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Summary

The rapid growth of XML data on the Internet has necessitated the development of XML-

based Selective Dissemination of Information (SDI) systems to quickly deliver useful

information to the users based on their profiles or user subscriptions.

In this work, we primarily investigate how clustering and aggregation of user queries

can help to increase the scalability of SDI systems. The subscriptions in XML-based SDI

systems are typically specified in the form of XML queries. A key insight is that, the

bottleneck of such systems lies in the large number of document-subscription matchings

required. These matchings are very costly. To reduce the number of matchings required,

we propose to cluster and aggregate user queries. A new distance function, called aggre-

gation similarity, is designed to measure the similarity of query patterns. Based on this

similarity measure, we cluster the query patterns into groups. By aggregating the query

patterns within each group, we are able to reduce the number of document-subscription

matchings required. This is achieved by mapping each original user query to a represen-

tative query obtained from aggregation, and the document-subscription matchings are

only carried out against those representative queries, which are significantly smaller in

number compared to original user queries.

viii



The XML filtering technique used in our system is named YFilter*, which is de-

veloped based on YFilter. YFilter* enhances YFilter’s ability to handle tree-structured

XML queries. Experiment result shows that YFilter* is much more efficient than YFilter

in handling tree-structured queries.

We have conducted extensive experiments to show that the proposed techniques are

able to achieve high precision, high recall, while reducing the runtime requirement in

XML-based SDI systems. Other experiments study the influence of various factors on

the performance of the system.
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Chapter 1

Introduction

1.1 Motivation

Selective Dissemination of Information(SDI) systems have proliferated as a result of the

massive amount of information on the Internet. SDI application systems continuously

collect information from various data sources, filter the data against user preferences, or

profiles, and then deliver personalized information to the relevant users. Traditional SDI

systems typically express user preferences/profiles in Information Retrieval(IR) style.

A user profile is represented by a single keyword or a bag of keywords whereby sim-

ple string matching can be performed to retrieve the relevant documents. Various IR

techniques can be used to speed up the filtering of documents.

XML, the eXtensible Markup Language [24], has become the de facto standard for

data exchange on the Internet. The growth of XML resources has fuelled research on

retrieving XML information more quickly and effectively. An XML-based Selective
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Dissemination of Information (SDI) system [1] aims to distribute XML data to users

based on their preferences/profiles. In contrast to traditional SDI systems, user profiles

in XML-based SDI systems are usually expressed in XML query languages such as

XPath [22], XML-QL [21], XQuery [26] etc. The IR-based techniques used in traditional

SDI systems barely exploit the path information in XML. While the path information is

able to capture the context of the user interests, and therefore leads to more accurate

description of user preference, the matching process becomes expensive. Moreover, the

number of the users can easily grow into millions when the XML-based SDI system is

deployed on the Internet. This motivates the development of scalable XML-based SDI

systems.

1.2 Major Contributions

This thesis examines how two techniques, query clustering and query aggregation, play

important roles in the construction of a scalable XML-based SDI system. In addition,

improvements are made to the state-of-the-art XML filtering technique, YFilter [10], to

better handle tree-structured XML queries.

The major contributions in this thesis are:

1. Define a new distance function between user queries, called aggregation similarity

for clustering queries.

2. Design two approaches to integrate clustering and aggregation of queries. The

first method C → A first performs Clustering of query patterns followed by

2



Aggregation. The second method C + A carries out Clustering and Aggregation

at the same time.

3. Develop an efficient filtering method called YFilter*, which is based on YFilter

[10], for the matching of queries which have predicates with path expressions,

also known as nested paths, e.g. /a/b[c/d]/e.

4. Detailed performance study on the proposed methods to scale an XML-based SDI

system.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 gives the background of the re-

search and related works, including the XML-based SDI system, various XML filtering

techniques, tree edit distance and tree aggregation technique. Chapter 3 describes the ar-

chitecture of the proposed XML-based SDI system. We present two methods to combine

query clustering and aggregation in SDI systems and devise a technique called YFilter*

for tree pattern filtering. Experiment results are given in Chapter 4, and we conclude in

Chapter 5.

3



Chapter 2

Background and Related Work

2.1 XML-based SDI Systems

Altinel et al describe the architecture for a generic XML-based SDI system in [1]. As

shown in Figure 2.1, an XML-based SDI system has two inputs: user profiles and XML

documents. User profiles describe the information preferences of individual users. They

can be established explicitly by the users. In some systems, however, they can be learned

automatically by the system through the application of machine learning techniques to

user access traces. XML documents contain the information from various data sources.

The main component of the system is an XML filtering engine which matches the incom-

ing XML documents against the user profiles and decides which users/group of users the

document should be directed to.

A key feature of SDI systems is that the roles of queries and data are reversed [28].

In a database system, large numbers of data items are indexed and stored, and queries

4
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XML Filter
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Filtered Data
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XML Docs

Figure 2.1: Architecture of an XML-based SDI System

are individually applied. In contrast, in an SDI system, large numbers of queries are

stored, and the documents are individually matched to the queries. Therefore, advanced

techniques which efficiently index the queries, such as XFilter [1], XTrie [4], and YFilter

[10], have been developed to speed up the matching against documents. We will review

these techniques in the following subsections.

2.1.1 XFilter

Altinel et al proposed an XML filtering technique, XFilter, based on Finite State Ma-

chine(FSM) in [1]. In XFilter, each XPath query without nested paths can be converted

to an FSM containing a set of states. The embedded nest path queries are treated as

independent queries. A post-processing step is needed to “glue” the nested path query

and the one it is embedded in. The main structure in the filtering engine is an inverted

list Query Index, which indexes these FSMs on the label of states in order to achieve

5
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Figure 2.2: XFilter
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simultaneous processing of XML data for multiple queries.

In Figure 2.2 (a), each query is decomposed to a set of path nodes, each of which

represents a state in the FSM of this query. Note that no path nodes are generated for

“*” node and relative path “//”. In fact, each path node has some position information

associated with it, such as the location of the path node in the order of path nodes for the

query, the distance in document levels between this path node and its previous path node,

etc. “*” and “//” is recorded in terms of that position information. The Query Index in

Figure 2.2 (b) is actually a hash table indexed on the label of node. Associated with each

unique node label are two lists, i.e. Candidate List and Waiting List. Each query can

only have one current state in its FSM. It corresponds to a “current path node”, which

is stored in the Candidate List. Other path nodes of the query are stored in the Waiting

List. A state transition in the FSM is represented by promoting a path node from the

Wait List to the Candidate List. When executing XFilter, XML documents are parsed in

an event-driven style using SAX parsing interface [14]. The encounter of a new element

triggers a transition in FSMs. When a FSM reaches its accepting state, that is, the last

path node of a query is promoted to the Candidate List, the corresponding query is said

to be matched.

An important problem introduced by XML is the existence of wildcard “*” and rel-

ative path “//” in XPath queries. XFilter solves the problem by introducing FSM com-

putation model and maintaining extra level information of documents. This method is

nature in its idea and successful in its application. However, the drawback in XFilter

is its space requirements. The space cost of XFilter is dominated by the number of tag

7



nodes (i.e. non-“*” nodes, “//” is not a node label but a relationship between two nodes

here) in each XPath query. Another problem with XFilter is that it treats tree pattern

XPath expression in a “flat” style. That is, XFilter first decomposes tree pattern to a

set of root to leaf paths, and treats them as independent from each other. After filtering

work for single paths is done, XFilter employs some post-processing to combine the

paths shredded from the same XPath tree and judges the matching of the entire XPath

tree pattern. The procedure makes XFilter keep tracks of all instances of partial matched

tree patterns, which results in more processing overhead.

2.1.2 XTrie

XTrie [4] treats XPath queries as tree patterns as a whole. It decomposes tree patterns

into collections of substrings and indexes them using a trie. XTrie is a sophisticated

indexing technique. We introduce it here by first explaining how XPath queries are

decomposed into substrings, then showing the two main components in the indexing

structure of XTrie, and finally describing its matching algorithm.

Decompose tree pattern to substrings. XTrie interprets XPath queries/expressions as

sets of substrings.

Definition 1 (Substring) Given an XPath expression p, a sequence of element names

s = t1 · t2 . . . · tn is a substring of p if s is equal to the concatenation of the element

names of the nodes along a path < v1, v2, . . . vn > in the tree representation of p, such

8



p = /a/b[c/d//e][g//e/f]//*/*/e/f

/b

/a

/g

//e

/f

/c

/d

//e

/*/*/e

/f

(a) simple decomposition

ab

abg

ef

abcd

e

ef

(b)subtring tree

Figure 2.3: Substring Decomposition

that each vi is the parent node of vi+1(1 ≤ i < n) and the label of each vi (except for

v1) is prefixed only by “/”.

Definition 1 states that each pair of consecutive element names in a substring of p

must be separated by parent-child (“/”) operator. The nodes within the dashed box in

Figure 2.3 are all substrings.

XTrie relies on a specific class of substring decompositions, referred as simple de-

composition, for installing XPath expressions into the indexing structure. A simple de-

composition of XPath expression p contains substrings from the following two sources:

1. minimal substring decomposition of p.

A sequence of substrings S =< s1, s2, . . . , sn > is a substring decomposition of

9



p, if each si ∈ S is a substring of p and each node tj in the tree representation of

p is contained in Path(si) for some si ∈ S, where Path(si) is denoted for the

path of si in the tree. This decomposition is minimal, if each si ∈ S is of maximal

length. In other words, no other substring contains si.

