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Summary 

Chain Sampling scheme is the first topic covered in this thesis. The interest in chain 

sampling plans is sparked by an industry project, in which a suitable sample scheme is 

required to conduct destructive test on fire-retard door and fire-retard cable. Some 

features of this testing are: (I) this testing is destructive, so it is favorable to take as 

few samples as possible, and (II) testing units are selected from the same continuous 

process and it is reasonable to expect a certain kind of relationship between the 

ordered samples. For example, units after good units (conformities) are more likely to 

be good, and bad units (non-conformities) are more likely to happen after bad units. In 

our research, we proposed a chain-sampling plan for Markovian process to address 

these problems. The chain sampling has it unique strength in dealing with scarce 

information and a two stage Markov chain model is demonstrated to be able to model 

such process adequately.  

Another important assumption for chain sampling plan is the error-free inspection 

assumption, which assumes that inspection procedures are completely flawless. In 

reality, however, inspection tasks are seldom error free. While inspection errors 

incurred during acceptance sampling for attributes are often unintentional and in most 

cases neglected, they nevertheless can severely distort the quality objective of a 

sampling system design. This motivated our study of the effect of inspection errors on 

chain sampling schemes to be part of our chain sampling studies. 

The error study of chain sampling plans is done through three phases: 1. the effect of 

constant inspection errors; 2. the effect of variable inspection errors; and 3. the design 

of chain sampling plan under inspection error. The first two stages is the basis of the 

inspection error study and the final stage, design of chain sampling plan, completes 

 IV



this study on inspection errors. The ultimate goal of this series of error study is to 

devise a procedure to design chain-sampling plan under error inspection. This 

includes the binomial model, the proposed design approach and its series of tables etc. 

After complete the correlation and error effect of chain sampling, we find that the 

chain inspection actually can have a much broader application in such areas as 

reliability acceptance test and the high yield process etc. An outline of its application 

in reliability test is given and demonstrated. 

Some additional work has been done during the course of my research stint in NUS, 

which have their unique contributions in terms of researching. However, it is not very 

consist with the above-mentioned topics and not easy to be incorporated in a cohesive 

structure. Rather than simply drop them off, we decide to document them in the 

appendix for future reference. These include the mathematical deviation of ratio of 

two normal in the multivariate process control and the SWOT (Strengths, Weaknesses, 

Opportunities and Threats) analysis to Six Sigma Strategy. 
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Chapter 1                                                              Introduction 

1. Introduction 

Quality and reliability engineering has gained its overwhelming application in 

industries as people become aware of its critical role in producing quality product 

and/or service for quite a long time, especially since the beginning of last century. It 

has been developed into a variety of areas of research and application and is 

continuously growing due to the steadily increasing demand.  

Acceptance sampling is one field of Statistical Quality Control ( ) with longest 

history. Dodge and Romig popularized it when U.S. military had strong need to test its 

bullets during World War Two. If 100 percent inspection were executed in advance, no 

bullets would be left to ship. If, on the other hand, none were tested, malfunctions 

might occur in the field of battle, which may result in potential disastrous 

result.  Dodge proposed a “middle way” reasoning that a sample should be selected 

randomly from a lot, and on the basis of sampling information, a decision should be 

made regarding the disposition of the lot. In general, the decision is either to accept or 

reject this lot. This process is called Lot Acceptance Sampling or just Acceptance 

Sampling. 

SQC

Single sampling plans and double sampling plans are the most basic and widely 

applied testing plans when simple testing is needed. Multiple sampling plans and 

sequential sampling plans provide marginally better disposition decision at the expense 

of more complicated operating procedures. Other plans such as the continuous 

sampling plan, bulk-sampling plan, and Tighten-normal-tighten plan etc., are well 

developed and frequently used in their respective working condition.  

Among these, chain-sampling plans have received great attention because of their 

unique strength in dealing with destructive or costly inspection, which the sample size 
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is kept as low as possible to minimize the total inspection cost without compromising 

the protection to suppliers and consumers. Some characteristics of these situations are 

(I) the testing is destructive, so it is favorable to take as few samples as possible, 

and/or (II) physical or resource constraint makes mass inspection an insurmountable 

task. 

The original chain sampling plan-1 (ChSP-1) was devised by Dodge (1977) to 

overcome the inefficiency and less discriminatory power of the single sampling plan 

when the acceptance number is equal to zero. Two basic assumptions embedded with 

the design of chain sampling plans are independent process and perfect inspection, 

which means all the product inspected are not correlated and the inspection activity 

itself is error free. These assumptions make the model easy to manage and apply, 

though they are challenged as manufacturing technology advances. 

The interest of studying chain-sampling plans was driven by a real industrial project, 

where appropriate sampling plans were required to test fire-retard door and fire-retard 

cable.  

Some features of this testing are: (I) this testing is destructive, so it is favorable to take 

as few samples as possible, and (II) testing units are selected from the same continuous 

process and it is reasonable to expect a certain kind of relationship between the ordered 

samples. For example, units after good units (conformities) are more likely to be good, 

and bad units (non-conformities) are more likely to happen after bad units. 

For the first problem, suitable sampling schemes are needed and chain-sampling plan 

stands up to be a perfect candidate because of its power in making use of the limited 

information. As for the second question, a suitable way needs to be found to capture 

the dependency between testing units. This becomes the starting point of our research 

on the chain sampling schemes. The problem actually addresses one of the underlying 
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assumptions for the chain sampling plan---uncorrelated process. In the original ChSP-1, 

all products inspected are assumed to come from the same process and follow an 

identical independent distribution (i.i.d.). This strict assumption has to be relaxed in 

our project and a Markovian model is proposed later on to model this kind of 

correlation. 

Another important assumption for chain sampling plan is the error-free inspection 

assumption, which assumes that inspection procedures are completely flawless. In 

reality, however, inspection tasks are seldom error free. On the contrary, they may 

even be error prone.  A variety of causes may contribute to these error commitments. 

In manual inspection, errors may result from factors such as the complexity and 

difficulty of the inspection task, inherent variation in the inspection procedure, 

subjective judgment required by human inspectors, mental fatigue and inaccuracy or 

problem of gages or measurement instruments used in the inspection procedures. 

Automated inspection system has been introduced to reduce the inspection time as well 

as to eliminate errors incurred as a result of human fatigue. However, inspection errors 

may still be present due to factors such as complexity and difficulty of the inspection 

task, resolution of the inspection sensor, equipment malfunctions and “bugs” in the 

computer program controlling the inspection procedure etc. In short, any activities 

related to human being are subject to mistake as “To err is human”.  

There are two types of errors present in inspection schemes, namely, Type I and Type 

II inspection errors, where Type I inspection error refers to the situation in which a 

conforming item is incorrectly classified as nonconforming and Type II error occurs 

when a nonconforming unit is erroneously classified as conforming. 

While inspection errors incurred during acceptance sampling for attributes are often 

unintentional and in most cases neglected, they nevertheless can severely distort the 
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quality objective of a sampling system design. This motivated our study of the effect 

of inspection errors on chain sampling schemes to be part of our chain sampling 

studies. This research has been completed phase by phase in three stages, the effect of 

constant inspection errors, the effect of variable inspection errors and the design of 

chain sampling plan under inspection errors. 

The final part of this thesis goes to the reliability engineering, while the previous two 

topics fall in the category of quality engineering. In this part, the chain sampling is 

extended to reliability acceptance test and (a new approach to design chain sampling 

plans for reliability acceptance test is proposed) proposes our approaches to design 

chain-sampling plans for reliability acceptance test. Its mathematical models are 

relatively straightforward, but results are useful in application. 

Some additional work has been done during the course of my research stint in NUS, 

which have their unique contributions in terms of researching. However, it is not very 

consist with the above-mentioned topics and not easy to be incorporated in a cohesive 

structure. Rather than simply drop them off, we decide to document them in the 

appendix for future reference. These include the mathematical deviation of ratio of two 

normal in the multivariate process control and the SWOT (Strengths, Weaknesses, 

Opportunities and Threats) analysis to Six Sigma Strategy. 

A detail review of related topics will be presented in the next chapter, which includes 

the historical development of acceptance sampling, the review of chain sampling plan 

and the study of correlated production, the effect of inspection errors on the acceptance 

sampling, specifically, the error effect on chain sampling plan, and the chain sampling 

plan for production reliability acceptance test. 

In chapter three, the effect of correlation on chain sampling plan will be studied. This 

study can be served as an abstract and extension of an industrial project. A new model 
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named as Chain Sampling Plan with Markov Property is developed, and the numerical 

analysis is conducted.  Some parameter study is also included. 

Chapter four starts the study of the effect of inspection errors on chain sampling plan, 

in which inspection errors are assumed constant throughout inspection, i.e. the constant 

error model. In this chapter, the inspection error is considered in chain sampling 

schemes and a mathematical model is constructed to investigate the performance of 

chain sampling schemes when inspection errors are taken into consideration. 

Expressions of performance measures are derived, such as the operating characteristic 

function, average total inspection and average outgoing quality to aid the analysis of a 

general chain sampling scheme, ChSP-4A (c1, c2) r, developed by Frishman (1960). 

Chapter five is a counterpart of chapter four with the underlying assumption changed 

from constant inspection error to variable inspection error The variable error is in fact 

very complicated, so Biegel (1974) linear model is adopted to simplify the problem. 

The similar study is conducted in chapter four and five so as to highlight the difference 

between two models.  

Chapter six is the most important part of the inspection error effect study. Procedures 

of designing chain-sampling plans are proposed when constant inspection errors are 

taken into consideration. Two approaches to design chain-sampling plans for imperfect 

inspection are proposed with the comparison and examples included for reference. 

Chapter seven focuses on the application of chain sampling plan in Reliability 

Acceptance Testing (RAT) or Product Reliability Acceptance Testing (PRAT), in 

which this chain sampling scheme for reliability acceptance test is proposed to 

complement the existing commonly used two schemes: single sampling plan and 

sequential sampling plan. In addition to the mathematical description, tables for the 

selection of sampling parameter, and Excel templates are also provided to facilitate 
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designing and flexible usage. Examples are included to illustrate the application of 

proposed methods. 

A summarization of results and conclusions is presented in chapter eight, from which a 

quick understanding of this study on chain sampling schemes can be found. Reference 

is listed after chapter eight and the appendix part can be found after reference. 
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2. Literature Review 

2.1 Historical Development of Acceptance Sampling 
 
The development of the statistical science of acceptance sampling has a long history 

that can be traced back to the formation of the Inspection Engineering Department of 

Western Electric’s Bell Telephone Laboratories in 1924. The department made lots of 

contributions in this area and some members of the department became gurus in this 

area later such as H.F. Dodge, who is considered by some to be the father of 

acceptance sampling. Other pioneers were W.A. Shewhart, Juran and H.G. Romig. 

In 1924, Shewhart from this department presented the first control chart, the symbolic 

start of the era of statistical quality control (SQC). Meanwhile, many, if not most, of 

the acceptance sampling terminologies was coined by this department between 1925 to 

1926 such as single sampling plan, double sampling plan, consumer’s risk, producer’s 

risk, probability of acceptance, OC curves, ATI etc. In 1941, H.F. Dodge and H.G. 

Romig published the famous Dodge-Romig table “Single Sampling and Double 

Sampling Inspection Tables”, which provided plans based on fixed consumer risk 

(LTPD protection) and also plans for rectification (AOQL protection), which 

guaranteed stated protection after 100 percent inspection of the rejected lots.  

The Second World War witnessed a great development of quality control and 

particularly acceptance sampling. This included the development, by the Army’s 

Office of the Chief of Ordnance (1942), of “Standard Inspection Procedures” of which 

the Ordnance sampling tables, using a sampling system based on a designated 

acceptable quality level, were a part. Also in this period, H.F. Dodge (1943) developed 

a sampling plan for continuous production indexed by AOQL and A. Wald (1943), a 

member of the Statistical Research Group in Columbia University, put forward his 
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new theory of sequential sampling which was the ultimate extension of multiple 

sampling plans, where items were selected from a lot one at a time and after inspection 

of each item a decision was made to accept or reject the lot or select another unit. 

The Statistical Research Group of Columbia University (1945) made outstanding 

contributions during the Second World War. Their output consisted of advancements 

in variables and attributes sampling in addition to sequential analysis. Some of these 

were documented in the Statistical Research Group (1947) “Techniques of Statistical 

Analysis.” They were active in theoretical developments in process quality control, 

design of experiments, and other areas of industrial and applied statistics as well. Out 

of the work of the Statistical Research Group came a manual on sampling inspection 

prepared for the U.S navy, office of Procurement and Material. Like the Army 

Ordnance Tables, it was a sampling system based on specification of an acceptable 

quality level (AQL) and was later published by the Statistical Research Group (1948) 

under the title “Sampling Inspection”. In 1949 the manual became the basis for the 

Defense Department’s non-mandatory Joint Army-Navy Standard JAN-105. And later, 

a committee of military quality control specialists was formed to reach a compromise 

between JAN-105 and the ASF tables, which resulted in MIL-STD-105A issued in 

1950 and subsequently revised as 105B, 105C and 105D, which was still a handbook 

for current inspection practitioners in industries. 

The research of acceptance sampling became less active after 1970s and 1980s as more 

and more research were streamed into statistical process control and design for quality. 

There is clear indication that acceptance sampling is playing a lesser role in research, 

which can be easily identified by its decreasing proportion in the Statistical Quality 

Control textbooks. However, research paper and works still appear sometime focusing 

on the development or improvement of specified acceptance techniques.  

 8



 
Chapter 2                                                              Literature Review 

2.2 Chain Sampling Plan 
 
The principle of a continuous sampling plan (CSP-1), which was originally applied to 

a steady stream of individual items from the process and required sampling of a 

specified fraction, f, of the items in order of production, with 100 percent inspection of 

the flow at specified times, could be extended to apply to a continuing series of lots or 

batches of material rather than to individual product units. This led Dodge (1955) to 

propose the skip-lot sampling plan (SkSP). Its underlying principle was almost the 

same as that of the CSP and the only difference lied in that the SkSP plans dealt with 

series of lots or batches while the CSP plans handled with series of units. The 

application of these plans and ideas was formulized by Dodge and Perry (1971), Perry 

(1970, 1973a, 1973b) and later documented by ANSI/ASQC Standard S1-1987 (1987).  

Both the continuous sampling plan and skip-lot sampling plan were members of, so-

called, cumulative results plans, which made decision not only based on the current lot, 

but also made use of the cumulative lots information. Another member of this 

cumulative results plans is the chain sampling plan (ChSP) introduced by Dodge 

(1955), which made use of previous lots results, combining with the current lot 

information, to achieve a reduction of sample size while maintaining or even extending 

protection. The ChSP plans were first conceived to overcome the problem of lack of 

discrimination of the single sampling plan when acceptance number c=0, and had been 

received wide application in industries where the test is either costly or destructive. Its 

operating procedure is illustrated in Figure2.1. 
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Figure 2. 1Dodge Chain Sampling Plan 

 
 Zwickl (1963) and Soundarajan (1978a and 1978b) had carried out further evaluations 

of ChSP-1 type sampling plans. Since the invention of ChSP-1, numerous works had 

been done on the extensions to chain sampling plans. These included plans designated 

ChSP-2 and ChSP-3, which was done by Dodge (1958) but kept unpublished, partly 

due to the complexities of its operating procedures. Frishman (1960) presented 

extended chain sampling plans designated ChsSP-4 and ChSP-4A (perhaps 

contemplating publication of designations 2 and 3 by Dodge). His plans were 

developed from an application in the sampling inspection of torpedoes for Naval 

Ordnance as a check on the control of the production process and test equipment 

(including 100% inspection). Features of these plans included a basic acceptance 

number greater than zero, an option for forward or backward accumulation of results 

for an acceptance-rejection decision on the current lot, and provision for rejecting a lot 

on the basis of the results of a single sample (ChSP-4A). Its operating procedure is 

illustrated in Figure 2.2. 
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For each lot select a sample of n units and test each for the conformance

to the specified requirement(s) 

Accept the lot if the observed number of defectives, Z0 is less than or equal 
to c1. 
Reject the lot if Z0 ≥ r. 

Under Backward Cumulation Under Forward Cumulation 

If r > Z0 > c1, accept the lot if
the total number of defectives
from the current lot plus the
previous ( k-1) lots, Ztotal, is less
than or equal to c2. 
 
Reject the lot if Ztotal > C2 

If r > Z0 > c1, defer action until
an additional (k-1) lots have
been tested. Accept the lot
under consideration if the total
number of defectives for the k
lots, Ztotal is less than or equal to
c2. 
 
Reject the lot if Ztotal > c2 

 

Figure 2. 2Chain Sampling Plan (4A) 

 

Some variations of chain sampling for which cumulative results were used in the 

sentencing of lots had also been developed by Anscomber, Godwin, and Plackett 

(1947); Page (1955); Hill, Horsnell, and Warner (1959); Ewan and Kemp (1960); 

Kemp (1962); Beattle (1962); Cone and Dodge (1964); Wortham and Moog (1970), 

and Soundarajan (1978a and 1978b). Further extensions to a general family of chain 

sampling inspection plans had been developed by Dodge and Stephens and published 

in numerous technical reports, conference papers, and journal articles.  

Raju (1996a, 1996b, 1991,1995, 1997) did extensive research work on chain sampling 

plan both cooperatively and independently. His contribution included extending idea 

of ChSP-1 and devising tables based on the Poisson model for the construction of two-
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stage chain sampling plans ChSP (0,2) and ChSP (1,2) under difference sets of criteria, 

outlining the structure of a generalized family of three- stage chain sampling plans, 

which extended the concept of two-stage chain sampling plans of Dodge and Stephens 

(1966). He also authored a series of 5 papers, which presented procedures and tables 

for the construction, and selection of chain sampling plans ChSP-4A (c1, c2). 

Govindaraju (1998) extended the idea of chain sampling plans to variable inspection 

and examined the related properties and listed the desired table. 

2.3 Correlated Production 
 
All the abovementioned research works were done based on the assumption of 

independent life distributions and perfect inspection. In the other direction of research, 

some researchers had questioned the unrealistic assumption of i.i.d. (identical 

independent distribution).  

Lieberman (1953) presented an analysis of CSP-1 under the assumption that the 

probability of a defective unit was not constant for each unit. He found that the worst 

situation would be the one where only defective units were produced under fractional 

sampling and non-defective unites were produced under 100 percent inspection. In 

practice, it was unlikely that automated mass production would follow such a case. 

Sackrowitz (1975) studied the unrestricted AOQL and remarked: “What happened 

apparently is that, the assumption of statistical control was recognized as being too 

restrictive and unrealistic and so was relaxed completely. However, assuming that the 

production process could always do anything may be too unrealistic.”  

Broadbent (1958) described a production process where a mold continuously produced 

glass bottles in an automatic manufacturing process. He reported that non-defective 

and defective bottles occurred in runs and suggested, therefore, a Markov model with 
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non-defective (0) and defective (1) as two states. He introduced a Markovian character 

because of the fact that a defect was likely to occur in a succession of bottles from a 

single mold until the cause of the defect was corrected.  

Preston (1971), while discussing a two-state Markov chain model of a production 

process, pointed out that if the serial correlation coefficient of the Markov chain was 

positive, long strings of non-defectives and defective were more likely; whereas if the 

serial correlation coefficient was negative, alternating sequences of non-defectives and 

defectives were more likely. 

Rajarshi and Kumar (1983), Kumar, and Rajarshi (1987), studied the behavior of three 

continuous sampling CSP-1, CSP-2 and MLP2 under the assumption of a continuous 

production process follows a two-state time-homogeneous Markov chain. The AOQL 

formula of these plans were also derived and presented. The study shows that if the 

serial correlation coefficient of the Markov chain was positive (negative), the AOQL in 

increase (decreased) as compared to the case when the successive units in the 

production process followed a Bernoulli pattern.  

McShane and Turnbull (1991) investigated the performance of CSP-1 when the 

production run lengths were short or moderate or when the input process was not i.i.d. 

Bernoulli. They considered both rectifying and non-rectifying inspections and 

compared the AOQL for the i.i.d. case and the Markov case and the unrestricted 

AOQL values. They concluded that great care should be taken in interpreting the AOQ 

and AOQL, which were the usual measures of the effectiveness of CSP-1 plans. Even 

if the input process was in statistical control, these long-run average measures could be 

very deceiving for finite production runs because the AOQ and AOQL may differ from 

their finite run counterparts and they didn’t take any measure of variability into 

account. 
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Kumar and Vasantha (1995) presented their studies of the continuous inspection of 

Markov processes with a clearance interval. A common conclusion from these studies 

showed that it’s more reasonable to expect the production unit from the same process 

to exhibit a Markov property than the identical independent distribution. Chen and 

Wang (1999) derived the minimum AFI for CSP-1 plan under the Markov processes, 

which could be seen as a comparable work with Resnifoff (1960) and Ghosh (1988), 

which addressed the problem of constructing a minimum average fraction inspected 

(AFI) for a CSP-1 plan when the production process was under control. These work 

mainly dealt with the dependency existing between the product units from the same 

production process.  

Another direction of research in the area of CSP went to the study of the effects of the 

inspection errors. Up to now, few researchers were involved with this as all assumed 

the inspection is perfect. Johnson and Kotz (1980, 1981, 1982a, 1982b, 1984), 

however, contributed in this area and studied the effects of the inspection error on the 

performance of acceptance sampling plans.  Kotz and Johnson (1984) also considered 

the economic impact of the sampling plans and proposed a simple model to simulate 

them. 

2.4 Effect of Inspection Errors 
 

There are two types of errors present in inspection schemes, namely, Type I and Type 

II inspection errors, where Type I inspection error refers to the situation in which a 

conforming item is incorrectly classified as nonconforming and Type II error occurs 

when a nonconforming unit is erroneously classified as conforming. 

Effects of inspection error on the statistical quality control objectives are well 

documented in literatures. In a series of four papers devoted to the effects of 
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inaccuracies of inspection sampling for attributes, Johnson and Kotz had derived the 

hyper geometric probability distributions for several types of inspection schemes 

namely, single stage acceptance sampling schemes [1], double stage, link and partial 

link acceptance sampling schemes [2], Dorfman screening procedures [3] and modified 

Dorfman screening procedures [4].  While, in reality, all inspection procedures are 

governed by the hyper geometric distribution (as sampling is done without 

replacement from a finite lot), the mathematical models derived by Johnson and Kotz 

are often complex and computationally intensive. As such, a number of quality control 

analysts (Maghsoodloo and Bush (1985) for instance) have employed the binomial 

distribution to evaluate error prone sampling procedures instead. Such approximation 

is satisfactory in situations where lot size is more than ten times the sample size. 

Dorris and Foote (1978) had given a literature review of the research works being done 

pertaining to the effect of inspection errors. Most recent work can be found in Beainy 

and Case (1981), Kotz and Johnson (1984), Shin and Lingayat (1992), Fard & Kim 

(1993), Tang (1987), Ferrell and Chhoker (2002). 

