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SUMMARY 

 

The objectives of the present study are to understand the dynamics of distributed 

parameter systems & recycle systems and to control distributed parameter systems 

with and without recycle. A set of tools were developed in MATLAB along with 

integrated SIMULINK models to execute the two objectives mentioned above. The 

developed tools are capable of yielding the dynamic responses of linear and nonlinear 

tubular reactors (with and without recycle) and heat exchanger systems which are 

governed by parabolic partial differential equations. Also, tools have been developed 

which perform the operation of control of such linear distributed systems using modal 

control theory. A new and novel technique called the modal feedback-feedforward 

controller has been introduced and found to be successful. 

 

Orthogonal collocation technique is an important method of weighted residuals 

technique used to obtain the approximate solutions for parabolic partial differential 

equation. The dimensionalized system is divided into a number of collocation points. 

Then an approximate solution in the form of a polynomial trial function is used to 

represent the system. The various polynomial coefficients are obtained by minimizing 

the error between the true solution and approximate solution. The Orthogonal 

Collocation technique has been employed extensively in this study. 

 

Modal control theory is a very useful theory in order to analyze the dynamic nature of 

a system and also design of controllers for such systems. The central theme of modal 

control is that the transient behavior of a process is governed by the dominant modes 

associated with the smallest eigenvalues. If it is possible to approximate the high 
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order system by a lower order system (whose slow modes are the same as those of the 

original system), then attention can be focused on altering the eigenvalues of the slow 

modes so as to increase the speed of recovery of the process from disturbances. This 

theory was investigated in detail and implemented on a tubular reactor (with and 

without recycle) and also on a heat exchanger system. 

 

Lumped parameter systems like the activated sludge process were examined in the 

early stages, which illustrates some of the weird behavior of recycles. Also a new 

control strategy called the predictor type recycle compensator was proposed and 

evaluated on a lot of simulation examples. A new index named "Recycle Effect 

Index" has been evaluated which measures the effect of recycle using concepts from 

the minimum variance benchmarking of control loop performance. It also gives 

guidelines on whether to go for any advanced control strategy such as the use of 

recycle compensator or not. 
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CHAPTER 1 

 

INTRODUCTION 

 

The study of distributed parameter systems (DPS) and recycle systems dates back to 

the late seventies. Since then both these topics have been the focus of attention for 

many researchers and have continued to receive contributions from academia as well 

as industry. In the chemical process industry, one frequently encounters complex 

systems such as tubular reactors, heat exchangers etc. Dynamic mass and energy 

balance of such systems results in models which are distributed in nature: the system 

variables vary spatially as well as temporally. These systems are generally described 

by partial differential equations (PDEs), integral equations or transcendental transfer 

functions (Ray, 1981). On top of these, material recycles and heat integration 

complicates the dynamics of such systems. Controller design and tuning are quite 

challenging for such processes.  

 

In this work the following research objectives were considered:  

i. To obtain the dynamics of distributed parameter systems with recycle  

ii. Modal control of distributed parameter system with and without recycles. 

An introduction to some of the basic concepts related to this field is presented next. 

 

1.1. Lumped Parameter Systems 

 

Lumped parameter systems are those whose behavior is described by ordinary 

differential equations. For example consider the dye mixing in a perfectly-stirred tank 
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or a continuous stirred tank. The concentration within the tank for a constant flow rate 

(F) and volume (V) is given by this simple first order ordinary differential equation 

(ODE):  )CF(C
dt

dC
V 1in

1 −=  Eqn – 1.1.1 

subject to initial condition: 01 C0)(tC == , where 1C  is the tank concentration, inC  is 

the inlet concentration. Eqn - 1.1.1 is an initial value problem (IVP) and can be 

solved both analytically and numerically easily. Similarly if the ODE is subjected to 

boundary conditions then it is a boundary value problem (BVP) which is a bit more 

complicated than Initial value problem (IVP). Extensive research has been carried out 

on both analytical and numerical solution techniques for both IVP and BVP. One is 

advised to refer to standard mathematics text books: Kreyszig (1979) for analytical 

solutions, Numerical Analysis text books like Gerald and Wheatley (1989), Rice and 

Do (1995) and Ray (2000) for the numerical solutions for such problems. 

 

1.2. Distributed Parameter Systems 

 

Distributed parameter systems are those whose behavior is described by partial 

differential equations. There are three classes of partial differential equations: elliptic, 

parabolic and hyperbolic. Any partial differential equation of second order (having 

two independent variables) can be expressed in the following form,  
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 Eqn – 1.1.2 

Based on the values of constants a, b and c it is classified as,  

Elliptic, if ( ) 04ac-b2 < , elliptic equations commonly occur in steady-state heat flow, 

fluid flow, electrical potential distributions etc.  
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A very well known example is the Laplace equation, 0u
yx 2

2

2
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Parabolic, if ( ) 04ac-b2 = , parabolic equations commonly occur in time dependent 

problems which are very common in chemical engineering like the unsteady state heat 

flow, mass flow and momentum flow. A very well known parabolic PDE is the 

equation for one dimensional heat flow in a rod, 
t
uρC

x
uk P2
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=
∂
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. 

Hyperbolic, if ( ) 04ac-b2 > , hyperbolic equations commonly occur in transport 

problems, wave mechanics, gas dynamics, supersonic flow etc.  

One well known hyperbolic PDE is the wave equation, 2
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∂ . 

 

However, to solve Eqn – 1.1.2 (these DPS model) one requires boundary conditions 

along with initial conditions, which specify how these model equations, interact with 

its surroundings. Currently, for simplicity and (definitely for) control purposes, most 

industrial processes are represented by lumped parameter models even though a large 

number of these processes are distributed in nature. In this assumption one ignores the 

spatially varying nature of the DPS and design the controller. The control 

performance with these controllers suffers from strong interactions and apparent time 

delays due to the underlying diffusion and convection phenomena inherent in these 

processes Gay and Ray (1995). Examples such as heat transfer in a sheet forming 

processes, heat exchangers, tubular reactors and bioreactors are just a few of the many 

processes in which the dependent variables vary with both time and space.  

 

In chemical engineering, problems which are time-independent or steady state 

problems are described by elliptic equations. Unsteady state or time-dependent 
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problems are described by parabolic equations. In this thesis we place more emphasis 

on understanding numerical solution techniques to parabolic partial differential 

equations and reduction of such systems to low order models for the effective control 

of such systems. Here is an example of a distributed parameter system (packed tubular 

reactor) in which mixing of dye takes place. The model equation (parabolic PDE) 

governing this is, 







∂
∂
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∂
∂
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C  Eqn – 1.1.3 

The relevant boundary conditions are: )Cν(C
z

C
D in1

0z

1 −=
∂
∂

=

 and. 0
z

C

1z

1 =
∂
∂

=

 

with initial condition: 01 C0)(tC == . 

 

The first term of the partial differential equation of the scalar concentration field 

represents convective-type transport and the second term represents transport by 

diffusion or dispersion. Note that the flow field (ν) may also be governed by a set of 

PDEs (e.g. the Navier-Stokes equations).  Also there may be one more term (-Kr*C1) 

added to the above parabolic PDE if we have a first order reaction occurring inside 

the reactor. Parabolic systems play an important role in the description of the 

dynamics of a chemical tubular reactor where dispersion phenomena are present; here 

is an example of linear parabolic PDE, 

 t)kC(z,
z

t)C(z,ν
z

t)C(z,D
t

t)C(z,
2

2

−
∂

∂
−

∂
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=
∂

∂
,  Eqn – 1.14 

subject to the Danckwerts boundary conditions1: 

 ( )inCt)C(0,ν
z

t)C(0,D −=
∂

∂
 and 0

z
t)C(L,

=
∂

∂
.  

                                                 
1 The use of Danckwerts boundary conditions for the modeling of reactors has been justified by many 
authors. So one may consult [Aris (1999), Pearson (1959)] for further details. 
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The initial condition: (z)CC(z,0) 0= . Here C is the reactant concentration, z is the 

spatial position (m), ν is the superficial fluid velocity (m/s), k is the kinetic constant 

(1/s), D is the diffusivity, and L is the length of the reactor (m). 

 

Typically parabolic equations modeling tubular reactors with axial dispersion can be 

viewed as a very general case, which is intermediate between the ideal cases: the 

continuous stirred tank reactor (CSTR) and the plug-flow reactor (PFR). When the 

diffusion coefficient is large, the distributed parabolic model tends to the lumped 

parameter model of a CSTR. Conversely, when it is small, the model tends to the 

(hyperbolic) plug flow reactor model. This phenomenon has been largely referred to 

in a number of publications (by using, for example, singular perturbations techniques) 

like those of Cohen and Poore (1974) and Varma and Aris (1977).  

 

The two extreme cases (CSTR and PFR) rarely occur in practice as there is always 

some degree of back-mixing in a tubular reactor. It is for this reason that the 

intermediate axial dispersion model is of great importance, and thus the solution 

techniques to these parabolic PDEs has been the focus of many researchers. The 

strong coupling of diffusive, convective and reactive mechanisms is the source of the 

rich open-loop dynamic behavior exhibited by tubular reactors including multiple 

steady states, traveling waves, periodic, quasi-periodic and chaotic behavior. The 

reader may refer to Root and Schmitz (1969, 1970), Georgakis et al. (1977) and the 

classic paper from Jensen and Ray (1982) for results and references in this field. 

 

Another way of solving linear distributed parameter systems (elliptic and parabolic 

PDE's) is by means of modal analysis. This technique as described by Ray (1981) 
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reduces the complicated PDE model to an infinite set of ordinary differential 

equations. Modal analysis is based on the ability to represent the spatially varying 

input and output of the system as the sum of an infinite series of the system spatial 

eigenfunctions (eigenmodes) with time dependent coefficients. The dynamic behavior 

of each coefficient is then obtained as the solution to one of the independent ODE's. A 

good knowledge of eigenvalues and orthonormal eigenfunctions for the linear 

operator which describes the distributed system is required as this technique is best 

suited for self adjoint systems as these orthonormal eigenfunctions are used as basis 

function for truncated series expansions of the spatially varying inputs and outputs.  

 

The classical modal analysis and control system design technique makes use of the 

property that the dynamic responses of the spatial eigenmodes coefficients are 

decoupled. In general, a simple control system design procedure can be used to 

determine a simple feedback controller for each individual spatial mode. Thus for 

spatially self adjoint DPS, modal control provides an attractive approach to the 

control of DPS.  

 

1.3. Recycle Systems 

 

In recent years due to strict environmental regulations and stiff global competition 

chemical industries are pushing towards design of chemical processes which make 

heavy use of material and energy recycles. The behavior of plants with material and 

energy recycles is complicated and can be quite different from the behavior of their 

constitutive units. Denn and Lavie (1982) showed that the recycle is equivalent to a 

positive feedback and studied the effect of delay in recycle path. The severe effects of 
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recycles on time constants of a high purity distillation column have been shown by 

Kapoor et al. (1986). More recently Luyben (1993a, 1993b) has shown how an open 

loop response can become slow, oscillating and unstable when the gain of the recycle 

processes changes independent of other parameters. This is verified by the linear 

systems theory, which says that the recycle structure can affect the location of system 

poles leading to such responses. Jacobsen (1999) showed that the recycle paths can 

move both the poles and zeros of the transfer function between the inputs and outputs 

which are not part of the recycling loop. Morud and Skogestad (1994, 1996) also 

analyzed the effects of recycles on global plant. Luyben (1994) showed that a steady 

state phenomenon called the snowball effect occurs for recycle systems specifically 

for certain control structure configurations.  

 

The standard technique proposed for the control of processes with recycles has been 

the deployment of a recycle compensator by Taiwo (1986). Scali and Ferrari (1999) 

illustrated the use of forward path and recycle path models in the design of recycle 

compensators to alleviate the detrimental effects of recycles on two realistic examples. 

The identification of models for the forward and recycle paths of the process from 

plant step response data and open/closed loop time series data has been considered 

very recently in Lakshminarayanan and Takada (2001) and illustrated using industrial 

systems by Lakshminarayanan et al. (2001). 

 

1.4. Thesis Scope 

 

Recently, chemical engineers from both academia and industries have started looking 

keenly at tubular reactors (distributed parameter systems) with recycle, which is a 
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combination of the two fields mentioned above. A series of papers by Berezowski 

(1990, 1991, 1993, 1995 and 1998) extensively deals with such systems in which the 

diffusive phenomena are negligible compared to the convective ones and a highly 

exothermic reaction takes place. Antoniades and Christofides (2000, 2001) dealing 

with nonlinear feedback control of parabolic partial differential difference equation 

systems and dynamics and control of tubular reactor with recycle respectively. In this 

thesis, we give more emphasis on obtaining the dynamics of such tubular reactor 

(distributed parameter systems) with recycle and also control system design for such 

systems using modal analysis. An attempt is made towards extending some of the well 

known concepts in lumped parameter systems with recycle to distributed parameter 

systems with recycle. We see this as a step towards integrating some of the distributed 

parameter systems concept with the recycle systems concept. 

 

1.5. Contributions of this Thesis 

 

An approximate recycle compensator has been proposed in this thesis.  The new 

approximate recycle compensation scheme is implemented in a predictive control 

framework and is based on the lines of the dead time compensator and the inverse 

response compensator. The simulation case studies show that the scheme is workable. 

The performance is somewhat inferior compared to that of the ideal recycle 

compensator; however, the ease of implementation of this scheme may far outweigh 

its sub-optimal performance and make it a useful alternative for compensating the 

detrimental effects of the recycle dynamics. 
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Another novel contribution of this thesis has been the development of Modal 

feedforward controller for the linear distributed parameter system with and without 

recycles. The Modal feedforward controller has been developed based on the lines of 

Modal feedback controller and consists of Modal Synthesizer and Modal Analyzer 

blocks. A complete set of equations describing these key component blocks has been 

derived from the fundamentals of Modal analysis theory and is dealt extensively in 

Chapter 4 of this thesis. The effectiveness of Modal feedforward controller in 

handling disturbances for such distributed systems (Linear tubular reactor with 

recycle and linear heat exchanger), in conjunction with Modal feedback controller, 

has been illustrated in Chapter 5.  

 

In the case of linear tubular reactor with recycle the performance improvement is 

significant with the deployment of Modal feedforward controller in conjunction with 

the Modal feedback controller. The movement of the manipulated variable is also less 

for the combined Modal feedback plus feedforward control strategy. A similar effect 

can be seen even in case of the linear heat exchanger system. The application of 

Modal feedforward control on the two examples mentioned above shows the potential 

applicability of Modal feedforward control strategy for disturbance rejection in 

distributed parameter systems governed by linear partial differential equations. 

 

1.6.  Outline of this Thesis 

 

This thesis is concerned with the discussion of: Dynamics and control of distributed 

parameter systems and recycle systems in chemical engineering. The organization of 

this thesis is as follows: Chapter 2 deals with recycles present in the lumped 
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parameter systems. Some of the complicated dynamics exhibited by recycles are 

illustrated in this using an example of activated sludge process. A new control 

strategy called the predictor type recycle compensator is proposed (is an approximate 

recycle compensator in a model predictive framework similar to smith predictor for 

time delay compensation) and demonstrated to control recycle processes. Lastly an 

index called recycle effect index is discussed which quantifies the effect of recycles 

on any process using concepts from the minimum variance benchmarking of control 

loop performance. An REI value close to 0, means that the effect of the recycle is less 

and when it is close to 1, the effect of recycles is quite strong. Chapter 3 looks at 

distributed parameter systems in deeply. Chemical systems like the tubular reactors 

(both linear and nonlinear) and linear heat exchangers are considered to illustrate the 

dynamical behavior of such distributed systems. A well known numerical technique 

called orthogonal collocation has been described in this section, and is used to obtain 

the dynamics of these distributed parameter systems. The detrimental effect of 

recycles on a distributed system (tubular reactor) is captured. Chapter 4 illustrates a 

theory called Modal analysis applicable to linear lumped and distributed systems. 

Dynamic studies on linear tubular reactors with and without recycles and heat 

exchangers carried out in the previous chapters and some of the results obtained by 

collocation technique are cross verified using this technique. Chapter 5 deals with the 

control studies of these distributed systems using the concept of modal analysis learnt 

in chapter 4. A novel control strategy called Modal Feedforward control to handle 

measurable disturbances has been proposed for the tubular reactor with recycle 

system. Also simple modal feedback control has been designed for both tubular 

reactor and heat exchanger. Summary and conclusions are drawn at the end of this 

thesis after chapter 5. An exhaustive literature is provided at the end of the thesis. 
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CHAPTER 2 

 

DYNAMICS OF LUMPED PARAMETER SYSTEMS WITH RECYCLE 

 

2.1 Introduction 

 

Lumped parameter systems with recycles are very common in chemical process plants. 

The recycles return valuable material for reprocessing and to recover energy from 

effluent streams through heat exchange. Such interconnections are termed process 

integration, are often cited as potential causes of difficulty in plant operations in spite 

of offering better steady state economy. Therefore it becomes important to understand 

the effects of recycle on process dynamics. A good literature review has been 

presented in the introductory chapter (section 1.3) dealing with lumped parameter 

systems with recycle. Here is a simple and illustrative example showing the effects of 

recycle on process dynamics.  

Consider a reactor (CSTR) with feed-effluent heat exchanger as shown in Figure 2.1.1. 

