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SUMMARY 

 

The scope of this thesis emphasizes on studies of carrier quantization and direct 

tunneling through ultrathin gate dielectrics in deep submicron CMOS devices. 

 

Quantum mechanical effects become increasingly important as CMOS device 

scales into deep submicron regime. For hole quantization, the traditional one-band 

effective mass approximation (EMA) is insufficient. In this thesis, we studied the hole 

quantization based on the six-band EMA to include the valence band mixing effect. 

The traditional one-band EMA is found to underestimate the subband density of states 

and resultantly overestimate the hole quantum mechanical effects. Based on the 

numerical results from six-band EMA, an improved one-band EMA was proposed. In 

conjunction with the introduction of an effective electric field, this simplified 

approach demonstrates its application to hole quantization with advantages of 

simplicity in formalism, efficiency in computation and accuracy in simulations. 

 

In deep submicron CMOS devices, direct tunneling current is dramatically 

increased when gate dielectric thickness is scaled. In this thesis, direct tunneling is 

investigated both experimentally and theoretically. An efficient physical model for the 

direct tunneling current is demonstrated by the successful simulations of all terminal 

tunneling currents in CMOS transistors with ultrathin gate oxide. For hole tunneling 

current, instead of the traditional parabolic dispersion, a Freeman-Dahlke dispersion 

form is introduced, which takes the difference of conduction and valence band 

effective masses into account. Using this form, the agreement with the experimental 

data is significantly improved over a wide range of oxide thickness and gate voltage.  



 viii

Alternative high dielectric constant (high-K) dielectrics have been explored 

because the scaling of SiO2 thickness is approaching its physical limit. The modeling 

of tunneling current through high-K gate stack was conducted by using the physical 

model. The simulated gate tunneling currents in Si3N4, Al2O3 and HfO2 gate stacks 

were in excellent agreements with experiments. The simulations were also used to 

analyze the scalability of these high-K dielectrics in future CMOS technology in term 

of gate leakage. It is found that a high-K material is urgently required in CMOS 

technology for low power application. Due to the low tunneling current, HfO2
 or 

HfAlO is demonstrated to be a viable dielectric replacing SiO2 to the end of the 

roadmap. The simulations also show that the interfacial layer affects significantly the 

gate leakage of the high-K gate stacks. Guidelines for interface layer engineering 

were also provided.  

 

To eliminate poly-Si gate depletion, metal gate has been suggested to replace 

the traditional poly-Si. A systematic study has been performed on metal gate 

MOSFETs to investigate the impact of metal gates on the tunneling leakage current. 

Metal gate has the advantage of an appreciable reduction of gate leakage over poly-Si, 

when at the same CET (capacitance equivalent oxide thickness at inversion). 

Moreover, in ultra-thin body silicon-on-insulator (SOI) structure, the use of mid-gap 

metal gate results in significant reduction of gate to source/drain extension tunneling, 

especially when high-K gate dielectric is used. As a result, ultrathin body SOI device 

with metal gate has much lower off-state leakage, indicating its superior capability in 

device scaling. 
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Chapter 1 

Introduction 

 

1.1. Overview 

 

Since the invention of metal-oxide-semiconductor field-effect transistor 

(MOSFET) and its successful incorporation into integrated circuits, it has steadily 

emerged to be the main building blocks of today’s electronics circuit. During the past 

30 years, we have witnessed a tremendous progress in MOS device technology. One 

distinct characteristic in this evolution is the steady downscaling of the transistor 

geometry, particularly its channel length. This is because MOSFET scaling is able to 

yield a higher packing intensity and most importantly a faster circuit speed. The 

channel length in current manufacturing technology is now entering into the 

nanometer regime. Based on the most recent International Technology Roadmap for 

Semiconductors (ITRS2001) [1], MOSFETs with channel length down to ~ 10 nm are 

projected to enter production in 2016.  

As the transistor feature size is scaled into nanometer scale, many physical 

phenomena, which are negligible in large-dimension MOSFET, are becoming more 

and more important [2-3]. For examples, the operation of MOSFET is now entering a 

regime in which quantum mechanical effects become noticeable and substantial 

tunneling current through the gate insulator takes place due to the aggressive scaling 

of the gate dielectric thickness. In addition, in order to maintain the rapid 

development for device performance improvement, the introduction of new materials 

and processing technologies is also needed [4-5]. 
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In this chapter, we first discuss in Section 1.2 how the CMOS transistor is 

scaled and what challenges we will meet during the device scaling. Then, according to 

the contents of this thesis, quantum mechanical effects in CMOS devices and direct 

tunneling current through ultrathin gate dielectrics, as well as their impact on device 

performance, will be reviewed in Sections 1.3 and 1.4, respectively. In subsequent 

Sections 1.5-1.7, brief introductions will be given to the current research activities in 

several areas relevant to the topic of this thesis, including high permittivity (high-K) 

dielectric materials, metal gate technology and novel device architectures. After 

Section 1.8, a brief introduction to the objectives, a summary of the major 

achievements in this thesis will be presented in Section1.9. 
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1.2 Introduction to CMOS Transistor Scaling 

 

The engine of MOS technology development is to improve the transistor drive 

current and maintain the off-state leakage current as low as possible. In gradual 

channel approximation, the drive current can be written as [2, 3] 

 

D
D

TGoxD VVVVC
L

WI 





 −−=

2
µ                                   (1.1) 

 

where W is the channel width, VG, VD and VT are the gate voltage, drain voltage and 

threshold voltage, respectively. It can be seen that high drive current can be obtained 

by reducing the transistor gate length L, increasing the gate capacitance Cox or 

improving the channel carrier mobility µ. 

The gate length scaling is the main stimulus to the development of the MOS 

technology. However, short-channel MOSFETs differ in many aspects from long-

channel ones. One of the prominent features is the short-channel effects (SCEs) [2], 

manifested as VT reduction when the channel length is reduced, or when the drain is 

highly biased. As a result, the subthreshold leakage current is dramatically increased. 

Therefore, the most difficult challenge in CMOS scaling is how to keep SCEs well 

controlled.  

 

Gate Oxide thickness Scaling 

The reduction of gate oxide thickness is efficient in enhancing the gate control 

over the channel, ensuring good short-channel behaviour. Oxide scaling also has an 

additional benefit of improving the driving current of MOSFETs. However, ultrathin 
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gate oxide is susceptible to direct tunneling, giving rise to high gate leakage current, 

which necessitates the efforts to explore an alternative dielectric material with higher 

permittivity than SiO2 [4]. 

 

Well Engineering 

In deep submicron MOSFETs, the well doping profiles in both vertical and 

lateral directions are engineered for the suppression of SCEs [5-6]. In vertical direction, 

super steep retrograde doping profile is used. The heavy doping beneath the channel 

surface allows for both the VT adjustment and the well control of SCEs, while the 

doping is kept low at channel surface to avoid the degradation to channel carrier 

mobility. In lateral direction, a halo structure is created by implanting extra dopants 

into the local regions surrounding the edges of the source/drain extensions. These halo 

implants provide a reduction of the subthreshold leakage current. The highly non-

uniform profile in the lateral direction sets up a higher effective doping concentration 

toward shorter devices, which counteracts short channel effects. However, the 

production of highly non-uniform doping profiles required in deep submicron devices 

presents new challenges for ion implantation technology.  

 

Source/Drain Engineering 

Shallow source/drain extension depth is another effective method to suppress 

the SCEs by reducing the amount of channel  depletion charges controlled by the 

drain [5-6]. However, the increased series resistance limits the scaling of source/drain 

junction depth. As a viable solution, raised or elevated source/drain structure may be 

used in future MOSFETs. 
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Channel Engineering 

MOSFET performance improvement can also be achieved by increasing the 

channel carrier mobility. MOSFETs with high mobility using strain Si, Ge or SiGe 

channels have been demonstrated [7]. In particular, strain-Si channel has already been 

implemented into the current leading edge manufacturing technology. 
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1.3 Quantum Mechanical Effects in MOS Devices 

 

As discussed in Section 1.2, the scaling of transistor gate length is accompanied 

by the decrease of the oxide thickness and the increase of the substrate doping 

concentration. However, the supply voltage is less aggressively scaled than the gate 

oxide thickness. As a result, the operating electric field in silicon substrate becomes 

higher and higher. The electric field in Si substrate at operation of a MOSFET is as 

high as 2 MV/cm at the present 130 nm technology, and it is expected to be 

continually increased in the future according to the ITRS 2001 [1]. In the presence of 

such a large electric field, significant carrier quantization is observable in operating 

transistor. Another concern is the threshold characteristic. The substrate doping in 

deep submicron transistor has been increased in order to achieve proper threshold 

voltage as well as to suppress the short channel effects. For a doping concentration of 

1018 cm-3 or above used in deep submicron CMOS devices, the electric field in the 

substrate exceeds 0.5 MV/cm at VT and quantum mechanical effects cannot be ignored 

even at threshold region.  

 
 
 
1.3.1 Carrier Quantization in MOS devices 
 
 

The carrier quantization in MOS structures has been extensively studied since 

1970’s [8]. As a typical example, Fig.1.1 illustrates the carrier quantization 

phenomenon in nMOSFET at inversion. Due to the existence of an electric field 

perpendicular to the Si surface, the energy band is bent strongly near the 

semiconductor-oxide interface, a potential well is thus formed by the oxide barrier 

and the eletrostatic potential in the semiconductor, as shown in Fig.1.1(a). Instead of 
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three dimensional (3-D) continuous states in classical physics, from a quantum 

mechanical picture, the electrons are confined in this potential well and form discrete 

subbands. From Fig.1.1(a), the lowest subband energy is lifted from the bottom of the 

Si conduction band to a higher energy level. Another important feature of carrier 

quantization is the different density distribution from the classical one. Figure 1.1(b) 

shows schematically the electron density distributions in the substrate under quantum 

mechanical (2-D) and classical (3-D) schemes. From quantum mechanical point of 

view, the carrier density must be zero at the boundary and the peak carrier density is 

beneath the dielectric/substrate interface, while it peaks near the surface in the 

classical case. The same analysis is also applied to accumulation layer or hole 

quantization. Due to the carrier quantization, the lowest subband lies above the 

bottom of the bulk band by a finite energy and the density of state (DOS) is also lower 

than the classical one. This will lead to a decrease in gate capacitance and an increase 

in threshold voltage.  

 
 
 
  

 
      

 

 

 

 

 
                        

 
 

 
 
 
 
 
 
 
 
 
 

                        
 

 
Fig.1.1: Schematic illustration of (a) energy subbands and (b) carrier density 
distribution in the inversion layer of a nMOSFET.   
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1.3.2. Capacitive Contribution due to Quantum Mechanical Effect 

 

 

 

  

 
 
 
Fig.1.2: Equivalent circuit of the MOS capacitor at the inversion condition. Cox is the 
oxide capacitance and Cinv the inversion layer capacitance.  
 

 

The displacement of the carrier distribution from the surface due to quantum 

mechanical effects, which suggests the finite thickness of the inversion/accumulation 

layer, will result in a decrease of the device total capacitance. Figure 1.2 is the 

equivalent circuit of the MOS structure at inversion. The inversion layer capacitance 

is in series with the oxide capacitance. In the presence of an inversion layer 

capacitance, the total capacitance of the MOS structure will be reduced. 

Unfortunately, the inversion layer capacitance is physically inherent to the MOS 

structure and cannot be eliminated by any methods. The degradation to the total 

capacitance from carrier quantization is equivalent to an increase of the effective 

oxide thickness, which is estimated to be 2-4 Å [9]. When the gate oxide is thinner, the 

difference between the total capacitance and the oxide capacitance becomes more 

significant [9, 10]. Therefore, the impact of inversion layer capacitance on the device 

characteristics becomes more important as MOSFET scales down. 

This capacitive reduction due to substrate quantization has effects of degrading 

the transconductance and the saturation driving current of MOSFETs [10]. The 

inversion layer capacitance inherent to MOS structure also limits the scaling of the 

Vg φs 

Cox Cinv 
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supply voltage [10]. From Fig.1.2, an additional voltage φs is dropped across the 

inversion layer, which increases as the electric field increases. This additional voltage 

drop in the inversion layer may significantly affect the operation of deep submicron 

devices and also make the scaling of supply voltage very difficult.  

 

 

1.3.3 Threshold Voltage Shift due to Quantum Mechanical Effect 

 

In the quantum mechanical treatment, carriers in the inversion layer are not only 

distributed away from the surface, but also occupy discrete subband energy levels. 

Since the lowest subband lies at a finite energy above the bottom of the bulk band, 

more band bending or a larger surface potential is required to populate the inversion 

layer than that in classical case. This has the effect of shifting the threshold voltage to 

a higher value, particularly for deep submicron MOSFETs with heavily doped 

substrates. This shift in threshold voltage can be as large as 0.1 V when the substrate 

doping concentration reaches 1018 cm-3 and it is crucial for the design of sub-0.1 µm 

devices with operating voltage of less than 1 V.   

The threshold voltage shift due to quantum mechanical effects depends on the 

substrate doping concentration and the gate oxide thickness. In the following, we will 

express its definition explicitly. The surface electric field Fs can be determined by the 

total charge Qt at the substrate: 

 

Si

deps

Si

t
s

QQQF
εε
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where Qs and Qdepl are the mobile and depletion charge, respectively. At threshold 

voltage, the contribution from the inversion charge is negligible because its value is 

much smaller than that of the depletion charge. Under the depletion approximation, 

surface potential φs and surface electric field Fs of the substrate with doping density 

Nsub have the following relation [3]: 

 

s
Si

sub
s

qN
F φ

εε 0

2
=                                                      (1.3) 

 

At threshold region, Maxwell-Boltzmann statistical function can be used and the 

classical inversion charge sheet density at surface potential φs is given by: 

 

∫
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where NC(V) is the effective density of states (DOS) of Si conduction (valence) band.  

The classical definition of threshold voltage is the gate voltage when surface 

potential B
CL
T φφ 2= , with φB=(kT/q)ln(Nsub/ni), where ni is the intrinsic carrier 

concentration [3]. The 2-D threshold voltage is determined by the gate voltage to 

populate the 2-D inversion layer to the same inversion charge sheet density as the 

classical one, i.e. )( CL
T

CL
sN φ  [11]. In quantum mechanical scheme, if the subband 

dispersion En and DOS Dn(E) are determined, the inversion charge sheet density is: 

 

∑∫=
n
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By equating )( QM
T

QM
sN φ  in Eq. (1.5) to )( CL

T
CLs
sN φ  in Eq. (1.4), we can obtain QM

Tφ , 

the surface potential at 2-D threshold voltage. Finally, the threshold voltage shift due 

to quantum mechanical effects can be expressed as [11]: 
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1.3.4. Models for Carrier Quantization in MOS Devices  

 

In literature, 2-D carriers have been studied extensively [8]. Many methods have 

been proposed to study the carrier quantization. In this section, we will give a brief 

review on these models to study the quantum mechanical effects in MOS devices. 

 

Self-Consistent Model 

So far, the most accurate model for carrier quantization in MOS devices is to 

solve the Poisson and effective mass SchrÖdinger equations self-consistently [12-14].  

At a semiconductor surface, the band bending can be characterized by an 

electrostatic potential φ(z). Based on the effective mass approximation, the wave 

function can be expressed as: yikxik
ii

yxezzyx +=Ψ )(),,( ξ , where )(ziξ  is the solution 

of the simplified 1-D SchrÖdinger equation: 
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where Ei is the subband energy and mz the effective mass perpendicular to the surface. 

The potential φ(z) is the solution of the Poisson equation: 
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dz
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∑−−=                                 (1.8) 

 

where ρdepl is the depletion charge density, εSi the dielectric constant of silicon and Ni 

the carrier concentration in the ith subband. For 2-D carriers, the DOS 2hπ
dii mg

 is 

independent of energy, where mdi and gi are the DOS effective mass of the bulk Si and 

the degenerate factor of the ith subband, respectively. Then Ni can be expressed as:  
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where the Ef and the Ei are the Fermi and  the ith subband energy, respectively. 

The self-consistent method starts from an initial estimate for the potential φ(z) 

and then solves Eqs. (1.7) and (1.8) successively until the output potential from Eq. 

(1.8) agrees with the input potential in Eq.(1.7) within a specified tolerant limit.  

 

Triangular Well Approximation Model 

 In self-consistent model, numerical method must be used to solve the coupled 

SchrÖdinger and Poisson equations. Generally it demands much computational effort. 

Triangular well approximation is one of the most widely used simplified methods for 

carrier quantization because it leads to an analytical formula [12, 13]. 
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 In this model, the potential φ(z) in substrate is approximated by a triangular 

well, φ(z) =Fs⋅z, in Eq.(1.7), and by an infinite barrier for z<0 in oxide. Under 

triangular well approximation, Eq.(1.7) can be solved analytically in form of Airy 

functions. The ith subband energy is explicitly expressed as: 
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where mz is the energy quantization effective mass of the bulk Si. 

The triangular well approximation has been proved to be reasonable in depletion 

or weak inversion region [13], it is thus effective in evaluating the carrier quantization 

at threshold [15-17]. Under traditional one-band effective mass approximation, as 

widely used for electrons, the derivation of threshold voltage shift can be done in a 

straightforward manner. From Eq.(1.10), the threshold voltage shift due to quantum 

effects can be calculated analytically [15-17]. An efficient capacitance-voltage (C-V) 

simulator taking carrier quantization into account in triangular well approximation has 

also been developed [18]. 

 

 

Band-Gap Widening Model 

 Another simple model is to treat quantum mechanical effects associated with the 

confinement of the carriers as an effective band-gap widening [19]. In this quasi-

classical method, the energy splitting can be incorporated into a widening of silicon 

band gap.  
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where ∆E is the energy gap between the bottom of the lowest subband and the bulk 

band. The effect of the displaced carrier distribution is incorporated through the third 

term in Eq.(1.11). Fs is the electric field perpendicular to the interface and ∆z is the 

increase in the carrier average distance to the interface compared to the classical one. 

Finally, the band-gap widening results effectively in a modification of the intrinsic 

carrier concentration ni. Combined with the triangular well approximation, it is 

concluded: 
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The empirical parameter β can be obtained by comparing to results of the 

rigorous self-consistent method, which has typical values of 5.92×10-8 eV and  

6.10×10-8 eV for electron and hole, respectively [19, 20]. This model can be easily 

implemented into the classical device simulators by the introduction of an empirical 

field dependent intrinsic carrier concentration. Electron and hole quantization have 

been investigated by such a method and empirical values of β at inversion and 

accumulation were documented in [19-21]. C-V and threshold voltage shift due to 

quantum mechanical effects have also been studied using this empirical model [19-22]. 
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1.4. Direct Tunneling through Ultrathin Gate Dielectrics 

 

 

1.4.1. Basics of Direct Tunneling 

 

  

 

 

 

 

 
 
Fig.1.3: Illustrations of direct (left) and Fowler-Nordheim (F-N) (right) tunneling in 
a nMOS structure. Vox is the oxide voltage drop and ∆EC the conduction band offset of 
SiO2/Si. 

 

 

The study of tunneling through a classically forbidden energy barrier has a very 

long history and its basic mechanism has been known for several decades [23]. The 

tunneling phenomenon in a MOS structure can be schematically shown in Fig.1.3. 

From quantum mechanical physics, there is still a probability for carrier to tunnel 

through a classically prohibited barrier. At high gate voltage, when qVox > ∆EC,  

electrons tunnel through a barrier of triangular shape into the conduction band of the 

oxide layer, which is the well-known Fowler-Nordheim (F-N) tunneling. Instead of 

tunneling into the conduction band of the SiO2 layer, when qVox < ∆EC, electrons can 

tunnel directly through the forbidden energy gap of the SiO2 layer, which is the so-

called “direct tunneling”. It is projected that the operating voltage will be reduced to 

qVox ∆EC qVox 
∆EC 
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1.0 V or less within this decade, and modern MOSFETs will thus operate in direct 

tunneling regime. Different from F-N tunneling, in direct tunneling through a 

trapezoidal barrier, the tunneling distance does not vary with the oxide field. As a 

result, direct tunneling current shows a distinct characteristic of much less dependence 

on oxide field than F-N tunneling. 

 The downsizing of MOSFETs is accomplished in a large part by decreasing the 

gate oxide thickness. As the thickness of the oxide layer decreases, the tunneling 

current increases approximately in an exponential manner. In deep submicron 

MOSFETs, the gate oxide has been scaled to below 2 nm. For such ultrathin oxide, a 

significant direct tunneling current is observed even at normal operating voltage. The 

most prominent impact of direct tunneling current is to greatly increase the power 

consumption of a chip. It thereby serves as one of the limiting factors for CMOS 

scaling. The direct tunneling current also adversely impacts the MOS device 

performance when oxide thickness is so thin that gate tunneling current is comparable 

to drain current [24]. Therefore, a study of direct tunneling through ultrathin gate oxide 

is valuable for the development of modern MOSFETs. 

 

 

 

1.4.2. A Review of the Models for Tunneling Current  

 

Since the invention of MOSFETs, tunneling through gate oxides in MOS 

structures has received much attention [25-38]. Many theoretical methods have been 

proposed to study the tunneling current. Here a brief review is given on the direct 

tunneling models. 
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Wentzel-Kramers-Brilliouin (WKB) Approximation 

The most simple and well-known method to study tunneling through a barrier is 

the Wentzel-Kramers-Brilliouin (WKB) approximation, where the transmission 

probability of the barrier can be expressed as [23]: 

 

dzz
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κ
                                          (1.14) 

 

where κ(z) is the particle imaginary wave number inside the barrier. The transmission 

probability can be obtained if the dispersion relationship within the barrier, κ(E), is 

known.    

 

Classical Tunneling Model  

Classical model on tunneling current treats the carriers available for tunneling as 

extended states (3-D) [27, 28]. In 3-D case, transmission probability is a well-defined 

concept and has a value equal to the ratio of transmission and incident flux. The 

tunneling current is determined directly by weighting the electron distribution 

function by the carrier transmission probability. If the tunneling occurs from electrode 

s to g,  
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where md is the density of states, T(E) the transmission probability, fs and fg the carrier 

occupations at electrode s and g. The total current is the integration over the energy 

Ez. 