In order to examine the effects of inspection errors on statistical quality control 

procedures, it is necessary to have a model of the process generating the errors. One 

particular model for errors in the inspection of items on the basis of attributes assumes 

constant error probabilities. That is the probability of committing inspection errors 

does not change thorough out the inspection. This assumption, though simple and 

mathematical appealing, does not provide a good representative of the real case. 

Actually there are number of argument that inspection errors are fluctuating and 

different model (Biegel (1974) for example) has been proposed to model this 

fluctuation.  
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2.5 Reliability Acceptance Test 
Reliability acceptance sampling Reliability Acceptance Testing (RAT) or Product 

Reliability Acceptance Testing (PRAT) is used to sentence a lot according to some 

reliability requirements. This test may be conducted either by the supplier or the 

customer or both based on agreed sampling plans and acceptance rules. 

It is probably the oldest reliability testing techniques and also almost the least explored 

topic in current reliability study, which due partly to the commonly existed 

misconception that it is too simple to deserve further study. In the 1950s and 1960s, 

life test had been the subject of extensive research and some concrete results had been 

produced and became the basis of the later reliability acceptance test techniques. In a 

series of papers devoted to life test (Epstein & Sobel 1953, Epstein 1954, Epstein & 

Sobel 1955), Epstein and Sobel presented their results of life test based on exponential 

distribution. In 1961, Gupta and Groll carried out a similar study of life test sampling 

plans based on gamma distribution.  

Similar research about Weibull distribution was deferred until 1980, when Fertig and 

Mann published their paper “Life-test sampling plans for two parameter Weibull 

populations”. One major reason for this deference lied in the difficulty and complexity 

of deriving the parameter estimate and its distribution as well as finding its feasible 

approximation.  

Besides the above-mentioned one-stage life test plans, two-stage life test, which offers 

a better risk control and an average less sampling cost, were also appear in literature. 

Bulgren and Hewett (1973) considered a two-stage test of exponentially distributed 

lifetime with failure censoring at each state. Fairbanks (1988) presented his two-stage 

life test for exponential parameter with a hybrid censoring at each stage.  

A thorough survey of two-stage methods, as well as examples of experiments, was 

provided by Hewett and Spurrier (1983). 
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3. Chain Sampling Plan for Correlated Production 

3.1 Introduction 

Acceptance sampling is one of major areas of statistical quality control in quality and 

reliability engineering. It began to take root during the era of industrial revolution in 

the early nineteenth century and flourished during the Second World War. It continued 

to prosper in the second half of the last century, during which period various sampling 

plans had been formulated to cater for various testing situations and quality 

requirements.  

Single sampling plan and double sampling plan are the most basic and widely 

applicable testing plans when simple testing is needed. Multiple sampling plans and 

sequential sampling plans help make marginally better disposition decision at the 

expense of more complicated operating procedures. Other plans such as continuous 

sampling plans, bulk-sampling plans, and Tighten-normal-tighten plans etc., are well 

developed and frequently used in their respective working conditions. Among these, 

chain sampling plans have received great attention from industries because of its 

unique strength in dealing with destructive or expensive inspections, where the number 

of sample size is kept at as low as possible to minimize the total inspection cost. This 

feature supports the application of chain sampling plans to the testing of products such 

as the fire-retard door and the fire-retard cable.  

The characteristics of these testings are: (I) testing is destructive, so it is favorable to 

take as few samples as possible, and (II) testing units (or their components) are cut 

from the same process and it is reasonable to expect a certain kind of relationship 

between ordered samples. For example, units after good units (conformities) are more 

likely to be good, and units after bad units (nonconformities) are more likely to be bad. 
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The objective of this chapter is thus to extend chain sampling plans to plans that could 

capture the dependency between test units within a sample.  

In this chapter, the starting point is the Dodge Chain Sampling Plan (ChSP-1), first 

introduced by Dodge (1977). Its original intention was to overcome the problem of the 

lack of discrimination of a single sampling plan when the acceptance number c =0. 

Today, this plan and its extensions (Ewan and Kemp (1960), Frishman (1960), 

Govindaraju & Kuralmani (1991), Jothikumar & Raju (1996), Raju (1991), Raju & 

Jothikumar (1997), Raju & Murthy (1995 & 1996), Soundarajan (1978) etc.) have 

become the most frequently used plans in destructive or expensive inspections. Its 

operating procedure was illustrated in Figure 2.1.  

Theoretical calculations of ChSP-1 plan are made on assumptions that: 

I. Inspection is perfect; 

II. The production process is in “statistical control”; 

III. The quality characteristic of interest follows an independent identical 

distribution (i.i.d.). 

Above-mentioned assumptions are obviously too restrictive, especially for products 

under continuous production and/or for samples collected in some pre-determined 

order, for example, fire-retard cables and fiber optics, etc. For obvious economic 

reasons, samples are taken at the beginning or at the end of each reel. As a result, it 

seems more reasonable to expect some kind of dependency in the quality 

characteristics within a sample.  

Broadbent (1958) studied various models for quality characteristics of this type of 

production processes, and among them, a two-state Markov chain model is a simple 

and yet versatile choice. It usually offers a satisfactory fit for correlated production 
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processes and the dependency can be characterized using model parameters, which, in 

turn, can be estimated from the data or assumed known a priori. Some literatures have 

presented models of various sampling plans with Markovian property. For example, 

Kumar & Rajarshi (1987) presented their Markov chain model for continuous 

sampling plans and Bhat et al (1990) showed their studies on a sequential inspection 

plans for Markov dependent production process. Related works have also been carried 

out by Kumar and Vasantha (1995), McShane and Turnbull (1991), Chen and Wang 

(1999), and Rajarshi & Kumar (1983) etc. However, to the best of author’s knowledge, 

such an extension to the chain-sampling plan has yet to appear in literature.  

A correlation study is conducted to bridge this gap, with the aim of capturing the 

correlation between testing units. Assume that a Markov chain can model the 

dependency of product units within a sample and there is no dependency between 

samples. In the next section, an extension to the Dodge chain-sampling plan is 

proposed and the related characteristic functions are derived. This is followed by 

results and discussions; and finally, a conclusion is given in the last section. 

3.2 Chain Sampling Plan for Markov Dependent Process 

In this section, an extension to the Dodge chain sampling, called as chain sampling 

plan for Markov dependent process is described, in which the correlation of quality 

characteristics of testing units within a sample is assumed be a Markov chain. For 

mathematical tractability, assume these characteristics are independent among different 

samples. Here no distinction is made between the number of samples and the number 

of previous lots, as only one sample (with sample size equal to n ) is taken from each 

lot. Therefore, the number of samples and the number of lots are identical in this 

context. Some basic assumptions are as follows:  
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1. The quality characteristic of interest follows a 2-state Markov chain within 

each sample (subgroup);  

2. The quality characteristics of interest are independent between different 

samples; 

3.  All samples (subgroups) come from the same process. 

Following above assumptions, define the sequence of random variables  by }0,{ ≥nX n

   if the nth unit is defective 1

0

}

=nX

   if the nth unit is non-defective                     (3-1) =nX

Suppose that{  follows a 0-1-valued time-homogeneous Markov-chain, initial 

distribution and transition probability matrix, respectively, are given by 

0, ≥nX n

[ ] ,101 000 ≤≤== ππXP                (3-2) 
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−
= ba

bb
aa

P    (3-3) 

Where: a = Pr {(i+1)th unit is defective| the ith unit is non defective} 

b = Pr {(i+1)th unit is non-defective| the ith unit is defective}. 

For the convenience of derivation, introduce the following new parameters: 

1)( −+= baap , )( ba +=δ , δλ −= 1 , )1( pq −=         (3-4) 

So that: δpa = , δqb =  

Thus obtain: .  ]1,min[]1,0max[ 11 −− <<− δδ p

The physical interpretation of above parameters is listed as follows: 

 p --- is a long-run proportion of defective units. 
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λ , δ --- can be viewed as dependency parameters of the process, i.e. a 

serial correlation coefficient between and  provided (that) the 

stationary distribution is taken to be the initial distribution. Particularly, 

nX 1+nX

0=λ  gives Bernoulli model. 

The -step transition matrix is given by: k

                                           (3-5) ( ) ⎥
⎦
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⎣
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−
−+⎥
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⎤
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⎡
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qq
pp

pq
pq

P kk δ1

It will be proved in the following that the Markov model transitional probability matrix 

is as described in equation (3-5). The physical interpretation of the parameter will also 

be explained: 

As defined in equation (3-3): 
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Suppose the formula for k =  is correct. That is: n
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Therefore, the transitional probability for the Markov model is: 
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The physical interpretation of parameter p and δ : 

Suppose that D =defective, and G =good (non defective); from the definition, obtain 
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Therefore, p is the long- term proportion of defects. 

Similarly:
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          (3-11) 

This can be viewed as the dependency parameter as it is the ratio of the conditional 

probability and the probability of the respective event. 

So for the initial state: ( )00 ,1 ππ− , compute the state of the kth unit within each sample 

using -step transition probability k kP .  

( ) ( )
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k
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×−===
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   (3-12) 

Therefore, the probability that the kth unit within each sample is in state 0 and state 1 

respectively is given by: 

)()1()0Pr( 0πδ −−+== pqX k
k                            (3-13) 

)()1()1Pr( 0 ppX k
k −−+== πδ                            (3-14) 
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The probability of finding a non-defective in a sample is: 
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Similarly, the probability of finding one defective in a sample is: 
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  for 2≥n        (3-16) 

Secondly, treat all samples independently and follow rules of ChSP-1 that the whole 

batch will be accepted either when there is no defective found in the current sample or 

when one defective found in the current sample but no defectives found in the previous 

 samples. i

Therefore, the probability of acceptance of a batch is given by: 

i
a PPPP ))0(()1()0( ×+=         (3-17) 
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In this case: 
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and:  
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where i  is the number of previous samples (or number of previous lots). 

3.3 Results and Discussion 

An Excel Visual Basic Application program is developed to carry out the numerical 

study of the new model, particularly for generating the OC  curve and  curve. 

The results are illustrated below. 

AOQ

1.  A comparison of the OC  curve of the proposed model with that of the former 

Dodge plan is illustrated in Figure 3.1. The correlation parameter δ  is changed 

from 0.2 to 1.8. For δ =1, the corresponding OC  curve is identical to that of the 

Dodge ChSP-1 plan. For δ <1, units within a sample are positively correlated and; 

for δ >1, the correlation is negative.  

     When δ >1, the new model reveals that for a given “ p ”, the probability of 

acceptance is smaller than Dodge ChSP-1, when the negative correlation is taken 

into consideration. In other words, the proposed plan is more discriminating than 
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the Dodge ChSP-1 and the discriminating power increases as δ  increases. The 

converse is true. When the correlation coefficient is positive, the corresponding 

probability of acceptance is larger for a given “ ” when p δ < 1 and thus the 

discrimination power is less than that of Dodge plan. The implication in practice is 

that when the Dodge ChSP-1 plan is applied to samples with positive correlation, 

the resulting probability of acceptance is smaller than what it is supposed to be and 

will lead to a more conservative decision. On the other hand, when there is a 

negative correlation, Dodge ChSP-1 plan must be used with caution as its 

probability of acceptance and average outgoing quality are larger than actual values 

given in this plan. 
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Figure 3. 1OC curve of new model (i=5, n=5) 
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Figure 3. 2AOQ curve of new model (i=5, n=5) 
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Figure 3.2 shows the effect of correlation on AOQ  of this model for different 

δ  ranging from 0.2 to 1.8. For δ =1, the corresponding  curve is identical to 

that of the Dodge plan. It can be seen that  becomes smaller when the 

correlation pattern changes from positive to negative for a given incoming lot 

quality. Moreover, the AOQL  also decreases for a larger 

AOQ

AOQ

δ . This is consistent 

with the earlier observation that the proposed plan is more discriminating under the 

negative correlated production. 

2.   The effect of sample size on the performance of OC  curves is illustrated in Figure 

3.3, 3.4, and 3.5. Here, the sample size n  is changed for a fixed value of δ  and 

lots number. In Figure 3.3, the correlation parameter δ  is fixed at 0.4 and the 

previous lots number i  is fixed at five. It represents an example of positively 

correlated scenario (δ <1). In Figure 3.4, δ  is set to one and is actually the plot of 

Dodge ChSP-1 as there is no correlation between testing units (δ =1).  Figure 3.5 

is an example of negatively correlated cases, in which the correlation coefficient δ  

is fixed at 1.4 (δ >1). These three graphs exhibit the same trend when the sample 

size  is changed. For a given “ ”, the probability of acceptance decreases with 

the increase of sample size, which means an increase in the discriminating power.  

n p
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Figure 3. 3 OC curve comparison of sample size (i=5, δ =0.4) 
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Figure 3. 4 OC curve comparison of sample size (i=5, δ =1) 
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Figure 3. 5 OC curve comparison of sample size (i=5, δ =1.4) 

 

Corresponding  curves are illustrated in Figures 3.6, 3.7, and 3.8 respectively. 

These three figures are used to study the effect of sample size on AOQ  curves 

when there is a positive correlation (

AOQ

δ <1), no correlation ( δ =1) and negative 

correlation (δ >1) respectively. The results are similar to those of OC  curves. For 

a given “ ”, the  decreases with the increase of sample size.  p AOQL
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AOQ Curve
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Figure 3. 6 AOQ comparison of sample size (i=5, δ =0.4) 
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Figure 3. 7 AOQ comparison of sample size (i=5, δ =1) 
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Figure 3. 8 AOQ comparison of sample size (i=5, δ =1.4) 
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3.  The effect of the cumulative number of previous lots on the performance of OC  

curves is illustrated in Figures 3.9, 3.10, and 3.11 for δ <1, δ =1 and δ >1 

respectively. The number of previous lots i  differs from 1 to 5 for fixed values of 

δ and sample size. The trends revealed in these three graphs are similar. For a 

given “ p ”, the probability of acceptance decreases with the increase of the number 

of previous lots, which implies an increase of the discriminating power.   
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Figure 3. 9 OC curve comparison of lots no. (n=10, δ=0.4) 
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Figure 3. 10 OC curve comparison of lots no. (n=10, δ=1.0) 
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Figure 3. 11 OC curve comparison of lots no. (n=10, δ=1.4) 

 

Their corresponding AOQ  curves are illustrated in Figure 3.12, 3.13, and 3.14 

respectively, in which δ  is set to 0.4, 1, and 1.4 respectively. Results are similar to 

those of their OC  curve counterparts. For a given “ ”,  decreases with the 

increase of the number of previous lots. In other words, the discriminating power 

increases when the number of previous lots increases and vice versa.  

p AOQL

Another important finding revealed by this study is that both OC  curve and  

curve fluctuate sharply to the change of the number of previous lots when it is 

small. However, such fluctuation becomes much more moderate when this number 

becomes large. For example, when the number of previous lots i  is greater than 3, 

changes in OC  curve and  curve turn to be minor. It is therefore 

recommended to select a number of previous lots of 3 to maintain a relatively 

robust performance while not increasing the inspection cost by including a large 

number of previous lots. 

AOQ

AOQ
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AOQ Curve
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Figure 3. 12 AOQ curve comparison of lots no. (n=10, δ=0.4) 
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Figure 3. 13 AOQ curve comparison of lots no. (n=10, δ=1.0) 
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Figure 3. 14 AOQ comparison of lots no. (n=10, δ=1.4) 
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3.4 Conclusion 

The study presented in this chapter is mainly motivated by the intention to model the 

correlation between testing units in chain sampling plans since the former Dodge 

ChSP-1 did not take this into consideration. Numerical results reveal that for a given 

“ ”, the probability of acceptance is smaller when p a negative correlation is taken into 

consideration. In other words, when the correlation is negative, the new extension, 

Chain Sampling Plan with Markov Property (ChSP-MP), is more discriminating than 

the Dodge ChSP-1 and the discriminating power increases as the correlation 

parameterδ  increases. The reverse is true when the correlation coefficient is positive. 

The corresponding probability of acceptance is larger for a given “ p ” and thus the 

discrimination power is less than that of the Dodge plan.  

The implication in practice is that when the Dodge ChSP-1 plan is applied to samples 

with positive correlation, the resulting probability of acceptance is smaller than what it 

is supposed to be and will lead to a more conservative decision. On the other hand, 

when there is a negative correlation, the Dodge ChSP-1 plan must be used with caution 

as its probability of acceptance and average outgoing quality are larger than actual 

values given in this plan. 

Numerical results show that it is advisable to use three previous lots as a choice of an 

important design parameter. The reason is simple. As the OC  curve and  curve 

indicate that any lots number less than three will compromise robustness and any lots 

number more than three will incur additional cost. 

AOQ
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4. Chain Sampling Scheme under Inspection Errors 
  (Ι: For Constant Errors) 

4.1 Introduction 
Acceptance sampling by attributes is a fundamental tool in statistical quality control. It 

deals with procedures by which an accept/reject decision to a production lot is made 

based on results of inspection of samples. Sampling schemes, rather than 100% 

inspection of a production lot, are widely employed in industries to achieve a more 

economical and efficient use of company resources.  Also, sampling schemes are 

applied to cases where it is impossible to carry out destructive inspection procedure on 

an entire production lot. 

Embedded within the design of acceptance sampling plans for attributes is an implicit 

assumption that inspection procedures are completely flawless. In reality, however, 

inspection tasks are seldom error free. On the contrary, they may even be error prone.  

A variety of channels may contribute to these error commitments. In manual 

inspection, errors may result from factors such as complexity and difficulty of the 

inspection task, inherent variation in the inspection procedure, subjective judgment 

required by human inspectors, mental fatigue and inaccuracy or problem of gages or 

measurement instruments used in inspection procedures. Automated inspection system 

has been introduced to reduce the inspection time as well as to eliminate errors 

incurred as a result of human fatigue. However, inspection errors may still present due 

to factors such as complexity and difficulty of the inspection task, resolution of the 

inspection sensor, equipment malfunctions and “bugs” in the computer program 

controlling the inspection procedure etc. 

There are two types of errors present in inspection schemes, namely, type I and type II 

inspection errors, where type I inspection error refers to the situation in which a 
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conforming item is incorrectly classified as nonconforming and type II error occurs 

when a nonconforming unit is erroneously classified as conforming. 

While inspection errors incurred during acceptance sampling for attributes are often 

unintentional and in most cases neglected, they nevertheless can severely distort 

quality objectives of a system design. This has motivated the study of the effect of 

inspection errors on different sampling schemes. In a series of four papers devoted to 

the effect of inaccuracies of inspection sampling for attributes, using the hyper-

geometric distribution, Johnson and Kotz (1985, 1986, 1988 & 1990) analyzed several 

types of inspection schemes namely, single stage acceptance sampling schemes (1985), 

double stage, link and partial link acceptance sampling schemes (1986), Dorfman 

screening procedures (1988) and modified Dorfman screening procedures (1990). 

While, in reality, all inspection procedures are governed by the hyper-geometric 

distribution (as sampling is done without replacement from a finite lot size), 

mathematical models derived by Johnson and Kotz are often complex and 

computationally intensive. As such, a number of quality control analysts 

(Maghsoodloo and Bush (1985) for instance) had employed the binomial distribution 

to evaluate error prone sampling procedures instead. Such approximation is 

satisfactory in situations where lot size is more than ten times of the sample size. 

While the above work considered inspection error in other sampling plans, thus far, no 

literature is found to deal with the study of chain sampling plans with inspection errors. 

The motivation to study chain sampling plans was driven by a real industrial project, 

where appropriate sampling plans were required to test fire-retard doors and fire-retard 

cables. One impeding feature of these tests is that they are destructive and very costly, 

so it is favorable to take as few samples as possible. Chain sampling plan stands up to 

be the best choice for this scenario among various collections of sampling plans 
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because of its unique strength in dealing with destructive and costly testing by tracking 

previous information.  

The primary aim of this paper is to extend the inspection error consideration to chain 

sampling schemes so as to better understand its implications and to quantify the related 

sampling risk. Expressions of performance measures such as operating characteristic 

function, average total inspection and average outgoing quality will be derived to aid 

the analysis of a general chain sampling scheme, ChSP-4A (c1, c2) r, developed by 

Frishman (1960). Effects of all sampling parameters on the performance of inspection 

schemes will be investigated to serve as a foundation for future plan designing purpose.  

A detailed model description will be introduced in Section two and followed the 

analysis and discussion in Section three. Section four gives conclusions. 

4.2 Mathematical Model 
 
4.2.1 Single sampling plan with inspection errors 

Single stage sampling plans form the theoretical framework of chain sampling plans as 

chain-sampling plans rely on the result of single stage sampling plans to make 

acceptance/rejection decisions. Therefore, in order to develop a mathematical 

expression of chain sampling plans, it is essential to first develop a mathematical 

model for single stage sampling plans in the presence of inspection errors. Johnson et 

al (1985) derived the mathematical expression for single sampling based on hyper-

geometric distribution. The probability distribution is given by: 
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where the author used ρ ′ and ρ−1 to stand for the type I and type II inspection error respectively; 

other notations are agreeable with ours in the nomenclature table. 

To facilitate the subsequent derivation, an outline of the derivation is given as follows. 

Let T (rue) and A (pparent) represent the true state and the observed state of inspected 

items respectively. Define: 

  when the inspected item is truly conforming, 0=T

   when the inspected item is truly nonconforming; and  1=T

  when the inspected item is observed (or classified) as conforming, 0=A

 1=A  when the inspected item is observed (or classified) as nonconforming. 

The combination of the relationship between these two variables is illustrated in Table 

4.1 where letter  stands for type I inspection error and stands for type II inspection 

error. 

1e 2e

Table 4. 1Types of inspection errors 

A              T 0=T  1=T  

0=A  No inspection error Type II error ( ) 2e

1=A  Type I error ( ) 1e No inspection error 

 

So:  

  )
0

0&1Pr()0|1Pr(1 =
==

====
T

TATAe   (4-2) 

  )
1

1&0Pr()1|0Pr(2 =
==

====
T

TATAe   (4-3) 

The number of nonconforming items in a sample follows a hyper-geometric 

distribution with parameters i.e. ),;( NDn

),;(~ NDnHypgY      (4-4) 
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and its probability is given by: 
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where, 

( ) ( )DnyDNn ,min,0max ≤≤+−  

Given Y , Z  is the sum of two mutually independent variables, W  and W , with each 

following binomial distribution: 
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'WWZ +=        (4-7) 

Then, ),())1(,(~| 12 eYnBineYBinYZ −∗− , where ∗  stands for convolution. 

The probability distribution of the number of observed nonconformings in a sample is 

given by 
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Where  takes a value from w ),0max( Ynz +−  to  inclusive. ),min( zY

Finally, the overall distribution of Z  is given by: 
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Formula (4-9) is essentially identical to the initial equation (4-1) 
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For a single stage sampling plan the decision rule is “If the number of apparent 

defective items in a sample size n  exceeds c , the acceptance number, reject the lot; 

otherwise accept it”; or mathematically expressed as: 

“Reject if ; accept if cZ > cZ ≤ ” 

Therefore the probability of acceptance for a single stage acceptance sampling is given 

by: 
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4.2.2 Mathematical Model for Chain Sampling Plans, ChSP (c1, c2) r 

 
Unlike double, multiple and sequential sampling plans, where the probability of 

acceptance for a production lot of high quality is enhanced by taking extra sample(s) 

from the same production lot, chain sampling inspection schemes do not require 

additional samples from a lot to increase the chance of acceptance. In fact, in chain 

sampling, each production lot undergoes a simple single stage acceptance sampling 

and the verification of quality of any production lot in doubt hinges on the cumulative 

result of the immediate  preceding lots. The operating procedure and probability 

tree for chain sampling is given in Figure 4.1. 

