
ADAPTIVE P2P PLATFORM FOR DATA SHARING

By

Ng Wee Siong

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

NATIONAL UNIVERSITY OF SINGAPORE

REPUBLIC OF SINGAPORE

MARCH 2004

c© Copyright by Ng Wee Siong, 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626620?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NATIONAL UNIVERSITY OF SINGAPORE

DEPARTMENT OF

COMPUTER SCIENCE

The undersigned hereby certify that they have read and

recommend to the Faculty of Graduate Studies for acceptance a

thesis entitled “Adaptive P2P Platform for Data Sharing”

by Ng Wee Siong in partial fulfillment of the requirements for the

degree of Doctor of Philosophy.

Dated: March 2004

External Examiner:
Karl Aberer, Alon Halevy

Research Supervisor:
Ooi Beng Chin

Examing Committee:
Ang Chuan Heng

Teo Yong-Meng

Anthony K. H. Tung

ii

Table of Contents

Table of Contents iii

List of Tables vi

List of Figures vii

Summary xi

Acknowledgements xiv

1 Introduction 1

1.1 P2P Applications . 4

1.2 Motivation . 6

1.3 Thesis Goal and Contributions . 10

1.4 Organization of the Thesis . 12

2 Related Work 14

2.1 Introduction . 14

2.2 P2P Taxonomies . 15

2.2.1 Comparison of Architectures 19

2.3 Search Mechanism and Algorithms 21

2.3.1 DHT-based Schemes: The Limitations 30

2.4 Agents and P2P Computing: A Promising Combination of Paradigms 31

2.4.1 Merging of Infrastructures: P2P and Agent 32

2.5 P2P: From the Data Management Perspective 36

2.5.1 Complexity of Data Management in P2P 37

2.5.2 Data Modeling and Query Capabilities 40

2.5.3 Data Caching and Placement 43

2.5.4 Schema Mediation and Data Integration 44

iii

2.6 Summary . 45

3 The Architecture of BestPeer: A Self-Configurable P2P System 47

3.1 The BestPeer Network . 49

3.2 Features of BestPeer . 54

3.2.1 Integration of Mobile Agents and P2P Technologies 54

3.2.2 Resource Sharing . 56

3.2.3 Reconfigurable BestPeer Network 58

3.2.4 Location-Independent Global Names Lookup Server 62

3.3 A Performance Study . 64

3.3.1 Experimental Setup . 65

3.3.2 On Different Network Topology 67

3.3.3 Comparison of BestPeer and Gnutella 70

3.4 Summary . 72

4 PeerDB: A P2P-based System for Distributed Data Sharing 74

4.1 P2P Distributed Data Management: What Is It? 75

4.1.1 P2P vs Distributed Database Systems 76

4.1.2 Health Care . 77

4.1.3 Genomic Data . 78

4.1.4 Data Caching . 78

4.2 Peering Up for Distributed Data Sharing 79

4.2.1 Architecture of a PeerDB Node 79

4.2.2 Sharing Data without Shared Schema 81

4.2.3 Agent Assisted Query Processing 85

4.2.4 Monitoring Statistics . 88

4.2.5 Cache Management . 89

4.3 A Performance Study . 90

4.3.1 On Relation Matching Strategy 91

4.3.2 On PeerDB Performance . 93

4.4 Summary . 101

5 PeerOLAP: An Adaptive P2P Network for Distributed Caching of

OLAP Results 1 103

5.1 Introduction . 103

5.2 Background . 106

5.3 The PeerOLAP Network . 108

5.4 Peer Architecture . 111

5.4.1 Cost Model . 113

iv

5.4.2 Query Processing . 114

5.4.3 Caching Policy . 118

5.4.4 Network Reorganization . 123

5.5 Experimental Evaluation . 126

5.5.1 PeerOLAP vs. Client-Side Cache Architecture 128

5.5.2 Evaluation of the Query Optimization Strategies 131

5.5.3 Evaluation of the Caching Policies 133

5.5.4 Effect of Network Reorganization 141

5.6 Summary . 144

6 FuzzyPeer: Answering Similarity Queries in P2P Networks 146

6.1 Introduction . 146

6.2 System Description . 149

6.2.1 Prototype Implementation . 151

6.3 Query Processing . 153

6.3.1 Static Query Freezing (SQF) 155

6.3.2 Adaptive Query Freezing (AQF) 158

6.3.3 Similarity Query Freezing (simQF) 161

6.3.4 Multiple-feature Queries . 162

6.3.5 Dealing with Cycles . 164

6.4 Experimental Evaluation . 166

6.4.1 Static Query Freezing . 168

6.4.2 Adaptive Query Freezing . 177

6.4.3 Similarity Query Freezing Algorithm 180

6.4.4 Multiple-feature Queries . 182

6.5 Summary . 184

7 Conclusion 185

7.1 Future Scope of Work . 187

Bibliography 189

v

List of Tables

2.1 Three Different Architectures of P2P 19

4.1 Precision and Recall for Varying Threshold Values (Synthetic Data) . 92

4.2 Precision and Recall for Varying Threshold Values (Real Data) 93

5.1 Parameters Derived from the Prototype 125

5.2 The Schema of the APB Dataset. The values represent the size of the

domain in each dimension at the corresponding level of hierarchy. . . 126

5.3 The Schema of the SYNTH Dataset 127

6.1 Parameters Derived from the Prototype 166

6.2 FirstDelay(StreamBEST) – FisrtDelay(StreamALL) 176

6.3 Precision(StreamALL) – Precision(StreamBEST) 176

vi

List of Figures

1.1 Client-Server Computing Model . 2

2.1 A Taxonomy of Computer Systems 15

2.2 Centralized P2P Architecture . 16

2.3 Fully Autonomous P2P Architecture 18

2.4 P2P with Supernodes . 19

2.5 Breadth-first Routing and Locating; Dash-box Denotes Routing Table,

Oval-box Denotes Local Shared Objects, Dash-arrow Denotes Download 22

2.6 Depth-first Routing and Locating; Dash-box Denotes Routing Table,

Oval-box Denotes Local Shared Objects 24

2.7 Relationship of predecessor(p), successor(p), k and p 25

2.8 Key Assignment in Finger Table . 26

2.9 Chord Routing Strategy . 27

2.10 2-D Coordinate Overlay with Five Nodes 28

2.11 CAN Routing Strategy . 29

2.12 Infrastructure of P2P and Agents . 33

2.13 Hilbert Curve for Approximation Level 2 and Level 3 42

3.1 BestPeer Network . 50

3.2 Search Algorithm . 53

3.3 Example of BestPeer’s Reconfigurable Feature 59

3.4 Algorithm KeepBestPeers. 61

3.5 Experimental Environment . 65

vii

3.6 Different Network Topologies Used in the Experiment 67

3.7 On Network Topologies . 69

3.8 BestPeer vs Gnutella . 72

4.1 PeerDB Node Architecture . 81

4.2 Keywords for Relation/Attribute Names 84

4.3 PeerDB Interface. 90

4.4 Effect of Storage Capacity . 96

4.5 Rate of Returning Answers . 97

4.6 Number of Answers Returned . 98

4.7 Completion Time vs. Data Size . 101

4.8 Communication Overhead . 102

5.1 A Data Cube Lattice. The dimensions are Product, Supplier and

Customer. 107

5.2 A Typical PeerOLAP Network . 109

5.3 Architecture of a Peer . 112

5.4 A Sample Network Structure . 124

5.5 The LFU Connection Cache at Peer P . (Numbers represent hit ratios.) 124

5.6 Configurations with One Data Warehouse. Dashed lines represent re-

mote connections, and solid lines local ones: (a) PeerOLAP, (b) client-

side cache, (c) one large cache, and (d) clients without cache 127

5.7 PeerOLAP vs. Client-Side Cache System: (APB Dataset) 129

5.8 PeerOLAP vs. Client-Side Cache System: (SYNTH dataset) 130

5.9 Groups of 10 Peers Accessing the Same Hot Region (Four Neighbors

per Peer, Three Hops Allowed) . 130

5.10 Query Optimization for a Network of 100 Peers and Three Hops . . . 132

5.11 Query Optimization for a Network of 100 Peers and Four Neighbors

Per Peer . 132

5.12 Comparison of the LRU and LBF . 134

viii

5.13 Comparison of Caching Policies . 135

5.14 HACP vs. v-HACP for Q10, Q50, . . . , Q100 Query Sets 136

5.15 DCSR Achieved by Each Individual Peer for Q90 with a Cache Size of

1%: (top) Isolated Caching Policy, (bottom) Hit Aware Caching Policy 138

5.16 Effect of Training Data Size . 140

5.17 Effect of Network Reorganization . 141

5.18 Frequency of Network Reorganization 143

5.19 Performance Horizon of Two, Four and 10 Neighbors 144

6.1 A Typical FuzzyPeer Network . 149

6.2 Peer Components . 152

6.3 Message Propagation Model . 154

6.4 Static Query Freezing Algorithm . 157

6.5 Adaptive Query Freezing Algorithm 159

6.6 Query Distribution across Multiple Feature Clusters 163

6.7 Cycles due to Frozen Queries . 165

6.8 Non-frozen(nf) vs. 10, 30, 50, 70% Statically Frozen Queries. MaxWait-

Time = 30sec, Power Law Network. 170

6.9 Non-frozen(nf) vs. 10, 30, 50, 70% Statically Frozen Queries. MaxWait-

Time = 60sec, Power Law Network. 171

6.10 Non-frozen(nf) vs. 10, 30, 50, 70% Statically Frozen Queries. MaxWait-

Time = 60sec, Uniform Network. 173

6.11 Non-frozen vs. Statically Frozen Queries. 1000 peers, MaxWaitTime

= 60sec, Power Law Network. 174

6.12 Non-frozen vs. Statically Frozen Queries. Qus = 14 · 10−4, MaxWait-

Time = 60sec, Power Law Network. 175

6.13 100 peers, MaxWaitTime = 30sec, Power Law Network 177

6.14 100 peers, MaxWaitTime = 60sec, Power Law Network. 179

6.15 Qus = 14 · 10−4, MaxWaitTime = 60sec, Power Law Network. 180

ix

6.16 Similarity Query Freezing. 100 peers, MaxWaitTime = 60sec, Power

Law Network. 181

6.17 Multiple-feature Queries. 100 peers, MaxWaitTime = 60sec, Power

Law Network, aq = 1, SYNTH200 dataset. 183

x

Summary

Peer-to-peer (P2P) systems are becoming increasingly popular as they enable users to

exchange digital information by participating in complex networks. In a distributed

P2P system, nodes of equivalent capabilities and responsibilities pool their resources

together in order to share information and services. Such systems are inexpensive,

easy to use, highly scalable and do not require central administration. However, many

of the existing P2P systems are limited in several ways. First, they provide only file-

level sharing (coarse granularity) and lack object/data management capabilities and

support for content-based search. Second, there is no predetermined global schema

shared among nodes. As a result, the query is largely based on keywords. Third,

they are limited in extensibility and flexibility. Finally, a node’s peers are typically

statically defined.

In order to deal with the scale and dynamism that characterize P2P systems, a

paradigm shift is required; that includes self-organization, adaptation and fine granu-

larity query support as intrinsic properties. In particular, we focus on the effectiveness

of a P2P sharing systems with respect to the concept of data management. First, we

present a conceptual framework that facilitates finer granularity data access and shar-

ing. Second, we investigate the impact of decision making without relying on global

knowledge. Third, we study the effectiveness of various data placement policies on a

network with dynamic participants. Finally, we attempt to provide a methodology for

data acquisition on heterogeneous data sources environments. In this thesis, we have

implemented and experimented with a variety of P2P strategies with the objective of

solving the aforementioned tasks.

xi

xii

BestPeer is a generic P2P platform which facilitates fast and easy P2P applica-

tion development. It supports finer granularity of data sharing where partial con-

tent of a file may be shared, and it also shares computational power. Moreover,

BestPeer integrates two powerful technologies: mobile agents and P2P technologies.

While P2P technology provides resource-sharing capabilities amongst nodes, mobile

agents technology further extends the functionalities. Our solution incorporates a

self-configurable approach, by which a node in the BestPeer network can dynamically

reconfigure itself by keeping peers that benefit it most. We evaluated BestPeer on

a cluster of 32 Pentium II PCs, each running a Java-based storage manager. Our

experimental results show that BestPeer provides excellent performance compared to

traditional non-configurable models. Further experimental study reveals its superior-

ity over Gnutella’s protocol.

For decision making without relying on global knowledge, we have proposed

PeerDB, which is a full-fledged data management system that supports fine-grain

content-based search. Our solution incorporates Information Retrieval (IR) tech-

niques which enable peers to share data without a shared schema. PeerDB employs a

name-based matching technique that matches schema elements by relying on the user

to supply additional information (meta-data) in order to reduce mismatch. PeerDB

primarily concerns itself with online information exploration. Online information ex-

ploration contrasts with traditional data translation and schema integration strategies

in the way that the results of the former are transient and users are more tolerant

to mismatched candidates. Schema integration, on the other hand, needs to be en-

sured of a certain degree of consistency and accuracy, which in turn, requires more

complicated approaches.

PeerOLAP has been proposed as a new data placement strategy for P2P sys-

tems, in particular, for data warehousing applications. PeerOLAP acts as a large

distributed cache for OLAP results by exploiting under-utilized peers. We have pro-

posed and evaluated three cache control policies (Isolated, Hit Aware and Voluntary)

that impose different levels of cooperation among the peers. Notably, our approach

xiii

facilitates fast and efficient query performance since data can be placed in strategic

locations that are based on different cache control policies. PeerOLAP achieves sig-

nificant performance gains with respect to traditional client-side cache systems. This

is accomplished by (i) query optimization techniques that determine which chunks

should be requested from the warehouse, and which should be retrieved from the

peers; (ii) caching policies that enable cooperation among caches and eliminate un-

necessary replication of objects; and (iii) re-configuration mechanisms that create

virtual neighbors of peers with similar access patterns.

Content-based similarity queries have received considerable attention in the P2P

community. In this work, we focus specially on similarity search in a broadcast-

based P2P system since such queries are considerably fuzzy. We propose FuzzyPeer,

which deals with the problem of data acquisition on heterogeneous data sources en-

vironments. In our system, the participation of peers is ad hoc and dynamic, their

functionalities are symmetrical, and there is no centralized index. To avoid flooding

the network with messages, we develop a technique that takes advantage of the fuzzy

nature of the queries. Specifically, some queries are “frozen” inside the network, and

are satisfied by the streaming results of similar queries that are already running. We

describe several optimization techniques for single and multiple-attribute queries, and

study their trade-offs. Our results suggest that by reusing the existing streams, the

scalability of the system improves both in terms of the number of users and through-

put.

In this research, we present some preliminary fundamental results, and describe

our initial work in the construction of an adaptive P2P data sharing and manage-

ment system. Our results indicate that with proper and innovative strategies, it is

possible to achieve significant performance gains over traditional systems despite the

dynamism of participants and heterogeneity of data sources. To this end, we be-

lieve that our contributions have successfully addressed some of the issues concerning

the performance, flexibility and scalability improvement of P2P-like distributed data

sharing systems that support dynamic data and dynamic workloads.

Acknowledgements

I would like to thank Professor Ooi Beng Chin, my supervisor, for his many sugges-

tions and constant support during this research. His constant motivation, exemplary

assiduousness and deep insight have enabled me to develop as a researcher. I would

like to take this opportunity to thank Associate Professor Tan Kian Lee, whose de-

tailed comments and suggestions concerning my work have not only contributed sig-

nificantly to the enrichment of this thesis, but also shaped my research capabilities to

a considerable extent. I am also thankful to Dr. Stephane Bressan for his guidance

through the early years of chaos and confusion.

I sincerely wish to thank Associate Professor Dimitris Papadias for giving me the

wonderful opportunity to work with him during my one-month research attachment

at the Hong Kong University of Science and Technology. I also wish to express my

appreciation to Dr. Panagiotis Kalnis for the useful discussion that I had with him

and also for making my time in HKUST meaningful.

I have had the pleasure of meeting Professor Zhou Aoying and many students

who are working in the database research lab at Fudan University, China. They are

wonderful people, and their support makes research like this possible.

I would like to thank copy-editor Alexia Leong for editing the thesis. Of course,

I am grateful to my parents for their patience and love. Without them, this work

would never have come into existence. I wish to especially thank my wife Liau Yen

Peng for encouraging me to do something I had only talked about for years, and for

helping me with this opportunity to pursue it to completion.

Finally, I wish to thank the following: Mr Cui Bin, Mr Rajiv Panicker, Mr Liau

Chu Yee and all members of the Database and Electronic Laboratories for their

friendship and willingness to help me in various way.

I sincerely thank the National University of Singapore for providing me with a

scholarship to support the early years of my doctoral studies, and for awarding me

xiv

xv

the Graduate Dean’s Award. Last, but not the least, I have been supported financially

by the NSTB/MOE research grant RP960668. For this assistance, I am very grateful.

Chapter 1

Introduction

Peer-to-peer (P2P) technology, also called peer computing, is an emerging paradigm

that is now viewed as a potential technology that could re-architect distributed ar-

chitectures (e.g., the Internet). In a P2P distributed system, a large number of nodes

(e.g., personal computers connected to the Internet) can potentially be pooled to-

gether to share their resources, information and services. These nodes, which can

both consume as well as provide data and/or services, may join and leave the P2P

network at any time, resulting in a truly dynamic and ad hoc environment. The

distributed nature of such a design provides exciting opportunities for new killer ap-

plications to be developed.

The P2P model can be best deciphered in terms of the client-server computing

model (Figure 1.1). The term client/server was first used in the 1980s in reference to

personal computers (PCs) on a network. In the client-server model, there is a central-

ized server that is dedicated to managing data storage, sharable printers, applications

software, databases and different varieties of computing resources; the client is defined

as a requester of services from the server and is normally a less powerful personal com-

puter. The core concept behind P2P computing is that each edge system can function

1

2

both as a client and a server. This suggests that the role and relationship of these

edge systems can be best described in terms of “peer-to-peer”.

Figure 1.1: Client-Server Computing Model

Although the concept of P2P is not new, the pervasiveness of the Internet and the

publicity gained as a result of music-sharing have caused researchers and application

developers to realize the untapped resources, both in terms of computer technology

and information. Edge devices such as personal computers are connected to each other

directly, forming special interest groups and collaborating to become a large search

engine of the information maintained locally, and in virtual clusters and file systems.

Indeed, over the last few years, we have seen many systems being developed and

deployed; e.g., Freenet [39], Gnutella [42], Napster [75], ICQ [52], SETI@home [95]

and LOCKSS [67].

The initial thrusts of the use of P2P platform were mainly social. Applications

such as ICQ [52] and Napster [75] enable their users to create online communities

that are self-organizing, dynamic and yet collaborative. The empowerment of users,

freedom of choice and ease of migration, form the main driving force for the initial

3

wide acceptance of P2P computing [83]. When deployed in a business organization,

the accesses and dynamism of P2P can be constrained as data and resource sharing

may be compartmentalized and restricted according to the roles that users play.

Consequently, various forms of P2P architectures have emerged and will evolve

and mutate over time to find a natural fit for different application domains. One such

success story is the deployment of the paradigm of edge-services in content search,

where it has been exploited in pushing data closer to users for faster delivery and

solving network and server bottleneck problems.

In summary, the P2P architecture is more cost-effective, compared to the tradi-

tional centralized client/server architecture. In the traditional centralized client/server

architecture, servers typically bear the predominant cost of the system, e.g., main-

tenance and administration overheads. The cost increases gradually, in a manner

proportional to the number of clients it serves. More resources such as processing

power and disk space are needed to handle increasing workloads. When the main

cost becomes too large, a P2P architecture can help spread the cost over all the

peers. Each node in the P2P system brings with it certain resources such as com-

puting power or storage space. Applications that benefit from huge amounts of these

resources, such as computation-intensive simulations or distributed file systems, nat-

urally lean towards a P2P structure to aggregate these resources to solve the larger

problem. In addition to cost-effectiveness, P2P systems can scale to a large extent by

adding more peers into the community. The scalability provided by P2P architectures

is important because it implies that the system can be built gradually depending on

the workload and with minimum administration cost. Furthermore, autonomy is an

essential hallmark of P2P systems which allow users to store their own data locally

4

instead of relying on dedicated centralized servers.

1.1 P2P Applications

Broadly, P2P applications can be classified into two categories: resource sharing and

data sharing. In resource sharing, applications allow enterprises or individuals to

leverage on available (idle or otherwise) CPU cycles, disk storage and bandwidth

capacity within a network. P2P computing enables the harnessing of underused re-

sources to perform tasks that would otherwise require a much more expensive machine

such as a super computer. Similarly, data storage devices could be exploited to create

a wide area storage network, and to push the data closer to the users. SETI@Home[95]

which is computation and storage intensive is one of the most well known examples.

In data sharing, applications allow users to access, modify and exchange infor-

mation in a flexible manner. Notable application domains are instant messaging,

groupware and file sharing. Instant messaging applications provide services such as

test messaging, email, voice-over-IP and mobile phone short messaging services. Such

facilities provide the convenience of the immediacy of phone calls, while providing op-

portunities for new and sophisticated applications that require real-time streaming

and response. Groupware are applications that enable inter-organization commu-

nication and collaborations, providing functionalities such as information sharing,

scheduling, calendaring and workflow. File sharing has so far attracted the most at-

tention, and has resulted in many systems that allow the copying of files and search

of the contents of files.

Efficient and effective resource location mechanisms are necessary to facilitate

speedy search in a vast volume of data sources. It is a major concern in the design

5

of P2P data sharing systems, such as P2P file sharing systems, which share different

varieties of data e.g., text documents, executable files, audio, image and video. There

are many mechanisms for locating resources in P2P systems. A naive approach is

to index these objects according to their file name and store the information in a

specialized index node [75]. Alternatively, resource locating can be based on the

propagation of messages from peer to peer until a match is found [42, 39]. More

recently, concepts from the “small-world” [60] phenomenon are employed to facilitate

finding information with a distributed index in P2P systems. A useful approach

based on the distributed hashing table (DHT) has become increasingly common.

Each object consists of a hashed identifier, which corresponds to a set of coordinates

in a structured hashed space [92, 31, 100]. Another representation of the distributed

index is the routing indexes [25], in which case, retrieval is achieved by means of

forwarding queries to neighboring peers that are more likely to have the answer. The

clear difference between routing indexes and DHT-based systems is that the former

does not require a specific structured network. Unfortunately, it has been shown

recently that existing resource location mechanisms do not support complex queries

and provide only coarse granularity of sharing [50].

Complex queries facilities are essentially vital components of many data manage-

ment applications such as bioinformatics applications. In bioinformatics applications,

the ability to retrieve similar sequence patterns would be useful to researchers in se-

quence analysis, structural prediction and reasoning in genomic data. As an example,

for a nucleotide sequence ACCTGATT, one can build an index over n-grams for the

various values of n (e.g., AC, CT, GA, TT) so as to provide for the retrieval of similar

patterns.

6

From the above discussion, it is clear that P2P data sharing systems must have

the following intrinsic properties: the ability to support fine-granularity queries, ex-

tensibility and flexibility to support complex queries, and no need for any specific

network structure.

1.2 Motivation

Various types of resource management schemes have been designed with the objective

of resolving the problem of data sharing in P2P environments. In P2P environments,

mostly the schema is not given in advance or it might be implicit in the data. Con-

sequently, it is especially challenging to impose an efficient query processing tech-

nique across heterogeneous data sources as that usually triggers off data integration

problems. One approach is to enforce uniform global semantics among peers as in

Napster-like systems. It has been observed that such a scheme allows for easier im-

plementation and management of resources. However, such a scheme is conceivably

inflexible for most applications, owing to the autonomous nature of each peer. Fur-

ther, a scheme updates operation, e.g., adding a new data type, which might have a

global effect that causes a reorganization of existing data objects. Instead of creating

a global scheme to represent the heterogeneity of data sources, one may define limited

global semantic schemas to be enforced on all participants. As a result, the fruitful

of traditional data integration approaches can potentially be reused [89, 45, 22, 103].

This approach has shown its usefulness in systems such as in [44, 48, 90, 84]. For

example, the PIAZZA system [44, 48, 47, 46] creates a schema mapping mechanism

to capture the structural and terminologies between a given source schema and a new

target schema. Consider that given a new target schema, a GAV (global-as-view)

7

definition that relates to the source schema is used to identify matching parts of the

source and target schemas. In contrast to the GAV formalism, PIAZZA allows users

to specify the mapping of data sources to the missing attributes in the target schema,

which is essentially a property of the LAV (local-as-view) formalism.

In contrast to conventional distributed data management systems, the schema in

P2P systems is relatively large and updates frequently. This poses a basic challenge

for a query optimizer in distributed computing, in that there is a need to provide a

minimum cost query plan based on limited knowledge of its environment. In addition,

other criteria such as the current workload status of peers, network bandwidth, data

objects shared by peers and location may not be constant from time to time. There-

fore, much literature has sought to derive a good decision with the constraint of a

small scope of global knowledge, since gathering complete knowledge of all available

resources of the environment requires a significant amount of collaboration among

peers and is not a practical viable option. The decision making for query processing

may be made in one of two ways: (1) By building a centralized catalogue of the

global knowledge collection of all available information. The decision here is made

in the centralized peer or among a few peers [111, 75, 74]. Incidentally, this ap-

proach reduces the intensity of the collaboration among peers. However, this model

introduces a single point of failure and a potential bottleneck from the standpoint

of scalability. (2) By having every peer making autonomous decisions with limited

knowledge of each other – which is a better solution in terms of scalability and feasi-

bility for P2P environments [59, 48, 78, 10]. Autonomous query decision making with

limited global knowledge is however understandably challenging. Take for example a

8

broadcast-based system (e.g., Gnutella [42]), which uses message flooding to propa-

gate queries. A peer knows only its neighbors as part of its global knowledge. Every

neighbor peer is contacted and forwards the message to its own neighbors until the

message lifetime expires. Even though this is an extreme simple case of autonomous

query processing, there remains the issue of determining an optimal message lifetime

for applications. The decision on message lifetime is very important since it signifi-

cantly affects performance; a long message lifetime may be counter-intuitive in some

environments (to minimize network traffic), while in others, they can be a prerequisite

(to explore more results).

Like semi-structured data sources, the data shared in P2P environments is not

strongly typed. It may be possible that different objects with the same attribute

may be of different types or vice versa. Notwithstanding this, there are varieties of

objects stored in a computer and each may require different access granularities. Some

objects only provide atomic granularity level access in which they are indivisible, e.g.,

an executable file. Others, such as text files and database objects, can be accessed at

different granularity levels, e.g., a relation entity in a relational database that can be

accessed in terms of rows, columns or tuples depending on the query requirements.

Clearly, implementing a P2P system that is able to support all kinds of granularity

level access without enforcing strongly typed relationships among objects is truly a

challenging task.

The network formed with the P2P architecture is dynamic as participant nodes

are allowed to join and leave the system at will. This characteristic is particularly

unique to P2P environments as compared to the traditional distributed computing

systems which treat an inaccessible node as an exception. Hence, the primary task of

9

data placing in P2P systems is to impose a mechanism to guarantee reliable behavior

in a dynamic and ad hoc environment. However, satisfying both these constraints

(i.e., reliability and dynamism) simultaneously may not always be possible in the case

of P2P systems, and hence a trade-off is usually called for. There are several intu-

itive solutions. All the data can be placed only on reliable peers, which can greatly

increase the reliability of the system (e.g., superpeer architecture [111]). Yet this

approach will reduce flexibility and create bottlenecks that impede system perfor-

mance. Alternatively, based on the selectivity approach, one can try to categorize

peers into reliable and dynamic peers. All original content can then be stored in the

reliable peers and replicated at the dynamic peers. Unfortunately, this complicates

the peer selection problem (i.e., selection of reliable and dynamic peers). Meanwhile,

maintaining consistency over replicated objects becomes a necessity in such cases.

In summary, many P2P data sharing systems have been proposed and deployed [39,

42, 75, 52, 95, 67, 7], but most have their own inherent limitations. First, they pro-

vide only file-level sharing (i.e., sharing the entire file) and therefore lack object and

data management capabilities and support for content-based search. Departing from

the existing work on distributed data management, we propose the sharing of data

without any predefined schema. Second, many existing P2P data sharing systems

are limited as far as extensiblity and flexibility are concerned. As such, there are no

easy and rapid ways to extend their applications quickly to fulfill new user needs.

Moreover, a node’s peers are typically statically defined. Based on the above obser-

vations, there is a great need for research on data sharing and query processing in

the presence of dynamic peers and heterogeneous data sources.

10

1.3 Thesis Goal and Contributions

The main goal of this thesis is to consider, outline and figure out a paradigm that in-

cludes self-organization, adaptation and fine granularity query support as its intrinsic

properties in order to deal with the scale and dynamism that characterize P2P data

sharing systems. Therefore, according to the goals to be stratified, this thesis focuses

on the following research lines:

1. P2P Platform - a platform that facilitates finer granularity data access and

sharing.

2. Query Processing - the impact of decision making without relying on global

knowledge.

3. Data Placement - effectiveness of various data placement policies in a network

with dynamic participants.

4. Data Acquisition - retrieving information from heterogeneous data sources

environments.

For this thesis, we have implemented and experimented with a variety of P2P

strategies, with the objective of solving the aforementioned tasks. In summary, we

have made the following contributions:

1. We have proposed a generic P2P platform, BestPeer, that facilitates fast and

easy P2P applications development. BestPeer not only facilitates finer granu-

larity of data sharing where partial content of a file may be shared, but also

shares computational power. Our solution incorporates a self-configurable ap-

proach, where a node in the BestPeer network can dynamically reconfigure itself

11

by keeping peers that are most beneficial to it.

2. We have extended the BestPeer architecture to support data management in

P2P environments. We have proposed PeerDB, which is a full-fledged data

management system that supports fine-grain content-based searching. PeerDB

incorporates the use of Information Retrieval (IR) techniques that enables peers

to share data without relying on a global shared schema.

3. We have presented new data placement strategies for P2P systems, particularly,

for data warehousing applications. PeerOLAP acts as a large distributed cache

for OLAP results by exploiting under-utilized peers. When a query is issued,

the initiating peer decomposes it into chunks, and broadcasts the request for the

chunks in a fashion similar to Gnutella. However, unlike Gnutella, PeerOLAP

employs a set of heuristics in order to limit the number of peers that are accessed.

Missing chunks can be requested from the data warehouse. PeerOLAP also

supports the adaptive reconfiguration of the network structure, which results

in reduced query costs. The system maintains statistics for the most frequently

accessed peers. Each peer, at regular intervals, reconsiders its set of neighbors

and stays connected to the most beneficial ones.

4. We have proposed a heuristics-based method to support content-based simi-

larity queries on ad hoc P2P networks. FuzzyPeer deals with the problem of

retrieving information from P2P networks without limiting itself to only exact

key matching queries. Due to the absence of centralized indexing in FuzzyPeer,

it is difficult to predefine a unified terminating criterion that is optimized for

all queries. We have addressed this issue by introducing the freezing technique:

12

some queries are paused and attached to answer streams from similar concur-

rently running queries, since the answers to both queries are expected to over-

lap. We have proposed a simple yet efficient distributed optimization algorithm,

which improves the scalability and the throughput of the system. Numerous

applications, including full-text search in large archives or fuzzy queries in dis-

tributed multimedia repositories, can benefit from our techniques. We have

demonstrated this with a case study of an image retrieval application.

1.4 Organization of the Thesis

The thesis is organized as follow:

• Chapter 2 gives a general introduction and discusses related work in the field.

• Chapter 3 describes the basics of the BestPeer platform, its architecture, and its

features that ease P2P application developments and overcome the limitations

of existing P2P systems. The chapter also presents an overview of the BestPeer

network, the relationship of each peer, and the message routine protocol of the

BestPeer platform. The performance study of the BestPeer architecture is also

presented.

• Chapter 4 provides a description of our proposed P2P-based data sharing and

management system (PeerDB). In the chapter, we cover the mechanism of find-

ing data without any predefined global schemas using an IR-like technique. It

also introduces the two steps of agent-assisted query processing. The perfor-

mance study on the effectiveness of the proposed method is also presented.

13

• Chapter 5 discusses our proposed technique for supporting OLAP applications

with the advantages of P2P technology. The chapter introduces the architecture

of PeerOLAP and discusses several heuristics of query processing methodologies

and data replacement policies. Extensive experiments that have been conducted

are presented in the chapter.

• Chapter 6 provides a description of our proposed FuzzyPeer. It presents the

architecture and concept of “frozen queries”. In the chapter, we discuss the two

different query processing techniques, Adaptive Query Freezing and Similarity

Query Freezing. In a case study, we also investigate the support for multiple-

feature queries, which is particularly useful for multimedia applications. The

performance study pertaining to the proposed schemes is presented.