∫
∞

=
Ec zzsgsg dEEJJ )(                                 (1.16) 

 

Full Quantum Mechanical Model 

 In classical model described in the previous section, the 2-D quantum effects 

are neglected and the transmission probability represents the ability of free carriers 

hitting the oxide barrier to cross the oxide potential barrier by tunneling. In real MOS 

structures, however, the carriers are 2-D in nature and occupy discrete subbands, as 

discussed in section 1.3. For confined carriers in a potential well, such a concept of 

transmission probability is no longer meaningful. The tunneling current from such 

quasi-bound states can only be evaluated from the life-time τ of these quasi-bound 

states [29-31]: 

 

)(/∑=
n

nnn ENJ τ                                     (1.17) 

 

where Nn is the carrier density of nth subband.  

On the other hand, due to tunneling current, the substrate region cannot be 

regarded as being uncoupled from the gate. Consequently, the gate, the oxide and the 

substrate should be treated together for predicting charge distribution in the channel 

region and the tunneling current flowing between the gate and the substrate. By 

solving the coupled schrÖdinger and Poisson equations self-consistently in a quantum 

box of gate/oxide/substrate, the discrete subband states are emerging as quasi-bound 
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states, showing as resonant peaks in the energy spectrum. The penetration of the 

subband wave function into the oxide region determines the width of the resonance 

peaks. The width of the bound states resonance is inversely proportional to the life-

time of the quasi-bound state, which provides the calculation of direct tunneling 

current in a full quantum mechanical scheme [29-31].   

 

Quasi-classical Quantum Model  

Although the life-time of quasi-bound states can be evaluated by the width of 

the quasi-bound states resonance, tremendous numerical effort is demanded. 

Particularly, this method is difficult or impossible for thick oxide and high-K 

materials because the width of the resonance is too small to be evaluated by any 

numerical method. Therefore, an efficient evaluation of the life-time of quasi-bound 

states is necessary and this has been done by a quasi-classical approach [32-35]. In this 

method, the lifetime of the nth quasi-bound state is approximately given by: 
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where En is the subband energy of the nth quasi-bound state, EC(z) is the edge of the 

Si conduction band, and zn is the classical turning point for the nth bound state. T(E) is 

the transmission probability of a particle through the barrier.  

A comparison of the quasi-classical form of Eq.(1.18) to the full quantum 

numerical calculation has been conducted [36, 37]. A good agreement justifies the 

applicability of this quasi-classical treatment to the modeling of direct tunneling 

current in MOS structures. 
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Microscopic Model 

All models above, either classical or quantum mechanical, are based on the 

effective mass approximation. The influence of the microscopic structure, 

composition of oxide and its interface with Si has not been considered. In their 

formalism, SiO2 is assumed to be composed of single ellipsoidal band. In addition, the 

ultra-thin oxide with only several atomic layers may deviate significantly from the 

bulk properties. Recently, M. Stadele et al [38] presented a microscopic model in a 

tight-binding scheme to calculate the band structure of ultra-thin oxide and tunneling 

current. The results provided a physical insight into the fundamental issues relevant to 

oxide tunneling.  Most importantly, it is demonstrated that the transmission through 

oxide can be qualitatively described within a bulk band structure scheme down to 1.0 

nm thickness. Tunneling is chiefly determined by the dispersion of a single imaginary 

band, which explains the applicability of the traditional effective mass method.  
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1.5. Alternative High Permittivity (High-K) Gate dielectrics  

 

 

1.5.1. Scaling limit of SiO2 

        

 In the past decades, the development of the CMOS technology heavily relies on 

the material properties of SiO2, a key element as the gate dielectric. The amorphous, 

thermally grown SiO2 offers several advantages compatible with CMOS processing. 

They include the high quality interface with Si, superior electrical isolation properties 

associated with the large energy gap, as wells as the desired reliability. However, the 

continued scaling of SiO2 in future CMOS technology meets several limits.  

Theoretical simulations have demonstrated that the full SiO2 band gap, which is 

crucial for the effective  isolation, can be maintained for ultra-thin SiO2 down to 7-8 

Å [39]. On the other hand, further scaling of the dielectric thickness, which is propelled 

by the rapid shrinking of the transistor feature size, is also limited by the inherent gate 

leakage current from direct tunneling [40-42]. The presence of the direct tunneling 

current limits the scaling of SiO2 by increasing the power consumption of the circuit. 

The defect generation and reliability issues may serve as another factor limiting the 

oxide thickness scaling [43].  

 In order to decrease the direct tunneling current while maintaining the total 

capacitance, alternative insulators with higher permittivity than SiO2 are necessary. In 

recent years, alternative dielectric materials have been of intense research interest. 

Several kinds of dielectric materials have been exploited as candidates for gate 

dielectrics, including Si3N4, Al2O3 as well as Group IVB metal oxides, such as HfO2 

and ZrO2.  
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1.5.2. High-K Gate Dielectrics 

 

As shown in Eq.(1.1), it can be seen that high drive current can be achieved by 

increasing the capacitance at inversion. In the case of the gate capacitance, 

considering a parallel plate capacitor, 

 

t
AK

C 0ε=                                                     (1.19) 

 

where K is the gate dielectric constant, ε0 is the permittivity of free space, A is the area 

of the capacitor, and t is the thickness of the dielectric. It can be seen, in order to 

maintain the same capacitance, the physical thickness of the dielectric can be larger if 

the used material has higher dielectric constant. In practical application, the 

expression of C can be rewritten in terms of an equivalent oxide thickness (EOT), tox, 

which is equivalent to the theoretical thickness of SiO2 required to achieve the same 

capacitance density.  Thus, if an alternative dielectric with the physical thickness tHigh-

k is used, the equivalent oxide thickness can be obtained from [4] 

 

kHigh
kHigh

ox
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K
K

t −
−

=                                             (1.20) 

 

where KHigh-K and KOX are the dielectric constants of alternative high-K and SiO2, 

respectively. The increased physical thickness will result in much lower direct 

tunneling current. High-K materials generally have lower band offset values than that 
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of SiO2, which gives rise to an increase of the tunneling current, however, the 

increased physical thickness is the dominant factor. 

  

The fundamental requirements for alternative gate dielectrics are listed here [4, 44]:  

(1) The dielectric should be thermodynamically stable on Si substrate with respect 

to formation of uncontrolled SiO2 or silicates at the Si/high-K interface during the 

deposition or post deposition annealing (PDA). 

(2) The dielectric should remain amorphous after device integration to prevent the 

deleterious effects of mass or electrical transport along grain boundaries. Therefore, 

immunity to crystallization upon high temperature annealing is pertinent.  

(3) To achieve low leakage current with minimum EOT, it should have sufficient 

high value of K and large band offsets with respect to the conduction and valence 

bands of Si and the gate. For good isolation, it should also have a large band gap. 

(4) Interface states, fixed charge and trapped charge densities in the film are 

required to be low enough to avoid the capacitance-voltage (C-V) hysteresis, flat-band 

shift, and the degradation of the device performance. 

(5) If poly-Si is used as the gate electrode, stability in contact with poly-Si is 

required. For p+ poly-Si pMOSFET, there should also be immunity to Boron 

penetration 

(6) Minimum degradation to channel mobility is important for sustaining the high 

device drive current. 

 

To date, several kinds of dielectric materials have been explored as candidates 

for gate dielectrics [4, 44]. Among them, Si3N4 and Al2O3 are the most widely studied 

because of their favourable properties, such as large band gap and superior thermal 
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stability in contact with silicon [4, 44].  Furthermore, they are also compatible with 

poly-Si gate processing. However, Si3N4 (K~7) and Al2O3 (K~10) have slightly 

higher K values than SiO2 and thus provide only a near-term solution for CMOS 

scaling [41, 42]. Al2O3 also suffers from high charge density in the film. For long term 

solution, other alternative candidates with higher K values than Si3N4 and Al2O3 are 

required.  

 In recent years, a substantial amount of investigation has gone into the group 

IVB metal oxides, specifically Hafnium and Zirconium oxides. Research results on 

HfO2 and ZrO2 systems obtained before 2002 have been summarized in [4, 44]. For 

gate dielectric application, they possess excellent material properties, i.e., high 

dielectric constant (> 20), large band gap (5-6 eV) with band offsets to Si of > 1.5 eV. 

Compared to ZrO2, HfO2 is more stable when it is in contact with Si, Moreover, HfO2 

is compatible with poly-Si gate processing, while degradation of chemical properties 

and transistor performance is reported for ZrO2 due to the interaction of the poly-Si 

gate electrode with the ZrO2. Hafnium oxide family thus emerges as the most 

promising high-K candidate and becomes the main focus of recent studies. 

MOS devices with HfO2 gate dielectric have been fabricated using PVD 

(reactive sputtering), chemical vapour deposition (CVD), atomic layer deposition 

(ALD) and excellent electrical properties have been obtained. The capability of EOT 

scaling to below 1 nm is also demonstrated for HfO2. The preliminary studies on the 

reliability of HfO2 also provide encouraging results. The extrapolated voltage from 

TDDB data is well above the operating voltage of 1V required in future CMOS 

application.   

Despite the above encouraging results, there are still a few unfavourable 

properties associated with HfO2, which impede the replacement of the conventional 
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SiO2. One drawback of HfO2 is the low crystallization temperature. HfO2 cannot 

remain amorphous when temperature is higher than about 400-500 oC [45, 46]. It is also 

a poor barrier against oxygen diffusion, which leads to the interface layer growth after 

PDA [46]. Because the interfacial layer, generally SiO2 rich silicate, has much lower K 

value than bulk HfO2, the presence of the interface layer growth makes it very 

difficult to scale the EOT of HfO2 to below 1 nm. Although some Si surface treatment 

techniques, such as NH3 passivation, have been proposed to minimize the interface 

layer growth, however, it degrades the channel carrier mobility so significantly that it 

cannot serve as a practical solution for CMOS application. 

To eliminate the undesirable properties of poor thermal stability for HfO2, it is 

possible to combine HfO2 with another thermal stable oxide to form pseudobinary 

alloys. The effect of adding SiO2 and Al2O3 to HfO2 is to produce an amorphous film 

that is more thermodynamically stable on Si. Recent works on Hafnium Silicates 

(HfSiO) and Aluminates (HfAlO) indicate that such alloy materials exhibit 

encouraging gate dielectric properties [45-47]. For HfAlO, the incorporation of Al has 

been verified to increase the crystallization temperature significantly. The film 

remains amorphous after 900 oC annealing for HfAlO with Al2O3 mole fraction of 

30% [45, 48]. The Al in HfAlO also has the effect to block the oxygen diffusion and in 

turn to reduce the interfacial layer growth remarkably [46]. The overall permittivity of 

the alloy dielectric is inevitably lower than that of the pure metal oxide, therefore a 

trade off has to be made between the improved thermal stability and degradation of 

permittivity [41].  

The above HfO2 system also has the problem of boron penetration in p+ poly-Si 

PMOS devices. In order to improve the immunity to Boron diffusion, effects of 

nitrogen incorporation have been investigated by various nitridation techniques. The 
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effective suppression of Boron diffusion after high temperatures processing has been 

demonstrated for HfON [48, 49], HfAlON [50] and HfSiON [51]. The nitrogen also blocks 

against oxygen diffusion during annealing and thus better control of the interface 

layer growth is obtained. Besides, HfON and HfSiON show increased crystallization 

temperature than HfO2 and HfSiO. Excellent structural stability of HfSiON against 

phase separation is also reported.  For HfAlO, the addition of nitrogen has an 

additional effect of reducing the C-V hysteresis and thus results in transconductance 

(Gm) improvement.  

 Although tremendous efforts have been made on the development of high-K 

dielectric materials, difficult challenges still remain for the implementation into 

current CMOS processing technology. One of them is the channel mobility 

degradation compared to SiO2, which may be associated with the high densities of 

fixed and trapped charges, the poor interface quality, or enhanced phonon scattering 

in MOSFETs built with high-K gate dielectrics [4]. Another difficulty is the integration 

with poly-Si gate processing. Using HfO2-based gate dielectrics, high threshold 

voltage is reported for p+ poly-Si gate pMOSFET. This phenomenon was attributed to 

the Fermi level pinning at the poly-Si/HfO2 interface, which is induced by the dipoles 

created by the interfacial Hf-Si bonds [52]. In the presence of Fermi level pinning, it is 

difficult to achieve appropriate threshold voltage for PMOS using p+ poly/HfO2 gate 

stack. Therefore, for practical applications, more efforts will be required in order to 

identify a suitable high-K material to replace SiO2. 

 The predominant requirement of a high-K dielectric is the low gate leakage 

current. The gate leakage is one of the important phenomena to characterize and 

assess the high-K films. However, the high defect density associated with the high-K 

film may make the carrier conduction through gate dielectric more complicated 
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because of the presence of trap assisted conduction, which is directly associated with 

the quality of the dielectric film. Schottky emission, Frenkel-Poole and trap-assisted 

tunneling have been identified as the conduction mechanism in high-K materials [45]. 

The leakage current magnitude associated with defects can be reduced by the 

optimization of the high-K deposition or post deposition annealing conditions. In high 

quality dielectric films, the observed gate leakage currents have been identified as due 

to direct tunneling, especially for ultrathin high-K film. The tunneling currents 

through high-K materials have been studied theoretically by a number of researchers, 

most of which were made on silicon nitride family [4].  The incorporation of stacked 

structures was also considered for potential gate stack materials [53]. From WKB 

scheme, the direct tunneling current, which is determined by the dielectric thickness, 

band offset and tunneling effective mass, can be regarded as an intrinsic characteristic 

associated with a dielectric material and represents the minimum achievable gate 

leakage current. In terms of gate leakage from direct tunneling, the assessment of the 

scalability of potential high-K materials in CMOS technology has been made [40-42].  
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1.6. Metal Gate Technology 

   

1.6.1. Polysilicon Gate Depletion Effect  

  

 The poly-Si depletion is an effect that exists when a MOS device is biased into 

depletion or inversion. Its origin can be illustrated from a n+ poly-Si nMOSFET, as 

shown in Fig.1.4. When a positive bias is applied between the gate and the substrate, a 

depletion layer with finite thickness is formed in the poly-Si gate at the poly-Si/oxide 

interface, which is indicated by the non-negligible band bending in the poly-Si gate.  

 

 

 

 

 

 

 

 

 

Fig.1.4: Illustration of poly-Si gate depletion effect in nMOSFET. Cp, Cox and Cinv 
represent the capacitance from the poly depletion layer, gate oxide and substrate 
inversion layer, respectively.   
 

 

 The poly-Si depletion has an effect of reducing the total capacitance. From an 

equivalent circuit diagram shown in Fig.1.4, the depletion capacitance CP due to the 

finite depletion layer in poly-Si gate is in series with the gate oxide capacitance. Thus 
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the total capacitance is reduced due to the contribution of the CP, which is equivalent 

to an increase of the effective oxide thickness. The existence of a voltage drop in the 

poly-Si gate means the effective voltage to invert the channel is smaller than that 

without poly-Si depletion. This will lead to a smaller inversion charge density and a 

resultant reduction of the drive current of the MOSFET. 

 Although CP remains constant at the same poly-Si doping and electric field, the 

poly-Si depletion effect becomes more significant as gate oxide gets thinner [9]. It can 

be qualitatively explained by the circuit diagram in Fig.1.4. The total capacitance is 

determined largely by the smaller capacitor. For thick oxide, the gate oxide 

capacitance is very small and makes Cp negligible. However, when the gate oxide is 

thinner, the gate capacitance is increased and the impact of Cp on the total 

capacitance becomes more noticeable. Typically, the increase of effective oxide 

thickness due to poly-Si depletion is 5-6 Å, which is significant compared to the 

dielectric EOT below 1 nm required in nanometer scale CMOS. Hence, its effect 

cannot be ignored and the degradation to MOSFET performance due to poly-Si 

depletion becomes a major issue. 

 

   

1.6.2. Metal Gate Technology 

 

The poly-Si gate depletion can be minimized by increasing the poly-Si doping 

density. However, it appears that it is very difficult to get electrically active doping 

densities significantly above 1020 cm-3, especially for p+ poly-Si doped with boron 

[54]. Other issues also include the high gate resistance and boron penetration. A metal 

gate material not only eliminates the gate depletion and greatly reduces the gate sheet 
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resistance, but also provides potential tunable gate work function. Several metal gate 

electrodes have been studied in literatures, such as Ta, Mo, TiN, TaN, TaSiN, and Ni 

or Co silicides [55-59].  

The major challenge for metal gate technology is to find metals with suitable 

work functions. To maintain the performance advantage, metal gates with work 

functions near the conduction band and valence band edges of Si are desired for the 

optimal design of bulk n- and p-MOSFETs, respectively [54]. One simple way is to use 

two metal gate electrodes with distinct work functions. However, such dual metal 

approach is difficult and costly. Its implementation also introduces process integration 

complexity. Therefore, a single metal alternative is desirable. One scheme is based on 

the molybdemum (Mo) metal gate. Its work function has been successfully modified 

over a wide range of 4.5-4.9 eV by implantation of nitrogen [58].  Another promising 

solution is the full silicidation of poly-Si gates [59]. The silicide work function can be 

engineered by the type of the dopants and the doping concentrations of poly-Si prior 

to silicidation. Yeo et al [60] also found that the metal work function depends on the 

underlying gate dielectric and the dependence is explained by Fermi level pinning due 

to interface dipoles. Therefore, the work function engineering should be performed in 

close conjunction with the selection of gate dielectrics.   

The integration of metal gate into a CMOS process also faces some difficulties. 

The metal gate is required to be thermally stable on ultra-thin gate dielectric without 

interface reaction and contamination of the gate dielectric beneath. Although gate-last 

processing utilizing damascene/replacement technique shows its potential in avoiding 

the high temperature budget, contamination and metal etching [61], it requires complex 

process.  
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1.7 Novel Device Architectures on SOI Technology  

  

 

 

 

 

 

Fig.1.5: Cross-section schematic of a MOSFET fabricated on an SOI Wafer. 

  

 

Bulk CMOS has been the mainstream VLSI technology for the past three 

decades. Below 100 nm gate length, however, the scaling of bulk CMOS is severely 

constrained by several fundamental issues [62]. As discussed in Section 1.2, the scaling 

principles for bulk-Si CMOS require a reduction in junction depth and an increase in 

doping level, which adversely affect the junction capacitance and carrier mobility. 

Doping fluctuation is also a problem, which induces a variation of the threshold 

voltage and will probably terminate the scaling of bulk CMOS. As an alternative, new 

device structure on silicon on insulator (SOI) technology provides a possible solution 

beyond the bulk CMOS [63]. 

In SOI technology, a buried oxide underneath the active area for device 

fabrication (Si Body) is used to provide the vertical isolation. The SOI devices can be 

categorized as partially-depleted (PD) and fully-depleted (FD) ones, which are 

defined according to the Si body thickness relative to the depth of the depletion region 

in the channel of the transistor. Here we focus on the FD-SOI, in which the depletion 

of the channel extends entirely through the body of the SOI structure, because the 
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operation of PD-SOI is quite similar to bulk one and only FD-SOI represents superior 

scalability. The benefits offered by SOI devices over bulk ones have been 

summarized in [63].  

         The scaling capability of CMOS can be analysed by 2-D effects inside the FET, 

which is done numerically using 2-D simulation tools [62], but the recent analytical 

analysis [64] reveals the primary dependencies on the silicon body thickness, tSi, and 

gate oxide thickness, tox. According to this theory, the scale length Λ1, which 

characterises the scalability, can be approximately solved as: 

 

ISioxoxSioxSioxoxSiSi ttttt 2222 )/)(1/)(/)(3/()/(1 −−+≅Λ εεεεπεε                             

(1.21) 

 

It is clear that the intrinsic length is dramatically reduced with ultrathin body. 

This indicates that ultra-thin body (UTB) SOI structure, even without any doping, is 

able to reduce or eliminate the SCEs, which limit the scaling of the bulk MOSFETs. 

Such a design without body doping is extremely beneficial in terms of high carrier 

mobility and reduced dopant fluctuation. Double-gate (DG) SOI MOSFETs have in 

principle two symmetric gates interconnected. The two gates exert ideal control on the 

potential and inversion charge, so that SCEs are highly reduced. They are now 

considered as the most superior candidates for device scaling. The DG MOSFETs can 

be planar, vertical or mixed modes. FinFET represents one promising structure in this 

category. As alternatives to DG FinFET [65], novel architectures based on Fin 

technology were also exploited in recent years, including the Omega FinFET [66] and 

Tri-Gates [67].  
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The process optimization and electrical characteristics of UTB or DG SOI 

MOSFETs have been investigated extensively [65-68]. The tunneling currents in UTB 

and DG devices were also studied [69].  

 

 

1.8. Objectives of this thesis 

 

The critical objectives of this thesis are to study the hole quantization and 

direct tunneling phenomena in CMOS devices.  

 

Hole Quantization 

As summarized in Section 1.3, electron quantization is widely investigated, 

which relies on the one-band effective mass method. Such an one-band EMA has also 

been used for hole quantization, in which a parabolic dispersion is assumed with the 

heavy and light hole effective masses determined from the dispersion of bulk Si [10, 11, 

13, 16]. In such a traditional one-band EMA, the subband in the potential well is solved 

for different valence bands separately and the mixing between valence bands was 

neglected. However, such a treatment of hole quantization is unphysical due to the 

degeneracy of the heavy and light hole bands.  

As discussed in Section 1.3.4, the numerical self-consistent model demands 

much computational effort. Among simplified models, the triangular well 

approximation is one of the most widely used because it leads to an analytical 

formula. One objective of this thesis is to study the hole quantization beyond the 

traditional one-band effective mass method. A multi-band EMA is used to capture the 
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essential physics of valence band mixing and additionally a triangular well 

approximation is used to avoid computational difficulties. 

 

Direct Tunneling 

 In literature, most previous studies in this area focus on electron tunneling. 

Relative less attention has been paid to the modeling of hole direct tunneling, which 

dominates the gate leakage in p+ poly-Si gate pMOSFETs under channel inversion 

condition. A reliable physical model of hole direct tunneling current first requires an 

accurate treatment of the hole quantization effect in Si substrate, which determines the 

hole densities at different energies. In this thesis, an appropriate model with valence 

band mixing effect being taken into account will be incorporated in the modeling of 

hole tunneling current.  