)1( −k
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Lot rejected immediately

( )10Pr cZ ≤ ( )rZ ≥0Pr( )rZc << 01Pr

( ) ( )[ 201Pr cZrZc total ≤∩<< ( ) ( )[ 201Pr cZrZc total >∩<<

Lot accepted immediately
 

 Lot pending. Decision to be made after 

Lot is eventually accepted after k-1 
immediate preceding lots are 
inspected 

Lot is eventually rejected after k-

Chain Sampling Plans 

Probability of Acceptance Probability of Rejection 

 

 
 
 

Figure 4. 1Probability tree for chain sampling plans  

Here assumptions are: 

1. The process should be in a state of statistical control and all lots follow i.i.d.  

2. No switching rules will be adopted 

3. Inspection errors will remain constant throughout inspection activities. 

(Variable inspection errors will be addressed in chapter 5) 

Based on above mentioned assumptions and procedures, the general expression of the 

probability of acceptance for chain sampling plans in the presence of constant 

inspection errors,  is given by: chP

( ) ( )21012211 ,,,,,;|Pr,,,;|Pr eeNDnkrZccZeeNDncZP totaloch <<≤+≤=  

(4-12) 
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        (4-13) 

where: 

  ( ) ( )DnyDNn ,min,0max ≤≤+−  

   ( ) ( )yzwynz ,min,0max 00 ≤≤+−  

  ( )( )( ) ( ) ( )( )DknkiDNnk 1,1min1,0max −−≤≤+−−  

  ( )( ) ( )izwinkz prepre ,min1,0max 2 ≤≤+−−  

   rcc ≤− 12

   0zzz totalpre −=

Calculating acceptance probabilities for different values of true fraction 

nonconforming 
N
D  using Equation (4-13) will yield the operating characteristic (OC) 

curve of an inspection scheme. This curve displays the discriminating power of the 
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inspection scheme. More precisely, it shows the probability that the lot submitted with 

a certain fraction of nonconforming items will be accepted. 

4.2.3 Average Outgoing Quality 

Average Outgoing Quality (AOQ) defines the quality of a production lot that leaves 

the inspection and can be mathematically expressed as the ratio of total number of 

outgoing nonconforming items to the total number of outgoing items. This ratio highly 

depends on different samples and lot disposition policies. In this paper, all apparent 

nonconforming items in a sample will be replaced and any rejected lot will undergo 

100% screening with all apparent nonconforming items replaced. 

In order to construct a formula for AOQ, two important expressions, namely the 

apparent fraction nonconforming and the conditional probability that an apparent 

(observed) conforming item is actually a nonconforming item, must be established. 

Apparent Fraction Nonconforming 

Let p be the true fraction nonconforming, and π be the apparent (observed) fraction 

nonconforming. The relationship between two variables is given by: 

  ( ) ( ) ( ) 12121 11 eeeppepep ++−=−+−=π   (4-14) 

Conditional Probability 

To compute the conditional probability that an apparent (observed) conforming item is 

actually a nonconforming item, define following events: 

 Accept be the event that an item is classified as conforming,  

Reject be the event that an item is classified as nonconforming,  

Good be the event that an item selected is conforming, and 

Bad be the event that an item selected is nonconforming. 

Then: 
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With a simple manipulation, obtain the following probability: 
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         (4-17) 

The expected total nonconforming items sending out came from five different sources 

for this particular sample / rest of lot disposition policy, namely: 

1. Number of nonconforming items in an unscreened portion of an accepted 

production lot, which is given by: 

( )pnN −  

 and the probability of such occurrence is chP .

2. Number of nonconforming items in a screened portion that are misclassified as 

conforming, which is given by: 

( ) 2penN −  

 and the probability of such occurrence is chP−1 . 

3. Number of nonconforming items misclassified as conforming in a sample, 

which is given by: 

2npe  

 and the probability of such occurrence is 1. 
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4. Number of nonconforming items that are used to replenish the rejected fraction 

of a screened portion, is given by: 

( ) ( )( ) ( ) 121

2
121 1 eeepp

peeeeppnN
−++−

++−−  

and the probability of such occurrence is chP−1 . 

5. Number of nonconforming items that are used to replenish rejected fraction of 

a sample, which is given by: 

( )( ) ( ) 121

2
121 1 eeepp

peeeeppn
−++−

++−  

 and the probability of such occurrence is 1. 

Therefore, AOQ is defined as: 
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        (4-18) 

The average outgoing quality of chain sampling plans can be obtained by using 

equation (4-13) to substitute the  in equation (4-18). chP

4.2.4 Average Total Inspection 

ATI (Average Total Inspection) is essentially the expected amount of items inspected 

per lot in a long run. Like AOQ, the computation of average total inspection depends 

on the sample /lot disposition policy. Adhering to the same policy as described in the 

previous section (all apparent nonconforming items in a sample will be replaced and 
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any rejected lot will undergo 100% screening with all apparent nonconforming items 

replaced), the average total inspection under inspection errors is given by: 
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4.3 Analysis and Discussion 
A series of Microsoft Excel Visual Basic Application routines have been developed to 

compute the complex cumulative hyper-geometric equation of the probability of 

acceptance for chain sampling plans as well as its OC curve, AOQ curve and ATI 

curve, which are three major measurements of any sampling schemes. Brief 

description of the programs is included in this section and they are available from the 

author upon request. 

4.3.1 Effects of Inspection Errors 

There are two types of inspection errors, namely type I and type II errors. The 

probability of incurring type I error is defined as  and the probability of the 

occurrence of type II error is defined as , where both  and  range from 0 to 1. 

Note that values of and  used in Figure 4.2 do not cover the entire range from 0 to 

1 for both  and . Figure 4.2 is a 3D plot of the ChSP (1, 3) 4 (Lot size = 1000, 

Number of defectives =10, Sample Size = 5, and (

1e

2e 1e 2e

1e 2e

1e 2e

1−k ) =2). Rather, we select the 

respective range corresponding to situations most likely to be encountered in current 

high yield industry to highlight its typical behavior. Nevertheless, the entire range for 

each  and  is plotted in Figure 4.2a and Figure 4.2b respectively to obtain a more 

conclusive result in the following analysis. 

1e 2e

For all chain sampling plans, the result for any production lot of a small fraction of 

nonconforming items displays two prominent trends as illustrated in Figures 4.2, 4.2a, 

 45



 
Chapter 4                                                                ChSP for Constant Inspection Errors 

and 4.2b: a) as type I inspection error,  increases, the probability of acceptance 

decreases; and b) as type II inspection error,  increases, the probability of 

acceptance increases. The increase, however, is almost negligible as compared to that 

of the change in probability of acceptance when  decreases while lot size is large and 

there is only a small fraction of defectives.  
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Figure 4. 2 3D plot of effects of inspection errors 
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Figure 4.2a View A 
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Figure 4.2b View B 

 

The observation is consistent with results obtained in all literatures pertaining to 

inspection error models. The reason for the occurrence of such phenomenon is that 

given that there is only a small fraction of nonconforming items, while the probability 

of misclassifying them (type II error) may be high, the expected number of 

misclassified nonconforming items in a sample remains small; and hence, the increase 

in probability of acceptance incurred by type II error is almost negligible. 

On the other hand, a good production lot with a small fraction of nonconforming items 

implies a higher probability of selecting a large fraction of conforming items for 

sampling. Therefore, a slight increase in the probability of committing a type I error 

will significantly increase the expected number of nonconforming items through 

misclassification of a large pool of conforming items. Thus, it can be concluded that 

the probability of acceptance is insensitive to  as small as 0.05 but is sensitive to  

as small as 0.01 when the lot size is very large with few nonconforming items presence.  

2e 1e

A Visual Basic Application program in Excel is designed to compute the acceptance 

probability and to draw the OC curve automatically. Readers can request the program 
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and reproduce results by following the interface provided in this chapter. The program 

input interface for Figure 4.2 is shown in Figure 4.3. 

 
Figure 4. 3 Screen snapshot of the program input interface 

Its input screen snapshot for Figure 4.2a and 4.2b is shown in Figure 4.4 below. 

 

Figure 4. 4 Screen snapshot of inspection error rang 

 48



 
Chapter 4                                                                ChSP for Constant Inspection Errors 

4.3.2 Effect on OC Curve 

Next, the OC curve under the effect of inspection errors will be presented. Assume that 

only type I inspection error is present (that is, 02 =e ). As  increases, the probability 

of acceptance decreases more significantly as compared to that of a faultless inspection. 

The decrease is more prominent in the region where the true fraction of 

nonconforming is small as shown in Figure 4.5 below. 
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Figure 4. 5 OC curves for ChSP (2, 5) 5, n =5, (k-1) =5 with type I inspection errors 

 

When only type II inspection error is present (i.e. 01 =e ), the acceptance probability 

increases as type II inspection error ( ) increases. The increase in the acceptance 

probability is relatively greater in the region of large true fraction of nonconforming 

items. (Figure 4.6) 

2e
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Figure 4. 6 OC curves for ChSP (2, 5) 5, n =5, (k-1) =5 with type II inspection errors 

 

Very often, inspection tasks are subjected to two types of inspection errors 

simultaneously. Except for rare cases where inspection errors cancel out each other, 

operating characteristics curve will be distorted by the presence of inspection errors. 

Figure 4.7 below shows effects of different combinations of type I and type II 

inspection errors on the behavior of OC Curve.  
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Figure 4. 7 OC curve for combined inspection errors (ChSP (2, 5) 5, n =5, (k-1) =5) 
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A screen snapshot of the program, which is used to conduct the analysis of the effect 

of inspection error on OC curves, is shown in Figure 4.8. Users can follow the figure 

to key (in) the parameter input and reproduce the result.  

 

Figure 4. 8 Program input of the OC curve analysis 

 

The effect of inspection errors on the OC curve is actually the exhibition of the effect 

of inspection errors on the observed number of nonconforming items. When there are 

no inspection errors, the observed number of nonconforming items is the same as the 

true number of nonconforming items from a lot. Whenever the inspection error is 

present, the observed number of nonconforming items is a “false” representative of the 

true number of nonconforming with a certain degree of distortion. Its relationship can 

be mathematically expressed as: 

       (4-20) ( ) 12 eynyez −+=

The observed fraction of nonconforming π , for a sample is therefore given by: 
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Suppose sampling is done randomly and the sample is a true representative of the lot 

quality, so: 

  p
N
D

n
y

==       (4-22) 

Combining equation (4-21) and (4-22), we obtain: 

  ( ) 1211 epee +−−=π      (4-23) 

Assume that two types of inspection errors,  and , remain constant throughout the 

inspection. It will, without exception, observe π fraction of nonconforming items from 

a lot size of N  with 

1e 2e

p  fraction of nonconforming items. This implies that the 

probability of acceptance for a lot with  fraction of nonconforming items subjected 

to inspection errors of and  respectively, is equivalent to the probability of 

acceptance of the same lot with π fraction of nonconforming items undergoing perfect 

inspections. 

p

1e 2e

Hence, it implies that the OC curve for any inspection scheme subjected to inspection 

errors is essentially the OC curve for a similar inspection scheme that undergoes 

following two transformations: 

• Stretch by a factor of 
12

1
ee −

 in the direction of p; 

• The resulting curve is then shifted by a factor of 1e−  in the direction of p. 

Therefore, the probability of acceptance for a single stage-sampling plan (4-9) can be 

rewritten as: 
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Where is the equivalent number of nonconforming items from a perfect inspection 

to that of D  nonconforming items when the inspection is subjected to type I and type 

II errors simultaneously, and  is given by: 

*D

*D

  ( ) ( ) 12
* 1 eDNeDD −+−=     (4-25) 

Similarly, the complicated chain sampling acceptance probability formula (4-12) and 

(4-13) can be reduced to the following: 
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         (4-26) 

Equation (4-26) can be used to approximate the complicated equation (4-13). Slight 

departure from the original OC curve may occur due to the rounding up error (as  

must be an integer to compute the hyper-geometric probability function). Nevertheless, 

it serves as a more comprehensible model and simpler approximation to the true 

distribution. A sensitivity analysis of the rounding up error is illustrated in Figure 4.9, 

and it is clear that those three OC curves are almost identical; which means that the 

rounding up error is insignificant in most cases. 

*D
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Figure 4. 9 Effect of roundup error 

 

4.3.3 Effects on AOQ and ATI 

Besides OC curves, ATI (Average Total Inspection) and AOQ (Average Outgoing 

Quality) are other two performance measures for assessing sampling schemes 

subjected to inspection errors.  It is important to point out that while the OC curve of a 

sampling scheme subjected to inspection errors can be approximated by the OC curve 

of a prefect sampling scheme undergoing two transformations, the same approximation 

cannot be applied to ATI and AOQ as the computation for two performance measures 

are highly dependent on the type of error and the disposition policy. The study of the 

two performance measures is critical as both of them have direct impact on the 

economic aspect of sampling procedures. 

An introduction of the program used for AOQ and ATI analysis will be given first. 

Since the input for AOQ curve and ATI curve are the same, they are incorporated into 

one input interface to make it more concise. To run the simulation, just key in required 

sampling parameters and press the left button for AOQ computation and the right 
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button for ATI computation. The input interface for this program is illustrated in 

Figure 4.10 below. 

 

Figure 4. 10 Program input interface for AOQ and ATI analysis 

 

The same sampling settings are used in order to provide a simpler illustration, i.e. the 

ChSP (2, 5) 5,  and , throughout this section for comparison.  6=k 5=n

In Figure 4.11, the type I inspection error is fixed at zero. It is obvious that as the type 

II inspection error increases, the AOQ will increase accordingly. This observation is 

intuitively clear as the larger the type II inspection error, the more nonconforming 

items escape from inspection. The average outgoing quality is therefore worsened. 

This trend holds for constant type I inspection errors. Figure 4.12 shows the AOQ 

curve changes when type I inspection error is equal to 0.2. 
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Figure 4. 11 AOQ curve of type II inspection error (e1=0) 
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Figure 4. 12 AOQ curve of type II inspection error (e1=0.2) 

 

On the other hand, Figure 4.13 & 4.14 illustrate the effect of different type I inspection 

error with type II inspection error set to zero and 0.1 respectively. The trend is reverse 

of that of type II inspection error. When type I inspection error becomes larger, the 

corresponding average outgoing quality becomes smaller. This is because more 

conforming items are mis-classified as nonconforming, which means that the actual 

number of nonconforming items is fewer, and thus better AOQ.  

 56



 
Chapter 4                                                                ChSP for Constant Inspection Errors 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6

p

A
O
Q

e2=0 e1=0

e2=0 e1=0.01

e2=0 e1=0.02

e2=0 e1=0.03

e2=0 e1=0.04

e2=0 e1=0.05

 

Figure 4. 13 AOQ curve of type I inspection error (e2=0) 
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Figure 4. 14 AOQ curve of type II inspection error (e2=0.1) 

 

It should be noted that the effect of type II inspection error is more prominent on the 

AOQL (average outgoing quality limits). Figure 4.15 depicts the AQO curve for 

different type I inspection errors with type II inspection error equal to zero. Figure 4.16 

is a counterpart of Figure 4.15 where the type II inspection error is set at 0.01. There is 
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a strong indication that even a very small type II inspection error will lead the final 

AOQL to almost 1. 
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Figure 4. 15 AOQ curve of increased type I inspection error (e2=0) 
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Figure 4. 16 AOQ curve of increased type I inspection error (e2=0.01) 

 

It is also necessary to point out that the ranges for two types of inspection errors should 

be within reasonable ranges, namely 0～0.01 for type I inspection error and 0～0.05 
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for type II inspection error as larger inspection errors will incapacitate the 

effectiveness of any sampling plan.  

From the plot of ATI (Figure 4.17), it is shown that for values of type II inspection 

error less than one, the average total inspection is less than that of a perfect inspection. 

As type II inspection error increases, the ATI decreases. This is because as  

increases, the probability of nonconforming items that is correctly classified decreases, 

implying that the probability of nonconforming items classified as conforming 

increases. Suppose that  is zero (that is to say, there is no misclassification of 

conforming items during the sampling process), the overall probability of having items 

classified as conforming increases. Hence, the probability of rejecting a lot decreases. 

Since the probability of rejection decreases, the chance of carrying out 100% screening 

of the rejected lot will decrease.  
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Figure 4. 17 ATI curve of increased type II inspection error (e1=0) 

 

Similarly, as depicted in Figure 4.18, when the probability of type I inspection error 

increases, ATI increases. This is because as  increases, the probability of 

erroneously classifying conforming items as nonconforming increases, implying 

1e
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higher probability of rejecting a lot; and consequently, a higher probability of carrying 

out 100% screening on the lot. 

Inference drawn on the ATI of chain sampling plans in this section is similar to those 

in other inspection procedures such as single and double stage sampling plans. It is 

important to note that while the presence of type II inspection error reduces total 

inspection efforts required, readers should not be misled into thinking that the type II 

inspection error is favorable. Combined with the previous discussion of AOQ curve 

and OC curve, it is obvious that two types of inspection errors should be minimized. 
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Figure 4. 18 ATI curve of increased type I inspection error (e2=0) 

 

4.3.4 Effects of other sampling parameters 

The study of the effect of other sampling parameters of chain sampling scheme such as 

lot size, lot defect number, sample size, acceptance number(s), etc. is essential to better 

understand the behavior of chain sampling plan when inspection errors cannot be 

ignored. In subsection 4.3.2, it is shown that the presence of inspection errors can be 

treated equivalently to that of flawless inspection after substituting the true number of 

non conforming items, D , with its equivalent . This implies that the effect of *D
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sampling parameters on the acceptance probability under inspection errors would 

behave similar to that of one perfect inspection. Therefore, the study of the effect of 

sampling parameters under imperfect inspection can be reduced to the study of the 

perfect chain sampling parameter without loss of its generality. The following 

investigation in this subsection will focus on sampling plans under perfect inspection 

only, but the conclusion can be applied to those of imperfect inspection. 

 

Lot Size N 

Figure 4.19 shows the relationship between the acceptance probability and lot size . 

For a fixed process, where the long-term process quality is assumed to be 

N

1.0==
N
Dp , 

four different chain-sampling plans are compared. It is observed that as N  increases, 

the probability of acceptance  becomes increasingly insensitive to N . That is, after 

a certain point,  exhibits little change as  increases. OC curve of ChSP (1, 2) 2 is 

actually the same as that of single sample plan with acceptance number equal to one. It 

is essentially the case of using binomial distribution to approximate hyper-geometric 

distribution. 
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Figure 4. 19 Effects of lot size (1) 
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From the plot, it can be shown that as N  increases, the probability of acceptance 

increases. As it continues to increase to infinity, the probability of acceptance 

approaches an asymptotic value. The asymptotic value depends on the process quality 

and also on the value of inspection errors. Generally speaking, if the presence of 

inspection error is significant, the convergence occurs at a larger N . The operating 

characteristic curve for a particular inspection scheme (ChSP (2, 4) 4, =5) where 

=100, 1000, 10000,100000 and 1000000 respectively is given in Figure 4.20. The 

graph shows that these curves superimpose on each other, implying that for a large , 

probabilities of acceptance are almost equivalent. 
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Figure 4. 20 Effects of lot size (2) 

 

Sample Size n 

Figure 4.21 succinctly illustrates the influence of sample size on the operating 

characteristic function. In this figure, the lot size of the sampling plan is set to 1000. 

As the sample size n , increases, the slope of the OC curve becomes steeper and will 

approach a vertical line when 100% inspection is carried out. This implies that 

implementing inspection schemes with a large sample size can increase the 

discriminatory power of acceptance sampling.  However, having a larger sample size 
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implies a larger ATI. That is, more items have to be inspected per lot. It is a time 

consuming and uneconomical approach. Therefore, an optimum sampling plan should 

consist of a small sample size that has the required discriminatory power. 
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Figure 4. 21 Effects of sample size 

 

Effects of acceptance number for first stage, c1 

A reduction in the acceptance number for the first stage, , has the effect of 

compressing the shape of the OC curve, causing the probability of acceptance to 

decrease.  In other words, the discriminatory power of the inspection scheme increases 

as  decreases (as illustrated in Figure 4.22). The setting for this plan is that lot size 

equals to 1000 and sample size is 5. 

1c

1c
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Figure 4. 22 Effect of c1

 

Number of proceeding lots used for the cumulative criterion (k-1) 

One of the most important characteristics of chain sampling plans is the number of 

preceding lots  to be used for the cumulative criterion. The effect of cumulative 

criterion leads to more discriminating plans for smaller true fraction of nonconforming. 

Figure 4.23 shows that the probability of acceptance at the region of smaller true 

fraction of nonconforming will be greatly enhanced by utilizing fewer preceding lots 

especially, when  equals to 1 or 2, for the verification of a production lot in 

doubt. However, such practice tends to increase consumer’s risk, as utilizing only one 

or two of the preceding sampling result is not sufficient to reflect the process 

consistency. In practice, the value of 

)1( −k

)1( −k

)1( −k  varies from 3 to 5 as larger  value 

will adversely lengthen the time to reach a decision (if a forward cumulative approach 

is used) and will increase the administration cost. Another important observation to be 

noted is that as k  increases, the OC curve virtually converges with that of a single 

sampling plan.  

)1( −k
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Figure 4. 23 Effects of k, number of lots 

 

Rejection number, r 

The rejection number also plays a pivotal role in the cumulative criterion, as it defines 

the quality of a production lot, which is in doubt and the range at which the cumulative 

criterion can take place. As the rejection number increases, the probability of 

acceptance increases (as shown in Figure 4.24). While increasing r , chances of 

acceptance will be enhanced; it also inevitably increases consumers’ risk. Therefore, it 

is often undesirable to define a large value of r . On the contrary, reducing r  has the 

same effect of increasing k , which means reducing r  will cause the OC curve 

approaching that of single sampling. It is therefore desirable to select a moderate value 

of r . 

 
Acceptance number for second stage, c2 

 
The last but equally important component of the cumulative criterion is the acceptance 

number  for the second stage. From Figure 4.25, the increase of acceptance number 

for the second stage will similarly alter the shape of the OC curve in the region of 

principal interest, in which the fraction of nonconforming is small. Any attempt to 

2c

 65



 
Chapter 4                                                                ChSP for Constant Inspection Errors 

decrease producers’ risk by defining a chain sampling inspection scheme with a large 

, would similarly incur an objectionable increment in the consumers’ risk. In 

practice,  takes only two values, 

2c

2c 1−r  and r . 
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Figure 4. 24 Effects of rejection no. r 
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Figure 4. 25 Effects of c2

 

4.4 Conclusion and Remark 

Acceptance sampling, rather than 100% inspection of a production lot, is widely 

employed in industries to achieve a more economical and efficient use of company 

resources. An implicit assumption in the design of acceptance sampling plans for 

attributes is that inspection procedures are completely flawless. In reality, however, 

inspection tasks are seldom error free. On the contrary, they may even be error prone. 
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While inspection errors incurred during an acceptance sampling for attributes are often 

unintentional and in most cases neglected, they nevertheless can severely distort the 

quality objective of a system design. 

