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SUMMARY 
 

Multiple criteria decision making (MCDM) refers to the problem of selecting or ranking a 

finite set of alternatives with usually noncommensurate and conflicting criteria. MCDM 

methods have been developed and applied in many areas. Obviously, uncertainty always 

exists in the human world. Fuzzy set theory is a perfect means for modeling imprecision, 

vagueness, and subjectiveness of information. With the application of fuzzy set theory, the 

fuzzy MCDM methods are effective and flexible to deal with complex and ill-defined 

problems.  

 

Two fuzzy MCDM methods are developed in this thesis. The first one is fuzzy extension 

of ELECTRE. In this method, fuzzy ranking measurement and fuzzy preference 

measurement are proposed to construct fuzzy outranking relations between alternatives. 

With reference to the decision maker (DM)’s preference attitude, we establish the 

concordance sets and discordance sets. Then the concordance index and discordance index 

are used to express the strengths and weaknesses of alternatives. Finally, the performance 

index is obtained by the net concordance index and net discordance index. The sensitivity 

analysis of the threshold of the DM’s preference attitude can allow comprehension of the 

problem and provide a flexible solution. 

 

Another method we proposed is fuzzy MCDM based on the risk and confidence analysis. 

Towards uncertain information, the DM may show different risk attitudes. The optimist 

tends to solve the problem in a favorable way, while the pessimist tends to solve the 



 v

problem in an unfavorable way. In assessing uncertainty, the DM may have different 

confidence attitudes. More confidence means that he prefers the values with higher 

possibility. In this method, risk attitude and confidence attitude are incorporated into the 

decision process for expressing the DM’s subjective judgment and assessment. Linguistic 

terms of risk attitude towards interval numbers are defined by triangular fuzzy numbers. 

Based on the α-cut concept, refined triangular fuzzy numbers are defined to express 

confidence towards uncertainty. By two imagined ideal solutions of alternatives: the 

positive ideal solution and the negative ideal solution, we measure the alternatives’ 

performances under confidence levels. These values are aggregated by confidence vectors 

into the overall performance. This method is effective in treating the DM’s subjectiveness 

and imprecision in the decision process. The sensitivity analysis on both risk and 

confidence attitudes provides deep insights of the problem.   
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NOMENCLATURE 
 
 
 R                 Set of real numbers  
 

+R                Set of positive real number  
 
A~                  Fuzzy set and fuzzy number 
 

)(~ xAµ           Membership function of  x  in  A~  
 

)~(ASupp       Support set of A~  
 

αA~                α -cut of A~   
 

)(αla             Lower value of interval of confidence at level α  
 

)(αua             Upper value of interval of confidence at level α  
 
( 1a , 2a , 3a )    A triangular fuzzy number  
 

)(xT               Set of linguistic term 
 

x∀                  Universal quantifier (for all x ) 
 

x∃                   Existential quantifier (there exists an x ) 
 
<                    Strict total order relation 
 
≤                    Non-strict total order relation 
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∩                   Intersection 
 
∅                   Empty subset 
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Chapter 1 

Introduction 

 

1.1 Background  

 

Making decisions is a part of our lives. Most decision problems are made based on 

multiple criteria. For example, in a personal context, one chooses a job based on its salary, 

location, promotion opportunity, reputation and so on. In a business context, a car 

manufacturer needs to design a model which maximizes fuel efficiency, maximizes riding 

comfort, and minimizes production cost and so on.  In these problems, a decision maker 

needs to have relevant criteria or objectives. These criteria or objectives usually conflict 

with one another and the measurement units of these criteria or objectives are usually 

incommensurable. Solutions of these problems are either to design the best alternative or 

to select or rank the predefined alternatives.  

 

Multicriteria decision making (MCDM) is one of the most well known branches of 

decision making and has been one of the fast growing problem areas during the last two 

decades. From a practical viewpoint, two main theoretical streams can be distinguished. 

First, by assuming continuous solution spaces, multiple objective decision making 

(MODM) models solve problems given a set of objectives and a set of well defined 

constraints. MODM problems are usually called multiple objective optimization problems. 

The second stream focuses on problems with discrete decision spaces. That is to solve 
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problems by ranking, selecting or prioritizing given a finite number of courses of action 

(alternatives). This stream is often called multiple attribute decision making. Methods and 

applications of these two streams in the case of a single decision maker have been 

thoroughly reviewed and classified (Hwang and Yoon, 1981; Hwang and Masud, 1979). 

In this thesis, our research scope focuses on the second stream. The more general term 

MCDM is used here.   

 

The basic characteristics of MCDM are alternatives and criteria. They are explained as 

follows.  

 

Alternatives 

A finite number of alternatives need to be screened, prioritized, selected and ranked. The 

alternatives may be referred to as “candidates” or “actions”, among others. 

 

Multiple Criteria  

Each MCDM problem is associated with multiple criteria. Criteria represent the different 

dimensions from which the alternatives can be viewed.  

 

In the case where the number of criteria is large, the criteria may be arranged in a 

hierarchical structure for a clear representation of problems. Each major criterion may be 

associated with several sub-criteria and each sub-criterion may be associated with several 

sub-sub-criteria and so on. Although some MCDM problems may have a hierarchical 

structure, most of them assume a single level of criteria. A desirable list of criteria should: 

(1) be complete and exhaustive. All important performance criteria relevant to the final 
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decision should be represented; (2) be mutually exclusive. This permits listed criteria as 

independent entities among which appropriate trade-offs may later be made. And this 

helps prevent undesirable “double-counting” in the worth sense; (3) be restricted to 

performance criteria of the highest degree of importance. The purpose is to provide a 

sound basis from which lower level criteria may subsequently be derived.    

 

Conflict among Criteria    

Criteria usually conflict with one another since different criteria represent different 

dimensions of the alternatives. For instance, cost may conflict with profit etc. 

 

Incommensurable Units 

Criteria usually have different units of measurement. For instance, in buying a car, the 

criteria “cost” and “mileage” may be measured in terms of dollars and thousands of miles, 

respectively. Normalization methods can be used for commensuration among criteria. 

Some methods that are often used include vector normalization and linear scale 

transformation.  

 

Decision Weights 

 Most MCDM problems require that the criteria be assigned weights to express their 

corresponding importance. Normally, these weights add up to one. Besides the weights 

being assigned by a decision maker directly, other main methods include: (1) eigenvector 

method (Saaty, 1977), (2) weighted least square method (Chu et al, 1979), (3) entropy 

method (Shannon, 1947), and (4) LINMAP (Srinivasan and Shocker, 1973) (Hwang, C.L. 

and Yoon, K., 1981). 
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Decision Matrix 

MCDM problems can be concisely expressed in a matrix format. Suppose that there are m 

alternatives and n criteria in a decision-making problem. A decision matrix D  is a nm×  

matrix. It is also assumed that the decision maker has determined the weights of relative 

importance of the decision criteria. This information is expressed as follows: 

 



















=

mnmm

n

n

xxx

xxx
xxx

D

K

KKKK

K

K

21

22221

11211

, 

),,,,( 1 nj wwwW KK= , 

where ijx  is the rating of alternative iA  with respect to criterion jC , represented by a 

matrix referred to as the decision matrix. jw  is the weight of criterion jC , represented by 

a vector referred to as the weighting vector.  

 

1.2 Motivations  

 

In the real world, an exact description of real situations may be virtually impossible. In 

MCDM problems, uncertainties mainly come from four sources: (1) unquantifiable 

information, (2) incomplete information, (3) nonobtainable information, (4) partial 

ignorance. Classical MCDM methods do not handle problems with such imprecise 

information. The application of fuzzy set theory to MCDM problems provides an effective 

way of dealing with the subjectiveness and vagueness of the decision processes for the 

general MCDM problem. Research on fuzzy MCDM methods and its applications have 

been explored in many monographs and papers (Bellman and Zadeh, 1970; Carlsson 
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1982; Zimmermann, 1987; Dubois and Prade, 1994; Herrera and Verdegay, 1997; Chen 

and Hwang, 1992). In these fuzzy MCDM approaches, the majority of the methods require 

cumbersome computations. This leads to difficulties in solving problems with many 

alternatives and criteria. The complex computation in the ranking of fuzzy numbers often 

leads to unreliable, even counter-intuitive results. Human subjective attitude towards 

uncertainty is seldom studied to provide human-oriented solutions in the fuzzy decision 

problems. 

 

1.3 Methodology 

 

Zadeh (1965) proposed fuzzy set theory as the means for representing, quantifying, and 

measuring the inherent uncertainty in the real world. Fuzziness is a type of imprecision 

which may be associated with sets in which there are no sharp transition from membership 

to nonmembership. It presents a mathematical way to deal with vagueness, impreciseness 

and subjectiveness in complex and ill-defined decision problems.  

 

Triangular Fuzzy Number 

For many practical applications and fuzzy mathematics problems, triangular fuzzy 

numbers are simple in operating and approximating. In the triangular fuzzy 

number ),,(~
321 aaaA = , 1a , 2a  and 3a  represents lower, modal and upper value of 

presumption to uncertainty. In the inverse, multiplication, and division operations, the 

outcome does not necessarily give a real triangular fuzzy number. But using an 

approximation of triangular fuzzy numbers is enough to reflect the facts without much 
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divergence. When the DM considers the uncertain ratings of the alternatives and the 

weights of the criteria, the triangular fuzzy number approach is usually used. Linguistic 

terms also can be simply expressed by triangular fuzzy numbers. 

 

Linguistic Variable  

The linguistic approach is intended to be used in situations in which the problem is too 

complex or too ill-defined to be amenable to quantitative characterization. It deals with the 

pervasive fuzziness and imprecision of human judgment, perception and modes of 

reasoning. A linguistic variable can be regarded either as a variable whose value is a fuzzy 

number or as a variable whose values are defined in linguistic terms.  

 

1.4 Contributions  

 

The objective of this research is to develop fuzzy MCDM methods. This thesis proposes 

two novel approaches.  

 

The first proposed method is a fuzzy extension of ELECTRE. In this method, we first 

propose a fuzzy ranking measurement to construct the relations between two alternatives. 

Preference measurement is then used to represent pairwise preferences between two 

alternatives with reference to the whole set of alternatives. Based on the DM’s preference 

attitudes, we establish the concordance and discordance sets. The corresponding 

concordance and discordance indices are used to express the strengths of outranking 

relations. The net concordance and discordance indices are combined to obtain the 
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performance of alternatives. In this procedure, the preference attitude is incorporated in 

the outranking process to provide a more flexible way to evaluate and analyze alternatives. 

 

The second method that we (Wang and Poh, 2003a, 2003b, 2003c, 2003d, and 2003e) 

proposed is a fuzzy MCDM method based on risk and confidence analysis.  In this 

method, the risk attitude and confidence attitude are defined by linguistic terms. The 

triangular fuzzy numbers are proposed to incorporate the DM’s risk attitudes towards an 

interval of uncertainty. In order to deal with the DM’s confidence in the fuzzy 

assessments, based on the α-cut concept, we proposed refined triangular fuzzy numbers to 

assess the confidence level towards uncertainty. Confidence vectors are obtained from the 

membership functions of confidence attitudes. By using confidence vectors, the 

alternatives’ performances on confidence levels are aggregated as the final performance to 

evaluate the alternatives. This method incorporates the DM’s subjective judgment and 

assessments towards uncertainty into the decision process. Thus, by considering human 

adaptability and dynamics of preference, the proposed method is effective in solving 

complex and ill-defined MCDM problems. 

 

1.5 Origination of The Thesis   

 

The next chapter presents a state-of-the-art survey of crisp MCDM methods, an overview 

of the fuzzy set theory and operations, as well as the fuzzy MCDM methods. Then in 

chapters three and four we present the proposed fuzzy extension of ELECTRE method and 

an example, respectively.  In chapters five and six we introduce the proposed fuzzy 
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MCDM method based on risk attitude and confidence attitude and an example, 

respectively. Finally, chapter seven concludes our work in this thesis.  
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Chapter 2 

Literature Survey  

 

In this Chapter, we first present an overview of crisp MCDM methods. Then we give an 

introduction of fuzzy set theory and operations. Finally, by the application of fuzzy set 

theory, we introduce the fuzzy MCDM methods. 

 

2.1 Crisp MCDM Methods 

 

An MCDM method is a procedure to process alternatives’ values in order to arrive at a 

choice. There are three basic steps in MCDM methods to evaluate the alternatives. First of 

all, we formulate the problem by determining the relevant criteria and alternatives. 

Secondly, we attach numerical measures to the relative importance of the criteria as the 

weights and to the impacts of the alternatives on criteria as the ratings. Finally, we process 

the numerical values of the ratings of alternatives and weights of criteria to evaluate 

alternatives and determine a ranking order.  