2. substrings “taking notes” of branching nodes.

A substring “taking notes” of a branching node v in the tree representation of p is

the maximal substring in p with v as its last node.

The substrings of the simple decomposition of p can be organized into a unique

rooted tree, namely substring tree, as follows. Denote S =< s1, s2, . . . , sn > to the

simple decomposition of p, where the substrings are ordered based on the sequence

in which they would be matched in an ordered matching of p and n is the number of

substrings. The root substring is s1 and the parent substring of sj , where j > 1, is sk if

either

1. Path(sk) is a prefix of Path(sj), or

2. the last node of Path(sk) is the parent node of the first node of Path(sj).

Example 1 In Figure 2.3 (a), the simple decomposition of p is illustrated in dashed

boxes, where all the substrings are from minimal decomposition except substring ab,

which takes notes of branching node “/b”. Figure 2.3 (b) is the corresponding substring

tree of the simple decomposition in Figure 2.3 (a). �
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p1 = //a/a/b/c/*/a/b
p2 = /a/b[c/e]/*/b/c/d
p3 = /a/b[c/*/d]//b/c
p4 = //c/b//c/d/*/*/d

1
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(b)Trie(a)Substring Table
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0
3
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0
0

0
0
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0
0
0
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1
1

1
1
2

1
1
1
2

1
1
1

1
2

3
4
5

6
7
8
9

10
11
12

ST:

T:

Figure 2.4: XTrie Index Structure

There are two main components of an XTrie index structure: a Substring-Table and

a Trie.

Index Structure: The Substring-Table. The substring-table(ST ) contains one row for

each substring of each indexed XPath expression. The rows in ST are physically clus-

tered in order to group together the substrings belonging to the same XPath expression p,

which are stored consecutively based on their order in the simple decomposition of p. To

facilitate locating XPath expressions containing the same substring, the rows containing

the same substring in ST are also logically linked as a list.

Index Structure: The Trie. XTrie, as implied by its name, uses a trie to index all

distinct substrings obtained from XPath expressions. Denote N for a node in the trie,

label(N) is the string formed by concatenating the edge labels along the path from root

to node N . The nodes in the Trie(T ) and the rows in the Substring-Table(ST ) are inter-

11



connected via the α value associated with each node in T , while the nodes in T are

intra-connected to reflect suffix relationship via the β value associated with each node in

T .

Example 2 Figure 2.4 shows an example of XTrie structures for four XPath expressions.

Notice that, in ST , the parent row value reflects the parent-child relationship between

substring trees, while the next value links the same substring in different XPath expres-

sions. In T , the α value indicates the first row of the substring with the same label and

the β value indicates the number of the node in T which indexes its maximal suffix string,

if any. �

Matching Algorithm. XTrie uses the event-driven SAX interface for XML document

parsing. The XTrie index structure works in the following way. Trie T detects the

occurrence of matching substrings as the input document is parsed. For each matching

substring s detected, XTrie iterates through all the instances of s in the indexed XPath

expressions by traversing the appropriate linked list of rows in the substring-table ST

associated with s to check if the matched substring s corresponds to any non-redundant

matching. Additional dynamical runtime information is maintained to ensure that only

non-redundant matchings are checked.

XTrie relies on the decomposition of substrings to treat the XPath queries in a tree

pattern style. It is space-efficient since the space cost of XTrie is dominated by the

number of substrings in each tree patterns. The XTrie index structure together with

12



its matching algorithm makes it possible to reduce unnecessary index probes and avoid

redundant matchings.

2.1.3 YFilter

YFilter [10] combines multiple tree patterns into a single Nondeterministic Finite Au-

tomata(NFA). In YFilter, any single path expression written using “/”, “//” and nodes

labelled with element name or wildcard “*” can be transformed into a regular expres-

sion, and thus there exists an FSM which accepts the language described by such an

expression [12]. Like XFilter, YFilter decomposes each tree pattern query into a set of

single path queries, then combines their corresponding FSMs into a single NFA, where

all common prefixes of paths appear only once. YFilter employs some post-processing

to decide the matching of a tree pattern from the matching of its shredded paths.

Construction of NFA. Each single path XPath expression is viewed as the concatenation

of location steps. Each location step is modelled as one or more transitions in the NFA

as follows.

1. “/a” or “/∗”

Modelled as a state s1 linked to another state s2 via a directed edge labelled a or

“*”.

2. “//a” or “//∗”

Modelled as a state s1 linked to a state s2, and s2 further linked to a third state s3,

where s2 is a special state with a self-loop labelled “*”. The directed edge between

13



Q1 = /a/b
Q2 = /a/c
Q3 = /a/b/c
Q4 = /a//b/c
Q5 = /a/*/c
Q6 = /a//c
Q7 = /a/*/*/c
Q8 = /a/b/c

(a) Queries (b) NFA

1 2

6

9

7
a

b

c

*

c

c
b

c

c

c*

{ Q1 }

{ Q3, Q8 }

{ Q2 }

{ Q4 }

{ Q6 }

{ Q5 }

{ Q7 }

*

3

4

5

8

10

11

12 13

Figure 2.5: NFA Construction

s1 and s2 is labelled “ε”, and the directed edge between s2 and s3 is labelled a or

“*”.

The special symbol “*” matches any element, and the symbol “ε” is used to mark a

transition that requires no input.

In the NFA construction, XPath expressions with the same prefix share the same

states and the corresponding transitions. The construction of NFA can be better illus-

trated by the following example.

Example 3 (NFA Construction) Figure 2.5 shows an NFA constructed for eight queries.

A circle denotes a state, which is numbered for easy reference. Two concentric circles

denote an accepting state; such states are marked with the IDs of the queries they rep-

resent. A directed edge represents a transition. The symbol on an edge represents the

input that triggers the transition. Note that, as stated above, “*” matches any input and

“ε” requires no input. In Figure 2.5, shaded circles represent states shared by queries.

Common prefixes shared by all queries appear only once in the NFA. �
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NFA Execution. Similiar to XFilter and XTrie, YFilter executes the NFA in an event-

driven style. YFilter uses a runtime stack in the execution, and there are multiple active

states in the NFA. For each element encountered, four types of transitions are checked

for each active state:

1. All target states triggered by the label of incoming element are added to a set for

“target states”, say St.

2. Check whether current state can be triggered by “*”. If so, the corresponding

target state is also added to St.

3. If the current state itself is a target state of an “ε”-transition, in other words, the

current state has a self-loop, then the state itself is added to St.

4. Finally, if the current state can be triggered by an “ε”-transition, its corresponding

target state, which is a state with self-loop, is processed recursively according to

1-3 above. The resulting target states are also added to St.

Example 4 Figure 2.6 (b) shows the evolution of the contents of the runtime stack, when

executing the NFA in Figure 2.5 (b) on the example XML document in Figure 2.6 (a).

Each state in the NFA is represented by its ID. An underlined ID in the stack entry

indicates that the state has a self-loop. �

YFilter exploits the commonality among path queries by merging the common prefix

of paths so that they are processed at most once. YFilter is able to efficiently handle
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Figure 2.6: An Example of NFA Execution

XPath queries with no predicates, i.e. single path queries, and queries with simple value-

based predicates. Similar to XFilter, it requires an expensive post-processing step for

queries with nested paths.

2.2 Query Pattern Trees

The user profile model used in XML-based SDI system is usually XPath [22], as in

[1, 4, 10]. XPath is a language for addressing parts of an XML document that was

designed for use by both the XSLT Transformation(XSLT) [23] and XPointer [25] lan-

guage. XPath provides a flexible way to specify path expressions. When an XML doc-

ument is modelled as a tree, as in DOM parsing interface [20], XPath expressions are

patterns that can be matched by the XML tree.

Yang defines in [29] a query pattern tree for XML queries.
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Definition 2 (Query Pattern Tree (QPT)) A query pattern tree (QPT) is a rooted tree

QPT =< V,E >, where V is the vertex set, and E is the edge set. Each vertex has a

label whose value is in {“*”, “//”} ∪ tagSet, where tagSet is the set of all the element

and attribute names in the underlying Document Type Definition (DTD) .

It is easy to translate an XPath expression to a QPT and vice versa.

2.2.1 Tree Edit Distance

As we can see in the following chapter, we want to know to which extent two QPTs

are similar to each other. Traditionally, the comparison of tree is carried out based on

a pattern matching technique called tree edit distance. There is considerable previous

work on finding edit distance between trees [5, 6, 8, 9, 17, 18, 19, 30]. Most algorithms

are direct descendants of the dynamic programming techniques for finding edit distance

between strings. The basic idea in all of these tree edit distance algorithms is to find the

cheapest sequence of edit operations that can transform one tree into another.

A key differentiator between the various tree edit distance algorithms is the set of edit

operations allowed. An early work in this area is by Selkow [17], which allows inserting

the deleting of single nodes at the leaves, and relabelling of nodes anywhere in the tree.

The work by Chawathe in [7] utilizes these same edit operations and restrictions, but is

targeted for situations when external memory is needed to calculate the edit distance.

There are several other approaches that allow insertion and deletion of single nodes

anywhere within a tree [18, 19, 27, 30].
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Expanding upon these more basic operators, Chawathe et al define in [8] a move

operator that can move a subtree as a single edit operation, and in subsequent work [5]

copying and its inverse, gluing, of subtrees is allowed. The approaches in [8, 5] are

heuristic approaches and the algorithm in [5] operates on unordered trees, making it

unsuitable for computing distances between XML documents.