In this chapter, the inspection error is considered in chain sampling schemes and a 

mathematical model is developed to investigate the performance of chain sampling 

schemes when inspection errors are taken into consideration. Expressions of 

performance measures are derived to aid the analysis of a general chain sampling 

scheme, ChSP-4A ( , )1c 2c r , developed by Frishman (1960), such as the operating 

characteristic function, average total inspection and average outgoing quality. 

The study reveals that as type I inspection error increases, the acceptance probability 

will decrease while the increment of type II inspection error will increase the 

acceptance probability. The effect of type II error on the sampling acceptance 

probability is very marginal as compared to that of type I error especially when the 

true fraction of nonconforming is small. 

An important conclusion from this study is that the effect of inspection errors can be 

“eliminated” by transforming to its equivalent perfect inspection counterpart, thus 

greatly reducing the complexity of the analysis. 

Effects of inspection errors on the AOQ curve and ATI curve are also complicated. As 

the type I inspection error increases, the corresponding AOQ value will decrease and 

its ATI will increase. The effect of the type II inspection is on the reverse, i.e. when 

the type II inspection error becomes bigger, the AOQ will become larger and its ATI 

will become smaller accordingly. These confounding effects deserve careful 

consideration before any decision can be reached. One guideline is that the type I 

inspection error usually plays a prominent role in the small fraction of defectives while 
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the type II inspection error has more weight on the large fraction of nonconforming 

product. Accordingly, the type II inspection error plays a dominant role in determining 

the final average outgoing quality limit (AOQL). Simulation shows that even a small 

type II inspection error will lead the final AOQL to almost one. 

Analysis of the AOQ and ATI also shows that the effectiveness of sampling plans can 

only be maintained when two types of inspection errors are relatively small. If an 

inspection error is large, either type I or type II, sampling schemes will not be effective 

any more. The final outgoing quality after inspection will be barely improved, which 

implies that there is no point to implement sampling plan when the inspection error is 

large. 

The study of how other sampling parameters such as lot size, sample size, number of 

previous lot, etc. behave helps identify guidelines in setting such parameters. Some 

suggestions include choosing a lot size at least one hundred, the number of previous lot 

ranging from three to five, setting the acceptance number for second stage,  equal to 

the rejection number, 

2c

r , or 1−r . Sample size is usually determined by resource and 

cost constraints.  

Future complementary research directions include the study of the effect of fluctuating 

inspection errors and a general procedure for designing chain-sampling plan under 

general inspection error. Next chapter will focus on variable inspection errors, which 

means the stringent constant error assumption in this chapter will be relaxed. The 

result in the next chapter will provide a more realistic picture of how sampling plans 

behave under inspection errors. 

Error effect is not the final goal, though it serves a good foundation to investigate 

chain-sampling schemes. Once this foundation is built, a way will be found as to how 
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to design a chain-sampling plan with the presence of inspection errors. This will be the 

subject of another chapter. In this chapter, the hype-geometrical model will be 

modified to the most commonly used binomial model propose our own library of 

tables and algorithms to make such a design easy and agreeable. 
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5. Chain Sampling Scheme under Inspection Errors (ΙI: 
For Varying Errors) 

5.1 Introduction 
 
In the previous chapter, the effect of inspection error on chain sampling plan is studied 

by assuming that inspection errors are constant throughout the inspection. In this 

chapter, this strict assumption will be relaxed and the effect of fluctuating inspection 

errors on chain sampling plan will be investigated. 

In order to examine the effect of inspection errors on statistical quality control 

procedures, it is necessary to have a model of the process generating errors. One 

particular model assumes constant error probability. That is, the probability of 

committing inspection errors does not change throughout the inspection. This 

assumption, though simple and mathematical appealing, does not provide a good 

representative of the real case. Actually there are arguments that inspection errors are 

fluctuating and different models (Biegel (1974) for example) have been proposed to 

model this fluctuation.  

In this chapter, we adopt the Biegel (1974) linear model to assume that the error 

probability is a linear function of the process quality. This is the most reasonable and 

useful model available so far.  

In the next section, a chain sampling under varying inspection error model will be 

outlined first and the detailed derivation will be given subsequently. After that the 

analysis and discussion section will follow. Conclusion and remarks are summarized at 

the end of this chapter. 
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5.2 Mathematical Model 
5.2.1 Chain sampling plan for linearly varying inspection error. 

Recall from chapter four that there are two types of inspection errors, whose 

relationship was illustrated in Table 4.1. Where T  stands for T(rue) state of an 

inspected item and A  stands for A(pparent) or classified state of an inspected item.  

Letter  and stand for type I and type II inspection error respectively. 1e 2e

In the constant error model, inspection errors are assumed unchanged throughout the 

inspection. That is to say that both  and  are constants in the model and are given 

by the following equation: 

1e 2e

  )
0

0&1()0|1(1 =
==

====
T

TAPTAPe   (5-1) 

  )
1

1&0()1|0(2 =
==

====
T

TAPTAPe   (5-2) 

There are two types of varying error models. One is to assume that inspection errors 

are changing when the process quality is changing. The other is to assume that errors 

are fluctuating between inspection items from a fixed process quality while the process 

quality is also changing. The second model is obviously a more realistic representative 

of the real scenario. However, it is too mathematically intractable to be easily 

incorporated here. The first type of model will be used to study inspection errors 

fluctuating with process quality with not loss too much of generality. 

Through experimental studies, Biegel (1974) found that error rate is related to the 

process quality or process fraction of defectives p . From the viewpoint of an inspector, 

this means that the likelihood of “catching” a defective item is dependent upon the 

frequency, with which a defective happens. Hence, he proposed his linear model: 

( )
( ) pbape

pbape

222

111

+=
+=

     (5-3) 
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where p  is the process fraction of defectives and ranging from zero to one. 

Following a similar derivation procedure of that in chapter four, mathematical 

expression of the probability of acceptance, under this linear model, can be obtained 

for the single stage sampling plan and the chain-sampling plan. They are given by: 
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         (5-5) 

where: 

  ( ) ( )DnyDNn ,min,0max ≤≤+−  

   ( ) ( )yzwynz ,min,0max 00 ≤≤+−  
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  ( )( )( ) ( ) ( )( )DknkiDNnk 1,1min1,0max −−≤≤+−−  

  ( )( ) ( )izwinkz prepre ,min1,0max 2 ≤≤+−−  

   rcc ≤− 12

   0zzz totalpre −=

Plotting acceptance probabilities  against different values of the true fraction of 

nonconforming 

chP

p  (
N
Dp = ) will yield the operating characteristic (OC) curve of the 

chain-sampling scheme under varying inspection error.  

5.2.2 AOQ and ATI 

Based on the same disposition policy as that of chapter four, i.e. all apparent 

nonconforming items in a sample will be replaced and any rejected lot will undergo 

100% screening with all apparent nonconforming items replaced, obtain expressions of 

AOQ and ATI for linearly varying inspection errors as follows: 
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         (5-6) 

The average outgoing quality of chain sampling plans can be obtained by using 

equation (5-6) to substitute the  in equation (5-14). chP
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  (5-7) 

Similarly, substituting  in equation (5-5) using equation (5-7) will give the exact 

formula to calculate ATI value. 

chP

5.2.3 Parameter Estimation 

In adopting Biegel’s linear model, it is important to outline the way to estimate model 

parameters. In this chapter, Biegel’s approach will be used again, i.e. using linear 

regression to estimate parameters. For example, suppose the maximum type I and type 

II inspection error are 0.01 and 0.05 respectively, then: 
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There is no reference or application data available in determining the maximum value 

of type I inspection and type II inspection error. In this chapter, results from the 

previous study in chapter four will be adopted, i.e. the probability of acceptance is 

insensitive to  as small as 0.05 but is sensitive to  as small as 0.01 when the lot 

size is very large with very little nonconforming items presence. This guideline will be 

used for further reference.  

2e 1e

5.3 Analysis and Discussion 
A series of Microsoft Excel Visual Basic Application routines has been developed to 

compute the complex cumulative hyper-geometric equation of the probability of 

acceptance for the chain sampling plan as well as its OC curve, AOQ curve and ATI 

curve, which are the three major measurements of any sampling schemes. Brief 

description of the program will be included in the relevant section. 

5.3.1 Effects of Inspection Errors 

There are two types of inspection errors, namely type I and type II errors. The 

probability of incurring type I error is  and the probability of the occurrence of type 

II error is , where both and  range from 0 to 1. The effect of inspection error on 

the probability of acceptance is illustrated in Figure 5.2, which is a 3D plot of the 

ChSP (1, 3) 4 (Lot size = 1000, Number of defectives =10, Sample Size = 5, and 

=2). It should be noted that Figure 5.2 is similar to that of Figure 4.2. This is due 

to the fixed setting of chain sampling plain. When the lot size and lot defectives (here 

1e

2e 1e 2e

1−k
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are 1000 and 10 respectively), the process quality is fixed (
N
Dp = ). The value of type 

I inspection error and type II inspection error is therefore constant because of the 

definition of the linear model. 
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Figure 5. 1 3D Plot of effects of varying inspection errors 

 

It is not surprising to find from the resultant figure (figure 5.1) that the effect of 

inspection error on probability of acceptance displays two prominent trends: 

• As the maximum value of  increases, the probability of acceptance decreases. 

That is, as the probability of type I inspection error increases, the probability of 

acceptance decreases. 

1e

• As the probability of maximum type II inspection error , increases, the 

probability of acceptance increases. The increase, however, is almost negligible 

as compared to that of the change in the probability of acceptance when  

decreases while the lot size is large with only a small fraction of defectives. 

2e

1e

The observation here is almost identical to that of chapter four for constant inspection 

error except that in this chapter the maximum inspection error is introduced and in 

chapter four inspection errors are assumed constant. 
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Similar to chapter four, a brief illustration of the Excel VBA program is given first to 

compute the acceptance probability and to draw the OC curve automatically. Readers 

can request the program and reproduce results by following the interface provided in 

this chapter. The program input interface for Figure 5.1 is shown in Figure 5.2. 

 

Figure 5. 2 Screen snapshot of the program input interface of Figure 5.1 

 

5.3.2 Effect on OC Curve 

The statistical effect of inspection errors on the operating characteristic (OC) curve is 

the basic measure of any sampling plans and will be evaluated in this section for linear 

inspection error model. 

To make figure captions more concise, all figures, unless stated otherwise, in this 

subsection will follow the same chain sampling setting (ChSP (2, 5) 5, n =5, 1−k =5) 

and sampling parameters will not appear in the caption.  
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A screen snapshot of the program, which is used to conduct the analysis of the effect 

of linearly varying inspection errors on OC curves, is shown in Figure 5.3. Readers can 

follow the figure to key in the parameter input and reproduce the result.  

 

Figure 5. 3 Program input of the OC curve analysis for linear error model 

 

Under this linear model, the behavior of OC under the effect of type I inspection error 

only will be studied first. It is illustrated in Figure 5.4.  
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Figure 5. 4 OC curves for type I inspection errors (e2=0) 

 

 

Seen from the figure, when only type I inspection error exits, the overall probability of 

acceptance decreases with the increase of the type I inspection error. This decrease is 

more prominent in the area of the small fraction of nonconforming. It is reasonable to 

have this observation because as the type I inspection error increases, the probability of 

misclassifying conforming items as nonconforming items increases. Hence the process 

quality “deteriorates”, and the probability of acceptance therefore decreases. This trend 

is agreeable to that of chapter four and is valid for any type II inspection error. Figure 

5.5 have the same setting as Figure 5.4 expect that the maximum type II inspection 

error is set to 0.2. 
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Figure 5. 5 OC curves for type I inspection errors (e2=0.2) 

It is clear that Figure 5.5 and 5.4 exhibit litter difference and the trend is exactly the 

same. 

The most important observation lies in the difference between constant error model 

and linear error model. Figure 5.6, 5.7, and 5.8 show these differences when the 

average type I inspection error in the linear model is equal to that of the constant error 

model.  

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

p

P
a

e1=0
LM: A(e1)=0.1
CM: e1=0.1

 

Figure 5. 6 Comparison of linear model and constant model (e2=0, e1=0.1) 
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Figure 5. 7 Comparison of linear model and constant model (e2=0, e1=0.2) 
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Figure 5. 8 Comparison of linear model and constant model (e2=0.2, e1=0.1) 

 

In Figure 5.6, the type II inspection error is fixed at zero, i.e. there is no type II 

inspection error. Its Constant Model (LM) curve is obtained by setting the type I 

inspection error to 0.1, and the Linear Model (LM) is obtained by setting the average 

type I inspection error equal to zero. Since the error in the linear model will start from 

zero, the average inspection error is half of the maximum value that the inspection 

error takes. Similarly, the setting for Figure 5.7 is that the type II inspection error 
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equals to zero and the type I inspection error (either average for LM or constant for 

CM) equals to 0.2. Settings for Figure 5.8 is the same as that of Figure 5.6 expect that 

its type II inspection error is set to 0.2 to show the combined effect of both errors. 

The predominant trend in these three figures is that the difference between the linear 

error model and the constant error model is more obvious in the region of small 

fraction of nonconforming. When there is only type I inspection error, two OC curves 

(LM and CM) will intersect each other at the region of middle quality values. The 

difference is the biggest at the origin point ( 0=p ), where the probability of 

acceptance for the linear model is bigger than that of the constant model. As p  

increases, this difference becomes smaller until two curves intersect each other at some 

point in the middle. The trend is then reversed after this point, i.e. the probability of 

acceptance for the linear model will become less than that of the constant error model 

when p  continue to increase till one. This trend can be summarized in short that the 

OC curve for the constant error model is more discriminating than that of the linear 

model when only type I inspection error exists. 

When the type II inspection error is not zero (Figure 5.8), the probability of acceptance 

for the constant error model is always greater than that of the linear error model.  

On the contrary, when the value of the type II inspection error is changed with a fixed 

type I inspection error, the effect is reverse to that of the type I inspection error as 

discussed before. Figure 5.9, 5.10 & 5.11 display the comparison of the linear error 

model and the constant error model for different type II inspection errors. 

In Figure 5.9 and 5.10, where the type II inspection error is set to zero and the type I 

inspection error is set to 0.1 and 0.2 respectively, it is shown that two OC curves are 

intersecting each other and the trend is converse to that of type I inspection error. In 

the region of the small fraction of nonconforming, the probability of acceptance for the 
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constant error model is greater than that of the linear error model and as p  increases 

this difference decreases. After intersection, this trend is reverse. That is, after 

intersection, the probability of acceptance for the constant error model is less than that 

of the linear model. As p  increases, this difference increases and reaches its 

maximum value when p  reach one. 
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Figure 5. 9 Comparison of linear model and constant model (e1=0, e2=0.1) 
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Figure 5. 10 Comparison of linear model and constant model (e1=0, e2=0.1) 
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Figure 5. 11 Comparison of linear model and constant model (e1=0.1, e2=0.1) 

 
Figure 5.11 shows the combined effect of two types of inspection errors. In this case, 

the probability of acceptance for the linear error model is always greater than that of 

the constant error model.  

In all of these figures (Figure 5.6~5.11), the ideal OC curve is also plotted. The 

observation is agreeable to that of chapter four, in which it is shown that the type I 

inspection error will decrease the probability of acceptance while the type II inspection 

error will increase the acceptance probability. 

The comparison of the linear error model and the constant error model in this section 

provides a guideline in analyzing these differences. However, in practice, there is no 

too much difference between two models because the value of two types of inspection 

errors is assumed to take moderately small value. Larger inspection error will 

invalidate the inspection process and there is no point to carry out further. Figure 5.12 

illustrates the difference between two models when two types of inspection errors are 

taking reasonable small values (here both equal to 0.01). 
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Figure 5. 12 Comparison of linear model and constant model (e1=0.01, e2=0.01) 

 

There is a clear indication that when both types of inspection error are small, the 

differences between two models are smaller enough to be negligible. People may argue 

that 0.01 is a very small value. However, it is a very loose requirement in real 

application, especially in current high yield production. One out of one hundred 

chances is actually a very high probability of error commitment. True value should be 

far less that 0.01. It is therefore very safe for application purposes to assume constant 

error model rather than the complicated linear error model without loss of too much 

accuracy. 

This result is very important in that it provides a guideline that the constant error 

model, rather than the complicated linear model, can be used at the design stage 

without loss of accuracy. In the next chapter (chapter six), procedures to design the 

chain sampling plan with inspection errors will be proposed. Two types of inspection 

errors are assumed constant throughout the inspection activity in that chapter. The 

justification for this assumption lies in the important result above-mentioned in this 

section.  
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5.3.3 Effects on AOQ and ATI 

In this section, the behavior of AOQ (Average Outgoing Quality) curve and ATI 

(Average Total Inspection) curve will be studied when inspection errors are linearly 

associated with process quality . Both curves are important performance measures 

that can be employed to assess sampling schemes subjected to inspection errors 

besides the famous OC curve.  It is important to note that the study of the two 

performance measures is critical as both of them have direct impact on the economic 

aspect of the sampling procedure. As pointed out in chapter four, the computation of 

both AOQ and ATI are highly dependent on the sample/lot disposition policy. In this 

section, the disposition policy remains the same as that of chapter four, i.e. all apparent 

nonconforming items in a sample be replaced and any rejected lot undergoes 100% 

screening with all apparent nonconforming items replaced. That is the basis of this 

analysis. 

p

Similar to the previous section, to make captions concise, sampling parameters in 

captions of all figures in this section will not be specified. All figures, unless stated 

otherwise, are from the same sampling setting of ChSP (2, 5) 5,  and . 6=k 5=n

Before proceed to the analysis, a short description of the program used for AOQ and 

ATI analysis will be given first. Since the input for AOQ curve and ATI curve are 

same, incorporate them in one input interface to make it more concise. To run the 

simulation, just key in required sampling parameters and press the left button for AOQ 

computation and the right button for ATI computation. The input interface for this 

program is illustrated in Figure 5.13 below. 
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Figure 5. 13 Program input interface for AOQ and ATI analysis (LM) 

 

Figure 5.14 shows AOQ curves for changing type II inspection error while the type I 

inspection error is fixed to zero, i.e. no type I inspection error. In this section, all 

values of inspection errors are the maximum value they can assume. The trend is 

similar to that of the constant error model. That is, under the linear error model, when 

the type II inspection error increases, the AOQ will increase accordingly. The same 

trend holds for other settings of the type I inspection error. These observations 

conform to intuitive understanding because the bigger the type II inspection error, the 

more nonconforming items escape from inspection. The resultant average outgoing 

quality therefore increases. This justification is valid for both the constant error and the 

linear error models. In Figure 5.15 the value of the type I inspection error is set at 0.2 

and the type II inspection error is changed. Two figures suggest that for a fixed type I 

inspection error, regardless of its value, the AOQ will increase with the increase of the 
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type II inspection error. The trend is much more prominent in the region of large 

fraction of defectives while the difference is very small and almost negligible for small 

fraction of defectives. This observation agrees with that of previous literatures. 
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Figure 5. 14 AOQ curve of different type II inspection error (e1=0) 
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Figure 5. 15 AOQ curve of different type II inspection error (e1=0.2) 

 

It should be pointed out that the difference between AOQ curves for the constant error 

model and the linear error model is very small, even smaller than that of the OC curve 
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difference. Figure 5.16~5.18 illustrate these differences for difference inspection error 

values. 
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Figure 5. 16 AOQ curve for LM and CM (e1=0, e2=0.01) 

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

0 0.2 0.4 0.6 0.8 1

p

Pa

e1=0 e2=0

e1=0 LM:
A(e2)=0.02
e1=0 CM: e2=0.02

 

Figure 5. 17 AOQ curve for LM and CM (e1=0, e2=0.02) 
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Figure 5. 18 AOQ curve for LM and CM (e1=0.02, e2=0.02) 

 

There is an interesting finding that the AOQ curve displays little difference for both 

error models and also displays little difference with that of the perfect inspection when 

process quality, p  is less than 0.5. However, the difference of AOQL (Average 

Outgoing Quality Limit) for both models is much more obvious and it is far from 

satisfactory when compared with that of the perfect inspection. These effects on 

AOQL are greatly “discounted” by the fact that most, if not all, of the application lies 

in the small region of process quality p . 

On the other hand, Figure 5.19 & 5.20 illustrate the scenario of the effect of different 

type I inspection errors while the type II inspection error is fixed to zero (no type I 

inspection error) and 0.1 respectively based on the linear error model. The trend is 

reverse to that of the type II inspection error. When the type I inspection error becomes 

larger, the corresponding average outgoing quality becomes smaller. This conforms to 

intuition that as the portion of conforming items classified as nonconforming increases, 

the actual portion of nonconforming items in the passing lot is smaller than 
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observation. Therefore, the actual AOQ value will decrease. This serves as adopting a 

more “stringent” acceptance policy and the AOQ value will increase equivalently.  
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Figure 5. 19 AOQ curve of increased type I inspection error (e2=0) 
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Figure 5. 20 AOQ curve of different type I inspection error (e2=0.01) 

 

The comparison between two models in terms of the AQO curve for difference type I 

inspection values is displayed in Figure 5.21~5.23. The observation is similar to that of 

Figure 5.16 ~5.18. 
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Figure 5. 21 AOQ curve for LM and CM (e2=0, e1=0.01) 
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Figure 5. 22 AOQ curve for LM and CM (e2=0, e1=0.02) 
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Figure 5. 23 AOQ curve for LM and CM (e2=0.02, e1=0.01) 

 

One important result from this study in this section is that the AOQ difference between 

two models (the constant error model and the linear error model) is very small and it 

can be regarded as negligible in the real application. 

The behavior of the ATI curve for the linearly proportioned inspection error is 

illustrated in Figure 5.24 and 5.25. The observation is consistent with that of the 

constant error model and the elaboration is omitted here. 
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Figure 5. 24 ATI for LM model (e1=0) 
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Figure 5. 25 ATI for LM model (e2=0) 

 

5.4 Conclusion and Remark 
Sampling schemes, rather than complete inspection of a production lot, are widely 

employed in industries to achieve a more economical and efficient use of company 

resources. Embedded within the design of acceptance sampling plans for attributes is 

an implicit assumption that the inspection procedure is completely flawless. In reality, 

however, inspection tasks are seldom error free. On the contrary, they may even be 

error prone. While inspection errors incurred during the acceptance sampling for 

attributes are often unintentional and in most cases neglected, they nevertheless can 

severely distort quality objectives of a system design. 

In the previous chapter, the effect of inspection error on chain sampling plan studied 

by assuming that inspection errors are unchanged throughout the inspection. In this 

chapter, this strict assumption is relaxed and the effect of inspection errors on chain 

sampling plan with fluctuating inspection errors is investigated. 