As shown in Section 1.4.2, a reliable dispersion form in the energy gap of the 

dielectric film is crucial in the WKB approximation. Generally a parabolic dispersion 

in the SiO2 energy gap is assumed. However, the applicability of such a parabolic 

approximation to hole quantization has never been verified because the energy of 

valence holes aligns at the middle of the SiO2 energy gap. In this thesis, the proper 

dispersion form to model the hole tunneling current will be explored.  In addition, the 

applicability and limitation of a parabolic approximation to hole dispersion in the 

SiO2 energy gap will also be addressed. 

It is of current interest to explore a high-K dielectric with low gate leakage 

current. Most of theoretical studies on tunneling currents through high-K materials 

were made on silicon nitride family [4].  Despite the considerable efforts on material 

and device studies, insufficient works have been done on the simulation of tunneling 

currents on other high-K materials, such as Al2O3 and HfO2. For HfO2, earlier 
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simulations did not perform a direct comparison with the experimental data over a 

wide range [54]. In addition, an interface layer is always formed during the high-K 

deposition and post deposition annealing, which increases the tunneling leakage. As a 

result, the interface layer effect must be considered in order to extract the accurate 

tunneling parameters of the high-K materials. In this thesis, tunneling current 

simulations will be performed on several high-K gate stacks of current interest.  

As discussed in Section 1.6, a metal gate is required in future technology in 

order to solve the poly depletion problem. In our knowledge, a systematic study on 

the tunneling characteristics in metal gated CMOS devices has never been reported. 

An advantage of the metal gate is the potential for work function adjustment. One of 

the objectives of this thesis is to investigate the effect of metal work function on the 

tunneling leakage and device scaling capability.  
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1.9. Major Achievements in this Thesis 

 

Two physical phenomena associated with deep submicron CMOS devices were 

studied in this thesis, they are carrier quantization and direct tunneling through 

ultrathin gate dielectrics. 

In Chapter 2, we studied the hole quantization in MOS devices in the six-band 

effective mass scheme. For hole quantization, the traditional one-band effective mass 

approximation is found to underestimate the subband density of states and resultantly 

overestimate the hole quantum mechanical effects. Therefore, valence band mixing 

must be taken into account in order to describe the hole quantum mechanical effect 

properly. Based on the numerical results from six-band calculations, an improved 

one-band effective mass approximation was proposed. In conjunction with an 

introduction of effective electric field, this simplified model demonstrates its 

application for simulating the hole quantization in MOS devices with computational 

efficiency and sufficient accuracy, indicating its potential application in routine 

device modeling. 

The studies on direct tunneling current include three topics. Chapter 3 

demonstrates an efficient physical model for direct tunneling current by the successful 

modeling of all terminal tunneling currents through ultrathin gate oxide in CMOS 

devices. For hole tunneling current, using a Freeman-Dahlke dispersion form, which 

takes the difference of conduction and valence band effective masses into account, the 

agreement with the experimental data is significantly improved over a wide range of 

oxide thickness and gate voltage. It is also found that the widely used parabolic 

dispersion remains applicable to hole tunneling only when oxide is thinner than 2 nm.  
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In Chapter 4, the modeling of tunneling currents through high-K gate stacks was 

performed using the physical model. Excellent agreements between simulation results 

and measured tunneling currents have been achieved over Si3N4, Al2O3 and HfO2. The 

model was also used to analyse the scalability of high-K dielectrics in term of gate 

leakage. It is found that, high-K material is expected to be first required in low power 

application.  HfO2
 or HfAlO is demonstrated to be a viable dielectric replacing SiO2 to 

the end of the roadmap. The interfacial layer between high-K and Si substrate is also 

included in the model, and the simulations show that this low-K interfacial layer 

affects significantly the gate leakage of the high-K gate stacks. Guidelines for 

interface layer engineering were also provided.  

Chapter 5 presents a systematic study of tunneling leakage current in metal gate 

MOSFETs. Physical model used for simulations was corroborated by experimental 

results from SiO2 and HfO2 gate dielectrics with TaN electrodes. Due to the 

elimination of poly-Si depletion, metal gate has the advantage of an appreciable gate 

leakage reduction over poly-Si gate, when at the same CET (capacitance equivalent 

oxide thickness at inversion). The use of mid-gap metal gate results in significant 

reduction of gate to source/drain extension tunneling in both n- and p-MOSFETs. As 

a result, metal double gate MOSFET has much lower off-state leakage than the bulk 

one, especially when high-K gate dielectric is used, which demonstrates the 

superiority of metal double gate structure in device scaling. 
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Chapter 2 

Hole Quantization in MOS Devices 

             

2.1. Introduction  

 

With the miniaturization of CMOS devices, the operation of MOSFETs is now 

entering a regime in which quantum mechanical effects become important and 

classical physics is no longer sufficient for describing accurately the device 

characteristics at either operating or threshold [70]. Thus, a good understanding of the 

quantum mechanical effects is crucial to the development of CMOS technology.  

In the past, the characteristics of 2-D carriers have been studied extensively [8]. 

Most of the previous studies were concentrated on electron quantization in MOS 

devices and they heavily relied on the one-band effective mass approximation (EMA) 

with parabolic dispersion [8-10, 12-15, 19]. In literature, similar method is also applied to 

study the hole quantizaiton and the heavy and light hole effective masses were 

determined from the dispersion of bulk Si [10, 11, 13, 16]. However, such a simplified one-

band effective mass approximation with a parabolic dispersion is inadequate for hole 

quantization due to the mixing between different valence bands in strong  electric 

field [71]. From the quantum mechanical point of view, when there is a strong electric 

field perpendicular to the (100) interface, the symmetry of the point group of the 

Hamiltonian is reduced from Oh to C2v and splitting as well as mixing between 

different bulk valence bands are expected [71]. A few works have been published on 

the hole quantization taking the complicated valence band structure of Si into 
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consideration [72-75].  They can be classified as the pseudopotential [72] and effective 

mass methods [73-75]. However, these multi-band models in self-consistent method are 

prohibitive to routine device simulation because of their computational difficulties. In 

this chapter, simplified models will be explored for hole quantization studies. 

 This chapter consists of three major parts. Section 2.2 is an introduction to the 

multi-band effective mass method in the treatment of valence bands of 

semiconductors. In Section 2.3, hole quantization and valence band mixing effect are 

investigated using a simple model in six-band effective mass approximation. As a 

further approximation, an improved one-band effective mass approximation for hole 

quantization is proposed in Section 2.4, which is efficient and easy to implement for 

conventional device simulation.   
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2.2. Multi-band Effective Mass Approximation Model 

 

In this section, we will introduce the multi-band effective mass model by 

describing its general formalism. 

From the effective mass theory, the Hamiltonian of the system can be obtained 

by the unperturbed bulk band Hamiltonian adding a diagonal electric potential energy 

term V [71]. In a biased MOS device fabricated on (100) silicon substrate, V is only a 

function of z, where z is perpendicular to the (100) plane. If J bulk bands are included, 

the multi-band effective mass equation can be generally written as J (i = 1,2, to J ) 

coupled equations: 

 

n
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jij
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ij EzqViD ξξδ =+∇−∑
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         i  = 1 to J                   (2.1) 

 

here, { jξ
n} is the envelope function of nth subband, which is a combination of J 

(j=1,2, to J) bulk bands and thus has J components. D(-i∇) is a J×J matrix of the bulk 

Hamiltonian and its form can be explicitly obtained by k⋅p method [71].  

 For valence bands of Si, there are three nearly degenerated bands: the heavy 

hole (hh), light hole (lh) and spin-orbit split-off (so) bands. The spin-orbit split-off 

energy of Si is 44 meV, which is much smaller than the Si band gap (1.12 eV). 

Therefore, so band cannot be neglected and a 6×6 Hamiltonian is necessary to include 

hh, lh, so holes and their respective spin degenerate bands. It is given by [73-76]: 
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The Luttinger parameters [77] are: γ1 = 4.22, γ2 = 0.39, γ3=1.44 [78].  ∆0 = 44 meV is the 

spin-orbit splitting energy of bulk Si [78].  

The electric potential energy qV(z) in the Si substrate can be obtained by solving 

Eq.(1.7) and the coupled Poisson equation (1.8) self-consistently [73-75].   
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2.3. A New Simple Model for Hole Quantization by Six-band 

Effective Mass Approximation 

 

 Due to the complexity of the valence band of silicon, the physical validity of 

traditional one-band effective mass approximation (EMA) is questionable. For an 

accurate treatment, multi-band EMA must be used. However, the present multi-band 

models [72-75] in self-consistent method are prohibitive to routine device simulation 

because of their tremendous computational efforts needed. In this section, we will 

present a new method to study the hole quantization. This method in the frame of 

multi-band effective mass approximation captures the essential physics of valence 

band mixing, while it has the advantage of computational efficiency due to the 

employment of the triangular well approximation. 

 

 

2.3.1. The Algorithm of the Model 

 

Φ

L0

 

 

 

 

 

Fig.2.1: The schematic of the multiple quantum wells with zigzag potential energy 
profile used in our model. Φ(z) = qFs⋅L.  
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In our model [79, 80], a triangular well approximation is applied to describe the 

potential in the substrate. This approximation has been widely used in studying 

electron quantization as discussed in Section 1.3.4. In order to simplify the 

mathematical calculation, the single triangular well approximation is further replaced 

by a periodic multiple triangular well, i.e. a zigzag potential as schematically 

illustrated in Fig.2.1. Then the external electric potential energy qV(z) in Eq.(2.2) can 

be expressed as:  

 

......2,1,0,','0,')( =+=<<⋅= nnLzzLzzqFzV s           (2.4) 

 

where Fs is the surface electric field in the Si substrate, q is the charge of the hole, and 

L is the periodic length of the zigzag potential. The advantage of using a zigzag 

potential lies on the fact that the Hamiltonian can be reduced to a superlattice 

Hamiltonian with period L, so that the well-known technique and criterion already 

developed in the superlattice theory can be used [74]. The wave function is expanded in 

plane waves and the number of plane waves, M, can be greatly reduced because only 

those plane waves with wave vector kz+2πm/L, where m is integer, are used [76].  

Following [76], we expand the nth subband envelope function kj
n

,ξ  at wave vector k 

= (kx, ky, kz) into plane waves: 
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Combining equations (2.4) and (2.5), the matrix elements of qV(z) in the plane wave 

representation are: 
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The legitimacy of using a zigzag potential in replacing a single triangular well one is 

supported by superlattice theory [71]. When L is large enough, the coupling of lowest 

few energy states between the neighbouring wells disappears and each well in the 

zigzag potential can be considered as an isolated single triangular well. The coupling 

between neighbouring wells can be tested by kz dispersion of the subband [71]. We will 

justify this point by using the one-band EMA and the zigzag potential in the electron 

quantization case in Section 2.3.2.   

          To assess the band mixing effect quantitatively, the quantum mechanical 

projection (or probability) functions are introduced: 
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and the following sum role holds, 
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n
jP (k) represents the component of the jth bulk  band  in  the nth subband wave 

function )(znξ . 
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 If the subband dispersion and density of states (DOS) are known, the 

characteristics of MOS system at inversion can be determined by the following self-

consistency of parameters [81]: the surface electric field Fs, the inversion charge sheet 

density Ns, depletion charge sheet density Ndepl, the surface potential φs, the band 

bending due to depletion charge φdepl.   
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Here, the inversion charge distribution width or centroid nz is defined as: 

 

∫ ∗= dzzzzz nnn )()( φφ                                               (2.10) 

 

Nn is the charge sheet density of nth subband, it is related to the subband DOS Dn(E): 

 

∫
∞

=
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here we use Fermi-Dirac distribution function. By iteration method to achieve the 

self-consistency of Eq.(2.9), the electrostatics of MOS structure can be quickly 

determined. Additionally, the carrier occupation factor of nth subband is defined by: 
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2.3.2. Application to Electron Quantization  
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Fig.2.2: The calculated (a) subband energies Eij and (b) electron centroid zij in 
electron inversion layer of nMOSFET. The dotted curves are from the method of 
infinite triangular well. Results of the model using a periodic multiple quantum wells 
structure are show as solid lines. For subband index (ij), i = 1, 2 is the longitudinal 
and transverse valleys, respectively, while j represents the ladder number.  
  

 

First, we will apply our model to electron inversion layer. Because the electrons 

can be well described by one-band EMA with parabolic dispersion, comparison with 

the rigorous analytical results will be used to justify the approximation of our zigzag 

potential. By comparing with the experiments, an insight of the triangular well 

approximation can also be further addressed. 
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In Fig.2.2, the dotted curves show the subband energies Eij and the electron 

charge centroid zij for nMOS device at inversion as a function of surface electric field 

Fs determined by the method of [81]. In the calculations, we assume a uniform 

channel doping of 5×1017 cm-3, typically used in state-of-art CMOS devices. i = 1, 2 

represents the longitudinal (mz = 0.916 m0) and transverse (mz = 0.19 m0) valleys, 

respectively. The energy of the subband minimum is given by Eq.(1.10) and the 

carrier centroid is: 

 

s

ij
ij qF

E
z

3
2

=                                                         (2.13) 

 

The solid lines are the numerical results by our model with a zigzag potential. 

An overall agreement is observed from depletion to strong inversion. The energy 

dispersion along kz is less than 0.5 meV, indicating negligible coupling between 

neighbouring wells. Theoretically our multiple quantum wells model will converge to 

the above infinite triangular well approximation if L and M are large enough. 

However, a trade-off must be made between the computing accuracy and efficiency. 

In the following calculations of hole quantization, we will first compare the results of 

our model with Eq.(1.10) in one-band EMA. The criterion to choose L and M for 

convergence is that the errors in the subband energies are all within 5%. In our studied 

range of surface electric field, L is typically 50 –100 nm in order to achieve a good 

accuracy.  

In Fig.2.3, we show the calculated inversion layer capacitance and threshold 

voltage shifts in nMOS devices. The experimental data are from [10] and [82], 

respectively. Good agreements between the simulations and experimental data are 
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achieved. It suggests that, comparing to the rigorous self-consistent method, the 

simple triangular well approximation maintains a satisfactory accuracy in evaluating 

the electrical characteristics of MOS structures.   
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Fig.2.3: The comparison between the calculated and experimental (a) capacitance of 
electron inversion layer Cinv versus surface charge density Ns and (b) threshold 
voltage shift ∆VT as a function of channel doping concentration NA. The experimental 
data are from [10] and [82], respectively. 

 

 

 

2.3.3. Application to Hole Quantization 

  

In this section, our proposed model is used to study hole quantization in 

pMOSFET at inversion condition [79, 80]. For valence bands, the multi-band effective 

mass method depicted in Section 2.2 is used. 

 

(1). Valence Band Mixing  

Figure 2.4 shows the in-plane dispersions of the six lowest subbands at surface 

electric fields Fs = 0.5 MV/cm and 2.0 MV/cm, respectively. The subband dispersions 
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are found to be anisotropic, far from parabolic, and electric field dependent. The 

degeneracy of the hh and lh bands at Γ point (k=0) is lifted by the electric field and 

their separation depends on the electric field. In addition, there are reversed camel 

back structures (two reversed peaks) [83] with negative hole effective mass near k = 0 

for n = 2, 3, 5 and 6 subbands.  
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Fig.2.4: The in-plane dispersion of the first six subbands calculated by our model in 
hole inversion layer. The surface electric field is (a) Fs = 0.5 MV/cm and (b) Fs = 2 
MV/cm. Both the dispersions along (100) and (110) in the kz = 0 plane are shown. 
The dashed lines are dispersions of corresponding spin degenerate holes and the split 
is induced by external field. 

 

 

Figure 2.5 shows the projection functions Pn
hh, Pn

lh and Pn
so of the first three 

subbands (n=1, 2, 3).  At k = 0, the n=1 subband is purely hh and n = 2 and 3 

subbands are mainly lh and so with some band mixing between lh and so bands. As 

the electric field is increased, the magnitude of band mixing also increases. When k ≠ 

0, there are strong band mixing in all subbands. 
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Fig.2.5: The variation of the heavy hole (hh), light hole (lh) and spin orbit split-off 
(so) hole components in the three lowest subbands (n=1, 2, 3) versus in-plane wave 
vector k. The surface electric field is (a) Fs = 0.5 MV/cm and (b) Fs = 2 MV/cm. Pn

j is 
the projection of the nth (n=1, 2, 3) subband wave function to the j (hh, lh or so) 
component defined by (2.7).  
 

 

(2). Density of States (DOS) 

Figure 2.6 illustrates the simulated results of DOS's of the three lowest 

subbands. The DOS profiles deviate from the step-like function as predicted by the 

traditional one-band EMA. In particular, near the band minimum of the n = 3 

subband, there are two peaks.  They are caused by the camel back structure [83] at the 

band minimum as observed in Fig.2.4. The shapes of DOS's are also electric field 

dependent. The DOS's obtained from traditional one-band EMA are also shown in 

Fig.2.6, which overall underestimates the DOS's.  
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Fig.2.6: The obtained density of states of the three lowest subbands in hole inversion 
layer. The relative energy ∆E is the subband energy referenced from the subband 
edge. The solid and dashed curves are for surface electric field Fs = 0.5 and 2 MV/cm 
respectively. The solid lines with open circles are the results from the traditional one-
band effective mass approximation. 
 

 

(3). Subband Energies and Carrier Occupations  

From the above hole quantization model along with the parametric self-

consistency method [81], the subband energy levels of the first six subbands and the 

occupation factors on the three lowest subbands are shown in Fig.2.7 by solid lines. 

The corresponding data calculated by traditional one-band EMA are also shown with 

dashed lines.  In Fig.2.7 (a), the energies of n = 1 subband obtained by two methods 

are in good agreement. This is expected because this subband is purely hh at the band 

minimum as shown in Fig.2.5. However, the results are quite different for n=2 or n=3 

subbands due to the band mixing. Furthermore, from traditional one band EMA, there 

is a crossing between the lh and so subbands at about 1.5 MV/cm and the n = 2 

subband will change from lh to so hole characteristic at electric field higher than 1.5 

MV/cm. However, our calculation does not show such a crossing up to 3 MV/cm. 
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Fig.2.7: The calculated (a) subband energies of the first six subbands, and (b) 
occupation factors of the three lowest subbands for hole inversion layer in pMOS 
device at various surface electric field. The substrate doping is 5×1017 cm-3. The 
dashed curves are from the traditional one band effective mass approximation. The 
results of our six band model are shown as solid lines. Fermi energy is also added in 
(a) for reference (solid circles for our model, open circles for traditional one band 
effective mass approximation). 
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Fig.2.8: The calculated surface potential (band bending) of pMOS structure at 
inversion. The substrate doping is 5×1017 cm-3. The dashed curve is from the 
traditional one band effective mass approximation. The results of our six band model 
are shown as solid line. The solid line with open circles is that from classical 
calculation with Fermi-Dirac statistics. 
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For the occupation factors OFn in Fig.2.7 (b), our calculation shows an overall 

lower occupation on the n=1 subband and higher occupation on the n = 2 subband, 

compared to the traditional one-band EMA calculation. Both calculations predict that 

more than 95% of the carriers are distributed within the three lowest subbands. For 

subbands of higher order, the accuracy of the energy levels determined in triangular 

potential approximation compared to the self-consistent method is reduced, because 

the actual potential profile deviates from being linear as the energy increases. 

Fortunately, from Fig.2.7 (b), more than 95% of holes occupy the lowest three 

subbands and the inaccuracy of higher energy levels does not lead to significant error 

for prediction of device parameters, especially for state-of-art CMOS devices with 

high substrate doping concentrations.  

The surface potential (band bending) of the pMOSFET is shown in Fig.2.8. Due 

to the QM effects, the surface potential is not pinned as in the classical case. It is 

obvious that our calculation (solid lines) leads to lower band bending than the 

traditional one-band EMA (dashed lines). It is because the traditional one band EMA 

underestimates the subband DOS as indicated in Fig.2.6. In order to achieve the same 

inversion charge density, the band needs to bend more in traditional one-band EMA 

and it leads to an overestimation of the band bending.  

 

 

(4). Hole Inversion Capacitance and Threshold Voltage Shift due to Hole 

Quantization in PMOS Devices 

Now we simulate the threshold voltage shifts and inversion layer capacitance 

due to quantum effects. The results are shown in Figs.2.9-2.11. Figure 2.9 shows that 

the simulated threshold voltage shift conducted by our method is in agreement with 
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the full-band self-consistent model [72]. Figures 2.10 (a) and (b) show the comparisons 

between the experimental data and our simulations. Our model achieves a good 

agreement with the experiments. It has been found that the hole inversion layer 

capacitance is not very sensitive to the complicated valence band structure [10]. We 

actually found no considerable difference between our model and the traditional one-

band EMA.  However, the situation is different for the threshold voltage shift (∆VT). 

∆VT is due to the lower DOS of 2-D carriers than the 3-D case and this parameter is 

expected to be more sensitive to the subband DOS. A significant discrepancy between 

the ∆VT calculated by our model and the traditional one-band EMA is found, as shown 

in Fig.2.10. The traditional one-band EMA gives larger ∆VT values than those by our 

model due to its underestimation of the subband DOS. Our model shows a better 

overall agreement with the experiments. 
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Fig.2.9: The threshold voltage shifts due to hole quantum effects, ∆VT, at different 
channel doping concentrations ND. Solid and lines are results from our model and the 
multi-band pseudopotential method [72] respectively, with oxide thickness 14 nm.  
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Fig.2.10: The threshold voltage shifts due to hole quantum effects, ∆VT, at different 
channel doping concentrations ND. (a) and (b) are comparisons between our model 
(solid lines), the traditional one-band EMA (dashed lines), and the experimental data 
[82](solid circles) for oxide thickness 23 and 15 nm, respectively.  
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Fig.2.11: The comparison of calculated and experimental capacitance of hole 
inversion layer. The solid line is our model simulation while the solid circles are 
experimental data from [10].  
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2.4. Improved One-band Effective Mass Approximation 

         

As discussed above, the DOS profiles of hole subbands deviate from those of 

traditional one-band EMA. Its shape is not regular and also depends on the magnitude 

of the surface electric field. Therefore, the hole subband structure cannot be described 

by a simple analytical model for accurate characterization. However, in some cases, 

we may not need to know the physical details of the hole subband structure, but only 

some macroscopic electrical parameters are of interest. In these cases, an 

improvement to the traditional one-band EMA assuming a parabolic dispersion is still 

valuable. In such a treatment, the analytical formulas in one-band EMA are still valid, 

the effective mass values are not derived from the bulk Si, but from the numerical 

results of the six-band EMA in an empirical way [79]. 

