
MULTI-RESOLUTION REGION-PRESERVING

SEGMENTATION FOR COLOR IMAGES OF

NATURAL SCENE

GUO JUGUI

NATIONAL UNIVERSITY OF SINGAPORE
2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Name: GUO JU GUI
Degree: Master of Science
Dept: Computer Science
Thesis Title: Multi-resolution region-preserving segmentation for color

images of natural scene

Abstract

Image segmentation is one of the primary steps in image analysis for

image labeling and retrieval. Recent Segmentation methods have shown a

strong interest in graph based algorithm, and they have been quite success-

ful in identifying significant regions and their boundaries. The cost func-

tions used in these graph algorithms are usually based on low-level pixel-

based image features such as position, intensity, and color. These methods

tend to produce over-segmented results, especially for images of natural

scenes whose regions contain complex but coherent mixture of colors. This

thesis describes a multi-resolution segmentation algorithm which first con-

structs a region pyramid that preserves the color distributions of regions,

and then applies a graph cut algorithm at the top level of the pyramid to

identify main regions in the image, and finally refines the region boundaries

with a top-down approach based on integer linear programming. This way,

main image regions are identified while over-segmentation is minimized.

Keywords: Image segmentation
Graph Cut
Image pyramid

MULTI-RESOLUTION REGION-PRESERVING

SEGMENTATION FOR COLOR IMAGES OF

NATURAL SCENE

GUO JU GUI
(B. Sc. (Hon.) in Computer Science, NUS)

A THESIS SUBMITTED
FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE
2004

Acknowledgments

I would like to express my gratitude to my project supervisor, A/P Leow
Wee Kheng, for providing his timely advice and guidance during the course of my
honours and masters years. I would also like to express my thanks to A/P Leong
Hon Wai for his enlightening discussions and advices.

I would like to thank my lab mates, Rui Xuan, Chen Ying, Indri, Saura
and Henna for their help and support. Lastly, I would like to express my gratitude
to Kenny, my housemates and my family for their continuous support.

i

Contents

Acknowledgments i

List of Figures v

List of Tables vi

Summary vii

1 Introduction 1

1.1 Motivation . 1
1.2 Research Goal . 2
1.3 Overview of Proposed Algorithm 2
1.4 Thesis Overview . 4

2 Related Work 5

2.1 Traditional Approaches for Color Image Segmentation 5
2.2 Graph-Theoretic Approach . 7
2.3 Multi-Resolution Approach . 9
2.4 Classification Approach . 11

3 Pyramid Construction 12

3.1 Adaptive Color Histogram . 13
3.2 Adaptive Binning . 13
3.3 Operations on Adaptive Color Histograms 14
3.4 Pyramid Construction . 17

3.4.1 Image Color Quantization 17
3.4.2 Pyramid Construction Algorithm 17

3.5 Memory Requirement . 20
3.5.1 Reduced Region Boundary Uncertainty 24

4 Segmentation with Minimum Mean Cut 26

4.1 Introduction to Minimum Mean Cut 27
4.1.1 Reducing Minimum Mean Cut to Minimum Mean Simple

Cycle . 28
4.1.2 Reducing Minimum Mean Simple Cycle to Negative Simple

Cycle . 30

ii

4.1.3 Reducing Negative Simple Cycle to Minimum-Cost Perfect
Matching . 30

4.2 Interleaved Segmentation Algorithm 32
4.2.1 Shortcomings of MMC . 32
4.2.2 Details of Interleaved Segmentation 33

5 Boundary refinement 37

5.1 Global Optimization Approach 37
5.1.1 Optimization by DP and ILP 39
5.1.2 Selection of Valid Edge Sequences 41
5.1.3 Cost Function of Edge Sequences 45
5.1.4 Connectivity Constraints 47

5.2 Greedy Local Optimization Approach 51

6 Experimental Results 56

6.1 Experimental Set Up . 56
6.2 Quantitative Evaluation . 58
6.3 Qualitative Evaluation . 65

7 Conclusion and Future Work 92

7.1 Future Work . 92
7.2 Contribution . 93
7.3 Conclusion . 94

Bibliography 96

Appendices 101

A Example of Valid Edge Sequences 101

iii

List of Figures

1.1 Overview of segmentation algorithm. 3

3.1 Region pyramid construction. 18
3.2 The region map of the pyramid 21
3.3 Number of bins of the histograms at each level 22
3.4 Memory requirement for region pyramid. 24
3.5 Reduced region boundary uncertainty. 25

4.1 Grid graph construction. 28
4.2 Example of the dual graph construction from grid graph. 29
4.3 Graph constructed to use minimum-cost perfect matching 31
4.4 The spurious cut problem. 32
4.5 Regions connected at the corner. 35
4.6 Segmentation result at level 3. 36

5.1 Example of an expanded edge sequence. 38
5.2 An example segmentation result 40
5.3 Correspondence between blocks at level l and l + 1. 42
5.4 Trend of the edge sequence cost. 43
5.5 Feasible solutions obtained by ILP. 44
5.6 Expansion of edges M and N into segments AB and CD 45
5.7 The association between child blocks and parent regions. 47
5.8 Example of a combination formed by edge sequences of 2 edges. . 48
5.9 Example of a combination formed by edge sequences of 3 edges. . 50
5.10 Two situations for the combinations formed by 4 edge sequences. . 50
5.11 Example of boundaries refined with DP and ILP 52
5.12 Segmentation result after applied greedy refinement. 55

6.1 Sample BlobWorld segment result with discarded regions. 59
6.2 F-measure values for the test images. 60
6.2 F-measure values for the test images (continued). 61
6.3 Test result 1 . 63
6.4 Test result 2. 66
6.4 Test result 2 (continued). 67
6.5 Test result 3. 68
6.5 Test result 3 (continued). 69
6.6 Test result 4. 70

iv

6.6 Test result 4 (continued). 71
6.7 Test result 5. 72
6.7 Test result 5 (continued). 73
6.8 Test result 6. 74
6.8 Test result 6 (continued). 75
6.9 Test result 7. 76
6.9 Test result 7 (continued). 77
6.10 Test result 8. 78
6.10 Test result 8 (continued). 79
6.11 Test result 9. 80
6.11 Test result 9 (continued). 81
6.12 Test result 10. 82
6.12 Test result 10 (continued). 83
6.13 Test result 11. 84
6.13 Test result 11 (continued). 85
6.14 Test result 12. 86
6.14 Test result 12 (continued). 87
6.15 Test result 13. 88
6.15 Test result 13 (continued). 89
6.16 Test result 14. 90
6.16 Test result 14 (continued). 91

v

List of Tables

3.1 Weights for combining histograms. 20

4.1 k value adjusted according to the σ value. 34

5.1 The window size for computing local region histogram at each level. 53

6.1 Statistics on F-Measure. 59
6.2 Statistics on the Precision Measure. 64
6.3 Average processing time of algorithms. 64

vi

Summary

Image segmentation is one of the primary steps in image analysis for image

labeling and retrieval. Recent Segmentation methods have shown a strong inter-

est in graph based algorithm, and they have been quite successful in identifying

significant regions and their boundaries. The cost functions used in these graph

algorithms are usually based on low-level pixel-based image features such as posi-

tion, intensity, and color. These methods tend to produce over-segmented results,

especially for images of natural scenes whose regions contain complex but coherent

mixture of colors.

This thesis describes a multi-resolution segmentation algorithm which first

constructs a region pyramid that preserves the color distributions of regions, and

then applies a graph cut algorithm at a coarse level of the pyramid to identify

main regions in the image. The coarse region boundaries found are refined using

Dynamic Programming and Integer Linear Programming, and propagated down to

the lowest level by a greedy method. Experimental results show that this approach

can identify the main regions in many images and minimize over-segmentation.

vii

Chapter 1

Introduction

1.1 Motivation

Image segmentation is one of the primary steps in image analysis such as image

labeling and object identification. The resulting regions will represent certain

semantic contents and may indicate the presence of objects or object parts, which

can be verified later with an image analysis and recognition step.

Image segmentation is also an important tool for content-based image retrieval

(CBIR). Each extracted region in the segmentation step contains a different region

content which could be a combination of color, texture, brightness and spatial

information. These information provide a natural link between the contents of the

query images and those of the images in the database, which enables an accurate

retrieval in response to the user’s query. Recent CBIR system [8] could even allow

the user to access the segmentation result of the query image and specify which

aspects of the image are important to the query. Such interactions have greatly

1

assisted in query refinement and improved the performance of image retrieval.

1.2 Research Goal

This thesis addresses the image segmentation problem in the context of semantic

labeling and image retrieval. In these application contexts, it is desirable to par-

tition an image into semantically consistent regions. Especially in natural scene

images, each region can contain a complex but coherent mixture of colors. There-

fore, we can assume that a coherent color distribution provides a good indication

of semantic consistency.

This thesis proposes a multi-resolution region preserving segmentation ap-

proach on color images. The resulting segmentation should have the following

properties:

1. Each region is a closed connected component. This is essential to ensure the

spacial consistency of each region.

2. Each region is of a significant size compared to the image size. Thus, only

main regions are extracted.

3. Each region will have a coherent distribution of colors. This is a desirable

property to bring about the semantic consistency of each region.

1.3 Overview of Proposed Algorithm

The proposed algorithm can be divided into three main steps (Figure. 1.1):

2

Pyramid Construction Boundary Refinement

Graph−cut Segmentation

Figure 1.1: An overview of the segmentation algorithm.

1. Pyramid Construction: A region pyramid is constructed to capture the color

distributions of image blocks at various resolutions. In a conventional image

pyramid, each image block contains information of only a single mean color

or texture. In the region pyramid introduced in this thesis, each block in the

pyramid captures the color distributions of a region in the original image.

Thus, we call the constructed pyramid a region pyramid. This step aims

at preserving the information of color distributions of the image blocks at

various levels of resolutions. That is, the number of image blocks is reduced

at a lower resolution, but the color distributions are preserved in the image

blocks.

2. Graph-Cut Image Segmentation: Perform segmentation based on graph-

cut algorithm at a higher level in the region pyramid, which has a lower

resolution, so that the main regions in the image can be identified.

3. Boundary Refinement: Refine the region boundaries obtained at step 2 top-

down to the finest level to obtain the final segmentation result. This re-

finement process preserves the color distributions and the locations of the

3

regions obtained at step 2.

1.4 Thesis Overview

This section will give an overview of the thesis: Chapter 2 will introduce some

background and related approaches on image segmentation. The proposed ap-

proach is discussed in detail in Chapters 3, 4 and 5. Chapter 6 will demon-

strate some experimental results and illustrate the difference between the pro-

posed method and some existing methods. Chapter 7 will suggest some future

work, summarize the contributions and conclude this thesis.