• We conclude in Chapter 7 with a summary of our contributions. We also indicate

directions for future work.

Chapter 2

Related Work

2.1 Introduction

Peer-to-peer (P2P) computing is not a totally new concept. It has existed since

the beginning of distributed computing. With the advent of powerful computing

resources, a new breed of P2P technology has emerged. P2P has been studied ex-

tensively in recent years partly due to the popularity of the Napster system that

has caught the attention of millions of Internet users. The incredible popularity of

the system has drawn many researchers to further study the various issues of P2P

systems. In this chapter, we review several topics related to our work. In order to

gain a better understanding of the P2P system, we shall start with the taxonomy of

computing systems and look especially at P2P in the hierarchy. Next, we will briefly

introduce some prior works in P2P from the perspective of their architectures and

resources allocation. The fruitful of the facilities provided by the P2P community can

potentially be reused by other disciplines, for instance in agent development. Agent

computing provides developers with a way to define problem-solving computation at

an abstract level, whereas, the key strength of current P2P development centers on

14

15

resources gathering and defining efficient resource locating strategies. The integration

of the two paradigms is required for the development of self-evolving, open and scal-

able systems. Thus, we will discuss broadly the different ways of integrating the two

paradigms. Finally, we will review P2P from the point of view of database research,

specifically describing its complexity and some current solutions.

2.2 P2P Taxonomies

There are many ways to classify computing systems. In this section, we are par-

ticularly interested in classifying them according to their role and organization. In

general, computing systems can be classified into two main categories, namely central-

ized and distributed. Milojicic et. al. [72] present a taxonomy of computer systems

from the P2P perspective as in Figure 2.1.

Computer Systems

Centralized Systems Distributed Systems

Client-Server Peer-to-Peer

Flat Hierarchical Pure Hybrid

Figure 2.1: A Taxonomy of Computer Systems

Distributed computing can be divided into two models: client-server and P2P.

The client-server model can be further classified into the flat and hierarchical mod-

els. In the flat model, all clients are equal and they only communicate with a single

16

server. Examples of a flat model include traditional middleware solutions, such as

the Object Management Group’s (OMG’s) Common Object Request Broker Architec-

ture (CORBA) standard [81], where there are object-request brokers and distributed

objects. Many CORBA implementations have been developed and are commercially

available, for example Visibroker [4] which has developed by Borland, Voyager [41] by

ObjectSpace and WebSphere [5] by IBM. In contrast with the flat model, the servers

of one level in the hierarchical model are clients of higher-level servers. Examples

of a hierarchical model include the DNS server and mounted file systems [76]. More

recently, the concept of the hierarchical model is employed in web proxy caches such

as Squid [99].

The P2P model can either be a pure model or a hybrid. Napster [75] is one of

the famous P2P systems that utilize the hybrid model (some literature may refer

to it as the centralized server model). In this architecture, there exists a central

server, which is responsible for maintaining indexes on the meta-data of all peers in

the network. Figure 2.2 depicts the architecture of this category. The central server

(a) Registering/Joining. (b) Querying. (c) Data retrieving.

Figure 2.2: Centralized P2P Architecture

maintains a master list of all the meta-data of peers in the network. This meta-data

is used for describing the data housed in the peers and it may include file names, IP

17

addresses, line speed, etc. However, the data is located in the peers. Peers upload

only the meta-data of its local data to the server on startup, but not the data (see

Figure 2.2(a)). In order to locate resources, queries are sent to the central server and

the server performs database lookup for each query (see Figure 2.2(b)). The query

results, including the locations of files and ping numbers, user names, file sizes, bit

rates and other relevant information, are sent back to the peer which initiated the

query.

In this case, the servers are simply playing the role of answering queries and

indexing the meta-information submitted by connecting peers. However, this model

differs from the traditional client-server model. In this model, there exists interaction

among the peers to get a job done. While the hybrid model uses a centralized server

to perform part of its job, there is no centralized server in a pure P2P model. They

are completely decentralized in organization, with each peer playing an equal role.

Examples of a pure P2P model include Gnutella [42] and Freenet [39]. Figure 2.3(a)

illustrates the architecture. A node joins the network by “connecting” to any of

the nodes in the network. Most of the existing pure P2P systems, e.g., Gnutella,

employ the message propagation approach as their routing strategy, while others

such as Freenet, employ distributed catalogues to avoid flooding the network and to

reduce traffic. Figure 2.3(b) illustrates the search strategy adopted in Gnutella. A

query node submits its search query to neighboring nodes, which in turn forward

the query to their neighbors. This process continues until all the peers receive the

query (assuming Time to Live (TTL) has not expired, TTL decreases with every hop

it passes through, and expires when it equals zero). If a peer has a match for the

query, it will transmit the meta-data (e.g., file name, location, file size, etc.) along

18

(a) Register-
ing/Joining.

(b) Querying. (c) Data retrieving.

Figure 2.3: Fully Autonomous P2P Architecture

the original path to Peer A. However, the actual data downloading is done out of the

network (Figure 2.3(c)).

In addition, there are intermediate solutions for the pure P2P model where the

SuperNode architecture is employed. The P2P architecture with supernodes [111] is

structured hierarchically, and it consists of a supernode layer and a “normal” peer

layer (Figiure 2.12(a). Peers in the supernode layer are assumed to be more sta-

ble and have more processing capabilities. An example of such an architecture is

Morpheus [74], where peers are automatically elected to become supernodes if they

have sufficient bandwidth and processing power. Normal peers upload their shared

file meta-data to the selected supernode on joining the network. Each supernode

maintains indexes for several normal peers, and together, they form a local cluster.

A search query will first be sent to the supernode that the peer is connected to (as

in the centralized model). The supernode then searches its own database, check

whether it can be answered within its own cluster, and at the same time, propagates

the query message through the supernode layer with the intention of finding more

results. Queries are generally routed and propagated only within one supernode layer.

Figure 2.12 illustrates the search process. In Table 2.1, we show a comparison of these

19

Cluster

Cluster Cluster

SuperNode Layer

(a) Registering/Joining.

Cluster

Cluster Cluster

SuperNode Layer

(b) Querying.

Figure 2.4: P2P with Supernodes

three different P2P architectures: centralized servers model, fully autonomous model

and supernode model.

2.2.1 Comparison of Architectures

Table 2.1: Three Different Architectures of P2P

Centralized servers Fully autonomous Supernode
Definition Indexing is centralized,

but data is distributed.
Indexing and data are
distributed.

Hybrid of the previous
two.

Graphical
view (solid
line and
dashed line
respectively
denote direct
and ad hoc
connection)

20

Centralized servers Fully autonomous Supernode
Representative
system

Napster Gnutella Morpheus

Network
topology

Flat and frequently
changing topology,
caused by frequent
logon and logoff of
the peers. Uses cen-
tralized, proprietary
servers.

Flat and frequently
changing topology,
caused by frequent
logon and logoff. No
centralized, propri-
etary servers; totally
decentralized.

Hierarchical and
frequently changing
topology. Supern-
odes tend to have
higher capacities.
Each supernode main-
tains several peers
(supernode cluster).

Routing Central database
which holds indexes.
Clients(connect to
this server, search the
index and learn from
which clients they can
retrieve files.

Query message propa-
gated through the net-
work with TTL as life
time control. Message
is forwarded from a
peer to its neighbors if
its time has not lapsed.
Each node that has re-
quested objects passes
back its result set.

A peer sends a re-
quest to its assigned
supernode. Supernode
first searches its own
database while probing
other supernodes.

Advantages Centralized control;
easy to implement and
optimize.

No single point of fail-
ure; more robust and
comprehensive.

More responsive than
the fully autonomous
P2P architecture; bet-
ter load balancing and
less single point of fail-
ure than P2P with cen-
tralized servers.

Disadvantages Single point of failure;
Vulnerable censorship.

Expensive search cost;
more traffic on the net-
work.

Single point of failure,
though not too severe.

21

2.3 Search Mechanism and Algorithms

In general, the search mechanism in P2P systems can be categorized into two main

components: resource locating and query routing. Together, these two components

pose fundamental problems in resource sharing. The design of the search mechanism

in a P2P system will affect the performance of the overall system. In resource locat-

ing, given a resource id, the challenge is to locate the resource in minimal time to

yield better performance and response time. In contrast, query routing focuses on

optimizing the cost of the query being routed to the next peer in order to achieve

minimal time or bandwidth. The first step toward solving this problem is to have a

centralized model of resources sharing [75]. However, there are problems with using a

centralized server including having a single point of failure. In addition, maintaining

a unified view is computationally expensive and scaling up can be a serious problem.

In the following survey, we focus on routing and search strategies in a decentralized

environment. As presented in [9], the routing and search problem in P2P computing

is defined as follows: Given a set of peers, P = {p1, ..., pn}. Each peer pi has an

address pr
i storing resource object r that can be identified by a key k. In order to

locate a peer that has resource r, we have to search for key k in the lookup table

consisting of tuples of form (k, pr). The information (k, pr) is distributed over the

peers and each peer stores some of this information locally. Let p → locate(k) denote

the search request for k that can be addressed to every peer with the address p. If a

peer gets a request for information that is not locally available, it routes the request

to another peer p′ → locate(k). Clearly, selecting p′ becomes an important issue then;

the selection process is called a routing strategy. Many routing strategies have been

proposed in the literature. In the following section, we first classify them into different

22

categories and then describe in detail the representative system for each category.

Breadth-first – Gnutella [42] is a pure P2P system and performs search by

breadth-first traversal (BFT) of the nodes around the initiator peer. Each peer that

receives a query propagates it to all of its neighbors up to the maximum number of

hops (Figure 2.5). Each peer that has matching terms passes back its results set. To

save on bandwidth, a peer does not have to respond to a query if it has no matching

items.

k4, k6 P4

P3

P1

P2

P3 locate(k6)P2 locate(k6)

P1 locate(k6)

P2, P3

P4

Figure 2.5: Breadth-first Routing and Locating; Dash-box Denotes Routing Table,
Oval-box Denotes Local Shared Objects, Dash-arrow Denotes Download

Gnutella is completely decentralized. Its cost of information routing is low and

it is very robust. Peers are organized loosely and no global knowledge is required.

The advantage of BFT is that by exploring a significant part of the network, it

increases the probability of satisfying the query. The disadvantage is the overloading

of the network with unnecessary messages. Moreover, the search cost of this routing

technique is O(N), and therefore it is affected by the size of the network. Yang

and Garcia-Molina[110] observed that the Gnutella protocol could be modified in

order to reduce the number of nodes that receive a query, without compromising the

23

quality of the results. They proposed three techniques: (i) Iterative Deeping, where

multiple BFTs are initiated with successively larger depths, until either the query

is satisfied or the maximum depth d is reached. (ii) Directed BFT, where queries

are propagated only to a beneficial subset of the neighbors of each node. Several

heuristics for selecting these neighbors are described. This method is extended in [25]

with the maintenance of summarized information on the neighbors’ contents.

Depth-first – Freenet [39] uses depth-first traversal (DFT) up to depth d. Each

node forwards the query to a single neighbor and waits for a response before contact-

ing the next one. One of the main characteristics of Freenet is the preservation of

anonymity among peers. It uses the 160-bit SHA-1 [SHA-1] as its hash function to

generate the key for each file that stores information in the system. Freenet provides

varieties of mechanisms to generate the desired hashes, but the simplest is derived

from a short descriptive text string chosen by the user, which is referred to as a

keyword-signed key (KSK). The descriptive text string is then used as input to gen-

erate a key pair: public key and private key. The public key becomes the file identifier

and the private key is used to sign the file to provide some form of file integrity check.

However, KSK is unable to prevent two users from independently choosing the same

descriptive string for different files. This problem is addressed by introducing the

signed subspace key (SSK) scheme, which allows a user to create a personal names-

pace. The namespace is then used as input to generate a key pair as before. The

public namespace key and the descriptive string are hashed independently, XOR’ed

together, and then hashed again to yield the file key. The descriptive string, together

with the subspace’s public key, is then made available to the outside world for retriev-

ing the file. The third type of key is the content-hash key (CHK), which is simply

24

derived by directly hashing the contents of the corresponding file.

k6, k7 P4

P3

P1

P2

P3 locate(k6)

P4 locate(k6)

P1 locate(k6)

(k2,P2),(k5,P3)

(k2,P2),(k6,P4) k1, k2

Figure 2.6: Depth-first Routing and Locating; Dash-box Denotes Routing Table,
Oval-box Denotes Local Shared Objects

Each peer knows a fixed number of other peers and the keys that they store.

The keys are used to assist in the routing of query messages (Figure 2.6). For query

optimization, Freenet attempts to cluster files with similar keys into a single node.

Hence, search requests are routed to the peer with the most similar key. The next

similar key is used if the process does not yield any successful search result. When a

file is successfully located, it is passed back and replicated. The file’s key is inserted

into a local routing table as a successful result. Based on this mechanism, popular

files become highly replicated for more accessibility.

Like Gnutella, Freenet is fully decentralized and supports only equality search

where the exact keys need to be known, e.g., published in a common access directory.

However, in contrast to Gnutella’s BFT approach, a query that is submitted by an

initiator peer in the Freenet network will be propagated to one of its peers, where

there will be a wait for a reply before the query can be forwarded to another peer. If

25

there is no reply, the initiator peer selects a new peer to process the query. Depth-

first traversal has the advantage of minimizing the number of messages used in object

locating, but it increases the response time as messages are not able to propagate in

the network concurrently – unlike in BFT.

Implicit Binary Tree – Chord [100] is a distributed lookup protocol that sup-

ports fast data locating and allows node joining and leaving as a natural process.

Each peer is assigned a binary key of length m as its nodeID p, usually obtained by

hashing its IP address, p=SHA-1(IP). All the nodeIDs are mapped onto a virtual

one-dimensional circle of N = 2m possible entries according to their nodeIDs. For

each nodeID, the first physical peer next to it in a clockwise direction is called its

successor node, denoted by successor(p). Likewise, the predecessor node is the first

physical peer next to it in the anti-clockwise direction on the identifier circle, and is

denoted by predecessor(p) (see Figure 2.7).

Hash values

predecessor(p)

k
p

successor(p)

Figure 2.7: Relationship of predecessor(p), successor(p), k and p

On the other hand, each data item key is also assigned an m-bit ID, k, by hashing

the key where k=SHA-1(key). Both nodeIDs and keyIDs are uniformly distributed

26

and exist in the same ID space. Each peer with hashed identifier p is responsible for

all hashed keys k such that k ∈]predecessor(p), p].

In order to support efficient routing, each peer p stores a “finger table” which

consists of the first peer with hashed identifier pi such that pi = succ(p + 2i−1) where

1 ≤ i ≤ m. Two important properties can be derived from this scheme. First, each

node only stores information about a small number of other nodes. Figure 2.8 depicts

the property with m=4 and each label in the circle indicating an entry for finger table

in p. The furthest succ(p) is succ(p+8) which is the identifier that is located directly

opposite of p+1 in the identifier circle. Note that a peer knows more about nodes

following closely on the identifier circle than nodes farther away. Also, a node’s finger

table generally does not contain enough information to determine the successor of an

arbitrary key k. The routing algorithm needs O(logN) hop in order to find the target

destination.

1/2

1/4

1/8

1/16

P

Figure 2.8: Key Assignment in Finger Table

When querying for a record with key k, the virtual position in the identifier circle is

first calculated by hashing the key k. The query can start from any physical machine,

27

node n. Node n searches its finger table for node j, which has an ID most immediately

preceding k. The query will be routed to the node j to identify the next node having

an ID that is closest to k. The process is repeated until key k is located. For each

hop, the distance between the target and the current nodes in the Chord system will

decrease by half. Thus the routing time of Chord is O(logN) hop, where N is the

number of nodes in the network.

Considering the example in Figure 2.9, suppose node P3 wants to locate k1. Since

k1 belongs to the circular interval [P7,P3), node P3 therefore checks the successor

of entry [P7,P3) in its finger table, which is P0 in this case. Because P0 precedes

k1, node P3 will ask node P0 to find the successor of k1. In turn, node P0 will infer

from its finger table that k1 ’s successor is the node P1, and return node P1 to node

P3.

P0

P4

P7

P6

P5

P1

P2

P3

([P1,P2),P1), ([P2,P4),P3), ([P4,P0),P0)

P3 locate(k1)

([P4,P5),P0), ([P5,P7),P0), ([P7,P3),P0)

k1

Figure 2.9: Chord Routing Strategy

D-Dimensional Space – CAN Content-Addressable Network (CAN) [92] is a

distributed hash-based infrastructure that hashes keys into points in a d-dimensional

virtual space. The point indicates the virtual position for the data. The virtual space

28

is partitioned into many small d-dimensional “zones”, with a peer serving as owner

of the zone. An object O is mapped to a key k(O) in the space by a hash function.

A peer P responsible for object O is the one which has key k(O) in its zone. In the

d-dimensional space, two nodes are considered neighbors if their coordinate subspaces

adjoin each other. The d-dimensional space of the CAN architecture is illustrated in

Figure 2.10. In this figure, a two-dimensional coordinate virtual space is partitioned

into seven district zones and owned by seven different peers; A, B, C, D, E, F and

G. For example, peer D owns an X-Y coordinate zone of X [0-0.5] and Y [0.51-1]. In

addition to the self-zone information, neighboring information such as the coordinates

of the neighbor set is stored in each peer to facilitate routing between arbitrary points

in the space. For example, peer B and peer D are identified as neighbors of peer A

since their coordinate subspaces adjoin each other.

1.0

0.0

0.0 1.0

A B C

D E

(0-0.25,0-0.5)

(0-0.5,0.51-1)

(0.51-1,0-0.5)

(0.51-0.75,0.51-1)

(0.76-1,0.51-0.75)

node C’s virtual coordinate address

G

F(0.26-0.5,0-0.5)

(0.76-1,0.76-1)

Figure 2.10: 2-D Coordinate Overlay with Five Nodes

29

Using its coordinate neighbor set, CAN applies a greedy forwarding methodol-

ogy to the peers in the closest zones as its routing strategy (Figure 2.11). In a

d-dimensional space, each node maintains 2d neighbors and the average routing path

length is (d/4)(n1/d) hops.

P1 P3

P2 P4

P1 locate(k8)

P3 locate(k8)

P4 locate(k8)

k7, k8

(S,P2), (E,P3), (N,P2), (W,P3) (S,P4), (E,P1), (N,P4), (W,P1)

Figure 2.11: CAN Routing Strategy

Some refinements have been proposed to increase the robustness of the system.

The entire d-dimension space can be replicated to create two or more “realities”. In

each reality, the same set of information is stored and maintained by different peers.

In other words, the redundancy of a pointer to a piece of information increases the

robustness of the system. To improve the fault tolerance of the system, CAN proposes

the overloading zone approach in which different peers are responsible for the same

zone. Splits are only performed if a maximum occupancy (e.g., four peers) is reached.

30

2.3.1 DHT-based Schemes: The Limitations

CAN and Chord are distributed indexing schemes using hashing mechanism (DHT) to

locate content. Other frameworks such as Tapestry [114] and Pastry[31] are built on

DHT mechanism too, but they use different techniques to spread (key, value) pairs

across the community and deploy different query routing strategies. These works

demonstrate certain important points concerning data placement and site selection.

They all have logN -like performance in the lookup operation.

However, we observe that these systems have several limitations. In general, all of

the DHT-based systems using a uniform hash function perform object location selec-

tion and retrieval. Through the careful arrangement of the index structure, lookup

queries for an object k will be routed incrementally from a node to another that has

an ID that is closest to k. Although the DHT-based approach does provide guarantee

of performance and can help locate content deterministically, it also has potential

drawbacks. First, it has poor usability due to a lack of semantic flexibility. Similarly,

the measurement between two objects is determined by a predefined distance metric

(e.g., obj1 equals obj2 if and only if both have the same keys). This can be easily

visualized with the following example based on the Tapestry [114] routing strategy.

Tapestry is based on a longest suffix protocol that selects the next hop to be the

peer that has a suffix that matches the desired location in the greatest number of

positions. In a formal definition, a suffix routing from A to B at hth hop, arrives at

the nearest node hop(h) such that hop(h) shares a suffix with B of length h digits.

For instance, a query from nodeID 5324 will be routed to nodeID 0629 with traverses

over the following routing path 5324 → 2349 → 1429 → 7629 → 0629. Since each of

the IDs is generated via a uniform hash function, there are no semantical meanings

31

or relations defined in between any hash values. Second, how objects are chosen is

predetermined due to the structured arrangement of DHT-like schemes. Importantly,

applications are not allowed to choose an operator to define how objects are being

selected. As a result, there is no easy way of supporting complex queries in DHT-like

schemes. Third, it is conventionally assumed that random keys are mapped to a

single peer (i.e., the peer is then responsible for storing all the contents of the files

that are associated with the keys). A random choice of keys results in an O(logN)

imbalance[91, 19] factor in the number of items stored at a peer. Finally, users may

lose control of the objects they offer to share. Since all objects have to be placed in

predetermined hosts (which are usually remote hosts), it is almost impossible for the

user to keep his/her sharable objects locally, unless the object identifier is mapped to

the local host identifier. This is a violation of the P2P philosophy of peer autonomy.

2.4 Agents and P2P Computing: A Promising Com-

bination of Paradigms

As mentioned earlier, the key strength of the current P2P development is that the

community provides varieties of routine strategies for efficient resource locating. The

earlier work follows centralized models of resources sharing, such as Napster [75].

Perhaps this centralized architecture is most similar to the existing development of

multi-agent systems [56, 55, 106, 80]. For example, the Concordia platform [73,

23] developed by Mitsubishi Electric provides support for Java-based mobile agents.

Agent mobility is achieved via Java’s serialization and class loading mechanisms. Each

agent object is associated with a separate Itinerary object, which specifies the agent’s

32

migration path (using DNS hostnames) and the methods to be executed at each host.

In [55], the Aglets environment allows the creation of a group of agents that could

work cooperatively to solve a complex task. In [56], Ajanta, a Java-based system

that supports agent mobility, makes use of Java’s serialization for state capture. The

agent code is loaded on demand, from an agent-specified server. In all these systems,

the agents are required to contact a centralized resource manager to locate services.

2.4.1 Merging of Infrastructures: P2P and Agent

Agent and Peer-to-Peer (P2P) are two paradigms that realize the real power of com-

puting through autonomous, distributed and dynamic systems. These systems are

becoming increasingly popular as they enable users to exchange digital information

and share in problem-solving by participating in complex networks. In particular,

many researchers consider the agent system as an autonomous problem-solving entity

while P2P provides support for resources pooling. Merging these two disciplines by

adopting the best of each approach could potentially provide an ultimate solution that

is inexpensive, easy to use, self-learning, self-modifying, highly scalable and needing

no central administration.

To deal with the autonomy, scale and dynamism that characterize P2P and agent

systems, a merged paradigm is required and it should embody the following intrinsic

properties: self-organization, self-adaptation, automated information matching, and

support for discovery.

Given the respective infrastructures of P2P and agent technologies, from the de-

sign point of view, the key to facilitating the success of future developments of agent

and P2P lies in a neat integration of both technologies. On the one hand, the main

33

focus of agent technology is relevant to an abstract level of interaction, negotiation,

content analyzing and domain-specific protocol handling. On the other, P2P is par-

ticularly focused on meeting the challenges of scalability, robustness and effectiveness

of message routing at the lower level. The core mission of the infrastructure merger

is to ensure that the merged infrastructure is inter-operable between P2P and agent

technologies.

There are three broad approaches to merging the two technologies. One is based on

integrating P2P technology to underlie agent systems (the left image of Figure 2.12).

For instance, a DHT-based [92, 100, 31] routing strategy could be integrated into

an agent system for efficient agent routing. This approach is more agent-oriented

since it defines P2P as a subset of tools to facilitate efficient routing by agents. The

second approach is a P2P-oriented merging strategy, where the main idea is to build

a proprietary software agent on top of an existing P2P system (the right image of

Figure 2.12). The third approach operates on three tiers, with a middleware in

between the agent and P2P layers (the centre image of Figure 2.12).

P2P-Oriented
Systems

Agent-Oriented
Systems

P2P
Platform

Middleware

 Three-Tier
Systems

P2P System

Agent System

Agents
Systems

Figure 2.12: Infrastructure of P2P and Agents

34

Most of the existing agent systems provide support for agent collaboration and

communication but are not native to P2P technology. The development of P2P appli-

cations based on these platforms would require a longer and more costly effort. There

are several reasons that suggest the limitation of applying a traditional agent system

in a P2P model. First, traditionally, mobile search agents perform search operations

by moving themselves to the site containing the target information and executing a

given task. The agent’s path is either predefined or the agent has knowledge of where

to find the services. For example, in order to find the cheapest airfare, a travel agent

is given a set of sites that provide airfare query services. The agent’s programmers

have to know where the agent needs to go and where the next destination is after

the task at a site is completed. However, this may require a predefined knowledge

of the environment – which is not always be feasible, e.g., there may not exist any

predefined knowledge of who is offering a particular service and where. The problem

may be solved by integrating P2P query routing strategies into agent systems to form

agent-oriented systems. Obviously, the main drawback concerns the extensibility of

the system, for each upgrade of the services, e.g., incorporating new routing strate-

gies or new P2P services into the system, will cause a major disruption of the system.

Moreover, the whole architecture may possibly become fatter, which may in return

result in unpredictable behavior. Also, there may exist several agent systems with

P2P support but which are unable to communicate with each other. This may be due

to the fact that they employ either different agent communication languages or dif-

ferent P2P protocols. In apparent recognition of this problem, the agent community

has started to standardize agent communication languages such as in KQML [37] and

FIPA ACL [98]; meanwhile, P2P is still evolving.

35

P2P-oriented system mergers have inherited issues that are similar to those faced

by the agent-oriented approach. Rather than incorporating existing agent systems

to facilitate extensibility in the functionalities of P2P systems, specially designed

agents may provide assistance. This paradigm may be useful in a specific corporate

environment where the predefined protocol and languages have been set up as in the

agent-oriented approach. The two approaches that have just been discussed tend to

be closed systems rather than sustainable ones that could adopt any future publicly-

advertised standards.

The alternative solution – which is the third approach to the merger of agent and

P2P technologies – operates at the following three tiers: 1) an agent system running

on the peer to provide application-related services, 2) a P2P platform to handle

communication and the necessary message routing strategy, and 3) a middle tier that

handles the communication between the agent and P2P layers. Each tier focuses

exclusively on its assigned tasks. For example, when a new P2P routing strategy

is invented, only the P2P layer needs to be updated. Similarly, to accommodate

large numbers of participants, only the middle tier needs to be scaled by employing

industry agreed protocols and languages. Such an approach would help to develop a

fully open and truly scalable distributed data sharing system that supports dynamic

networking and heterogeneity in the data environment.

In Chapter 3, we shall discuss BestPeer, the working prototype of an integrated

agent-P2P system that is being developed to serve as a platform on which P2P ap-

plications can be developed easily and efficiently using agent technologies.

36

2.5 P2P: From the Data Management Perspective

In this section, we shall review P2P from the perspective of database management,

describing in particular, its complexity and some current solutions.

Database management systems (DBMSs) have dominated the marketplace for

years. Data is stored and modified, and information is extracted from a central server.

This provides an easy-access and controlled environment for the data. Nevertheless,

things have since changed dramatically. Most organizations and research commu-

nity have moved toward distributed DBMS (DDMS). One of the major motivations

behind the use of DDMS is the desire to provide an economical method of harness-

ing more computing power by employing multiple processing elements. Significant

achievements have taken place in the development and deployment of DDMS. These

include mechanisms to provide transparency in accessing data from multiple servers

[35, 34, 103, 22], and the support of distributed transactions to facilitate transparency

[89] and execute queries over fragmented and heterogeneous data sources [45, 89].

With many of the challenges in designing DDMS systems seeming to fall under

the banner of the P2P paradigm, the paradigm raises many new data management

issues and challenges on closer evaluation. Traditional DDMS is designed to run in a

stable and manageable environment, which is commonly described as the Distributed

Computing Environment (DCE). In network computing, DCE is an industry-standard

software technology for setting up and managing computing and data exchange in

a system of distributed computers. DCE is typically used in a larger network of

computing systems that include different size servers scattered geographically. DCE

uses the client/server model. Using DCE, users can access applications and data at

remote servers. Application programmers need not be aware of where their programs

37

will run or where the data will be located. Data integration and exchange between

heterogeneous data source are provided mainly through the use of views that map and

restructure data between heterogeneous schemas [24, 66]. These programs require the

preparation of unifying the logical structures of the underlying data sources so that

DCE applications and related data can be located when they are needed for use. In

addition, DCE is assumed to be a stable environment of the client/server model, i.e.,

where the server is accessible 7x24. In DDMS, the case where the server leaves the

network and causes the data to be inaccessible is considered exceptional.

In contrast, the P2P environment is dynamic and sometimes ad hoc. Peers are

allowed to join the network at any point of time and may leave at will. This results in

an evolving architecture where each peer is fully autonomous. With such a dynamic

environment, the need of maintaining inter-operability among peers is a great chal-

lenge. In addition, finding ways to cope with DBs that are incomplete, overlapping

and mutually inconsistent is perhaps the most exciting challenge, and which forces us

to significantly extend the previous techniques addressed by the database community.

2.5.1 Complexity of Data Management in P2P

Building systems to solve any of the aforementioned tasks requires that we choose a

method for modeling the underlying domain. In particular, in this work, we need to

model the P2P system itself. We define the complexity of data management in the

P2P system as follows. Assume we are given a set of N peer nodes connected by a

network that has limited bandwidth and a variety of data transfer speed. Each node

pi is heterogeneous in terms of storage, processing power, workload and schemas. A

peer, pi, may have data to share with other peers and the database is a relational

38

database. Therefore, the primary objective is to model, control, store and retrieve

data in this complex environment. We focus on three classes of tasks related to the

complexity of data management in P2P.

• Data Modeling and query capabilities :

Suppose we view the P2P environment as a directed graph and nodes are peers

in the P2P network and every pair of peers are connected by an edge. Assume

objects shared by each peer are atomic elements with object identifiers. Objects

can exist in several forms in the P2P environment, depending on the specific

system, e.g., file elements [42, 39, 75], unit of storage [63], computational power

[33, 88, 105], etc. The first task that we consider is formulating queries for

retrieving resources in the peer environment. The simplest instance of a query,

which is provided by a Napter-like search engine, is to locate objects, for exam-

ple, MP3 files, based on the filename. In general, the engine supports only one

form of object queries: given an object identifier, oid, return object o. Clearly,

this simple model has many limitations for applications which require more

complex predicates on the contents of an object, e.g., “find an image which has

filename like “sunshine” and contains “car” shape in the image”. In addition,

consider an example of a query asking for the top k similar images between the

search space of n hops. The complexity of content search notwithstanding, the

effectiveness of queries such as the aforementioned example is highly dependent

on the data placement that supports it.

• Data Caching and Placement :

Data placement is the assignment of a set of objects to be stored at each peer

in the network. The objective is to minimize the overall execution time of

39

a program graph in which the peers represent parallel operations and data is

communicated along the edges. The objective can either be achieved through

minimizing the number of routing hops [31, 92, 93, 100] or maximizing the

replication of objects [63, 39]. A data placement may be described extensionally

with a global set of oids at each peer [75] or by a set of local views for each

peer which describes the objects stored at the peer [42, 44, 78, 53]. A hybrid

data placement policy such as [74, 111] uses a set of selected peer which act

as centralized resources. This set of peers maintain a set of oids for a small

number of peers, and they are connected to each other to form a pure P2P

data distribution network. The cost of data placement is context-specific. Most

of the current P2P systems measure cost as the number of application-level

network hops. For example, the data read cost in Pastry is O(logN) and CAN

is proved to be O(N1/d) (refers Section 2.3).

• Schema Mediation and Data Integration:

Varieties of data may exist in each peer’s data repository, e.g., images library,

music files or document collections. Since these data are related in some way

i.e., semantically, it is possible to integrate the diverse data stores under one

uniform and homogeneous view. Conventional schema mediation such as the

GARLIC [22] and DISCO [103] systems require wrapper programs and these

systems presume all participant hosts are willing to share their schemas (if

they exist). Moreover, tight cooperation is required for programs and queries

translation. In essence, we find that this assumption is not desirable in the sense

that it requires close cooperation among peers (while some peers may refuse to

disclose their schemas for privacy reasons). Furthermore, the assumption may

40

not be feasible due to the limitation of resources and dynamism of peers in

the network [90, 44, 78]. Even worse, non-database systems handle data in

an application-specific format, causing the problem of integrating broad non-

standard data into a database environment.