 

There are two major approaches in information processing: noncompensatory and 

compensatory models. Each category includes the relevant MCDM methods. 

Noncompensatory models do not permit tradeoffs among criteria. An unfavorable value in 

one criterion cannot be offset by a favorable value in some criteria. The comparisons are 

made on a criterion-by-criterion basis. The models in this category are dominance, 
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maximin, maximax, conjunctive constraint method, disjunctive constraint method, and 

lexicographic method. Compensatory models make tradeoffs among criteria. These 

models include the weighted sum model (WSM), the weighted product model (WPM), the 

analytic hierarchy process (AHP), TOPSIS, ELECTRE, LINMAP, nonmetric MDS, 

permutation method, linear assignment method.  

 

The weighted sum model (WSM) is the earliest and widely used method. The weighted 

product model (WPM) can be considered as a modification of the WSM, and has been 

proposed for overcoming some of the weaknesses in WSM. The AHP proposed by Saaty 

(1980) is a later development and has recently become increasingly popular. A revised 

AHP suggested by Belton and Gear (1983) appears to be more consistent than the original 

approach. Other widely used methods are the TOPSIS and ELECTRE. Next, we give an 

overview of some of the popular methods, namely WSM, WPM, AHP, TOPSIS, and 

ELECTRE. 

 

2.1.1 The Weighted Sum Method 

 

The WSM is probably the best known and highly used method of decision making. 

Suppose there are m alternatives and n criteria in a decision-making problem. An 

alternative’s performance is defined as (Fishburn, 1967): 

∑
=

=
n

j
jiji wxp

1

, mi ,...,2,1= ,                                                                                             (2.1)                        

where ijx  is the rating of the i th alternative in terms of the j th decision criterion, and jw  

is the weight of the j th criterion. The best alternative is the one which has the maximum 
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value (in the maximization case). The WSM method can be applied without difficulty in 

single-dimensional cases where all units of measurement are identical. Because of the 

additive utility assumption, a conceptual violation occurs when the WSM is used to solve 

multidimensional problems in which the units are different. 

 

2.1.2 The Weighted Product Method   

 

The WPM uses multiplication to rank alternatives. Each alternative is compared with 

others by multiplying a number of ratios, one for each criterion. Each ratio is raised to the 

power of the relative weight of the corresponding criterion. Generally, in order to compare 

two alternatives kA  and lA  , the following formula (Miller and Starr, 1969) is used: 

∏
=











=







 n

j

w

lj

kj

l

k
j

x
x

A
AQ

1

,                                                                                                     (2.2)                        

where ijx  is the rating of the i th alternative in terms of the j th decision criterion, and jw  

is the weight of the j th criterion. If the above ratio is greater than or equal to one, then (in 

the maximization case) the conclusion is that alternative kA  is better than alternative lA . 

Obviously, the best alternative is the one which is better than or at least as good as all 

other alternatives. The WPM is sometimes called dimensionless analysis because its 

structure eliminates any units of measurement. Thus, the WPM can be used in single- and 

multidimensional decision problems.  
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2.1.3 The AHP Method 

 

The Analytic Hierarchy Process (AHP) approach deals with the construction of a matrix 

(where there are m alternatives and n criteria). In this matrix the element ija  represents the 

relative performance of the i th alternative in terms of the j th criterion. The vector 

),...,,( 21 iniii aaaA =  for the i th alternative ( ),...,2,1 mi =  is the eigenvector of an nn×  

reciprocal matrix which is determined through a sequence of pairwise comparisons (Saaty, 

1980). In the original AHP, 1
1

=∑ =

n

j ijw .  

According to the AHP, an alternative’s performance is defined as: 

∑
=

=
n

j
jiji wap

1

, mi ,...,2,1= .                                                                                            (2.3) 

The AHP uses relative values instead of actual ones. Therefore, the AHP can be used in 

single- and multidimensional decision problems.  

 

The RAHP (Belton and Gear, 1983) is a revised version of the original AHP model. The 

shortcoming of the AHP is that it is sometimes possible to yield unjustifiable ranking 

reversals. The reason for the ranking inconsistency is that the relative performance 

measures of all alternatives in terms of each criterion are summed to one. Instead of 

having the relative values sum to one, they propose that each relative value be divided by 

the maximum value in the corresponding vector of relative values. That is known as the 

ideal-model of AHP. 
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2.1.4 The ELECTRE Method 

 

The ELECTRE (Elimination and Choice Translating Reality; English translation from the 

French original) method was originally introduced by Benayoun et al. (1966). It focuses 

on the concept of outranking relation by using pairwise comparisons among alternatives 

under each criterion separately. The outranking relationship of the two alternatives kA  and 

lA , denoted as lk AA → , describes that even though kA  does not dominate lA  

quantitatively, the DM accepts the risk of regarding kA  as almost surely better than lA  

(Roy, 1973).  

 

The ELECTRE method begins with pairwise comparisons of alternatives under each 

criterion. It elicits the so-called concordance index, named as the amount of evidence to 

support the conclusion that kA  outranks or dominates lA , as well as the discordance 

index, the counterpart of the concordance index.  This method yields binary outranking 

relations between the alternatives. It gives a clear view of alternatives by eliminating less 

favorable ones and is convenient in solving problems with a large number of alternatives 

and a few criteria. There are many variants of the ELECTRE method. The original version 

of the ELECTRE method is illustrated in the following steps.  

 

Suppose there are m alternatives and n criteria. The decision matrix element ijx  is the 

rating of the i th alternative in terms of the j th criterion, and jw is the weight of the j th 

criterion. 
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Step 1: Normalizing the Decision Matrix 

The vector normalization method is used here. This procedure transforms the various 

criteria scales into comparable scales. 

The normalized matrix is defined as follows: 
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where 

∑
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=
m
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x

x
r

1

2

, =i 1, 2, ,K m , =j 1, 2, ,K n . 

 

Step 2: Weighting the Normalized Decision Matrix  

This matrix is obtained by multiplying each column of matrix R with its associated 

weight. These weights are determined by the DM. Therefore, the weighted normalized 

decision matrix V is equal to  
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Step 3: Determine the Concordance and Discordance Sets 

For two alternatives kA  and lA  ( mlk ≤≤ ,1 ), the set of decision criteria 

J={ j },...,2,1 nj =  is divided into two distinct subsets. The concordance set klC  of kA  

and lA is composed of criteria in which kA  is preferred to lA . In other words, 

}{ ljkjkl vvjC ≥= .                                                                                                            (2.6) 

The complementary subset is called the discordance set, described as: 

klljkjkl CJvvjD −=<= }{ .                                                                                            (2.7) 

 

Step 4: Construct the Concordance and Discordance Matrices  

The relative value of the concordance set is measured by means of the concordance index. 

The concordance index is equal to the sum of the weights associated with those criteria 

which are contained in the concordance set. Therefore, the concordance index klC between 

kA and lA  is defined as: 

∑
∈

=
klCj

jkl wc .                                                                                                                    (2.8) 

The concordance index reflects the relative importance of kA  with respect to lA . 

Obviously, 10 ≤≤ klc . The concordance matrix C is defined as follows: 
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The elements of matrix C are not defined when lk = . In general, this matrix is not 

symmetric.  
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The discordance matrix expresses the degree that kA  is worse than lA . Therefore a second 

index, called the discordance index, is defined as: 

ljkjJj

ljkjDj
kl vv

vv
d kl

−

−
=

∈

∈

max

max
.                                                                                                      (2.9) 

It is clear that 10 ≤≤ kld . The discordance matrix D  is defined as follows: 
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In general, matrix D  is not symmetric.  

 

Step 5: Determine the Concordance and Discordance Dominance Matrices  

This matrix can be calculated with the aid of a threshold value for the concordance index. 

kA  will only have a chance of dominating lA , if its corresponding concordance index klc  

exceeds at least a certain threshold value c . That is: 

cckl ≥ .                     

This threshold value can be determined, for example, as the average concordance index:  

∑∑
≠
=

≠
=−

=
m

lk
k

m

kl
l

klc
mm

c
1 1)1(

1 .                                                                                                  (2.10) 

Based on the threshold value, the elements of the concordance dominance matrix F are 

determined as follows:  

,1=klf    if cckl ≥ ; 

,0=klf   if  cckl < . 
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Similarly, the discordance dominance matrix G is defined by using a threshold value d , 

which is defined as : 

∑∑
≠
=

≠
=−

=
m

lk
k

m

kl
l

kld
mm

d
1 1)1(

1 ,                                                                                                 (2.11) 

where 

,1=klg    if ddkl ≤ ; 

,0=klg   if ddkl > . 

 

Step 6: Determine the Aggregate Dominance Matrix  

The elements of the aggregate dominance matrix E are defined as follows: 

klklkl gfe ×= .                                                                                                                (2.12) 

 

Step 7: Eliminate the Less Favorable Alternatives 

The aggregate dominance matrix E gives the partial-preference ordering of the 

alternatives. If 1=kle , then kA is preferred to lA  for both the concordance and 

discordance criteria, but kA  still has the chance of being dominated by the other 

alternatives. Hence the condition that kA is not dominated by the ELECTRE procedure is:  

,1=kle  for at least one l , lkml ≠= ,,...,2,1 ; 

,0=ike  for all likimii ≠≠= ,,,...,2,1, . 

This condition appears difficult to apply, but the dominated alternatives can be easily 

identified in the E matrix. If any column of the E matrix has at least one element of 1, then 
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this column is ‘ELECTREcally’ dominated by the corresponding row(s). Hence we simply 

eliminate any column(s) which has an element of 1. 

 

2.1.5 The TOPSIS Method 

 

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) was developed 

by Hwang and Yoon (1980) as an alternative to the ELECTRE method. The basic concept 

of this method is that the selected best alternative should have the shortest distance from 

the positive ideal solution and the farthest distance from the negative ideal solution in a 

geometrical (i.e., Euclidean) sense. The TOPSIS assumes that each criterion has a 

tendency toward monotonically increasing or decreasing utility. Therefore, it is easy to 

locate the ideal and negative-ideal solutions. The Euclidean distance approach is used to 

evaluate the relative closeness of alternatives to the ideal solution. Thus, the preference 

order of alternatives can be derived by comparing these relative distances.  

 

Suppose there are m alternatives and n criteria. The decision matrix element ijx  is the 

rating of the i th alternative in terms of the j th criterion, and jw  is the weight of the j th 

criterion. 

 

Step 1: Normalizing the Decision Matrix 

The TOPSIS converts the various criteria dimensions into nondimensional criteria, as in 

the ELECTRE method. An element ijr  of the normalized decision matrix R  is calculated 

as follows: 
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Step 2: Construct the Weighted Normalized Decision Matrix 

A set of weight ),,( 2,1 nwwwW L= , ∑ =
=

n

j jw
1

1 , specified by the decision maker, is used 

in conjunction with the previous normalized decision matrix to determine the weighted 

normalized matrix V defined as: 
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where 

ijjij rwv = , ∑
=

=
n

j
jw

1
1, =i 1, 2, ,K m , =j 1, 2, ,K n . 

 

Step 3: Determine the Positive Ideal and the Negative Ideal Solutions 

The positive ideal *A  and the negative ideal −A  solutions are defined as follows: 

),|max{(
1

* JjvA ijmi
∈=

≤≤
)}|min( '

1
Jjvijmi

∈
≤≤

 

       = { },...,,..., ***
1 nj vvv ,                                                                                                  (2.15) 

)}|max(),|min{( '

11
JjvJjvA ijmiijmi
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≤≤≤≤

−  
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       = { },...,,...,1
−−−
nj vvv ,                                                                                                 (2.16) 

where  

jnjJ |,...,2,1{ ==   is associated with benefit criteria}, 

and jnjJ |,...,2,1{' ==  is associated with cost criteria}. 

It is clear that these two created alternatives *A  and −A  indicate the most preferable 

alternative (positive ideal solution) and the least preferable alternative (negative ideal 

solution), respectively. 

 

Step 4: Calculate the Separation Measure  

In this step the concept of the n-dimensional Euclidean distance is used to measure the 

separation distances of each alternative to the positive ideal solution and negative ideal 

solution.  

The separation of each alternative from the positive ideal solution is defined as: 

∑
=

−=
n

j
jiji vvS

1

2* )(* ,     mi ,...,2,1= .                                                                          (2.17) 

Similarly, the separation of each alternative from the negative ideal one is defined as:  

∑
=

−−=−

n

j
jiji vvS

1

2)( ,      mi ,...,2,1= .                                                                        (2.18) 

 

Step 5: Calculate the Relative Closeness to the Ideal Solution  

The alternative with a lower value of *iS  and a higher value of −iS  is preferred. The 

relative closeness of iA  with respect to *A  is defined as: 
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* ,    mi ,...,2,1= .                                                                                    (2.19)              

It is clear that 1* =iC  if iA = *A  and 0* =iC  if iA = −A . An alternative iA  is closer to *A  

as *iC  approaches 1. 