4

Chapter 2

Related Work

Image segmentation is one of the most challenging problems in computer vi-

sion and has been studied from a wide variety of perspectives. But, no sufficiently

rigorous and general solution to this problem is available. Techniques proposed

include histogram thresholding, which is used for gray scale images; edge detec-

tion, region growing and splitting, clustering, and general optimization as well as

graph-based optimization approaches which could be applied to both gray scale

images and color images.

2.1 Traditional Approaches for Color Image Seg-

mentation

The general segmentation methods for color images can be grouped into four

main categories: Edge detection, region growing and splitting, clustering, and

non-graph-based optimization methods.

5

Edge detection techniques [7, 19, 20] first perform filtering on the image to

remove the noise in the image. Then, an edge detection algorithm such as LoG or

Sobel filter is applied to generate an edge map. But the edge map just indicates

the possible locations of the region boundaries. Further processing is needed to

link the edges into closed boundaries and to remove unwanted line segments. The

linking process could be carried out given a model, which is usually not available

for real images.

Region growing and splitting aims to detect connected sets of pixels, that

satisfy certain predefined homogeneity criteria, such as intensity consistency and

color coherence. For region growing or merging techniques, input images are

divided into a set of primitive regions, then an iterative process is carried out to

repeatedly merge neighboring regions that are similar in features together into

larger regions [1, 6, 11, 13]. Region splitting techniques work in the opposite way.

The entire image is initially considered as one region. In the subsequent steps,

regions are recursively split into more homogeneous regions.

The region-based algorithms are computationally more expensive than the

edge detection techniques. But they can utilize several image properties directly

and simultaneously to determine the region boundaries. Region merging has been

the most popular approach in segmentation and is also used as a part of more

comprehensive approaches.

Clustering methods perform grouping of pixels in the feature space, e.g., color

space [9, 26]. The current histogram grouping algorithms have also taken into

account local spatial features [21, 22]. They compute local color histograms of

6

each pixel and group the histograms into a fixed number of prototypical color-

distribution models using Bayesian Theory. These methods typically require the

features (e.g., color) to be quantized into a small number of intervals or bins so

that the estimation of probability functions can be done. Therefore, they are more

applicable to images with less complex distributions of colors.

Optimization techniques define a global function that measures the goodness

of the segmentation result and seek to optimize the result. Examples of these

techniques include Bayesian and Markov random fields methods [2, 5, 34, 36].

In Markov random field methods, the image is assumed to be a realization of

a Markov or Gibbs random field function with a distribution that captures the

spatial context of the scene. The commonly used statistical estimation princi-

ples like maximum a posteriori (MAP) estimation, maximization of the marginal

probabilities (ICM) are used to minimize the difference between the given prior

distribution of an image model and the segmented image. However, these methods

require fairly accurate knowledge of the prior true image distribution and most of

them are computationally expensive.

2.2 Graph-Theoretic Approach

The graph-theoretic approach is a newer optimization approach. The input image

is represented as a graph, where the vertices of the graph are the pixels in the input

image, and for every pair of neighboring pixels, an edge is formed between the

corresponding pair of vertices. The cost of each edge is a function of the similarity

between each adjacent pair of vertices. A partition of the vertices that minimizes

7

certain cost function will form a natural segmentation on the image [3, 30, 35].

Wu and Leahy [35] were the first to introduce the general approach to graph-cut

algorithms and their algorithm has a polynomial time complexity. Their minimum

cut algorithm formulates the cost function as the sum of the edge costs along the

region boundary and aims to minimize this cost. Therefore, it is biased toward

small regions which have shorter boundaries and, thus, smaller costs. Veksler

[30] applied nested cut to find minimum-cost cycles around each pixel, if the cost

of a cycle found is smaller than a threshold, the regions enclosed in the cycle

will be grouped into those regions enclosed by a larger-cost cycle. This method

requires the cost function to decrease rapidly with decreasing similarity to ease

the decision of the threshold value[30]. Shi and Malik [29] and Belongie et al. [3]

apply a normalized cost, instead of total cost, which is formulated as the sum of

ratio of boundary cost over the total number of connections between each partition

and the total area. Such a ratio will favour partitioning the image into regions of

similar size [33].

Jermin and Ishikawa’s method [14] finds globally optimal segmentation by

determining the minimum mean (i.e., normalized) cost cycle in a directed graph.

Wang and Siskind’s minimum mean cut method [32] finds the minimum mean

cost cycle in an undirected graph instead. They discovered that the use of mean

cost in the graph algorithm leads to spurious cuts [32] (see detailed discussion in

Chapter 4), which are globally optimal but not perceptually satisfactory. Their

method is improved in [33] by incorporating region information and heuristics to

speed up the segmentation process. The above algorithms, except [3, 14, 29], use

8

pixel intensity as the main feature. Thus, they are sensitive to salt-and-pepper

noise and tend to over-segment the images [33].

The graph-theoretic approach has made the optimization approach achievable

in polynomial time [32, 35]. Among the techniques discussed, MMC does not

introduce explicit bias toward region size or length. Therefore, it will be adopted

as part of our segmentation algorithm. Notice that MMC has only been applied

to grayscale images and it uses only low-level image intensity in the segmentation

process. The regions generated from MMC tend to be too fragmented for image

labeling. We adapt this algorithm for segmentation at a lower resolution level to

produce more semantically consistent regions.

2.3 Multi-Resolution Approach

Multi-resolution is a technique that constructs an image pyramid and applies the

segmentation process at different levels of the pyramid. The initial segmentation

is obtained at a coarser level, and a boundary refinement process is performed

top-down to the finest level to obtain the final segmentation.

The general advantage of the multi-resolution scheme is that it provides a way

to trade-off spatial resolution and robustness against noise. Repeatedly blurring

and subsampling the image decreases the noise and improves the region boundary

certainty, but at the expense of spatial resolution. Moreover, color variation in

lower resolution images tend to be more obvious between regions. Therefore, it

becomes possible to avoid inappropriate segmentations.

Examples of the multi-resolution approach include the hierarchical image seg-

9

mentation by Schroeter [27], which performs a clustering of texture at the coarsest

level to determine the number of regions in the image. This is followed by an

orientation-adaptive boundary refinement process. But this algorithm has only

been applied to grayscale images. James Wang has proposed a multi-resolution

approach for segmenting sharply focused object-of-interest from other foreground

or background objects [31]. It employs the average intensity and wavelet coef-

ficients in the high frequency bands to distinguish between the background and

the object of interest. The method of Salembier [25] first groups pixels into many

small regions based on similarity estimation of some generic features such as color

homogeneity. These regions are characterized by the mean color values within

the regions. Then these initial regions are grouped in various combinations into

a hierarchical grouping. This hierarchical grouping can support different kinds of

segmentation applications which require different details in the segmentation re-

sults. The multiscale segmentation method introduced by Sharon [28] performed

an approximated normalized cut at a higher level of the image pyramid followed

by a boundary sharpening step. The JSEG [11] algorithm first quantizes the col-

ors in an image into several clusters, and the color of each pixel in the image is

replaced by the corresponding cluster label. A criterion based on the distribution

of the cluster labels is used to identify the initial possible boundaries and interiors

of regions. Then a region growing method is used to segment the image based on

the distribution of the cluster labels at different scale.

Existing multi-resolution image segmentation methods [4, 5, 11, 28, 31] char-

acterize image regions by their mean or dominant colors and texture. However,

10

single mean or dominant color is not sufficient to characterize the complex mixture

of colors present in the regions of natural scene images. And texture features tend

to be ambiguous and not discriminative enough. Our method, on the other hand,

characterizes regions by their color histograms, thus capturing the information

of the color distribution of the regions more accurately than existing methods.

Moreover, the region characteristics are preserved in the upper levels while the

region pyramid is constructed.

2.4 Classification Approach

In the last year, a new kind of approach–the classification approach is introduced.

The idea behind this approach is to train a classifier to classify good segmentation

and poor segmentation results based on visual cues such as texture, brightness,

contour energy and curvilinear continuity. An example of this approach is Ren’s

classification model [24] for segmentation which is implemented for gray-scale im-

ages. Good segmentation results are obtained from human labelled ground truth

introduced in [18]. Poor segmentation results are obtained by randomly match-

ing a human segmentation to a different image. The classifier linearly combines

different features according to the training data and give scores to segmentations.

Then the classifier is applied to search in the space of all segmentations to obtain

an optimal segmentation.

11

Chapter 3

Pyramid Construction

A color histogram is a useful representation of color distribution. A simple color

histogram essentially counts the number of pixels of each ‘color’. The strength

of a histogram representation is that it can capture the color distribution instead

of a single color. In a complex color image, especially a natural scene image,

each region contains a complex but coherent mixture of colors. Therefore, we

can expect that the color histogram representation can capture the color region

information more accurately.

The reason for adopting adaptive histogram instead of fixed binning his-

togram is that adaptive histograms can represent the distributions more efficiently

than histograms with fixed binning [23]. Unlike fixed histograms, adaptive his-

tograms adapt their binning schemes according to the color contents of the images.

Therefore, different images will have different clusters of colors. They have been

shown to yield the best overall performance in terms of good accuracy, small num-

ber of bins, and no empty bin compared to fixed-binning histograms [16]. Thus,

12

the use of adaptive histogram can reduce the overall memory requirement of the

region pyramid.

3.1 Adaptive Color Histogram

An adaptive color histogram H = (n,C,H) is a 3-tuple consisting of a set C of n

bins ci, i = 1 . . . n, and a set H of corresponding bin counts hi > 0. The set of

bins of H is also denoted as C(H). Adaptive histogram is produced by adaptive

binning, which determines the number of bins n and the bin counts.

3.2 Adaptive Binning

Adaptive binning is similar to k-means clustering or its variants. But the cluster-

ing algorithm is applied to the colors in an image instead of the colors in an entire

color space. Therefore, adaptive binning produces different binnings for different

images.

Adaptive binning groups pixels into clusters according to the distance measure

dkp between the centroid Ck of cluster k and pixel p with color Cp, which is defined

as the CIE94 color-difference equation:

dkp =

[

(4L∗

kLSL

)2

+

(4C∗
ab

kcSc

)2

+

(4H∗
ab

kHSH

)2
]

1

2

(3.1)

where 4L∗, 4ab∗, and 4H∗ are the differences in light-ness, chroma, and hue

between Ck and Cp, SL = 1+0.045C
∗

ab, SH = 1+0.015C
∗

ab, and kL = kc = kH = 1

for reference conditions. The variable is the geometric mean between the chroma

values of Ck and Cp. The CIE94 color-difference equation is used instead of the

13

simple Euclidean distance in CIELAB space because CIE94 is more perceptually

uniform than Euclidean [16].

