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SUMMARY 
 
 
 
 
Because the design space is huge in many real world problems, estimation of 

performance measure has to rely on simulation which is time-consuming. Hence it is 

important to decide how to sample the design space, how many designs to sample and 

for how long to run each design alternative within a given computing budget. In our 

work, we propose an approach for making these allocation decisions. This approach is 

then applied to the problem of assemble-to-order (ATO) systems where the sampling 

average approximation (SAA) is used as a sampling method. The numerical results 

show that this approach provides a good basis for decisions.    
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Chapter 1 INTRODUCTION 
 
 
 

 

1.1 Background 
 

In much of the industrial applications, it is often assumed that all information needed 

to formulate and solve a design and control problem is deterministic, which means all 

information is known.  In this case, the solution is expected to be optimal and reliable.  

In reality however, randomness in problem data poses a serious challenge for solving 

many optimization problems.  The fundamental reason for the randomness is due to the 

nature of the data which represents information about the future (for example, product 

demand and price over the next few months), and these data cannot be known with 

certainty.  As a result, the randomness may be present as the error or noise in 

measurements in estimating the performance.  As such, stochastic optimization 

problems arise from applications with inherent uncertainty.  Some examples of the 

stochastic optimization problem in industrial applications can be seen in manufacturing 

production planning, machine scheduling, freight scheduling, portfolio selection, 

traffic management, automobile dealership inventory management and water reservoir 

management.  A general problem of stochastic optimization can be defined by the 

mathematical expression that is represented by the minimization form in P(1). 

 

P(1): 

 
 

)],([)(min ξθθ
θ

LEJ ≡
Θ∈

               (1.1) 
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where Θ is a design space consisting of all potential candidates; θ  is a design 

alternative; ξ  is a random vector that represents uncertainties in the system; L is the 

sample performance which is a function of θ  and ξ , and J is the performance measure 

which is the expectation of L. 

  

P(1) poses two major challenges; the “stochastic” and the “optimization”.  The 

challenge in the “stochastic” aspect lies in the task of estimating )(θJ .  Often the 

corresponding expectation function is not possible to be computed exactly, and need to 

be estimated by simulation.  Let Nii ...,,2,1, =ξ  be a realization of the uncertainties in 

replication i and the expected performance value is estimated as follows, 

 

∑
=

≡≈
N

i
iL

N
JLE

1
),(1)(ˆ)],([ ξθθξθ       (1.2) 

 
 
The estimation of the expectation function in (1.2) may require a long computational 

time.  To make matters worse, the notoriously slow convergence rate of the accuracy 

cannot be improved any further than N1 .  

 

The other limitation is the “optimization” part.  When an optimization problem has the 

advantage of the design space structure and real-variable nature to work out effective 

algorithms for optimization, traditional analysis tools, such as infinitesimal 

perturbation analysis (IPA) can be used to estimate the gradient for determining the 

local search direction.  However, when the problem becomes structureless and Θ 

becomes totally arbitrary, such advantage is no longer viable.  As a result, 

combinatorial explosion of system designs occurs forcing us to consider a constrained 
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set of possibilities to be the optimal design.  In such cases, a random search becomes 

an alternative that may not be an effective approach for a simulation based 

optimization problem.  Other alternatives to locate near-optimal designs include the 

use of some Artificial Intelligence optimization tools such as Neural Networks, 

Genetic Algorithm or Hybrid techniques. 

 

Realizing the challenges posed by both the stochastic and optimization aspects in a 

stochastic optimization problem, the concept of ordinal optimization emerged.  Unlike 

the concept of cardinal optimization that estimates the accurate values of design 

performance, the ordinal optimization is based on two advantageous ideas, (i) “order” 

converges exponentially fast while “value” converges at rate n1  (n:simulation 

length), that is, it is much easier to know whether “A>B” than to estimate the value of 

“A-B” (ii) Goal softening can make hard problem easier, that is, we settle for “good 

enough set with high probability” instead of “best for sure”.  Suppose G denotes the 

good enough subset of a search space Θ based on true performance value, and S 

denotes the selected subset of a search space Θ based on the observed sample 

performances.  The quality of selection is then determined by the overlap of S with G 

which is quantified through the alignment probability, { } kSGP ≥∩ where k is the 

number of minimum desired overlap between the two subsets.  Alignment probability, 

also called the probability of correct selection in the context of simulation, is the 

measure of the goodness of the selection rules.  In other words, the alignment 

probability in ordinal optimization tries to find what is the probability that among the 

set S that we have chosen, we have at least k members of G.  Figure 1.1 illustrates the 

general concept of ordinal optimization.    
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Figure 0.1.1:  Softened definition of ordinal optimization 

 

Note that the goal softening in ordinal optimization has advantage over the traditional 

optimization view where both the subsets G and S are no longer singletons.  With this 

idea, the ordinal optimization has the ability to quickly separate the good designs from 

the bad one.  We see that ordinal optimization has at least provided a means for 

narrowing down the search with higher probability of getting a good design, which 

otherwise is not possible.  It has emerged as an efficient technique for simulation and 

optimization.   

 

Ordinal optimization has provided a paradigm shift in optimization, and has also 

changed the way we should deal with stochastic optimization.  Instead of running very 

long simulation for every design until we obtain its precise performance estimation, we 

should look at how to balance the effort spent in running the simulation and sampling 

the designs.  Ranking and selection (R&S) procedure and the multiple comparison 

procedure (MCP) are among the methods that have been successfully used in spending 

the simulation effort of a set of design effectively.  R&S is a statistical procedure 

developed in the simulation optimization to select the best design among a fixed set of 

designs.  Generally, the design having the largest expected value is regarded as the 

“best” design.  The R&S procedure usually guarantees a certain level of the probability 

of correct selection.  There are two major approaches widely used in the R&S 

G S 

Θ Θ : Search  space 
 G : Good enough subset 
 S :  Selected subset 
  : Optimum 
  : Estimated optimum 
       : G∩S   

 



Chapter 1    Introduction 

 
   

5

procedures; the indifference zone (IZ) selection approach and the subset selection 

approach.  The goal of the IZ selection approach is to select the design associated with 

the largest mean.  In a stochastic simulation however, such a “correct selection” can 

never be guaranteed with certainty.  Having such condition, a compromise solution 

offered by this approach is to guarantee to select the best design with high predefined 

probability whenever it is at least a user-specified amount better than the others.  This 

practically-significant difference is called the indifference-zone.  In contrast to the 

approach of IZ selection that attempts to select the single best design, the subset 

selection approach is a screening tool that aims to select a small subset of alternative 

design that includes the design associated with the largest mean.   

 

Unlike the goal of R&S procedure which is to make a decision (i.e. select the best 

design) directly, the goal of MCP is primarily to identify the differences and the 

relationship between the designs’ performance.  MCP tackles the optimization problem 

by forming simultaneous confidence intervals (CIs) on the means.  These CIs measure 

the magnitude and difference between the expected performance of each pair of the 

alternatives.  One of the most widely used classes of MCP is the multiple comparisons 

with the best (MCB).  In the MCB approach, the CIs are measured by the difference 

between the expected performance of each design and the best of the others.  Other 

three classes of MCP developed includes the paired-t, Bonferroni, all-pairwise 

comparisons (MCA), the all-pairwise multiple comparisons (MCA) and the multiple 

comparisons with a control (MCC).  In this thesis, the focus will be mainly on the R&S 

procedure.               
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Further with the idea of ordinal optimization, simulation efforts should now be spent 

wisely on the designs sampled by intelligently determining the number of simulation 

samples or replications among the different designs.  Such effort called Optimal 

Computing Budget Allocation (OCBA) tries to optimally choose the simulation length 

for each design to maximize simulation efficiency within a given computing budget.  

Larger computing budget or simulation efforts should be invested on the potentially 

good designs to improve their performance, while limited computing resources should 

be allocated on the non-critical designs.  The objective could be either to minimize the 

computational cost, subject to the constraint that the alignment probability is greater 

than a predefined satisfactory level, or to maximize the alignment probability, subject 

to a fixed computing budget.   

 

While OCBA focus on allocating the simulation time for a fixed number of design 

alternatives, sampling effort further decide on the right number of designs to sample 

and how the sampling of designs should be performed.  Blind picking or random 

sampling is one common method used for sampling designs.  Although the time spent 

in sampling designs in such method is negligible, the design selection is not very good 

(we expect smaller overlap between subset S and G) in a random sampling method.  

However, if a sophisticated sampling method is used, some computational time will be 

required for sampling designs and the design selection is expected to improve.  In such 

cases, besides allocating the computing time to estimate the performance measure of 

the designs, we also have to wisely allocate the time to spend to sample each design. 
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1.2 Objectives  
 

In our work, we assume that a sampling method can be differentiated by the degree of 

information (sophistication) used.  The degree of information will affect the time used 

for sampling and the resulting performance measure.  Hence, given a fixed amount of 

computing time, we want to optimally decide on how to sample the designs, number of 

designs to sample and the simulation time allocated for each design so as to optimize 

the expected true performance of the finally selected design.  We propose an approach 

on how to ideally decide these allocation decisions.   

 

1.3 Scope  
   

The remaining section of this thesis is organized as follows.  In the following Chapter 

2, the relevant literatures on ordinal optimization, R& S and OCBA are presented.  In 

Chapter 3, we introduce the OCBA model and discuss how the distribution of 

performance measure and the distribution of estimation noise affect the results of our 

proposed approach.  In Chapter 4, the proposed approach of our framework is 

demonstrated on an assemble-to-order (ATO) system where the sample average 

approximation (SAA) proposed by Shapiro (2001) is used as the sampling method.  

We present two different numerical examples of the ATO problem in Chapter 5. 

Finally in Chapter 6, important conclusions are drawn and some directions for future 

research are given.  
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Chapter 2 LITERATURE SURVEY 
 
 
 

 

2.1 Introduction 
 

In recent years, the need for stochastic optimization in Industrial and Systems 

Engineering has received increased recognition.  The essential of the optimization 

under uncertainty is justified by the need of facing the real world problem in a more 

realistic ways.  However, as discussed in Chapter 1, the solution to the stochastic 

optimization problem can be hardly obtained due to the “stochastic” and 

“optimization” challenges in the problem, and often the approximate solutions is 

obtained via simulation.  Hence, much effort has been contributed by different authors 

over the years in coming up with various alternatives to tackle the challenges in the 

stochastic optimization and simulation.          

 

We first review the literatures involved on the topic of ordinal optimization.  As R&S 

method are related directly to ordinal optimization in performing the simulation of a 

set of designs effectively, we discuss in detail the progress of R&S methods over the 

years in the Section 2.3.  Finally in Section 2.4, we present the evolving literature on 

the OCBA on determining the number of replication among different designs to 

optimize the simulation efficiency.        
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2.2 Ordinal Optimization 
 

As an effort to soften the stochastic and optimization aspects in a stochastic 

optimization problem, Ho et al. (1992) proposed the concept of ordinal optimization.  

The idea of ordinal optimization is based on the fact that order converges very much 

faster than value.  In this paper, the ordinal optimization concept was emphasized as a 

simple, general, practical and complementary approach as compared to the cardinal 

optimization which requires large computing efforts to be spent in obtaining the best 

estimates.  Ordinal optimization can significantly reduce the simulation effort in 

estimating the performance measure by approximating the model and shortening the 

observations.  More importantly, it was emphasized that with the parallel 

implementation of the ordinal optimization algorithm (one does not need to know the 

result of one experiment in order to perform another, i.e. the sequential approach) the 

repeated experiments in simulation can be performed easily to improve the system 

designs.  In their work, the examples of buffer allocation problem and a cyclic server 

problem was used to illustrate the applicability of the approach.       

 

Dai (1996), Xie (1997), Tang and Chen (1999) and Lee et al. (1999) provided 

theoretical evidence of the efficiency of ordinal optimization.  Dai (1996) tackled the 

fundamental problem of characterizing the convergence of ordinal optimization.  An 

indicator process was formulated and it was proved to converge exponentially, i.e. 

comparing the relative orders of performance measure, converges much faster than 

comparing the performance measure estimations.  With this tenet of ordinal 

optimization, one will be able to identify the good designs very quickly.              
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An extension of the previous work was given in Xie (1997) in which the dynamic 

behaviours of ordinal comparison were investigated.  Similarly he proved that for 

regenerative systems, the alignment probability converges at exponential rate.  The 

classical large deviation result was used in the proof. 

 

While Dai (1997) established the exponential convergence rate of the ordinal 

comparison algorithm for a classical regenerative process in the continuous-time and 

for the independent and identically distributed (i.i.d.) random sequence in the discrete-

time, Tang and Chen (1999) proved the exponential convergence rate in the context of 

one-dependant regenerative processes instead.  A systematic approach was developed 

using the stochastic Lyapunov function criterion to verify the exponential stability 

condition for Harris-recurrent Markov chains (HRMCs), a special case of one-

dependant regenerative processes.  Several examples in queuing theory were examined 

to illustrate the developed criterion. 

  

Lee et al. (1999) further presented the detailed explanations and the theoretical proofs 

of goal softening in ordinal optimization.  Using the order statistics formulation, it was 

established that the misalignment probability (a condition when there is no alignment 

in the selection) decreases by the exponential effect.  Further, it was concluded that by 

softening (relaxing) the good enough subset and selected subset condition, one could 

achieve a significant improvement in the alignment probability.  

           

While the previous works exploited the efficiency of ordinal optimization when the 

noise of the N designs is assumed to be i.i.d., Yang and Lee (2002) extended the 

existing methodology when the i.i.d. assumption of noise is relaxed.  In order to 
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generalize the ordinal optimization approach to problems where the noise term follows 

arbitrary distribution and design dependant, Yang and Lee (2002) proposed new 

selection scheme based on Bayesian model and distribution sensitive selection rule.  

This scheme used the selection index for every design, which is calculated from a 

proposed Bayesian model.  It was also shown how this selection index could be used to 

maximize the alignment probability.  Some application examples were illustrated to 

show how this selection scheme solved the non i.i.d. problem.   

 

Ho et al. (2000) provided the efficiency of ordinal optimization in the context of 

simulation.  It was emphasized that the ordinal optimization reduces the computational 

cost for design selection in a simulation effort.  Further details and literatures on this 

computing budget allocation problem (OCBA) are discussed in Section 2.4.  With the 

idea of ordinal optimization, simulation efforts should now be spent wisely on the 

designs sampled.     

 

2.3 Ranking and Selection  
 

Ranking and Selection (R&S) is a statistical method specifically developed to select 

the best design or the subset containing the best design from a fixed set of competing 

designs.  In the examples of applications, ranking is also seen to be stabilizing very 

early in simulation (Ho et al. (1992)), and thus can be used efficiently to solve the 

ordinal optimization problem.  There has been continuous development in research 

dealing with R&S issues in the field of simulation study.   
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As described in Chapter 1, there are generally two approaches that are widely used in 

the R&S works; the indifference-zone (IZ) selection and the subset selection approach.  

We first present the literature survey on the IZ selection approach, followed by the 

subset selection approach, and then the combined approach.  Following this, the 

literatures on the R&S unified with the multiple comparison procedure (MCP) are 

discussed.  Finally some recent developments in the R&S procedure are described.       

 

The concept of R&S was first proposed by Bechhofer (1954).  He suggested that the 

formulation of problem in terms of R&S approach is better than the classical test of 

homogeneity (analysis of variance) approach.  The hypothesis that several essentially 

different systems have the same population mean yield is unrealistic one; different 

treatment must have produced some difference, though the difference may be small.  