 

Step 6: Rank the Preference Order 

The best alternative can be decided according to the preference rank order of *iC . 

Therefore, the best alternative is the one which has the shortest distance to the positive 

ideal solution. The way the alternatives are processed in the previous steps reveals that if 

an alternative has the shortest distance from the positive ideal solution, then this 

alternative is guaranteed to have the longest distance from the negative ideal solution. 

 

2.2 Fuzzy Set Theory and Operations 

 

Very often in MCDM problems data are imprecise and vague.  Also, the DM may 

encounter difficulty in quantifying linguistic statements that can be used in decision 

making. Fuzzy set theory, proposed by Zadeh (1965), has been effectively used in 

representing and measuring uncertainty. It is desired to develop decision making methods 

in the fuzzy environment.  In this section, we will present basic concepts and definitions 

of fuzzy set theory and operations from mathematical aspects. In many fuzzy MCDM 

methods, the final performances of alternatives are expressed in terms of fuzzy numbers. 

Thus, the fuzzy ranking methods need to be introduced here also. The application of fuzzy 

set theory to MCDM problems will be introduced in section 2.3.  
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2.2.1 Basic Concepts and Definitions  

 

Definition 2.1: If X  is a universe of discourse denoted generically by x , then  a fuzzy set 

A~  in the universe of discourse X  is characterized by a membership function )(~ xAµ    

which associates with each element x  in X  a real number in the interval ]1,0[ .  )(~ xAµ  

is called the membership function of  x  in  A~ .  

 

Definition 2.2: A crisp set is a collection of elements or objects Xx∈  that can be finite, 

countable, or over countable. Each single element can either belong to or not belong to a 

set A , XA ⊆ .  

 

Definition 2.3: The support of a fuzzy set A~ ( )~(ASupp ) in the universe of discourse X is 

the crisp set of all Xx∈ , such that 0)(~ >xAµ .  

 

Definition 2.4: A fuzzy set A~  in the universe of discourse X is called a normal fuzzy set 

means that Xx∈∃ , such that 1)(~ =xAµ .  

 

Definition 2.5: A fuzzy set A~  in the universe of discourse X is convex means that  

)},(),(min{)( 3~1~2~ xxx AAA µµµ ≥   for all ,, 31 Xxx ∈  and any ].,[ 312 xxx ∈   

 

Definition 2.6: A fuzzy number is a fuzzy set in the universe of discourse X that is both 

convex and normal. Figure 2.1 shows a fuzzy number in the universe of discourse X.  
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Figure 2.1 A fuzzy number A~  

 

Definition 2.7: A fuzzy number A~  is positive (negative) if its membership function is 

such that 0)(~ =xAµ , 0≤∀x  ( 0≥∀x ). 

 

Definition 2.8: If A~  is a fuzzy set in the universe of discourse X, then the α-cut set of A~  

is defined as { }αµα >∈= )(|~
~ xXxA A , 10 ≤≤ α .  

 

For any fuzzy number A~ , αA~  is a non-empty closed, bounded interval for 10 ≤≤ α . It can 

be denoted as [ ])(),(~ ααα
ul aaA = , where )(αla  and )(αua  represent the lower 

boundary and upper boundary of the interval, respectively.  )(αla  is an increasing 

function of α  with )1()1( ul aa ≤ , while )(αua  is a decreasing function of α  with 

)1()1( ul aa ≤ . Figure 2.2 shows a fuzzy A~  with α-cuts, where [ ])(),(~
11

1 ααα
ul aaA =  

and [ ])(),(~
22

2 ααα
ul aaA = . It is obvious when 12 αα ≥ , 

[ ] [ ])(),()(),( 1122 ααα ulul aaaaa ⊂ .  

X

1 

0 

)(~ xAµ  
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Figure 2.2 A fuzzy number A~  with α-cuts 

 

Definition 2.9: A triangular fuzzy number A~  is defined by a triplet ( 1a , 2a , 3a ) shown in 

Figure 2.3. The membership function is defined as:                        
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Figure 2.3 A triangular fuzzy number ),,(~
321 aaaA =   
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Definition 2.10: If A~  is a triangular fuzzy number, and 0)( >αla , for 10 ≤≤α , then A~  

is called a positive triangular fuzzy number. 

 

Let ),,(~
321 aaaA =  and ),,(~

321 bbbB =  be two positive triangular fuzzy numbers. The 

basic arithmetic operators are defined as: 

a. Negation: ),,(~
123 aaaA −−−=− . 

b. Inverse: ).1,1,1(~
123

1 aaaA =−  

c. Addition: ),,(~~
332211 bababaBA +++=+ . 

d. Subtraction: ),,(~~
132231 bababaBA −−−=− . 

e. Multiplication: ),,(~~
332211 bababaBA = .   

f. Division: ),,(~~
132231 bababaBA = .    

g. Scalar multiplication: 

0>∀k , Rk ∈ , ),,( 321 kakakakA = ; 0<∀k , Rk ∈ , ),,( 123 kakakakA = .                 (2.21) 

 

Definition 2.11: If A~  is a triangular fuzzy number and 0)( >αla , 1)( ≤αua  for 

10 ≤≤α , then A~  is called a normalized positive triangular fuzzy number. 

 

Definition 2.12: A matrix D~  is called a fuzzy matrix, if at least an element in D~  is a 

fuzzy number. 
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Definition 2.13: Let ),,(~
321 aaaA =  and ),,(~

321 bbbB =  be two positive triangular fuzzy 

numbers, then the vertex method is defined to calculate the distance between them: 

2/12
33

2
22

2
11 }3])()()[({)~,~( bababaBAd −+−+−= .                                                 (2.22) 

 

Definition 2.14: Let ),,(~
321 aaaA =  and ),,(~

321 bbbB =  be two triangular fuzzy 

numbers. The fuzzy number A~  is closer to fuzzy number B~  as )~,~( BAd  approaches 0.  

 

Definition 2.15: Let ),,(~
321 aaaA =  and ),,(~

321 bbbB =  be two triangular fuzzy 

numbers. If BA ~~
= , then 11 ba = , 22 ba =  and 33 ba = . 

 

2.2.2 Ranking of Fuzzy Numbers 

 

In many fuzzy MCDM methods, the final performances of alternatives are represented in 

terms of fuzzy numbers. In order to choose the best alternatives, we need a method for 

building a crisp ranking order from fuzzy numbers. The problem of ranking fuzzy 

numbers appears often in literature (McCahon and Lee, 1988; Zhu and Lee, 1991). Each 

method of ranking has its advantages over others in certain situations. It is hard to 

determine which method is the best one. The important factors in deciding which ranking 

method is the most appropriate one for a given situation include the complexity, 

flexibility, accuracy, ease of interpretation of the fuzzy numbers which are used.  
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A widely used method for comparing fuzzy numbers was introduced by Bass and 

Kwakernaak (1977). The concept of dominance measure was introduced by Tong and 

Bonissone (1981) and it was proved to be equivalent to Bass and Kwakernaak’s ranking 

measure. The method proposed by Zhu and Lee (1991) is less complex and still effective. 

It allows the DM to implement it without difficulty and with ease of interpretation. This is 

adopted in fuzzy MCDM by Triantaphyllou (1996).  

 

The procedure of Zhu and Lee’s method for ranking fuzzy numbers is to compare the 

membership function as follows: 

For fuzzy numbers A~  and B~ , we define: 

))}(),({min(max ~~~~ yxe BAyxBA µµ
≥

= .                                                                                   (2.23) 

Then BA ~~
>  if and only if 1~~ =BAe  and Qe AB <~~ , where Q  )1,0[∈ .  Values such as 0.7, 

0.8, or 0.9 might be appropriate for Q , and the value of Q  should be set by the DM or can 

be varied for sensitivity analysis.  

 

2.3 Fuzzy MCDM Methods 

 

Fuzzy MCDM methods are proposed to solve problems involving fuzzy data. Bellman and 

Zadeh (1970) first introduced fuzzy set theory to decision making problems. Bass and 

Kwakernaak (1977) proposed a fuzzy MCDM method that is regarded as classical work. 

A systematic review of fuzzy MCDM has been conducted by Zimmermann (1987) and 

Chen and Hwang (1992). Zimmermann treated the fuzzy MCDM method as a two-phase 

process. The first phase is to aggregate the fuzzy ratings of the alternatives as the fuzzy 
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final ratings. The second phase is to obtain the ranking order of the alternatives by fuzzy 

ranking methods.  

 

Next we will present the widely used fuzzy MCDM method that is based on traditional 

MCDM methods presented in section 2.1. These are the WSM, the WPM, the AHP, and 

the TOPSIS method. Fuzzy ELECTRE methods are based mainly on the fuzzy outranking 

relations.  We will discuss fuzzy ELECTRE methods and propose a new approach in 

chapter 3. In these fuzzy MCDM methods, the values which the DM assigns to the 

alternatives in terms of the decision criteria are fuzzy. These fuzzy numbers are often 

assigned as triangular fuzzy numbers. The procedure is based on the corresponding crisp 

MCDM method.  

 

2.3.1 The Fuzzy Weighted Sum Method 

 

Suppose there are m alternatives and n criteria in a decision-making problem. The rating 

of the i th alternative in terms of the j th criterion is a fuzzy number denoted as ijx~ . 

Analogously, it is assumed that the DM uses fuzzy numbers in order to express the 

weights of the criteria, denoted as jw~ . Now the overall fuzzy utility is defined as: 

∑
=

=
n

j
jiji wxp

1

~~~ , mi ,...,2,1= .                                                                                           (2.24) 

The next procedure is to use a fuzzy ranking method to determine the ranking order of 

these fuzzy numbers.  The fuzzy ranking method (2.23) can be effectively used here. The 

best alternative is the one with the maximum value. 
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2.3.2 The Fuzzy Weighted Product Method 

 

For the fuzzy version of the weighted product model, the corresponding formula is defined 

as: 

∏
=











=







 n

j

w

lj

kj
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k
j

x
x

A
AQ

1

~

~
~~ ,                                                                                                   (2.25) 

where the kjx~ , ljx~  are the respective  ratings of the alternatives in terms of criteria, and jw~  

is the weight of criterion j . These are all expressed as fuzzy numbers. Alternative kA  

dominates alternative lA  if and only if the numerator in (2.25) is greater than the 

denominator. 

 

2.3.3 The Fuzzy AHP Method 

 

The extension of the crisp AHP to fuzzy environment has been developed (Buckley, 1985; 

Boender et al., 1989; Laarhoven and Pedrycz, 1983). In the fuzzy version of the AHP 

method, triangular fuzzy numbers were used in pairwise comparisons to compute the 

weights of importance of the decision criteria. The fuzzy performance values of the 

alternatives in terms of each decision criterion were computed by using triangular fuzzy 

numbers also. The most widely used procedure is proposed by Buckley (1985) and is 

well-known for its simplicity. In this method, the rating of the i th alternative in terms of 

the j th criterion is a fuzzy number denoted as: ijx~ . First the aggregated fuzzy rating can 

be calculated as: 

n
inii xxz

1

1 ]~~[~ ××= K , mi ,...,2,1= .                                                                                (2.26)                     
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Next, the geometric mean method is used for obtaining the fuzzy weight as follows: 

∑=

= m

i i

i
i

z
zw

1
~

~~ , mi ,...,2,1= .                                                                           (2.27) 

Finally, the overall fuzzy utility (performance) can be obtained as: 

∑
=

=
n

j
ijji xwp

1

~~~ , mi ,...,2,1= .                                                                                           (2.28)           

 

2.3.4 The Fuzzy TOPSIS Method 

 

One approach of fuzzy TOPSIS is to use fuzzy numbers in the procedure of crisp TOPSIS 

in section 2.1.5.  The fuzzy positive ideal solution and the fuzzy negative ideal solution 

are determined by fuzzy ranking methods. Finally, the fuzzy closeness index to ideal 

solutions determines the ranking order of the alternatives. A fuzzy TOPSIS method was 

proposed by Chen (2000). One merit of this method is that the fuzzy ranking procedure is 

avoided. In this method, the rating of the i th alternative in terms of the j th criterion is a 

fuzzy number denoted as ),,(~
321 ijijijij xxxx = , and the weight of the criteria is denoted as 

)~,~,~(~
321 jjjj wwww = . Suppose there are m alternatives and n criteria. The linear scale is 

used in normalization instead of the vector method in the fuzzy version. It is defined as: 

nmijrR ×= ]~[~ ,                                                                                                                    (2.29) 

where  

),,(~
*
3

*
2

*
1

j

ij

j

ij

j

ij
ij c

x
c
x

c
x

r = ,  if Bj∈ ; 

3
* max ijij xc = , if Bj∈ ; 
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),,(~
123 ij

j

ij

j

ij

j
ij x

c
x
c

x
c

r
−−−

= , if Cj∈ ; 

1min ijij xc =− , if Cj∈ , 

with B and C  being the set of benefit criteria and cost criteria, respectively. 