Adaptive binning groups a pixel p into its nearest cluster if it is near enough

(dkp < R). On the other hand, if the pixel p is far enough (dkp > D) from its

nearest neighbor, then a new cluster is created. Otherwise, it is left unclustered

and will be considered again in the next iteration. The clustering process could

be summarized as follows [16]:

Repeat

1. For each pixel p, find the nearest cluster k to pixel p.

(a) If no cluster is found or distance dkp > D, create a new cluster

with p;

(b) Else, if dkp < R, add p to cluster k.

2. For each cluster i,

(a) If cluster i has at least Nm pixels, update centroid ci of cluster i.

(b) Else, remove cluster i.

In the implementation in [?], this process repeats for 10 iterations, after that,

the rest of the unclustered pixels are grouped into their nearest clusters.

3.3 Operations on Adaptive Color Histograms

1. Dissimilarity measure between histograms

Since different adaptive histograms can contain different binnings, we cannot

14

use the traditional Euclidean distance measure. As illustrated in [16], the

Earth Mover’s Distance (EMD) for comparing histograms with different

binnings is computationally expensive. Therefore, the weighted correlation

is introduced and used instead [16]. The details of weighted correlation are

explained as following.

• Bin Similarity

The similarity w(b, c) between bins b and c is given by a monotonic

function inversely related to the distance ‖b − c‖ between them. Bin

similarity is symmetric w(b, c) = w(c, b) and bounded: 0 ≤ w(ci, cj) ≤

1.

The bins are taken to be spherical and w(b, c) is defined in terms of the

volume of intersection between them. In 3D, the volume of intersection

Vs(α) between equal-sized spherical bins of radius R, separated by a

distance αR, can be derived from elementary solid geometry as

Vs(α) = V − παR3 +
π

12
α3R3 (3.2)

where V = 4πR3/3 is the volume of a sphere. The bin similarity is

then defined as

w(ci, cj) = w(α) =
Vs(α)

V
=

1 − 3
4
α + 1

16
α3 if 0 ≤ α ≤ 2

0 otherwise

where R is the distance between bin centroids ci and cj. The equation

approximates a Gaussian function of the form exp{−α2R2/σ2} with an

appropriate σ.

15

• Weighted Correlation

The weighted correlation between histograms G = (m,B, P) and H =

(n,C,Q), denoted as G · H, is defined as

G · H =
m

∑

i=1

n
∑

j=1

w(bi, cj)piqj (3.3)

where w(bi, cj) is the bin similarity between bin bi and bin cj. Weighted

correlation is non-negative, G · H ≥ 0, and commutative, G · H =

H · G, because the bin counts gi and hj are non-negative and the

bin similarities w(bi, cj) are non-negative and symmetric. The null

histogram O is totally uncorrelated to any non-null histogram H: H ·

O = 0

• Histogram dissimilarity

The similarity s(G,H) between histograms G and H is defined as the

weighted correlation between their normalized forms s(G,H) = G ·H.

The norm ‖H‖ of histogram H is defined as ‖H‖ =
√

H · H, so the

normalized histogram of a histogram H is defined as H = H/‖H‖. The

dissimilarity d(G,H) between them is defined as d(G,H) = 1−s(G,H),

and is bounded between 0 and 1.

2. Mean of Histograms

The mean of histograms is a mean histogram which is obtained by merging

the normalized histograms [16]. Let histogram G = X
⋃

Y and H = X ′
⋃

Z

such that X and X ′ have the same set of bin centroids and X, Y and Z

have disjoint sets of bin centroids. Then, the merged histogram G ⊕ H =

16

(X
⋃

Y) ⊕ (X ′
⋃

Z) = (X + X ′)
⋃

Y
⋃

Z . That is, two histograms are

merged by collecting all the bin centroids and adding the bin counts of the

bins with identical centroids. So, the mean M of histograms Hi is

M =
n

⊎

i=1

H i = H1 ⊕ H2 ⊕ . . . ⊕ Hn. (3.4)

3.4 Pyramid Construction

3.4.1 Image Color Quantization

The colors in input image is first clustered to obtain a small number of color

clusters using the adaptive binning algorithm (Section 3.2). Then a quantization

step is performed on the image by replacing the color of each pixel with the color

of its nearest cluster centroid. Such a quantization process can help to reduce the

complexity of the color distribution in the image and extract a few representative

colors which can differentiate neighboring regions in the image. It is shown in [16]

that this adaptive color quantization method incurs only a very small error in the

colors of the quantized image.

3.4.2 Pyramid Construction Algorithm

The region pyramid consists of L levels of maps, each containing a number of

square blocks. The highest level of l = 1 contains a map with a single block that

represents the entire image. The lowest level of l = L contains a map with each

block corresponding to a pixel in the original input image. The map at level l

is derived from that at level l + 1 by combining 3×3 lower-level blocks into one

17

level l 1+

level l

Figure 3.1: The region pyramid is constructed by combining 3× 3 lower-level

blocks into one higher-level block, with an overlap of one row or one column

between neighboring blocks.

higher-level block, with an overlap of one row or one column between neighboring

blocks in the lower-level (Figure 3.1). Therefore, the image coordinates (xl, yl) at

level l is mapped to the coordinates at level l + 1 by the equations

(xl+1, yl+1) = (2 xl + 1, 2 yl + 1) . (3.5)

The advantage of this coordinate mapping approach is that the center of a

higher-level block maps exactly to the center of a lower-level block. On the other

hand, the conventional method of combining 2×2 blocks into one block maps the

center of a higher-level block to the intersecting boundaries of the 2×2 blocks.

Each block of the maps in the pyramid captures the distribution of colors

within the corresponding region in the original image instead of a single mean

color or dominant color of the region. Therefore, our method can capture region

information more accurately than existing methods that represent each region by

its mean or dominant color.

Let SL denote either the width and the height of the input image, whichever

18

is smaller. Then,

L = blog2(S + 1)c (3.6)

Sl = b(Sl+1 − 1)/2c , S1 = 1 . (3.7)

At the lowest level of l = L, each block corresponds to a pixel in the original

image. Therefore, the histogram of such a block contains only one non-empty bin

that represents the color of the corresponding pixel. On the other hand, the map

at the highest level of l = 1 contains only one block that corresponds to the entire

image. Its histogram will need to have enough color bins to capture the color

distribution of the entire image accurately.

The region pyramid construction process is as follows:

Repeat for each block at (xl, yl) of each level l = L − 1, . . . , 1:

(a) Combine the histograms of the blocks at level l + 1 into the histogram

of block (xl, yl) as follows:

hk(xl, yl) =
∑

−1≤i,j≤1

w(i, j)hk(xl+1 + i, yl+1 + j) (3.8)

where hk is the bin count of bin k of the color histogram of block (xl, yl)

and w(i, j) is a weighting factor used to prevent over counting of the

bin counts of overlapping blocks and to give a higher weight to the

centre block (Table 3.1).

The summation is performed over the 9 blocks at level l + 1 that make

up the corresponding block (xl, yl) at level l. The location of the center

of the nine blocks is related to the location (xl, yl) by Eq. 3.5. If bin

19

Table 3.1: Weights for combining histograms.

0.25 0.5 0.25

0.5 2 0.5

0.25 0.5 0.25

k does not exist in the histogram of block (xl, yl), then it is an empty

bin and its value is taken as 0.

(b) Remove empty bins and bins with very small bin counts. This is equiv-

alent to setting the bin counts of these bins to 0. Removing these in-

significant bins reduce the size of the histograms and, thus, the amount

of memory required.

Figure 3.2 shows an exmaple of the region pyramid obtained. Instead of show-

ing the histogram of each image block, the dominant color of the histogram for

each block is shown.

3.5 Memory Requirement

In the current implementation of the region pyramid, the number of bins Bl of

the histograms at level l is given as follows (Figure 3.3):

Bl = min
(

B, 2L+1−l − 1
)

(3.9)

where B is the number of bins of the adaptive histogram for the entire input

image derived using the adaptive clustering method given in section 3.2. The

20

(a) (b) (c)

(d) (e) (f)

Figure 3.2: The region map of the Pyramid. (a) Level 8. (b) Level 7. (c) Level 6.

(d) Level 5. (e) Level 4. (f) Level3. In this visualization of the region maps, each

block is painted with the dominant color in its color histogram.

21

1 2 3 4 5 6 7 8 9 10
1

10

100

1000

10000
V1
V2
V3

l

Bl

Figure 3.3: Number of bins of the histograms at level l (for L = 10). V1, V2, V3:

region pyramids using variable number of histogram bins.

tests reported in [16] found that B = 39, averaged over 100 colorful Corel images

of size 384×256.

To analyze the memory requirement, let us assume, for mathematical simplic-

ity, that the input is a square image of width SL = 2L − 1 for some L. Then, the

width of the image at level l is Sl = 2l − 1, and the area (i.e., number of pixels) of

the input image is S2
L ≈ 22L. Let Bl denote the number of bins of the histogram

at level l. Thus, the total amount of memory N used by the region pyramid is

N =
L

∑

l=1

BlS
2
l . (3.10)

A conventional image pyramid uses only one unit of memory space for each

image pixel. That is, Bl = 1 for all l and the amount of memory N0 required is

N0 =
L

∑

i=1

S2
l ≈ 1

3
22(L+1) ≈ 4

3
S2

L . (3.11)

Thus, a conventional image pyramid uses only 1/3 times more memory than that

required for the input image.

22

Now, let us examine the memory requirement of our region-preserving region

pyramid. If fixed-binning histograms of, say, 100 bins, are used to represent the

color distributions of all the blocks in the region pyramid, then N = 100N0. Re-

placing fixed-binning histograms with adaptive histograms can reduce the number

of bins to, say 39, per histogram. This results in a total memory requirement of

N = 39N0. Both methods require lots of memory compared to a conventional

image pyramid.

Obviously, the maps at the lower levels require far fewer bins than 39. Suppose

we use the following memory scheme (V1)

Bl = 2L+1−l − 1 (3.12)

to estimate the number of bins required for the histograms at level l, then the

total memory requirement N1 becomes

N1 =
L

∑

l=1

(2L+1−l − 1)(2l − 1)2 ≈ 2

3
22(L+1) = 2N0 . (3.13)

Compared to the cases of using a fixed number of bins, this method requires only

two times as many memory space as that of a conventional image pyramid.

