1 (Reduction using

one Anchor Record) and RAR2 (Reduction using two Anchor Record), which
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are much more efficient and scalable than existing methods.

Existing detection methods are independent from the comparison methods.

This independence gives freedom for applications but will result in a loss of use-

ful information, which can be used to save expensive comparisons. Instead, we

propose two new detection methods, RAR1 and RAR2 which can efficiently use

the information provided by comparison methods, thus saving a lot of unnecessary

comparisons.

RAR1 is an extension on the existing method SNM. In SNM, new record moving

into the window needs to compare with all other records in the window. However,

not all these comparisons are necessary. Instead, in RAR1, an anchor record is

chosen in the window. New record is first compared with the anchor record and

this similarity information is saved. For the other records in the window, two

similarity bound properties are tried to determine whether the new record should

compare with them or not. RAR2 is the same as RAR1 but has two anchor records.

Detail description for the similarity bound properties, RAR1, and RAR2 is given

in Chapter 3.

(2) We propose a fast filtering scheme for data cleansing. The scheme not only

inherits the benefit of RAR1 and RAR2 but also further improves the per-

formance greatly.

Large proportion of time in data cleansing is spent on the comparisons of

records. We can reduce the number of comparisons with RAR1 and RAR2. Then

we show how to reduce the time for each comparison by use filtering techniques.
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Existing comparison methods (e.g, Edit Distance, Record Similarity) are in

O(nm) time thus quite costly. Generally only a few comparisons will detect du-

plicate records. Intuitively, we can first do a fast comparison as filter to obtain

candidate duplicate result, then use existing comparison methods on the candidate

duplicate result only. Based on this, we propose a fast filtering scheme with prun-

ing on the result to achieve the best performance on both efficiency and accuracy.

Detail discussion on the filtering scheme is shown in Chapter 4.

(3) We propose a dynamic similarity scheme for handling field with NULL value.

This scheme can be seamlessly integrated with all the existing comparison

methods.

Existing comparison methods do not deal with field with NULL values well. We

propose the Dynamic Similarity , a simple yet efficient method, which dynamically

adjusts the similarity for field with NULL value. For each field, there are a set of

dependent fields associated with it. For any field with NULL value, the dependent

fields will be used to determine its similarity. In Chapter 5, we will discuss this in

details.

1.3 Organization of the Thesis

The rest of this thesis is organized as follows.

In the next chapter, we describes the research work that has been done in the

data cleansing field. In Chapter 3, we propose two new efficient data cleansing
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methods, called RAR1 and RAR2. In Chapter 4, we introduce a filtering scheme

that further improves the result on Chapter 3. After that, in Chapter 5, we present

a dynamic similarity method, which is an extension scheme for existing comparison

methods. Finally, we make some concluding remarks and discuss future works in

Chapter 6.

To be focused and consistent, in this thesis, we only discuss my research works

on the data cleansing field. Most of the results in this thesis have been presented

in [LSQS02, LSSL02, QSLS03, SL02, SLS02]. Other research works can be found

in [SLTN03, SSLT02].



Chapter 2

Previous Works

In this chapter, first we simply show the pre-processing stage needed before cleans-

ing. Then we discuss the two components, detection methods and comparison

methods, in data cleansing in more details. The detection methods detect which

records need to be compared and then let the comparison methods do the actual

comparisons to determine whether the records are duplicate. Currently, the detec-

tion methods and the comparison methods are independent, that is, any detection

method can be combined with any comparison method. With this independence,

we separate the discussions of the detection methods and comparison methods

in this chapter. This discussion is focused on the algorithm-level data cleansing,

which is fundamental in data cleansing and much related to our works. For reader

to have more understanding on data cleansing, we also simply introduce other

works on data cleansing.

16
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2.1 Pre-processing

Given a database, before the de-duplication, there is generally a pre-processing [HS95,

LLL00] on the records in the database. Pre-processing the records will increase the

chance of finding duplicate records in the later cleansing. The pre-processing itself

is quite important in improving the data quality. In [LLL00], the pre-processing is

identified as the first stage in the IntelliClean data cleansing framework.

The main task of the pre-processing is to provide the most consistent data for

subsequent cleansing process. The data records are first conditioned and scrubbed

of any anomalies that can be detected and corrected at this stage. The following

list shows the most common jobs that can be performed in the pre-processing.

However, sometimes, some domain-specific jobs are required, which are different

from database to database.

Spelling correction Some misspellings may exist in the database, such as “Sin-

gapore” may be mistakenly typed as “Singpore”. Spelling correction algo-

rithms have received a large amount of attention for decades [Bic87, Kuk92].

Most of the spelling correction algorithms use a corpus of correctly spelled

words from which the correct spelling is selected.

Data type check and format standardization Data type check and format

standardization can also be performed, such as, in the “data” field, 1 Jan

2002 and 01/01/2002 can be standardized to one fixed format.

Inconsistent abbreviation standardization Inconsistent abbreviations used in
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Abbreviation Word

NUS National University of Singapore

CS Computer Science

RD. Road

RD Road

Table 2.1: Example of an abbreviation file.

the data can also be resolved. For example, all occurrences of “Rd.” and

“Rd” in the address field will be replaced by “Road”. Occurrences of ‘1’

and ‘A’ in the sex field will be replaced by ‘Male’, and occurrences of ‘2’

and ‘B’ will be replaced by ‘Female’. An external source file containing the

abbreviations of words is needed. Table 2.1 shows one example.

2.2 Detection Methods

For each record, only a very limited number of records compared with it are dupli-

cate. As we have explained in Section 1.1, all existing (feasible) detection methods

are approximate methods and they are the variances of “sorting and then merging

within a window”. However, they differ on deciding which records are needed to

be compared.
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Sorted Neighborhood Method (SNM)

The Sorted Neighborhood Method (SNM) is proposed in [HS95]. One obvious

method for bringing duplicate records close together is sorting the records over

the most important discrimination key attribute of the data. After the sort, the

comparison of records is then restricted to a small neighborhood within the sorted

list. Sorting and then merging within a window is the essential approach of a Sort

Merge Band Join as described by DeWitt [DNS91]. SNM can be summarized in

three phases:

• Create Key: Compute a key for each record in the list by extracting relevant

fields or portions of fields;

• Sort Data: Sort the records in the data list using the key;

• Merge: Move a fixed size window through the sequential list of records

limiting the comparisons for duplicate records to those records in the window.

If the size of the window is ω records, then every new record entering the

window is compared with the previous ω−1 records to find duplicate records.

The first record in the window slides out of the window (see Figure 2-1).

The effectiveness of this approach is based on the quality of the chosen keys

used in the sort. The key creation in SNM is a highly knowledge-intensive and

domain-specific process [HS98]. Poorly chosen keys will result in a poor quality

result, i.e., records that are duplicate will be spread out far apart after the sort and

hence will not be discovered. As an example, if the “gender” field in a database is
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Figure 2-1: The merge phase of SNM.

chosen as the key, obviously, a lot of duplicate records would not be close together.

Thus keys should be chosen so that the attributes with the most discriminatory

power should be the principal field inspected during the sort. This means that

similar and duplicate records should have nearly equal key values. However, since

the data is (likely) corrupted and keys are extracted directly from the data, then

the key will also be likely corrupted. Thus, a substantial number of duplicate

records may not be caught.

Further, the “window size” used in SNM is an important parameter that affects

the performance. Increasing the window size will increase the number of duplicate

pairs found but also, on the other hand, increase the time taken. The performance

result in [HS95] shows that the accuracy increases slowly but the time increases

fast when increasing the window size. Thus, increasing the window size does not

help much if taking in consideration that the time complexity of the procedure

goes up as the window size increase, and it is fruitless at some point to use a larger
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window.

Clustering SNM

As the database becomes very large, sorting the data may take a great amount of

time although it may not be the dominant cost of cleansing. In [HS95], the authors

considered an alternative to sorting based upon first partitioning the dataset into

independent clusters using a key extracted from the data. Then SNM is applied to

each individual cluster independently. This method is called as Clustering SNM .

Since the dataset is partitioned into small clusters and do not need a completely

sorted database, the clustering SNM takes less time than SNM (sorting some small

datasets is faster than sorting a large dataset). However, two duplicate records may

be partitioned in two different clusters, then they cannot be detected, which results

in a decrease of the number of correct duplicate results. Thus the clustering SNM

provides the trade-off between time and accuracy.

Multi-pass SNM

In general, no single key will be sufficient to catch all duplicate records and the

number of duplicate records missed by one run of the SNM can be large. For

instance, if an employee has two records in the database, one with social security

number 193456782 and another with social security number 913456782, and if the

social security number is used as the principal field of the key, then it is very

unlikely that both records will be in the same window, i.e., these two records will
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be far apart in the sorted database hence they will not be detected.

To increase the number of duplicate records detected, Multi-pass SNM [HS95]

is then proposed. Multi-pass SNM is to execute several independent runs of SNM,

each using a different key and a relatively small window. Each independent run

will produce a set of pairs of duplicate records. The results is the union of all pairs

discovered by all independent runs, plus all those pairs that can be inferred by

transitive closure. The transitive closure is executed on pairs of record id’s, and

fast solutions to compute transitive closure exist [AJ88, ME97].

This approach works based on the nature of errors in the data. One field (key)

having some errors may lead to that some duplicate records cannot be discovered.

However, in such records, the probability of error appearing in another filed of

the records may indeed not be so large. Thus, the duplicate records missed in

one pass would be detected in another pass. So multi-pass increases recall (the

percentage of correct duplicate records detected). As the example shown above, if

the name in the two records are the same, then a second run with the name field

as the principal field will detect them correctly as duplicate records. Theoretically,

suppose the probability of duplicate records missed in one pass is pω, 0 ≤ pω ≤ 1,

where ω is the window size, then the probability of duplicate records missed in

n independent passes is pnω. So, the correctness for n-passes is 1 − pnω, while the

correctness for one pass is 1−pω. Surely, 1−pnω is larger than 1−pω. For example, if

n = 3 and pω = 50%, we have 1−pnω = 1−0.53 = 87.5% and 1−pω = 1−0.5 = 50%.

The performance result in [HS95] shows that multi-pass SNM can drastically
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improve the accuracy of the results of only one run of SNM with varying large

windows. Multi-pass SNM can achieve pc higher than 90%, while SNM generally

only gets pc about 50% to 70%. Particularly, only a small “window size” is needed

for the multi-pass SNM to obtain high accuracy, while no individual run with a

single key for sorting produces comparable accuracy results with a large window.

One issue in Multi-pass SNM is that it employs transitive closure to increase

the number of duplicate records. The transitive closure allows duplicate records to

be detected even without being in the same window during an individual window

scan. However, the duplicate results obtained may contain errors (false positives),

as explained in Section 1.1 that no comparison methods are completely trustworthy,

and transitive closure propagates the errors in results. Thus, multi-pass SNM also

increases the number of false positives.

Duplication Elimination SNM

Duplicate Elimination SNM (DE-SNM) [Her96] improves SNM by first sorting the

records on a chosen key and then dividing the sorted records into two lists: a

duplicate list and a non-duplicate list. The duplicate list contains all records with

exact duplicate keys. All the other records are put into the non-duplicate list.

A small window scan is first performed on the duplicate list to find the lists of

matched and unmatched records. The list of unmatched records is merged with

the original non-duplicate list and a second window scan is performed. Figure 2-2

shows how DE-SNM works.
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Figure 2-2: Duplication Elimination SNM.

DE-SNM does not contribute much on the improvement of accuracy of SNM.

The benefit of DE-SNM is on that it runs faster than SNM under the same window

size, especially for the databases that are heavily dirty. If the number of records

in duplicate list is large, DE-SNM will run faster than SNM.

Priority Queue Method

Under the assumption of transitivity, the problem of detecting duplicates in a

database can be described in terms of determining the connected components of

an undirected graph. Transitivity of the “is a duplicate of” relation is equivalent

to reachability in the graph. There is a well-known data structure, union-find data

structure [CLR90, HU73, Tar75], that efficiently solves the problem of determining

and maintaining the connected components of undirected graph. This data struc-

ture keeps a collection of disjoint updatable sets, where each set is identified by a

representative member of the set. The data structure has two operations:
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• Union(x,y) combines the sets that contain node x and node y, say Sx and Sy,

into a new set that is their union Sx ∪ Sy. A representative for the union is

chosen, and the new set replaces Sx and Sy in the collection of disjoint sets.

• Find(x) returns the representative of the unique set containing x. If Find(x)

is invoked twice without modifying the set between the requests, the answer

is the same.

More information on the union-find data structure can be found in [CLR90].

By using the union-find data structure, Priority Queue method is suggested

in [ME97]. Priority Queue does two passes of sorting and scanning. Two passes

are used to increase the accuracy over one pass as the reason is shown in multi-

pass SNM. The first pass treats each record as one long string and sorts these

lexicographically, reading from left to right. The second pass does the same reading

but from right to left. Unlike previous algorithms, the sorting of the records in each

pass is domain-independent. Thus the Priority Queue is a domain-independent

detection method.

Priority Queue scans the database sequentially and determines whether each

record scanned is or is not a member of a cluster represented in a priority queue.

To determine cluster membership, it uses the Find operation. If the record is al-

ready a member of a cluster in the priority queue, then the next record is scanned.

If the record is not already a member of any cluster kept in the priority queue,

then the record is compared to representative records in the priority queue using

the Smith-Waterman algorithm [SW81], which is to find the lowest changes (mu-
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tations, insertions, or deletions) that converts one string into another. If one of

these comparisons succeeds, then the record belongs in this cluster and the Union

operation is performed on the two sets. On the other hand, if all comparisons fail,

then the record must be a member of a new cluster not currently represented in

the priority queue. Thus the record is saved in the priority queue as a singleton

set. For practical reasons, the priority queue contains only a few number (e.g. 4)

of sets of records (like the window size in SNM), and the sets in the priority queue

represent the last few clusters detected.

Priority Queue using the union-find data structure to compute the transitive

closure online, which may result in saving a lot of unnecessary comparisons. For

example, for three duplicate records A1, A2 and A3, there are three comparisons in

SNM. However, in Priority Queue, if A1 and A2 have been compared and Unioned

in a cluster, in which A1 is the representative, then when A3 is scanned, it only

needs to compare with A1 and one comparison is saved. Note that if the database

is clean or slightly dirty, then each cluster in the priority queue most likely contains

only one record (singleton set). Under this conditions, the Priority Queue is just

the same as the Multi-pass SNM (2 passes) but with extra cost on the Union and

Find operations. Thus for clean or slightly dirty databases, Priority Queue does

not have any help, or even worse it takes more time due to the extra Union and

Find operations before each comparison. However, surely, Priority Queue works

better for heavily databases since clusters likely contain more than one record.
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In Priority Queue, the size of the priority queue should be determined. Thus

it still faces the same “window size” problem as SNM does. Further, as Priority

Queue computes transitive closure online, it faces the transitive closure problem

(discussed in Multi-pass SNM) as well. Moreover, representative records are chosen

for each cluster and heuristics need to be developed for choosing the representative

records, which will affect the results greatly.

We have introduced some detection methods and shown that each has its own

tradeoff. Due to that pair-wisely comparing every record with every other record

is infeasible for large databases, SNM is firstly proposed by providing an approx-

imate solution. SNM includes three phases: Create Key, Sort Data, and Merge.

The “Sorting” performs the first clustering on the database such that the similar

records are close together. Then the “merging” performs clustering again on the

sorted database to obtain the clustering result such that the records in each cluster

represent the same entity and the records in different clusters represent different

entities. The sorting and merging together is two-level clustering that the sorting

is the first loose clustering, while the merging is the second strict clustering. In

sorting, only the key value (normally one field) need to be compared, while in

merging, all fields should be considered.