In the following section, we survey various approaches and classify them by their

dominant way of solving the aforementioned tasks.

2.5.2 Data Modeling and Query Capabilities

In general, there exist two classes of data models used in P2P applications: Graph

Data Models and Semi-structured Data Models.

Graph Data Models

It is natural to represent the data in a P2P network with a labeled graph. Consider

a set of N peers P = {p1, .., pN} with data object d ∈ D. In the graph data model,

nodes represent peers (p ∈ P) or the objects shared by the peer (d ∈ D), and

arcs represent the relationships among them. Along with the graph model, several

paradigms have been proposed in order to support queries over graphs such as breadth-

first e.g., Gnutella, depth-first e.g., Freenet, and implicit binary tree e.g., Chord. The

details of each implementation can be found in Section 2.3.

Semi-structured Data Model

P2P is an environment that does not have a unified fixed schema that can be applied to

all peers. The representation of attributes might differ from peer to peer. Significant

41

amount of research has been conducted into data transformation or schema integra-

tion in static networks, such as the integration of web data sources, data warehouse

loading and XML message mapping. To address the automation of schema match-

ing, various techniques aiming at different types of schema information have been

devised. In [17, 69, 71, 64, 32], element names, data types and structural properties

are exploited. In [29, 30, 70, 32], the characteristics of data instances are examined to

facilitate finding semantic correspondences between elements of two schemas, while

the proposal in [17, 32] focuses on finding a solution to the problem based on utilizing

auxiliary sources, such as taxonomies, dictionaries and thesauri. These models were

not developed specifically for the P2P environment. However, these models inherited

some of the characteristics which can be taken into consideration when designing P2P

data models. Broadly speaking, semi-structured data refers to data with some of the

following characteristics [38]:

• the schema is not given in advance and may be implicit in the data

• the schema is relatively large and updates frequently

• the schema is descriptive rather than prescriptive, i.e., it describes the current

state of the data, but violations of the schema are still tolerated

• the data is not strongly typed, i.e., different objects with the same attribute

may be of different types.

Currently, several works on issues concerning the management of semi-structured

data in the P2P environment have been proposed [78, 90, 48]. For example, K.

Aberer et al. [8] focus on semantic interoperability in a P2P network with a gossiping

technique.

42

Complex Query Capabilities

Andrzejak and Xu [14] proposed a range queries support for the CAN architecture.

CAN is a data structure that is designed for the distributed storing of pairs (key,

data) to allow fast locating of data when a key is given in the P2P network (details

can be found in Section 2.3). However, CAN does not support queries of ranges.

Each discrete value in a range must be queried individually, which is infeasible in

most of the applications. In the work, the authors proposed an extension of CAN to

support range queries by using the two-dimensional Hilbert curve [15], with R2 as a

hash function. The Hilbert curve is a recursive function that maps the unit interval

[0.0, 1.0] to the unit square in the plane.

(.25, .5] (.5, .75]

(0, .25] (.75, .1]

(a) Level 2.

counter clockwise
rotation

clockwise
rotation

(b) Level 3. The dotted blue lines indicate links to connect the
elements of the Hilbert Space filling curves.

Figure 2.13: Hilbert Curve for Approximation Level 2 and Level 3

Figure 2.13 is a two-dimensional Hilbert curve that passes through every point of

the unit square [0, 1]2. Figure 2.13(a) shows the continuous curve with approximation

level 2 that has four equally sized intervals. Assume that the attribute values are in

the range of [0.0, 1.0]. Each zone corresponds to a certain subinterval of [0.0, 1.0]; (0,

43

0.25], (0.25, 0.5], (0.5, 0.75] and (0.75, 1.0]. The Hilbert curve with approximation

level l+1 can be generated by copying the sub-zones of level l to it shrunk, then

possibly rotating the curve for level 1 by 90 degrees, either clockwise or counter-

clockwise, and finally by linking together the elements of the Hilbert Space filling

curves. Figure 2.13(b) shows the example of approximation level 3.

In order to support range queries in the CAN structure, the authors introduced

interval keeper (IK) servers. IKs are the subset of peers in the CAN network that

respond to a certain sub-interval of [0.0, 1.0] of the attribute values. Each IK owns a

zone in the logical d-dimensional space. Two properties have been used to design the

mapping between the intervals and the zones. First, if two IKs have close-by intervals,

then their zones should also be close by. Second, if an interval I is split into interval

I1 and I2, then the zones of I1 and I2 must partition the zone of I. These properties

match well in the Hilbert curve for supporting efficient range queries in CAN.

The query processing is defined as follows: Given a query range attribute value, the

mechanism first computes the hypercube determined by the Hilbert function which

encompasses all zones of the IKs intersecting the query range. For a range query

whose lower and upper bounds are l and u, it first routes to the IK that owns the

middle point (l + u)/2, and then recursively propagates the request to its neighbors

until all the IKs which intersect the query are visited.

2.5.3 Data Caching and Placement

Piazza [44] is the first system to deal with database management issues in P2P sys-

tems. In Piazza, each peer can have any of the following four roles: data origin which

provides the original content, storage provider which stores materialized views, query

44

evaluator which uses its CPU resources to evaluate a query, and query initiator which

poses new queries to the system. Piazza deals primarily with the data placement

problem, i.e., the selection of strategic places to store data in order to improve query

performance. Although this is also an issue in distributed databases, there are funda-

mental differences since P2P systems do not have a centralized schema. In addition,

the membership of a peer in the system is ad hoc and dynamic, therefore it is very

difficult to predict or reason out the location and quality of the system’s resources.

In Piazza, the data placement problem is solved by logically dividing the system into

smaller spheres of cooperation and advertising the set of materialized views to all the

nodes of a sphere.

2.5.4 Schema Mediation and Data Integration

Peer-Programming Language (ppl) [44] is a formalism for mediating between peer

schemas and it has been used in the Piazza system as described before. It provides

decentralized schema mediation especially in defining the mapping expression syntax

between schemas and answering queries over multiple schemas. Research on data

integration and schema mediation has been extensively studied in the past decade.

Generally, two commonly used formalisms are the global-as-view (GAV) and local-

as-view (LAV) [11, 20, 104] approaches. GAV is an approach in which the mediated

schema is defined as a set of views over the data sources. In contrast, LAV uses

the approach that the source relation is defined as the view over mediator. The

comparison between GAV and LAV is presented in [66]. The ppl combines both

LAV- and GAV-style reformulation in a uniform way, and it is able to chain through

multiple peer descriptions to reformulate a query.

45

Bernstein et al. [90] introduce the Local Relational Model (LRM) as a data model

specifically designed for P2P applications. LRM assumes a set of peers in which each

of the peer is a node with a relational database. It exchanges data and services with

acquaintances, i.e., other peers. The set of acquaintances changes often due to site

availability and changing usage patterns. Peers are fully autonomous and there is no

global control or uniform view. A peer is related to another by a logical acquaintance

link. For each acquaintance link, domain relations define translation rules between

data items, and coordination formulas define semantic dependencies between the

two databases. In [59], mapping tables are proposed for data mapping in the P2P

environment. We observe that the notion of mapping table is similar to the notion

of domain relations proposed in [90]. They extend [90] by providing domain relation

management through capabilities of inferring new mapping tables and determining

consistency of mapping constraints. Lenzenrini [66] describes a general framework for

modeling data integration applications that can be used to represent P2P applications.

There is a sharp contrast between the work in [66] and [59]. The former focuses

on expressing constraints on the information contained in a peer whereas the later

imposes constraints on the information exchanged between peers.

2.6 Summary

In this chapter, we have provided a brief description of commonly used architectures,

routing strategies, data modeling and placement, as well as schemas integration for

P2P systems. Specifically, we have noted that the problem of data and resources

management in P2P becomes significantly challenging owing to the dynamistic and

46

heterogeneous nature of the data and resources. A survey of some existing P2P

systems has also been presented to demonstrate the importance of such systems in

today’s technological world.

Chapter 3

The Architecture of BestPeer: A
Self-Configurable P2P System

Peer-to-Peer (P2P) has opened up a new area of research in networking and dis-

tributed computing. It has been studied extensively in recent years, partly due to the

popularity of Napster [75] which has caught the attention of millions of Internet users.

Such systems are inexpensive, easy to use, highly scalable and do not require central

administration. Despite the advantages offered by P2P technologies, they pose many

novel challenges for the research community.

A P2P system is a program that integrates different data sources from multiple

remote nodes and forms a virtual resources-rich community. Many systems have been

proposed recently [108, 2, 42, 75, 74]. However, most of the existing P2P systems

are limited in several ways. First, they provide only file-level sharing (i.e., sharing of

the entirety of a file) and lack support for content-based search. Second, they lack

extensibility and flexibility. As such, there are no easy and rapid ways to expand

their applications quickly to fulfil new user needs. Third, a node’s peers are typically

statically defined. Fourth, current P2P systems either rely on a DNS server to re-

solve domain names or deploy a centralized server to maintain globally unique names

47

48

[52]. For the former, since a domain name server’s entries usually refer to permanent

IP addresses, the arrangement reduces the participation of nodes with variable con-

nectivity and temporary network addresses in the activities of peers. For the latter,

the server may become a bottleneck. Moreover, like all centralized approaches, such

systems are not scalable.

In this chapter, we present our solutions to the above problems. First, we integrate

mobile agent and P2P technologies. Since agents can perform operations at the peers’

sites, the network bandwidth is better utilized. More importantly, agents can be

coded to perform a wide variety of tasks, making it easy to extend the capabilities of

a P2P system. For example, while an agent may search for files based on file names,

another may perform a content-based search on the file. Second, we incorporate a

mechanism to dynamically keep promising (or best) peers in close proximity based

on some criteria. For example, peers that are most frequently accessed are directly

communicable while nodes that are less frequently accessed can be reached through

peers. This significantly reduces the response time to queries. Third, we introduce

a location independent global names lookup server (LIGLO) to uniquely recognize

nodes whose IP addresses may change frequently. Thus, a node’s peer whose IP

address may be different at different time remains uniquely recognizable. To avoid

the server being a bottleneck, we adopt a distributed approach where several LIGLO

exists in the BestPeer network.

We implemented BestPeer, a prototype of the integrated agent-P2P system that

incorporates all the above features. It is a three-tier architecture with an agent

layer at the top of the hierarchy, a middleware layer in the middle, and a P2P layer

at the bottom. The P2P layer is the lowest layer of the hierarchy for supporting

49

low-level communication and resource-sharing capabilities amongst nodes, and it is

self-network reconfigurable. To evaluate BestPeer, we propose a systematic method-

ology for evaluating P2P systems. Our methodology considers both efficiency and

effectiveness (quality of answers) of P2P systems. We conducted our experiments

on a cluster of 32 Pentium II PCs each running a Java-based storage manager [43].

Our results show that BestPeer provides excellent performance compared to tradi-

tional non-configurable models. We also evaluated BestPeer against the protocol of

Gnutella. Our study shows that BestPeer is superior to Gnutella.

3.1 The BestPeer Network

BestPeer is a generic P2P system designed to serve as a platform on which P2P

applications can be developed easily and efficiently. Figure 3.1 illustrates a BestPeer

network. The network consists of two types of entities: a large number of computers

(nodes), and a relatively fewer number of location independent global names lookup

(LIGLO) servers. Each participating node runs the BestPeer (Java-based) software

and is able to communicate or share resources with any other nodes (i.e., peers) in the

BestPeer network. Each node comprises two types of data: private data and sharable

data. Nodes can only access peers’ data that are sharable. Using Figure 3.1 as an

example, Peer A can directly connect1 to Peer B to obtain its sharable data, while it

can only reach Peer C via Peer B. However, in BestPeer, data are downloaded out-of-

network, i.e., a direct connection between Peer A and Peer C is established in order

to perform the data transfer (without having to go through Peer B). In addition,

messages that are transmitted from the peer to the query initiator need not follow

1Note that this is only a logical ‘connection’.

50

the query path.

We shall defer the discussion on the LIGLO servers to a later section. It suffices to

say here that they are used to uniquely identify nodes whose IP addresses may change

as a result of frequent connection to and disconnection from the BestPeer network.

Through the LIGLO servers, a node knows exactly who its peer is; otherwise, the same

peer with a different IP address each time it joins the network may be considered a

‘new’ participant. Strictly speaking, if a node does not care about the identity of its

peers, then, it need not use the service of LIGLO servers.

The BestPeer software essentially provides each node with an environment in

which (mobile) agents can reside and perform their tasks. This makes the system

highly extensible and powerful.

Figure 3.1: BestPeer Network

Now, consider a node (not a registered member of BestPeer) that would like to

51

become a participant of BestPeer. The process is as follows:

• The node registers with a LIGLO server. This is similar to a user registering

with a mail server in the Internet environment.

• The LIGLO server will issue the node with a global and unique identifier, which

we shall refer to as BPID (BestPeer ID). This BPID serves to uniquely rec-

ognize the node regardless of its current IP address. BPID is essentially a

(LIGLOID, NodeID) pair where LIGLOID is the IP address of the LIGLO

server and NodeID is a unique ID for the node assigned by the LIGLO server.

• At the same time, the LIGLO server will also send a list of (BPID, IP) pairs

that the node can communicate directly with, i.e., the direct peers of the node.

Here, the ith BPID value is the identifier of the ith peer, and the corresponding

IP value is the current IP address of this peer. We note that since the peer

is not obliged to inform LIGLO of its disconnection, the IP address may not

be a valid one. In BestPeer, LIGLO will periodically check the validity of its

registered participants’ IP addresses.

• The node is now a participant of BestPeer and is ready to communicate with

any peers (without going through LIGLO anymore).

For a participating node that wants to rejoin the BestPeer network after discon-

necting, the process is as follows:

• The node will send its IP address to its LIGLO. This allows its LIGLO to update

the IP address if it has changed.

52

• For each peer of the node, say p, it will send p’s BPID to its (i.e., p’s) registered

LIGLO server. Recall that p’s registered LIGLO can be obtained from p’s BPID.

• p’s registered LIGLO server will reply with the IP address of p if it is currently

connected to the network; otherwise, it will indicate that p is now offline. This

is necessary for the node to know its peers’ new IP addresses if they have been

changed. We note that p is not obliged to inform its LIGLO server that it will

be (or is) disconnected. As such, the information may not be accurate anyway.

• The node has rejoined the BestPeer network, and is ready to communicate with

its peers.

We note that this process is not necessary for a participating node that rejoins the

BestPeer network (except to inform the LIGLO server of its new IP address). It can

simply communicate with its existing peers. Should the IP addresses of some peers

be invalid (i.e., they may have changed their IP addresses or are disconnected), then

it can simply replace those peers with new peers that it encounters (based on certain

criteria).

Once a node is connected to the BestPeer network, it is ready to share its resources,

and has access to other nodes’ sharable resources. A node essentially broadcasts its

query to its directly connected peers, and its peers then broadcast the message to

their peers, and so on. Any nodes with matching results will respond to the initiating

node directly.

In BestPeer, there are two modes in which a node can have access to data from

other nodes:

1. In the first mode, nodes with matching answers will return the answers directly.

53

This method can provide fast answers but may result in overloading and poor

bandwidth utilization, especially if a significant amount of data is not desirable

(e.g., too much overlap, files too large, etc.).

2. In the second mode, nodes with matching answers will only indicate that they

have the information, e.g, by returning the file name, etc. The initiating node

will then send a further message to some, if not all, of these nodes to obtain

the desired information. This mode provides better resource utilization at the

expense of a delayed request. Since there is a delay, and the request is initiated

by the source of the query, it is possible that the target node may have removed

the desired content or updated it during the period of delay.

1. On UserQuery(q)
2. IF Local Request THEN
3. broadcast the request with propagation terminating condition
4. IF q can be satisfied locally THEN
5. Obtain results and update statistics
6. IF Remote Request Arrival THEN
7. IF propagation terminating condition is not met THEN
8. broadcast q with propagation terminating condition -1
9. IF q can be satisfied locally THEN
10. Send Reply //two modes; either results or meta-data/

Figure 3.2: Search Algorithm

A search algorithm is shown in Figure 3.2. The algorithm distinguishes between

the case when i) a request arrives from the local user, and ii) it arrives from another

peer. Time to Live (TTL) is used as the propagation terminating criterion. TTL

defines the maximum number of hops that a request may perform.

54

3.2 Features of BestPeer

In designing BestPeer, we sought to overcome the limitations of existing P2P systems.

As such, BestPeer was designed with several distinguishing features:

1. BestPeer combines the power of agent technology and P2P technology in a single

system.

2. BestPeer not only facilitates a finer granularity of data sharing where partial

content of a file may be shared, it also shares computational power.

3. BestPeer facilitates the dynamic reconfiguration of a BestPeer network so that

a node is always directly connected to peers that provide the best service (based

on certain optimization criteria such as providing the most number of answers

or providing answers most of the time).

4. BestPeer adopts a distributed approach to minimize bottlenecks at servers act-

ing as LIGLO.

In this section, we shall discuss these features in greater detail.

3.2.1 Integration of Mobile Agents and P2P Technologies

BestPeer, to our knowledge, is the first system to integrate two powerful technologies:

mobile agent and P2P. While P2P technology provides resource sharing capabilities

amongst nodes, mobile agents technology further extends the functionalities. In par-

ticular, since agents can carry both code and data, they can effectively perform any

kind of functions. With mobile agents, BestPeer provides not only files and raw data,

but also processed and meaningful information. For example, in BestPeer, an agent

55

can be sent to a peer which has the data file being sought after, to “digest” its content

and generate reports for the requester.

In BestPeer, we have implemented our own Java-based agent system instead of

using existing systems (e.g., [65]). Like the existing systems, both the agent and

its class have to be present for the agent to resume execution at the destination

engine. Thus, if the class is not already at the destination node, the class has to be

transmitted also. For the moment, we have adopted a purely “code-shipping” strategy

where a node will always perform its operation at the destination node (where the

data resides). This is a reasonable approach as it exploits parallelism by enabling

all peers to operate on their data simultaneously; otherwise, the node will become a

bottleneck.

More importantly, the use of agents allows BestPeer nodes to collect information

(e.g., what files/content are sharable, statistics, etc.) on the entire BestPeer network,

and this can be done offline. This allows a node to be better equipped to determine

who should be its directly connected peers or who can provide it with better service.

Traditionally, mobile search agents perform search operations by moving them-

selves to the site containing the target information and executing a given task. The

agent’s path is predefined. The agent’s programmers have to know where the agent

need to go and where the next destination is after the task at a site is completed.

Another problem with the traditional agent approach is that when an agent has more

than one directly connected host, the agent’s developers have to decide which path

to follow and then keep track of it. When the network grows more complicated,

searching through the network becomes a nightmare.

BestPeer adopts a different strategy. It solves these problems by providing a

56

simple interface to search all directly and indirectly connected hosts. An agent’s

path is transparent to the agent’s developer. An agent is sent to all connected hosts

automatically without a statically defined path. The agent is cloned and sent to all

the connected hosts in parallel. The process of cloning and forwarding will keep on

going until the agent’s lifetime expires. The lifetime of an agent is determined by

Time-to-live (TTL) and Hops variables. It is similar to other packet approaches used

in the networking environment. Once an incoming agent is received, and if the agent

has not expired (if TTL > 0), the remote host will decrease the TTL values of an

agent before sending it to other hosts that it is directly connected to. Hops variable

will be increased at the same time too. The seemingly superfluous use of TTL and

Hops together is to enable hosts to drop any incoming agent that already has a copy

on site.

3.2.2 Resource Sharing

The notion of sharing is one of the main factors that fueled the growth of the Internet.

Most P2P applications permit the sharing of static files such as MP3 audio files, text

files and image files. BestPeer supports the sharing of static digital files, active objects

that facilitate finer granularity of data sharing (and hence access control), as well as

computational power. For uniformity, all requests for these resources are performed

with agents.

Static Files

In BestPeer, any kind of files in digital format can be traded in its entirety including

text files, word documents, images, music files, movie files, executable code (programs,

57

software), and so on.

Active Objects

However, in many applications, different users may have different access rights to the

content of a file. While one may be allowed to see the entire content of the file, another

may be denied access to some sensitive information. To support finer granularity of

data sharing, BestPeer employs the concept of an active object. In active objects, two

types of elements are defined: data elements and active elements. A data element

describes the content of an object; an active element, on the other hand, contains

the name of an active node that operates on the object to generate the content.

Essentially, an active node is a ‘black box’ (i.e., an executable code) that receives

and sends messages and interacts with the outside through an interface. Depending

on the access right of the requester, the active node returns the appropriate content.

Using the same illustration, for a person who should be denied sensitive information,

the active node will scan the input file, filter away the sensitive information and

return the non-sensitive portion to the requester. It is the responsibility of the owner

to ensure the correctness of the active object (i.e., that sensitive information should

only be accessed by those with the proper access rights).

Computational Power

BestPeer also facilitates the sharing of computational power for requests to local files

as follows. The requester sends his/her request for a file together with an algorithm

(executable code) that operates on the file. In other words, the requester performs

the filtering task at the provider’s end. This feature has several advantages. First,

58

it allows filtering to be performed where the provider’s end does not provide the

capability (e.g., the owner does not provide an active object). Second, it allows

individual requesters to filter the content according to what they desire (e.g., different

requesters may be interested in analyzing stock data differently). This is in contrast

with the use of active objects where the owner defines what to filter. Third, it

facilitates extensibility – new algorithms or programs can be used without affecting

other parts of the system. Fourth, existing non-distributed objects can be easily

extended for use by a P2P application by leveraging on the support provided by

BestPeer. Finally, it optimizes network bandwidth utilization as only the necessary

data is transmitted to the requester.

This feature is easily realized by the integration of mobile agents into the P2P

framework. Agents that carry code can be dispatched to the data provider.

3.2.3 Reconfigurable BestPeer Network

Existing P2P systems either adopt a static peer network where a node always has

the same set of peers or allows users to manually determine the peers of a node (that

does not change automatically during runtime).

BestPeer takes a different approach – a node in the BestPeer network can dynami-

cally reconfigure itself by keeping peers that benefit it most (subject to the individual

node’s definition of ‘most benefit’). The rationale is based on a simple assumption:

peers that benefit a node most for a query are also likely to provide the greatest gain

for subsequent queries. Thus, BestPeer will always try to make a direct connection to

the nodes that have the highest priority. In this way, promising peers are traversed

before the less promising ones. Every BestPeer node has its own control over the

59

maximum number of direct peers it can have. Figure 3.3 illustrates an example of

BestPeer’s reconfigurable feature. In Figure 3.3(a), Peer X is the base node that

initiates a request. Here, Peer X initially has two directly connected peers – Peers A

and B. However, only Peer C and Peer E contain objects that match Peer X’s current

query. Peer X can then obtain the results from Peer E and Peer C directly. At the

same time, Peer X determines that Peer C and Peer E are not its direct peers and they

benefit it most. As such, Peer X will keep these two peers as its directly connected

peers (assuming Peer X can keep at least four directly connected peers), resulting in

the new network layout shown in Figure 3.3(b).

Peer X

Peer A Peer B

Peer C Peer D

Peer E

(a) Before reconfiguration

Peer X

Peer A Peer B

Peer C

Peer D

Peer E

(b) After reconfiguration

Figure 3.3: Example of BestPeer’s Reconfigurable Feature

Our approach is to keep promising peers as close as possible with no (or little)

information exchange between peers. This is to keep the nodes as autonomous as

possible. Moreover, since nodes can redefine the number of direct peers it would

like to have and implement their own reconfiguration strategies, any tight form of

“collaboration” will be complicated to realize and maintain. In BestPeer, three default

reconfiguration strategies have been designed and deployed.

The first strategy, MaxCount, maximizes the number of objects a node can obtain

60

from its directly connected peers. It works as follows:

• The node sorts the peers based on the number of answers (or bytes) they return.2

Those that return more answers are ranked higher, and ties are arbitrarily

broken. The assumption here is that a peer that returns more answers can

potentially satisfy future queries.

• The k peers with the highest values are retained as the k directly connected

peers, where k is a system parameter that can be set by a participating node.

We note that this strategy only keeps track of the k directly connected peers, without

any knowledge about these peers’ direct peers.

The second strategy, MinHops, implicitly exploits collaboration with peers by

minimizing the number of hops. It requires that peers piggyback with their answers

the value of Hops. This will indicate how far the peers are from the initiator of

the request. More importantly, this information provides an indication on what one

can access from one’s indirect peers. The rationale is as follows: If one can get the

answers through one’s not-too-distant peers (with small Hops value), then it may not

be necessary to keep those nodes (that provide the answer) as one’s immediate peers;

it is better to keep nodes that are further away so that all answers can be obtained

with the minimal number of hops. Thus, this strategy simply orders peers based on

the number of hops, and pick those with the larger hops values as the immediate

peers. In the event of ties, the one with the larger number of answers is preferred.

The third strategy, TempLoc, is a temporal locality based strategy that favors

nodes that have most recently provided answers. It uses the notion of stack distance

2We note that many different criteria can be defined. However, their usefulness is domain depen-
dent. We believe a simple strategy like MaxCount should suffice to cover a wide range of applications.

61

to measure temporal locality. The idea works as follow. Consider a stack that stores

all the peers that return results. For each peer that returns answers, move the peer

to the top of the stack, and push the existing peers down. The temporal locality of

a peer is thus determined by its depth in the stack. The top k peers in the stack are

retained as the k directly connected peers, where k is a system parameter that can

be set by the node.

1. On KeepBestPeers
2. K[] = Sort peers according to MaxCount, MinHops or TempLoc policy
3. // select top-k most beneficial peers based on the policies
4. P [] = Select all the direct neighbors
5. // currently connected best peers
6. FOR EACH Pi in P []
7. Evict Pi if it is Not in K[]
8. LOOP
9. FOR EACH Ki in K[]
10. Connect Ki if it is not a direct neighbor
11. LOOP

Figure 3.4: Algorithm KeepBestPeers.

The algorithm of keeping the best peers is shown in Figure 3.4. Selecting appro-

priate timing to trigger the network configuration is crucial. Obviously, too frequent

updates may be prohibited in some situations, while in others they can be a prereq-

uisite. There are two potential solutions. First, periodical update based on a time

parameter. For example, reconsidering the candidatures of best peers every 10 min-

utes. Alternatively, the system can employ an event-based mechanism: update best

peers whenever the statistics indicate that a non-best peer is more beneficial than at

least one of the current best peers.

62

3.2.4 Location-Independent Global Names Lookup Server

In P2P systems, since nodes can join and leave the network at any time, their IP

addresses may be different each time. As such, under DNS, a participating node is

effectively treated as a different peer whenever its IP address is different. However,

for some applications, recognizing a node (even if the IP address may change each

time it is connected to the network) is important. For example, a set of nodes may

agree to be peers to collaborate in performing some tasks. As another example, a

node may particularly be interested in monitoring the updates of a set of peers. These

cannot be realized with DNS alone. To facilitate the identification of a single node

that may have different IP addresses on different occasions, each participating node

can be assigned a unique BPID, and a centralized server keeps track of the (BPID,

IPaddress) pair whenever a node is connected. In this way, one can always be certain

of its peers and their “new” IP addresses.

BestPeer adopts such an approach – it introduces a Location-Independent Global

Names Lookup Server (LIGLO). LIGLO is a node that has a fixed IP and is running

the Location-Independent Global Names Lookup Server software. It provides two

main functions: generates a BestPeer Global Identity (BPID) for a peer and maintains

the peer’s current status, such as the current IP address and whether the peer is

currently online or offline (if this information is available). As mentioned, BPID is a

unique identifier for a peer. Unlike the centralized approach that is used in systems

like ICQ [52], where only one server has control to maintaining the consistency of

defined names, there is no limit on the number of LIGLO servers that can run in a

BestPeer network. Each LIGLO needs only to maintain its members’ name uniquely.

Most of the centralized name servers have to be powerful machines because they

63

have to handle huge numbers of requests. In contrast, a LIGLO server can limit

the number of members that it will handle based on its capability. When the limit

is reached, a LIGLO server can reject any new request to assign BPID in order to

preserve the efficiency for the existing members. The node has to seek another LIGLO

for registration. Once a node is registered with the BPID, it has to inform the LIGLO

each time it is connected to the BestPeer network by submitting its current IP to the

LIGLO. This information can be used by other nodes that may want to uniquely

track a node whose IP address may have changed.

The use of distributed LIGLO services has the following advantages:

1. No single point failure – LIGLO is a distributed name server system; therefore it

does not have any single point failure problem. For example, if a peer registered

with LIGLO A finds that LIGLO A is down, it can still communicate with other

peers that it has. In addition, other peers that are registered with other LIGLO

servers will not be affected at all. This is in contrast with the centralized name

server approach (such as the ICQ server), where a failure at the centralized

server means that all peers will lose their connection.

2. Unlimited name resources – One of the problems with the centralized name

server is that all the names must be uniquely defined. For example, if somebody

has registered the domain name of “www.mydomainname.com”, then that is the

one and only one. In LIGLO, on the other hand, a name is unique only with

respect to its own server. Two nodes can register to two different servers and

be assigned the same name as long as this name has never been previously

registered.

64

3. Scalability – A LIGLO server can be added easily into the network without

affecting any of the existing network environments.

4. Support temporary network addresses as the norm – LIGLO defines its own

protocol-specific addresses, BPID, to replace the dynamic IPs. This BPID is

fixed and can be used in place of dynamic or fixed IPs. Therefore, there is no

difference between nodes that have DNS entries and those that do not have. All

of them now have the same ability to hosting data and net-facing applications

locally.

3.3 A Performance Study

We implemented the BestPeer software with the features discussed in the previous

sections. Any node that installs the BestPeer software and registers with a pre-

determined set of LIGLO servers can participate in the BestPeer network. In this

section, we report an extensive performance study conducted to evaluate BestPeer.

We compare BestPeer against the Single-Thread Client/Server (CS) Architecture and

Multi-Thread CS Architecture in different network layout topologies. The basic dif-

ference between CS and P2P is that in a P2P model, the interacting processors can

be a client, server or both, while in a CS model, one processsor assumes the role of

a service provider while the other assumes the role of a service consumer. Our CS

model has some flavor of P2P in that a node can be both a client and a server. How-

ever, like the CS model, the server must return its result to the client – as such, the

results must be returned along the query path. We also compare BestPeer’s protocol

against Gnutella’s. We study two versions of BestPeer – a static BestPeer where the

65

reconfiguration feature is turned off, and a a dynamic BestPeer with the reconfigu-

ration feature turned on. This allows us to see the benefits of the reconfiguration

scheme. We shall denote these two schemes as BPS and BPR respectively. Before we

look at the experiments and findings, we shall propose a evaluation methodology for

P2P systems.

3.3.1 Experimental Setup

The experimental environment consisted of 32 PCs, each with an Intel Pentium

200MHz processor and 64M of RAM. Nine of the PC ran on WinNT4.0 operating

system, 22 on Window98, and one on Window Millennium. The physical network

layout is shown in Figure 3.5. The experiments were conducted when the machines

and the network were fully dedicated and the results presented correspond to the

average of at least three different executions. The variance across different executions

was not significant.

10 BaseT Hub

10 BaseT Hub

10 BaseT Hub

10 BaseT Hub

10 BaseT
Switch

Figure 3.5: Experimental Environment

66

In the experiment, there was a set of nodes in the network and each of these

nodes had a local copy of StorM object [18]. StorM is a 100% Java persistent storage

manager. Data to be shared were stored in StorM. For our study, each node stored

1,000 objects in StorM to be shared, and these objects were accessible via StorM’s

API. For simplicity, we set all objects to be of the same size: 1K bytes. Moreover,

there was no replication, i.e., there was only one copy of an object in the BestPeer

network used in our study.

We implemented a StorM agent that took as input a query from the user (in the

form of a keyword), and then searched through the entire BestPeer network. The

goal was to find the occurrences of objects in StorM of each node that matched the

query. The whole search process of StorM agent operated as follows:

1. Send a StorM agent. The base node sends an agent to its directly connnected

peers.

2. Execute the StorM agent. All the peers that receive the incoming agent prepare

a new thread of execution for the agent.

3. Interact with StorM object. The agent makes a comparison for each object

stored in the Shared-StorM database with its query. All the matched results

are stored in a temporal array.

4. Send the result back. The result is sent back to the base node.

We also incorporated the GZIP data-compression algorithm in the current im-

plementation of BestPeer. All the agents and messages used for communication be-

tween every node or peer were in compressed data representation. Compression and

67

un-compression were performed automatically by the BestPeer platform and were

transparent to the software developers.