The memory requirement can be further reduced by using the following scheme

(V3):

Bl = 2L−1 . (3.14)

In this case, the memory requirement N3 is

N3 =
L

∑

l=1

2L−l(2l − 1)2 ≈ 1

2
22(L+1) =

3

2
N0 . (3.15)

However, this scheme is not used in our current implementation because there

23

1 2 3 4 5 6 7 8 9 10
1

10

100

1000

10000

100000

1E+006

1E+007

V1
V2
V3
N0

L

N

Figure 3.4: Memory requirement N of pyramids of height L. N0: conventional

image pyramid, V1, V2, V3: region pyramids with variable number of histogram

bins at different levels.

are too few bins in the low-level histograms to accurately represent the color

distributions of the regions. Instead, the scheme given in Eq. 3.9 (V2) is used,

which is similar to Eq. 3.12 except for the saturation at B. Numerical computation

shows that the total memory requirement for this case, N2, is less than N1 which

equals 2N0 (Figure 3.4).

3.5.1 Reduced Region Boundary Uncertainty

Another reason for constructing a region pyramid is that the region information

at the higher level is more compact and the region boundary uncertainty is reduced

with the trade off of a lower resolution. This can be shown in Figure 3.5.

Consider that there is an edge between each pair of neighbouring blocks, and

the costs of these edges are measured by the similarity between the neighbouring

blocks. Then the edges with smaller costs are likely to be region boundaries. From

Figure 3.5 we can see that the percentage of possible boundary-edges reduced

24

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9
x 10

4

cost

Edge counts

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

cost

Edge counts

(a) (b)

Figure 3.5: The x-axis represents the range of the edge costs (similarity between

neighbouring blocks), the y-axis counts the number of edges with theirs costs

falling into the different ranges shown in the x-axis. The percentage of possible

boundary-edges dropped from (a) level 8 to (b) level 3.

significantly from level 8 (Figure 3.5(a)) to level 3 (Figure 3.5(b)), which means

the region boundary uncertainty has been reduced significantly at level 3.

25

Chapter 4

Segmentation with Minimum

Mean Cut

After constructing the region pyramid, segmentation is performed at level l = 3

or 4. These levels contain a sufficient number of blocks that correspond well with

the main regions in the image. Furthermore, they contain far fewer blocks than

the bottom-most level L. Thus, a comprehensive optimization algorithm can be

applied at these levels to obtain globally optimal segmentation.

The recent graph-theoretic approach has provided us with such an optimization

scheme. As discussed in Chapter 2, among the existing graph-cut algorithms,

Minimum Mean Cut is an approach that does not introduce bias on boundary

length or region size. Therefore, part of our algorithm will be based on Minimum

Mean Cut. Let us review the Minimum Mean Cut algorithm below.

26

4.1 Introduction to Minimum Mean Cut

Here we will consider the recent Minimum Mean Cut (MMC) algorithm intro-

duced in [32]. As stated earlier, MMC can extract significant contours without

introducing bias on boundary length or size. It is based on minimizing the cost

function

C(A,B) =
c(A,B|w(u, v))

c(A,B|1) (4.1)

which finds the cut that groups the pixels in an image into groups A and B,

and minimizes the average edge cost along the boundary. The average edge cost

along the boundary becomes a measurement of a good segmentation, and its op-

timal solution which takes all possible boundaries as variables deduces an optimal

partitioning of the pixels in the image.

In our application, each image block is regarded as a vertex of a graph G

(Figure 4.1). A graph edge is connected between neighboring vertices, and it

corresponds to the edge between the image blocks. This process constructs a grid

graph from an input image. The edge cost is assigned as the similarity between the

histograms of blocks u and v where u ∈ A and v ∈ B, which is computed according

to the histogram similarity discussed in Section 3.3. Therefore c(A,B|w(u, v))

computes the sum of the edge cost in between groups A and B, and it is normalized

by c(A,B|1), the boundary length, to obtain the mean cost C(A,B).

27

e
n1 n2

vu

Figure 4.1: The construction of grid graph G from original image. (Blocks u and

v in the original image correspond to vertex n1 and n2 in the graph. The graph

edge e connects n1 and n2, and it corresponds to the edge between blocks u and

v.)

4.1.1 Reducing Minimum Mean Cut to Minimum Mean

Simple Cycle

The problem of finding a Minimum Mean Cut (MMC) can be reduced to the

problem of finding a minimum mean simple cycle (MMSC) with the assumption

that the grid graph G = (V,E) is a connected-planar graph [32]. The reduction

from Minimum Mean Cut to minimum mean simple cycle constructs a dual graph

Ĝ = (V̂ , Ê). Figure 4.2 gives an example of the dual graph construction. The

construction procedure adapted from [32] is given below:

1. For every grid (solid lines in Figure 4.2) in G, Ĝ contains a corresponding

vertex located in the center of this grid. These vertices are called basic

vertices and form a new grid system. In Figure 4.2, v1 is one of the basic

vertices.

28

ê1

e1

e2

ê2
Auxiliary Vertex

v1

Figure 4.2: An example dual graph constructed from the original grid graph.

Given the original grid graph G (solid lines), a dual graph Ĝ (dotted lines) can

be constructed. See main text for the construction algorithm.

2. Ĝ contains a distinct vertex for all the border edges (e1 and the other 7

solid edges that surrounds G in Figure 4.2) of G. These vertices are called

auxiliary vertices.

3. Each non-border edge e ∈ E is mapped to a corresponding edge ê ∈ Ê that

goes across e and with the same cost as e. For example in Figure 4.2, e2 is

mapped to ê2.

4. Each border edge e ∈ E is mapped to a corresponding edge ê ∈ Ê, with the

same cost as well, and connects a border vertex to the auxiliary vertex for

that border. For example in Figure 4.2, e1 is mapped to ê1.

For any simple cycle ĉ = ê1, . . . , êl in Ĝ, removing the edges c = e1, . . . , el from

E partitions G into two connected components and therefore corresponds to a cut

29

in G with boundary c. When ĉ traverses an auxiliary vertex, c will become an

open boundary; otherwise, c is a closed boundary.

4.1.2 Reducing Minimum Mean Simple Cycle to Negative

Simple Cycle

The minimum mean cost cycle problem in directed graph has been addressed

by Karp in 1978 which is solved by dynamic programming. We need to solve the

minimum mean cost cycle in an undirected graph. The usual transformation of an

undirected graph to a directed graph by transforming each undirected edge to two

edges of opposite direction does not work because the minimum mean cycle will

always fall on the cycle formed by the two edges transformed from the minimum

cost edge.

The problem can be solved as follows [32]. The edge cost w of Ĝ can be

transformed by w′ = w− b, where b lies between the minimum and the maximum

edge costs. Then, the negative simple cycle (a simple cycle with a negative total

cost) of Ĝ that corresponds to the smallest b is the negative simple cycle that

corresponds to the minimum mean simple cycle of Ĝ.

4.1.3 Reducing Negative Simple Cycle to Minimum-Cost

Perfect Matching

To determine whether the graph Ĝ has a negative simple cycle is equivalent

to determining whether the graph G′ constructed as follows (Figure 4.3) has a

30

Figure 4.3: Graph constructed to reduce negative simple cycle to minimum-cost

perfect matching.

negative-cost perfect matching [32]:

1. For each vertex u in Ĝ, G′ contains two corresponding vertices, u1 and u2,

and one corresponding zero-cost edge (u1, u2).

2. For each edge (u, v) in Ĝ, G′ contains two corresponding vertices, uv and vu,

and five corresponding edges with weights as follow: w(u1, uv) = w(u2, uv) =

w(v1, vu) = 1
2
w(u, v) and w(uv, vu) = 0.

The problem of finding the negative-cost perfect matching could be solved in

polynomial time using the algorithm given in [12].

The three graph transformations above has shown that solving for MMC prob-

lem is equivalent to solving the corresponding Minimum-Cost Perfect Matching

problem, and therefore it can also be solved in polynomial time.

31

A

B

CC

C

1 2

3 D

Figure 4.4: The spurious cut problem.

4.2 Interleaved Segmentation Algorithm

4.2.1 Shortcomings of MMC

In practice, MMC tends to produce many small regions which is undesirable

for image labeling process. Furthermore, MMC has the spurious cut problem,

which is illustrated in Figure 4.4. As discussed in [32], the desired cut boundary

that corresponds to image edges is c1 ∪ c2 with length l1 + l2. Although c3 has a

larger mean value than c1 and c2, MMC will produce the undesired cut boundary

c1 ∪ c3 when w(c1)/l1 < w(c2)/l2 and l3 � l2 < l1, where w(ci) is the cost of cut

boundary ci.

The spurious cut problem arises because MMC is a single direction approach.

All edges are considered as candidates of inter-region edges (i.e., parts of region

boundaries), without making use of the fact that many of the edges should be

considered as candidates of intra-region edges within regions.

32

4.2.2 Details of Interleaved Segmentation

The main idea of our segmentation algorithm is to determine whether the

edge between two neighboring blocks is an inter-region edge or an intra-region

edge. The labeling of both types of edges proceed at the same time. In contrast,

the Minimum Mean Cut (MMC) algorithms described in [32, 33] focus only on

identifying inter-region edges.

Let e(bi, bj) denote the edge between two neighboring blocks bi and bj, and

s(bi, bj) denote the edge cost of e(bi, bj), which is the similarity between the adap-

tive color histograms of the blocks. The similarity is measured using the weighted

correlation method given in Section 3.3. If we sort all the edge costs in increasing

order s1 ≤ s2 ≤ · · · ≤ sm, then the edge with the smallest cost s1 must correspond

to an inter-region edge and that with the largest cost sm must correspond to an

intra-region edge. Since the similarity between two blocks across a region bound-

ary is, in general, smaller than that within a region, there exists a fuzzy threshold

Γ above which most edges are intra-region edges. This threshold is determined

recursively during segmentation based on MMC.

The segmentation algorithm is as follows:

1. Set the initial estimate of threshold Γ = sm − kσ, where k is a predefined

value given in Table 4.1, and σ is the standard deviation of the edge costs

s1, . . . , sm.

2. Repeat

(a) Mark all the unmarked edges with costs above Γ as intra-region edges.

33

Table 4.1: k value adjusted according to the σ value.

σ < 0.14 [0.14, 0.19) [0.19, 0.25) ≥ 0.25

k 0.02 0.04 0.08 0.1

(b) Use MMC to identify the minimum cost contour c among the unmarked

edges. Mark the edges in c as inter-region edges.

(c) Decrement Γ by kσ.

until the costs of all unmarked edges are below Γ or no more contour is

found.

3. Mark the remaining unmarked edges as intra-region edges, and compute the

mean histogram of the blocks in each region.

4. Merge neighboring regions whose mean histograms have the same dominant

color, i.e., the color with the largest bin count. The mean histogram for

each region is calculated using the operation discussed in Section 3.3. Note

that this merging criterion is not dependent on any threshold.

Two similar regions that are connected at the corners are marked as different

regions by the segmentation algorithm (Figure 4.5) because only simple

cycles are considered when inter-region edges are marked. The regions to

be considered in this merging process will include the neighbors located at

horizontal, vertical, and diagonal directions.