In order to examine the effect of inspection errors on statistical quality control 

procedures, it is necessary to have a model of the process generating the errors. One 
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particular model for errors in the inspection of items on the basis of attributes assumes 

constant error probability. That is, the probability of committing inspection errors does 

not change throughout the inspection, which is the basic assumption for the previous 

chapter. This assumption, though simple and mathematical appealing, does not provide 

a good representative of the real case.  

In this chapter the Biegel (1974) linear model adopted to assume that the error 

probability is a linear function of the process quality. This is the most reasonable and 

useful model available so far.  

The primary aim of this chapter is to study the behavior of chain sampling schemes 

when inspection errors are linearly associated with process quality p . Mathematical 

model and expressions of performance measures such as operating characteristic 

function, average total inspection and average outgoing quality are derived to aid the 

analysis of a general chain sampling scheme, ChSP-4A ( , )1c 2c r , developed by 

Frishman (1960). 

The study further confirms that as the type I inspection error increases, the acceptance 

probability will decrease while the increment of the type II inspection error will 

increase the acceptance probability. When both types of inspection errors are small, the 

difference between two models is small enough to be negligible. It is therefore very 

safe for application purposes to assume constant error model rather than the 

complicated linear error model without loss of too much accuracy. 

This result is very important in that it provide a justification that the constant error 

model, rather than the complicated linear model, can be used at the design stage 

without loss of accuracy. This can greatly reduce the complexity and difficulty in the 

design stage. 
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The Study of AOQ curve and ATI curve produces similar result to that of chapter four. 

That is when the type I inspection error increases, the corresponding AOQ value will 

decrease, and its ATI will increase. The effect of the type II inspection is on the 

reverse, i.e. when the type II inspection error gets bigger and bigger, the AOQ will 

become larger and larger and its ATI will become smaller accordingly. More 

importantly, the difference of AOQ curve and ATI curve between the constant error 

model and the linear error model is relatively small and can be neglected in most 

applications. 

The above-mentioned conclusion, together with that of chapter four, forms a good 

foundation for the further study of chain sampling schemes. In the next chapter, 

procedures of design chain sampling plan under inspection errors will be proposed, 

which is the last part, also the most important part, of this work to the error effect on 

chain sampling schemes. 
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6. Design of Chain Sampling Plan for Inspection Errors 

6.1 Introduction 
In the previous two chapters (chapter four and chapter five), the effect of inspection 

errors on chain sampling plans is studied for the constant error model and the linear 

error model respectively. The ultimate goal of this study is to propose procedures of 

designing chain-sampling plans with inspection errors, which is the subject of this 

chapter. 

In this chapter, procedures to design chain-sampling plans when inspection errors are 

taken into account will be proposed. The proposal is mainly based on the constant 

error assumption, which means the inspection error remains unchanged throughout 

inspection activities. As shown in the previous chapter that the difference of the 

acceptance probability between the constant error model and the linear error model is 

small enough to be neglected, therefore the constant error model, rather than the linear 

error model, is used in the design stage to avoid the mathematical complexity and 

difficulties incurred by the varying error model. 

In the next section, the common approach in the design of sampling plans will be 

presented and a method in the design of chain sampling plans under inspection errors 

will be proposed. Economical consideration is also touched and is presented in section 

three. Section four concludes this chapter. 

6.2 Binomial model and tables 

The primary aim of studying the effect of inspection errors and the influence of other 

sampling parameters is to design an optimum inspection scheme in the presence of 

inspection errors. The common approach to design a sampling plan is to fix the OC 

curve in accordance with the desired degree of discrimination – the OC curve is fixed 

by suitably choosing parameters such as considering two points on it, usually (AQL, 
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α−1 ) and (LTPD, β ). AQL (the Acceptable Quality Level) reflects a customer’s 

willingness to accept a lot with a small proportion of defectives. It essentially defines 

the worst quality level for the process, which would be considered acceptable as an 

overall process average. The probability of rejecting a production lot with such 

acceptable quality is referred to as the producer’s risk, and is designated by )1( α− . 

On the other hand, LTPD (Lot Tolerance Percent Defective) defines the worst quality 

level that would be considered acceptable as an individual lot.  The probability of 

accepting such a lot is referred to as the consumer’s risk, and is designated by the 

Greek symbol, β . The optimum sampling parameter for chain sampling plans under 

inspection errors based on the hyper-geometric model can be found by satisfying 

following inequalities and minimizing the sample size, : n

( ) α−≥ 1,,,,,,,,| 2121 eekrccDNnAQLPch   (6-1) 

( ) β≤2121 ,,,,,,,,| eekrccDNnLTPDPch   (6-2) 

Stemming from the discussion in the chapter four that the effect of inspection errors 

can be “eliminated” by transforming to its equivalent perfect inspection, equation (6-1) 

and (6-2) can be reduced to the following: 

 ( ) α−≥ 1,,,,,,| 21
* krccDNnAQLPch    (6-3) 

 ( ) β≤krccDNnLTPDPch ,,,,,,| 21
*    (6-4) 

where, 

 ( )AQLAQLAQL −′+= 1** ρρ    (6-5) 

 ( )LTPCLTPCLTPC −′+= 1** ρρ    (6-6) 

The simplest method to solve non-linear equations (6-3) and (6-4), is to use a 

constrained optimization software routine such as Solver in Microsoft’s Excel. 
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However, the fact that all parameters must be integer makes the problem too 

intractable for Solver to handle.  

Another difficulty of the hyper-geometric model lies in the lot size ( ) and lot 

defectives ( ). In order to use this model to design the sampling plan, the lot size and 

lot defectives must be specified in advance. This, however, entails great difficulty or 

inconvenience in application because the common language in industry is the process 

quality, or the fraction of nonconforming items . It is thus desirable to use  rather 

than  and  to be design parameter. 

N

D

p p

N D

In mathematical arena, binomial distribution is often used to approximate the hyper-

geometric distribution when the lot size is large. Binomial model, rather than the 

hyper-geometric model will be used in the subsequent design because the binomial 

model meets the above-mentioned requirement in that it employs p  rather than  

and  as its parameter(s). 

N

D

The derivation of chain sampling plan based on the binomial model is relatively 

straight forward, and an outline of this derivation is given here: 

The binomial model for the single stage-sampling plan is given by: 

   (6-7) ( ) ( )∑
=

−−⎟⎟
⎠

⎞
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⎝

⎛
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where p  is the fraction of nonconforming. 

When inspection errors are taken into account, the above formula (6-7) becomes: 

   (6-8) ( ) ( )∑
=

−−⎟⎟
⎠

⎞
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⎝

⎛
=

c

z

znz
s z

n
cnP

0
1,| πππ

where π  is the apparent (observed) fraction of nonconforming, and is given by: 

 ( ) ( ) ( ) 12112 11 eeeppepep ++−=−+−=π   (6-9) 

where and are the type I and type II inspection error respectively. 1e 2e
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Therefore, the binomial model for the single sampling plan under inspection errors 

becomes: 

   (6-10) 
( ) ( )

( )( ) ( )( )∑

∑

=

−

=

−

−++−++−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

c

z

znz

c

z

znz
s

eeeppeeepp
c
n

c
n

eecnpP

0
121121

0
21

1

1,,,| ππ

A chain-sampling plan with inspection errors based on the binomial model is therefore 

given by: 
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        (6-11) 

where: 

   rcc ≤− 12

   0zzz totalpre −=

One solution to solving difficult non-linear equations (6-3) and (6-4) is to use existing 

tables indexed by AQL and LTPD constructed under the assumption that the 

inspection activity is error free for specific values of α  and β . One such table is that 

from Raju and Jothikumar (1997). Here a new library of tables for chain sampling 

plans will be developed under perfect inspection, and the following example is used to 

illustrate the application of such tables. 
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Example 6.1 

In the situation in which management wishes to find the optimum chain sampling plan 

with following characteristics: AQL = 0.1%, α = 0.05, LTPD = 8% and β  = 0.05 and 

its inspection activity is described by parameters, 01.01 =e and .  02.02 =e

*AQL  and  can be determined by the following: *LTPD

( ) %097.101097.0)02.01(*100/1.001.0*100/1.01* ==−+−=AQL  

( ) %76.80876.0)02.01(*100/801.0*100/81* ==−+−=LTPD  

Since the table does not provide exact values of  and  calculated. The 

value of  has to be rounded up to the nearest division (that is 1.1) and  

rounded down to the nearest division (that is, 8.5). Note that the rounding up and down 

rules are essential to ensure the sampling plan selected would be able to satisfy 

inequalities (6-3) and (6-4). By using the table, the optimum sampling parameter is 

found to be ChSP (0,3) 4. The number of preceding lots to be used is 4 and the sample 

size is 31. 

*AQL *LTPD

*AQL *LTPD
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Table 6. 1 Table for chain sampling plans 
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A check on the validity of the suggested plan at two stipulated points of OC curve 

yields the following: 

( ) ( )α−>= 19505.0*AQLPch  

( ) β<= 0411.0*LTPDPch  

The above-mentioned example can succinctly demonstrate that tables developed under 

the assumption of perfect inspection can be used to find the most suitable inspection 

schemes subjected to inspection errors. However, the drawback of employing such a 

methodology to obtain a sampling plan is that statisticians seldom include high AQL 

values in the table – the value of AQL is generally limited to 2%. If  is relatively 

large, for example 0.05,  would normally exceed 5% 

(since ). In such a situation, the management will not be 

able to search for a suitable plan. Another inherent shortcoming of the table is that it 

does not offer specific plan for intermediate AQL or LTPD values (that is, if LTPD = 

8.8, user has to use a plan for LTPD = 8.5) as illustrated above in Example 6.1. This 

will lead to inefficiency in sampling procedures – two conditions (6-3) and (6-4) 

cannot be satisfied by using a smaller sample size. In the long run, the time and 

economic loss as a result of using a less optimum inspection plan will be quite 

significant.  

1e

*AQL

( AQLAQLAQL −′+= 1** ρρ )

6.3 Solution Algorithm 

To overcome difficulties that arise from using existing library of tables, a solution 

algorithm is written to solve for an optimum inspection plan. In a nutshell, the solver 

tries to find suitable sampling parameters iteratively by hinging on the assumed 

convergence point ( LTPD , β ) for the single stage and chain sampling plans with the 
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same sample size and acceptance number of the first stage, . Figure 6.1 shows the 

algorithm for the computer routine developed to find the optimum chain-sampling plan. 

1c

STEP 1: 

Findings in chapter 4 reveal that chain-sampling plans converge with single sampling 

plans as the true fraction of nonconforming increases. Therefore, the first step in this 

analytical approach is to find the smallest sample size for single stage sampling plans 

that is able to satisfy the following condition: 

Minimize  n

Subject to: ( ) β≤cnLTPDPs ,|*  

The initial value of acceptance number c  is set as 0 so that n  can be minimized. For 

=0, the smallest sample size, n  that is able to satisfy the given condition can be 

found by the following equation: 

c

  ( )
( )*1

ln
LTPDLn

n
−

=
β     (6-12) 

The value of n  found should be rounded up to the nearest integer. It is important to 

note that the solution obtained will be the initial guess of the sample size, n  and the 

acceptance number for the first stage .  1c

STEP 2: 

The rejection number is then increased from 2 till it satisfies the condition: 

Minimize: r  

Subject to: ( ) ( )α−≥ 1,,,,,| 21
* krccnAQLPch   

The value of  is initiated to be equivalent to 2c r  and 1−k  is set to be 3. While the 

number of preceding lots  to be used in chain sampling plans can take a value 

from 1 onwards, the choice of 

1−k

1−k  in the algorithm in the view that it is the smallest 

value that is able to reflect production process consistency (refer to chapter 4), and at 
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the same time, ensure a higher chance of convergence with the single sampling plan 

below ( LTPD , β ). This choice of  can be altered to meet management needs. k

STEP 3: 

The acceptance number for the second stage  is decreased from the value of 2c r  till 

the two conditions are satisfied  

Minimize:  2c

Subject to: ( ) ( )α−≥ 1,,,,| 21
* krccnAQLPch   

The rejection number is then adjusted to the value of  + 1 if  is less than the initial 

guess of 

2c 2c

r .  
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Check if: [ ] β≤1sin, ,| cnLTPDP glea  

Set c2 = r, k = 3 
Check if: [ ] α−≥ 1;,,;| 21, krccnAQLP chaina  

n = Ln (β)/Ln (1-LTPD), c1 = 0

True. Input: n, c1 
False. n increased by 1 

False. n increases by 1 
True. Input: n, c1, r, c2 = c2 - 1 

Check if: [ ] α−< 1;,,;| 21, krccnAQLP chaina  

False. c1 decreases by 1 
True. Input: n, c1, r, c2 = c2 + 1  

Check if: r = c2

False. Input: n, c1, c2, r = c2 + 1  True. Input: n, c1, r, c2  

Check if: [ ] β>krccnLTPDP chaina ;,,;| 21,   

False 

Optimum Solution 

True. Increase (k-1) by 1 

Check if: [ ] β>krccnLTPDP chaina ;,,;| 21,  

Check if: [ ] α−≥ 1;,,;| 21, krccnAQLP chaina  

False True. Increase (k-1) by 1 

True 

Check if: [ ] β>krccnLTPDP chaina ;,,;| 21,  

False. Increase n by 1 

Check if: [ ] α−≥ 1;,,;| 21, krccnAQLP chaina  

False True. Increase n by 1 

c1= c1+ 1 

False True 

Figure 6. 1 Solution algorithm to design chain sampling plans 
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 STEP 4: 

If ( ) β≤krccnLTPDPch ,,,,| 21
* , the optimum solution is obtained. Otherwise k  is 

increased gradually to satisfy two conditions (6-3) and (6-4) simultaneously. However, 

increasing  may cause the k ( )*AQLPch  to fall below (1- α ). When such situation 

occurs, the sample size n  is increased gradually to satisfy two conditions with k  reset 

to 3. Increasing the sample size has a similar effect on  as , but to a lesser extent. 

If similar situation occurs, such that 

chP k

( )*AQLPch  falls below (1- α), the acceptance 

number of the first stage  will be increased by 1 and STEPS 1, 2, 3, 4 will be 

repeated. It is important to note that selection of k  and n  in the following sequence is 

motivated by the assumption that the increment in k  will incur a smaller cost (than 

that by) as compared to the increase of sample size n . 

1c

Example 6.2 

The same condition as example 6.1 is used where management wishes to find the 

optimum chain sampling plan with following characteristics: AQL = 0.1%, α = 0.05, 

LTPD = 8% and β  = 0.05 and its inspection activity is described by parameters, = 

0.98 and  = 0.01.  

p

'p

The constructed computer routine based on the iterative methodology is used to find 

that the optimum sampling plan is ChSP (0, 3) 4, the preceding lot results to be used is 

3 and the sample size is 33.  

A check on the validity of using the suggested plan at two stipulated points of the OC 

curve yields the following. 

( ) ( )α−>= 195838039.0*AQLPch  
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( ) β<= 04982369.0*LTPDPch  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

True Fraction Nonconforming

Pr
ob

ab
ili

ty
 o

f A
cc

ep
ta

nc
e

ChSP(0,3)4, n = 33, (k-1) = 3

ChSP(0,3)4, n = 35 , (k-1) = 3

 

Figure 6. 2 OC curves for both sampling schemes 

 

Figure 6.2 clearly illustrates that the discriminatory power for both inspection schemes 

is similar to each other since two OC curves superimpose on each other. This implies 

that there is no unique plan for a set of specified  and AQL LTPD  values. In situations 

where two plans are able to satisfy sampling requirements, the deciding factor for the 

selection of an inspection scheme is the cost of implementing the sampling procedure. 

6.5 Conclusion 
This chapter is a continuation of chapter four and chapter five, in which the effect of 

inspection errors on chain sampling plans is studied for the constant error model and 

the linear error model respectively. In this chapter, procedures of designing chain 

sampling plans are proposed with inspection errors, which is the most important and 

useful part of studies of chain sampling plans. 

The proposal is mainly based on the constant error assumption, which means 

inspection errors remain unchanged throughout inspection activities. The justification 

for this constant error assumption lies in the result from previous chapters, where the 
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difference in the probability of acceptance between the constant error model and the 

linear error model is proven to be small enough to be neglected. Therefore the constant 

error model, rather than the linear error model is used in the design stage to avoid the 

mathematical complexity and difficulties incurred by the varying error model. 

The study reveals that two approaches can be adopted to design chain-sampling plans 

for imperfect inspection. One is to use the existing perfect inspection tables with the 

adjusted  and AQL LTPD  value, and another is to use the proposed solution algorithm 

to search the optimal sampling plan. The first approach is easy to implement but with 

possible limitation of unavailable tables. The second one is more versatile in terms of 

the value of AQL  and LTPD , but at the expense of more complicated and difficult 

operating procedure. Users can determine their choice based on their available 

resources. 

In all, while plans can be designed to accommodate predetermined level of inspection 

errors, inspection schemes suggested are generally time consuming and expensive 

since they all involve a larger sample size. This is especially serious in the presence of 

the type I error ( ). In order to minimize such a loss, one solution is to reduce 

inspection errors through better training and providing a more conducive environment 

for inspection activity to be carried out. However, the selection of chain plans with 

consideration of inspection errors still has to be employed, as inspection errors will 

never be fully eradicated. 

1e
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7. Chain Sampling Plan for Reliability Acceptance Test 

7.1 Introduction 

Reliability Acceptance Testing (RAT) or Product Reliability Acceptance Testing 

(PRAT) is used to sentence a lot according to some reliability requirements. This test 

may be conducted either by supplier or by customer or both based on agreed sampling 

plans and acceptance rules. 

It is probably the oldest reliability testing technique and also almost the least explored 

topic in current reliability study, which due partly to the commonly existing 

misconception that it is too simple to deserve further study. In the 1950s and 1960s, 

life test had been the subject of extensive research and some concrete results had been 

produced and become the basis of later reliability acceptance test techniques. In a 

series of papers devoted to the life test (Epstein & Sobel 1953, Epstein 1954, Epstein 

& Sobel 1955), Epstein and Sobel presented their results of the life test based on an 

exponential distribution. In 1961, Gupta and Groll carried out a similar study of life 

test sampling plans based on a gamma distribution. Similar research about Weibull 

distribution was deferred until 1980, when Fertig and Mann published their paper 

“Life-test sampling plans for two parameter Weibull populations”. One major reason 

for this deference lied in the difficulty and complexity of deriving the parameter 

estimate and its distribution as well as finding its feasible approximation.  

Besides the above-mentioned one-stage life test plans, two-stage life test, which offers 

a better risk control and on average less sampling cost, also appears in literature. 

Bulgren and Hewett (1973) considered a two-stage test of exponentially distributed 

lifetime with failure censoring at each state. Fairbanks (1988) presented his two-stage 

life test for an exponential parameter with a hybrid censoring at each stage. Hewett and 

Spurrier (1983) gave a thorough survey of two-stage methods, as well as examples of 
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experiments. It is a rather thick and thorough paper consisting of more than one 

hundred pages. 

The focus of the previous approach was on two major sampling schemes: single 

sampling and sequential sampling. These are two extreme cases of sampling plans, 

where single sampling plan is the easiest one in terms of operating complexity at the 

expense of less accurate disposition decision while sequential sampling has the most 

complicated operation procedure but provides higher degree of disposition accuracy. A 

possible improvement over these two schemes is to leverage on the advent of 

information system, which makes the tracking of the previous lot results an easy task. 

The natural candidate is the Chain sampling plan, a member of cumulative sampling 

plans, with the feature of incorporating past information. In this chapter, the chain 

sampling idea will be applied to reliability acceptance testing and design examples 

based on exponential distribution will be provided. 

In the next section, a general procedure to conduct chain sampling reliability 

acceptance test will be outlined. A detailed discussion based on exponential 

distribution will be presented in section three, in which examples are also included. 

Conclusion and remarks are in section four. 

7.2 Chain Sampling Plan for Reliability Acceptance Test 
 
In this section, a new reliability acceptance test scheme namely chain-sampling plan 

will be described for reliability acceptance test. The basic assumption is that the 

quality characteristic of the test item, life time, follows an identical independent 

distribution. 

The former Dodge (1945) chain sampling plan, though simple in operation, has the 

advantage of taking previous information into account to achieve a better risk 
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protection at the same or lower sampling cost. Recall its operating procedures from the 

previous chapter in Figure 2.1. 

 To adopt the chain idea into reliability acceptance test, propose the following test 

scheme: 

a. Place  items on test until time t , n

b. Observe the number of failures, , occurred in the test d

c. If    , accept the lot cd ≤

                        , reject the lot  2+≥ cd

1+= cd , trace back the information of previous i  lots and accept the 

lot if each of the previous lot has a number of failures less than , reject 

the lot otherwise. 

c

The parameter design of the scheme is relatively straightforward: 

1. For any test item, fit a suitable distribution to model its lifetime, 

e.g.  where  is the time to fail, is the probability density function of the 

life model. 

),(~ tft t )(tf

2. Obtain c , the probability of failure within time t , through 

 where, and is the cumulative density function of the life 

model. 

)()(
0

tFdttfp
t

== ∫ )(tF

3. Use binomial theory, and find , the probability of observing d  failures 

within time  for a test sample of sample size , where  

dP

t n ( ) d1 .nd
d pp

d
n

P −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

4. The probability of acceptance for this chain sampling reliability acceptance 

test is therefore given by:  i
c

c

d
dch PPPP 01

0
*+

=

+= ∑
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The biggest advantage of this scheme lies in its mathematical simplicity without loss of 

rigidity, which enables it to incorporate other life model easily. Generally speaking, it 

applies to all life models so long as the life distribution can be obtained. In the next 

section this scheme will be illustrated by using exponential distribution, one of the 

most basic life model in use.  

7.3 Exponential Examples 
 
Suppose the lifetime of testing items follows an exponential distribution: 

 )exp(1);(~
θθ

θ xxfx −= ,     (7-1) 

where θ  is the mean time to failure. The probability of failure within time t  is: 

)exp(1)exp(1)(
00 θθθ

tdxxdttfp
tt

−−=−== ∫∫ . (7-2) 

The probability of observing  failures from a sample of size n  within time  is: d t
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The probability of acceptance based on chain sampling schemes is: 
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To design a chain sampling reliability acceptance test, five parameters are required in 

advance: testing time t , acceptable mean life 0θ , unacceptable mean life 1θ , 

producer’s risk α , consumer’s risk β  and the number of previous lots i . Usually, the 

testing time t  and the unacceptable mean life 1θ  are expressed in the ratio of the 

acceptable mean life 0θ  such as 
0θ
t  and

0

1

θ
θ

. 

A library of tables is provided for different occasions based on different design 

parameters. 

Example 7.1 

Find a life test plan, which will be stopped at the occurrence of the fifth failure and 

will accept a lot having acceptable mean life of 1000 hours with probability 0.95. 

Solution:  

In this case, 05.095.01 =−=α , 10000 =θ , 5=r  (letter r will be used instead of c 

in the following to denote the number of failures observed);  

Suppose we have resources of previous three lots, which is obtained from 

historical record (the necessary condition for the use of chain sampling plan) 

First select a sample of size 20. 

From table 7.1 obtain that for 3=k , 5=r , 05.0=α , and , the minimum 

required testing time is 

20=n

1502.0
0

=
θ
T . 

