

DISTRIBUTED CODE GENERATION

USING OBJECT LEVEL ANALYSIS

CHU YINGYI

(B.ENG, TSINGHUA)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2003

ACKNOWLEDGEMENT

I would like to express my deep gratitude and appreciation to my supervisor, Dr. Tay

Teng Tiow for his patient guidance, instructive advice, continuous support and warm

encouragement over the years of my study.

Sincere thanks for all the friends who have gone out of their way to help and support

me.

I am grateful to my beloved family members for their selfless love, encouragement and

support.

I also give thanks to the National University of Singapore for granting me research

scholarship to support my study and research.

 i

TABLE OF CONTENTS

ACKNOWLEDGEMENT…………………………………………………………….i

TABLE OF CONTENTS……………………………………………………………..ii

SUMMARY……………………………………………………………………………v

LIST OF FIGURES………………………………………………………………….vii

LIST OF TABLES…………………………………………………………………..viii

CHAPTER 1 INTRODUCTION……………………………………………………1

1.1 Background……………………………………………………………………..1

1.2 Motivation and Contributions…………………………………………………..5

1.3 Related Work…………………………………………………………………...7

1.4 Thesis Organization…………………………………………………………...10

CHAPTER 2 AN OVERVIEW……………………………………………………13

2.1 The Decentralized System…………………………………………………….13

2.2 The Components of JDGC……………………………………………………15

2.3 The Network Layer……………………………………………………………18

2.4 Summary………………………………………………………………………19

 ii

CHAPTER 3 SYSTEM METHODOLOGY…..………………………………….20

3.1 The Object Model of Applications……………………………………………20

3.2 The Methodology of Distributed Code Generation using Object Level

Analysis………………………………………………………………………..21

3.3 Flow of Processing…………………………………………………………….23

3.4 Summary………………………………………………………………………26

CHAPTER 4 THE METHOD OF OBJECT LEVEL ANALYSIS……………...27

4.1 Class-Level Analyzer and Three Dimensional Affinity Metrics…………...…27

4.1.1 The Three Dimensions………………………………………………...28

4.1.2 Analyzing Procedure…………………………………………………..30

4.2 Object-Level Analyzer………………………………………………………...32

4.2.1 Visible Scope Analysis and Mapping of Affinity Metrics……………32

4.2.2 Analyzing Procedure………………………………………………….35

4.3 Summary………………………………………………………………………36

CHAPTER 5 DISTRIBUTED CODE GENERATION………………………….38

5.1 Code Generation in Two Steps………………………………………………..38

5.2 Tree Transformation…………………………………………………………..40

5.2.1 Changes for Object Placement and Communications…………………41

5.2.2 The Wrapper Class…………………………………………………….42

5.2.3 Addition and Substitution of Sub AST………………………………..44

5.3 Summary………………………………………………………………………46

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS………………………….47

 iii

6.1 User Interface………………………………………………………………….47

6.2 Runtime Application Manager………………………………………………...50

6.3 A Discussion on Security Issues………………………………………………54

6.4 Applications…………………………………………………………………...58

CHAPTER 7 CONCLUSIONS…………………………………………………….65

7.1 Contributions.…………………………………………………………………65

7.2 Recommendations……………………………………………………………..67

APPENDIX A KEY SOURCE CODE…………………………………………….71

Code for Class-Level Analysis……………………..…………………………………71

Code for Object-Level Analysis………………………………………………………77

APPENDIX B EXAMPLES OF CODE TRANSFORMATION……….……….86

Matrix Multiplication………..……………………..…………………………………86

Curve Fitting………………………………………………………………………….95

REFERENCES……………………………………………………………………...108

 iv

SUMMARY

This thesis proposes a Java Distributed code Generating and Computing (JDGC)

platform. The key function of this system is a method of distributed code generation

using object level analysis. This method analyzes an input application written in

object-oriented language to extract communication affinity metrics between the

runtime objects. Using these object level affinity metrics, the original application

program is automatically transformed to run on the network machines. The generated

distributed code incorporates the runtime object placement according to the affinities

computed. The resultant code is able to run on the distributed environment, handling

object manipulations and communications on network machines.

The object level analysis is a new analysis method for object-oriented applications,

providing object level communication affinity metrics. Our approach uses a two level

analyzer with an intermediate 3 dimensional communication metrics. The result of this

analysis is a 2 dimensional metrics containing the communication affinities between

runtime objects. In our system, this information serves as the guidance for the object

placement in the subsequent distributed code generation. This analyzing method while

motivated from our integrated system for object distribution, is nevertheless a general

 v

approach for extracting object-to-object communication affinity metrics and can also

be used in other contexts.

The distributed code generation is an automatic process that incorporates the object

placement on network machines into the distributed code according to their

communication requirements. This process is completely automatic and does not

require special programming paradigm for the user’s program. A normal program for

single machine is transformed to a form that runs on the network. The distributed code

generator performs the code transformation, traditionally performed by hand, in a

structured mode.

The proposed JDGC platform is an integrated system with the above distributed code

generation as a key component. As a fully functional system, JDGC also has a

comprehensive user interface, and uses a runtime application manger to keep tracks of

the dynamic status of the system.

 vi

LIST OF FIGURES

Figure 2.1 A Network Overview of the Computing Scheme……………………..14

Figure 2.2 Components of Java Distributed code Generating and Computing
(JDGC) Platform………………………………………………………17

Figure 3.1 The Flow of Processing for the Object-Level Analysis and Distributed
Code Generation ………..…………………………………………….25

Figure 4.1 The Three Dimensions of Object-Oriented Program…………………30

Figure 4.2 Flow Chart of the Object-Level Analysis Procedure ………………...37

Figure 5.1 Template of Wrapper Class…………………………………………...43

Figure 6.1 User Interface: Transformation of Application……………………….48

Figure 6.2 User Interface: Submission and Execution of Application……………49

Figure 6.3 The Data Structure in Runtime Application Manager………………...53

 vii

LIST OF TABLES

Table 6.1 The Average Execution Time with One Host…………………………59

Table 6.2 The Average Execution Time for Four Simultaneous Applications…..59

Table 6.3 The Average Execution Time When Num of Applications equals Num
of Hosts………………………………………………………………..60

Table 6.4 The Average Execution Time of Multiple Threaded Applications…...61

Table 6.5 The Overheads in Creation and Communication……………………...61

Table 6.6 Comparison of Different Object Allocation Methods………………...62

Table 6.7 The Support for Multiple Applications………………………………..63

 viii

CHAPTER 1 INTRODUCTION

CHAPTER 1

INTRODUCTION

1.1 Background

Distributed computing is the emerging platform for many computational intensive

applications. This development is enabled by two significant changes in the world of

computing in the last ten years. Firstly, the advent of cheaper and more powerful

processors greatly enhanced the computational capability of the ubiquitous

workstations and personal computers. Today the processor that powers a personal

computer is often as powerful as that which powers a big departmental server.

Secondly, few computers work as standalone machines. They are either permanently

networked or at least are equipped with the facility to be connected to a network as and

when needed. The networked computers on a local area network or the Internet

naturally form a system of loosely coupled multiple processors. These systems have

the advantage of scalability and relatively lower investment when compared to the

multiprocessor mainframes.

On the other hand, more and more applications in scientific and business computing

require large amount of computational powers. Some examples of such applications

 1

CHAPTER 1 INTRODUCTION

are human gene analysis, cryptographic computing, numerical solution for dynamic

systems, processing for large remote-sensing images, modeling of long time series in

equity market, etc. The distributed computing architecture is most suitable for these

applications in a low cost. Such systems utilize a number of mostly idle processors

connected by a network to collectively solve large problems.

Although the hardware for such an architecture has been in place, there must be a

software platform on every participant computer to support the distributed execution of

applications. A distributed computing platform should provide the following functions:

− Find the available computational resources among the whole system.

− Host and execute a piece of computation task.

− Transmit data between different computation tasks via the network.

− As a robust platform, be able to recover from the machine crashing.

Aside from the underlying platform, applications that run on networked machines are

different from those for single machines. Since only concurrent applications can

benefit from the multiple processors, we will only consider these applications in our

distributed computing context.

Compared to a single machine concurrent application, a distributed application has to

manage the following tasks in addition to the computation task:

− The application partitions its computation into parts.

− The application launches its parts to other hosts.

− The application handles interactions between different parts through local or

network communication depending on their relative locations on the network.

 2

CHAPTER 1 INTRODUCTION

All these considerations make the application development for distributed system a

daunting task. Developers have to analyze the structure of application, partition it into

components, and recognize those interactions that involve inter-machine

communication. During programming, the handling of task distribution and

communications must be incorporated into the code. The debugging of distributed

applications is also much more complex than that of single machine applications.

Object-Oriented Programming Language (OOPL) is a relatively new paradigm of

developing complex applications. Unlike traditional procedure-based method, OOPL

uses a bottom-up composition model of development, and possesses the advantages of

information hiding, encapsulation and modularity. The unique features of OOPL make

it particularly suitable for the distributed computing applications for the following

reasons:

− Objects are the unit of manipulation in object-oriented applications, making the

partitioning task easier compared to the monotholic processes in procedure-based

applications.

− Encapsulation makes the object a relatively separate entity. This makes it an

ideal candidate of distribution.

− The structured interface of classes facilitates the identification of

communications between objects.

Therefore, distributed object-oriented computing has been studied widely in recent

years. Three important aspects in the research on distributed object-oriented computing

are summarized as follows:

 3

CHAPTER 1 INTRODUCTION

Firstly, the platforms must support the object-oriented applications. Most newly

proposed platforms like [1,2] are designed for object-oriented applications. These

platforms provides the basic functions of transferring object through data network,

making method invocations remotely, etc. Techniques and protocols such as Object

Serialization, RMI, and CORBA [3] have been developed to support distributed object-

based computing.

Secondly, the mapping of object-oriented applications to networked machines is based

on the analysis of communication relations between objects. In this aspect, program

analysis methods in [4-6] provide the methods for analyzing class-to-class

communication affinity of general object-oriented applications. While the class-based

analysis is static and does not provide enough information for the runtime objects, the

analysis method of [7] models the runtime behavior using the scenario diagram.

However, for object-oriented application, the unit for distribution is the runtime objects.

The existing analysis methods cannot explicitly give object-to-object communication

information. They are then not directly usable in the distribution of objects. Some other

proposals for object-oriented distributed computing uses alternate method for

extracting the object level communication metrics. The method in [8] was based on

previous tracing records, which are obtained by running the applications on an

instrumented virtual machine beforehand. Local behaviors of individual objects are

recorded, which include the time spent on computation, on sending messages and on

receiving messages (all measured in the unit of clock tick). These trace records are

used as the guidance in the object distribution algorithm. In [9], a programmer driven

approach was used. While the initial object placement and the dynamic re-clustering

are based on static weights set to the object graph, several classes of hints from an

 4

CHAPTER 1 INTRODUCTION

informed programmer are injected into the algorithm. These hints help the co-locating

of objects (e.g. explicit parallelism), migrating of objects, replicating of objects, etc.

Proposal [10] facilitated the object distribution using a certain programming language

for distributed object-oriented applications. The proposed Orca language is a dedicated

language for implementing explicitly-parallel application. The language feature makes

it possible to design a compiler that can determine the access patterns of the objects.

These information is then passed to the runtime system for making proper object

placement decisions.

Thirdly, programming paradigms and language supports were introduced to facilitate

the production of distributed object-oriented applications. As discussed above, porting

concurrent program for single machine to network machines is a difficult task for the

programmers. This is also true for object-oriented applications. In proposals such as

[11,12], new language features were introduced to facilitate the programming. Other

proposals [13,14] made use of existing language like Java, but defined certain

programming paradigms. In these systems, the production of distributed code is not

automatic but is done by the programmers using system-specific programming rules.

1.2 Motivation and Contributions

A major issue for distributed computing systems is the partition of the application such

that it can run correctly and efficiently on network machines. This thesis introduces an

integrated distributed computing platform to do this efficiently. A new method of

distributed code generation using object level analysis is proposed. The object level

analysis is a general analysis method for object-oriented applications, providing

 5

CHAPTER 1 INTRODUCTION

detailed communication relation information. The distributed code generation is an

automatic process that incorporates the object placement on network machines into the

distributed code according to their communication requirements. The major

motivations of this research are twofold.

Firstly, as discussed in Section 1.1, the development of distributed code is a difficult

task. The introduction of certain programming paradigms or language features still

requires the developer to manually incorporate the changes for distributed code. The

process is still far from automatic and easy. Moreover, they impose system-specific

rules into the distributed code, which inevitably causes portability problem. In this

thesis, we propose an automatic distributed code generation method, which only

requires standard Java programs, but does not require special treatments of original

code. The method aims to transform standard concurrent programs running on single

machine to the form that runs on networked machines. The object placement is

incorporated into the generated distributed code according to the communication

relations of the objects. The whole process is automatic and does not require a

programmer’s intervention.

Secondly, the object placement in the distributed code generation is based on the

analysis of communication relations between objects. As discussed in Section 1.1, the

existing analysis methods are inadequate because they do not account for runtime

instances. In this thesis, we address the problem in a new method for object level

analysis. In this method we uses a two level analyzer with an intermediate 3

dimensional communication metrics. This analyzing method while motivated from our

integrated system for object distribution, is nevertheless a general approach for

 6

CHAPTER 1 INTRODUCTION

extracting object-to-object communication affinity metrics and can also be used in

other contexts.

This thesis proposes a Java Distributed code Generating and Computing (JDGC)

platform, which integrates the above object level analysis method and the distributed

code generation. The JDGC is a fully functional distributed computing platform. The

network layer basis is a set of network layer API functions, proposed in a previous

work [15]. The key component of JDGC system and the emphasis of this thesis is the

distributed code generation. The contribution of this research is summarized as follows:

− A new method of object level analysis for object-oriented applications. The

output is detailed communication affinities between runtime objects. The method is

general.

− An automatic distributed code generation method for standard concurrent

programs. The input is standard program. The method is completely automatic.

− An integrated system to support distributed object-oriented applications. The

system is based on pure Java. It supports multiple applications submitted

simultaneously and has crash recovery function.

1.3 Related Work

There are several areas of work that influences our research. We will discuss the

related work in the areas of distributed computing platform, object-oriented application

analysis and compiler construction.

 7

CHAPTER 1 INTRODUCTION

Distributed computing platforms are the runtime environment for the execution of

distributed applications on the network. In such system, a group of computers

connected to a network is viewed as a virtual supercomputer of multiple processors.

Previous researches on this area influence the design and implementation of the

proposed platform. Next we will briefly discuss the features of several previous works

in this area.

Network of Workstations (NOW) [16]. This is one of the earliest works that build

system support for using a network of workstations to act as a distributed

supercomputer on a building-wide scale. This system covers most basic issues in a

multi-computer distributed system, such as the fast communication implementation,

distributed file systems, operation system, I/O, and programming environment.

Javelin/Javelin++ [13]. This is a Java-based infrastructure for global computing. The

system employs Java-enabled web technology to address the problem of

interoperability, security, and the ease of participation. A broker component in the

architecture is the central process that coordinates the supply and demand for

computing resources. The client in this system is the web browser. The proposed

platform in this thesis is also written in Java, but it is not based on web browsing and

the client-server mode.

POPCORN [2]. This project provides another Java-based distributed computing

platform. An important feature of POPCORN is that it proposed a programming

paradigm for writing distributed applications. A highly structured template is provided

for developers for POPCORN system. Different from this solution, our research aims

to automate the development of distributed code by the system, and eliminate the

system-specific features in the programming.

 8

CHAPTER 1 INTRODUCTION

In distributed object-oriented computing, the analysis of communication affinity

between objects is necessary for the efficient distribution of objects to networked

machines. We briefly summarize the existing methods of object-oriented program

analysis.

The modeling tools [17,18]. There are many forward/reverse engineering tools for

object-oriented applications. The forward process in these tools is to generate program

from describing models such as UML. This function is mainly used in the design of

complex software system. On the other hand, the reverse process takes an existing

program as the input. Then the tool tries to analyze the code and obtains the structure

of the program. Most these tools are able to model the classes of the program, as well

as the interactions between classes. Although only class-level information is

inadequate for the distribution of runtime objects, these information is nevertheless the

basis for more detailed analysis.

SCED [19]. In SCED a method of modeling dynamic behavior of programs is

proposed. This method uses the Scenario diagram. It decomposes the runtime behavior

of a program into a series of scenarios. In each scenario, the involved objects are

connected by the messages passed between them. This approach, while extracts the

runtime information, does not retain the objects as an integrated entity in the resultant

model.

The key function in our platform involves the preprocessing of computer program and

code generation for distributed computing platform. These issues are closely related to

compiler constructions. The development of our system uses several standard

components of compilers or translators, such as parser and code generator.

 9

CHAPTER 1 INTRODUCTION

The technique of compiler construction is well established, and many tools exist for

building compiler components. There are compiler generator tools, which

automatically generate compiler components for certain languages based on its

grammar definition. For example, ANTLR [21] provides an easy way to construct Java

parser. However, ANTLR currently does not provide the code generation for the

syntax tree format being used. In the development of our system, we instead use the

Pizza compiler [20] for Java language. It is an open source compiler for an extension

of Java language. Its data structures for various syntax tree nodes are used as the

building blocks of the syntax tree of our system. The hierarchical structure of the data

structures facilitates the development of the tree transformation module. The Java

program parser and bytecode generator used in our system are also adapted from this

Java compiler.