Nierman and Jagadish develop in [15] a structural similarity metric for XML docu-

ments based on an “XML aware” tree edit distance. Nierman and Jagadish generalize

Chawathe’s approach in [7] by allowing such operations as tree insertions and deletions.

So far, there is no direct work on the comparison of XML query pattern trees. Though

tree edit distance seems to be a natural choice for comparing QPTs, a close look into

it reveals that, tree-edit-distance-based approaches, including Nierman and Jagadish’s

“XML aware” tree edit distance, is not suitable for this task. The main difficulty comes

from the relative path “//”, which is abundant in QPTs.

2.2.2 Tree Aggregation

Chan et al [3] develope a tree aggregation technique to combine multiple queries, rep-

resented in the form of tree patterns, into a generalized pattern to reduce the storage

requirements as well as to speed up the document-subscription matching process.

Definition 3 (Tree Pattern (TP)) A tree pattern is an unordered labelled tree that spec-

ifies content and structure conditions on an XML document. A tree pattern TP =<
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V,E >, where V is the vertex set, and E is the edge set. Each vertex, expect the root,

has a label with its value in {“*”, “//”} ∪ tagSet. The root vertex is labelled with a

special symbol “/.”.

Tree Pattern is actually a generalization of QPT. A QPT can be converted to a tree

pattern by adding a special root node labelled “/.”. Figure 2.7 shows four tree patterns,

p, q, r, s. Since a QPT can be easily converted to a tree pattern. These two terms are

used interchangeably when the exact reference is clear with the context.
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Similar to other work on subscription aggregation [16], the tree pattern aggregation

essentially involves aggregating an initial set of subscriptions S into a smaller set A such

that any document that matches some subscription in S also matches some subscription

in A. The subscriptions here are modelled as tree patterns. It is guaranteed in [3] that,

though there is typically a “loss in precision” associated with such aggregation, the doc-

uments matched by the aggregated set A is a superset of those matched by the original

set S. In other words, all the documents matched by S are matched by A.

The essence of Chan’s tree aggregation method is an algorithm to calculate the Least

Upper Bound(LUB) of two tree patterns. The concept of least upper bound is similar to

that in the lattice theory. In order to understand the LUB concept used in tree aggrega-

tion, we briefly review the related concepts.

Definition 4 (Contained) A tree pattern q is said to be contained in another tree pattern

p, denoted by q v p, if and only if for any XML tree T , if T satisfies q, T also satisfies p.

Definition 5 (Equivalent) Two tree patterns p and q are said to be equivalent, denoted

by p ≡ q, if and only if p v q and q v p.

Definition 6 (Upper Bound) An upper bound of two tree patterns p and q is a tree

pattern u such that p v u and q v u. An upper bound of a set S is a tree pattern U ,

denoted by S v U , such that p v U , ∀p ∈ S.
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Definition 7 (Least Upper Bound (LUB)) The least upper bound(LUB) of p and q ,

denoted by p t q, is an upper bound u of p and q such that for any upper bound u
′

of p

and q, u v u
′

. The LUB of a set S, denoted by tS, is an upper bound U
′

of S such that

for any upper bound U
′

of S, U v U
′

.

In the calculation of LUB, or the most precise aggregated tree pattern, for two tree

patterns p and q, two types of generalization are considered, namely, position-preserving

generalization and off-position generalization. We illustrate these two kinds of general-

ization by the following two examples.

Example 5 (Position-Preserving Aggregation.) Consider the aggregation of the tree

patterns p and q in Figure 2.7. The two tree patterns contain a common sub-pattern,

namely, a node labelled a with a child node labelled b. This pattern occurs in the same

position with respect to the root nodes of p and q. The position-preserving generalization

captures this class of common sub-patterns in the aggregated tree pattern. Figure 2.8(a)

shows the aggregated tree pattern for p and q. �

Example 6 (Off-Position Aggregation.) Next, we consider the aggregation of the tree

patterns p and r in Figure 2.7. Both tree patterns have in common the sub-pattern: a

node labelled a with child nodes labelled b and c. However, this sub-pattern is located

in different positions with respect to the root nodes in the two tree patterns. The off-

position generalization captures this type of common sub-patterns in the aggregated tree

pattern. Figure 2.8(b) shows the resulting aggregated tree pattern. �
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Denote Subtree(u, p) to the subtree of tree pattern p rooted at node u, referred to as a

sub-pattern of p. Let label(u) and Child(u, p) be the label of node u and the set of child

nodes of u respectively. Suppose uroot and vroot are root nodes of tree patterns p and q

respectively. Then pt q is computed from the LUB of Subtree(u, p) and Subtree(v, q),

where u ∈ Child(uroot, p) and v ∈ Child(vroot, q). More specifically, let sub-pattern

p
′

= Subtree(u, p) and sub-pattern q
′

= Subtree(v, q). If q
′ v p

′

(p
′ v q

′), then the

LUB of p
′ and q

′ is p
′(q′). Otherwise, the LUB is constructed by a set of sub-patterns

{x, x
′

, x
′′} where

• x represents the position-preserving generalization of p
′ and q

′ , which captures

common sub-patterns located in the same position of p
′ and q

′ . The root node of

x is labelled by MaxLabel(u, v) which is defined as

MaxLabel(u, v) =































label(u) if label(u) = label(v),

// if label(u) = “//” or label(v) =“//”,

∗ otherwise

(2.1)

The subtrees of x are LUBs of each child subtree of p
′ and each child subtree of

q
′ .

• x
′ and x

′′ represent the off-position generalization of p
′ and q

′ respectively, which

captures the common sub-patterns located in different positions of p
′ and q

′ . The

root node of x
′

(x
′′

) is labelled “//”, and the subtrees of x
′

(x
′′

) are LUBs of q
′

(p
′

)

itself and each child subtree of p
′

(q
′

).
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While the LUB algorithm in [3] only gives out the method to compute LUB for two

tree patterns, an important property of LUB proven in [3] makes it the foundation for

computing LUB for a set of tree patterns.

Property 1 (Sequence Independent) Given any set S of tree patterns, tS always exists

and is unique up to equivalence.

Property 1 states that given a set of tree patterns, the aggregation result is the same

regardless of the sequence of aggregation. That is, the final aggregated pattern obtained

is influenced only by the set of tree patterns involved. Thus the LUB algorithm for two

tree patterns can be used to calculate the LUB of a set of tree patterns.

Example 7 Figure 2.8(c) shows the LUB of p, q and r regardless of the sequence of

aggregation. �
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Chapter 3

Scalable XML-based SDI System

3.1 Framework

It is crucial that a scalable XML-based SDI system should provide support for the ef-

ficient and timely delivery of relevant XML documents to a large, dynamic group of

users. Given the large number of user subscriptions and the growing number of XML

documents, the goal of a scalable XML-based SDI system is to reduce the user subscrip-

tions judiciously as well as speed up the filtering of incoming XML documents.

Previous work mainly focuses on speeding up the filtering of XML documents [1,

4, 10]. In this work, we investigate a different approach to improve the efficiency of

XML-based SDI system. The basic idea is to reduce the number of matchings required

by grouping similar queries together and aggregating the queries in each group into a

representative query. Matching is performed only on these representative queries which

are substantially smaller than the number of original queries.
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It is intuitive that when Nq original queries are clustered and aggregated to Nr repre-

sentative queries (Nr << Nq), the processing time t of the latter is much less than that of

the former. Therefore, the average response time of each original query, i.e. tavg = t
Nq

,

is significantly reduced.

When mapping each original query to a representative query, we ensure that the

XML documents fetched by the former are covered by those fetched by the latter. On

the other hand, the number of documents fetched by the representative query but not by

the original query, i.e. the loss of precision, should not be too large. Otherwise, the user

will not be satisfied. As a result, we need to cluster similar queries and aggregate only

those similar queries to generate the representative query.

As shown in Figure 3.1, after the original queries, Q1, Q2, . . . , Qn, are issued by

users, they are clustered and aggregated into representative queries, Qrep1, Qrep2, . . . ,

Qrepm. Admittedly, these representative queries are more general than the original

queries. Since m << n, the number of queries in the systems are significantly reduced.

Matching and retrieval are performed only against these representative queries.

In the filtering stage of the system, we develop YFilter*, which is a XML filtering

technique based on YFilter. YFilter* inherits the merits of YFilter, including exploiting

the commonality between queries and the simultaneous processing of queries. Mean-

while, it enhances YFilter’s ability to handle queries with nested paths.

The tradeoff in the above scalable XML-based SDI system with query clustering

and aggregation is the loss of precision due to the matching to generalized representative
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queries and the savings obtained through reducing the number of matchings needed. The

experiment results presented in the next chapter show that the loss in precision is around

20% to 30% with the average response time improved by an order of 1 magnitude.

3.2 Query Clustering

The bottleneck of SDI systems lies in the large number of document-subscription match-

ings required. These matchings are also very costly. To reduce the number of such

matchings, we propose to cluster and aggregate user queries. Many clustering tech-

niques exist and are applicable here. In this work, we employ the hierarchical clustering

method.

The clustering is aimed at generating clusters for aggregation. Similar to other clus-

tering tasks, it involves a distance function to determine how similar two tree patterns

are. As we have already stated in Section 2.2.1, the traditional comparison of tree pat-

terns is carried out based on tree edit distance. More recently, Lee et al develop in [13] a

novel and non-tree-edit-distance-based algorithm to measure the structural and semanti-

cal similarity between DTDs. [13] focuses on the structural similarity and the cardinality

constraints(“?”, “+” and “*”) in DTDs. Note that the cardinality constraint “*” in DTDs

has different meaning from the wildcard “*” in QPTs.