 

 

2.4.1. Empirical Effective Masses  

 

From the numerical results of the six-band EMA, empirical effective masses can 

be derived for the improved one-band EMA. The results are plotted in Fig.2.12. 

Attention is first paid to empirical energy quantization effective mass mz, as shown in 

Fig.2.12 (a). They are determined inversely by Eq.(1.10) from the energies of the 

subband minima obtained by six-band EMA. For n=1, the empirical energy 

quantization effective mass is 0.29 m0 and is independent of Fs because of the purity 

of heavy hole. For n=2 and n=3 subbands, the empirical effective masses display an 

electric field dependent behaviour due to the field dependence of the band mixing. 

The empirical effective mass value of n=2 subband increases as Fs increases. Near k = 
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0, this band is mainly light hole (bulk mass 0.20 m0). As electric field increases, more 

and more split-off hole (bulk mass 0.29 m0) is mixed into this band, manifesting itself 

as an increase of the empirical effective mass. On the other hand, the decrease of the 

empirical effective mass of n = 3 subband with increasing electric field corresponds to 

the increased mixing of light hole into this primarily split-off hole subband near k = 0. 

From the inversion charge density occupying the respective subband calculated by 

six-band EMA, the obtained empirical DOS effective masses determined from 

Eq.(1.9) are shown in Fig.2.12 (b).  
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Fig.2.12: The electric field Fs dependence of (a) empirical energy quantization 
effective mass mz and (b) empirical DOS effective mass md, determined from the 
numerical results of six-band EMA calculations. 
 

 

Although some of these empirical effective mass values in Fig.2.12 are electric 

field dependent, this dependence can be neglected in the first order approximation. 

The reason is that at room temperature most of inversion holes are occupied on the 

n=1 subband (over 70%) as shown in Fig.2.7 (b). From Fig.2.12, both the energy 

quantization and DOS masses of n = 1 subband have weak electric field dependencies. 
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This leads us to propose a set of constant empirical effective mass values for an 

improved one-band EMA. They are found to be 0.29/1.16, 0.23/0.70, 0.23/0.60 m0 for 

the first three subbands. As shown in Fig.2.13, such an improved one-band EMA can 

achieve consistent results on the subband energy levels, carrier occupations and 

surface potentials in comparison with the numerical results of six-band effective mass 

approximation. 
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Fig.2.13: Comparisons of (a) subband energies, (b) occupation factors and (c) 
surface potentials in the hole inversion layer calculated by the improved one-band 
effective mass approximation (solid lines) and the six-band effective mass theory 
(solid circles). The substrate doping concentration in the calculation is 5 × 1017 cm-3.  

 

 

 

2.4.2. Effective Field Triangular Well Approximation 

 

Triangular well approximation is often used because it yields an analytic solution 

to the Schrodinger equation. But it has been shown that triangular well approximation 

is invalid for strong inversion if the surface electric field is used as the electric field in 
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triangular well [13]. In order to extend the triangular well approximation into strong 

inversion, instead of the surface electric field, an effective field is introduced. This 

electric field can be regarded as the mean field in the inversion layer. It can be 

expressed as  

 

    ( ) sidsEffs NNqFF εη +==                                  (2.14) 

 

where Ns and Nd are inversion carrier sheet density and depletion charge sheet density 

respectively. η is a weighting coefficient to be properly chosen. In the universal 

electron mobility of inversion layer, η is taken to be 0.5 [3]. However, in the 

calculation of carrier sheet density, η is calculated to be 0.75 for inversion (electron) 

and 0.8 for accumulation layer (hole) in nMOS using one-band EMA [84]. With the 

subband energy levels, inversion and depletion charge densities determined from the 

six-band self-consistent model [75], we are able to obtain the value of η for hole 

quantization.  

 Based on the numerical data, η is calculated to be ~ 0.78 and 0.75 for n=1 and 2 

hole subbands respectively at substrate doping of 1017 and 1018 cm-3 as shown in 

Fig.2.14. Apparently, η for n=3 hole subband is sensitive to surface field. Its strong 

dependency on electric field is a characteristic of poor triangular well fitting for 

higher energy levels. Lower energy levels are able to achieve a relatively constant η. 

The weighting coefficient η is also weakly dependent of the substrate doping over a 

range of electric fields as included in Fig.2.14.   
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Fig. 2.14:  Weighting coefficient η as a function of surface electric field for n=1,2,3 
hole subbands respectively for different doping concentration. 

 

 

 

Using the parameterized self-consistency method for the triangular model [81], 

we are able to obtain the MOS electrostatics efficiently. Using the constant effective 

masses in previous section, assuming a weighting coefficient of 0.77 (an average of 

n=1, and n=2), good fit for the subband energies, occupation factor and surface 

potential can be obtained as shown in Fig. 2.15. However, for triangular well model, 

the hole centroid falls short of the full band result at strong inversion although the 

results are consistent in depletion or weak inversion. This indicates that the triangular 

well approximation fails to describe the hole distribution in the inversion layer. 

Generally the triangular well approximation gives a smaller hole centroid compared to 

the full band self-consistent method. This point is similar to what found in electron 

quantization in nMOS [84]. 
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Fig. 2.15.  Comparisons of the results from improved one-band triangular 
approximation using an effective field (η=0.77) and six-band self-consistent EMA. 
They are (a) subband energies, (b) occupation factor and (c) surface potential versus 
surface electric field, and (d) the hole carrier centroid at different surface potential 
Vs. 
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2.4.3. Hole Quantization by Improved One-band Effective Mass 

Method 

 

As discussed before, the capacitance-voltage characteristics of MOS devices are 

not sensitive to the actual values of effective mass. Therefore it is natural that our 

improved one band EMA model can be applied to model the capacitance-voltage 

curves of MOS devices. In Fig.2.16, a comparison of the calculated threshold voltage 

shift by six-band and improved one-band EMAs is given. The data justified the 

accuracy of the improved one-band EMA in modeling the threshold voltage shift due 

to hole quantization in pMOSFETs. 
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Fig.2.16. Threshold voltage shifts ∆VT at various substrate doping ND . The numerical 
results by six-band effective mass model are shown as solid circles while solid line is 
those by improved one-band effective mass method using our new constant empirical 
effective masses.    
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2.5. Conclusion 

         

In this chapter, we presented a study of hole quantization in MOS devices based 

on the six-band effective mass theory and a zigzag potential well approximation. It is 

demonstrated that valence band mixing must be taken into account in order to 

describe the hole quantum mechanical effects properly. Due to the band mixing, all 

subband dispersions are anisotropic, far from parabolic, and electric field dependent. 

Correspondingly, the density of state profiles deviate substantially from the step-like 

functions. The traditional one-band effective mass approximation, which used the 

bulk effective masses, underestimates the subband density of states and therefore 

overestimates the hole quantum mechanical effects. Based on the numerical results of 

the six band effective mass approximation, an improved one-band effective mass 

approximation was also proposed, in which the hole quantization mass and DOS mass 

values were obtained from the numerical results from six-band calculations. Using 

this model, the calculated hole inversion capacitance and threshold voltage shifts due 

to hoe quantization are both in good agreement with the experiments. By introducing 

an effective electric field, in which the weighting coefficient was determined by 

comparing to the numerical results from rigorous six-band model, the triangular well 

approximation was successfully extended to strong inversion region. Owing to its 

computational efficiency and sufficient accuracy, its potential application in device 

modeling is demonstrated. 
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Chapter 3 

Direct Tunneling Currents through Ultrathin Gate 

Oxides in CMOS Devices 

 

 

3.1. Introduction 

 

With the reduced supply voltage design for deep submicron CMOS devices, the 

transistor is operating in direct tunneling regime. In current manufacturing 

technology, the gate oxide thickness has been scaled to below 2 nm, which leads to a 

dramatic increase of direct tunneling current. The most obvious effect of direct 

tunneling is the increase of gate leakage current, the power dissipation is thus 

increased at both operating and stand-by modes. With the increased integrity density 

in the chips, the power dissipation problem becomes so severe that it limits the further 

scaling of gate oxide thickness, particularly for low power applications [85]. Therefore, 

it is crucial to thoroughly understand and accurately model the various tunneling 

components in CMOS devices to the design of device structure with optimized 

leakage current.   

On the other hand, for thinner oxide, the traditional capacitance-voltage (C-V) 

measurement is difficult to perform due to the large direct tunneling current [86]. As an 

alternative, the tunneling current might be exploited to extract device physical 

parameters due to its sensitivity to device structures, such as oxide thickness, doping 

concentration, interface states, oxide charges, etc. Finally, the reliability 
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characterization of thin oxide involves aging with electrical stress. For thin oxide, 

more detailed description of the tunneling mechanism is also necessary to understand 

the effects of the different stressing conditions on the oxide reliability.  

In this chapter, the characterization and modeling of direct tunneling current 

through ultrathin gate oxide in CMOS devices will be presented. First, Section 3.2 is 

an introduction to the conduction mechanism of dual poly-Si gate CMOS device with 

thin gate oxide, followed by a brief summary of the physical model used in this thesis 

to calculate the direct tunneling current in Section 3.3. After a description of the 

experiments and C-V results in Section 3.4, Section 3.5 emphasizes on the hole 

tunneling current in pMOSFETs, the effect of the non-parabolic hole dispersion in 

oxide energy gap on hole tunneling will be identified. Finally, the modeling of all 

terminal tunneling components in CMOS devices will be conducted in Section 3.6.  
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3.2. Conduction Mechanism in Dual Poly-Si Gate CMOS 

Transistors 

 

Dual poly-Si gate process, in which p+ poly-Si gate is used for pMOSFET and 

n+ poly-Si gate for nMOSFET, is the dominant processing technology in current IC 

manufacturing. A complete understanding of the carrier transport processes in CMOS 

devices is not only important for the current-voltage (I-V) characteristics of 

MOSFETs at operation [87, 88], but also helpful for studying the mechanism of thin 

oxide reliability [89-91]. The carrier transport mechanisms in dual poly-Si gate CMOS 

transistors at both bias polarities will be summarized in this section.  

 

 

3.2.1. Carrier Separation Measurement 
 

 

 

 

 

 

 

 

 

 

Fig.3.1: The cross-sectional schematic of the carrier separation measurement. 
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The carrier separation measurement is the most widely used experimental 

method in the study of the carrier conduction mechanism in CMOS transistors [87-89]. 

The experimental set-up of the carrier separation measurement is illustrated in Fig.3.1. 

During the measurement, the source and drain of the transistor were tied together, 

labeled as S/D terminal, which is grounded together with the substrate terminal. The 

carrier separation experiments were conducted to measure the gate current IG, the sum 

of the source and drain currents IS/D, and the substrate current ISUB separately when a 

voltage VG was applied and swept onto the gate terminal. Without the presence of 

other leakage channels, the summation of all terminal currents, IG + IS/D + ISUB = 0.  In 

the subsequent discussions, the currents flowing into (out of) the device are taken as 

positive (negative) signs. 

The interpretation of carrier separation measurement at inversion condition is 

easy and direct. When MOSFET is biased in inversion mode, IS/D measures the 

current of minority carriers while ISUB measures the current of majority carriers. In 

accumulation condition, MOSFET can be considered as a quasi-bipolar transistor. The 

S/D acts as the collector and IS/D measures the minority current in the base. The 

substrate acts as the base and ISUB measures the majority current in the base. In the 

absence of electron-hole recombination, when applying negative (positive) gate 

voltage VG to the nMOSFET (pMOSFET), the IS/D and ISUB are the electron (hole) and 

hole (electron) currents, respectively. However, in the presence of electron-hole 

recombination, the situation is more complicated. When the diffusion length of 

minority carrier is comparable in dimension to its current path in the substrate, 

recombination of minority carriers with majority carriers in the substrate may occur, 

and consequently it may transfer to majority carrier current before reaching the S/D 

electrodes, resulting in smaller S/D current. In our experiments, only fresh devices 
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were used in order to avoid the reduction of minority carrier diffusion length arising 

from recombination via high density of recombination centres (interface traps, 

defects, etc), and the measurements were performed on short channel devices to 

reduce the minority carrier transport path.  

 

 

3.2.2. Conduction Mechanism in n+ Poly-Si Gate NMOSFETs 
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Fig.3.2: Current-voltage (I-V) characteristics and band diagram of a n+ poly-Si gate 
nMOSFET at inversion. The transistor gate length and width are 20 and 0.5 µm, 
respectively, and the oxide thickness is ~ 2 nm.  

 

 

Attention is first paid to inversion mode as shown in Fig.3.2. Here the IS?D 

(electron current) dominates the gate leakage, while the magnitude of ISUB is lower 

than IS/D in 1-2 orders of magnitude. From the band diagram, the gate current is 

originated by the electron tunneling from the inversion layer in the substrate to the 

gate. The electron density is high at substrate surface, and steady current is 
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established by supplying electrons in the inversion layer from the S/D. The substrate 

current is interpreted as due to electron tunneling from the substrate valence band. 

When an electron is tunneled out, a hole is left behind, which diffuses into the 

substrate terminal and forms the observed ISUB. The valence band electron tunneling 

occurs when VG > ~1V (flat-band voltage) and its much smaller magnitude is due to 

its higher tunneling barrier than that of the conduction band electron by a magnitude 

of the Si energy gap (1.12 eV). 
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Fig.3.3: Current-Voltage (I-V) characteristics and band diagram of a n+ poly-Si gate 
nMOSFET at accumulation. The transistor gate length and width are 20 and 0.5 µm, 
respectively, and the oxide thickness is ~ 2 nm.  
 
 

 

In the case of accumulation, Fig.3.3 shows that the gate current IG is mainly 

composed of the IS/D. From the band diagram, the dominant tunneling channel is the 

electron tunneling from the accumulated n+ poly-Si gate to the substrate. The 

electrons, as minority carriers in the p-type substrate of nMOSFET, are collected by 

the S/D and a negative IS/D is thus established. The tunneling mechanism for hole 
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current in substrate is the hole tunneling from accumulated p-type substrate to the 

gate, which originates a positive ISUB in Fig.3.3. For the substrate current, a much 

smaller magnitude and a change of sign near 4 V are observed. This phenomenon can 

be illustrated by the band diagram in Fig.3.3. At high gate voltage, impact ionization, 

induced by the high energetic electrons injected from the gate, happens and electron-

hole pairs are resultantly generated in the substrate. While the generated electrons are 

collected by the S/D, the holes diffuse to the substrate terminal, forming a negative 

hole current. When the magnitude of the impact-ionization induced hole current 

(negative) is larger than the hole tunneling current (positive) as the gate bias 

increases, a change of sign in the ISUB occurs.  

 

 

3.2.3. Conduction Mechanism in p+ Poly-Si Gate PMOSFETs 

 

Figure 3.4 plots the measurements on pMOSFET at inversion, which shows I-V 

characteristics quite different from nMOSFET. The IS/D (hole current) dominates the 

gate leakage only at about -2-0 V while the ISUB starts to become the main component 

of gate current at VG < -2V. From the corresponding band diagram, the hole current is 

due to the tunneling of holes in the inversion layer to the gate, resulting in a positive 

IS/D. The possible channels of electron tunneling from the gate include the conduction 

band electrons and the valence band electrons. In normal dual poly-Si gate process, 

the p+ poly-Si gate is very heavily doped (>5×1019 cm-3), which makes the inversion 

of the p+ poly-Si gate impossible. As a result, the electron density in the conduction 

band of the p+ poly-Si gate is negligible and consequently the ISUB in Fig.3.4 is 
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primarily due to the valence band electron tunneling. A change of sign in the IS/D is 

also observed in Fig.3.4, which is similarly explained by the impact ionization. The 

holes generated by impact-ionization, as the minority carriers in the n-type substrate 

of pMOSFET, are collected by the S/D and lead to a negative Is/d. 
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Fig.3.4: Current-Voltage (I-V) characteristics and the band diagram of a p+ poly-Si 
gate pMOSFET at inversion. The transistor gate length and width are 20 and 0.5 um, 
respectively, and the oxide thickness is ~ 2 nm.  
 

 

In the case of accumulation mode of pMOSFET in Fig.3.5, the gate leakage is 

from the tunneling of electrons in the accumulated n-type substrate, which forms ISUB. 

The interpretation of IS/D, the hole current, is more complicated. There exist two 

tunneling channels: tunneling of accumulated holes in p+ gate to substrate and the 

diffusion of holes generated by valence band electron in the substrate tunneling out to 

gate.  From the band diagram analysis in Fig.3.5, the valence band hole tunneling 

from gate occurs at VG > ~1V (flat-band voltage VFB) while the valence band electron 
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tunneling from the substrate is possible only when VG > VFB + (EG)Si (~ 2.1 V with Si 

band gap = 1.12 V). It is thereby concluded that the IS/D below 2.1 V is due to hole 

tunneling, while valence band electron tunneling may possibly contribute to the IS/D 

with VG higher than ~ 2.1 V. 
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Fig.3.5: Current-Voltage (I-V) characteristics and the band diagram of a p+ poly-Si 
gate pMOSFET at accumulation. The transistor gate length and width are 20 and 0.5 
um, respectively, and the oxide thickness is ~ 2 nm.  
  
 

 

3.2.4. Conduction in Source/Drain Extension (SDE) Region  

 

Figure 3.6 compares the current density measured from a short channel 

(10×0.18 µm2) transistor and a sourced capacitor (10×10 µm2) with ultra-thin oxide 

(~1.65 nm). The gate current density is of the same magnitude at inversion (not 

shown) or strong accumulation, however, in the gate voltage range of -1.5 to 0 V, the 

gate current density measured on small gate length transistor is much higher than that 
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from the capacitor. Because this current is not scalable with the channel area, its 

source is impossible to be the tunneling in the channel region. This extra current has 

been identified as due to the tunneling between the source/drain extension region 

(SDE) and the gate [90-93]. From the band diagram illustrated in Fig.3.6, electrons in 

accumulated n+ gate can tunnel to n+ SDE region overlapped with the gate. Due to 

their similar work function (VFB ~ 0), this tunneling current occurs at Vg ~ 0 and 

dominates the gate current in gate voltage region between 0 and transistor VFB 

because the band mis-alignment inhibits the tunneling between the gate and the 

channel.  
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Fig.3.6: Current-Voltage (I-V) characteristics of n+ poly-Si gate nMOS short channel 
transistor (10×0.18 µm2 and larger area (10×10 um2) capacitor at accumulation and 
the band diagram at source/drain extension region overlapped with the gate. The 
oxide thickness is ~1.65 nm. 
 

 

The results on p+ poly-Si pMOSFET are shown in Fig.3.7. The same extra 

tunneling current is also observed in short channel pMOSFET. As illustrated by the 
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band diagram, the conduction mechanism between 0 ~ VFB in pMOSFET is due to the 

tunneling hole current from p+ poly-Si gate to the p-doped SDE. 
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Fig.3.7: Current-Voltage (I-V) characteristics of p+ poly-Si gate pMOS short channel 
transistor (10×0.18 µm2 and larger area (10×10 um2) capacitor at accumulation and 
the band diagram at source/drain extension region overlapped with the gate. The 
oxide thickness is ~1.65 nm. 
 
 

 

Because the overlap dimension of SDE with the gate is much smaller than the 

channel length, when compared to the tunneling in the channel area, the tunneling 

from this overlap region is negligible at strong accumulation. However, the dimension 

of the SDE overlap is not so scalable as the channel length [94], it is thus expected that 

tunneling in SDE overlap will play more important role in transistor with smaller gate 

length, particularly when the gate oxide thickness is also so scaled that the tunneling 

through oxide is greatly enhanced. As demonstrated from previous studies, the 

tunneling current in SDE overlap has significant impact on the off-state leakage in 

scaled transistors, as well as the ultra-thin oxide reliability [90-93]. 
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3.3. Physical Model for Tunneling Current  

 

In this thesis, the tunnelling current is simulated in the frame of the quasi-

classical quantum model [32-35], such a method takes advantage of the computational 

efficiency of the classical method in obtaining the life-time of quasi-bound states, and 

it still preserves the main MOS quantum physics, such as the carrier quantization and 

tunneling nature from confined 2-D subbands. Compared to the rigorous quantum 

model, this efficient quasi-classical model is verified to be sufficiently accurate [36, 37].   

In this model, the tunnelling current is obtained from Eqs. (1.17) and (1.18). For 

classical turning points, the life-time of the nth subband can be obtained by [34]:  
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hπτ                                      (3.1) 

 

where T(E) is obtained in WKB scheme. However, the traditional WKB 

approximation is applicable only when the barrier varies slowly over a wavelength of 

the particle [23]. In a MOS structure, sharp boundaries exist at the interfaces between 

the oxide and Si substrate as well as the poly-Si gate. In the presence of a sharp 

boundary, wave reflection at the interface is expected, which is not taken into account 

in classical WKB approximation. Recently a modified WKB approximation with a 

correction factor accounting for such reflections at the boundaries of the oxide layer is 

proposed [33]: 
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where the correction factor TR can be expressed as a function of the group velocities 

of the tunneling carrier: 
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where νSi(E) and νSi(E+qVOX) are the group velocities of the carriers in Si incident 

and leaving the oxide layer, respectively. VOX is the oxide voltage drop whereas 

νox(EOXi) and νox(EOXo) are the magnitudes of the imaginary group velocities of 

carriers tunneling in and out of the oxide layer, respectively. From the matching of 

wave functions and conservation of the carrier flux at the oxide boundaries, the same 

form of TR as Eq.(3.3) is also derived independently by other authors [27, 28]. 

After obtaining Nn the carrier density occupied on nth subband from Eq. (1.9), 

the tunneling current from the nth subband can be expressed explicitly as:  
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Finally, the total current is the summation over all subbands. 

To determine the charge density Nn and subband energy En in Eq. (3.4), the 

calculations of carrier quantization and electrostatics of MOS structure are required, 

which is done in this thesis by a parametric self-consistency method in triangular well 

approximation as described in Chapter 2. For hole quantization, the improved one-

band effective mass approximation is used to account for the valence band mixing 

effect. As discussed before, the accuracy to apply the triangular well approximation 
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beyond weak inversion may be questionable. To extend the triangular well 

approximation into strong inversion or accumulation, an improved triangular well 

method in effective electric field scheme, as presented in Section 2.4, is used to 

determine the MOS electrostatics and its validity has been verified by comparing to 

rigorous self-consistent method.  