Thus it is important to estimate the size of the differences in order to identify the best 

of the designs.  This has emerged as the motivation for the R&S approach.  Bachhofer 

(1954) first formulated the IZ approach for randomly sampled k normal populations 

with a common and known variance.  In his approach, he was interested in selecting a 

single population such that there was at least the probability P* of making the correct 

selection, provided the greatest population mean exceeds all other means by a user 

specified “indifference zone”, δ* where the differences of less than δ* were considered 

practically insignificant.  If the population means lie within the δ*, the populations 

were viewed as the same and thus there exist no preference between the two 

alternatives.  The N independent observation was picked from each of the k 

populations, and the decision was to choose the population with the largest observed 

sample mean.  In his paper, he addressed the problem of determining the common 

sample size N that guarantees the predefined P* under the indifference zone δ ≥ δ*.                            
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As Bechhofer’s approach (1954) described above is a single-stage procedure (i.e. the N 

required is determined by the choice of δ and P*), Paulson (1964) formulated the same 

problem as a multi-stage (sequential) problem, which means they require two or more 

stages of simulation.  In the first stage, a user-specified number of observations were 

fixed, and certain stopping criteria was checked.  If the criterion was met, the user 

should stop the experiment and select the best design.  Otherwise, he should proceed to 

the second stage and continue sampling until the stopping criterion is met at the rth 

stage.  As the sequential sampling progresses, the inferior populations were eliminated 

from further consideration.  Likewise in Bechhofer (1954), Paulson (1964) also 

assume a common and known variance of populations.  Although a sequential 

procedure was proposed for the common but unknown variance in this paper, it was far 

from being the best solution.  Bechoffer et al. (1954) also attempted to formulate the 

problem for the case of a common but unknown variance using a two-stage procedure.  

 

All the literatures discussed above dealt with only the known or unknown common 

variance.  In reality, often it is impossible to know about the performance variance of a 

design that does not exist physically.  Even when the variance is known, ensuring the 

common variance for all the designs is another challenge.  Realizing this bottleneck, 

modern IZ approaches were developed for the case that neither equal nor known 

variances were required. 

 

Dudewicz and Dalal (1975) and Dudewicz (1976) are among the first articles that 

addressed the selection problem with IZ approach under normal means with unknown 

and unequal variances.  They developed a two-stage procedure with user-specified δ 

and P*.  In the first stage, the experimenter chose N number of observations and the 
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sample variance was estimated.  Based on this value, the number of additional 

observations was determined in the second stage.  Rinott (1978) developed a 

somewhat similar method with some modifications.  This method however cannot 

tackle the large problem.  Most IZ selection approaches used today are directly or 

indirectly developed based on Dudewicz and Dalal (1975) or Rinott (1978) selection 

procedure.  

 

Koenig and Law (1985) generalized the two-stage procedure suggested in Dudewicz 

and Dalal (1975) for selecting the subset of size m containing the l best of k 

independent normal populations so that the selected subset will contain the best design 

with at least the probability P*.  This IZ approach was essentially a screening 

procedure developed to eliminate the inferior designs at the initial stage.  This method 

required the selection of different table constant when computing the sample size in the 

second stage.   

 

There are many real world applications of the R&S procedure (using the IZ approach) 

for selecting the best design among the competing designs.  For example, the selection 

procedure in Koenig and Law (1985) was illustrated using a simulation study of an 

inventory system.  Another application example involving the selection of the best 

airspace configuration to minimize the airspace route delays for a major European 

airport was presented in Gray and Goldsman (1988).  Goldsman and Nelson (1991) 

applied the Rinott (1978) procedure to an airline reservation system problem.  Besides 

being easy to use, the procedure also assured the selection of the good design with high 

probability.  One disadvantage described was that this procedure at times requires 

more observation than necessary in order to configure a favorable design mean.  In 
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another work, Goldsman (1986) also provided a brief tutorial on the IZ approach for 

both the single-stage and multi-stage with common known variance.                

 

In contrast to the IZ approach, there exist another large class of R&S procedure for the 

best design selection proposed by Gupta (1956) and (1965), i.e. the subset selection 

approach.  The subset selection approach is a method for producing a subcollection of 

alternatives that has random size, and this subset contains the best population with the 

guaranteed probability P*.  The advantage of this approach was that it enabled the 

experimenter to screen a large set of alternatives, and allowed adequate resources to be 

allocated to the selected subset so that it can be examined more thoroughly with a 

follow up study.  To better illustrate the subset selection approach, Gupta and Hsu 

(1977) presented an application example of motor facility data.   

 

As the initial methodology on subset selection approach required common and known 

variances, Sullivan and Wilson (1989) worked a modern approach that allowed 

unknown and unequal variances for the normal population.  Using the subset selection 

approach, they developed two different procedures of random sampling scheme to 

compare transient or steady-state simulation models; the exact procedure was designed 

based on the single independent replications for each design, while the heuristic 

procedure was based on single lengthy run for each of the design.  As it is more 

rewarding to decide on the best design rather than to identify a subset that contains the 

best design, the IZ selection approach has emerged as a more favorable approach 

compared to the subset selection approach.     
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 On the other hand, when the number of design alternatives was large, Nelson et al. 

(2000) suggested using the idea of sample-screen-sample-select to reduce the 

computational effort.  This is a subset selection and IZ selection combined method.  In 

the first stage, the subset selection approach was used to screen out the noncompetitive 

designs, and the IZ selection was then used to select the design among the survivors of 

the screening.       

 

In Matejcik and Nelson (1993), it was shown that by combining the R&S procedure 

(i.e. the IZ selection approach) with the multiple comparison procedure (MCP) (i.e. the 

multiple comparisons with the best (MCB) approach), a better procedure could be 

designed for selecting the best design.  The applicability of this simultaneous 

procedure was illustrated with an inventory example problem. 

 

A review on modern approaches in the R&S and the MCP to compare designs via the 

computer simulations was presented in Goldsman and Nelson (1994).  The various 

approaches (including the combined approaches) in the statistical procedures used in a 

simulation were given for four classes of subprobelms; screening a large number of 

system designs, selecting the best system, comparing all designs to a standard and 

comparing alternatives to a default.  For example, the two-stage procedures (using the 

IZ selection approach and the MCB approach) for comparing a fixed set of designs 

with a single standard design in simulation experiments were presented in Nelson and 

Goldsman (2001).  Given k alternative designs and a standard, the comparison was 

based on their expected performance.  The goal of this procedure was to check if there 

is any other design with a better performance than the standard, and if so to identify 

them. 
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Another complete review on the existing literatures on the R&S and the MCP were 

given in Swisher and Jacobson (1999).  The existing approaches in each of the 

procedures were presented along with the recent unified approaches.  These works 

emphasized on the advantages of the unified approaches.  Besides leading to better 

methods to make a correct selection, by unifying these procedures, one will be able to 

compare the best design to each of the other competitors.  This information can 

provide inference about the relationships between designs which may facilitate 

decision-making based on secondary criteria that are not reflected in the output 

performance measure selected.   

 

It is known that most IZ selection approaches guarantee MCB confidence intervals 

(CIs) with half-width corresponding to the indifference amount (Chen and Kelton 

(2003)).  In this latest work, they presented the statistical analysis of MCB and 

multiple comparisons with a control (MCC) with CIs.  For the MCC approach, the CIs 

bound the difference between the performance of each design and a specified design as 

the control, while for the MCB approach, the CIs bound the difference between the 

performance of each design and the best of the others.  Chen and Kelton (2003) further 

established that the efficiency of the selection procedures could be improved by taking 

into consideration of the differences of sample means, using the variance reduction 

technique of common random numbers and also by using the sequential selection 

procedures. 

 

Goldsman and Marshall (2000) recently extended the R&S procedures for use in 

steady-state simulation experiments.  The Extended-Rinott Procedure (ERP) and the 

Extended-Fully Sequential Procedure (EFSP) were the two sequential procedures 
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developed with the aim to select the design with the minimum (or maximum) steady-

state mean performance.  For the ERP, the first stage variance estimator was replaced 

with marginal asymptotic variance estimator, while for the FSP the estimator was 

replaced with an estimator of the asymptotic variance of the difference between pairs 

of systems.       

 

The procedures discussed above assumed that the observations recorded are 

independent and identically normally distributed.  In reality though, often it is not a 

valid assumption when dealing with simulation outputs.  Realizing this challenge, 

Goldsman and Nelson (2001) presented three procedures for selecting the best design 

when the underlying (i.i.d) assumption of observations is relaxed.  The first procedure 

was a single stage procedure for finding the most probable multinomial cell, the 

second was a sequential procedure and finally the third is a clever augmentation that 

makes more efficient use of the underlying observations.   

 

The R&S procedure can also be used together with other methods to achieve better 

results. Butler et al. (2001) exploited the R&S procedure for making comparisons of 

different designs that have multiple performance measures.  They developed and 

applied a procedure that combines multiple attribute utility (MAU) theory (an 

analytical tool associated with decision analysis) with R&S procedure to select the best 

configuration design from a fixed set of possible configuration designs.  To achieve 

this goal, the famous IZ selection approach of the R&S procedure was utilized.  In 

Ahmed and Alkhamis (2002), the simulated annealing method was combined with the 

R&S procedure for solving discrete stochastic optimization problems.  The unified 

procedure converged almost to the global optimal solution.            
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2.4 Optimal Computing Budget Allocation (OCBA) 
 

The performance of ordinal optimization is further improved by intelligently 

determining the number replication for the different designs sampled in the OCBA 

problem.  Chen et al. (1997) presented an OCBA model to decide on how to allocate 

the computing budget to the designs so as the predefined probability of correct 

selection could be satisfied.  First all designs were simulated with the same number of 

replications and the probability of correct selection was approximated.  If the 

probability did not achieve the predefined level, an additional allocation of simulation 

replications would be given to the more promising designs and the marginal increase 

in the correct selection probability would be estimated.   In their approach, the optimal 

allocation problem was solved using the gradient method.  This effort was further 

extended in Chen et al. (1998) where they incorporated the impact of different system 

structures by considering different computation costs occurred in each design. 

   

A new asymptotical allocation rule was developed by Chen et al. (2000) to give a 

higher efficiency when solving the optimal budget allocation problem where the 

simulation costs of all the designs were the same.  This approach gave higher 

probability of correct selection even with a relatively small number of replications.  

Chen et al. (2003) recently extended this work.  They developed an asymptotical 

approach in which the objection function was replaced with an approximation that 

could be solved analytically.  A significant advantage of this method was that this 

approximated allocation problem could be solved with negligible computational cost.  

Moreover with the restriction of the equal cost of all designs being relaxed, it enabled a 

more general formulation of the allocation problem.  The ultimate idea of all these 
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efforts is to optimally allocate the available computing resources to all the potential 

designs so as to maximize the probability of correct selection.   

 

As much of the literature focused on allocating the simulation time for a fixed number 

of design alternatives, Lee and Chew (2003) widened the scope by considering how 

many designs to sample when the design space is huge.  A simulation study was 

presented to show that the sampling distributions (distribution of performance measure 

and distribution of estimation noise) will affect the decision on how to perform 

sampling and run simulation efficiently.  They assumed the designs were randomly 

sampled and the time spent in sampling designs was negligible.  However, if a 

sophisticated sampling method is used, some computational time will be required for 

sampling designs.  In such cases, besides allocating our computing time to estimate the 

performance measure of the designs and number of designs to sample, we also have to 

wisely allocate the time to spend to sample each design.  Our work is an extension of 

this idea.  Given a fixed computing budget, we want to decide on how to sample the 

design space, how many designs to sample and how long to run the simulation for each 

design so as to obtain a good performance measure. 
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Chapter 3 SAMPLING, RANKING AND 
SELECTION 

 
 
 

 

3.1 Introduction 
 

In order to design and compare the alternatives of large man-made system designs such 

as the inventory systems, communication network, manufacturing and traffic systems, 

it is often necessary to apply extensive simulation since no closed-form analytical 

solutions exist for such problems.  Unfortunately, using simulation can be both 

expensive and time-consuming, and this may preclude the feasibility of simulation for 

sampling, ranking and selection problems.  This challenge becomes even more critical 

when we are limited with a fixed computing budget.  Thus it becomes crucial in the 

optimal computing budget allocation (OCBA) problem to wisely determine the 

computation costs allocation while obtaining a good decision in simulation.              

 

In this chapter, we model the OCBA to determine on how much information to use to 

sample a design, how many designs to sample and how long to run the simulation in 

order to estimate the performance measure for our problem.  Before presenting the 

OCBA model, we first define the notations to aid clarity.  In our problem, given a 

fixed computing budget, it becomes crucial to find a balance between the allocation 

decisions.  We therefore discuss about the trade-offs involved.  Following this, we 

discuss and present the assumptions and models in the allocation problem when the 
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distribution of true performance value of the designs sampled follows different types 

of distributions. 

 

 

3.2 OCBA Model 
 

In the OCBA model for our problem, we associate n0 with a sampling scheme.  Let n0 

represent the degree of information (sophistication) used to sample a design and )( ont  

as the time taken to sample a design when n0 degree of information is used.  The 

higher the value of n0, the more information is used and better designs can be sampled.  

However with larger values of n0, more time will also be needed in sampling the 

designs.  Let n1 denote the number of designs to sample and n2 denote the number of 

replications of the simulation run for each design.  For n2, we assume horse race 

selection method is used, which means that n2 is the same for all the designs.  Our 

objective of this problem is to find the optimal allocation decision of n0, n1 and n2 

under a fixed computing budget that minimizes the expected true performance of the 

observed best design, ][ ]1~[JE .  The OCBA problem is as follows, 

 

P(1):    

 
][min ]1~[JE           (3.1) 

 
subject to    
 

Knnst
on ≤+ 12)( )(          (3.2) 

wJJ +=~           (3.3) 
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where J is the true performance, J~  is the observed performance, the subscript [i] is the 

design with true rank i, ]~[i  is the design which is observed as rank i and w is the 

noise.  Note that J~ is an estimation of J and the order of the observed performance of 

N designs can be written as ]~[]2~[]1~[

~...~~
NJJJ ≤≤≤ .  We model the OCBA in term of 

time unit, where s is the time to run one replication of simulation and K is the given 

computing budget in unit time.  Equation (3.2) states that the total time spent for 

sampling and running the simulation has to be less than K.  Equation (3.3) defines the 

relationship between the observed performance and the true performance.  From this 

equation, it is shown that the observed performance is confounded by noise.  

 

For an ideal case, we always hope that n0, n1 and n2 are high.  However, given a fixed 

computing budget, it is not realistic to set all three allocation decisions to be high.  For 

example, when n0 is large, (n1 and n2 is small), we can use more information to sample 

a design, but only few designs will be sampled with few replications to run for each 

design.  Generally with large n0, good designs are sampled, but they may be 

confounded with large noise.  Hence, we may end up picking the worst designs within 

the sampled designs.  For the case when n1 is large, (n0 and n2 is small), we will have 

many designs with each design being sampled using less information and with fewer 

replications.  As a result, there will be higher chance of getting good designs, but we 

may fail to locate the good designs due to the large noise.  On the other hand, when n2 

is large, (n0 and n1 is small), a large portion of computing time for simulation is 

allocated for the few designs which has been sampled using less information.  

Although we will be able to select the design with low noise within the n1 designs 

sampled, this design however may not be good as the good designs may not have been 

sampled.  Therefore, it becomes important for us to decide on the best trade-offs 
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between n0, n1 and n2 under a given computing budget so as to minimize the expected 

true performance of the observed best.   

 

Generally, P(1) is not an easy problem as there is no close form solution for ][ ]1~[JE .  

From the model, we know that ][ ]1~[JE  depends on n0, n1 and n2.  The n0 will affect the 

probability distribution of performance measure J.  For example, when n0 is randomly 

sampled (n0 = 0, i.e. no information is used to sample a design), we expect the 

performance J to be mediocre.  However when n0 takes a value, some information is 

used and better designs will be sampled.  As a result, the performance J tends to follow 

a skewed distribution.  In the following subsections, we propose a general framework 

to address the allocation problem when the distribution of true performance of the 

samples follows normal and Weibull distributions. 