Clusterings (sorting and merging) are used to significantly reduce the (detection

scope and comparison) time with achieving a reasonable accuracy. SNM generally

cannot obtain high accuracy and also works for any database coherently. Other
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approximate methods are further proposed to improve the performance on either

efficiency or accuracy. Multi-pass SNM can largely increase the accuracy under the

same time than SNM does. Since in Priority Queue, duplicate records are likely

grouped into a set, and new records are compared only with the representative of

the set, thus Priority Queue can save some unnecessary comparisons taken by SNM

by computing the transitive closure online. Priority Queue may be faster than SNM

but cannot improve the accuracy under the same conditions with SNM. In addition,

the performance of Priority Queue depends on the properties of databases. For

clean and slightly dirty databases, Priority Queue does not have any help for

prevailing singleton sets. But for dirty databases, Priority Queue is much faster.

The more dirty the database is, the more time it can save. Like Priority Queue,

DE-SNM can also run faster than SNM for dirty databases, but DE-SNM will

decrease the accuracy. Clustering SNM is an alternative method. As the name

shows, Clustering SNM does one even looser clustering before applying SNM. The

clustering SNM does three level clustering from looser to stricter. Clustering SNM

is faster than SNM for very large databases but it may decrease the accuracy as

well. Further, Clustering SNM is suitable for parallel implementation.

Given the trade-off of each method, a natural question is, under certain condi-

tions, which method should be used. Table 2.2 gives some suggestions. Practically,

among all these methods, multi-pass SNM is the most popular. Some data cleaner

systems, such as IntelliClean [LLL00], DataCleanser DataBlade Module [Mod] etc.,

employ it as their underlying detection systems.
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Condition and requirement Suggestion

The database is quite small, or it is large but

long time to execute is acceptable

Pair-wise comparisons

The database is very large, less false posi-

tives are more important than more correct-

ness, and multiple processors are available

Clustering SNM

More correctness would be better, and some

false positives are acceptable

Multi-pass SNM

The database is heavily dirty, and some false

positives are acceptable

Priority Queue

Table 2.2: The methods would be used for different conditions.

2.3 Comparison Methods

As the detection methods determine which records need to be compared, pare-wise

comparison methods are then to decide whether two records compared are dupli-

cate. As we have indicated in Section 1.1 that the comparison methods can be

distinguished as two different approaches, namely rule-based and similarity-based.

The rule-based approach is using production rules based on domain-specific knowl-

edge, and the similarity-based approach is by computing the degree of similarity

of records, which is a value between 0.0 and 1.0.

Notice that the comparison of records is quite complicated, it needs to take more
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information into consideration than the sorting does in the detection methods.

Thus, the cost of comparisons is the dominate of the time taken by cleansing,

which is proven by the performance studies in [HS95]. This further shows that the

importance on avoiding unnecessary calls to the record comparison function by the

detection system.

Further, all comparison methods (either rule-based or similarity-based) are only

approximate methods. That is, none of them can guarantee to discover exactly

correct result, which means that, given two duplicate records, the comparison

method may not detect them as duplicate, or given two non-duplicate records, the

comparison method may detect them as duplicate. The reason is that whether two

records are duplicate is a semantical problem, but the solution to it is syntactical

based.

2.3.1 Rule-based Methods

The rule-based approach uses a declarative rule language to specify the rules. A

rule is generally of the form:

if <condition>

then <action>

The action part of the rule will be activated when the conditions are satisfied.

Complex predicates and external function references may be contained in both

the condition and action parts of the rule. The rules are derived naturally from

the business domain. The business analyst with subject matter knowledge is able
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Given two records, r1 and r2.

IF the last name of r1 equals the last name of r2,

AND the first names differ slightly,

AND the address of r1 equals the address of r2

THEN

r1 is equivalent to r2.

Figure 2-3: A simplified rule of equational theory.

to fully understand the governing business logic and can develop the appropriate

conditions and actions.

Equational Theory was proposed in [HS95] to compare records. Figure 2-3

presents a simplified rule that describes one axiom of equational theory. The

implementation of “differ slightly” specified there is based upon the computation

of a distance function applied to the first name fields of two records, and the

comparison of its results to a threshold to capture obvious typographical errors

that may occur in the data. The selection of a distance function and proper

threshold is a knowledge intensive activity that demands experimental evaluation.

An improperly chosen threshold will lead to either an increase in the number of

false positives or to a decrease in the number of correct duplicate records.

In [HS95], rules are written in OPS5 [For81]. In [LLL01], rules are written in

the Java Expert System Shell (JESS) [FH99]. JESS is a rule engine and scripting

environment written in Sun’s Java language and was inspired by the CLIPS [Ril02]
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INPUT RECORDS: A, B

IF

(A.currency == B.currency) AND

(A.telephone == B.telephone AND

(A.telephone != EMPTY STRING) AND

(SUBSTRING ANY(A.code, B.code) == TRUE) AND

(FIELDSIMILARITY(A.address, B.address) > 0.85)

THEN

DUPLICATES(A, B)

Figure 2-4: A simplified rule written in JESS engine.

expert system shell. The data cleansing rules are represented as declarative rules in

the JESS engine. Figure 2-4 shows one such rule (in pseudocode) written in JESS

engine. For the rule to be activated, the corresponding currencies and telephone

numbers must match. Telephone numbers must also not be empty, and one of the

codes must be a substring of the other. The address must also be very similar.

The effectiveness of the rule-based comparison method is highly dependent

on the rules developed. As well-developed rules are effective in identifying true

duplicates and also strict enough to keep out false positives, the not well-developed

rules will introduce even worse results. Therefore, the rules should be carefully

developed and generally are tested repeatedly for the particular domain. As a

result, the process of creating such (well-developed) rules can be time consuming.
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Further, the rules must be continually updated whenever new data is added to

the database that does not follow the patterns by which the rules were originally

created. Moreover, the rule-based comparison methods are quite slow and do not

clearly scale up for very large datasets. For example, in the experimental study

in [HS95], all the rules are first written in OPS5 and then translated by hand into

C since the OPS5 compiler is too slow.

To avoid these disadvantages exist in rule-based approach, similarity approach

is an alternative. Although the similarity-based methods can resolve the disadvan-

tages in rule-based method, they have their own disadvantages that we will show

later. In the following, we discuss and analyze the similarity-based methods in

details.

2.3.2 Similarity-based Methods

Similarity-based approach is to compute the degree of similarity for records by a

similarity function Sim defined in Section 1.1, which returns a value between 0.0

and 1.0. Two records having large Sim value means that they are very similar.

In the special values, 0.0 means absolute non-equivalence and 1.0 means absolute

equivalence. Notice that the definition of Sim can be applied on any data type,

such as strings and images etc. Therefore, how to view the content of records

is important for the definition of similarity function. Of course, the similarity

function for two strings is definitely different with the similarity function for two

images.
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Due to the string data is ubiquitous, currently the discussion is focused on

this type of data. In the following discussion, we can assume that each field only

contains string value. Thus, record comparison is basically an string matching

algorithm and any of the approximate string matching algorithms [BM77, CL92,

DC94, GG88, HD80, KJP77] can be used in place of the record comparison method

in the detection system.

Edit Distance

Edit Distance [HD80, WF74] is a classic method in comparing two strings that has

received much attention and has applications in many fields. It can also be em-

ployed in data cleansing and is a useful measure for similarity of two strings. Edit

distance is defined as the minimum number of insertions, deletions, and substitu-

tions needed to transform one string into another. For example, the edit distance

between “intention” and “execution” is five. Figure 2-5 shows the operations taken

by transforming “intention” to “execution”. Edit distance is typically implemented

using dynamic programming [Gus97], and run in O(mn) time where m and n are

the lengths of the two strings. Figure 2-6 shows the dynamic programming to

compute the Edit Distance.

For two strings, Edit Distance returns an integer value. However, the lengths

of the strings compared need to be taken into account. Although two strings of

length 10 differing by 1 character have the same edit distance as two strings of

length 2 differing by 1 character, we would most likely state that only the length
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Figure 2-5: The operations taken by transforming “intention” to “execution”.

10 strings are “almost equal”. Thus edit distance need to be normalized. Post-

normalization by the maximal length of the compared strings is quite popular.

Since the edit distance of any two strings is between 0 and the maximal length

of them, the post-normalization returns a value between 0.0 and 1.0. This value

can be easily transfered to similarity as the difference of one and the normalized

value. A variant normalization method, called normalized edit distance (NED),

is proposed in [MV93, VMA95]. The NED between two strings is defined as the

quotient between the number of the edit operations required to transform one into

the other and the length of the editing path corresponding to these operations.

NED is computed in O(mn2) time, where m and n are the lengths of the two

strings, and n ≤ m.

The post-normalized edit distance is to compare two strings instead of two sets

of strings, thus it works on the field level instead of the record level (each field

is a string, and each record is a set of strings). To make it work on the record
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int edit(char* x, char* y) \* computation of edit distance *\

{

int m = strlen(x), n = strlen(y);

int EDIT[m][n], delta;

for (i = 1; i <= m; i++) EDIT[i,0] = i;

for (j = 1; j <= n; j++) EDIT[0,j] = j;

for (i = 1; i <= m; i++) {

for (j = 1; j <= n; j++) {

if (x[i] == y[j]) delta = 0;

else delta = 1;

EDIT[i,j] = min(EDIT[i-1,j]+1, EDIT[i,j-1]+1,

EDIT[i-1,j-1]+delta);

}

}

return EDIT[m,n]

}

Figure 2-6: The dynamic programming to compute edit distance.
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level, in [ME97], each record is viewed just as one big string, and Smith-Waterman

algorithm [SW81] is employed to compare records. The Smith-Waterman algorithm

is a variant of edit distance and was originally developed for finding evolutionary

relationships between biological protein and DNA sequences. Record Similarity,

which is discussed as follows, uses another solution, which is to assign weightages

for fields and then the similarity of records equals to the sum of the similarity of

field times the field weightage. More information can be found later.

Longest Common Subsequence

The longest common subsequence [AG87, Hir77, Lar] is another classic method in

comparing two strings. A subsequence [dic] of a given string is a string that can

be obtained by deleting zero or more symbols from the given string. The Longest

Common Subsequence is to find the maximum length of a common subsequence of

two strings. We will show the formal description of Longest Common Subsequence

in Section 3.3. The Longest Common Subsequence is closely related to the edit

distance and it is also implemented using the dynamic programming (see Figure 2-

7) with time complexity O(nm) where m and n are the lengths of the two strings.

Longest Common Substring

The Longest Common Substring [dic] is to find the maximum length of a common

substring of two strings. The longest Common Substring is different with the

longest common subsequence. A substring is contiguous, while a subsequence

need not be.
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int lcs length(char* A, char* B)

{

int m = strlen(A), n = strlen(B);

int L[m][n];

for (i = m; i >= 0; i−−) {

for (j = n; j >= 0; j−−) {

if (A[i] == ’\0’ ‖ B[j] == ’\0’) L[i,j] = 0;

else if (A[i] == B[j]) L[i,j] = 1 + L[i+1, j+1];

else L[i,j] = max (L[i+1, j], L[i, j+1]);

}

}

return L[0,0];

}

Figure 2-7: The dynamic programming to compute Longest Common Subsequence.

The Longest Common Substring problem can be solved by using a data struc-

ture known as the suffix tree [McC76, Ukk92, Ukk95, Wei73] in O(m + n) time

where m and n are the lengths of the two strings. The longest common substring

itself is not enough to describe the similarity of two strings. But it can be extended

as a substring-based method [QSLS03].
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Record Similarity

Record Similarity (RS) was introduced in [LLLK99]. In Record Similarity, record

equivalence can be determined by viewing records at three levels: token, field and

record. Since each field has different importance, field weightage is introduced on

all the fields. The field weightage is decided through experimental tests and the

sum of all field weightages equals to 1. The string value in each field is parsed as

tokens by using a set of delimiters such as space and punctuations. Tokens can be

viewed as meaningful components. For example, suppose the delimiter is space,

then the string “Li Zhao” has tokens {“Li”, “Zhao”}.

The process of computing the similarity between two records begins with com-

paring the sorted tokens of the corresponding fields. The following shows the

details in computing the three levels similarities.

(1) Compute Token Similarity:

• If two tokens t1 and t2 are exactly matched, then their degree of simi-

larity, DoS(t1,t2), is 1;

• Otherwise, if there is a total of x characters in the token t1, then we

deduct 1/x from the maximum degree of similarity of 1 for each char-

acter that is not found in the other token t2.

In this definition, the similarity of tokens is not symmetric. That is, DoS(ti,tj) 6=

DoS(tj ,ti). For example, if two tokens “cat” and “late” are compared, then the

degree of similarity of comparing “cat” with “late”, DoS(cat,late) = 1-1/3 = 0.67
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since the character c in “cat” is not found in “late”, and DoS(late,cat) = 1-2/4 =

0.5 since the characters l and e are not found in “cat”.

(2) Compute Field Similarity:

• Suppose a field F in record X has tokens x1, x2, · · ·, xn, and the field

F in record Y has tokens y1, y2, · · ·, ym;

• Each token xi, 1 ≤ i ≤ n, is compared with all the tokens yj, 1 ≤ j ≤ m;

• Let DoSx1
be the maximum of the degree of similarities computed for

tokens x1 with y1, y2, · · ·, ym respectively. That is,

DoSx1
= max{DoS(x1,y1), DoS(x1,y2), · · · , DoS(x1,ym)}.

Similarly, we have DoSx2
,· · ·, DoSxn

, DoSy1
, DoSy2

,· · ·, DoSym
;

• Field similarity for records X and Y on this field F is given by

SimRS
F (X,Y ) =

∑n
i=1DoSxi

+
∑m

j=1DoSyj

n+m
(2.1)

(3) Compute Record Similarity:

• Suppose the records have r fields, F1, F2, · · ·, Fr, and the field weigh-

tages are W1, W2, · · ·, Wr respectively, where
∑r

i=1Wi = 1;

• Record Similarity for records X and Y is given by

SimRS(X,Y ) =
r

∑

i=1

(SimRS
Fi
(X,Y )×Wi) (2.2)
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Record Field

X ab ex

Y ex ex ex ex ex ex ex ex ex ex

Table 2.3: Tokens repeat problem in Record Similarity.

We use superscript RS here to distinguish other similarity methods. If RS is

understood, we then drop RS for simplicity.

Although the token similarity is not symmetric, the field similarity and the

record similarity are symmetric. That is, for any field F and two records X and

Y , we have SimF (X,Y ) = SimF (Y,X) and Sim(X,Y ) = Sim(Y,X). Two records

are treated as a duplicate pair if their record similarity exceeds a certain threshold

such as 0.8.

Notice that the method for computing the similarity of records is extensible.

The same method can be used for transferring any field level similarity to record

level similarity. That is, for any field similarity method SimF , such as Edit Dis-

tance, it can be transfered to similarity of records as Sim =
∑

i(SimFi
×Wi).

Record Similarity is employed in IntelliClean and generally shows good per-

formance. However, theoretically, Record Similarity is not well defined. It surely

guarantees that similar records have large value. However, it may also assign some

(very) dissimilar records with large value. Especially, it does not address the re-

peated tokens well. For example, the two records (for simplicity, suppose that they

have only one field) in Table 2.3 are very dissimilar, but the Record Similarity com-
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puted for them is really large. Suppose the delimiter is space. For record X, the

token similarities for “ab” and “ex” are DoSab = 0 and DoSex = 1 respectively.