However, none of the above techniques are suitable for our application because of

the existence of relative path “//” in XML query pattern trees. A “//” node in a QPT can

be matched to zero or more nodes in another QPT. The similarity between QPTs with
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one or more “//” nodes should be carefully defined and computed. Although the tree-

edit-distance-based algorithms work well for nodes with normal tags or even wildcard,

they do not take the special property of “//” into account. Lee’s method for clustering

DTD, where there is no “//” node, does not consider the property of “//” either.

Therefore, we design a new distance function which handles relative paths, and iden-

tifies tree patterns that will result in minimal information loss after aggregation. We call

it the aggregation similarity function.

3.2.1 Distance Function

The main idea behind the aggregation similarity function is to determine the proportion

of the nodes of a tree pattern that can be matched by the nodes of another tree pattern.

That is, the aggregation similarity function calculates the maximal number of match-

ing nodes between two tree patterns first, and then normalize this maximal matching

number by the square root of the product of their sizes. Size(p) and Size(q) denote

the number of nodes contained in the tree pattern p and q respectively. Then the nor-

malization factor used for calculating the aggregation similarity of p and q is given by

√

Size(p) × Size(q). Note that the artificial root node “/.” is excluded from the count

of size.

Figure 3.2 gives the details of algorithm AggrSim, where Nodes(p) and Nodes(q)

denote the set of nodes of tree pattern p and q respectively. AggrSim calls a sub-

routine MaxMatch to compute the maximal number of matching nodes between two
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Algorithm AggrSim(p, q)

Input: Tree patterns p and q

Output: Aggregation similarity of p and q

for each ui ∈ Nodes(p) and vj ∈ Nodes(q) do M [ui, vj ] = null;

M [uroot, vroot] = MaxMatch(uroot, vroot);

sim = M [uroot,vroot]√
Size(p)×Size(q)

;

return sim;

Algorithm MaxMatch(u, v)

Input: u and v are nodes of p, q respectively

Output: maximal number of matching nodes in Subtree(u, p) and Subtree(v, q)

if (M [u, v] 6= null) then return M [u, v];

else BMP = BestMatchedPairs(u, v);

if((label(u) = “//” and label(v) = “//”) or (label(u) 6= “//” and label(v) 6= “//”))

then M [u, v] =
∑

(ui,vj)∈BMP M [ui, vj ] + IsMatch(u, v);

else

if (label(u) 6= “//” and label(v) = “//”) then

Ncand1 = max {MaxMatch(u, vi)|∀vi ∈ Child(v, q)};

if (
∑

(ui,vj)∈BMP M [ui, vj ] = 0) then Ncand2 = 0;

else Ncand2 =
∑

(ui,vj)∈BMP M [ui, vj ] + 1;

Ncand3 = max {MaxMatch(uj , v)|∀uj ∈ Child(u, p)};

else (label(u) = “//” and label(v) 6= “//”) then

Ncand1 = max {MaxMatch(ui, v)|∀ui ∈ Child(u, p)};

if (
∑

(ui,vj)∈BMP M [ui, vj ] = 0) then Ncand2 = 0;

else Ncand2 =
∑

(ui,vj)∈BMP M [ui, vj ] + 1;

Ncand3 = max {MaxMatch(u, vj)|∀vj ∈ Child(v, q)};

M [u, v] = max (Ncand1, Ncand2, Ncand3);

return M [u, v];

Figure 3.2: Algorithm to Compute Aggregation Similarity
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tree patterns. The subroutine MaxMatch is the core function of aggregation similarity

calculation. It recursively computes the maximal number of matching nodes between

Subtree(u, p) and Subtree(v, q) in a bottom-up manner. Note that this maximal match-

ing number between each pair of subtrees of p and q is computed only once. It is stored

in a matrix M . Successive references to this value can be retrieved from M directly.

Algorithm BestMatchedPairs(u, v)

Input: u and v are nodes of tree patterns p, q respectively

Output: BMP list of the child nodes of u and v

If either u or v is a leaf node then return null;

for each ui ∈ Child(u, p)

for each vj ∈ Child(v, q)

sim =
MaxMatch(ui,vj)√

Size(Subtree(ui,p))×Size(Subtree(vj ,q))
;

Add triple (ui, vj , sim) to list l;

Sort l in descending order by sim;

do

Get first triple (ui, vj , sim) from l, add pair (ui, vj) to list bmp;

Delete form l all triples involving ui and vj ;

until l = null;

return bmp;

Figure 3.3: BMP Algorithm

We use a list called BMP to store the Best Matched Pairs of subtrees rooted at the

child node of u and v with regard to tree pattern p and q respectively. Best matched pairs

are pairs with maximal number of matching nodes. Figure 3.3 shows BestMatchedPairs

algorithm, which calculates the BMP list for the child nodes of node u and v. Best-

MatchedPairs calls MaxMatch to determine the number of matching nodes between two
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subtrees, and then picks up the matching pattern of u and v’s child nodes, which gives

priority to pairs with larger value in normalized number of matching nodes. The length

of the BMP list is min(|Child(u, p)|, |Child(v, q)|).

The calculation of aggregation similarity lays special emphasis on effectively han-

dling the relative path “//”. In the core function MaxMatch, cases are categorized by

whether the label of the node is “//” or not. Before discussing the details of each case,

we introduce the following functions, which are used as routines in the algorithm. We

have

MaxMatch =
∑

(ui,vj)∈BMP

MaxMatch(ui, vj) + IsMatch(u, v) (3.1)

where

IsMatch(u, v) =















































1 if label(u) = label(v), label(u), label(v) ∈ {“*”, “//”} ∪ tagSet

or label(u) = “*” | “//”

or label(v) = “*” | “//”,

0 otherwise

(3.2)

Equation 3.1 can be used to find the maximal number of matching nodes between

Subtree(u, p) and Subtree(v, q) when both u and v are labelled “//”, or both u and v are

not labelled “//”. However, when only one of the two nodes is labelled “//”, we need to

consider whether “//” is matched to zero, one or more nodes, as illustrated in Case 3.

Case 1: label(u) and label(v) are in tagSet or wildcard “*”.
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Use the BMP list to calculate the number of matching nodes of the child nodes of

u and v. Then check whether the labels of u and v match each other or not.

Case 2: Both label(u) and label(v) are “//”.

The final number of matching nodes is the maximal number of matching nodes

among the child nodes of u and v, which can be obtained via the BMP list, plus

1, which indicates that the labels of u and v are considered to be matched. In fact,

Case 2 is a special case of Case 1, and therefore be combined in the algorithm,

as shown in MaxMatch. Here, we list Case 2 as a separate case in order to state

explicitly on how aggregation similarity deals with “//” in different circumstances.

(a) "//" maps to zero node

"//" maps to exactly
one node

(b) "//"  maps to one or
more nodes

v1
u

u1 uk
...

...

p q

vm

v '
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Figure 3.4: Matching Relative Paths

Case 3: One and only one of label(u) and label(v) is “//”.

Without loss of generality, let label(u) 6=“//” and label(v) =“//”, as shown in
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Figure 3.4.

(a) “//” maps to an empty chain.

As shown in Figure 3.4 (a), all the child nodes of “//”, v1, v2, . . . , vm are

treated as the child nodes of the parent node of “//”,i.e. node v
′ . Compute the

maximal number of matching nodes between Subtee(u, p) and Subtree(vi, q),

i = 1, 2, . . . ,m. Suppose vj is the one whose rooted subtree has the largest

number of matching nodes with Subtree(u, p). This matching pattern is the

most profitable when “//” maps to zero nodes, but we can not tell whether it

will outperform other possibilities. In other words, when “//” maps to one

or more nodes, more number of matching nodes might be obtained. As a

result, we use a variable Ncand1 to record the maximal number of matching

node when “//” maps to zero nodes, and that subtree Subtree(u, p) matches

to subtree Subtree(vj, q) becomes a candidate matching pattern. The algo-

rithm goes on exploiting other possibilities of the matching of “//” first, and

delays the decision until later.

(b) “//” maps to exactly one node.

Node u is matched to node v(“//”) in Figure 3.4 (b), which can also be inter-

preted as that “//” is materialized by label(u). In this case, the total number

of nodes matched is given by the number of matching nodes among the child

nodes of u and v plus 1. This number is stored in variable Ncand2. The

BMP list computed for u and v can be used to determine the matching nodes

among child nodes of u and v. The matching pattern associated with Ncand2
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is a candidate matching pattern.

Note that there is special case here. When the sum of matching nodes in the

BMP list of u and v is 0, that is, there is no matching between the child nodes

of u and v, it is meaningless to materialize “//” node with label(u). Under

this circumstance, Ncand2 is set to 0 other than 1.

(c) “//” maps to one or more nodes.

In this case, “//” is matched to multiple nodes, as shown in Figure 3.4 (c).

“//” is materialized by label(u) first, and then the matching should go on

along the path which will yield the most number of matching nodes. There-

fore, the maximal numbers of matching nodes between each subtree rooted

at the child node of u, Subtree(u1, p),Subtree(u2, p),. . .,Subtree(uk, p) and

subtree Subtree(v, q) are computed. The number corresponding to the sub-

tree Subtree(uj, p) with the largest matching number to Subtree(v, q) is

recorded in Ncand3. The pattern that, “//” is materialized by label(u) and

Subtree(v, q) is matched to Subtree(uj, p), becomes a candidate matching

pattern.