1.4 Thesis organization

This thesis is organized as follows:

Chapter 2 gives an overview of whole distributed computing environment. The roles of

client and server host in the decentralized system are first described. Then we

introduce the architecture and components of the JDGC system software. The

underlying network protocol is summarized at the end of the chapter.

Chapter 3 describes the key function of JDGC, namely the distributed code generation

using object level analysis. As the basis of the whole method, the general features of

object-oriented applications are first summarized. Then we introduce the distributed

 10

CHAPTER 1 INTRODUCTION

code generation and the object level analysis method. The six parts of the procedure

and the processing flow are given.

Chapter 4 details the method of object level analysis. The Class-Level Analyzer and

Object-Level Analyzer are discussed in Section 4.1 and 4.2 respectively. For the Class-

Level Analyzer, we firstly explain the concept behind it, namely the 3 dimensional

affinity metrics. Based on it the details of the class-level analysis method are given.

For the Object-Level Analyzer, the key concepts are the visible scope analysis and

mapping from class-level affinity. We then present the details of the object-level

analysis.

Chapter 5 details the automatic distributed code generation. After a discussion of the

two steps in the distributed code generation, we examine the Abstract Syntax Tree

(AST) transformation method in detail. First we discuss the necessary changes to the

original program. Then the main techniques used to automate the transformation are

introduced. Finally we give the details of the addition and substitution of sub AST.

Chapter 6 details the JDGC platform and presents sample applications. Firstly, the user

interface is introduced briefly. Then we discuss the runtime application management

system, which is the runtime environment of JDGC and provides crash recovery ability.

Security issues, as another important aspect in an open distributed system like JDGC,

is also discussed briefly. After the complete description of JDGC, two sample

applications running on the platform are presented. We test the execution time for the

two applications in different situations and discuss the result of the tests in detail.

 11

CHAPTER 1 INTRODUCTION

Chapter 7 summarizes the contributions and concludes the thesis. We also give

recommendations for possible extension of the proposed method.

 12

CHAPTER 2 AN OVERVIEW

CHAPTER 2

AN OVERVIEW

The proposed JDGC platform is a fully functional software system that supports the

distributed execution of Java applications. In this chapter, we first introduce the

decentralized distributed computing scheme in the system perspective. Within the

scheme’s context, we describe the software architecture of JDGC. The key function of

JDGC is an object level analysis and automatic code transformation, which is the

emphasis of this thesis. The system runs on the network layer protocols proposed in a

previous work [15]. An overview of the protocol is summarized.

2.1 The Decentralized System

In this section, we introduce the distributed computing scheme in the perspective of the

whole system. Unlike most existing schemes, the architecture of our scheme is fully

decentralized, that is, there is no one dedicated central component that controls the

working of the entire system. Every host participating in the scheme is identical in

function, and each host can act as a requesting host and/or a contributing host, and

possibly at the same time. Computing hosts can join or leave the scheme as and when

desired without the need to register their presence or absence with any controller. In

 13

CHAPTER 2 AN OVERVIEW

such a scheme, the whole system can be viewed as a set of functionally identical

machines/hosts connected to a network as depicted in Fig.2.1, although at a certain

time every host has its own role, that is, it may be idle, be requesting resources or be

contributing their own resources.

host

host

host

host
host

host

Network

Network

Network

Network

 Fig.2.1. A Network Overview of the Computing Scheme

Any distributed application running on the scheme involves a group of coordinating

hosts. Each host in the group may possibly take two roles; namely as a server and as a

client. As a client, the host first recruits available hosts in the system using a group

communication protocol. After it receives responses from enough contributing hosts,

the client will submit its own application to run on those recruited hosts. The recruited

hosts take the role of a server. A server host responses to the recruiting request from

 14

CHAPTER 2 AN OVERVIEW

the client host, and contributes its own computation resources to application from the

client.

To participate this computing scheme, a host starts a supporting software, that is, the

JDGC system proposed in this thesis. Because the hosts in the scheme work on a peer-

to-peer mode, the supporting JDGC system on every participant host has the same

functions. As discussed above, a host may act as a server or a client or both in different

applications. Therefore JDGC integrates the functions of requesting resources and

submitting applications as a client, and the functions of responding to recruiting

request as a server. The components and architecture of JDGC is described in the next

section.

2.2 The Components of JDGC

The JDGC software system running on every host provides the functionality of both a

client and a server host. As a server, user can start the server daemon so that the host

listens to recruitment requests. The function of the server daemon and the protocol

involved in the network layer is detailed in [15], and will be summarized in Section 2.3.

As a client, user can open one or more standard single machine oriented Java

applications. The application will perform the analysis and transformation, so that the

code generated integrates seamlessly into the network layer API and is able to run

directly in the distributed environment. The JDGC software system consists of the

following components:

 15

CHAPTER 2 AN OVERVIEW

− Graphical User Interface. This integrates both client and server functions.

− Object level analysis and distributed code generation. This is a key function of

JDGC. The object level analysis is a general method to extract communication

affinities in the object level. The distributed code generation consists of a syntax

tree transformation, which makes use of the obtained affinities metrics and

automatically transforms standard Java program to run on the network using the

underlying network layer API. Every application before submitted to the network

performs the analysis and transformation. The output of this preprocessing is the

distributed code, which will then be submitted and managed by the runtime

application manager.

− The runtime application manager: This manager supports multiple applications

that are submitted simultaneously. All the information on the current applications,

objects and hosts are maintained in two cross-linked lists. The runtime application

manager also backs up the instances during the lifetime of an instance, and allows

recovery from crash automatically without the user’s intervention.

− Network layer protocol and API: This contains the recruit function for client,

which uses multicast protocol to request for available machines in the group of

hosts. The communication primitives are provided for the application to pass data

among objects. The API functions are incorporated into the resultant distributed

code.

The above components and their relationships are illustrated in Fig.2.2.

 16

CHAPTER 2 AN OVERVIEW

recruit
object creation
object communication

Network Layer protocol and API

……CodeCode

Runtime Application Manager

Output: generated
distributed code System Submission

Input: standard
Java code

Ready for
preprocessing

User Submission

Object Level Analysis
And

Distributed Code Generation

User Interface

Applications

 Fig.2.2 Components of Java Distributed code Generating and Computing (JDGC) Platform

The JDGC system is currently implemented in pure Java. The applications supposed to

run on JDGC are also Java applications. This Java-based design is based on the

following reasons:

− Portability of JDGC: In an open distributed computing scheme, the machine

architectures of the participant hosts are different. They also may run different

operating system. An important advantage of using Java in the system software is

that the production is portable to almost all of these architectures and operating

systems.

− Provide security solutions: Another advantage of using Java for system

software is that it provides an intermediate level of security protection. The

 17

CHAPTER 2 AN OVERVIEW

bytecode verification is an effective solution to protect local system. Other primary

security solutions such as sandbox and type safe feature are also developed based

on Java. The security issues are further discussed in Section 6.3.

− Java is the most popular language for distributed object-oriented computing

applications, because of its portability, security and the improvement of its

performance. More and more applications are being developed using the Java

language.

2.3 The Network Layer

The network layer protocol and API are not the emphasis of this thesis. They are

detailed in a previous work. However the network layer is the basis on which the

proposed JDGC platform and the distributed code generation method are built. The

provided API functions are incorporated into the generated distributed code, as well as

the runtime application manager. Therefore in this section we give a brief summary

about the network layer. For further information, please refer to reference [15].

The network layer consists of two sets of protocols and their API functions. Firstly, the

recruiting of an available server host among the system employs a group

communication protocol. A server host in the scheme is required to start a server

daemon in the network layer to monitor on a pre-assigned multicast address. A client,

when requiring available server hosts, starts the process by invoking the recruit API

function, which in turn sends a recruiting message on the multicast address.

 18

CHAPTER 2 AN OVERVIEW

Server hosts on receiving the recruiting message, reply to the client. Until the reply is

acknowledged by the client, no action is taken on the server side. Once the reply is

acknowledged, the server daemon creates a new Java virtual machine to receive and

host the objects to be distributed from the client.

Secondly, the communications between the objects uses the ordinary uni-cast protocol.

For Java applications, the communications are in the form of method invocation or

field referencing. The network layer provides the functions for accessing the methods

and fields of an object on a remote server host. The implementation of these functions

is based on object serialization and RMI interface of Java [3]. Both the multicast and

uni-cast protocols are implemented on the top of TCP/IP to ensure the reliable delivery.

2.4 Summary

This chapter presented the decentralized computing scheme and the software

architecture of the JDGC platform. The key functions, the object level analysis and

automatic code transformation, are overviewed, yet they are the emphasis of the

following chapters. The network layer protocols, on which the whole system runs,

were also summarized in this chapter.

 19

CHAPTER 3 SYSTEM METHODOLOGY

CHAPTER 3

SYSTEM METHODOLOGY

The key function of the system is to transform the application by grouping objects

based on an analysis of their communication affinities. The standard object-oriented

application is then transformed to a form that can directly run on a distributed

environment. The methodology consists of two stages, namely the object level analysis

stage followed by the automatic distributed code generation stage. The whole process

makes use of the Abstract Syntax Tree (AST) [22] to perform the function in a

structured mode.

3.1 The Object Model of Applications

Before discussing the methodology of distributed code generation using object level

analysis, the features of the objects of distributed applications are first summarized.

This model of objects forms the basis for the methodology.

The applications under consideration and their objects have the following features:

 20

CHAPTER 3 SYSTEM METHODOLOGY

− The applications are written in an object-oriented paradigm, and the only entity

that can be manipulated at runtime is the object. The current implementation of

JDGC is for Java applications, which are based on objects.

− The objects in the application are active objects. An active object is an object

that potentially has its own process or thread of control. In a distributed application,

the distributed objects may run on a different networked machine. Furthermore, an

active object is the composition of two entities: a body and another standard Java

object. In a distributed computing environment like JDGC, the body entity is the

runtime environment on each machine, responsible for receiving incoming calls

from the network, and invoking local Java objects.

− The runtime objects can communicate with each other by message passing via

the network. In object-oriented paradigm, objects provide a structured interaction

interface defined in the corresponding classes. In Java, the communication between

objects could be done through method invocation or field referencing.

3.2 The Methodology of Distributed Code Generation using

Object Level Analysis

The purpose of the method is to efficiently map the concurrent application to the

system’s computational resources, and to make this process automatic. The method

strives to reduce the communication overhead between objects. Inter-machine

communications are much more expensive than intra-machine communications. The

method groups heavily communicating objects in the same machine so that they could

use lightweight communication mechanisms in the generated code.

 21

CHAPTER 3 SYSTEM METHODOLOGY

To achieve this, the method first analyzes the original application, and determines the

volume of communications between its objects. Our method provides a strong and

detailed analysis of the application, which could give object level communication

relations. This object level analysis is an independent method, which is not only useful

in our system but also a general method for extracting communication affinity metrics

of object-oriented applications in the runtime object level. In our system, this

information serves as the guidance in the object placement, which is incorporated into

the generated distributed code.

The second part of the method is distributed code generation. The generated code runs

directly on the distributed environment. The code generation includes a transformation

process, which ports the program for single machine to the network machines. At

runtime the distributed code selects a proper machine to distribute a newly created

object according to its affinities to other objects in the system. The communications

between objects are properly implemented in the generated code using either local or

network communication mechanisms. After this process, the code generated integrates

seamlessly into the network layer API and is able to run directly in the distributed

environment.

As is indicated in Fig.2.2, in the process of executing an application in a distributed

environment, the position of the above method is after the submission of standard

(single-machine oriented) application by the user and before the system submission of

the transformed code to the distributed environment. Users also have control over the

method through parameters, such as the number of hosts to be recruited and whether to

generated transformed source code aside from the bytecode.

 22

CHAPTER 3 SYSTEM METHODOLOGY

3.3 Flow of Processing

The whole process of analysis and code generation is based on the Abstract Syntax

Tree (AST) of the Java application. We firstly examine the structure and features of an

AST and attributed AST, which is used throughout the discussions in the following

chapters.

An AST is a tree representation of the semantics of a program. The representation is

independent of the language. Whereas the concrete syntax of a certain programming

languages incorporates many keywords and tokens, the abstract syntax is rather

simpler, retaining only those components of the language needed to capture the real

content and ultimately meaning of the program.

The AST is usually produced by a parser according to the grammar rules (or usually

give as the BNF) of a language. Every node in the AST represents a terminal or non-

terminal of the grammar. All the leaf nodes are terminals, while all the inner nodes are

non-terminals. In every sub-tree of an AST, the parent node and its child nodes must

conform to a rule in the grammar.

The AST itself does not contain all the semantic information of the program, because it

only represents a context-free language. To add the contextual information in a

computer program, the AST must be attributed or decorated (usually done by an

attributor) to produce an attributed AST. The attributed tree then has the typing and

other contextual information attached to various nodes. After this, the attributed AST

 23

CHAPTER 3 SYSTEM METHODOLOGY

contains all the semantic information of the original program. Thus it is usually used as

an intermediate but structured representation to facilitate further processing for a

computer program.

Our proposed method uses the attributed AST representation throughout the object

level analysis and the automatic distributed code generation. The flow of processing,

from the input to the output, is described as follows.

The input to our method is standard multiple threaded Java application. This is done

through a graphical user interface. One or more applications can be opened and

processed simultaneously, and an application may contain multiple source files.

The entire procedure consists of six parts: namely parser, attributor, class-level

analyzer, object-level analyzer, tree transformer and code generator. This is depicted in

Fig.3.1.

The parser and attributor extracts the AST of a given Java program. The parser and

attributor used here are the standard components in compilers. The obtained attributed

AST is constructed to facilitate analysis of the following steps. The AST eliminates

information that relates only to lexical or syntactic issues, but retains all the semantic

of the original program.

The Class-Level Analyzer calculates the communication relationship between classes

by analyzing the methods and their invocations. Note that existing forward/reverse

software engineering tools only provide class-to-class analysis of interaction. Our

 24

CHAPTER 3 SYSTEM METHODOLOGY

method uses a three dimensional class level analysis to give more detailed information.

This is necessary for subsequent object-level analysis.

6th Pass

5th Pass

4th Pass

3rd Pass

2nd Pass

1st Pass

Code Generation

 Attributed-AST

Attributor

Transformed
bytecode

Object-Level
Affinity Metrics

Class-Level
Affinity Metrics

Tree Transformer

Object-Level Analyzer

Class-Level Analyzer

 AST

Java Program Parser

Application

Transformed
Attributed-AST

Fig.3.1. The Flow of Processing for the Object-Level
Analysis and Distributed Code Generation

 25

CHAPTER 3 SYSTEM METHODOLOGY

The Object-Level Analyzer analyzes every statement involving creating a new object

(instance) and calculates the communication relationship between the new created

instances and other object instances. The calculation of Object-level affinity is based

on the 3 dimensional class-level affinity metrics. From this step, any instance created

at runtime could be found in the resulting object-level affinity metrics, which gives the

communication metrics between this object and others.

The tree transformer incorporates the object placement information derived from the

object-level metrics into the AST. The object manipulations and interactions are re-

implemented by the transformer using the network layer API functions. The result is a

transformed attributed AST.

The code generation generates the distributed code and optionally the transformed

source code using the transformed attributed AST.

Output of the process is the bytecode incorporated with the network layer API. It can

be submitted to the distributed environment and be managed by the runtime

application management system.

3.4 Summary

Based on an introduction to the object model of applications, this chapter described the

methodology of distributed code generation using object-level analysis. The details of

the two stages of this methodology are to be discussed in the next two chapters.

 26

CHAPTER 4 THE METHOD OF OBJECT LEVEL ANALYSIS

CHAPTER 4

THE METHOD OF OBJECT LEVEL

ANALYSIS

The object level analysis is a general analysis method for object-oriented applications,

providing detailed communication affinity information in the runtime object level. It

uses a two level analyzer with an intermediate 3 dimensional communication metrics.

The resultant metrics are used in the subsequent distributed code generation. However,

the method itself is a general approach for extracting object-to-object communication

affinity metrics and can also be used in other contexts.

4.1 Class-Level Analyzer and Three Dimensional Affinity

Metrics

As described in Section 3.3, the parser and attributor are standard component in

compilers. The output is an attributed AST of the application. After the AST is

obtained, the next step is the analysis of communication affinity. This is done in two

levels.

 27

CHAPTER 4 THE METHOD OF OBJECT LEVEL ANALYSIS

Currently there are many class-based analyzers. However, these class level methods

are inadequate because they do not account for runtime instances. One class may have

multiple instances, which could be accessed in very different ways and thus have

different communication affinity metrics with other parts of the application. In our

method, an enhanced class level analysis is employed as the first step of analysis. This

section presents the key concepts and the details of class level analysis. Based on the

result, an object level analysis is performed to produce the detailed object level metrics,

which is the topic of Section 4.2.

4.1.1 The Three Dimensions

A typical 2-dimensional class-to-class affinity metrics is not sufficient for the object

level analysis to be performed in the subsequent level. We therefore enhanced the

Class-Level Analyzer to generate a 3-dimensional affinity metrics. The third

dimension is the entry point from which (an instance of) a class is accessed.

Classes are executed by an invocation of their public methods. We analyze the

communication from Class A to any other object by examining every entry point to

Class A. An entry point refers to the point where the application’s control flow can go

into the Class A. In an object-oriented program, the entry points of a class are the

beginning of every public method. Then we measure the communication from Class A

to any other object if A is accessed through a certain entry point (e.g. through the

invocation of a certain public method).

 28

CHAPTER 4 THE METHOD OF OBJECT LEVEL ANALYSIS

The Class-Level Analyzer will record every class and the entry points to each of them.