Therefore: 2.15010001502.01502.0 0 =×=×= θT hours. 

The desired sampling plan is thus obtained as follows: 

1. Place 20 items in a test for a period of 150.2 hours, and observe the number 

of failures, . d
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2. If the number of observed failures, d  is less than or equal to 5 (the 

specified r ), or if 6 failures from the current lot are observed, but no failure 

is found in the previous three lots, then accept the current lot. 

3. Otherwise, reject the current lot.  

Table 7. 1Test time for chain sampling reliability acceptance test ( 0/θT ) 

α=0.05 k=3
r n=

2r 3r 4r 5r 6r 7r 8r 9r 10r 11r 12r 13r 14r 15r
1 0.2837 0.1663 0.1184 0.0921 0.0754 0.0638 0.0553 0.0489 0.0437 0.0396 0.0362 0.0333 0.0308 0.0287
2 0.2891 0.1691 0.1201 0.0932 0.0763 0.0645 0.0559 0.0493 0.0441 0.0399 0.0365 0.0335 0.0311 0.0289
3 0.3167 0.1851 0.1313 0.1019 0.0832 0.0704 0.0610 0.0538 0.0481 0.0435 0.0398 0.0366 0.0339 0.0315
4 0.3413 0.1996 0.1417 0.1099 0.0898 0.0759 0.0658 0.0580 0.0519 0.0469 0.0429 0.0394 0.0365 0.0340
5 0.3616 0.2117 0.1502 0.1165 0.0952 0.0805 0.0698 0.0615 0.0550 0.0498 0.0455 0.0418 0.0387 0.0360
6 0.3785 0.2217 0.1574 0.1221 0.0998 0.0844 0.0731 0.0645 0.0577 0.0522 0.0476 0.0438 0.0406 0.0378
7 0.3929 0.2303 0.1635 0.1268 0.1036 0.0876 0.0759 0.0670 0.0599 0.0542 0.0495 0.0455 0.0421 0.0392
8 0.4054 0.2376 0.1687 0.1309 0.1069 0.0904 0.0783 0.0691 0.0618 0.0559 0.0511 0.0470 0.0435 0.0405
9 0.4163 0.2441 0.1733 0.1344 0.1098 0.0929 0.0805 0.0710 0.0635 0.0574 0.0524 0.0482 0.0447 0.0416

10 0.4259 0.2497 0.1773 0.1376 0.1124 0.0950 0.0823 0.0726 0.0650 0.0588 0.0537 0.0494 0.0457 0.0426
11 0.4346 0.2548 0.1809 0.1404 0.1147 0.0970 0.0840 0.0741 0.0663 0.0600 0.0548 0.0504 0.0466 0.0434
12 0.4424 0.2594 0.1842 0.1429 0.1168 0.0987 0.0855 0.0755 0.0675 0.0611 0.0557 0.0513 0.0475 0.0442
13 0.4494 0.2636 0.1871 0.1452 0.1186 0.1003 0.0869 0.0767 0.0686 0.0620 0.0566 0.0521 0.0482 0.0449
14 0.4559 0.2674 0.1898 0.1473 0.1203 0.1018 0.0882 0.0778 0.0696 0.0629 0.0575 0.0529 0.0489 0.0456
15 0.4618 0.2708 0.1923 0.1492 0.1219 0.1031 0.0893 0.0788 0.0705 0.0638 0.0582 0.0535 0.0496 0.0462
16 0.4673 0.2741 0.1946 0.1510 0.1234 0.1043 0.0904 0.0797 0.0713 0.0645 0.0589 0.0542 0.0502 0.0467
17 0.4724 0.2771 0.1967 0.1526 0.1247 0.1054 0.0913 0.0806 0.0721 0.0652 0.0595 0.0548 0.0507 0.0472
18 0.4771 0.2798 0.1987 0.1541 0.1260 0.1065 0.0923 0.0814 0.0728 0.0659 0.0601 0.0553 0.0512 0.0477
19 0.4816 0.2824 0.2005 0.1556 0.1271 0.1075 0.0931 0.0821 0.0735 0.0665 0.0607 0.0558 0.0517 0.0481
20 0.4857 0.2848 0.2022 0.1569 0.1282 0.1084 0.0939 0.0829 0.0741 0.0670 0.0612 0.0563 0.0521 0.0485
21 0.4896 0.2871 0.2039 0.1582 0.1292 0.1093 0.0947 0.0835 0.0747 0.0676 0.0617 0.0568 0.0526 0.0489
22 0.4933 0.2893 0.2054 0.1594 0.1302 0.1101 0.0954 0.0841 0.0753 0.0681 0.0622 0.0572 0.0529 0.0493
23 0.4967 0.2913 0.2068 0.1605 0.1311 0.1109 0.0960 0.0847 0.0758 0.0686 0.0626 0.0576 0.0533 0.0496
24 0.5000 0.2932 0.2082 0.1615 0.1320 0.1116 0.0967 0.0853 0.0763 0.0690 0.0630 0.0580 0.0537 0.0500
25 0.5031 0.2950 0.2095 0.1625 0.1328 0.1123 0.0973 0.0858 0.0768 0.0694 0.0634 0.0583 0.0540 0.0503  

 

Example 7.2 

Find a life test plan, which will be stopped at the occurrence of the fifth failure and 

will reject a lot having acceptable mean life less than 500 hours with probability 0.95. 

Solution:   

In this case, 05.0=β , 5001 =θ , 5=r ;  

First, choose a sample of size 20. 
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From table 7.2 obtain that for 3=k , 5=r , 05.0=β , and , the minimum 

required testing time is 

20=n

6078.0
1

=
θ
T . 

Therefore: 9.3035006078.06078.0 1 =×=×= θT hours. 

Table 7. 2 Test time for chain sampling reliability acceptance test ( 1/θT ) 

β=0.05 k=3
r n=

2r 3r 4r 5r 6r 7r 8r 9r 10r 11r 12r 13r 14r 15r
1 3.6741 1.9988 1.3912 1.0707 0.8714 0.7351 0.6358 0.5603 0.5009 0.4529 0.4133 0.3801 0.3519 0.3275
2 2.3257 1.3038 0.9151 0.7067 0.5762 0.4866 0.4212 0.3713 0.3320 0.3003 0.2741 0.2521 0.2334 0.2172
3 1.8755 1.0640 0.7491 0.5792 0.4725 0.3992 0.3456 0.3047 0.2725 0.2465 0.2250 0.2069 0.1916 0.1783
4 1.6450 0.9391 0.6622 0.5124 0.4181 0.3533 0.3059 0.2697 0.2412 0.2182 0.1992 0.1832 0.1696 0.1579
5 1.5026 0.8611 0.6078 0.4705 0.3840 0.3245 0.2810 0.2478 0.2216 0.2005 0.1830 0.1683 0.1558 0.1451
6 1.4048 0.8073 0.5702 0.4415 0.3604 0.3046 0.2637 0.2326 0.2080 0.1882 0.1718 0.1580 0.1463 0.1362
7 1.3330 0.7675 0.5424 0.4200 0.3429 0.2898 0.2510 0.2213 0.1980 0.1791 0.1635 0.1504 0.1392 0.1296
8 1.2776 0.7367 0.5208 0.4034 0.3294 0.2784 0.2411 0.2126 0.1902 0.1720 0.1570 0.1444 0.1337 0.1245
9 1.2334 0.7121 0.5036 0.3901 0.3185 0.2692 0.2331 0.2056 0.1839 0.1663 0.1519 0.1397 0.1293 0.1204

10 1.1972 0.6918 0.4894 0.3791 0.3096 0.2617 0.2266 0.1998 0.1788 0.1617 0.1476 0.1358 0.1257 0.1170
11 1.1668 0.6749 0.4775 0.3699 0.3021 0.2553 0.2211 0.1950 0.1744 0.1578 0.1440 0.1325 0.1227 0.1142
12 1.1410 0.6604 0.4673 0.3621 0.2957 0.2499 0.2164 0.1909 0.1707 0.1544 0.1410 0.1297 0.1201 0.1118
13 1.1186 0.6478 0.4585 0.3553 0.2901 0.2452 0.2124 0.1873 0.1675 0.1516 0.1383 0.1273 0.1178 0.1097
14 1.0991 0.6368 0.4507 0.3493 0.2853 0.2411 0.2088 0.1842 0.1647 0.1490 0.1360 0.1251 0.1158 0.1078
15 1.0818 0.6271 0.4439 0.3440 0.2810 0.2375 0.2057 0.1814 0.1623 0.1468 0.1340 0.1232 0.1141 0.1062
16 1.0665 0.6184 0.4378 0.3393 0.2771 0.2342 0.2029 0.1789 0.1600 0.1448 0.1322 0.1216 0.1126 0.1048
17 1.0526 0.6106 0.4324 0.3351 0.2737 0.2313 0.2004 0.1767 0.1581 0.1430 0.1305 0.1201 0.1112 0.1035
18 1.0402 0.6036 0.4274 0.3312 0.2705 0.2287 0.1981 0.1747 0.1563 0.1413 0.1290 0.1187 0.1099 0.1023
19 1.0288 0.5972 0.4229 0.3278 0.2677 0.2263 0.1960 0.1729 0.1546 0.1399 0.1277 0.1174 0.1087 0.1012
20 1.0184 0.5913 0.4188 0.3246 0.2651 0.2241 0.1941 0.1712 0.1531 0.1385 0.1264 0.1163 0.1077 0.1002
21 1.0089 0.5859 0.4150 0.3216 0.2627 0.2221 0.1923 0.1696 0.1517 0.1373 0.1253 0.1153 0.1067 0.0993
22 1.0001 0.5809 0.4115 0.3189 0.2605 0.2202 0.1907 0.1682 0.1505 0.1361 0.1242 0.1143 0.1058 0.0985
23 0.9920 0.5763 0.4082 0.3164 0.2584 0.2185 0.1892 0.1669 0.1493 0.1350 0.1233 0.1134 0.1050 0.0977
24 0.9844 0.5721 0.4052 0.3141 0.2565 0.2169 0.1878 0.1657 0.1482 0.1340 0.1224 0.1126 0.1042 0.0970
25 0.9773 0.5681 0.4024 0.3119 0.2548 0.2154 0.1865 0.1645 0.1472 0.1331 0.1215 0.1118 0.1035 0.0964  

 

The desired sampling plan is thus obtained as follows: 

1. Place 20 items in a test for a period of 303.9 hours, and observe the number 

of failures . d

2. If the number of observed failures, d  is less than or equal to 5 (the 

specified r ), or if 6 failures from the current lot are observed, but no failure 

is found in the previous three lots, then accept the current lot. 

3. Otherwise, reject the current lot.  
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Example 7.3 
Find a life test plan, which will accept a lot having acceptable mean life of 1000 hours 

with probability 0.95 and reject a lot having acceptable mean life less than 500 hours 

with probability 0.95. 

 01 /θθTable 7. 3 Value of  for chain sampling reliability acceptance test 

 

Solution:  

In this case, 

α=0.05 β=0.05 k=3
r n=

2r 3r 4r 5r 6r 7r 8r 9r 10r 11r 12r 13r 14r 15r
1 0.0832 0.0851 0.0860 0.0865 0.0868 0.0870 0.0872 0.0873 0.0874 0.0875 0.0875 0.0876 0.0876 0.0877
2 0.1297 0.1312 0.1319 0.1323 0.1326 0.1327 0.1328 0.1329 0.1330 0.1330 0.1331 0.1331 0.1332 0.1332
3 0.1739 0.1753 0.1759 0.1762 0.1763 0.1765 0.1765 0.1766 0.1767 0.1767 0.1767 0.1768 0.1768 0.1768
4 0.2126 0.2139 0.2145 0.2147 0.2149 0.2150 0.2151 0.2151 0.2151 0.2152 0.2152 0.2152 0.2152 0.2152
5 0.2458 0.2472 0.2477 0.2480 0.2481 0.2482 0.2483 0.2484 0.2484 0.2484 0.2485 0.2485 0.2484 0.2485
6 0.2747 0.2760 0.2766 0.2768 0.2770 0.2771 0.2772 0.2772 0.2773 0.2772 0.2773 0.2773 0.2773 0.2774
7 0.3000 0.3014 0.3019 0.3022 0.3023 0.3024 0.3025 0.3026 0.3026 0.3026 0.3026 0.3027 0.3026 0.3027
8 0.3225 0.3239 0.3244 0.3247 0.3249 0.3249 0.3250 0.3251 0.3251 0.3251 0.3251 0.3252 0.3252 0.3252
9 0.3427 0.3441 0.3446 0.3449 0.3450 0.3451 0.3452 0.3452 0.3453 0.3453 0.3454 0.3453 0.3454 0.3453

10 0.3610 0.3623 0.3628 0.3631 0.3633 0.3634 0.3634 0.3635 0.3635 0.3636 0.3636 0.3636 0.3636 0.3636
11 0.3776 0.3789 0.3795 0.3797 0.3799 0.3800 0.3800 0.3801 0.3801 0.3801 0.3802 0.3802 0.3802 0.3803
12 0.3928 0.3941 0.3947 0.3949 0.3951 0.3952 0.3953 0.3953 0.3954 0.3954 0.3954 0.3954 0.3954 0.3955
13 0.4068 0.4081 0.4087 0.4089 0.4091 0.4092 0.4093 0.4093 0.4094 0.4094 0.4094 0.4094 0.4094 0.4095
14 0.4198 0.4211 0.4217 0.4219 0.4220 0.4222 0.4222 0.4223 0.4223 0.4223 0.4224 0.4224 0.4224 0.4224
15 0.4319 0.4332 0.4337 0.4340 0.4341 0.4342 0.4343 0.4343 0.4344 0.4344 0.4344 0.4344 0.4344 0.4344
16 0.4431 0.4444 0.4449 0.4452 0.4454 0.4455 0.4455 0.4456 0.4456 0.4456 0.4457 0.4456 0.4457 0.4456
17 0.4537 0.4550 0.4555 0.4557 0.4559 0.4560 0.4560 0.4561 0.4561 0.4561 0.4562 0.4562 0.4562 0.4562
18 0.4636 0.4648 0.4653 0.4656 0.4658 0.4659 0.4659 0.4660 0.4660 0.4660 0.4661 0.4660 0.4661 0.4660
19 0.4729 0.4742 0.4746 0.4749 0.4750 0.4752 0.4752 0.4753 0.4753 0.4753 0.4754 0.4754 0.4754 0.4754
20 0.4817 0.4829 0.4834 0.4837 0.4838 0.4839 0.4840 0.4840 0.4840 0.4841 0.4841 0.4841 0.4841 0.4841
21 0.4900 0.4913 0.4917 0.4920 0.4922 0.4922 0.4923 0.4924 0.4924 0.4924 0.4925 0.4924 0.4924 0.4925
22 0.4979 0.4991 0.4996 0.4999 0.5000 0.5001 0.5001 0.5002 0.5003 0.5003 0.5003 0.5003 0.5003 0.5004
23 0.5054 0.5066 0.5071 0.5074 0.5075 0.5076 0.5076 0.5077 0.5077 0.5077 0.5078 0.5078 0.5078 0.5078
24 0.5126 0.5138 0.5142 0.5145 0.5146 0.5147 0.5148 0.5148 0.5148 0.5149 0.5149 0.5149 0.5149 0.5150
25 0.5194 0.5206 0.5210 0.5213 0.5215 0.5215 0.5216 0.5216 0.5216 0.5217 0.5217 0.5217 0.5217 0.5218

05.0== βα , 10000 =θ , 5001 =θ ; 5.01000/500/ 01 ==θθ  

Suppose we have resources of previous three lots, which is obtained from 

historical record (the necessary condition for the use of chain sampling plan) 

First, select a suitable combination of acceptance number and the sample size. 

From Table 7.3, when 22=r  and 1326 == rn , the value of 01 /θθ  is exactly 

0.5, therefore choose the acceptance number as 22 and the sample size as 132. 

Next, repeat the procedure of Example 7.1. 
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From Table 7.1 obtain that for 3=k , ,r 22= 05.0=α , and , the 132=n

minimum required testing time is 1302.T 0
0

=
θ

. 

Therefore: 2.13010001302.01302.0 0 =×=×= θT hours. 

The de ng plan is thus obtained as follows: 

 130.2 hours, and observe the 

2. b ved failures,  is less than or equal to 22 (the 

sired sampli

1. Place 132 items in a test for a period of

number of failures, d .  

If the number of o ser  d

specified r ), or if 23 failures from the current lot are observed, but no 

failure is found in the previous three lots, then accept the current lot. 

Otherwise, reject the current lot. 3. 

In Exa r and the sample size are fixed, Table 7.2 mple 7.3, after the acceptance numbe

can also be used to find the required testing time. In this case, obtain 2605.0=
T  and 

1θ

3.1302605.0 1 =×= θT  hours. The result is the same as that obtained from Table 7.1. 

A library of tables is provided in the appendix for more values of α , β , and k . Users 

bersome in some 

can follow the similar procedure of above examples to design their required chain 

sampling reliability acceptance test plans. 

Similar to that of chapter 6, the use of indexed tables will be cum

cases, and it is also possible to find that the desired table that is not available as the 

library of tables provided is covering the most frequently used value only. To 

overcome these difficulties, an Excel routine template provided to facilitate the design 

of the sampling plan. They are explained in the following figure: 
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Figure 7. 1Excel template for example 7.1 

 

The usage of this template is very straightforward. Key in the required parameters and 

press the “Alpha Calculation” button, results will appear within seconds. Users can 

simply follow the provided sampling procedures to conduct their reliability acceptance 

test. The result in this template is more accurate than those obtained from tables. 
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Figure 7. 2 Excel template for example 7.2 

 

Figure 7.2 and 7.3 are the Excel template for example 7.2 and 7.3 respectively. They 

are easy to operate and users have the flexibility of choosing their desired parameters 

rather rigidly following the table. Careful comparison of the result from these 

templates and those from the table reveals a little difference, and users can choose 

either the existing tables or these templates at their convenience. One inconvenience 

lies in Figure 7.4, which requires users to wait for a much longer time in order to 

obtain the result. Efforts are required to revise the algorithm to make the computation 

faster.  
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Figure 7. 3 Excel template for example 7.3 

7.4 Conclusion and Remark 

Reliability Acceptance Testing (RAT) or Product Reliability Acceptance Testing 

(PRAT) is probably the oldest reliability testing technique, which is used to sentence a 

lot according to some reliability requirements, which is conducted either by suppliers 

or by customers or both based on agreed sampling plans and acceptance rules. 

It is a hot subject with extensive research in the 1950s and 1960s, after which it 

became silent because of the misconception that it is too simple to deserve further 

study. It is therefore not surprising to find that most of the techniques developed that 

period are still serving industries now.  

In this chapter, chain sampling schemes for reliability acceptance test are proposed to 

complement the existing commonly used two schemes: single sampling plan and 

sequential sampling plan. Besides the mathematical description, tables for the selection 
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of sampling parameters and Excel templates are provided to facilitate the design 

procedure and to give users more flexibility in application. 

This is a rather interesting and useful topic, and the content presented is this chapter is 

only the beginning of this research. Further extensive research is required for other 

lifetime distribution models. Its massive application is to be addressed as well. 
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8. Conclusions and Remarks 
This thesis focuses on Chain Sampling Schemes, a versatile sampling plan that is 

found useful in the costly or destructive testing. Several issues related to this sampling 

scheme are addressed. The first concern is the effect of the correlation on the 

performance of chain sampling plan, which is driven by an industrial project where the 

correlated production are subjected to testing for disposition decision.  

It is where our interest in chain sampling plan is developed from, and serves as an 

introduction and catalyst to spark our interest to further explore it. We then proceed to 

study the effect of inspection errors on the sampling plan, specifically, its effect on 

chain sampling plan. It is a difficult task and cost most of my time in my research. We 

tackle this problem phase by phase and gradually we manage to come up the final 

result. The three stages or phases of this project are effect of constant inspection errors, 

effect of variable inspection errors, and the design of chain sampling plan. The first 

two stages is the foundation of our inspection error study and the final stage, design of 

chain sampling plan, complete our study on the inspection error. 

The final part of this thesis goes to the reliability engineering, while the previous two 

topics fall in the category of quality engineering. In this part, we extend the chain 

sampling to reliability acceptance test and propose our approaches to design chain-

sampling plans for reliability acceptance test. Its mathematical models are relatively 

straightforward, but the results are useful in application. 

In chapter three, we present our study of the effect of correlation on chain sampling 

plan, which is actually an abstract and extension of our industrial project. We develop 

our model, Chain Sampling Plan with Markov Property, and conduct the numerical 

analysis.  Our analysis reveals that for a given “ p ”, the probability of acceptance is 

smaller when a negative correlation is taken into consideration, i.e. when the 
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correlation is negative, the proposed model is more discriminating than the Dodge 

ChSP-1.  The discriminating power increases asδ , the correlation parameter, increases. 

The reverse is true when the correlation coefficient is positive. The corresponding 

probability of acceptance is larger for a given “ ” and thus the discrimination power 

is less than that of the Dodge plan. The implication in practice is that when the Dodge 

ChSP-1 plan is applied to samples with positive correlation, the resulting probability of 

acceptance is smaller than what it is supposed to be and will lead to a more 

conservative decision. On the other hand, when there is a negative correlation, the 

Dodge ChSP-1 plan must be used with caution as its probability of acceptance and 

average outgoing quality are larger than the actual values given in our plan. 

p

Another finding from chapter three is that it is advisable to use a number of previous 

lots of three as the choice of an important design parameter. The reason is simple. As 

the OC curve and AOQ curve indicate that any lots number less than three will 

compromise robustness and a larger lots number than three will incur additional cost. 

Chapter 4 starts the study of the effect of inspection errors on chain sampling plan, in 

which inspection errors are assumed to remain constant thorough out the inspection, i.e. 

the constant error model. In this chapter, we extend the inspection error consideration 

to chain sampling schemes and develop a mathematical model to investigate the 

performance of chain sampling schemes when inspection errors are taken into 

consideration. We also derive expressions of performance measures such as the 

operating characteristic function, average total inspection and average outgoing quality 

to aid the analysis of a general chain sampling scheme, ChSP-4A ( , ) 1c 2c r , 

developed by Frishman (1960). 

Our study reveals that as type I inspection error increases, the acceptance probability 

will decrease while the increment of type II inspection error will increase the 
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acceptance probability. The effect of type II error on the sampling acceptance 

probability is very marginal as compared to that of type I error especially when the true 

fraction of nonconforming is small. An important conclusion from this chapter is that 

the effect of inspection errors can be “eliminated” by transforming to its equivalent 

perfect inspection counterpart, thus greatly reduces the complexity of the analysis. 

Effects of inspection errors on the AOQ curve and ATI curve are complicated. As type 

I inspection error increases, the corresponding AOQ value will decrease and its ATI 

will increase. The effect of type II inspection is on the reverse, i.e. when type II 

inspection error gets bigger, the AOQ will become larger and its ATI will become 

smaller accordingly. These confounding effects deserve careful consideration before 

any decision can be reached. One guideline is that type I inspection error usually plays 

a prominent role in small fraction defectives while type II inspection error has more 

weight on large fraction of nonconforming product.  Accordingly, type II inspection 

error plays a dominant role in determining the final average outgoing quality limit 

(AOQL). Simulation shows that even a small type II inspection error will lead the final 

AOQL to almost 1. 