The gate voltage Vg is determined from the voltage balance equation,  

 

sPoxFBg VVVV φ+++=                                          (3.5) 

 

where VFB is the flat-band voltage, oxide voltage drop Vox  = Fox ⋅ tox , VP  the voltage 

drop in poly-Si gate and φs the substrate band bending.  
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 3.4. Experiments and C-V Characterization  

 

In our experiments, the MOSFETs were fabricated by a standard dual poly-Si 

gate CMOS processing technology. The oxide was grown by rapid thermal oxidation 

followed by annealing in N2O ambient. The purpose of nitridation is to suppress the 

boron penetration in pMOSFET. The low concentration level of incorporated nitrogen 

is expected to have minor effect on the material properties of oxide. It is thus assumed 

that the pure SiO2 properties, such as band offset, dielectric constant etc, are still 

preserved in our samples. The C-V measurements were performed using a HP4284A 

LCR meter on large area (400 × 60 µm2) MOS capacitors at a frequency of 100 kHz. 

The current-voltage (I-V) characteristics were measured using the HP4156A 

semiconductor parameter analyzer. The tunneling currents were measured using a 

carrier separation method, as depicted in Section 3.2. For tunneling in channel area, 

devices with different areas were compared to ensure that the current density exhibits 

no area dependence in order to avoid the edge effect. Short channel transistors (0.18 

µm gate length) were used to measure the current from gate to source/drain extension 

(SDE) tunneling. Tunneling currents of n- and p-MOSFET were measured on the 

same wafer and non-uniformity of oxide thickness within the wafer was not observed. 

The device parameters, such as substrate and gate doping concentrations, gate 

oxide thickness and flat-band voltage, are independently determined by fitting to the 

measured C-V curves using a quantum C-V simulator developed by device group at 

UC Berkeley [95].  The results are shown in Fig.3.8. For samples with oxide thickness 

< 2 nm, reliable C-V is difficult to be measured due to the high gate tunneling current. 

For these samples, the doping concentration values determined from samples with 
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thick oxide, which were processed at the same conditions except the oxidation recipe, 

were used. 
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Fig.3.8. The measured capacitance-voltage(C-V) characteristics of the MOSFETs 
used in the simulations. The experimental data are shown as open circles and the 
solid lines are the fitting results using the QM-CV model of device group at UC 
Berkeley. The extracted oxide thickness is 1.85, 2.07, 2.44 and 2.74 nm, respectively. 
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3.5. Non-parabolic Effect in Hole Direct Tunneling Current 

 

After obtaining the device parameters from C-V characterization, first we will 

perform a study on hole direct tunneling current in pMOSFET. 

 In literatures, most studies on tunneling currents in MOS structures are 

concentrated on tunneling of conduction band electrons from inversion or 

accumulation layers [25-38]. As for p+ poly-Si gate pMOSFETs, hole direct tunneling 

was found to dominate the gate current under channel inversion condition [87-89]. 

However, relatively less attention has been paid to the modeling of hole direct 

tunneling [27, 35, 96-101]. In a reliable physical model of hole direct tunneling current, 

two important characteristics should be present. First there should be an accurate 

treatment of the hole quantization effect in Si substrate, which is important for an 

accurate determination of the hole densities at different energies and the respective 

voltage drops in the oxide layer and substrate. As discussed in Chapter 2, it is done in 

this thesis by employing an improved one band effective mass approximation (EMA) 

including valence band mixing effect. Second there should be a reliable dispersion 

form for holes in the energy gap of the dielectric film, which is crucial in the WKB 

approximation. All previous models assume a parabolic dispersion in the SiO2 energy 

gap during hole tunneling [27, 35, 96-99]. However, its applicability has never been 

verified because the energy of valence holes aligns at the middle of the SiO2 energy 

gap. In this section, we focus on the simulation of hole direct tunneling current. A 

more appropriate Freeman-Dahlke dispersion form [102, 103] is used to calculate hole 

direct tunneling current. It is physically more reasonable and it also achieves a 

significant improvement in the matching of simulation results to the experimental data 
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[100, 101]. In addition, the applicability and limitation of a parabolic approximation to 

hole dispersion in the SiO2 energy gap will also be addressed.  

 

 

3.5.1. Dispersion Relationship in Oxide Energy Gap 

 

From Eq.(1.14), the dispersion relationship κ(E) in dielectric energy gap is 

crucial for tunneling because it appears in the exponential factor. Unfortunately, little 

knowledge on the exact dispersion relationship κ(E) in dielectric is known, even for 

SiO2, which has been used in MOS technology for decades.  

Currently, the most widely used dispersion relationship in the energy gap of 

SiO2 is the parabolic one, in which an energy independent effective mass, mox, is 

assumed,  
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where the energy E is measured from the conduction (valence) band edge for electron 

(hole) tunneling. 

For electron tunneling, a non-parabolic dispersion effect has been identified and 

a Franz-type dispersion, instead of the parabolic one, is also proposed [25], 
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where Egox is the energy gap of SiO2. From the Franz-type dispersion, the conduction 

and valence band edges have the same effective mass, which has never been 

physically justified.  

Here we introduce another form to describe the dispersion in the SiO2 gap, 

which was initially proposed by Freeman and Dahlke [102]: 

 

)(2
1

)(2
1

)(
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2
VOXVOXCOXCOX EEmEEmk −

+
−

=
h

                        (3.8) 

 

where mCOX and mVOX are the effective masses of conduction and valence band of 

SiO2  respectively. Equation (3.8) takes into account the difference in effective masses 

between conduction and valence bands. When E approaches ECOX, the first term in the 

right hand side of Eq.(3.8) becomes the dominant term and κ(E) reduces to a 

parabolic relationship with the conduction band effective mass mCOX. When E 

approaches EVOX, the second term in the right hand side of Eq.(3.8) becomes the major 

term and κ(E) reduces to a parabolic relationship with the valence band effective mass 

mVOX. Apparently, Eq.(3.8) reduces to the Franz-type dispersion when mCOX = mVOX = 

mOX.  

 

 

3.5.2. Electron Tunneling in NMOSFETs 

 

In tunneling current simulations, the effective mass in oxide is generally used as 

a fitting parameter. The oxide thickness is determined by other independent methods, 
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such as C-V, high-resolution transmission electron microscopy (HRTEM) and optical 

ellipsometry. The oxide effective mass values in a range of 0.3-0.6 m0 have been 

reported for electrons in literatures [25-38]. One reason for the inconsistency is most 

likely due to the limited accuracy of different methods in the determination of oxide 

thickness. In most cases, oxide thickness is determined by fitting to the experimental 

C-V curves using a C-V model. Unfortunately, the oxide thickness extracted from the 

same experimental C-V curve is quite different when using different C-V models 

(deviation up to 1.3 A) [104]. As pointed out in [104], it is hard to judge which model is 

valid or accurate at present stage. It is also reported that effective mass may depend 

on the oxide thickness [28, 105].  

In this chapter, we determine the oxide thickness from fitting to the 

experimental electron tunneling currents from inversion layer in nMOSFETs by 

assuming a fixed value of electron effective mass in oxide, which is 0.50 m0 for 

parabolic and 0.61 m0 for Franz-type dispersion, respectively. This oxide thickness 

rather than that from the C-V method will be used in the simulation of tunneling 

current from other carriers, such as valance band holes, valence band electrons etc. 

Such a treatment should not be misinterpreted as meaning that the effective mass is 

always independent of oxide thickness. Considerable uncertainty still exists over 

whether the effective mass depends on oxide thickness.  Assuming a constant 

effective mass ensures the consistency in the calculations of various tunneling current 

components. Additionally, it should not lead to significant errors if the oxide 

thickness is not varied in a wide range. 

Figure 3.9 shows the simulations of electron direct tunneling currents from the 

inversion layers of nMOSFETs. In the calculations, the Si/SiO2 conduction band 

offset is fixed at 3.15 eV [29, 32-34]. The solid lines are the calculated results using an 
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empirical Franz-type dispersion (mox=0.61m0) [33, 34]. The best fits to the experimental 

results were obtained by adjusting oxide thickness TOX. Similar to previous studies [33, 

34], the calculated I-V characteristics are in good agreement with the experiments at all 

voltages (0–3 V) and for all oxide thicknesses (1.8–2.7 nm).  
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Fig.3.9: The electron direct tunneling currents in nMOSFETs. The open circles are 
the measurements. The solid and dashed lines are calculations by assuming the 
electron dispersion in SiO2 energy gap to be Franz-type (mox=0.61 m0) and parabolic 
(mox=0.50 m0), respectively. 
 
 
 
 
 
 

The calculated results using a simple parabolic dispersion (mox = 0.50m0) are 

also displayed in Fig.3.9 as dashed lines. The fitting results using the simple parabolic 

dispersion are only slightly degraded for thick oxides. It indicates that the parabolic 

dispersion still remains to be a good approximation for modeling electron direct 

tunneling. The obtained effective mass values in parabolic dispersion are also in 
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agreement with the band structure calculation of bulk SiO2, in which an effective 

mass of about 0.5 m0 is demonstrated for the conduction band [106, 107]. 

The oxide thickness determined from the fitting of electron tunneling for our 

four samples are 1.81, 2.06, 2.34 and 2.66 nm. They are close to the values 

determined from the C-V method (1.85, 2.07, 2.44 and 2.74 nm, respectively). The 

maximum deviation is about 1 Å and this is within the reported limits of different 

experimental methods, such as C-V, HRTEM and optical ellipsometry [108].  
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3.5.3. Simulation of Hole Tunneling Current Using Freeman-Dahlke 

Dispersion Form 

 

In this section, the simulations of hole tunneling current were performed on p-

MOSFETs. Here, a valence band offset between Si and SiO2 of 4.5 eV was used [96]. 

In the modeling of hole tunneling current, most of previous reports [27, 35, 96-99] used the 

simple parabolic dispersion form. However, for valence hole tunneling, the top of the 

Si valence band aligns at the middle of the SiO2 energy gap. According to the more 

general Freeman-Dahkle form, two items in the right hand side of Eq.(3.8) are 

comparable and neither of them can be neglected in the condition of hole tunneling. 

This indicates that a parabolic approximation is not physically appropriate. The 

Freeman-Dahlke dispersion of Eq.(3.8) is expected to provide more accurate results 

on hole tunneling. Here, all the three dispersion forms will be used to study the hole 

tunneling and a comparison will be given.  

First, we discuss the hole direct tunneling current using a parabolic dispersion in 

energy gap of SiO2. The results obtained by our physical model are displayed as 

dashed lines in Fig. 3.10. Although a Franz-type dispersion has never been used for 

hole tunneling, we also show the calculations from a Franz-type dispersion 

(mOX = 0.55 m0) as solid lines in Fig. 3.10 for a comparison. From Fig.3.10, the hole 

tunneling I-V characteristics computed from either the parabolic or Franz-type 

dispersion are not as close to the experimental data as those for electron tunneling. 

The fit for thinner oxides (< 2 nm) is better. However neither the parabolic nor the 

Franz-type dispersion can fit the experimental data well when the oxide thickness is 

larger than about 2 nm. The deviation is more significant at high gate voltage. 
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Assuming a parabolic dispersion, mOX is found to be 0.41m0 in order to get the best 

fitting. This value is close to the previous results reported for valence band electron or 

hole tunneling (0.35–0.50m0) [27, 35, 96-99]. It suggests a smaller mOX value for holes 

than for electrons. This is in conflict with the existing results from the band structure 

calculations of bulk SiO2. For SiO2, the calculated effective mass of valence bands is 

typically 3–10 m0 
[106, 107], which is much larger than that of the conduction band (~0.5 

m0). 
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Fig.3.10: The hole direct tunneling currents in pMOSFETs. The open circles are the 
measured data. The solid and dashed lines denote the calculated values by assuming 
the hole dispersion in SiO2 band gap to be Franz-type (mox=0.55m0) and parabolic 
(mox=0.40 m0), respectively. 
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In the following, we use the Freeman-Dahlke form of Eq.(3.8) in SiO2 energy 

gap to calculate the hole direct tunneling current. In Freeman-Dahlke form, there are 

two necessary effective mass values. Based on the electron tunneling and SiO2 band 

structure calculation, we set the conduction band effective mass mCOX at 0.5m0, while 

valence band effective mass mVOX is used as an adjustable parameter for best fitting to 

the experimental data. A TOX independent value of mVOX = 0.8 m0 can provide the best 

results and the simulations are shown in Fig.3.11 as solid lines. From Fig.3.11, it is 

apparent that a much better fitting of simulated hole tunneling current to the 

experimental data is achieved by using the Freeman-Dahlke form.  
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Fig.3.11: The hole direct tunneling currents in pMOSFETs. The open circles are the 
measured data. The solid lines denote the calculated values by assuming a Freeman-
Dahlke form dispersion in SiO2 band gap with mcox=0.50 m0  and mvox=0.80 m0. 
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Fig.3.12: The electron direct tunneling currents in nMOSFETs. The open circles are 
the measured values. The solid lines denote the calculated values by assuming a 
Freeman-Dahlke form dispersion in SiO2 band gap with mcox=0.50 m0  and mvox=0.80 
m0.  

 

 

 

In Fig.3.12, we also present the calculations using the Freeman-Dahlke 

dispersion for electron direct tunneling currents. Comparing to the measured data, this 

dispersion is also applicable to electron tunneling with the same effective mass 

parameters. As discussed before, the contribution of the second term in Eq.(3.8) is 

negligible for conduction electron tunneling. As a result, calculation using the 

Freeman-Dahlke form is very similar as that using the traditional parabolic dispersion. 
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Fig.3.13: The calculated imaginary wave vector in the energy gap of SiO2 by 
Freeman-Dahkle (solid line) and microscopic model [38](open circles). The dashed 
lines are those determined from parabolic dispersion. 

 

 

Finally, when compared to the parabolic assumption, the Freeman-Dahlke 

form gives not only much better agreement with the experimental data, but also a 

reasonable correlation between electron and hole dispersion in the band gap of SiO2. 

A further insight of the dispersion in SiO2 energy gap can be obtained from Fig.3.13, 

in which we show respectively the calculated imaginary part of SiO2 band by the 

Freeman-Dahkle form and the tight-binding method [38]. In our experiment, the hole 

energy ranges from ~ 1.5 eV to 4.5 eV measured from the oxide valence band during 

tunneling. In vicinity of 4.5 eV, the imaginary wave number, which is responsible for 

hole tunneling, does not vary strongly in this energy region. This explains why the 

tunneling effective mass for holes is similar to that of electrons. Comparing the shapes 

of the dispersion in Fig.3.13, it is easily concluded that the dispersion from the 
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Freeman-Dahlke form is much more close to that by the microscopic model in the 

whole band gap (0-9 eV) than that from the parabolic approximation. Although hole 

tunneling may involve several imaginary bands with a rather complicated structure 

and it is difficult to be described in the simple effective mass scheme, the analytical 

Freeman-Dahlke form is demonstrated to be a reasonable approximation, which can 

provide hole tunneling current in qualitative consistency with experiments. 

From the dispersion in Fig. 3.13, the non-parabolic effect observed in Fig.3.10 

can be tentatively explained. At a fixed gate voltage VG, a thicker oxide layer has a 

smaller oxide field, and hence smaller voltage drops in both substrate and poly-Si 

gate. According to Eq.(3.5), the oxide voltage drop is larger. Correspondingly, there is 

a larger energy range to be integrated in Eq.(1.14). As a result, a simple parabolic 

dispersion, which deviates from the real dispersion, will lead to a larger integration 

error in Eq.(1.14). A similar argument is also applicable to the case of high gate 

voltage. This explains the deviation between the experimental and simulated results in 

Fig.3.10.  
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3.6. Simulations of All Terminal Direct Tunneling Currents 

in CMOSFETs 

  

 As discussed in previous section, the direct tunneling current can be simulated 

with a proper consideration of the dispersion in oxide energy gap. Despite its 

limitation in describing hole tunneling, the parabolic dispersion has the advantages of 

simplicity in formalism and efficiency in computation. When oxide thickness is less 

than 2 nm, the use of the parabolic dispersion still preserves a fair accuracy in the 

modeling of hole direct tunneling current. In current CMOS processing technology, 

the gate oxide thickness has been scaled to below 2 nm. Therefore, a parabolic 

dispersion will remain to be the most effective and important dispersion form used in 

the modeling of tunneling current. In this section, the simulations of all terminal direct 

tunneling currents in CMOS transistors with ultra-thin oxide (< ~2 nm) were 

performed by using the proposed physical model.  

 

 

3.6.1.  Conduction Band Electron Tunneling Current  

 

So far, conduction band electron tunneling is the most widely studied tunneling 

components. As discussed in Section 3.2, the tunneling from conduction band 

electrons can occur in both biases of nMOSFET and in accumulation bias of 

pMOSFET.  

Figure 3.14 shows the results of conduction band electron direct tunneling from 

the inversion layers of nMOSFETs with oxide thickness down to 1.45 nm. The solid 
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lines are the calculated results using parabolic dispersion (mox=0.50 m0). Similar to 

previous section, the best fits to the experimental results were obtained by adjusting 

oxide thickness TOX. The TOX values are shown in the figure and will be used in the 

subsequent calculations of other tunneling current components. When oxide thickness 

is below 2 nm, the C-V measurement is difficult to perform because of the very high 

gate leakage, especially at strong accumulation from which oxide thickness is 

extracted. From comparisons between oxide thickness values extracted from C-V and 

I-V measurements for thick oxide, as discussed in Section 3.5.2, direct tunneling 

provides an alternative method to measure the thickness of ultra-thin oxide layer. The 

uncertainty in the extracted oxide thickness value is estimated to be ~ 0.02 nm from 

10% variation of tunneling current.  
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Fig.3.14: The electron direct tunneling currents in nMOSFETs. The open circles are 
the measurements. The solid lines are the calculations by assuming the electron 
dispersion in SiO2 band gap to be parabolic (mox=0.50 m0). 
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Fig.3.15: The electron direct tunneling currents in pMOSFETs. The open circles are 
the measurements. The lines are the calculations by assuming the electron dispersion 
in SiO2 band gap to be parabolic (mox=0.50 m0). 

 

 

The substrate currents measured in accumulation mode on pMOSFETs are 

shown in Fig.3.15, which is identified as the conduction band electron tunneling from 

the accumulated n-type substrate. Although some authors used different effective 

mass values for inversion and accumulation electrons in order to achieve the best 

fitting to the experimental data [9], here we used a constant mOX value for conduction 

band electrons. The solid lines are the calculated results and the agreement with 

experimental data is fairly good without any adjusting parameters.  
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3.6.2. Valence Band Hole Tunneling Current  

 

 From Section 3.5, when using 4.5 eV as the valance band offset between SiO2 

and Si, the hole effective mass in oxide is determined to be 0.41 m0 in a parabolic 

dispersion. The tunneling from valence band holes can be measured by carrier 

separation method at VG < 0 bias. They are identified as the S/D current in 

pMOSFETs and substrate current in nMOSFETs, which are shown in Fig.3.16 and 

Fig.17, respectively. It is found that the experimental data follow closely the 

theoretical calculations without any fitting parameters for tunneling from both 

inversion or accumulated holes. The deviation in high VG for 2 nm oxide is attributed 

to the non-parabolic dispersion effect, as discussed in previous section. The results 

demonstrate that a simple parabolic dispersion is applicable to calculate the hole 

tunneling through ultra-thin oxides.  
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Fig.3.16: The hole direct tunneling currents in pMOSFETs. The open circles are the 
measurements. The solid lines are the calculations by assuming the hole dispersion in 
SiO2 band gap to be parabolic (mox=0.41 m0). 
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Fig.3.17: The hole direct tunneling currents in nMOSFETs. The open circles are the 
measurements. The solid lines are the calculations by assuming the hole dispersion in 
SiO2 band gap to be parabolic (mox=0.41 m0). The noise level at low voltage is due to 
the measurement limit of the analyzer.  
 

 

3.6.3. Valence Band Electron Tunneling Current  

 

The treatment of valence band electrons (VBEs) in MOS structure can follow 

the classical model because there is no quantization of valence band electrons.  From 

the classical scheme, the tunneling current from valence band (electrode s) to 

conduction band (electrode g) with energy Ez (referenced from Ev=0) can be written 

as [27]: 
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Here, it is assumed that the valence band is fully filled with electrons and T(E) is 
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independent of lateral momentum kx and ky. In the current model, the VBE tunneling 

occurs only when Ev (s) > Ec (g) when tunneling occurs from s to g electrode. The 

total current is the integration of Ez from valence band edge Ev (s) to conduction band 

edge Ec (g): 
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 In CMOS transistors, VBE tunneling can be measured by substrate current in 

nMOSFET at VG > 0 and pMOSFET at VG<0. We show here only the former case in 

Fig.3.18 because the I-V characteristics of VBE tunneling observed in n- and 

pMOSFETs are the same [109]. In the calculations of VBE tunneling, the effective 

mass in oxide is assumed to be the same as holes (0.41 m0) because the tunneling 

barrier for VBE (4.27 eV) is in similar magnitude as hole barrier (4.5 eV).  As shown 

by the solid lines, the calculated VBE tunneling current is consistent with 

measurements at high VG. However, higher VBE tunneling currents than the 

calculated one is measured at low VG, which is also observed by other authors [96, 109]. 

This might be due to the limitation of the current method in treating VBE tunneling. 

In the current model, only electrons with energy below the surface valence band edge 

are taken into account. However, from the band diagram shown in Fig.3.18, valence 

band electrons above surface valence band edge probably contribute to the observed 

currents by tunneling through the very thin inversion layer and subsequently the oxide 

layer. This can qualitatively explain the earlier occurring of VBE tunneling, however, 

further quantitative study is necessary. 
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Fig.3.18: The direct tunneling currents from valence band electrons in nMOSFETs. 
The open circles are the measurements. The solid lines are the calculations by 
assuming the electron dispersion in SiO2 band gap to be parabolic (mox=0.41 m0). 
The left band diagram illustrates the possible tunneling from valence band electrons 
with energy above the surface valence band edge, which has not been included in the 
present calculations. 
 