 

The block diagram (Figure 2.1.2) shows the output of the reactor affecting the input to 

the reactor. This is positive feedback introduced to the plant by the recycle of energy. 

In order to determine the behavior of integrated plant, the overall input-output transfer 

function has to be determined. 
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The overall transfer function is given by, 
(s)(s)GG1

(s)(s)GG
(s)T
(s)T

H2R

H1R

0

4

−
=  

The presence of recycle has totally changed the system behavior which is apparent 

from the overall transfer function as compared to the case where the fresh feed is 

preheated by an "independent" stream at temperature T4. Now the poles of the overall 

system are no more same as the poles of individual units. Thus, stability of the system 

is no more guaranteed, even for cases where the individual units are stable.  

To illustrate the effects graphically consider the numerical example from Marlin 

(1995) (section 5.5 and Figure 5.17), the numerical values for the above block 

diagram is as follows, 
110s

3(s)G R +
= , 0.4(s)G H1 = and 3.0)s(G 2H =  

With recycle:  
1s100

12
)s(T
)s(T

0

4

+
= ,  

Without recycle (GH2(s) = 0):  
1s10

2.1
)s(T
)s(T

0

4

+
=  

The dynamic response for a step change in T0(s) of C20  is shown in Figure 2.1.3. 

One can see drastic effect of recycle on steady-state gain and time constant; both 

increase by a factor of 10 due to recycle. The system is still stable and self-regulatory, 

because of the parameter values employed in this example, but the recycle has created 

an inherent positive feedback in the process, which has significantly affected the 

dynamic response. 
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In section 2.2 of this chapter, we consider a biological waste water treatment process 

(activated sludge process) to illustrate some of the detrimental effects of recycles. 

This practical system is described by a model of two reactors (CSTR) in series, with a 

recycle stream from the outlet of the second reactor to the inlet of the first reactor. 

The topic of discussion of section 2.3 of this chapter is on an advanced automatic 

control strategy, concept of recycle compensator to eliminate the potentially 

unfavorable dynamic effects of recycle.  The last part of this chapter (section 2.4) 

gives a brief idea on a benchmark index called the recycle effect index which is a 

measure of severity of recycle and advises whether one should go for the advanced 

control strategy described in section 2.3. The index is computed on a scale of [0-1]. If 

this index is close to one, then one should go for the advance control strategy and 

when it is close to zero, one would not benefit much from having such an advance 

control strategy. 
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2.2 Activated Sludge Process 

 

2.2.1 Introduction 

 

In this section we seek to study the dynamic operation of the biological waste water 

treatment process by activated sludge. The activated sludge process is a continuous or 

semi continuous aerobic method for biological waste water treatment. It includes 

carbonaceous oxidation and nitrification. The process is based on aeration of 

wastewater with flocculating biological growth, followed by the separation of the 

treated wastewater from biological growth. Part of this growth is then wasted, and the 

reminder is returned to the system. This system is analogous to, two reactors in series 

followed by the separation of the unreacted reactant from products and recycled back 

to the first reactor.  

 

A schematic representation of this process (activated sludge plant with two 

completely mixed reactors in series with recycle) is shown in Figure 2.2.1. Most 

chemical processes are designed to operate at a steady-state condition. However, it is 

well known that for some processes, steady-state operation does not always guarantee 

best results and at times, unsteady-state operation improves the overall performance. 
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The average value of the performance of a process operating at unsteady-state is 

sometimes better and sometimes worse but never the same as the steady state 

operation. Numerous experimental and theoretical investigations have shown that 

periodic operation of chemical reactors leads to improved reactor performance by 

producing more reaction products or a more valuable product distribution than a 

steady-state reactor operation. For more information on the topic of unsteady state 

operation of chemical reactors one is recommended to refer the works of Shen and 

Ray (1998, 2000), Douglas and Rippin (1966), Lee and Bailey (1980) (Lee et al. 1980) 

and Ray (1995). 

 

The activated sludge waste water treatment process consists of living microorganisms 

plus organic matter in an oxygen-rich (aerobic) environment. Microorganisms utilize 

complex organics as a food source to produce more microorganisms that are 

eventually settled out of the wastewater. The two basic types of microorganisms 

important to the operation of activated sludge system are the plants and animals. 

Plants include bacteria, algae and fungi. The bacteria are the most important and are 

primarily responsible for the removal of organic substances from wastewater. 

Animals include larger microorganisms, such as protozoa, crustaceans, and rotifers. 

The animals feed on dispersed bacteria that do not settle well and therefore, help 

polish the quality of treated effluent. The microorganism population of activated 

sludge is dynamic in nature. Competition for soluble food occurs among the bacteria, 

fungi, algae and protozoa. However most of the theoretical considerations of 

continuous culture systems have dealt with pure cultures of single organisms, 

although sewage treatment processes contain wide variety of organisms. The 

theoretical and experimental work of Curds (1971a, 1971b and 1973) has shown that 
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when bacteria and protozoa are grown together in a reactor (as is the situation in the 

activated sludge process), steady-state conditions do not always exist, instead a series 

of predator-prey oscillations is observed. 

 

2.2.2 Mathematical Model 

 

Mathematical modeling of a process like the activated sludge process is very 

important, as it is a useful tool, for optimum design and control studies. The effects of 

operating variables can be studied far more quickly and inexpensively. Many 

mathematical models exist for the activated sludge process system, which range from 

simple to multicomponent to multispecies complex models. The model used in this 

work is primarily based on the reported work of Curds (1971a, 1971b and 1973) with 

some modifications as described in Shen and Ray (1998, 2000). 

 

The theory of continuous culture of bacteria growing in a completely mixed reactor 

vessel was first described by Monod. The model developed relied on the well 

established fundamental microbiological relationships between the specific growth 

rate of a bacterium and the concentration of an essential growth substance. The 

specific growth rate, µ, of an organism is related to the concentrations of its limiting 

substrate by the Monod equation: 
SK

S

S

m

+
µ

=µ  Eqn – 2.2.1 

where µ and µm are the specific growth rate and maximum specific growth rate of the 

organism, S is the concentration of the substrate, and KS is the saturation constant 

which is numerically equal to the substrate concentration when 
2
mµ=µ . The 

schematic flow diagram used in the model is shown in figure 2.2.1.  
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The microbial population in the settling tank concentrates by a factor "b". Some 

sludge is continuously wasted at a rate FW, the reminder is recycled back into the first 

reactor at a rate Fr. The mathematical model representing the system consists of ten 

equations, five in each reactor. The mass balance equation in each reactor is given by,  
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Reactor-2: 
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where Ci is the total concentration of protozoa in the ith reactor. µi and Yi  are the 

specific growth rate and yield constant of the ith species and subscript 'o' indicates the 

initial concentration of species in the entering sewage.  

 

The kinetic constants and feed concentrations used in computer simulations are given 

in Table 2.2.1. Source: Shen and Ray (1998). 

 

2.2.3 Solution methodology, results and conclusions 

 

The above set of 10 nonlinear ordinary differential equations was implemented using 

DEE block of MATLAB/SIMULINK. These equations were embedded into the DEE 

block in a particular format with a good initial guess of outputs, below is listed some 

of the steady state guess values for the state variables of first tank and second tank. 

First tank - S10 = 21.4128, X10 = 192.796, B10 = 17.527, P10 = 16.6385, G10 = 2.2916. 

Second tank - S20 = 1.225, X20 = 202.0158, B20 = 7.9514, P20 = 18.5727, G20 = 4.0121. 

The fresh feed parameter values used in simulation are S0 = 260 mg/lt, X0 = 0.1 mg/lt, 
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B0 = 30 mg/lt, P0 = 0.1 mg/lt and G0 = 0.1 mg/lt. The other parameter values are D = 

0.17 hr-1, D1 = 0.25 hr-1, D2 = (D*D1)/(D1-D) = 0.53 hr-1, r = 0.35 and b = 1.9. A 

simulink model was created using this DEE block containing the above set of 

equations subjected to these parameter values. Various ODE solvers like ODE45, 

ODE15s, ODE23s etc can be used to simulate this model.  

 

 

In Figure 2.2.3 we want to see the effect of different recycle ratios and different 

dilution rates of first reactor, on the substrate concentration S2. The points which are 

connected by the dark line are the steady state operating regions or points. The points 

which are not connected by any line are the points or regions which show oscillatory 
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behavior. The various shapes like diamond, star, plus etc used in the above figure are, 

to represent the different recycle ratios used in the simulation. 

 

Some of the conclusions that can be drawn from Figure 2.2.3 are, when the dilution 

rate of the first reactor was kept low (example D1 = 0.2 h-1), while keeping the total 

dilution rate fixed at 0.17 h-1, it was observed that the reactor system operates under 

oscillatory state. However, at some intermediate values of D1 (example D1 = 0.25 h-1 

for recycle ratio of 0.45) the system changes from oscillatory state to steady state. D1 

was then further increased to a value of about 0.4 h-1 for the same recycle ratio, the 

operation of the system changes again to oscillatory state. The occurrence of the 

second oscillatory region is because of the recycle of the effluents from the second 

reactor to the first reactor. It is likely that either the first reactor or the second reactor 

operates at oscillatory state for a set of process variables when the total dilution rate, 

D, is kept constant. Then, even though the first reactor operates at steady state for the 

choice of process parameters, it inherits forced oscillation through recycle of 

oscillatory-state operation of the second reactor.  

 

From Figure 2.2.3 it is clear that the switch from oscillatory state to steady state to 

oscillatory state occurs at different values of the dilution rate, D1, and for different 

values of the recycle ratio, r. When the fraction recycled is less than about 0.3, the 

overall system is most of times in oscillatory mode but when fractioned recycled is 

very much close to zero, the system does show some steady state zone. However the 

fraction recycles is increased, the overall system does not always operate under 

oscillatory state. For example, when the fraction recycled is equal to 0.4, no limit 

cycles exists for D1 between 0.26 and 0.4 h-1. The study also revealed that, when the 



 21

first reactor operates under oscillatory state the concentration of the substrate at 

discharge, is lower than when the second reactor operates under oscillatory state. This 

is probably because only the fraction of the effluent from the second reactor was 

recycled to the first reactor. This is apparent from the figure as the difference 

decreases with the increase of recycle ratio. Figure 2.2.3 further divulges that the 

concentration of the substrate at discharge from the second reactor decreases with the 

increase of recycle ratio. Therefore, it is better to operate at a higher recycle ratio 

although it will increase the operating cost. Similar plots with different values of 

process parameters (like τ, S0, X0, B0, P0, H0, b, etc.) or kinetic parameters (like µm, K 

and Y) can be obtained to determine the regions where oscillatory-state operation 

occurs and where steady state operation occurs and which one is more advantageous.  

 

From the above discussions it is evident that other parameters (dilution rate, fraction 

recycled, sewage concentration, and concentration factor) will have same effect on the 

substrate concentration at the discharge and depending on the parameter values, only 

steady state or only oscillatory state or both states can exist. In conclusion, 

oscillations have been reported for systems in all areas of nonlinear dynamics, and the 

present system is by no means an exception. Therefore, as an engineer, one should be 

prepared to utilize these situations for economic benefits, or at least should know how 

to avoid them in practice, by such parametric studies.  

 

2.3 Concept of Recycle Compensator 

 

Material recycles and heat integrations are pretty common in chemical industry. Such 

features can complicate the dynamics of the processes. Controller design and tuning 
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must be done very carefully. The recycle compensator has been advocated as one 

possible control strategy to eliminate the detrimental effects of recycles.  

 

A block diagram of a process with recycle is shown in Figure 2.3.1. Here GF 

represents the forward path dynamics and GR represents the recycle dynamics. Gd is 

the disturbance transfer function. Many authors have worked on the dynamics of such 

systems. A brief literature review was presented in the section 1.3 of chapter 1. The 

standard technique proposed for the control of processes with recycles has been the 

deployment of a recycle compensator Taiwo (1986). 

 

The recycle compensator ("RC" in Figure 2.3.2) can be designed if the recycle path 

dynamics is known. The feedback controller GC employed in Figure 2.3.2 can then be 

designed based only on the forward path model. Scali and Ferrari (1999) have clearly 

demonstrated the workability of this approach using two realistic examples. Kwok et 
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al. (2001) used a seasonal-model based control strategy for regulating a recycle 

process. Chodavarapu and Zheng (2001) discuss the issues in the design of controllers 

for processes with recycles and present some practical guidelines. Emoto and 

Lakshminarayanan (2002) develop a quantitative measure called recycle effect index 

that indicates if a recycle compensator is mandatory for satisfactory control of a 

process with recycle. To date, there has been no reported laboratory or industrial 

implementation of the recycle compensator. One reason for this could be the 

difficulties in implementing this strategy on standard industrial DCS systems, as an 

extra feature containing the recycle compensator has to be created and added to the 

DCS systems. In order to overcome this difficulty, we propose an approximate recycle 

compensation scheme that has a predictor structure similar to that of the Smith 

predictor for time delay compensation (Smith, 1957) or the inverse response 

compensator of Iinoya and Altpeter (1962). The mathematical expression for the 

recycle compensator that has the predictor structure will be derived. Then it is 

simplified to a form that can be implemented on industrial DCS systems. Illustrative 

examples are provided followed by concluding remarks. 

 

2.3.1 The Predictive Control Structure 

 

A schematic of a predictive control structure is shown in Figure 2.3.3. In the most 

general sense, Gp represents the true process (assumed to be open loop stable) with 

the final control element and the sensor, Gd the disturbance transfer function, Gc 

represents the predictive controller and K the dynamic model of the process. The true 

process GP or the "Plant" indicated in Figure 2.3.3 can be decomposed into two 

components - one a forward path GF and the other a positive feedback path or the 
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recycle path GR. We will examine this structure in the context of compensators (such 

as time delay compensation or the inverse response compensator) where GC is a PID 

type feedback controller.  In these compensation schemes, the conventional PID 

controller is employed as the feedback controller Gc. However, this Gc is designed to 

control a “model” rather than the true process that is devoid of the time delay or the 

inverse response (as the case may be). This strategy would enable the correct 

calculation of the manipulated variable to be implemented on the true process. This 

can provide good control as long as the “model” is perfect. In the absence of a perfect 

model, the control quality will suffer but zero steady state offset can be accomplished 

by adherence to easily achieved criteria Marlin (1995).   

 

Let us assume that the process model Gm (approximation of the true process Gp) can 

be decomposed into three components G, Gθ and GNM. That is 

 NMm GGGG θ=  Eqn – 2.3.1 

Where G is free of time delays and non-invertible zeros and is the “desirable” process 

to control, Gθ comprises of the delay and GNM includes the non-invertible zeros.  

The closed loop servo transfer function is given by,  
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1
 Eqn – 2.3.2 
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If the model were perfect i.e. Gp = Gm then Eqn – 2.3.2 becomes, 
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1  Eqn – 2.3.3 

Now, Gm may contain time delays and non-invertible zeros in which case Eqn – 2.3.3 

can be written as: sp
NMcc
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The Gθ and GNM terms prevent more aggressive adjustment of the manipulated 

variable because they appear in the characteristic equation. We can get rid of such 

undesirable terms from the characteristic equation by choosing K such that 

 )GG(GK NMθ−= 1  Eqn – 2.3.5 

When this compensator K is implemented as shown in Figure 2.3.3 on the actual 

process Gp, the closed loop transfer function will be 
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If there is no model plant mismatch (i.e. Gm = Gp), then the closed loop servo transfer 

function reduces to the form,  sp
c

mc y
GG

GGy
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=
1

 Eqn – 2.3.8 

wherein, we have the characteristic equation free of undesirable dynamics. 

Remarks: 

• If 1  G NM = and s-e  G θ
θ = , we have a process that is free of any undesirable zero 

dynamics but contains time delays that need to be compensated for. In this case, 

the compensator ( )s-e-1G  K θ= is the well known Smith Predictor for time delay 

compensation.  
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• If the process has no delays but only unfavorable zero dynamics (right half plane 

zeros) i.e. if NMm GG   G = , then the compensator ( )NMG-1G  K = . If 

NMm GG
)s)(s(

skG =
++

+−
=

11
1

21
2 ττ

α with α < 0.  
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Now the compensator K equals 
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2

++ ττ
α . This is the inverse response 

compensator proposed by Iinoya and Altpeter. 

• Notice that the steady state gain of the compensators for both time delay 

compensation and inverse response compensation is zero. As long as the 

controller Gc contains integral action, this meets the requirements for zero steady-

state offset as spelt out in Marlin (1995). 

Coming to the central theme of this section (i.e a compensator for recycles), we 

consider a process with recycle that can be represented by the model as, 
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 Eqn – 2.3.9 

As seen from Eqn – 2.3.9, we consider the forward path model, GF to be the desired 

portion for feedback control and look forward to design the compensator K to handle 

the undesirable dynamics G*. Note that G* contains the recycle path dynamics GR. 