Analysis of the AOQ and ATI also tells us that the effectiveness of sampling plans can 

only be maintained when both types of inspection error are relatively small. If the 

inspection error is large, either type I or type II, sampling schemes will not be effective 

any more. The final outgoing quality after inspection will be barely improved, which 

implies that there is no point to implement sampling plan when the inspection error is 

large. 

Chapter five is a counterpart of chapter four with the underlying assumption changed 

from constant error model to variable error model. The variable error is in fact very 

complicated and we adopt the Biegel (1974) linear model to simplify the problem. We 
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go through the similar study to that of chapter 4 focusing the difference between these 

two models. Our study further confirms that as type I inspection error increase, the 

acceptance probability will decrease while the increment of type II inspection error 

will increase the acceptance probability. When both types of inspection error are small, 

the differences between both models are smaller enough to be negligible. It is therefore 

very safe for application purpose to assume constant error model rather than the 

complicated linear error model without loss of too much accuracy. 

This result is very important in that it provide us justifications that when come to the 

design stage we can use the constant error model rather than the complicated linear 

model without loss of accuracy. This can greatly reduce the complexity and difficulties 

in the design stage. 

Chapter 6 is the final and the most important part of our inspection error effect study. 

We propose our procedures of designing chain-sampling plans when inspection errors 

are taken into consideration; we propose two approaches to design the chain sampling 

plans for imperfect inspection. One is to use the existing perfect inspection tables with 

adjusted AQL and LTPD values, and the other is to use our solution algorithm to 

search the optimal sampling plans. The first approach is easy to implement but with 

possible limitation of unavailable tables. The second one is more versatile in terms of 

values of AQL  and LTPD, but at the expense of a more complicated and difficult 

operating procedures. To conclude our error effect study, it should be noted that while 

plans can be designed to accommodate predetermined level of inspection errors, the 

inspection schemes suggested are generally more time consuming and costly since they 

all involve a larger sample size. This is especially serious in the presence of type I 

error ( ). In order to minimize such losses, the solution would be to reduce inspection 

errors through better training and providing a more conducive environment for 

1e
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inspection activity to be carried out. However, the selection of chain plans with 

consideration of inspection errors will still have to be employed as inspection errors 

will never be fully eradicated. 

Chapter 7 focuses on the application of chain sampling plan in Reliability Acceptance 

Testing (RAT) or Product Reliability Acceptance Testing (PRAT), which is probably 

the oldest reliability testing technique. Its purpose is to supply suitable sampling 

procedures and based on which a lot is sentenced according to some reliability 

requirements. It is conducted either by the supplier or the customer or both based on 

agreed sampling plans and acceptance rules. 

This was a very hot topic and received extensive study in the 1950s and 1960s, after 

which it became silent because of the misconception that it is too simple to deserve 

further study. It is therefore no surprised to find that most of the techniques developed 

at that period are still serving our industries now.  

In this chapter, we proposed our chain sampling schemes for reliability acceptance test 

to complement the existing commonly used two schemes: single sampling plan and 

sequential sampling plan. Besides the mathematical description we provide our tables 

for the selection of sampling parameter, and Excel templates are also provided to 

facilitate the design and provide more flexibility for the usage. Examples are included 

to illustrate the use of proposed methods. It is a rather interesting and useful topic, and 

the content presented is this chapter is only the beginning of this research. Further 

extensive research is required for other lifetime distribution models. Its massive 

application is to be addressed as well. 
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Appendix A Tables for Chain Sampling Plan 
 

Table A. 1Tables for Selection of Chain Sampling Plans indexed by α and β　 

Tables of sampling plans available for different values of α and β Page 

α = 0.01 , β = 0.01 152 

α = 0.01 , β = 0.05 153 

α = 0.01 , β = 0.10 154 

α = 0.05 , β = 0.01 155 

α = 0.05 , β = 0.05 156 

α = 0.05 , β = 0.10 157 

α = 0.10 , β = 0.01 158 

α = 0.10 , β = 0.05 159 

α = 0.10 , β = 0.10 160 
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Appendix B The Use of a Ratio Test in Multi-Variate  
SPC 

Hotelling T2 is a common statistics used in multivariate process control and was shown 

effective in detecting out of control signal. However, once an out-of-control signal was 

detected, T2 performed poorly in identifying which variable or set of variables is the 

source of signal. It also fails to address the correlation effect. 

Many researchers have shown interested in this topic and a lot of research has been 

devoted to address the abovementioned problems. We are no exception. In our 

research, we propose a percentage decomposition method to solve the problem. The 

model is outlined below: 

1. For multivariate process data, obtain its µ and Σ  

2. Use Hotelling 2T method to do multivariate process control 

3. When an out-of-control signal is detected, plot the percentage decomposition chart. 

4. Examine the percentage chart and identify source of out-of-control variable(s). 

The percentage decomposition chart is illustrated below: 

1. Normalize the ith observation  
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2. Calculate the percentage of each variable in the observation 
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3. Plotting  based on it three sigma limits, and we can tell which variable is the 

source of out-of-control. 

ijp

In our research, we proceed to derive the mathematical distribution for the ratio of two 

normal, as when the multivariate data follows a multi-normal distribution its 

summation is still normal. However, our proposed method does not provide 

satisfactory result based on the model derivation.  The research was therefore aborted 

and our effort on this topic was no longer continued. 

However, the mathematical derivation of the ratio two normal itself has its unique 

contribution to literature. It is wastage if we throw all of them. We decided to 

document our derivation process in the appendix for future reference. 

The following is the derivation of ratio of two normal distributions: 

Notations: 

Xi, Yi, Zi: Capital letters with one subscript is used to denote vectors and observations 

Xij, Yij, Zij: Capital letters with two subscripts is used to denote individual observation 

readings. 

x, y, z: Small letters stand for variables 

Greek letters are used to stand for population statistics and English letter for sample 

statistics. 

1. What is the distribution of 
Y
XZ = , here X and Y are independent. 
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Therefore, the first integration is: 
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The second integration in f (z) is 
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Similarly, the first part is equal to: 

( )
( )⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
−=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

+
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+

222

2

222

22

222

22222

222

22

2
exp

2
exp

xy

yx

xy

yx

xy

yxxy

xy

yxxy

z
z

z

zz
z

σσ
µµ

σσ
σσ

σσ
µσµσ

σσ
µσµσ

 

 168



 
Appendix B                                                      The use of a ratio test in multi-variate SPC 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( ) ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+

+−
Φ−

+

+
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+−

+
=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+

+−
Φ−

+

+
+

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
−

+
=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

+
−

Φ−
+

+
+

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
−−

+
−=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
−−

+

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
+

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
−−

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
−−

+
−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
−−

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
−

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
−−

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
+

+

+
−

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
−−

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
−−

∞+

∞+

∞+

∞+∞+

∞+∞+

∫

∫

∫∫

∫∫

222

22

2/3222

22

22222

222

222

22

222

22

2/3222

22

222

22

2

222

22

222

22

222

22

222

22

2/3222

22

0

222

22

2

222

22

222

22

0
222

22

2

222

22

222

22222

22

222

22

0
222

22

2

222

22

222

22

2

222

22

222

22

0
222

22

222

22

2

222

22

0
222

22

222

22

2

222

22

0
222

22

222

22

222

22

2

222

22

0
222

22

2

222

22

1
2

2
exp

1
2

2
exp

1
2

2
exp

2
exp

2

12

22
exp

2
exp

2
exp

2
exp

2
exp

xyyx

yxxy

xy

yxxyyx

xyyx

yxxy

xy

yx

xyyx

yxxy

xy

yxxyyx

xy

yx

xy

yxxy

xy

yx

xy

yx

xy

yxxy

xy

yxxyyx

xy

yx

xy

yxxy

xy

yx

xy

yx

xy

yxxy

xy

yxxy

yx

xy

yxxy

xy

yx

xy

yxxy

xy

yx

xy

yxxy

xy

yx

xy

yxxy

xy

yx

xy

yxxy

xy

yxxy

xy

yx

xy

yxxy

xy

yxxy

xy

yxxy

xy

yx

xy

yxxy

xy

yx

xy

yxxy

z

z

z

z
z

z
z

z

z

z

z

z

z
z

z

z

z
z

z

z

z

z
z

a

z

da

z

z
z

a

z

zz
z

z

z
z

a

d

z

z
z

a

z

da
z

z

z

z
z

a

da
z

z
a

z

z
z

a

da
z

z
z

z
a

z

z
z

a

ada

z

z
z

a

σσσσ

µσµσ

σσ

µσµσσσπ
σσσσ

µσµσ
σσ

σσ

σσσσ

µσµσ

σσ

µσµσσσπ

σσ
σσ

σσ
µσµσ

σσ
σσ

σσ
σσ

σσ
µσµσ

σσ

µσµσσσπ

σσ
σσ

σσ
µσµσ

σσ
σσ

σσ
σσ

σσ
µσµσ

σσ
σσ

π
σσ

σσ
π

σσ
µσµσ

σσ
σσ

σσ
µσµσ

σσ
σσ

σσ
µσµσ

σσ
σσ

σσ
µσµσ

σσ
σσ

σσ
µσµσ

σσ
µσµσ

σσ
σσ

σσ
µσµσ

σσ
µσµσ

σσ
µσµσ

σσ
σσ

σσ
µσµσ

σσ
σσ

σσ
µσµσ

 

Therefore, the second integration is: 
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the Final express for f (z) is: 
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The first part is: 
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Therefore, the final expression is: 
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Applying the same derivation process we get: 
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Next step will focus on the derivation of the respective cumulative density function. 
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the latter part: 

 172



 
Appendix B                                                      The use of a ratio test in multi-variate SPC 

( )
( )

( )
( )

( )
( )

( )
( )

( ) ( )

( )
( )
( )

( ) ( )
( )( )

( )
( )

( )
( )( )

( )
( )

( )
( )( )

( )( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( ) ( ) ( ) ( ) (
( )

)
∫

∫

∫

∫

∫

∫

∫

∫

∫

∞−

∞−

∞−
∞−

∞−

∞−

∞−

∞−

∞−

∞−

∞−

−

−−+−+−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
−

−

+
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

+
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
−

−

+
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
−

−

+
=

−

+
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+−
=

−+

+
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
−=

−+

++−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
−=

−+

++−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
−=

−

−+−
+

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
−=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−

+
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
−

t

yx

yyxxyyxyyx

xy

yx

t

xy

yx

yx

xy

t

yx

xy

xy

yx

t

xy

yx

yx

xy

t

xy

yx

yx

xy

t

yx

xy

xy

yx

xy

xyyxyx

t

yxxy

yxxy

xy

yx

t

yxxy

yxyyyyxy

xy

yx

t

yxxy

yxyyxy

xy

yx

t

yx

yxy

xy

y
yx

xy

yx

t

yx

xy

xy

yx

dz
z

zzzzz

z
z

z
z

z

z

z

z
d

z
z

z
z

z

z

z
z

d
z

z

dz
z

z
z

z

z

zz

dz
zz

z
z

z

dz
zz

zzz
z

z

dz
zz

zzz
z

z

dz
z

z
z

z
z

z
z

z

z
d

z
z

6

22/322222/12223

222

2

222

2

3

2/3222

3

2/3222

222

2

222

2

3

2/3222

222

2

3

2/3222

3

2/3222

222

2

2222

22

2222

22

222

2

2222

222222

222

2

2222

2222

222

2

2

222

222

2

222

2

222

222

2

32
2
3

2
exp

2
exp

2
exp

2
exp

2
exp

2
exp

2
exp

2
exp

2
exp

*
2

2

2
exp

2
exp

µµ

µµµσσσσσµµ

σσ
µµ

σσ
µµ

µµ

σσ

µµ

σσ
σσ

µµ
σσ

µµ

µµ

σσ

σσ
µµ

µµ

σσ

µµ

σσ
σσ

µµ

σσ

µσµσµµ

µµσσ

µσµσ
σσ

µµ

µµσσ

µσµσµσµσ
σσ

µµ

µµσσ

µσσµµσ
σσ

µµ

µµ

µσσ
σσ

σ
µµ

σσ
µµ

µµ

σσ

σσ
µµ

( )
( )

( ) ( ) ( ) ( ) (
( )

)

( )
( )

( )( ) ( )
( )

( )
( )

( ) ( )
( )

( )
( )

( ) ( )
( )∫

∫

∫

∫

∞−

∞−

∞−

∞−

−

++
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
−=

−

++−+
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
−=

−

+++−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
−=

−

−−+−+−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
−

t

yx

yxxyxy

xy

yx

t

yx

yxyyyyxyxy

xy

yx

t

yx

yxyyxyyx

xy

yx

t

yx

yyxxyyxyyx

xy

yx

dz
z

zz
z

z

dz
z

zzzzz
z

z

dz
z

zzzz
z

z

dz
z

zzzzz

z
z

4

222/1222

222

2

4

222222/1222

222

2

4

2/322222/1222

222

2

6

22/322222/12223

222

2

2
exp3

2
exp3

2
exp3

32
2
3

2
exp

µµ

µσµσσσ
σσ

µµ

µµ

µσµσµσµσσσ
σσ

µµ

µµ

µσσσσσµµ
σσ

µµ

µµ

µµµσσσσσµµ

σσ
µµ

 

 

 173



 
Appendix B                                                      The use of a ratio test in multi-variate SPC 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )
da

a
dxx

da
a

dxx

daafazFdaafazFzF

y

y

y

az

x

x

x

o

y

y

y

az

x

x

xy

y

yX

o

yX
y

y

∫ ∫

∫ ∫

∫∫

∞+

∞−

∞− ∞−

+∞

∞−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
Φ=

+−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
Φ=

0
2

2

2

2

2

2

2

2

0

2
exp

2
1

2
exp

2
1

2
exp

2
1

2
exp

2
1

σ
µ

σπσ
µ

σπ

σ
µ

σπσ
µ

σπσ
µ

σ
µ

 

 

 
 

 174



 
Appendix C                                                            SWOT Analysis of Six Sigma Strategy 

Appendix C SWOT Analysis of Six Sigma Strategy 

Introduction 
Nowadays, Six Sigma has become the “fashion” and has gained much popularity 

worldwide.  Not only manufacturing companies, but also service industries, such as 

financial and educational institutions, are starting to embrace this “all-around” strategy. 

In certain areas it has become synonymous with business excellence. The success 

stories of Motorola, General Electric, Seagate Technologies and Allied Signal have 

enticed organizations to adopt Six Sigma as their ultimate tool towards perfection and 

customer satisfaction (Harry and Schroeder 2000). However, twenty years after its 

introduction, Six Sigma has never stopped drawing debates and criticisms. Some 

criticisms include the huge investment costs it entails and the uncertainty of successful 

implementation it poses. As a matter of fact, the debates over its pros and cons never 

cease but have instead increased in intensity over the past years as this program gains 

in popularity in many industries. Whether Six Sigma should be implemented is a 

dilemma faced by all organizations. This is an important decision in all forward 

looking companies because if they chose otherwise or other less effective quality 

programs, they may be left behind from competition and other undesirable 

consequences. The need to be competitive is also fueled by the threats of the highly 

competitive global environment today. On the other hand, implementing Six Sigma is 

not an easy task and does not guarantee corporate survival in these hostile market 

conditions. While some giant corporations are vocally praising the Six Sigma (Harry 

and Schroeder 2000), stories of failed efforts and remarks of dissatisfaction are also 

heard (www.isixsigma.com). Furthermore, organization must be financially prepared 

since the program requires huge cash outflow, especially in training, before significant 

results can be seen. In consideration of these elements, the organization must quantify 
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the cost of doing nothing and the cost of implementing Six Sigma or going to other 

programs. 

In view of these dilemmas, it is very important to examine carefully the nature of Six 

Sigma and how it can help the organization. In this paper, we perform the SWOT 

analysis to identify strengths, weaknesses, opportunities and threats to Six Sigma 

strategy, and based on these identifications, we give our views regarding this dilemma 

and also outline the possible improvement strategies for this program. 

In section two, we give a brief description of the SWOT analysis method and section 

three goes to the introduction of Six Sigma strategy. Our detailed analysis will be 

presented in section four and conclusions are to be included in section five. 

 
SWOT Analysis 
What is it? 
SWOT analysis stands for strengths, weaknesses, opportunities and threats analysis. It 

is a popular way and an effective tool of analyzing a company or an organization by 

identifying its inherent strengths and weaknesses, and examining the external 

opportunities and threats, which may affect the organization. This method provides a 

formal framework for summarizing and integrating the analyses of an organization’s 

external environment and its internal resource and capabilities. The aim of SWOT 

analysis is to match likely external environment changes with its internal capabilities, 

to test these out and challenge how an organization can capitalize on new opportunities, 

or defend itself against future threats. The exercise seeks to challenge the robustness of 

an organization’s current strategy and highlight areas that might need to change in 

order to sustain or develop its competitive position. 

 
Who performs it? 
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To carry out a SWOT Analysis effectively, a team consisting of members from various 

departments of an organization is usually required for the initial brainstorming session. 

The need for a team approach is largely due to the need for an effective integration of 

diverse domain knowledge from each department of the organization. In addition, a 

team approach facilitates the convergence of ideas and directions amongst the different 

specialist departments within an organization. In most case, the final summarization 

and integration may be done individually, usually in the hands of the managers. 

 
How to use it? 

SWOT analysis should be conducted as objectively as possible based on a thorough 

investigation of all possible influencing factors in each category. To carry out a SWOT 

analysis, the following questions in each category may be used as a guide to obtain the 

necessary information. 

Strengths: 

What are the advantages you hold in the market? 

What do you do well? 

What makes you difference from your competitors? 

Weaknesses: 

What do you do badly? 

What should you avoid? 

What could you improve on? 

What are the causes of your problems and complaints? 

Opportunities: 

Where are the good opportunities facing you? 

What are the interesting trends you are aware of? 

Some guidelines for introducing more information are: 
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Changes in technology and markets on both broad and narrow scale 

Changes in government policy related to your field 

Changes in social patterns, population profiles, lifestyle, etc. 

Local events 

Threats: 

What are your obstacles? 

What are your competitors good at? 

Is the changing technology threatening your position? 

Do you have bad debt or cash-flow problems? 

After identifying all the possible factors, all these information can be consolidated into 

a SWOT table as illustrated below. 

 Positive Factors Negative Factors 

Internal Strengths Weaknesses 

External Opportunities Threats 

The consolidated information will then be used as the foundation of further decision 

and action. 

 
Brief introduction to Six Sigma 
In 1988, Motorola, Inc. developed and actively pursued a quality management program 

called Six Sigma. Since then, it attributed much of its quality improvement to this 

program. Motorola’s World Website (www.motorola.com) states their reason for 

establishing the Six Sigma process, “In order to achieve the goal of doing it right the 

first time, we established and communicated the process that we termed Six Sigma.”  

Six Sigma is a way to measure the probability that companies can produce any given 

unit of a product (or service) with only 3.4 defects per million units or operations. This 

measurement standard essentially stems from the need to combat variations in mass 
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manufacturing environments in efforts to improve the quality of the products. 

Essentially the Six Sigma program aims to identify, measure, reduce and control 

variations found in mass manufacturing environment. The Six Sigma crusade that 

began at Motorola has since spread to other companies, such as General Electric (GE), 

Allied Signal, Seagate Technologies, and so on. 

There have been many common interpretations of what is Six Sigma. The following 

are some common understanding of Six Sigma in the industry: 

- A set of complex statistical techniques applied by engineers or statistician to 

improve the business process.  

- Techniques used to achieve the performance target of operating 3.4 defects per 

million opportunities. 

- A ‘sweeping’ cultural change of an organization to steer toward greater 

customer satisfaction, profitability, and competitiveness.  

These descriptions of Six Sigma serve only to partially define it. Harry and Schroeder 

(2000) defined it as “A business process that allows companies to drastically improve 

their bottom line by designing and monitoring everyday business activities in ways that 

minimize waste and resources while increasing customer satisfaction.” Despite these 

numerous definitions, we prefer the definition given by Pande et al (2000):  

“A comprehensive and flexible system for achieving, sustaining and maximizing 

business success, Six Sigma is uniquely driven by close understanding of customer 

needs, disciplined use of facts, data and statistical analysis, and diligent attention to 

managing, improving, and reinventing business process.” 

In general, the concepts underlying Six Sigma deal with the fact that process and 

product variation is known to be a strong factor affecting manufacturing lead times, 

product and process costs, process yields, product quality, and, ultimately, customer 
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satisfaction. A crucial part of Six Sigma work is to define and measure variation with 

the intent of discovering its causes and to develop efficient operational means to 

control and reduce the variation. The expected outcomes of Six Sigma efforts are faster 

and more robust product development, more efficient and capable manufacturing 

processes, and more confident overall business performance. 

Given the tools and techniques used, one might conclude that Six Sigma is nothing 

new. It uses statistical methods that focus on defect reduction, which results in quality 

improvement through a project-by-project improvement basis. Although many of these 

tools of Six  Sigma are not new, the approach and its deployment are unique and are 

the source of its success. 

Six Sigma has both management and technical components. On the management side, 

it focuses on getting the right process metrics and goals, the right projects and right 

people to work on the projects, and the use of management systems to complete the 

projects successfully and sustain the gains over time. On the technical side, the focus is 

on enhancing process performance by improving the average level of performance and 

reducing variation using process data, statistical thinking and methods.  

The traditional Six Sigma process improvement framework is based on a disciplined 

and focused process-improvement methodology, which has four key stages: Measure, 

Analyze, Improve, and Control, with an up-front stage (Define) sometimes added 

(DMAIC). These key stages are defined as follows: 

Define (D): Define the problem to be solved, including customer impact and potential 

benefits. 

Measure (M): Identify the critical-to-quality characteristics (CTQs) of the product or 

service. Verify measurement capability. Baseline the current defect rate and set goals 

for improvement. 
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Analyse (A) : Understand root causes of why defects occur; identify key process 

input variables (KPIVs) that cause defects. 

Improve (I) : Quantify influences of key process input variables on the CTQs, 

identify acceptable limits of these variables, and modify the process to stay within 

these limits, thereby reducing defect levels in the CTQs. 

Control (C) : Ensure that the modified process now keeps the key process output 

variables (KPOVs) within acceptable limits, in order to maintain the gains in the long 

term. 

Successful Six Sigma implementation in any organization is a top-down initiative 

carried out by a hierarchy of trained personnel designated as Champions, Master Black 

Belts, Black Belts and Green Belts. Each designation reflects the level of competence 

with respect to DMAIC knowledge, practice, and experience. Six Sigma is based on 

factual data, hard techniques, and purposeful changes. It is an improvement initiative 

enforced top-down and never meant to be bottom-up phenomenon. It is not conducted 

via past quality management practices such as slogans, pep talks, will power, 

accreditation, audit, or certification. 