For record Y , there are 10 repeated tokens “ex” and each has DoSex = 1. Thus,

Sim(X,Y ) = 1+10
2+10

= 0.92, which is a quite large value, with which a false positive

may be introduced.

Moving Contracting Window Patter Algorithm

In [QSLS03], the Moving Contracting Window Patter Algorithm (MCWPA) was

proposed. The MCWPA is focused on the field level. Unlike Record Similarity

which is a token base similarity method, MCWPA is a substring based method.

All characters as a whole within the window (string) constitute a window pat-

tern. As an example, for the string “abcde”, when the window is sliding from left

to right with the window size being 3, the series of window patterns obtained are

“abc”, “bcd” and “cde”. Notice that “window size” used here is different with

that used in detection methods (e.g., SNM).

Given a Field F and two records X and Y , Let XF denote the string value of

field F of record X. Suppose that XF and YF have m and n characters respectively

(including blank space or comma). The field similarity for F of X and Y is given

as

SimMCWPA
F (X,Y ) =

2
√
SSNC

m+ n

The algorithm to calculate SSNC is shown in Figure 2-8. SSNC represents

the Sum of the Square of the Number of the same characters between XF and YF .
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1. Assume n ≤ m, that is |XF | ≤ |YF |; 2. w = n;

3. SSNC = 0;

4. window is placed on the leftmost position XF ;

5. while ((w != 0) and (still some characters in XF are accessible))

6. {

7. while (window right border does not exceed the right border of the XF )

8. {

9. if ( the window pattern in XF has the same pattern anywhere in YF )

10. {

11. SSNC = SSNC + w2;

12. mark the pattern characters in XF and YF as inaccessible characters

to avoid revisiting;

13. }

14. move window rightward by 1 (if the window left border is on an

inaccessible character, move window rightward by 2 and so on)

15. }

16. w = w − 1;

17. window is placed on the leftmost position where the window left border is

on an accessible character;

18. }

19. return SSNC;

Figure 2-8: Calculate SSNC in MCWPA algorithm.
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SimF (X,Y ) reflects the ratio of the total number of the common characters in two

fields to the total number of characters in two fields.

MCWPA does not have the repeated tokens problem existing in Record Sim-

ilarity. For the two records in Table 2.3, since they only have a same length-

three substring “ ex”, then the similarity computed by MCWPA for them is

SimMCWPA
F (X,Y ) = 2

√
32

5+29
= 6

34
= 0.18, while the similarity computed by Records

Similarity is SimRS
F (X,Y ) = 0.92. So MCWPA is more accurate to describe the

two records in Table 2.3 and will not obtain them as duplicate.

As we can see, the similarity approach is simply to compute a similarity value, and

it has the following advantages:

• Easy implementation: It can be easily implemented and embedded in any

data cleansing system.

• Uniform and stable: For different databases or updated databases, only the

field weightages and threshold need to be reset. Since the field weightages

and threshold can be implemented as input parameters, the method itself

does not need to be modified.

• Fast and scalable: It is much faster than rule-based approach and scales well

for large databases.

However, it also has disadvantage. Since similarity methods only return a

similarity value, they are hard to achieve the same accuracy as the well-developed
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rules does. For example, for two non-duplicate records that are very similar, the

similarity methods will return a value that is larger than the given threshold. Thus

the non-duplicate records are detected as duplicate, which is a false-positive.

In general, it is difficult to achieve both in terms of efficiency and accuracy. The

rule-based approach and similarity-based approach show the trade-off between time

and accuracy.

2.4 Other Works

All the works we introduced above are on the algorithm-level of data cleansing.

Other works related to data cleansing include proposing high level languages to

express data transformation [Coh98, GFS+01a, GP99, LSS96], and introducing

high level data cleansing frameworks [GFS+01a, LLL00, RH01].

In [GFS+01a], the authors presented five logical operators, namely mapping,

view, matching, clustering, and merging, for expressing data cleansing transforma-

tions. These operators extend the data transformations expressible with SQL99

and can be composed to express all the data transformations from data cleansing

in the research literature. Having a SQL-like language extension has the advantage

of increased usability if users are familiar with SQL. More information about the

five operators can be found there. Specially, a matching operator computes an

approximate join between two relations. More specifically, it computes a distance

value for each pair of tuples in the Cartesian product of the two input relations

using an arbitrary distance function. However, a matching operation can be im-
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plemented by different kinds of specialized algorithms and it also investigates the

optimization techniques that can be used to optimize the matching process. One

type of optimization is to use the multi-pass SNM to limit the number of records

compared.

An interactive framework known as Potter’s Wheel is proposed in [RH01]. It

offers graphical specification of data transformations through a spreadsheet-like

interface. The Potter’s Wheel allows the user to try various transformations inter-

actively, observe their effects on the data, and undo them if they are inappropriate.

In [LLL00], the authors presented a knowledge-based framework, IntelliClean,

for intelligent data cleaning. This framework takes on a systematic approach and

provides a complete strategy for standardizing, anomaly detection and removal,

and duplicate elimination in dirty databases.

Notice that the algorithms are fundamental for all data cleansing. For instance,

in [LLL00], multi-pass SNM is employed as its underlying detection system and

Record Similarity is used in its rule based system to determine fields similarity.

In [GFS+01a] edit distance is employed as its matching operator, and length fil-

ter [GIJ+01] and multi-pass SNM are used as its matching operator optimization.

Therefore, the high level languages and data cleansing frameworks will benefit from

the performance improvement of the algorithms.



Chapter 3

New Efficient Data Cleansing

Methods

3.1 Introduction

The detection methods introduced in Chapter 2 are independent from the compar-

ison methods. That is, any detection method can use any comparison method to

compare records. This independence gives freedom for applications but will result

in a loss of useful information, which can be used to save expensive comparisons.

Let Y+X denote a method in which Y is a detection method and X is a com-

parison method used in Y. Consider SNM+RS, if the size of the window is ω, then

every new record entering the window is compared with the previous ω - 1 records

with RS to find duplicate records. We note that when a new record entering the

window, all the records in the window have been compared with each other and

47
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should have achieved some knowledge on these comparisons. SNM+RS doesn’t

keep and make use of that comparison information and simply ignores it, which

results in lots of unnecessary comparisons. For example, for records A, B and C,

suppose that we have compared A with B, and B with C. SNM+RS will compare

A with C in any case. However, intuitively, if A and B are very similar, and B

and C are very similar/dissimilar, then A and C should be similar/dissimilar. If

the comparison method can well describe this case such that Sim(A,C), similar-

ity of A and C, can be bounded by Sim(A,B) and Sim(B,C), and the previous

two comparisons information (Sim(A,B) and Sim(B,C)) are saved and then ef-

ficiently used, there would be a chance to know whether A and C are duplicate or

not without actually comparing them. Since the comparisons are very expensive,

reducing the number of comparisons is therefore important in reducing the whole

execution time. Thus the problem now is how to save the comparison information

and use this information efficiently.

To solve this problem, in this chapter, we first introduce a new comparison

method, LCSS, based on the longest common subsequence. LCSS is efficient in

detecting duplicate records and satisfies the following two useful properties:

• Lower Bound Similarity Property (LP):

Sim(A,C) ≥ Sim(A,B) + Sim(B,C)− 1

• Upper Bound Similarity Property (UP):

Sim(A,C) ≤ 1− |Sim(A,B)− Sim(B,C)|

The proof for LCSS satisfying the LP and UP is given in Theorem 3.7. With
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the above properties, for any three records A, B and C, when Sim(A,B) and

Sim(B,C) are known, we can evaluate the lower bound and upper bound for

Sim(A,C) without actually comparing records A and C. Thus, these two prop-

erties provide a way to use previous comparison information (as similarity). To

save that information, we set the Anchor Record in detection method, which is a

particular record that keeps previous comparison information as a list of similari-

ties. Detail description for how to choose anchor record is given in Section 3.4.2.

The anchor record serves as an anchor (as the record B in LP and UP) for future

comparisons.

Based on the properties and anchor record, we then propose two new methods,

RAR1 and RAR2. They vary on the number of anchor records and their locations.

RAR1 has one anchor record and it is in the window. RAR2 has two anchor

records, one in the window and the other one outside the window.

The rest of the chapter is organized as follows. In the next section, we discuss

the properties for similarity methods. In Section 3.3, we introduce the compar-

ison method LCSS, and show that it satisfies the properties. In Section 3.4, we

propose two new methods: RAR1 and RAR2. In Section 3.5, we discuss the tran-

sitive closure problem and introduce conditional transitive closure. We give the

performance results in Section 3.6 and summary in Section 3.7.
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3.2 Properties of Similarity

Intuitively, for any three records A, B and C, if A and B are very similar, and B

and C are also very similar, then A and C should be similar. On the other hand,

if A and B are very similar/dissimilar, and B and C are very dissimilar/similar,

then A and C should be dissimilar.

Since similarity is used to describe the degree of similarity of records, similar

records should have large similarity and dissimilar records should have small simi-

larity. Thus a well-defined similarity method should be able to describe the above

intuitive cases. We describe the intuition in similarity function, Sim, as follows.

1. If Sim(A,B) and Sim(B,C) are large, Sim(A,C) should be relatively large.

2. If Sim(A,B) is large/small and Sim(B,C) is small/large, Sim(A,C) should

be relatively small.

Given two records A and B, with similarity Sim(A,B), let d(A,B) = 1 −

Sim(A,B). If the measure d satisfies the triangle inequality, then for any records

A, B and C, we have

• d(A,C) ≤ d(A,B) + d(B,C)

⇔ 1− Sim(A,C) ≤ 1− Sim(A,B) + 1− Sim(B,C)

⇔ Sim(A,C) ≥ Sim(A,B) + Sim(B,C)− 1

• d(A,C) ≥ d(A,B)− d(B,C)

⇔ 1− Sim(A,C) ≥ 1− Sim(A,B)− (1− Sim(B,C))

⇔ Sim(A,C) ≤ 1− (Sim(B,C)− Sim(A,B))
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Similarly, we can get

Sim(A,C) ≤ 1− (Sim(A,B)− Sim(B,C)).

Thus we have

Sim(A,C) ≤ 1− |Sim(A,B)− Sim(B,C)|.

Let

LB(A,C) = Sim(A,B) + Sim(B,C)− 1, and

UB(A,C) = 1− |Sim(A,B)− Sim(B,C)|.

We say a similarity method has triangle inequality property if for any three records

A, B and C, we have

• Lower Bound Similarity Property (LP):

Sim(A,C) ≥ LB(A,C)

• Upper Bound Similarity Property (UP):

Sim(A,C) ≤ UB(A,C)

For brevity, we write LB and UB as L and U respectively if B is understood.

The L(A,C) and U(A,C) are used to calculate the worst possible similarity and the

best possible similarity between A and C respectively. They are calculated from

the values Sim(A,B) and Sim(B,C) instead of from the comparison of A and C.

One natural idea is that if there is a comparison method that satisfies the above

two properties, we can employ them into the detection method, thus reducing

the number of comparisons and saving execution time. In the next section, we

propose an efficient comparison method that satisfies the two properties. Then in

Section 3.4, we show how to employ the two properties efficiently.
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3.3 LCSS

3.3.1 Longest Common Subsequence

The Longest Common Subsequence has been studied extensively and has many

applications, such as text pattern matching, speech recognition etc. Here, we

formally describe it and follow the notation used in [Lar].

Definition 3.1 A subsequence of a string s is any string, which can be created

from s by deleting some of the elements. Formally, if s is the string s1s2 · · · sk

then si1si2 · · · sip is a subsequence of s if ∀j ∈ {1, . . . , p} : ij ∈ {1, . . . k} and

∀j ∈ {1, . . . , p− 1} : ij < ij+1.

Definition 3.2 The longest common subsequences of two strings s = s1s2 · · · sk

and t = t1t2 · · · tm are the subsequences of both s and t with maximal length.

The longest common subsequences of two strings are not unique but the length

of all longest common subsequences are the same. We use lcs(s, t) to denote the

(unique) length of the longest common subsequences of strings s and t.

Lemma 3.3 For any three strings x, y and z, we have

lcs(x, y) + lcs(y, z) ≤ |y|+ lcs(x, z).

Proof: Let Sxy be the longest common subsequence of strings x and y. Similar

for Sxz and Syz. Let y
′ = y−Sxy, that is, y

′ is the subsequence of y with removing

Sxy from it. Hence, |y′| = |y| − |Sxy|. Thus,

lcs(x, y) + lcs(y, z) ≤ |y|+ lcs(x, z)
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⇔ |Sxy|+ |Syz| ≤ |y|+ |Sxz|

⇔ |Syz| ≤ |y| − |Sxy|+ |Sxz|

⇔ |Syz| ≤ |y′|+ |Sxz|.

Since y′ = y − Sxy, we have |Syz| ≤ |Sy′z| + |SSxyz|. Since y′ is a subsequence of y

and Sxy is a subsequence of x, we then have |Sy′z| ≤ |y′| and |SSxyz| ≤ |Sxz|. Hence

|Syz| ≤ |y′|+ |Sxz|.

Thus the theorem is proved.

To get a similarity value between 0.0 and 1.0, post-normalization by the max-

imal length of the compared strings is quite popular. Let lcsp(s, t) denote the

post-normalization of s and t, i.e., lcsp(s, t) = lcs(s, t)/max{|s|, |t|}. If |s| ≥ |t|,

we have lcsp(s, t) = lcs(s, t)/|s|.

Let dp(s, t) = 1− lcsp(s, t). If |s| ≥ |t|, we have dp(s, t) = 1− lcs(s, t)/|s|.

Theorem 3.4 For any three strings x, y and z, we have

dp(x, z) ≤ dp(x, y) + dp(y, z).

Proof: For simplicity, we write dp as d in the proof. Without loss of generality,

we assume |x| ≥ |z|. There are only the following three cases for x, y and z:

(1) |x| ≥ |y| ≥ |z|

d(x, y) + d(y, z) = 1− lcs(x, y)/|x|+ 1− lcs(y, z)/|y|

= 1− lcs(x, y)/|x|+ (|y| − lcs(y, z))/|y|

≥ 1− lcs(x, y)/|x|+ (|y| − lcs(y, z))/|x|

= 1− (lcs(x, y) + lcs(y, z)− |y|)/|x|
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≥ 1− lcs(x, z)/|x| = d(x, z)

(2) |x| ≥ |z| ≥ |y|

d(x, y) + d(y, z) = 1− lcs(x, y)/|x|+ 1− lcs(y, z)/|z|

= 1− lcs(x, y)/|x|+ (|z| − lcs(y, z))/|z|

≥ 1− lcs(x, y)/|x|+ (|y| − lcs(y, z))/|x|

= 1− (lcs(x, y) + lcs(y, z)− |y|)/|x|

≥ 1− lcs(x, z)/|x| = d(x, z)

(3) |y| ≥ |x| ≥ |z|

d(x, y) + d(y, z) = 1− lcs(x, y)/|y|+ 1− lcs(y, z)/|y|

= 1− (lcs(x, y) + lcs(y, z)− |y|)/|y|

≥ min{1, 1− (lcs(x, y) + lcs(y, z)− |y|)/|x|}

≥ min{1, 1− lcs(x, z)/|x|}

≥ 1− lcs(x, z)/|x| = d(x, z)

Thus the theorem is proved.

3.3.2 LCSS and its Properties

Based on the normalized longest common subsequence, in the following, we pro-

pose the new comparison method, LCSS , and show that it satisfies the similarity

properties.

To indicate the relative importance of fields, field weightages are introduced on

all fields. The sum of all field weightages equals to 1. Field weightages are also

used in RS.
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Suppose a database has fields F1, F2, · · ·, Fn, and the field weightages are W1,

W2, · · ·, Wn respectively,
∑n

i=1Wi = 1. To compute the similarity of records, we

first compute the similarity of the corresponding field.