The expression for recycle compensator is, 
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This expression for the recycle compensator implemented with a predictive control 

structure is fairly complicated compared to the conventional recycle compensator. We 

can expand the expression for the recycle compensator given in Eqn – 2.3.10 as, 
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 )GGGG(GGK RFRFRF L+++−= 222 1  Eqn – 2.3.11 

In Eqn – 2.3.11, we may choose to retain only the first term and implement an 

approximate recycle compensator as,  

 RFA GGK 2−=  Eqn – 2.3.12 

When the recycle compensator is implemented using the predictive structure (i.e. 

using equations 2.3.11 or 2.3.12), steady state offset will occur either for a step 

change in set point or the disturbance. As pointed out in Marlin (1995), the condition 

for zero steady-state offset is that the gain of the feedback predictive controller must 

be equal to the inverse of the gain of the compensator. If the feedback controller were 

to include integral action, then one must ensure that the gain of the compensator K be 

equal to zero. Obviously, the compensator K given by either by equations 2.3.11 or 

2.3.12 has a gain different from zero. To ensure zero steady state offset, we must 

modify our expression for the recycle compensator. 

 

The expression for the complete recycle compensator in the predictive control 

structure takes the following form 
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 Eqn – 2.3.13 

The approximate recycle compensator in the predictive control structure is 

implemented in this form 

  RFRFA KKGGK 22 +−=  Eqn – 2.3.14 

Equations 2.3.13 and 2.3.14 are the expressions for the “complete” recycle 

compensator and approximate recycle compensator implemented using the predictive 

controller structure. 
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2.3.2 Examples 

 

Example 1 

Consider a system with
110

54 3

+
=
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s
e.G

s

F and 
1

20
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=
−

s
e.G

s

R .  We compare three results 

for this system (see figure 2.3.4).  First, we use the overall process model 

RF

F

GG
G

−1
to design a PI feedback controller. Ciancone tuning relations (Marlin, 

1995) are employed to design this controller. The response of this controller to a step 

type disturbance is shown by the dotted line trajectory in Figure 2.3.4. There is a very 

large deviation from the steady state value and the process takes a significantly long 

time to recover from the disturbance. A conventional recycle compensator was then 

employed (schematic shown in Figure 2.3.2). The feedback controller in this case was 

based on the GF only. The solid line in Figure 2.3.4 indicates the response of this 

control strategy to the same disturbance. The performance is seen to be excellent. 

Thirdly, we implemented the approximate recycle compensator using the predictive 

control structure as given by Eqn – 2.3.14 and designed the PI feedback controller 

based on GF only (the feedback PI controller used in this scheme is essentially the 

same employed with the conventional recycle compensation scheme). The 

performance is seen to be quite acceptable (dashed-dotted line in Figure 2.3.4). The 

performance of the recycle compensator using the predictive control structure is not as 

superior as that using the conventional recycle compensator. There is enough 

accumulated industrial experience in the implementation of dead time compensation 

and therefore the implementation of recycle compensation is likely to be much easier 

in industrial DCS systems as compared to the implementation of the conventional 

recycle compensator. 



 29

 

Example 2 

The system we consider next consists of two reactors in series with a recycle stream 

from the outlet of the second reactor to the inlet of the first reactor. The two reactors 

are assumed well mixed. A more detailed description of the system and the governing 

equations are provided in Scali and Ferrari (1999). The forward path and the recycle 

path models for this system are given by: 
152
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Four cases were examined, 

Case 1: Use of conventional recycle compensation scheme with the feedback 

controller designed based on forward path model (GF) only. 

Case 2: Only feedback control. The feedback controller is designed using the overall 

process model. 

Case 3: Only feedback control. The feedback controller is designed using the forward 

path model (GF) only. 
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Case 4: Control using approximate recycle compensator in a predictive control 

structure. The feedback controller is designed based on forward path model (GF) only. 

 

The results of the simulations (set point tracking) are provided in Figure 2.3.5. The 

conventional recycle compensation scheme provides the best performance but is 

somewhat oscillatory. If the process is controlled by a feedback controller designed 

based on the overall model the response is very sluggish. When the process is 

controlled only with a feedback controller designed using forward path model (GF) 

only, the performance is very oscillatory. The proposed scheme works well and 

provides a smooth approach to the new target value.  
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Example 3 

Here, the forward path dynamics and recycle dynamics are given by
110

10

+
=

−

s
eG

s

F  and 

1
750 28

+
=

−

s
e.G

s

R  respectively. In contrast to Example 1, the recycle path has a larger 

time delay compared to the forward path. Four control strategies similar to that 

examined in Example 2 were considered. The results for the above case are 

summarized in Figures 2.3.6 and 2.3.7. In Figure 2.3.6, the set point tracking 

capability of the four different control schemes are provided. It is seen that the 

conventional recycle compensation works well followed by the predictive structure 

based approximate recycle compensation.  
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This pattern is also seen with the disturbance rejection properties of the four schemes 

depicted in Figure 2.3.7. It is very obvious that if the feedback controller design 

ignores the presence of the recycle path dynamics, the performance can become quite 

oscillatory. This example again demonstrates that the approximate recycle 

compensator in a predictive framework can provide adequate regulation of a process 

with recycle. 

 

2.3.3 Remarks 

 

Section 2.3 of this thesis has proposed and evaluated a recycle compensation scheme 

along the lines of the dead time compensator and the inverse response compensator. 

This new approximate recycle compensation scheme is implemented in a predictive 

control framework. The simulation case studies show that the scheme is workable. In 

comparison to the traditional recycle compensation scheme this method provides 
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somewhat inferior performance. However, the ease of implementation of this scheme 

may far outweigh its sub-optimal performance and make it a useful alternative for 

compensating the detrimental effects of the recycle dynamics. 

 

2.4 Recycle Effect Index 

 

Consider a process with recycle for which the forward path and the recycle path 

models are available. Now the control engineer must quantify the strength of recycle 

and then decide if an advanced control structure such as the recycle compensator is 

necessary. If the recycle compensator is deemed important, then it can be 

implemented and a feedback controller can be designed for the compensated plant (i.e. 

forward path only). If the recycle is insignificant, then we may remove any 

consideration of it (the recycle path dynamics) in the design of the feedback controller. 

For such a recycle system considered above, we proposed a measure of the effect of 

the recycle using concepts from the minimum variance benchmarking of control loop 

performance. This measure termed as the “recycle effect index” (REI) can help decide 

about the control structure necessary for the process in question. The theoretical 

expressions for REI are outlined below and its practical applications are dealt in detail 

in Lakshminarayanan et al. (2003).  
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Consider the plant (under feedback control) shown in the Figure 2.4.1. When the set 

point is constant (zero in terms of deviation variables), we can derive the relationship

 t
Rf

dt a
)TQ(Tq

Ny
−+

= −1
 Eqn – 2.4.1 

N can be expanded as ΩΨ dqN −+=  Eqn – 2.4.2 

Substituting this in the Eqn – 2.4.1, we get  
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 Eqn – 2.4.3 

The first part Ψat denotes the controller invariant term that is independent of the 

control law Q. The second part is dependent on the controller and can be manipulated 

by a proper choice of the controller Q.  

If Q is designed as: 
f

R T
TQ

Ψ
Ω

+=  Eqn – 2.4.4 

the second term becomes identically zero and the lower bound on the output error 

variance can be achieved. Q is then the MVC for the overall (forward path + recycle 

path) process. When the MVC is designed based on the forward path model alone (by 

neglecting the recycle transfer function TR) as:  
fT

Q
Ψ
Ω

=  Eqn – 2.4.5 

the expression for yt becomes:  
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 Eqn – 2.4.6 

(the subscript MVFP denotes that this output can be expected when we have a 

Minimum Variance controller based on the Forward Path only acting on a process 
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with recycle). When TR is zero, we will have the minimum variance performance as 

expected.  11110 +−−− +++== dtdtttMV,t aaaay ψψψΨ L  Eqn – 2.4.7 

This gives  22
1

2
1

2
0

2
adNRC,MV )( σψψψσ −+++= L .  

The second term in the expression for yt,MVFP may be denoted as: 

 [ ] dtdt

Rf
dd

Rf
t aqqa

)TTqq(

TT
e −

−−
−

−−
+++=



















−+
= LL2

2
1

10

1
ξξξ

Ψ
Ω
Ψ

 Eqn – 2.4.8 

This implies that 22
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Based on the expression for yt,MVFP we can write 
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 Eqn – 2.4.9 

where 2
RC,MVσ is the minimum achievable output variance when a MVC is designed 

and implemented (by ignoring the recycle path in the process) on a process with 

recycle. Obviously, 2
RC,MVσ is greater than or equal to 2

NRC,MVσ which is the 

minimum output variance achievable for a process without recycle.  

We are now ready to define the recycle effect index (φ) as: 

 
LL

LL

+++++++
+++

=−=
−

2
2

2
1

2
0

2
1

2
1

2
0

2
2

2
1

2
0

2

2

1
ξξξψψψ

ξξξ
σ
σ

φ
dRC,MV

NRC,MV  Eqn – 2.4.10 

The recycle effect index φ, therefore captures the inflation in variance that is caused 

by the recycle path element(s) if a MVC is designed and implemented based on the 

forward path dynamics alone. Note that the computation of φ requires knowledge of 

the forward path model, recycle path model and the disturbance model N. Also, since 

the value of φ depends on many factors, it would help if some simple-to-use 

guidelines were provided. When recycle effect index is close to 0, it means that the 
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effect of the recycle is less and when it is close to 1 it implies that the effect of recycle 

is quite strong. The challenge is to determine the conditions under which the recycle 

effect index is under a certain threshold value (say φ < 0.25) so that we may go about 

designing a MVC based on the forward path dynamics alone and not bother about 

advanced control structures such as the recycle compensator. One can refer to 

Madhukar et al. (2003) which provide such information via extensive simulations. 

 

2.5 Conclusions 

 

A new approximate recycle compensator in the lines of model predictive frame work 

was proposed and evaluated. The results show that the scheme is workable. In 

comparison to the ideal recycle compensation scheme this method provides somewhat 

inferior performance. However, the ease of implementation of this scheme may far 

outweigh its sub-optimal performance and make it a useful alternative for 

compensating the detrimental effects of recycles. One of the key conclusions 

emerging from the studies of REI (Recycle Effect Index) is that the PI controllers are 

capable of yielding high control performance in the presence of stationary 

disturbances over a wide range of parameters (gain, time constant and time delay) for 

the forward and recycle paths. However, the PI controller settings might depend both 

on the characteristics of both the forward and recycle paths. Correlations between 

optimal PI controller settings and the characteristics of the forward and recycle path 

models need to be developed for this scenario. If the disturbances are non-stationary, 

the PI controllers are not capable of providing high control performance even for low 

KF KR values and large 
F

R
τ

τ values and PI feedback plus recycle compensator 

control strategy is likely to be of limited use. 
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CHAPTER 3 

 

DYNAMICS OF DISTRIBUTED PARAMETER SYSTEMS WITH & 

WITHOUT RECYCLE 

 

3.1 Introduction 

 

The tubular reactor is a good example of a distributed parameter system. The control 

of tubular reactors, with or without catalytic beds is complicated due to non 

availability of online measurements of the controlled variables and the distributed 

nature of the problem. Further complexities are anticipated when there is either heat 

integration or material recycles. The primary goal of the control of tubular reactor is 

the regulation of the outlet concentration at optimum levels, while at the same time 

attention is paid to the maintenance of a safe operation, by requiring that the 

temperature in the reactor does not exceed some prespecified maximum value. The 

outlet concentration cannot be easily measured online, so it must be inferred from the 

available temperature measurements. Fluctuations in the inlet flow or concentration, 

coolant temperature, measurement noise and changes in the model parameters, such 

as kinetic constants (catalyst activity) and transport coefficients are some of the 

possible disturbances for the tubular reactor system.  

 

From numerical simulation point of view, before one proceeds with the control 

studies of tubular reactors, there should be a good set of tools to provide the dynamic 

responses of such systems for any change in the inputs. So this chapter of the thesis is 

devoted to the description of the tools that have been developed in this regard. Firstly, 
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a set of MATLAB codes have been developed - these yield both the temperature and 

concentration profiles inside the tubular reactors for any given set of input conditions. 

Next, this is extended to tubular reactors with recycle where an integration of 

SIMULINK models with the MATLAB codes has been used. This set of programs 

help in studying the effect of recycles. 

 

3.2 Mathematical model of a Nonlinear Tubular reactor 

 

The tubular reactor to be investigated is a homogeneous, non-adiabatic reactor in 

which a first order, irreversible, exothermic reaction occurs. The model of the reactor 

given by equations 3.2.1 to 3.2.5, represents either an empty reactor or a catalytic 

reactor assuming a pseudohomogeneous model with phenomenological reaction rates 

and transport properties. The reactant A enters the reactor with an initial concentration 

of Cio and an initial temperature of Tio. Axial diffusion of heat and mass are 

considered and radial gradients are neglected. Heat is extracted from the system 

through the wall by means of a coolant medium. Assuming the reactor wall 

temperature to be TW, the equations governing the dynamic behavior of such reactors 

are, 





−−

∂
∂

−
∂

∂
=

∂
∂

TR
EexpkC

z
C

z
CD

t
C

||| ν2

2

 Eqn – 3.2.1  

 ( )TT
CR
h

TR
EexpkC

C
H

z
T

z
T

C
k

t
T

W
PP

||
P

| −+





−

−
+

∂
∂

−
∂

∂
=

∂
∂

ρρ
∆ν

ρ
2

2

2

 Eqn – 3.2.2 

valid for 0<z|<L and t|>0, with the boundary conditions, 
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The above set of equations has been considered by many researchers in the past. A 

more detailed analysis on the modeling aspect can be obtained from either of the 

following references: Alvarez et al. (1981), Georgakis et al. (1977), Varma and 

Amundson, (1972, 1973), McGowin and Perlmutter (1971) and Hlavacek and 

Hofmann (1970). To put the system in the dimensionless form, define the following 

dimensionless variables: 2L
Dtt,

L
zz,

T
TT,

C
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====  

where Cref and Tref are reference values for concentration and temperature. Also, 

define the dimensionless parameters as follows: 
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Eqns 3.2.1 - 3.2.5 can now be rewritten as follows: 
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valid for 0<z<1 and t>0, with the boundary conditions, 
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The following set of parameter values were used in the simulations. These values are 

reported in Alvarez et al. (1981).  

1385005112550875051 ========== γδβα ,.C,.T,T,,.,.,PePe,Le iiWhm  

 

3.3 Numerical Solution Technique 

 

The analytical solution of equations 3.2.6 to 3.2.10 is impossible. The equations must 

be solved numerically by discretization to obtain the approximate solution. The 

method of finite differences has been used extensively in the past, but it usually 

requires a large number of discretization points and results in a correspondingly large 

set of ordinary differential equations. On the other hand, the collocation technique 

approximates the solution by a polynomial trial function, and the resulting system 

often has a considerably smaller number of ordinary differential equations. This 

method has been modified and improved in recent years and successfully used in the 

solution of many chemical engineering problems (Finlayson, 1972). The orthogonal 

collocation technique is a special case of the method of weighted residuals and thus 

closely related to quadrature formulas. The essentials of the method as applied to the 

problem of interest have been outlined below. 

 

The first and the foremost step of a collocation technique, is to choose the number of 

grid points or the collocation points (XK). If these are chosen to be the roots of 

orthogonal jacobi polynomial of Nth degree then it is called orthogonal collocation. 

Any other orthogonal polynomial function can be used but the jacobi polynomials are 

popular and accurate. The choice of collocation points is very crucial and cannot be 

arbitrary. To reap the benefits of collocation technique fully, the collocation points 



 41

has to chosen "optimally" or atleast "judiciously". Most of the finite domains can be 

expressed over the set [0, 1] and the orthogonality property can also be satisfied on 

this domain. Hence consider the jacobi polynomials on this domain. 

The jacobi polynomial of degree N has the power series representation, 

 ∑
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1 γβα  Eqn – 3.3.1 

with 10 =,Nγ . Here, iN ,γ are constant coefficients, and α and β are parameters 

characterizing the polynomials. )x(J ),(
N

βα is the polynomial orthogonal to the 

weighting function )x(x αβ −1 . The term (-1)N-i is introduced to ensure the 

coefficients γ are always positive. Utilizing the orthogonality property of the Jacobi 

polynomials we have, 
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for j = 0, 1, 2… (N-1). Solving these N linear equations (equations 3.3.2) for N 

unknowns the following explicit solution is obtained for γ  (Villadsen, 1970). 
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The above equation provides the explicit solution but for the purpose of computation 

it is easier to evaluate the coefficients using the following recurrence formula, 
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starting with 10 =,Nγ . Using the formula obtained above for the coefficients, we can 

evaluate the jacobi polynomial, with specified or known α and β. Once the jacobi 

polynomials are known then the roots of this polynomial equation 0=)x(J N are the 

collocation points within the domain from 0 to 1. A simple MATLAB function named, 
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(getcollocationpoints1) was developed to obtain the collocation points between [0, 1] 

for any given values of α, β and N. 