3.3.2 On Different Network Topology

We first began by evaluating BestPeer on different logical network topology – namely

the Star, Line and Tree structures as shown in Figure 3.6. In the Star structure (see

Figure 3.6(a)), the central node was the base node that initiated the search query,

and all other nodes were directly connected to the base node. In the Tree structure

(see Figure 3.6(b)), the root node was the base node that initiated the search request.

Each node in the Tree structure, except for the leaf nodes, had k directly connected

peers. In the Line structure (see Figure 3.6(c)), all nodes had two peers, except for

the end nodes which had only one peer. Here, we used the left most node as the base

node that initiated the search query.

(a) Star Topology

Level 1

Level 2

Level 3

(b) Tree Topology

(c) Line Topology

Figure 3.6: Different Network Topologies Used in the Experiment

In this experiment, we varied the number of nodes from one to 32. We ran each

scheme several times and used the completion time as the performance metrics. The

68

completion time was taken to be the time when all answers from all nodes had been

received. Figure 3.7 shows the results.

On Star Topology

Figure 3.7(a) shows the results for Star topology. First, we note that Static Best-

Peer (BPS) and Reconfigurable BestPeer (BPR) show similar performance. This is

because under the Star topology, there is no difference between the two schemes. As

shown in the results, when we increase the size of the network, the Single-Thread

CS (denoted SCS) performs worse than the other models. This is because SCS can

only handle one connection at any moment – it has to complete the first operation

before switching to the second node for another operation. We also note that both

the MCS and BP-based schemes outperform SCS significantly. This is so because

these schemes exploit parallelism by simultaneously handling multiple connections

and transmitting multiple queries to all peers. We also observe that MCS is slightly

better than BPS/BPR, but the gain is not significant enough to be visible. We shall

explain this further when we look at the results for the Tree and Line topologies. Since

SCS performs poorly, we shall not discuss it further. For all subsequent experiments,

we shall use MCS only, and for simplicity, we shall denote it as CS.

On Tree Topology

Figure 3.7(b) shows the result on the Tree topology. We note that in this experi-

ment, we used only 48 nodes instead of 63 for level 5. There are several interesting

observations. First, we note that CS can outperform BPS and BPR (as noted in the

earlier experiment). This is expected as BPS and BPR are essentially code-shipping

69

0

200000

400000

600000

800000

1e+06

1.2e+06

0 4 8 12 16 20 24 28 32

C
om

pl
et

io
n

tim
e

(m
s)

Number of nodes

BPS/BPR
SCS

MCS

(a) Star Topology

60000

70000

80000

90000

100000

0 1 2 3 4 5

C
om

pl
et

io
n

tim
e

(m
s)

Number of levels

BPS
BPR

CS

(b) Tree Topology

60000

70000

80000

90000

100000

0 4 8 12 16 20 24 28 32

C
om

pl
et

io
n

tim
e

(m
s)

Number of nodes

BPS
BPR

CS

(c) Line Topology

Figure 3.7: On Network Topologies

70

strategies – not only do they need to transmit the code/agent to the peers, they

must also incur the overhead of reconstructing the agent at the peer site.3 On the

other hand, under CS, it simply transmits a query, and the algorithm at the server

performs the task there. As a result, when the number of levels is one (which means

all peers are directly connected as in the Star network), CS is superior. However, as

the number of levels increases, CS begins to degenerate. This is because CS requires

the data to be returned along the path by which the request is sent. For BPS and

BPR, the answers are returned directly to the query node.

Comparing BPR and BPS, it is clear that BPR outperforms BPS by virtue of

the fact that BPR is able to reconfigure itself, resulting in a more optimal network

structure. BPS, on the other hand, must always pass through the same set of nodes

regardless of their service quality.

On Line Topology

The results on Line topology (see Figure 3.7(c)) show a behavior similar to that of the

Star structure. Essentially, the various schemes have the same relative performance for

the same results as with the Tree topology, i.e., BPR is the best and BPR outperforms

CS for most cases (except when the number of nodes is very small).

3.3.3 Comparison of BestPeer and Gnutella

FURI [2] is a Gnutella protocol compatible Java program that can participate in a

Gnutella network. It is a full version program with a GUI interface that can perform

3There are two possible implementations for CS. In the first implementation, a server that acts
as a client consolidates all answers from its servers before returning the answers to its clients. In the
second implementation, a server acting as a client returns any answers that its servers may return
through it immediately. We adopt the second implementation in this work.

71

most of the tasks of a Gnutella servant. In this experiment, we shall compare Gnutella

with BPR (denoted BP here). We note that Gnutella essentially adopts an approach

similar to BPS, i.e., a node has a fixed set of peers and there is no dynamic adjustment

of the set of peers one is directly connected to. In this experiment, each node had

1,000 sharable text files (since the source we obtained from [2] can only evaluate

keyword search on text files). We also restricted the answers to those coming from

only a few nodes. The completion time was thus determined by the time when all the

answers arrived. We repeated a single search query four times during an experiment,

and several experiments were conducted to obtain an average result. Figure 3.8 shows

the results of the experiments.

Figure 3.8(a), where each node has up to eight directly connected peers, shows the

results for each run of a query. We observe that Gnutella is essentially not affected

by the number of times the query is run since it employs the same search path each

time. On the other hand, we find that for BP, the completion time for the first search

is much higher than that for the other searches for the same query. This is because

for the first search, BP also needs to route through the entire intermediate peers

before reaching nodes with the answers. For subsequent searches, BP’s reconfiguration

feature ensures that it can directly connect to these nodes with answers. As such,

for subsequent searches, the response time is significantly reduced. We also observe

that BP outperforms Gnutella in all runs. This is because, in this experiment, we

do not return the data files as output as Gnutella will not return results directly;

it simply sends the list of files that matches the query. Therefore, while BP and

Gnutella return results out-of-network, this feature is not used in the experiment.

In addition, Gnutella requires messages to be sent to the peers along the path of

72

the query traversal, i.e., the list of files have to be transmitted through the query

traversal path. On the other hand, under BP, nodes with matching files will send the

information directly back to the initiating node.

From Figure 3.8(b), we see the effect of the number of peers over four queries

each time. As the number of directly connected peers increases, BP remains supe-

rior. While Gnutella’s performance also improves with more peers, traversing the

same path each time and returning answers along the query path lead to its poorer

performance.

0

2

4

6

0 2 4

C
om

pl
et

io
n

tim
e

(x
 1

00
 m

s)

Number of times a query is issued

Gnutella
BP

(a) Number of Peers = 8

0

2

4

6

8

10

12

0 2 4 6 8 10 12

C
om

pl
et

io
n

tim
e

(x
 1

00
 m

s)

Number of direct peers

Gnutella
BP

(b) Effect of Number of Peers

Figure 3.8: BestPeer vs Gnutella

3.4 Summary

In this chapter, we have presented a P2P system called BestPeer that can be used

to support a wide range of applications. BestPeer has several nice features. First,

73

because it integrates agent and P2P technologies, it provides easy extensibility to

existing systems. Second, it provides a mechanism to reconfigure a node’s peers

based on some optimization criteria. Third, it supports distributed LIGLO servers

to maintain crucial information of BestPeer participants. Our extensive experimental

studies show that BestPeer is a promising system for distributed processing.

Chapter 4

PeerDB: A P2P-based System for
Distributed Data Sharing

In this chapter, we will extend the BestPeer framework that we have developed in

Chapter 3 for application to database functionalities.

Given the explosive growth of data available to us, the abilities to manage this

vast amount of data and provide fast and relevant answers to the questions have

assumed paramount importance. Managing and utilizing huge collections of data

requires a DBMS. However, the existing systems proposed in the literature are not

designed to support complex data processing. For example, many domain-specific

P2P systems that have already been deployed [85], such as Freenet [39], Gnutella [42]

and Napster [75], rely on simple keyword-based methods to extract data. Hence, these

systems support only coarse granularity sharing (sharing of the entirety of a file) and

lack object/data management capabilities and support for content-based search.

Based on this observation, we present PeerDB, a P2P-based system for distributed

data sharing. PeerDB has several distinguishing features. First, each participating

node is a full-fledged object management system that supports content-based search.

Second, in PeerDB, users can share data without a shared global schema. Third,

74

75

PeerDB adopts mobile agents to assist in query processing. Since agents can perform

operations at the peers’ sites, the network bandwidth is better utilized. More im-

portantly, agents can be coded to perform a wide variety of tasks, making it easy to

extend the capabilities of a PeerDB node. For example, an agent may further manip-

ulate the data retrieved from a node, filtering away uninterested objects or sending

back only summarized data. Finally, PeerDB supports mechanisms to dynamically

keep promising (or best) peers in close proximity based on some criteria. For example,

peers that are most frequently accessed are directly communicable while nodes that

are less frequently accessed can be reached through peers. This significantly reduces

the response time to queries.

We implemented PeerDB, a prototype P2P distributed object management system

that incorporates all the above features. To evaluate PeerDB, we propose a systematic

methodology for evaluating P2P systems. Our methodology considers both efficiency

and effectiveness (quality of answers) of P2P systems. We conducted our experiments

on a cluster of 32 Pentium II PCs. Our experimental results show the effectiveness

of PeerDB for distributed data sharing.

4.1 P2P Distributed Data Management: What Is

It?

As noted in the introduction, practically all existing P2P systems are designed to

support data sharing at a coarse granularity (e.g., files, documents). In this section,

we first distinguish between P2P systems and distributed database systems. We then

“define” P2P distributed data management by looking at three examples (due to

76

space constraints) of how P2P technology can be employed for distributed database

applications. These examples will also show the need for database technology in P2P

systems.

4.1.1 P2P vs Distributed Database Systems

There are several notable features that distinguish P2P systems from distributed

database systems (DDBS)[78]:

1. In P2P systems, nodes can join and leave the network anytime. In DDBS, nodes

are added to and removed from the network in a controlled manner, i.e., when

there is a need for growth or retirement.

2. In P2P systems, there are usually no predetermined (global) schemas among

nodes. Queries are largely based on keywords. There are several reasons for

this. First, most of the current applications do not require a fixed schema.

(Napster is one exception where data is shared with a fixed schema – the one

that describes music files.) Second, as nodes can join and leave the network at

anytime, a fixed schema does not reflect the actual information that may be

available at a single time. In DDBS, nodes are typically stable and have some

knowledge of a shared schema.

3. In P2P systems, nodes may not contain the complete data. Further, nodes

may not be connected. Thus, answers to queries are typically incomplete. By

“completeness”, we mean all answers that satisfy a query. In DDBS, one expects

and can actually retrieve complete sets of answers.

77

4. In P2P systems, content location is typically by “word-of-mouth”, i.e., a node

routes its query to its neighboring nodes, and so on. In DDBS, the exact location

to direct the query is typically known.

Based on the above points, we do not consider data integration systems to be P2P

distributed data management systems (even if each node has the capabilities to act as

middleware and server). Instead of formalizing the concept of P2P distributed data

management systems, we show with sample applications what such systems may be

like.

4.1.2 Health Care

In a hospital, each specialist has a group of patients who are solely under his care.

While some patient data is stored in a centralized server of the hospital (e.g., name,

address, etc), other data (e.g., X-rays, prescription, allergy to drugs, history, reaction

to drugs, etc) is typically managed by the specialist on his personal PC. In most

cases, the specialist is willing to share the patient data that he maintains on his PC,

but there are always some cases where he is unwilling to share the data for different

reasons (e.g., part of his research program on a new drug, etc). Meanwhile, by making

the sharable patient data available to others, the specialist can compare notes with

his colleagues on different patients suffering from similar symptoms, hence helping all

specialists in the hospital to make better decisions on their treatment (e.g., drugs to

prescribe, reactions to look out for, etc).

Here, we can deploy a P2P distributed management system: (1) any specialist

can join/leave the network; (2) the answers need not be complete (i.e., missing data

from some specialists is not critical), (3) nodes have to search for content as in P2P

78

systems, (4) the schema defined by each specialist may be different from those defined

by the others, (5) there is a need for data management, and (6) each specialist has

something to share and is also interested in the data of the others.

4.1.3 Genomic Data

P2P can also be applied in bioinformatics applications such as sequence analysis,

gene finding, structural prediction, molecular mining or biological reasoning in ge-

nomic data. The discovery of new proteins necessitates complex analysis in order to

determine their functions and classifications. The main technique that scientists use

in determining this information has two phases. The first phase involves searching

known protein databases for proteins that match the unknown protein. The sec-

ond phase involves analyzing the functions and classifications of similar proteins in

an attempt to infer commonalities with the new protein. While there are several

known servers on genomic data (e.g., GenBank, SWISS-PROT and EMBL), there is

much more data that is produced each day in many laboratories all over the world.

These scientists create their own local databases of their newly discovered proteins

and results, and are willing to share their findings with the world. Clearly, this is an

application for P2P distributed data management systems for the same reasons as

heath care applications.

4.1.4 Data Caching

In the above two examples of P2P distributed data management systems, each par-

ticipant is actively involved in the process of consuming and supplying data. P2P

distributed data management can also be deployed in passive nodes: nodes that are

79

used to allocate resources (storage or computational power) to data that they may or

may not be interested in. Caching results from earlier queries is one such example –

a node may have issued a query to some server (e.g., a data warehouse), the query’s

results can be cached on the node (or some other neighboring nodes), another node

that requests for data that overlaps with the existing query results can potentially

obtain partial answers quickly from this node, and the remainder from the original

server. This also lightens the load on the original server, and moves the data to or

closer to edge devices.

4.2 Peering Up for Distributed Data Sharing

In this section, we will present PeerDB, a prototype P2P-based system for distributed

data sharing. PeerDB’s P2P-enabling technologies are provided by BestPeer [1, 77].

However, it extends BestPeer in the following ways. First, data in each node is

managed by a database system. In other words, PeerDB is a network of database-

enabled nodes. Second, data can be shared without a global schema. Third, query

processing is assisted by mobile agents. Fourth, each node can reconfigure itself

based on some optimization criteria from the answers returned. We shall discuss

these features here.

4.2.1 Architecture of a PeerDB Node

Figure 4.1 illustrates the internal structure of a PeerDB node. There are essentially

four components that are loosely integrated. The first component is a data manage-

ment system that facilitates the storage, manipulation and retrieval of the data at

80

the node. We have used MySQL [3], which is a popular Open Source Database, as

our storage server. Thus, the system can be used on its own as a standalone DBMS

outside of PeerDB. We note that the interface of the data management system is

essentially an SQL query facility. For each relation that is created, the associated

meta-data (schema, keywords, etc.) is stored in a Local Dictionary. There is also

an Export Dictionary that reflects the meta-data of objects that are sharable with

other nodes. Thus, only objects that are marked for export can be accessed by other

nodes in the network. We note that the meta-data associated with the Export Dic-

tionary is a subset of those found in the Local Dictionary, and the distinction here is

a logical one (as the actual implementation minimizes redundancy). We shall defer

the discussion on how the Export Dictionary will be used, and the details on the

meta-data to when we address the query processing strategy.

The second component is a database agent system called DBAgent. DBAgent

provides the environment for mobile agents to operate in. Each PeerDB node has

a master agent that manages the query of the user. In particular, it will clone and

dispatch worker agents to neighboring nodes, receive answers and present them to the

user. It also monitors the statistics and manages the network reconfiguration policies.

The third component is a cache manager. We shall defer the discussion of the cache

manager to a later subsection. Here, it suffices for us to know that we are dealing

with caching remote data in secondary storage, and the cache manager determines

the caching/replacement policy.

The last component is the user interface. This provides a user-friendly envi-

ronment for users to submit their queries, maintain their sharable objects, and in-

sert/delete objects. In particular, users search for data using SQL-like queries.

81

User
Interface

Object
Management

System

PeerDB
Node

PeerDB Node

DBAgent Cache Manager

Export Dictionary

Local Dictionary

DBAgent PeerDB
Node

DBAgent

Figure 4.1: PeerDB Node Architecture

4.2.2 Sharing Data without Shared Schema

One of the main objectives of PeerDB is to allow users to manage their (private and

sharable) data using a database management system (DBMS). However, as noted,

there are no predetermined and uniform schemas that nodes share. Unless users

interact with one another somehow, we can expect data to be defined differently by

different users, even if they may have interests in data from a common domain. For

example, in naming a relation, a genome scientist may label his set of protein database

by protein name (e.g., kinases, annexin) while another may name it by species (e.g.,

mouse, human, zebrafish). Similarly, at the attribute level, one scientist may call

the length of sequences length while another may use the term len. To complicate

matters further, a scientist may create a single “universal” schema while another may

“normalize” his database to multiple tables. Thus, it is difficult to locate data if the

traditional method of exact matching of relation names/attributes is used.

To address this issue, we adopt an approach based on Information Retrieval (IR)

[16]. For each relation that is created by the user, meta-data is maintained for each

82

relation name and attribute. These are essentially keywords provided by the users on

the creation of the table, and serve as a kind of synonymous names. (One can think

of this as a miniature thesaurus.) Continuing with our example, for a table of Kinases

proteins, while the relation name may be Kinases, the keyword protein will be useful

during search. Similarly, two users defining the length of a sequence variously as len

and length are likely to have the common keyword length. In this way, potentially

relevant data can be determined using the following relation-matching strategy:

• Consider a query (R, A, C) where R is the set of relations, A is the set of target

attributes, and C is the set of conditions. (This corresponds to a simple SPJ

query in SQL.) Let V denote all attributes that appear in A and C.

• R is searched against keywords for relation names, and V is searched against

keywords for attribute names. Note that this search involves looking for match-

ing keywords of R against keywords for other relations; the same holds for

attributes. The result of this search process will be a list of relations whose re-

lation name keywords match R (or their keywords) and/or attribute keywords

match attribute names in V (or their keywords).

• Given a query Q of the form (R, A, C), and a relation D with attributes T , the

degree in which D matches Q can be computed as follows:

Match(Q,D) =
(wtr∗r)+

(
wta∗ N

match
(A∪C,T)

)

wtr+(wta∗N(A∪C))

where wtr and wta are weights assigned to reflect the importance of matching

relation and attribute names respectively. r takes the value of 1 or 0; r is 1 if

and only if D and R share some common matching keywords. Otherwise, r is

83

0. N
match

(A ∪ C, T) refers to the total number of matching keywords between the

attributes involved in Q and those of D. N(A ∪ C) indicates the total number

of distinct keywords for the attributes in Q. The set of relations that potentially

contain the answers to Q are those that have scores above a certain threshold

value.

With the above strategy to locate matching relations, we note that we can share

data without the explicit sharing of schema. This flexibility is also an important

distinction between PeerDB and existing distributed DBMS. Note that the relations

and meta-data will be returned to the user first, who will then decide on the data

that is of interest (see the next section on query processing strategies).

We illustrate the strategy with an example. Suppose we have four peers that share

genomic data. Peer P1 defines a relation Kinases(SeqID, length, proteinSeq). Peer P2

defines a relation Protein(SeqNo, len, sequence). Peer P3 defines two relations Pro-

teinKLen(ID, seqLength) and ProteinKSeq(ID, sequence). Peer P4 defines a relation

Protein(name, char). Figure 4.2 shows the keywords defined for these relations by

the various peers. Suppose the user at peer P1 (who knows his own schema but not

the schemas of other peers) issues the following query to look for kinases sequences

that are longer than 30 base pairs:

SELECT SeqId, proteinSeq

FROM Kinases

WHERE length > 30;

Now, since one of the keyword for Kinases (relation name) is protein, and protein

is also a keyword for P2’s relation Protein and P3’s relations ProteinKLen and

84

ProteinKSeq, these relations match the query relation. Similarly, we find that the

attributes SeqID, proteinSeq and length all have matching keywords in P2 and P3.

For P3, we note that the query may have to be turned into a join query when it

is evaluated there. For P4, we only have a match in relation name but not in the

attributes. Thus, P4 will be ranked lower than P2 and P3. Semantically, we note

that P2’s data is not actually those that P1 is interested in (since it is not Kinases

data). As such, it is important to have the meta-data and additional information

returned to the users before fetching the data.

Peer Names Keywords
P1 Kinases protein, human

SeqID key, identifier, ID
length length

proteinSeq sequence, protein sequence
Protein protein, annexin, zebrafish

P2 SeqNo number, identifier
len length

sequence sequence
ProteinKLen protein, kinases, length

ID number, identifier
P3 seqLength length

ProteinKSeq protein, sequence
ID number, identifier

sequence sequence
Protein protein, kinases, annexin, . . .

P4 name name
char characteristics, features, functions

Figure 4.2: Keywords for Relation/Attribute Names

85

4.2.3 Agent Assisted Query Processing

In PeerDB, we adopt a two-phase query processing strategy. In the first phase, the

relation matching strategy is applied to locate potential relations. These relations

are then returned to the query node for two purposes. First, it allows the user to

select the more relevant relations. This is to minimize information overload when

the data may be syntactically the same (having the same keywords) but semantically

different. Moreover, this can minimize transmitting data that is not useful to the

user, and hence better utilize the network bandwidth. Second, it allows the node to

update its statistics to facilitate future search processes. The second phase begins

after the user has selected the desired relations. In this phase, the queries will be

directed to the nodes containing the selected relations, and the answers are returned.

PeerDB’s query processing is completely assisted by agents. In fact, it is the

agents that are sent out to the peers, and it is the agents that interact with the

DBMS. Moreover, a query may be rewritten into another form by the DBAgent (e.g.,

a query on a single relation may be rewritten into a join query involving multiple

relations). To elaborate on the query processing strategy, we shall distinguish two

types of queries: the local query and the remote query. A query is local to a node if

it is initiated there, and remote otherwise.

Processing Local Queries

When a user issues a query (SQL-like selection query), a master agent will be created

to oversee the evaluation of the query. The following operations are performed by the

agent:

86

Phase I

• The agent “parses” the query to extract the list of relation and attribute names.

• The relation matching strategy is applied on the local dictionary. Promising

relations can then be returned to the user immediately.

• At the same time, the master agent will clone relation matching agents and

dispatch them to all neighbors of the node. Besides the query, the agent also

carries with it two other information: (a) IP address of the node that initiates

the query; (b) TTL (Time to live). The former is needed to allow remote nodes

to return answers directly to the query node. The latter indicates the lifetime

of an agent. This allows the process of cloning and forwarding to keep on going

until the agent lifetime expires.

• The master agent will wait for the answers (relations schema) from remote

nodes. On receiving any answers, they will be returned to the user for selection.

• For peers that return multiple relations, the master agent returns the individ-

ual relations (if their scores on the number of matching keywords exceed the

threshold) as well as the combinations of relations that are related (e.g., have a

key-foreign key relationship). Referring to our earlier example, P3 will produce

three answers: proteinKLen, proteinKSeq, and proteinKLen �� proteinKSeq.

Phase II

• For each relation selected by the user, the master agent will clone a data retrieval

agent for that relation. One of the first tasks of the agent is to reformulate the

query so that it matches the relation name and attributes at the target node.

87

Clearly, it is possible that some attributes may be dropped because the target

relation has no such matching attributes. For a combination of relations, the

data retrieval agent will also rewrite the orginal query into a join query involving

the combination of relations.

• If the target relations are found locally, the worker agent will submit a reformu-

lated SQL query to the DBMS to retrieve the data. The data is then returned

to the agent, formulated for output and returned to the user.

• If the target relations are on a remote node, then the worker agent will be

dispatched with the query node’s IP address. Answers will be returned directly

from the remote host to the master agent who will then formulate and return

the answers to the user.

We note that the two phases are only logical. In fact, as soon as relations are returned,

they are shown to the user, and the user can start selecting relations; and as soon as

a relation (or combination of relations) is selected, the agent is sent out to retrieve

the data. In this way, answers are returned progressively (without a long waiting

time). Moreover, users could be viewing answers (data) while other agents are still

searching the PeerDB network for candidate relations.

Processing Remote Queries

As mentioned, for a remote query, it is essentially an agent that arrives at the node.

Phase I: Relation Matching Agent

• If the agent has not visited the node previously, the TTL value is reduced by

88

one.

• The agent will search the export dictionary. Promising relations are then

returned to the query node at the IP address provided by the agent.

• If TTL > 0, the agent will clone more relation matching agents and dispatch

them to the neighbors of the current node; otherwise, the agent will be dropped.

Phase II: Data Retrieval Agent

• The agent will formulate an SQL query and submit it to the DBMS.

• Once the answers are retrieved, they are returned to the query node directly.

If the retrieved data needs to be further processed before being returned, then

the agent will perform the task (with the code that it carries along) and return

the summarized data.

• The agent may then be dropped.

4.2.4 Monitoring Statistics

One of the tasks of the master agent is to perform the reconfiguration of the network

based on a reconfiguration policy selected by the user. The master agent monitors two

types of statistics. The first is the relation information obtained from the first phase

of the query processing strategy. In particular, the keywords of selected relations

may be “exchanged” to update the meta-data. The second is the number of answer

objects obtained from the selected relations. This can be used to determine the nodes

to be connected directly.

89

PeerDB also extends BestPeer with a temporal locality based reconfiguration pol-

icy that favors nodes that have most recently provided answers. It uses the notion of

stack distance to measure the temporal locality. The idea works as follows. Consider

a stack that stores all the peers that return results. For each peer that returns an-

swers, move the peer to the top of the stack, and push the existing peers down. The

temporal locality of a peer is thus determined by its depth in the stack. The top k

peers in the stack are retained as the k directly connected peers, where k is a system

parameter that can be set by the node.

4.2.5 Cache Management

PeerDB supports the caching of answers returned from remote nodes in order to

reduce the response time for subsequent answers. For every relation that the user re-

trieves (in Phase II of the query processing strategy), the answers are cached. Caching

raises many complicated issues. We look at three of them here. First, the cached

copy may be outdated. To handle this, PeerDB only keeps the answers for a fixed

period of time, after which the cache is invalidated. Second, since storage space is

limited, we adopt the least recently used (LRU) replacement policy: whenever we

run out of disk space, we replace the cache that is least recently used. Finally, in a

P2P environment, many PeerDB nodes may be caching the same data. As such, a

search may give rise to multiple “copies” of the same data. While this is a semantic

issue that is to be left to the user, we attempt to minimize the effort as follows. For

each cached relation, we also maintain the information on the BPID of the source

node (recall that each node has a unique identifier BPID provided by the BestPeer

technology). When a node is not the source of a relation, its response to a search will

90

Figure 4.3: PeerDB Interface.

also include the BPID of the source node. All relations, except one, with the same

keywords from the same source node will be pruned away during Phase I of query

processing.

4.3 A Performance Study

We implemented the PeerDB software with the features discussed in the previous

sections. Any node that installs the PeerDB software and registers with a predeter-

mined set of LIGLO servers can participate in the PeerDB network. Figure 4.3 shows

the PeerDB interface – Window 1 shows the query interface, Window 2 displays the

results of matching schemas, and Window 3 displays the answer tuples from a selected

relation.

In this section, we report an extensive performance study conducted to evaluate

PeerDB in two aspects: its relation matching strategy and its performance.

91

4.3.1 On Relation Matching Strategy

In this section, we present the experimental results of PeerDB in the search for match-

ing relations in the P2P environment without a global schema.

We generated a large number of relations as follows. First, we created a set of

semantically equivalent categories, C. In each category, we had c keywords which were

assumed to represent the same semantic meaning, i.e., any two keywords referred to

the same meaning. Next, we created a set of relations, and each relation was assigned

two to five keywords (since users are not expected to enter too many keywords)

selected randomly from an arbitrary category picked from C. Each relation had a

number of attributes, and each attribute was also assigned two to five keywords picked

randomly from an assigned category from C.

The following query form was used in our experiment:

SELECT attribute_X

FROM relation_i

WHERE attribute_Y = value_1

and attribute_Z > value_2;

We used standard precision and recall measures as the performance metrics. Pre-

cision measures the purity of search results, or how well a search avoids returning

results that are not relevant; recall refers to the completeness of the retrieval of rele-

vant items. We consider a relation to be relevant to the query if more than k keywords

from the relation names match. In our study, we set k to 2. This set formed the basis

for the computation of precision and recall.

92

For each relation that was examined, we computed its matching score. We var-

ied the threshold value from 0.1 to 0.9. For each result returned, we computed its

precision and recall. The results are shown in Table 4.1.

Threshold Precision Recall
0.1 0.33 0.85
0.3 0.36 0.78
0.5 0.50 0.57
0.7 1.00 0.28
0.9 1.00 0.21

Table 4.1: Precision and Recall for Varying Threshold Values (Synthetic Data)

In order to further verify the findings from the previous experiments, we used

the real data Gene/Protein dataset extracted from KDD CUP 2001 [57] for this

experiment. First, we partitioned the data into various relations, some of which had

the same semantic meaning, and some did not. Then we distributed the relations to

the peers, so that the relations with the same semantic meaning would go to various

peers. Lastly, we populated the tables, and added meta-data to them.

We issued the query from one peer, and collected retrieved relations from other

peers. Since we could tell whether the retrieved relations were relevant, we could

compute the precision and recall to measure the performance. We varied the threshold

value from 0.1 to 0.9. The results are shown in Table 4.2

As shown in Table 4.1 and Table 4.2, when the threshold value was large, the

precision was high as most of the relevant relations could be identified. In fact,

in this experiment, we had 100% precision when the threshold was 0.7 and above.

However, the recall was low because of the large number of irrelevant relations that

shared some common keywords. These results are consistent with typical IR search

93

Threshold Precision Recall
0.1 0.42 1.00
0.3 0.50 1.00
0.5 0.60 1.00
0.7 1.00 0.66
0.9 1.00 0.30

Table 4.2: Precision and Recall for Varying Threshold Values (Real Data)

results, showing that the proposed strategy is effective.

4.3.2 On PeerDB Performance

To evaluate PeerDB’s performance, we conducted different sets of experiments. We

first compared PeerDB against the Client/Server (CS) Architecture. The basic dif-

ference between the two models is that in a P2P model, the interacting processors

can be a client, server or both, while in a CS model, one processor assumes the role

of a service provider while the other assumes the role of a service consumer. Our CS

model had some flavor of P2P in that a node could be both a client and a server.

However, like the standard CS model, the server must return its result to the client

– as such the results must be returned along the query path. We studied two ver-

sions of PeerDB – a static PeerDB where the reconfigurable feature was turned off,

and a dynamic PeerDB with the reconfiguration feature turned on. We compared

both schemes with the CS architecture. This allowed us to see the benefits of the

reconfiguration scheme. We shall denote these two schemes as PDMS and PDMR re-

spectively. We also compared PeerDB with the pure message-passing based protocol

and the agent-based protocol. The objective in this experiment was to show the cost

and effect of using agents in PeerDB. Before we look at the experiments and findings,

94

we shall propose an evaluation methodology for P2P-based systems.

Evaluation Methodology

Any system has to be evaluated for its efficiency and effectiveness. The former deals

with the performance issue, while the latter deals with the quality of the answers.

Based on these two issues, the criteria for the evaluation of a system may be drawn up.

Unlike existing distributed systems, there are no clear criteria on how P2P systems

should be evaluated. Like an Internet search engine, the answers to queries depend

on the peers that are searched, which may not include every peer in the P2P network.

In addition, every query may involve different peers (since peers change over time).

For the purpose of evaluation, a controlled environment is necessary. We propose

that the following three scenarios be evaluated. First, different schemes should be

evaluated based on a fixed set of nodes. This can be useful for a set of nodes that

exploit P2P technology to facilitate collaboration, i.e., it is essentially a traditional

distributed environment where all nodes participate in answering a query. Here, we

can study how different P2P protocols or reconfiguration strategies perform.

Second, in a P2P network, the rate at which answers are returned is important.

This is because users have no idea as to which peers will be providing the answers to

their queries, and how many peers will be searched. A long initial waiting time is not

likely to be acceptable to users.

Third, the quality and quantity of the answers returned are important measures

too. A node may return answers quickly, but it may return only very few answers or

answers that are not really relevant to the query. While quality is based on the seman-

tics of the query, the quantity of answers is easy to obtain and use as a performance

95

metric.

Experimental Setup

The experimental environment consisted of 32 PCs, each with an Intel Pentium

200MHz processor and 64M of RAM, all running on the WinNT4.0 operating system.

The physical network layout is shown in Figure 3.5.

There were a total of 10,000 objects, each of which was 10 KB. The data was

randomly assigned to nodes, such that each node held 1,000 objects.

In practice, we expect users to be interested only in part of the entire dataset.

There will always be some data that is of no interest to them, and will never be

accessed by them. For example, in the case of Napster, while there is always classical

music being shared, a user who prefers contemporary music may just dislike totally

the classical music that is being shared. In our experiments, we tried to model this by

dividing the queries of each user as follows: (a) x% of queries were directed at ‘hot’

data in the entire dataset. This hot data was also frequently accessed by other users.