 

The weighted normalized fuzzy decision matrix is defined as: 

nmijvV ×= ]~[ ,                                                                                                                   (2.30) 

where 

ijijij wrv ~~~ = . 

Then the fuzzy positive ideal solution and fuzzy negative ideal solution are defined as: 

)~,~( **
1

*
nvvA K= , 

)~,~( 1
−−− = nvvA K ,                                                                                                           (2.31) 

where  

)1,1,1(~* =jv and )0,0,0(~ =−
jv  for all j .  

The distance of each alternative from *A  and −A  are calculated as: 

∑
=

=
n

j
jiji vvdd

1

** )~,~( , mi ,...,2,1= ;                                     

∑
=

−− =
n

j
jiji vvdd

1
)~,~( , mi ,...,2,1= ,                                                                                   (2.32) 

where ),( ⋅⋅d  is the distance measurement between two fuzzy numbers by the vertex 

method. 

Finally, the closeness of each alternative is defined as: 
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−

−

+
=

ii

i
i dd

dCC * , mi ,...,2,1= .                                                                                        (2.33) 

Using the closeness index, the ranking order of alternatives can be determined. 

 

2.4 Summary 

 

Classical MCDM methods are introduced in this chapter. An overview of fuzzy set theory 

and operations is presented here and these provide tools to deal with uncertainty in 

MCDM problems. The fuzzy MCDM methods follow in the third section. In chapters 3 

and 4, we will propose a fuzzy extension of the ELECTRE method with an illustrating 

example. In chapters 5 and 6, we will propose a fuzzy MCDM method based on risk and 

confidence analysis, also with an illustrating example.  
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Chapter 3 

Fuzzy Extension of ELECTRE 

 

In this chapter, we propose an approach to extend the ELECTRE method into fuzzy 

environment. A fuzzy outranking method is proposed to determine the relations between 

alternatives.  

 

3.1 Introduction  

 

The ELECTRE method and its family including ELECTRE I, IS, II, III, and IV are 

decision aids popular in Europe. This method was originally proposed in the mid sixties 

last century (Benayoun, Roy and Sussman, 1966; Roy, 1968). Since then it has been 

developed greatly (Nijkamp and Delft, 1977; Voogd, 1983). Based on the concept of 

outranking relations, the ELECTRE method uses a concordance-discordance analysis to 

solve multicriteria decision problems. 

 

Many fuzzy relations have been introduced to model individual preferences. Preference 

modeling is an important aid in the decision process (Roy, 1990, 1996; Vincke, 1990; 

Fodor and Roubens, 1994). Zadeh (1971) first introduced the concept of fuzzy relations. 

The types of relation include fuzzy preference relation (Orlovsky, 1978) and fuzzy 

outranking relation (Roy, 1977; Siskos et al., 1984). Roy and Siskos et al. used outranking 

relations effectively by introducing fuzzy concordance relations and fuzzy discordance 
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relations. A fuzzy concordance relation is an aggregation of fuzzy partial relations, each is 

being considered as a model for a unique criterion. The fuzzy discordance relation takes 

into consideration the importance of the differences between the performances of 

alternatives for each criterion. Both Roy and Siskos used crisp data as criteria. 

 

Here we propose a new method that combines both fuzzy outranking and fuzzy criteria to 

provide a more flexible way for comparing and evaluating alternatives. A novel fuzzy 

outranking measurement is also proposed here. Specifically, in our method, the ratings of 

alternatives and weights of criteria are given in triangular fuzzy numbers to express the 

DM’s assessments. Fuzzy ranking measurement is proposed to construct the relations 

between two alternatives. Preference measurement is used to represent pairwise preference 

between two alternatives with reference to the whole set of alternatives. By considering 

the DM’s preference attitude, we establish the concordance and discordance sets. Then, 

concordance and discordance indices are used to express the strength of outranking 

relations. Finally, the net concordance and net discordance indexes are combined to 

evaluate the performance of alternatives. Sensitivity analysis of the threshold of the DM’s 

preference attitudes can allow deep comprehension of the problems. 

 

Next, in section 3.2, we introduce the measurements between fuzzy numbers and propose 

a new measurement method. Based on fuzzy measurement, we propose our fuzzy 

ELECTRE approach in section 3.3.  
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3.2 The Proposed Method  

 

3.2.1 Fuzzy Outranking Measurement  

 

For any two given alternatives kA  and lA , the outranking relation principle is based on 

the fact that even though kA  and lA  do not dominate each other, the DM accepts the risk 

of regarding kA  is at least as good as lA , given the available information. The problem of 

uncertainty results in a fuzzy outranking relation that makes the comparison more realistic 

and accurate.  

 

Here we propose a method of ranking measurement between two fuzzy numbers. We 

define a fuzzy outranking function in AA×  as a function RAAf →×:  in which the 

different ),( lkf  values indicate the degree of outranking associated with the pair of 

alternatives ),( lk . A corresponding preference measurement will reflect the credibility of 

an existing preference of kA  over lA . Specifically, the ranking measurement evaluates the 

average comparison of fuzzy interval numbers under α-cuts and integrates these values to 

produce the ranking relations. In our method, preference measurements are proposed to 

express pairwise preference relations between two fuzzy numbers with reference to the 

whole fuzzy numbers. By comparing with indices which represent the DM’s preference 

attitudes, we establish the concordance and discordance sets. This method can utilize all 

information included in the fuzzy numbers and determine the outranking relations between 

two fuzzy numbers effectively. The outranking relation between two fuzzy numbers is 

defined as: 



Chapter 3: Fuzzy Extension of ELECTRE 

 36

Definition 3.1: The ranking measurement between iA~  and jA~  ( mji ,,2,1, K=  ) is a 

mapping of this relation into the real line R  as defined below: 

∫ ∫= =
−+−==

1

0

1

0
))()()()((

2
1)~,~()~,~(

α α

αα αααααα daaaadAArAAr juiujliljiji                   (3.1) 

 

Definition 3.2: The preference measurement between iA~  and jA~  ( mji ,,2,1, K=  ) is a 

mapping of this relation into the interval ]1,1[−  as defined below: 

∫ =−
=
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1)~,~(
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ββ α
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0
12

−+−
−

= ∫ =
,                                    (3.2) 

where  

],[)~()~()~( 2121 ββ=∪∪∪ mASuppASuppASupp K .    

 

Given the DM’s preference attitude index λ  ( ]1,0[∈λ ), the interval ]1,0[   represents a 

range from the most strict attitude to the most weak attitude on preference. We have 

preference relations between iA~  and jA~  as: 

(1) if λ>)~,~( ji AAp , then ji AA ~~
f ; 

(2) if λ≤|)~,~(| ji AAp , then ji AA ~~~ ;  

(3) if λ−<)~,~( ji AAp , then ji AA ~~
p . 
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Let ),,(~
321 iiii aaaA = , ),,(~

321 jjjj aaaA =  ( mji ,,2,1, K=  ) be two positive triangular 

fuzzy numbers, we calculate the ranking measurement as: 
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Similarly, the preference measurement is calculated as: 

∫ =−
=
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3.2.2 Proposed Fuzzy ELECTRE 

 

In this section, we introduce the proposed method. The method consists of six steps as 

follows. 
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Step 1: Problem Formulation 

A fuzzy MCDM problem can be concisely expressed in the matrix format as: 
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)~,,~,~(~
21 nwwwW K= ,                                                                                              (3.6) 

where ijx~  and jw~  ( =i 1, 2, ,K m ; =j 1, 2, ,K n ) are positive triangular fuzzy numbers. 

ijx~  is the rating of alternative iA  with respect to criterion jC , and it forms  a fuzzy matrix 

referred to as a decision matrix. jw~  is the weight of criterion jC , and it forms a fuzzy 

vector referred to as a weighting vector.  

 

Step 2: Normalize the Decision Matrix  

This procedure transforms the various attribute scales into comparable scales. Linear scale 

normalization is used for its simplicity.  
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Here B and C  represent benefit criteria and cost criteria, respectively. A maximum value 

among the alternatives is expected for benefit criteria. While a minimum value among the 

alternatives is expected for cost criteria.  

 

Step 3: Calculate the Weighted Normalized Decision Matrix  

The weighted normalized decision matrix is defined by multiplying each column of matrix 

with its associated weight as: 
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where  

),,(~~~
332211 ijjijjijjijjij xwxwxwxwv == .            

                                        

Step 4: Determine the Concordance and Discordance Sets  

For each pair of alternatives kA and lA  ( mlk ,,2,1, K=  and lk ≠ ), when the DM prefers 

kA  to lA , the set of decision criteria },,2,1|( njjJ K==  is divided into concordance sets 

klC  and discordance sets klD  with corresponding definitions: 

})~,~(|{ λ>= ljkjkl vvpjC , ]1,0[∈λ ;                                                                                 (3.9) 

})~,~(|{ λ−<= ljkjkl vvpjD , ]1,0[∈λ ,                                                                             (3.10) 

where  

),( ⋅⋅p  is the preference measurement between two fuzzy numbers. 
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If λ≤|)~,~(| ljkj vvp ,  the DM is indifferent between alternatives kA and lA . Therefore, the 

relevant criteria neither belong to concordance set nor discordance set. 

 

Step 5: Calculate the Concordance and Discordance Indices 

The concordance index measures the strength of confidence by evaluating the criteria 

weights in the concordance set, while the discordance index measures the strength of 

disagreement by evaluating the ratings of the alternatives in the discordance set. The 

concordance index is defined as: 

∑
∈

=
klCj

jkl wC ~~ .                                                                                                                   (3.11) 

Correspondingly, the discordance index is defined as: 

∑
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. 

Note that the information contained in the discordance index differs significantly from that 

contained in the concordance index, making the information content of klC~ and klD  

complementary. Differences among weights are represented by means of the concordance 

matrix, whereas differences among rating values are represented by means of the 

discordance matrix. 
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Step 6:  Determine the Outranking Relations  

One traditional method uses the average values of concordance indices and discordance 

indices as thresholds to establish the outranking relations between two alternatives. These 

thresholds are rather arbitrary and have great impact on the final outranking. Moreover, 

this method leads to cumbersome computing in fuzzy environment. Van Delft and 

Nijkamp (1977) introduced the net dominance relationships for the complementary 

analysis of the ELECTRE method. Similarly, we extend it to the fuzzy number situation. 

The net concordance index kC , which measures the strength of the total dominance of 

alternative kA  that exceeds the strength to which other alternatives dominate kA , is 

defined as: 

 )~,~(
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∑∑
≠
=

≠
=

=
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kn
n

nk

m

kn
n

knk CCrC ,                                                                                                  (3.13)                       

where  

),( ⋅⋅r  is the ranking measurement between two fuzzy numbers as defined in (3.1). 

 

Similarly, the net discordance index kD , which measures the relative weakness of 

alternative kA  compared to other alternatives, is defined as: 

∑∑
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≠
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−=
m

kn
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kn
n

knk DDD
11

.                                                                                                    (3.14) 

Obviously alternative kA  has a higher preference with a higher value of kC  and a lower 

value of kD .  
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Step 7: Determine the Performance Index 

Finally, the net concordance and net discordance indices are combined to evaluate the 

performance of alternatives. According to the performance index we can obtain the 

ranking order and choose the best one. We define the final performance index as:  

kkk DCE −= .                                                                                                                 (3.15) 

 

In summary, the procedure of proposed fuzzy extension of ELECTRE is given as follows: 

 

Step 1: Formulate the problem as expressed in (3.5) and (3.6). 

Step 2: Normalize the decision matrix as expressed in (3.7). 

Step 3: Calculate the weighted normalized decision matrix by (3.8). 

Step 4: Determine the Concordance and Discordance Sets by (3.9) and (3.10). 

Step 5: Calculate the Concordance and Discordance Indices by (3.11) and (3.12). 

Step 6: Determine the Outranking Relations by (3.13) and (3.14). 

Step 7: Determine the Performance Index by (3.15) and rank the order of the alternatives. 

 

In the following chapter, a numerical example is given to illustrate the computation 

process. 
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Chapter 4 

A Numerical Example of Fuzzy ELECTRE 

 

In this Chapter, we illustrate our fuzzy ELECTRE method with an example.  

 

4.1 A Step-by-step Approach 

 

Here we have four alternatives with four benefit criteria that need to be evaluated and 

ranked. The procedure is as follows.  

 

Step 1: Problem Formulation 

The decision matrix and the weighting vector of the problem are given in Table 4.1.  