 

  

3.2.1 Model Derivation for Normal Distribution of True Performance  

 

When the true performance and the noise follow normal distributions, P(1) can be 

solved numerically.  Note that with the different degree of n0, we will have different 

normal distributions for the true performance, where the mean and the standard 

deviation of the distribution are denoted by )( 0nxµ  and )( 0nxσ  respectively.  Following 

are the assumptions made. 

 

1. The true performance is normally distributed with J~ ( ))()( 00
, nxnxN σµ       

2. The noise is normally distributed with w~ ( )NN σ,0      
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3. The standard deviation of the noise for one replication of the simulation run 

is equal to 
0Nσ .  Thus the standard deviation of the noise for the average of 

n2 replications of the simulation run is as given below, 

 
 

2

0

n
N

N

σ
σ = .        (3.4) 

 
 
From equation (3.3),  
 
 

[ ]wJJ nxnx ′+′+= )()( 00

~ σµ         (3.5)  
 
 

where J ′~ ( )1,0N  and w′ ~ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

)( 0

,0
nx

NN
σ
σ

.  From the derivation given in Lee and Chew 

(2004), the expected true performance of the observed best when the true performance 

and noise follow normal distributions is   

 

][ ]1~[JE = ]~[ ]1~[2
)(

2
)(

2

)(
0

0

0
JE

Nnx

nx
nx σσ

σ
µ

+
+           (3.6) 

 
 
where 
 
 

=]~[ ]1~[JE ][ ]1[)(
22

0 zEnxN σσ +  
 
 
and ][ ]1[zE  is the 1st order statistics of n1 standard normal variables.  From (3.5) and 

(3.6), the expected true performance of the observed best is  

 

][ ]1~[JE = ][
/1

]1[
)(

22

)(
)(

0

0

0
zE

nxN

nx
nx

σσ

σ
µ

+
+          (3.7) 
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σ
µ

+
+ .                          (3.8) 

 
 

Note that when n0 is fixed ( ][ ]1~[JE is only influenced by n1 and n2), the mean 

)( 0nxµ and the standard deviation )( 0nxσ of the true performance in equation (3.8) 

become constants.   

 

In order to compute the expected true performance of the observed best, ][ ]1~[JE in 

equation (3.8), we need to find the )( 0nxµ and )( 0nxσ  of the true performance, the noise to 

signal ratio, i.e. )( 00
/ nxN σσ  and the ][ ]1[zE .  The values of )( 0nxµ , )( 0nxσ  and 

)( 00
/ nxN σσ  can be estimated from the screening experiment which will be discussed 

later.  As for the ][ ]1[zE , it has been tabulated in Lee and Chew (2004).  We refer the 

][ ]1~[JE that we obtain from (3.8) as the “normal table” value.  

  

 

3.2.2 Model Derivation for Weibull Distribution of True 

Performance  

 

We expect that better designs are sampled when a more sophisticated sampling method 

is used and the distribution of the true performance will be skewed to the left.  Hence 

the Weibull distribution will be used to approximate such distribution.  The different 

degree of n0 used in the sampling method will now affect the scale parameter ( )onα  and 

shape parameter ( )onβ  of the Weibull distribution.  The same assumptions mentioned in 
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Section 2.1 are made for this case, except for assumption (1), where the true 

performance now follows Weibull distribution i.e. J~ ( ))()( 00
, nnW βα .  Note that 

equation (3.3) can be rewritten as,   

 
 

⎥
⎦

⎤
⎢
⎣

⎡
+=

NN
N

wJJ
σσ

σ~                               (3.9) 

 
 
or 
 
 

[ ] .~ wJJ N ′+′= σ                                                (3.10) 
 
 
Denote wJJ ′+′=′~  with  
 
 

J ′= 
N

J
σ

~ ( )βα ′′,W                               (3.11) 

 
 
and 
 
 

w′= 
N

w
σ

~ ( )1,0N .                               (3.12) 

 
 
The Weibull distribution in (3.11) has new parameter of α′  and β ′  where,  

 

N

n

σ
α

α )( 0=′   and    )( 0nββ =′                             (3.13)  

 

or 

2

)(

/
0

0

nN

n

σ

α
α =′   and    )( 0nββ =′ .                           (3.14) 

 



Chapter 3    Sampling, Ranking and Selection  

 
   

28

The expected true performance of the observed best is  

 

][ ]1~[JE = ][ ]1~[JEN ′σ                              (3.15) 

 

or 

 

][ ]1~[JE = ][ ]1~[
2

JE
n

oN ′
σ

.                            (3.16) 

 
 
 
In order to compute the expected true performance of the observed best, ][ ]1~[JE in 

equation (18), we need to find the 
0Nσ  and ][ ]1~[JE ′ .  The value of 

0Nσ can be estimated 

from the screening experiment, while the value of ][ ]1~[JE ′  can be obtained from the 

“Weibull table” which we have developed for a general case.  The detail steps on how 

to compile the Weibull table through the Monte Carlo simulation are summarized in 

the Appendix A.   

 

Similar to the normal table, the Weibull table can be used to compare the performance 

of different computing allocations of n0, n1 and n2 under a fixed computing budget.  

First, we estimate the 
oNσ , )( 0nα  and )( 0nβ  from the screening experiment.  Given the 

n0 and n2, we then estimate the α′and β ′  using the equation (3.14).  With the n1, 

α′and β ′  values, we can now use the Weibull table to compute the expected true 

performance of the observed best, ][ ]1~[JE . 
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Chapter 4 ATO PROBLEM 
 
 
 

 

4.1 Literature on ATO Problem 

 

ATO is a policy widely applied in inventory policies among companies.  Unlike the 

traditional way of Make-to-Stock which often results in high opportunity cost due to 

the mismatch between the demand and the supply, ATO, is an effective way which can 

help the companies to reduce the cost.  In an ATO system, several different products 

will usually share the same components to make the end products.  The components 

are typically stored as inventory until they are required for assembly when the 

demands arrive.  Besides decreasing the total component inventory cost, such a policy 

will help reduce the safety stock levels owing to the risk pooling effects.  Some of the 

available literatures on this research issue are as follows.   

 

Baker (1985) showed the reduced number of safety stocks as a result of component 

commonality.  However, it was highlighted that the link between safety factor and 

service level in commonality is more complicated than that of non-commonality.  

Gerchak and Henig (1986) formulated a profit maximization model for selecting 

optimal component stock levels for a single period in an ATO system.  Under the 

commonality effect, it was shown that the stock level of the product-specific 

component is always higher compared to when one is operating under a non-

commonality environment.  The effect of commonality in two-product, two-
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component configuration with different component cost structure was also examined in 

a single period by Eynan and Rosenblatt (1996) (using the model of Baker (1985) and 

Baker et al. (1986)).  If the common component was cheaper than the component that 

it replaced, it was always worthwhile to use the advantage of commonality.  However, 

if the reverse was true, it was not always desirable to introduce commonality.  

Conditions were provided under which introducing commonality will reduce the 

inventory cost.   

 

As the models described above all dealt with single period, Gerchak and Henig (1989) 

further extended to properties of ATO in a multi-period scenario, and proved that the 

solution is myopic.  Hillier (1999) extended the two-product, two-level inventory 

model of Eynan and Rosenblatt (1996) in the multi-period environment to study the 

relative cost effectiveness of incorporating commonality.  In contrast to the single-

period model by Eynan and Rosenblatt (1996), Hillier (1999) and (2000) showed that 

the multi-period model almost never reflected any advantage in using common 

components when they were more expensive than the components it would replace.   

 

The literatures discussed above are among the initial works that show the advantages 

and limitations in the application of component commonality.  The following are some 

of the literatures on the various methods used to estimate the near optimal solution for 

the ATO problem.                 

 

Realizing that a single universal algorithm cannot be used to solve all stochastic 

models, Wets (1989) demonstrated that the major obstacle in solving the probabilistic 

constrained programming numerically, comes from the need to calculate gradients of 
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the expectation function.  An algorithm approach was taken by Kannan et al. (1995) 

where a randomized polynomial-time algorithm (based on random walk) was 

developed to achieve near optimal solution with high probability.  The problem of 

minimizing total cost while satisfying the probability of meeting demands under a 

given stock level was modeled as a stochastic program with probabilistic constraints.  

Tayur (1995) modeled a cost minimization problem and solved the multi-period case 

by decomposing them into many single-period recourse problems.  The derivatives of 

cost with respect to component stock levels were estimated using simulations and these 

estimates were later used to solve the optimal stocking levels for common components 

using a gradient search method.   

 

The profit maximization problem for one and two common components in a single-

period was solved analytically by Rudi (2000).  An analytical characterization for the 

optimal inventory levels and some new insights in ATO systems were presented.  

Hillier (2000) developed a heuristic method which gives near optimal solution with the 

objective of minimizing production, holding and storage cost.  Recently Mirchandani 

and Mishra (2002) considered three components (one common, and two product-

specific components) to be assembled into two end products.  Unlike Eynan and 

Rosenblatt (1996) who used aggregate service level in the model, they studied and 

compared the effect of product-specific service level constraints in both case of 

prioritized and non-prioritized products and solved a nonlinear program so as to obtain 

the optimal level of inventory.  

 

From the literatures above, it is known that cost minimization in an ATO system is a 

hard problem to solve even for a single period model.  The major obstacle in solving 
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the stochastic optimization problem comes from the need to compute the expected 

cost.  Hence in our work, we propose an approach using the sampling average 

approximation (SAA) method to tackle this problem. 

 

    

4.2 ATO Model 

 

In this thesis, we model a single period cost minimization ATO problem with 

stochastic demand.  Holding and penalty costs are considered in the problem and we 

attempt to find the optimal inventory levels of components to be ordered which can 

minimize the total cost.   

 

The assumptions made in the ATO problem are as follows.  First, components are 

acquired to stock.  Components are purchased only once to satisfy all future demands.  

When the demands of end products are known, the available components are allocated 

and assembled to satisfy the demand.  In our problem, due to the uncertainties of 

demand, there will incur some holding cost for the excess component inventories that 

we hold.  However, when there is a shortage of certain components required to 

assemble a specific product, the assembly of the end product cannot be completed and 

hence, it leads to unsatisfied demand and a penalty is associated with it.  The following 

notations are used in the model: 

 

hi : holding cost of each excess inventory of component i  

pj : penalty imposed for the unsatisfied demand j 
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Qi :  inventory level of component i,  i  = 1, 2, … , n   

Q̂ : vector of component inventory levels 

Dj :  demand for product j,  j  = 1, 2, … , m   

D̂ : vector of product demands  

Sj  :  number of product j to be assembled,  j  = 1, 2, … , m   

αij :  number of component i needed to assemble one unit of product j, i  = 1, 2, … , n  

        and   j  = 1, 2, … , m    

The αij Sj can be implied as the number of component i allocated for product j.  In 

general, the problem can be modeled as follows, 

 
 
P(1): 
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We want to find the minimum inventory of the components to stock over the time, Q̂  

which will be used to satisfy the future demand.  The optimal allocation of the 

components for assemble depends on the inventory levels of components Q̂  and 

demands of end products D̂ .  Given these two variables, the optimum allocation Sj can 

be decided by solving the allocation problem (4.2) – (4.6).  As our ability to fulfill the 

demand depend solely on the availability of components, our total allocations are no 

greater than the available inventories (4.3).  Constraint (4.4) shows that we do not 

assemble the products more than its demand.  Constraints (4.5) and (4.6) are the non-

negativity constraints.   

 

In theory, P(1) can be solved by finding the derivative of the cost function integral in 

(4.1) over all the component inventories to find the optimal level of inventories.  

However in this problem, the expectation function becomes complex and there is no 

close form solution for P(1).  Hence in this section, we propose to use the SAA 

approach to sample the inventory levels, iQ  (the design) and then simulation is used to 

estimate the expected cost of every design, and the design with the lowest expected 

cost will be selected.  In SAA, we approximate the objective function (4.1) in P(1) by 

using the sample average over n0 demand realizations, and the problem P(1) can then 

be modified as P(2), which is given as follows,  

 
P(2):   
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subject to the (4.2) - (4.6). 
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rjd  is the demand realization for product j at replication r, where r = 1, 2 , …, n0 and 

rd̂  is a vector of demand realization at replication r.  Since the demand rjd  is known, 

the problem now becomes deterministic and it can be solved by appropriate 

mathematical algorithm.  Note that when n0 approaches infinity, the minimum Q̂  

obtained will converge to the optimal solution *Q̂ .  However solving for very large n0 

is very time-consuming.  Alternatively, we can reduce the n0 and repeat solving the 

problem P(2) several times by using different sets of demand realizations.  Every time 

when the Q̂  is obtained, it can be treated as a design, and we hope that some good 

designs will be sampled.  We then further spend more time to run simulation on these 

sampled designs to estimate the performance of each design.  The following algorithm 

describes how SAA is used as the sampling method in this problem.   

 

Algorithm: 

 
Step 1:  The demand vector rd̂  is generated at replication r, where r = 1, 2, …, n0.   
 

Step 2: The SAA problem P(2) is solved as a linear programming problem with Q̂  and 

Ŝ  being the decision variables, and the Q̂  obtained will be considered as the design.   

 

Step 3: In order to randomly sample n1 different designs, the SAA problem in Step 2 is 

solved repeatedly using n1 randomly generated sets of demand vectors D̂ .   

 

Step 4: For each design obtained in Step 3, we run simulation with n2 replications to 

estimate its performance.  To run one replication of simulation for each sampled 
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design (the design Q̂  is fixed), one set of demand vector D̂  is generated and its 

observed performance is computed.  This step is repeated n2 times and the mean of the 

observed performance (average cost) is recorded.   

  

Step 5: The n1 designs are then ranked based on the observed performance values, and 

the design which has the minimum cost will be picked as the best design.   

 

For comparison purpose, we also simulate the observed best design with a very large 

number of replications in order to estimate its true performance value.   

 

 

4.3 A Review on SAA 

 

SAA is a Monte Carlo simulation-based approach and it appears as an appealing 

method in solving the stochastic optimization problem.  The SAA sampling method 

results in better designs compared to the random sampling, as it utilizes uncertain 

demand information.  In many scenarios, the SAA method can be very efficient and 

easily implementable.  Besides having good convergence properties, often one can use 

the existing software due to the ease of numerical implementation introduced by this 

method.  SAA approach is also easily amendable to variance reduction techniques and 

at the same time is ideal for parallel computations.  The various properties of SAA 

method was discussed in Shapiro (2001).  The statistical inference on the convergence 

rate of SAA was further discussed by Kleywegt et al. (2001).  They showed that with 

the increase of sample size, the probability approaches one at exponential fast rate.  
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This indicates that an optimal solution of the SAA problem provides an exact optimal 

solution of the true problem.  The SAA approach is then applied to a stochastic 

knapsack problem.  Note that the SAA method is not an algorithm since the user still 

has to choose a particular numerical procedure in order to solve the SAA problem in 

P(2). 

     

The idea of SAA is simple and natural.  The basic idea is that a random sample is 

generated and the expected value function is approximated by the corresponding 

sample average function.  The obtained sample average optimization problem is 

solved, and the procedure is repeated several times.  The method of SAA however is 

noticed to have some limitations that have to be addressed.  We discuss on the existing 

approach and present how our approach can complement the existing technique. 

 

It is explained in the literature that the SAA problem can be solved repeatedly M times 

(resulting in M designs) using N independent random samples for each SAA problem.  

The probability of finding the optimal design increases with larger M and N.  Kleywegt 

et al. (2001) proposed to use a stopping criterion based on the optimality gap to decide 

on the optimal M and N.  In their algorithm, the M and N are adjusted dynamically, 

depending on the results of preliminary computations until the optimality gap is 

satisfied.  Note that this procedure may become critical particularly for our case when 

there is only a limited computing budget.  In such case, we have to wisely select on the 

optimal M and N so as to increase the chances of obtaining the good enough design.  