This gives the first two dimensions of the affinity metrics, that is, (ClassFrom,

EntryMethod). The third dimension is the visible objects within a certain entry point of

a certain class. Note that in any method of class A, A only can communicate with the

objects that are visible in this method. In object-oriented program these visible objects

are accessed through their references. Therefore for each class, say A, and a certain

entry method M, we analyze the communication from A to all the visible objects, or

more specifically, the reference of a visible instance. A visible object can be a member

variable of class A, a local variable defined in method M or a parameter passed to M.

The object must have a unique reference so that it can be accessed in A. The Class-

Level Analyzer analyzes every visible object for the communication affinity from A

with respect to method M. The value is the number of bytes to be transferred to the

object within this method.

Formally a single affinity index is associated with every 3-tuple (ClassFrom,

EntryMethod, VisibleObjectReference), where VisibleObjectReference is one of the

visible objects in the method EntryMethod of the class ClassFrom. The affinity index

of (class A, method M of A, object reference O) is x, is interpreted as follows. If A is

accessed through method M, then the communication affinity, or, the number of bytes

to be transferred, from A to the visible object O is x. The concept of the three

dimensions of object-oriented programs is illustrated in Fig.4.1.

 29

CHAPTER 4 THE METHOD OF OBJECT LEVEL ANALYSIS

control flow public method1()

public Class A
{
 …

 {
 Object o1;
 Object o2;
 …
 }
 public method2()
 {
 …
 }
 …
}

public Class B
public Class C

An Application:

…

o2

o1

visible objects

… method2 entry points

…

A
method1

B

classes

Fig.4.1. The Three Dimensions of Object-Oriented Program

4.1.2 Analyzing Procedure

The analyzing procedure uses the attributed AST obtained previously. The Class-Level

Analyzer analyzes the public methods in all the classes one at a time, calculating the

affinity index for each 3-tuple (FromClass, EntryMethod, VisibleObjectReference).

The procedure is described as follows:

1. Search for all the classes defined in the application, and for each class, whose

AST node is denoted by A, do the following steps.

2. Search for all the methods (entry point) in A, and for each method in A,

whose AST node is denoted by M do the following steps.

 30

CHAPTER 4 THE METHOD OF OBJECT LEVEL ANALYSIS

(i) Find all the visible object references at the beginning of method M,

including the class A defined variables and the parameters passed to M. The

visible objects forms a list OL.

(ii) Initialize the affinity index (aff) for each entry (A, M, OL[i]) as aff=0.

(iii)Given the AST node of method M, recursively scan its children AST

nodes in order.

(iv) If a statement that contains invocation to OL[i]’s method is encountered,

calculate the size of the parameters and return values in that invocation. If

this statement is within a branch statement, the calculated size is multiplied

by 0.5, and this size is added to the affinity of entry (A, M, OL[i]).

(v) If a statement that contains referencing to OL[i]’s member variable is

encountered, calculate the size of the variable. If this statement is within a

branch statement, the calculated size is multiplied by 0.5, and this size is

added size to the affinity of entry (A, M, OL[i]).

(vi) If a method invocation of A itself (method invocation without naming

the object or with the object name this) is encountered, scan the child

nodes of that method and apply this procedure recursively.

The Class-Level Analyzer output affinity metrics of three dimensions and a single

value is associated with each (ClassFrom, EntryMethod, VisibleObjectReference).

These affinity metrics will be used in the Object-Level Analyzer.

 31

CHAPTER 4 THE METHOD OF OBJECT LEVEL ANALYSIS

4.2 Object-Level Analyzer

Once the detailed 3-dimensional class-level affinity metrics of Section 4.1.2 is

obtained, the next step is to obtain the instance-to-instance affinity metrics. Object-

Level Analyzer analyzes the affinity between any two instances that are potentially

created at runtime. It outputs a two dimensional affinity metrics. This information is

then incorporated into the transformed distributed code, which at runtime distribute the

objects according to the affinities.

4.2.1 Visible Scope Analysis and Mapping of Affinity Metrics

The purpose of the Object-Level Analyzer is to extract affinity between runtime

instances. In an object-oriented program, any runtime instance must be created using

certain statements in the class definitions. Therefore, any potentially existing instance

could be associated with a new instance statement. In Java this is typically a new

statement. The Object-Level Analyzer steps through the application’s AST for every

new statement, and extracts the affinity metrics between the created object in the

statement and other objects in the application. This passing of the AST follows the

order of the execution sequence and uses a depth-first method.

The affinity values are calculated by mapping the class-level affinity values to runtime

objects. A class-level affinity value is associated with a class, a method and a variable

reference, while an object-level affinity value is associated with any two new

statements in the application. The Object-Level Analyzer performs this translation.

 32

CHAPTER 4 THE METHOD OF OBJECT LEVEL ANALYSIS

This is done mainly through analyzing the visible scope of objects, and the propagation

of object references.

In any object-oriented application, one object, say object O1, can invoke the method of,

or reference a member variable of, another object O2, only if O1 has the reference of

O2, namely O2 is visible to O1. Therefore, in order to analyze the communications to

an object, we need to first analyze the visible scope of the object, because all possible

communications will only come from the visible scope. The visible scope of an object

is described as follows.

When an object is initially created, it is only visible within the object that creates the

new one, namely parent object, as well as the new object itself (referred as this).

During the subsequent execution, the reference of this object may be propagated to

other objects. The reference can be passed to a destination object as a parameter in an

invocation of the object’s method, or the reference may be assigned to a member

variable of the destination object. In both cases the visible scope of the propagated

(reference of) object extends to the destination object.

The propagation of an object’s reference can only initiate from its parent object or

itself. Once the visible scope extends to a third object, this object may in turn

propagate the reference further to other objects. In summary, any object in an object-

oriented application is only visible in the object itself (referred as this), in the parent

object of it, and in all the objects reached in the propagation.

 33

CHAPTER 4 THE METHOD OF OBJECT LEVEL ANALYSIS

Based on the above discussion, the analyzer performs the visible scope analysis and

mapping of affinity metrics in one pass of the AST. The analyzer first finds the main

method of the application. It then steps through all possible control flows of the

application. On encountering a new statement, the analyzer calculates the affinity of

this newly created object in two parts. First it obtains the communication affinity from

the object that creates the new one, namely parent object, to the new object. Secondly

it obtains the affinity from any other objects to the new object.

In the first case we analyze the affinity from the parent object P to the new object N.

This analysis is based on the visible scope of N within P. Suppose the new object N is

created within the method M of P, and assigned to the object variable name O. Then

the affinity from P to N is directly obtainable through mapping the instance N to the

name O. The affinity from P to N is given by the affinity value of the 3-tuple (P, M, O)

in the resultant metrics of the Class-Level Analyzer.

The affinity from any other object A to the new object N also depends on the visible

scope of N, as well as the propagation of the new object. As discussed above, any other

object A can access N only if A has the reference of object N, namely N is visible to A.

Originally the new object N is only visible in P (parent object of N), as well as N itself.

Then the reference of N can be propagated from P or N to other objects. In our method

we first analyze the propagation of instance N and find the visible scope of N. For

example, if the reference of N is propagated to the method M of object A through

parameter passing, then N is visible in A and object A will possibly have

communication to object N. If in A’s class, object N is accessed through the reference

O, then the affinity from object A to object N is directly obtainable through mapping

 34

CHAPTER 4 THE METHOD OF OBJECT LEVEL ANALYSIS

the visible object reference O to the object N, that is, the value is given by the affinity

value of the 3-tuple (A’s class, M, O). The Object-Level Analyzer analyzes all

propagation of object N, and sums up the obtained affinity values for each pair of

objects to get the object-level affinity related to object N.

The resultant metrics are two dimensional. Each entry is associated with two new

statements. The value represents the affinity between the two objects created by these

two new statements.

4.2.2 Analyzing Procedure

The implementation procedure of the Object-Level Analyzer is described as follows:

1. Find the main() method of the application, where the control flow starts, and get

the AST node for main().

2. Given the AST node of the current analyzing method, recursively scan its

children nodes in order.

A. If a new statement is encountered, then do the following:

− Add an entry for this statement, and init the affinity (aff) between this

entry to any others as aff = 0.

− Find the class and method that is currently being analyzed, denoted by C

and M. Find the reference of the new created object, denoted by O.

− Get the value in class-level affinity metrics (C, M, O), which is the

affinity from the parent object to the new created object.

− Add this value into the proper entry in the object-level affinity metrics.

 35

CHAPTER 4 THE METHOD OF OBJECT LEVEL ANALYSIS

B. If a statement where any previously created object, denoted by N, is passed to

another object A through parameter passing of one of A’s method is

encountered, then object N is said to be propagated to object A. Therefore N

is visible in A, and A possibly has communication to N. Do the following:

− Find the class of A and invoked method, denoted by C and M. Find the

reference of the object N within method M, denoted by O.

− Get the value in class-level affinity metrics (C, M, O), which is the

affinity from the non-parent object A to the propagated object N.

− Add this value into the proper entry in the object-level affinity metrics.

C. If any method invocation is encountered, then get the AST node for this

method, and apply this procedure recursively.

The above recursive analysis procedure is summarized in the flow chart Fig.4.2. The

initial value of NODE is the AST node for the main() method of the application.

After the two levels of analyzers, a 2 dimensional affinity metrics is obtained. Each

entry represents the communication affinity between two runtime objects in the

application.

4.3 Summary

The resultant metrics directly give the communication affinity between two objects

that are potentially created at runtime. They are used as a guidance of object placement

in the distributed code generation.

 36

CHAPTER 4 THE METHOD OF OBJECT LEVEL ANALYSIS

The method proposed in this chapter is independent of the JDGC platform or the

subsequent distributed code generation method. It is able to analyze any object-

oriented application, and to extract the object-to-object communications.

Fig.4.2. Flow Chart of the Object-Level Analysis Procedure

 37

CHAPTER 5 DISTRIBUTED CODE GENERATION

CHAPTER 5

DISTRIBUTED CODE GENERATION

Using the object level affinity metrics, the original application program is

automatically ported to the distributed code that runs on the network machines. The

generated code incorporates the runtime object placement according to the affinities

computed. This process is completely automatic and does not require a special

programming paradigm for the user’s program. A normal Java program for a single

machine is transformed to a program that runs on the network using the underlying

API, handling object manipulations and communications on network machines. The

transformer performs the code transformation, traditionally performed by hand, in a

structured mode.

5.1 Code Generation in Two Steps

The code generation is the last step of compilers. The input of a code generator is the

attributed AST obtained from the parser and attributor. Since the AST records all the

semantic information of the original program, the code generator is able to synthesize

the object code, which is another form of the program able to run on the underlying

executing environment. For Java applications, the object code conforms to the

 38

CHAPTER 5 DISTRIBUTED CODE GENERATION

specification of bytecode, the code format that is interpreted by the Java virtual

machines.

In the case of single machine, the executing environment is one Java virtual machine.

The bytecode produced by standard Java compilers is sufficient to run on a single

virtual machine. However, in the case of distributed computing, the executing

environment is a group of Java virtual machines connected to a network. The object

code in this case needs to handle the acquirement of networked machines, the object

distribution according to the communication requirements and the transmission of data

between the objects on different machines.

One solution for the production of distributed code is to put the above special

considerations in the application developer’s side. In many existing systems, the

programming methods for individual systems were proposed to facilitate the

development of distributed code. Developers use these system-specific programming

rules to handle the object distribution and communications explicitly in the source

code level. However, these solutions have two main drawbacks:

− The distributed code is not generated automatically. Developers have to

program for the coordination functions, aside from the computation tasks.

− The distributed code is not portable. Because the programming rules are

system-specific.

In consideration of the above problems, we propose a method of distributed code

generation, which possesses the following features:

 39

CHAPTER 5 DISTRIBUTED CODE GENERATION

− The input code is standard Java applications. There is no requirement for any

special programming techniques or language features.

− Perform completely automatic transformation of a concurrent program for

single machine to one that runs on networked machines.

To achieve this objective, our distributed code generation method consists of two

consecutive steps.

Firstly, the AST for the original program is transformed. The sub ASTs representing

the object creations and object interactions are re-implemented. The transformed

program incorporates the object placement according to their communication affinity

metric, and contains the functions of handling object distribution and inter-machine

communications using the network layer API. The transformed AST will represent the

complete semantic of a distributed program that correctly runs on the networked

machines.

Secondly, the transformed AST is ported to bytecode using a Java code generator. This

second step is standard. Thus, we only examine the tree transformation method in

detail.

5.2 Tree Transformation

In order to transform general program, the tree transformer uses the AST of the

original program. The transformation is performed as the 5th pass of the AST.

 40

CHAPTER 5 DISTRIBUTED CODE GENERATION

5.2.1 Changes for Object Placement and Communications

Having the communication metrics between runtime objects, the placement of any

object when it is created can be calculated. If two objects are placed on different

machines at runtime, the communications between them also need special treatment.

The system makes use of the underlying network layer API to re-implement the code

for object placement and communications.

Firstly, the new statement will be re-implemented by a procedure that places the new

object according to the affinity metrics. Initially every potential object in the object

level affinity metrics is regarded as a separate group. When an object is created during

the execution, it is assigned to one of the recruited machines, each of which hosts a

group of objects at runtime. The procedure calculates the placement of object in the

following way. The system has the information for all the available machines recruited

by the application, as well as the existing objects in every machine. Then, according to

the object-level affinity metrics, it calculates the affinity between the new object and

every machine, that is, the sum of affinity values between the new object and every

object in the machine. The new object will be placed in the machine that has the largest

affinity value with the new object. That is, suppose the application recruits m machines

M1, M2, …, Mm, the ith machine has the existing objects Oi,1, Oi,2, …, Oi,ni, and a new

object Onew is created. The machine to place Onew, denoted by Mplace, satisfies:

Affinity(Onew, Mplace) = max{ Affinity(Onew, Mi) }, i = 1,2, …, m,

where Affinity(Onew, Mi) = Σ{ Affinity(Onew, Oi,k) }, k = 1,2, …, ni

The affinity between two objects, Affinity(Onew, Oi,k), is directly obtainable from the

object-level affinity metrics. The system uses the network layer API functions to

implement the creation operation on the selected machine. If the new instance should

 41

CHAPTER 5 DISTRIBUTED CODE GENERATION

be placed in a certain network machine, then the network layer API will be used to do

the inter-machine creation. If the new instance should be placed in the local machine,

then it is created as normal.

Secondly, the inter-object communication statements should also be re-implemented to

correctly handle intra or inter machine data delivery. This also makes use of the

network layer API functions. Every communication statement will be replaced by a

procedure, which first decides whether the destination instance is currently located at

local machine or a certain network machine. If it is local, then the communication is

done as normal. If it is in a certain network machine, then the network layer API

functions will be used to handle inter-machine communication.

5.2.2 The Wrapper Class

To facilitate the automatic transformation, a wrapper class is used to replace the

reference to any user-defined classes. The Wrapper class hides the difference between

a local and a remote object at compile time and runtime. Any created user-defined

object in the program is represented in the transformed code by a Wrapper class. If the

object is local, then the corresponding Wrapper just encapsulates the normal object in

the same virtual machine. If the object is remote, then the corresponding Wrapper

encapsulates a RObject object, which is the reference to this remote object. The

Wrapper class has a flag to indicate whether the inner object is local or remote.

As an auxiliary class in any transformed application, Wrapper provides the unified

creation facility that handles both local and remote objects. The object-level affinity

 42

CHAPTER 5 DISTRIBUTED CODE GENERATION

metrics are available to the Wrapper class. The transformed program is also aware of

the current correspondence between created objects and available hosts in the data

structure for runtime application management of Section 6.2. When a new object is

created, the corresponding Wrapper object selects the host that has the largest affinity

value to the new object. Then it can check whether the selected host is the local

machine or a certain remote host recruited. In the case of a remote host, the Wrapper

object will use the network layer API functions to make a remote creation.

Template: Class Wrapper
{
 Field: boolean flag;

 Field: Object localObj;

 Field: Robject remoteObj;
 …

 Method: Constructor(args)

 Method: Invoke(method, args)
 …

}

If flag indicates local:
 localObj points to the normal instance
 remoteObj is null

If flag indicates remote:
 localObj is null
 remoteObj points to the reference to remote object

Unified interfaces for object
creations and invocations

Fig.5.1. Template of Wrapper Class

Wrapper also provides the unified method invocation facility that handles both normal

invocation on the same machine or those that involves inter machine communication.

When an existing Wrapper object gets an invocation, the object could decide from the

flag whether the wrapped actual object is remote or local. Fig.5.1. describes the

template of the construction and the interfaces of the Wrapper class.

 43

CHAPTER 5 DISTRIBUTED CODE GENERATION

With these facilities in Wrapper class, it is sufficient to replace any operations on user-

defined objects by the operations on corresponding Wrapper objects. The transformed

code will not contain manipulated code for the user-defined classes, but contain code

for Wrapper objects.

Wrapper objects are local. They act as local represents of created objects. They hide

the difference of local and remote cases. The transformed code only operates on

Wrapper objects, and not on the represented objects.

5.2.3 Addition and Substitution of Sub AST

With the aid of Wrapper class, the transformation is well structured. The

transformation rules are simple, without any contextual logic. For example, there is no

need to analyze the location of involved objects before the transformer can decide

which mechanism should be used in an inter-object method invocation. All the

transformations are done through adding or substituting a sub AST in the original AST.