After exploiting all possible matching patterns of “//”, the final number of

maximal matching nodes is determined by

MaxMatch = max(Ncand1, Ncand2, Ncand3) (3.3)

Note that, in Case 3 above, when only one of u or v is labelled “//”, MaxMatch tries
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Figure 3.5: Example for Aggregation Similarity Calculation

to compute the maximal number of matching nodes in a “position-preserving” manner

by matching “//” to exactly one node, as in Case 3 (b). The best matching method

in this case yields Ncand2 number of matching nodes. At the same time, MaxMatch

will try to determine the number of matching nodes in an “off-position” manner when

“//” is mapped to zero or multiple nodes, as in Case 3 (a) and (c). The best matching

method under each circumstance results in Ncand1 and Ncand3 number of matching nodes

respectively. Finally, MaxMatch selects the maximum of Ncand1, Ncand2 and Ncand3 to

determine the matching approach.

The following example illustrates the various cases.

Example 8 (Aggregation Similarity Calculation) Consider tree patterns p and q in

Figure 3.5. Both root nodes of p and q have only one child. Thus, the only pair in the

BMP list of two root nodes is (a, “//”), which stands for (Subtree(a, p), Subtree(“//”, q)).

The matching of these two sub-patterns falls into Case 3.

If “//”-node in q is not matched by any node in Subtree(a, p), i.e. “//” is an
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empty chain, then the algorithm will try to match Subtree(a, p) to subtrees rooted at

“//”-node’s child, i.e. Subtree(a, q) and Subtree(d, q). Matching Subtree(a, p) with

Subtree(a, q) will result in 3 pairs of matchings: (a, a), (b, b) and (c, c). On the other

hand, if the algorithm matches Subtree(a, p) with Subtree(d, q), then no matchings will

be obtained. Therefore, the former matching pattern is adopted, which makes Ncand1 of

Subtree(a, p) matching Subtree(“//”, q) equals to 3.

Ncand2 of Subtree(a, p) matching Subtree(“//”, q) is 0, because if “//”-node is

matched to exactly one node in p, the only matching can be found is “//”-node in q

matched to “a”-node in p and no matchings between “//”-node’s children and “a”-

node’s children can be found, thus Ncand2 is set to zero.

Ncand3 of Subtree(a, p) matching Subtree(“//”, q) is determined by matching Subtree

(“//”, q) to the “a”-node’s child, which has the largest number of matching nodes. Ei-

ther matching Subtree(“//”, q) to Subtree(b, p) or to Subtree(c, p) will result in zero

matching node, so Ncand3 of Subtree(a, p) matching Subtree(“//”, q) is 0. Now the

algorithm finds out that the maximal number of matching nodes for Subtree(a, p) and

Subtree(“//”, q) is 3, when the “//”-node is matched to zero node.

Given that the size of the tree patterns p,q are 3 and 5 respectively, we have AggrSim =

3√
3×5

= 0.775. �
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3.3 Combining Query Clustering and Aggregation

Our XML-based SDI systems aims at achieving the scalability in the presence of large

amounts of user subscriptions. We propose query clustering and aggregation to reduce

the number of subscriptions that will be filtered against by the XML documents in the

filtering engine. The clustering and aggregation of queries can be viewed as a pre-

processing stage in the SDI system.

Having defined the similarity distance between two pattern trees in the previous sec-

tion, we are able to cluster the queries based on this similarity measure, namely aggre-

gation similarity. In addition, in Section 2.2.2, we have already described Chan’s tree

aggregation method [3] in details. Chan’s approach will be adopted in our system. The

remaining task is how to combine these two pre-processing techniques. In this section,

we propose two ways to achieve this objective.

1. C → A. Clustering followed by Aggregation.

2. C + A. Clustering and Aggregation are carried out at the same time.

Despite the different approaches adopted by C → A and C+A, both of them involves

hierarchical clustering, which should have a stop criterion. There are two alternatives

here. One is the number of representative queries, the other is minimal aggregation

similarity.
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Figure 3.6: C → A

3.3.1 C → A

Figure 3.6 shows the C → A approach.

C → A finds clusters of similar queries before aggregating the queries within each

cluster. In Figure 3.6, user queries Q1, Q2, . . ., Qn are directed to the clustering com-

ponent first. There, queries are clustered based on aggregation similarity. The output of

the clustering component are several clusters C1, C2, . . . , Cm, where m << n. These

clusters are further directed to the aggregation component. The aggregation component

performs tree pattern aggregation and generates one representative query for each input

cluster. Hence, the number of representative queries obtained is the same as the number

of clusters. In Figure 3.6, Qrepi is the representative query obtained from cluster Ci.

All the representative queries Qrep1, Qrep2, . . . , Qrepm become the input for the filtering

engine in the SDI system.
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3.3.2 C + A

The second approach, C + A, however, does not separate aggregation from clustering.

On the other hand, C +A integrates aggregation to the hierarchical clustering performed

on user queries. Figure 3.7 shows the process of C + A.

Clustering and aggregation in C + A are carried out together and can be viewed

as a “black-box” as drawn in Figure 3.7. To better understand how C + A works, we

now disassemble the “black-box” and go into the details. Given a set S containing user

queries Q1, Q2, . . . , Qn, C + A does the follows.

1. Compute the pairwise aggregation similarity of queries with in set S.

2. Select the most similar pair of query patterns, say (Qi, Qj).

3. Aggregate Qi and Qj . Denote Qi ∪ Qj to the result.
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4. Update set S by inserting Qi ∪ Qj and deleting Qi and Qj .

S = S − Qi − Qj + Qi ∪ Qj (3.4)

5. Check whether stop criterion is satisfied or not. If yes, stop. Otherwises, go to 1.

The choice of the most similar pair of queries can be viewed as a step in the hi-

erarchical clustering, which is followed by query aggregation. Clustering and aggre-

gation is carried out alternately in the above process. The above process continues

until the stop criterion of clustering is satisfied. Since query aggregation is carried

out at the same time as clustering, we will finally obtain the representative queries

Qrep1, Qrep2, . . . , Qrepm for the clusters that have been generated implicitly in this pro-

cess. Again, Qrep1, Qrep2, . . . , Qrepm are the input to the filtering engine.

Recall the important sequence independent property of the LUB-based tree aggrega-

tion in Section 2.2.2, which states that the final result of aggregation depends only on the

set of tree patterns involved and is independent of the sequence. In C + A, clusters are

formed implicitly during the process. The clusters formed in C → A and C + A might

be different even for the same stop criterion. Therefore, we expect the quality of aggre-

gation is different in the two approaches, which is largely determined by the quality of

clustering. We will study the quality of clustering and aggregation of C → A and C +A

in the experiment part.
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3.4 YFilter*

3.4.1 Motivating Example

After the query clustering and aggregation stage in the SDI system, each original user

query maps to an representative query, which is among the output of the pre-processing

stage. These representative queries are the input of the filtering engine.

In the filtering engine, we develop a filtering technique called YFilter*, which is

based on YFilter [10], to do the filtering of XML documents.

YFilter adopts an NFA-based approach to carry out the XML filtering in the SDI sys-

tem in order to achieve scalability [10]. The commonality of path expressions are merged

in the construction of NFA, thus reducing the storage requirement of NFA . However,

YFilter focuses on a subset of XPath queries, namely queries with no predicates and

queries with simple value-based predicates.

For nested path queries, or queries with predicates containing path expressions, e.g.

/a/b[c/d]/e, YFilter does the follows.

1. Decompose nested path queries into separate rooted paths.

2. Construct the NFA as if all rooted paths are independent from each other.

3. Execution NFA against XML documents.

4. For each query with nested paths, perform post-processing to ensure that all the

rooted paths of it are satisfied.
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where

Rooted path is defined as a root to leave path in a query pattern tree.

We illustrate this procedure and highlight the cost of post-processing with an exam-

ple.

Example 9 Figure 3.8 shows the tree pattern representation of query Q1 : /a/b[c/d]/e.

YFilter shreds this tree pattern into the paths Q11
: /a/b[$]/e and Q12

: /a/b[c/d], where
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$ is to mark that a predicate should be evaluated here after the XML document parsing

is finished. This is the post-processing described in Step 4 above.

Figure 3.9 depicts two XML document trees, Doc 1 and Doc 2, where element nodes

with the same tag are numbered in a pre-order traversal of the tree.

As Doc 1 is being parsed, YFilter maintains the following information:

(a) Q11
is matched at e1 via b1;

(b) Q11
is matched at e2 via b2;

(c) Q12
is matched at d via b3.

However, one cannot tell whether Q1 is matched at this point when Step 3 is finished.

In the post-processing Step 4, YFilter finds that:

(a) The Q11
matching instance containing b1 does not share the same b with the Q12

matching instance containing b3;

(b) The Q11
matching instance containing b2 does not share the same b with the Q12

matching instance containing b3 either.

Since there are no matching instances of Q11
and Q12

sharing the same b, Q1, where

these two rooted paths are shredded, is not matched by Doc 1.

Similarly, for Doc 2, we have:

(a) Q11
is matched at e1 via b1;
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(b) Q12
is matched at d via b1;

(c) Q11
is matched at e2 via b2.

In the post-processing step, we find out that:

The Q11
matching instance containing b1 shares the same b with the Q12

matching

instance.