(b) y% of queries were directed at z% of the cold data. This modeled the case that

individual users may have their own taste on cold data. (c) The remaining queries

were directed at the remaining cold data. As default, we set x as 80%, y as 15%, and

z as 20%. Moreover, 20% of the data was hot, and 80% of it was cold.

The experiments were conducted when the machines and the network were fully

dedicated. Moreover, each node was “warmed up” to fill out its local storage before

we started to collect results on the experiments. The results presented correspond

to the average of at least three different executions. The variance across different

executions was not significant.

96

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
om

pl
et

io
n

T
im

e
(m

s)

Storage Ratio

PeerDB
CS

Figure 4.4: Effect of Storage Capacity

Effect of Storage Capacity on Caching

In the first set of experiments, we compared PeerDB with the CS architecture by

varying the storage capacity of each peer. We defined the storage ratio as the size

of the storage size of a node to the size of the objects stored at the central server.

Figure 4.4 shows the effect of storage ratio on response time. First, we observe that

as the storage ratio increases, the response time of both methods decreases. This is

expected as more objects could be found in the local and neighboring peers. This

also clearly illustrates the benefits of sharing storage resources. Second, we note that

PeerDB outperforms the CS model. This is expected as the CS model requires the

answers to be returned via the search path.

97

60000

64000

68000

72000

76000

80000

84000

0 4 8 12 16 20 24 28 32

C
om

pl
et

io
n

tim
e

(m
s)

Number of peers completed

PDMS
PDMR

CS

Figure 4.5: Rate of Returning Answers

PeerDB vs CS

In this experiment, we first evaluated the performance of PDMS, PDMR and CS on

the rate at which answers were returned. The number of nodes was fixed at 32. A

search query was issued four times, and the average time at which nodes responded

was noted. Figure 4.5 shows the results of the experiment. In the figure, the point

(K, T) indicates that K nodes have responded after T time units. We note that it is

possible that under different schemes, different nodes respond at different time and

with different answers. We shall defer this discussion to the next experiment.

As shown in the figure, PDMR is still the best scheme, outperforming PDMS

by virtue of its ability to reconfigure the network. It is able to reach out to more

promising nodes directly – after each query, PDMR reconfigures itself so that the

next query can be directed to the more promising nodes first. We note that, except

for the first few nodes, CS returns answers much slower than PDMR/PDMS – as it

98

60000

64000

68000

72000

76000

80000

84000

0 60 120 180 240 300 360 420 480 540 600
T

im
e

to
 o

bt
ai

n
an

sw
er

s
(m

s)

Number of answers

PDMS
PDMR

CS

(a) First Search Query

(b) % Answers Returned

Figure 4.6: Number of Answers Returned

can only return answers along the path that the query has been transmitted.

Having a fast initial response time is not good enough. It is possible that nodes

that return answers first provide very few answers. For the earlier experiments that

studied the initial response time, we also kept track of the number of answers that

were provided by each node. Figure 4.6(a) shows a plot of the results. As shown, it

is clear that CS returns the first few answers much faster than PDMS and PDMR.

This is expected since the first few directly connected nodes that receives the query

99

can return their answers immediately. For PDMS/PDMR, the overhead of the code-

shipping strategy results in a longer initial response time performance. However, as

more answers are returned, PDMS/PDMR proves to be superior to CS, demonstrating

the superiority of P2P technologies over traditional CS models. We also note that

PDMR performs generally better than PDMS. From Figure 4.6(b), we can further

confirm the effectiveness of PDMS/PDMR over CS. By the time PDMS and PDMR

have received all the answers (100%), CS has only returned about 40% of the answers.

As observed earlier, PDMR can generate more answers quickly by virtue of its ability

to keep more relevant peers “closer”.

Benefits of Agent-based Querying

In this experiment, we studied how much could be gained by using an agent-assisted

query processing strategy. Here, we assumed that the query required some functions

that were not supported by the DBMS. As such, the operation could not be pushed

down to the DBMS. Instead, the data had to be first retrieved, and the operation

performed on the data, before the answers to the query could be obtained.

In this experiment, we showed the cost and effect of using the pure message

passing protocol and the agent-based protocol in the P2P environment. Here, we

assumed the query required only one remote access. The whole process was divided

into three phases: sending message (message-passing protocol) or agent (agent-based

protocol) to remote host, remote host processed the request, and remote host returned

the result to the originator. The answer size was set as 0.1% of the whole dataset.

The difference between the message-based and the agent-based protocol is that the

message-based protocol is a data-shipping strategy, i.e., remote data is transferred to

100

the query node to be processed there. On the other hand, an agent-based protocol

is a code-shipping strategy that carries the processing code to the remote site and

performs remote execution. Only answers produced by the agent will be returned.

The total response time includes the cost of data transfer, i.e., message, code and

data, and processing time. In Figure 4.7, we observe that the completion time of

the message-based protocol increases exponentially when the data size increases. The

overhead of the data-shipping results in a longer response time performance. As a

result, when the number of data to be transferred across the network increases, the

mobile agent-based protocol is superior.

Most network applications (client/server-based or P2P-based) require more than

one communication with another node to complete each transaction. Therefore, in

this experiment, we looked into the messages overhead in the pure message-based

protocol vs. the agent-based protocol. In this experiment, multiple remote executions

were required to answer a query. Essentially, the query requested for multiple objects

from a remote site; however, the query only knew the object to retrieve after the

earlier requests were completed. Thus, we had a chain of queries and computations.

In our test, each of the object requested would cause 5MB of data transfer across the

network.

The results on multiple-communication transaction is shown in Figure 4.8. Clearly,

the agent-based approach is superior. Under the message-passing protocol, the query

is transmitted, and the data is returned to the node to be processed on the node.

This has to be done before subsequent operations can be issued. On the other hand,

in the mobile agent approach, all operations can be performed at the remote node

once the code is transmitted. Once the agent is constructed at the remote site, it can

101

0

70000

140000

210000

280000

350000

420000

490000

560000

630000

700000

10 20 30 40 50 60 70 80 90 100
C

om
pl

et
io

n
T

im
e

(m
s)

Data Size (MB)

Message-Based Protocol
Agent-Based Protocol

Figure 4.7: Completion Time vs. Data Size

interact with the remote node directly until the final result is obtained. Therefore, it

optimizes network resources and bandwidth.

4.4 Summary

In this chapter, we have presented a P2P-based distributed data sharing system called

PeerDB. PeerDB has several nice features. First, it employs a data management sys-

tem. Moreover, it facilitates data sharing without any predetermined shared schemas.

Second, because its query processing capabilities are assisted by mobile agents, it

provides easy extensibility to existing systems. Third, it provides a mechanism to re-

configure a node’s peers based on certain optimization criteria. Our extensive exper-

imental studies show that PeerDB is a promising system for distributed processing.

102

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

B
yt

es
 T

ra
ns

fe
re

d
(M

B
)

Number of Query

Message-Based Protocol
Agent-Based Protocol

Figure 4.8: Communication Overhead

Chapter 5

PeerOLAP: An Adaptive P2P
Network for Distributed Caching
of OLAP Results 1

5.1 Introduction

In this chapter, we will study various data placement strategies for P2P systems,

in particular, how a query optimizer select a minimum cost query plan based on

limited knowledge of its environment. We shall focus on data warehouse applications

by extending BestPeer to support On-Line Analytical Processing (OLAP) queries.

OLAP queries typically involve large amounts of data and their processing should be

efficient enough to allow interactive usage of the system.

Distributed database technology is extensively used in data warehouses to access

the operational databases, and to extract, clean and integrate the data. [40] discusses

the particular issues of the data warehouse environment for distributed and parallel

computation. The warehouse itself can also be implemented as a distributed database.

1This chapter is based on a collaboration [53], which has been partially used in a thesis [87]. The
work reported here is a substantially extended version of [53].

103

104

If a central warehouse exists, standard replication methods can be used to transfer

data to departmental data marts [86]. For decentralized implementations, where

each department builds an independent data mart, [51] employs a global schema

in a middleware to allow transparent access to all data. [13] has also proposed an

architecture for executing OLAP queries over a decentralized schema. Its middleware

component follows an economical approach, similar to the Mariposa system [101].

These systems assume that the users belong to the organization that owns the data

warehouse and have access to the proprietary infrastructure. The query requirements

are well defined and the problems are related to data placement, materialized view

selection and query optimization, given a static network of servers.

Here, we investigate a different problem: a large number of ad hoc and geograph-

ically spanned users, sporadically accessing a number of separate warehouses and

possibly correlating information from all of them. Imagine, for instance, many in-

dividual investors from all around the world trading stocks at the New York Stock

Exchange (NYSE). Unlike professional stockbrokers, these users are unlikely to have

any proprietary tool to access the stock market’s warehouse; most of them probably

connect with a simple applet through their web browser. The primary problem in

this case is not the processing of the queries in the warehouses, but rather the efficient

usage of the available bandwidth, since the size of results from OLAP queries may

greatly vary from a few tuples to many megabytes of data. This can be especially

true if the user is not satisfied with highly aggregated information, but needs access

to detailed data in order, for example, to correlate New York prices with the ones

from the major European markets.

Intuitively, the problem is similar to accessing web pages from remote web servers.

105

Caching in web proxy servers has been used extensively in practice to deal with the

latency caused by slow network connections and accelerate the retrieval of the same

URL from users in the same geographical area. [68] employs active caching techniques

[21] to cache OLAP data together with web pages in web proxy servers using a three-

tier architecture. [54] employs similar ideas to implement a multi-tier caching system

for OLAP queries on a dedicated infrastructure.

In this work, we take a different approach by focusing on the client. Continuing

with the previous example, assume that users from Singapore pose queries to the

NYSE warehouse and some results are cached at their local computers [27, 28, 62,

94] which subsequent queries may reuse. However, the size of each client’s cache is

relatively small compared to the size of the warehouse, while the network cost of

transferring large amounts of data from overseas is high. On the other hand, it is

possible that some other user in Singapore, who has fetched part of the required data

recently, can be accessed through a much faster network connection. By sharing their

cache contents, all clients can benefit because the collective available space for caching

is larger and the amortized network cost is lower.

In the following sections, we will describe PeerOLAP which is a distributed caching

system for OLAP queries based on a Peer-to-Peer2 (P2P) network. The contributions

of this work include: (i) the proposal of the PeerOLAP architecture, (ii) the employ-

ment of three cache control policies that impose different levels of cooperation among

the peers, and (iii) the development of adaptive techniques that dynamically recon-

figure network structure in order to minimize query cost.

2The term ‘P2P’ has been used in database literature to identify systems where each node may act
both as a server and a client, assuming static configuration [61]. Such systems are generalizations of
the traditional client-server model and standard distributed techniques can be applied. Here, ‘P2P’
refers to dynamic systems with ad hoc participation, such as Napster and Gnutella.

106

PeerOLAP is complementary to distributed data warehouses, which deal with the

efficient execution of OLAP queries, since the focus is on the effective utilization of

client resources. The same relationship exists with middleware approaches like [68]

and [54]. Also, the traditional client-side caching in client-server systems is a special

case of our system, where client caches do not cooperate.

We focus on OLAP for several reasons: (i) OLAP data has a regular structure

which allows the easy decomposition and reuse of previous results; (ii) the size of

the results is typically large and justifies the overhead of searching neighbor peers;

(iii) updates in data warehouses are infrequent compared to transactional databases,

therefore the cached data is valid for a long time; and (iv) queries exhibit temporal

and geographical locality; for instance many Singapore users are likely to request from

NYSE similar data (e.g., data related to Singapore’s ST index).

5.2 Background

Conceptually, data warehouses deal with multidimensional views of data. Under this

model, there is a set of measures that are the objects of analysis, such as sales.

The measures depend on a set of dimensions (i.e., business perspectives). As an

example, consider product, customer and supplier. Thus, a measure is a value in

the multidimensional space which is defined by the dimensions. Each dimension is

described by a domain of attributes (e.g., product IDs). The set of attributes may be

related via a hierarchy of relationships, a common example of which is the temporal

hierarchy (day, month, year).

There are O(2d) possible group-by queries for a data warehouse with d dimensional

attributes, which compose the data cube. A detailed group-by query can be used

107

 psc 6M

pc 6M ps 0.8M sc 6M

p 0.2M c 0.1M s 0.01M

� 1

Figure 5.1: A Data Cube Lattice. The dimensions are Product, Supplier and
Customer.

to answer more abstract aggregations. [49] introduces the search lattice L, which

is a directed graph whose nodes represent group-by queries and edges express the

interdependencies among group-bys. There is a path from node ui to node uj if ui

can be used to answer uj (Figure 5.1).

A common technique to accelerate OLAP is to pre-calculate some aggregations

and store them as materialized views, provided that some statistical properties of the

expected workload are known in advance. [49, 97, 96] describe greedy algorithms for

the view selection problem. These methods follow a static approach, where the views

are selected once when the warehouse is set up. A dynamic approach is inspired by

semantic data caching [26, 58]: instead of caching a list of physical pages or tuple

identifiers, the results of previous queries together with their semantic descriptions

are stored.

Ng Wee Siong
Text Box
107

108

5.3 The PeerOLAP Network

The PeerOLAP network is a set of peers that access data warehouses and pose OLAP

queries. Each peer Pi has a local cache and implements a mechanism for publishing

its cache contents and its computational capabilities. Other peers can connect to Pi

and request a result. Pi may either answer the query (or part of it) locally if it has

the required data, or propagate the query to its neighbors. In either case, all results

return directly to the peer that initiated the query. The goal of PeerOLAP is to act

as a combined virtual cache, where all the components offer resources to lower query

cost.

Figure 5.3 depicts a typical PeerOLAP network consisting of seven peers and

two data warehouses. There is an arbitrary set of connections among peers denoted

by solid lines, and each peer also connects directly to one or multiple warehouses

simultaneously. Assume that P2 issues a query q referring to chunks c1, c2 and c3. If

c1 is already at the local cache, P2 will send a request for c2 and c3 to its neighbors P1

and P3. P1 contains c2, therefore it computes an estimation for the cost of retrieving

and transferring this result back to P2, and at the same time it forwards the request

to P6. Note that both c2 and c3 are requested3 since P6 may be able to provide c2 at

lower cost compared to P1.

In order to avoid flooding the network with messages, a maximum number of

hops is assigned to each message. Assuming that this number is two, the query will

not be propagated to the neighbors of P6. On the other hand, P3 will not forward

the message although there is still one hop allowed, since a peer can direct to the

warehouse only its local queries in order to avoid overloading the server with the

3A variation, where only the not-yet-found chunks are requested, is discussed in the next section.

109

P1

P2

P3

P4

P5
P6

P7

DW2

{c1}

{c2} DW1

LIGLOA

LIGLOB

Figure 5.2: A Typical PeerOLAP Network

same query. There is also a mechanism for breaking message loops: each peer keeps

a queue of the recent messages and rejects the ones that have been processed.

P2 does not have any knowledge about the number of peers that will respond.

Therefore, it waits until all the requested chunks are found or a timer expires. Missing

chunks are requested from the data warehouse. Note that although the warehouse

can provide any chunk, it is the last option due to the high network cost.

After search has terminated, P2 decides which chunks to keep in the local cache.

Each chunk is assigned a benefit value. If an incoming chunk c has a higher benefit

than some cached results, these results are evicted and c is stored, else c is rejected.

For chunks that are sent directly from the warehouse (meaning that they are not

found in the neighborhood of P2), we explore the option of caching them in some

neighbor of P2 (i.e. P1 or P3).

Since peers can enter and leave the network dynamically, a mechanism is necessary

to provide the newcomer with an initial set of neighbors. Here, we employ LIGLO

servers to maintain a list of online peers, together with details about the warehouses

110

that they access, their physical location, speed of network connection, etc. A new-

comer peer P contacts a LIGLO server and gets a set of potential neighbors. Then

P decides independently the set of peers that it will try to connect to. Except for

LIGLO servers, the PeerOLAP network is fully distributed without any centralized

administration point. Furthermore, LIGLO servers are not involved in query process-

ing and can be completely eliminated if the set of initial neighbors can be otherwise

determined; for instance, peers on the same segment of a LAN may connect to each

other.

The set of initial neighbors is by no means optimal since their cached results may

be irrelevant to P . Furthermore, connections may be dropped as some peers leave

the network. Therefore, each peer implements a mechanism that constantly evaluates

the current neighbors and drops or adds peers to the neighbor list in order to lower

query cost. Intuitively, peers with similar query patterns should be neighbors. In

such cases, if a result is not found in the initial peer, there is a high probability that

one of the direct neighbors will contain it. Due to the limited availability of resources,

each peer cannot have more than k neighbors, where k is a parameter of the system.

Even if there are unlimited resources on a peer, it is not appropriate for the peer to

have too many neighbors since the network will be overloaded with messages, most

of them being negative responses.

Here, we make an effort to optimize the set of neighbors of each peer by formulating

the problem as a second level of caching. The size of the second level “cache” is the

number of available network resources while the “cached” objects are the connections

to neighbors. Each neighbor is assigned a benefit and may be dropped if a more

beneficial neighbor is found. Continuing our previous example, assume that during

111

the last 10 queries from P2, five chunks were found in P1, eight in P6 and none in P3.

It is obviously beneficial for P2 to have P6 as a direct neighbor in order to avoid the

overhead of reaching it through P1. Therefore, the connection to P3 is dropped and

is substituted with a (virtual) connection to P6.

In the next section, we describe in detail the components of our architecture, and

present the query processing and caching algorithms. We also discuss the algorithm

for network reconfiguration.

5.4 Peer Architecture

The PeerOLAP network consists of numerous low-end workstations which connect

to data warehouses, pose OLAP queries and process results. Every peer maintains

a local cache and implements a P2P protocol for connecting with other caches. The

application layer is separated from the cache control unit; therefore the cache is not

aware of the semantics of the data. Both the creation of the execution plan and the

caching policy are fully decentralized.

Figure 5.4 depicts the architecture of an autonomous peer. There are two basic

layers: the application and the cache layer. The application layer implements the user

interface, the query optimizer and the query execution engine. It has knowledge about

the schema of the warehouse and the semantics of the data. In our implementation,

the application layer is built as a Java agent. When the user connects to a data

warehouse (e.g., by accessing its web site), the warehouse server sends to the peer

a mobile agent which implements all the logic of the application layer. The agent

then connects to the cache layer, which is already running on the peer, and all the

data requests are directed through the cache layer. More than one agent are allowed

112

User
InterfaceQuery Optimizer

& Query
Execution Engine

P2P
Platform Cache Control

Cache

Application Layer

Cache Layer

To data
warehouse

To remote
peers

Figure 5.3: Architecture of a Peer

to run simultaneously at the same peer if the user wants to connect to multiple

warehouses. In our implementation, the logic of all agents is the same although

every warehouse supplies its own schema. PeerOLAP provides an environment where

different mobile agents can reside and perform their tasks. The versatility to adapt

to different requirements for query optimization and execution renders the system

highly extensible and powerful. Note that the application layer does not have to be

implemented as an agent. Assuming that the user routinely connects to some data

warehouses, the client software can be permanently installed on the local peer.

The cache layer consists of three modules:

1. The local cache, which is organized as a chunk file [28].

2. The cache control module, which implements the admission and replacement

policy of the cache.

3. The P2P platform, which implements low-level communication (among the

113

peers, and between the peer and the warehouse), data transfer and remote agent

support. Also, in collaboration with the cache control module, it is responsible

for network reconfiguration.

Apart from simplifying the development process, there is another advantage of

dividing the peer into two layers: by distinguishing the cache from the semantics of

the data, the cache can store, simultaneously, data from multiple warehouses. From

the cache’s point of view, each piece of data is a chunk, which is identified by a

unique ID. It is the responsibility of the application layer to ask for the correct set of

chunks and advise the cache about the benefit of storing a specific chunk. Therefore,

each peer can support simultaneous access to multiple warehouses by allowing many

agents to run at the same time. Also, a peer can store chunks that do not belong to

its local warehouses, but are beneficial to some neighbors. In an extreme case, a peer

may have only its cache layer running without executing any local application.

5.4.1 Cost Model

Let c be a chunk and size(c) its size in tuples. S(c, P) denotes the cost of computing

c in node P . If P is a peer of the cache network and we do not allow any aggregation

on cached results, then S(c, P) = a · size(c), where a is constant. On the other hand,

if cached results can be further aggregated, S(c, P) is the total cost of reading the

required set of more detailed chunks and performing the necessary computations. The

network cost N for transferring c from node Q to node P is:

N(c,Q → P) =
Cn(P → Q)

k
+

size(c)

Tr(Q → P)
(5.4.1)

where Cn(P → Q) is the cost of establishing a connection between the two nodes, k

is the number of chunks that will be transferred together in a batch operation, and

114

Tr(Q → P) is the transfer rate between Q and P . If there is already an established

connection between the two nodes, Cn() is zero.

When c is asked for at peer P , the peer decides the location Q from where it will

request the data. Therefore, the total cost T of answering c at P by using data from

Q is:

T (c,Q → P) = S(c,Q) + N(c,Q → P) (5.4.2)

Obviously, if the chunk exists locally (i.e. P ≡ Q), N() is zero.

5.4.2 Query Processing

A query q has the form:

SELECT <grouping predicates> AGR(measure)

FROM data

WHERE <selection predicates>

GROUP BY <grouping predicates>

Let σ and γ be the set of selection and grouping predicates, respectively. View v is

the representative view of q, if the set of dimensions of v is σ∪γ. For example, a query

that asks for the sum of sales of a set of products for each customer, corresponds to

the pc view of Figure 5.1. A node in the PeerOLAP network can compute the results

of such queries by first accessing the set C of required chunks at the same level of

granularity as the representative view and then performing the necessary selections

and aggregations on them. Here, we focus on the problem of locating, accessing and

caching the chunks of C, therefore we consider queries involving selections on the

grouping predicates only (i.e., σ ⊆ γ). Furthermore, the predicates of σ are such

115

that the results match the boundaries of entire chunks. More general queries can be

computed by post-processing the chunks of C.

We assume that the warehouses are read-only, meaning that the clients cannot

issue update statements to them. If its contents have changed, a warehouse must

broadcast the relevant invalidation messages. Alternatively, it can set the expiration

time in each chunks it computes.

Below, we will discuss two query processing policies, an eager and a lazy one,

which differ on the amount of effort they put on constructing the execution plan.

Eager Query Processing (EQP)

Assume that a user issues a query q at peer P . The EQP policy answers q by

performing the following steps:

1. The query is decomposed into chunks at the same granularity as the represen-

tative view. Let Call be the set of required chunks.

2. P first checks its own cache. Let Clocal be the set of chunks that are present

and Cmiss be the remaining chunks.

3. P sends a message to its neighbors Q1, . . . , Qk asking for the Cmiss set. If Qi

has a subset of Cmiss, then it estimates the cost T (ci, Q → P) for each of the chunks

and sends these estimations to P . If a peer does not have any of the required chunks,

it does not respond. In any case, Qi propagates the request for the entire Cmiss set to

its own neighbors recursively, until the maximum allowed number of hops is reached.

4. P keeps receiving responses for a period t, after which it assumes that no more

results are expected.

5. Let Cpeer be the subset of Cmiss that is found in the PeerOLAP network. P

116

constructs the execution plan for Cpeer in a greedy manner: A chunk ci is randomly

selected from Cpeer and is assigned to Qi, where Qi is the peer that can provide ci

at the lowest cost. Next, a chunk cj is selected from the remaining chunks in Cpeer.

Let Qj be the peer that provides cj at the minimum cost. If Qi also contains this

chunk, the algorithm checks whether the total cost T ({ci, cj}, Qi) of acquiring both

chunks from Qi is smaller than T (ci, Qi)+T (cj, Qj) in which case it assigns cj also to

Qi. The process continues for the rest of the chunks in Cpeer. Observe that acquiring

multiple chunks simultaneously from the same peer may be cheaper, because the cost

of sending messages and initializing the network connections is shared.

6. P initializes direct connections to the peers defined by the execution plan and

requests for the corresponding chunks. The peers send back the chunks that have not

been evicted in the meantime. Let Cevicted be the set of evicted chunks.

7. The set CDW of chunks still missing is: CDW = Cmiss − (Cpeer − Cevicted). P

gets these chunks directly from the warehouse.

8. P composes the answer and returns it to the user. The new chunks are sent

to the cache control module and any necessary reconfiguration of the network is

performed.

Only chunks at the same aggregation level as the query are considered. By ex-

ploiting the possibility of computing missing chunks by further aggregating the cached

results, a more efficient execution plan may be constructed. However, in such cases,

the number of ways to compute a chunk grows exponentially to the number of di-

mensional attributes, and the construction of the execution plan becomes a difficult

optimization problem which is outside the scope of the discussion here. Nevertheless,

the cost model is general enough to deal with aggregations if they are performed

117

within the scope of a single peer.

Lazy Query Processing (LQP)

The previous policy attempts to expand the search space as much as possible in order

to locate the maximum number of chunks. The drawback, however, is that the system

is overloaded with messages, many of which are redundant either because some of the

accessed peers are irrelevant to the query or because multiple peers contain the same

chunk, and their cost difference does not justify the high message overhead. Here,

we present a second policy, called Lazy Query Processing, which tries to reduce the

number of visited peers.

LQP is similar to EQP except for step 3: P sends the request to all of its neighbors

Q1, . . . , Qk, but each neighbor will propagate the request only to its most beneficial

neighbor. In addition, if Qi can answer some of the chunks, it removes them from

the propagated message. As a result, if the entire query can be answered by Qi,

the message is not propagated. The process is repeated until the maximum allowed

number of hops hmax is reached. If each peer has k neighbors the number of messages

are O(k · hmax) while for EQP this number becomes O(khmax).

We have already mentioned that the new chunks are forwarded to the cache control

module, which decides whether it is beneficial to store some of them locally. The

next paragraph explains this issue; the notion of a peer’s benefit will be clarified in

Section 5.4.4, where we discuss the adaptive behavior of the system. The LQP policy

fits well in this concept since intuitively, we wish to form small sub-networks with

similar query patterns.

118

5.4.3 Caching Policy

In order to define the cache control policy, a benefit metric B() is assigned to every

chunk c at a peer P . Näıve least recently used (LRU) or least frequently used (LFU)

schemes are inapplicable for OLAP queries because the cost of computing chunks

varies greatly at different levels of aggregation. [94] defines a metric, which is a

function of the cost to compute a result normalized by its size and frequency. The

same metric is used in [62]. [28] proposes a caching algorithm, called ClockBenefit,

which is a generalization of LRU. The benefit of a chunk is measured by the fraction

of the base table that it represents. Therefore, if there are n chunks in a view v, the

benefit of each chunk is |D|
n

, where |D| is the size of the base table. Since the number

of chunks at higher levels of aggregation is small, they have a higher benefit. The

benefit is thus proportional to the cost of computing a chunk. The exact cost is not

important in their case, since the back end always computes each chunk from the

base tables and also the cache does not perform any aggregation.

Here, we define the benefit B() of a chunk c in a peer P as:

B(c, P) =
T (c,Q → P) + a · H(P → Q)

size(c)
(5.4.3)

where H(P → Q) is the number of hops from peer P to Q, and a is a constant

representing the overhead of sending one message. Intuitively, a high value of H()

denotes that it is difficult to locate a result, therefore it is more beneficial to keep

it locally. Notice that the cost of locating a result is proportional to the number of

hops rather than the number of peers visited, since a peer sends each request to all

its neighbors in parallel. The benefit value is normalized by dividing the total cost of

obtaining a chunk by its size.

119

Recall that T () is the total cost of computing and transferring a result; its inclusion

in the benefit denotes that results which are expensive to obtain, should be stored

locally. Although our caching algorithm is similar to ClockBenefit, the |D|
n

metric is

not suitable, since we allow pre-aggregation at the data warehouse. Therefore, the

computation cost of a chunk depends on the set of materialized views.

PeerOLAP allows replication of a chunk in many peers. Replication should be

performed only if it is absolutely necessary, because it consumes space that could be

used for other chunks. The above mentioned benefit function facilitates the replication

of objects in a controlled manner. Let c be a highly aggregated chunk that is asked

for the first time and is computed from the warehouse. As the size of the chunk is

small, so even though both the computation and network costs are expected to be

high, the benefit will still be high. Assume that P caches c, and Q requests c from

P . Since the cost of retrieving and transferring c is now lower, the probability that

Q caches the same result also decreases. If Q needs c in the future, it can find it in

P and its available cache space can be used for more beneficial chunks.

Admission and Replacement Algorithm

It should be obvious from the previous example that an incoming chunk is not cached

by default, but only if it is beneficial enough for the peer. The admission and re-

placement algorithm called Least Benefit First (LBF) is presented below. LBF is an

LRU-like algorithm which considers the benefits of the objects. It assigns a weight

W () to every cached chunk, which initially is equal to the chunk’s benefit. W () is

decreased each time a new chunk is considered for admission, and is restored to its

120

original value whenever the chunk is accessed again. When a new chunk cquery ar-

rives, LBF sorts the cached chunks in ascending weight order and marks as potential

victims the first ones which, if evicted, will release enough space for cquery. In order

to avoid accessing the entire cache index each time a new object arrives, we employ

CLOCK [28]. Observe that the sorting step of line 8 requires at most O(log |CIndex|)
time, where |CIndex| is the number of objects in the cache, because the objects are

previously sorted and in every step the position of only one object may change. The

new chunk is stored only if its benefit is greater than the combined weight of the

victims.

Algorithm 1: LeastBenefitFirst(cquery)

1: /* cquery is the query chunk */
2: if cquery is already in the cache then
3: W(cquery) := B(cquery, P) /* reset W(cquery) to its initial value */
4: else
5: Let cCLOCK be the chunk corresponding to the CLOCK position
6: W(cCLOCK) := W(cCLOCK) - B(cquery, P)
7: Advance CLOCK position
8: CIndex := List of all cached chunks sorted in ascending W(ci) order
9: victims := ∅

10: next := 0
11: while FreeCacheSpace +

∑
vi∈victims size(vi) < size(cquery) do

12: victims := victims
⋃

CIndexnext

13: next + +
14: end while
15: Wvictims :=

∑
vi∈victims W (vi) /* the total weight of all victims */

16: if Wvictims ≤ B(cquery) then
17: Evict victims from cache
18: Insert cquery

19: W(cquery) := B(cquery, P)
20: end if
21: end if

LBF resembles the GD [112] algorithm which is used for caching web pages. GD,

121

however, will always cache a new object even if it needs to evict more beneficial ones.

In our case, such behavior is contradictory with the controlled replication scheme that

we aim to achieve.

The LBF algorithm controls the local cache of each peer. Next, we will present

three policies, which describe the behavior of the entire system and enforce a progres-

sively higher degree of collaboration.

Isolated Caching Policy (ICP)

The rational behind the Isolated Caching Policy is that a peer P is completely au-

tonomous and will attempt to benefit from the other peers in a greedy manner. P

publishes its cache contents and employs the algorithms that have been described

before, but it does not count the hits on its cache by the other peers. Therefore, if a

neighbor Q requests a chunk c, which is in the cache of P , P will provide c but it will

not update its weight back to the original value (line 3 of LBF). If c is not important

to P , it will eventually be evicted even if it is beneficial for the neighbor peers.

Although ICP disregards collaboration, it suits the philosophy of P2P systems.

Recall that the peers do not necessarily belong to the same organization. Instead,

they may belong to autonomous users who would like to have complete control of the

resources they provide.

Hit Aware Caching Policy (HACP)

In contrast to ICP, the Hit Aware Caching Policy considers the hits from other peers

in an effort to ensure that the caches cooperate with the aim of minimizing the total

query cost. In order to comprehend this, consider again the benefit function of LBF:

122

If P finds a chunk c in a peer Q, then B(c, P) is lower than if c were answered by

the warehouse; therefore, the probability that P caches c decreases. Intuitively, LBF

implements a passive way of collaboration based on an optimistic approach, since it

assumes that c will still be in Q when it needs it again. In order for this to happen,

HACP increases the benefit of c in Q, whenever c is used by another peer.

Voluntary Caching

The Voluntary Caching Policy attempts to exploit under-utilized resources that may

exist in some peers while avoiding wasting any result that has been obtained from

the warehouse. Assume two peers, P and Q, where P exhibits a heavy workload

and has a cache full of high-benefit chunks while Q poses a few queries and has a

cache that is under-utilized with low-benefit chunks. P asks for chunk c, which is

found only at the warehouse. Although c has a substantial benefit, assume that P

cannot admit it because the benefit of the potential victims is higher. Instead of

discarding it, the voluntary caching policy will ask whether any neighbor of P can

cache the result. If such a neighbor, say Q, exists, c will be forwarded to it. In

case that multiple neighbors volunteer to cache c, P selects the one with the highest

B(c,Q) − B(victims,Q) value. Naturally, P has to pay the cost of transferring c

to Q which is added to the total query cost. The intuition is that this cost will be

amortized by subsequent requests for c. Note that due to the transferring cost, the

benefit of caching c at Q becomes:

B(c,Q) =
T (c,DW → P) − T (c, P → Q)

size(c)
(5.4.4)

where DW is the warehouse, P the requesting peer and Q the caching peer.