Moreover, as discussed in Section 3.2, solving with large M and N alone do not 

necessarily guarantee the selection of good design.  Furthermore, solving for large N 

can be very time-consuming.  Hence, as discussed in the previous section, besides 
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reducing the N and repeat solving the SAA problem for M times, we further spend 

some time to run simulation on the sampled designs to reduce the noise in the 

performance estimation of each design.  We will finally select the design with the 

minimum performance value as the good enough design under the given computing 

budget.      
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Chapter 5 NUMERICAL RESULT OF ATO  
PROBLEM 

 
 
 
 
 

 

5.1 Conducting the Numerical Experiment 

 

In this chapter, we describe and present the numerical result for selecting the best 

allocation decisions for two different ATO problems.  The first ATO problem 

(Problem I) has 2 common components and 3 end products while the second problem 

(Problem II) has 6 common components and 9 end products.  All the simulation works 

are carried out using a Pentium(R) IV computer (CPU 2.40GHz and 512MB of RAM).  

The Solver in Microsoft Excel is used to solve the SAA problem.   

 

The presentation of our numerical result is organized as follows.  First in Section 5.2, 

we describe on how the screening experiment is carried out to estimate the relevant 

parameters for our problem.  Section 5.3 and Section 5.4 present the detailed problem 

descriptions and the numerical results for Problem I and Problem II respectively.  For 

comparison of different scenarios in Problem I, we split the numerical result 

presentation into three cases, and the numerical results are approximated by using the 

normal table estimation, the Weibull table estimation and the simulation result.  In the 

first case, we do not use the SAA as the sampling method, but instead used random 

sampling to sample the designs.  This implies that the term of n0 does not exist in this 

case.  The objective is to find the best allocation decision pair of (n1, n2) among the 
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different combinations when we random sample the designs.  The underlying 

distribution of the true performance and the noise is referred to check on the 

appropriateness of the normal and Weibull table estimation in selecting the best 

allocation decision.  In the second case, we use SAA as the sampling method and the 

numerical result when n0 is fixed is presented.  Similar to the first case, the best 

allocation decision pair of (n1, n2) is selected and the appropriateness of the normal and 

Weibull table estimations is discussed when the SAA is used as the sampling method.  

As the second case is restricted for a fixed n0, we generalize our problem in the third 

case, where the n0 is varied as well.  We developed the OCBA model for Problem I in 

order to find the optimal computing budget allocation decision of (n0, n1, n2) that 

minimizes the expected true performance of the observed best when the computing 

budget is fixed at a certain level for this problem.  As for Problem II, we directly 

generalized the problem and presented the third case to illustrate the applicability of 

our approach.    

 

 

5.2 Screening Experiment 

 

In order to know how to determine the optimum allocation decisions using the normal 

and Weibull table estimations, we first run a screening experiment to estimate the 

required parameters.  For the normal table, we estimate the standard deviation of the 

performance ( )( 0nxσ ), the standard deviation of the noise (
0Nσ ) and the noise to signal 

ratio ( )( 00
/ nxN σσ ).  For the Weibull table, we estimate the parameters ( )onα  and ( )onβ .  

To estimate these values, we sample 25 designs and then run 50 replications for each 

design. 



Chapter 5    Numerical Result of ATO Problem  

 
   

41

The sampling in screening experiment is conducted differently for the designs that are 

randomly sampled and for the designs that are sampled using the SAA method.  For 

the random sampling method, the 25 designs are randomly sampled from a Uniform 

distribution, between 0 and 4,000, i.e. Q~U(0, 4000) (These parameter values of 0 and 

4000 are obtained based on the initial trial run).  As for the designs sampled using the 

SAA method, the 25 designs are sampled using SAA with n0 degree of information.  

As we assume, the demands for all the end products are drawn from a normal 

distribution, D~N(1000,100).  From our initial trial run, it was also learned that the 

distribution of true performance of the designs sampled by SAA tends to favor good 

designs and the value of ( )onβ  is close to one.  This implies the distribution is an 

exponential distribution, which is a special case of Weibull distribution.  Hence in this 

application problem, we fix ( )onβ  at the value of one ( ( )onβ = β ′=1) for the cases when 

the designs are sampled by SAA.   

 

 

5.3 Problem I: Problem Description 

 

As mentioned in the beginning of the chapter, the first example of our ATO problem 

has 2 common components and 3 end products.  For ease of reference, we refer to this 

problem as Problem I.  Figure 5.1 shows the component allocation network of Problem 

I.  In this problem, either one or none of component i is used to assemble one unit of 

product j.  Thus, the number of component i needed to assemble one unit of product j, 

ijα  takes the value of either 1 (if allocated) or 0 (if not allocated), i.e. 

( 23221211 ,,, αααα  = 1 and 2113 ,αα  = 0).  Every component is used in assembling two 
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end products.  For product 1 and product 2, the component itself is made into the end 

product.  The product 2 is however assembled with one unit of component 1 and one 

unit of component 2. 

 

   

 

 

 

 

 

 

Figure 5.1:  Problem I - 2 common components and 3 end products 

 

Assume that all the components have the same holding cost h and all the products have 

the same penalty cost p, the SAA formulation for Problem I is given as P(1). 

 
P(1):  
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In this special case, given the optimum component inventory level vector Q̂ * and the 

product demand vector D̂  are known, the component allocation quantity jS can be 

determined using the optimal allocation rule below:  

 
 

{ }1211 ,*min DSQS −=  

{ }{ }**,,,0,*,*maxmin 21232112 QQDDQDQS −−=  

{ }3223 ,*min DSQS −=  

 

The performance (minimum cost) based on the optimum allocation rule above can be 

computed as follows: 

 
min cost  = )()2**( 32132132121 SSSDDDpSSSQQh −−−+++−−−+  
 
 
The above optimal allocation rule and performance computation will be used when 

running simulation in Step 4 of Section 4.2.  Note that the above optimum allocation 

rule is developed for a general case of Problem I.  The rules for specific conditions of 

Problem I, i.e. when (D1 + D2) and (D2 + D3) is greater or equal and lesser or equal 

than Q1* and  Q1* are given in Appendix B.      

 

For our numerical experiment, the holding cost h is fixed at $0.20 and the penalty cost 

p is fixed at $0.50.  In the following subsections, we present and discuss the numerical 

result for Problem I when the designs for this problem are random sampled and when 

the designs are sampled using the SAA method (for n0 fixed and n0 varied). 
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5.3.1 Numerical Result for Problem I for Case I : designs sampled by 

random sampling   

 

For the first case, we want to select the best allocation decision of (n1, n2) when the 

designs are randomly sampled.  In the randomly sampled designs, there is no 

information used in the sampling and thus we expect only mediocre designs to be 

sampled.  As mentioned in the screening experiment, the designs are randomly 

sampled from Q~U(0, 4000) and the demands of the end products are drawn from 

D~N(1000,100).  The computing budget is fixed at 25,000 runs (or 25,000 sets of 

demand vectors) and different pairs of (n1, n2) that satisfies (n1 x n2 = 25,000) are 

chosen.  The screening experiment is first run and the information obtained from the 

screening experiment is as given below, 

 

The estimated mean of the true performance distribution, )( 0nxµ = $ 707.40 

The estimated standard deviation of the true performance distribution, )( 0nxσ   = 329.51 

The estimated standard deviation of the noise, 
0Nσ   = 64.78 

The noise to signal ratio, 
)( 0

0

nx

N

σ
σ

 = 0.20 

The estimated Weibull scale parameter, )( 0nα  = 638.47   

The estimated Weibull shape parameter, )( 0nβ =  β ′  = 5.09   

The estimated Weibull location parameter, )( 0nγ = $ 84.36 

 
 
Based on the values obtained from the screening experiment, the normal and Weibull 

table estimations can be computed.  Table 5.1 summarizes the numerical result for 
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Problem I when the designs are randomly sampled.  We elaborate on how we obtain 

the normal and Weibull estimations and the simulation result in the following part.     

 
 

Table 5.1:   Numerical result for Problem I, designs randomly sampled  
 

Computing Budget 
Allocation 

n1 n2 

Normal table 
Estimation 

($) 

Weibull table 
Estimation 

($) 

Simulation 
Result 

($) 
5000 5 703.74 200.54 67.02 
2500 10 703.91 216.38 68.86 
1000 25 704.16 238.21 68.41 
500 50 704.36 256.66 69.20 
200 125 704.65 291.96 84.93 
100 250 704.89 323.13 98.10 

 
 
 
There are four main columns in Table 5.1; the computing budget allocation, the normal 

table estimation, the Weibull table estimation and the simulation result.  The 

computing budget allocation column summarizes the different pairs of (n1, n2) run in 

the experiment.  The normal and Weibull table estimation columns show the expected 

true performance of the observed best design ][ ]1~[JE  when the distribution of true 

performance is normal and Weibull respectively.  For the normal table estimation, first 

the noise to signal ratio for each of the (n1, n2) pair is computed by 
2)( 0

0

nnx

N

σ

σ
.  Based 

on this value, we subsequently refer to Lee and Chew (2004) for its normal table value.  

As this is a minimization problem, the normal table value obtained is multiplied with  

(-1).  Finally the estimated mean of the true performance distribution, )( 0nxµ (a 

constant) is added to each of the normal table value, and the end result is referred as 

the normal table estimation, i.e. ][ ]1~[JE .  For the Weibull table estimation, the noise 
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for each of the (n1, n2) pair is computed by 
2

0

n
Nσ

. At the same time, the Weibull table 

is referred to obtain the value of ][ ]1~[JE ′ .  These two values are then multiplied 

together, i.e. ][ ]1~[
2

JE
n

oN ′
σ

.  As we have initially removed the location parameter of 

)( 0nγ  for ease of numerical computation, we now add the constant to ][ ]1~[
2

JE
n

oN ′
σ

 and 

the end result is the Weibull table estimation, i.e. ][ ]1~[JE for Problem I.  The detailed 

computation on how to compute the normal and Weibull table estimations based on the 

screening experiment values is presented in Appendix C.  A long simulation (for 

10,000 runs) is also run to estimate the expected true performance of the observed best 

design ][ ]1~[JE .  Each pair of (n1, n2) in the experiment is repeated for 20 times and the 

average of the true performance is recorded in the simulation result column.  From this 

column, we will be able to determine the optimal allocation decision, i.e. the (n1, n2) 

that gives the minimum expected true performance.  This column will be used for 

comparison purposes.   

 

The optimal allocation decision of (n1, n2) based on the simulation result is given in 

bold.  For comparison purpose, the minimum expected cost suggested by the normal 

and Weibull table estimations are also given in bold, and the corresponding allocation 

decisions are the optimal selection suggested by them respectively.  The allocation 

decisions suggested by the normal and Weibull table estimations are then compared 

with the optimal decision based on the simulation result.  From the simulation result 

column, the optimal allocation decision for this case of Problem I is found to be (n1, 

n2) = (5000, 5), i.e. to sample 5000 designs and to run only 5 replications, and the 
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expected minimum cost is $67.02.  The normal and Weibull table estimations select 

the same allocation decision with the expected minimum cost of $703.74 and $200.54 

respectively.   

 

We observe from the table that both the normal and Weibull table estimations are able 

to suggest the correct allocation decision.  This is due to the fact that the true 

performance for the randomly sampled designs tends to have a mediocre distribution 

as shown in Figure 5.2.  (This figure is obtained from an experiment run with very 

large number of designs and very long replications and such experiment is referred as 

“detailed experiment”).  Therefore both the estimations are able to identify the correct 

selection.  Moreover, the noise of the randomly sampled designs is also normally 

distributed (Figure 5.3) which is consistent with the underlying assumption made in 

the normal model development in Chapter 3.         
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Figure 5.2:  The distribution of the true performance for randomly sampled designs 
Q~U(0,4000)  for Problem I 
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Figure 5.3: The distribution of the noise for randomly sampled designs  

Q~U(0,4000) for Problem I 
 

 

5.3.2 Numerical Result for Problem I for Case II : designs sampled 

by SAA, n0  fixed   

 

In this section, we discuss the numerical result for Case II of Problem I when the SAA 

is used as the sampling method.  In this case, the n0 is fixed at certain level and the 

SAA is solved to sample the designs.  For the first scenario of Case II, we fix n0 at 5, 

and would like to select the optimal allocation decision for Problem I.  We would also 

like to compare the optimal result suggested by both the normal and Weibull table 

estimations with the simulation result.  Similar to Case I, the demands are also drawn 

from normal distribution, D~N(1000,100) and the computing budget is fixed at 25,000 

runs.  A few different pairs of (n1, n2) that satisfy the computing budget are chosen as 

the potential candidate for the best allocation decision.   
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In contrast with the random sampling, the designs sampled by SAA tend to sample 

better designs as some information is used in the sampling scheme.  Thus, as 

mentioned earlier in Section 5.2 of this chapter, )( 0nβ is fixed to 1   (β ′  = )( 0nβ = 1) 

when the SAA is used in sampling the designs.  The screening experiment is first run 

and the information of the parameters is as given below, 

 
n0 = 5 

)( 0nxµ = 85.63 

)( 0nxσ  = 8.43 

0Nσ = 40.91 

)( 0

0

nx

N

σ
σ

 = 4.83 

( )onα  = 13.74 
β ′= )( 0nβ = 1 

)( 0nγ = 74.46 
 
 

Table 5.2:   Numerical result for Problem I, designs sampled using SAA (n0 = 5) 
 

Computing  
Budget Allocation 

n1 n2 

Normal table 
Estimation ($) 

Weibull table 
Estimation ($) 

Simulation  
Result ($) 

5,000 5 84.10 77.83 71.61 
2,500 10 83.71 77.30 65.90 
1,000 25 83.30 76.67 65.64 
500 50 83.13 76.21 63.62 
200 125 83.10 75.81 62.66 
100 250 83.23 75.52 61.85 

 
 
 
The numerical result for n0 = 5 is presented in Table 5.2. The detailed computation on 

how to compute the normal and Weibull table estimations based on the screening 

experiment values is presented in Appendix D.    Based the simulation result column in 

Table 5.2, the optimal allocation decision is found to be (n1, n2) = (100, 250), i.e. to 

sample 100 designs and to run 250 replications.  This optimal allocation decision is 
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expected to result in a minimum cost of $61.85.  The Weibull table estimation suggests 

the same allocation decision option as the optimal decision, and the expected minimum 

cost is $75.52.  The normal table estimation however picks a different allocation 

decision option, (200, 125) as the optimal selection with the expected cost of $83.10.    

 

Unlike the example of Case I, in this case we observe from the table that only the 

Weibull table estimation is able to suggest the correct allocation decision.  This is 

because the true performance for the designs sampled by SAA is exponentially 

distributed as shown in Figure 5.4.  The noise is also normally distributed as shown in 

Figure 5.5.  Both the distributions are consistent with the assumptions made in the 

Weibull model development in Chapter 3.  (These distribution graphs are obtained 

from the detailed experiment).   
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Figure 5.4:  The distribution of the true performance value for SAA sampled designs 
(n0 = 5) for Problem I 
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Figure 5.5: The distribution of the noise for SAA sampled designs (n0 = 5) for  
Problem I 

 

 

Therefore when the designs are sampled using SAA, the estimation by the Weibull is a 

better approximation for the correct selection as compared to the normal.  Also, note 

that since we are only interested in determining the best allocation decision, we can do 

so by computing the Weibull table estimation alone, without having to run long 

simulation to estimate the simulation result.   