To ensure the code has the necessary functions and conform to the underlying protocol,

the transformation rules are summarized as follows:

− Import the necessary classes, including object level affinity metrics data

structure, the Wrapper class, and the network layer API. Several import clauses

should be added to the beginning of the classes. This is done by adding a sub AST

with the root of an Import node.

− Make every defined class serializable, that is, it should implement the

Serializable interface. This is required because the underlying layer is based on

 44

CHAPTER 5 DISTRIBUTED CODE GENERATION

Java RMI protocol. An Implement sub AST is appended as a child node of every

Class node.

− At the beginning of program, generate and add the procedure of recruiting hosts.

The generated sub AST represents a block statement, which contains the operations

of recruiting hosts. This sub AST is then added to the MethodBody node of the

main() method.

− Pass through the whole AST of the program, and for any sub AST of creating

an object of a defined class, generate the corresponding sub AST of creating a

Wrapper object, and make the tree substitution.

− Pass through the whole AST of the program, and for any sub AST of method

invocation to object of defined class, generate the corresponding sub AST using

previously created Wrapper object, and make the tree substitution.

− The parameters of invocation must also be transformed to objects for primitive

type, as the underlying API only transfers objects. For method with primitive

return type, certain functions of Wrapper are called to strip the returned object into

corresponding primitive data, so that the function call incorporates with the

program seamlessly.

The tree transformer performs the 5th pass of the AST. Each class and their methods

are examined. All the generated sub AST are parsed at generation time. The

transformed AST is again attributed and directly ported to bytecode. Optionally, the

source code that represents the transformed program can also be generated.

 45

CHAPTER 5 DISTRIBUTED CODE GENERATION

5.3 Summary

Chapter 4 and 5 have examined in detail the key function of the JDGC platform, that is,

the distributed code generation with object level analysis. The resultant code contains

the auxiliary classes and the network layer API. It will be submitted to the networked

machines, and be managed by the runtime application manager.

 46

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

CHAPTER 6

JDGC SYSTEM AND APPLICATIONS

A Java Distributed code Generating and Computing (JDGC) platform is proposed in

this thesis. A graphical user interface integrates the functions for a host to run as a

server and as a client. The runtime application manager is an essential component of

JDGC, which provides the runtime environment for the analysis, transformation and

execution of applications. Two sample applications running on JDGC platform are

presented. We test the execution time for the two applications in different situations

and discuss the result of the tests.

6.1 User Interface

The graphical user interface integrates the functions of a server host and a client host.

Users can open and transform their own Java applications, and to submit the generated

distributed code to the system, as well as to start client process all in this unified

environment. The UI is built on the swing API of Java.

Fig.6.1 is a snapshot of the graphical user interface of JDGC running on Win32 system.

The figure shows the situation where a client application is opened and transformed.

 47

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

The currently opened files are shown in the source code pane. Pressing the transform

button will transforms the source standard Java program to the one that runs on the

network using the underlying API. The transformation uses the parameters specified in

the left part. If the user checked the emit source box, then the result transformed Java

code will be shown in the result pane. The system outputs of the transformation are

redirected to the application log pane. Any compiling error and error during analyzing

and transformation will be displayed in the pane.

 Fig.6.1. User Interface: Transformation of Application

After submission of the transformed application, the system will create a new pane

within the application log pane for the running application. The system extracts the I/O

 48

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

stream from the application’s process so that any output from the process can be

captured and displayed in the application’s pane. Users can also kill the application

manually using the stop application button.

The start daemon and stop daemon buttons are to start and stop a server daemon which

responses to recruiting request and perform computations from others. The daemon

pane will display the actions to the server daemon process. Fig.6.2. shows a typical

output from the submitted application and the server daemon.

Fig.6.2. User Interface: Submission and Execution of Application

 49

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

The left part includes the parameters that users have control over. In the transformation

control, users can specify whether to emit source. If not, then the system only

generates the bytecode, but not the transformed source code. Users can also change the

destination path to save the generated files, and the number of hosts to be recruited.

In the application control, users can specify the parameters for their individual

applications. The application classpaths are the paths in which the application search

for its necessary classes. The VM parameters are for the options of the virtual machine,

such as JIT options, garbage collection options and heap size options.

Users are allowed to open and submit several applications simultaneously. Each

application will have a separate window, which shows its original code, transformation

result and execution output. Pressing the new button will bring up a new window.

Closing one window will only exit the application contained in that window, but may

not result in the whole system to exit. The system exits when all windows are closed.

The system maintains a global and dynamic data structure holding the information for

all applications at a certain time. All the above functions are also provided in the menu.

6.2 Runtime Application Manager

For every participant host, all the applications and recruited hosts are recorded in a

runtime application manger in the local JDGC platform. It always contains the current

scenario/status of the dynamic system. More concretely, a local data structure in the

manager contains:

− The global information about every application submitted in this host.

 50

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

− The objects currently exist in every running application. Once an object is

created during the execution of an application, the manager adds the information of

the object in the data structure.

− The hosts used by running applications. Once an application successfully

recruits a remote server host, the manager adds the information of this host in the

data structure.

The data structure for runtime application management has three kinds of nodes,

namely application nodes, object nodes and host nodes. The data structure is organized

as a vector of application nodes. The structure of an application node is as follows.

Application node:

− Application ID.

− Affinity metrics of this application.

− Reference to a vector of object nodes that belongs to this application.

− Reference to a vector of host nodes that are used in this application.

In the structure, the application ID is used for uniquely identifying the application in

the local system. The affinity metrics is used for object placement. The reference to a

vector of object nodes contains the information for the objects in the application at the

current time. The structure of an object node is as follows.

Object node:

− Object ID.

− A reference to a remote object if the object resides in a remote machine, or an

object reference if the instance resides in local machine.

− A reference to a host node, which represents the host where this object resides.

− Miscellaneous information about the object.

 51

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

− Backup image information for the object.

The object ID is not global to the local system. It is local to each application and

identifies a certain object within the application. The node also contains a reference to

access the real object. In a remote case it is a reference to a remote object. In a local

case it is a reference to a local object. This reference enables the manager to access the

local/remote object when it performs the object backup and recovery. Miscellaneous

information includes the class name, instance name, index in the affinity metrics, etc.

The backup image information is also used for the crash recovery discussed later. A

reference to a host node represents the host where this object resides. All the host

nodes in all applications are linked in a global vector of host nodes. One host node is

maintained for each physical host. If different applications/objects use the same hosts,

their reference of host nodes will point to the same host nodes. The structure of a host

node is as follows.

Host node:

− Host ID.

− A reference to a remote server object, which represents this host.

− The number of objects in this host.

The host ID is global to the local system. The structure contains the reference to the

remote server object to access the remote host. It also has the information for the

number of objects that reside in this host at the current time.

All these nodes are organized in two global cross-linked lists. One global list is the list

of all application nodes. As described above, the application node will contain its

object nodes, which in turn points to a host node where the object resides. The data

structure is illustrated in Fig.6.3.

 52

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

 Hosts List Applications List

……

Host node

…

Host node

…

Host node

…

……

……
Obj node

…
host
…

……

……
Obj node

…
host
…

Obj node
…

host
…

Obj node
…

host
…

Obj node
…

host
…

……

App node
…

objects
…

App node
…

objects
…

App node
…

objects
…

 Fig.6.3. The Data Structure in Runtime Application Manager

An important function provided in the runtime application manager is the backing up

and crash recovery. The system will backup the objects in local host during the lifetime

of the objects. The backup image information will be held in each object node. During

an invocation, if the remote host crashes, does not response or has other exceptions, the

system will automatically retry the invocation for n number of times. After that, the

remote host or server daemon is considered crashed. The system will follow a similar

procedure as the object creation procedure to select a host and migrate the object using

the backup image information in the corresponding local object node. After the object

 53

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

is created, the system re-performs the invocation. All these will be done by the system

automatically without the user’s intervention.

6.3 A Discussion on Security Issues

The distributed computing environment discussed in this thesis is an open system,

where any host can participate in or quit from the system at will. In such an

environment, the security is another important aspect. In this section, we classify the

major security issues in a distributed computing environment and provide a discussion

on the possible solutions for these issues.

There are two separate security issues in the discussed computing environment. The

first is the protection of the server hosts from malicious programs. This aspect of the

security problem is similar in nature to that of a multi-user computer system, where

individual programs must be protected from other programs running in the same

physical system. This problem has been investigated and addressed in the Java

technology. The virtual machine concept proposed for Java provides a practical

solution for this problem. The Java virtual machine has a byte code verification

mechanism [23]. Before loading the bytecode of a defined class, the code verifier

checks whether it possibly poses security threats to the local system. The next line of

defense is the Security Manager mechanism [24]. The Security Manager is a single

module that can perform runtime checks on dangerous operations of the distributed

code. Code in the Java library consults the Security Manager whenever a dangerous

operation is about to be attempted. According to a predefined security policy, the

Security Manager is given a chance to restrict the operation by generating a Security

 54

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

Exception at runtime. These security solutions in Java are one important reason for

choosing Java as the implementation technique of JDGC platform.

The second issue, which is the protection of the distributed program executing in a

malicious environment (remote server), can be divided into two parts. The first part is

secrecy, which requires the content of data and semantic of codes in the program be

shielded from the remote server. The second part is on integrity, which requires the un-

tampered execution of the distributed program by the un-trusted server, and therefore

ensuring the correctness of the results.

For secrecy problems, the distributed computing architecture could provide an

intermediate level of protection. The risk of secrecy is reduced somewhat by ensuring

that no one server host receives the complete set of private information. For stronger

protection of secrecy, the main solution is to use encryption techniques. The most

widely used technique is the encoding or obfuscation of code. Popular Java obfuscators

are RetroGuard, CodeShield, JProof, etc. These tools apply three main strategies to the

bytecode; namely layout obfuscation, data aggregation/decomposition and control

aggregation/computation [25]. Because the three strategies do not change the semantic

of the code, these tools can also be used for the distributed code generated in our

proposal. If strong secrecy protection is necessary, it is straightforward to insert an

obfuscator into the JDGC architecture between the distributed code generation and the

submission of application.

Although the above secrecy solutions are widely used, these techniques are not able to

provide mathematically provable encryption for the content of distributed code. A

 55

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

similar problem in data encryption has been achieved in the RSA cryptography [26],

which can encrypt the data with a provable strength. However, in the case of program

encryption, a viable protection strategy has to ensure that the encrypted program is still

executable, and at the same time hides the content of the program. The only available

program encryption method is the mobile cryptography proposed in [27]. The strength

of this method is based on function decomposition. However, this technique only

applies to a certain class of program.

The second part of protecting distributed code is on integrity. This requires the un-

tampered execution of the distributed program by the un-trusted server host. Violation

of integrity must be detected as early as possible in order to recognize the malicious

clients and to avoid using the wrong results. To deal with the integrity problem, there

are three general approaches; organizational, hardware-based, and software-based

solutions.

Firstly, the organizational approach relies on “trusted” server hosts. In the proposal of

[28], integrity is guaranteed by not utilizing un-trusted hosts in the system. A drawback

of this approach is that it requires an authentication for every usable host. This may

limits the number of participants in the system. Secondly, hardware-based schemes

employ tamperproof hardware in all potentially malicious servers to guarantee the

correctness of execution [29]. Similar to the organizational based scheme, this

approach also has the drawback of limiting the number of participant hosts. The third

class of solution is the software-based schemes, which rely on the software structure in

the recruiting host and the server host to ensure integrity. Such a design scales better,

and is more suitable for an Internet computer environment. Generally there are two

 56

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

categories of approaches in software-based methods: tampering prevention and

tampering detection.

In tampering prevention, safeguards are inserted before execution. Proposals of

[25][27] are examples of tampering prevention approaches. These methods employ the

similar strategies as the secrecy protection to hide the information of the distributed

programs from server hosts. The prevention approaches mainly address the purposeful

tampering behaviors based on the semantics of a program.

Tampering detection allows detecting both tampering based on the knowledge of the

program, and non-semantic-based tampering done without such knowledge. It observes

the execution and discovers any divergence from the correct execution. Software-based

tampering detection scheme often uses techniques in Fault-Tolerant Computing, which

provides various mechanisms to detect execution fault. An efficient approach is

software signature, widely investigated in Fault-Tolerant Computing. It is used to

detect both control flow fault and single instruction fault. Task replication [30] and

integrity constraint [31] are another two methods. In task replication, the same task is

executed in two or more different sites. Consistency of results from different sites are

checked. In integrity constraint method, assertions (invariants) are inserted into the

program to identify wrong execution.

 57

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

6.4 Applications

The proposed JDGC platform is an integrated distributed computing system supporting

Java applications. In this section we present two sample applications that run on the

JDGC platform.

− Program MultT. This application performs multiplication of two large matrices

of floating point numbers.

− Program Curve. This application performs curve fitting for a series of data

using the least square error criteria.

The two applications are tested in different situations where one or more single

threaded and multiple threaded applications are submitted to the system. In the single

threaded case, all the computation is done within one object. Multiple such

applications can be submitted, and their computations are distributed by the system to

available hosts. In the tests for multiple threaded applications, the computation of an

application is done in multiple concurrent objects that can be distributed to available

hosts. More than one multiple threaded applications may also be submitted

simultaneously. The applications’ average execution times are recorded for these

situations. The units of execution time in the following tables are in seconds (sec).

Firstly, the applications are tested as single threaded applications. For the program

MultT, the order of the matrix is 1000. For the program Curve, the size of data series is

1600, and the precision of parameters is 10-4. The single threaded applications are

tested in the following situations:

 58

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

− The system consists of only one available host. We increase the number of

applications submitted simultaneously.

Table.6.1 The Average Execution Time with One Host

Num of Apps 1 2 4 MultT
(1000) Execution Time 104.408 sec. 209.279 sec. 421.974 sec.

Num of Apps 1 2 4 Curve
(1600, 10-4) Execution Time 246.943 sec. 489.810 sec. 975.951 sec.

As is show in Table.6.1, when the number of applications increases, the average

execution time for the applications also increases. This is because all the applications

share the CPU time of the only host. The execution time is roughly proportional to the

number of applications.

− There are 4 applications submitted simultaneously. We increase the number of

hosts in the system, and record the average execution time of the applications.

Table.6.2 The Average Execution Time for Four Simultaneous Applications

Num of Hosts 1 2 4 MultT
(1000) Execution Time 421.974 sec. 217.812 sec. 115.123 sec.

Num of Hosts 1 2 4 Curve
(1600, 10-4) Execution Time 975.951 sec. 488.902 sec. 260.160 sec.

In this test for 4 applications, as we increase the number of server host, the average

execution time decreases. When there are two hosts available, each of them receives

two applications. In the case of four hosts, each application is sent to one host to be

computed simultaneously. The execution time with n hosts is roughly equal to, but

slightly longer than, 1/n of the execution time with one host. This overhead is due to

the time of launching the applications on a networked machine.

 59

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

− We simultaneously increase the number of hosts and the number of submitted

applications.

Table.6.3 The Average Execution Time When Num of Apps Equals Num of Hosts

Num of Apps 1 2 4
Num of Hosts 1 2 4

MultT
(1000)

Execution Time 104.408 sec. 108.086 sec. 115.123 sec.
Num of Apps 1 2 4
Num of Hosts 1 2 4

Curve
(1600, 10-4)

Execution Time 246.943 sec. 251.577 sec. 260.160 sec.

If we keep the number of applications equal to the number of hosts, then as is shown

above, the average execution time of the applications does not increase significantly,

but it remains within 104 to 116 seconds. The slight increase of execution time reflects

the overhead as the number of applications increase. This overhead is solely due to the

time for initializing application over network, but there are no communication

overheads between the four independent applications.

Secondly, the applications are tested as multiple threaded applications. For the

program MultT, the order of the matrix is 2400. For the program Curve, the size of

data series is 3200, and the precision of parameters is 10-6. The applications are tested

in the following situations:

− Firstly we test the performance of one application with four concurrent threads

(objects). The applications are submitted to the system with one, two and four hosts

recruited. We also compare these execution times of multiple threaded application

with a single threaded application for the same problem.

 60

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

Table.6.4 The Average Execution Time of Multiple Threaded Applications

Threads Single Multiple (4) Multiple (4) Multiple (4)
Num of Hosts 1 1 2 4
Execution time 1401.336 sec. 1582.071 sec. 809.992 sec. 426.507 sec.

MultT
(2400)

Speed up 1 0.886 1.730 3.286
Threads Single Multiple (4) Multiple (4) Multiple (4)

Num of Hosts 1 1 2 4
Execution Time 1164.755 sec. 1255.500 sec. 652.834 sec. 335.265 sec.

Curve
(3200, 10-6)

Speed up 1 0.928 1.784 3.474

The Table.6.4 shows the execution times and speedups of a multiple threaded

application. If the application is implemented as multiple threaded and runs on a single

machine, it is slower than a single threaded implementation. This is due to the context

switching on the single machine, as well as the local communication between the

multiple threads.

When there are more server hosts available to the client host, the multiple threaded

application outperforms the single threaded one running on a single machine. The

speedups, however, are below the increase of the number of hosts. The overhead is

partly incurred by the time of transferring and initializing the objects on a networked

machine. This cause is similar to the case of multiple single threaded applications. On

the other hand, for a multiple threaded application, the overhead is also due to the

communications between the multiple threads of an application. These overheads are

measured and summarized in Table.6.5.

Table.6.5 The Overheads in Creation and Communication

Threads Multiple (4) Multiple (4) Multiple (4)
Num of Hosts 1 2 4

Creation Overhead 11.827 sec. 13.197 sec. 13.252 sec.