 

The jacobi polynomials are very useful in finding the collocation points. Now, for a 

given set of data points (x1, y1), (x2, y2). . . (xN, yN) and (xN+1,yN+1), an interpolating 

polynomial passing through all the N+1 points is an Nth degree polynomial. Such an 

interpolating polynomial is expressed as  
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where ( )xyN  is the Nth degree polynomial, yi is the value of i at the point xi, and li(x) 

is called the lagrange interpolating polynomial. The building blocks for the 

interpolating polynomial are given as, 
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The jacobi and lagrange polynomials developed helps one to proceed with the 

development of orthogonal collocation method. The lagrange polynomial obtained 

above is continuous and can be differentiated as well as integrated. The first and 

second derivatives of the lagrange interpolation polynomial are given by 
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In particular, if one is interested in obtaining the first and second derivatives at the 

interpolation points, one can substitute x = xi. In a compact vector notation we have, 
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The function vector is defined as values of y at the N+1 collocation points as  

T
NN ]y,y,....,y,y,y[y 1321 += . With these definitions of vectors y and its derivative 

vectors, equations 3.3.9 and 3.3.10 can now be written as 
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







+=== 1321 N,N,...,,,j,i;
dx

)x(dl
aA ij

ij   

 












+=== 1321
2

2

N,N,...,,,j,i;
dx

)x(ld
bB ij

ij  

The matrices A and B are ( ) ( )1N1N +×+ square matrices. Once the N+1 

interpolation points are obtained as described previously, all the lagrange building 

blocks are completely known and thus A and B matrices are also known. For 

computational purposes, aij and bij are calculated from 
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where the )(
Np 1

1+ , )(
Np 2

1+ and )(
Np 3

1+ are calculated from the following recurrence formula 
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for j = 1, 2,...., N+1. With 03
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With the availability of both "A" and "B" matrices, the first and second derivatives 
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value of y at the interpolation point xj. Now that the N+1 interpolation points are 

chosen, the matrices A and B are completely known. Extending this technique to the 

system considered in section 3.2 (tubular reactor), we have both temperature and 

concentration as the unknown values at the collocation points. So substitute 
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the boundary conditions as well as in the partial differential equations 3.2.6 to 3.2.10. 

 

From the boundary conditions we get the boundary points in terms of other internal 

collocation points. For example we have  

temperature (T1) at 0=z  as:
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concentration (C1) at 0=z as: 
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The temperature (TN+2) and concentration (CN+2) at 1=z  are given by: 
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Similarly, from the partial differential equations, we have: 
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for i = 2 to N+1. As the boundary points z = 0 and z = 1 are already known to be in 

terms of internal grid points. The above N ordinary differential equations in N 

unknowns is a set of coupled nonlinear ordinary differential equation system which 

can be solved in MATLAB using ODE solvers if one can have a good initial guess to 

these set of equations. At steady state the above equations reduces to this form: 

 011
2

1

2

1

=−−− ∑∑
+

=

+

=

)]T/(exp[CCAPeCB ii
N

j

j
j,im

N

j

j
j,i δα  

 0111 2

1

2

1
=−+−+− ∑∑

+

=

+

=

)TT()]T/(exp[CTAPeTB
Le

i
W

ii
N

j

j
j,ih

N

j

j
j,i γδαβ  

These equations represent a set of coupled nonlinear algebraic equations which can be 

solved by the well known technique of Newton Raphson method. Once the solution to 

these equations are obtained, this solution can be used as a good initial guess for 
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solving the coupled nonlinear ordinary differential equations by MATLAB ODE 

solvers which makes use of the well known Runge-Kutta method. A series of 

MATLAB codes (main program along with many functions) were developed which 

upon execution would give the dynamic response of such a distributed parameter 

system. Furthermore, the above set of equations approximates accurately the 

distributed model (3.2.6 to 3.2.10) when N (number of collocation points) is large 

enough. The accuracy increases with increasing N, but so does the computational 

effort. Therefore, the family of orthogonal polynomials and the value of N should be 

properly chosen (a good N value is 40 but 20 is also acceptable) so that the 

computational effort is minimized while the accuracy remains very good.  

 

3.4 Results and Discussions 

 

Let us consider the steady state and dynamic behavior of the reactor resulting when 

the above mentioned parameter values of Alvarez et al. (1981) are used. 
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Figure 3.4.1 represents some of these results. The top 3D plots (Figure 3.4.1.a) 

describe the concentration and temperature profiles inside the reactor at various times. 

The bottom two plots indicate the steady state profiles. The left (Figure 3.4.1.b) shows 

the temperature and concentration profile along the length of the reactor at fixed time, 

and the right (Figure 3.4.1.c) shows profile at different times at fixed axial length.   
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Figure 3.4.2 depicts the variation of temperature and concentration inside the reactor 

for a step change in inlet concentration introduced at time t = 4. This figure consists of 

six subplots; the top two 3D plots (Figure 3.4.2.a) indicate the dynamic profiles of 

temperature and concentration. The middle plot consists of a left plot and right plot. 

The left plot (Figure 3.4.2.b) shows the temperature and concentration at the exit of 

the reactor at different times. The right plot (Figure 3.4.2.c) shows the variation of 

inlet concentration with time. The bottom plots (Figure 3.4.2.d and Figure 3.4.2.e) 

show the steady state temperature and concentration profiles before and after the step 

change in inlet concentration at times equal to 3.5 and 5.5 time units respectively. 

 

Consider that during the operation of the reactor the parameter α (the domain 

parameter associated with the kinetics rate constant) is decreased suddenly from the 

initial value of 0.875 to the new value of 0.8. It should be noted that for catalytic 

tubular reactors, the parameter alpha (α) reflects the catalyst activity during the 

operation of the reactor. The new temperature and concentration profiles are shown in 

Figure 3.4.3. It shows the variation of temperature and concentration inside the 

reactor for a step change in catalyst activity. This figure consists of six subplots; the 

top two 3D plots (Figures 3.4.3.a) indicate the dynamic profiles of temperature and 

concentration at different lengths in the reactor. The middle part consists of a left plot 

and right plot. The left plot (Figure 3.4.3.b) shows the temperature and concentration 

at the exit of the reactor at different times. The right plot (Figure 3.4.3.c) shows the 

variation of catalyst activity with time. The bottom plots (Figure 3.4.3.d and Figure 

3.4.3.e) show the steady state temperature and concentration profiles before and after 

the step change in catalyst activity. If we notice this figure carefully, then we find that 

due to the change in catalyst activity the temperature along the reactor is reduced, the 
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conversion decreases and the hotspot moves towards the middle of the reactor. This 

study would help one to understand the dynamics inside the reactor and maintain the 

operating conditions accordingly. 

 

 

3.5 Mathematical model of a Nonlinear Tubular reactor with recycle 

 

Tubular reactor with recycle is an exemplar of distributed parameter systems with 

recycle. The control of such systems is complex due to complicated dynamics 

exhibited not only due to distributed nature of the problem but also due to positive 

feedback acting on the system (recycles). The primary goal of the control studies is 
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the regulation of the outlet concentration at optimum levels, while at the same time 

attention is paid to the maintenance of a safe operation, by requiring that the 

temperature in the reactor do not exceed some prespecified maximum value. As stated 

in the previous section, one should have a good dynamic profile generator before 

venturing into control studies. So in this section we integrated some of the earlier 

developed MATLAB codes with SIMULINK models to yield the temperature and 

concentration profiles inside the tubular reactors for a given set of input conditions 

and at different recycle ratios and recycle dynamics.  

The mathematical model chosen is similar to that of earlier with minor modifications:  
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where  ( ) rii CrCrC ∗+∗−=∗ 1 and ( ) rii TrTrT ∗+∗−=∗ 1   

in which rC and rT are the concentration and temperature values obtained after the 

reactor exit stream passes through the recycle path and enters the mixer. The variable 

r is the recycle ratio. 000 ≥==
∂
∂

=
∂
∂ ||

|| t,Lz,
z
T,

z
C  Eqn – 3.5.5 

The above set of equations has been considered early by Antoniades and Christofides 

(2001). Dimensionalize the above equations using these dimensionless variables: 
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where Cref and Tref are reference values for concentration and temperature.  

Eqns 3.5.1 - 3.5.5 can be rewritten as follows: 
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valid for 10 << z  and 0t > , with the boundary conditions, 
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where Le is Lewis Number, Pe is Peclet Number, ( ) rii CrCrC ∗+∗−=∗ 1 and 

( ) rii TrTrT ∗+∗−=∗ 1  in which rC and rT are the concentration and temperature 

values obtained after the reactor exit stream passes through the recycle path element 

and enters the mixer. The variable r denotes the recycle ratio. The following 

parameter values (Antoniades and Christofides, 2001) are used to characterize the 

steady state of this system: 21071 ===== TChm ,.B,PePe,Le β  

10001003600048052 =−==−== γ,.C,.T,.T,.B iiWT  
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3.6 Solution Methodology, Results and Discussions 

 

SIMULINK models integrated with MATLAB codes (written earlier to perform the 

operation of orthogonal collocation) were used to solve this problem. A sample 

SIMULINK model is shown below (Figure 3.6.1): 

 

Figure 3.6.1 represents a SIMULINK block diagram of a tubular reactor with recycle. 

The block named "Tubular Reactor" is a MATLAB function which uses an earlier 

coded mfile to obtain the dynamic temperature and concentration profiles. The inputs 

to this system are inlet temperature, inlet concentration, simulation time and Peclet 

number. The outputs from this program are the exit concentration and exit 

temperature of the reactor, the concentration and temperature at a particular length in 

the reactor (in this case it is at a dimensionless distance of 0.5 in the reactor).  
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A FOPDT (first order plus dead time) recycle dynamics is introduced into the system 

by passing the outputs from the tubular reactor (both temperature and concentration) 

through FOPDT transfer function block and sending it to the mixer. Inside the mixer 

both the fresh stream and the recycle stream are mixed in a proper mass balance ratio 

and sent into the reactor, depending upon the choice of "r" (recycle ratio) value 

chosen by the user. Below is the graph (Figure 3.6.2) showing the effect of recycle 

ratio on the behavior of the tubular reactor with recycle. 

 

Our study is focused on the effect of recycle on the open-loop dynamics and on the 

behavior of the closed-loop system. For the open-loop system, we have (r = 0). This 

system possesses a unique globally asymptotically stable spatially non-uniform steady 

state, this has been verified numerically through extensive simulations of the open-

loop system for different initial conditions. Figure 3.6.2 (solid line) shows the steady 

state profile of exit temperature, without any recycle. One can observe that the 
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hotspots occur close to the entrance of the reactor. Subsequently recycles of different 

magnitude were introduced into the system; the flow rate of the fresh feed to the 

system is reduced depending upon the recycle flow rate so that the total flow rate 

remains constant. Figure 3.6.2 shows the steady state profile of exit temperature for 

various recycle ratios, (r = 0.3 – dashed line, r = 0.4 – dotted line, r = 0.5 – dashed-

dotted line, r = 0.6 - ◊, r = 0.7 - ● and r = 0.8 - ►). As the recycle ratio increases, the 

amount of the fresh feed entering the reactor decreases and thus the temperature of the 

hotspot inside the reactor decreases and the location of the hotspots moves towards 

the centre of the reactor. But one drawback of introducing recycles is that the stable 

steady state of the open-loop process gets closer to the instability limit. In particular, 

when the recycle ratio is equal to 0.39, the spatially non-uniform steady state becomes 

unstable and a globally asymptotically stable periodic (limit cycle) spatially non-

uniform state appears.  

Figure 3.6.3 shows limit cycle behavior in the reactor. It consists of 2 sub plots, one 

Figure 3.6.3.a showing the limit cycle behavior at a distance of 0.4 inside the reactor 

and the other Figure 3.6.3.b showing the limit cycle behavior at the exit of the reactor.  
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From the Figure 3.6.3.a and Figure 3.6.3.b it is very clear that, when recycle ratio is 

greater than 0.4 and less than 0.8 the reactor moves to the periodic spatially non-

uniform steady state or exhibits limit cycle behavior. 

 

3.7 Mathematical model of a Linear Tubular reactor 

 

In this section, we consider an isothermal tubular reactor with one reactant and simple 

linear reaction kinetics. This example will be used in future sections to show the 

potential application of modal decomposition on distributed parameter system leading 

to lumped parameter models usable for controller design. A Modal feedforward / 

feedback controller is designed in the new modal space for this system to handle 

measured disturbances anticipated in the inlet concentration by manipulating the 

recycle ratio. This is discussed in the last section of this thesis. 

 

The linear parabolic partial differential equation representing a reaction with a single 

reactant CA occurring in a tubular reactor with axial dispersion and first order kinetics 

is:  
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with initial condition: ( ) )z(C,zC |
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|
A 10 = , where CA is the reactant concentration 

inside the tubular reactor, z| - spatial position (m), t| - time scale (s), ν - superficial 

axial fluid velocity (m/s), kr - kinetic rate constant (1/s), Dr – diffusivity and L - 

length of the reactor (m). This partial differential equation is subjected to the 

following Danckwerts boundary conditions: 
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The above set of equations has been considered by Brown (2001).  
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The above systems of equations are made dimensionless using the following 

definitions: 1411
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where CA0 is some reference reactant concentration. The new sets of equations are, 
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with initial condition: ( ) )z(x,zx 10 = , where x is the reactant concentration inside the 

tubular reactor. The boundary conditions becomes, 
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The parameter values for Pe and B given above (used by Brown, 2001) were used to 

establish the steady state for this system. 

 

3.8 Solution Methodology, Results and Discussion 

 

The orthogonal collocation technique was used to obtain the solution for the above 

problem. Firstly, the collocation points are chosen to be the roots of the orthogonal 

jacobi polynomials as described in section 3.3. Now obtain the A and B matrices such 

that they satisfy








+=== 121 N,N,...,,j,i;
dx

)x(dl
aA ij
ij  

and












+=== 1212

2

N,N,...,,j,i;
dx

)x(ld
bB ij
ij . With the availability of both "A" 

and "B" matrices the first and second derivatives can be substituted as 

∑
+

=

=



 1

1

N

j
jij

i

yA
dx
dy and ∑

+

=

=






 1

1
2

2 N

j
jij

i

yB
dx
yd where yj is the unknown value of y at the 

interpolation point xj. Now that the N+1 interpolation points are chosen, the matrices 
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A and B are completely known. With the unknown concentration value at the 

collocation points, substitute ∑
+
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unknown concentrations xj in both the boundary conditions, as well as in the partial 

differential equations 3.7.3 to 3.7.4. From the boundary conditions, we get the 

boundary points in terms of other internal collocation points.  

For example, the concentration (x1) at 0z = is given by:  
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The concentration (xN+2) at 1z = is given by: 
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Similarly from the partial differential equation we have: 

 i
N

j

j
j,i

N

j

j
j,i

i

BxxAxB
Pedt

dx
−−=



 ∑∑

+

=

+

=

2

1

2

1

1  for ( )12 += N,...,i .  

As the boundary points z = 0 and z = 1 are already known to be in terms of internal 

grid points. The above N ordinary differential equations in N unknowns is a set of 

coupled nonlinear ordinary differential equations which can be solved in MATLAB 

using any of the ODE solvers, if one has a good initial guess to these set of equations. 

A good initial guess can be obtained by considering the steady state conditions of the 

above ordinary differential equations.  
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At steady state, the above equation reduces to this form:  

 01 2

1

2

1
=−− ∑∑

+

=

+

=

i
N

j

j
j,i

N

j

j
j,i BCCACB

Pe . 

These equations represent a set of coupled linear algebraic equations which can be 

solved very easily. Once the solution to these equations are obtained then this solution 

can be used as initial guess for solving the coupled linear ordinary differential 

equations using MATLAB ODE solvers (which implements the well known Runge-

Kutta methods). MATLAB codes (main program with many sub functions) were 

developed which upon execution would give the dynamic response of the reactor.  

 

Furthermore, the above set of equations approximates accurately the distributed 

model (3.7.3 to 3.7.4) when N (the number of collocation points) becomes large 

enough. The accuracy increases with increasing N, but so does the computational 

effort. So the family of orthogonal polynomials and the value of N should be properly 

chosen in a manner that the computational effort is minimized while the accuracy 

remains very good. In this work, N=40 provides high level of accuracy, but a value of 

20 also works well. Figure 3.8.1.a shows the 3D unforced concentration profile in a 

tubular reactor.  
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In this case we have the initial guess for the concentration variable to be equal to one 

throughout the length of the reactor and the inlet concentration to the reactor is 

assumed to be zero. Similarly Figure 3.8.1.b shows the 3D forced concentration 

profile inside the reactor. Here the initial guess is equal to zero and the inlet 

concentration is assumed to be equal to one. 

 

3.9 Linear Tubular reactor with recycle 

 

The modeling of the tubular reactor with recycle is quite similar to what we saw 

earlier but with a slight change in the boundary condition. The governing equation 

remains same (Eqn – 3.7.3 is equal to Eqn – 3.9.1) but the boundary conditions 

change as follows: ( ) ( ) ( )( )txt,xPe
z
t,x

in

∗−=
∂

∂ 00  and ( ) 01
=

∂
∂
z
t,x  Eqn – 3.9.2 

where ( ) ( ) ( )tx*Rtx*)R(tx rinin +−=∗ 1  and xr is the reactant concentration in the 

recycle loop (at the entrance point of the reactor), xin is the fresh feed inlet 

concentration entering the reactor and R is the recycle ratio.  

 

A similar solution methodology mentioned in the earlier sections (about orthogonal 

collocation) is used to obtain the results for this case also. SIMULINK models 

integrated with MATLAB codes as hinted earlier were developed. The parameter 

values used are also the same as used in the previous section as mentioned by Brown 

(2001). Firstly, the steady state equations (which are a set of algebraic equations) are 

solved and then later this solution is used as an initial guess to solve the system of 

ODE's by using any of the MATLAB ODE solvers like ODE45, ODE15s, ODE23s 

etc which makes use of Runge-Kutta method to provide the numerical solution. 
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Figure 3.9.1 shows the forced concentration profile for linear tubular reactor with 

recycle. One can see the characteristic kinks produced by the recycle. A simple first 

order dynamics was considered for the recycle with a dead time of significant 

magnitude (approximately 10% of the total simulation time) and a recycle ratio value 

of 0.2 was used to simulate the process results of which are shown in Figure 3.9.1. 