 

The same experiment is repeated, with the n0 fixed at 20 and 50.  The values of 

screening experiment and numerical results are presented in Table 5.3 and Table 5.4 

respectively.  Also refer to Appendix D for the detailed computation.      

 
n0 = 20 

)( 0nxµ = 79.97 

)( 0nxσ  = 5.67 

0Nσ = 34.85 

)( 0

0

nx

N

σ
σ

 = 6.15 
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( )onα  = 7.32   
β ′= 1 

)( 0nγ = 73.65 
 
 

Table 5.3:   Numerical result for Problem I, designs sampled using SAA (n0 = 20) 
 

Computing 
Budget Allocation 

n1 n2 

Normal table 
Estimation ($) 

Weibull table 
Estimation ($) 

Simulation 
Result ($) 

5,000 5 78.73 76.00 63.22 
2,500 10 78.37 75.75 62.90 
1,000 25 77.92 75.29 62.75 
500 50 77.68 74.98 62.35 
200 125 77.56 74.70 62.26 
100 250 77.63 74.50 62.03 

 
 
 
 
n0 = 50 

)( 0nxµ = 77.33 

)( 0nxσ  = 5.35 

0Nσ = 34.74 

)( 0

0

nx

N

σ
σ

 = 6.49 

( )onα = 5.09 
β ′= 1 

)( 0nγ = 73.58 
 
 

Table 5.4:   Numerical result for Problem I, designs sampled using SAA (n0 = 50) 
 

Computing  
Budget Allocation 

n1 n2 

Normal table 
Estimation ($) 

Weibull table 
Estimation ($) 

Simulation  
Result ($) 

5,000 5 76.13 75.84 63.05 
2,500 10 75.83 75.49 62.45 
1,000 25 75.35 75.07 62.29 
500 50 75.10 74.82 62.05 
200 125 74.95 74.51 61.91 

5,000 5 76.13 75.84 63.05 
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The best allocation decision for n0 = 20 is (100, 250) with the expected minimum cost 

of $62.03, and for n0 = 50 is (200, 125) with $61.91.  Both the tables indicate that 

Weibull makes a correct selection, while normal only makes correct selection when n0 

= 50.  This shows that the Weibull table estimation is quite promising in selecting the 

optimal allocation decision. 

   

 

5.3.3 Numerical Result for Problem I for Case III : designs sampled 

by SAA, n0  varied   

 

In order to generalize Problem I in the OCBA model, we allow the n0 to vary.  In this 

case, the computing budget K is no longer in terms of number of runs, but we fix the K 

in terms of CPU time, i.e. 800 seconds and 3,600 seconds.  The demands are still 

drawn from normal distribution, D~N(1000,100).  The Problem I is solved repeatedly 

with different combinations of (n0, n1, n2) that satisfy the computing budget constraint.  

We attempt to find the optimal computing budget allocation decision of (n0, n1, n2) that 

can minimize the expected cost of the problem.  Note that in order to model the OCBA 

for Problem I, we have to first estimate the time to generate one design, )( ont  in terms 

of n0 and the simulation time to run one replication of simulation, s.  Before developing 

the OCBA model for this problem, we look at how the different degree of n0 used in 

the SAA sampling method affects the true performance.  For the Weibull table 

computation, the empirical relationship of ( )onα  when the n0 is varied is also estimated.   
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Figure 5.6 shows the cumulative distribution function (CDF) of the true performance 

of the designs generated by SAA when n0 is fixed at 1, 5, 25 and 50.  The screening 

experiment is used to plot the CDF.  It can be observed that when more information is 

supplied (the higher n0), the better designs will be sampled.  The standard deviation of 

true performance also decreases as the higher n0 is used in the SAA sampling.     
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Figure 5.6:  The improvement in the true performance value when n0 is varied in 
Problem I 

 

For simplicity in Figure 5.6, we present the distribution of true performance for only 

four different degrees of n0.  In our research work, we actually experimented for ten 

different degrees of n0 (n0 = 1, 3, 5, 10, 15, 20, 25, 30, 40, 50) using separate detailed 

experiments.  The CDF of true performance, the distribution of true performance, the 

minimum true performance, the maximum true performance and the standard deviation 

of the true performance for each of the different n0 experimented are recorded and 

presented in Appendix E.  The observed best design, which gives the minimum true 

performance for each n0 is also provided in the appendix.  Similar findings with Figure 

5.6, it can be observed from the Appendix E that better designs will be generated with 
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higher degree of n0.  Also, the higher the degree of n0, the smaller the standard 

deviation of true performance as more information is supplied in the sampling of the 

designs. 

  

As discussed earlier, the ( )onα  and )( 0nβ are the two parameters estimated for the 

Weibull table.  The )( 0nβ is fixed to 1, and the remaining task is to estimate the ( )onα  

for different degrees of n0.  Figure 5.7 shows that the regression analysis for the 

estimated parameter of ( )onα  when n0 is varied.  These values are computed from 

screening experiments.  From this figure, observe that ( )onα  decreases exponentially 

when n0 increases.  Using the least square method, the empirical relationship is given 

as ( )onα  = 26.774 n0 
-0.4626.  The coefficient of determination, R2 is also measured to 

judge the adequacy of the model, and the exponential correlation appears as the best 

fit.  This function can be used to estimate the value of ( )onα for any n0 that lies between 

1 and 50. 

   

Estimation of          for different n 0

= 26.774 n 0
-0.4642

R 2 = 0.8717
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Figure 5.7:  Estimation of ( )onα  for Problem I 
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In order to develop the OCBA model for Problem I, we now estimate the function of 

the time to generate one design, )( ont  in terms of n0 and the simulation time to run one 

replication of simulation, s by using regression analysis.  Figure 5.8 depicts the 

estimation of the )( ont  in terms of the CPU time.  It can be observed that the time we 

need to solve the SAA, )( ont , increases when n0 is increased, and the empirical 

relationship is )( ont  = 0.0014 n0 
2 - 0.0062 n0  + 0.3496.  This empirical relationship fits 

the scatter diagram well with a high coefficient of determination (R2 = 0.998).  As for 

the estimation of s, the CPU time to perform the simulation, S is seen to increase 

linearly with the simulation length, n2.  This is represented in Figure 5.9.  Note from 

this figure that the fitted linear regression line passes through many of the points         

(R2 = 0.9994).  The regression coefficient is the simulation time for one replication of 

simulation, s and it is estimated to be 3105.1 −Χ  seconds.  (For the numerical 

estimation of ( )onα , )( ont  and s for Problem I, please refer to Appendix E)       

 

Estimation of CPU time,         to sample a design for different n 0

= 0.0014 n 0
2 - 0.0062 n 0 + 0.3493

R 2 = 0.998

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70

Degree of information used to sample a design, n 0

C
PU

 ti
m

e,
   

   
   

(s
ec

on
d)

 
 

Figure 5.8:  Estimation of )( ont  for Problem I 
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Estimation of simulation time, S (in CPU time) 
for n 2 replications 

S  = 0.0015 n 2 + 0.674
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Figure 5.9:  Estimation of s for Problem I 
 

 

Based on the estimations, the OCBA model for Problem I is as follows, 

P(6): 

 
][min ]1~[JE                      (5.1) 

 
subject to   
 
 

Knnnn ≤Χ+Χ+Χ−Χ −−−−
12

31
0

32
0

3 )105.110493.3102.6104.1(               (5.2) 
 

][ ]1~[JE = ][ ]1~[
2

JE
n

oN ′
σ

                   (5.3) 

 
 

Given K = 800 seconds, a few possible combinations of (n0, n1, n2) that satisfy 

constraint (5.2) is selected.  As discussed before, the screening experiment is first 

conducted with (n0, 25, 50) and the information obtained is presented in Appendix F.  

The normal and Weibull table estimations are compared with the simulation result in 

Table 5.5 and the best allocation decision of (n0, n1, n2) = (15, 200, 2290) which results 
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in $61.69 is given in bold.  Based on this table, the Weibull again chooses the right 

allocation decision with the minimum expected cost of $73.97.  However, the normal 

table estimation fails to indicate the correct decision.  It selects the higher n0 and lower 

n2, i.e. (50, 200, 300) as the best allocation.  

 

Table 5.5:   Numerical result for Problem I, designs sampled using SAA with n0 varied  
(K =800 seconds) 

 
Computing Budget Allocation

n0 n1 n2 

Normal table 
Estimation  

($) 

Weibull table 
Estimation  

($) 

Simulation  
Result  

($) 
5 1,500 120 82.55 75.60 63.78 
15 200 2,290 75.73 73.97 61.69 
20 800 145 77.14 74.48 62.39 
50 200 300 74.75 74.21 62.06 

 
 
 
The experiment is repeated when K = 3,600 seconds and the information on screening 

experiment and the computation are also presented in Appendix F.  The numerical 

result is summarized in Table 5.6.  The optimal allocation decision is (65, 500, 900) 

with $61.67.  Similarly, the Weibull is able to pick the correct decision with the 

expected minimum cost of $73.89.  In this case, normal estimation is also able to 

indicate the correct selection with the expected minimum cost of $74.03.  Also note 

that with higher computing budget time, better results can be achieved. 

 
 
Table 5.6:   Numerical result for Problem I, designs sampled using SAA with n0 varied 

(K=3,600 seconds) 
 

Computing Budget Allocation

n0 n1 n2 

Normal table 
Estimation  

($) 

Weibull table 
Estimation  

($) 

Simulation  
Result  

($) 
20 4,500 10 78.30 75.46 62.61 
40 1,500 40 75.32 74.89 61.93 
60 650 350 74.24 74.08 61.84 
65 500 900 74.03 73.89 61.67 
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Based on all the experiments conducted in Case II and Case III for Problem I, the 

Weibull table estimation shows promise for making the correct allocation decision 

when the SAA is used as the sampling method.  Hence, note that in future we can 

decide on the optimal allocation decision based on the Weibull table estimation alone.   

 

5.4 Problem II : Problem Description  

 

We now apply the same approach to another example of ATO problem.  In this 

example, the ATO problem is made of 6 common components and 9 end products.  

Each common component is used in assembling three different end products, and each 

end product is assembled from two different common components.  Hereafter, this 

problem will be referred as Problem II.  The configuration of Problem II is illustrated 

in Figure 5.10.   

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5.10:   Problem II - 6 common components and 9 end products 
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In this problem, the number of component i needed to assemble one unit of product j, 

ijα  takes different values in each allocation.  Different holding cost for component i, hi 

and different penalty cost for the unsatisfied demand of product j, pj are also imposed 

in Problem II.  With these assumptions, the SAA formulation for Problem II is,   

 

P(7): 
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SSSQh
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subject to 

1717414111 QSSS rrr ≤++ ααα         r∀  
 

2828424323 QSSS rrr ≤++ ααα        r∀  
 

3939535232 QSSS rrr ≤++ ααα        r∀  
 

4848646242 QSSS rrr ≤++ ααα        r∀  
 

5959353151 QSSS rrr ≤++ ααα        r∀  
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6767666565 QSSS rrr ≤++ ααα        r∀  
 
 

11 rr DS ≤           r∀  
 

22 rr DS ≤           r∀  
 

33 rr DS ≤           r∀  
 

44 rr DS ≤           r∀  
 

55 rr DS ≤           r∀  
 

66 rr DS ≤           r∀  
 

77 rr DS ≤           r∀  
 

88 rr DS ≤           r∀  
 

99 rr DS ≤           r∀  
 
 

0≥rjS   j = 1, 2, …, 9        r∀  
 

0≥iQ   i = 1, 2, …, 6       
 
 
   
The same approach as for the Problem I is used in this problem.  Recall that in 

Problem I, we used an optimal allocation rule to run simulation on the sampled 

designs.  In Problem II however, note that the number of variables increases and thus it 

is not feasible to develop an optimal allocation rule.  Therefore, for Problem II, given 

Q̂ * and D̂ , we have to solve the component allocation αijSj optimally by solving 

allocation problem in P(8) each time to run a simulation replication. 
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P(8): 
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)](*[)](*[

)](*[)](*[
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999888777666

555444333222111

7676665656695935315155
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subject to 
 
 

*1717414111 QSSS ≤++ ααα          
 

*2828424323 QSSS ≤++ ααα         
 

*3939535232 QSSS ≤++ ααα         
 

*4848646242 QSSS ≤++ ααα         
 

*5959353151 QSSS ≤++ ααα         
 

*6767666565 QSSS ≤++ ααα  
        
 

11 DS ≤            
 

22 DS ≤            
 

33 DS ≤            
 

44 DS ≤            
 

55 DS ≤            
 

66 DS ≤            
 

77 DS ≤            



Chapter 5    Numerical Result of ATO Problem  

 
   

63

88 DS ≤            
 

99 DS ≤  
 
           

0≥jS   j = 1, 2, …, 9         
 

0≥iQ   i = 1, 2, …, 6  

 
 
 
In the numerical experiment, the holding costs for the 6 components, hi, the penalty 

costs for the 9 products, pj and the number of component i needed to assemble one unit 

of product j, αij for Problem II are fixed as follows, 

 

Parameter values of the holding cost for component i, hi ($):   

h1  =   0.30 

h2  =   0.80 

h3  =   1.30 

h4  =   0.25 

h5  =   0.95 

h6  =   0.70 

 
 
Parameter values of the penalty cost for product j, pj ($):   

p1  =   0.90 

p2  =   0.85 

p3  =   1.35 

p4  =   1.43 

p5  =   0.58 

p6  =   2.30 

p7  =   1.50 

p8  =   0.50 

p9  =   1.10 



Chapter 5    Numerical Result of ATO Problem  

 
   

64

Parameter values of the number of component i needed to assemble one unit of product 

j, αij  :   

α11   =   1 

α14   =   2 

α17   =   1 

α23   =   4 

α24   =   3 

α28   =   2 

α32   =   1 

α35   =   1 

α39   =   2 

α42   =   2 

α46   =   1 

α48   =   1 

α51   =   3 

α53   =   1 

α59   =   2 

α65   =   1 

α66   =   2 

α67   =   1 

 
  

For Problem II, we directly generalized the problem to test on the validity of our 

approach.  Thus, the random sampling method as described in Case I for Problem I is 

not experimented.  The designs for Problem II are sampled using the SAA sampling 

method with n0 varied.  The OCBA model for Problem II was developed and used to 

find the optimal computing budget allocation decision of (n0, n1, n2) that minimizes the 

expected true performance of the observed best design.  
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5.4.1 Numerical Result for Problem II for Case III : n0  varied   

 

In this subsection, the numerical result for Problem II when the n0 is varied is 

presented.  The organization of this subsection is similar to the Subsection 5.3.3 for 

Problem I.  We first discuss the effect of true performance when the n0 is varied.  We 

also estimate the Weibull parameter of ( )onα  for the different degrees of n0 in Problem 

II by using the screening experiment.   

 

Following this, the function )( ont  and the value of s is computed in terms of CPU time 

(in seconds) for the OCBA model for Problem II.  The OCBA model is solved under 

two different fixed computing budgets K of 3,000 and 6,000 seconds.  The demands 

for Problem II are also drawn from normal distribution, D~N(1000,100).  We select a 

few different combinations of allocation decision of (n0, n1, n2) that satisfy the 

computing budget constraint and Problem II is solved for each of the allocation 

combinations.  The optimal allocation decision that can minimize the expected true 

performance of the observed best design of Problem II is then identified.  The normal 

and Weibull table estimations are also used to estimate the expected true performance 

of the observed best design and their performances are compared against the 

simulation result.  In order to know how to determine the optimum allocation decisions 

using the normal and Weibull table estimations, we first run a screening experiment to 

estimate the required parameters.       

 

The CDF of the true performance when SAA is used as the sampling method with a 

range of n0 for Problem II is shown in Figure 5.11.  For this case, the n0 is fixed at 1, 5, 
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10 and 20.  As expected, better designs are sampled when more information is 

supplied.      

 

CDF for true performance

0

0.2

0.4

0.6

0.8

1

690 890 1,090 1,290 1,490 1,690

True performance value ($)

Pr
ob

ab
ili

ty

1
5
10
20

n o

 
 

Figure 5.11:  The improvement in the true performance value when n0 is varied in 
Problem II 

 

 

For the same reason of simplifying the graph, we present the distribution of true 

performance for only four different degrees of n0.  The true performance of eight 

different degrees of n0 (n0 = 1, 3, 5, 7, 10, 15, 18, 20) run with the detailed experiments 

are presented in Appendix G.  Also please refer to Appendix G for more information 

on the CDF of true performance, the distribution of true performance, the minimum 

true performance and its observed best design, the maximum true performance and the 

standard deviation of the true performance for each of the different n0 experimented.  