MultT
(2400)

Communication Overhead 2.205 sec. 15.678 sec. 20.067 sec.
Threads Multiple (4) Multiple (4) Multiple (4)

Num of Hosts 1 2 4
Creation Overhead 10.619 sec. 11.702 sec. 11.969 sec.

Curve
(3200, 10-6)

Communication Overhead 0.366 sec. 11.347 sec. 25.874 sec.

 61

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

The creation overhead in the above table is the time of initializing the four concurrent

objects on the recruited hosts. The communication overhead is the time spent by one

thread in its communications with other threads. It is obtained by summing up the

execution time of all communication operations with other threads.

− Having measured the speedups of execution time, next we validate the

effectiveness of our method by comparing it with two other object allocation

methods; namely, the random allocation and the manual (worst case) allocation.

We use the same problem parameters as above. In this test the two applications are

implemented as 16 concurrent threads (objects). The number of recruited hosts is

fixed to 4. In the random case, every recruited host is randomly assigned four

objects without considering their communication relations. In the manual case, the

objects are manually allocated to the hosts according to the worst case of all

combinations. The comparison of their execution time is summarized in Table.6.6.

Table.6.6 Comparison of Different Object Allocation Methods

 Random Manual Proposed Method

Threads/Hosts 16/4 16/4 16/4
MultT
(2400)

Execution Time 473.956 sec. 505.918 sec. 431.518 sec.
 Random Manual Proposed Method

Threads/Hosts 16/4 16/4 16/4
Curve

(3200, 10-6)
Execution Time 380.758 sec. 398.648 sec. 344.585 sec.

Comparing execution times, the proposed method outperforms the random allocation

and the manual (worst case) allocation method. The difference of performance is due

to the different communication overheads when using different methods. In the worst

case, objects that have the largest communication affinity are manually separated into

different hosts so that the overheads introduced are larger than the other cases. In the

random case, the execution time fluctuates in different trials. The average execution

 62

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

time, however, is between the manual method and the proposed method. These

comparison tests are done in a local area network, where the inter-machine

communications are fairly fast. If the test is extended to a wide area network or the

Internet environment, larger difference between the three cases can be expected.

− Finally, to show the system’s support for more than one multiple threaded

applications, we submit two applications with 4 threads simultaneously, and

increase the number of recruited hosts.

Table.6.7 The Support for Multiple Applications

Threads Single Multiple (4) Multiple (4) Multiple (4)
Num of Hosts 1 1 2 4

Execution Time 2950.384 sec. 3168.250 sec. 1628.010 sec. 852.082 sec.

2 * MultT
(2400)

Speed up 1 0.931 1.812 3.463
Threads Single Multiple (4) Multiple (4) Multiple (4)

Num of Hosts 1 1 2 4
Execution Time 2465.154 sec. 2509.799 sec. 1310.220 sec. 675.155 sec.

2 * Curve
(3200, 10-6)

Speed up 1 0.982 1.881 3.651

More than one multiple threaded applications can also be submitted to the system

simultaneously. In the case of two, a similar speedup as that of one application is

observed as is shown in Table.6.7.

In summary, for the above two applications, a sub-linear speedup of application

runtime with respect to the number of recruited hosts is observed. For other multiple

threaded applications, similar speedups could be achieved when the computations are

relatively evenly distributed to the hosts. The speedup is in general inferior to linear,

because there are creation overhead and communication overhead, as is shown in

Table.6.5. On one hand, the creation overhead is incurred during initialization and it

depends mostly on the number of concurrent threads to be launched on the network.

 63

CHAPTER 6 JDGC SYSTEM AND APPLICATIONS

On the other hand, the communication overhead during runtime depends largely on the

amount of inter-thread communication of the application. The more data are to be

transferred between threads, the larger is the communication overhead. Also, the

communication overhead increases when the number of recruited hosts increases. This

is because the inter-host communication is much more expensive than the intra-host

communication. For this reason, the proposed distributed computing platform is more

suitable for coarse-grained computational applications, where the communications

between concurrent threads are relatively small, compared with the computational

tasks. When the application is very communicational intensive, the runtime speedup

with respect to the number of hosts can be much inferior to the linear curve.

 64

CHAPTER 7 CONCLUSIONS

CHAPTER 7

CONCLUSIONS

7.1 Contributions

This thesis proposed a distributed code generation method with object level analysis of

object-oriented applications. This method is a key component of the proposed Java

Distributed code Generating and Computing platform. The major works in this

research are summarized in the following three aspects.

Firstly, we developed a new method of extracting the object level communication

affinity metrics for distributed object-oriented computing applications. These

information are the basis for mapping the application to the networked machines. The

communication affinity metrics obtained from this method are used in the object

placement of the subsequent distributed code generation.

Unlike the existing software modeling/reverse engineering methods, which are only

able to analyze static class-to-class information, the new method extract the

communication affinities between runtime objects. Unlike existing dynamic modeling

methods, which decompose the objects into separate scenario diagrams, the new

 65

CHAPTER 7 CONCLUSIONS

method explicitly outputs a two dimensional affinity metrics between objects, which

can be directly used in the object placement.

This object level analysis method while motivated from our integrated system for

object distribution, is nevertheless a general approach for extracting object-to-object

communication affinity metrics and can also be used in other contexts.

Secondly, we developed an automatic distributed code generation method. Using the

object level affinity metrics, the original application program is automatically

transformed to run on the network machines. The generated distributed code

incorporates the runtime object placement according to the affinities computed, as well

as the network layer functions handling object manipulations and communications on

network machines.

Unlike the existing schemes for the production of distributed code, the proposed

method is completely automatic, and does not require special programming paradigm

for the user’s program. The input is a standard concurrent program for single machine.

Without any intervention of the user, the method outputs the distributed code ready for

submission to the distributed computing environment. This method on one hand,

releases the developers from any special programming considerations on the

underlying distributed environment, and on the other hand, solves the portability

problem of distributed applications.

Thirdly, we developed an integrated JDGC platform that transforms and executes Java

applications in a distributed environment. The entire system is developed using Java so

 66

CHAPTER 7 CONCLUSIONS

that it is portable to other operating systems. The key function in the integrated

platform is the distributed code generation with object level analysis. As a fully

functional system, JDGC receives user applications from a comprehensive interface,

keeps tracks of the dynamic status of the system in a runtime application manager, and

performs backing up and recovery.

The typical procedure of running an application on JDGC is as follows. Through the

interface, a user provides the system with a standard concurrent application, as well as

some controlling parameters. After this stage, the system automatically proceeds along

without any further user’s intervention. The system performs a preprocessing on the

application, which includes parsing the application, analyzing it in two levels, and

generating the object code. The generated code, while recorded in the runtime

application manager, executes on the underlying networked virtual machines using the

network layer functions.

7.2 Recommendations

Since the object level analysis is an independent method of program analysis, the

method can also be incorporated into software modeling and reverse engineering tools.

As a supplement to the models already in use, our method models the behaviors and

interactions between runtime objects. This model may provide valuable information in

several software engineering areas, such as software performance analysis, software

reengineering, locating of bottleneck components, etc.

In the thesis, the proposed analysis method was applied to two applications: the matrix

multiplication and curve fitting. Generally speaking, applications that are mostly

 67

CHAPTER 7 CONCLUSIONS

suitable for this analysis method are the non-interactive applications with relatively

deterministic control flow logic between objects. For these kinds of applications, the

inter-object communication costs are mostly determinable in the preprocessing stage,

and thus the analysis would give more precise affinity information. For those

application having frequent interactions with users, the runtime behavior of the

application is largely dependent on the user inputs at runtime, which creates difficulty

in the calculation of the communication affinities between objects. Similarly, the same

difficulty arises if the application has many non-deterministic branches and may

follows different control flows in different runs. In practice, many scientific

computational applications are suitable for the proposed method. In these applications

the pieces of computation tasks are usually well-structured and the interactions

between these tasks are defined in the code before execution, instead of depending on

runtime user input. Furthermore, the control flows for these computational applications

are usually deterministic. As is the case for matrix multiplication and curve fitting, any

normal execution of the computation would follow the same control flow except that

certain exceptions or errors are encountered during the computation.

The implementation of the distributed code generation is currently only for Java

language. However, this method can be extended to other object-oriented languages.

For example, in the situation where portability is not an important consideration, the

similar distributed code generation can be implemented for C++ applications, since the

execution speed of C code is still faster than that of Java code, although JIT techniques

have decreased the difference.

 68

CHAPTER 7 CONCLUSIONS

Furthermore, it is possible to build multi-language support for the distributed code

generation method. As described in previous chapters, the method only uses the AST

of the original program, which is an abstract representation of computer program and

is independent of the language in use. Therefore, the object level analysis and AST

transformation functions need not be changed for different languages. Only the

standard parser and code generator are language dependent. However, these

components have already existed in the compilers of individual language. Thus a

system that supports multiple languages needs to have multiple parsers and code

generators built in. But only one set of analyzers and transformers for general AST is

necessary.

The multiple language support can be extended to build a distributed computing

platform that automatically chooses the format of generated code depending on the

executing environment of the recruited server host. For example, native object code

runs faster than Java bytecode. But native code is not portable, that is, the native code

generated for a certain operating system (or machine architecture) cannot run on a

different operation system (or machine architecture). In order to enhance the execution

speed and at the same time guarantee the code executable in the destination host, the

system choose which code generator is used to generate object code, depending on the

operation system (or machine architecture of the recruited host). The information can

easily be obtained in the recruiting stage. If the host is able to execute a certain format

of native code faster than the bytecode (e.g. machine code for PC architecture), then

the system will port the source code to this native format. In the worst case, if the host

cannot provide information about its executing environment, the system will generate

Java bytecode, which is slower but is guaranteed to be executable.

 69

CHAPTER 7 CONCLUSIONS

Currently, the proposed analysis and transformation method only works for source

code. A possible research direction is to enhance this method to be able to work for

bytecode. Thus the user needs not to provide the source code of an application. This is

possible because the bytecode format is also object-oriented. The analyzer needs to

analyze the bytecode to extract object level affinity metrics, and the transformer needs

to convert the bytecode for single machine to a form that runs on networked machines.

The proposed platform aims to utilize multiple machines to collectively solve

computational applications. The user provided applications are distributed to server

host for execution. A related design is to directly run the applications installed in the

server host, but the input and output of the remote application is redirected to the client

host in a same way as the distributed computing platform. For example, a client may

run a word processor on an application server in order to save the consumption of

memory and CPU time in the local machine. In such a system, there is no need to

distribute code to the server. However, the client has to create a local represent for the

remote application similar to the Wrapper objects used in our system.

 70

APPENDIX A KEY SOURCE CODE

APPENDIX A

KEY SOURCE CODE

Appendix A includes the key source code in the JDGC system that performs the class-

level and object-level analysis.

Code for Class-Level Analysis

The following methods are implemented in the class ClassAnalyzer. The

public method execute() calculates the class-level affinity values for a program

represented by a given AST. The resultant affinity metrics are saved in an instance of

class ClassAff. Other key methods that are invoked in the implementation of

execute() are also given below.

 public void execute()
 {
 // init aff
 cAff = new ClassAff(trees.length);
 for (int i = 0; i < trees.length; i++)
 {
 cAff.addCls(findClassDef(trees[i]));
 } // for i

 // calculate

 71

APPENDIX A KEY SOURCE CODE

 for (int i = 0; i < trees.length; i++)
 {
 AST[] classBody = findClassDef(trees[i]).defs;
 // analyze the methods of this class
 // first get the class defined objects, and add them
to the visibleVarDef vector
 Vector visibleVarDef = new Vector();
 for (int j = 0; j < classBody.length; j++)
 {
 if (isInstanceOf(classBody[j],
"net.sf.pizzacompiler.compiler.AST$VarDef"))
 {
 visibleVarDef.add((Object)classBody[j]);
 }
 }
 // second analyze methods one by one
 for (int j = 0; j < classBody.length; j++)
 {
 if (isInstanceOf(classBody[j],
"net.sf.pizzacompiler.compiler.AST$FunDef")) // FunDef
 if (true)
 {
 FunDef method = (FunDef)classBody[j];
 // append the visibleVarDef to add the objects
passed to this method as parameters
 int whereToTruncate = visibleVarDef.size();
 VarDef[] parameters = method.params;
 for (int k = 0; k < parameters.length; k++)
 {
 visibleVarDef.add((Object)parameters[k]);
 }
 // get the method body
 AST[] stats = method.stats;
 // analyze the statement
 analyzeUnit(stats, findClassDef(trees[i]),
method, visibleVarDef, 1);
 // truncate the visibleVarDef to eliminate the
objects passed to this method as parameters
 // so that it only contains the class defined
objects
 for (int k = whereToTruncate; k <
visibleVarDef.size(); k++)
 {
 visibleVarDef.removeElementAt(k);
 }
 } // if true
 } // for j
 } // for i
 } // execute()

 72

APPENDIX A KEY SOURCE CODE

 private void analyzeUnit(AST[] stats, ClassDef cls,
FunDef method, Vector visibleVarDef, float w)
 { // analyze set of statements
 int whereToTruncate = visibleVarDef.size();
 for (int i = 0; i < stats.length; i++)
 {
 if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$VarDef")) // the child
is a VarDef
 {
 //append the vectorObjects to add the objects
local to this current analyze unit
 visibleVarDef.add(((Object)stats[i]));

 // THIS IS WHEN THE AFFINITY ARISES (THRU 'NEWING'
A USER-DEFINED OBJECT)
 if ((((VarDef)stats[i]).init != null) &&
isInstanceOf(((VarDef)stats[i]).init,
"net.sf.pizzacompiler.compiler.AST$NewClass"))
 if (isUserClass((VarDef)(stats[i]), trees))
 {
 cAff.addAff(cls, method, (VarDef)(stats[i]),
NEW_INS_SIZE);
 }
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Block"))
 {
 analyzeUnit(((Block)stats[i]).stats, cls, method,
visibleVarDef, w);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Synchronized"))
 {
 analyzeUnit(((Synchronized)stats[i]).body, cls,
method, visibleVarDef, w);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$DoLoop"))
 {
 analyzeUnit(((DoLoop)stats[i]).body, cls, method,
visibleVarDef, w);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$WhileLoop"))
 {
 analyzeUnit(((WhileLoop)stats[i]).body, cls,
method, visibleVarDef, w);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$ForLoop"))
 {
 analyzeUnit(((ForLoop)stats[i]).body, cls, method,
visibleVarDef, w);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Conditional"))

 73

APPENDIX A KEY SOURCE CODE

 {
 analyzeUnit(((Conditional)stats[i]).thenpart, cls,
method, visibleVarDef, (float)(w * 0.5));
 analyzeUnit(((Conditional)stats[i]).elsepart, cls,
method, visibleVarDef, (float)(w * 0.5));
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Switch"))
 {
 analyzeUnit(((Switch)stats[i]).cases, cls, method,
visibleVarDef, w / ((Switch)stats[i]).cases.length);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Case"))
 {
 analyzeUnit(((Case)stats[i]).stats, cls, method,
visibleVarDef, w);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Try"))
 {
 analyzeUnit(((Try)stats[i]).body, cls, method,
visibleVarDef, w);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Exec"))
 {
 analyzeExpr(((Exec)stats[i]).expr, cls, method,
visibleVarDef, w);
 }

 } // for
 // truncate the visibleVarDef vector to eliminate the
objects local to this current statement
 for (int i = whereToTruncate; i < visibleVarDef.size();
i++)
 {
 visibleVarDef.removeElementAt(i);
 }
 } // analyzeUnit()

 private void analyzeUnit(AST stat, ClassDef cls, FunDef
method, Vector visibleVarDef, float w)
 {
 AST[] statA = new AST[1];
 statA[0] = stat;
 analyzeUnit(statA, cls, method, visibleVarDef, w);
 }

 private void analyzeExpr(AST expr, ClassDef cls, FunDef
method, Vector visibleVarDef, float w)
 {
 if (isInstanceOf(expr,
"net.sf.pizzacompiler.compiler.AST$Assign"))
 {

 74

APPENDIX A KEY SOURCE CODE

 AST callee = ((Assign)expr).lhs;
 AST value = ((Assign)expr).rhs;

 // THIS IS WHEN THE AFFINITY ARISES (THRU 'NEWING' A
VISIBLE USER-DEFINED OBJECT)
 if (isInstanceOf(callee,
"net.sf.pizzacompiler.compiler.AST$Ident"))
 { // when the left-hand-side is an Identifier
 VarDef calleeDef = findVarDef((Ident)callee,
visibleVarDef);
 if ((calleeDef != null) && (isInstanceOf(value,
"net.sf.pizzacompiler.compiler.AST$NewClass")))
 if (isUserClass(calleeDef, trees))
 {
 cAff.addAff(cls, method, calleeDef,
NEW_INS_SIZE);
 }
 } // if Ident
 if (isInstanceOf(callee,
"net.sf.pizzacompiler.compiler.AST$Index"))
 { // when the left-hand-side is an array indexing
 callee = ((Index)callee).indexed;
 if (isInstanceOf(callee,
"net.sf.pizzacompiler.compiler.AST$Ident"))
 {
 VarDef calleeDef = findVarDef((Ident)callee,
visibleVarDef);
 if ((calleeDef != null) && (isInstanceOf(value,
"net.sf.pizzacompiler.compiler.AST$NewClass")))
 if (isUserClassArray(calleeDef, trees))
 {
 cAff.addAff(cls, method, calleeDef,
NEW_INS_SIZE);
 }
 }
 } // if Index

 analyzeExpr(((Assign)expr).rhs, cls, method,
visibleVarDef, w);
 } else if (isInstanceOf(expr,
"net.sf.pizzacompiler.compiler.AST$Apply"))
 {
 analyzeExpr(((Apply)expr).fn, cls, method,
visibleVarDef, w);
 } else if (isInstanceOf(expr,
"net.sf.pizzacompiler.compiler.AST$Select"))
 {
 AST callee = ((Select)expr).selected;
 Name selector = ((Select)expr).selector;

 75

APPENDIX A KEY SOURCE CODE

 // THIS IS WHEN THE AFFINITY ARISES (THRU A 'SELECT'
OPERATION, NO MATTER WHETHER IT IS S FIELD REF OR METHOD
INVOKE)
 if (isInstanceOf(callee,
"net.sf.pizzacompiler.compiler.AST$Ident"))
 {
 VarDef calleeDef = findVarDef((Ident)callee,
visibleVarDef);
 if (calleeDef != null)
 {
 int affSize = calcSize(callee, selector,
calleeDef);
 if (affSize != java.lang.Integer.MIN_VALUE)
 if (isUserClass(calleeDef, trees))
 cAff.addAff(cls, method, calleeDef, w *
affSize);
 }
 } // if Ident
 if (isInstanceOf(callee,
"net.sf.pizzacompiler.compiler.AST$Index"))
 {
 callee = ((Index)callee).indexed;
 if (isInstanceOf(callee,
"net.sf.pizzacompiler.compiler.AST$Ident"))
 {
 VarDef calleeDef = findVarDef((Ident)callee,
visibleVarDef);
 if (calleeDef != null)
 {
 int affSize = calcSize(callee, selector,
calleeDef);
 if (affSize != java.lang.Integer.MIN_VALUE)
 if (isUserClassArray(calleeDef, trees))
 cAff.addAff(cls, method, calleeDef, w *
affSize);
 }
 }
 } // if Index
 }
 } // analyzeExpr()

 76

APPENDIX A KEY SOURCE CODE

Code for Object-Level Analysis

The following methods are implemented in the class InstanceAnalyzer. The

public method execute() calculates the object-level affinity values from the class-

level affinity metrics. It takes the class-level affinity metrics as input. The resultant

object-level affinity metrics are saved in an instance of class InstanceAff.