Hence, Q1 is matched by Doc 2. �

We can see from the above example that the size of the information maintained by

YFilter for post-processing is proportional to the number of matching instances in the

document. Useless matching instances of paths cannot be discarded and actual matching

of tree patterns can not be told until the end of parsing. This motivated us to design

YFilter*, which is based on YFilter, to efficiently handle nested path queries without

post-processing.

3.4.2 Overview of YFilter*

Each nested path query is actually a tree pattern. YFilter* use the same techniques as in

YFilter to decompose a tree pattern into a set of rooted paths and to construct the NFA by

viewing each rooted path as being independent from each other. In the NFA execution,

YFilter* also uses YFilter’s runtime stack approach.

YFilter* differs from YFilter in that, it maintains additional information for each

shredded rooted path to reflect its relationship to other rooted paths in its corresponding
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tree pattern. Moreover, during the NFA execution for each document, YFilter* associates

matching instances of shredded paths with runtime stack entry. YFilter* discards useless

matching instances of shredded paths and finds the matching of tree patterns as early as

possible.

The following example illustrates the basic idea of YFilter*.

Example 10 Consider again the query in Figure 3.8, and the XML documents in Figure

3.9.

For Doc 1, when YFilter* is about to finish processing b1, all its descendent nodes

would have already been parsed. It only finds:

The matching instance of Q11
at e1

and

NO matching instance of Q12
so far.

Since there is no matching instance of Q12
containing b1, the Q11

matching instance

containing b1 cannot be part of a matching instance of Q1 in Doc 1, and hence it can be

discarded.

In contrast, for Doc 2, before YFilter* finishes processing b1, it finds:

The matching instance of Q11
at e1

and

The matching instance of Q12
at d.

YFilter* determines that these two matching instances share the same b and con-

cludes that tree pattern Q1 has been matched by Doc 2.
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Additionally, when YFilter* parses Doc 2 further, it ignores the Q11
matching in-

stance at e2 because the tree pattern Q1, from which Q11
is shredded, has already been

matched by this document. �

As we can see from Example 10, the branch point node b of the QPT in Figure 3.8

is very important in the tree pattern matching. In fact, it can be considered as a context

node.

Figure 3.10 illustrates the XML documents corresponding to the XML document

trees in Figure 3.9.

When processing Doc 1, a matching instance of Q11
is found when the first “< e >”

tag in Doc 1 is encountered. Thereafter, no matching instance of Q12
is found until after

the first “< /b >” tag is encountered. b1, the branch point node of Q11
and Q12

in Q1,

is materialized by the first b element in Doc 1. No matching instance of Q12
is found

within the valid context of this branch point node, which is the shadowed area of Doc 1

in Figure 3.10. Hence, in the above example, this matching instance of Q11
is discarded.

In contrast, when processing Doc 2, a matching instance of Q12
is found within the

valid context of the matching instance of Q11
containing the first b element in Doc 2.

Therefore, Q1 is matched. In Figure 3.10, the materialized branch point node is the first

b element in Doc 2 and the corresponding valid context is shadowed.

In tree pattern matching, it is a key issue to determine the valid context information

for each matching instance of shredded paths at runtime. This leads to two novel features

in YFilter*:
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<a>
   <b>
      <e>
      </e>
   </b>
   <b>
      <e>
      </e>
   </b>
   <b>
      <c>
          <d>
          </d>
      </c>
   </b>
</a>

<a>
   <b>
      <e>
      </e>
      <c>
         <d>
         </d>
      </c>
   </b>
   <b>
      <e>
      </e>
   </b>
</a>

Doc 1 Doc 2

Figure 3.10: Valid Context

1. Maintain information of each shredded path related to branch point node.

The information is used to capture the relationship between the shredded rooted

paths of the same tree pattern.

2. Associate matching instances with runtime stack entries in NFA execution.

In the NFA execution, YFilter* associates each matching instance of a shredded

path with a runtime stack entry, whose popup indicates the invalidation of context

of a certain branch point node. The actual stack entry where the a certain matching

instance should be associated can be calculated by backtracking the runtime stack,

together with the information we maintained for its corresponding shredded path.

The following subsections describe the details of these two features in YFilter*.
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3.4.3 NFA Construction — Information Maintained for Shredded

Rooted Path

Similar to the approach in YFilter, YFilter* is an NFA-based approach. It decomposes

each QPT to a set of rooted paths before constructing the NFA. The NFA is constructed

by assuming that each shredded rooted path is independent from each other.

YFilter* collects additional information while shredding rooted paths from QPTs.

The aim of the information is to facilitate tree pattern checking in addition to path check-

ing in the execution of NFA. As a result, such information is mainly about the branch

point nodes in tree patterns and of two consecutive rooted paths. To facilitate evaluation,

we impose an arbitrary order on the rooted paths.

Suppose a QPT Q is decomposed into an ordered list {Q1, Q2, . . . , Qk}. The prede-

cessor of Qj , denoted by prev(Qj), is given by Qj−1, for j = 2, 3, . . . , k. The successor

of Qj , denoted by succ(Qj), is given by Qj+1, for j = 1, 2, . . . , k − 1. Note that there is

no prev(Q1) or succ(Qk).

Definition 8 (Branch Point(BP)) Given a QPT Qi which is decomposed into an or-

dered list of rooted paths, {Qi1 , Qi2 , . . . , Qik}. The branch point of any two consecutive

paths, Qij and Qij+1
, for j = 1, 2, . . . , k− 1, is the common node of these two paths that

is closest to their leaf nodes, denoted by BP (Qj ,Qj+1).

Example 11 In Figure 3.11, we have
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pj Q01
Q02

Q03
Q04

succ Q02
Q03

Q04
-

prev - Q01
Q02

Q03

and BP (Q01
, Q02

) = b, BP (Q02
, Q03

) = b and BP (Q03
, Q04

) = “//”.�

Next, YFilter* collects the following information for each path p with respect to its

preceding and succeeding paths in the ordered list of rooted paths.

1. Count//(p, prev(p)) - number of “//” nodes from BP (prev(p), p) to the leaf node

of p.

2. Countnon−//(p, prev(p)) - number of non-“//” nodes from BP (prev(p), p) to the

first “//” node if it exists, or to the leaf node of p if such “//” node does not exist.

3. Count//(p, succ(p)) - number of “//” nodes from BP (p, succ(p)) to the leaf node

of p.

4. Countnon−//(p, succ(p)) - number of non-“//” nodes from BP (p, succ(p)) to the

first “//” node if it exists, or to the leaf node of p if such “//” node does not exist.

To better under the above notations, we illustrate them by the following example.

Example 12 Consider the rooted paths of QPT0 in Figure 3.11. We have BP (prev(Q03
),

Q03
) = BP (Q02

, Q03
) = b. Since there are two “//” nodes from the branch point b to
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p Count//(p, prev) Countnon−//(p, prev) Count//(p, succ) Countnon−//(p, succ)

Q01
-1 -1 0 2

Q02
1 1 1 1

Q03
2 2 3 0

Q04
1 0 -1 -1

Table 3.1: Information Maintained for Rooted Paths of QPT0

the leaf node g of Q03
, hence Count//(Q03

, prev) = 2. There are two non-“//” nodes

from the branch point b to the first “//” node on this path, namely, the node b itself and

node e. Thus, Countnon−//(Q03
, prev) = 2.

Similarly, BP (Q03
, succ(Q03

)) = BP (Q03
, Q04

) = “//”, Count//(Q03
, succ) = 3

and Countnon−//(Q03
, succ) = 0. Note that the branch point is a “//” node itself.

When calculating Count//(Q01
, succ) and Countnon−//(Q01

, succ), the correspond-

ing branch point is also b. However, there is no “//” node from the branch point b to the

leaf node c, therefore Count//(Q01
, succ) = 0 and Countnon−//(Q01

, succ) is the num-

ber of non-“//” nodes from the branch point to the leaf, which equals to 2.

Table 3.1 lists the Count// and Countnon−// values for paths shredded from QPT0.

Note that -1 is used to indicate that such a value does not exist, as in the cases for

(Q01
, prev) and (Q04

, succ). �

When all QPTs have been decomposed into paths, YFilter* use YFilter’s approach

to construct the NFA. We have introduced the details of YFilter NFA construction in

Section 2.1.3. The same techniques are adopted in YFilter*.

51



a

d

c

b

/.

Q11

Q12

QPT1

a

d

b

/.

//

//

c

Q22

a

db

/.

Q31

//

c

Q32

//

Q21

QPT3QPT2

e

Q23

Figure 3.12: Tree Patterns

0 1 2

3

6

4

5

7 8 9

{ Q11 }

{ Q12, Q22 }

{ Q21, Q31}

{ Q32 }

/. a

b

c

d

b c

d

* *

11

10

{ Q23 }

e

Figure 3.13: An NFA for Tree Patterns in Figure 3.12
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p Count//(p, prev) Countnon−//(p, prev) Count//(p, succ) Countnon−//(p, succ)

Q11
-1 -1 0 3

Q12
0 2 -1 -1

Q21
-1 -1 2 1

Q22
0 2 0 2

Q23
0 2 -1 -1

Q31
-1 -1 2 0

Q32
1 0 -1 -1

Table 3.2: Information Maintained for Shredded Rooted Paths of QPT1, QPT2, QPT3

Example 13 Figure 3.13 shows the NFA constructed for QPT1, QPT2, QPT3 in Figure

3.12. Table 3.2 lists the information maintained by YFilter* for each shredded path. �

3.4.4 NFA Execution — Associate Matching Instance to NFA Run-

time Stack Entry

We use the standard SAX [14] interface parser to parse the XML documents. The main

component of the NFA execution is a runtime stack. When parsing an XML document,

a stack entry is pushed into the runtime stack when the parser encounters a begin-of-

element event. The top stack entry is popped when the parser encounters an end-of-

element event.