Given a field F , the field similarity for records A and B is given as:

SimLCSS
F (A,B) = lcsp(AF , BF ) (3.1)

where AF and BF are the strings in the filed F of A and B respectively.

Based on the field similarities, the similarity for records A and B is given as:

SimLCSS(A,B) =
n

∑

i=1

(SimLCSS
Fi

(A,B)×Wi) (3.2)

If LCSS is understood, we drop it from SimLCSS and SimLCSS
F for brevity. The

similarity for any two records is between 0.0 and 1.0. Two records are treated as a

duplicate pair if their similarity exceeds a certain threshold, denoted as σ (such as

0.8). The computation of threshold is a knowledge intensive activity and demands

experimental evaluation.

Let d(A,B) = 1 − Sim(A,B) and dF (A,B) = 1 − SimF (A,B). From the

definitions of SimF and Theorem 3.4, we immediately have the following lemma.

Lemma 3.5 For any field F and any three records A, B and C, we have

dF (A,C) ≤ dF (A,B) + dF (B,C).

Theorem 3.6 For any three records A, B and C, we have

d(A,C) ≤ d(A,B) + d(B,C).
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Proof: d(A,B) + d(B,C)

= 1− Sim(A,B) + 1− Sim(B,C)

=
∑n

i=1Wi−
∑n

i=1(SimFi
(A,B)×Wi)+

∑n
i=1Wi−

∑n
i=1(SimFi

(B,C)×Wi)

=
∑n

i=1((1− SimFi
(A,B))×Wi) +

∑n
i=1((1− SimFi

(B,C))×Wi)

=
∑n

i=1((dFi
(A,B) + dFi

(B,C))×Wi)

≥ ∑n
i=1(dFi

(A,C)×Wi) by Lemma 3.5

=
∑n

i=1((1− SimFi
(A,C))×Wi)

=
∑n

i=1Wi −
∑n

i=1(SimFi
(A,C)×Wi)

= 1− Sim(A,C)

= d(A,B)

As shown in Section 3.2, LP and UP are derived from the triangle inequality

of the measure d. Thus we have the following theorem immediately.

Theorem 3.7 LCSS satisfies the properties LP and UP.

3.4 New Detection Methods

In this section, we propose two new detection methods, RAR1 and RAR2, by

efficiently employing the properties LP and UP that the comparison method LCSS

satisfies. Notice that existing detection methods, such as SNM, do not provide a

way to use the properties.

We say that a record is an anchor record if the record has a list of similarities

with all the other records in the current window. If the anchor record is in the
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current window, we call it an inAnchor record. Otherwise, we call it an outAnchor

record.

In this chapter, when we refer to the similarity of records, we always mean that

the similarity is computed by LCSS.

3.4.1 Duplicate Rules

Suppose that the similarity threshold is σ, 0 ≤ σ ≤ 1. Given a record B, for any

two records A and C, we have

• Duplicate Rule (D-rule):

If LB(A,C) ≥ σ, records A and C are duplicate.

• Non-Duplicate Rule (ND-rule):

If UB(A,C) < σ, records A and C are not duplicate.

The correctness of D-rule and ND-rule is from Theorem 3.7. Easily, given the

similarity threshold σ, since LCSS satisfies the properties LP and UP, if L(A,C) ≥

σ, by LP, we then have Sim(A,C) ≥ σ, i.e., records A and C are detected as

duplicate. Thus, D-rule is correct. Similarly, ND-rule is correct by UP.

D-rule/ND-rule can determine whether two records are duplicate/non-duplicate

without actually comparing them. The following example (Example 3.1) shows one

case that the two rules can save comparisons.

Example 3.1 Suppose σ = 0.8. For three records A, B and C, if Sim(A,B) =

0.9, and Sim(B,C) = 0.9, then L(A,C) = 0.9 + 0.9 − 1 = 0.8. From D-rule, we
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know that records A and C are detected as a duplicate pair. If Sim(A,B) = 0.9,

and Sim(B,C) = 0.5, then U(A,C) = 1+0.5−0.9 = 0.6. From ND-rule, we have

that records A and C are not treated as a duplicate pair.

The following theorem shows that the two duplicate rules are consistent.

Theorem 3.8 For any three records A, B and C, they cannot satisfy both D-rule

and ND-rule.

Proof: On the contrary we assume that there are three records A, B and C,

which satisfy both D-rule and ND-rule. Without loss of generality, suppose that

Sim(A,B) ≤ Sim(B,C), then from D-rule, we have

Sim(A,B) + Sim(B,C)− 1 ≥ σ (3.3)

and from ND-rule, we have

1 + Sim(A,B)− Sim(B,C) < σ (3.4)

From Equations (3.3) and (3.4), we get

Sim(A,B) + Sim(B,C)− 1 > 1 + Sim(A,B)− Sim(B,C)

⇔ Sim(B,C) > 1,

which is a contradiction with the fact that the similarity of any two records is less

than or equal to 1.
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Corollary 3.9 For any three records A, B and C, there are only three possibilities

for them: 1) they satisfy D-rule but do not satisfy ND-rule, or 2) they satisfy ND-

rule but do not satisfy D-rule, or 3) they do not satisfy D-rule and ND-rule.

3.4.2 RAR1

The D-rule and ND-rule show how the properties LP and UP can be employed.

Now, we propose the new method: RAR1 (Reduction using one Anchor Record).

The anchor record is an inAnchor record.

Like SNM, RAR1 can also be summarized in three phases: Create Key, Sort

Data and Merge. The previous two phases are exactly the same with those in

SNM. We show the Merge phase, which is divided into two stages, as follows. The

algorithm is also shown in Figure 3-1.

1. Initialization Stage: Suppose the window size is ω. We first read the front ω

records of the sorted dataset into the window and do pair-wise comparisons

on the ω records. We then set the last record as the inAnchor record and

compute the similarity list for it.

2. Scan Stage: This stage (see Figure 3-2) can be divided into two parts: com-

parison decision and anchor record choosing.

(a) Comparison decision: For current window of records, there is an inAn-

chor record with a similarity list. We denote the inAnchor record

as B. When a new record, say C, moves into the window, we first
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compare C with B and get the similarity, Sim(B,C). We also add

Sim(B,C) into the similarity list. After that, for each record in the

current window, say A, with the Sim(A,B) in the similarity list of B,

if LB(A,C) = Sim(A,B) + Sim(B,C) − 1 ≥ σ, we treat C and A

as duplicate and no comparison on them is required (D-rule). Else if

UB(A,C) = 1 − |Sim(A,B) − Sim(B,C)| < σ, we treat C and A as

non-duplicate and no comparison on them is require either (ND-rule).

Otherwise, we compare them directly to determine whether they are

duplicate or not.

(b) Anchor record choosing: When the first record in the window slides out

of the window and it is not the inAnchor record, we simply remove its

similarity from the similarity list, since it is out-of-date. If the first

record is the inAnchor record, with sliding it out of the window we

choose the last record in the window as the new inAnchor record. We

also compare the last record with all the other records in the current

window and compute the similarity list for the new inAnchor record.

The main difference between SNM and RAR1 is as follows. While SNM com-

pares the new record entering the current window with all previous records in the

window, RAR1 will first check whether the new record with previous records are

duplicate or not with D-rule and ND-rule. For those records having been deter-

mined as duplicate or non-duplicate with the new record by these two rules, there

is no need to compare them with the new record. Thus, with D-rule and ND-rule,
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Algorithm: merge phase of RAR1.

Input: Sorted database D, window size ω, similarity threshold σ

Output: Duplicate records

Procedure:

1. Move the first ω records of D into the window, and pair-wise compare them;

2. Set the anchor record, denoted by B, as the last record in the window;

3. Set the SimilarityList, which keeps a list of similarities of B with the other

records in the window;

4. while (not at the end of D)

5. {

6. Slide the first record F in the window out of the window;

7. Read the next record C in D into the window;

8. if ( B != F ) //the anchor record isn’t the sliding record

9. {

10. Remove the first similarity from the SimilarityList;

11. Compare C with B and get the similarity: Sim(B,C);

12. for (each record A in the window with Sim(A,B) in the SimilarityList)

13. {

14. LB(A,C) = Sim(A,B) + Sim(B,C)− 1;

15. UB(A,C) = 1− |Sim(A,B)− Sim(B,C)|;

Continuing ...
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Continued

16. if (LB(A,C) ≥ σ)

17. records A and C are duplicate; //D-rule

18. else if (UB(A,C) < σ)

19. records A and C are non-duplicate; //ND-rule

20. else

21. compare records A with C to decide whether they are duplicate;

22. }

23. Add the Sim(B,C) into the tail of SimilarityList;

24. }

25. else //the anchor record sliding out of the window

26. {

27. Set the anchor record B as C;

28. Empty the SimilarityList;

29. Compare B with all the other records in the window to detect duplicate

records, and add the similarities into the SimilarityList as the order in

the window;

30. }

31. }

Figure 3-1: The algorithm of merge phase of RAR1.
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inAnchor similarityList

Figure 3-2: The merge phase of RAR1.

RAR1 will reduce a lot of record comparisons. Notice that we only use D-rule and

ND-rule in RAR1, thus RAR1 can employ any comparison method that satisfies

the properties LP and UP, such as LCSS.

Given three records A, B and C, and given Sim(A,B) and Sim(B,C), in SNM,

a comparison on record A and record C is always required to determine whether

they are duplicate or non-duplicate. However, in RAR1, we can calculate L(A,C)

and U(A,C) for records A and C without comparing records A and C. When

1) L(A,C) ≥ σ or, 2) U(A,C) < σ, we treat records A and C as duplicate or

non-duplicate and there is no comparison on them. In this case, RAR1 takes one

less comparison than SNM does.

In the Example 3.2, we show how RAR1 works and how the LP and UP are

used in RAR1 to save comparisons.

Example 3.2 Suppose σ = 0.8. In Table 3.1, records A, B and C represent the
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same entity and record B has a small type error on the name field. Suppose that the

field weightages for Name, Gender and Dept. are 0.5, 0.25 and 0.25 respectively,

and that the window size is 5 and record A is chosen as the inAnchor record. Now

we consider the following procedure in RAR1.

1. Record B moves into the window. It is compared with record A and we get

Sim(A,B) = 0.5× 7/8+0.25× 1+0.25× 1 = 0.94 > σ. Thus records A and

B are duplicate.

2. Record C moves into the window. It is compared with record A and we

get Sim(A,C) = 1. Thus records A and C are duplicate. Then we have

Sim(B,C) ≥ L(B,C) = Sim(A,B)+Sim(A,C)−1 = 0.94+1−1 = 0.94 >

σ. Hence, we obtain records B and C as a duplicate pair and no comparison

on them is required.

3. Record D moves into the window. We get Sim(A,D) = 0.5× 0 + 0.25× 1 +

0.25× 1 = 0.5 < σ. Thus we know that records A and D are non-duplicate.

Then we have Sim(B,D) ≤ U(B,D) = 1 − |Sim(A,B) − Sim(A,D)| =

1 − |0.94 − 0.5| = 0.56 < σ. Hence, we know that records B and D are

non-duplicate and no comparison on them is required. Similarly, we also

know that records C and D are non-duplicate and no comparison on them is

required either.

From the above example, for the four records in Table 3.1, under SNM, there

are 6 comparisons. However, in RAR1 only 3 comparisons are required. Hence
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Name Gender Dept.

A li zhao M CS

B li zhai M CS

C li zhao M CS

D sun peng M CS

Table 3.1: Four records in the same window.

RAR1 requires 3 comparisons less than SNM.

Let <A, B> denote records A and B as a duplicate pair, DR(SNM) and

DR(RAR1) be the duplicate results of SNM and RAR1 respectively. We have

the following theorem.

Theorem 3.10 If we run SNM and RAR1 at the same window size, and with

LCSS as the comparison method, we have DR(RAR1) = DR(SNM).

Proof: We first prove DR(RAR1) ⊆ DR(SNM). For any duplicate pair <A,C>

in DR(RAR1), it can only be obtained in the following two ways:

1. If <A,C> is obtained with Sim(A,C) ≥ σ, then it is in DR(SNM) since we

run SNM and RAR1 at the same window size.

2. If <A,C> is obtained with the D-rule, then there is an anchor record B, such

that LB(A,C) ≥ σ. Since Sim(A,C) ≥ LB(A,C), we have Sim(A,C) ≥ σ.

So <A,C> is in DR(SNM).
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So DR(RAR1) ⊆ DR(SNM). Now we prove DR(SNM) ⊆ DR(RAR1). For any

duplicate pair <A,C> in DR(SNM), we have Sim(A,C) ≥ σ. Then for any

record B, UB(A,C) ≥ Sim(A,C) ≥ σ, that is, ND-rule is not satisfied in RAR1.

If D-rule is satisfied, we have <A,C> in DR(RAR1). Otherwise, we will compare

records A and C and get Sim(A,C) ≥ σ. So <A,C> is also in DR(RAR1). Thus

DR(RAR1) ⊆ DR(SNM).

3.4.3 RAR2

Now we propose another method: RAR2 (Reduction using two Anchor Records).

One anchor record is an inAnchor record and the other is an outAnchor record.

The Merge phase is shown in the following.

1. Initialization Stage: Suppose the window size is ω. We first read the front ω

records of the sorted dataset into the window and do pair-comparisons on the

ω records. We then set the last record as the inAnchor record and compute

the similarity list for it. Lastly, we set the outAnchor record as NULL and

the similarity list for the outAnchor record as empty.

2. Scan Stage: Similar to RAR1, this stage (see Figure 3-3) can also be divided

into two parts: comparison decision and anchor record choosing.

(a) Comparison decision: For current window of records, there is an inAn-

chor record and an outAnchor record. We denote the inAnchor record

and outAnchor record as IR and OR respectively. Each anchor record
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keeps a list of similarity with all the other records in the current window.

When a new record, say L, moves into the window, we first compare

L with IR. We get the similarities, Sim(L, IR), and add it into the

similarity list of IR. If the record OR is not NULL, we also compare L

with OR and add Sim(L,OR) into the similarity list of OR. After that,

for each record in the current window, say A, we first use the inAnchor

record to determine whether L and A are duplicate or non-duplicate

like RAR1 does. If it cannot be determined with the inAnchor record

and the outAnchor is not NULL, we then try to use the outAnchor

record. If it still cannot be determined, we compare the records directly

to determine whether they are duplicate or not.

(b) Anchor record choosing: When the first record in the window slides out

of the window and it is not the inAnchor record, we simply remove the

first similarity from the similarity list of IR and OR. If the first record

is the inAnchor record, we set it as the outAnchor record and slide it out

of the window. The original outAnchor record is discarded. We then

choose the last record in the window as the new inAnchor record. We

also compare the last record with all the records in the current window

and compute the similarity list for the new inAnchor record.

We have shown the two methods, RAR1 and RAR2. The main difference

between them is on how many anchor records they have. RAR2 has two anchor

records while RAR1 has only one anchor record. In RAR2, when a new record
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inAnchor similarityList�
� �

similarityList
outAnchor

Figure 3-3: The merge phase of RAR2.

entering the current window, it is first compared with the two anchor records,

which introduces one more comparison than RAR1 does. However, in RAR2,

for each record in the current window, the chance of determining the new record

as a duplicate record or not is increased, which produces more chance to reduce

comparisons than RAR1 does. The performance result also proves this.

Since the outAnchor is outside the window and the last record in the window

will compare with it, RAR2 will obtain a few more duplicate pairs than RAR1

does if both run at the same window size.