Other key methods that are invoked in the implementation of execute() are also

given below.

 public void execute(ClassAff _cAff)
 {
 cAff = _cAff;
 // find the main() method
 ClassDef mainClassDef = findMainClassDef(trees);
 FunDef mainFunDef = findFunDef("main", mainClassDef);
 if (mainFunDef == null)
 {
 System.out.println("No main() found.");
 return;
 }
 // count new instance
 // init iAff, including the instanceVector and the
instanceAff
 numInstance = 0;
 iAff = new InstanceAff();
 iAff.v = new Vector();
 numInstance++;
 (iAff.v).add(mainClassDef);
 for (int i = 0; i < trees.length; i++)
 { // for every class
 AST[] classBody = findClassDef(trees[i]).defs;
 for (int j = 0; j < classBody.length; j++)
 {
 if (isInstanceOf(classBody[j],
"net.sf.pizzacompiler.compiler.AST$FunDef")) // method
definition
 { // for every method
 initUnit(((FunDef)classBody[j]).stats);

 77

APPENDIX A KEY SOURCE CODE

 }
 } // for j
 } // for i
 iAff.aff = new int[numInstance][numInstance];

 // calculate
 if (numInstance > 1)
 {
 // init visibleVar
 Vector visibleVar = initVisibleVar(mainClassDef,
mainFunDef, new Vector());
 // analyze
 analyzeUnit(0, mainFunDef.stats, mainClassDef,
mainFunDef, visibleVar);
 }
 else
 {
 System.out.println("No new statement found");
 return;
 }
 } // execute()

 // analyze units
 private void analyzeUnit(int PIndex, AST[] stats,
ClassDef cls, FunDef method, Vector visibleVar)
 {
 int whereToTruncate = visibleVar.size();
 for (int i = 0; i < stats.length; i++)
 {
 if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$VarDef"))
 {
 visibleVar.add(new VisibleVarNode((VarDef)stats[i],
null));
 if (((VarDef)stats[i]).init != null)
 {
 if (isInstanceOf(((VarDef)stats[i]).init,
"net.sf.pizzacompiler.compiler.AST$NewClass"))
 {
 VarDef NDef = (VarDef)stats[i];
 AST NNew = ((VarDef)stats[i]).init;
 addNewToVisibleVar(NDef, NNew, visibleVar);
 if (isUserClass((NewClass)NNew, trees))
 {
 int NIndex = iAff.getIndex(NNew);
 addP2N(PIndex, NIndex, cls, method, NDef);
 }
 } // if init == NewClass
 if (isInstanceOf(((VarDef)stats[i]).init,
"net.sf.pizzacompiler.compiler.AST$Ident"))
 { // Object a = b;

 78

APPENDIX A KEY SOURCE CODE

 VarDef NDef = (VarDef)stats[i];
 AST NNew = getVarNew(visibleVar,
((Ident)((VarDef)stats[i]).init).idname);
 addNewToVisibleVar(NDef, NNew, visibleVar);
 if (isUserClass((NewClass)NNew, trees))
 {
 int NIndex = iAff.getIndex(NNew);
 addP2N(PIndex, NIndex, cls, method, NDef);
 }
 } // if init == Ident
 analyzeUnit(PIndex, ((VarDef)stats[i]).init, cls,
method, visibleVar);
 } // if init != null
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Block"))
 {
 analyzeUnit(PIndex, ((Block)stats[i]).stats, cls,
method, visibleVar);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Synchronized"))
 {
 analyzeUnit(PIndex, ((Synchronized)stats[i]).body,
cls, method, visibleVar);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$DoLoop"))
 {
 analyzeUnit(PIndex, ((DoLoop)stats[i]).body, cls,
method, visibleVar);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$WhileLoop"))
 {
 analyzeUnit(PIndex, ((WhileLoop)stats[i]).body,
cls, method, visibleVar);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$ForLoop"))
 {
 analyzeUnit(PIndex, ((ForLoop)stats[i]).body, cls,
method, visibleVar);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Conditional"))
 {
 analyzeUnit(PIndex,
((Conditional)stats[i]).thenpart, cls, method, visibleVar);
 analyzeUnit(PIndex,
((Conditional)stats[i]).elsepart, cls, method, visibleVar);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Switch"))
 {
 analyzeUnit(PIndex, ((Switch)stats[i]).cases, cls,
method, visibleVar);

 79

APPENDIX A KEY SOURCE CODE

 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Case"))
 {
 analyzeUnit(PIndex, ((Case)stats[i]).stats, cls,
method, visibleVar);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Try"))
 {
 analyzeUnit(PIndex, ((Try)stats[i]).body, cls,
method, visibleVar);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Exec"))
 {
 analyzeUnit(PIndex, ((Exec)stats[i]).expr, cls,
method, visibleVar);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Assign"))
 {
 AST lhs = ((Assign)stats[i]).lhs;
 AST rhs = ((Assign)stats[i]).rhs;
 if (isInstanceOf(lhs,
"net.sf.pizzacompiler.compiler.AST$Ident"))
 {
 if (isInstanceOf(rhs,
"net.sf.pizzacompiler.compiler.AST$NewClass"))
 {
 VarDef NDef = getVarDef(visibleVar,
((Ident)lhs).idname);
 AST NNew = rhs;
 addNewToVisibleVar(NDef, NNew, visibleVar);
 if (isUserClass((NewClass)NNew, trees))
 {
 int NIndex = iAff.getIndex(NNew);
 addP2N(PIndex, NIndex, cls, method, NDef);
 }
 } // if rhs == NewClass
 if (isInstanceOf(rhs,
"net.sf.pizzacompiler.compiler.AST$Ident"))
 { // a = b;
 VarDef NDef = getVarDef(visibleVar,
((Ident)lhs).idname);
 AST NNew = getVarNew(visibleVar,
((Ident)rhs).idname);
 addNewToVisibleVar(NDef, NNew, visibleVar);
 if (isUserClass((NewClass)NNew, trees))
 {
 int NIndex = iAff.getIndex(NNew);
 addP2N(PIndex, NIndex, cls, method, NDef);
 }
 } // if rhs == Ident
 } // if lhs == Ident

 80

APPENDIX A KEY SOURCE CODE

 if (isInstanceOf(lhs,
"net.sf.pizzacompiler.compiler.AST$Index"))
 {
 lhs = ((Index)lhs).indexed;
 if (isInstanceOf(lhs,
"net.sf.pizzacompiler.compiler.AST$Ident"))
 {
 if (isInstanceOf(rhs,
"net.sf.pizzacompiler.compiler.AST$NewClass"))
 {
 VarDef NDef = getVarDef(visibleVar,
((Ident)lhs).idname);
 AST NNew = rhs;
 addNewToVisibleVar(NDef, NNew, visibleVar);
 if (isUserClass((NewClass)NNew, trees))
 {
 int NIndex = iAff.getIndex(NNew);
 addP2N(PIndex, NIndex, cls, method, NDef);
 }
 } // if rhs == NewClass
 if (isInstanceOf(rhs,
"net.sf.pizzacompiler.compiler.AST$Ident"))
 { // a = b;
 VarDef NDef = getVarDef(visibleVar,
((Ident)lhs).idname);
 AST NNew = getVarNew(visibleVar,
((Ident)rhs).idname);
 addNewToVisibleVar(NDef, NNew, visibleVar);
 if (isUserClass((NewClass)NNew, trees))
 {
 int NIndex = iAff.getIndex(NNew);
 addP2N(PIndex, NIndex, cls, method, NDef);
 }
 } // if rhs == Ident
 } // if Ident
 } // if lhs == Index
 analyzeUnit(PIndex, rhs, cls, method, visibleVar);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Apply"))
 {
 AST fn = ((Apply)stats[i]).fn;
 AST[] args = ((Apply)stats[i]).args;
 if (isInstanceOf(fn,
"net.sf.pizzacompiler.compiler.AST$Ident"))
 { // intra-class invoke, fn is a function of
current class
 // add O2N, that is the current class (O) to
the parameter callees (Ns)
 for (int j = 0; j < args.length; j++)
 {

 81

APPENDIX A KEY SOURCE CODE

 if (!isInstanceOf(args[j],
"net.sf.pizzacompiler.compiler.AST$Ident"))
 continue;
 AST NNew = getVarNew(visibleVar,
((Ident)(args[i])).idname);
 if ((NNew != null))
 {
 int NIndex = iAff.getIndex(NNew);
 FunDef Omethod =
findFunDef(((Ident)fn).idname, cls);
 VarDef calleeDef = Omethod.params[j];
 addO2N(PIndex, NIndex, cls, Omethod,
calleeDef);
 } // if NNew
 } // for i
 // analyze the invoked method
 FunDef Omethod = findFunDef(((Ident)fn).idname,
cls);
 if (Omethod != null)
 {
 Vector OvisibleVar = initVisibleVar(cls,
Omethod, visibleVar);
 analyzeUnit(PIndex, Omethod.stats, cls,
Omethod, OvisibleVar);
 }
 } else if (isInstanceOf(fn,
"net.sf.pizzacompiler.compiler.AST$Select"))
 {
 AST selected = ((Select)fn).selected;
 if (isInstanceOf(selected,
"net.sf.pizzacompiler.compiler.AST$Ident"))
 {
 // check if the selected is a user-defined
class
 VarDef selectedVarDef = getVarDef(visibleVar,
((Ident)selected).idname);
 if (!isUserClass(selectedVarDef, trees))
 return;
 Name selector = ((Select)fn).selector;
 // add O2N, that is the selected class (O) to
the parameter callees (Ns)
 for (int j = 0; j < args.length; j++)
 {
 if (!isInstanceOf(args[j],
"net.sf.pizzacompiler.compiler.AST$Ident"))
 continue;
 VarDef ODef = getVarDef(visibleVar,
((Ident)selected).idname);
 AST ONew = getVarNew(visibleVar,
((Ident)selected).idname);

 82

APPENDIX A KEY SOURCE CODE

 AST NNew = getVarNew(visibleVar,
((Ident)(args[i])).idname);
 if ((NNew != null) && (ODef != null) &&
(ONew != null))
 {
 int OIndex = iAff.getIndex(ONew);
 int NIndex = iAff.getIndex(NNew);
 ClassDef Ocls = findClassDef(ODef.vartype,
trees);
 FunDef Omethod = findFunDef(selector,
Ocls);
 VarDef calleeDef = Omethod.params[j];
 addO2N(OIndex, NIndex, Ocls, Omethod,
calleeDef);
 } // if NNew
 } // for i
 // analyze the invoked method
 VarDef ODef = getVarDef(visibleVar,
((Ident)selected).idname);
 AST ONew = getVarNew(visibleVar,
((Ident)selected).idname);
 if ((ODef !=null) && (ONew != null))
 {
 int OIndex = iAff.getIndex(ONew);
 ClassDef Ocls = findClassDef(ODef.vartype,
trees);
 FunDef Omethod = findFunDef(selector, Ocls);
 if (Omethod != null)
 {
 Vector OvisibleVar = initVisibleVar(Ocls,
Omethod, visibleVar);
 analyzeUnit(OIndex, Omethod.stats, Ocls,
Omethod, OvisibleVar);
 }
 }
 } // if Ident
 if (isInstanceOf(selected,
"net.sf.pizzacompiler.compiler.AST$Index"))
 {
 // check if the selected is a user-defined
class array
 selected = ((Index)selected).indexed;
 if (isInstanceOf(selected,
"net.sf.pizzacompiler.compiler.AST$Ident"))
 {
 VarDef selectedVarDef = getVarDef(visibleVar,
((Ident)selected).idname);
 if (!isUserClassArray(selectedVarDef,
trees))
 return;
 Name selector = ((Select)fn).selector;

 83

APPENDIX A KEY SOURCE CODE

 // add O2N, that is the selected class (O)
to the parameter callees (Ns)
 for (int j = 0; j < args.length; j++)
 {
 if (!isInstanceOf(args[j],
"net.sf.pizzacompiler.compiler.AST$Ident"))
 continue;
 VarDef ODef = getVarDef(visibleVar,
((Ident)selected).idname);
 AST ONew = getVarNew(visibleVar,
((Ident)selected).idname);
 AST NNew = getVarNew(visibleVar,
((Ident)(args[j])).idname);
 if ((NNew != null) && (ODef != null) &&
(ONew != null))
 {
 int OIndex = iAff.getIndex(ONew);
 int NIndex = iAff.getIndex(NNew);
 ClassDef Ocls =
findClassDef(((ArrayTypeTerm)(ODef.vartype)).elemtype,
trees);
 FunDef Omethod = findFunDef(selector,
Ocls);
 VarDef calleeDef = Omethod.params[j];
 addO2N(OIndex, NIndex, Ocls, Omethod,
calleeDef);
 } // if NNew
 } // for i
 // analyze the invoked method
 VarDef ODef = getVarDef(visibleVar,
((Ident)selected).idname);
 AST ONew = getVarNew(visibleVar,
((Ident)selected).idname);
 if ((ODef !=null) && (ONew != null))
 {
 int OIndex = iAff.getIndex(ONew);
 ClassDef Ocls =
findClassDef(((ArrayTypeTerm)(ODef.vartype)).elemtype,
trees);
 FunDef Omethod = findFunDef(selector,
Ocls);
 if (Omethod != null)
 {
 Vector OvisibleVar = initVisibleVar(Ocls,
Omethod, visibleVar);
 analyzeUnit(OIndex, Omethod.stats, Ocls,
Omethod, OvisibleVar);
 }
 }
 } // if Ident
 } // if Index

 84

APPENDIX A KEY SOURCE CODE

 } // if Select
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Binop"))
 {
 analyzeUnit(PIndex, ((Binop)stats[i]).lhs, cls,
method, visibleVar);
 analyzeUnit(PIndex, ((Binop)stats[i]).rhs, cls,
method, visibleVar);
 } else if (isInstanceOf(stats[i],
"net.sf.pizzacompiler.compiler.AST$Unop"))
 {
 analyzeUnit(PIndex, ((Unop)stats[i]).operand, cls,
method, visibleVar);
 } else
 {
 }

 } // for i

 // truncate the visibleVarDef vector to eliminate the
objects local to this current statement
 for (int i = whereToTruncate; i < visibleVar.size();
i++)
 {
 visibleVar.removeElementAt(i);
 }
 } // analyzeUnit()

 private void analyzeUnit(int PIndex, AST stat, ClassDef
cls, FunDef method, Vector visibleVar)
 {
 AST[] astA = new AST[1];
 astA[0] = stat;
 analyzeUnit(PIndex, astA, cls, method, visibleVar);
 }

 85

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

APPENDIX B

EXAMPLES OF CODE TRANSFORMATION

Appendix B includes illustrative examples of code transformation. The original code

and the transformed code for the matrix multiplication and curve fitting applications

are provided.

Matrix Multiplication

The following are the original code that runs on single machine. The method

multiply() in the class MultImplT is the main computational method.