 

Table 4.1 Decision matrix and weighting vector 

  C1 C2 C3 C4 
  (0.20, 0.21,0.25) (0.25,0.28, 0.30) (0.30, 0.40, 0.53) (0.10, 0.12, 0.14) 

A1 (8.00, 9.00, 9.00) (2.00, 6.00, 7.00) (5.00, 6.00, 8.00) (2.00, 3.00, 9.00) 
A2 (3.00, 4.00, 9.00) (6.00, 6.00, 8.00) (1.00, 4.00, 5.00) (4.00, 5.00, 6.00) 
A3 (1.00, 6.00, 9.00) (3.00, 7.00, 8.00) (3.00, 7.00, 8.00) (5.00, 7.00, 8.00) 
A4 (4.00, 5.00, 6.00) (4.00, 4.00, 5.00) (4.00, 8.00, 9.00) (7.00, 7.00, 8.00) 

 

Step 2: Normalize the Decision Matrix 

We normalize the decision matrix by (3.7) and the resulting matrix is shown in Table 4.2. 
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Table 4.2 Normalized decision matrix 

  C1 C2 C3 C4 
A1 (0.889, 1.000, 1.000) (0.250, 0.750, 0.875) (0.556, 0.667, 0.889) (0.222, 0.333, 1.000) 
A2 (0.333, 0.444, 1.000) (0.750, 0.750, 1.000) (0.111, 0.444, 0.556) (0.444, 0.556, 0.667) 
A3 (0.111, 0.667, 1.000) (0.375, 0.875, 1.000) (0.333, 0.778, 0.889) (0.556, 0.778, 0.889) 
A4 (0.444, 0.556, 0.667) (0.500, 0.500, 0.625) (0.444, 0.889, 1.000) (0.778, 0.778, 0.889) 

 

Step 3: Weighting the Normalized Matrix  

We construct the weighted normalized matrix by (3.8) in Table 4.3. 

 

Table 4.3 Weighted normalized decision matrix 

  C1 C2 C3 C4 
A1 (0.178, 0.210, 0.250) (0.063, 0.210, 0.263) (0.167, 0.267, 0.471) (0.022, 0.040, 0.140) 
A2 (0.067, 0.093, 0.250) (0.188, 0.210, 0.300) (0.033, 0.178, 0.294) (0.044, 0.067, 0.093) 
A3 (0.022, 0.140, 0.250) (0.094, 0.245, 0.300) (0.100, 0.311, 0.471) (0.056, 0.093, 0.124) 
A4 (0.089, 0.117, 0.167) (0.125, 0.140, 0.188) (0.133, 0.356, 0.530) (0.078, 0.093, 0.124) 

 

Step 4: Determine the Concordance and Discordance Sets 

The preference measurements between two alternatives (row alternative preference 

measurement to column alternative) are calculated with respect to each criterion by (3.9) 

and (3.10) in Tables 4.4, 4.5, 4.6, and 4.7. According to the DM’s preference attitude 

λ =0.2, the outranking relations are determined in Tables 4.8, 4.9, 4.10, and 4.11, in which 

1 represents that the row alternative outranks the column alternative, 0 represents 

indifference between the two alternatives, and -1 represents the row alternative is 

outranked by the column alternative. The concordance and discordance sets of the criteria 

are determined from these outranking relations.  

 

 



Chapter 4: A Numerical Example of Fuzzy ELECTRE 

 45

 

Table 4.4 Preference measurements with respect to C1 

 A1 A2 A3 A4 
A1 - 0.378 0.324 0.394 
A2 -0.378 - -0.054 0.016 
A3 -0.324 0.054 - 0.070 
A4 -0.394 -0.016 -0.070 - 

 

Table 4.5 Preference measurements with respect to C2 

 A1 A2 A3 A4 
A1 - -0.171 -0.146 0.161 
A2 0.171 - 0.025 0.332 
A3 0.146 -0.025 - 0.307 
A4 -0.161 -0.332 -0.307 - 

 

Table 4.6 Preference measurements with respect to C3 

 A1 A2 A3 A4 
A1 - 0.246 -0.011 -0.102 
A2 -0.246 - -0.257 -0.348 
A3 0.011 0.257 - -0.091 
A4 0.102 0.348 0.091 - 

 

Table 4.7 Preference measurements with respect to C4 

 A1 A2 A3 A4 
A1 - -0.061 -0.264 -0.311 
A2 0.061 - -0.203 -0.250 
A3 0.264 0.203 - -0.047 
A4 0.311 0.250 0.047 - 

 

Table 4.8 Outranking relations with respect to C1 when λ =0.2 

 A1 A2 A3 A4 
A1 - 1 1 1 
A2 -1 - 0 0 
A3 -1 0 - 0 
A4 -1 0 0 - 
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Table 4.9 Outranking relations with respect to C2 when λ =0.2 

 A1 A2 A3 A4 
A1 - 0 0 0 
A2 0 - 0 1 
A3 0 0 - 1 
A4 0 -1 -1 - 

 

Table 4.10 Outranking relations with respect to C3 when λ =0.2 

 A1 A2 A3 A4 
A1 - 1 0 0 
A2 -1 - -1 -1 
A3 0 1 - 0 
A4 0 1 0 - 

 

Table 4.11 Outranking relations with respect to C4 when λ =0.2 

 A1 A2 A3 A4 
A1 - 0 -1 -1 
A2 0 - -1 -1 
A3 1 1 - 0 
A4 1 1 0 - 

 

Step 5: Calculate the Concordance and Discordance Indices 

The concordance and discordance indices are calculated by (3.11) and (3.12) respectively, 

and the results when λ =0.2 are shown in Tables 4.12 and 4.13.   

Table 4.12 Concordance indices when λ =0.2 

 A1 A2 A3 A4 
A1 - (0.50, 0.61, 0.78) (0.20, 0.21, 0.25) (0.20, 0.21, 0.25) 
A2 (0.00, 0.00, 0.00) - (0.00, 0.00, 0.00) (0.25, 0.28, 0.30) 
A3 (0.10, 0.12, 0.14) (0.40, 0.52, 0.67) - (0.25, 0.28, 0.30) 
A4 (0.10, 0.12, 0.14) (0.40, 0.52, 0.67) (0.00, 0.00, 0.00) - 

 

Table 4.13 Discordance indices when λ =0.2 

 A1 A2 A3 A4 
A1 - 0 0.214 0.170 
A2 0.813 - 0.893 0.711 
A3 0.509 0 - 0 
A4 0.417 0.277 0.522 - 
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Step 6: Determine the Outranking Relation  

The net concordance indices and the net discordance indices are calculated by (3.13) and 

(3.14), and the results when λ =0.2 are shown in Table 4.14. 

 

Table 4.14 Net concordance indices (NCI) and net discordance indices (NDI) when 

λ =0.2 

 NCI NDI 
A1 0.820 -1.354 
A2 -1.403 2.140 
A3 0.708 -1.120 
A4 -0.125 0.335 

 

Step 7: Determine the Performance Index 

Calculate the performance indices by (3.15) in Table 4.15 when λ =0.2. 

 

Table 4.15 Performance indices (PI) when λ =0.2 

 A1 A2 A3 A4 
PI 2.174 -3.542 1.828 -0.460 

 

Repeating the same steps, the performance indices with respect to the DM’s preference 

attitudes taken as 0, 0.1, …, 1 are calculated, and the results are shown in Table 4.16 and 

Figure 4.1. 

 

Table 4.16 Performance indices with respect to  λ  values 

 λ  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
A1 0.438 1.032 2.174 1.624 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
A2 -2.705 -3.106 -3.542 -1.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
A3 2.164 2.344 1.828 0.073 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
A4 0.102 -0.271 -0.460 -0.683 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Figure 4.1 Sensitivity analysis with the DM’s preference attitudes 
 

     

The results in Figure 4.1 show that when the DM’s preference threshold is approximately 

below 0.2, the ranking order is almost A3, A1, A4, and A2 from best to worst. Beyond 

0.2, the four lines begin to converge to 0 gradually. When the preference threshold reaches 

0.4, we cannot distinguish the four alternatives. Therefore, we can choose A3 as the best 

alternative.  

 
4.2 Summary 
 
 
In chapters 3 and 4, the fuzzy extension of the ELECTRE method is proposed to solve 

problems in the fuzzy environment by incorporating the DM’s preference attitudes. Fuzzy 

ranking measurement and preference measurement are proposed to determine ranking 

relations between fuzzy numbers.   
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The ELECTRE method is regarded as one of the best MCDM methods because of its 

simple logic, full utilization of information and refined computational procedure. Our 

proposed fuzzy ELECTRE method provides an efficient way to treat the imprecision and 

subjectiveness that may arise in the decision process, and it is flexible in solving complex 

problems.  

 

In the next two chapters, we will propose a fuzzy MCDM method based on risk and 

confidence analysis, followed by an example. 
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Chapter 5 

Fuzzy MCDM Based on Risk and Confidence Analysis 

 

In this chapter, we propose a fuzzy MCDM method based on risk and confidence analysis. 

First we propose the methods to model the DM’s risk attitude and confidence attitude 

towards uncertainty by the linguistic approach. Then we present our detailed fuzzy 

MCDM model. 

 

5.1 Introduction 

 

To deal with uncertainty in decision analysis, the human-related, subjective judgment and 

interpretation of “uncertainty” is needed (Zimmermann, 2002). Indubitably, the value of 

fuzzy MCDM methods will be improved if the human adaptability, intransitivity, and 

dynamic adjustment of preferences can be considered in the decision process (Liang, 

1999). The DM’s subjective preference and judgment are intuitively involved in the 

process of decision analysis. Incorporating the optimism index into fuzzy MCDM is first 

proposed by Zeleny (1982). Some other MCDM methods (Cheng and Mon, 1994; Cheng, 

1996; Deng, 1999; Yeh and Deng, 1997) also utilize the DM’s confidence interval and 

optimism index to evaluate the alternatives. 

 

We (2003a, 2003b, 2003c, 2003d and 2003e) proposed fuzzy MCDM based on risk and 

confidence analysis. This method introduces the modeling of confidence attitude and risk 
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attitude towards uncertainty to support normative fuzzy MCDM. In this approach, the 

DM’s subjective preference, judgment and assessment are incorporated into decision 

process. Thus, it provides an effective way to solve complex, ill-defined and human-

oriented MCDM problems.  

 

This method uses fuzzy numbers and the linguistic approach to establish risk and 

confidence analysis into the multiple criteria decision model. The linguistic approach is 

first introduced in section 5.2, and in section 5.3, we will introduce the linguistic modeling 

of risk and confidence attitude and the proposed fuzzy MCDM model based on risk and 

confidence analysis. 

 

5.2 Modeling of Linguistic Approach   

 

Fuzzy set theory is useful in processing linguistic information. The linguistic approach is 

an effective way of expressing the DM’s subjectiveness under different decision situations. 

It is used in situations in which the problem is too complex or too ill-defined. By using a 

vector-valued objective function, it provides a language for an approximate linguistic 

characterization of the trade-offs between its components.  The central concept of the 

linguistic approach is the linguistic variable. A linguistic variable can be regarded either as 

a variable whose value is a fuzzy number or as a variable whose values are defined in 

linguistic terms. By means of linguistic variables, the membership functions of fuzzy 

number are processed accordingly. Linguistic terms have been intuitively used in 

expressing the subjectiveness and imprecision of the DM’s assessments (Zadeh, 1975; 

Deng and Yeh, 1998; Liang, 1999). The basic definitions are as follows. 
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Definition 5.1: A linguistic variable is characterized by a quintuple ( x , )(xT , U , G , M~ ) 

in which x  is the name of the variable; )(xT  (or simply )(T ) denotes the term set of x , 

that is, the set of names of linguistic values of x , with each value being a fuzzy variable 

denoted generically by X  and ranging over a universe of discourse U  that is associated 

with the base variable u ; G  is a syntactic rule for generating the name, X , of values of 

x ; and M  is a semantic rule for associating with each X  its meaning, )(~ xM , which is a 

fuzzy subset of U . Any X , generated by G , is called a term. Often the name of the 

variable and the generic name of the elements of the variable are denoted by the same 

symbol. The same holds for X and M~ . 

  

Definition 5.2: A linguistic variable x  is called termed if )(xT  and the meaning )(~ xM  

can be regarded as algorithms that generate the terms of the term set and associate 

meanings with them. 

 

Definition 5.3: A linguistic hedge or a modifier is an operation that changes the meaning 

of a term or more generally, of a fuzzy set. If A~  is a fuzzy set, its modifier m  generates 

the term )~(~ AmB = . 