34

R1

R2

Figure 4.5: Two similar regions R1 and R2 connected at the corner. They were

marked as different regions by our algorithm because only simple cycles are con-

sidered when marking the inter-region edges.

Compared to [32, 33], our method has a lower chance of producing spurious

cuts because intra-region edges are identified before MMC is applied on the un-

marked edges. Moreover, the process of marking intra-region edges has reduced

the search space for the MMC operation, thus efficiency is improved. Figure 4.6

shows an example of the segmentation result obtained at level 3 of the region

pyramid.

35

(a) (b)

Figure 4.6: Segmentation result at lower-resolution level. (a) Region map at level

3 shown with the dominant colors of the histograms of the image blocks. (b)

Segment result at level 3 overlayed onto the input image.

36

Chapter 5

Boundary refinement

The boundary refinement process is a top down process that gradually locate

the accurate boundary from a coarse level l to the finest level L. The proposed

algorithm is divided into two steps. The first step is a global optimization ap-

proach which involves Dynamic Programming and Integer Linear Programming,

This step is performed from level l to level l + 1. The second step is a greedy

approach, which is performed from level l + 1 to level L.

5.1 Global Optimization Approach

Each inter-region edge at level l can be refined or expanded into a sequence of

connected edges, we shall call this connected sequence of edges an edge sequence,

that partitions a 3×5 area at level l+1 into two parts (Figure 5.1). Since the edge

sequence is located in a fixed area, there is a fixed number of possible expansions

of a level l edge into a level l + 1 edge sequence. The level l + 1 edge sequences

must satisfy connectivity constraints that are consistent with the connectivity

37

(a)

(b)

Figure 5.1: A region boundary edge at (a) level l is refined into (b) a sequence of

connected edges called an edge sequence that partitions a 3×5 area at level l + 1

into two parts.

of the level l edges. The detailed connectivity constraints will be discussed in

Section 5.1.4.

Let cij denote the cost of the jth edge sequence of edge i (see Section 5.1.3

for details), and vij ∈ {0, 1} denote whether the jth edge sequence is adopted for

edge i. Since only one edge sequence can be chosen for each edge,
∑

j vij = 1.

Now, we can formulate the boundary refinement problem as a problem that

minimizes the total cost C:

C =
m

∑

i

n
∑

j

vijcij (5.1)

where m is the number of edges and n is the number of edge sequences for each

edge, subject to the constraint
∑

j vij = 1 and the connectivity constraints be-

tween the edges. This problem can, in general, be solved by Integer Linear Pro-

gramming (ILP).

Note that the boundary refinement process affects only the detailed locations

of the boundary edges. So, the main regions that are segmented at the top level are

preserved. Therefore, our segmentation algorithm can identify the main regions

38

in an image, the accurate boundaries of the regions, and minimize the amount of

over-segmentation.

5.1.1 Optimization by DP and ILP

In practice, the ILP problem discussed in the previous section is too expensive

to solve directly. There are typically 100 edges to consider. Each edge is connected

to one or more edges, giving an average of 120 junctions. On average, each junction

can be expanded into 500 combinations of edge sequences. So, the ILP solver has

to check through over 60,000 constraints.

A careful inspection on these junctions reveals that more than 80% of them

are simple junctions (e.g., E and G in Figure 5.2) that connect only two edges.

Less than 20% of them are complex junctions that connect three or four edges

(e.g., T and X in Figure 5.2). So the main idea here is to use ILP to solve the

connectivity constraints at complex junctions and minimize the boundary cost,

and use Dynamic Programming (DP) to solve for the locally optimal expansions

for the edge paths between complex junctions, or the paths that connect complex

junctions (Figure 5.2) with the image border. The details of how DP works is

described as follows:

• Consider a complex junction, e.g., T, and an edge incident at a complex

junction, e.g., TE. TE can be expanded into n possible edge sequences.

• Given a possible edge sequence of TE, use DP to find the locally optimal

expansion of the path TP starting from the given edge sequence of TE.

39

T

M

N

O P

Q

A E

F
GD

CB X

Figure 5.2: An example segmentation result. (T: 3-edge junction, X: 4-edge junc-

tion, A: 2-edge junction, M: point on image border.

• Therefore, for each possible edge sequence of TE, DP will return one locally

optimal expansion of path TP. Each of these expansions of TP has a cost

which equals to the mean cost of the expanded edge sequences of each edge

in TP.

• Similarly, DP can be applied to path TQ as above.

• For path TX, both T and X are complex junctions. In this case, DP finds a

locally optimal expansion of the path TX given a possible edge sequence of

TF and a possible edge sequence of XC. So, for each pair of possible edge

sequences of TF and XC, DP returns a locally optimal expansion of path

TX and a path cost.

Then the ILP problem can be reformulate as:

p
∑

i=1

q
∑

j=1

vijcij (5.2)

which is the same as Equation 5.1, with p representing the number of paths, and

40

q representing the number of possible expansions for each path. There are at most

n × n possible expansions for the path in between two complex junctions and at

most n possible expansions for a path that connects a complex intersection to the

image border. Where n is the number of edge sequences of each edge, and cij is

the cost of the jth expansion of path i. The new problem reduces the number of

constraints to be checked by at least 35%. So, the optimization problem can be

solved more efficiently.

5.1.2 Selection of Valid Edge Sequences

As observed in Figure 5.1, each inter-region edge at level l can be expanded

into an edge sequence that partitions a 3×5 area at level l +1 into two parts. But

how to decide what is a valid edge sequence? Suppose an inter-region edge exists

between two blocks at level l (Figure 5.3). For simplicity of explanation, let us

assume that the two blocks have two different colors r1 and r2. The 15 blocks at

level l + 1 covered by the two blocks can each be assigned either the color r1 or

r2. So there is a total of 215 possible assignments. And the valid edge sequences

must correspond to one of these assignments. The following criteria are set up to

identify the valid edge sequences. This analysis is based on vertical edges, and

the same idea applies to horizontal edges.

1. Flipping the color of all the blocks does not change the edge sequence.

Therefore the number of possible assignments can be reduced by half.

2. All of the blocks that receive the same color must be contiguous.

41

r1 r2 Level l

Level l+1

Figure 5.3: The two blocks at level l each covers a 3x3 area with 1 overlapping

column.

3. The resulting edge sequences must have two end points, with one higher than

the other. This is to ensure that the two end points of the edge sequence

will correspond to the two end points of the vertical edge at the level l

respectively.

4. The color distribution of the 9 blocks on the left (Figure 5.3), should not be

equal to that of the 9 blocks on the right. Otherwise, the color distribution

of the two blocks at level l will be the same, and it is very unlikely that

there will be an edge in between the two blocks.

5. Each color should appear in at least 1/5 of the blocks for an edge to appear

within the 15 blocks, which means there should be at least 3 blocks for each

color. This is a reasonable heuristic assumption for an edge to appear in

between the regions

With the above criteria, 240 edge sequences are identified as valid edge sequences

for vertical edges and horizontal edges respectively. Selected edge sequences are

shown in Appendix A.

42

0 10 20 30 40 5050 60 70 80 90 100100110120130140150150160170180190200200210220230240250250
0.4

0.5

0.6

0.7

0.8

0.9

1

Edge Sequence No.

Cost

Figure 5.4: Trend of the edge sequence cost. The edge sequences are sorted in

increasing order of their costs.

Only 1 out of 240 edge sequences will be adopted for each edge. Our ob-

jective is to obtain the optimal combinations out of all the valid combinations

formed by these edge sequences. A question can be raised here: Are all the 240

edge sequences equally important? Are they all necessary? After sorting the edge

sequences based on their edge sequence cost (details given in Section 5.1.3), we

can get the answer. A sharp rise of the edge sequence cost is observed from Fig-

ure 5.4, and the cost grows rather smooth from around the 20th smallest value

onward. Obviously those sequences with very large costs are not necessary to be

considered, and we can set a threshold to reduce the number of edge sequences

to consider. But what is the threshold and how many edge sequences shall we

consider for each edge? Experiments have been carried out on a set of images,

and some of the results are shown in Figure 5.5. The values shown in Figure 5.5

43

10 100 1000 10000
0.4505

0.451

0.4515

0.452

0.4525

0.453

0.4535

0.454

0.4545

0.455
0.4548
0.4545

0.4539

0.4534

0.4528

0.4524
0.4521
0.4518

0.4512

0.4508

0.4548

0.4544

0.4534

0.4527

0.4523
0.4521
0.4518

0.4512

0.4508

0.4548

0.4544

0.4534

0.4527

0.4523
0.4521

0.4512

0.4508

 Number of Edge Sequences
10 15 20

Time(Seconds)

Cost

Figure 5.5: Feasible solutions obtained by ILP with 10, 15, and 20 edge sequences.

Each line corresponds to the feasible solutions obtained in successive ILP itera-

tions.

44

A

B D

C

NM

Figure 5.6: Expansion of edges M and N into segments AB and CD

are the costs of feasible solutions obtained using ILP at successive iterations. The

number of edge sequences tested are 10, 15, and 20. We can see that optimal solu-

tion obtained using 10, 15, and 20 segments have the same minimum costs. This

indicates that the optimal solution can be found within the 10 edge sequences with

the lowest costs. Restricting to the best 10 edge sequences reduces the execution

time significantly as shown in Figure 5.5.

5.1.3 Cost Function of Edge Sequences

The cost function for each edge sequence is addressed in detail in this section.

1. Total edge sequence cost normalized by the length for each edge sequence:

C =
1

n

n
∑

i=1

ei (5.3)

where ei is the cost of edge i in the edge sequence, and n is the number of

edges in the edge sequence. This is the simplest and most straightforward

cost function. But, there is a problem with this cost function. Let us take

a look at the situation in Figure 5.6. Suppose AB and CD are the actual

edge sequences for edges M and N , with the edge sequence costs satisfying

45

the condition CAB < CCD. Let us further assume that AB is the only valid

edge sequence of edge M , and AB and CD are both possible edge sequences

of edge N . Then both edge M and edge N will adopt edge sequence AB, as

AB has a lower cost than CD. This leads to a conflict that the expansions of

two edges produces only one edge sequence. This happens because that the

cost function does not incorporate spatial information between the edges.

2. Total cost normalized by the edge sequence length and block-parent associ-

ation:

C =
1

nA

n
∑

i=1

ei (5.4)

A is called the block-parent association, and it has a larger value if the level

l + 1 blocks are assigned to the most similar parent blocks at level l.