Similar to YFilter, the execution of NFA in YFilter* follows an event-driven fashion

and uses a runtime stack to allow the backtracking of multiple active paths dynamically.
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Figure 3.14: The XML Document Used in YFilter* NFA Execution

YFilter* differs from YFilter in that it associates matching instances found to the runtime

stack entry during the execution.

When an accepting state of the NFA is encountered, YFilter* does the following:

1. Find all paths p matched at this accepting state.

2. Backtrack runtime stack to find actual matching instances of p.

3. Count the number of “//” nodes materialized in backtracking.

4. Associate matching instance of p to runtime stack entry.

(a) When Count//(p, succ) number of “//” nodes are counted, decide the stack

entry r1, which is created when BP (p, succ(p)) is encountered, by taking

the value of Countnon−//(p, succ) into account. Associate current matching

instance to r1.
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(b) When Count//(p, prev) number of “//” nodes are counted, decide the stack

entry r2, which is created when BP (prev(p), p) is encountered, by taking

the value of Countnon−//(p, prev) into account. Associate current matching

instance to r2.

5. Check whether this matching instance of p can be used to update the matching

status of its corresponding tree pattern.

A tree pattern is said to be matched when its matching status is updated by its last

shredded path.

We explain the execution of NFA in YFilter* through a running example. In Figure

3.14, there is an XML document with its tree pattern format and text format. Figure 3.15

shows the evolution of the runtime stack when YFilter* executes the NFA in Figure 3.13

on the XML document in Figure 3.14.

Backtrack Runtime Stack

When tracking an NFA state in a stack entry backward, we are able to know which

element triggers the transition. As a result, we can interpret each path obtained from

backtracking to a matching instance.

Example 14 Consider the runtime stack in Figure 3.15 (f). Q21
and Q31

are matched

because accepting state 9 is in the top stack entry. Two matching instances are found

via backtracking the runtime stack from state 9. One is 9-7-6-6-2-1-0, the other is 9-8-
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7-6-2-1-0. The corresponding matching instances are /a/ ∗ / ∗ /b/c and /a/ ∗ /b/ ∗ /c

respectively. �

Count “//” nodes

In backtracking, a “//” node is observed under the following circumstances:

1. When the transition happens between two states, which have other states with

self-loop between them in the NFA;

2. When the transition is from a state without self-loop to another state with self-loop.

Example 15 In Example 14, the transition 7→9 (reverse of 9-7) is an example of case

1 above, while the transition 2→6 (reverse of 6-2) is an example of case 2. Both of them

corresponds to the element next to the end of a “*”-chain. Note that in the case of 7-9,

the chain is empty. �

Associate Matching Instances to Stack Entries

By using the values stored in Count//(p, succ) and Countnon−//(p, succ), we are able

to locate the stack entry r1 in the runtime stack, which corresponds to the start of the

branch point node with regard to succ(p).

More specifically, while backtracking the matching instance of p in the runtime stack,

we count the number of state transitions caused by “//”. When the number is up to

Count//(p, succ), we stop to locate stack entry r1 as follows:

57



1. Countnon−//(p, succ) > 0, further step back Countnon−//(p, succ) − 1 entries;

2. Countnon−//(p, succ) = 0, in this case, the branch point itself is a “//” node. We

need to locate, in backtracking, the stack entry of the last node of the materialized

branch point in the matching instance. If the materialized branch point is empty,

we locate the stack entry just before the empty chain. This stack entry becomes

r1.

Example 16 In Figure 3.15 (f), firstly, we consider the path 9-7-6-6-2-1-0. When back-

tracking from 9 to 7, a “//” node is materialized; from 6 to 2, the second “//”node is

materialized.

Since Count//(Q21
, succ) = 2, there are only two “//” nodes from BP (Q21

, succ(Q21
))

to Q21
’s leaf. In addition, we have Countnon−//(Q21

, succ) = 1, which suggests there is

only one non-“//” node from the BP node to the first “//” node on the path towards Q21
’s

leaf. Therefore, when the second “//” node is materialized at stack entry containing state

2, we step 1 − 1 = 0 entry back to locate entry r1. YFilter* associates this matching

instance to r1.

As to Q31
in (f), since Count//(Q31

, succ) = 2, again, the second “//” node is mate-

rialized at stack entry containing state 2. This time we have Countnon−//(Q31
, succ) =

0, which indicates the the BP node is a “//” node itself. The stack entry containing state

6 and 7 is the last node materialized for the second “//”, and it becomes stack entry r1,

where an instance of Q31
is associated.
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When we consider the path 9-8-7-6-2-1-0, another matching instance of Q21
and Q31

are associated to their corresponding r1 entry. �

The stack entry r2 for each matching instance is located using the same techniques

above except that, Count//(p, prev) and Countnon−//(p, prev) values are used instead

of Count//(p, succ) and Countnon−//(p, succ).

During the parsing of a document, matching instances found are associated to their

corresponding r1,r2 stack entries in the runtime stack. In Figure 3.15, those matching

instances associated to r2 stack entries are shadowed.

Both r1 and r2 are important to the matching of the whole tree pattern based on the

matchings of its shredded paths, which we are going to illustrate in the next section.

Update the Matching State of QPT

If a matching instance of shredded path p has already been found, a matching instance of

succ(p) is expected within the valid context of BP (p, succ(p)), in other words, before

popping out the stack entry r1. If a matching instance of succ(p) is found before r1

is popped, then the matching status of the QPT, from which p is shredded, is updated

by succ(p). If no matching instance of succ(p) is found before r1 is popped, then this

matching instance of p should be discarded since it cannot be part of a matching instance

of p’s corresponding QPT in this document.
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Example 17 Consider the Q31
matching instance in Figure 3.15 (f) whose r1 is the stack

entry containing only state 6. In (j), when its r1 is still in the stack, a matching instance of

its successive path Q32
is found. Thus, the matching state of QPT3, their corresponding

QPT, is advanced. Moreover, since Q32
is the last shredded path of QPT3, QPT3 is

matched.

In contrast, consider the Q31
matching instance in (f) whose r1 is the stack entry

containing state 6 and 7. In (i), its r1 is popped. No matching instance of Q32
will

branch at the their BP node in this matching instance of Q31
. Therefore, this matching

instance of Q31
is discarded. �

When parsing an XML document, a matching instance of p might be found before

a matching instance of prev(p) is found. In this case, when a matching instance of p is

found in the document, by Count//(p, prev) and Countnon−//(p, prev), we are able to

locate the stack entry r2 corresponding to the beginning of the branch point relative to

prev(p) in the runtime stack. The procedure is the same as that used to locate r1.

A matching instance of the prev(p) is expected within the valid context of BP

(prev(p), p), that is, before popping out the stack entry r2. If a matching instance of

prev(p) is found before r2 is popped, then the matching status of the QPT, where p

is shredded, is updated by p. If no matching instance of prev(p) is found before r2 is

popped, then the this matching instance of p should also be discarded for the same reason

given above.
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Example 18 In Figure 3.15 (m), a matching instance of Q23
is found before any match-

ing instance of Q22
is found. So it is associated to its corresponding r2 stack entry,

which is the one containing only state 2. In (o), a matching instance of Q22
is found

before this r2 is popped, so the matching state of QPT2 jumps to Q23
, which is also the

final matching state of QPT2. Thus, QPT2 is matched by this document. �

YFilter* detects the matching instances of QPTs and discards useless matching in-

stances of shredded paths as early as possible. After a QPT is matched, none of its

shredded paths will be considered any more.

Example 19 In Figure 3.15 (o), while there is a matching instance of Q32
, no effect

is made on this matching instance, because its corresponding QPT, QPT3 has already

been matched. YFilter* will just ignore this matching instance of Q32
. �
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Chapter 4

Performance Study

We build an XML-based SDI system which uses YFilter* in the filtering stage. We

implement the two methods C → A and C + A in Java. In addition, we also implement

a baseline method called A, which randomly chooses QPTs to aggregate. By comparing

the performance of A with that of C → A or C + A, we show that clustering can help to

improve the quality of aggregation.

We carry out experiments to show the effectiveness and scalability of an XML-based

SDI system that is augmented with query clustering and aggregation. Various factors that

will have influence on the performance of the system, including clustering granularity,

diversity of user preferences and QPT distribution, are investigated.

At the end of the section, we also report an experiment studying the performance

of YFilter* and YFilter in handling nested-path queries. Our experiment shows that

YFilter* outperforms YFilter by a factor of 2.
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Pr Description Default Range

Nd Number of XML documents 100 100 ∼ 1000

Nq Number of QPTs 1000 1000 ∼ 4000

C Number of subtrees 5 1 ∼ 8

Z Parameter of the Zipf 0.8 0.0 ∼ 1.0

distribution of QPTs

Sq Minimal similarity of QPTs 0.4 -

from the same subtree

Sc Minimal similarity of 0.8 0.0 ∼ 1.0

each result cluster

Table 4.1: Parameters

All of our experiments are conducted on a Pentium IV 1.6 GHz processor with

256MB memory running JVM 1.4.0 on Windows 2000 Professional.