Mathematical models frequently used for modifiers are as follows: 

a. Concentration:   

      2
~)~( ))(()( xx AAcon µµ = . 

b. Dilation:  

       21
~)~( ))(()( xx AAdil µµ = . 
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c. Contrast intensification: 
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5.3 The Proposed Method  

 

Interval information is common in uncertain situations (Moore, R.E. 1979; Neumaier, A., 

1990; Alefeld, G., Mayer, G., 1996). An interval number is based on a two-value 

judgment: the minimum possible value and the maximum possible value. In our proposed 

method, we use the interval number to represent the uncertain rating of alternatives and 

weights of criteria in the MCDM problem.  

 

For the DM’s risk attitude towards uncertainty, the optimist tends to feel that the 

uncertainty will be resolved in a favorable manner and the pessimist tends to feel that the 

uncertainty will be resolved in an unfavorable manner (Yager, 2000). In the case of risk 

attitude to interval assessments, optimism (absolute) means a higher preference to superior 

value, while pessimism (absolute) means a higher preference to inferior value. Next, 

another kind of subjectiveness we deal with is the DM’s confidence in the fuzzy 

assessments. More confidence means that the DM will give a higher preference to the 

values with a higher possibility and a lower preference to the values with a lower 

possibility. For the confidence attitude to a triangular fuzzy number, more confidence 

means assessment towards uncertainty is closer to the modal value. Naturally the DM’s 

risk attitudes and confidence attitudes are vague in complex and ill-defined situations. 

Linguistic terms are intuitively used to express these attitudes. 
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5.3.1 Modeling of Risk Attitudes  

 

Interval arithmetic is introduced in detail by Moore (1979) and Neumaier (1990). We 

define an interval number and its arithmetic operations as follows: 

 

Definition 5.4: An interval number A  is defined by a closed interval ],[ supinf aa . 

Let ],[ supinf aaA = and ],[ supinf bbB =  be two positive interval numbers ( 0inf >a  

and 0inf >b ). The basic arithmetic operators are defined as: 

a. Negation: ],[ infsup aaA −−=− . 

b. Inversion: ]1,1[ infsup1 aaA =− . 

c. Addition: ],[ supsupinfinf babaBA ++=+ . 

d. Subtraction: ],[ infsupsupinf babaBA −−=− . 

e. Multiplication: ],[ supsupinfinf babaBA = . 

f. Division: ],[ infsupsupinf babaBA = .                                                                   (5.1)                  

 

For the risk attitude towards the interval number expressed by a superior value and an 

inferior value, optimism (absolute) means a higher preference to the superior value, while 

pessimism (absolute) means a higher preference to the inferior value.  A linguistic variable 

“risk attitude” is defined as a mathematical model. Here linguistic terms we use are 

absolutely optimism (AO), very optimism (VO), optimism (O), fairly optimism (FO), 

neutral (N), fairly pessimism  (FP), pessimism (P), very pessimism (VP), and absolutely 

pessimism (AP) to represent the decision maker’s qualitative assessments. The number 
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nine is based on Miller’s theory (1956) that seven plus or minus two represents the great 

amount of information that the DM can express on the basis of a subjective judgment. 

 

Definition 5.5: T (Risk Attitude) = {AO, VO, O, FO, N, FP, P, VP, AP}.  

 

Fuzzy numbers are intuitively easy and effective in expressing the DM’s qualitative 

assessments (Liang, 1999; Yeh and Deng, 2000; Chen, 2000; Cheng, 2002).  Here we 

propose triangular fuzzy numbers to express linguistic terms of risk attitudes to the 

interval uncertainty. With the reference of the inferior value and superior value as the 

lower value and upper value of the support boundary, respectively, the modal values are 

taken in an average distribution with respect to the optimism (pessimism) attitudes 

accordingly. Thus, we define the triangular fuzzy numbers to represent optimism 

(pessimism) attitude towards risk as:   

 

Definition 5.6: To express the decision attitude to an interval ],[ supinf aaA = , a triangular 

fuzzy number is defined as: 

A~  = ( 1a , 2a , 3a ) ,                                                                                                             (5.2) 

where  

inf
1 aa = , sup

3 aa = , and 8)1)(( infsupinf
2 −−+= xaaaa , =x 1, 2, …, 9 represent the 

linguistic terms AP, VP, P, FP, N, FO, O, VO, and AO, respectively.  
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By this method, we incorporate the DM’s risk attitudes into interval assessments. The 

linguistic terms of risk attitudes expressed by triangular fuzzy numbers are presented in 

Table 5.1 and Figure 5.1. 

 

Table 5.1 Linguistic terms of risk attitude 

Linguistic term Triangular Fuzzy number 
Absolutely optimism (AO) ),,( supsupinf aaa  

Very optimism (VO) ),8)7(,( supsupinfinf aaaa +  

optimism (O) ),4)3(,( supsupinfinf aaaa +  

Fairly optimism (FO) ),8)53(,( supsupinfinf aaaa +  

Neutral (N) ),2)(,( supsupinfinf aaaa +  

Fairly pessimism (FP) ),8)35(,( supsupinfinf aaaa +  

pessimism (P) ),4)3(,( supsupinfinf aaaa +  

Very pessimism (VP) ),8)7(,( supsupinfinf aaaa +  

Absolutely pessimism (AP) ),,( supinfinf aaa  

 

 

Figure 5.1 Linguistic terms of risk attitude 

 

 

 X 

)(~ xAµ

0
infa  supa  

AOVOOFONFPPVPAP
1
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5.3.2 Modeling of Confidence Attitudes  

 

In assessing the uncertainty of the fuzzy numbers, we need to analyze the confidence of 

the DM to the truth or reliability. The interval of confidence (A. Kaufmann and M.M. 

Gupta, 1985) is a way to incorporate the confidence attitude into fuzzy numbers. Some 

MCDM methods (Cheng and Mon, 1994; Cheng, 1996; Deng, 1999; Yeh and Deng, 1997) 

have used confidence interval concepts to evaluate the alternatives. However, this 

confidence interval cannot fully incorporate the DM’s confidence towards the uncertainty. 

A fuzzy number on confidence is more effective on this matter.   

 

We propose a method to express the DM’s confidence on fuzzy numbers. More 

confidence means that the DM’s assessment is closer to the most likely value. In the case 

of a triangular fuzzy number, this means that the DM’s assessment is closer to the modal 

value. Therefore, we define a modified triangular fuzzy number based on the α-cut 

concept to incorporate the DM’s confidence assessment to the uncertainty as: 

 

Definition 5.7: Assuming that confidence to the triangular fuzzy number A~  = ( 1a , 2a , 3a )  

is at level α , the refined fuzzy number on confidence level is defined as: 

))(,),(())(,),((~
2332121321 aaaaaaaaaaA −−−+== ααααα , ]1,0[∈α .                    (5.3) 

Figure 5.2 shows a triangular fuzzy number and its corresponding α-cut triangular fuzzy 

number. 
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Figure 5.2 A triangular fuzzy number A~  and its α-cut triangular fuzzy number 
 

 

Some main operations for positive triangular fuzzy numbers on confidence level α  are as 

follows: 

),(1 αa∀  +∈ Rb )(1 α , ))(,),((~
321 ααα aaaA = , ))(,),((~

321 ααα bbbB = , and ]1,0[∈α .  

a. Addition: ))()(,),()((~~
332211 αααααα bababaBA +++=+ ; 

b. Subtraction: ))()(,),()((~~
132231 αααααα bababaBA −−−=− ; 

c. Multiplication: ))()(,),()((~~
332211 αααααα bababaBA = ; 

d. Division: ))()(,,)()((~~
132231 αααααα bababaBA = .                                     (5.4) 

 

The DM’s confidence attitudes are often vague in complex and ill-defined situations. Like 

risk attitudes, an effective way is to use linguistic terms to express the DM’s subjective 

attitudes under different situations. For the linguistic variable “confidence attitude”, we 

use linguistic terms as absolutely confidence (AC), very confidence (VC), confidence (C), 

fairly confidence (FC), neutral (N), fairly non-confidence (FNC), non-confidence (NC), 

X 

1 

0 )(1 αa

α 

1a 2a 3a)(3 αa

)(~ xAµ
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very non-confidence (VNC), and absolutely non-confidence (ANC) to represent the DM’s 

qualitative assessments. We define these linguistic terms as: 

 

Definition 5.8: T (Confidence Attitude) = {AC, VC, C, FC, N, FNC, NC, VNC, ANC}.  

 

Using the confidence level α  in the interval [0, 1], we define the membership function of 

the linguistic terms of “confidence attitude” to express the DM’s subjective confidence. 

Obviously, the membership degree of confidence will increase linearly when α  increases 

from 0 to 1. Thus, we can use a linear function to represent it and other confidence terms 

can be defined by the concentration, dilation and contrast intensification operations, 

accordingly.  

 

Definition 5.9: The linguistic terms and their corresponding membership functions are 

defined in Table 5.2 and shown in Figure 5.3. 

Table 5.2 Linguistic terms of confidence attitude 

Linguistic term Membership function 

Absolutely confidence (AC) 

 =

=
otherwiseAC ,0

1,1
)(

α
αµ , ]1,0[∈α . 

Very confidence (VC) 
22))(()( ααµαµ == CVC , ]1,0[∈α . 

Confidence (C) ααµ =)(C , ]1,0[∈α . 

Fairly confidence (FC) ααµαµ == 5.0))(()( CFC , ]1,0[∈α . 

Neutral (N) ,1)( =αµU ]1,0[∈α . 

Fairly non-confidence (FNC) ααµαµ −=−= 1))(1()( 5.0
CFNC , ].1,0[∈α  

Non-confidence (NC) ααµαµ −=−= 1)(1)( CNC , ]1,0[∈α . 

Very non-confidence (VNC) ,)1())(1()( 22 ααµαµ −=−= CVNC  ]1,0[∈α . 

Absolutely non-confidence (ANC) 

 =

=
otherwiseANC ,0

0,1
)(

α
αµ , ]1,0[∈α . 

 



Chapter 5: Fuzzy MCDM Based on Risk and Confidence Analysis 

 60

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C

FC

VC

NC

FNC

VNC

ANC AC

N

 

Figure 5.3 Linguistic terms of confidence attitude  

 

Based on the definition above, there are four basic properties of the linguistic terms of 

confidence attitude: 

a. nvery)( confidence →  absolutely confidence as ∞→n ;  

b. nvery)( non-confidence → absolutely non-confidence as ∞→n ;  

c. nfairly)(  confidence →  neutral as ∞→n ; 

d. nfairly)(  non confidence →  neutral as ∞→n .  

 

We still need to compare, evaluate and aggregate the performance of the alternatives on 

the confidence levels. Therefore, a vector method is proposed here. According to the 

membership function of the linguistic term, the confidence membership value is 

determined with respect to the confidence level. We define the confidence vector as: 
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Definition 5.10: Assume that there is a total of  l  ( 2≥l ) confidence levels. The 

confidence vector is defined as: 

( )lkLT cccC KK ,,1= ,                                                                                        (5.5) 

where  

)(αµLTkc = , 1
1
−

−= l
kα , ,,...,2,1 lk =  2≥l , and  LT represents linguistic terms AC, 

VC, C, FC, N, FNC, NC, VNC, and ANC, respectively.   

 

The selection of  l  is rather arbitrary. The larger the l , the more calculation is needed, but 

a closer to real confidence membership function is achieved. We need a normalized scale 

for comparable calculation. Therefore, a normalized format is defined as: 

 

Definition 5.11: The normalized confidence vector is defined as: 

( )***
1

* ,, lkLT cccC KK= ,                                                                                         (5.6) 

where 

∑ =
=

l

k kkk ccc
1

* , and symbol kc  has the same meaning as equation (5.5). 

 

For the linguistic terms defined in Table 5.2, the corresponding confidence vectors are 

obtained as follows: 

 

(1) Absolutely Confidence Vector:  

( )1,,0,,0* KK=ACC .                                                                                            (5.7) 
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(2) Very Confidence Vector:  
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(3) Confidence Vector:  
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(4) Fairly Confidence Vector: 
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(5) Neutral vector: 

( )lllCN
1,,1,,1* KK= .                                                                                 (5.11) 

 

(6) Fairly Non-Confidence Vector:  
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(7) Non-Confidence Vector:  
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(8) Very Non-Confidence Vector:  
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(9) Absolutely Non-Confidence Vector:   

( )0,,0,,1* KK=ACC .                                                                                          (5.15) 

 

5.3.3 Proposed Fuzzy MCDM based on Risk and Confidence Analysis 
 

Fuzzy MCDM models are typically based on a two-phase approach (Zimmermann, 1987; 

Chen and Hwang, 1992; Munda et al., 1995; Ribeiro, 1996). The first phase is to 

aggregate the performance of the ratings of alternatives under criteria. Usually triangular 

fuzzy numbers are used to express the DM’s assessments on the alternatives’ performance 

in terms of each criterion. After the criteria are weighted, the fuzzy utilities represented by 

fuzzy numbers are aggregated by fuzzy arithmetic (Kaufmanns and Gupta, 1991).  The 

second phase is to rank alternatives with respect to the aggregated performances. This 

involves the ranking of the alternatives based on the comparison of their corresponding 

fuzzy utilities.   
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In the second phase of fuzzy MCDM analysis, ranking of fuzzy numbers is a hard task. 