 

 

3.10 Mathematical model of a Linear Heat exchanger 

 

Here we consider a simple linear tubular heat exchanger with single-pass on both 

shell side and tube side. The liquid stream enters the tube of the heat exchanger and is 

heated by convection from the inner wall. Heat is supplied to the tube by means of 

condensing steam in the jacket. Some of the assumptions made in deriving the 

mathematical model (Hahn et al., 1971) are,  
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System parameters are constant and uniform with respect to time. Axial heat diffusion 

and mixing are significant for the tube side stream. Steam temperature is a function of 

time only and heat capacity of the tube is finite. Tube-side temperature and velocity 

are constant with respect to radial distance. Axial heat conduction in the tube is 

negligible. Outer shell effects are neglected. Based on these assumptions, an energy 

balance over a differential section of the tube side of the exchanger yields: 

 ( )lw
llpl

lwllll TT
AC
Ph

l
T

l
TDT

−+
∂
∂

−
∂
∂

=
∂
∂

ρ
υ

τ 2

2

 Eqn – 3.10.1 

Taking an energy balance over a differential section of wall gives: 

 ( ) ( )wl
wwpw

lwl
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wwpw

swsw TT
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PhTT
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−+−=
∂
∂

ρρτ
 Eqn – 3.10.2 

subject to following boundary conditions: 

 ( ) ( ) ( )( )ττυτ f
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l T,T
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∂
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l
,LTl τ  Eqn – 3.10.3 

The above equations are dimensionalized by introducing these parameters, 

Mean residence time: υτ Lr = sec, Axial Peclet Number: DLυβ = , Dimensionless 

time: rt ττ= , Dimensionless axial distance: Llx = , Dimensionless liquid 

temperature: rl TTu =1 , Dimensionless wall temperature: rw TTu =2 , Dimensionless 

steam temperature: rs TT=θ , The other parameters are:  
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Hence the system of equations with boundary conditions is: 
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subjected to:  ( ) ( ) ( )( )tut,u
x
t,u f

11
1 00

−=
∂

∂ β  & ( ) 011 =
∂

∂
x
t,u  Eqn – 3.10.6 

The numerical values used in this study are as follows:  

795053005165269331 122211 .,.usec,.sec,.sec,.sec,, f
r ======= θττττβ . 

We now apply the orthogonal collocation technique to the above system by 

substituting the first and the second derivative as follows: 
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With these substitutions the equations 3.10.4 and 3.10.5 change as follows: 
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The above system of equations with these boundary conditions are first solved for the 

steady state solution and later used as the initial guess for the dynamic solution. 

  



 63

3.11 Results and Discussions 

 

The Figure 3.11.1.a and 3.11.1.b consist of dynamic profiles for tube side fluid 

temperature and wall side fluid temperature. 

  

 

The Figure 3.11.1.c and 3.11.1.d show the steady state tube side temperature and wall 

side temperature along the length of the reactor. Figure 3.11.2 shows the exit 

temperature profiles of the tube side fluid at different times and at different (β - Peclet 

number) values. It emphasizes on the effect of Axial Peclet number on the exit tube 

side fluid temperature. 
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One can observe that the exit tube side fluid temperature reaches steady state quickly 

as the Peclet number value increases. At low Peclet numbers the exit tube side fluid 

temperature exhibit a sluggish response. 

 

3.12 Conclusion and future directions 

 

In addition to the tubular reactors whose dynamics was studied here, study was also 

done on other examples of tubular reactors considered by Hlavacek and Hofmann 

(1970) and McGowin and Perlmutter (1970). Most of the results quoted by these 

researchers in their paper were replicated using some of the tools developed as part of 

this research. The illustration of the orthogonal collocation technique (in section 3.2), 

one of the weighted residuals techniques, on the linear and nonlinear tubular reactor, 

can also be extended to other physical systems like the heat exchangers which are 

described by parabolic partial differential equations as shown in sections 3.10 and 

3.11. Thus, the orthogonal collocation technique provides best approximate solution 

to most of the physical systems considered and its accuracy is comparable to Galerkin 

method (another weighted residuals technique) and also finite difference 

approximation. This is evident by some of the accurate results obtained using a 

minimal set of collocation points. The orthogonal collocation was chosen to deal with 

the above problems due to its expediency in handling parabolic partial differential 

equations and also for the ease in programming. Because of this attribute, collocation 

method has found wide applications in chemical engineering and other branches of 

engineering. The future direction would be to use this technique to simulate the 

dynamic responses of these physical systems for changes in different input variables 

and this would help us to study various control strategies developed for these systems. 
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CHAPTER 4 

 

MODAL ANALYSIS OF DISTRIBUTED PARAMETER SYSTEMS 

 

4.1 Introduction 

 

This chapter is concerned with the exposition of a novel approach to the dynamic 

analysis and design of control systems for very complex processes. This method not 

only serves as controller tuning guidelines but also can serve as a systematic guide for 

selecting the control system structure or configuration. The approach is based on the 

idea that the dynamic behavior of a system can be represented by the motion of a 

point in an n-dimensional space (state space) which leads to a mathematical model in 

the form of n first-order differential equations. The ideas presented in this chapter are 

largely due to Rosenbrock (1962), with extensions to distributed parameter systems 

by Murray-Lasso (1965) and Gould and Murray-Lasso (1966). The central theme here 

is that the transient behavior of a process is governed by the dominant modes 

associated with the smallest eigenvalues. If it is possible to approximate the high 

order system by a lower order system whose slow modes are the same as those of the 

original system, then attention can be focused on altering the eigenvalues of the slow 

modes so as to increase the speed of recovery of the process from disturbances. It is 

essential to be aware of the fact that various disturbances excite the modes differently 

so that a scheme which is based on a lower-order model may be inappropriate if a 

disturbance injects most of its "energy” in a fast mode which has been neglected. 

However, implicit in Rosenbrock's approach is the possibility of altering each 

eigenvalue separately so that the resulting control system can be viewed as being non-
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interacting in the sense that manipulation of one mode may not alter any other mode. 

Thus it may be possible, with enough measurements and controls (manipulations), to 

speed up the recovery from any expected disturbance. There are obvious limitations to 

this, since all the states cannot be measured in practice and controls cannot be applied 

to all states. This will limit the extent to which the speed of response of a mode can be 

increased. The problem of representing a linear distributed parameter system in terms 

of its modes is examined here and consideration is given to the limitations imposed by 

being able to make only finite discrete measurements and to manipulate only a finite 

number of modes. 

 

4.2 Modal analysis of Lumped parameter systems 

 

One of the approaches to multivariable controller design is to use Modal Feedback 

Control. This technique makes use of the linear nature of the system model to design a 

control scheme which allows one to specify the closed-loop eigenvalues of the system. 

To illustrate this, let us consider the modal control of a simple CSTR in which 

irreversible first order reactions CBA kk →→ 21 takes place. The rates of the 

reactions are given by ACkr 11 = and BCkr 22 = where k1 and k2 are constants. The 

modeling equations take the form, 

 ( ) ( )AAAf
A CkVCCF

dt
dCV 1−−=  with ( ) 00 AA CtC ==  Eqn – 4.2.1 

 ( ) ( )BABBf
B CkCkVCCF
dt
dC

V 21 −+−=  with ( ) 00 BB CtC ==  Eqn – 4.2.2 

Now it is desired to control CA and CB as close as possible to a desired set point CAd 

and CBd by adjusting CAf and CBf (the feed concentrations of A and B). 

Let us now define some of the dimensionless constants, 
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where CA,ref and CB,ref are arbitrary reference concentrations of A and B respectively. 

In this instance, the modeling equations take the form,  

 ( ) 111
1 1 uxDa
dt
dx

++−=  with ( ) 101 0 xtx ==  Eqn – 4.2.3 

 ( ) 22211
2 1 uxDaxDa
dt
dx

++−= with ( ) 202 0 xtx ==  Eqn – 4.2.4 

Thus one wishes to control the reactor outlet concentration x1, x2 by adjusting the feed 

concentrations u1 and u2. Putting the system into linear state variable matrix form i.e. 

BuAxx +=& we have, 
( )
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Let us suppose that both x1 and x2 are available as outputs, so any output of the form 

y = Cx is possible. Now if we apply a simple single-loop proportional feedback 

control on the states (where we assume the set points to be zero) we have, 

U1 = -k11x1 and U2 = -k22x2. Then the system equations are 

 ( ) 1111
1 1 xkDa
dt
dx

++−=  and ( ) 222211
2 1 xkDaxDa
dt
dx

++−= . 

Even though k11 may be used to control x1, there is a strong influence of x1 on the 

state x2. Let us now apply modal control to the problem. We begin by determining the 

eigenvalues and eigenvectors of the state matrix A. Thus we have the eigenvalues of 

A matrix as  ( )11 1 Da+−=λ  and ( )22 1 Da+−=λ .  

From standard matrix algebra, we have their right and left eigenvectors as 
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Now because each eigenvector is uniquely determined only up to a multiplicative 

constant, one can divide the r1 and r2 by ( )211 DaDaDa −  to make the matrix of right 

and left-hand eigenvectors orthonormal. Thus finally we have, 
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and one may verify that LR = I. Now if we let C = L and choose GC to be a diagonal 

proportional controller of the form 







==

22
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0
0
k

k
GK C then we have 111 xDay = and 

( ) 221112 xDaDaxDay −+= and the feedback control law becomes RKLxu −= where  
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Therefore we have the system as,  ( ) 1111
1 1 xkDa
dt
dx

++−=  Eqn – 4.2.5  

 ( ) 22221
21

2211
1

2 11 xkDax
DaDa
kkDa

dt
dx

++−







−
−

+=  Eqn – 4.2.6 

The outputs are then given by:  ( ) 1111
1 1 ykDa
dt
dy

++−=  Eqn – 4.2.7 

  ( ) 2222
2 1 ykDa
dt
dy

++−=  Eqn – 4.2.8 

shows no interaction. Now if one considers, the features of modal feedback control 

for this problem we have the outputs to be controlled independently without any 
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interaction, and this is an advantage if a meaningful set point could be devised. 

Another advantage of the controller matrix is that if k11 and k22 are chosen so that 

  211122 DaDakk −=−  

then the equations for the states (Eqn – 4.3.5 and Eqn – 4.3.6) do not show any 

interactions. This is not a general property of modal control, but is due to the 

particular structure of this example problem. Because the matrix A should be known 

and all the states must be accessible, modal control design in the transformed domain 

is a little artificial. However, one may obviously use it if one desires. For a more 

complex example of modal control of lumped parameter systems, the reader is 

advised to refer to Davison and Goldberg (1969) or Davison and Chadha (1972). 

 

4.3 Modal analysis of a distributed parameter system - Linear Tubular 

reactor 

 

A convenient way and useful form of analysis of second order partial differential 

equations is through modal decomposition. This form of analysis is possible when the 

equation is of this form: BuAx
t
x

+=
∂
∂   Eqn - 4.3.1 

where  ( ) ( ) ( ) ( )xzA
z
xzA

z
xzAt,zAx 012

2

2 +
∂
∂

+
∂
∂

=  Eqn – 4.3.2 

is a spatial operator in one dimension and which has a real, discrete spectrum of 

eigenvalues. This leads to a second order parabolic set of PDE's. It is possible to 

extend this to two and higher space dimensions also.  A wider discussion on this can 

be found in Ray (1981). Perhaps the best means of discussing the modal reduction of 

distributed parameter systems is by considering some example problems. We begin by 
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studying the control of exit concentration of a Tubular reactor in which a simple first 

order reaction occurs and the reactor is assumed to be isothermal in nature so that the 

nonlinearities introduced from the rate of equation term do not enter the system.  

 

A tubular reactor is depicted in Figure 4.3.1 

 

Often these reactors are fed at the inlet boundary (z = 0) with a certain reactant 

concentration (Xr) in order to obtain a desired outlet product concentration at (z = L). 

As a result, the input (Xr,in) appears in the boundary condition of the model. The first 

step in rendering the model amenable to modal decomposition is to make the 

boundary conditions homogenous. The method of separation of variables is used, and 

the spatial ODE is solved using some of the well known mathematical tools relating to 

eigenvalues and eigenvectors. 

 

4.3.1 Mathematical Model of a linear Tubular reactor 

 

The linear parabolic partial differential equation representing a reaction involving a 

single reactant A occurring in a tubular reactor with axial dispersion and first order 

kinetics is:  ( ) ( ) ( ) ( )||
Ar|
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||
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t,zCD
z
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−=
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∂
2

2
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Eqn – 4.3.1.1  

with initial condition: ( ) )z(C,zC |
A

|
A 10 = , where CA is the reactant concentration 

inside the tubular reactor, z| - spatial position (m), t| - time scale (s), ν - superficial 

axial fluid velocity (m/s), kr - kinetic rate constant (1/s), Dr – diffusivity and L - 
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length of the reactor (m). This partial differential equation is subject to the following 

Danckwerts boundary conditions: 

 ( ) ( ) ( )( )|in,A
|

A|

|
A

r tCt,C
z
t,CD −=

∂
∂ 00 υ  and ( ) 0=

∂
∂

|

|
A

z
t,LC  Eqn – 4.3.1.2 

The above set of equations has been considered by Brown (2001). To convert the 

above equation system to a dimensionless form, we define 
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where CA0 is some reference reactant concentration. The new sets of equations are, 

 ( ) ( ) ( ) ( )t,zBx
z
t,zx

Pez
t,zx

t
t,zx

−
∂

∂
+

∂
∂

−=
∂

∂
2

21  Eqn – 4.3.1.3 

with initial condition: ( ) )z(x,zx 10 = , where x is the reactant concentration inside the 

tubular reactor. The boundary conditions also changes as follows, 

 ( ) ( ) ( )( )txt,xPe
z
t,x

in−=
∂

∂ 00  and ( ) 01
=

∂
∂
z
t,x  Eqn – 4.3.1.4 

The above system of equation is not homogeneous; hence make the system 

homogeneous by shifting the non homogeneous part of the boundary condition into 

the partial differential equation using a Dirac delta function.  

With the above modification, the system becomes 

 ( ) ( ) ( ) ( ) )t(x)z(t,zBx
z
t,zx

Pez
t,zx

t
t,zx

inδ+−
∂

∂
+

∂
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−=
∂

∂
2

21  Eqn – 4.3.1.5  

with initial condition: ( ) )z(x,zx 10 = , where x is concentration of reactant inside the 

tubular reactor. The boundary conditions also changes as follows, 

 ( ) ( )t,x*Pe
z
t,x 00
=

∂
∂ and ( ) 01

=
∂

∂
z
t,x  Eqn – 4.3.1.6 

Now the above system Eqn – 4.3.1.5 and Eqn – 4.3.1.6 is amenable to modal 

decomposition or variable separable method.  
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Let us assume the solution to be of the form: ∑
∞

=

=
1n

nn )z()t(a)t,z(x φ , Similarly the 

inlet concentration can also be expanded as: ∑
∞

=

=
1n

nnin )z()t(c)t(x)z( φδ .  

Introducing these approximate solutions into Eqn – 4.3.1.5 we have Eqn – 4.3.1.7, 
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Dividing Eqn – 4.3.1.7 by an(t)φn(z) yields an ODE which can be divided into a left 

side which depends solely on "t" and a right side that is a function of "z" alone. For 

this equality to hold for all (z,t), both sides must be equal to constant (-λn), resulting 

in nn
nn

n
n

n
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dz
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Pedz
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2111  Eqn – 4.3.18 

Now Eqn – 4.3.1.8 can be separated into the following ODE's: 

 01
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dz
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)z(d
Pe nn

nn φλφφ   Eqn – 4.3.1.9 

 )t(c)t(a
dt
)t(da

nnn
n =+ λ  Eqn – 4.3.1.10 

The boundary condition is as follows, ( ) ( )00
n

n Pe
dz

d φφ
∗=    and   ( ) 01

=
dz
d nφ  

The above system is the familiar eigenvalue problem. The solution to Eqn – 4.3.1.9 

subject to the above boundary conditions is obtained by putting it into Sturm-

Liouville form. A detailed analysis can be obtained from Ray (1981). 

The solution φn(z) is of the form: ( ) ( )
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λn is given by,  BPe
Pe
n

n ++=
4

2α
λ  and  

Bn is given by, 
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Along with Bn, an(t)'s and cn(t)'s also satisfy the orthonormal property and are 

obtained as follows,  )()t(xdz)zPeexp()z()t(x)z()t(c ninninn 0
1

0

φφδ ∗=∗−= ∫ .  

 ∫ ∗−===
1

0
0 00 dz)zPeexp()z(),z(xa)t(a nnn φ  

Once the cn's are obtained, Eqn – 4.3.1.10 can be used either for obtaining dynamic 

responses of the system or for control studies on the system. 