4.1 Experiment Setup

We need two kinds of datasets for our experiments, namely, XML documents and user

subscriptions (or QPTs). We use the IBM XML Generator tool [11] to generate XML

documents using the auction DTD from the XMark benchmark [2]. The auction DTD

contains a recursive structure that can be nested to produce XML documents with arbi-

trary number of levels.

When generating QPTs, each rooted subtree of the DTD is a QPT candidate. After
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all possible QPTs are enumerated from the DTD, we select QPTs from this pool and

repeat them according to certain distribution.

The main advantage of clustering and aggregating user subscriptions is that the com-

mon interest shared by a group of users is captured, thus allowing the SDI system to

deliver the relevant XML documents to this group of users quickly. QPTs represent the

preferences of users (or groups of users), and are likely to be biased towards one aspect

of the DTD for users with similar interest. Therefore, by removing the root node of the

auction DTD, we obtain subtrees each of which represent different user group interests.

QPTs are generated based on these subtrees.

The parameter C indicates the number of user group interests, which is translated to

the number of subtrees used in the QPT generation. Intuitively, QPTs from users of the

same interest (same subtree), would have relatively higher similarity compared to QPTs

from users of different interests (different subtrees). We use a parameter Sq to denote

the minimal similarity between QPTs from the same subtree.

Since the overlap between different subtrees is small, we can expect the similarity

between QPTs from different subtrees to be low. Furthermore, we use the Zipf [31]

distribution for the QPT dataset, in which a few QPTs have very high frequency while

the rest have very low frequency.

The parameter Sc specifies the clustering granularity. It denotes the minimal simi-

larity within a cluster. In order to measure the quality of the query results, we compare

them with the set of actual query results, which can be obtained by executing the original
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Figure 4.1: Scalability

QPTs individually on the XML dataset.

Table 4.1 summarizes the parameters used in the experiments, together with their

default value and range of values tested.

4.2 Scalability

The scalability of our proposed SDI system comes from two aspects. The first is the

additional query clustering and aggregation step, and the second is the filtering step.

Since YFilter* does not alter the path sharing nature of YFilter, the latter’s scalability

[10] also applies here.

In this experiment, we examine how the additional step of clustering and aggregating

user subscriptions is able to capture the common interest shared by a group of users, thus

allowing the SDI system to deliver the relevant XML documents to this group of users
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quickly.

Figure 4.1 shows the response time of the XML-based SDI system for 1000 QPTs.

Response time here includes both the preprocessing time, i.e. clustering and aggregation

time, if any, and the filtering time. Overall, the response times for all methods increases

linearly with the number of XML documents. However, the increase is slower when the

system uses clustering and/or aggregating techniques.

When no clustering and/or aggregation is used (no C/A), the system has to filter

all the XML documents against all the QPTs. As a result, the response time increases

rapidly with the increase in the number of XML documents. Although using aggregation

alone (A) is able to reduce the number of QPTs against which the documents are filtered,

its filtering quality is poor, as we will see from subsequent experiments.

Both C + A and C → A scale well when the number of XML documents increases

since the documents are filtered against a small number of representative QPTs obtained

from the clustering and aggregation process. However, C → A outperforms C + A

because it utilizes the hierarchical clustering method which has a complexity of O(n2).

In contrast, the C+A approach is very time consuming due to its exhaustive computation

of aggregation during the process.

It is clear that the additional time incurred by clustering and/or aggregation is com-

pensated very early. In an SDI system, user subscriptions are relatively stable. Hence,

the clustering and aggregation of QPTs can be done offline.
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Figure 4.2: Precision vs Cluster Granularity

4.3 Sensitivity Experiments

In this set of experiments, we examine how the performance of the system is affected by

the clustering granularity, the diversity of user preferences and the distribution of QPTs.

The performance metric used is precision, which is the ratio of the documents that are

retrieved by the original set of queries over the documents that are retrieved by the set of

representative queries.

4.3.1 Clustering Granularity

The clustering granularity determines the number of representative QPTs obtained. It

indicates the minimal similarity of each cluster. In this experiment, we examine the

effect of varying Sc on the precision and response time for both C → A and C + A.

Figure 4.2 shows the results.

For C → A, when Sc increases, the QPTs in each result cluster will have higher
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similarity. Aggregation of more similar QPTs are likely to yield more informative ag-

gregation results, which further implies better filtering results. Similarly for C +A, each

iteration of C + A reduces the total number of clusters by 1. With the increase of Sc

for merging clusters, C + A is likely to terminate although many clusters remain. With

more clusters, and fewer QPTs of higher similarity within each cluster, we obtain more

informative aggregation results, and hence better filtering results.

On closer examination of the results, we note that when Sc is between 0.1 and 0.3,

the precision for all three methods are low. When the value of Sc is between 0.4 and 0.8,

C → A outperforms both C + A and A. When Sc is high (0.9 ∼ 1.0), both C → A

and C + A can achieve very high precision. Further, the precision of C → A increases

gradually with the increase of Sc, while the precision of C+A or A has a sudden increase

when Sc reaches 0.9. This may be attributed to the following reason.

When Sc is low (0.1 ∼ 0.3), there are very few clusters. Recall that for the default

setting, the minimal similarity between QPTs from the same subtree is 0.4. Therefore,
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when Sc is below 0.4, QPTs from different subtrees are likely to be clustered together.

Given that the overlap between different subtrees is small, the aggregation result of such

cluster will be too general to be informative.

When Sc is between 0.4 to 0.8, C → A performs much better compared to C + A

and A because C → A is based on the QPTs’ original similarity. In contrast, C + A

is based on the similarity of the temporary aggregation results (aggregation of QPTs

that are already clustered), and the QPTs which have not yet been clustered. Since the

aggregation result depends only on the actual QPTs involved, i.e. the cluster itself, and

not on the sequence of aggregation, the temporary aggregation result is an approximation

of all the QPTs already in that cluster. Hence, the similarity computation will be less

accurate compared to that in C → A. However, C + A still performs better than A,

which has no clustering at all.

It turns out that when Sc increases to 0.9, the number of result clusters in addition to

the quality of aggregation starts to dominate the precision. In fact, in C +A, the number

of result clusters increases six folds when Sc increases from 0.8 to 0.9, while the number

of result clusters only doubles in C → A. This also shows that C → A has a more stable

performance compared to C + A.

Clearly, there is a trade-off between the clustering granularity and system perfor-

mance. There are more clusters when the clustering granularity increases, which leads

to an increase in the response time.

In the following experiments, we set Sc in the range of [0.4, 0.8] so that the quality of
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aggregation dominates the performance of the system and the number of representative

QPTs generated is reasonable. For example, when Sc = 0.7, the number of representa-

tive QPTs generated by C → A is almost one tenth of the original number of QPTs.

4.3.2 Diversity of User Preference

The number of subtrees used to generate the QPTs determines how diverse the user

preferences are. In this experiment, we vary the number of subtrees (C) to study the

influence of user preference on the system precision. In order to have a stable filtering

time, we fix the number of result clusters at 50.

Figure 4.4 shows that the precision for all the three methods decreases when C in-

creases. This is because when the user preference becomes increasingly diverse, the

number of QPTs within each cluster is reduced, and QPTs from different subtrees may

be aggregated, leading to a more general representative query, and hence lower precision.
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Figure 4.5: QPT Distribution

4.3.3 Distribution of QPT

Next, we examine how the distribution of QPTs affects the performance. We use both

uniform and Zipf distributions to generate QPTs. The Zipf parameter Z determines the

skewness of the query distribution. In order to show the improvement in the performance

of methods involving clustering, we compute the precision gain of C → A and C + A

over A.

Precision Gain = (C→A)′s or (C+A)′s Precision
A′s Precision

× 100% (4.1)

We observe from Figure 4.5 that the precision gain increases when the distribution of

QPT becomes more skewed. This is because there is less distinct QPTs, leading to more

informative aggregation results. We also observe that there is no difference in precision

gain when Sc is very low, because at the stage, the effect of skewness in QPT has been

overwhelmed by the generality of aggregation.
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Figure 4.6: YFilter* vs YFilter

4.4 YFilter* versus YFilter

We designed YFilter* based on YFilter in order to handle nested path queries efficiently.

This experiment is going to compare their performances. When implementing YFilter,

we use the post-processing technique described in [10], to handle nested path queries.

Figure 4.6 shows that, when processing queries with nested paths, YFilter* outperforms

YFilter by a factor of 2 on average.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Motivated by the overwhelming number of document-subscription matchings required in

XML-based SDI systems, in this work, we have studied how clustering and aggregating

user queries can help increase the scalability of SDI systems by reducing the number of

document-subscription matchings needed.

We have designed an aggregation similarity function for clustering tree patterns in-

volving wildcards and relative paths.

Two methods, namely C → A and C + A, have been proposed to integrate the

clustering and aggregation of user queries.

We have made improvements on YFilter to develop YFilter*, which enhances YFil-

ter’s ability to handle tree-structured XML queries.
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Experiment results have indicated that the proposed techniques are able to decrease

the response time of SDI systems and achieve 100% recall with 20% to 30% precision

loss. Extensive experiments have been carried out to study the factors influencing the

performance of the system.

5.2 Future Work

So far, we have made the assumption that the user subscriptions in the SDI system are

static and do not change with time. One possible direction for future work is to consider

the situation when there are updates, i.e. insertion and/or deletion, of user subscriptions

in the system. The update of user subscriptions will lead to the update of query clus-

ters and tree aggregation results, which has further influence on the performance of the

system.
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