Though many methods have been proposed, the computation is complex and unreliable. 

This is because the comparison process may (a) involve considerable computations, (b) 

produce inconsistent outcomes by different fuzzy ranking methods, and (c) generate 

counter-intuitive ranking outcomes for similar fuzzy utilities (Bortolan and Degani, 1985; 

Zimmermann, 1987; Chen and Hwang, 1992; Chen and Klien, 1997). In our method, with 

reference to the imaged ideal alternative solutions, fuzzy numbers are aggregated into 

crisp performance in the second phase. Thus it makes the computation efficient and avoids 

the complicated and unreliable fuzzy number ranking.  

 

We propose this approach to solve the fuzzy MCDM problems by incorporating the DM’s 

risk attitude and confidence attitude. Interval numbers are used to assess the ratings of 

alternatives and the weights of criteria. The decision matrix is transformed into a 

performance matrix representing a weighted interval assessment. Risk attitudes are 

incorporated by triangular fuzzy numbers. Based on the α-cut concept, the fuzzy numbers 

are incorporated with confidence levels. According to the concept of ideal solutions, we 

define the fuzzy ideal solutions as: fuzzy positive ideal solution and fuzzy negative ideal 

solution. Then we measure the degree of separation of fuzzy numbers by the vertex 

method. The degree of separation transforms fuzzy performance into a crisp performance 

under confidence levels. According to the confidence attitudes, we obtain confidence 

vectors with respect to the membership functions. Finally, by aggregating performance 

values under confidence levels, the overall performance is obtained to evaluate the 

alternatives. We give the procedure as follows: 
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Step 1: Problem Formulation 

For conciseness, fuzzy MCDM can be expressed in the matrix format as: 
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mnmm

n

n

xxx

xxx
xxx

D
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KKKK
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K

21

22221

11211

,                                                                                            (5.16) 

),,,( 21 nwwwW K= ,                                                                                            (5.17) 

where 

ijx  and jw  ( =i 1, 2, ,K m ; =j 1, 2, ,K n ) are positive interval numbers. ijx  is the rating 

of alternative iA  with respect to criterion jC , and it forms a matrix referred to as the 

decision matrix. jw  is the weight of criterion jC , and it forms a vector referred to as the 

weighting vector.  

 

Step 2: Construct the Performance Matrix 

Considering the importance of each criterion, we construct the fuzzy performance matrix 

by multiplying the weighting vector by the decision matrix, using the interval 

multiplication arithmetic operation. 

)],[( supinf

21

22221

11211

ijij

mnmm

n

n

pp

ppp

ppp
ppp

P =



















=

K

KKKK

K

K

, =i 1, 2, ,K m , =j 1, 2, ,K n ,                (5.18)                       

where infinfinf
ijjij xwp = and supsupsup

ijjij xwp = .  

This process transforms the fuzzy decision matrix into a weighted fuzzy decision matrix, 

referred to as the performance matrix.    
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Step 3: Incorporate the Risk Attitude     

The DM may show different optimistic or pessimistic preference towards risk in different 

situations. To incorporate this decision attitude into the fuzzy MCDM, we introduce 

triangular fuzzy numbers to express the linguistic terms of risk attitude. Thus we construct 

the performance matrix with decision attitude as follows: 

)],,[(

~~~

~~~
~~~

~
321

21

22221

11211

ijijij

mnmm

n

n

ppp

ppp

ppp
ppp

P =



















=

K

KKKK

K

K

,     =i 1, 2, ,K m , =j 1, 2, ,K n ,      (5.19)                       

where 

inf
1 ijij pp = , 8))(1( infsupinf

2 ijijijij ppdpp −−+= , sup
3 ijij pp =  and =d 1, 2, …, 9 represents 

decision attitudes AP, VP, P, FP, N, FO, O, VO, and AO, respectively.  

      

Step 4: Incorporate the Confidence Attitude   

For the uncertainty of triangular fuzzy numbers, the DM’s may have different confidence 

preference in different situations. Based on the α-cut concept, we introduce refined 

triangular fuzzy numbers to express the DM’s degree of confidence to the fuzzy 

assessments.  Thus we construct the performance matrix on confidence as follows: 

))](,),([(

~~~

~~~
~~~

~
321

21

22221

11211

αα

ααα

ααα

ααα

α
ijijij

mnmm

n

n

ppp

ppp

ppp
ppp

P =





















=

K

KKKK

K

K

, =i 1,2, ,K m , =j 1,2, ,K n , (5.20)                       

where  

)()( 1211 ijijijij pppp −+= αα , )()( 2333 ijijijij pppp −−= αα , and ]1,0[∈α . 
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The values of α express confidence levels in assessment of the uncertainty of triangular 

fuzzy numbers. A larger value means a higher confidence toward uncertainty. 

 

Step 5: Normalization  

Generally criteria are incommensurate. The normalization process aims at obtaining 

comparable scales. Two main methods, namely vector normalization and linear scale 

normalization, are usually used in MCDM (Hwang and Yoon, 1981). Vector 

normalization cannot guarantee a criterion scale with an equal length. Linear scale 

normalization uses the ways in which the relative outcomes are equal. Moreover, linear 

scale normalization is often used for its simplicity. Thus, we will use linear scale 

normalization here. 

 

We normalize the fuzzy numbers in the performance matrix on confidence level α  as 

follows: 
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where 
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Here B and C  represent benefit criteria and cost criteria, respectively. For benefit criteria, 

the DM wants to have a maximum value among the alternatives. For cost criteria, the DM 
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wants to have a minimum value among the alternatives. This method preserves the ranges 

of normalized triangular fuzzy numbers to be [0, 1]. 

 

Step 6: Determine the Positive Ideal and Negative Ideal Solutions 

The ideal solution in decision analysis means the desired decision outcome in a given 

decision situation. The positive (negative) ideal solution consists of the best (or worst) 

criteria values attainable from all the alternatives if each criterion takes monotonically 

increasing or decreasing values. The most preferred alternative should have the shortest 

distance from the positive ideal solution and the longest distance from the negative ideal 

solution (Hwang and Yoon, 1981; Zeleny, 1982). This concept has been widely used in 

developing various methodologies for solving practical decision problems (Shipley, 

DeKorvin and Obid, 1991; Yeh and Deng, 1997, 1999) due to: (a) its simplicity and 

comprehensibility in concept, (b) its computation efficiency, and (c) its ability to measure 

the relative performance of the alternatives in a simple mathematical form.  

 

In line with this concept, in the normalized fuzzy performance matrix where its element is 

the normalized positive triangular fuzzy number, we can define the fuzzy positive ideal 

solution ( *~A  ) and fuzzy negative ideal solution ( −A~ ). These two ideal alternatives are 

used as references to measure the alternatives’ performance. We determine the positive 

ideal solution and the negative ideal solution as follows: 

)~,,~,~(~ **
2

*
1

*
npppA K= , 

)~,,~,~(~
21

−−−− = npppA K ,                                                                                                    (5.22) 

where  
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=*~
jp  (1, 1, 1), 

=−
jp~ (0, 0, 0), =j 1, 2, ,K n . 

 

Step 7: Measure the Separations 

The distance of each alternative to the ideal solutions is measured by the vertex method 

(Chen, 2000). The vertex method measures distance between two triangular fuzzy 

numbers. It avoids the complexity of ranking fuzzy numbers.  

 

The distance between each alternative and the positive ideal solution is calculated as: 

∑
=

=
n

j
jniji ppdd

1

** ),~,~( αα  =i 1, 2, ,K m ,                                                                            (5.23)                     

where  

212
3

2
2

2
1

* }3])1()1()1[({)~,~( −+−+−=
nijnijnijjnij pppppd αααα ;                                                       

The distance between each alternative and the negative ideal solution is calculated as: 

∑
=

−−
=

n

j
jniji ppdd

1

),~,~( αα =i 1, 2, ,K m ,                                                                            (5.24)               

where  

212
3

2
2

2
1 }3])0()0()0[({)~,~( −+−+−=−

nijnijnijjnij pppppd αααα .                                                        

The smaller the value of 
*α

id   and 
−α

id , the higher the degree of similarity between each 

alternative and the positive ideal solution and the negative ideal solution, respectively.  

 

 

 



Chapter 5: Fuzzy MCDM Based on Risk and Confidence Analysis 

 70

Step 8: Determine the Performance on Confidence Level            

A preferred alternative should have a higher degree of similarity to the positive ideal 

solution, and at the same time have a lower degree of similarity to the negative ideal 

solution (Hwang and Yoon, 1981; Zeleny, 1982; Shipley, deKorvin, and Obid, 1991; Yeh 

and Deng, 1997, 1999). We prefer the alternative with a lower distance to the positive 

ideal solution ( *
id ) and a higher distance to the negative ideal solution ( −

id ). Therefore, 

an overall performance index for each alternative on confidence level α  with respect to 

the positive ideal solution and the negative ideal solution is defined as: 

)]([
2
1 *ααα

iii dnd
n

p −+=
−

, =i 1, 2, ,K m ,                                                                    (5.25) 

where n  is the number of criteria. 

 Obviously, the nearer α
ip  is to 1 means the better the performance of alternative iA  ( =i 1, 

2, ,K m ). 

 

The alternatives usually have different performance values on different confidence levels. 

Assuming that we take a total of  l  confidence levels that are equally distributed in the 

interval [0, 1], we need to obtain all the performance values of alternatives on these levels.   

Referring to (5.5), we define a performance vector with respect to the confidence levels as: 

( )ilikii pppP KK,,1= , =i 1, 2, ,K m ,                                                                 (5.26) 

where α
iik pp = , 1

1
−

−= l
kα , =k  1, 2, ,K l  ( 2≥l ). 
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Step 9: Determine the Performance on Confidence Attitude 

We use linguistic terms as absolutely confidence (AC), very confidence (VC), confidence 

(C), fairly confidence (FC), neutral (N), fairly non-confidence (FNC), non-confidence 

(NC), very non-confidence (VNC), and absolutely non-confidence (ANC) to represent the 

DM’s confidence attitude. According to the membership functions (Table 5.2), we 

determine the confidence vectors from (5.7) to (5.15). The performance of the alternatives 

with respect to confidence attitude is obtained as: 

∑
=

==
l

k
kik

T
LTi

LT
i cpCPP

1

* )( , =i 1, 2, ,K m ,                                                                     (5.27) 

where  

LT represents linguistic terms as AC, VC, C, FC, N, FNC, NC, VNC, and ANC, 

respectively. 

 

In summarizing the discussion above, we present the steps for the approach developed as 

follows: 

 

Step 1: Formulate the problem in the decision matrix and weighting vector as expressed in 

(5.16) and (5.17). 

Step 2: Construct the fuzzy performance matrix expressed in (5.18) by multiplying the 

weighting vector by the decision matrix. 

Step 3:  Obtain the DM’s risk attitude in definition 5.5 and construct the performance 

matrix with risk attitude in (5.19). 

Step 4:  Construct the performance matrix on confidence level as expressed in (5.20). 

Step 5: Normalize the performance matrix by (5.21) to get comparable scales. 
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Step 6: Determine the positive ideal solution and the negative ideal solution by (5.22). The 

positive ideal solution and the negative ideal solution are used as references to measure 

the alternatives’ performance. 

Step 7: Measure the separations of the alternatives to the ideals solutions by (5.23) and 

(5.24).   

Step 8: Determine the performance on confidence level by (5.25). Take a total of  l  

confidence levels as denoted in (5.5) and calculate the performance vector with respect to 

confidence levels as expressed in (5.26). 

Step 9: According to the DM’s confidence attitudes in definition 5.8, determine the 

confidence vectors and calculate the alternatives’ performance by (5.27). The DM ranks, 

selects or prioritizes the alternatives according to their performance index values. 

 

In the following chapter, we will give a numerical example to illustrate the computation 

process.  
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Chapter 6 

A Numerical Example of Fuzzy MCDM Based on Risk and 

Confidence Analysis 

 

In this chapter, we give a numerical example to illustrate the computation process of fuzzy 

MCDM based on risk and confidence analysis. 

 

6.1 A Step-by-step Approach 

 

We illustrate our method by a MCDM problem with four alternatives under four benefit 

criteria. In the following, we consider absolutely optimism (AO) attitude towards risk in 

the solving process.  