In Six Sigma, strong emphasis is placed on personnel training and deployment. The 

conscious use of formal statistical tools makes it possible to base decisions on facts 

rather than arbitrary opinions or preferences. Six Sigma is deployed on a project-by-

project basis, each with clear objectives, time frame and results, with the results 

commonly expressed in financial terms. 

Implementing Six Sigma in manufacturing means more than delivering products 

without defects, it also means eliminating almost all defects, rework, and scrap. It 

includes operating processes under statistical control, controlling input variables, rather 
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than inspecting for defects at the end of the process, and it means maximizing 

equipment uptime and optimizing cycle time. 

 

SWOT Analysis to Six Sigma 
The consolidated table of SWOT analysis is presented in Table1. Detailed explanation 

of each factor would be presented subsequently. 

Table 1 Consolidated Matrix of SWOT Analysis on Six Sigma Strategy 

 Positive Factors Negative Factors 

Internal Customer focus 

Data-driven and statistical approach to problem 

solving 

Top-down support and corporate-wide involved 

culture 

Well-structured project team 

Clear problem solving framework (DMAIC) 

Project-based approach 

Systematic HR development 

Project tied to bottom line 

Heavy investment 

Highly dependent on 

corporate culture 

(receptiveness to change)

No uniformly accepted 

standards 

Inability to measure and 

improve intangibles such 

as innovation and 

creativity 

 

External Highly competitive market and demanding 

customer 

Fast development of IT and data mining 

technology 

Growing research interest in quality and 

reliability engineering 

Resistance to change 

Highly competitive job 

market. 

Cyclical economic 

conditions 
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Previous implementation of quality programs 

has laid foundation for the easy adoption of Six 

Sigma. 

 

Strengths: 
Customer focus: 

Customer focus is addressed in many quality systems such as TQM and Taguchi 

methods. It’s the core of the quality and the ultimate goal of any successful process. 

Similarly, customer focus is heavily stressed and is implicitly the top priority in any 

Six Sigma implementation. Apart from the traditional Six Sigma program, the 

systematic framework of the Design for Six Sigma methodology for the design phase 

of any Six Sigma product always begins with a thorough study of customers’ 

requirements. This conforms to the philosophy that any Six Sigma product should stem 

from a consideration of customers’ requirements. In the traditional Six Sigma program 

for process improvements, the aim is to build what the customers want and its 

improvements are defined by their impact on customer satisfaction through the proper 

control of the process to achieve the specifications of the Critical to Quality (CTQ) 

factors. These CTQs would have been transmitted downwards from the initial design 

phases of these products. Hence, Six Sigma implementation serves to accurately define 

customer requirements and measure performance against them. This would enable new 

development initiatives to be clearly defined with strong customer focus. 

 

Data-driven and statistical approach to problem solving: 

A strong focus on technically sound quantitative approaches rather than qualitative 

approaches is the most important feature of Six Sigma program. The once-fashionable 

quality program, TQM, seemed to be no different with Six Sigma program in view of 
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many quality practitioners as they found both systems share many in common (Pyzdek, 

2001). However, Six Sigma adopted a systematic quantitative approach that overcomes 

the difficulties incurred by the general and abstract guidelines in TQM. These 

guidelines could hardly be turned into a successful deployment strategy (Pyzdek, 

2001).  

Six Sigma is well rooted in mathematics and statistics. Statistical tools are used 

systematically to measure, collect, analyze and interpret the data and hence to identify 

the working directions and areas for process improvement. It is a data-driven approach 

or information-driven approach. Montgomery (2001) observed that Six Sigma could 

work very well because it is based on sound statistical science and contains in it an 

effective problem identification and solution framework. This quantitative approach 

makes quality an attractive, agreeable and manageable task. 

 

Top-down support and corporate-wide involved culture: 

Six Sigma requires a top-down management approach. The initiative must come from 

the top management to drive through every level of the organization. The top 

management cannot just approve the Six Sigma implementation by just approving the 

budget for it without any involvement. If this is not the case, these Six Sigma 

implementations are doomed to failure from the start (Howell, 2001). With this top-

down approach, it facilitates the way in acquiring resources for sustaining the activities. 

This creates a sense of ‘urgency’ to members of Six Sigma project to devote 100% of 

their time to these projects. GE is a good illustrative example, where its former CEO, 

Jack Welch, started its Six Sigma program and drove down through the whole 

organization, which brought 2 billion dollars returns to GE in 1999 (Goh, 2001). He 

once told his employees that if they want to be promoted, they’d better be Black Belts. 
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The huge financial returns incurred by this program make GE almost the model of 

every Six Sigma practitioner and entices many other companies to join. 

 

Project-based approach: 

Unlike other quality system such as TQM and Taguchi methods, Six Sigma is usually 

carried out on a project basis. The spirit or the essence is still the same—continuous 

improvement, but the manifestation is different. Continuous improvement may have 

seemed to be a good slogan and brand name to have, but it is too intangible to be 

handled with. Adopting a project-based approach forms a cycle of a Six Sigma 

program and can be easily identified and managed. A typical Six Sigma project is 

usually selected by the Master Black Belts and the typical project team is composed of 

Black Belts and Green Belts. The associated team players may be within or cross 

department. Theoretically all staff should be liable to the project when necessary 

(Henderson & Evans, 2000). A clear target must be specified in advance and examined 

to see whether it would be feasible for implementation. Such projects usually last 

between four and six months and the performance is usually measured in term of 

monetary saving returns. 

 

Well-structured project team: 

Associated with the project-based approach, Six Sigma has a well-designed project 

team structure. A Six Sigma project team consists of Executive Champion, 

Deployment Champions, Master Black Belts, Black Belts, and Green Belts. The CEO 

adopts Six Sigma publicly through a company wide training effort and assigns 

someone from top management to be the 'Executive Champion' (Henderson & Evans, 

2000). The Executive Champion assigns Deployment Champions and Master Black 
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Belts (also called Project Champions) from the next highest levels of management. The 

Master Black Belts oversee Six Sigma Projects. Master Black Belts also act as internal 

Six Sigma consultants for new initiatives. They pick up the projects and people, and 

teach, coach, and monitor them. Black Belts are the core and the fulltime carrier of a 

typical Six Sigma project. They are the heart and soul of the Six Sigma quality 

initiative. Their main purpose is to lead quality projects and work full time until they 

are complete. Black Belts can typically complete four to six projects per year with 

savings of approximately $230,000 per project (www.isixsigma.com). They also hold 

the responsibility of coaching Green Belts on their projects. Green Belts are employees 

trained in Six Sigma who spend a portion of their time completing projects while 

maintaining their regular work role and responsibilities. Master Black Belts assign the 

Black Belts and Green Belts to help lead and contribute to the projects. This clear and 

comprehensive team structure makes the program tangible and manageable. 

 

Clear problem solving framework (DMAIC): 

Six Sigma provides a clear systematic problem-solving framework, DMAIC, as the 

core of its technological base. Statistical tools such as DOE, SPC and Monte Carlo 

simulations and structured decision support tools such as QFD and FMEA, etc are 

integrated together under this framework to be explored with their fullest potential. 

Statistical jargons are no longer barrier to the practitioners, but are integrated for better 

understanding and ease of use. The Define-Measure-Analyze-Improve-Control 

approach is applicable to both the manufacturing and service sector (Goh, 2001). It 

begins by defining (D) who are the customers and what are their priorities, and 

proceeds to measure (M) the process, i.e. identifies the key internal processes that 

influence CTQs and measures the defects currently generated relative to those 
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processes. The project team then goes the analyze (A) stage to analyze what are the 

most important causes of defects and how to improve (I) these defects by removing the 

causes of defects. The final stage is to control (C)—how can we maintain the 

improvements (Henderson & Evans, 2000). The DMAIC approach mainly focuses on 

combating the variations, the biggest enemy of quality.  In addition, the DFSS 

framework offers a systematic means to address quality problems from the design 

phase of any product. All these provide clear, unambiguous, continuous frameworks 

for the practitioners to follow and implement. 

 

Systematic HR development: 

Six Sigma emphasizes on human resource development and invests heavily in staff 

training. Practitioners of Six Sigma hold different titles such as Green Belts, Black 

Belts, Master Black Belts and Champions, which are related to the level of personal 

competency and roles in carrying out the projects. Practitioners usually start from the 

more basic and applied Green Belt training from which they will gain the necessary 

experience and desire to learn more. Then they will proceed on to the next higher level 

of training to be a Black Belt, which would deal more in depth with the different tools 

used. Subsequently, their technical competencies would be elevated to that of a Master 

Black Belt when they would have gained the necessary technical and management 

experience for them to progress and effectively act as internal consultants to any Six 

Sigma programs.  

In addition, associated with the project-based approach is the reward system of the Six 

Sigma program. With a project-based approach, the intangible aspects of any 

“continuous improvement” objective of other quality programs can be more effectively 

managed by instituting tangible end results to be achieved thereby motivating efforts 

 187



 
Appendix C                                                            SWOT Analysis of Six Sigma Strategy 

for quality improvements. Every project will commence with a specified target in mind 

and finish with a thorough check of the achievement of these targets. Every favorable 

result will be tied to the bottom-line with strong customer focus. In order to motivate 

the practitioners, rewards that are tied to bottom-line savings would be instituted. The 

incentive mechanism fit the human nature well and greatly summons people’s interest 

in quality performance. It ensures that everyone on the track is having well-defined 

performance indicators, hence, consequently, a fulfilling career. 

Project tied to bottom line: 

Six Sigma implementations are conducted on a project basis. Once the key business 

processes are identified, every project will have a deadline and they are all tied to the 

dollar savings in the bottom-line. There is usually an accountant from the finance 

department to audit the newly improved way of operating the business process and 

work out the potential saving as compared to that of the old ways. Therefore, it helps 

the company to assess the effectiveness of each project through the dollar savings these 

projects can achieve. Once these savings are verified, it is easier to convince the 

management to embark on further Six Sigma projects. 

 

Weakness: 
Huge Investments: 

 Large amount of investment is required to train employees to be certified Green Belts, 

Black Belts, Master black Belts, etc. Training a Black Belt by Singapore Quality 

Institute require S$24,995.00. In a table given in page 192 of Harry and Schroeder 

(2000), an average of one Black Belt is required per 100 employees. A 10,000-

employee organization needs 100 Black Belts and spends about S$2.5 million for 

training, exclusive of green belt training fees. 

 188



 
Appendix C                                                            SWOT Analysis of Six Sigma Strategy 

Furthermore, for any Six Sigma project to be effective, the returns are usually not 

realized in the short term. In contradiction, there may be a possibility of negative 

returns. Hence, companies who wish to embark of Six Sigma projects would have to 

adopt such an expectation to maintain commitment in the project. This is usually not 

easy to justify without concrete results. 

 Highly Dependent on Corporate Culture:

The success of any Six Sigma implementation is very much dependent on the 

flexibility of the organization in being able to adapt its already established functions 

and processes to the structured and disciplined Six Sigma approach. The Six Sigma 

program is not just a technically sound program with a strong emphasis on statistical 

tools and techniques, but it also requires the establishment of a strong management 

framework.  

In comparison with the common TQM models, Six Sigma places more emphasis on 

successful management elements. As such, to have a successful implementation, a shift 

in the corporate culture within the organization is usually a necessity. This entails a 

shift in the internalized values and beliefs of the organization, which ultimately leads 

to some change in the behaviors, and practices of the organization. This implies that if 

the company contains an established and strong traditional approach in its practices, 

the change in management perspective would be more difficult.  

Furthermore, the necessary statistical tools would need to be relearned by the engineers 

and managers who may not as yet be fluent in their usage. As such, there may be added 

difficulties in trying to establish these new skills. These techniques, if not properly 

taught and applied, will easily undermine the confidence in Six Sigma. 

 

No Uniformly Accepted Standards: 
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There is yet to be any governing body for the certification of Six Sigma though there 

are many diverse organizations issuing Six Sigma certificate. No unified standards and 

procedures are set up and accepted so far. Every organization can claim itself to be a 

Six Sigma Company with their interpretation of Six Sigma but would not be able 

achieve the level of quality expected of a Six Sigma company. This does not augur 

well for the reputation of Six Sigma to the public as companies may utilize such label 

to improve both customers and investors relations in the market. 

For companies who consider building up a core Six Sigma expertise, the lack of 

standardized body of knowledge and a governing body to administer them may result 

in a varying level of competency amongst so-called “certified” Six Sigma practitioners. 

Every training organization uses its own set of course content for training. Many of 

these training courses may be unbalanced in their focus or lack some critical elements 

that would be necessary to ensure success.  

The lack of a governing body for Six Sigma certification coupled with the tendency of 

the industry to place higher value on these certifications rather than proper academic 

qualifications from accredited institutions may result in the loss of confidence in such 

quality programs in the future. 

 

Inability to measure and improve intangibles 

In a globally competitive environment, the ability for a company to innovate and 

delight customers has become a necessity to stay ahead of cutthroat competition. Due 

to the fact that Six Sigma strategy focuses on combating variations measured by 

“sigma” levels, it is still as yet unable to measure and improve intangibles such as 

creativity and innovation.  
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In addition, in consideration of the competitive global marketplace, issues such as 

customization and synergism in product design would have to be dealt with seriously. 

These may not be easily captured and improved through a Six Sigma framework. The 

DMAIC framework, which is effective for combating variations in a mass 

manufacturing environment, has not yet been synergistically integrated with efforts to 

streamline manufacturing and distribution operations for highly customizable product 

over diversified geographical markets. 

 
Opportunities 
Highly competitive market and demanding customer. 

The current globalization and free trade agreements make the competition for market 

share more hostile and open. Manufacturers are not competing locally or regionally, 

but globally. To gain or maintain one’s market share requires much more efforts and 

endeavor than ever before. Higher quality and reliability is no longer a conscious 

choice of the organization but a requirement of the market. For any organization to be 

successful, quality and reliability in the products that they offer have become one of 

the essential competing margin and those without them are bound to lose. As Kano 

theory indicates, customer requirements are growing gradually as time advances. An 

air conditioner equipped in a car would greatly delight the customer twenty years ago, 

but now it has become an essential feature. No customer would be excited by an air 

conditioner in a car nowadays, but will be quite disappointed without it. All these 

indicate the same phenomenon. That is the demand for high quality is growing with 

time. This opens a great opportunity for Six Sigma because the essence of Six Sigma is 

to achieve higher quality continuously and systematically. The more competitive the 

market is, and the more demanding customers are, the more opportunity would be for 

Six Sigma to flourish. 
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Fast development of IT and data mining technology: 

The technological aspect of Six Sigma deals heavily with data. Its measurement, 

collection, analysis, summarization and interpretation form the foundation of Six 

Sigma technology. Without data, Six Sigma will become meaningless. Accordingly, 

data manipulation and analysis techniques play an important role in Six Sigma. 

Advanced IT technology and data mining techniques greatly enhance the applicability 

of Six Sigma because modern technologies make data analysis no longer a complicated, 

tedious job, but an easy task. Simply pressing a few buttons or several clicks on 

advanced software package would produce all the results one wants. This certainly is a 

good opportunity for the application of Six Sigma because it gets rid of technological 

hurdle of Six Sigma. 

 

Growing research interest in quality and reliability engineering: 

The growing interest in quality and reliability engineering research opens another 

opportunity for Six Sigma because these researches would contribute to the further 

development or improvement of Six Sigma methodology. For example, research in 

robust design combined with Six Sigma produce an important improvement to Six 

Sigma—DFSS (Design for Six Sigma). While the traditional DMAIC approach mainly 

deals with the existing process, the new DFSS addresses issues mainly in the design 

stage and introduces the idea of designing a process with Six Sigma capability instead 

of transforming an existing process to Six Sigma capability. Interest in quality and 

reliability engineering research is growing and the potential for the improvement of 

Six Sigma is far from its limits. 
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Previous implementation of quality programs has laid foundation for the easy adoption 

of Six Sigma: 

Modern quality awareness started about 80 years ago. During this period, various 

quality programs have been developed and adopted in practice. These programs did a 

very good preparation for the adoption of Six Sigma. For example, TQM, the once 

fashioned quality program, shares some similarities with Six Sigma such as customer 

satisfaction and continuous improvement. That’s why some people argue that Six 

Sigma and TQM are the same. Six Sigma requires a top-down management approach 

and corporate-wide culture change. However, cultural change usually happened 

gradually, not suddenly. Companies took part in TQM were, more or less, already 

experiencing this change. This have been justified by the phenomenon that companies 

which implemented other quality programs before actually experienced less difficulties 

in adopting Six Sigma than those which are new to any quality program. The wide 

spread quality awareness during the last century served as good “warm-up exercises” 

and have gotten us ready for this new quality breakthrough. 

 

Threats 
Resistance to Change: 

The success of Six Sigma requires culture change within the organization (Hendriks & 

Kelbaugh, 1998; Jerome, 1999). Six Sigma should be embraced in the organization as 

a philosophy rather than merely a quality initiative. Six Sigma revolutionized the way 

an organization should work by introducing a new set of paradigm in doing things. The 

organization may need to give up some old traditions in order to accept certain new 

elements in this paradigm. Although Six Sigma tools are not difficult to learn, the 

managers and the rest of the workforce who have been with the organization for a long 

time often view these as additional load that are impractical. These managers rely on 
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mainly their experience in dealing with problems and are confident enough to use their 

intuition rather than resort to statistical tools deriving information from available data. 

Such attitude may be harmful to the success of Six Sigma. The middle managers and 

supervisors who have experienced many other quality initiatives may regard Six Sigma 

as any other previously known quality initiatives, which will soon pass away.  

When people are placed in a comfort zone for long, these people are unwilling to move 

out of the comfort and face the challenge of an uncertain environment. Furthermore, it 

may be rather difficult for experienced people to accept the fact that their usual ways 

of doing things may need to be improved, especially if the advice was to come from a 

Six Sigma practitioner who may be less experienced then himself. Hence, the 

implementation of changes to processes that may impact process owners would have to 

be undertaken with tact and sensitivity. 

 

Highly Competitive Job Market: 

Few companies practice life-long employment strategy in today’s competitive job 

market. This is even more prevalent given the rapidly changing economic, social and 

technological environment. People tend to more frequently change jobs in pursuit of 

“better prospects”.  

When Six Sigma practitioners “job hop”, they bring with then the valuable skill set that 

the company may have invested in them for them to effectively contribute to the 

company’s process development initiatives. Hence, companies may lose confidence in 

potential of success that Six Sigma initiatives can achieve. The impact of the frequent 

job-changing phenomenon is further worsened by the fact that appreciable benefits 

from serious Six Sigma work can only be visible few years after the project was 

initiated. 
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Corporate leadership plays a vital role in the successful implementation of Six Sigma. 

The implementation structure of Six Sigma demands strong support from the 

Champions, or the executive management (e.g. Henderson and Evans, 2000). Any 

changes in the executive management will have adverse effects to the implementation. 

With the hostile market conditions, corporate leadership has become relatively more 

volatile. CEO’s are changed frequently or changes may be brought about through the 

mergers and acquisitions between organizations. When higher-level management is 

changed frequently, it may be difficult to maintain the same level of top-down 

commitment to Six Sigma initiatives in the company.  

It is well known that the success of Six Sigma is dependent on how soon it can be 

successfully implemented in a company (Clifford 2000). From experience, companies 

would realize the full benefit of Six Sigma only after the fourth year of implementation. 

The first three years are considered learning or transition phases during which financial 

results are not significant. If during this period, changes in corporate leadership occur, 

the implementation of Six Sigma would be seriously compromised. The risk of phasing 

out this methodology in favor of other management strategy has thus been enhanced. 

 

Cyclical Economic Conditions: 

Economic trends are usually cyclical. In times of good economic situations, companies 

may be more willing to spend additional income on process improvement efforts. This 

tendency may be reversed during situations of economic downturn as companies 

struggle to keep afloat. Such practices may be unhealthy for Six Sigma implementation 

in consideration of the much longer training and transition phase that is required before 

significant financial gains can be seen. As discussed in Section 4.2 and from Figure 1, 

negative returns may be encountered in the initial phases of projects implementation. 
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This situation may be compounded by the widely held misconception that quality 

improvement efforts result in additional cost but not profit or customer satisfaction. 

This could be due to the myopic viewpoints held by companies, which may not be true, 

as good quality does not imply higher costs [www.industryweek.com, September 

2001]. Six Sigma has explicitly dealt with this misconception by tying in quality 

improvement efforts with the Voice of the Customers (VOC) and the company’s 

bottom-line for each project undertaken. 

 
Conclusions 
Six Sigma strategies has been somewhat at the forefront of the quality movement in 

recent years. However, due to its popularity, it has encountered its fair share of 

criticisms or negative comments. Six Sigma is a natural product of the long term 

quality march that has involved many other quality management philosophies. 

Amongst these, it has presented itself as an excellent systematic integration of the 

qualitative and quantitative approaches to quality improvement. Its emphasis on 

customer focus and continuous improvement is the continuation of the former TQM 

methodology and its quantitative techniques are well rooted in mathematics and 

statistics. The original motivation was to combat variations, the natural enemy of 

quality. This was eventually developed into a systematic and methodical framework, 

which is both philosophically and technically sound. 

Six Sigma is a unique strategy, which would be able to address many issues that past 

quality programs have neglected. It will continue to play an important role in the 

quality arena because the current and future environment is advantageous to its 

proliferation and full exploitation. However, due to its integrated nature with 

techniques deeply rooted in sound statistical thinking, it is suggested that companies go 

for a full Six Sigma after a deeper understanding and proper deployment strategy is 
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reached. The implementation and deployment of Six Sigma should be conducted in a 

systematic toll-gated manner that would ensure useful organizational learning 

throughout with regards to the sound statistical thinking and effective management 

techniques within the organization. 

The understanding of Six Sigma strategy varies from organizations to organizations. 

Some regard it as a management philosophy and some take it as a well-designed 

statistical package. However, the correct interpretation in order to exploit its full 

potential is to view it as both. The key elements of its success involve the commitment 

from the top management and the corporate culture. If the top management is highly 

committed and the corporate culture is dynamic and receptive to change, Six Sigma 

can be used as a strategic guideline that will guarantee both financial returns and 

business excellence. However, if the top management is not keen in this regard and the 

corporate culture is repulsive to change, it would be better to stay away from it and 

wait until the top management or the corporate culture is mature enough to harvest its 

fruits. 

A “middle” way is also possible as some companies are currently practicing. This 

school of thought view Six Sigma as a package of tools that will enhance the 

implementation of many quality management philosophies that has successfully 

worked its way into some organizations (Kaizen, TQM, Lean, etc). While keeping 

their operations and corporate culture unchanged, these organizations pick up Six 

Sigma projects whenever they deem suitable and make use of the advantages of these 

tool. The usefulness of such a strategy is still debatable in the ability to achieve 

synergy with other methodologies rather than just co-exist with them. Used in this way, 

they reduce the risk of implementing Six Sigma but are not exploring the full potential 

of this program.  
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A more healthy view of Six Sigma is that it is a great tool to most problems, but not an 

answer to all. It will achieve its full potential only when the corporate culture is ready 

for it. It should also be noted that Six Sigma strategy is not static but constantly 

evolving. Research in quality and reliability engineering and advanced IT technology 

will provide many opportunities for its improvement. 
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