Given an edge sequence that divides a 3 × 5 area into two parts P1 and

P2, and the two regions R1 and R2 that the two neighbouring parent blocks

belongs to, we can tell which region that each block Bi at level l belongs to

as well. For example in Figure 5.7, with the given edge sequence CD, the

blocks in P1 belongs to region R1, and the blocks in P2 belongs to region

R2. The block-parent association A is defined as:

A =
1

15

[

∑

Bi∈P1

s(Bi, R1) +
∑

Bi∈P2

s(Bi, R2)

]

(5.5)

where s(Bi, Rj) denotes the similarity between the histogram of block Bi

and the histogram of the parent region Pj at level l, j = 1, 2.

This cost function tries to minimize the average edge cost in the edge se-

quence, and maximize the similarity between the blocks and their parents

46

R1 R2

P1 P2

Level l

Level l+1

C

D

Figure 5.7: The association between child blocks and parent regions. Given an

edge sequence CD, blocks in part P1 at level l+1 belongs to region R1, and blocks

in part P2 belongs to region R2.

at the same time. In practice, since the similarity between the blocks and

their parents lies in the range [0,1], the cost computed in Equation 5.4 will

therefore fall in the range (0, +∞), which has no upper bound, and is, thus,

less easy to assess the algorithm’s performance. Recall that the difference

d between two color histogram equals to 1 − s where s is the similarity

(Section 3.3). Maximizing the similarity equals minimizing the difference.

Therefore, the cost function can be rewritten as

C =
1

15n

n
∑

i=1

ei

∑

rj=P1

d(Bj, P1) +
∑

rj=P2

d(Bj, P2)

 (5.6)

Since both ei and dj are bounded within [0,1], so the cost function is also

bounded within [0,1].

5.1.4 Connectivity Constraints

This section will address the connectivity constraints mentioned in Section 5.1.

For the edges connected at a junction, their corresponding expanded edge se-

quences should also be connected. All the valid combinations of edge sequences

47

A

C

DB
(a)

(b)

Figure 5.8: Example of a combination formed by edge sequences of 2 edges.

at a junction are collected in a set called the combination set S(v). To determine

the combination set, we need to consider combinations for the cases when 2, 3 or

4 edges are incident at a junction.

Combinations of Edge Sequences of 2-edge Joint

There are altogether 6 possible cases of 2 edges connected at a joint, and Fig-

ure 5.8(a) shows one of them. For any two connected edges, their edge sequence

will fall into a 5 × 5 area as shown in Figure 5.8. The criteria for being a valid

combination can be stated as follow:

1. The edge sequences of the two edges will split the 5× 5 area into 2 regions.

2. For each level l + 1 edge in an edge sequence, the blocks on different sides

of the edge must belong to different regions.

3. Each edge sequence contains two end points, one of them must be connected

to the other edge sequence, and the other one should touch the border of

the 5 × 5 area. There must be two end points that touch the border of the

5 × 5 area.

48

For example in Figure 5.8, the vertical edge at level l (Figure 5.8(a)) is

expanded into edge sequence AB at level l + 1 in Figure 5.8(b), and the

horizontal edge is expanded into edge sequence CD. The bottom end point

for edge sequence AB, i.e., point B, lies on edge sequence CD, and the left

end point for edge sequence CD, i.e., point C, lies on edge sequence AB.

Combination of Edge Sequences of 3-edge Junction

There are altogether 4 possible cases of 3 edges connected at a junction, and

Figure 5.9(a) shows one of them. The expansion of 3 connected edges also fall

within the 5 × 5 area, and the criteria are as follow:

1. The edge sequences of the three edges will break the 5×5 area into 3 regions.

2. For each level l + 1 edge in an edge sequence, the blocks on different sides

of the edge must belong to different regions.

3. One out of the two end points of each edge sequence must be connected to

one of the other two edge sequences, and the other end point should touch

the border of the 5 × 5 area. In total, there must be three end points that

touch the border of the 5 × 5 area.

4. Look at the example in Figure 5.9. Suppose the edge sequence of the vertical

edge 1 is AB, which splits the upper 3 × 5 area into two parts P1 and P2,

and the edge sequence of the horizontal edge 2 is CD. Then, its left end

point C falls inside part P2. In this case, the relative positions of the edge

sequences of edges 1 and 2 have been switched. Therefore, this is an invalid

49

A

B(D)

C

E

F3

1

2

P1

P2

(a)

(b)

Figure 5.9: Example of a combination formed by edge sequences of 3 edges.

A

B

C

D

E(G)

F H

R1 R2

R3 R4

R1 R2

R3 R4

R1

R1

R2

R3

R1 R2

R3

(1) (2)

A

B

C

D

E

F
H

(G)

2

4

1

2

3

4

1

3

Figure 5.10: Two situations for the combinations formed by 4 edge sequences.

combination. If the edge sequence of edge 1 is CD, and the edge sequence

of edge 2 is AB, then it will become a valid combination.

Combination of Edge Sequences of 4-edge Junction

This case is a bit more complex, as two situations need to be considered

(Figure 5.10). There are four regions in the first case, and there are only three

regions in the second case.

For the first case (Figure 5.10), the criteria are same as those of the 3-edge

junctions except that the edge sequences split the 5 × 5 area into 4 regions, and

there must be four end points that touch the border of the 5 × 5 area.

50

For the second case, there are altogether 2 such possible cases that the 4 edges

connected at a junction partition the 4 blocks at level l into only 3 regions, and

Figure 5.10(2) shows one them. The criteria for valid combinations are modified

as follow (Figure 5.10(2)):

1. The edge sequences of 4-edge junction splits the 5 × 5 area into 3 regions.

2. For each level l + 1 edge in an edge sequence, the blocks on different sides

of the edge must belong to different regions.

3. Suppose edges 1, 2, 3, 4 are expanded into segments EF , AB, CD, and GH.

Then, the right end point for edge sequence AB must lie on edge sequence

CD, and the top end point of edge sequence CD must lie on edge sequence

AB, the left end point of edge sequence EF must lie on edge sequence GH,

and the bottom end point of edge sequence GH must lie on edge sequence

EF . In total, there must be four end points that touch the border of the

5 × 5 area.

Figure 5.11 shows an example of the refined region boundary when DP and

ILP are applied from level 2 to level 3.

5.2 Greedy Local Optimization Approach

Greedy local optimization is used to refine region boundaries from level l + 1

to the finest level L. This process does not directly work on the boundary edges.

Instead, it tries to decide to which level l + 1 region each level l block belongs,

and this indirectly determines the boundary locations.

51

(a) (b)

Figure 5.11: Example of boundaries refined with DP and ILP. (a) Segmentation

result at level 3. (b) Refined boundaries at Level 4 using DP and ILP.

The regions considered here are local regions along the boundary areas. At

lower levels, the region size is larger and the region gets more complex and captures

more color information. The histogram of the blocks in the region center can

be quite different from those at the boundary area. Considering the full region

will lose the local information along the boundary area. Therefore, local region

histograms along the region boundary are used. Suppose block (x, y) located

beside a boundary at level l belongs to region R, then the local region histogram

R(x, y) is computed by merging the normalized histograms of the blocks in region

R and located within an n × n window centered at (x, y):

R(x, y) =
⊎

i,j∈N(x,y)

H(i, j) (5.7)

where H(i, j) is the histogram of block (i, j), N(x, y) is the n × n neighborhood

52

Table 5.1: The window size for computing local region histogram at each level.

level 2 3 4 5 6 7 8 9

size 5 5 5 3 3 3 3 3

around block (x, y), and the windows size n is given in Table 5.1 for different

levels.

The boundary refinement problem can then be formulated as minimizing the

following cost function:

C =
∑

i

s(Bi, Ri) (5.8)

where Bi is the histogram of level l + 1 block i, Ri is the local region histogram

along the region boundary at level l, s(Bi, Ri) computes the similarity between

the histogram of blocks Bi at level l + 1 and the region histogram Ri at level l.

The function seeks the optimal region assignment for each block along the region

boundary.

For each edge found at level l, there are two parent regions R1 and R2 located

on the two sides of the edge. So R1 and R2 are both possible region assignments

for the 3 × 5 corresponding blocks at level l + 1 (Figure 5.3). The similarity

s(Bi, R1) and s(Bi, R2) can then be computed for all the 15 blocks. Therefore, by

going through all the edges found at level l, we can obtain all the possible region

assignments and find the optimal assignment for each block, which is in fact the

optimal solution to Equation 5.8.

To obtain a smoother boundary without affecting the boundary location, we

53

apply a Gaussian filter to the blocks at the last two levels of the image pyramid

before the region assignment process, with a window size of 7 and σ = 2.

The connectivity constraint is not enforced for this region assignment process,

and some ambiguous blocks exist at the boundary area. The resulting assignment

will cause some of the regions to be disconnected. A heuristic approach is recur-

sively applied to refine the assignments so as to preserve the region connectivity.

1. For each region i at level l, locate the block Bi at level l + 1 that is most

similar to region i at level l and mark each Bi as refined.

2. Repeat

(a) For all the blocks that are the neighbors of a refined block Bi, and

have been assigned to region i, mark them as refined and apply this

refinement recursively.

(b) Choose an un-refined block Ui and its refined neighbor Bi which has

the greatest similarity. Then assign Ui to the region that Bi belongs to.

Note that the similarity between all pairs of neighboring blocks have

already been computed before hand during the pyramid construction

process.

until all the blocks have been refined.

Note that most of the blocks are assigned correctly to their corresponding regions

and can be rapidly refined at step 2(a). Therefore, the number of blocks that

need to be refined at step 2(b) is much fewer than the total number of bound-

ary blocks. So, this refinement process is quite efficient. Although this method

54

(a) (b)

Figure 5.12: Final segmentation result using greedy refinement. (a) Refined

boundary obtained at level 3. (b) Final segmentation result.

is not necessarily optimal, it is efficient and the results produced are accurate

enough. Figure 5.12 shows the final segmentation result obtained after the greedy

refinement.

55

Chapter 6

Experimental Results

The proposed algorithm has been implemented in C. The minimum cost perfect

matching is based on the blossom4 implementation [10], and the Integer Linear

Programming part is solved using the ILOG OPLStudio solver (www.ilog.com).

6.1 Experimental Set Up

The experiments were carried out on a benchmark dataset of 100 images [18].

Each image is of size 321x481 or 481x321. Five segmentation algorithm were

compared:

1. JSEG [11]: a multi-scale method based on region growing and merging.

The implementation of JSEG was downloaded for the JSEG project website

http://vision.ece.ucsb.edu/segmentation/jseg/.

2. Ncut [29]: a graph-theoretic method using normalized cut. Ncut is used

for comparison instead of MMC because the MMC algorithm given in [32]

56

has only been implemented for gray-scale images. Moreover running MMC

on 321x481 images takes a long time. The implementation of Ncut was

downloaded from ftp://ftp.ecn.purdue.edu/qobi/.