MultT.java:

package tests.mult;
public class MultT
{
 public static void main(String args[])
 {
 if (args.length != 2)
 {
 System.out.println("<npieces> <matrix size>");
 System.exit(1);
 }
 int npieces = Integer.parseInt(args[0]);
 int size = Integer.parseInt(args[1]);
 MatrixT a, b;
 MatrixT[] sub_a = new MatrixT[npieces];
 MatrixT[] sub_result = new MatrixT[npieces];

 86

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 MultImplT[] mm = new MultImplT[npieces];

 try
 {
 long beginTime = System.currentTimeMillis();
 System.out.println("begin time = " + beginTime);
 System.out.println(" creating ... ");
 for (int i = 0; i < npieces; i++)
 {
 mm[i] = new MultImplT();
 }
 System.out.println(" creation finishs ");

 b = MatrixT.createIdentityMatrix(size);
 a = MatrixT.createRandomMatrix(size, size);
 int start_row = 0;
 int end_row = -1;
 int nrows = size / npieces;
 for (int i = 0; i < npieces; i++)
 {
 if (i >= size % npieces)
 {
 start_row = end_row + 1;
 end_row = start_row + nrows - 1;
 } else
 {
 start_row = end_row + 1;
 end_row = start_row + nrows;
 }
 sub_a[i] = a.getSubMatrixByRows(start_row, end_row);
 } // for i

 // execute
 System.out.println(" executing ... ");
 for (int i = 0; i < npieces; i++)
 {
 mm[i].init(sub_a[i], b);
 mm[i].start();
 } // for i

 for (int i = 0; i < npieces; i++)
 {
 mm[i].join();
 } // for i
 System.out.println(" execution finishes. ");
 long endTime = System.currentTimeMillis();
 System.out.println("end time = " + endTime);
 System.exit(0);
 } catch (Exception ex)
 {
 System.out.println("test fails " + ex);

 87

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 }
 } // main()
}

MultImplT.java:

package tests.mult;

public class MultImplT extends Thread
{
 MatrixT a, b;
 public MultImplT()
 {
 }
 public void init(MatrixT _a, MatrixT _b)
 {
 a = _a;
 b = _b;
 } // init()

 public void run()
 {
 MatrixT result = multiply();
 } // run()

 public MatrixT multiply()
 {
 int brows, rows, columns;
 MatrixT result = null;
 int value;
 if (a.getColumns()== b.getRows())
 {
 rows = a.getRows();
 columns = b.getColumns();
 brows = b.getRows();
 result = new MatrixT();
 result.init(rows, columns);
 for (int i = 0; i < rows; i++)
 for (int j = 0; j < columns; j++)
 {
 value = 0;
 for (int k = 0; k < brows; k++)
 value += a.getValue(i,k) * b.getValue(k,j);
 result.setValue(i, j, value);
 }
 } // if
 return result;
 } // multiply()
}

MatrixT.java:

 88

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

package tests.mult;
import java.util.Random;

public class MatrixT
{
 int rows = 10;
 int columns = 10;
 int[][] m;
 private static int randomRange = 10;
 public MatrixT() {
 }
 public void init(int rows, int columns) {
 this.rows = rows;
 this.columns = columns;
 m = new int[rows][columns];
 }
 public int getValue(int x, int y) {
 return m[x][y];
 }
 public int getRows() {
 return rows;
 }
 public int getColumns() {
 return columns;
 }

 public void setValue(int x, int y, int value) {
 m[x][y] = value;
 }
 public static MatrixT createIdentityMatrix(int size) {
 MatrixT result = new MatrixT();
 result.init(size, size);
 for (int i = 0; i < size; i++)
 for (int j = 0; j < size; j++)
 if (i == j)
 result.setValue(i, j, 1);
 else
 result.setValue(i, j, 0);
 return result;
 }
 public static void setRandomRange(int range)
 {
 randomRange = range;
 }
 public static MatrixT createRandomMatrix(int rows, int
columns) {
 MatrixT result = new MatrixT();
 result.init(rows, columns);
 Random random = new Random();
 for (int i = 0; i < rows; i++)
 for (int j = 0; j < columns; j++)

 89

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 result.setValue(i, j, random.nextInt(randomRange));
 return result;
 }
 public MatrixT getSubMatrixByRows(int startAtRow, int
endAtRow) {
 if (endAtRow < startAtRow)
 return null;
 int nrows = endAtRow - startAtRow + 1;
 MatrixT result = new MatrixT();
 result.init(nrows, columns);
 for (int i = 0; i < nrows; i++)
 for (int j = 0; j < columns; j++)
 result.setValue(i, j, m[i+startAtRow][j]);
 return result;
 }
 public MatrixT getSubMatrixByColumns(int startAtCol, int
endAtCol) {
 if (endAtCol < startAtCol)
 return null;
 int ncols = endAtCol - startAtCol + 1;
 MatrixT result = new MatrixT();
 result.init(rows, ncols);
 for (int i = 0; i < rows; i++)
 for (int j = 0; j < ncols; j++)
 result.setValue(i, j, m[i][j+startAtCol]);
 return result;
 }
}

The following are the transformed code that runs on 4 machines in the distributed

environment.

MultT.java:

package tests.mult;
import sogcp.recruit.*;
import sogcp.control.*;
import java.rmi.*;
import java.util.*;
import java.net.InetAddress;
import java.io.*;
import jdgc.lib.*;
import jdgc.proc.InstanceAffArray;
import jdgc.lib.*;
import java.io.Serializable;

public class MultT implements Serializable {
 static int __nIns = 0;

 90

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 static int __numHost;

 public static void main(String[] args) {
 __numHost = 4;
 {
 try {
 String iAffFileName = ".\\tmp\\iAff";
 String jarFileName = ".\\tmp\\dist.jar";
 Wrapper.submit(__numHost, iAffFileName,
jarFileName);
 System.out.println("application submitted");
 } catch (Exception e) {
 System.out.println("error submitting
application");
 e.printStackTrace();
 System.exit(- 1);
 }
 }
 if (args.length != 2) {
 System.out.println("<npieces> <matrix size>");
 System.exit(1);
 }
 int npieces = Integer.parseInt(args[0]);
 int size = Integer.parseInt(args[1]);
 Wrapper a;
 Wrapper b;
 Wrapper[] sub_a = new Wrapper[npieces];
 Wrapper[] sub_result = new Wrapper[npieces];
 Wrapper[] mm = new Wrapper[npieces];
 try {
 long beginTime = System.currentTimeMillis();
 System.out.println("begin time = " + beginTime);
 System.out.println(" creating ... ");
 for (int i = 0; i < npieces; i ++) {
 mm[i] = new Wrapper("tests.mult.MultImplT",
"ins" + __nIns ++, 2, ".\\tmp\\dist.jar", "localhost");
 }
 System.out.println(" creation finishs ");

 b =
(Wrapper)Wrapper.invokeStatic("tests.mult.MatrixT",
"createIdentityMatrix", new Class[]{int.class}, new
Object[]{new Integer(size)});
 a =
(Wrapper)Wrapper.invokeStatic("tests.mult.MatrixT",
"createRandomMatrix", new Class[]{int.class, int.class},
new Object[]{new Integer(size), new Integer(size)});

 int start_row = 0;
 int end_row = - 1;
 int nrows = size / npieces;

 91

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 for (int i = 0; i < npieces; i ++) {
 if (i >= size % npieces) {
 start_row = end_row + 1;
 end_row = start_row + nrows - 1;
 } else {
 start_row = end_row + 1;
 end_row = start_row + nrows;
 }
 sub_a[i] =
(Wrapper)a.invoke("getSubMatrixByRows", new Object[]{new
Integer(start_row), new Integer(end_row)});
 }
 System.out.println(" executing ... ");

 for (int i = 0; i < npieces; i ++) {
 mm[i].invoke("init", new Object[]{sub_a[i],b});
 mm[i].invoke("start", null);
 }
 for (int i = 0; i < npieces; i ++) {
 mm[i].invoke("join", null);
 }
 System.out.println(" execution finishes. ");
 long endTime = System.currentTimeMillis();
 System.out.println("end time = " + endTime);
 System.exit(0);
 } catch (Exception ex) {
 System.out.println("test fails " + ex);
 }
 }

 public MultT() {
 super();
 }
}

MultImplT.java:

package tests.mult;
import jdgc.lib.*;
import java.io.Serializable;

public class MultImplT extends Thread implements
Serializable {
 static int __nIns = 0;
 Wrapper a;
 Wrapper b;
 public MultImplT() {
 super();
 }
 public void init(Wrapper _a, Wrapper _b) {
 a = _a;

 92

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 b = _b;
 }
 public void run() {
 Wrapper result = multiply();
 }

 public Wrapper multiply() {
 int brows;
 int rows;
 int columns;
 Wrapper result = null;
 int value;

 if (Wrapper.retInt(a.invoke("getColumns", null)) ==
Wrapper.retInt(b.invoke("getRows", null))) {
 rows = Wrapper.retInt(a.invoke("getRows", null));
 columns = Wrapper.retInt(b.invoke("getColumns",
null));
 brows = Wrapper.retInt(b.invoke("getRows", null));
 result = new Wrapper("tests.mult.MatrixT", "ins"
+ __nIns ++, 1, ".\\tmp\\dist.jar", "localhost");
 result.invoke("init", new Object[]{new
Integer(rows), new Integer(columns)});
 for (int i = 0; i < rows; i ++) for (int j = 0; j
< columns; j ++) {
 value = 0;
 for (int k = 0; k < brows; k ++) value +=
Wrapper.retInt(a.invoke("getValue", new Object[]{new
Integer(i), new Integer(k)})) *
Wrapper.retInt(b.invoke("getValue", new Object[]{new
Integer(k), new Integer(j)}));
 result.invoke("setValue", new Object[]{new
Integer(i), new Integer(j), new Integer(value)});
 }
 }
 return result;
 }
}

Matrix.java:

package tests.mult;
import java.util.Random;
import jdgc.lib.*;
import java.io.Serializable;

public class MatrixT implements Serializable {
 static int __nIns = 0;
 int rows = 10;
 int columns = 10;
 int[][] m;

 93

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 private static int randomRange = 10;

 public MatrixT() {
 super();
 }
 public void init(int rows, int columns) {
 this.rows = rows;
 this.columns = columns;
 m = new int[rows][columns];
 }
 public int getValue(int x, int y) {
 return m[x][y];
 }
 public int getRows() {
 return rows;
 }
 public int getColumns() {
 return columns;
 }
 public void setValue(int x, int y, int value) {
 m[x][y] = value;
 }
 public static Wrapper createIdentityMatrix(int size) {
 Wrapper result = new Wrapper("tests.mult.MatrixT",
"ins" + __nIns ++, 3, ".\\tmp\\dist.jar", "localhost");
 result.invoke("init", new Object[]{new Integer(size),
new Integer(size)});
 for (int i = 0; i < size; i ++) for (int j = 0; j <
size; j ++) if (i == j) result.invoke("setValue", new
Object[]{new Integer(i), new Integer(j), new Integer(1)});
else result.invoke("setValue", new Object[]{new Integer(i),
new Integer(j), new Integer(0)});
 return result;
 }
 public static void setRandomRange(int range) {
 randomRange = range;
 }
 public static Wrapper createRandomMatrix(int rows, int
columns) {
 Wrapper result = new Wrapper("tests.mult.MatrixT",
"ins" + __nIns ++, 4, ".\\tmp\\dist.jar", "localhost");
 result.invoke("init", new Object[]{new Integer(rows),
new Integer(columns)});
 Random random = new Random();
 for (int i = 0; i < rows; i ++) for (int j = 0; j <
columns; j ++) result.invoke("setValue", new Object[]{new
Integer(i), new Integer(j), new
Integer(random.nextInt(randomRange))});
 return result;
 }

 94

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 public Wrapper getSubMatrixByRows(int startAtRow, int
endAtRow) {
 if (endAtRow < startAtRow) return null;
 int nrows = endAtRow - startAtRow + 1;
 Wrapper result = new Wrapper("tests.mult.MatrixT",
"ins" + __nIns ++, 5, ".\\tmp\\dist.jar", "localhost");
 result.invoke("init", new Object[]{new
Integer(nrows), new Integer(columns)});
 for (int i = 0; i < nrows; i ++) for (int j = 0; j <
columns; j ++) result.invoke("setValue", new Object[]{new
Integer(i), new Integer(j), new Integer(m[i +
startAtRow][j])});
 return result;
 }
 public Wrapper getSubMatrixByColumns(int startAtCol,
int endAtCol) {
 if (endAtCol < startAtCol) return null;
 int ncols = endAtCol - startAtCol + 1;
 Wrapper result = new Wrapper("tests.mult.MatrixT",
"ins" + __nIns ++, 6, ".\\tmp\\dist.jar", "localhost");
 result.invoke("init", new Object[]{new Integer(rows),
new Integer(ncols)});
 for (int i = 0; i < rows; i ++) for (int j = 0; j <
ncols; j ++) result.invoke("setValue", new Object[]{new
Integer(i), new Integer(j), new Integer(m[i][j +
startAtCol])});
 return result;
 }
}

Curve Fitting

The following are the original code that runs on single machine. The main computation

is performed in the Fit.java.

Curve.java:

package curve;

import java.lang.reflect.*;

public class Curve
{
 public Curve()

 95

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 {
 }
 public static void main(String[] args)
 {
 if (args.length != 3)
 {
 System.out.println("<npieces> <piece size> <order>");
 System.exit(1);
 }
 int nPieces = Integer.parseInt(args[0]);
 int pieceSize = Integer.parseInt(args[1]);
 int order = Integer.parseInt(args[2]);
 Fit[] fits = new Fit[nPieces];

 try
 {
 long beginTime = System.currentTimeMillis();
 System.out.println(" creating ... ");
 for (int i = 0; i < nPieces; i++)
 {
 fits[i] = new Fit();
 }
 System.out.println(" creation finishs ");
 double[] datax = new double[pieceSize];
 double[] datay = new double[pieceSize];

 // execute
 System.out.println(" executing ... ");
 double xCount = 0.0;
 for (int i = 0; i < nPieces; i++)
 {
 for (int j = 0; j < pieceSize; j++)
 {
 datax[j] = xCount;
 xCount = xCount + 1.0;
 }
 for (int j = 0; j < pieceSize; j++)
 {
 datay[j] = Math.random() * (nPieces * pieceSize);
 }
 fits[i].init(new Integer(pieceSize), new
Integer(order), datax, datay);
 long size = (datax.length + datay.length)*4;
 } // for i

 for (int i = 0; i < nPieces; i++)
 {
 fits[i].start();
 } // for i

 for (int i = 0; i < nPieces; i++)

 96

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 {
 fits[i].join();
 } // for i

 System.out.println("collecting ... ");
 double[][] coefficients = new
double[nPieces][order+1];
 double[] lsq = new double[nPieces];
 for (int i = 0; i < nPieces; i++)
 {
 long begin = System.currentTimeMillis();
 coefficients[i] = fits[i].getCoefficients();
 long end = System.currentTimeMillis();
 System.out.println("communication time for " +
coefficients.length*4 + " bytes:" + (end-begin));

 for (int j = 0; j < order + 1; j++)
 {
 System.out.print(coefficients[i][j] + " ");
 }
 System.out.println();
 } // for i
 System.out.println(" execution finishes. ");
 long endTime = System.currentTimeMillis();
 System.out.println("time = " + (endTime -
beginTime));
 System.exit(0);
 } catch (Exception e)
 {
 }
 } // main()
}

Fit.java:

package curve;

import java.lang.reflect.*;

public class Fit extends Thread
{
 double[] datax, datay;
 int pieceSize, order;
 double[] c;
 int lsq;
 double basicPrecision = 100000.0;
 double tunedPrecision = 1000000.0;

 public Fit()
 {
 }

 97

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 public void init(Integer _pieceSize, Integer _order,
double[] _datax, double[] _datay)
 {
 pieceSize = _pieceSize.intValue();
 order = _order.intValue();
 datax = new double[pieceSize];
 for (int i = 0; i < pieceSize; i++)
 {
 datax[i] = _datax[i];
 }
 datay = new double[pieceSize];
 for (int i = 0; i < pieceSize; i++)
 {
 datay[i] = _datay[i];
 }
 } // init()

 public void run()
 {
 // least square
 int rows = pieceSize;
 int cols = 1;
 int numCo = order + 1;
 c = new double[numCo];

 double basis[] = new double[numCo * rows];
 double alpha[] = new double[numCo * numCo];
 double alpha2[] = new double[numCo * numCo];
 double beta[] = new double[numCo];
// calc basis
for (int i = 0; i < numCo; i ++)
 {
 for (int j = 0; j < rows; j ++)
 {
 int k = i + j * numCo;
 if (i == 0) basis[k] = 1;
 else basis[k] = datax[j] * basis[k - 1];
 }
 }
// calc alpha2
for (int i = 0; i < numCo; i ++)
 {
 for (int j = 0; j <= i; j ++)
 {
 double sum = 0;
 for (int k = 0; k < rows; k ++)
 {
 int k2 = i + k * numCo;
 int k3 = j + k * numCo;

 98

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 sum += basis[k2] * basis[k3];
 }

 int k2 = i + j * numCo;
 alpha2[k2] = sum;

 if (i != j)
 {
 k2 = j + i * numCo;
 alpha2[k2] = sum;
 }
 }
 }

for (int i = 0; i < cols; i ++)
 {
 // calc beta
 for (int j = 0; j < numCo; j ++)
 {
 double sum = 0;
 for (int k = 0; k < rows; k ++)
 {
 int k3 = j + k * numCo;
 sum += datay[k] * basis[k3];
 }
 beta[j] = sum;
 }
 // get alpha
 for (int j = 0; j < numCo * numCo; j ++) alpha[j] =
alpha2[j];
 // solve for params
 if (!solve(alpha, beta, numCo))
 {
 }
 for (int j = 0; j < numCo; j ++)
 {
 c[j] = Math.floor(beta[j] * basicPrecision) /
basicPrecision;
 }
 }
 int sum = 0;
 for (int j = 0; j < pieceSize; j++)
 {
 sum += Math.pow(datay[j] - func(c, datax[j]),
(double)2);
 }
 lsq = sum;

 for (int i = 0; i < Math.pow(10, numCo) - 1; i++)
 {
 String str = Integer.toString(i);