Let DR(RAR2) be the duplicate result of RAR2. We have the following theo-

rem immediately.

Theorem 3.11 If we run RAR1 and RAR2 at the same window size, and with

LCSS as the comparison method, we have DR(RAR1) ⊆ DR(RAR2).
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As SNM is the core scheme of Clustering SNM, Multi-pass SNM and DE-SNM,

similarly, we can propose Clustering RAR1, Multi-pass RAR1, and DE-RAR1 by

RAR1, and Clustering RAR2, Multi-pass RAR2, and DE-RAR2 by RAR2.

3.4.4 Alternative Anchor Records Choosing Methods

In RAR1, when the inAnchor record slides out of the current window, the last

record in the window (the record just entering the window) is chosen as the new

inAnchor record and compared with the other records in the window to set its

similarity list. In this section, we discuss alternative methods for choosing the

anchor record.

Specifically, we have the following four methods to choose the inAnchor record.

1. The last record : choose the last record in the window as the new inAnchor

record (the method RAR1 used).

2. The first record : choose the first record in the window as the new inAnchor

record.

3. A random record : choose a record in the window randomly with given dis-

tributions, e.g., uniform distribution.

4. The record with specific properties : choose the record in the window with

some specific properties. One such is to choose the record with the most

number of comparisons with other records in the current window. This will

be discussed with more details in the following.
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inAnchor

similarityList

similarityList

Figure 3-4: The most record method.

However, the second method (the first record) is obviously not a good solution.

Since when the first record is chosen as the new inAnchor record, after one turn, it

slides out of the window and a new inAnchor record should be chosen again. Thus

“the first record” method will result in a lot of inAnchor record updates, which

will affect the efficiency largely. Similarly, the third method (a random record) is

not a good policy as well.

Consider the fourth method, the record with specific properties. We first ex-

plain this method in more details.

In this method, instead of only the anchor record having the similarity list in

RAR1, each record in the window has an associated similarity list (see Figure 3-4).

Differing with the similarity list of the inAnchor record, these similarity lists of
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other records may not be full, i.e., for each record (not the inAnchor record), its

list only contains the similarities of the record with other records compared. When

the inAnchor record slides out of the window, we choose the record that has the

most number of similarities in its list as the new inAnchor record. We call this

method “the most record”. To avoid updating the inAnchor record too often, user

may set a parameter α (1 ≤ α ≤ ω) to limit the position of the new anchor record

in the window, which means that the new inAnchor record must have position in

the window larger than α.

The advantage of this method is that it has less comparison than that of “the

last record” method to set the similarity list when the inAnchor record is updated.

With the last record, we need to set the similarity list by comparing the last record

with all the other records in the window. While with the most record, we only need

to compare the record with the other records that are not compared previously.

Since the record has the most number of similarities, generally, only a few new

comparisons are required to set the similarity list.

The disadvantage of this method is that it is more complicated than “the last

record” method. Thus it needs more time to implement it. Further, we need to

update the similarity lists for all records in the window, while we only need to

update the similarity list for the inAnchor record in “the last record” method.

Moreover, more updates on the inAnchor record are required.
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3.5 Transitive Closure

The computing of transitive closure is an option in some data cleaning methods,

but an inherent requirement in some other data cleansing methods. The use of

the transitive closure to merge “similar” pieces of information can also be found in

the study of fuzzy set [Kre95]. Let Equal(a, b) denote “a is identical to b”, where

a and b are any two objects. Traditional mathematical description of identity is

formalized as follows:

• Reflexive: every object is identical to itself, i.e., Equal(a, a);

• Symmetric: if a is identical to b, then b is identical to a, i.e., Equal(a, b)↔

Equal(b, a);

• Transitive: if a is identical to b, and b is identical to c, then a is identical to

c, i.e., Equal(a, b) ∧ Equal(b, c)→ Equal(a, c).

Notice that the semantics of equivalence of objects (records) satisfies the three

conditions. But as stated in Section 1.1, the solution to the semantics problem

is based on the syntax of records, which is only an approximate solution. Thus,

the use of similarity-based and rule-based comparison methods does not guaran-

tee all the three conditions will hold true. For similarity-based methods, by the

definition (Definition 1.1) of the similarity function Sim, Sim(A,A) = 1.0 ≥ σ

and Sim(A,B) = Sim(B,A), the reflexive and symmetric conditions are always

true. However, the transitive condition does not necessarily hold. It is plausi-

ble to find three records A, B, C such that Equal(A,B) and Equal(B,C) but
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¬Equal(A,C). That is, Sim(A,B) ≥ σ and Sim(B,C) ≥ σ but Sim(A,C) < σ.

For these cases, in reality, it could be either Equal(A,C) or ¬Equal(A,C). With

transitive closure, we assume ¬Equal(A,C) is incorrect and assert Equal(A,C).

Hence, transitive closure increases the number of correct duplicate pairs, and also

(possibly) increases the number of false positives.

If the user determining transitive closure is not warranted for his application,

he could ignore the transitive closure phase completely. However, this will exclude

the increase of the correct duplicate pairs introduced by transitive closure. As

an alternative, we introduce conditional transitive closure with D-rule, with which

user may conduct. If <A,B> and <B,C> are obtained as duplicate pairs, then

the transitive closure are conducted only when Sim(A,B) + Sim(B,C) − 1 ≥ σ,

i.e., records A and C are treated as duplicated. Otherwise, records A and C will

not treated as duplicated. For the later case, there should be either false positives

in <A,B> and <B,C> or correctness in <A,C>. To solve this issue, further

pruning on these records can be employed. In Section 4.4, two pruning methods

are discussed in details.

In the following, we show that the conditional transitive closure with D-rule is

stronger than the normal transitive closure (the “is a duplicate of” relationship).

The D-rule, L(A,C) ≥ σ, means that there is an anchor record B such that

Sim(A,B) + Sim(B,C)− 1 ≥ σ

⇔ Sim(A,B) + Sim(B,C) ≥ 1 + σ

Since the similarity of records is less than or equal to 1, from the above formula,
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we know that Sim(A,B) ≥ σ and Sim(B,C) ≥ σ. Thus, L(A,C) ≥ σ implies

that there is an anchor record B such that records A and B is obtained as a

duplicate pair, and records B and C is also obtained as a duplicate pair. Under

the transitive closure, records A and C will also be obtained as a duplicate pair.

Thus, conditional transitive closure with D-rule is stronger than transitive closure.

With this conditional transitive closure, we can achieve the increase of the

number of correct duplicate result and exclude extra false positives to some extends,

thus improving the accuracy. In [LLL00], the authors also introduce a similar

technique. Records are duplicate with certainty factor cf , 0 ≤ cf ≤ 1, in its rule-

based comparison system. Given duplicate pairs, <A,B> and <B,C>, transitive

closure is only conducted on them when the times of the certainty factors of both

is larger than a given threshold.

In the following, we assume that the transitive closure is always computed.

With this assumption, we indicate that RAR1 and RAR2 can work with any other

comparison method to provide a tradeoff between correctness and efficiency, but

will not introduce more false positives.

For simplicity, we assume that the comparison method is Record Similarity,

which is efficient and has good performance in detecting duplicate records. How-

ever, it does not satisfy the properties LP and UP. Thus, the D-rule and ND-rule

are not satisfied. The following example shows that three records do not satisfy

the properties LP and UP with Record Similarity.

Example 3.3 Consider the three records in Table 3.2. For brevity, we assume
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Record Name

A li li li

B li zhao

C zhao zhao zhao

Table 3.2: Three records that do not satisfy LP and UP with Record Similarity.

that the records only have a “Name” field. Easily, we have SimRS(A,B) = 4/5,

SimRS(B,C) = 4/5, and SimRS(A,C) = 0. However, LB(A,C) = SimRS(A,B)+

SimRS(B,C)−1 = 3/5. Thus SimRS(A,C) < LB(A,C). So LP is not satisfied by

Record Similarity. Similarly, UA(B,C) = 1−|SimRS(A,B)−SimRS(A,C)| = 1/5.

Thus SimRS(B,C) > UA(B,C). So UP is not satisfied by Record Similarity as

well.

Hence, RAR1 and RAR2 with Record Similarity may introduce extra false

positives and miss correct duplicate pairs as compared to SNM+RS. As we have

shown that D-rule is stronger than transitive closure above, RAR1 introduces less

false positives than transitive closure does.

Between the two duplicate rules, D-rule and ND-rule, only D-rule will introduce

duplicate pairs. That is, for two duplicate records, they are only determined as

duplicated either by D-rule or direct comparison.

Let TC(DR(SNM)) and TC(DR(RAR1)) be the transitive closure of DR(SNM)

and DR(RAR1) respectively. We have the following theorem.
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Theorem 3.12 If we run SNM and RAR1 at the same window size with Record

Similarity as the comparison method, we have DR(RAR1) ⊆ TC(DR(SNM)).

Proof: For any duplicate pair <A,C> in DR(RAR1), it can only be obtained in

the following two ways:

1. If <A,C> is obtained with direct comparison, i.e., Sim(A,C) ≥ σ, then it

is in DR(SNM) since SNM and RAR1 are run at the same window size. So

<A,C> is in TC(DR(SNM)),

2. If <A,C> is obtained with D-rule, i.e., L(A,C) ≥ σ, then there is an inAn-

chor record B, such that Sim(A,B) ≥ σ and Sim(B,C) ≥ σ. Thus <A,B>

and <B,C> are in DR(SNM). So <A,C> is in TC(DR(SNM)).

So we have DR(RAR1) ⊆ TC(DR(SNM)).

Since Record Similarity does not satisfy the properties LP and UP, with Record

Similarity as comparison method, RAR1 cannot guarantee to detect the same result

as SNM does. However, the above theorem says that under transitive closure, with

Record Similarity, RAR1 will not introduce more false positives than SNM does.

Corollary 3.13 TC(DR(RAR1)) ⊆ TC(DR(SNM)).

As shown in next section, RAR1 takes less comparisons than SNM does. Hence,

if the comparison method Record Similarity is used, RAR1+RS will provide a

tradeoff between accuracy and efficiency as compared to SNM+RS. Generally,

RAR1+RS obtains less (correct and false) duplicate pairs and takes less time,

while SNM+RS obtains more duplicate pairs and takes more time.
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3.6 Experimental Results

3.6.1 Databases

We test the performance on a small real database, company; and a set of large

synthetic databases, customers.

We get the company database from the authors of [LLL00]. The company

database has 856 records and each record has 7 fields: company code, company

name, first address, second address, currency used, telephone number and fax

number.

All the customer databases are generated automatically by a database generator

that allows us to perform controlled studies. This database generator provides a

large number of parameters including, the size of the database, the percentage of

duplicate records in the database, the amount of error to be introduced in the

duplicated records in any of the attribute fields, and number of duplicates of per

record. Each record generated consists of the following 13 fields: social security

number, first name, last name, gender, marital status, race, nation, education,

home phone, business name, business address, occupation and business phone. The

error introduced in the duplicate records range from small typographical changes,

to large changes of some fields. Each record may be duplicated more than once

with Zipf distribution.

Zipf distribution [Li92, Lyn88, Ros98] is commonly used to represent highly

skewed data. It gives high probability to small numbers of duplicates, but still give
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non-trivial probability to large numbers of duplicates. It is also used in [ME97] to

generate databases. A Zipf distribution has two parameters 0 ≤ θ ≤ 1 and 1 ≤M .

For 1 ≤ i ≤ M the probability of i duplicates is ciθ−1 where the normalization

constant c = 1/
∑M

i=1 i
θ−1. Having a maximum number of duplicatesM is necessary

because
∑∞

i=1 i
θ−1 diverges if θ ≥ 0.

To determine baseline accuracy and efficiency of our methods, we generate

a base customer database, named customer base, as follows. We first generate a

clean database with 5,000,000 records. Then we add additional 2,390,000 duplicate

records into the clean database.

3.6.2 Platform

All the databases are stored as relational table in Microsoft SQL server 7.0, which

runs on windows 2000. The experiments on the databases are performed on a 500

MHz Pentium II machine with 256 MB of memory. The SQL server was connected

with ODBC.

3.6.3 Performance

In this section, we first compare LCSS with Record Similarity. Then we compare

RAR1, RAR2 with SNM. We choose Record Similarity and SNM respectively for

our performance evaluation because of their efficiency and popularity.
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Database
SNM+LCSS SNM+RS

DRLCSS ∩DRRS
DRLCSS∩DRRS

DRLCSS

Total F. P. Total F. P.

company 45 1 45 1 45 100%

customer base 2315225 862 2315242 873 2315163 99.997%

Table 3.3: Duplicate result obtained by SNM+LCSS and SNM+RS at window size
10 on the company and customer base databases.

Comparing LCSS with Record Similarity

To compare LCSS with Record Similarity, we choose SNM as the detection method.

We run SNM+LCSS and SNM+RS on the company and customer base databases

to understand the efficiency and accuracy of the comparison method LCSS.

We first run both methods at window size 10. The duplicate result is shown in

Table 3.3. “F. P.” in the column under each method denotes the false positives of

than method. The DRLCSS and DRRS denote the duplicate result obtained by the

method SNM+LCSS and SNM+RS respectively. From this table we can see that

the comparison method LCSS is as efficient as RS in capturing duplicate records.

• The duplicate results obtained by both methods on the company database

are exactly the same. Both obtain exactly the same 45 duplicate pairs, among

which one pair is false positive.

• The duplicate results obtained by both methods on the customer base database

are almost the same. SNM+LCSS and SNM+RS obtain 2,315,225 and
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Window Size SNM+LCSS SNM+RS

5 4349 4610

10 8178 8751

15 12010 12855

20 15783 16893

25 19583 21002

30 23413 25051

Table 3.4: The time in seconds taken by SNM+LCSS and SNM+RS on the cus-
tomer base database.

2,315,242 duplicate pairs respectively, among which 2,315,163 duplicate pairs

are the same in both methods. That is, more than 99.997% duplicate pairs

obtained by both methods are the same. Further, LCSS gets a few less false

positives than Record Similarity.

We then run both methods from window size 5 to 30 on the customer base

database to test the efficiency. The time result is shown in Table 3.4. From the

table, we can see that LCSS is slightly faster than RS for all window sizes. Take

the result at the window size 10 as an example:

• SNM+LCSS takes 8178 seconds and SNM+RS takes 8751 seconds. The time

taken by SNM+LCSS is about 8% less than that taken by SNM+RS.

Thus, the results from Table 3.3 and Table 3.4 show that the comparison
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method LCSS is as efficient as RS in capturing duplicate records and slightly

faster than RS.

Comparing RAR1, RAR2 with SNM

We run the methods RAR1, RAR2 and SNM on the customer databases to un-

derstand the efficiency (the comparisons saved) of our methods. We test them

on databases with different window sizes, duplicate ratios, Zipf distributions, and

database sizes. We employ LCSS as the comparison method. Note that from The-

orem 3.10 and Theorem 3.11, we know that SNM and RAR1 obtain exactly the

same duplicate result, and RAR2 obtains slightly more duplicate pairs than RAR1

does. Thus, we only show the result on the efficiency of these methods.

Varying Window Sizes

We run all methods from window size 5 to 30 on the customer base database.

The results on comparisons are shown in Table 3.5, Figure 3-5 and Figure 3-6.

Figure 3-5 shows the number of comparisons taken by all methods and Figure 3-6

shows the compassion saved (in percentage) by RAR1 and RAR2 compared with

SNM.