 

3.6.4. Tunneling in Source/Drain Extension Overlap Region   
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Fig.3.19: The gate to source/drain extension (SDE) tunneling currents in 
CMOSFETs. The open circles are the measurements. The solid and dashed lines are 
the calculated tunneling currents in channel and SDE area, respectively.  
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As presented in Section 3.2, the gate current of a short channel transistor 

measured between 0 and VFB is dominated by the tunneling in SDE region. In 

nMOSFET (pMOSFET), it is originated from the conduction band electron (valence 

band hole) tunneling from the accumulated poly-Si gate to the n-doped (p-doped) 

SDE region at depletion. As a result, the calculations of tunneling in SDE can follow 

the same method by considering poly-Si as same as Si (100). The calculated tunneling 

currents in SDE region (dashed lines) are shown in Fig.3.19. The calculated tunneling 

currents from poly-Si gate to channel area are also shown as solid lines. By 

comparing to the measurements, the overlapped dimension of the SDE with the gate is 

estimated to be ~ 5 nm for nMOSFET and 6 nm for pMOSFET, which is consistent 

with the reported values by other researchers [92, 93]. Based on the gate to SDE 

tunneling, an effective method to extract the channel length in short channel 

transistors has also been proposed [110].  

Finally, the tunneling currents measured and simulated in CMOS transistors 

with 1.65 nm oxide are summarized in Fig.3.20. The physical model can produce all 

tunneling components of CMOS transistors in agreements with the experiments.  

Although the simulations show good agreements with the measurements at high 

gate voltage, for some components, some difference between the simulations and 

measurements can be seen. For electron or hole tunneling from accumulated substrate 

(Fig.15 and Fig,17) shown as substrate currents at VG>0 in pMOSFET and VG<0 in 

nMOSFET in Fig.3.20, when VG is between 0 and VFB, tunneling cannot happen 

because of the band misalignment. However, a measurable current can be observed in 

this region, especially for thinner oxide, this current has been identified as tunneling 

into the interface states [147]. For valence band tunneling currents, shown as substrate 

currents at VG>0 in nMOSFET and VG<0 in pMOSFET in Fig.3.20, the possible 
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reason have been given in Section 3.6.3. At VG ~ 0, the measured current is always 

found to be higher than simulation, which may be caused by the interface states and 

trapped charges [34].  
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Fig.3.20: The simulations of all terminal direct tunneling currents in CMOSFETs. 
The open symbols are the measurements on 10×0.18 µm2 transistor by the carrier 
separation method. The solid lines are the calculations using the physical model. The 
oxide thickness is ~1.65 nm . 

 



Chapter 3: Direct Tunneling Currents through Ultrathin Gate Oxides in CMOS Devices         101

101

 

3.7. Conclusion 

 

An efficient physical model was proposed to calculate the direct tunneling 

current in CMOS devices. This model takes carrier quantization into account. In 

particular, a new improved one-band effective mass approximation, including the 

valence band mixing, was employed to compute the hole quantization effect. A 

modified Wentzel-Kramers-Brilliouin (WKB) approximation accounting for the 

reflections at oxide interfaces was used for the tunneling probability calculation. The 

validity of the model is verified by simulated results consistent with experiments for 

electron tunneling by using either parabolic or Franz-type dispersion relationship in 

oxide energy gap. Hole tunneling current was studied more intensively, and a 

Freeman-Dahlke dispersion form is found more appropriate for describing the hole 

dispersion in oxide energy gap. After taking the difference of conduction and valence 

band effective masses into account by the Freeman-Dahlke form, the agreement of the 

simulated hole tunneling currents with the experimental data is significantly improved 

over a wide range of oxide thickness and gate voltage. The applicability of the widely 

used parabolic approximation to hole tunneling is also addressed. It is demonstrated 

that, when oxide is thinner than 2 nm, the parabolic dispersion remains quantitatively 

accurate in the modeling of hole direct tunneling current. Using the simple parabolic 

dispersion, the successful modeling of all terminal tunneling currents in CMOS 

transistors by the proposed model was also presented. 
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Chapter 4 

Tunneling Current and Scalability of High-K Gate 

Dielectrics in CMOS Technology 

 

 

4.1. Introduction 

 

As discussed in Section 1.5, the practical limit for reducing SiO2 thickness is at 

about 10-12 Å, which corresponds to the 65 nm technology node to be deployed in 

2007 as projected by ITRS 2001. With the continued scaling of the equivalent oxide 

thickness (EOT) required by performance improvement, gate dielectric materials with 

higher permittivity (high-K) than SiO2 are demanded in order to suppress the direct 

tunneling current. In recently years, alternative high-K materials are of immense 

research interest. Several kinds of candidate dielectrics have been exploited, including 

Si3N4, Al2O3, HfO2 and ZrO2
 [4]. On the selection of gate dielectrics, the direct 

tunneling current inherent to the dielectric materials serves as one of the most critical 

criterions. It is thus technologically important to have a deep understanding of the 

direct tunneling characteristics of these high-K dielectrics. Further, technological 

requirements may vary significantly from one application to another, including the 

performance, off-state power and supplied voltage. This makes it also necessary to 

evaluate the dielectric materials based on these application dependent requirements.  
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 In this Chapter, we investigate the tunneling current through several popular 

gate dielectric materials, including Si3N4 and Al2O3 in Section 4.2 and HfO2 system in 

Section 4.3. With the band offsets and dielectric constants obtained by other 

independent experimental methods, the effective mass values inherent to these 

materials, which determine the magnitude of the direct tunneling current, are 

extracted by comparing the simulations with experiments. Finally, the scalability of 

these dielectric materials in future CMOS technology with different applications is 

assessed in terms of gate leakage, which is included in Section 4.4.  

 

 



Chapter 4: Tunneling Current and Scalability of High-K Gate Dielectrics in CMOS Technology 

 

104

104

4.2. Direct Tunneling through Si3N4 and Al2O3 Gate 

Dielectric Stacks  

  

 In this section, we will first study the direct tunneling characteristics of Si3N4 

and Al2O3. They are among the most sufficiently investigated dielectric materials to 

date. Both of them show promising thermal properties, which ensure their 

compatibility with current CMOS processing. In addition, they often act as basic 

elements in the engineering of alternative dielectrics. For example, nitrided SiO2 or 

oxynitride (SiON) still remains to be the predominant gate dielectric material 

employed in current CMOS manufacturing. Due to the improved thermal stability, it 

is also of intense interest to alloy HfO2 with Al2O3 to form HfAlO.  

 

 

4.2.1 Tunneling Currents through Si3N4, Oxynitride Gate Stacks  

 

Among various dielectric materials other than SiO2, silicon nitride (Si3N4) 

system, including oxynitride and oxide/nitride stack, has attracted the most 

considerable attention and has been investigated intensively in the past [111-123]. In 

addition to its slightly higher K value than SiO2 (pure Si3N4 ~ 7.8) for reduced 

leakage current, the addition of nitrogen to SiO2 also greatly reduces boron 

penetration, which is a significant concern in p+ poly-Si pMOSFET with ultra-thin 

gate oxide. In current CMOS technology, in which the nitridation of gate oxide is 

usually based on N2O or NO technique, nitrogen with very low concentration (< ~3 

at.%) is incorporated into oxide. Despite the improved immunity of gate oxide to 
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boron penetration, the nitridation has negligible impact on the gate leakage [117]. 

Recently, new nitridation techniques, such as remote plasma nitridation (RPN) [118] 

and decoupled plasma nitridation (DPN) [119], were employed to increase the nitrogen 

concentration in oxide with appreciable reduction in the gate leakage. Oxynitride or 

oxide/nitride stack with high nitrogen content was also obtained by other deposition 

techniques, such as chemical vapour deposition (CVD) [117], jet vapour deposition 

(JVD) [111-113] and atomic layer deposition (ALD). Pure Si3N4 films with ultrathin 

thickness were also reported [114, 115, 120]. Leakage current lower ~100× than that of 

SiO2 was demonstrated by the best results. 

The tunneling current through oxynitride or oxide/nitride stack has been studied 

by simulation tools [112-114, 116, 121-122]. Basic characteristics on tunneling were obtained. 

However, relatively less modeling work was presented with recognized parameters 

justified by reliable experiments. This is due to the high defect and trap density in the 

deposited films, which enhances the trap-related current conduction. In Ref. [111-

115], high quality oxynitride or Si3N4 films with low leakage current were obtained 

by JVD technique, making it possible to model the tunneling current accurately. The 

electron tunneling currents were calculated in [112-113] on relative thick film, in 

which F-N tunneling is the main topic. In Ref. [114], the simulation on direct 

tunneling through pure Si3N4 film was performed using an empirical model. Based on 

these reliable experimental data, here we present our calculations of direct tunneling 

current through ultrathin Si3N4 gate dielectric. 
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Fig.4.1: Calculated (solid lines) (a) electron and (b) hole direct tunneling currents 
through a Si3N4 film with EOT of 1.42 nm from inversion layer of n - and pMOSFETs. 
The measured data (open circles) are from [114]. 
 

 

 

Figure 4.1 displays the electron and hole direct tunneling currents through 1.42 

nm JVD Si3N4, the measured data are from [114]. The device parameters, such as the 

channel doping concentration, poly doping concentration, and flat-band voltage were 

determined from the capacitance-voltage (C-V) measurements [115]. In our 

calculations, the conduction and valence band offsets between Si3N4 and Si were 

taken from literatures and their values are 2.1 eV and 1.9 eV, respectively [112-114]. The 

calculated results are shown as solid lines in Fig.4.1, and the effective mass in Si3N4 

was used as the single fitting parameter. To fit the experiments best, the tunneling 

effective mass values for electron and hole were found to be ~0.50 m0 and 0.41 m0, 

respectively, in a parabolic dispersion, which are consistent with the reported results 

[112-114]. For nitride deposition, it is challenging to suppress the oxide interfacial layer 
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growth during the deposition. In JVD technique, the high impact energy provides the 

energy for the deposition process and therefore high quality film has been formed at 

room temperature. The room temperature deposition process provides the best control 

of interfacial layer [115]. 

 As seen in Fig.4.1, an important feature of tunneling current characteristics of 

Si3N4 is that, the hole tunneling current is larger in magnitude than the electron 

current. As a result, in CMOSFETs with Si3N4 gate dielectric, pMOSFET exhibits 

larger tunneling current than nMOSFET, suggesting that the leakage current limit will 

first be reached by pMOSFET.  This  is  contrary to the case of  SiO2 and will be 

critical in the  assessment of  the  scalability  of  Si3N4 dielectric in CMOS 

applications [41,121, 122].  
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Fig.4.2: Calculated tunneling currents in CMOSFETs with oxynitride (SiON) versus 
the nitrogen composition.  
 

   

 From the simulation results, it is also found that the electron and hole effective 

mass values in Si3N4 are very close to those of SiO2. It is thereby reasonable to 
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assume these effective mass values are independent of the nitrogen content in 

oxynitride film. Given the band offset and dielectric constant values linearly 

extrapolated between those of SiO2 and Si3N4 [113], the tunneling current through 

oxynitride film can be readily obtained. The comparisons between the simulated 

tunneling currents to the experimental ones were presented in [121, 122], in which 

good agreements have been achieved with experiments for oxynitride/oxide stacks.   

Figure 4.2 shows the simulated electron and hole tunneling currents, as a 

function of film composition, at inversion bias of |VG | = 1 V for an oxynitride film 

with EOT of 1.2 nm. The simulations clearly reveal that the electron tunneling current 

decreases monotonically with an increase in nitrogen concentration, which is due to 

the higher dielectric constant and thereby larger physical thickness at same EOT. 

However, as the nitrogen content is increased, the hole tunneling current, after an 

initial reduction, exhibits an increase when more nitrogen is incorporated. As a result, 

hole tunneling current is lowest at nitride mole fraction of x~0.4 (nitrogen 

concentration of 30 at.%). This can be explained by a compromise between the 

increase of physical thickness and the significant decrease of valence band offset ∆EV, 

when nitrogen content in oxynitrides is increased.  The different trend in the electron 

tunneling is probably due to the small decrease of conduction band offset (∆EC) at 

oxynitride/Si interface. More importantly, Fig.4.2 also demonstrates that hole 

tunneling current becomes larger than electron current when x > ~0.2 (15 at.%), 

implying that the evaluation on gate leakage of oxynitride dielectric with high 

nitrogen content should be made on hole tunneling current in pMOSFET. Assessed 

from both electron and hole tunneling currents, it is clearly seen that the optimal 

nitrogen concentration is ~ 30 at.% in oxynitride gate dielectric for obtaining the 

lowest gate leakage in CMOS devices. The same conclusion is also true for 
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oxynitride/oxide stack structures [121, 122]. The above phenomenon has been 

experimentally confirmed in a recent study [123]. In subsequent discussions, this 

optimal nitrogen content will be used for assessing the scalability of oxynitride 

dielectric.  

 

 

4.2.2. Tunneling Current through Al2O3 Stacks  
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Fig.4.3: Simulated electron tunneling currents of nMOSFETs with Al2O3 gate 
dielectric. The experimental data are from [125, 126]. The tunneling effective mass is 
found to be 0.28 m0 from overall fitting of all the data. The thickness values from best 
fitting to the measured data match well with those in [125, 126] from C-V method (in 
parenthesis). 
 

 

  As an alternative gate dielectric, Al2O3 has many favourable properties, 

including a large band gap (~ 8 eV), thermodynamic stability on Si and resistance to 

crystallization at high temperatures. Good Electrical results, including low leakage 

current, have been reported for Al2O3 dielectric [124-126]. The scalability of EOT down 
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to below 1 nm was also achieved using Al2O3 [124]. Short channel transistors with 80 

nm physical gate length using ALD Al2O3 have been fabricated by the standard 

CMOS processing technology and promising electrical results obtained [125, 126].  

  Despite the considerable efforts on material and device studies, few works were 

done on the simulation of tunneling currents through Al2O3 gate dielectric [127]. In this 

section, we present the simulation results and the comparisons with experimental data 

of ALD Al2O3/SiO2 stacks. In the simulations, the conduction band offset between 

Al2O3 and Si was taken as 2.24 eV, measured from high resolution X-ray 

photoelectron spectroscopy (XPS) method [128-130]. A SiO2 interfacial layer of 7.5 Å, 

which is determined from experiments [125, 126], is also included in the model. As seen 

in Fig.4.3, a single value of electron effective mass in Al2O3 mAlO (0.28 m0) is able to 

give the best fitting to the four experimental curves with different EOTs and bias 

polarities. This effective mass value is comparable to that determined from 

independent band structure calculations of α–Al2O3 (0.35 m0) [131]. 
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4.3. Direct Tunneling through HfO2 and HfAlO Gate Stacks 

 

In recent years, HfO2 attracted much research attention because of its superior 

electrical characteristics, including high dielectric constant (>20), large band gap (> 5 

eV), reasonable high band offset (>1.5 eV) [132]. Its compatibility to poly-Si gate 

processing has also been demonstrated. More encouragingly, scaling of EOT down to 

below 1 nm has been achieved for HfO2 by several groups [133-135]. It is, therefore, 

extremely important to study tunneling currents through HfO2 as well as their 

scalability in CMOS technology. However, physical modeling of tunneling current 

through HfO2 gate stack is far from sufficient. Earlier simulations on tunneling 

through high-K stacks lack of direct comparison with the experimental data over a 

wide range [53, 136]. Particularly for HfO2, the most reliable electrical data are available 

only in recent years. Q. Lu et al [137] and Y.C. Yeo [127] reported the modeling of 

tunneling currents through HfO2 using an empirical model, however, the critically 

important interfacial layer between high-K and Si substrate is not considered in their 

model. As a result, in their modeling, HfO2 stack is regarded as an equivalent single 

dielectric layer. In fact, the formation of an interface layer is inevitable during the 

high-K deposition. To aggravate the problem, high temperature post deposition 

annealing, which is generally necessary for obtaining a high quality film, always leads 

to the further growth of the interfacial layer [138]. It is commonly observed that the 

interfacial layer has much lower dielectric constant than the high-K film [138], which, 

in turn, has an effect of increasing the tunneling leakage [139]. As a result, the interface 

layer effect must be considered in order to extract accurately the tunneling parameters 

of high-K materials. In this section, we apply the physical model to the simulations of 
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tunneling currents through HfO2 gate stack. Comparisons to experimental electrical 

data were made and the effective mass values in HfO2 determined.  

The simulation results were compared with experimental data measured from 

devices with ultra-thin HfO2 gate dielectrics deposited by chemical vapour deposition 

(CVD) or physical vapour deposition (PVD) technique. All samples were with poly-Si 

gate. More details on the processing and device characteristics can be found in the 

corresponding references. Only current-voltage (I-V) data from ultrathin films were 

used, where tunneling dominates the current conduction. The assumed tunneling 

mechanism is also supported by the observed very small temperature dependence of 

the gate current. The EOT and other device parameters, such as channel doping 

concentrations and flat-band voltages, were extracted from C-V measurements. 
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Fig.4.4: Simulated gate current of a n+ poly/HfO2 /SiO2/p-Si device. The measured 
data are from [141], the physical thickness are HfO2(38Å)/IL(6Å) from HRTEM and 
interface layer (IL is likely SiO2  from XPS [141]. The fitted tunneling mass mHfO is 
0.18 m0. When the uncertainty of HRTEM is 1 Å, the resulted mHfO error is ±0.02 m0. 
The dashed lines are simulations with mHfO = 0.20 and 0.16 m0. 
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        In the simulations, the band offset values were determined independently by high 

resolution XPS measurements. From XPS, valence band offsets ∆EV between 

dielectric and Si is determined from the valence band XPS and the energy gap EG by 

the O 1s energy loss spectra [128]. With the known Si energy gap 1.12 eV, the 

conduction band offsets ∆EC can be readily obtained. The ∆EC thus obtained is 1.9 eV 

for HfO2, which is consistent with that determined from photon emission 

measurements (2.0 eV) [140]. This band offset value will be used for HfO2 in the 

following simulations.  

First, we focus on electron tunneling currents in nMOSFETs. The contributions 

to the gate current from valence band electron and hole tunneling are neglected due to 

their larger tunneling barriers compared to the conduction band electron barrier for 

HfO2/Si [128, 132 140]. Figure 4.4 shows the comparison between simulations and 

experimental data of PVD HfO2 on p-Si from [141]. The physical thicknesses of PVD 

HfO2 (38 Å) and interfacial layer (IL) (6 Å) used in the simulations were determined 

by HRTEM [141]. The IL is found to be SiO2-like by XPS [141, 142]. At VG > 0, the gate 

current mainly consists of electron tunneling from channel inversion layer to gate. 

Electrons in n+ poly-Si gate accumulation layer tunneling to channel form the gate 

current when VG < 0. The only fitting parameter in our simulations is the electron 

tunneling effective mass in HfO2, mHfO, and a value of 0.18 m0 fits the experiments 

well in both the inversion and accumulation polarities. Considering the uncertainty of 

HRTEM as 1 Å in the measured thickness values of both HfO2 and IL, the resulting 

error of mHfO is ±0.02 m0. This mHfO value (0.18 m0) is larger than that reported by 

other authors (0.1 m0) [137], where the IL was neglected in the modeling.  
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Fig.4.5: Simulated tunneling currents of n+ poly-Si/HfO2 on NH3 nitrided p-Si. The 
VG > 0 data is from [137]. The interfacial layer (IL) is assumed as (SiO2)0.5(Si3N4)0.5. 
Using mHfO=0.18 m0 and K=22 for HfO2, the effective IL physical thickness can be 
determined and their values are 6.5 Å and 9 Å, respectively. 

 

 

Using the same electron tunneling effective mass of HfO2, we further compared 

the simulations with the experimental data for CVD and PVD HfO2 on HN3 nitrided 

p-Si in Fig.4.5. The IL is oxynitride (SiON) with corresponding barrier, dielectric 

constant and electron effective mass (0.50 m0) parameters from [121]. The IL physical 

thickness is adjusted to fit the simulation curves to the experimental data. The 

obtained interfacial layer thicknesses of 6.5 Å and 9 Å are consistent with the HRTEM 

results, 6-7 Å [133] and 8.5 Å [137]. It is worth noting that, it is difficult or impossible to 

determine accurately the nitrogen concentration in the ultrathin interface layer. For 

simplicity, the mole fraction of Si3N4 in the interfacial oxynitride layer is assumed at 

50% in present calculations. 

As for hole tunneling in HfO2, there are less experimental data reported in 

literature. It has been experimentally observed that hole tunneling is generally lower 
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in magnitude than electron tunneling for HfO2 [137, 143]. In Fig.4.6, the results on 

pMOSFET fabricated on NH3 nitrided n-Si are shown. Using the valence band offset 

value of 2.22 eV from XPS [128], the hole effective mass in HfO2 is determined to be 

0.18 m0 by fitting the simulated hole current to the measurement. The similar value of 

hole effective mass as the electron one in HfO2 obtained here is in correspondence 

with their similar band offset values.  
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Fig.4.6: Hole tunnelling current simulation of p+ poly-Si gate pMOSFET with HfO2 
stack. An oxynitride interface layer is also concluded in the modeling. The 
experimental data is from [137]. The gate stack structure is same as the nMOSFET in 
Fig.4.5. 

 

 

As discussed in Section 1.5, HfO2 tends to crystallize at ~ 400 0C, which is not 

compatible with the high temperature processing in CMOS fabrication. As a potential 

solution, Al was added into HfO2 to form HfAlO in order to improve its immunity to 

crystallization and oxygen diffusion [45, 46]. In order to assess the impact of Al 

incorporation on the gate leakage current, the tunneling current through HfAlO is also 

studied.  
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Fig.4.7: Calculated tunneling currents of (HfO2)x(Al2O3)1-x for various Hf 
compositions. 