Based on the observations in the appendix, similar conclusions can be drawn; with 

higher level of n0, better designs with lower standard deviation in the true performance 

are obtained.  However note that unlike Problem I, the distribution of true performance 

of Problem II does not show the exponential distribution.  This is because Problem II is 



Chapter 5    Numerical Result of ATO Problem  

 
   

67

more complex (more variables are involved) and we did not sample enough designs 

and run enough replications to represent the actual distribution due to the constraint of 

time.       

 

Figure 5.12 represents the correlation of the estimated parameter of ( )onα  with the 

levels of n0 varying from 1 to 20.  The ( )onα  decreases exponentially when n0 increases 

with the empirical relationship given as ( )onα  = 401.4 n0 
-0.7862.  The coefficient of 

determination, R2 is 0.9057.  It is observed that the value of ( )onα  is very much higher 

for the Problem II as compared to Problem I.  For example, the ( )onα  values for n0 

between 1 to 20 for Problem I are within 25, but for the Problem II, the values of the n0 

for the same range exceed 500.  This function can be used for the Weibull table to 

estimate the value of ( )onα for any n0 that lies between 1 and 20.   

 
 

= 404.1 n 0
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Figure 5.12:  Estimation of ( )onα  for Problem II 
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In the following work we use regression analysis to estimate the time to generate one 

design, )( ont  in terms of n0 and the simulation time to run one replication of simulation, 

s in terms of CPU time.  Similarly, Figure 5.13 depicts that )( ont  increases when n0 is 

increased, and the empirical relationship is )( ont  = 0.0224 n0 
2 - 0.1332 n0  + 1.1496.  

The coefficient of determination is also high for this problem (R2 = 0.9954).  Observe 

that for the same degree of n0, the )( ont  is higher for Problem II as compared to 

Problem I.  For example, the )( ont  for n0 = 1 for Problem I is 0.2 second, where as the 

)( ont  for the same degree of n0 for Problem II is 1 second.  Another example can be 

seen for the higher degree of n0 = 20.  For Problem I, the )( ont  = 0.8 second, and for 

Problem II, the )( ont  = 7.4 seconds, which is almost ten times more of the time taken in 

Problem I.  This is because more information of demand is supplied and more decision 

variables have to be solved in the SAA sampling in Problem II than in Problem I, and 

thus more time is taken to sample a design in Problem II.          

 
 

Estimation of CPU time,        to sample a design for different n 0 
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Figure 5.13:  Estimation of )( ont  for Problem II 
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From Figure 5.14, the CPU time to perform the simulation, S also is seen to increase 

linearly with the simulation length, n2 and the linear regression fits the data well (R2 is 

almost 1).  The regression coefficient, which is also the estimation of simulation time 

for one replication of simulation, s is higher for Problem II (s = 110896.4 −Χ  seconds) 

as the LP in P(8) has to be solved for the component allocation in this problem.  (The 

numerical estimation of ( )onα , )( ont  and s for Problem II is presented in Appendix G). 
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Figure 5.14:  Estimation of s for Problem II 
 
 
The OCBA model for Problem II is then as given in P(9). 
 
P(9): 

 
][min ]1~[JE           (5.4) 

 
subject to   
 

Knnnn ≤Χ++Χ−Χ −−−
12

1
0

12
0

2 )10896.41496.11033.11024.2(   (5.5) 
 

][ ]1~[JE = ][ ]1~[
2

JE
n

oN ′
σ

        (5.6)           



Chapter 5    Numerical Result of ATO Problem  

 
   

70

For the first numerical example of Problem II, the K is fixed at 3,000 seconds and 

some possible combinations of (n0, n1, n2) that satisfy constraint (5.5) is selected.  

Table 5.7 presents the choices of (n0, n1, n2) allocation and its numerical result based 

on the normal, Weibull and simulation estimations.   Please refer to Appendix H for 

the complete computation based on the screening experiment.  The optimal allocation 

based on the simulation result is given as (20, 100, 46) with $719.43.  The Weibull 

table estimation again suggests the correct allocation decision.  The minimum expected 

true performance of the observed best design, ][ ]1~[JE  for the Weibull table estimation 

is recorded to be $701.72.  However, in this particular problem, the normal table 

estimation is also able to indicate the correct selection with the minimum expected cost 

of $715.59.  Note that the ][ ]1~[JE  for Problem II is generally higher than that of for 

Problem I.       

 

Table 5.7:   Numerical result for Problem II, designs sampled using SAA with n0 
varied (K=3,000 seconds) 

 
Computing Budget Allocation

n0 n1 n2 

Normal table 
Estimation  

($) 

Weibull table 
Estimation  

($) 

Simulation  
Result  

($) 
7 50 120 769.81 725.38 730.63 
20 100 46 715.59 701.72 719.43 
5 1,000 4 802.61 766.05 754.29 
10 4 1,530 765.33 727.48 745.04 

 
 
 
The K is now fixed at 6,000 seconds.  Appendix H also gives the parameter values and 

detailed computation for this problem.  The summarized version of the numerical 

result is recorded in Table 5.8.  Similarly, the Weibull is able to pick the best 

allocation decision of (20, 50, 230) as suggested by simulation result, with the 

expected minimum cost of $698.46.  Likewise the previous example, apparently the 
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normal table estimation is also able to indicate the correct selection with the higher 

expected minimum cost of $715.22.       

 

Table 5.8:   Numerical result for Problem II, designs sampled using SAA with n0 
varied (K=6,000 seconds) 

 
Computing Budget Allocation

n0 n1 n2 

Normal table 
Estimation  

($) 

Weibull table 
Estimation  

($) 

Simulation  
Result  

($) 
1 50 243 1,171.37 789.35 862.36 
20 102 105 715.25 699.88 709.53 
7 2,615 2 770.73 747.59 721.08 
20 50 230 715.22 698.46 701.68 

 
 
 
In this chapter, we have conducted a number of experiments for Problem I and 

Problem II, when the SAA is used as the sampling.  Based on the numerical results in 

these experiments, it is reasonable to conclude that the Weibull table estimation is 

quite reliable and promising in selecting the correct allocation decision when the SAA 

is used as the sampling method.  Hence, in the future work, we can comfortably rely on 

the Weibull table estimation alone to decide on the optimal allocation decision for our 

problem.   
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Chapter 6 CONCLUSIONS AND FUTURE 
WORKS 

 
 
 

6.1 Conclusions 
 
 

In our work, we have described a general framework for solving the computing budget 

allocation problem.  Given a fixed amount of computing budget, it is important to 

decide how to sample the design space, how many designs to sample and for how long 

to run each design alternative so as to optimize the expected true performance of the 

observed best design.  In our work, we proposed an approach for selecting these 

allocation decisions.  This approach was illustrated by two different ATO problems 

using the SAA as the sampling method. 

 

From the experiment conducted, it is observed that the distribution of true performance 

and noise plays a vital role in deciding on how to perform the sampling efficiently.  It 

is also found that different ways of sampling designs results in different distribution 

shapes of the true performance.  For example when the sampling scheme is random, 

the distribution of true performance of the designs obtained is just mediocre.  

However, if the SAA is used as the sampling method, where some computational time 

is invested in sampling each design using the information provided, we have higher 

chance of getting good designs and thus the distribution of true performance have a 

skewed distribution which we approximate it with the Weibull (exponential) 

distribution.   
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In order to handle such cases when the true performance follows normal or Weibull 

distribution and the noise follows a normal distribution, we have developed normal 

and Weibull model to estimate the true performance of the observed best design.  The 

normal and Weibull table estimations are used to decide on the correct allocation 

decision.   

 

In order to know how to determine the correct allocation decisions using the normal 

and Weibull table estimations, we will have to first run a screening experiment to 

estimate the required parameters.  Similarly, the time constraint in both the OCBA 

models has to be estimated by fitting the function to several sample points of the 

degree of information level and the simulation length.  Of course much computing 

effort is required to get good fit and accurate estimations, especially for the degree of 

information level which requires more time to sample a design when the level is 

increased.  However on the other hand, the computing expense for these screening 

experiment and time constraint function estimation has to be reasonable as compared 

to the entire budget.  One way to limit the screening computing effort is by using 

smaller allocation decisions, but big enough to get good estimations to model the 

problem.                          

 

From the experiments conducted, it is observed that the approach is able to make 

correct selection on the allocation decision.  It is shown that when the SAA is used as 

the sampling method, the Weibull table alone is able to indicate the right selection, and 

thus it can be used in future work for solving the computing budget allocation 

problem.   
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6.2 Future Works 

 

There is scope for further work in this research area.  Firstly, we assumed that the 

horse race selection method was used which meant that all the designs were run with 

equal replications; whereas, if we can allocate the simulation replication wisely to the 

different designs sampled, performance should be improved further.  For example, less 

simulation replications should be assigned to the average designs, where as more 

simulation replications should be allocated for those critical designs sampled.  By this 

way, the limited computation effort is allocated even more intelligently on the designs 

generated.  Hence one direction of future work is to look at how to assign different 

number of replication for each of the design so as the simulation efficiency is further 

improved.     

 

Secondly, in our work, we model the computing budget allocation problem when both 

the distributions of true performance and the noise are normal, and when the 

distribution of true performance is Weibull and the noise is normal.  In future effort, 

we can investigate other cases where the distributions of true performance and the 

noise deviate from normal and Weibull.  Appropriate models with well defined 

parameters should be derived to estimate the expected true performance of the 

observed best design for these cases.  Some application examples can also be used to 

illustrate the applicability of the approach.   
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APPENDICES 
 
 
APPENDIX A: EXPECTED TRUE VALUE FOR THE OBSERVED 

BEST 
 
 
Following are the steps of running the Monte-Carlo simulation to develop the Weibull 

table for a fixed β ′ :   

 
Step 1: Fix the 1n .   

 
Step 2: Fix the α′ .   

 
Step 3: Sample 1n  designs from a Weibull distribution, J ′  with the fixed parameters 

α′  and β ′ .   

 
Step 4: For each design, generate a noise, w′  from standard normal distribution, 

N(0,1).   

 
Step 5: The true performance measure J ′  is then added to the noise w′  to make up the 

observed performance value J ′~ .   

 
Step 6: The 1n  designs are then ranked based on the observed performance value 

J ′~ and the design which is ranked the best, its true performance value J ′  will be 

recorded.   

 
Step 7: This experiment is repeated 1000 times to estimate the mean of the true 

performance, ][ ]1~[JE ′ .  This is the Weibull table value recorded for the particular 1n  

andα′ . 
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Step 8: For the fixed 1n , vary the α′  and repeat step 3 to step 7 and the Weibull table 

values are tabulated accordingly.  This step is repeated until we exhaust all the 

different α′ .   

 
Step 9: Vary the 1n  and repeat step 2 to step 8. 

 

Above are the steps to obtain the Weibull table values for a fixed β ′ .  In order to 

estimate the expected true performance of the observed best, ][ ]1~[JE , the Weibull 

table value is multiplied with 
2n
oNσ

.  Given below are the Weibull table for β ′  

between 1 to 10.  

 

Table E.1:  The expected true performance of the observed best for Weibull table for 
β ′  between 1 to 10 

 
    β ′= 1.0   
       n1     
α′  100 200 300 500 800 1000 
1 0.2761 0.2657 0.2459 0.2400 0.2364 0.2342 
2 0.3522 0.3117 0.3053 0.2988 0.2754 0.2706 
4 0.4012 0.3714 0.3453 0.3270 0.3100 0.3064 
8 0.4680 0.4392 0.4141 0.3715 0.3573 0.3536 
16 0.5622 0.4837 0.4528 0.4129 0.3946 0.3943 
32 0.6940 0.5758 0.5437 0.4708 0.4284 0.4034 
64 1.0062 0.7130 0.6239 0.5229 0.5067 0.4692 

    
 
   

    β ′= 1.1   
    n1   
α′  100 200 300 500 800 1000 
1 0.3257 0.2889 0.2871 0.2721 0.2590 0.2535 
2 0.3969 0.3557 0.3349 0.3314 0.3172 0.3092 
4 0.4488 0.4095 0.3974 0.3781 0.3399 0.3376 
8 0.5541 0.4634 0.4505 0.4329 0.4124 0.3995 
16 0.6698 0.5583 0.5285 0.4888 0.4543 0.4475 
32 0.8384 0.6501 0.6031 0.5368 0.5019 0.4913 
64 1.2065 0.8955 0.7596 0.6741 0.5773 0.5483 
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    β ′= 1.2   
    n1   
α′  100 200 300 500 800 1000 
1 0.3456 0.3425 0.2945 0.2831 0.2816 0.2637 
2 0.3973 0.3965 0.3758 0.3636 0.3428 0.3354 
4 0.5021 0.4584 0.4345 0.4093 0.4076 0.4051 
8 0.5916 0.5192 0.5129 0.4796 0.4373 0.4261 
16 0.7579 0.6347 0.5738 0.5022 0.5020 0.4715 
32 1.0419 0.8164 0.6925 0.6477 0.5780 0.5546 
64 1.5654 1.1102 0.9303 0.7733 0.7109 0.6470 

    
 
   

    β ′= 1.3   
    n1   
α′  100 200 300 500 800 1000 
1 0.3553 0.3450 0.3171 0.3138 0.3006 0.2990 
2 0.4767 0.4288 0.4026 0.3877 0.3789 0.3645 
4 0.5496 0.5103 0.5020 0.4608 0.4119 0.4117 
8 0.6861 0.6103 0.5611 0.4968 0.4888 0.4624 
16 0.8892 0.7302 0.6597 0.6079 0.5585 0.5353 
32 1.2411 0.9438 0.8436 0.7251 0.6669 0.6411 
64 1.9653 1.3874 1.1369 0.9647 0.7978 0.7417 

    
 
   

    β ′= 1.4   
    n1   
α′  100 200 300 500 800 1000 
1 0.3915 0.3760 0.3654 0.3367 0.3301 0.3262 
2 0.5110 0.4438 0.4318 0.4287 0.4163 0.4071 
4 0.6111 0.5688 0.5397 0.4967 0.4815 0.4710 
8 0.7750 0.6702 0.5974 0.5886 0.5440 0.5098 
16 0.9835 0.7910 0.7630 0.6707 0.6177 0.5954 
32 1.3787 1.0998 0.9582 0.8422 0.7450 0.7251 
64 2.4022 1.6394 1.3511 1.1734 0.9499 0.8715 

    
 
   

 
    β ′= 1.5   
    n1   
α′  100 200 300 500 800 1000 
1 0.3999 0.3955 0.3723 0.3636 0.3627 0.3508 
2 0.5228 0.4915 0.4880 0.4538 0.4193 0.3983 
4 0.6158 0.5872 0.5783 0.5267 0.5090 0.5075 
8 0.7927 0.7376 0.6731 0.6551 0.6119 0.5712 
16 1.0964 0.9635 0.8212 0.7527 0.6863 0.6749 
32 1.6664 1.2590 1.0989 0.9688 0.8619 0.8134 
64 2.9483 1.9452 1.6055 1.3013 1.0574 1.0544 
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    β ′= 1.6   
    n1   
α′  100 200 300 500 800 1000 
1 0.4413 0.4145 0.3945 0.3734 0.3701 0.3554 
2 0.5647 0.5328 0.5158 0.4918 0.4756 0.4577 
4 0.7348 0.6564 0.6113 0.5659 0.5443 0.5434 
8 0.9254 0.7995 0.7355 0.7231 0.6435 0.6267 
16 1.2467 1.0276 0.9262 0.8319 0.7418 0.7252 
32 1.9489 1.4389 1.2456 1.0761 0.9573 0.9435 
64 3.5042 2.4100 1.9153 1.5090 1.3587 1.1831 