123

The voluntary caching policy may work either in conjunction with ICP (v-ICP)

or with HACP (v-HACP).

5.4.4 Network Reorganization

The previous techniques attempt to minimize the total query cost by constructing

efficient execution plans and caching query results. In this section, we try to optimize

the network structure by creating virtual neighborhoods of peers with similar query

patterns. The goal is to assign a set of neighbors to each peer P , so that there is a

high probability for P to obtain missing chunks directly from them without having

to search a large part of the network. These neighbors are the only ones that P can

visit directly.

Ideally, a peer should be able to communicate with all others by direct connec-

tions, in order to have complete knowledge about the contents of all caches. This is

impractical for two reasons: (i) network connections consume resources at the peer,

and (ii) the entire network would be flooded with messages. Nevertheless, as we

shall show, experimentally good results can be obtained even with a limited set of

beneficial neighbors. Note that the initial neighbors that a peer connects to when

entering the network are nothing more than starting points and they are by no means

optimal. Additionally, even if a good set of neighbors is known at connection time,

query patterns may change or some of the neighbors may leave the network.

Motivated by the above, we formulate the problem as a special case of caching.

Each peer has a number of available network resources, which are the equivalent of

cache cells, and the objects that are cached are the direct connections to other peers.

Each connection is assigned a benefit value and the most beneficial connections are

124

Qg

Qe

Qf

P

Qa

Qb

Qc

DW1

Figure 5.4: A Sample Network Structure

5/201/20 3/20 1/20 5/20 2/20 3/20

Qa Qb Qc Qd Qe Qf Qg

Figure 5.5: The LFU Connection Cache at Peer P . (Numbers represent hit ratios.)

selected to be the peer’s neighbors.

Similar to the LBF policy, we follow an optimistic approach assuming that if a

peer is contacted once, it can be found again later. From this assumption, and given

that the cached objects cannot be further aggregated, it is clear that a hit to any

peer is of equal benefit, regardless of the chunk that is retrieved. Recall that in

any case, the results are sent back to the peer that initiated the query via a direct

connection that is opened for the transfer. Therefore, in Figure 5.4, if Qf provides

a very beneficial object to P while Qe provides a less beneficial one, each connection

is charged with one hit. For these reasons, we use a simple LFU policy for caching

network connections.

Since the number of allowed network connections ncmax is expected to be small,

we can maintain accurate statistics for more than ncmax connections. For instance, in

Figure 5.5, ncmax = 3 and the neighbors of P are Qa,b,c, but we maintain a cache of

seven connections. The set of neighbors is not altered every time there is a change in

125

Table 5.1: Parameters Derived from the Prototype
Parameter Value Comments

TRR 3.68891 KB/sec
Average transfer rate between remote peers
(WAN)

TRL 594.9347 KB/sec
Average transfer rate between local peers
(LAN)

TRD 4675.945 KB/sec Average transfer rate from the disk

AMTR 1.2975 sec/mes
Average time per message between remote
peers (WAN)

AMTL 0.3765 sec/mes
Average time per message between local
peers (LAN)

ICTR 3.68 sec/con
Average time to initiate a remote connection
(WAN)

ICTL 0.36 sec/con
Average time to initiate a local connection
(LAN)

the LFU cache in order to avoid frequent reconfigurations of the network. Rather, the

system waits until k requests are served (where k is a system parameter), and then

selects as neighbors the ncmax more beneficial connections. In the previous example,

if it is already time for reorganization, Qb will be evicted and it will be replaced by

Qe.

Notice that the network connections considered here are virtual and differ from

physical network connections. Consequently, the “neighbor” relation is asymmetrical:

if P has Q as a neighbor, the opposite may not necessarily be true. In cases where

the relations are symmetrical, the two sides can connect with each other using the

same physical connection, thus saving the cost of initializing new connections. Here,

we do not consider the minimization of this cost.

126

Table 5.2: The Schema of the APB Dataset. The values represent the size of the
domain in each dimension at the corresponding level of hierarchy.

Product Customer Channel Time
L0 1 1 1 1
L1 4 99 9 2
L2 15 900 - 8
L3 75 - - 24
L4 300 - - -
L5 605 - - -
L6 9000 - - -

5.5 Experimental Evaluation

We evaluated the performance of PeerOLAP using two implementations. The first

one was an actual prototype consisting of a data warehouse server in Hong Kong and

10 peers in Singapore. It was used to test the fundamental aspects of the architecture,

and to derive real-life parameters that were subsequently used by a simulator in the

second implementation to evaluate the behavior of PeerOLAP in various situations.

Table 5.1 illustrates this set of parameters, which will be used in this section.

We employed the dataset from the APB benchmark [82] in addition to a synthetic

dataset (SYNTH) which was also used by [28] (see Tables 5.2 and 5.3). The total

space of the entire cube was around 3.5G tuples for APB and 69M tuples for SYNTH.

The total space was divided in chunks in a way that the chunk dimension range at

any level was kept proportional to the number of distinct values at that level. The

size of the largest chunk was 1M tuples.

The Detailed Cost Saving Ratio (DCSR) [62] was employed to measure the results.

DCSR is defined as:

DCSR =

∑
i wcost(qi) −

∑
i cost(qi)∑

i wcost(qi)
(5.5.1)

127

Table 5.3: The Schema of the SYNTH Dataset
D1 D2 D3 D4

L0 1 1 1 1
L1 25 25 5 10
L2 50 50 25 50
L3 100 - 50 -

where wcost(qi) is the total cost of answering the query qi in the worst case, and

cost(qi) is the cost achieved by the system. For the worst-case scenario, we assumed

that the peers did not have any cache4, so all the queries must be answered by the

warehouse (Figure 5.6d). Note that these costs included both T (c,Q → P) (i.e., the

cost of calculating and transmitting a chunk) plus the overhead of the messages.

DW

DW

DW

DW

(a) (b) (c) (d)

Figure 5.6: Configurations with One Data Warehouse. Dashed lines represent remote
connections, and solid lines local ones: (a) PeerOLAP, (b) client-side cache, (c) one
large cache, and (d) clients without cache

The tested configurations consisted of one data warehouse at a remote location

(i.e., the transfer rate of the connection was TRR) and a set of one to 100 local peers.

The speed of all local connections was set to TRL.

4Theoretically, the worst-case cost can be higher, due to messages. This is not significant for our
results, since we are interested in the relative performance of different policies.

128

5.5.1 PeerOLAP vs. Client-Side Cache Architecture

In the first set of experiments, we compared PeerOLAP against a traditional client-

server architecture with client-side caching (C-S) (Figure 5.6b). First, we considered

the best case for PeerOLAP, where all peers are connected to each other (i.e., clique

network). We used 10 peers and varied the cache size of each from 0.001% to 10% of

the total data cube size. The query set consisted of 20,000 queries following the 80-20

rule (i.e., 80% of the queries accessed a hot region representing 20% of the entire data

cube). Each peer initiated the same number of queries. For fairness of comparison

with C-S, PeerOLAP used its most näıve configuration: the optimizer employed the

lazy policy (LQP) and the cache policy was ICP.

The results are shown in Figures 5.7 and 5.8. In the same figures, we plot in the

results of a hypothetical one-peer system (Figure 5.6c) having a cache size equal to

the sum of the caches of all peers. This configuration, called CentralCache, represents

the optimal case of the system. It is clear that in a clique configuration, PeerOLAP

achieves near-optimal performance. The cost difference from CentralCache is due to

the replication of some objects, which is difficult to avoid completely, and the cost of

the messages. PeerOLAP easily outperforms C-S as expected. The results from both

APB and SYNTH dataset are similar, although the absolute values differ. Since the

trends were the same for all our experiments, in the following, we only present the

results from SYNTH.

Next, we tested a more realistic configuration: each peer was connected to four

others only, and the maximum hops allowed for search was set to three. The cache size

of each peer was set to 1% of the total cube size, while all policies remained the same

as before. The number of peers varied from 10 to 100. The query set was generated

129

as follows: The peers were divided into groups of 10. For each group, we provided a

separate query set following a 90-10 distribution, and there was no intersection among

the hot regions of different groups. Again, 20,000 queries were generated and each

peer initiated the same number of queries. The results are presented in Figure 5.9.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 5

D
C

SR

Cache size (% of cube)

C-S
PeerOLAP

Central Cache

Figure 5.7: PeerOLAP vs. Client-Side Cache System: (APB Dataset)

The performance of C-S is almost constant since, irrespective of the number of

peers, the size of an individual cache remains the same. As expected, CentralCache

also improves when the size of the total cache increases. The behavior of PeerOLAP

is more complicated: for 10 peers, there is only one group, and the system attempts to

exploit the contents of neighbor caches as before. However, its performance is now not

very close to optimal, because the number of neighbors and the number of hops are

limited. Although in the best case, each peer can reach 12 others (i.e., the number of

neighbors times the number of hops), the structure of the network may contain loops,

so the actual number of peers that are explored is lower. Due to the limited knowledge

130

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 5 10

D
C

SR

Cache size (% of cube)

C-S
PeerOLAP

Central Cache

Figure 5.8: PeerOLAP vs. Client-Side Cache System: (SYNTH dataset)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 40 60 80 100

D
C

SR

Number of Peers

C-S
PeerOLAP

Central Cache

Figure 5.9: Groups of 10 Peers Accessing the Same Hot Region (Four Neighbors per
Peer, Three Hops Allowed)

131

of the contents of other caches, the performance drops. This is more obvious when

the number of peers increases. More peers with irrelevant data are inserted; therefore,

it is more difficult for a peer to find others with similar workload. Nevertheless, even

when there are 100 peers in the network, PeerOLAP is still considerably better than

C-S, partially because it can locate peers in the same group, and also because it takes

advantage of similarities in the “cold” part of the workload.

Notice that the performance of PeerOLAP drops because we add peers with dif-

ferent workload. If more peers with similar workload are inserted, the performance

typically increases, or remains the same in the worst case.

5.5.2 Evaluation of the Query Optimization Strategies

The next experiment evaluated the performance of the eager (EQP) and the lazy

(LQP) query optimization strategies. We used a network of 100 peers, each equipped

with a cache space equal to 1% of the data cube space. The caching policy was set to

ICP and network reorganization was disabled. The query set consisted of 10 groups

with 10 peers each, and every group accessed a different hot region, as before. First

we set the maximum number of hops to three and we varied the number of neighbors

per peer. The results are shown in Figure 5.10.

Naturally, when there are zero neighbors, PeerOLAP is equivalent to C-S. When

the number of neighbors increases, the knowledge of other peers’ contents also im-

proves, leading to better performance. The performance gain is almost linear for LQP

since the maximum number of peers it can search is also a linear function of the num-

ber of peers. EQP, on the other hand, can explore up to O(nhops) peers, where n is

the number of neighbors. For example, when n = 6, EQP may potentially contact all

132

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

D
C

SR

Neighbors per Peer

LQP
EQP

Figure 5.10: Query Optimization for a Network of 100 Peers and Three Hops

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

D
C

SR

Maximum Number of Hops

LQP
EQP

Figure 5.11: Query Optimization for a Network of 100 Peers and Four Neighbors Per
Peer

133

the nodes (depending of course on the network structure) since 63 = 216. Therefore

the performance improves fast until it is almost equal to optimal. Similar results are

shown in Figure 5.11, where the number of neighbors is four and the number of hops

is varied. Notice that when the number of hops is one, the two policies are equivalent,

since LQP always searches all its direct neighbors.

From these results, one might suggest that it is always preferable to follow the

EQP strategy. However, the performance metric we have used here is based on the

total execution cost and does not provide any information about the response time.

EQP transmits a large amount of messages in the network. If all these messages need

to be simultaneously processed, the response time will be affected considerably; such

behavior contradicts user requirements.

5.5.3 Evaluation of the Caching Policies

In this set of experiments, we evaluated the performance of the caching policies. We

used a clique network consisting of 10 peers and we generated query sets consisting

of 20,000 queries following a 90-10 distribution. In contrast with the previous experi-

ments, here, the number of queries each peer initiated was not the same for all peers.

In each dataset Qk, one of the peers received k queries and the rest were divided

equally among the remaining nine peers. For instance, in the Q90 query set, 90% of

the queries would be assigned to one peer, and the rest would receive 10/9=1.1% of

the queries. In this way, we sought to simulate situations where some peers use their

resources heavily while others under-utilize theirs.

We started by evaluating the LBF and LRU algorithms which were aimed at

controlling the local cache of each peer. The cache size of each peer varied from

134

Figure 5.12: Comparison of the LRU and LBF

0.001% to 100% of the total cube size. The ICP policy was used in the experiment.

The results are presented in Figure 5.12. Obviously, as the total cache size contributed

by each peers increases, the performance of LBF and LRU improves, due to having

more space for storing additional chunk objects. However, LBF outperforms LRU in

all the cases; its performance gains in the small cache environments (i.e., 0.001% to

10%) are especially remarkable. When the cache size is small, the replacement of cache

objects becomes frequent, therefore choosing a right object to be replaced is crucial

for system performance. LRU replaces a chunk without considering the computation

cost of the chunks at different levels of aggregation, causing poor performance when

compared to the LBF scheme. In contrast, the LBF scheme defines a beneficial matric

for objects evaluation in the replacement process. It considers the computing cost

at the different levels of aggregation of the chunk, the number of hop to obtain the

chunk, and the cost to transfer the chunk. In other words, if it is difficult to locate

135

the result, it is more beneficial to keep it locally.

0.7

0.75

0.8

0.85

0.9

1 5 10

D
C

SR

Cache size (% of cube)

HACP
ICP

v-ICP
v-HACP

Figure 5.13: Comparison of Caching Policies

Next, we investigated the performance differences of the four global caching poli-

cies, i.e., ICP, HACP, vICP and vHACP. Figure 5.13 compares the four combinations

of caching policies for the Q90 query set, with cache sizes varying from 1 to 10%.

The experiments reveal that ICP and HACP have negligible performance differences.

Moreover, there are cases where HACP performs slightly worse than ICP. This can be

explained by the following example: Assume that P fetches cQ and Q fetches cP from

the warehouse and store them in their local cache with high benefit values. Then P

and Q request cP and cQ respectively. cP is not cached in P (neither is cQ cached in

Q) because the benefit of such caching is low as the result is already stored in the

neighbor peer. At the same time, because of the HACP policy, cP is forced to remain

in Q (and cQ in P). The result of this kind of “deadlock” is that both peers must pay

the network cost of fetching the result from their neighbor, in contrast with the ICP

136

policy which would eventually enable each peer to cache the correct chunk. Assigning

a lower weight to the remote accesses, compared with the local ones, only reduces but

does not solve the problem.

Although HACP is not very beneficial itself, it combines well with the voluntary

caching approach. In the Q90 dataset, there are nine nodes which are under-utilized.

Voluntary caching allows some of the data from the heavily loaded peer to use the

available resources of its neighbors. Therefore, both v-ICP and v-HACP perform

better than ICP and HACP. v-HACP is better than v-ICP because it allows the

heavily loaded peer to inform the others that the chunks it has previously provided

are still useful. Nevertheless, again the performance difference is not significant; the

major performance gain comes from voluntary caching.

Figure 5.14: HACP vs. v-HACP for Q10, Q50, . . . , Q100 Query Sets

In Figure 5.14 we further investigate this issue: we compare HACP and v-HACP

for workloads with different skew. We set the cache size to 1% and used query sets

137

varying from Q10 to Q100 (i.e., all the queries are initiated by the same peer). v-HACP

is better in all cases; however, when all peers are significantly loaded, the difference

between the two policies is not large. Nevertheless, when some peers are under-

utilized, v-HACP is clearly better. This is obvious in the extreme case, where all the

queries are asked by the same peer, while the rest just share their caches. If voluntary

caching is not used in this case, the caches of all nine peers are always empty; this

explains the substantial performance difference when v-HACP is employed. Note that

the results among different query sets are not comparable.

Figure 5.15 presents the performance of each individual peer for the Q90 set with

the cache size set to 1%. Obviously, P2 is the peer which initiates 90% of the queries.

We have shown before that the overall performance of the system improves due to

voluntary caching. Figure 5.15 reveals that in addition to the heavily loaded peer,

other peers may also benefit, but some may exhibit worse performance. This is true

for both v-ICP and v-HACP, although the peers are affected in different ways.

In the previous experiments, we assumed all the caches were cleared before the

experiments started. Although this environment setting is useful for measuring the

benefits of different caching policies, it does not capture the “new-join” situation,

where a new peer joins a network which has been operating for a long period. We

studied the “new-join” situation in another set of experiments by feeding the system

with training sets, thus allowing the peers to fill up their caches before the experiments

began. In Figure 5.16(a), the cache size is 1% and the training dataset varies from

0% to 10%, 20%, 50% and 80% of the total data cube size. Similarly, the cache size

in Figure 5.16(b) and Figure 5.16(c) is 5% and 10% respectively.

Several interesting observations may be made from the results. First, all four

138

Figure 5.15: DCSR Achieved by Each Individual Peer for Q90 with a Cache Size of
1%: (top) Isolated Caching Policy, (bottom) Hit Aware Caching Policy

139

caching policies achieve performance gain when the training size increases. As the

training size increases, more useful chunks are stored in the local peer’s cache, since

the LBF algorithm is able to evaluate correctly the degree of benefit in keeping a

chunk in the local cache correctly. As a net result, it reduces the number of costly

requests to the central warehouse. This suggests that in practice, a peer will enjoy

better performance gain by joining the PeerOLAP network since the event of empty

caches will happen only once – during the time of system initialization. When the

system matures, all the caches are filled with objects. As a result, collaboration in

a PeerOLAP network benefits all peers in the community. Second, in contrast with

voluntary caching policies, ICP and HACP show little difference in their performance,

regardless of the training data size in all three cache-size environments: small (1%),

medium (5%) and big cache size (10%). This is due to a lack of global knowledge of

the environment in the two policies, unlike the situation with the vICP and vHACP

policies. The explanation for Figure 5.13 can similarly be applied here. Third, when

the medium cache size is used, the different voluntary caching approaches, i.e., vICP

and vHACP, have negligible performance differences regardless of the training data

size. However, in general, voluntary caching approaches are still superior to ICP and

HACP. Finally, all caching policies have negligible performance differences regardless

of the training data size in the large cache size environment. When the cache size

increases as in Figure 5.16(b) and Figure 5.16(c), the performance differences are not

significant for all policies due to the large cache pool in the community, which neglects

the needs of the advance replacement and collaboration policies, since most of the

chunk objects can be stored locally.

140

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 50 80

D
C

SR

Training data size (% of cube)

ICP
HACP
v-ICP

v-HACP

(a) Cache Size 1%.

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 50 80

D
C

SR

Training data size (% of cube)

ICP
HACP
v-ICP

v-HACP

(b) Cache Size 5%.

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 50 80

D
C

SR

Training data size (% of cube)

ICP
HACP
v-ICP

v-HACP

(c) Cache Size 10%.

Figure 5.16: Effect of Training Data Size

141

5.5.4 Effect of Network Reorganization

In the last set of experiments, we evaluated the adaptive behavior of PeerOLAP. We

employed a network of 100 peers and we set the cache size of each to 1% of the data

cube. The query optimization strategy was LQP and the caching policy was ICP. We

used the same query set as in Section 5.5.2 (i.e., 10 groups with 10 peers each; every

group accessing a different hot region). The maximum number of hops was set to 5.

The period Treorg that a peer reorganized its neighbors was set to 40 (i.e., each time

it had made 40 queries).

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10

D
C

SR

Neighbors per Peer

Static
LFU

Figure 5.17: Effect of Network Reorganization

In Figure 5.17, we vary the number of neighbors per peer and compare our adap-

tive strategy against a static network. As the number of neighbors increases, the

performance of the static system improves, because of the better knowledge about

the contents of other peers. By rearranging the neighbors of a peer P , there are two

possible benefits: (i) the cost of searching for chunks decreases because some distant

142

beneficial relevant nodes are becoming direct neighbors, and (ii) with high probabil-

ity, the neighbors of a beneficial peer are also beneficial to P ; therefore, larger groups

are constructed incrementally.

In Figure 5.18, we set the number of neighbors per peer to two, four and 10, and

we vary the reorganization period Treorg from zero to 100. Consider Figure 5.18(b),

when Treorg = 0, the network is static. When Treorg becomes 10, the performance

drops significantly. This is due to the fact that there has not been enough time to

gather accurate statistics; the initial network structure happened to be quite ben-

eficial and the new structure is worse. However, if we allow the system to collect

more information, the resulting network structure will be better and the performance

increases. Observe that for values of Treorg greater than 40, DCSR drops again slowly.

The reason now is different: reorganization is performed so infrequently that it cannot

follow the changes of the workload. In the extreme case, if Treorg approaches infinity

(practically if it is larger than the number of queries), the network becomes identical

to static again.

Notice from Figure 5.18(a), Figure 5.18(b) and Figure 5.18(c), that after the first

performance drops, by extending the reorganization period, at a certain point, the

reorganization approach becomes better than the static approach; we call the first

frequency that makes such a success the performance horizon (PH). The PH is a

reorganization period where the reorganization approach performs better than the

static approach after the first performance drops with the number of neighbors per

peer as its constraint. Figure 5.19 presents the PH versus number of neighbors per

peer. When the number of neighbors per peer is small (e.g., two neighbor peers),

theoretically, the dropping of any existing neighbor and subsequently the connection

143

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 10 20 30 40 50 60 70 80 90 100

D
C

SR

Reorganization Period (number of queries)

Static
LFU

(a) Two Neighbors

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 10 20 30 40 50 60 70 80 90 100

D
C

SR

Reorganization Period (number of queries)

Static
LFU

(b) Four Neighbors

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 10 20 30 40 50 60 70 80 90 100

D
C

SR

Reorganization Period (number of queries)

Static
LFU

(c) 10 Neighbors

Figure 5.18: Frequency of Network Reorganization

144

Figure 5.19: Performance Horizon of Two, Four and 10 Neighbors

to a new peer will affect the system significantly. Therefore, it requires a longer period

in order to make a good decision on who the best peers are. In contrast, a peer with

a large number of neighbors is more consistent in its performance even when the

environment is in a high reorganization period.

5.6 Summary

In this chapter, we have presented PeerOLAP, a distributed caching system for OLAP

results. In a typical client-server architecture, isolated remote clients access data ware-

houses and maintain previous results in their local caches. By sharing the contents of

the individual caches, PeerOLAP constructs a large virtual cache which can benefit

all peers. The system is fully distributed and highly scalable as there is no central-

ized administration point and no central catalogue. The network does not have any

145

specific structure, and peer participation does not have to be predictable.

As shown in the experimental evaluation, PeerOLAP achieves significant perfor-

mance gains when compared to traditional systems. This is accomplished by (i) query

optimization techniques that determine which chunks should be requested form the

warehouse, and which should be retrieved from the peers; (ii) caching policies that en-

able cooperation among caches and eliminate unnecessary replication of objects; and

(iii) re-configuration mechanisms that create virtual neighbors of peers with similar

access patterns.

Chapter 6

FuzzyPeer: Answering Similarity
Queries in P2P Networks

6.1 Introduction

In this chapter, we will focus on data acquisition problems, especially on retrieving

information from P2P networks without limiting itself to only exact key matching

queries.

Peer-to-Peer (P2P) technology has recently attracted a lot of attention since it

allows the implementation of large distributed repositories of digital information. In

a P2P system, numerous nodes of equal roles are connected through an arbitrary net-

work and exchange data or services directly with each other. Many P2P systems follow

a semi-centralized (or hybrid [25]) architecture (e.g., Napster [15]), where queries are

posed to a centralized index, although the data and services are distributed. Despite

their advantages, hybrid systems suffer from several drawbacks: (i) they cannot fol-

low high-frequency changes in the source data, (ii) they require expensive dedicated

infrastructure (i.e., high-end server farms, fast network connections, etc.), (iii) they

exhibit a single point of failure, and (iv) legal reasons may prevent the accumulation

146

147

of information at a central location (e.g., the case of Napster).

As an alternative, several fully distributed (or pure P2P) systems have been pro-

posed. In these systems, there are no centralized catalogues or functionalities; in-

stead, peers are individually contacted and return the results they contain. There

are two major sub-categories of pure P2P systems: (i) Hash-based systems (e.g.,

Chord [100], CAN [92] and Pastry[31]), which assign a unique key to each file and

forward queries to specific nodes based on a hash function. Although they guarantee

the location of content within a bounded number of hops, they require tight control of

the data placement and topology of the network. (ii) Broadcast-based systems (e.g.,

Gnutella[42]), which use message-flooding to propagate queries. There is no specific

destination; hence every neighbor peer is contacted and forwards the message to its

own neighbors until the message lifetime expires. Such systems have been successfully

employed in practice to form large-scale ad hoc networks. Here, we assume a pure

P2P, broadcast-based architecture.

Most existing systems support only boolean query evaluation. Each file is charac-

terized by its meta-data (i.e., a set of keywords), and queries ask for combinations of

keywords. Consider, for instance, a music sharing system. Users ask for a song title,

or a combination of an artist and an album name. Such queries can be unambigu-

ously evaluated as “found” or “not found” by searching the meta-data for matching

keywords.

In this chapter, we investigate a different problem: Users ask fuzzy queries like:

“Find the top-k images which are similar to a given sample.” Such queries are common

in image retrieval systems (e.g., QBIC [79]) because it is difficult for humans to express

precisely an image’s content in keywords. Since there is no centralized index, each

148

peer within the query horizon is contacted and returns k results (i.e., the top-k local

images) to the initiator, which, in turn, computes the global result. Unfortunately,

the extremely low selectivity of such queries floods the network with useless messages.

An alternative solution is to set a threshold similarity and accept answers only above

this value. The issue in this case is how to select the query-dependant threshold,

given that the interpretation of an image depends on the user’s perception; if the

threshold is too low, there is no benefit in terms of transmitted messages while, if

it is too high, there is the risk of wasting the query messages without locating any

satisfactory answer. Moreover, this method would not reduce the number of query

messages which grows exponentially with the number of hops.

Observe, however, that due to the fuzzy nature of the queries, the answers are

always approximations. As a result, if two queries are similar, the top-k answers for

the first one may contain (with high probability) some of the answers for the second

query. In addition, in P2P networks, each peer can examine the messages that pass

through it. Motivated by these observations, we developed FuzzyPeer, a generic P2P

system that supports similarity queries. In FuzzyPeer, some of the queries are stopped

(i.e., they are not propagated further) and stay resident inside a set of peers. We use

the term frozen for such queries. The frozen queries are answered by the stream of

results that passes through the peers and which have been initiated by the remaining

running queries. By carefully selecting the set of queries that will be answered by the

streaming data, the quality of the results and the response time remain at acceptable

levels even when the system is overloaded. Additionally, the number of messages

drops considerably, thus improving the scalability and the throughput of the network.

Moreover, our optimization algorithms are fully distributed and pose no additional

149

overhead due to synchronization messages.

Although throughout this paper we focus on image retrieval, our methods are

applicable to other domains where similarity search is performed in P2P networks.

As an example, consider the case of text retrieval for documents that reside in au-

tonomous interconnected workstations, where the network topology may not be flat.

Given a two-level super-peer organization (e.g., Morpheus [74]), we can apply the

same techniques at the upper level which contains the index of its clients, rendering

the entire system more scalable.

6.2 System Description

The FuzzyPeer system consists of a set of peers which are connected through an ad

hoc unstructured network and implement a mechanism for searching their data. In

contrast with other P2P systems which characterize every shared object only by a

set of keywords, FuzzyPeer allows content-based fuzzy queries. We will describe the

functionalities of our system through a case study of an image retrieval application.

P1

P3

P2
P4

P7 P8

P5 P6

LIGLO1

LIGLO2

Figure 6.1: A Typical FuzzyPeer Network

150

Figure 6.1 depicts a typical FuzzyPeer network. It consists of eight peers which are

connected through a set of links. Each link represents an active TCP/IP connection

and is independent of the structure of the physical network layer. Connections are

symmetrical, meaning that if a peer Pi is a neighbor of Pj, then Pj is also a neighbor

of Pi. Ideally, each peer P should be connected to all others since this would maximize

its search space. However, there is a trade-off because connections consume system

resources and also cause more messages to be processed by P . Since the system is

heterogeneous both in terms of bandwidth and processing power, powerful peers with

fast links are typically connected to more neighbors. This is common in most P2P

systems. For example, Gnutella implementations allow up to four neighbors for peers

with slow connections, while powerful peers may have tens of neighbors.

Participation in the network is dynamic; each peer can join or leave the system

at any time. When a peer enters the network, it contacts a location-independent

global name lookup (LIGLO) server [77] to get a set of potential neighbors; then it

employs a Gnutella-like protocol [42] to connect. Except for the LIGLO servers, the

system is fully distributed. Furthermore, the LIGLO servers are not involved in the

query processing and can be completely eliminated if the set of initial neighbors can

be otherwise determined; for instance, peers on the same segment of a LAN may

connect to each other.

Let the user of P1 ask a query q: “Find the top 10 images which are similar to

a given sketch.” P1 will broadcast q to P2 and P3. The receiving nodes will search

their databases and return the IDs of the top 10 most similar images together with a

similarity measure to P1. At the same time, they will broadcast q to their neighbors.

For example, P2 will send q to P3 and P4. P3 notices the duplicate message and

151

rejects it. P4, on the other hand, computes the local result and returns it to P2

which, in turn, will send the result back to P1. P4 also propagates q to P5, P7 and

P8. All the results will be returned to P1 via P4 and P2. Queries can propagate for

up to a maximum number of hops d. Assuming that d = 3, P5 will not propagate the

query any further; therefore P1 cannot reach P6. P1 waits for up to MaxWaitT ime;

during this interval, it receives the answers and continuously refines the result. After

MaxWaitT ime expires, any answer message that reaches P1 is rejected.

Assume now that soon after P1, P3 also submits a query q′ which is similar to

q. In a traditional P2P system, q′ propagates through P2 the same way as q. q′
causes many messages to pass through P2 almost simultaneously with the messages

generated by q. Therefore, P2 is overloaded and all messages are delayed. If the delay

is long enough, MaxWaitT ime expires, causing q and q′ to terminate before they

receive enough useful results. Notice, however, that we can do better: When q passes

through P2, it initiates an answer stream Streamq. All the answers from P4, P5, P7

and P8 will go through Streamq. When q′ reaches P2, the system can identify that q

and q′ are similar, so instead of being propagated, q′ will freeze inside P2 and will be

attached to Streamq. P2 will afterwards duplicate and send to P3 all answers that

reach Streamq. The intuition is that since q and q′ are similar, their answers are also

similar, and it is preferable to get some approximate answer than not getting any

answer at all. The rest of the paper presents the freezing technique in detail.

6.2.1 Prototype Implementation

The basic components of a FuzzyPeer node are depicted in Figure 6.2; the low-level

network functionalities, such as connecting to other nodes, message handling, etc., are

152

provided by BestPeer [77]. This is a JAVA-based generic platform which simplifies the

development of P2P systems. A part of BestPeer provides the LIGLO functionality.

All the FuzzyPeer-specific code resides in the Query Processing Applet. This module

coordinates the entire system and connects to the local database. The details of the

database are irrelevant to FuzzyPeer. The only requirement from the database is the

support of a top-k operator, although it is also desirable to provide a cost estimation

function. In our case study, the database consisted of flat files of original high-

resolution images, together with pre-calculated feature vectors. We used Daubechies

wavelets [107] to represent the visual features of the images. In our experiments, the

number of images in each peer was relatively small, allowing us to keep all the feature

vectors in the memory and find the top-k queries by performing sequential search.

In practical situations, where the image database is expected to be larger, we can

employ a high-dimensional index for k-nearest-neighbor search like [113].

User
Interface

To remote
peers

Query Processing
Applet

DatabaseP2P Platform

Figure 6.2: Peer Components

Note that for the rest of the work, we shall only consider the optimization of the

153

search process. We assume that the downloading of the original image or a thumbnail

is performed outside the search network (i.e., as a separate http connection).

6.3 Query Processing

In this section, we analyze our freezing techniques. Although we focus on the image

retrieval application and we employ the Euclidian distance as a similarity metric, the

translation to other domains is straightforward.