 

 

For HfAlO, the band offset data were also determined from the XPS 

experiments [128]. Their dependences on the Hf composition are demonstrated to be in 

a linear relationship. Using the electron effective mass and the dielectric constant 

values for HfAlO linearly interpolated between those of HfO2 and Al2O3, the 

tunneling currents through (HfO2)x(Al2O3)1-x is calculated and shown in Fig.4.7. It is 

seen from Fig.4.7 that Al incorporation increases the leakage current of HfAlO 

monotonically. Hence, the increase of tunneling current after Al incorporation 

suggests a trade-off between the increase of crystallization temperature and the 

degradation of gate leakage for (HfO2)x(Al2O3)1-x. On the other hand, X-ray 

diffraction results indicate that a 30% mole fraction of Al incorporation into HfO2 can 

raise the crystallization temperature to ∼900oC [45, 46]. Therefore, Al2O3 mole fraction 

of 30% is regarded as the optimized value for HfAlO in the subsequent analysis of 

scalability of high-K gate stack.   
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4.4. Scalability of Gate Dielectrics in CMOS Technology 

 

 The scaling of CMOS device gate length requires the according scaling of other 

device parameters, such as gate oxide thickness, doping profile, junction depth, as 

well as the operating voltage. The International Technology Roadmaps for 

Semiconductors (ITRS) provides a consensus scenario of how these device 

parameters will scale for each technology generations ranging from today’s 0.13 um 

technology to devices as small as 22 nm node in the year 2016 [1]. It is projected that 

EOT down to a few angstroms will be required in order to minimize the short channel 

effects and to obtain high device drive current. There are many requirements on such 

ultrathin gate dielectrics. One of them is the need to reduce the gate leakage current, 

since it contributes to the leakage currents and power dissipation at both operation and 

off states. The gate leakage requirements for the future generation CMOS are also 

documented in ITRS 2001, which indicates that the gate dielectric must be physically 

thick so that the direct tunneling is minimized. In particular, it is challenging to keep 

the stringent low gate leakage in low power application. It is, therefore, useful to 

assess the gate leakage of the potential gate dielectric candidates in future 

technologies. In this section, we perform the simulations on the gate leakage of 

several viable dielectric materials using the proposed direct tunneling model. Based 

on the simulated results, their scalability in future generation CMOS devices is 

quantitatively analyzed in terms of gate leakage.  

 Before the analysis of the scalability, the tunneling parameters used in the 

simulations of direct tunneling current are summarized in Table 4.1 for various 

dielectric materials. In the table, hafnium silicate (HfSiO4) is also included with the 

parameters obtained by averaging those of HfO2 and SiO2, which is used for a 
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qualitative study. Using these parameters, the tunneling currents as a function of EOT 

are displayed in Fig.4.8 for the listed dielectrics.  

 

 

 

Table 4.1: Material parameters used in tunneling simulations. ∆EC/∆EV (eV): 
conduction/valence band offsets with Si; me/mh (m0): electron/hole effective mass in 
dielectric, and K dielectric constant. 
 

 

electron conduction band hole valence band  K 
∆EC (eV) me (m0) ∆EV (eV) mh (m0) 

SiO2 3.9 3.15 0.50 4.5 0.41 
Si3N4 7.8 2.10 0.50 1.90 0.41 
SiON 5.08 2.63 0.50 3.2 0.41 
Al2O3 11 2.24 0.28 -- --- 

HfSiO4 13 2.0 0.34 -- -- 
HfO2 22 2.0 0.18 2.24 0.18 
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Fig.4.8: Simulated tunneling current of MOSFET versus EOT for various gate 
dielectrics.  The substrate doping is 1018 cm-3. Al2O3 mole fraction is 30% for HfAlO 
and Si3N4 mole fraction 40% for optimized SiON. For SiON, hole tunneling in 
pMOSFET, which determines the scalability, is shown. Electron tunneling in 
MOSFET  is shown for other dielectrics. 
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In the following, the gate leakage is calculated for each CMOS technology 

generation according to the ITRS 2001.  For each generation, the gate leakage is 

estimated by the gate current value at VG = VDD with corresponding EOT and 

operating voltage VDD values taken from ITRS2001.  

 

 

4.4.1. Scalability of Gate Dielectrics in High Performance Application 
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Fig.4.9: The calculated gate leakage of high performance CMOS. The calculated high 
(low) gate leakage for each generation corresponds to the minimum (maximum) EOT 
proposed in ITRS 2001. For oxynitride(SiON), gate leakage is from hole tunnelling in 
pMOSFET and the  Si3N4 mole fraction is 40%.  
 
 
 
 
 

Attention is first paid to high performance CMOS and the results are shown in 

Fig.4.9. The calculated high (low) gate leakage for each generation corresponds to the 
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minimum (maximum) EOT proposed in the roadmap. The simulations indicate that, if 

the EOT is engineered at the maximum side of the ITRS projections, the gate leakage 

using even pure oxide is acceptable for all technology nodes in high performance 

CMOS, suggesting the applicability of conventional oxide to high performance 

application in terms of gate leakage. However, it is still uncertain whether oxide down 

to 4-5 Å in thickness is still applicable in manufacturing industry. Nevertheless, the 

above simulations suggest that the aggressive scaling of oxide will probably continue 

in the future until its physical limit, especially for high performance application. Same 

conclusion is also made by other authors [40]. 

In fact, most leading edge devices still employ oxynitride or oxynitride/oxide 

stack, which takes advantages of the high resistance to boron penetration. On the 

other hand, the nitridation also allows for a slightly thicker dielectric at the same EOT 

and a resultant reduction of gate leakage. To assess the scalability of oxynitride, the 

results for optimized SiON (x=0.4) is also shown in Fig.4.9, in which the hole current 

in pMOSFET is used as the scaling criterion. It shows that the optimized oxynitride 

can reduce the gate leakage by about 1-2 orders of magnitude, which provides more 

flexibility in dielectric thickness engineering for device integration. The above 

simulations indicate that it is not difficult to meet the gate leakage requirement in high 

performance application and a dielectric material with only slightly higher K value 

than SiO2 is applicable. Therefore, the most difficult challenges to select a viable 

dielectric for high performance application seem likely to be the preservation of high 

channel mobility and compatibility with CMOS manufacturing.  Although success of 

scaling alternative dielectric materials, such as Si3N4, Al2O3 and HfO2, to below 1nm 

has been achieved, from manufacturing point of view, their applications in high 

performance application are still limited by the severe mobility degradation associated 
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with the poor interface to Si, high density of charges, or the incompatibility to current 

CMOS processing. Since SiON is probably able to meet the ITRS target from leakage 

current viewpoint, this gate dielectric system is expected to remain predominant in 

main stream manufacturing technology in foreseeable future and its aggressive scaling 

would be continued, particularly for high performance application [144].  

 

 

4.4.2 Scalability of Gate Dielectrics in Low Power Application 
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Fig.4.10: The calculated gate leakage for low standby power (LSTP) application. 
Here, an average value of the proposed maximum and minimum EOT from ITRS 2001 
is used for each generation. Al2O3 mole fraction is 30% for HfAlO and Si3N4 mole 
fraction 40% for optimized SiON. 

 

 

The difficult challenge for reducing the gate leakage is expected to be in low 

power application, in which low standby power (LSTP) CMOS imposes the most 
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stringent requirement on gate leakage. The calculated gate leakage in LSTP CMOS is 

displayed in Fig.4.10. It is shown that, the gate leakage of SiO2 exceeds the gate 

leakage specification at as early as 90 nm node (2003). The use of oxynitride, which 

allows for a reduction of the gate leakage around 1-2 orders of magnitude, can only 

extend the scaling by about 1-2 generations. The simulations also suggest that, some 

medium-K dielectrics, such as Al2O3, can only act as a short-term solution and they 

are not qualified as alternative dielectrics in long term.  Thus, the low power 

applications present the earliest driving need for high-K dielectrics. 

Also shown in the figure are the simulated results on HfO2, which is regarded as 

the most promising high-K candidate. The viability of HfO2 as a long-term solution 

for alternative gate dielectric, which has lower gate leakage than the oxide counterpart 

by 4-5 orders of magnitude, is demonstrated. When Al is added into HfO2 to solve the 

problem of thermal instability, despite the slightly degradation of gate leakage 

characteristics (< 1 order of magnitude for Al2O3 concentration at typical 30%), the 

gate leakage still remains low enough to meet the requirements of the roadmap. From 

the simulations, it is thus concluded that HfO2 system is a viable candidate as a 

solution to the gate dielectrics scaling for future low power CMOS in long term, 

assessed from gate leakage prospective. From Fig.4.10, HfSiO4 seems to be another 

choice for alternative gate dielectrics. It is thermally stable on Si and high interfacial 

properties with Si can be obtained. However, as a long term solution, its relatively 

low dielectric constant makes it crucial to eliminate the low-K interfacial layer in 

order to meet the stringent gate leakage requirement for low stand-by power 

application. Additionally, phase separation of silicate system is generally not 

perceived as being acceptable.  
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4.4.2 Interface Engineering on Gate Leakage of High-K Gate Stacks 
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Fig.4.11: The calculated gate leakage for low standby power applications of HfAlO 
dielectric stacks with different interface layers (ILs). Physical 5 Å IL of SiO2, 
optimized SiON, HfSiO4 were presented. A minimum 3 Å SiO2 and SiON ILs are also 
shown to demonstrate the limit of SiO2-based dielectrics as an IL layer. 

 

 

 

As discussed earlier, it is required to preserve high channel mobility for any 

alternative gate dielectric to replace SiO2. Unfortunately, materials having a high 

dielectric constant always exhibit high density of charges due to the high ionic 

bonding. In particular, when comparing to SiO2, the plasmon and phonon scattering in 

high-K are likely to be more significant due to the much lower phonon frequencies. 

Combined with the degraded surface roughness, the channel mobility is generally 

severely reduced in devices with high-K gate dielectrics [4]. One scenario to meet the 
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mobility requirement is to use an interfacial layer. Here, we studied the impact of 

several interface layer materials including SiO2, oxynitride and hafnium silicates, on 

the gate leakage of high-K gate stack. They are among the available materials to date, 

which can form high quality interface on Si with atomic layer flatness and low density 

of interface states.  Considering the thinnest physical thickness of the interfacial layer 

down to 3 Å (a single molecular layer), Fig.4.11 shows the calculated gate leakage for 

LSTP application using HfAlO gate stacks. If the interface layer is SiO2, the gate 

leakage of the gate stack is higher by more than 2 orders of magnitude than the single 

HfAlO film, which makes it difficult to meet the gate leakage requirements of the 

roadmap. This indicates the necessity to increase the dielectric constant of the 

interface layer. From our simulations, either oxynitride or silicates is justified to be 

the candidates for such interface engineering. Considering the easiness of oxynitride 

in manufacturing, HfO2/SiON stack structure is likely to be the most promising 

candidate as alternative gate dielectrics scalable to 22 nm node LSTP applications by 

2016. 
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4.5. Conclusion 

 

We reported the modeling of tunneling currents through high-K gate stacks 

using a physically based model and its application for analyzing the scalability of 

high-K materials in future CMOS technology. In the modeling, the ultrathin 

interfacial layer between high-K and Si substrate is included. The energy band offsets 

of high-K to Si were determined by high resolution X-ray photoelectron spectroscopy. 

Excellent agreements between simulation results and measured tunneling currents 

have been achieved over several high-K dielectric materials, such as Si3N4, Al2O3 and 

HfO2. The effective mass values in these high-K dielectrics were determined. 

Subsequently, the model was used to predict when high-K dielectrics are to replace 

SiO2 according to 2001 ITRS for different CMOS device applications. For high 

performance application with high tolerance of gate leakage, the continue 

applicability of traditional oxynitrde dielectric is justified. It is also found that, high-K 

material is expected to be first required in low power application because of the 

stringent requirement on leakage current. In terms of gate leakage,  HfO2
 or HfAlO is 

demonstrated to be a viable candidate for long term solution. The impact of the 

interfacial layer on the gate leakage of high-K stacks was further analyzed. The 

simulations show that the low-K interfacial layer gives rise to a significant increase of 

the gate leakage, making interface layer engineering critical to the scaling of high-K 

gate stacks.  Recommendations for interface layer materials were also made for high-

K gate stacks that will meet ITRS roadmap.  
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Chapter 5:  

Metal Gate Engineering on Gate Leakage 

Characteristics of MOSFETs 

 

 

5.1. Introduction 

 

Aggressive scaling of gate length and gate oxide thickness in CMOS transistors 

aggravates the problems of poly-Si gate depletion, high gate resistance and boron 

penetration from the p+-doped poly-Si gate into the channel region. The poly-Si 

depletion reduces the gate capacitance in the inversion regime and hence the inversion 

charge density, or leads to a lower gate over drive, thus degrades the device 

performance. As a result, metal gate technology is recently exploited. The 

replacement of poly-Si gate with metal not only eliminates the gate depletion and 

dopant penetration, but also greatly reduces the gate sheet resistance. For bulk CMOS, 

metal gates with work functions corresponding to the conduction band and valence 

band edges of Si are preferred for the optimal design of n- and p-MOSFETs, 

respectively [54]. On the other hand, novel device architectures, such as ultrathin body 

(UTB) or double gate (DG) structure fabricated on silicon-on-insulator (SOI) wafers 

may be utilized in future CMOS technology due to their excellent scaling capability 

[62]. In such SOI devices, in order to improve channel carrier mobility and eliminate 

threshold voltage (VT) instability induced by dopants fluctuation, low doping in body 

is generally desirable and metal gate with work function near mid-gap of Si is thus 
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required to obtain appropriate VT [145, 146]. At the same time, the introduction of an 

alternative high-K material is also underway in order to suppress gate leakage [4]. 

Therefore, an understanding of metal gate engineering on the tunneling characteristics 

of MOSFETs, especially with high-K dielectric stack, is technically important and 

timely.  

In this chapter, we present a systematic investigation on the tunneling 

phenomena in metal gate MOSFETs with oxide and high-K dielectrics. First, the 

simulated tunneling currents will be compared to measurements on TaN metal gated 

devices with SiO2 and HfO2 dielectrics in Section 5.2. Subsequently, in Section 5.3, 

the advantage of the metal electrode over poly-Si on the gate leakage is demonstrated 

in bulk CMOS due to the elimination of poly-Si depletion. It is followed by a 

systematic study on how the change of metal gate work function affects the various 

tunneling components in CMOS transistors, as presented in Section 5.4. Finally, in 

Section 5.5, the better scalability of SOI devices over bulk one in terms of tunneling 

leakage current is demonstrated for future CMOS technology.  
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5.2. Tunneling Currents in Metal Gate CMOS Devices 

 

The tunneling currents through SiO2 and high-K gate dielectric in poly-Si gated 

CMOS devices have been studied in Chapter 3 and 4. Relevant material parameters 

with tunneling, including the band offset and effective mass values, were extracted for 

various gate dielectrics. These parameters and the same simulation method will be 

used in the following calculations of tunneling currents in metal gate devices. In the 

simulations, free electron gas is assumed in the metal gate. The equivalent oxide 

thickness (EOT) is extracted from capacitance-voltage (C-V) measurements and the 

work function of the metal electrode is determined from the flat-band voltage (VFB). 
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Fig.5.1: Tunneling currents in a TaN/SiO2/p-Si capacitor. The experimental data is 
from [56]. JVBH,S and JME,G represents the valence band hole tunneling from substrate 
and metal electron tunneling from the gate, respectively. 
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Figure 5.1 shows simulations on a metal-gated TaN/SiO2 capacitor. From the 

calculations, for SiO2 with the specific EOT (2.15 nm) [56], the gate current at 

accumulation is mainly comprised of the electron tunneling from the metal gate to the 

substrate. However the hole tunneling from the accumulated p-Si substrate to the gate 

also contributes to the gate current appreciably and it even dominates over the 

electron tunneling current in low voltage regime. This is different from poly-Si gated 

SiO2 devices, in which hole tunneling is always negligible compared to electron 

tunneling at the accumulation bias of nMOS as shown in Fig.3.3. Good agreements 

between simulations and experiments have been obtained at strong accumulation. In 

gate voltage VG region between VFB and 0 V, the much higher gate leakage 

experimentally observed is attributed to the electron tunneling through interface state 

(TDit) [147], which is shown by the dashed line.  

 The simulations of gate currents in CMOS transistors with HfO2 stacks are 

displayed in Fig.5.2. Solid lines are simulations assuming parabolic dispersion in 

HfO2 with effective mass values obtained in Chapter 4. Using one fitting parameter of 

8 Å oxide interfacial layer (IL), overall good agreements between simulations and 

experiments [148] were obtained for eight current-voltage (I-V) curves measured on 

both n- and p-MOSFETs with different EOTs and VG polarities. Higher gate current 

values obtained from the simulations than the measurements are found at high VG, 

which might arise partly from the non-parabolic effects, as discussed in Chapter 3. 

The dashed lines are simulations using Freeman-Dahlke dispersion for HfO2 [101], in 

which second adjusting parameter of hole effective mass (0.27m0) is introduced. 

Better agreement with experimental data at high VG is obtained.  
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From Fig.5.2, higher current is observed than simulated one at low gate voltage. 

This excess current flow may be caused by charging and discharging of interface 

states and trapped charges, which is generally much higher in density in HfO2.  
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Fig.5.2: Tunneling currents in TaN gated MOSFETs with HfO2 stacks. Solid lines are 
simulations assuming parabolic dispersion in HfO2 with effective mass values listed in 
Table I. Using one fitting parameter of 8 Å oxide interfacial layer (IL), overall good 
agreements between simulations and experiments are obtained. Better agreement with 
experimental data at high VG can be obtained by using Freeman-Dahlke dispersion 
for HfO2  (dashed lines). 
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5.3. Reduction of Gate Leakage by Metal Gate 
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Fig.5.3: Gate leakage of metal and poly-Si gate nMOSFET with SiO2 gate dielectric. 
The metal gate work function is assumed at Si conduction band edge. The EOT is the 
equivalent oxide thickness, and CET the capacitance equivalent thickness at inversion 
(VG-VT = 0.5V).  
 
 
 
 
 

As discussed previously, for bulk CMOS, metal gates with work functions 

corresponding to poly-Si are desirable. In this section, we first compared the gate 

leakage between metal and poly-Si gated devices with the same gate work functions 

and the same substrate doping concentrations. Typical results in nMOSFET with SiO2 

are shown in Fig. 5.3, in which the gate leakage at the same gate overdrive (i.e. oxide 

field), VG-VT, of 0.5 V is presented. VT is defined by the gate voltage to induce 

inversion charge of 1011 cm-2. In Fig. 5.3(a), when having the same EOT, VT and 

thereby VG is higher in poly device than that in metal device due to the additional 

voltage drop in poly depletion layer. From the calculations, they show similar gate 

leakage in magnitude due to the same oxide field and oxide thickness. In Fig.5.3(b), 
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the gate leakage was compared at the same capacitance equivalent thickness (CET) at 

inversion. The same oxide field and inversion capacitance means the same gate 

terminal voltage. From Fig.5.3(b), the use of metal gate results in lower gate leakage 

than poly-Si gate.  This can be explained by the elimination of gate depletion by using 

metal gate. In poly-Si device, poly-Si depletion leads to capacitance attenuation, and 

for compensation, EOT smaller than that in metal gate device is thereby required to 

achieve the same CET, which in turn results in higher gate tunneling current.   
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Fig.5.4: NMOS gate leakage in future generation CMOS for (a) high performance 
application using SiO2 and (b) low stand-by power application using HfO2/SiO2 stack 
with SiO2 interfacial layer of 3Å. In the calculations, the EOTs of gate dielectrics 
were selected to meet the required CET by ITRS 2001.  

  

 

 

The advantage of metal gate over poly-Si in terms of gate leakage is also 

elucidated in Fig.5.4, in which the gate leakage in future CMOS is predicted by 

choosing the dielectric physical thickness to meet the requirements of CET from ITRS 
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2001 [1]. It is projected that metal gate devices can lower the gate leakage by 1-2 

orders of magnitude over poly-Si ones with typical poly-Si doping density in current 

processing technology of ~1020 cm-3. This reduction of gate leakage suggests the 

capability to scale gate dielectrics more aggressively (by additional ~2-3 Å) by 

employing metal gate in bulk CMOS. This benefit of suppressing gate leakage by 

metal gate technology might be lost with extremely high poly-Si gate doping. 

However, it presents great challenge since the active dopant density at poly-

Si/dielectric interface saturates at ~1020 cm-3 and it is difficult to dope the poly-Si gate 

more than 1020 cm-3, especially for p+ poly-Si gate [54].  
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5.4. Metal Gate Work Function Engineering on Tunneling 

Characteristics of MOSFETs 

 

 For CMOS with SOI structure, metal gate electrodes with work function 

deviated from poly-Si gates are possible and near mid gap metal gates are required for 

SOI devices with low doping body. In bulk CMOS, there also exists possibility to 

engineer the work functions of metal gates in some extent around the poly-Si work 

functions [61]. In this section, we focus on the impact of the metal gate work function 

on the tunneling currents in metal gated MOSFETs. For such studies, a double gate 

(DG) structure is selected as a typical example. The body thickness is assumed at 20 

nm and body doping concentration 1016 cm-3. Although some minor difference may 

exist, the following results obtained on DG structure are also applicable to other 

device architectures, such as bulk CMOS or ultra-thin body SOI devices. 

 

 

5.4.1 Gate to Channel Tunneling 

 

The tunneling in channel area is first studied, and the tunneling mechanisms are 

illustrated by the band diagrams in Fig.5.5. Throughout this chapter, the tunneling 

components are labelled by the type of the tunneling carrier (CBE: conduction band 

electron; VBE: valence band electron; VBH: valence band hole; ME: metal gate 

electron) and the electrode supplying the carriers (G: gate and S: substrate electrode).  
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                                VG > 0                                        VG <0 

 
Fig.5.5: Band diagram schematics of tunneling in channel area of nMOSFET. It is 
similar for pMOSFET except the substrate Fermi energy. Labels: CBE: conduction 
band electron; VBE: valence band electron; VBH: valence band hole; ME: metal gate 
electron; G: gate and S: substrate electrode.  
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Fig.5.6: Tunneling currents of metal double gate (DG) nMOSFET with (a) SiO2 and 
(b) HfO2 stack as a function of VG-VFB. Solid lines are of metal work function ΦB at Si 
conduction band edge (EC metal), while dashed lines are those with mid-gap metal. 
The band diagrams for various tunneling components are shown in Fig.5.5. 
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Fig.5.6 plots the simulated tunneling currents in channel area of metal gated 

nMOSFETs with metal work function at Si conduction band edge (EC metal) and mid-

gap of Si. From the comparisons, the gate current at inversion, which is dominated by 

JCBE,S and JVBH,S in n- and p-MOSFETs, respectively, is independent of metal work 

function (ΦB) after deducting the flat-band voltage VFB shift caused by ΦB variation. 