    
 
   

    β ′= 1.7   
    n1   
α′  100 200 300 500 800 1000 
1 0.4666 0.4376 0.4182 0.3994 0.3894 0.3891 
2 0.6189 0.5540 0.5325 0.5314 0.4825 0.4745 
4 0.7765 0.6839 0.6668 0.6153 0.5970 0.5702 
8 0.9996 0.8671 0.8224 0.7521 0.7090 0.6619 
16 1.3512 1.1135 0.9887 0.9247 0.8667 0.7812 
32 2.1837 1.5774 1.4158 1.2677 1.0520 1.0248 
64 3.9783 2.8035 2.2540 1.8649 1.5789 1.4738 

    
 
   

    β ′= 1.8   
    n1   
α′  100 200 300 500 800 1000 
1 0.4857 0.4667 0.4488 0.4358 0.4103 0.4024 
2 0.6357 0.5979 0.5701 0.5477 0.5125 0.5089 
4 0.8624 0.7447 0.7080 0.6588 0.6530 0.6012 
8 1.1037 0.9530 0.8599 0.7936 0.7391 0.7264 
16 1.5578 1.2405 1.1166 1.0079 0.8966 0.8735 
32 2.5181 1.8249 1.6484 1.3536 1.1836 1.1535 
64 4.5623 3.1560 2.6758 2.1318 1.8209 1.5992 

    
 
   

    β ′= 1.9   
    n1   
α′  100 200 300 500 800 1000 
1 0.4978 0.4611 0.4378 0.4474 0.4302 0.4183 
2 0.6594 0.6372 0.6053 0.5875 0.5747 0.5530 
4 0.8802 0.8094 0.7402 0.7538 0.6927 0.6743 
8 1.1184 1.0160 0.9547 0.8725 0.7745 0.7670 
16 1.6399 1.3889 1.2611 1.0802 1.0203 0.9583 
32 2.7881 2.0989 1.8370 1.5264 1.3852 1.2593 
64 5.0862 3.7237 2.9894 2.4607 2.0569 1.9723 
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    β ′= 2.0   
    n1   
α′  100 200 300 500 800 1000 
1 0.5183 0.4866 0.4704 0.4692 0.4534 0.4451 
2 0.7040 0.6721 0.6516 0.6256 0.6021 0.5704 
4 0.9264 0.8465 0.7889 0.7306 0.7259 0.7043 
8 1.2446 1.0904 0.9930 0.9356 0.8902 0.8094 
16 1.7816 1.4722 1.3397 1.1917 1.0891 1.0130 
32 3.0671 2.3689 2.0550 1.7237 1.4495 1.4271 
64 5.7909 4.2694 3.3921 2.8538 2.3599 2.2094 

    
 
   

    β ′= 5.0   
    n1   
α′  100 200 300 500 800 1000 
1 0.8014 0.7961 0.7888 0.7658 0.7588 0.7570 
2 1.4174 1.3482 1.3182 1.2956 1.2650 1.2624 
4 2.1755 2.0598 1.9790 1.9136 1.8262 1.8222 
8 3.4388 3.1885 2.9864 2.7927 2.6504 2.6366 
16 6.2328 5.4852 5.1441 4.6817 4.3427 4.2520 
32 11.9507 10.4009 9.6089 8.7090 8.0437 7.6728 
64 23.8231 20.3559 18.7906 17.1846 15.7268 14.8393 

    
 
   

    β ′= 10.0   
    n1   
α′  100 200 300 500 800 1000 
1 0.9234 0.9189 0.9120 0.9119 0.9051 0.9063 
2 1.7429 1.7336 1.7248 1.7174 1.7163 1.6952 
4 3.1929 3.1131 3.0684 3.0161 2.9477 2.9448 
8 5.5227 5.2707 5.1214 4.9341 4.7678 4.6967 
16 10.0409 9.3793 9.1773 8.6983 8.3268 8.1994 
32 19.4874 18.1911 17.4040 16.5683 15.9479 15.4621 
64 38.5192 35.9764 34.5369 32.8570 31.2335 30.8217 
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APPENDIX B: OPTIMUM ALLOCATION RULE FOR SPECIAL 

CONDITIONS OF PROBLEM I   
 

 

In Problem I, given the optimum component inventory level vector Q̂ * and the product 

demand vector D̂  are known, the component allocation quantity jS  can be determined 

based on the conditions of Q̂ * and D̂  using the optimal allocation rule given below.  

The problem can be categorized into 4 possible conditions: 

 

Condition I:   D1 + D2   ≤    Q1* 

D2 + D3   ≤   Q2* 

 

Optimum allocation rule: S1  =  D1 

S2  =  D2 

S3  =  D3 

 

 

Condition II:   D1 + D2   ≤   Q1* 

    D2 + D3   ≥   Q2* 

 

Optimum allocation rule: S1  =  D1 

S2  =  min {D2,  Q1* – D1,  Q2*} 

S3  =  Q2 - min {D2,  Q1* – D1,  Q2*} 
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Condition III:  D1 + D2   ≥   Q1* 

    D2 + D3   ≤   Q2* 

 

Optimum allocation rule:   S1  =  Q1* - min {D2,  Q2* – D3,  Q1*} 

S2  =  min {D2,  Q2* – D3, Q1*} 

S3  =  D3 

 

 

Condition IV:   D1 + D2   ≥   Q1*      

    D2 + D3   ≥   Q2* 

 

Optimum allocation rule: S1  =  min {Q1* - S2,  D1}   

S2  =  min {max {Q1* – D1,   Q2 *– D3,   0}, D2,   Q1*,  Q2*} 

S3  =  min {Q2*- S2,  D3} 

 

The performance (minimum cost) based on the optimum allocation rule above can be 

computed as follows: 

 
min cost  = )()2**( 32132132121 SSSDDDpSSSQQh −−−+++−−−+  
 
 

The optimum allocation rule for Case IV above also applies for any general case of the 

Problem I.   
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APPENDIX C: ESTIMATION OF NUMERICAL RESULTS BASED 

ON THE SCREENING EXPERIMENT FOR PROBLEM I: CASE I  
 

 

The detail information and computation on how to compute the normal and Weibull 

table estimations based on the screening experiment values for the randomly sampled 

designs (Case I) for Problem I are presented in Table C.1.  The screening experiment is 

carried out with (n1, n2) = (25, 50), i.e. we sample 25 designs (random sampling) and 

then run 50 replications for each design. 

 
 

)( 0nxµ = $ 707.40 

)( 0nxσ   = 329.51 

0Nσ   = 64.78 

)( 0

0

nx

N

σ
σ

 = 0.20 

)( 0nα  = 638.47   

)( 0nβ =  β ′  = 5.09   

)( 0nγ = $ 84.36 
 
 

Table C.1: Computation of normal and Weibull table estimation for randomly sampled 
designs 

 
Computing 

Budget 
Allocation 

Computation for Normal 
Table Computation for Weibull Table 

n1 n2 
2)( 0

0

nnx

N

σ

σ  Normal 
table 
value 

Normal 
table 

estimation 
($) 2

0

n
Nσ

 α′  
Weibull 

table 
value 

Weibull 
table 
value 

*
2

0

n
Nσ

 

Weibull 
table 

estimation 
($) 

5000 5 0.088 -3.6621 703.74 28.97 22.04 4.010 116.18 200.54 
2500 10 0.062 -3.4891 703.91 20.49 31.17 6.444 132.02 216.38 
1000 25 0.039 -3.2387 704.16 12.96 49.28 11.875 153.86 238.21 
500 50 0.028 -3.0353 704.36 9.16 69.69 18.807 172.30 256.66 
200 125 0.018 -2.7456 704.65 5.79 110.19 35.827 207.60 291.96 
100 250 0.012 -2.5074 704.89 4.10 155.83 58.277 238.78 323.13 
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APPENDIX D: ESTIMATION OF NUMERICAL RESULTS BASED 

ON THE SCREENING EXPERIMENT FOR PROBLEM I: CASE II  
 

 

The detail information and table showing on how to compute the normal and Weibull 

table estimations based on the screening experiment values when the SAA is used as 

the sampling method (Case II) for Problem I for  n0 = 5,  n0 = 20  and  n0 = 50 are 

presented in Table D.1, Table D.2 and Table D.3 respectively.  The screening 

experiment is carried out with (n1, n2) = (25, 50), i.e. we sample 25 designs by SAA 

and then run 50 replications for each design. 

 

n0 = 5 
)( 0nxµ = 85.63 

)( 0nxσ  = 8.43 

0Nσ = 40.91 

)( 0

0

nx

N

σ
σ

 = 4.83 

( )onα  = 13.74 
β ′= )( 0nβ = 1 

)( 0nγ = 74.46 
 

Table D.1: Computation of normal and Weibull table estimation for n0 = 5 
 

Computing 
Budget 

Allocation 
Computation for Normal Table Computation for Weibull Table 

n1 n1 
2)( 0

0

nnx

N

σ

σ  Normal 
table 
value 

Normal 
table 

estimation 
($) 2

0

n
Nσ

 α′  
Weibull 

table 
value 

Weibull 
table 
value 

*
2

0

n
Nσ

 

Weibull 
table 

estimation 
($) 

5,000 5 2.17 -1.5215 84.10 18.29 0.75 0.1842 3.3701 77.83 
2,500 10 1.53 -1.9123 83.71 12.94 1.06 0.2195 2.8400 77.30 
1,000 25 0.97 -2.3265 83.30 8.18 1.68 0.2700 2.2091 76.67 
500 50 0.69 -2.4994 83.13 5.79 2.37 0.3010 1.7411 76.21 
200 125 0.43 -2.5227 83.10 3.66 3.75 0.3672 1.3436 75.81 

100 250 0.31 -2.3951 83.23 2.59 5.31 0.4066 1.0519 75.52 
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n0 = 20 
)( 0nxµ = 79.97 

)( 0nxσ  = 5.67 

0Nσ = 34.85 

)( 0

0

nx

N

σ
σ

 = 6.15 

( )onα  = 7.32   
β ′= 1 

)( 0nγ = 73.65 
 
 
 
 
 

Table D.2: Computation of normal and Weibull table estimation for n0 = 20 
 

Computing 
Budget 

Allocation 
Computation for Normal Table Computation for Weibull Table 

n1 n1 
2)( 0

0

nnx

N

σ

σ  Normal 
table 
value 

Normal 
table 

estimation 
($) 2

0

n
Nσ

 α′  
Weibull 

table 
value 

Weibull 
table 
value 

*
2

0

n
Nσ

 

Weibull 
table 

estimation 
($) 

5,000 5 2.75 1.2367 78.73 15.59 0.47 0.1510 2.3527 76.00 
2,500 10 1.94 1.5950 78.37 11.02 0.66 0.1902 2.0963 75.75 
1,000 25 1.23 2.0447 77.92 6.97 1.05 0.2359 1.6440 75.29 
500 50 0.87 2.2910 77.68 4.93 1.48 0.2707 1.3344 74.98 
200 125 0.55 2.4061 77.56 3.12 2.35 0.3373 1.0512 74.70 

100 250 0.39 2.3362 77.63 2.20 3.32 0.3840 0.8465 74.50 
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n0 = 50 
)( 0nxµ = 77.33 

)( 0nxσ  = 5.35 

0Nσ = 34.74 

)( 0

0

nx

N

σ
σ

 = 6.49 

( )onα = 5.09 
β ′= 1 

)( 0nγ = 73.58 
 

 
 
 
 

Table D.3: Computation of normal and Weibull table estimation for n0 = 50 
 

Computing 
Budget 

Allocation 
Computation for Normal Table Computation for Weibull Table 

n1 n1 
2)( 0

0

nnx

N

σ

σ  Normal 
table 
value 

Normal 
table 

estimation 
($) 2

0

n
Nσ

 α′  
Weibull 

table 
value 

Weibull 
table 
value 

*
2

0

n
Nσ

 

Weibull 
table 

estimation 
($) 

5,000 5 2.90 1.1986 76.13 15.54 0.33 0.1454 2.2586 75.84 
2,500 10 2.05 1.5028 75.83 10.99 0.46 0.1737 1.9081 75.49 
1,000 25 1.30 1.9762 75.35 6.95 0.73 0.2142 1.4884 75.07 
500 50 0.92 2.2347 75.10 4.91 1.04 0.2522 1.2392 74.82 

200 125 0.58 2.3754 74.95 3.11 1.64 0.2987 0.9280 74.51 
5,000 5 0.41 2.3202 76.13 2.20 2.32 0.3451 0.7582 75.84 

Table 5.4:   Numerical result for Problem I, designs sampled using SAA (n0 = 50) 
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APPENDIX E: THE NUMERICAL VALUES AND PARAMETER 

ESTIMATIONS FOR PROBLEM I 
 

 

Appendix E.1:  CDF of True Performance 
 

In our work, we also experiment for 10 different degrees of n0 (n0 = 1, 3, 5, 10, 15, 20, 

25, 30, 40, 50).  In order to get a clearer picture of the performance of the ATO system 

in Problem I, these experiments are conducted using separate experiments run with 

very large number of designs and long replications, i.e. (n0, n1, n2) = (n0, 5000, 10000).  

We refer to this experiment as the “detailed experiment”.  Figure E.1 depicts the CDF 

of true performance based on the detailed experiment for Problem I.  
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Figure E.1:  The improvement in the true performance value when n0 is varied in 
Problem I 
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Appendix E.2:  pdf of True Performance 
 

 

The probability density function (pdf) of the distribution of true performance for the 

different degrees of n0 (n0 = 1, 3, 5, 10, 15, 20, 25, 30, 40, 50) are presented in Figure 

E.2 to Figure E.11.  These true performance values are also obtained via the detailed 

experiment.   
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Figure E.2:  The pdf of true performance for n0 = 1 
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n 0 = 3
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Figure E.3:  The pdf of true performance for n0 = 3 
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Figure E.4:  The pdf of true performance for n0 = 5 
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Figure E.5:  The pdf of true performance for n0 = 10 
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Figure E.6:  The pdf of true performance for n0 = 15 
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n 0 = 20
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Figure E.7:  The pdf of true performance for n0 = 20 
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Figure E.8:  The pdf of true performance for n0 = 25 
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Figure E.9:  The pdf of true performance for n0 = 30 
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Figure E.10:  The pdf of true performance for n0 = 40 
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n 0 = 50
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Figure E.11:  The pdf of true performance for n0 = 50 
 

 

 

Appendix E.3:  Numerical values and parameter estimations for n0 

varied (based on detailed experiment) 

 

The numerical values for the detailed experiment as presented in Appendix E.1 and E.2 

are recorded in Table E.1.  The values of the minimum true performance (which is 

the )( 0nγ ), the maximum true performance and the standard deviation of the true 

performance for each of the different n0 experimented are recorded in the table.  The 

observed best design, which gives the minimum true performance for each n0 is also 

provided in the table.  Also presented are the estimated parameter values of ( )onα  and 

)( 0nxµ  based on the detailed experiment. 
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Table E.1:   Numerical values and parameter estimations based on the detailed 
experiment for the varied n0 in Problem I 

 
Expected true  

performance ($) n0 
Q1 

(unit) 
Q2   

(unit) Min ( )( 0nγ ) Max 

Standard 
deviation ( )onα  )( 0nxµ  

1 2,049 2,052 61.3671 280.4942 29.80 31.31 92.30 
3 2051 2049 61.3645 214.1559 14.61 16.32 77.21 
5 2,049 2,051 61.3572 158.9745 9.54 9.72 70.99 
10 2,055 2,055 61.3565 102.6921 5.01 5.27 66.56 
15 2,050 2,052 61.3565 92.5231 3.41 3.49 64.82 
20 2,050 2,050 61.3563 86.5326 2.60 2.64 63.99 
25 2,049 2,052 61.3563 82.1925 2.05 2.17 63.48 
30 2,050 2,050 61.3562 79.1497 1.80 1.82 63.16 
40 2,049 2,051 61.3559 71.6325 1.30 1.35 62.69 
50 2,049 2,051 61.3557 69.8945 1.06 1.09 62.43 

 
 
 
 
 
 

Appendix E.4:  Numerical values and parameter estimations for n0 

varied (based on screening experiment) 

 

In Appendix E.3, we captured the information of the numerical experiments and the 

parameter estimations which is based on the detailed experiment.  In this section, we 

present these values and estimations based on the screening experiment that we 

actually used for Problem I.  As mentioned earlier in the main text, the screening 

experiment is a much simpler experiment conducted with only (n0, n1, n2) = (n0, 25, 

50).   The similar information based on the screening experiment is presented in Table 

E.2. 
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Table E.2:   Numerical values and parameter estimations based on the screening 
experiment for the varied n0 in Problem I  

 
Expected true 

performance ($) n0 
Min ( )( 0nγ ) Max 

Standard 
deviation ( )onα  )( 0nxµ  

1 76.00 175.06 27.65 24.24 105.27 
3 74.86 131.68 16.36 23.70 97.03 
5 74.46 103.58 8.33 13.74 85.63 
10 73.67 102.72 7.53 6.45 80.35 
15 73.65 91.23 4.87 5.55 78.46 
20 73.65 89.61 4.35 7.32 79.97 
25 73.64 88.71 3.97 5.50 78.42 
30 73.64 87.87 3.74 5.70 78.26 
40 73.60 85.00 2.62 5.39 77.41 
50 73.58 81.95 2.39 5.09 77.33 

 

 

Appendix E.5:  Estimation of )( ont  for Problem I 

 

The numerical estimation of )( ont  for Problem I is recorded in Table E.3. 