From these table and figures, we can see that the comparisons taken by RAR1

and RAR2 are much less than that taken by SNM for all the window sizes, and the

reduction in comparisons will increase when the window size increases. We see that

RAR1 saves comparisons from 31.48% to 38.72% and RAR2 saves comparisons

from 26.98% to 55.88% when the window size increases from 5 to 30. RAR2
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Win. Size SNM RAR1 RAR2 SNM−RAR1
SNM

SNM−RAR2
SNM

5 36988430 25343994 27007133 31.48% 26.98%

10 73976835 47254889 41854977 36.12% 43.42%

15 110965215 69394158 56083595 37.46% 49.46%

20 147953570 91557896 70072186 38.12% 52.64%

25 184941900 113799572 84049999 38.47% 54.55%

30 221930205 135996998 97918994 38.72% 55.88%

Table 3.5: On the customer base database: the number of comparisons taken by
SNM, RAR1 and RAR2.

takes more comparisons than RAR1 does when the window size is 5, but takes far

less comparisons for window size 30. It is reasonable since there are two anchor

records in RAR2 and each new record entering the window will compare with the

two anchor records first, while in RAR1 there is only one comparison with the

inAnchor record. For small window size, the two additional comparisons in RAR2

may not save more comparisons than one additional comparison in RAR1. While

for large window size, the two additional comparisons can save more comparisons

than one additional comparison. As shown in Figure 3-6, when the window size

increases, RAR2 saves more and more comparisons than RAR1 does.
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Varying Duplicate Ratios

To understand whether or how different duplicate ratios will affect the efficiency

of our methods, we run RAR1, RAR2 and SNM on 5 databases with different

duplicate ratios, 1%, 2%, 5%, 10% and 20%, respectively. The duplicate ratio is

the ratio of the number of records which have duplicate records in the database to

the total number of records of the database. Each database has totally 1,000,000

records. We run all methods at the window size of 10.

Figure 3-7 gives the result. It clearly shows that both RAR1 and RAR2 are

much more efficiency than SNM for all duplicate ratios. The dirtier the database is,

the more comparisons both RAR1 and RAR2 save. This is because the database is

dirtier, the D-rule and ND-rule are mostly likely to arise. However, the duplicate

ratio affects the result little.

Varying Number of Duplicates Per Record

This experiment uses databases where the records are duplicated according to the

Zipf distribution with different θ values, 0.1, 0.2, 0.4, and 0.8, respectively. The

maximum number of duplicates per record is kept constant at 10. Each database

has 1,000,000 records, and we run all methods at the window size of 10.

The result of the this experiment is shown in Figure 3-8 and the analysis is

similar to the above test.
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Figure 3-5: Varying window sizes: the number of comparisons taken by SNM,
RAR1 and RAR2.

Scalability: Varying Database Sizes

At last, we run RAR1 RAR2 and SNM on 4 databases with different number of

records, 1, 2, 5 and 10 × 106 records respectively, to test the scalability. Each

database has duplicate ratio 0.2. We run all methods at window size of 10.

The results are given in Figure 3-9. All methods show linear scalability with

the number of records from 1M to 10M. However, our methods are much more

scalable.

3.6.4 Number of Anchor Records

As the performance shown in last subsection, for large window size, RAR2 saves

more comparisons than RAR1 does, thus the RAR2 is superior to RAR1. One
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Figure 3-7: Varying duplicate ratios: the number of comparisons taken by SNM,
RAR1 and RAR2.
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natural question to pose is that could we use more anchor records for large window

size. To answer this question, in the following, we first give a theoretical analysis

on the relationship between window size and the number of anchor records.

For easy discussion, we assume that all anchor records are inAnchor records

(similar for outAnchor records). Consider RAR1, for each record in the window,

suppose that no comparison required with the new record entering the window

has average probability of p. That is, for the new record entering the window and

each record in the window, the average probability of that they are compared is

(1 − p). For the N records in D, there are b N
ω+1
c anchor records and N − b N

ω+1
c

non-anchor records. For each record entering the window, if it is chosen as the

anchor record, there are ω comparisons. Otherwise, there are 1 + (1 − p)(ω − 1)

comparisons. Thus the total number of comparisons taken by RAR1 is: ωb N
ω+1
c+

(1 + (1− p)(ω − 1))(N − b N
ω+1
c), which approximately equals to

ωN

ω + 1
+ (1 + (1− p)(ω − 1)) ωN

ω + 1
(3.5)

Similarly, the total number of comparisons taken by method (the last record)

with k inAnchor records is:

cω(k) =
ωkN

ω + 1
+ (k + (1− p)k(ω − k))

(ω + 1− k)N

ω + 1
(3.6)

Obviously, when k = 0 and k = ω, cω(k) takes the maximal value, cω(0) =

cω(ω) = ωN ,. Thus, given D, |D| = N , and ω, the problem of saving the most
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Window Size p

5 0.4722

10 0.4415

15 0.4281

20 0.4213

25 0.4168

30 0.4139

Table 3.6: The value of p relative to different window sizes.

comparisons is to find the k such that cω(k) minimizes. However, this k is not easy

to obtain since p is not a constant value and is affected by ω. Theoretically, given

ω, it’s hard to get the value of p. But performance study shows that the value p

ranges from 0.4 to 0.5. Table 3.6 shows the value of p relative to different window

size obtained from performance tests. From this table, we can see that p decreases

when ω increases. Example 3.4 shows an example to compute p from ω from the

performance result in Table 3.5.

Example 3.4 Suppose ω = 10. SNM takes 10N comparisons. For k = 1, Equa-

tion (3.6) is 10N
11
+(1+(1−p)×9) 10N

11
= 10(11−9p)

11
N . Let cSNM and cRAR1 denote the

number of comparisons taken by SNM and RAR1 respectively. Then cRAR1

cSNM
= 11−9p

11
.

From the performance tests (Table 3.5 and Figure 3-6) on window size 10, we see

that RAR1 takes about 63.88% comparisons of SNM. So 11−9p
11

= 0.6388. Thus, we

get p = 0.45.
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Figure 3-10: The values of cω(k) over ωN for different k with ω = 30.

Figure 3-10 shows the values of cω(k) for different k with ω = 30. we can

see that cω(k) take the minimal value when k = 4, which suggests that, with 4

inAnchor records at window size 30, we can achieve the best performance result

on time.

3.7 Summary

In this chapter, we first show two similarity properties, LP and UP, which are

derived from the triangle inequality of the distance measure d, the difference of one

and the similarity. We then propose a new comparison method, LCSS, based on the

longest common subsequence, and discover that it satisfies these two properties LP

and UP. Take advantage of these properties, we indicate two duplicate rules D-rule

and ND-rule directly from the properties LP and UP respectively. With D-rule and

ND-rule, we propose two new data cleansing methods, RAR1 and RAR2. These
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two methods can largely reduce unnecessary comparisons by efficiently using the

properties satisfied by the comparison method, while existing cleansing methods,

such as SNM, cannot. The performance study on real and synthetic datasets

shows that both RAR1 and RAR2 save comparisons significantly without impairing

accuracy. Further, both RAR1 and RAR2 are much more efficient than SNM for

databases with different parameters. In addition, for large window size, RAR2 is

more efficient than RAR1 further. Theoretical analysis on the relationship between

the number of anchor records and the window size is presented.



Chapter 4

A Fast Filtering Scheme

4.1 Introduction

Large proportion of time in data cleansing is spent on the comparisons of records.

Reducing the time on comparisons (the number of comparisons and the time

for each comparison) will be critical for reducing the whole cleansing time. We

have explained how to reduce the number of comparisons with RAR1+LCSS and

RAR2+LCSS in Chapter 3. In this chapter, we show how to reduce the time for

each comparison.

Consider SNM+RS, if the window size is ω and the average time for each

comparison is T , then there will be ωN comparisons and the time taken will

be ωNT . However, among the ωN comparisons, generally only a few records

compared will be detected as duplicate ones, while the other comparisons do not

contribute duplicate records, which results in wasting a great amount of time since

91
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the existing comparison methods are quite expensive. We call these comparisons

that do not contribute duplicate records as uncontributive comparisons . Hence,

the question is that whether we can get the same duplicate result as the existing

methods while taking much less time to run.

One intuitive idea is to perform a scan on the database first to quickly identify

possible duplicate records, that is, to fast filter out the uncontributive comparisons

(non-duplicate records). Then we apply any existing method on the duplicate

result to further eliminate false positives that are generated by the first scan.

Since the duplicate result is much smaller than the initial database, it takes far

less time to process the records in the result. The two advantages of this approach

are: 1) it is fast, and 2) it can be combined with any existing method.

How to carry out the first scan therefore is rather important. Before cleansing,

there is a pre-processing on records, such as in [HS95, LLL00], which deals with

data type checks, format standardization, and inconsistent abbreviations etc. After

the pre-processing, intuitively, for any two duplicate records, the corresponding

fields in them should have almost the same characters. In other words, for two

records, whose characters of the corresponding fields have large difference, they

cannot be duplicate records.

Based on this intuition, in this paper, we first propose a simple and fast compar-

ison method, TI-Similarity. Similar to RS and LCSS, TI-Similarity also computes

the degree of similarity for records and two records with similarity exceeding a

certain threshold are treated as a duplicate pair. In TI-Similarity, each field is
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simply treated as a set of characters. The field similarity is defined as the number

of characters in the intersection of the corresponding fields divides by the larger

number of characters in the two fields. For a field in two records with m and n

characters respectively, the time complexity of TI-Similarity is O(m + n), while

it is O(mn) for edit distance, Record Similarity and LCSS. Thus TI-Similarity is

much faster.

Furthermore, we can show that the distance on TI-Similarity, the difference of

one and the TI-Similarity, satisfies the triangle inequality proposed in Section 3.2.

Thus, TI-Similarity also satisfies the two properties, LP and UP. That is, For any

three records A, B and C, let SimTI(A,C) be the TI-Similarity of records A and

C, etc. TI-Similarity satisfies

• Lower Bound Similarity Property (LP):

SimTI(A,C) ≥ SimTI(A,B) + SimTI(B,C)− 1

• Upper Bound Similarity Property (UP):

SimTI(A,C) ≤ 1− |SimTI(A,B)− SimTI(B,C)|

Therefore, when TI-Similarity is chosen as comparison method, we can also get

the benefits that RAR1 and RAR2 provide.

With TI-Similarity and RAR1 (we discuss only on RAR1, but it also applies

to RAR2), our new approach can be outlined as follows (see Figure 4-1): We first

perform a fast scan on the whole database. We call this filtering process. The

filtering process is carried out by RAR1+TI. This process takes far less time than

existing methods (e.g., SNM+RS) and can detect possible duplicate records but
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Figure 4-1: The filtering and pruning processes.

may get some extra false positives. The duplicate result obtained by the filtering

process is also called as candidate duplicate result. Then a pruning on the candidate

duplicate result is performed with a more trustworthy comparison method, such

as Equational Theory, edit distance, Record Similarity and LCSS etc. We call this

pruning process. The pruning process can eliminate the false positives obtained

in the filtering process. Since the duplicate result is generally far less than the

database, the time taken by the pruning process is only a small portion of the

whole data cleansing processing time. We term our approach as (RAR1+TI, X),

where X is the comparison method used in the pruning process. X is independent

of the filtering process and can be chosen as any comparison method.

The rest of the chapter is organized as follows. In the next section, we introduce

the simple comparison method, TI-Similarity. In Section 4.3, we describe the

filtering scheme with RAR1 (RAR2) and TI-Similarity. In Section 4.4, we show
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how to perform the pruning process on the duplicate result obtained by the filtering

process. We give the performance results in section 4.5 and summary in Section 4.6.

4.2 A Simple and Fast Comparison Method: TI-

Similarity

We have shown in Section 2.1, a pre-processing on the records in the database

will be conducted before the cleansing process, like in [HS95, LLL00]. After the

pre-processing stage, intuitively, for two records representing the same entity, the

corresponding fields should have almost the same characters. In other words,

for two records, if the characters of the corresponding fields in them have large

difference, they cannot be duplicate records. This intuitive idea is similar to that

in counting filter [JTU96] used for approximate string matching, which is to find

all segments of a long text T , |T | = m, whose edit distance to a short pattern P

is at most k, where 0 < k < |P |.

Based on this intuition, we propose the TI-Similarity as follows.

Similar to RS and LCSS, we also set field weightages and compute field similar-

ity. The field weightages indicate the relative importance of fields and are decided

by experimental tests as well.

The values in fields are simply treated as sets of characters. Each character has

an associated number that identifies the serial number of the character appearing

in the field. For example, for a string “ababc”, it is transferred to the character
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set {a1, b1, a2, b2, c1}. Notice that transferring a character to the character with

associated number is for simply discussion. In real implementation, we do not need

to do this transfer.

Field Similarity: Suppose a field F in record A has the character set AF =

{x1, x2, · · · , xn} and the corresponding field in record B has the character set BF =

{y1, y2, · · · , ym}, where xi, 1 ≤ i ≤ n, and yj, 1 ≤ j ≤ m, are characters with

associate numbers. We have the field similarity of field F for A and B as:

SimTI
F (A,B) = min{|AF ∩BF |

|AF |
,
|AF ∩BF |
|BF |

} (4.1)

If F is understood, for simplicity, we write AF and BF as A and B respectively.

For example, suppose the field F of A is “abccddde” and B is “aaccddf”, then

A = {a1, b1, c1, c2, d1, d2, d3, e1} and B = {a1, a2, c1, c2, d1, d2, f1}. Also

A∩B = {a1, c1, c2, d1, d2}, so we have |A| = 8, |B| = 7, and |A∩B| = 5. Thus,

SimTI
F (A,B) = |A ∩B|/|A| = 5/8.

However, due to its simplicity, TI-Similarity does not consider the order of

characters in the field. Therefore it is possible to introduce some false positives.

E.g., if A = ”abcd” and B = ”dcba”, we will get Sim(A,B) = 1. Thus we get

records A and B as duplicate but they may not represent the same entity. So a

pruning on duplicate result with more trustworthy records comparison methods is

performed. In Section 4.4, we will show how to carry out the pruning on duplicate

result in details.

Based on field similarity, we can compute the similarity for records. Suppose
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float get TI-Similarity(char* s1, char* s2)

{

int number[256] = {0};

int i = 0, total = 0;

int len1 = strlen(s1), len2 = strlen(s2);

for (i=0; i<len1; i++)

number[s1[i]]++;

for (i=0; i<len2; i++) {

if (number[s2[i]]−− >= 0)

total++;

}

return (float)total/max (len1, len2);

}

Figure 4-2: The fast algorithm to compute field similarity.

that a database has fields F1, F2, · · · , Fn with field weightages W1,W2, · · · ,Wn re-

spectively, where
∑n

i=1Wi = 1. Given two records A and B, let SimTI
F1
(A,B),

SimTI
F2
(A,B), · · ·, SimTI

Fn
(A,B) be the field similarities computed. The TI-Similarity

of the two records is given by the expression:

SimTI(A,B) =
n

∑

i=1

(SimTI
Fi
(A,B)×Wi) (4.2)
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We use superscript TI to distinguish the TI-Similarity with the other similarity

methods such as Record Similarity and LCSS. If without ambiguous, we just write

SimTI as Sim for simplicity.

The similarity of records computed by TI-Similarity is always between 0.0 and

1.0. Two records are treated as a duplicate pair if the similarity of them exceeds

a certain threshold such as 0.8.

Note that the similarity of records depends on the similarity of fields. In Fig-

ure 4-2, we give a very fast algorithm to calculate the field similarity. The algorithm

shown here is based on the algorithm proposed in [Nav97] with a few modifications

for our case. It is easy to see that if two strings’ length are m and n respectively,

the time complexity of TI-Similarity is O(m + n), while the time complexities of

edit distance, Record Similarity and LCSS are O(mn). Thus TI-Similarity is much

faster than existing comparison methods.