However, the increase of ΦB will reduce metal electron tunneling JME,G due to the 

decrease of electron tunneling barrier. The most significant effect is observed in 

nMOSFET when VG –VFB < 0. As shown in Fig.5.6, when metal Fermi energy 

changes from Si conduction band (EC) to mid-gap, JME,G changes from larger to 

smaller than JVBH,S , the hole tunneling current from substrate to the metal gate. As a 

result, the total gate current, as elucidated in Fig.5.7, is first decreased due to the 

reduced JME,G, then becomes independent of ΦB after JVBH,S dominates over JME,G. It is 

also found that the gate current in nMOSFET with high-K dielectric has a less 

dependency on ΦB than that with SiO2. 
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Fig.5.7: Gate current of nMOSFET at VG-VFB=-1V as a function of metal work 
function ΦB.  
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 The results in pMOSFETs are shown in Fig.5.8. Effects of ΦB variation on 

various tunneling components are similar as those observed in nMOSFETs. One 

noticeable characteristic is that the valence band electron tunneling JVBE,S at 

accumulation bias, which usually contributes negligibly to the gate current in p+ poly-

Si gate pMOSFET, becomes comparable in magnitude with the gate electron 

tunneling for SiO2 gate dielectric when metal work function is at Si valence band edge 

(EV metal) [149].   
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Fig.5.8: Same as Fig.5.7 but for metal double gate (DG) pMOSFET. EV metal means 
metal work function ΦB is at Si valence band edge.  
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5.4.2 Gate to Source/Drain Extension (SDE) Tunneling 

 
 

In the following, we will study the tunneling between the gate and the SDE 

overlap region (JSDE). As discussed in Section 3.2.4, SDE dimension is not so scalable 

as channel and the contribution of gate to SDE overlap tunneling (JSDE) to circuit 

leakage current becomes increasingly important as channel gate length is scaled 

down. Tunneling in SDE has been verified even to be the dominant source of off-state 

leakage in MOSFETs with ultrathin gate dielectric [90-93, 150].  

 

 

 

 

 

 

                                NMOSFET                                                PMOSFET 

 

           Metal Gate      Oxide      SDE                         Metal Gate     Oxide     SDE 
 
Fig.5.9: Schematics of band diagrams of gate to source-drain extension (SDE) 
tunneling (JSDE) at accumulation bias. In SDE region, the metal electrons tunnel to n+ 
SDE in nMOSFET and valence band electrons tunnel  from p+ SDE to metal gate in 
pMOSFET. 
 
 
 
 

The band diagrams of gate to SDE tunneling are illustrated in Fig.5.9 for metal 

gate CMOSFETs. Compared with those in poly-Si gate devices, gate to SDE 

tunneling in metal gate devices shows different mechanism for pMOSFET. In metal 

gate pMOSFET, tunneling in SDE comes from valence band electron tunneling from 

JSDE 

JSDE 
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p+ SDE to metal gate. The hole tunneling current, which dominates the SDE 

tunneling in p+ poly-Si gated p-MOSFET, cannot occur in the presence of metal gate 

electrode. In nMOSFET, metal electron tunneling to n+ SDE forms the gate to SDE 

tunneling.  
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Fig.5.10: Gate to source-drain extension (SDE) tunneling in metal double gate (DG) 
MOSFETs with SiO2 and HfO2 stack. Solid lines are those with EC metal (nMOS) and 
EV metal (pMOS) gates, while dashed lines are those using mid-gap metal gates.  
 

 

Figure 5.10 compares the gate to SDE tunneling with different metal gate work 

functions. It is found that JSDE is sensitive to ΦB and the use of mid gap metal gates 

reduces the JSDE in both n- and p-MOSFETs. JSDE is also found to have a dependence 
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of SDE doping concentration. Higher doping in SDE leads to higher magnitude of 

JSDE because of the higher oxide field resulting from less voltage drop in SDE. This 

indicates that a trade-off between leakage current and SDE resistance should be made 

for device optimization.  

 

The dependence of JSDE on ΦB is summarized in Fig.5.11. JSDE in nMOSFET is 

always higher than that in pMOSFET in the whole rang of ΦB, indicating that the 

leakage current limit is first reached by nMOSFET. It is also found that increasing ΦB 

reduces JSDE significantly and the reduction is further enhanced when using high-K 

dielectric. This decreased JSDE is expected to have an effect of reducing the MOSFET 

off-sate leakage current. 
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Fig.5.11: The effect of metal gate work function ΦB on the gate to source-drain 
extension (SDE) tunneling  JSDE  for various gate dielectrics 
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5.4.3. Advantage of Metal Double Gate MOSFETs on Leakage 

Current 
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Fig.5.12: Comparison of metal double gate (DG) and bulk MOSFETs with oxynitride 
gate dielectrics at the same threshold voltage VT (defined by inversion charge of 1011 
cm-2). In DG MOSFET, low body doping is assumed and VT is adjusted by metal gate 
work function ΦB while in bulk MOSFET, VT is tuned by channel doping.  

 

 

 

Figure 5.12 compares tunneling currents in DG and bulk MOSFETs with the 

same threshold voltage VT of 0.2 V. In DG device, the ultra-thin body provides the 

well control for short channel effects and thereby low body doping is assumed. The 
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VT is achieved by metal gate ΦB. However, in bulk devices, the substrate cannot be 

undoped due to short channel effects and work function must locate at Si conduction 

band edge for optimal design. Therefore, VT adjustment can be only be achieved by 

channel doping in bulk device. For MOSFET on state, DG shows slightly lower gate 

leakage, which is explained by the electric field lowering due to low body doping [69]. 

Compared to its bulk counterpart, DG MOSFET exhibits significant advantage of the 

reduced JSDE, which is due to the adjustment of metal ΦB to near the mid-gap of Si. 

For nMOSFET, which is the limiting case as demonstrated in Fig.5.11, JSDE is ~1 

order of magnitude lower for DG than for bulk MOSFET, demonstrating the 

advantage of DG structure on suppressing the off –state leakage induced by gate to 

SDE tunneling. 

 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Fig.5.13: Circuits of an inverter (left) and a sample/hold with an nMOSFET switch 
(right).  
 
 
 
 
 

The leakage current impacts adversely on circuit performance [151]. Examples of 

an inverter in digital circuit and a sample/hold in analog circuit are illustrated in 
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Fig.5.13. For the inverter at high output state, the input gate current is comprised of 

pMOSFET gate-channel leakage at inversion and off-state leakage current of 

nMOSFET. When the device is scaled down, JSDE may dominate this off-state leakage 

[90-93, 150]. JSDE can be changed by changing ΦB of the nMOSFET metal gate. For a 

sample/hold, when nMOSFET is off to hold a high level signal close to supply 

voltage VDD, both JME,G and JSDE will charge or discharge the hold capacitor, 

degrading the accuracy of the sample/hold. Similar discussion can be applied to 

pMOSFET in inverter and sampling/hold. The reduced tunneling in DG SOI devices 

at both on and off states may benefit to lower the standby power of an inverter in 

digital circuit and improve the accuracy of sample/hold in analog circuit. 
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5.5. Scalability of Metal Gate Advanced MOSFETs 
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Fig.5.14: Off-state leakage of metal gate nMOSFET contributed by gate to source-
drain extension (SDE) tunneling estimated using 5 nm SDE dimension for (a) high 
performance application using SiO2 and SiON, (b) low power application using 
HfO2/SiO2 stack.  

 
 
 
 

To study the effects of metal gate work function engineering on the device 

scalability, the off-state leakage (IOFF) contributed by JSDE in future CMOS technology 

is calculated and presented in Fig.5.14 for both bulk and DG SOI nMOSFETs with 

metal gates. In the calculations, values of EOT, threshold voltage VT and operating 

voltage VDD from ITRS2001 were used for each generation. In DG, low body doping 

is assumed and metal gate work function is determined by VT, while, in bulk 

MOSFET, metal work function is at Si conduction band edge and uniform channel 

doping is used for VT adjustment. From the simulated IOFF, metal DG SOI MOSFET 

demonstrates its potential in suppressing JSDE. This reduction of JSDE is expected to be 

as much as 2-3 orders of magnitude in low power application when high-K is 

employed, suggesting the superior scaling capability from leakage perspective by 

utilizing metal gate DG SOI structure.     
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5.6. Conclusion 
 

In this chapter, we presented a systematic study of tunneling leakage current in 

metal gate MOSFETs and how it is affected by the work functions of the metal gate 

electrodes. The physical model used for simulations was corroborated by 

experimental results from SiO2 and HfO2 gate dielectrics with TaN electrodes. In bulk 

MOSFET, results show that, at the same CET (capacitance equivalent oxide thickness 

at inversion), replacing poly-Si gate by metal can reduce gate leakage appreciably by 

1-2 orders of magnitude due to the elimination of poly-Si gate depletion. It is also 

found that, the work function of metal gate affects the various tunneling components 

in MOSFETs. Specifically, increase of metal work function reduces gate to channel 

leakage in off-biased nMOSFET and the use of mid-gap metal gate results in 

significant reduction of gate to source/drain extension tunneling in both n- and p-

MOSFETs. Comparing to bulk MOSFET, SOI MOSFET has much lower off-state 

leakage due to the smaller gate to source/drain extension tunneling. The reduction of 

off-state leakage can be as much as three orders of magnitude when high-K gate 

dielectric is used. Finally, the benefits of employing metal gate SOI structure in 

circuit applications and in future CMOS scaling were demonstrated. 
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Chapter 6 

Conclusions and Recommendations 

 

6.1. Conclusions 

 

6.1.1. Hole Quantization in CMOS Devices 

 

In this thesis, we demonstrated the importance of valence band mixing to the 

hole quantization in CMOS devices. Compared with the calculations by using the six-

band effective mass approximation, the traditional one-band effective mass 

approximation, which used the bulk Si effective masses, underestimates the subband 

density of states and thereby overestimates the threshold voltage shifts in pMOSFET 

caused by hole quantization.  

Based on the numerical results of the six-band effective mass approximation, 

we also demonstrated an improved one-band effective mass approximation method 

for hole quantization in pMOSFET. In this method, the hole quantization mass and 

DOS mass values were derived from the numerical results from six-band calculations. 

Further, the triangular well approximation was successfully extended to strong 

inversion or accumulation region by introducing an effective electric field with a 

weighting coefficient, which is determined from the numerical results of rigorous six-

band self-consistent model. This method shows significant advantages in modeling 

the hole quantization: 

(1) This improved one-band effective mass method is same in formalism as the 

conventional one, so it preserves the efficiency in computation. It is also easy to be 
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implemented into routine device simulators by just replacing the corresponding 

effective mass values.  

(2) The accuracy of this method is ensured by extracting the new effective 

masses from numerical results of rigorous six-band approach. Using this model, the 

calculated hole inversion capacitance and threshold voltage shifts are in good 

agreements with both the six-band approach and the experiments.  

(3) After establishing the effective electric field, this method in triangular well 

approximation is applicable for obtaining the MOS electrostatics at both inversion and 

accumulation biases with sufficient accuracy.   

 

 

6.1.2. Direct Tunneling Currents through Ultra-thin Gate Dielectrics 

 

In this thesis, studies of direct tunneling currents through ultrathin gate 

dielectrics consist of three major parts: 

(1) Direct tunneling current through gate oxide in CMOS devices; 

(2) Direct tunneling and scalability studies of high-K gate dielectrics; 

(3) Direct tunneling in metal gated MOSFETs and the impact of metal work 

function on the gate leakage characteristics in advanced MOSFETs. 

 

From these studies, the proposed direct tunneling model is demonstrated for 

SiO2, Si3N4, Al2O3 and HfO2.  Using tunneling current simulations, the scalability of 

these gate dielectric materials in future CMOS technology was analyzed. Guidelines 

for the selection of high-K dielectrics were also provided.  
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(I) Direct Tunneling Currents through Ultra-thin Gate Oxide in CMOS Devices 

 

The direct tunneling currents through gate oxide in state-of-art CMOS devices 

were simulated using an efficient physical model. In the direct tunneling model, the 

carrier quantization is properly treated, especially for hole quantization, in which the 

improved one-band effective mass approximation was employed to account for the 

important valence band mixing effect. The tunneling probability was calculated by a 

modified Wentzel-Kramers-Brilliouin (WKB) approximation with the reflections at 

oxide/Si interfaces being taken into account.  

 

(a) Non-parabolic dispersion effect in hole tunneling current 

Hole tunneling currents were studied intensively in pMOSFETs with gate oxide 

thickness ranging from 1.35 to 2.7 nm. Significant deviations from the experiments 

were observed by using the traditional parabolic dispersion in oxide energy gap when 

oxide thickness is thicker than 2 nm, which has been explained by the non-parabolic 

hole dispersion. A Freeman-Dahlke dispersion form is found more appropriate for 

describing the hole dispersion in oxide energy gap. After taking the difference of 

conduction and valence band effective masses into account by using the Freeman-

Dahlke form, the agreement of the simulated hole tunneling currents with the 

experimental data is significantly improved over a wide range of oxide thickness and 

gate voltage.  

 

(b) Modeling of all terminal tunneling currents in CMOS transistors 

We demonstrated the proposed direct tunneling model by the successful 

modeling of all terminal tunneling currents in CMOS transistors. The validity of the 
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model is verified by simulated results consistent with experiments for electron 

tunneling by using parabolic dispersion relationship in the oxide energy gap. When 

oxide is thinner than 2 nm, the applicability of the parabolic approximation to hole 

tunneling is also demonstrated. Using the simple parabolic dispersion, the successful 

modeling of all terminal tunneling currents through gate oxide, including conduction 

band electrons, valance band electrons and valence band holes in CMOS devices, 

were made by the proposed model. 

 

 

(II) Tunneling Current and Scalability of High-K Gate Dielectrics in CMOS 

Technology 

 

The modeling of tunneling current through alternative high-K gate stack using 

the physically based model has been done for several high-K candidates, such as 

Si3N4, Al2O3 and HfO2. For high-K materials, an interfacial layer is always formed 

during deposition or post deposition annealing. The ultrathin interfacial layer between 

high-K and Si substrate was considered properly in our calculations, which ensures 

the reliability of the modeling results. Excellent agreements between simulation 

results and measured tunneling currents were achieved. Based on the simulation 

results on gate leakage and the 2001 ITRS, the scalability of these gate dielectrics was 

analyzed for different CMOS device applications. 

 

(a) The traditional nitrided oxide (oxynitride) used in current manufacturing shows 

high magnitude of gate leakage, however, it still can meet the leakage current 

requirement of the recent roadmap for high performance application. Due to the high 
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tolerance of gate leakage in high performance CMOS devices, it is expected that the 

continued aggressive scaling of the oxynitride dielectric is demanded by 

manufacturing industry.  

 

(b) In terms of gate leakage current, an alternative high-K material is expected to be 

first required in low power application. For low stand-by power application, which 

represents the most stringent requirement on leakage current, Si3N4 and Al2O3 with 

medium K values can act only as a near term solution. The newly studied HfO2, or 

more thermally stable HfAlO, exhibits low gate leakage and demonstrates to be a 

viable high-K gate dielectric in long term until the year of 2016.  

 

(c) The impact of the interfacial layer on the gate leakage of high-K stacks was 

analyzed. The interfacial layer generally has lower K value than the high-K film. The 

simulations show that this low-K interfacial layer gives rise to a significant increase 

of the gate leakage. The interface layer engineering on the scalability of high-K gate 

stacks was studied. Recommendations for interface layer materials were made for 

high-K gate stacks that will meet ITRS roadmap. Specifically, for HfAlO gate stacks, 

it is found that the existence of an oxide interfacial layer degrades the gate leakage so 

much that oxynitride or silicate should be exploited for interface engineering in the 

high-K gate stacks for low stand-by power application.  
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(III) Metal Gate Engineering on Gate Leakage of MOSFETs 

 

In metal gated CMOS devices, a systematic study of tunneling leakage currents 

has been made and it is to study how the gate leakage is affected by the work function 

of the metal gate electrode. Physical model used for simulations was corroborated by 

experimental results from SiO2 and HfO2 gate dielectrics with TaN electrodes.  

 

(a) In bulk CMOS, in which metal gates with work functions at conduction and 

valence band edges of Si are required for optimal performance, the gate leakage 

currents simulated in poly-Si and metal gated MOSFETs were compared. The use of 

metal gate can reduce gate leakage appreciably by 1-2 orders of magnitude at the 

same CET (capacitance equivalent oxide thickness at inversion). Due to the 

elimination of poly-Si gate depletion, metal gate material exhibits superior capability 

in gate dielectric scaling over the conventional poly-Si gate.  

 

(b) The effects of metal gate work function on various tunneling components in 

MOSFETs have been investigated. In SOI MOSFETs with un-doped body, the use of 

mid-gap metal gate results in significant reduction of gate to source/drain extension 

(SDE) tunneling in both n- and p-MOSFETs.  As a result, SOI MOSFETs exhibit 

much lower off-state leakage current contributed by gate to SDE tunneling and this 

reduction of off-state leakage current can be as much as three orders of magnitude 

when high-K gate stack is used.  
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6.2. Recommendations for Future Works 

 

(I) Quantization in ultrathin body SOI devices 

As discussed in Section 1.7, the ultrathin body or double gate (DG) SOI 

demonstrates superior scalability in device scaling. When the body thickness is scaled 

to nanometer scale, the carrier confinement due to the body, which has been known as 

the volume inversion [152], can occur in conjunction with the confinement by the 

inversion layer.  In current fabrication technology, the body thickness has been scaled 

to below 5 nm, in which body confinement plays a critical role in determining the 

MOS electrostatics, especially at threshold. Therefore, as an extension of the hole 

quantization study in this thesis, it is proposed to study the hole quantization using 

six-band effective mass model and to establish the improved one-band effective mass 

method in ultrathin body or DG SOI devices. Although electron quantization in such 

devices have been analyzed extensively, hole quantization [153], especially including 

the valence band mixing, is less investigated. Such a study should be helpful for 

determining the accurate pMOSFET electrostatics, and also be beneficial for the study 

of hole transport in such scaled devices 

 

(II) Carrier Quantization in other Surface of Si.  

 Because the Si (100) surface widely used in current processing has the 

disadvantage of low hole mobility, other Si surfaces, such as (110), is being explored 

because of the high hole mobility [154]. As discussed in Section 1.7, the FinFET, 

demonstrated by recent studies, is one of the most promising device architecture in 

device scaling [65]. In Fin technology, the channel surface is generally on (110) Si 

surface.  Therefore, it is also interesting to study the carrier quantization in channel 
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surface other than the conventional (100). Recently, such a study on hole quantization 

using six-band self-consistent method has been reported [155], however, the 

exploratory of simple simulation methods beyond the six-band self-consistent method 

is extremely valuable. 

 

(III) Tunneling in High-K dielectrics 

As discussed in Chapter 4, most of studies on tunneling currents in high-K 

stacks were concentrated on oxynitride system. Modeling studies on HfO2 system 

have been performed only in recent years. However, it is still difficult to have HfO2 

film with quality as high as the SiO2. The existence of the interfacial layer also makes 

the situation complicated. The thickness and composition of the interfacial layer may 

depend very much on processing details, such as the surface cleaning and treatment, 

deposition recipe and technique, and annealing conditions. At present, the analysis on 

the interfacial layer is quite limited. This may partly account for the difference in the 

extracted parameters of HfO2 from different authors [41, 45, 127, 137]. Therefore, a further 

study is still necessary in conjunction with the future developments on HfO2 

dielectric.  

As presented in Section 4.4, HfAlO and HfSiO have been demonstrated as 

promising high-K candidates. However, there still are less studies on tunneling in this 

category of alloy dielectric materials [41, 156]. In this thesis, although the gate leakage is 

estimated for these materials, comparisons to experiments have not been made 

because less reliable experimental data is available to date. The accurate 

determination of the alloy composition is still difficult at present stage. It is also 

unknown how the relevant parameters, such as dielectric constant, band offset and 

tunneling effective mass, vary with the film composition. A further study of tunneling 
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in such alloy dielectrics will be meaningful for the optimization of these alloy high-K 

materials.  

Another proposed study is the interfacial layer effects on tunneling currents. In 

this thesis, the interfacial layer is assumed to be uniform in dielectric properties due to 

the lack of detailed information on the interface layer. In practical case, the interfacial 

layer may not be uniform and it is more appropriate to consider the interface layer as a 

transition layer [138].  The study of such a structural non-uniform transition layer on 

the gate leakage as well as its impact on the high-K scalability is another interesting 

topic in future [157].  

 

(IV) Tunneling in metal gate CMOS 

 The Fermi level pinning at the metal/dielectric interface plays an important role 

in the determination of the effective work function of metal on dielectric [52, 60]. As we 

have demonstrated in Chapter 5, metal gate work function impacts significantly the 

direct tunneling currents in CMOS devices. In Chapter 5, only general guidelines 

were provided, the properties of the specific metal/dielectric interface were not 

considered. Here, we propose the future studies on tunneling in metal gate CMOS 

with high-K dielectric. With the Fermi level pinning properly considered at the 

metal/High-K interface, it will be valuable to evaluate tunneling current performance 

for some metal gates currently being explored, such as TiN, TaN, or silicide.  
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Brief Descriptions of Simulation Programs 

 

I. Program Flow Chart for Quantization 
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Main Program:  “sub(Ns).m” 

Inversion  
“NinvPhis.m” 

Accumulation 
“NaccPhis.m” 

Ef determination  
“Efermi.m” 

Quantization charge 
“Qinv.m”  

Set a charge density from 
Neh.dat 

Set a charge density 
from Neh.dat 

Subband Energy 
“Energy.m”  

Self-consistency of  
surface potential by 
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Ef determination  
“Efermi.m” 
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II. Program Flow Chart for Direct Tunneling 
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Input Device Parameters:  “dtele.m” 

Solution for substrate quantization (see Part I)  
“sub.m, .m, NinvPhis.m, NaccPhis.m, Qinv.m, Phinv.m, 

Efermi.m, Energy.m, Zdepth.m, Neh.dat” 

NMOS tunneling 
“NMOSIV.m” 

PMOS tunneling 
“PMOSIV.m” 

Vg > 0  Vg < 0  Vg < 0  Vg > 0  

Jcesg  Jvesg Jcegs Jvhsg Jvhsg Jcegs Jcesg  Jvesg 

Tunneling from 
2-D subbands 

“Jqm.m” 

Tunneling from 
valence electron 

“Jve.m”  

Tunneling probability with TR correction 
“Tunn.m” 

Velocity for TR 
“Vsi.m” 

WKB integration 
“Twkb.m” 

Poly Gate Voltage 
Drop: Vpoly.m 

##   Jabcd: a-band (conduction/valence), b-carrier (electron/hole); c-injecting, d-
outgoing electrodes. 
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