3. Blobworld [8]: An algorithm designed for image retrieval systems using color

and texture features. The implementation of BlobWorld was downloaded

from http://elib.cs.berkeley.edu/src/blobworld/.

4. RP-ILP: Our region-preserving segmentation algorithm using interleaved

MMC for segmentation at level 2, and DP, ILP and greedy algorithm for

boundary refinement.

5. RP-G: Our region-preserving segmentation algorithm using interleaved MMC

for segmentation at level 2 and only greedy algorithm for boundary refine-

ment.

For RP-ILP and RP-G, the adaptive threshold k used for interleaved MMC

were set according to the guidelines given in Table 4.1. For 27 of the images, RP-

ILP cannot generate any feasible solution within the 10 lowest-cost edge sequences.

This is because these images are over-segmented at level 3. So for the 27 images,

k has been adjusted to higher values for RP-ILP to generate feasible solutions,

and Figure 6.5 shows the result of one of these images. This shows that ILP has a

strict requirement on the segmentation result obtained at the higher level, while

the greedy algorithm is more tolerant of the initial segmentation.

For Ncut, it could not produce any result for 12 of the images, so only the

segmentation results for the other 88 images are included for comparison.

57

6.2 Quantitative Evaluation

It is difficult to define a good measure of the quality of segmentation results.

Therefore, image segmentation has for a long time been evaluated only through

visual inspection. A recent benchmark introduced by Marin [18, 17] provides an

attempt for a quantitative assessment of segmentation result. The evaluation is

based on a comparison between the boundary maps produced by a the segmenta-

tion algorithm and the ground-truth boundary maps provided by human subjects.

An F-measure is computed as the harmonic mean of precision rate P and recall

rate R:

F = PR/(αR + (1 − α)P) (6.1)

where precision is the probability that a detected boundary pixel is a true bound-

ary pixel, and recall is the probability that a true boundary pixel is detected. α is

used to adjust between the importance of the precision rate and recall rate, and it

is set to 0.5 in [18, 17]. A higher F-measure value indicates that the segmentation

result better approximates the ground-truth boundaries.

The benchmark program requires the segmentation result to be in a boundary

map format. BlobWorld’s output consists of a lot of discarded regions (Figure 6.1)

which is hard to convert to a boundary map. Therefore, BlobWorld’s results were

not compared using the benchmark program, and were considered only for the

qualitative evaluation.

Figure 6.2 shows a distribution of the F-measures of the 100 images, and Ta-

ble 6.1 shows the overall statistics of the F-measures. The F-measure is computed

for each human segmentation by comparing it to the other segmentations of the

58

painted in gray color

Discarded regions

Figure 6.1: Sample BlobWorld segment result with discarded regions.

Table 6.1: Statistics on F-Measure.

F-measure JSEG Ncut RP-ILP RP-G Human

Mean 0.5847 0.5049 0.5253 0.5435 0.7841

Std Dev 0.1118 0.0981 0.1128 0.0924 0.1021

Min 0.3180 0.2054 0.1834 0.3292 0.5017

Max 0.7963 0.7452 0.7436 0.7752 0.9577

59

0.3 to 0.35
0.35 to 0.4

0.4 to 0.45
0.45 to 0.5

0.5 to 0.55
0.55 to 0.6

0.6 to 0.65
0.65 to 0.7

0.7 to 0.75
0.75 to 0.8

0

5

10

15

20

25

F-Measure

Image counts

(a)

0.2 to 0.26
0.26 to 0.32

0.32 to 0.38
0.38 to 0.44

0.44 to 0.5
0.5 to 0.56

0.56 to 0.62
0.62 to 0.68

0.68 to 0.74
0.74 to 0.8

0

5

10

15

20

25

F-Measure

Image counts

(b)

Figure 6.2: F-measure values for the test images. (a) JSEG, (b) Ncut.
60

0.1 to 0.17
0.17 to 0.24

0.24 to 0.31
0.31 to 0.38

0.38 to 0.45
0.45 to 0.52

0.52 to 0.59
0.59 to 0.66

0.66 to 0.73
0.73 to 0.8

0

5

10

15

20

25

F-Measure

Image counts

(c)

0.3 to 0.35
0.35 to 0.4

0.4 to 0.45
0.45 to 0.5

0.5 to 0.55
0.55 to 0.6

0.6 to 0.65
0.65 to 0.7

0.7 to 0.75
0.75 to 0.8

0

5

10

15

20

25

30

F-Measure

Image counts

(d)

Figure 6.2: F-measure values for the test images (continued). (c) RP-ILP, (d),

RP-G.
61

same image, and the maximum value is taken as the F-measure for human, which

is shown in the last column of Table 6.1. The F-measure for human provides

an upper bound for the machine segmentation algorithms. A higher value of the

upper bound also indicates the easier an image can be segmented, and vice versa.

We can see that the region-preserving methods have a higher mean values than

Ncut but lower than JSEG. Figure 6.3 shows an example of the segmentation

result and the corresponding scores. The ground-truth boundary maps obtained

from human subjects, tend to have many weak boundaries, i.e., boundaries that

appear in only some human-segmented results. These weak boundaries usually

do not correspond to major region boundaries. For two segmentation results with

the same precision, the one with more weak boundaries will have a higher recall

rate, and thus a higher F-measure. This can be seen in Figure 6.3 which shows

that JSEG detected more weak boundaries than RP-ILP and RP-G, and thus

obtained a higher F-measure.

The weak boundaries are not of concern for image labeling and retrieval which

are only interested in main regions. Therefore, we also compared the precision

of the segmentation results. Table 6.2 shows the statistics on the precision of

the algorithms. From Table 6.2, we can see that RP-ILP and RP-G have better

precision than Ncut and JSEG, which means the boundaries detected are more

likely to be true region boundaries.

The average processing time of algorithms are shown in Figure 6.3. The time

was taken on a Pentium PC with 1.6GHz processor and 256MB memory.

62

(a) (b) (c)

(d) (e) (f)

Figure 6.3: Test result 1. (a) Input image. (b) human-segmented result. Dark

boundaries are strong boundaries and light boundaries are weak boundaries.

F=0.811, P=0.912. (c) JSEG Result: F=0.707, P=0.712. (d) Ncut Result:

F=0.453, P=0.461. (e) RP-ILP Result: F=0.691, P=0.822. (f) RP+G Result:

F=0.634, P=0.753.

63

Table 6.2: Statistics on the Precision Measure.

Precision Rate JSEG Ncut RP-ILP RP-G Human

Mean 0.5584 0.4812 0.6208 0.5995 0.8922

Std Dev 0.1455 0.1314 0.141 0.1453 0.0807

Min 0.2235 0.1360 0.3099 0.2582 0.5860

Max 0.8589 0.7870 0.9843 0.9868 0.9982

Table 6.3: Average processing time of algorithms measured in seconds on images

of size 321x481.

BlobWorld JSEG Ncut RP-ILP RP-G

3000 15 2400 350 50

64

6.3 Qualitative Evaluation

This section demonstrates some segmentation results performed on the bench-

mark dataset for qualitative evaluation. The results are shown from Figure 6.4 to

Figure 6.12. From the given examples, we can see that region-preserving approach

produce less over-segmented results compared to JSEG and Ncut. BlobWorld can

also identify the main regions in the images. But, the region boundaries extracted

tend to be less accurate.

There are also cases that the segmentation results are not satisfactory. Fig-

ure 6.16 shows an example. We can see that all machine segmentation results

are very different from the human segmentation. The reason is that the main

regions in the image are not distinguishable using only color information. We can

expect the result to be improved if other features such as texture or morphological

information are incorporated. This is suggested by the BlobWorld result, which

is able to obtain some reasonable regions based on consistent textures.

65

(I) (H)

(B1) (B2)

(J1) (J2)

Figure 6.4: Test result 2. (I) Input image. (H) Human. (B) BlobWorld. (J)

JSEG.
66

(N1) (N2)

(P1) (P2)

(G1) (G2)

Figure 6.4: Test result 2 (continued). (N) Ncut. (P) RP-ILP. (G) RP-G.

67

(I) (H)

(B1) (B2)

(J1) (J2)

Figure 6.5: Test result 3.(I) Input image. (H) Human. (B) BlobWorld. (J) JSEG.

68

(N1) (N2)

(P1) (P2)

(G1) (G2)

Figure 6.5: Test result 3 (continued). (N) Ncut. (P) RP-ILP. (G) RP-G.

69

(I) (H)

(B1) (B2)

(J1) (J2)

Figure 6.6: Test result 4.(I) Input image. (H) Human. (B) BlobWorld. (J) JSEG.

70

(N1) (N2)

(P1) (P2)

(G1) (G2)

Figure 6.6: Test result 4 (continued). (N) Ncut. (P) RP-ILP. (G) RP-G.

71

(I) (H)

(B1) (B2)

(J1) (J2)

Figure 6.7: Test result 5.(I) Input image. (H) Human. (B) BlobWorld. (J) JSEG.

72

(P1) (P2)

(G1) (G2)

Figure 6.7: Test result 5 (continued). (P) RP-ILP. (G) RP-G. Ncut cannot gen-

erate result for this image.

73

(I) (H)

(B1) (B2)

(J1) (J2)

Figure 6.8: Test result 6.(I) Input image. (H) Human. (B) BlobWorld. (J) JSEG.

74

(N1) (N2)

(P1) (P2)

(G1) (G2)

Figure 6.8: Test result 6 (continued). (N) Ncut. (P) RP-ILP. (G) RP-G.

75

(I) (H)

(B1) (B2)

(J1) (J2)

Figure 6.9: Test result 7.(I) Input image. (H) Human. (B) BlobWorld. (J) JSEG.

76

(N1) (N2)

(P1) (P2)

(G1) (G2)

Figure 6.9: Test result 7 (continued). (N) Ncut. (P) RP-ILP. (G) RP-G.

77

(I) (H)

(B1) (B2)

(J1) (J2)

Figure 6.10: Test result 8.(I) Input image. (H) Human. (B) BlobWorld. (J)

JSEG.

78

(N1) (N2)

(P1) (P2)

(G1) (G2)

Figure 6.10: Test result 8 (continued). (N) Ncut. (P) RP-ILP. (G) RP-G.

79

(I) (H)

(B1) (B2)

(J1) (J2)

Figure 6.11: Test result 9.(I) Input image. (H) Human. (B) BlobWorld. (J)

JSEG.

80

(P1) (P2)

(G1) (G2)

Figure 6.11: Test result 9 (continued). (P) RP-ILP. (G) RP-G. Ncut cannot

generate result for this image.

81

(I) (H)

(B1) (B2)

(J1) (J2)

Figure 6.12: Test result 10.(I) Input image. (H) Human. (B) BlobWorld. (J)

JSEG.