Let d(A,B) = 1−Sim(A,B) and dF (A,B) = 1−SimF (A,B), suppose |AF | ≥

|BF |, then dF (A,B) = 1 − |AF ∩ BF |/|AF | = (|AF | − |AF ∩ BF |)/|AF | = |AF −

BF |/|AF |.

we have the following Lemma, which is similar to Lemma 3.5, for TI-Similarity.

Lemma 4.1 Given a filed F , for any three records A, B and C, we have

dF (A,B) + dF (B,C) ≥ dF (A,C).

Proof: For simplicity, we drop F from AF , BF , CF and dF . Without loss of

generality, suppose |A| ≥ |C|.

(1) |A| ≥ |B| ≥ |C|.
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d(A,B) + d(B,C) = (1− |A∩B|
|A| ) + (1−

|B∩C|
|B| )

= |A|−|A∩B|
|A| + |B|−|B∩C|

|B| ≥ |A|−|A∩B|
|A| + |B|−|B∩C|

|A|

= |A−B|
|A| +

|B−C|
|A| ≥

|A−C|
|A| = d(A,C).

(2) |A| ≥ |C| ≥ |B|.

d(A,B) + d(B,C) = (1− |A∩B|
|A| ) + (1−

|B∩C|
|C| )

≥ (1− |A∩B|
|A| ) + (1−

|B∩C|
|B| )

= |A|−|A∩B|
|A| + |B|−|B∩C|

|B|

≥ |A|−|A∩B|
|A| + |B|−|B∩C|

|A| ≥ d(A,C).

(3) |B| ≥ |A| ≥ |C|.

d(A,B) + d(B,C) = (1− |A∩B|
|B| ) + (1−

|B∩C|
|B| )

= 1 + |B|−|A∩B|−|B∩C|
|B|

If (|B| − |A ∩B| − |B ∩ C|) ≥ 0, then

d(A,B) + d(B,C) ≥ 1 ≥ d(A,C).

If (|B| − |A ∩B| − |B ∩ C|) < 0, then

1 + |B|−|A∩B|−|B∩C|
|B| ≥ 1 + |B|−|A∩B|−|B∩C|

|A|

= |A|−|A∩B|
|A| + |B|−|B∩C|

|A| ≥ d(A,C).

Thus we complete our proof.

Theorem 4.2 For any records A, B and C, we have

d(A,B) + d(B,C) ≥ d(A,C).

Proof: The proof is the same with the proof of Theorem 3.7.

Similarly, we immediately have the following theorem.
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Theorem 4.3 TI-Similarity satisfies the properties LP and UP.

4.3 Filtering Scheme

When we refer to the similarity of records, we always mean that the similarity is

computed by TI-Similarity.

We have shown the comparison method TI-Similarity and that it satisfies the

properties LP and UP. Hence, the D-rule and ND-rule are correct and consistent

with TI-Similarity. Thus RAR1 and RAR2 works correctly with TI-Similarity.

This means that RAR1 and RAR2 will not introduce extra false positives or missing

some correct duplicate pairs. However, TI-Similarity definitely will introduce extra

false positives as it is quite simple and does not consider the order of characters.

Thus we could not run RAR1+TI and RAR2+TI as an sole cleansing method.

To get the advantage (very fast) of RAR1+TI but exclude its disadvantage

(lots of extra false positives), further consideration is needed.

From observing real world scenarios [Her96], the size of the duplicate pairs

obtained is at least one order of magnitude smaller than the corresponding number

of comparisons taken. Thus, intuitively, we could run RAR1+TI as a fast filter

and then prune the result with existing more trustworthy method. We call this

filtering scheme and it is shown in Figure 4-1.

Take SNM+RS as an example. For window size ω, there will be ωNT total

time, where T is the average comparison time. Now consider RAR1+TI and with

pruning by Record Similarity. The filtering time is pωNT ′, where 0.0 ≤ p ≤ 1.0
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is the ratio that the number of comparisons taken by RAR1 to the number of

comparisons taken by SNM, and T ′ is the average time taken by TI-Similarity for

each comparison. The pruning time is dT , where d is the number of duplicate pairs

obtained by RAR1+TI. Thus the total time for the filtering scheme is pωNT ′+dT .

Since T ′ ¿ T and d¿ ωN , then pωNT ′ + dT ¿ ωNT .

Let DR(RAR1+TI) and DR(RAR1+TI, LCSS) be the duplicate result obtained

by RAR1+TI and (RAR1+TI, LCSS) respectively. Obviously DR(RAR1+TI,

LCSS) ⊆ DR(RAR1+TI).

Theorem 4.4 Under the same similarity threshold σ and the same field weigh-

tages, and running at the same window size, the filtering scheme (RAR1+TI,

LCSS) obtain the same duplicate result with RAR1+LCSS. That is DR(RAR1+TI,

LCSS) = DR(RAR1+LCSS).

Proof: To prove DR(RAR1+TI, LCSS) = DR(RAR1+LCSS), we only need to

show that TI-Similarity does not filter the duplicate pairs obtained by LCSS under

the above conditions. That is, to prove DR(RAR1+TI) ⊆ DR(RAR1+LCSS).

For any two records A and B and any Field F , we have SimTI
F (A,B) =

|AF∪BF |
|AF | , and SimLCSS

F (A,B) = lcs(AF ,BF )
|AF | . Obviously, lcs(AF , BF ) ≤ |AF ∪ BF |,

thus SimLCSS
F (A,B) ≤ SimTI

F (A,B). Since with the same field weightages, thus

SimLCSS(A,B) ≤ SimTI(A,B). So DR(RAR1+TI) ⊆ DR(RAR1+LCSS).

Thus, through combining the RAR1 with TI-Similarity, we can achieve the

benefit of both. RAR1 reduces unnecessary comparisons and TI-Similarity reduces

the time for each comparison.
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4.4 Pruning on Duplicate Result

After the filtering process, a lot of non-duplicate records have been filtered out and

we obtain the candidate duplicate result. Since TI-Similarity used in the filtering

process is quite simple and the order of characters is not considered, the result

contains correct duplicate records and false positives as well. Thus a pruning with

more trustworthy comparison methods, such as Equational Theory, RS etc., on

the duplicate result is required.

One simple way is to re-compare each duplicate pair in the duplicate result with

more trustworthy comparison method. We call this as direct pruning . Obviously,

the direct pruning can be easily integrated into the filtering process, i.e., when a

duplicate pair is obtained in the filtering process, we do the pruning immediately.

Especially, the direct pruning is useful when the candidate duplicate results is large

and cannot be kept in memory.

When correct duplicate records are important, an alternative method, called

transitive closure pruning , could be used. The transitive closure pruning is to

compute transitive closure on candidate duplicate result first, then do prune on

each equivalent class.

Formally, let CDR be the duplicate result obtained by the filtering process.

We define the equivalent relation among the records, A ∼ B, if B is a duplicate

record of A under transitive closure. The transitive closure is executed on pairs of

record id’s, each at most 30 bits, and fast solutions to compute transitive closure

exist [AJ88, ME97]. Let XA = {B|A ∼ B}. Then {XA} are equivalent classes
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under this equivalent relation. Thus for any two records A and B, we have either

XA = XB or XA ∩XB = ∅ .

The transitive closure pruning on the candidate duplicate result is to perform

pair-wise comparison for the records in each XA. The transitive closure pruning

will introduce more correct duplicate records and eliminate the false positives in-

troduced by transitive closure. However, when the candidate duplicate records

cannot be kept in memory, the transitive closure pruning will take some more time

than direct pruning. Thus, there is a trade-off between correct duplicate records

and time. Example 4.2 shows how the pruning is performed.

Example 4.1 If CDR = {<A, B>, <B, C>, <D, E>}, then XA = {A,B,C}

and XD = {D,E}. In the direct pruning, we just compare the three pairs in CDR.

In the transitive closure pruning process, we pair-wisely compare records A, B and

C, and pair-wisely compare records D and E.

For both pruning methods, we will employ some other more trustworthy com-

parison methods, such as Equational Theory, edit distance, RS and LCSS etc.,

instead of TI-Similarity used in the filtering process. The pruning is not limited

to only one comparison method. In some cases, having false positives is much

worse than missing some correct duplicate records. The accuracy of the result

(maximizing the number of correct duplicate records while minimizing the num-

ber of false positives) is therefore of paramount importance. Since no comparison

method is completely trustworthy, we can perform the pruning with two or more

trustworthy comparison methods and obtain the result determined as duplicate in
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all the methods. This works because that duplicate result obtained by the filtering

process is far less than the database and the number of records in XA is also small.

From observing real world scenarios [HS98], the size of the data set over which the

equivalent classes is computed is at least one order of magnitude smaller than the

corresponding database of records. Thus, the number of comparisons taken on the

pruning process is far smaller than that taken on the filtering process. This is still

true even for a database that consists of many duplicate records. The following

gives such an analysis example.

Example 4.2 Suppose that a database has N records. For easy comparison, we

assume that the detection method used in the filtering process is SNM with a window

size of 10 instead of RAR1. We obtain 20% of the records in the database as

duplicate records and the average number of XA is 5. Then the filtering process

requires 10N comparisons and the pruning process requires 20%×N
5
× C25 = 2N/5

comparisons. Thus the number of comparisons in the pruning process is only 1/25

of that in the filtering process.

Therefore, the time taken by the pruning process is only a small portion in the

whole data cleansing processing time.
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4.5 Performance Study

4.5.1 Performance

We test the performance on synthetic databases generated by the database gener-

ator used in Section 3.6.3.

We compare the filtering approach (RAR2+TI, LCSS) with RAR2+LCSS(the

similar results apply to RAR1). To understand the efficiency of this approach,

similar to the performance tests done in Section 3.6.3, we test both methods on a

set of databases with variant window sizes, database duplicate ratios, and database

sizes. In all tests, the time taken in our approach includes the filtering process time

and the pruning process time. We adopt the direct pruning and integrate it into

the filtering process. We get the pruning time by first running filtering process

without pruning, then running the filtering process with immediately pruning,

and the pruning time is their difference.

Varying Window Sizes

We first run (RAR2+TI, LCSS) and RAR2+LCSS on the customer base database.

Figure 4-3 shows the time required for each method. We can see that (RAR2+TI,

LCSS) is much faster than RAR2+LCSS for all the window sizes. Time saving ef-

fect becomes much more significant as the window size increases. Thus (RAR2+TI,

LCSS) further scales much better than RAR2+LCSS with the increase of window

size.

Figure 4-4 shows the efficiency of the filtering process. For all the window sizes,
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Figure 4-3: Varying window size: time taken.

the number of CDR is only a few more than that of DR. That is, only a few extra

false positives (less than 5%) is introduced by the filtering process, which shows

that the filtering process is efficient in filtering out uncontributive comparisons.

Figure 4-5 shows the time taken by filtering process and pruning process. We

can see that the time taken by filtering process increases as the window size in-

creases, while the time taken by pruning process is almost the same. From Figure 4-

4, we know that the candidate duplicate result increases very slowly as window

size increases. Since pruning is only performed on the candidate duplicate result,

thus window sizes do not affect the pruning time much.
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Varying Duplicate Ratios

We then run (RAR2+TI, LCSS) and RAR2+LCSS on the same 5 databases with

different duplicate ratios used in Section 3.6.3. We run both methods at the

window size of 10. The time taken by each method is shown in Figure 4-6, from

which we see that the time taken by (RAR2+TI, LCSS) increases as the duplicate

ratio increases while RAR2+LCSS decreases. This is because when the duplicate

ratio increases, the candidate duplicate result will increase. Thus the pruning

process time increases. However, the time increased with the duplicate ratio is

quite slowly compared with the time taken by RAR2+LCSS. Even the database is

heavy duplicated, the time taken by (RAR2+TI, LCSS) is still much less than that

taken by RAR2+LCSS. Hence, the duplicate ratio has little effect on the efficiency.

For different duplicate ratios, (RAR1+TI, LCSS) always saves a great amount of

time.

Varying Database Sizes

At last, we run (RAR2+TI, LCSS) and RAR2+LCSS on the 4 databases with

different number of records (1, 2, 5 and 10×106 records). We run both methods at

window size of 10. The results are shown in Figure 4-7. Both methods show linear

scalability with the number of records from 1M to 10M. However, (RAR2+TI,

LCSS) is much more scalable. As the number of records grows up, the difference

between the two methods becomes larger and larger. Combined with the scalability

result shown in Section 3.6.3, overall, our approach is about an order of magnitude
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faster than existing methods for large databases.

4.6 Summary

In this chapter, we first propose a simple yet efficient comparison method, TI-

Similarity, to reduce the time taken on each comparison. We then prove that TI-

Similarity satisfies the triangle inequality property. Thus, both RAR1 and RAR2

also work with TI-Similarity. We run RAR1+TI (RAR2+TI) as a filter to quickly

filter out a lot of uncontributive comparisons. We then perform a pruning on the

candidate duplicate result obtained by the filter with more trustworthy comparison

methods to eliminate false positives. Performance study shows that the filtering

scheme can save time significantly, and the results from different databases and

different window sizes show that this approach has good scalability.



Chapter 5

Dynamic Similarity for Fields

with NULL values

5.1 Introduction

The comparison methods prove to have good performances in capturing duplicate

records. However, they all have a common drawback, that is, they implicitly

assume that the values in all fields are known, and NULL values on fields are

simply treated as empty strings. However, in practice, databases to be cleansed

very likely have records with NULL values. Treating the NULL values as empty

strings is definitely not a good method and will result in a loss of correct duplicate

records. Table 5.1 gives an example showing that while treating NULL values as

empty strings in Record Similarity, a correct duplicate pair is lost. More analysis on

the table is in Section 5.2. Thus, the fields with NULL values need to be specially

111
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treated. In this paper, we propose a simple yet efficient method, called Dynamic

Similarity, which solves the “NULL field problem” by dynamically adjusting the

similarity for field with NULL value. For each field, there are a set of dependent

fields associated with it. For any field with NULL value, the dependent fields will

be used to determine its similarity. To determine the dependent field, one option is

that the domain expert (database designer) can provide this information. another

one is using the approximate functional dependence methods.

To test our method, we compare it with Record Similarity. The performance

result shows that Dynamic Similarity can get more correct duplicate records and

does not introduce new false positives as compared with Record Similarity.

The rest of this chapter is organized as follows. In next section, we propose the

Dynamic Similarity. In Section 5.3, we give the performance results. We summary

in Section 5.4.

5.2 Dynamic Similarity

In this section, we propose the Dynamic Similarity , which is an extension scheme

for existing comparison methods. For easy discussion, we focus on the Record

Similarity. Similarly, it can be applied to other comparison methods, such as

LCSS and Equational Theory etc.

Suppose that a database has fields F1, F2, · · · , Fn with field weightages W1,

W2, · · ·, Wn respectively. Let F = {F1, F2, · · · , Fn}. Given two records X and Y ,

let XF1
and YF1

be the values of field F1 of X and Y respectively. The fields F2,
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· · ·, Fn are similarly defined.

Intuitively, for field with NULL value, there could be some fields that affect

its similarity. These fields are called dependent fields. Furthermore, for each field,

its dependent fields may have different importance. Thus weightages are assigned

to dependent fields. To distinguish from the field weightages defined previously,

these weightages are called dependent weightages. A formal definition is given as

follows.

Definition 5.1 Formally, a weighted dependent function on F is a function Φ:

F 7→ 2F×[0,1] such that, ∀Fi ∈ F ,

• ∀(Fj, vj) ∈ Φ(Fi) ⇒ Fj 6= Fi;

• ∑

(Fj ,vj)∈Φ(Fi) vj = 1.