 99

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 int l = str.length();
 for (int j = 0; j < numCo - l; j++)
 str = "0" + str;

 double[] cTry = new double[numCo];
 for (int j = 0; j < numCo; j++)
 {
 cTry[j] = c[j] + (1/basicPrecision) *
Integer.valueOf(str.substring(j, j+1)).intValue();
 cTry[j] = Math.floor(cTry[j] * tunedPrecision)
/ tunedPrecision;
 }
 sum = 0;
 for (int j = 0; j < pieceSize; j++)
 {
 sum += Math.pow(datay[j] - func(cTry,
datax[j]), 2);
 }
 if (sum < lsq)
 {
 lsq = sum;
 c = cTry;
 }
 } // for i
 } // run()

 double func(double[] c, double x)
 {
 double y = 0;
 for (int i = 0; i <= order; i++)
 {
 y += c[i] * Math.pow(x, i);
 }
 return y;
 } // func()

 public double[] getCoefficients()
 {
 return c;
 } // getCoefficients()

 public double getlsq()
 {
 return lsq;
 } // getlsq()

 boolean solve(double a[], double b[], int n)
 {
 for (int i = 0; i < n; i ++)
 {
 // find pivot

 100

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 double mag = 0;
 int pivot = -1;
 for (int j = i; j < n; j ++)
 {
 double mag2 = Math.abs(a[i + j * n]);
 if (mag2 > mag)
 {
 mag = mag2;
 pivot = j;
 }
 }
 // no pivot: error
 if (pivot == -1 || mag == 0)
 {
 return false;
 }
 // move pivot row into position
 if (pivot != i)
 {
 double temp;
 for (int j = i; j < n; j ++)
 {
 temp = a[j + i * n];
 a[j + i * n] = a[j + pivot * n];
 a[j + pivot * n] = temp;
 }
 temp = b[i];
 b[i] = b[pivot];
 b[pivot] = temp;
 }
 // normalize pivot row
 mag = a[i + i * n];
 for (int j = i; j < n; j ++) a[j + i * n] /= mag;
 b[i] /= mag;
 // eliminate pivot row component from other rows
 for (int i2 = 0; i2 < n; i2 ++)
 {
 if (i2 == i) continue;
 double mag2 = a[i + i2 * n];
 for (int j = i; j < n; j ++)
 a[j + i2 * n] -= mag2 * a[j + i * n];
 b[i2] -= mag2 * b[i];
 }
 }

 // result should be identity matrix in a and solution
vector in b
 return true;
 } // solve()
}

 101

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

The following are the transformed code that runs on 4 machines.

Curve.java:

package curve;

import java.lang.reflect.*;
import sogcp.recruit.*;
import sogcp.control.*;
import java.rmi.*;
import java.util.*;
import java.net.InetAddress;
import java.io.*;
import jdgc.lib.*;
import jdgc.proc.InstanceAffArray;
import jdgc.lib.*;

import java.io.Serializable;

public class Curve implements Serializable {
 static int __nIns = 0;
 static int __numHost;
 public Curve() {
 super();
 }
 public static void main(String[] args) {
 __numHost = 4;
 {
 try {
 String iAffFileName = ".\\tmp\\iAff";
 String jarFileName = ".\\tmp\\dist.jar";
 Wrapper.submit(__numHost, iAffFileName,
jarFileName);
 System.out.println("application submitted");
 } catch (Exception e) {
 System.out.println("error submitting
application");
 e.printStackTrace();
 System.exit(- 1);
 }
 }
 if (args.length != 3) {
 System.out.println("<npieces> <piece size>
<order>");
 System.exit(1);
 }
 int nPieces = Integer.parseInt(args[0]);
 int pieceSize = Integer.parseInt(args[1]);
 int order = Integer.parseInt(args[2]);
 Wrapper[] fits = new Wrapper[nPieces];

 102

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 try {
 long beginTime = System.currentTimeMillis();
 System.out.println(" creating ... ");
 for (int i = 0; i < nPieces; i ++) {
 fits[i] = new Wrapper("curve.Fit", "ins" +
__nIns ++, 1, ".\\tmp\\dist.jar", "localhost");
 }
 System.out.println(" creation finishs ");

 double[] datax = new double[pieceSize];
 double[] datay = new double[pieceSize];
 System.out.println(" executing ... ");
 double xCount = 0.0;

 for (int i = 0; i < nPieces; i ++) {
 for (int j = 0; j < pieceSize; j ++) {
 datax[j] = xCount;
 xCount = xCount + 1.0;
 }
 for (int j = 0; j < pieceSize; j ++) {
 datay[j] = Math.random() * (nPieces *
pieceSize);
 }
 fits[i].invoke("init", new Object[]{new
Integer(pieceSize), new Integer(order), datax, datay});
 long size = (datax.length + datay.length) * 4;
 }
 for (int i = 0; i < nPieces; i ++) {
 fits[i].invoke("start", null);
 }
 for (int i = 0; i < nPieces; i ++) {
 fits[i].invoke("join", null);
 }
 System.out.println("collecting ... ");
 double[][] coefficients = new
double[nPieces][order + 1];
 double[] lsq = new double[nPieces];
 for (int i = 0; i < nPieces; i ++) {
 long begin = System.currentTimeMillis();
 coefficients[i] =
(double[])fits[i].invoke("getCoefficients", null);
 long end = System.currentTimeMillis();
 System.out.println("communication time for " +
coefficients.length * 4 + " bytes:" + (end - begin));
 for (int j = 0; j < order + 1; j ++) {
 System.out.print(coefficients[i][j] + " ");
 }
 System.out.println();
 }
 System.out.println(" execution finishes. ");
 long endTime = System.currentTimeMillis();

 103

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 System.out.println("time = " + (endTime -
beginTime));
 System.exit(0);
 } catch (Exception e) {
 }
 }
}

Fit.java:

package curve;

import java.lang.reflect.*;
import jdgc.lib.*;

import java.io.Serializable;

public class Fit extends Thread implements Serializable {
 static int __nIns = 0;
 double[] datax;
 double[] datay;
 int pieceSize;
 int order;
 double[] c;
 int lsq;
 double basicPrecision = 100000.0;
 double tunedPrecision = 1000000.0;
 public Fit() {
 super();
 }
 public void init(Integer _pieceSize, Integer _order,
double[] _datax, double[] _datay) {
 pieceSize = _pieceSize.intValue();
 order = _order.intValue();
 datax = new double[pieceSize];
 for (int i = 0; i < pieceSize; i ++) {
 datax[i] = _datax[i];
 }
 datay = new double[pieceSize];
 for (int i = 0; i < pieceSize; i ++) {
 datay[i] = _datay[i];
 }
 }

 public void run() {
 int rows = pieceSize;
 int cols = 1;
 int numCo = order + 1;
 c = new double[numCo];
 double[] basis = new double[numCo * rows];
 double[] alpha = new double[numCo * numCo];

 104

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 double[] alpha2 = new double[numCo * numCo];
 double[] beta = new double[numCo];
 for (int i = 0; i < numCo; i ++) {
 for (int j = 0; j < rows; j ++) {
 int k = i + j * numCo;
 if (i == 0) basis[k] = 1; else basis[k] =
datax[j] * basis[k - 1];
 }
 }
 for (int i = 0; i < numCo; i ++) {
 for (int j = 0; j <= i; j ++) {
 double sum = 0;
 for (int k = 0; k < rows; k ++) {
 int k2 = i + k * numCo;
 int k3 = j + k * numCo;
 sum += basis[k2] * basis[k3];
 }
 int k2 = i + j * numCo;
 alpha2[k2] = sum;
 if (i != j) {
 k2 = j + i * numCo;
 alpha2[k2] = sum;
 }
 }
 }
 for (int i = 0; i < cols; i ++) {
 for (int j = 0; j < numCo; j ++) {
 double sum = 0;
 for (int k = 0; k < rows; k ++) {
 int k3 = j + k * numCo;
 sum += datay[k] * basis[k3];
 }
 beta[j] = sum;
 }
 for (int j = 0; j < numCo * numCo; j ++) alpha[j]
= alpha2[j];
 if (! solve(alpha, beta, numCo)) {
 }
 for (int j = 0; j < numCo; j ++) {
 c[j] = Math.floor(beta[j] * basicPrecision) /
basicPrecision;
 }
 }
 int sum = 0;
 for (int j = 0; j < pieceSize; j ++) {
 sum += Math.pow(datay[j] - func(c, datax[j]),
(double)2);
 }
 lsq = sum;
 for (int i = 0; i < Math.pow(10, numCo) - 1; i ++) {

 105

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 String str = Integer.toString(i);
 int l = str.length();
 for (int j = 0; j < numCo - l; j ++) str = "0" +
str;
 double[] cTry = new double[numCo];
 for (int j = 0; j < numCo; j ++) {
 cTry[j] = c[j] + 1 / basicPrecision *
Integer.valueOf(str.substring(j, j + 1)).intValue();
 cTry[j] = Math.floor(cTry[j] * tunedPrecision)
/ tunedPrecision;
 }
 sum = 0;
 for (int j = 0; j < pieceSize; j ++) {
 sum += Math.pow(datay[j] - func(cTry,
datax[j]), 2);
 }
 if (sum < lsq) {
 lsq = sum;
 c = cTry;
 }
 }
 }

 double func(double[] c, double x) {
 double y = 0;
 for (int i = 0; i <= order; i ++) {
 y += c[i] * Math.pow(x, i);
 }
 return y;
 }
 public double[] getCoefficients() {
 return c;
 }
 public double getlsq() {
 return lsq;
 }
 boolean solve(double[] a, double[] b, int n) {
 for (int i = 0; i < n; i ++) {
 double mag = 0;
 int pivot = - 1;
 for (int j = i; j < n; j ++) {
 double mag2 = Math.abs(a[i + j * n]);
 if (mag2 > mag) {
 mag = mag2;

 pivot = j;
 }
 }
 if (pivot == - 1 || mag == 0) {
 return false;
 }

 106

APPENDIX B EXAMPLES OF CODE TRANSFORMATION

 if (pivot != i) {
 double temp;
 for (int j = i; j < n; j ++) {
 temp = a[j + i * n];
 a[j + i * n] = a[j + pivot * n];
 a[j + pivot * n] = temp;
 }
 temp = b[i];
 b[i] = b[pivot];
 b[pivot] = temp;
 }
 mag = a[i + i * n];
 for (int j = i; j < n; j ++) a[j + i * n] /= mag;
 b[i] /= mag;
 for (int i2 = 0; i2 < n; i2 ++) {
 if (i2 == i) continue;
 double mag2 = a[i + i2 * n];
 for (int j = i; j < n; j ++) a[j + i2 * n] -=
mag2 * a[j + i * n];
 b[i2] -= mag2 * b[i];
 }
 }
 return true;
 }
}

 107

REFERENCES

REFERENCES

[1] Cappello, P.; Christiansen, B.O.; Neary, M.O.; Schauser, K.E., “Market-based

massively parallel Internet computing”, Proceedings of the 3rd Working Conference

on Massively Parallel Programming Models, 1998.

[2] Nisan, N.; London, S.; Regev, O.; Camiel, N., “Globally distributed computation

over the Internet-the POPCORN project”, Proceedings of the 18th International

Conference on Distributed Computing Systems, 1998.

[3] Plasil, F. ; Stal, M., “An architectural view of distributed objects and components

in CORBA, Java RMI and COM/DCOM”, Software-Concepts and Tools, Volume 19,

Issue 1, 1998, Pages 14-28.

[4] Wei-Jin Park; Sang-Yoon Min; Doo-Hwan Bae; Pyeong-Soo Mah, “Object-

oriented model refinement technique in software reengineering”, Proceedings of the

Twenty-Second Annual International Computer Software and Applications

Conference (COMPSAC '98), 1998.

[5] Grundy, J.; Hosking, J., “Directions in modelling large-scale software

architectures”, Proceedings of International Conference on Software Methods and

Tools (SMT 2000), 2000.

 108

REFERENCES

[6] Theodoros, L.; Edwards, H.M.; Bryant, A.; Willis, N., “ROMEO: reverse

engineering from OO source code to OMT design”, Proceedings of Fifth Working

Conference on Reverse Engineering, 1998.

[7] Systa, T., “Understanding the behavior of Java programs”, Proceedings of

Seventh Working Conference on Reverse Engineering, 2000.

[8] Bujor D. Silaghi and Peter J. Keleher, “Object Distribution with Local

Information”, In Proceddings of the 21st ICDCS'01, Mesa, AZ, April 2001.

[9] Y. Gourhant, S. Louboutin, V. Cahill, A. Condon, G. Starovic, and B. Tangney,

“Dynamic clustering in an object-oriented distributed system”, Proceedings of

OLDA-II (Objects in Large Distributed Applications), Ottawa, Canada, October 1992.

[10] Henri E. Bal and M. Frans Kaashoek., “Object Distribution in Orca using

CompileTime and Run-Time Techniques”, Proceedings of the Conference on Object-

Oriented Programming Systems, Languages, and Applications, September 1993.

[11] Shmulik London, “POPCORN - A Paradigm for Global-Computing”, MSc

Thesis, Institute of Computer Science, The Hebrew University of Jerusalem,

Jerusalem, Israel June, 1998.

[12] Brecht, T., Sandhu, H., Shan, M., Talbot, J., “ParaWeb: Towards World-Wide

Supercomputing”, Proceedings of the Seventh ACM SIGOPS European Workshop:

Systems Support for Worldwide Applications. Sep. 1996.

[13] Fahringer, T., “JavaSymphony: a system for development of locality-oriented

distributed and parallel Java applications”, Proceedings of IEEE International

Conference on Cluster Computing (CLUSTER 2000) 2000, Pages 145-152.

 109

REFERENCES

[14] A. Baratloo, P. Dasgupta, V. Karamcheti, and Z. Kedem, “Metacomputing with

MILAN”, Proceedings of the Heterogeneous Computing Workshop (HCW'99),

International Parallel Processing Symposium (IPPS/SPDP 1999), April 1999.

[15] P. Liu, “A Self Organizing Global Computing Architecture”, Master’s Thesis,

National University of Singapore, 2001.

[16] Anderson, T.E.; Culler, D.E.; Patterson, D.A., “The Berkeley Networks of

Workstations (NOW) Project”, Digest of Papers. COMPCON '95. Technologies for

the Information Superhighway (Cat.No.95CH35737), 1995, Pages 322-326.

[17] Post, G. ; Kagan, A., “OO-CASE tools: an evaluation of Rose”, Information

and Software Technology, Volume 42, Issue 6, 2000, Pages 383-388.

[18] U. Nickel, J. Niere, and A. Zündorf, “Tool demonstration: The FUJABA

environment”, Proceedings of the 22nd International Conference on Software

Engineering (ICSE), Limerick, Irland, pp. 742--745, ACM Press, 2000.

[19] Kai Koskimies, Tatu Männistö, Tarja Systä, Jyrki Tuomi, “SCED - An

environment for dynamic modeling in object-oriented software construction”,

Proceedings of Nordic Workshop on Programming Environment Research '94

(NWPER'94), Lund, University, June 1994, pp. 217-230.

[20] “The Pizza Compiler”, http://pizzacompiler.sourceforge.net/doc/.

[21] Terence Parr, “Getting Started with ANTLR”, http://www.antlr.org/fieldguide/

start/index.html.

[22] P.D. Terry, “Compilers and Compiler Generators”

 110

REFERENCES

[23] Leroy, X., “Java bytecode verification: an overview”, Proceedings of 13th

International Conference on Computer Aided Verification (CAV 2001) (Lecture

Notes in Computer Science Vol.2102, 2001), Pages 265-285, 2001.

[24] B. Venners, “Java’s Security Architecture”, http://www.javaworld.com/

javaworld/jw-08-1997/jw-08-hood.html.

[25] D. Low, “Protecting Java Code via Code Obfuscation”, http://www.acm.org/

crossroads/xrds4-3/codeob.html.

[26] Shand, M.; Vuillemin, J., “Fast Implementations of RSA cryptography”,

Proceedings of Symposium on Computer Arithmetic, 1993, Pages 252-259.

[27] Sander, Tomas; Tschudin, Christian F., “Towards mobile cryptography”,

Proceedings of the IEEE Computer Society Symposium on Research in Security and

Privacy, 1998, Pages 215-224.

[28] Farmer, William; Guttmann, Joshua; Swarup, Vipin, “Security for Mobile

Agents: Authentication and State Appraisal”, Proceedings of the European

Symposium on Research in Computer Security (ESORICS), 1996.

[29] Palmer, E, “An Introduction to Citadel - a secure crypto coprocessor for

workstations”, Proceedings of the IFIP SEC’94 Conference, 1994.

[30] Aguilar, J.; Hernandez, M., “Fault tolerance protocols for parallel programs

based on tasks replication”, Proceedings of the 8th International Symposium on

Modeling, Analysis and Simulation of Computer and Telecommunication Systems,

2000.

 111

REFERENCES

[31] Gates, A., “On Defining a Class of Integrity Constraints”, Proceedings of the

Eighth International Conference on Software Engineering and Knowledge

Engineering, Lake Tahoe, NV, 1996.

 112