 

4.3.2 Results and Discussions 

 

The dynamic response to the system can be studied in two phases,  

1. Unforced solution  2. Forced solution. 

In the unforced solution case we have, xin(t = 0) = 0, hence cn = 0 and x(z,0) = 1 and 

in the forced solution case we have, xin(t = 0) = 1, and x(z,0) = 0 hence we have an0 = 

0. The unforced and the forced solution to the above problem can be clearly 

understood by studying Figure 4.3.2 consisting of four sub plots. The top sub plots 

represent the plots for the unforced solution and the bottom two sub plots represent 

the forced solution of the tubular reactor. This figure basically shows the effect of 

number of modes on the solution, four simulations were done. First simulation shows 

the unforced solution (xin(t = 0) = 0, hence cn = 0) from a nonzero initial condition 

x(z,0) = 1, with only five modes (n = 5). 
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The temporal ODE given by Eqn – 4.3.1.10 is solved using the initial condition 

calculated by ∫ ∗−===
1

0
0 00 dz)zPeexp()z(),z(xa)t(a nnn φ . 

Therefore the solution to Eqn – 4.3.1.10 is given by ( ) ( )texpata nnn λ−∗= 0 . The 

eigenvalues corresponding to the first five modes are as follows, 

 [ ]161.3 92.204, 42.84, 13.162, 2.312,=nλ . 

The other vectors are given by [ ]1.4087 1.4046, 1.3934, 1.3446, 0.92139,=nB . 

 [ ]0.0062439 0.010981, 0.023981, 0.083182, 0.85327,0 =na . 

 [ ]12.645 9.5296, 6.4382, 3.431, 0.96019,=nα . 

One can see from figure 4.3.2.a that initially there are small oscillations in the 

solution (across the reactor in 'z'), but then the solution progresses smoothly from its 

initial value of x(z,0) = 1 down to zero. Figure 4.3.2.b shows the same unforced 

solution obtained by considering more number of modes (n = 25). The difference in 

unforced solution obtained by these two different number of modes is negligible over 
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the entire time span. The forced solution is found by using the same procedure as in 

the unforced case, but we begin with an initial condition of x(z,0) = 0 and an input 

xin(t = 0) = 1. Therefore cn(t) is calculated by, 

 )()t(xdz)zPeexp()z()t(x)z()t(c ninninn 0
1

0

φφδ ∗=∗−= ∫ .  

Figure 4.3.2.c shows the response when five modes were considered and Figure 

4.3.2.d shows the response when twenty five modes were considered. If only five 

modes are used, the forced solution shows signs of the sin and cosine oscillations 

from using too few modes; this is evident in Figure 4.3.2.c. From the above discussion 

one can conclude that it is possible to capture the behavior of the system with a small 

number of modes, and thus may be able to represent the infinite dimensional system 

as a low dimensional lumped parameter system and use conventional control methods. 

The original distributed system, Eqn – 4.3.1.1, has now been decomposed into a set 

of n ODE's characterized by the system's eigenfunctions, Φn and its eigenvalues λn. If 

the infinite dimensional system can be represented by finite dimensional 

approximation, then it is possible to apply conventional control techniques in this new 

modal space. 

 

4.4 Modal analysis of a distributed parameter system - Linear Heat 

Exchanger 

 

Here we consider the linear tubular heat exchanger with axial diffusion. A simple 

single-pass shell and tube heat changer is considered. The main objective would be to 

control the tube-side outlet temperature at a desired value, in-spite of disturbances and 

changes in set points. The load disturbances are assumed to be fluctuations in the feed 
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temperature and the manipulated variable is taken to be the steam temperature in the 

shell, which is a function of time only.  

A simple schematic depicting the heat exchanger is shown above in Figure 4.4.1, 

 

 

4.4.1 Mathematical model of a linear heat exchanger 

 

A simple linear tubular heat exchanger with single-pass on both shell side and tube 

side is considered. The liquid stream enters the tube of the heat exchanger and is 

heated by convection from the inner wall. Heat is supplied to the tube by means of 

condensing steam in the jacket. Some of the assumptions made in deriving the 

mathematical model (Hahn et al., 1971) are stated in section 3.10. 

Based on the assumptions made in section 3.10 and an energy balance over a 

differential section of the tube side of the exchanger yields: 

 ( )lw
llpl

lwllll TT
AC
Ph

l
T

l
TDT

−+
∂
∂

−
∂
∂

=
∂
∂

ρ
υ

τ 2

2

 Eqn – 4.4.1.1 

Taking an energy balance over a differential section of wall gives: 
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 Eqn – 4.4.1.2 

subject to following boundary conditions: 
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The above equations are dimensionalized by introducing the following parameters, 

Mean residence time: υτ Lr = sec, Axial Peclet Number: DLυβ = , Dimensionless 

time: rt ττ= , Dimensionless axial distance: Llx = , Dimensionless liquid 

temperature: rl TTu =1 , Dimensionless wall temperature: rw TTu =2 , Dimensionless 

steam temperature: rs TT=θ , The other parameters are:  
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Hence the system of equations with boundary conditions is: 
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t,u  Eqn – 4.4.1.6 

where fu1 is the inlet fluid temperature and θ is the steam temperature. The numerical 

values used in this study are as follows: sec.sec,.sec,, r 65269331 211 ==== τττβ  

..,.,.,.,.usec,. rrrf 857121321181307950530051
22211

122 ======
τ
τ
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τθτ  

The above system of equation is not homogeneous; hence we make the system 

homogeneous by shifting the non homogeneous part of the boundary condition into 

the partial differential equation using the Dirac delta function.  

With the above modification, the system becomes: 
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subject to:  
( ) ( )t,u
x
t,u 00

1
1 β=
∂

∂  & ( ) 011 =
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∂
x
t,u  Eqn – 4.4.1.9 

Now the above system Eqn – 4.4.1.7, Eqn – 4.4.1.8 and Eqn – 4.4.1.9 is amenable to 

modal decomposition or variable separable method.  

Let us assume the solution to be of the form:  
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Similarly the inlet temperature and steam temperature can also be expanded as:  
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Introducing these approximate solutions into Eqn – 4.4.1.7, Eqn – 4.4.1.8 and in the 

boundary conditions Eqn – 4.4.1.9 we have Eqn – 4.4.1.10, Eqn – 4.4.1.11 and the 

boundary conditions Eqn – 4.4.1.12 respectively. 
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  Eqn – 4.4.1.10 
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Dividing Eqn – 4.4.1.10 by an(t)φn(x) yields an ODE which can be divided into a left 

side which depends solely on "t" and a right side that is a function of "x" alone. For 

this equality to hold for all x and t, both sides must be equal to constant (-λn), 

resulting in:  ( ) nnn
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 Eqn – 4.4.1.14 
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The above ODE's can be simplified:  
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n 8130+=+ λ  Eqn – 4.4.1.16 

The boundary condition remains the same as above (Eqn – 4.4.1.12). 

Dividing Eqn – 4.4.1.11 by φn(x) yields an ODE which can be written as, 

 ( ) ( ) ( )( ) ( ) ( )( )tbtatbtd
dt
tdb

nn
r

nn
rn −+−=

2122 τ
τ

τ
τ  Eqn – 4.4.1.17 

Eqn – 4.4.1.15 subject to boundary condition Eqn – 4.4.1.12, has following solution:  

 ( ) ( ) ( )







+






= xsinxcosx*expBx n

n
nnn α

α
βαβφ

22 , 

where αn is obtained by solving ( )

4

2
2 βα

βα
α

−
=

n

n
ntan , 

λn is given by  8130
4

2

.n
n ++=

β
β
αλ  and  

Bn is given by 

21
1

0

2

2

/

n
n

nn dx)xsin()xcos(B

−




















+= ∫ α

α
βα   

Along with Bn, dn(t)'s and cn(t)'s also satisfy the orthonormal property and are 

obtained as follows,  
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On simplification this yields,  
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With the availability of cn(t) and dn(t) one can solve both equations Eqn – 4.4.1.16 

and Eqn – 4.4.1.17 simultaneously either analytically or numerically. Here numerical 

solution was obtained by solving these equations simultaneously using stiff ODE 

solvers in MATLAB like ODE15s. If one uses other ODE solvers like ODE45 or 

ODE23s etc the simulation time taken is very long and meaningful results are not 

guaranteed. Once we obtain an(t) and bn(t) then using the relationships 

 ( ) ( ) ( )∑
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=

=
1

1
n

nn xtat,xu φ  and ( ) ( ) ( )∑
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=

=
1

2
n
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one can obtain the dimensionless tube side fluid temperature (u1) and the 

dimensionless shell side fluid temperature (u2). Now one can reconvert the 

dimensionless temperatures to the original temperatures with the help of the 

dimensionalizing variables. Thus, modal analysis yields both the dynamic solution as 

well as helps one to perform other control studies. 

 

4.4.2 Results and Discussions 

 

Simple computer programs were developed to perform the operation of modal 

decomposition. The earlier suggested parameter values were used and some of these 

results are presented below. These results can be compared with the orthogonal 

collocation results presented in the section (3.11). Figure 4.4.2 shows the dynamic and 

steady state temperature profiles of shell side fluid and tube side fluid in the linear 

heat exchanger. The top two 3D plots (Figure 4.4.2.a and Figure 4.4.2.b) consist of 

dynamic profiles for tube side fluid temperature and wall side fluid temperature. The 

bottom two plots (Figure 4.4.2.c and Figure 4.4.2.d) show the steady state wall side 
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and tube side temperature along the length of the reactor. The bottom two plots 

showing the steady state profiles consist of 3 distinctive curves. 

 

The one which is solid-line shows oscillations and is obtained when five modes were 

used to approximate the distributed parameter system. This sort of approximation is 

quite useful when one proceeds for control studies in which one is limited to have a as 

few sensors as possible. The curve which is (*) is the one obtained from orthogonal 

collocation described in the earlier chapter (refer sections 3.10 and 3.11). The curve 

with dashes and 'x' is the one obtained by modal analysis using more number of 

modes (N = 25). One can observe that as the number of modes are increased the 

accuracy of the solution increases significantly and at infinite number of modes one 

can have an exact solution of the system. With even 25 - number of modes the modal 

analysis solution is in close agreement with the orthogonal collocation results 
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obtained with 20 collocation points. Except at the initial part of the reactor the 

solutions are in very good agreement at all other points in the reactor. 

 

4.5 Modal analysis of a linear tubular reactor with recycle 

 

Consider an isothermal linear tubular reactor with recycle shown in Figure 4.5.1, in 

which an irreversible first order reaction of the form BA→  takes place. The outlet 

from the tubular reactor is fed to a separator where the unreacted species A is 

separated from product B. Here the separator is assumed to be of negligible dynamics 

and hence removed from the picture. The unreacted species A is then fed back to the 

tubular reactor through a recycle loop, which has a simple first order dynamics. It is 

assumed that there is negligible time delay in the recycle path and the mixing in the 

mixer (represented by the summation block in Figure 4.5.1) is instantaneous. 

 

 

A linear parabolic second order partial differential equation describes the tubular 

reactor dynamics and a simple first order ordinary differential equation describes the 

recycle path dynamics. Assume that the density, mass diffusivity, reaction rate 

constant and axial fluid velocity are constant. Also, we assume that there is negligible 

reaction taking place in the recycle loop and there is instantaneous mixing of the fresh 

feed and recycle feed at the reactor inlet. The model can now be written as 
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with initial condition: ( ) )z(C,zC |
A

|
A 10 = , where CA is the reactant concentration 

inside the tubular reactor and Ae
|

r C)t(C == 0 , where Cr is the reactant concentration 

in the recycle loop. z| - spatial position (m), t| - time scale (s), ν - superficial axial fluid 

velocity (m/s), kr - kinetic rate constant (1/s), Dr - diffusivity, L - length of the reactor 

(m), TR – recycle path time constant (s) and KR - gain in the recycle path. 

These partial differential equations are subject to the following Danckwerts boundary 
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where ( ) ( ) ( )|r
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|

in,A tCRtC)R(tC ∗+∗−=∗ 1 , is obtained from taking a material 

balance on the mixer present at the entrance of the tubular reactor. Here CA,in is the 

fresh feed reactant concentration, Cr is the reactant concentration coming from the 

recycle loop and R is the recycle ratio.  

The above equations are to be made dimensionless, so put 
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where CA0 is some reference reactant concentration. The new sets of equations are: 
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where x is the reactant concentration inside the tubular reactor, xr is the reactant 

concentration in the recycle loop, with initial condition: ( ) )z(x,zx 10 = , ( )t,x)t(xr 10 ==  
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The boundary conditions also change as follows, 
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where ( ) ( ) ( )tx*Rtx*)R(tx rinin +−=∗ 1  

The above system of equation is not homogeneous; hence make the system 

homogeneous by shifting the non homogeneous part of the boundary condition into 

the partial differential equation using a Dirac delta function. With the above 

modification, the system becomes 
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where ( ) ( ) ( )tx*Rtx*)R(tx rinin +−=∗ 1  

 ( ) ( ) ( )t,xKtx
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R 1=+
∂

∂τ  Eqn – 4.5.8  

with initial condition:  

( ) )z(x,zx 10 = , x is the reactant concentration inside the tubular reactor. 

 ( )t,x)t(xr 10 == , xr is the reactant concentration in the recycle loop.  

The boundary conditions also changes as follows, 

 ( ) ( ) Pet,x
z
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∗=
∂

∂ 00  and ( ) 01
=

∂
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z
t,x  Eqn – 4.5.9 

Now two kinds of study can be carried out, 

1. Fix the recycle ratio and obtain the dynamic response of the system by varying 

the inlet concentration. 

2. Keep inlet concentration fixed and obtain the dynamic response of the system 

by varying the recycle ratio. 

Case 1:  

Now apply modal decomposition technique to solve item 1, considered above: 
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Let us assume the solution to x(z,t) as ∑
∞
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Similarly the inlet concentration and recycle concentration can also be expanded as  
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  Eqn – 4.5.10 

Dividing Eqn – 4.5.10 by an(t)φn(z) yields an ODE which can be separated into a left 

side which depends solely on "t" and right side that is a function of "z" alone. For this 

equality to hold for all (z,t), both sides must be equal to constant (-λn), resulting in 
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Now Eqn – 4.5.11 can be separated into the following ODE's:  
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Eqn – 4.5.12 subject to the above boundary condition has following solution:  
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Along with Bn, an(t)'s and cn(t)'s also satisfy the orthonormal property and are 

obtained as follows,  
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For the forced solution to the above problem we have, xin(t = 0) = 1 and x(z,0) = 0 

hence we have an0 = 0. Similarly Eqn – 4.5.8 changes to the following form, 
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Once the Φ are known then one should solve Eqn – 4.5.13 and Eqn – 4.5.14 

simultaneously as they are coupled equations and other parameters like R and bn(t)  

are known. This can be done by arranging Eqn – 4.5.13 and Eqn – 4.5.14 together in 

state space form: BUAY
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where 
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φ −= . p stands for the row number and q represents the column 

number. p can take values ranging from n+1 to 2n and q can take values from 1 to n. 

Now the above state space system can be easily solved by any of the MATLAB ODE 

solvers like the ODE45, ODE15s and ODE23s etc. Once the solution for Y is 

obtained one can decompose it into an(t) and cn(t) parts. After obtaining an(t) and cn(t), 

the dynamics x(z,t) can be obtained using the relationship ∑
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Case 2:  

Apply modal decomposition technique to this item 2 mentioned above. Let us assume 
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Therefore the Eqn – 4.5.7 changes to: 
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  Eqn – 4.5.15 
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Dividing Eqn – 4.5.15 by an(t)φn(z) yields an ODE which can be separated into a left 

side which depends solely on "t" and right side that is a function of "z" alone. For this 

equality to hold for all (z,t), both sides must be equal to constant (-λn), resulting in 

 ( ) nn
nn

n
ninn

n

n

)z(B
dz

)z(d
Pedz

)z(d
)z(

tbx)t(Rc
dt
)t(da

)t(a
λφ

φφ
φ

−=







−+−=




 −− 2

2111  Eqn – 4.5.16 

Now Eqn – 4.5.16 can be separated into the following ODE's:  

 01
2

2

=−+− )z()B(
dz

)z(d
dz

)z(d
Pe nn

nn φλφφ   Eqn – 4.5.17 

 ( ) ( ) ( ) ( )tbxtRcta
dt
tda

ninnnn
n +=+ λ  Eqn – 4.5.18 

The boundary condition is as follows, ( ) ( )00
n

n Pe
dz

d φφ
∗=    and   ( ) 01

=
dz
d nφ . 

Eqn – 4.5.12 subject to the above boundary condition has following solution:  

 ( ) ( ) ( )







+






 ∗

= zsinPezcoszPeexpBz n
n

nnn α
α

αφ
22

, 

where αn is obtained by solving ( )

4

2
2 Pe
Petan

n

n
n

−
=
α

αα , 

λn is given by BPe
Pe
n

n ++=
4

2αλ   

and Bn is given by 

21
1

0

2

2

/

n
n

nn dz)zsin(Pe)zcos(B

−




















+= ∫ α

α
α   

Along with Bn, an(t)'s and cn(t)'s also satisfies the orthonormal property and are 

obtained as follows, ( ) ( ) ( )( ) ( ) ( ) ( ) ( )011
1

0
nnn )t(RdzzPeexpztRztb φφδ ∗−=∗−−= ∫  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0
1

0
nrnrn txdzzPeexpztxztc φφδ ∗=∗−= ∫  
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For the forced solution to the above problem we have, xin(t = 0) = 1, and x(z,0) = 0 

hence we have an0 = 0. Similarly Eqn – 4.5.8 changes to the following form, 

 ( ) ( ) ( ) ( )∑
∞

=

=+
1

1
m

mmnRn
nR taBKtc
dt
tdc φτ  Eqn – 4.5.19 

Once the Φn are known then one should solve Eqn – 4.5.18 and Eqn – 4.5.19 

simultaneously as they are coupled equations and other parameters like R and bn(t)  

are known. This can be done by arranging Eqn – 4.5.18 and Eqn – 4.5.19 together in 

state space form  BUAY
dt
dY

+=  

 where [ ]nnnn c,c....c,c,a,a....a,aY 121121 −−=   

and  [ ]nn b,b......b,bU 121 −= .  