 
Table E.3:   Estimation of )( ont  for Problem I 

 
)( ont  (seconds) 

n0 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average  

1 0 1 0 0 0 0.2 
5 1 0 0 1 0 0.4 
10 1 0 1 0 1 0.6 
15 1 1 0 1 0 0.6 
20 1 1 0 1 1 0.8 
25 1 1 1 1 1 1.0 
30 1 1 1 2 2 1.4 
35 2 2 1 2 2 1.8 
40 2 3 3 2 2 2.4 
45 3 3 3 3 3 3.0 
50 4 4 3 4 3 3.6 
55 4 4 4 5 4 4.2 
60 5 5 5 5 5 5.0 
65 6 6 6 6 6 6.0 
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Appendix E.6:  Estimation of S for Problem I 
 

The numerical estimation of S for Problem I is recorded in Table E.3. 

 

Table E.4:   Estimation of S for Problem I 
 
S (seconds) n2 Trial 1 Trail 2 Trail 3 Average 

5,000 10 9 9 9.33 
10,000 16 16 16 16.00 
15,000 24 23 23 23.33 
20,000 30 29 29 29.33 
25,000 36 37 36 36.33 
30,000 44 44 43 43.67 
35,000 52 51 52 51.67 
40,000 59 59 59 59.00 
45,000 67 67 66 66.67 
50,000 75 74 74 74.33 
55,000 80 83 82 81.67 
60,000 88 90 89 89.00 
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APPENDIX F: ESTIMATION OF NUMERICAL RESULTS BASED 

ON THE SCREENING EXPERIMENT FOR PROBLEM I: CASE 

III  

 

 

The detail information and table showing on how to compute the normal and Weibull 

table estimations based on the screening experiment values when the SAA is used as 

the sampling method with n0 varied (Case III) for Problem I for K = 800 seconds and K 

= 3,600 seconds are presented in Table F.1 and Table F.2 respectively.  The screening 

experiment for each allocation decision option is carried out with (n0, n1, n2) = (n0, 25, 

50), i.e. we sample 25 designs by SAA using n0 degree of information and then run 50 

replications for each design. 
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Table F.1: Computation of normal and Weibull table estimation for K = 800 seconds 
 

Computing Budget 
Allocation Computation for Normal Table Computation for Weibull Table 

n0 n1 n2 0Nσ  )( 0nxσ  
2)( 0

0

nnx

N

σ

σ Normal 
table 
value 

)( 0nxµ  
Normal 

table 
estimation

($) 2

0

n
Nσ

 ( )onα  α′  
Weibull 

table 
value 

Weibull 
table 

value* 

2

0

n
Nσ

 
)( 0nγ  

Weibull 
table 

estimation 
($) 

5 1,500 120 40.91 8.43 0.44 -3.0716 85.63 82.55 3.73 13.74 3.68 0.3032 1.1321 74.46 75.60 

15 200 2,290 36.31 5.68 0.13 -2.7231 78.46 75.73 0.76 5.55 7.31 0.4130 0.3134 73.65 73.97 
20 800 145 34.85 5.67 0.51 -2.8299 79.97 77.14 2.89 7.32 2.53 0.2861 0.8281 73.65 74.48 
50 200 300 34.74 5.35 0.37 -2.5754 77.33 74.75 2.01 5.09 2.54 0.3157 0.6333 73.58 74.21 

 

Table F.2: Computation of normal and Weibull table estimation for K = 3,600 seconds 
 

Computing Budget 
Allocation Computation for Normal Table Computation for Weibull Table 

n0 n1 n2 0Nσ  )( 0nxσ  
2)( 0

0

nnx

N

σ

σ Normal 
table 
value 

)( 0nxµ  
Normal 

table 
estimation

($) 2

0

n
Nσ

 ( )onα  α′  
Weibull 

table 
value 

Weibull 
table 

value* 

2

0

n
Nσ

 
)( 0nγ  

Weibull 
table 

estimation 
($) 

20 4500 10 34.85 5.67 1.94 -1.6723 79.97 78.30 11.02 7.32 0.66 0.1645 1.8131 73.65 75.46 

40 1500 40 37.13 4.65 1.26 -2.0862 77.41 75.32 5.87 5.39 0.92 0.2195 1.2887 73.60 74.89 
60 650 350 34.80 5.27 0.35 -2.9391 77.18 74.24 1.86 4.92 2.65 0.3052 0.5675 73.51 74.08 

65 500 900 35.84 5.89 0.20 -2.9776 77.01 74.03 1.19 5.01 4.19 0.3332 0.3981 73.49 73.89 
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APPENDIX G: THE NUMERICAL VALUES AND PARAMETER 

ESTIMATIONS FOR PROBLEM II 

 

Appendix G.1:  CDF of True Performance 
 

Similar to Problem I, we also experiment for 8 different degrees of n0 (n0 = 1, 3, 5, 7, 

10, 15, 18, 20) for Problem II.  In order to get a clearer picture of the performance of 

the ATO system in Problem II, these experiments are conducted by experiments run 

with very large number of designs and long replications, i.e. (n0, n1, n2) = (n0, 500, 

500).  We refer to this experiment as the “detailed experiment”.  Figure G.1 depicts the 

CDF of true performance based on the detailed experiment for Problem II.  
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Figure G.1:  The improvement in the true performance value when n0 is varied in 
Problem II 
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Appendix G.2:  pdf of True Performance 
 

The probability density function (pdf) of the distribution of true performance for the 

different degrees of n0 (n0 = 1, 3, 5, 7, 10, 15, 18, 20) for Problem II are presented in 

Figure G.2 to Figure G.9.  These true performance values are also obtained via the 

detailed experiment.   
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Figure G.2:  The pdf of true performance for n0 = 1 
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Figure G.3:  The pdf of true performance for n0 = 3 
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Figure G.4:  The pdf of true performance for n0 = 5 
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n 0 = 7
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Figure G.5:  The pdf of true performance for n0 = 7 
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Figure G.6:  The pdf of true performance for n0 = 10 
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n 0 = 15

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 7
04

.3
1 

 7
19

.8
4 

 7
35

.3
8 

 7
50

.9
1 

 7
66

.4
4 

 7
81

.9
8 

 7
97

.5
1 

 8
13

.0
5 

 8
28

.5
8 

 8
44

.1
1 

 8
59

.6
5 

M
or

e

True performance value ($)

Pr
ob

ab
ili

ty

 

Figure G.7:  The pdf of true performance for n0 = 15 
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Figure G.8:  The pdf of true performance for n0 = 18 
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n 0 = 20
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Figure G.9:  The pdf of true performance for n0 = 20 
 

 

Appendix G.3:  Numerical values and parameter estimations for n0 

varied (based on detailed experiment) 

 

The numerical values for the detailed experiment as presented in Appendix G.1 and 

G.2 are recorded in Table G.1.  The values of the minimum true performance (which is 

the )( 0nγ ), the maximum true performance and the standard deviation of the true 

performance for each of the different n0 experimented are recorded in the table.  The 

observed best design, which gives the minimum true performance for each n0 is also 

provided in the table.  Also presented are the estimated parameter values of ( )onα  and 

)( 0nxµ  based on the detailed experiment. 
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Table G.1:   Numerical values and parameter estimations based on the detailed 
experiment for the varied n0 in Problem II  

 
Expected true 

performance ($) 
n0 

Q1 
(unit) 

Q2 
(unit) 

Q3 
(unit) 

Q4 
(unit)

Q5 
(unit)

Q6 
(unit) Min 

( )( 0nγ ) Max 

Standard 
deviation ( )onα  )( 0nxµ  

1 4,097 8,651 3,857 3,775 5,637 4,001 751.18 2,808.65 365.69 785.10 1,321.20
3 3,882 8,611 3,838 3,920 5,496 3,996 722.51 1,341.75 107.46 234.26 890.67 
5 3,956 8,712 3,745 3,922 5,535 3,945 717.06 1,324.42 90.31 148.13 834.00 
7 4,026 8,471 3,801 3,993 5,558 3,957 713.59 1,037.14 57.71 112.03 796.55 

10 3,958 8,470 3,800 3,932 5,584 3,937 706.93 938.03 39.83 91.43 771.13 
15 4,148 8,874 4,040 3,991 6,075 4,086 704.31 875.18 32.35 68.09 752.84 
18 3,988 8,574 3,768 3,837 5,563 3,981 691.42 840.55 22.55 46.15 725.39 
20 3,969 8,574 3,743 3,937 5,576 3,959 688.14 813.27 19.50 38.76 716.79 

 
 
 
 
 
Appendix G.4:  Numerical values and parameter estimations for n0 

varied (based on screening experiment) 

 

In Appendix G.3, we captured the information of the numerical experiments and the 

parameter estimations which is based on the detailed experiment.  In this section, we 

present these values and estimations based on the screening experiment that we 

actually used for Problem II.  As mentioned earlier in the main text, the screening 

experiment is a much simpler experiment conducted with only (n0, n1, n2) = (n0, 25, 

50).   The similar information based on the screening experiment is presented in Table 

G.2. 
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Table G.2:   Numerical values and parameter estimations based on the screening 
experiment for the varied n0 in Problem II  

 
Expected true 

performance ($) n0 
Min ( )( 0nγ ) Max 

Standard 
deviation ( )onα  )( 0nxµ  

1 767.27 1,715.87 301.44 545.48 1,173.67 
3 759.94 1,015.11 70.72 107.59 852.45 
5 736.76 970.03 55.34 95.53 804.00 
7 714.28 885.55 41.70 81.30 771.99 
10 708.80 866.95 38.54 83.05 766.81 
13 699.36 814.05 31.61 71.16 748.99 
15 696.71 796.22 20.81 52.38 730.57 
18 697.34 782.92 24.34 38.64 728.43 
20 691.85 749.20 16.13 34.37 717.29 

 
 
 
 
 
 
 
Appendix G.5:  Estimation of )( ont  for Problem II 

 

The numerical estimation of )( ont  for Problem II is recorded in Table G.3. 

 
 

Table G.3:   Estimation of )( ont  for Problem II 
 

)( ont  (seconds) 
n0 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average 
1 1 1 1 1 1 1.0 
5 2 1 1 1 1 1.2 
10 2 2 2 2 1 1.8 
15 5 4 4 4 5 4.4 
20 8 7 8 7 7 7.4 
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Appendix G.6:  Estimation of S for Problem II 
 

The numerical estimation of S for Problem II is recorded in Table G.3. 

 

Table G.4:   Estimation of S for Problem II 
 

S (seconds) n2 Trial 1 Trail 2 Trail 3 Average 
50 25 24 24 24.33 
100 49 49 49 49.00 
150 74 73 74 73.67 
200 98 99 98 98.33 
250 123 123 123 123.00 
300 147 147 148 147.33 
350 170 171 171 170.67 
400 195 195 195 195.00 
450 220 220 220 220.00 
500 244 244 244 244.00 
550 269 269 269 269.00 
600 292 293 293 292.67 
650 318 318 318 318.00 
700 341 341 341 341.00 
750 372 372 371 371.67 
800 392 392 392 392.00 
850 416 415 415 415.33 
900 441 441 441 441.00 
950 464 464 463 463.67 

1,000 490 490 490 490.00 
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APPENDIX H: ESTIMATION OF NUMERICAL RESULTS BASED 

ON THE SCREENING EXPERIMENT FOR PROBLEM II: CASE 

III  

 

 

The detail information and table showing on how to compute the normal and Weibull 

table estimations based on the screening experiment values when the SAA is used as 

the sampling method with n0 varied (Case III) for Problem II for K = 3,000 seconds 

and K = 6,000 seconds are presented in Table H.1 and Table H.2 respectively.  The 

screening experiment for each allocation decision option is carried out with (n0, n1, n2) 

= (n0, 25, 50), i.e. we sample 25 designs by SAA using n0 degree of information and 

then run 50 replications for each design. 
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Table H.1: Computation of normal and Weibull table estimation for K = 3,000 seconds 
 

Computing Budget 
Allocation Computation for Normal Table Computation for Weibull Table 

n0 n1 n2 0Nσ  )( 0nxσ  
2)( 0

0

nnx

N

σ

σ Normal 
table 
value 

)( 0nxµ  
Normal 

table 
estimation  

($) 2

0

n
Nσ

 ( )onα  α′  
Weibull 

table 
value 

Weibull 
table 

value* 

2

0

n
Nσ

 
)( 0nγ  

Weibull 
table 

estimation 
($) 

7 50 120 292.72 78.54 0.34 -2.1790 771.99 769.81 26.72 81.30 3.04 0.4155 11.1027 714.28 725.38 

20 100 46 254.96 34.49 1.09 -1.6952 717.29 715.59 37.59 34.37 0.91 0.2627 9.8743 691.85 701.72 
5 1,000 4 280.53 67.84 2.07 -1.3935 804.00 802.61 140.26 95.53 0.68 0.2088 29.2917 736.76 766.05 

10 4 1530 285.41 50.91 0.14 -1.4872 766.81 765.33 7.30 83.05 11.38 2.5605 18.6829 708.80 727.48 
 

Table H.2: Computation of normal and Weibull table estimation for K = 6,000 seconds 
 

Computing Budget 
Allocation Computation for Normal Table Computation for Weibull Table 

n0 n1 n2 0Nσ  )( 0nxσ  
2)( 0

0

nnx

N

σ

σ Normal 
table 
value 

)( 0nxµ  
Normal 

table 
estimati

on($) 2

0

n
Nσ

 ( )onα  α′  
Weibull 

table 
value 

Weibull 
table 

value* 

2

0

n
Nσ

 
)( 0nγ  

Weibull 
table 

estimation 
($) 

1 50 243 498.38 456.70 0.07 -2.2960 1,173.67 1,171.37 31.97 545.48 17.06 0.6904 22.0733 767.27 789.35 

20 102 105 254.96 34.49 0.72 -2.0350 717.29 715.25 24.88 34.37 1.38 0.3225 8.0250 691.85 699.88 
7 2,615 2 292.72 78.54 2.64 -1.2636 771.99 770.73 206.99 81.30 0.39 0.1609 33.3038 714.28 747.59 

20 50 230 254.96 34.49 0.49 -2.0670 717.29 715.22 16.81 34.37 2.04 0.3933 6.6125 691.85 698.46 
 