82

(N1) (N2)

(P1) (P2)

(G1) (G2)

Figure 6.12: Test result 10 (continued). (P) RP-ILP. (G) RP-G.

83

(I) (H)

(B1) (B2)

(J1) (J2)

Figure 6.13: Test result 11.(I) Input image. (H) Human. (B) BlobWorld. (J)

JSEG.

84

(N1) (N2)

(P1) (P2)

(G1) (G2)

Figure 6.13: Test result 11 (continued). (N) Ncut. (P) RP-ILP. (G) RP-G.

85

(I) (H)

(B1) (B2)

(J1) (J2)

Figure 6.14: Test result 12.(I) Input image. (H) Human. (B) BlobWorld. (J)

JSEG.

86

(N1) (N2)

(P1) (P2)

(G1) (G2)

Figure 6.14: Test result 12 (continued). (N) Ncut. (P) RP-ILP. (G) RP-G.

87

(I) (H)

(B1) (B2)

(J1) (J2)

Figure 6.15: Test result 13.(I) Input image. (H) Human. (B) BlobWorld. (J)

JSEG.

88

(N1) (N2)

(P1) (P2)

(G1) (G2)

Figure 6.15: Test result 13 (continued). (N) Ncut. (P) RP-ILP. (G) RP-G.

89

(I) (H)

(B1) (B2)

(J1) (J2)

Figure 6.16: Test result 14.(I) Input image. (H) Human. (B) BlobWorld. (J)

JSEG.

90

(N1) (N2)

(P1) (P2)

(G1) (G2)

Figure 6.16: Test result 14 (continued). (N) Ncut. (P) RP-ILP. (G) RP-G.

91

Chapter 7

Conclusion and Future Work

7.1 Future Work

The segmentation algorithm proposed in this thesis has made use of color his-

togram and region continuity features. This approach will become limited for

images whose regions differ in texture or other feature instead of color distribu-

tion. So, including texture information will help to identify regions with similar

colors but different textures, and thus enable this algorithm to be applicable to

more images.

The graph-cut algorithm applied at the higher level tries to minimize the

mean similarity between regions without directly maximizing the similarity within

regions. As the problem of looking for minimum ratio cycle, can be solved in

polynomial time [14]. This problem assumes each edge has two cost, and looks

for the cycle that minimizes the ratio between the sum of the first edge cost and

the sum of the second edge cost. In this thesis, the first edge cost is the similarity

92

between the color histograms of neighbouring blocks, and the second edge cost is

just the length of each edge, i.e., the unit length 1. If the second edge cost can

provide further intra-region informations, the thesis can be extended to identify

regions of certain given features.

Currently, ILP is not propagated down to lower level because ILP problem is

NP-hard, and the problem size grows exponentially down the image pyramid. As

a general linear programming problem can be solved in polynomial time [15], if

we can approximate the current ILP approach to a general linear programming

problem, then the problem can be solved more efficiently.

7.2 Contribution

The main contribution of this thesis is the construction of region pyramid that pre-

serves color distribution information. With the use of adaptive color histograms,

the region pyramid requires less than twice the amount of memory in a conven-

tional image pyramid that captures only mean or dominant color. It also enables a

comprehensive segmentation to be performed at a lower resolution level to capture

the main regions in the image.

Segmentation is done by interleaving adaptive thresholding and Minimum

Mean Cut to provide a better control over the segmentation result as compared

to graph cut algorithms alone. The segmentation done at a lower-resolution level,

instead of at the finest level as what graph cut algorithms usually do, has greatly

reduced over-segmentation. This is because segmentation at lower-resolution level

is based on color distribution variation between the main regions whereas segmen-

93

tation at finest level is based on color or texture variation of the pixels or small

groups of pixels.

Another contribution is the formulation of boundary refinement process by

combining two approaches: (1) global optimization using Dynamic Programming

and Integer Linear Programming at higher level and (2) greedy local optimization

at lower levels. The global optimization finds the globally optimal refinement

of boundaries at higher level with lower resolution. Greedy local optimization

refines the boundaries efficiently down to the finest level. This approach combines

the strength of the global optimization and local optimization without incurring

much processing time. It is much faster than global optimization such as graph

cut applied on the finest level and it is more accurate than using greedy algorithms

alone.

7.3 Conclusion

This thesis has presented a multi-resolution region-preserving approach for image

segmentation. Given an image, it constructs a pyramid of region maps at var-

ious resolutions. Each block of the map corresponds to a part of a region and

it captures the region characteristics in an adaptive color histogram instead of a

single color. Segmentation is performed at the top level using adaptive thresh-

olding and Minimum Mean Cut. The coarse region boundaries found are refined

using Dynamic Programming and Integer Linear Programming, and propagated

down to the lowest level by a greedy method. Experimental results show that

this approach can identify the main regions in many images and minimize over-

94

segmentation. Compared to several existing algorithms, the region boundary that

it identifies are more likely to be the true boundaries. The algorithm runs quite

efficiently and thus can be used for segmentation of a large number of images for

semantic labeling and image retrieval.

95

Bibliography

[1] R. Adams and L.Bischof. Seeded region growing. IEEE Trans. PAMI,

16(6):641–647, 1994.

[2] P. Andrey and P. Tarroux. Unsupervised segmentation of Markov ran-

dom field modeled textured images using selectionist relaxation. IEEE

Trans.PAMI, 20(3):252–262, 1998.

[3] S. Belongie, C. Fowlkes, F. Chung, and J. Malik. Spectral partitioning with

indefinite kernels using the Nystrom extension. In Proc. ECCV, 2002.

[4] A. Bhalerao and R. Wilson. Unsupervised image segmentation combining

region and boundary estimation. Image and Vision Computing, 19:353–386,

2001.

[5] C. Bouman and M. Shapiro. A multiscale random field model for Bayesian

image segmentation. Image Proc., 3(2):162–177, 1994.

[6] P. J. Bsel and R. C. Jain. Segmentation through variable-order surface fitting.

IEEE Trans. PAMI, 10(2):167–192, 1988.

96

[7] J. Canny. A computational approach to edge detection. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

[8] C. Carson, S. Belongie, H. Greenspan, and J. Malik. Blobworld: Image

segmentation using expectation-maximization and its application to image

querying. IEEE Trans. PAMI, 24(8):1026–1038, 2002.

[9] M. Celenk. A color clustering technique for image segmentation. Computer

Vision, Graphics, and Image Proc., 52:145–170, 1990.

[10] W. Cook and A. Rohe. Computing minimum-weight perfect matchings. IN-

FORMS Journal on Computing, 11:138–148, 1999.

[11] Y. Deng, B. S. Manjunath, and H. Shin. Color image segmentation. In Proc.

IEEE CVPR, 1999.

[12] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal

of Research of the National Bureau of Standards, pages 125–130, 1965.

[13] R. M. Haralick and L. G. Shapiro. Image segmentation techniques. Computer

Vision, Graphics,and Image Proc., 29(1):100–132, 1985.

[14] I. Jermyn and H. Ishikawa. Globally optimal regions and boundaries as

minimum ratio weight cycles. IEEE Trans. PAMI, 23(10):1075–1088, 2001.

[15] L. G. Khachiyan. A polynomial time algorithm for linear programming. Dokl.

Akad. Nauk SSSR, 244:1093–1096, 1979.

[16] W. K. Leow and R. Li. Adaptive binning and dissimilarity measure for image

retrieval and classification. In Proc. IEEE CVPR, pages II–234–II–239, 2001.

97

[17] D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image

boundaries using local brightness, color, and texture cues. IEEE Transactions

on pattern Analysis and Machine Intelligence, 26(5):530–549, 2004.

[18] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented

natural images and its application to evaluating segmentation algorithms and

measuring ecological statistics. In Proc. 8th Int’l Conf. Computer Vision,

volume 2, pages 416–423, July 2001.

[19] W.A. Perkins. Area segmentation of images using edge points. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 2(1):8–15, 1980.

[20] J.M. Prager. Extracting and labeling boundary segments in natural scenes.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(1):16–

27, 1980.

[21] J. Puzicha and S. Belongie. Model-based halftoning for color image segmen-

tation. In Proc. ICPR, 2000.

[22] J. Puzicha, T. Hofmann, and J. M. Buhmann. Histogram clustering for

unsupervised image segmentation. In Proc. CVPR, pages 602–608, 1999.

[23] J. Puzicha, Y. Rubner, C. Tomasi, and J. Buhmann. Empirical evaluation

of dissimilarity measures for color and texture. In Proceedings the IEEE In-

ternational Conference on Computer Vision(ICCV-1999), pages 1165–1173,

1999.

98

[24] X. F. Ren and J. Malik. Learning a classification model for segmentation. In

Proc. ICCV, pages 10–17, 2003.

[25] P. Salembier and F. Marques. Region-based representations of image and

video: segmentation tools for multimedia services. IEEE Transactions on

Circuits and Systems for Video Technology, 9:1147–1169, 1999.

[26] R. Schettini. A segmentation algorithm for color images. Pattern Recognition

Letters, 14:499–506, 1993.

[27] P. Schroeter and J. Bigun. Hierarchical image segmentation by multi-

dimensional clustering and orientation adaptive boundary refinement. Pat-

tern Recognition, 28(5):695–709, 1995.

[28] E. Sharon, A. Brandt, and R. Basri. Fast multiscale image segmentation. In

Proc. CVPR, pages 70–77, 2000.

[29] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans.

PAMI, 22(8):888–905, 2000.

[30] O. Veksler. Image segmentation by nested cuts. In Proc. CVPR, pages 339–

344, 2000.

[31] J. Z. Wang, J. L., R. M. Gray, and G. Wiederhold. Unsupervised multireso-

lution segmentation for images with low depth of field. IEEE Trans. PAMI,

23(1):85–90, 2001.

[32] S. Wang and J. M. Siskind. Image segmentation with minimum mean cut.

In Proc. ICCV, pages 517–524, 2001.

99

[33] S. Wang and J. M. Siskind. Image segmentation with ratio cut. IEEE Trans.

PAMI, 25(6):675–690, 2003.

[34] R. A. Weisenseel, W. C. Karl, D. A. Castanon, and R. C. Brewer. MRF-based

algorithms for segmentation of SAR images. In Proc. ICIP, pages 770–774,

1998.

[35] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering:

theory and its application to image segmentation. IEEE Trans. PAMI, 15(11),

1993.

[36] S. C. Zhu and A. Yuille. Region competition: Unifying snakes, region grow-

ing, and Bayes/MDL for multiband image segmentation. IEEE Trans.PAMI,

18(9):884–900, 1996.

100

Appendix A

Example of Valid Edge Sequences

101