Assuming that four modes (n = 4) are sufficient to approximate the system we have A 

and B matrices as: 
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where 
( )

R

npqR
pq

qBK
A

τ
φ −= . p stands for the row number and q represents the column 

number. p can take values ranging from n+1 to 2n and q can take values from 1 to n. 

Now the above state space system can be easily solved by any of the MATLAB ODE 

solvers like the ODE45, ODE15s and ODE23s etc. Once the solution for Y is 

obtained one can decompose it into an(t) and cn(t) parts. After obtaining an(t) and cn(t) 

then one can obtain the dynamics x(z,t) completely by ∑
=

=
4

1n
nn )z()t(a)t,z(x φ . 

 

4.6 Results and discussions on modal analysis of DPS with recycles 

 

The most interesting feature is that even though the modal analysis of DPS with 

recycle was carried out by two ways both end up giving the same result. This helps us 

to analyze the process behavior for both recycle ratio and inlet concentration as 

manipulated variables. Consequently, in the next chapter an extensive study is carried 

out in which a modal feedforward controller is designed to handle disturbances 

anticipated in the inlet concentration by manipulating the recycle ratio. The result for 

the tubular reactor with recycle is presented in the Figure 4.6.1. It consists of four 

subplots. Figure 4.6.1.a, Figure 4.6.1.b and Figure 4.6.1.c show the 3D dynamic 

profiles and Figure 4.6.1.d shows the steady state profiles. Figure 4.6.1.a is obtained 

by the above illustrated modal analysis theory (section 4.5 - both case 1 and case 2) 

and using five number of modes. Figure 4.6.1.b is also obtained by modal analysis 

theory only but using twenty five number of modes. Figure 4.6.1.c is obtained from 

orthogonal collocation technique (section 3.9) with twenty collocation points. Figure 

4.6.1.d shows a comparison of modal analysis and orthogonal collocation in terms of 

steady state concentration profiles along the length of the reactor.  
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Three important things to be observed are: 

1. The time taken to reach the steady state in case of tubular reactor with recycle is 

significantly (eight times) higher than tubular reactor without recycle. 

2. The exit concentration value has increased from 0.6 (approx) to 0.8 (approx). 

3.  Both the orthogonal collocation (N = 20) and modal analysis with 25 modes give 

same results and are in perfect match as seen in Figure 4.6.1.d. 

 

4.7 Conclusions 

 

A very attractive technique (Modal Analysis) was investigated in this section for 

treating PDEs which have a real, discrete spectrum of eigenvalues and can be made 

self-adjoint. This technique is a natural reduction method and works well with only a 

few modes for the different physical systems, as illustrated by the simulation results. 
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CHAPTER 5 

 

MODAL CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 

  

5.1 Introduction 

 

A very valuable use of modal decomposition is in the design of control systems. Such 

applications have been discussed by Ajinkya et al. (1975), Gilles (1973), Wang 

(1972), Gould (1969) and Gould and Murray-Lasso (1966). Let us consider the 

control structure in Figure 5.1.1, where we assume the outputs to be the state variable 

itself. The control "u" is applied to the plant, yielding state x(z,t). 

 

The state x(z,t) and the desired state xd(z,t) are fed to the Modal Analyzer (MA) given 

by: ( )[ ]∫ ∗−−=
1

0

dz)zPeexp()z()t,z(xt,zx)t(a ndn φ  Eqn – 5.1.1 

The resulting coefficients (an(t)) are the error signal xxa dn −=  for n = 0, 1, 2 …. N, 

are fed to the N+1 variable lumped parameter feedback controller (MFBC). The 

outputs of this are the controller coefficients cn(t).  

These are then fed to a Modal Synthesizer (MS) which is governed by: 
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 )()t(xdz)zPeexp()z()t(x)z()t(c ninninn 0
1

0

φφδ ∗=∗−= ∫  Eqn – 5.1.2 

This produces the control signal u(t) which is fed to the plant. Notice that the 

multivariable controller for this linear problem now consists of N+1 single-loop 

controllers. This is because there are no interactions in the modal formulation for 

linear problems, i.e the coefficient cn(t) only influences coefficient an. In principle, 

this control scheme requires that the complete state x(z,t) must be specified as an 

output. In practice, of course, this is impossible. However, one can provide this 

information in several ways. 

1. One can measure x(zi,t), i = 1, 2, ….L, at a large number of points and 

simply smooth these data to get x(z,t). 

2. One can measure x(zi,t), at only a few points (possibly one or two) and use 

a state estimator to provide estimates of x(z,t). 

3. One can also use the matrix scheme suggested by Gould (1969). 

The best way to understand modal control studies is through examples. So in this 

chapter we present two illustrative examples - a tubular reactor with recycle and a 

heat exchanger. Modal control will be demonstrated on these systems. 

 

5.2 Modal control of a linear tubular reactor with recycle 

 

Consider an isothermal linear tubular reactor with recycle shown in Figure 5.2.1, in 

which an irreversible first order reaction of the form BA→  takes place. The outlet 

from the tubular reactor is fed to a separator where the unreacted species A is 

separated from product B. Here the separator is assumed to be of negligible dynamics 

and hence removed from the picture. The unreacted species A is then fed back to the 
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tubular reactor through a recycle loop, which has a simple first order dynamics. It is 

assumed that there is negligible time delay in the recycle path and the mixing in the 

mixer (represented by the summation block in Figure 5.2.1) is instantaneous. 

 

A linear parabolic second order partial differential equation describes the tubular 

reactor dynamics and a simple first order ordinary differential equation describes the 

recycle path dynamics. Assume that the density, mass diffusivity, reaction rate 

constant and axial fluid velocity are constant. Also, we assume that there is negligible 

reaction taking place in the recycle loop and there is instantaneous mixing of the fresh 

feed and recycle feed at the reactor inlet. The model can now be written as 

 ( ) ( ) ( ) ( )||
Ar|

||
A

r|

||
A

|

||
A t,zCk

z
t,zCD

z
t,zC

t
t,zC

−
∂

∂
+

∂
∂

−=
∂

∂
2

2

ν  Eqn – 5.2.1 

 
( ) ( ) ( )|AR

|
r|

|
r

R t,LCKtC
t
tCT =+

∂
∂

 Eqn – 5.2.2 

with initial condition: ( ) )z(C,zC |
A

|
A 10 = , where CA is the reactant concentration 

inside the tubular reactor and Ae
|

r C)t(C == 0 , where Cr is the reactant concentration 

in the recycle loop. z| - spatial position (m), t| - time scale (s), ν - superficial axial fluid 

velocity (m/s), kr - kinetic rate constant (1/s), Dr - diffusivity, L - length of the reactor 

(m), TR – recycle path time constant (s) and KR - gain in the recycle path. 

These partial differential equations are subject to the following Danckwerts boundary 

conditions:  
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 ( ) ( ) ( )( )|in,A
|

A|

|
A

r tCt,C
z
t,CD ∗−=

∂
∂ 00

υ  and 
( )

0=
∂

∂
|

|
A

z
t,LC  Eqn – 5.2.3 

where ( ) ( ) ( )|r
|

in,A
|

in,A tC*RtC*)R(tC +−=∗ 1 , is obtained from taking a material 

balance on the mixer present at the entrance of the tubular reactor. Here CA,in is the 

fresh feed reactant concentration, Cr is the reactant concentration coming from the 

recycle loop and R is the recycle ratio.  

The above equations are to be made dimensionless, so put 
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where CA0 is some reference reactant concentration. The new sets of equations are: 

 ( ) ( ) ( ) ( )t,zBx
z
t,zx

Pez
t,zx

t
t,zx

−
∂

∂
+

∂
∂

−=
∂

∂
2

21  Eqn – 5.2.4 

 
( ) ( ) ( )t,xKtx
t
tx

Rr
r

R 1=+
∂

∂
τ  Eqn – 5.2.5 

with initial condition:  

( ) )z(x,zx 10 = , where x is the reactant concentration inside the tubular reactor. 

( )t,x)t(xr 10 == , where xr is the reactant concentration in the recycle loop.  

The boundary conditions also change as follows, 

 ( ) ( ) ( )( )txt,xPe
z
t,x

in
∗−=

∂
∂ 00  and ( ) 01

=
∂

∂
z
t,x  Eqn – 5.2.6 

where ( ) ( ) ( )tx*Rtx)*R(tx rinin +−=∗ 1 .  

Due to the presence of recycle, the dynamic response of the system is complicated in 

nature. Controller design and tuning for such processes has to be done very carefully. 

One control strategy of handling processes with recycle is to design a recycle 

compensator to nullify the detrimental effects of recycle. A block diagram of a recycle 

process with a recycle compensator is shown in Figure 5.2.2 in the context of the 
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tubular reactor. For more information on recycle compensator theory and design, the 

reader is advised to refer Taiwo (1984, 1986), Scali and Ferrari (1999) to understand 

the effects of recycle stream on the controllability of integrated plants and direct 

compensation of recycles to improve the control performance in such plants.  

 

The design of recycle compensator is possible with the knowledge of the recycle path 

model (Gr). Once recycle path model is available then the recycle compensator is 

simply ( )rRC GG −= .With the addition of recycle compensator to the above 

complicated tubular reactor with recycle system the model equations changes to the 

following form, ( ) ( ) ( ) ( )t,zBx
z
t,zx

Pez
t,zx

t
t,zx

−
∂

∂
+

∂
∂

−=
∂

∂
2

21  Eqn – 5.2.7 

 
( ) ( ) ( )t,xKtx
t
tx

Rr
r

R 1=+
∂

∂τ  Eqn – 5.2.8 

 
( ) ( ) ( )t,xKtx
t
tx

Rrc
rc

R 1=+
∂

∂
τ  Eqn – 5.2.9 

where x is the reactant concentration inside the tubular reactor, xr is the reactant 

concentration in the recycle loop, xrc is the reactant concentration signal from the 

recycle compensator. With initial condition: ( ) )z(x,zx 10 = , )t,(x)t(xr 10 == , 

( )t,x)t(xrc 10 −== . The boundary conditions also changes as follows, 
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 ( ) ( ) ( )( )txt,xPe
z
t,x

in
∗−=

∂
∂ 00  and ( ) 01

=
∂

∂
z
t,x  Eqn – 5.2.10 

where ( ) ( ) ( ) ( )tx*Rtx*Rtx*)R(tx rcrinin ++−=∗ 1  

Since ( ) ( )sGsG RRC −= , we have rrc x-  x = Therefore Eqn – 5.2.9 and Eqn – 5.2.10 

cancel out one another leaving Eqn – 5.2.8 to be solved.  

In the boundary condition, ( ) inin xRx ∗−=∗ 1 as the other two terms cancel out.  

Therefore the final set of equations is,  

 ( ) ( ) ( ) ( )t,zBx
z
t,zx

Pez
t,zx

t
t,zx

−
∂

∂
+

∂
∂

−=
∂

∂
2

21  Eqn – 5.2.11 

with initial condition: ( ) )z(x,zx 10 = , where x is the reactant concentration inside the 

tubular reactor. The boundary conditions also changes as follows, 

 ( ) ( ) ( )( )txt,xPe
z
t,x

in
∗−=

∂
∂ 00  and ( ) 01

=
∂

∂
z
t,x  Eqn – 5.2.12 

where ( ) ( )tx*)R(tx inin −=∗ 1  

The above system of equation is not homogeneous; hence make the system 

homogeneous by shifting the non homogeneous part of the boundary condition into 

the partial differential equation using a Dirac delta function. With the above 

modification, the system becomes 

 ( ) ( ) ( ) ( ) )t(x)z(t,zBx
z
t,zx

Pez
t,zx

t
t,zx

in
∗+−

∂
∂

+
∂

∂
−=

∂
∂ δ2

21  Eqn – 5.2.13 

where ( ) ( )tx*)R(tx inin −=∗ 1 , with initial condition: ( ) )z(x,zx 10 = , where x is 

concentration of reactant inside the tubular reactor. The boundary conditions also 

changes as follows, ( ) ( )t,x*Pe
z
t,x 00
=

∂
∂  and ( ) 01

=
∂

∂
z
t,x  Eqn – 5.2.14 

Consider the last term in Eqn – 5.2.13 )]t(x*))t(R)[(z()t(x)z( in
*
in −= 1δδ   
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where R and xin are both functions of time. Then the system becomes nonlinear as it 

involves the product of ( )R-1  and xin which has to be linearized around a steady state 

operating point before application of modal analysis. 

Linearize ( ) ( )( ) ( )txtRx,RF inin ∗−= 1 , using Taylor series expansion. 

 )xx(
x
F)RR(

R
F)x,R(F)x,R(F insin

XX
RRin

s

XX
RRinssin

insin
s

insin
s

−
∂
∂

+−
∂
∂

+=
=

=
=

=
 Eqn - 5.2.15 

 )xx)(R()RR)(x()x,R(F)x,R(F insinssinsinssin −−+−−+= 1  Eqn – 5.2.16 

Now considering the steady state condition of Eqn – 5.2.13 we have, 

 
( ) ( ) ( ) 01

2

2

=+−+− ∗ )t(x)z(t,zBx
dz

t,zxd
Pedz

t,zdx
inss

ss δ  Eqn – 5.2.17 

Substitute Eqn – 5.2.16 into Eqn – 5.2.13 and subtract Eqn – 5.2.17 from this and put 

insininss xxx̂&RRR̂,xxx̂ −=−=−= , where xs, Rs & xins are steady state values of 

reactant concentration, recycle ratio and inlet concentration. Finally we have,  

)]x̂)(R()R̂)(x)[(z()x̂(B
z
)x̂(

Pez
)x̂(

t
)x̂(

insins −+−+−
∂
∂

+
∂
∂

−=
∂
∂ 11

2

2

δ  Eqn – 5.2.18  

with initial condition: ( ) )z(x,zx̂ 10 = , where x̂ is concentration of reactant inside the 

tubular reactor. The boundary conditions are, 

 
( ) ( )t,x̂Pe
z
t,x̂ 00

∗=
∂

∂
 and ( ) 01

=
∂

∂
z
t,x̂  Eqn – 5.2.19 

Now the above system Eqn – 5.2.18 & Eqn – 5.2.19 is amenable to modal 

decomposition or variable separable method. Suppressing the (∧) notation, let us 

assume the solution to x(z,t) as  ∑
∞

=

=
1n

nn )z()t(a)t,z(x φ .  

Similarly the inlet concentration and recycle ratio can also be expanded as  
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 ∑
∞

=

=
1n

nn )z()t(b)t(R)z( φδ  and ∑
∞

=

=
1n

nnin )z()t(c)t(x)z( φδ .  

Introducing these approximate solutions into Eqn – 5.2.18 we have, 
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  Eqn – 5.2.20 

Dividing Eqn – 5.2.20 by an(t)φn(z) yields an ODE which can be divided into a left 

side which depends solely on "t" and right side that is a function of "z" alone. For this 

equality to hold for all (z,t), both sides must be equal to constant (-λn), resulting in: 

nn
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 Eqn – 5.2.21 

Now Eqn – 5.2.21 can be separated into the following ODE's:  

 01
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2

=−+− )z()B(
dz
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)z(d
Pe nn

nn φλ
φφ

  Eqn – 5.2.22 

 )t(bx)t(c)R()t(a
dt

)t(da
ninsnsnn

n −−=+ 1λ  Eqn – 5.2.23 

The boundary condition is as follows, 
( ) ( )00

n
n Pe
dz

d
φ

φ
∗=  and 

( )
01

=
dz
d nφ  

The above system formulates the eigenvalue problem. The solution to Eqn – 5.2.22 

subject to the above boundary conditions is obtained by putting it into Sturm-

Liouville form. A detailed analysis can be obtained from Ray (1981). 

The solution φn(z) is of this form: ( ) ( ) ( )

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



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where αn is obtained by solving  ( )
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λn is given by,  BPe
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Along with Bn, bn(t)'s and cn(t)'s also satisfy the orthonormal property and are 

obtained as follows,  

 )0()()exp()()()()(
1

0
nnn tRdzzPeztRztb φφδ ∗=∗−= ∫

 )()t(xdz)zPeexp()z()t(x)z()t(c ninninn 0
1

0

φφδ ∗=∗−= ∫ .  

Once bn's and cns are obtained, Eqn – 5.2.23 can be used either for obtaining dynamic 

responses of the system or for control studies. Rs and xins are the steady state values. 

Laplace transforms of Eqn – 5.2.23 yields,  

 )s(bx)s(c)R()s(a)s( ninsnsnn −−=+ 1λ  Eqn – 5.2.24 

On simplifying Eqn – 5.2.24, )s(b
s
x)s(c

s
R)s(a n

n

ins
n

n

s
n λλ +

−
+
−

=
1

. 