Users pose queries by means of a sample image imguser. We apply the Daubechies

wavelet transformation DT (imguser) on the sample image and produce an m-D feature

vector f1, ..., fm. This vector is the query q. The size of q is typically much smaller

than the size of the image. The similarity S(q, img) between a query q and an

image img is defined as the Euclidian distance between the vector q and DT (img).

In the same way, we define the similarity S(q, q′) between two queries q and q′ as

the Euclidian distance of the corresponding vectors. Obviously, when S(·) = 0, the

vectors are identical.

When a peer receives a query q, it computes the k most similar images img1, ..., imgk

from the local database, and returns a set of k pairs (idi, S(q, imgi)), i = 1..k. Note

that the answers do not contain the feature vectors of the images, but only the image

IDs and the similarity measures. This is done in order to reduce the size of the answer

messages, since in some applications, each feature vector may be several KBytes.

In a traditional broadcast-based P2P system, when a query q is initiated at peer

P , it is propagated through all its neighbors until a maximum number of hops d is

reached. The peers that receives the query, send their answers back to P via the

reverse path. We call this the Non − Freezing algorithm (nf).

154

When a query q is propagated through a peer P , it creates an answer stream

Streamq. All the subsequent answers for q will go through Streamq. If P is the

peer which initiated q, the answers that arrive in Streamq are forwarded to the

User Interface module; else they are propagated to the previous peer (i.e., the peer

from which the query arrived). Therefore, an answer is propagated to at most one

peer. Obviously, there can be multiple streams simultaneously active at P . For every

stream, P maintains a data structure containing the feature vector q together with

several statistics.

Peer boundaries
Processing

Unit

Message Queue

Incoming
Messages

To other
peers

Figure 6.3: Message Propagation Model

There are several sources of delays in the path of a message, including the network

cost and the processing time. To facilitate our study, we use a simplified model

(Figure 6.3): Each peer P has a processing unit with a FIFO queue attached to it.

All incoming messages M0, M1, M2,... enter the queue. When the processing unit

is ready, it removes the message M0 from the head of the queue and processes it for

time T (M0,P). After processing, the message is transmitted to the next peer. The

total time a message Mi spends at P is:

Ttotal (Mi, P) =
i−1∑
j=0

T (Mj, P) + T (Mi, P) (6.3.1)

where the first factor of the equation is the waiting time in the queue and the second

factor is the actual processing time.

155

For a given number of online peers, assume that the query rate is low. Then the

queues in all peers are empty, and from Equation 6.3.1, it follows that the only delay of

a query message is its own processing time. However, when the query rate increases,

the message queues become longer; therefore the delays for the messages also increase

due to the queue waiting time. Recall that users abort queries after MaxWaitT ime.

If the delays are long, there is not enough time for the query messages to reach

many nodes before MaxWaitT ime expires. The number of answers that arrive at the

initiating node decreases rapidly; therefore, the probability of obtaining useful answers

(i.e., the precision of the results) also drops. This resembles the thrashing effect in

time-sharing systems. The freezing algorithm that we describe below, attempts to

minimize the problem by decreasing the number of concurrent messages in the system.

6.3.1 Static Query Freezing (SQF)

The intuition behind the Static Query Freezing (SQF) algorithm is simple: some

queries are frozen (i.e., paused) inside the system in order to reduce the total work-

load. The result is that the waiting time in the queues decreases for the remaining

running queries, so they can retrieve enough answers before MaxWaitTime expires.

The frozen queries attach to the streams of similar running queries and receive the

same results. There are several benefits in this approach: (i) Thrashing is avoided (if

enough queries are frozen). Instead of not answering any query at all, with SQF, a

considerable percentage of the queries can locate accurate answers. (ii) Excess queries

are frozen instead of aborted. Since all answers are approximations, there is a high

probability for a frozen query to receive accurate results if it attaches to a similar

stream. This is different from other systems (e.g., web search engines) where the

156

probability of finding a concurrent similar query is low. In such systems, queries ask

for certain keywords and run in the server for a few msec, while in P2P systems,

queries run for around three orders of magnitude more time (i.e., 100’s of sec). (iii)

Even if the results for the frozen queries are not accurate, users can utilize them to

refine their original query.

When a query q is propagated through a peer P , it initializes an answer stream

Streamq. All the subsequent answers for q will go through Streamq. For every

stream that is active at P , we maintain a data structure containing the feature vector

q together with several statistics. The streams are used by the freezing algorithms.

Figure 6.4 presents the SQF algorithm which takes two parameters: the proba-

bility pf to freeze a query and the number of hops fhops that q must travel before it

freezes. The initiator peer decides with probability pf if the new query is going to

freeze. Then q is propagated as usual. Assume that q has been selected to freeze, and

after fhops, reaches peer P ’. SQF pauses q (i.e., q will not propagate further through

that path), checks all the active streams at P ’ and attaches q to the most beneficial

one. If no stream exists at P’, q is just paused. Observe that q will freeze in all peers

which are fhops hops away from P . Also notice that the Non-Freezing algorithm (nf)

is a special case of SQF where pf = 0.

When an answer comes for a stream, SQF searches whether there are any attached

queries to it. For every attached query q, a duplicate answer is generated and re-

turned to the query initiator. Notice that since the answer messages do not contain

any feature vectors, we cannot perform any filtering for the attached queries.

The freezing technique has the additional benefit of increasing the query horizon

of the frozen queries. Consider again the example of Figure 6.1, assuming that there

157

1. On UserQuery(q)
2. With probability pf set q.frozen = true, q.f hops = hf

3. Initiate an answer stream Aq

4. Broadcast q
5.
6. On QueryReceived (q) // query received from neighbor
7. IF q.frozen==true AND q.f hops == q.traveled hops THEN
8. Freeze q
9. Attach q to a beneficial answer stream, if such stream exists
10. else
11. IF q.frozen == false THEN calculate answer and send it back
12. IF q.traveled hops < max Hops THEN broadcast q
13.
14. On ResultReceived(rq) // result received from neighbor
15. FOR EACH query q’ attached to q DO
16. IF there is no cycle due to frozen queries THEN
17. Change rq to rq’
18. Propagate rq’ backwards as a result for q’
19. IF current peer is the initiator of q THEN
20. Add rq to answer stream Aq

21. ELSE propagate rq backwards

Figure 6.4: Static Query Freezing Algorithm

is no link between P2 and P3. P1 initiates a query q which propagates to all nodes

except P6 (recall that the maximum number of hops d = 3). P3 also initiates q’

which, if not frozen, will reach only P1, P2 and P4. On the other hand, if q’ freezes

in P1 and attaches to q, the answers from P5, P7 and P8 will also be forwarded to

P3. Therefore, the probability of locating an accurate result for q’ increases.

The method of selecting a beneficial stream needs further clarification. Each

stream st has a lifetime lt which is the same as the expiration time of the query that

created it. A query queue will benefit by attaching to st only if there is enough time

158

left for many results to propagate through it. Therefore, recent streams are more

beneficial. Also the benefit is proportional to the similarity of q with the query that

initiated st. Notice that we can calculate this similarity, since we have the feature

vectors for both queries. In our implementation, we use a combined benefit, giving

more weight to the similarity criterion.

In the experimental section, we shall show that SQF improves significantly the

throughput and the scalability of the system. Its applicability, however, is limited in

practice since the user must provide for each query an appropriate set of parameters

for the current condition of the network. Below, we describe an alternative freezing

algorithm which adapts dynamically to the workload of the system.

6.3.2 Adaptive Query Freezing (AQF)

The drawback of SQF is the need to set accurately the parameters. If the freezing

probability pf is too low, the system will enter the thrashing region. On the other

hand, if pf is too high, there are not enough running queries; consequently, the

probability of a frozen query to locate a similar answer stream will decrease and the

precision of the results will drop.

pf depends on two major factors : (i) The number |Q| of concurrently active

queries (i.e., those that are not yet aborted) in the system. Obviously, the load of

the system is proportional to |Q|, therefore when there are more active queries, pf

must increase. |Q| can be analyzed as |Q| = Qus · |P |, where Qus is the number of

queries per user per second and |P | is the number of active peers (i.e., users). (ii) The

topology of the network. P2P systems typically exhibit power-law topology. Some

hub nodes (e.g., P4 in Figure 6.1) receive more messages and become the bottleneck,

159

even if the average load of the system is moderate. Since the system is dynamic with

no centralized administration point, it is difficult to gather information about these

factors. Notice, however, that the effect of varying |Q| or altering the topology is that

the waiting time in the queues changes.

1. On UserQuery(q)
2. Initiate an answer stream Aq

3. Broadcast q
4. On QueryReceived (q) // query received from neighbor
5. q.traveled hops++
6. calculate answer and send it to the previous peer
7. IF q.traveled hops < max Hops THEN
8. IF checkFreezeCriteria(q) == true THEN
9. q’ is a running query which is similar to q
10. // chekFreezeCriteria ensures that such q’ exists
11. Freeze q
12. Attach q to q’
13. ELSE broadcast q

Figure 6.5: Adaptive Query Freezing Algorithm

The Adaptive Query Freezing (AQF) algorithm controls the waiting time in the

queues. Intuitively, if the waiting time is such that there is no time for a query to

be forwarded or for the answer to come back before the query is aborted, there is no

benefit from propagating the query message. Instead, there is a penalty, since the

message will put additional load on the subsequent peers. In such cases, it is better

to freeze the query in order to prevent thrashing. On the other hand, if the queues

are short, it is beneficial to propagate the query in order to retrieve accurate results.

Figure 6.5 presents the details of the algorithm. The OnResultReceived method is

160

the same as in SQF. In contrast to SQF, however, the initiator peer does not need to

decide if the new query will freeze. The query is propagated inside the network and

each receiving peer decides independently. Notice that AQF is general and versatile

since it does not depend on any application-specific criterion.

For an incoming query message MQ at P , the checkFreezeCriteria() function

returns true, if:

Ttotal(MQ,P) > aq · MaxWaitT ime (6.3.2)

where Ttotal is defined by Equation 6.3.1 and aq is a system-wide parameter. The

accurate evaluation of Ttotal is difficult. The reason is that T (·) is a function of the

message type. For example, a query message needs more processing time than an

answer, since the former requires an expensive search in the local database while the

latter just needs to be propagated. Even if we have an accurate estimation for each

message type, we still cannot evaluate Ttotal; the exact processing time will be known

when all messages in the queue enter the processing unit, since some of them may get

frozen.

MaxWaitT ime is also an estimation, since each user decides independently when

to abort a query. In practice, we expect to get quite an accurate estimation with a

small variance of this parameter by observing the behavior of users over a period of

time (i.e., most users would wait for a couple of minutes before aborting and refining

their queries).

The value of the parameter aq should be such that it allows enough time for query

processing and for answer messages to return to the initiator before the query is

161

aborted. Formally, aq depends on the query path:

aq(P0, ..., Pi) =
1

MaxWaitT ime
·

i∑
j=0

Ttotal (MQ,Pj) (6.3.3)

where P0 is the initiating peer and Pi is the current peer. Nevertheless, this formula

assumes that every peer has knowledge about the queue waiting time at the other

peers in the query path, which is unrealistic. In practice, however, the exact value

of aq is not critical, as long as it prevents the queues from growing exponentially.

By gathering statistics of the queue lengths over a period of time, aq can be set as a

system-wide constant. For our settings, we found that aq = 1 provided the best results;

however varying it for almost an order of magnitude did not affect considerably the

performance, indicating the robustness of AQF.

6.3.3 Similarity Query Freezing (simQF)

AQF bases its decisions solely on the size of the message queues. It is a very gen-

eral algorithm, and it does not employ any application-specific knowledge to further

improve its performance. Since our queries ask for similar images, we developed the

simQF freezing algorithm which uses query similarity as the freezing criterion. The

algorithm is the same as AQF, except that a query q is frozen at a peer P if there is

an answer stream whose distance to q is less than the threshold ρ.

Our experiments revealed that simQF produces good results if the threshold ρ is

set correctly; else the behavior resembles the Static Query Freezing technique.

162

6.3.4 Multiple-feature Queries

One of the major challenges in multimedia retrieval systems is that the similarity be-

tween objects cannot be defined precisely with a simple description. For instance, the

image of an orange can be best described by a combination of color feature: ‘similar

to yellowish’, shape: ‘round ’, and possible content text description: ‘fruit or orange’.

Figure 6.6 illustrates the idea of combining multiple features in a graphical manner.

Each point in the figure represents an image in the existing feature space. The feature

space is separated into three well-defined clusters: color (yellowish), shape (round)

and text-description (fruit). A user query distribution might be best described in

the combination of color, shape and text-description. However, with these existing

features representation, it might not be easy to model the query distribution. Alter-

natively, a query can be divided into multiple independent sub-queries, each targeting

a specific feature cluster. A complex multimedia query system that combines multiple

atomic sub-queries is called a multiple-feature query system [34, 35].

FuzzyPeer supports multiple-feature queries and integrates them into the query

freezing framework. Assume that an object is characterized by n feature vectors

v1, ..., vn. Then there are 2n−1 possible query types for every combination of features.

We support two methods for processing such queries: serial and random.

Multiple-attribute Random processing (maR)

This algorithm is inspired by Fagin’s Algorithm (FA) [34]. FA computes multiple-

feature queries at a middleware by combining sequential access to single-feature sorted

lists with random access to the original data provider. In our case, although we cannot

have sorted streams, we can access a remote peer directly.

163

fruit-text

yellowish-color

round-shapequery distribution

query point

Figure 6.6: Query Distribution across Multiple Feature Clusters

Queries that have some common subset of features are considered compatible.

For example the query “Color is yellowish and Shape is round” is compatible with

‘‘Color = orange and Type = fruit” because they contain the same feature “Color”.

The algorithm works in two phases. In the first phase, it runs exactly like AQF

with the additional characteristic that compatible queries can attach to each other.

Because of this, some of the results that arrive from frozen queries are not complete

(i.e., they answer only some of the features). In the second phase, the algorithm

sorts the incomplete results and selects the top-k according to the similarity metric.

For these k objects, it performs direct access to the remote peers that contain them,

and receives the complete answers. As we shall show in the experimental section,

this algorithm is beneficial when the data is clustered. In case of random data, the

performance deteriorates due to the remote connection overhead.

164

Multiple-attribute Sequential processing (maS)

In contrast to the previous method, this algorithm considers a different query type as

incompatible, even if they share some features. Therefore, it never attaches a query

to an answer stream of a different type. The result is that there are no incomplete

answers so there is no need for a second phase. Since there is no remote connection

overhead, this algorithm is more suitable for uniform datasets.

6.3.5 Dealing with Cycles

Connections among peers are arbitrary, resulting in network graphs that contain

cycles. The existence of cycles generates unnecessary messages both during query

propagation and in the process of answering frozen queries. The first case is easier to

manage: If the cycles are longer than the maximum number of query hops d, there

is no overhead. In the other case, if a peer Pi receives a query message q that has

passed before 1, it simply drops q. The overhead is one extra message per cycle.

The effect of cycles on frozen queries is more complex. To illustrate this, assume

the network topology of Figure 6.7(a), where P1 initiates query qx and P3 initiates qy

almost simultaneously. Let qx reach P3 faster through P2, and qy reach P1 through

P4, as shown in Figure 6.7(b) (the exact route is not important). P3 realizes that qx

is similar to qy, which is already running, so it freezes qx and attaches it to qy. In

the same way, P1 freezes qy since it is similar to qx. Now, assume that P3 receives a

result ry from P5 that answers qy. Since qx is attached to qy, P3 labels the result as

rx = F (ry) and propagates it to P1. There, rx answers qx that has qy attached, so it

1Peers maintain a list of the IDs of messages that have recently passed through them. Each
message has a unique ID, consisting of the IP address of the initiating peer and a unique local key.

165

changes again the label to ry = F (rx) and sends it to P3 (Figure 6.7(c)). Obviously,

P3 detects the duplicate answer and rejects it. This kind of cycle, however, creates

considerable overhead; up to O
(
(c − 1) · Nd

)
unnecessary messages are propagated,

where c is the length of the cycle and N is the maximum degree of the nodes that

receive qy.

P2

P1 P3

P4

P5

qy

qy

qx

Run(x) Run(y)

(a) 1st Hop of Query Propaga-
tion

P2

P1 P3

P4

P5

qy

qx

Run(x) Run(y)

y=F(x) y=F(y)

(b) 2nd Hop of Query Propa-
gation

P2

P1 P3

P4

P5
yx

Run(x) Run(y)

y=F(x) y=F(y)

3 2

54

1

r = F(r)

xyr = F(r)

ry

ry

rx

(c) Duplicate Answers

Figure 6.7: Cycles due to Frozen Queries

In order to break such cycles, we append each answer with information about the

transformations that have taken place in the return path. In our example, rx carries

a tag indicating that its original label was ry; therefore, P1 will not use rx to answer

qy. Notice that there may exist cycles with up to l transformations, where l is not

bounded by d. Nevertheless, in practice l is expected to be moderate; long cycles

are rare, because the original queries expire, causing their attached queries to expire

also, before the messages manage to travel all the hops around the cycle. In our

experiments, for example, queries expire within 60sec in networks with 1000 nodes;

the resulting cycles contain at most three transformations.

More sophisticated solutions are also possible. For instance, the system can im-

plement a cycle avoidance algorithm (refer to [6] for a survey) when propagating the

queries, in order to prevent the forming of cycles. Alternatively, we could run a cycle

166

Table 6.1: Parameters Derived from the Prototype
Parameter Value Comments

TRR 3.69 KB/sec
Average transfer rate between remote peers
(WAN)

TRL 594.93 KB/sec
Average transfer rate between local peers
(LAN)

APTO 1.19 sec/mes Average processing time for query message

APTM 0.01 sec/mes
Average processing time for other types of
query messages

ICTR 3.68 sec/con
Average time to initiate a remote connection
(WAN)

ICTL 0.36 sec/con
Average time to initiate a local connection
(LAN)

detection and recovery algorithm to un-freeze some of the queries after a cycle is

formed. However, both methods would add complexity to the system and introduce

overhead due to control messages, while the simple solution that we have described

above works acceptably well.

6.4 Experimental Evaluation

We employed two implementations to evaluate our methods. The first one is a JAVA

prototype based on our BP platform which run on Pentium III PCs with 256MB RAM

and Windows 2000; it was used to derive the basic parameters of the system (see

Table 6.1). LAN denotes that a pair of nodes was physically connected to a 10Mbps

local network, while WAN means that one node was in Singapore and the other in

Hong Kong. The parameters were used in the second implementation, which was a

simulator running on a 2-CPU Ultra-SRARC III server with 4GB RAM. We employed

a simulator since it would be impractical to set up large networks, while the benefits of

our methods could only become significant when there are many participating nodes.

167

Since there is no similar system in use, we did not have any information about the

network topology or user behavior. As an approximation, we adopted the parameters

of existing broadcast-based content-sharing systems, which are presented in [110]. We

generated two network topologies for the simulation:

1. Uniform, where the average number of neighbors per node is 3.2.

2. PowerLaw [36], which is a for simulating the behavior of the Internet.

We employed the PLOD algorithm [16] and set α ∈ [0.85, 0.99], β ∈ [96, 355],

resulting in 3.2 neighbors per node on average. The nodes were connected either

through a slow (WAN) or a fast (LAN) line to the network. A node which was

connected through a slow link could support up to four concurrent neighbors (this

is the default value in Gnutella). The number of nodes which were simultaneously

online varied from 100 to 1000. Since in practice, only around 5% of the users are

active at any given time [109], our results are representative for populations of up to

20,000 users.

We used three image datasets in our experiments. The first one, REAL48, con-

sisted of a library of 10,504 high resolution images. We used wavelet coefficients to

represent their visual features. In order to achieve a uniform spacing of colors, we

first transformed the images from the original RGB to the CIE L*U*V color space.

Then, we rescaled each image to 128 × 128 pixels and we calculated a five-level

wavelet decomposition by using the Daubechies wavelet transformation [107], result-

ing in 16 sub-bands. We computed the average and the standard deviation for each

sub-band and got 16 (µ, σ) pairs. These 2·16 coefficients, together with the upper left

4 × 4 corner of the transformation matrix, formed a 48-D vector F = f1, f2, ..., f48

168

which encoded the visual features of the image. To ensure that each dimension

of the feature vector received equal emphasis, we computed the normalized vector

F ′ = {f ′
1, f

′
2, ..., f

′
48} as:

f ′
i =

fi − µi

σi

where µ and σ are the mean and the standard deviation of the ith dimension of the

entire collection’s feature vectors. The normalization was performed to express the

similarity between two images by the Euclidian distance of their feature vectors.

The second dataset, REAL191, consisted of the same set of images, but for each

one, we extracted two feature vectors. The first was a 32-D vector with the 16 (µ,

σ) pairs of the Daubehies transformation. The second vector had 159 dimensions

and encoded information about the texture. Our third dataset was SY NTH200. It

consisted of 10,000 pairs of feature vectors, one with 32 and the other with 168 di-

mensions, and was generated synthetically. There were 100 clusters of vectors around

100 random points. The vectors inside each cluster followed a Gaussian distribution,

where σ = 0.2.

6.4.1 Static Query Freezing

In the first set of experiments, we compared a broadcast-based system that did not

support frozen queries (denoted as nf) against our static freezing algorithm. There

were 100 peers simultaneously online, and for each setting, we calculated the average

results over 1000 queries; these were images selected from our dataset with uniform

distribution. The peer which initiated each query was also randomly chosen. For

every possible query, we pre-calculated the Global-top-k which was the set of the top-

k images from the entire dataset. k was fixed to 10 for all the experiments in this

169

section. The performance results of our algorithms are presented in Figure 6.8, 6.9

and 6.10. In the left side of each figure row, we draw the FirstDelay which is the

average delay in seconds in obtaining the first image which belongs to the Global-top-

k. Intuitively, this measure indicates how long the user must wait until the arrival

of the first useful result. Users may wait for up to MaxWaitT ime seconds before

they abort the query. If no useful result has arrived during this interval, FirstDelay

is set to MaxWaitT ime. The right side of each Figure 6.8, 6.9 and 6.10 presents

the average precision of the results. Precision is defined as the number of obtained

images that belong to Global-top-k, divided by k. Notice that this metric does not

consider the rank of each image. We also computed a WeightedPrecision metric by

assigning the highest weight to the Global-top-1 image, and decreasing it linearly for

the subsequent ranks. Here, we present only the Precision metric; the trend for the

WeighedPrecision was the same.

second row the Precision as a function of Qus (Queries per user per second).

Qus is the number of queries that each user initiates per second. It follows a

Gaussian distribution, where the mean µ ∈ [4 · 10−3, 16 · 10−3], the standard deviation

σ = 5% · µ, and values are restricted in the interval µ± 3σ. The x-axis in the graphs

represents the mean value of Qus; the maximum and minimum values correspond to

one query per user every 63 and 250sec, respectively. For the static freezing algorithms

10, 30, 50 and 70% of the queries are selected randomly to freeze one hop away from

their origins.

In Figure 6.8, we consider a power-law network where MaxWaitT ime is 30sec and

allow each query to propagate for up to seven hops. When Qus is low, the best results

both in terms of FirstDelay and Precision, are achieved if there are no frozen queries

170

0

5

10

15

20

25

30

4 6 8 10 12 14 16

D
el

ay
 (

se
c)

Queries per user per sec (x1000)

nf
10
30
50
70

(a) The FirstDelay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16

Pr
ec

is
io

n

Queries per user per sec (x1000)

nf
10
30
50
70

(b) The Precision.

Figure 6.8: Non-frozen(nf) vs. 10, 30, 50, 70% Statically Frozen Queries. MaxWait-
Time = 30sec, Power Law Network.

(nf). This is due to the low number of queries that are propagated simultaneously

inside the network. When there is an attempt to freeze a query q at a peer P , it is

possible that there is no other query q′ running at P at the same time, so there will

be no results for q via that path. Even if there is a q′ available, there is only a low

probability that q and q′ are similar enough, so most of the results will be useless.

While a low query rate does not benefit the freezing algorithms, it is definitely

desirable in P2P systems. The load of each peer is kept low and the links among

nodes are not congested. Therefore q is propagated fast, and there is enough time to

exploit a large part of the network before MaxWaitT ime expires. This fact explains

the good results achieved by the traditional method (nf).

When the query rate Qus increases, however, the performance of nf deteriorates

rapidly. This is due to the overloading of peers and network connections. Messages

171

0

5

10

15

20

25

30

35

40

45

50

55

60

4 6 8 10 12 14 16

D
el

ay
 (

se
c)

Queries per user per sec (x1000)

nf
10
30
50
70

(a) The FirstDelay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16

Pr
ec

is
io

n

Queries per user per sec (x1000)

nf
10
30
50
70

(b) The Precision.

Figure 6.9: Non-frozen(nf) vs. 10, 30, 50, 70% Statically Frozen Queries. MaxWait-
Time = 60sec, Power Law Network.

take longer to propagate; therefore FirstDelay increases. Moreover, since there is not

enough time to contact many nodes before the queries expire, Precision decreases.

On the other hand, by freezing 10% of the queries, the number of concurrent mes-

sages inside the network decreases. Thus, although both FirstDelay and Precision

deteriorate, this occurs at a slower rate than the nf case. The result is that for large

values of Qus (greater than 8 · 10−3 for this setting), the Frozen10% case performs

better than nf .

The performance can be further improved by freezing more queries. For example,

freezing 70% of the queries produces better results than the 10% case, for Qus ≥
10−2. The tradeoff is that for smaller values of Qus the Frozen70% case performs

considerably worse. Summarizing, in order to achieve good results, the number of

frozen queries should increase when Qus increases, and vice versa.

172

Figure 6.9 depicts the results for the same settings except that MaxWaitT ime

is fixed to 60sec. Note that the FirstDelay measure is not comparable for differ-

ent values of MaxWaitT ime because of the way it is calculated (i.e., it is set to

MaxWaitT ime if a query does not return any useful result). For Precision, on the

other hand, the comparison is meaningful. Observe that while the trend is the same

as in the previous case, the absolute values are higher. This is due to the fact that

queries are allowed more time to propagate; therefore, they explore a larger part of

the network and return more results. As a consequence, the relative performance

of the algorithms changes. For example, Frozen10% is now better than Frozen30%

and Frozen50% for Qus = 10−2, because even if there are congested points in the

network, there is enough time for the messages to pass through. In theory, if infinite

MaxWaitT ime were allowed, nf would achieve the best performance for any value of

Qus; the quality of results would decrease monotonically if more queries were frozen.

By combining this with the previous observations, we conclude that the percentage

of frozen queries should increase when Qus increases or MaxWaitT ime decreases.

In the previous experiments, there was a point beyond which the results improved

by freezing more queries. In general, however, this is not always true as one can

see in Figure 6.10. For this experiment, we again set MaxWaitT ime = 60sec but

we changed the network structure from Power-Law to Uniform. If the percentage

of frozen queries is kept below 50%, the behavior is similar to the previous cases.

Nevertheless, the performance of Frozen70% is always worse. This is justified as

follows: In a power-law network there are some nodes that receive exponentially more

messages that the others. By freezing more queries, such nodes benefit because they

become less congested. In a uniform network, on the other hand, the variation of the

173

0

5

10

15

20

25

30

35

40

45

50

4 6 8 10 12 14

D
el

ay
 (

se
c)

Queries per user per sec (x1000)

nf
10
30
50
70

(a) The FirstDelay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16

Pr
ec

is
io

n

Queries per user per sec (x1000)

nf
10
30
50
70

(b) The Precision.

Figure 6.10: Non-frozen(nf) vs. 10, 30, 50, 70% Statically Frozen Queries. MaxWait-
Time = 60sec, Uniform Network.

peers’ workload is not so significant. By freezing 50% of the queries, almost no node is

overloaded anymore. If more queries are frozen, there do not remain enough running

queries to provide answer streams; therefore, the performance does not improve.

In this experiment, Qus = 16·10−3 corresponded to one query per user every 63sec.

Since MaxWaitT ime = 60sec, this was almost the highest allowed value for Qus,

assuming that a single user could not have more than one query running at the same

time. By altering this assumption, Frozen70% could perform better than Frozen50%

beyond some threshold value of Qus. In theory, this is always possible if the number

of simultaneous queries per user is unbounded. In practice, however, this parameter

is limited. Summarizing, the network structure also affects the performance of the

freezing algorithms.

174

0

5

10

15

20

25

30

35

40

45

50

55

60

2 4 6 8 10 12 14

D
el

ay
 (

se
c)

Queries per user per sec (x10000)

nf
10
30
50
70

(a) The FirstDelay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14

Pr
ec

is
io

n

Queries per user per sec (x10000)

nf
10
30
50
70

(b) The Precision.

Figure 6.11: Non-frozen vs. Statically Frozen Queries. 1000 peers, MaxWaitTime =
60sec, Power Law Network.

We also tested the behavior of the system for larger user populations. In Fig-

ure 6.11, we show the results for a power-law network with 1000 simultaneously active

users; MaxWaitT ime is 60sec. The trend of the algorithms is the same, although

the results were obtained for lower values of Qus. The maximum and minimum val-

ues of the x-axis correspond to a range of one query per user every 12 to 83min.

Notice that the absolute number of concurrent queries that the network supported,

remains roughly the same as in the previous experiments (i.e., the number of nodes

is increased and Qus decreased by one order of magnitude). Also observe that the

best value for Precision drops to 0.75 compared to 0.98 in the previous experiments.

This happens because the maximum number of hops a query message can travel is

still seven. When the number of nodes is small, seven hops are enough to cover the

entire network, but for 1000 nodes there exist parts of the network outside the query

175

radius.

The effect of the active user population size is further investigated in the experi-

ments of Figure 6.12. Qus is fixed to 14 · 10−4 and the number of peers varies from

100 to 1000. The results verify that increasing the number of online peers has the

same effect of increasing the query rate. Therefore, our freezing technique improves

the scalability of the system both in terms of throughput and number of active users.

0

5

10

15

20

25

30

35

40

45

50

55

60

100 300 500 700 1000

D
el

ay
 (

se
c)

Number of Peers

nf
10
30
50
70

(a) The FirstDelay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 300 500 700 1000

Pr
ec

is
io

n

Number of Peers

nf
10
30
50
70

(b) The Precision.

Figure 6.12: Non-frozen vs. Statically Frozen Queries. Qus = 14·10−4, MaxWaitTime
= 60sec, Power Law Network.

Recall that in all cases so far, the frozen query was attached to the most beneficial

stream at the freezing peer (StreamBEST method). Here, we investigate whether there

is any performance gain by attaching a frozen query to multiple streams. We tested

several combinations and present here the extreme case where the frozen query is

attached to every available stream (StreamALL). We employed a power-law network

with 100 peers and MaxWaitT ime = 60sec. In Table 6.2, we show the difference

176

of the FirstDelay(StreamBEST) − FirstDelay(StreamALL), and in Table 6.3, the

difference of Precision(StreamALL) − Precision(StreamBEST). Therefore, in both

tables a positive value indicates that StreamALL is better. In some cases StreamALL

improves the performance; this happens because each frozen query receives more

answers, so there is a higher probability to locate useful results. In other cases,

however, StreamALL is worse; this is due to network overloading from the excessive

amount of answer messages that are returned for every frozen query. Nevertheless,

in both cases, the difference is not significant. We conclude that our heuristic for

selecting the most beneficial stream, performs reasonably well in practice.

Table 6.2: FirstDelay(StreamBEST) – FisrtDelay(StreamALL)
Queries / user per sec (×10−3)
4 8 12 16

% frozen

10 0 101 -172 -166
30 0 627 -685 -468
50 0 462 -81 -1345
70 0 522 -168 -1039

Table 6.3: Precision(StreamALL) – Precision(StreamBEST)

Queries per user per sec (×10−3)
4 8 12 16

% frozen

10 0.0000 -0.0015 0.0004 0.0000
30 0.0000 0.0005 0.0013 0.0003
50 0.0000 0.0017 0.0055 0.0028
70 0.0000 0.0013 0.0310 0.0532

177

6.4.2 Adaptive Query Freezing

In the previous section, we showed that by freezing some queries, the performance of

the entire system can be greatly improved. Static freezing, however, is not a practical

solution since it does not consider the parameters that affect performance, such as

the query rate, the number of users, MaxWaitTime and the network structure. In the

following, we shall evaluate our adaptive freezing algorithm AQF, which takes into

account these factors.

0

5

10

15

20

25

30

4 6 8 10 12 14 16

D
el

ay
 (

se
c)

Queries per user per sec (x1000)

UB
LB
qL

qM
qS

(a) The FirstDelay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16

Pr
ec

is
io

n

Queries per user per sec (x1000)

UB
LB
qL

qM
qS

(b) The Precision.