The weighted dependent function defines a dependent relation on fields. It may

not be symmetric, i.e., (Fj,−) ∈ Φ(Fi) does not imply (Fi,−) ∈ Φ(Fj). The −

in (Fi,−) stands for the value that we don’t care. For example, the same value

in “name” field in two records imply the “age” field in the two records having

the same value with large chance. However, the reverse could not be true. The

dependent relation is highly domain dependent and need experimental tests to

decide. Experts on the database to be cleansed will lead to a better dependent

relation.

One special case of weighted dependent function is that all dependent fields

have the same weightage. For simplicity, we call the special case as dependent

function, which can be formally defined as follows with equal weightage.
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Definition 5.2 Formally, a dependent function on F is a function Φ: F 7→ 2F

such that ∀Fi ∈ F , Fi 6∈ Φ(Fi).

One simple and commonly used dependent function is: Φ(Fi) = F −{Fi}, that

is, each field depends on all the other fields. Generally, this function works well.

For some databases, a careful defined weighted dependent function may improve

the performance in getting correct duplicate records.

With the weighted dependent function or dependent function, we can then

compute the similarity for records with NULL values. Similar to Record Similarity,

each field is identified as tokens by using a set of delimiters and tokens comparison

is also the same. The difference is on how to compute the similarity for field

with NULL value. In Record Similarity, similarity for NULL values is 0, while in

Dynamic Similarity, similarity for NULL values is dynamically adjusted with its

dependent fields and dependent weightages.

Field Similarity: Given a field F and two records X and Y , If XF 6= NULL ∧

YF 6= NULL, then SimDS
F (X,Y ) = SimRS

F (X,Y ). Otherwise, if Φ is a weighted

dependent function, let

F ′ = {(Fi, vi)|(Fi, vi) ∈ Φ(F ) ∧XFi
6= NULL ∧ YFi

6= NULL}.

We have

SimDS
F (X,Y ) =

∑

(Fi,vi)∈F ′

(SimDS
Fi
(X,Y )× vi) (5.1)
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If Φ is dependent function, i.e., vi =
1

|Φ(F )| , then Formula (5.1) can be written as

SimDS
F (X,Y ) =

∑

(Fi,vi)∈F ′ SimDS
Fi
(X,Y )

|Φ(F )| (5.2)

The field similarity is computed as follows. If the fields in two records are

NOT NULL, we use the same method in Record Similarity to compute the field

similarity. Otherwise, we compute it dynamically. In this case, the field similarity

for these two records is computed from all the dependent fields that do not have

NULL values, and the corresponding dependent weightages.

We have defined the (weighted) dependent function and shown how to use it to

compute the similarity for NULL field. The idea behind it is from Functional De-

pendency (FD) in relational database normalization theory. Given a clean database

and an FD F1 → F2, where F1 ⊆ F and F2 ⊆ F . For any records X and Y , if

X.F1 = Y.F1, we have X.F2 = Y.F2, where X.F1 denotes the projection of record

X onto the fields in F1. That is, the FD F1 → F2 says that if two records agree

on the values in fields F1, they must also agree on the values in fields F2. Thus,

for a clean database, from FDs, we can determine the values of some fields from

the values of some other fields. However, in this chapter, our discussion is on dirty

databases and the values in some fields are likely having errors or missing. There-

fore, we propose the (weighted) dependent function and field similarity, which says

that if all fields in Φ(Fi) have large similarities, the similarity of Fi is to be large.

From Formula (5.1), we can see that if ∀Fj ∈ Φ(Fi), SimFj
(X,Y ) = 1, then

SimFi
(X,Y ) = 1. That is, if X.Φ(Fi) = Y.Φ(Fi), then X.{Fi} = Y.{Fi}. Thus
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(weighted) dependent function and field similarity are an extension of FDs with

similarity.

When the similarities of all fields are computed, the Dynamic Similarity of

records is obtained by:

SimDS(X,Y ) =
n

∑

i=1

(SimDS
Fi
(X,Y )×Wi) (5.3)

Obviously, we have 0 ≤ SimDS(X,Y ) ≤ 1.

We adopt Record Similarity as the base of Dynamic Similarity because Record

Similarity is an efficient comparison method. However, Dynamic Similarity can be

extended to any other similarity-based comparison methods easily.

We have shown the method to compute the Dynamic Similarity, which can well

deal with the fields with NULL values. Table 5.1 gives an example, which shows

that correct duplicate records are obtained in Dynamic Similarity but missed in

Record Similarity. The records are from a real database which is used in the

performance study. Some fields’ values are shortened to fit in one line. The field

weightages are 0.05, 0.3, 0.15, 0.25, 0.05, 0.1, 0.1 respectively and the threshold

is 0.73. These values are obtained by experimental tests on the database. In

Dynamic Similarity, we use Φ(F ) = F − {F} as the dependent function.

In Table 5.1, the record X and record Y are duplicate and each has fields

with NULL values. The similarity computed by Record Similarity is 0.7, which

is less than the threshold 0.73. Thus they are missed by Record Similarity.

However, with Dynamic Similarity, we have SimDS
Name(X,Y ) = SimDS

2nd(X,Y ) =



5.2 Dynamic Similarity 117

Code Name 1st Addr. 2nd Addr. Cur. Tel Fax

X JVC Elec. 79 AYE road Ayer rajah ind., USD 7764711

SG 139890

Y JVC JVC Elec. Ayer rajah ind., USD 7764711

SG 139890

Table 5.1: Correct duplicate records in Dynamic Similarity but not in RS.

SimDS
Cur(X,Y ) = SimDS

Tel(X,Y ) = 1.0. From Formula (5.2), we have SimDS
Code(X,Y )

=
SimDS

Name
(X,Y )+SimDS

2nd
(X,Y )+SimDS

Cur
(X,Y )+SimDS

Tel
(X,Y )

6
= 4

6
= 0.67. Similarly, we have

SimDS
1st (X,Y ) = SimDS

Fax(X,Y ) = 0.67. Thus from Formula (5.3), we can have

SimDS(X,Y ) = 0.67 × 0.05 + 1.0 × 0.3 + 0.67 × 0.15 + 1.0 × 0.25 + 1.0 × 0.05 +

1.0× 0.1 + 0.67× 0.1 = 0.9 > 0.73. Then they are correctly obtained as duplicate

records. An alternative solution is to decrease the threshold. For example, if the

threshold is decreased to 0.7 for the above example, the two records can also be de-

tected as duplicate by Record Similarity. However, this is far from a good solution

since decreasing threshold obtained by experimental tests will largely increase the

number of false positives. Another alternative solution is to treat two NULL values

as equal, that is, SimF (NULL,NULL) = 1. Then the two records in Table 5.1

have similarity of 0.8 > 0.73. They are obtained as duplicate records. However,

treating two fields with NULL values as equal will also increase the number of false

positives. Table 5.2 gives such an example. In Table 5.2, the two records are non-

duplicate and each has fields with NULL values. If two fields with NULL values are
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Code Name 1st addr. 2nd addr. Cur. Tel Fax

OMNI Omni Elec. #07-01/03, SGD

woodlands ave 5, SG

OMNI-LD Omni Elec. lower delta road, SGD

#01-12/16, SG

Table 5.2: False positives obtained if treating two NULL values as equal.

treated as equal, then the similarity computed by Record Similarity is 0.84, which

is larger than the threshold 0.73. Thus they will be falsely obtained as duplicate

with Record Similarity. With Dynamic Similarity, the similarity is 0.67 < 0.73.

They can be correctly detected as non-duplicate with Dynamic Similarity.

Dynamic Similarity depends on the dependent function. Therefore, we need to

decide the dependent fields for each field. One option is that the domain expert

(e.g., database designer) can provide this information. Another one is using the

approximate functional dependence [HKPT98, KM95, KP96]. An approximate

functional dependency is a functional dependency that almost holds. The approx-

imate dependencies arise in many databases when there is natural dependency

between attributes, but some rows contain errors (e.g., type errors, missing values

etc.) or represent exceptions to the rule. Thus, it can be used by dynamical sim-

ilarity to determine the dependent fields. The approximate dependency problem

has been widely studied and [HKPT98] gives an efficient method.
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5.3 Experimental Results

We test the performance on the real database, company; and four new synthetic

databases, customers. The synthetic databases are generated by the database

generator used in Section 3.6.3 but with an additional parameter, the number of

field with NULL values.

We generate the customers as follows. We first generate a clean database with

100000 records. Each record consists of 8 fields: name, gender, marital status,

race, nation, education, phone and occupation. Then we add additional 50000

duplicate records into the clean database. The changes in duplicate records range

from small typographical difference in some fields to loss of values in some fields

(NULL values). Basing on how many fields with NULL values, we generate four

databases, customer-0, customer-1, customer-2 and customer-3, with average 0, 1,

2 and 3 fields with NULL values respectively.

We compare the performance of Record Similarity and Dynamic Similarity on

the company database and the customer databases. The performance results are

shown in Table 5.3 and Figure 5-1. The cleansing method we used is SNM and

all results are obtained at the window size of 10. In Table 5.3, The ”C” column

under each method is the correct duplicate records obtained by that method. The

”F. P.” column under each method is the false positives obtained by that method.

CDS and CRS denote the correct duplicate records obtained by Dynamic Similarity

and Record Similarity respectively.

The results from all databases clearly show that Dynamic Similarity can ob-
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Database
Record Similarity Dynamic Similarity

Total C F. P. Total C F. P. CDS − CRS

company 52 51 1 57 56 1 5

customer-0 62192 62155 37 62192 62155 37 0

customer-1 61918 61881 37 62145 62118 37 237

customer-2 60630 60593 37 61940 61903 37 1310

customer-3 56732 56685 37 61389 61352 37 4667

Table 5.3: Duplicate pairs obtained by Record Similarity and Dynamic Similarity.

tain more correct duplicate records and does not introduce more false positives

as compared with Record Similarity. For instance, in the company database,

Record Similarity gets 51 correct duplicate records and introduces 1 false positive,

while Dynamic Similarity gets 56 correct duplicate records and also introduces 1

false positive. There is 5 correct duplicate records increased. In the customer-3

database, Record Similarity gets 56685 correct duplicate records and introduces

37 false positive, while Dynamic Similarity gets 61352 correct duplicate records

and also introduces 37 false positive. There is 4667 correct duplicate records in-

creased. Furthermore, the results on customers show that when the average number

of NULL fields increases, the Dynamic Similarity can get more correct duplicate

records than Record Similarity does. As we can see, in customer-1, Dynamic

Similarity get 237 more correct duplicate records, while in customer-3, Dynamic

Similarity get 4667 more correct duplicate records.



5.4 Summary 121

50000

52000

54000

56000

58000

60000

62000

64000

0 1 2 3

Number�of�NULL�fields

C
or

re
ct

�d
up

li
ca

te
�p

ai
rs

RS

DS

�

Figure 5-1: The number of Duplicates Per Record.

5.4 Summary

Existing comparison methods do not address the field with NULL value well, which

lead to a decrease in the number of correct duplicate records. In this paper, we

propose a simple yet efficient comparison method, Dynamic Similarity, which deals

with fields with NULL values. As Dynamic Similarity is discussed on Record Sim-

ilarity, it can be easily extended to any other comparison methods. Performance

results on real and synthetic datasets show that Dynamic Similarity can get more

correct duplicate records and does not introduce more false positives as compared

with Record Similarity. Furthermore, the percentage of correct duplicate records

obtained by Dynamic Similarity but not obtained by Record Similarity will increase

if the number of fields with NULL values increases.



Chapter 6

Conclusion

6.1 Summary of the Thesis Work

In this thesis, we have studied several problems in data cleansing.

In Chapter 2, we first describes the research work that has been done in the

data cleansing field. We focus our discussions on the data cleansing algorithms

which are fundamental in all data cleansing. We also introduce other high level

works, e.g., data cleansing language and data cleansing framework.

In Chapter 3, we propose two new efficient data cleansing methods, RAR1 and

RAR2. We first discover two similarity rules, and show that a similarity method,

LCSS, satisfies these rules. By employing these two rules efficiently, we propose

these two methods which are much faster than existing methods.

In Chapter 4, we present a filtering scheme that further improves the result in

Chapter 3. Since similarity methods are generally very costly, we then propose a

122
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filtering scheme which runs very fast. Furthermore, the filter proposed satisfies the

two similarity rules proposed in Chapter 3. Thus the new data cleansing methods

proposed in Chapter 3 can be employed in our filtering scheme. However, the

filter may produces some extra false positives. We introduce pruning with more

trustworthy methods on the result obtained by the filter.

In Chapter 5, we propose a dynamic similarity method, which is an extension

scheme for existing comparison methods. As existing comparison methods do not

address fields with NULL value well, we then extend them by dynamically adjusting

the similarity for field with NULL value. The idea behind dynamic similarity is

from (approximate) functional dependencies.

6.2 Future Works

Some future research works are presented as follows.

All the existing detection methods and our methods proposed are “sorting

and then merging” based. Although some methods differ on how the sorting is

performed, the basic idea is the same. The “sorting and then merging” method

is widely acceptable since that the merging phase is much more expensive than

thee sorting (and clustering) phase. As shown in [HS95], any time advantage

gained the sorting phase becomes small with respect to the overall time. However,

since we have largely decrease the time (about one order of magnitude) on the

merging phase, the time taken by sorting phase then cannot be ignored and may

be worthwhile to decrease as well. Especially for very large databases that cannot
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keep into memory, sorting results in LogN scans on the databases, which may

take longer time than the merging phase and then becomes the bottleneck. Thus,

techniques that do not depend on the sorting (or partially depend on sorting) are

worth to be addressed. One possible solution is to partition the whole database

into small clusters (like clustering SNM). But this solution has its own drawbacks.

First, the clustering itself may be costly, and secondly, clustering may largely

decrease the number of duplicate pairs found.

Another issue need to addressed is on incremental cleansing. An incremental

cleansing procedure is of practical importance since many commercial organizations

periodically receive increments of data that need to be merged with previously

processed data. Existing data cleansing methods assume the entire database is used

for cleansing, and they do not attempt to use any previously gathered results in

subsequent executions of the procedure, even if the procedure is run over data that

has already been processed. Two strategies, called Basic Incremental Merge/Purge

Procedure (BIMP) and Increment Sampling Incremental Merge/Purge Procedure

(ISIMP), have been proposed and evaluated in [Wal98]. These two strategies work

better than normal data cleansing methods for this incremental cleansing problem,

but they are not very efficient and there are still rooms for further improvement.

Therefore, much better strategy would be discussed. Currently, we are considering

this problem and a multi-level partition strategy is under development.
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Appendix A Abbreviations

CDR Candidate Duplicate Result

D-rule If L(A,C) ≥ σ, records A and C are duplicate

DR Duplicate Result

ED Edit Distance

L LB(A,C) = Sim(A,B) + Sim(B,C)− 1

LCS Longest Common Subsequence

LCSS Similarity method based on Longest Common Subsequence

LP Lower Bound Similarity Property: Sim(A,C) ≥ LB(A,C)

ND-rule If L(A,C) < σ, records A and C are not duplicate

RAR1 Reducing with one Anchor Record, a new detection method

RAR2 Reducing with two Anchor Records, a new detection method

RS Record Similarity

SNM Sorted Neighborhood Method

TC Transitive Closure

TI TI-Similarity, a simple yet fast similarity method

U UB(A,C) = 1− |Sim(A,B)− Sim(B,C)|

UP Upper Bound Similarity Property: Sim(A,C) ≤ UB(A,C)