Upon careful observation of the above equation we see that the output an's (Plant 

output – x(z,t)) is affected by cn's (recycle ratio - R) and bn's (inlet concentration - xin). 

As we anticipate a measured disturbance in the inlet concentration (xin(t)) affecting 

the plant, a feedforward controller can now be designed using recycle ratio (R(t)) as 

manipulated variable. Figure 5.2.3 exemplifies the modal representation of a tubular 

reactor with recycle and a recycle compensator. 
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Hence the modal process model is,  
n

ins

n

n
p s

x
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)s(a
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−
==  Eqn – 5.2.25 

and the modal disturbance model is,  
n

s

n

n
d s

R
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)s(G
λ+

−
==

1
 Eqn – 5.2.26 

With the knowledge of Gp and Gd one can design feedforward controller as 
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s

ins

s

p

d

x
R

x
)R(

)s(G
)s(GMFFC −

=
−
−−

=
−

=
11  Eqn – 5.2.27 

To handle load disturbances that cannot be measured or anticipated, feedforward 

control is always combined with feedback control in practical applications. For 

designing a feedback controller one should have the process model (Gp). Since (Gp) in 

this case is a simple first order without any time delays the feedback control design is 

very simple. The Ciancone PID tuning correlations provided by Marlin (1995) is 

employed here. The final block diagram illustrating the above control strategy (modal 

feedforward and modal feedback control of a tubular reactor with recycle and a 

recycle compensator) is shown in Figure 5.2.4, 
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5.3 Results and Discussions 

 

The modal control of tubular reactor with recycle was also carried out in two ways, 

1. Control the tubular reactor with recycle system using inlet concentration as 

manipulated variable with constant recycle ratio. 

2. Control the tubular reactor with recycle system using recycle ratio as 

manipulated variable assuming disturbances in inlet concentration. 

The above control studies carried out are similar to the two ways of modal analysis of 

tubular reactor with recycle discussed earlier in section 4.5 of chapter 4. 

 

A very important question which arises in some of these control studies mentioned 

above is how, one should provide the set points (with an intention to control reactor 

concentrations at different points in the reactor) for this system having only one 

manipulated variable. From degrees of freedom analysis, one finds that this is 

impossible as one cannot control concentrations at different points in the reactor using 

only one manipulated variable. After a careful study, it was found that for a particular 
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value of inlet concentration (manipulated variable) there is always a fixed 

concentration profile i.e. a fixed set of concentration values at different points in the 

reactor (controlled variable). Now this control problem satisfies the degrees of 

freedom rule as we are trying to control a single profile using inlet concentration and 

this profile of concentration is referred in the following sections as "set point profile". 

From the modal analysis studies carried out in section 4.5, on tubular reactor with 

recycles, we find that four to five modes are sufficient to describe its dynamic 

response. Hence we chose five measurement locations inside the tubular reactor 

randomly and attempt to control the concentrations at these five locations. So the set 

points at these five locations inside the reactor represent the "set point profile" 

mentioned above. As this set point profile is very unique to a particular value of inlet 

concentration, one can define a particular set point profile only from the previous 

knowledge of the dynamics of the tubular reactor. If an arbitrary set point profile is 

given, the controller will try to get as "close" as possible to it (in a least square sense). 

  

The case 1 control strategy mentioned above was carried out by designing a modal 

feedback controller to maintain the reactor concentrations of the system at specified 

values (set point profile) using inlet concentration as the manipulated variable. 

Figures 5.3.1, 5.3.2 and 5.3.3 show some of the results pertaining to this control study. 

In Figure 5.3.1 we show the dynamic variation of concentrations at different locations 

in the reactor. This study was carried out in the absence of recycle compensator. The 

next figure, (Figure 5.3.2) also shows the dynamic variation of concentrations but this 

study was carried out in the presence of recycle compensator. The last figure, (Figure 

5.3.3) compares the variation of the manipulated variable (inlet concentration) in the 

presence and absence of recycle compensator. 
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We proposed a novel strategy (case 2 control strategy) to handle disturbances 

anticipated in the inlet concentration by designing a modal feedforward controller 

which manipulates the recycle ratio. The recycle ratio is no more a constant but a 

function of time. This makes the system nonlinear and hence should be linearized 

around a steady state before applying modal analysis theory. The above principle is 

explained in detail in section 5.2 with complete derivation (equations 5.2.1 to 5.2.27) 

and the block diagram representing this control strategy (Figure 5.2.4).  
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Figure 5.3.4 shows the results obtained by simulating the block diagram (Figure 5.2.4) 

in MATLAB. It shows the response of exit concentration subjected to a disturbance in 

inlet concentration at 100 time units. For the first 100 time units the simulation was 

run for a particular set point profile until the steady state was reached. This figure has 

two lines one dashed line and the other solid line. During the initial phase both the 

lines overlap on one another. The dashed line shows the response without modal 

feedforward controller (only modal feedback controller and recycle compensator). 

The solid line is the one which includes modal feedforward controller along with 

modal feedback controller and recycle compensator. The response of the system with 

modal feedforward controller (solid line) is obviously better than the response of the 

system without modal feedforward controller (dashed line).  

The next figure, (Figure 5.3.5) shows the comparative study of the movement of the 

manipulated variable for the case of system without modal feedforward controller 

(dashed line) and with feedforward controller (solid line). For the first 100 time units 

the simulation was run for a particular set point profile until the steady state was 

reached. During the initial phase both the lines overlap on one another. One can 

observe a very smooth movement in the case of solid line compared to the dashed line. 

Thus one will be able to achieve the desired set point profiles even in presence of 

disturbances with a combination of modal feedforward/feedback and recycle 

compensator control strategy. 

 

5.4 Modal control of a linear heat exchanger 

 

A linear tubular single-pass shell and tube heat exchanger with axial diffusion is 

considered. The main objective would be to control the tube-side outlet temperature at 
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a desired value, in-spite of disturbances and changes in set points. The load 

disturbances are assumed to be fluctuations in the feed temperature and the 

manipulated variable is taken to be the steam temperature in the shell, which is a 

function of time only. The liquid stream enters the tube of the heat exchanger and is 

heated by convection from the inner wall. Heat is supplied to the tube by means of 

condensing steam in the jacket. Some of the assumptions made in deriving the 

mathematical model (Hahn et al., 1971) are stated in section 3.10. Based on these 

assumptions and an energy balance over a differential section of the tube side of the 

exchanger yields: ( )lw
llpl

lwllll TT
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Ph

l
T

l
T

D
T

−+
∂
∂

−
∂
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=
∂
∂

ρ
υ

τ 2

2

 Eqn – 5.4.1 

Taking an energy balance over a differential section of wall gives: 
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 subject to following boundary conditions: 
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The above equations are dimensionalized by introducing these parameters, 

Mean residence time: υτ Lr = sec, Axial Peclet Number: DLυβ = , Dimensionless 

time: rt ττ= , Dimensionless axial distance: Llx = , Dimensionless liquid 

temperature: rl TTu =1 , Dimensionless wall temperature: rw TTu =2 , Dimensionless 

steam temperature: rs TT=θ , The other parameters are:  

 1

22

1

21

1

1

111 −−− === sec
AC
Ph,sec

AC
Ph,sec

AC
Ph

wwpw

sws

wwpw

lwl

llpl

lwl

ρτρτρτ
.  

Hence the system of equations with boundary conditions is: 
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where fu1 is the inlet fluid temperature and θ is the steam temperature. The numerical 

values used in this study are as follows sec.sec,.sec,, r 65269331 211 ==== τττβ  
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The above system of equation is not homogeneous; hence make the system 

homogeneous by shifting the non homogeneous part of the boundary condition into 

the partial differential equation using a Dirac delta function. 

With the above modification the system becomes, 
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Now the above system Eqn – 5.4.7, Eqn – 5.4.8 and Eqn – 5.4.9 is amenable to 

modal decomposition or variable separable method.  

Let us assume the solution to be of this form:  
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Similarly the inlet temperature and steam temperature can also be expanded as:  
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Introducing these approximate solutions into Eqn – 5.4.7, Eqn – 5.4.8 and in the 

boundary conditions Eqn – 5.4.9 we have, 
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Dividing Eqn – 5.4.10 by an(t)φn(x) yields an ODE which can be divided into a left 

side which depends solely on "t" and a right side that is a function of "x" alone. For 

this equality to hold for all x and t, both sides must be equal to constant (-λn), 

resulting in:  ( ) nnn
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The above ODE's can be simplified:  
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The boundary condition remains the same as above (Eqn – 5.4.12). 

Dividing Eqn – 5.4.11 by φn(x) yields an ODE which can be written as, 
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Eqn – 5.4.15 subjected to boundary condition Eqn – 5.4.12, has following solution:  
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Along with Bn, dn(t)'s and cn(t)'s also satisfy the orthonormal property and are 

obtained as follows,  
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On simplification this yields, 
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Once the s'nφ , cn's and dn's are obtained then take Laplace transforms of Eqn – 

5.4.16 and Eqn – 5.4.17 which results in following equations, 
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Eliminating bn(s) from both Eqn – 5.4.20 and Eqn – 5.4.18 we have, 
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From Eqn – 5.4.21 we can say that 
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n represents the process transfer function and 

that 
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n  represents the disturbance transfer function in the modal space. 

Hence we can say the second order process transfer function as, 
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and the second order disturbance transfer function as, 
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These second order transfer functions can be considered as a set of reduced order 

lumped parameter models for the distributed parameter system. 

From Eqn – 5.4.22 we can say that the second order parameters of the process are:  

The time constant for the second order system is, 
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Now for this set of lumped parameter system models a corresponding set of controller 

can be designed as these are non interacting multiloop systems.  

IMC-PID tunings were calculated for the above system as indicated in Chien et al. 

(1990). The PI tunings were only considered and is given below, 
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Hence a simple feedback controller can be designed in the new modal space. Since we 

have both the process model (GP) and the disturbance model (Gd) one can easily 

tackle any measured or anticipated disturbances appearing in the inlet temperature of 

the reactor and can be easily rejected from the system if a feedforward controller is 

designed so that it manipulates the steam temperature accordingly. 

A simple feedforward controller is given by, 
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Since the above structure is not realizable, a lead-lag transfer function was considered 

as follows, ( )
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A suitable value of β generally ranges from 0.1 to 1 and for most of the simulation 

purposes in our study a β value of 0.9 was used. Hence we have the feedforward 

controller as ( )
( )

( )
122560
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It was found that in most of the simulations this value of β gave pretty good results as 

can be verified by the figures shown in the results and discussions section below. 

 

5.5 Results and Discussions 

 

The performance of modal feedback controller for the heat exchanger system will be 

evaluated first and then the importance of modal feedforward controller in the 

presence of disturbance is illustrated. Figure 5.5.1 shows the 3D set point tracking of 

the temperature in the heat exchanger. The simulation was run for a particular set 

point profile initially (for 0 to 15 time units) until the steady state is reached and then 

the system was subjected to a change in set point profile. One can see from Figure 
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5.5.1 that the system is brought to the desired set point profile within 5 time units. 

Hence the performance of modal feedback controller for the set point tracking is quite 

good. Figure 5.5.2 shows the disturbance rejection of temperature in the heat 

exchanger using a modal feedback controller. The disturbance considered here is in 

the inlet temperature of the reactor (magnitude of 0.2 dimensionless units).  
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One can observe from the figure (Figure 5.5.2) that the system is not brought back to 

the original set point profile even after a long time and an offset is observed. This is 

one of the interesting results, observed during the simulation. Such a result is possible 

because, in the presence of disturbance, there might not be a suitable value of 

manipulated variable (steam temperature) which can bring the system to the initial set 

point profile. Chakravarti and Ray (1999) have also observed this phenomenon in 

their studies on boundary control of a tubular reactor. Assuming the disturbance in 

inlet temperature to be measurable, a novel strategy was designed to handle such 

disturbances namely modal feedforward controller in combination with modal 

feedback controller. The problem of offset continued its presence even in this case but 

the response was better with less overshoot and settling time as seen in Figure 5.5.3 in 

comparison with Figure 5.5.2. Note that the modal feedforward/feedback controller 

can still operate with only one manipulated variable and therefore cannot remove the 

offset. 
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One would have a better understanding of the results shown above by 3D graphs, if 

the same result is split into many 2D plots. Figures 5.5.4 and 5.5.5 show a comparison 

of results in the absence and presence of modal feedforward controller. 
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If one observes the Figures 5.5.4 and 5.5.5 carefully we can find that before the 

disturbance hits the process (0–15 time units) the temperature is found to have a 

positive slope (i.e. temperature increases along the length of the reactor). After the 

disturbance hits the process (15-30 time units) the temperature is found to have 

negative slope (i.e. temperature decreases along the length of the reactor). Similar 

observations can be inferred from the 3D Figures 5.5.2 and 5.5.3. This complicates 

the system and makes it more difficult to control. 

 

Figure 5.5.6 shows how the variable (steam temperature) was manipulated to 

compensate for the disturbance. The dashed line is for the case when only a modal 

feedback controller was used and the solid line is for the case in which both the modal 

feedback and modal feedforward controller are used. The solid line shows a little over 
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shoot but reaches the steady state value of the variable much more quickly (faster 

settling time). Thus one has to manipulate steam temperature in the lines of solid line 

to have less variation in the temperature of heat exchanger. 

 

5.6 Conclusions 

 

An important contribution of this chapter is in the development and implementation of 

a modal feedforward control strategy to complement the modal feedback control 

strategy. While the modal feedback control is well established in the literature, (to the 

best of our knowledge) there has been no reported application of the modal 

feedforward control strategy. The application of modal control on the two examples 

of tubular reactor and heat exchanger show its potential applicability for such systems 

described by a linear partial differential equation. This strategy can also be applied to 

nonlinear distributed parameter systems by linearizing them around a steady state 

value and this would be of much practical use as many of the industrial reactors are 

described by nonlinear distributed parameter models. Further direction for research in 

this area would be to evaluate some of these eigenfunctions for such systems, either 

from routine plant data or experimental plant data, and some of the control strategies 

illustrated here can be tested based on these empirical eigenfunctions. 
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CHAPTER 6 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

 

In this research two broad goals were considered, 

i. To obtain the dynamics of distributed parameter systems with recycle  

ii. Modal control of distributed parameter system with and without recycles. 

 

The first objective involved development of tools which provide the dynamic 

responses for a distributed parameter system. A set of codes were compiled in 

MATLAB to do this job. Then the recycles were introduced into the distributed 

parameter system which complicated the dynamics and this was done by integrating 

the earlier developed MATLAB codes with SIMULINK models. Once the tools were 

available parametric studies were carried out on this system. 

 

The second objective was met by understanding the modal decomposition of a 

distributed parameter system through two exciting examples (tubular reactor and heat 

exchanger systems). Further the modal control theory was also extended to tubular 

reactors with recycles. While fulfilling the second objective we proposed a novel 

control strategy called the modal feedforward controller and showed its workability 

on the tubular reactor with recycle and heat exchanger examples. A manuscript 

pertaining to this study is in progress. 
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Apart from the work on distributed parameter systems, the initial phase of research 

involved studies on the lumped parameter systems. An activated sludge process was 

carefully studied and some of the weird effects of recycle on such systems were seen 

through simulations. A predictor type recycle compensator was proposed later, in 

order to handle the detrimental effects of recycle. An index called the recycle effect 

index was developed utilizing the concepts of minimum variance to quantify the 

effect of recycles and also advice upon the implementation of advanced control 

strategy like the recycle compensator for such cases. Each of this study has been 

explained in detail, in their corresponding manuscripts listed in the list of publications 

and also a brief idea has been given in chapter 2 of this thesis. Personally I felt the 

project was very challenging and involved learning of various solution methodologies 

for solving such systems and good programming skills. As the area is new, a lot of 

contribution is anticipated in near future. 

 

6.2 Recommendations 

 

A good basic knowledge on distributed parameter systems can be obtained from a list 

of references Alvarez et al. (1981), Antoniades and Christofides (2001), Georgakis et 

al. (1972) and Rice and Do (1995). These literatures give a wonderful insight into the 

solution methodologies like the orthogonal collocation technique, finite differences 

and Galerkin technique. Upon usage of orthogonal collocation to solve some of these 

problems, an advice in this regard would be is to try to simulate the results with 

different initial guesses as these are nonlinear problems and convergence is not 

guaranteed always. Orthogonal collocation technique is programmable friendly and a 

set of tools can be easily generated, to handle such complicated distributed systems. If 
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one is interested in the basics of Modal Analysis then one can refer to Ray (1981), a 

more advanced approach can be had from Ajinkya et al. (1975), Gilles (1973), Gould 

and Murray-Lasso (1966) and Gould (1969).  

 

A systematic procedure for performing the modal decomposition has also been 

provided in chapter 4 of this thesis. Modal control theory is regaining its popularity 

and many advanced control strategies are emerging in this area. One such novel 

strategy is the implementation of modal feedforward controller to complement already 

existing modal feedback controller to handle measured disturbances. The usefulness 

of this strategy has been shown on two illustrative examples (tubular reactor with 

recycle and heat exchanger). Many exciting advanced control strategies like, the 

model predictive control in modal space, are being investigated recently. Another up-

coming thing in the field of distributed parameter system is evaluation of 

eigenfunctions for such distributed systems, either from routine plant data or 

experimental plant data, and application of some of the control strategies illustrated 

here on these empirical eigenfunctions. 
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