Figure 6.13: 100 peers, MaxWaitTime = 30sec, Power Law Network

Figure 6.13 presents the results for a power-law network with 100 peers and

MaxWaitTime = 30sec. The settings are the same as for the experiment of Fig-

ure 6.8. For every value of Qus, we compute the maximum (Upper Bound UB) and

the minimum (Lower Bound LB) of the metrics from all the algorithms presented in

Figure 6.8 (including nf). The adaptive algorithm is compared against the best and

worst performance achieved by the static methods.

178

Recall that AQF has only one system-wide parameter aq: A query q will freeze

at peer P only if the average waiting time at the message queue of P is greater than

aq · MaxWaitT ime. We present the results for three values of aq: (i) aq = 4, which

produces long message queues qL, (ii) aq = 1, which corresponds to medium queues

qM , and (iii) aq = 1/16 for short queues qS.

Consider the qL case first. For Qus ≤ 6 · 10−3, there are relatively few queries

propagated simultaneously in the network. Consequently, the waiting time at the

message queues at most peers is less than 4 ·MaxWaitT ime, so AQF does not freeze

any queries; thus AQF behaves like nf . When Qus increases, longer message queues

appear. AQF starts freezing some queries and outperforms nf . Nevertheless, the

results are still worse than the best static freezing algorithm.

The qM case, on the other hand, prohibits the generation of long queues by

freezing more queries. Notice that qM also behaves like nf for Qus ≤ 6 · 10−3, and

beyond this, it follows closely the best static result in terms of FirstDelay. Precision

also improves compared to qL, but it is still not as good as UB. We investigated

further this issue and observed that for uniform networks qM was closer to the best

static results. The problem with the power-law network is that the length of the

queues may be much larger in some peers (i.e., they may differ up to two orders of

magnitude for our settings). In such peers, most of the queries are frozen even if the

similarity with the attached streams is low, leading to low Precision. Improving this

aspect of AQF is part of our on-going work.

We also tested the qS case which results in shorter message queues. An interesting

observation is that the results for FirstDelay are better than the best case of all

static alternatives. This illustrates that the static algorithms are not optimal for any

179

percentage of frozen queries, since they do not consider the different conditions at

each of the peers that freezes the query. Notice that qS outperforms qM in terms

of FirstDelay because the waiting time of the messages in the queues is shorter.

However, qS freezes too many queries, so the number of useful answers that reach

the initiating peers drops; therefore, qS is worse than qM in terms of Precision. We

also experimented with smaller values of aq. In those cases, both FirstDelay and

Precision deteriorated since many queries were expiring prior to receiving any useful

answer.

0

5

10

15

20

25

30

35

40

45

50

55

60

4 6 8 10 12 14 16

D
el

ay
 (

se
c)

Queries per user per sec (x1000)

UB
LB
qL

qM
qS

(a) The FirstDelay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16

Pr
ec

is
io

n

Queries per user per sec (x1000)

UB
LB
qL

qM
qS

(b) The Precision.

Figure 6.14: 100 peers, MaxWaitTime = 60sec, Power Law Network.

The above results were also verified by the experiment of Figure 6.14, where

MaxWaitT ime is set to 60sec. UB and LB correspond to the upper and lower

bound of the static algorithms of Figure 6.9. A point to note here, is that qS is worse

in terms of Precision than both qM and qL, for high query rates. Again this is due

to the excessive number of queries that are frozen by qS.

180

0

5

10

15

20

25

30

35

40

45

50

55

60

100 300 500 700 1000

D
el

ay
 (

se
c)

Number of Peers

UB
LB
qL

qM
qS

(a) The FirstDelay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 300 500 700 1000

Pr
ec

is
io

n

Number of Peers

UB
LB
qL

qM
qS

(b) The Precision.

Figure 6.15: Qus = 14 · 10−4, MaxWaitTime = 60sec, Power Law Network.

We also tested AQF for larger user populations. In Figure 6.15, we set Qus =

14 · 10−4 and varied the number of users from 100 to 1000 in a power-law network.

UB and LB are calculated from the values of Figure 6.12. The results also support

our previous observations. Summarizing, AQF is a practically useful algorithm since

it achieves good performance with minimal parameter tuning. Our best results were

obtained for aq = 1 which means that the average delay in the message queues must

be kept close to MaxWaitT ime. Our experiments, however, revealed that AQF is

robust so the exact value of aq is not critical.

6.4.3 Similarity Query Freezing Algorithm

This section evaluates the performance of our alternative freezing algorithm simQF.

Recall that while AQF decides whether to freeze a query based on the message queue

waiting time, simQF employs a similarity criterion; a query q is frozen at peer P if

181

there exists an answer stream at P whose distance from q is less than ρ.

0

5

10

15

20

25

30

35

40

45

50

55

60

4 6 8 10 12 14 16

D
el

ay
 (

se
c)

Queries per user per sec (x1000)

UB
LB
sL

sM
sH

(a) The FirstDelay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16

Pr
ec

is
io

n

Queries per user per sec (x1000)

UB
LB
sL

sM
sH

(b) The Precision.

Figure 6.16: Similarity Query Freezing. 100 peers, MaxWaitTime = 60sec, Power
Law Network.

In Figure 6.16, we present the results for three similarity thresholds: (i) a low

similarity case sL where ρ = 4, (ii) medium similarity sM with ρ = 3, and (iii) high

similarity sH, where ρ = 1. There are 100 peers in a power-law network; UB and

LB are copied from Figure 6.13 and 6.14. For low query rates, the sH case performs

better since it does not freeze many queries due to the tight similarity threshold.

For the same reason, however, sH deteriorates fast as Qus increases. Notice that this

behavior is similar to nf . Also observe that sM and sL freeze gradually fewer queries;

therefore their relative performance compared to sH is low for slow query rates and

improves as Qus increases. This behavior is identical to static query freezing, where

a tight similarity threshold ρ corresponds to a low percentage of frozen queries.

Comparing simQF with AQF, we should note that simQF does not adapt to the

182

workload of the system, therefore its applicability is limited in practice. The similarity

threshold of simQF may be considered a more natural alternative to the static freezing

algorithms which require an ad-hoc parameter (i.e., the percentage of frozen queries).

Even from this perspective, the similarity threshold is difficult to be defined, since it

depends on the application, the user’s perception and the query itself. In contrast,

the parameter of AQF can be easily derived and it is application independent.

6.4.4 Multiple-feature Queries

In our final set of experiments, we tested the performance of AQF for multiple-feature

queries. We employed the SYNTH200 dataset in a power-law network with 100 peers.

For our adaptive algorithms we set aq = 1. As in the previous experiments, we

submitted 1000 queries chosen randomly from our dataset. Since SYNTH200 had two

feature vectors, there were three possible types for every query (i.e., qf1, qf2 and

qf1,f2). The query type was selected with uniform distribution.

The results are presented in Figure 6.17. nf is the traditional non-freezing

broadcast-based algorithm. It does not consider the similarities among query types;

qf1 and qf1,f2) for instance, are treated as different queries. Our multiple-feature se-

rial algorithm maS also considers such queries as different. Therefore, the improved

performance of maS is due to adaptive query freezing. The trends of the results are

the same as these presented in Figure 6.13 and 6.14, although the absolute values

fluctuate due to the different datasets. The results of the multiple-feature random

algorithm maR are more interesting. Recall that maR exploits the similarities among

query types and includes a refinement step, where it performs direct accesses to non-

neighbor peers in order to retrieve better answers. Compared to maS, FirstDelay

does not improve significantly. This is expected since the refinement step of maR is

183

0

5

10

15

20

25

30

35

40

45

50

4 6 8 10 12 14 16

D
el

ay
 (

se
c)

Queries per user per sec (x1000)

nf
maS
maR

(a) The FirstDelay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16

Pr
ec

is
io

n

Queries per user per sec (x1000)

nf
maS
maR

(b) The Precision.

Figure 6.17: Multiple-feature Queries. 100 peers, MaxWaitTime = 60sec, Power Law
Network, aq = 1, SYNTH200 dataset.

initiated after 80% of MaxWaitT ime has passed. During this interval, most of the

queries have already received their first useful answer. On the other hand, there is

a more obvious improvement in terms of Precision, since direct accesses can fetch

useful results which would be otherwise inaccessible.

The good performance of maR is partially due to the fact that SYNTH200 was

clustered. We also ran the same experiments with the unclustered REAL181. In

this case, maR performed almost identically to maS. Actually, for some settings

maR was slightly worse that maS due to the overhead of initiating new connections.

Nevertheless, in practice, this overhead is not significant, and since we do not assume

any knowledge about the properties of the dataset properties, the possible benefits of

maR justify its employment.

184

6.5 Summary

In this chapter, we have dealt with the problem of retrieving information from large

repositories built on top of ad hoc P2P networks. While most existing approaches are

limited to exact key matching, we have developed FuzzyPeer which supports content-

based similarity queries. Due to the absence of centralized indexing, such queries are

challenging; the difficulty of defining an application-independent terminating criterion

in addition to the extremely low selectivity of the queries, overloads the system with

useless messages and causes thrashing. We have addressed this issue by introducing

the freezing technique: some queries are paused and attached to answer streams from

similar concurrently running ones, since the answers for both queries are expected

to overlap. We proposed AQF, a simple yet efficient distributed optimization algo-

rithm which improves the scalability and the throughput of the system. Numerous

applications, including full-text search in large archives or fuzzy queries in distributed

multimedia repositories, can benefit from our techniques. We have demonstrated this

by a case study of an image retrieval application.

Chapter 7

Conclusion

The objective of this research is to investigate and propose heuristic approaches of

data sharing and system management in ad hoc P2P systems without strong control

over the topology of the network and the contents of each peer. We have addressed

several common problems in the database community but with specific requirements

for P2P data sharing and management systems.

We have proposed several query processing techniques for the P2P environment

without relying on any global schemes or knowledge. Chapter 3 discusses a simple

methodology where every BestPeer node maintains a statistics log of its environment.

The logs are updated each time after some query results are obtained. Based on

the statistics, optimization such as self-reconfiguring the network to achieve better

performance for subsequent queries is applied. PeerOLAP (Chapter 5) process queries

in a fashion similar to BestPeer, where queries are broadcast to the P2P network.

However, in contrast to BestPeer, PeerOLAP employs a set of heuristics in order

to limit the number of peers that are accessed. The decision-making of FuzzyPeer

(Chapter 6) is achieved by monitoring the results streaming through remote peers that

are closer to the ideal P2P system. Such an approach eliminates the need of obtaining

185

186

the status of each peer in its environment, while facilitating a clearer picture of its

environment for decision-making.

The issues of the heterogeneity of data sources are extensively studied in Chapter

4. PeerDB is proposed for such purposes, where IR techniques are used for solving the

aforementioned tasks. Each peer is allowed to define its schema without any global

constraints. Meta-data is used to resolve the conflict of different semantic objects

with different syntactic presentations.

We have studied the consequences of data placement problems in a dynamic en-

vironment and reported our findings in Chapter 5. In particular, we have focused on

data placing problems for OLAP applications. As shown in the experimental evalua-

tion, with proper selection placement strategies, even though with ad hoc participants,

it is possible to achieve significant performance gains over traditional systems.

With regard to the above multiple data granularity access problems, we have de-

signed the BestPeer platform, which integrates with mobile agent technology (details

in Chapter 3). Mobile agent offers several advantages as compared to traditional

static data access methodologies. It allows extensibility to existing systems and finer

granularity of data sharing where partial content of a file or data may be shared.

There exist several topologies such as Chord [100], CAN[92] and Pastry[31] that

allow queries to be answered within a bounded number of hops, since search is guided

by a hash function. However, we are interested in P2P systems like Gnutella, where

search is distributed in an overlay network. When a new peer PN wishes to join the

network, it first acquires the address of an arbitrary peer with an empty slot. A peer

P broadcasts a query to all its neighbors, which propagates it recursively. If any of the

visited peers contain a result, it sends it back to P directly. A peer can also broadcast

187

exploration messages, when some of its neighbors abandon it (i.e., go off-line). This

topology has served as a basic design guideline for the implementation of the BestPeer

network architecture. In addition, data replication may improve the performance and

responsiveness of P2P data sharing and management systems. However, it makes the

updates much harder, and maintaining consistency over replicated objects is a well-

known database problem. In this thesis, we have applied a limited degree of data

replication for P2P applications, where data updates are infrequent, such as OLAP

applications.

In this work, we have presented some preliminary fundamental results, and de-

scribed our initial work in the construction of an adaptive P2P data sharing and

management system. The results of this study have confirmed our contribution in

P2P-like distributed data sharing systems that support dynamic data and dynamic

workloads.

7.1 Future Scope of Work

We plan to extend PeerDB in several directions. First, we plan to make a node more

intelligent by allowing it to determine at runtime which strategy to adopt – code-

shipping or data-shipping. Second, we have focused on looking for “similar” schemas.

More recently, the keyword-based search engine for relational databases has been

developed [12]. We plan to see how such features can be integrated into our system

to facilitate keyword-based search in PeerDB. Third, we are continuing the work on

joining the relations from multiple nodes. Joining relations from a single node can be

done by MySQL. However, we need to implement our own algorithm to join relations

from multiple nodes. We plan to use AJoin [102] as the joining algorithm as it can

188

provide continuous answers to the user as soon as data arrives. Unlike traditional

query processing techniques, AJoin blocks only when all available data have been

examined. As a result, AJoin delivers its response to the user as soon as possible.

We will investigate the option of developing more sophisticated algorithms for

network reconfiguration in PeerOLAP. Identifying the neighborhoods of peers with

similar access patterns is essentially a clustering problem, which however, is difficult

to solve because: (i) there is no complete knowledge about the whole network at

any site; thus, each peer must make decisions using only partial information, and (ii)

the available information constantly changes as the caches get updated, and peers

enter/leave the network.

We are working on incorporating dynamic network reconfiguration to FuzzyPeer.

The idea is to alter dynamically the set of neighbors of some peers in order to minimize

the required number of query hops. In the future, we are also planning to support

general database queries through the use of XML.

Bibliography

[1] BestPeer Project Home Page, http://xena1.ddns.comp.nus.edu.sg/p2p/.

[2] FURI, http://www.jps.net/williamw/furi.

[3] MySql Home Page, http://www.mysql.com/.

[4] Visibroker, http://info.borland.com/techpubs/visibroker/.

[5] WebSphere, http://www-3.ibm.com/software/info1/websphere/index.jsp.

[6] A. Tanenbaum and A. Woodhull, Operating systems design and implementation,

Prentice-Hall Inc, 1999.

[7] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,

M. Punceva, R. Schmidt, and J. Wu, Advanced peer-to-peer networking: The

P-Grid System and its Applications, PIK Journal - Praxis der Informationsver-

arbeitung und Kommunikation, Special Issue on P2P Systems (2003).

[8] K. Aberer, P. Cudré-Mauroux, and M. Hauswirth, A framework for semantic

gossiping, SIGMOD Record, 31(4) (2002).

[9] K. Aberer and M. Hauswirth, Peer-to-peer information systems: concepts and

models, state-of-the art, and future systems, Tutorial at International Confer-

ence on Data Engineering (ICDE), 2002.

[10] Karl Aberer, P-Grid: A self-organizing access structure for P2P information

systems, Lecture Notes in Computer Science 2172 (2001).

189

190

[11] S. Abiteboul and O. Duschka, Complexity of answering queries using materi-

alized views, ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems (PODS), 1998, pp. 254–263.

[12] S. Agrawal, S. Chaudhuri, and G. Das, Dbxplorer: A system for keyword-based

search over relational databases, Proceedings of the 18th International Confer-

ence on Data Engineering (San Jose, CA), April 2002.

[13] J. Albrecht and W. Lehner, On-line analytical processing in distributed data

warehouses, IDEAS, 1998, pp. 78–85.

[14] A. Andrzejak and Z. Xu, Scalable, efficient range queries for grid information

services, The Second IEEE International Conference on Peer-to-Peer Comput-

ing (P2P2002), 2002.

[15] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmaier, Space filling curves

and their use in geometric data structure, Theoretical Computer Science, 1997,

pp. 3–15.

[16] R. A. Baeza-Yates and B. A. Ribeiro-Neto, Modern information retrieval, ACM

Press/Addison-Wesley, 1999.

[17] S. Bergamaschi, S. Castano, D. Beneventano, and M. Vincini, Semantic inte-

gration of heterogeneous information sources, Special Issue on Intelligent Infor-

mation Integration, Data & Knowledge Engineering 36 (2001), no. 1, 215–249.

[18] S. Bressan, C.L. Goh, B.C. Ooi, and K.L. Tan, Supporting extensible buffer

replacement strategies in database systems, ACM SIGMOD International Con-

ference on Management of Data, 1999.

[19] J. Byers, J. Considine, and M. Mitzenmacher, Simple load balancing for dis-

tributed hash tables, 2nd International Workshop on Peer-to-Peer Systems

(IPTPS), February 2003.

191

[20] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi, Answering regular

path queries using views, International Conference on Data Engineering (ICDE),

2000, pp. 389–398.

[21] P. Cao, J. Zhang, and P. B. Beach, Active cache: Caching dynamic contents on

the web, Middleware Conference, 1998.

[22] M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya, W. F. Cody, R. Fagin,

M. Flickner, A. W. Luniewski, W. Niblack, D. Petkovic, J. Thomas, J. H.

Williams, and E. L. Wimmers, Towards heterogeneous multimedia information

systems: The garlic approach, International Workshop on Research Issues in

Data Engineering(RIDE): Distributed Object Management, 1996.

[23] A. Castillo, M. Kawaguchi, N. Paciorek, and D. Wong, Concordia as enabling

technology for cooperative information gathering, Proceedings of the 31th An-

nual Hawaii International Conference on System Sciences 1998 (HICSS31),

1998.

[24] C.C.K. Chang and H. Garćıa-Molina, Mind your vocabulary: query mapping

across heterogeneous information sources, ACM SIGMOD International Con-

ference on Management of Data, 1999, pp. 335–346.

[25] A. Crespo and H. Garćıa-Molina, Routing indices for peer-to-peer systems, In-

ternational Conference on Distributed Computing Systems (ICDCS), 2002.

[26] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava, and M. Tan, Semantic

data caching and replacement, VLDB, 1996, pp. 330–341.

[27] P. Deshpande and J. F. Naughton, Aggregate aware caching for multi-

dimensional queries, International Conference on Extending Database Tech-

nology (EDBT), 2000, pp. 167–182.

192

[28] P. Deshpande, K. Ramasamy, A. Shukla, and J. F. Naughton, Caching multi-

dimensional queries using chunks, ACM SIGMOD International Conference on

Management of Data, 1998, pp. 259–270.

[29] A. Doan, P. Domingos, and A. Y. Halevy, Reconciling schemas of disparate data

sources: A machine-learning approach, ACM SIGMOD International Confer-

ence on Management of Data, 2001.

[30] A. Doan, J. Madhavan, P. Domingos, and A. Halevy, Learning to map between

ontologies on the semantic web, World-Wide Web Conference, 2002.

[31] P. Druschel and A. Rowstron, Pastry: Scalable, Distributed Object Location

and Routing for Large-Scale Peer-to-Peer Systems, IFIP/ACM International

Conference on Distributed systems platforms (Middle ware), 2001, pp. 329–

350.

[32] D. W. Embley, D. Jackman, and L. Xu, Multifaceted exploitation of metadata for

attribute match discovery in information integration, Workshop on Information

Integration on the Web, 2001, pp. 110–117.

[33] Entropia Home Page, http://www.entropia.com.

[34] R. Fagin, Combining fuzzy information from multiple systems, ACM Symp. on

Principles of Database Systems (PODS), 1996, pp. 216–226.

[35] R. Fagin, A. Lotem, and M. Naor, Optimal aggregation algorithms for middle-

ware, ACM Symp. on Principles of Database Systems (PODS), 2001.

[36] M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the

internet topology, ACM SIGCOMM, 1999, pp. 251–262.

[37] T. Finin, R. Fritzson, D. McKay, and R. McEntire, KQML as an Agent Commu-

nication Language, 3rd International Conference on Information and Knowledge

Management (CIKM), 1994, pp. 456–463.

193

[38] D. Florescu, A. Y. Levy, and A. O. Mendelzon, Database techniques for the

world-wide web: A survey, SIGMOD Record 27 (1998), no. 3, 59–74.

[39] Freenet Home Page, http://freenet.sourceforge.com/.

[40] H. Garćıa-Molina, W. J. Labio, J. L. Wiener, and Y. Zhuge, Distributed and

parallel computing issues in data warehousing, ACM Symposium on Principles

of Distributed Computing, 1998.

[41] Graham Glass, Overview of voyager: Objectspace’s product fam-

ily for stateof-the-art distributed computing., White paper, Ob-

jectSpace, http://www.objectspace.com/products /documentation /Voy-

agerOverview.pdf, 1999.

[42] Gnutella Development Home Page, http://gnutella.wego.com/.

[43] C. L. Goh, S. Bressan, B. C. Ooi, and M. Anirban, Storm: A 100% java per-

sistent storage manager, OOPSLA Workshop on Java and Object, 1999.

[44] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu, What can databases

do for peer-to-peer?, WebDB Workshop on Databases and the Web, 2001.

[45] L. M. Haas, R. J. Miller, B. Niswonger, M. T. Roth, P. M. Schwarz, and E. L.

Wimmers, Transforming heterogeneous data with database middleware: Beyond

integration, IEEE Data Engineering Bulletin 22 (1999), no. 1, 31–36.

[46] A. Halevy, O. Etzioni, A.H. Doan, Z. Ives, J. Madhavan, L. McDowell, and

I. Tatarinov, Crossing the structure chasm, 2003.

[47] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov, Piazza: Data Management

Infrastructure for Semantic Web Applications, The 12th International World

Wide Web Conference, 2003.

194

[48] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov, Schema Mediation in

Peer Data Management Systems, International Conference on Data Engineering

(ICDE), 2003.

[49] V. Harinarayan, A. Rajaraman, and J. D. Ullman, Implementing data cubes

efficiently, ACM SIGMOD International Conference on Management of Data,

1996, pp. 205–216.

[50] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker, and I. Stoica, Com-

plex queries in dht-based peer-to-peer networks, International Workshop on Peer-

to-Peer Systems (IPTPS02), 2002.

[51] R. Hull and G. Zhou, A framework for supporting data integration using the

materialized and virtual approaches, ACM SIGMOD International Conference

on Management of Data, 1996, pp. 481–492.

[52] ICQ Home Page, http://www.icq.com/.

[53] P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K. L. Tan, An adaptive

peer-to-peer network for distributed caching of olap results, ACM SIGMOD In-

ternational Conference on Management of Data, 2002, pp. 25–36.

[54] P. Kalnis and D. Papadias, Proxy-server architectures for olap, ACM SIGMOD

International Conference on Management of Data, 2001, pp. 367–378.

[55] G. Karjoth, D.B. Lange, and M. Oshima, A Security Model for Aglets, IEEE

Internet Computing 1 (1997), no. 4.

[56] N. Karnik and A. Tripathi, Agent Server Architecture for the Ajanta Mobile-

Agent Systems, International Conference on Parallel and Distributed Processing

Techniques and Applications, 1998.

[57] KDD Cup 2001, http://www.cs.wisc.edu/ dpage/kddcup2001/.

195

[58] A. M. Keller and J. Basu, A predicate-based caching scheme for client-server

database architectures, VLDB Journal 5 (1996), no. 1, 35–47.

[59] A. Kementsietsidis, M. Arenas, and R. J. Miller, Mapping Data in Peer-to-

Peer Systems: Semantics and Algorithmic Issues, ACM SIGMOD International

Conference on Management of Data, 2003.

[60] J. Kleinberg, Small-world phenomena and the dynamics of information, Ad-

vances in Neural Information Processing Systems (NIPS), 2001.

[61] D. Kossmann, The state of the art in distributed query processing, ACM Com-

puting Surveys 32 (2000), no. 4, 422–469.

[62] Y. Kotidis and N. Roussopoulos, Dynamat: A dynamic view management sys-

tem for data warehouses, ACM SIGMOD International Conference on Manage-

ment of Data, 1999, pp. 371–382.

[63] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,

R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao,

Oceanstore: An architecture for global-scale persistent storage, Architectural

Support for Programming Languages and Operating Systems (ASPLOS 2000),

2000.

[64] D. Ursino L. Palopoli, G. Terracina, The system dike: Towards the semi-

automatic synthesis of cooperative information systems and data warehouses,

ADBIS-DASFAA, 2000, pp. 108–117.

[65] D. Lange and M. Oshima, Programming and Deploying Java Mobile Agents with

Aglets, Addison-Wesley, 1998.

[66] M. Lenzerini, Data integration: A theoretical perspective, ACM Symp. on Prin-

ciples of Database Systems (PODS), 2002, pp. 233–246.

196

[67] LOCKSS Home Page, http://lockss.stanford.edu/.

[68] T. Loukopoulos, P. Kalnis, I. Ahmad, and D. Papadias, Active caching of on-

line-analytical-processing queries in www proxies, International Conference On

Parallel Processing, 2001, pp. 419–426.

[69] J. Madhavan, P. A. Bernstein, and E. Rahm, Generic schema matching with cu-

pid, International Conference on Very Large Data Bases (VLDB), 2001, pp. 49–

58.

[70] R. J. Miller, M. A. Hernandez, L. M. Haas, L. Yan, C. T. Howard Ho, R. Fagin,

and L. Popa, The clio project: Managing heterogeneity, 30 (2001), no. 1, 78.

[71] T. Milo and S. Zohar, Using schema matching to simplify heterogeneous data

translation, International Conference on Very Large Data Bases (VLDB), 1998,

pp. 122–133.

[72] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,

S. Rollins, and Z. Xu, Peer-to-peer computing, Technical Report HPL-2002-57,

HP Laboratories Palo Alto, March 2002.

[73] Mitsubishi Electric, Concordia: An infrastructure for collaborating mobile

agents, Proceedings of the 1st International Workshop on Mobile Agents (MA

’97), April 1997.

[74] Morpheus Home Page, http://www.morpheus-os.com/.

[75] Napster Home Page, http://www.napster.com/.

[76] NFS Version 4 Home Page, http://www.nfsv4.org/.

[77] W. S. Ng, B. C. Ooi, and K. L. Tan, BestPeer: A Self-Configurable Peer-to-Peer

System, Poster in International Conference on Data Engineering (ICDE), 2002,

p. 272.

197

[78] W. S. Ng, B. C. Ooi, K. L. Tan, and A. Y. Zhou, PeerDB: A P2P-based System

for Distributed Data Sharing, International Conference on Data Engineering

(ICDE), 2003, pp. 633–644.

[79] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic,

P. Yanker, C. Faloutsos, and G. Taubin, The qbic project: Querying images by

content using color, texture and shape., In Storage and Retrieval for Image and

Video Databases (SPIE), 1993, pp. 173–187.

[80] H. S. Nwana, D. T. Ndumu, L. C. Lee, and J. C. Collis, ZEUS: A Toolkit and

Approach for Building Distributed Multi-Agent Systems, International Confer-

ence on Autonomous Agents (Agents) (Seattle, WA, USA), 1999, pp. 360–361.

[81] Object Management Group, http://www.omg.org/.

[82] Olap council apb-1 olap benchmark r-ii, http://www.olapcouncil.org.

[83] B. C. Ooi, K. L. Tan, H. J. Lu, and A. Y. Zhou, P2P: Harnessing and Riding

on Peers, The 19th National Conference on Data Bases, August 2002.

[84] B. C. Ooi, K. L. Tan, A. Y. Zhou, C. H. Goh, Y. G. Li, C. Y. Liau, B. Ling,

W. S. Ng, Y. F. Shu, X. Y. Wang, and M. Zhang, PeerDB: Peering into Personal

Databases, ACM SIGMOD International Conference on Management of Data

(Demo), 2003.

[85] A. Oram, Peer-to-peer : Harnessing the power of disruptive technologies, 2001.

[86] M. T. Ozsu and P. Valduriez, Principles of distributed database systems, Pren-

tice Hall, 1999.

[87] Panos Kalnis, Static and dynamic view selection in distributed data warehouse

systems., PhD Thesis (Computer Science Dept., University of Science and Tech-

nology, Hong Kong.), 2002.

198

[88] Parabon Computation Home Page, http://www.parabon.com/.

[89] C. Parent and S. Spaccapietra, Database integration: an overview of issues and

approaches, Communications of the ACM 41 (1998), no. 5, 166–178.

[90] A. B. Philip, G. Fausto, K. Anastasios, M. John, S. Luciano, and Z. Ilya,

Data management for peer-to-peer computing: A vision, WebDB Workshop on

Databases and the Web, 2002.

[91] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, Load bal-

ancing in structured p2p systems, 2nd International Workshop on Peer-to-Peer

Systems (IPTPS), February 2003.

[92] S. Ratnasamy, R. Francis, M. Handley, R. Krap, J. Padye, and S. Shenker, A

Scalable Content-Addressable Network, ACM SIGCOMM, 2001.

[93] A. Rowstron and P. Druschel, Past: A large scale persistent peer-to-peer storage

utility, Workshop on Hot Topics in Operating Systems (HotOS), November

2001.

[94] P. Scheuermann, J. Shim, and R. Vingralek, Watchman : A data warehouse

intelligent cache manager, VLDB, 1996, pp. 51–62.

[95] SETI@home Home Page, http://setiathome.ssl.berkely.edu/.

[96] A. Shukla, P. Deshpande, and J. F. Naughton, Materialized view selection for

multidimensional datasets, International Conference on Very Large Data Bases

(VLDB), 1998, pp. 488–499.

[97] A. Shukla, P. Deshpande, and J. F. Naughton, Materialized view selection for

multi-cube data models, International Conference on Extending Database Tech-

nology (EDBT), 2000, pp. 269–284.

199

[98] I. A. Smith and P. R. Cohen, Toward a Semantics for an Agent Communi-

cations Language Based on Speech-Acts, 13th National Conference Artificial

Intelligence, (AAAI Press), 1996.

[99] Squid Web Proxy Cache, http://www.squid-cache.org/.

[100] I. Stocia, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, Chord:

A Scalable Peer-to-Peer Lookup Service for Internet Applications, ACM SIG-

COMM, 2001.

[101] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin,

and A. Yu, Mariposa: A wide-area distributed database system, VLDB Journal

5 (1996), no. 1, 48–63.

[102] K.L. Tan, P.K. Eng, B.C. Ooi, and M. Zhang, Join and multi-join processing

in data integration systems, Data and Knowledge Engineering 40 (2002), no. 2,

217–239.

[103] A. Tomasic, L. Raschid, and P. Valduriez, Scaling heterogeneous databases and

the design of disco, International Conference on Distributed Computing Sys-

tems, 1996, pp. 449–457.

[104] J. D. Ullman., Information integration using logical views, International Con-

ference on Database Theory (ICDT), 1997, pp. 19–40.

[105] United Devices Home Page, http://www.ud.com/.

[106] R. Vincent, B. Horling, and V. Lesser, An agent infrastructure to build and

evaluate multi-agent systems: The java agent framework and multi-agent system

simulator, Lecture Notes in Artificial Intelligence: Infrastructure for Agents,

Multi-Agent Systems, and Scalable Multi-Agent Systems., vol. 1887, Wagner &

Rana (eds.), Springer,, January 2001.

200

[107] J. Z. Wang, G. Wiederhold, O. Firschein, and S. X. Wei, Content-based im-

age indexing and searching using daubechies’ wavelets, International Journal on

Digital Libraries (1), 1997, pp. 311–328.

[108] X. Y. Wang, W. S. Ng, B. C. Ooi, K. L. Tan, and A. Y. Zhou, BuddyWeb: A

P2P-based Collaborative Web Caching System, Position Paper in Peer to Peer

Computing Workshop (Networking), 2002.

[109] B. Yang and H. Garćıa-Molina, Comparing hybrid peer-to-peer systems, Inter-

national Conference on Very Large Data Bases (VLDB), 2001, pp. 561–570.

[110] B. Yang and H. GarćıaMolina, Efficient search in peer-to-peer networks, Inter-

national Conference on Distributed Computing Systems (ICDCS), 2002.

[111] B. Yang and H. Garćıa-Molina, Designing a super-peer network, International

Conference on Data Engineering (ICDE), 2003.

[112] N. Young, On-line caching as cache size varies, Symposium on Discrete Algo-

rithms, 1991.

[113] C. Yu, B. C. Ooi, K. L. Tan, and H. V. Jagadish, Indexing the distance: An

efficient method to knn processing, International Conference on Very Large Data

Bases (VLDB), 2001.

[114] B. Y. Zhao, J. Kubiatowicz, and A. Joseph, Tapestry: An Infrastructure for

Fault-tolerant Wide-area Location and Routing., Technical report, UCB/CSD-

01-1141, University of California, Berkeley, 2001.