 

Step 1: Problem Formulation 

The decision matrix and the weighting vector of the problem are given in Table 6.1.  

 

Table 6.1 Decision matrix and weighting vector 

  C1 C2 C3 C4 
  [0.10 0.30] [0.20 0.40] [0.30 0.50] [0.05 0.15] 
A1 [2.00 6.00] [3.00 7.00] [3.00 8.00] [4.00 9.00] 
A2 [2.00 7.00] [3.00 7.00] [1.00 5.00] [4.00 8.00] 
A3 [5.00 9.00] [1.00 8.00] [2.00 7.00] [4.00 9.00] 
A4 [1.00 5.00] [3.00 6.00] [5.00 9.00] [7.00 9.00] 
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Step 2: Construct the Performance Matrix 

The performance matrix is constructed in Table 6.2. 

 

Table 6.2 Performance matrix  

  C1 C2 C3 C4 
A1 [0.20  1.80] [0.60 2.80] [0.90 4.00] [0.20 1.35] 
A2 [0.20 2.10] [0.60 2.80] [0.30 2.50] [0.20 1.20] 
A3 [0.50 2.70] [0.20 3.20] [0.60 3.50] [0.20 1.35] 
A4 [0.10 1.50] [0.60 2.40] [1.50 4.50] [0.35 1.35] 

 

Step 3: Incorporate the Risk Attitude 

The performance matrix is incorporated with absolutely optimism attitude in Table 6.3. 

 

Table 6.3 Performance matrix under AO attitude 

 C1 C2 C3 C4 
A1 (0.20, 1.80, 1.80) (0.60, 2.80, 2.80) (0.90, 4.00, 4.00) (0.20, 1.35, 1.35) 
A2 (0.20, 2.10, 2.10) (0.60, 2.80, 2.80) (0.30, 2.50, 2.50) (0.20, 1.20, 1.20) 
A3 (0.50, 2.70, 2.70) (0.20, 3.20, 3.20) (0.60, 3.50, 3.50) (0.20, 1.35, 1.35) 
A4 (0.10, 1.50, 1.50) (0.60, 2.40, 2.40) (1.50, 4.50, 4.50) (0.35, 1.35, 1.35) 

 

Step 4: Incorporate the Confidence Attitude   

Taking a total of 11 ( 1,,1.0,0 K=α ) confidence levels, we construct the performance 

matrix on confidence. The performance matrix under AO on 0.5 confidence level is 

presented in Table 6.4.  

 

Table 6.4 Performance matrix under AO attitude when α=0.5 

 C1 C2 C3 C4 
A1 (1.00, 1.80, 1.80) (1.70, 2.80, 2.80) (2.45, 4.00, 4.00) (0.78, 1.35, 1.35) 
A2 (1.15, 2.10, 2.10) (1.70, 2.80, 2.80) (1.40, 2.50, 2.50) (0.70, 1.20, 1.20) 
A3 (1.60, 2.70, 2.70) (1.70, 3.20, 3.20) (2.05, 3.50, 3.50) (0.78, 1.35, 1.35) 
A4 (0.80, 1.50, 1.50) (1.50, 2.40, 2.40) (3.00, 4.50, 4.50) (0.85, 1.35, 1.35) 
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Step 5: Normalization 

The normalized performance matrix under AO on 0.5 confidence level is presented in 

Table 6.5. 

 

Table 6.5 Normalized performance matrix under AO attitude when α=0.5 

  C1 C2 C3 C4 
A1 (0.370, 0.667, 0.667) (0.531, 0.875, 0.875) (0.544, 0.889, 0.889) (0.574, 1.000, 1.000) 
A2 (0.426, 0.778, 0.778) (0.531, 0.875, 0.875) (0.311, 0.556, 0.556) (0.519, 0.889, 0.889) 
A3 (0.593, 1.000, 1.000) (0.531, 1.000, 1.000) (0.456, 0.778, 0.778) (0.574, 1.000, 1.000) 
A4 (0.296, 0.556, 0.556) (0.469, 0.750, 0.750) (0.667, 1.000, 1.000) (0.630, 1.000, 1.000) 

 

Step 6:  Determine the Positive Ideal and Negative Ideal Solutions 

The alternatives’ separation distance to the positive ideal solution and the negative ideal 

solution are calculated in Table 6.6. 

 

Table 6.6 Separation distance under AO when α=0.5 

C1 C2 C3 C4 Overall   
P N P N P N P N P N 

A1    0.454 0.585 0.289 0.778 0.278 0.791 0.246 0.881 1.268 3.034 
A2 0.378 0.681 0.289 0.778 0.538 0.488 0.292 0.785 1.498 2.732 
A3 0.235 0.885 0.271 0.872 0.363 0.687 0.246 0.881 1.115 3.326 
A4 0.545 0.485 0.368 0.670 0.193 0.903 0.214 0.894 1.320 2.951 

    

Step 7: Measure the Separations 

The performance indices under 11 confidence levels are calculated in Table 6.7 and shown 

in Figure 6.1. We can clearly observe how the alternatives’ performance values vary with 

the confidence level in the figure.  
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Table 6.7 Performance index under AO with 11 confidence levels 

Confidence level  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

A1   0.598 0.621    0.644    0.669    0.695    0.721 0.748    0.775   0.803   0.831    0.858 
A2 0.544    0.564    0.586    0.608   0.631   0.654 0.678    0.703   0.727    0.751    0.774 
A3 0.633    0.659    0.687    0.716   0.745  0.776 0.809   0.841    0.875    0.910    0.944 
A4 0.595    0.615    0.636    0.658   0.681    0.704 0.728    0.752    0.777   0.801    0.826 
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Figure 6.1 Performance value under AO with respect to confidence levels 

 

Step 8: Determine the Performance on Confidence Level            

According to the DM’s confidence attitudes, we take a total of 11 levels to calculate the 

confidence vectors. The entries in the vectors are presented in Table 6.8. 
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Table 6.8 Confidence vector under 11 confidence levels 

Confidence vector  
1 2 3 4 5 6 7 8 9 10 11 

AC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
VC       0.000 0.003 0.010 0.023 0.042 0.065 0.094 0.127 0.166 0.210 0.260 
C 0.000 0.018 0.036 0.055 0.073 0.090 0.109 0.127 0.145 0.164 0.182 
FC 0.000 0.044 0.063 0.077 0.089 0.100 0.109 0.118 0.126 0.134 0.141 
N 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 
FNC 0.141 0.134 0.126 0.118 0.109 0.100 0.089 0.077 0.063 0.044 0.000 
NC 0.182 0.164 0.145 0.127 0.109 0.090 0.073 0.055 0.036 0.018 0.000 
VNC 0.260 0.210 0.166 0.127 0.094 0.065 0.042 0.023 0.010 0.003 0.000 
ANC 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

Step 9: Determine the Performance on Confidence Attitude 

Calculate the alternatives’ performance under AO from absolute confident to absolute non 

confident attitudes in Table 6.9.   

 

Table 6.9   Performance index under AO with respect to confidence attitudes 

A1 A2 A3 A4   
P Order P Order P Order P Order 

AC      0.8576 2 0.7743 4 0.9444 1 0.8264 3 
VC 0.8001 2 0.7242 4 0.8727 1 0.7744 3 
C 0.7685 2 0.6960 4 0.8355 1 0.7456 3 
FC 0.7549 2 0.6840 4 0.8188 1 0.7338 3 
N 0.7165 2 0.6498 4 0.7736 1 0.6995 3 
FNC 0.6845 2 0.6215 4 0.7349 1 0.6714 3 
NC 0.6646 2 0.6036 4 0.7117 1 0.6534 3 
VNC 0.6501 2 0.5908 4 0.6939 1 0.6413 3 
ANC 0.5977 2 0.5438 4 0.6332 1 0.5946 3 

 

Finally, we analyze the results in Table 6.9 and make a ranking order.  It is clear that A3 is 

the best alternative under absolute optimism attitude with respect to all confidence 

attitudes, and the other alternatives ranking order are A1, A4 and A2. Repeating the same 

steps, we can evaluate and analyze the alternatives’ performances under other risk 

attitudes with respect to confidence attitudes. The data and figures are given as follows. 
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Performance under VO Attitude 

Table 6.10 Performance index under VO with 11 confidence levels 

Confidence level  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

A1   0.576 0.598 0.622 0.646 0.673 0.700 0.729 0.759 0.791 0.822 0.854 
A2 0.522 0.542 0.563 0.585 0.609 0.634 0.659 0.686 0.714 0.742 0.770 
A3 0.610 0.635 0.662 0.691 0.723 0.753 0.786 0.822 0.859 0.897 0.936 
A4 0.575 0.596 0.617 0.640 0.664 0.689 0.715 0.742 0.770 0.799 0.829 
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Figure 6.2 Performance value under VO with respect to confidence levels 

 

Table 6.11 Performance index under VO with respect to confidence attitudes 

A1 A2 A3 A4   
P Order P Order P Order P Order 

AC      0.8535 2 0.7697 4 0.9363 1 0.8291 3 
VC 0.7883 2 0.7119 4 0.8571 1 0.7688 3 
C 0.7546 2 0.6817 4 0.8182 1 0.7376 3 
FC 0.7396 2 0.6683 4 0.8001 1 0.7242 3 
N 0.6993 2 0.6323 4 0.7534 1 0.6873 3 
FNC 0.6645 2 0.6013 4 0.7124 1 0.6559 3 
NC 0.6439 2 0.5828 4 0.6887 1 0.6369 3 
VNC 0.6283 2 0.5689 4 0.6702 1 0.6233 3 
ANC 0.5756 2 0.5217 4 0.6101 1 0.5751 3 
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Performance under O Attitude 

Table 6.12 Performance index under O with 11 confidence levels 

Confidence level  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

A1   0.552 0.574 0.597 0.622 0.648 0.677 0.708 0.740 0.775 0.812 0.849 
A2 0.499 0.518 0.538 0.561 0.585 0.610 0.638 0.667 0.698 0.731 0.765 
A3 0.585 0.609 0.635 0.622 0.693 0.725 0.760 0.798 0.838 0.881 0.927 
A4 0.554 0.575 0.597 0.620 0.645 0.672 0.700 0.730 0.763 0.797 0.833 
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Figure 6.3 Performance value under O with respect to confidence levels 

 

Table 6.13 Performance index under O with respect to confidence attitudes 

A1 A2 A3 A4   
P Order P Order P Order P Order 

AC      0.8489 2 0.7645 4 0.9265 1 0.8327 3 
VC 0.7744 2 0.6977 4 0.8383 1 0.7624 3 
C 0.7386 2 0.6655 4 0.7975 1 0.7285 3 
FC 0.7220 2 0.6507 4 0.7781 1 0.7132 3 
N 0.6797 2 0.6128 4 0.7301 1 0.6735 3 
FNC 0.6422 2 0.5792 4 0.6866 1 0.6386 3 
NC 0.6209 2 0.5601 4 0.6626 1 0.6185 3 
VNC 0.6044 2 0.5454 4 0.6435 1 0.6036 3 
ANC 0.5522 3 0.4987 4 0.5850 1 0.5543 2 
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Performance under FO Attitude 

Table 6.14 Performance index under FO with 11 confidence levels 

Confidence level  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

A1   0.528 0.548 0.570 0.594 0.621 0.650 0.682 0.718 0.757 0.799 0.844 
A2 0.475 0.493 0.512 0.534 0.558 0.584 0.613 0.645 0.680 0.718 0.759 
A3 0.558 0.580 0.604 0.631 0.660 0.693 0.729 0.769 0.813 0.861 0.914 
A4 0.533 0.552 0.574 0.598 0.623 0.651 0.682 0.716 0.753 0.794 0.838 
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Figure 6.4 Performance value under FO with respect to confidence levels 

 

Table 6.15 Performance index under FO with respect to confidence attitudes 

A1 A2 A3 A4   
P Order P Order P Order P Order 

AC      0.8437 2 0.7586 4 0.9143 1 0.8378 3 
VC 0.7581 2 0.6812 4 0.8155 1 0.7550 3 
C 0.7200 2 0.6470 4 0.7728 1 0.7181 3 
FC 0.7018 2 0.6306 4 0.7522 1 0.7001 3 
N 0.6578 3 0.5913 4 0.7031 1 0.6582 2 
FNC 0.6174 3 0.5550 4 0.6575 1 0.6195 2 
NC 0.5956 3 0.5355 4 0.6334 1 0.5984 2 
VNC 0.5785 3 0.5203 4 0.6141 1 0.5822 2 
ANC 0.5277 3 0.4751 4 0.5584 1 0.5326 2 
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Performance under N Attitude 

Table 6.16 Performance index under N with 11 confidence levels 

Confidence level  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

A1   0.503 0.521 0.541 0.564 0.590 0.619 0.653 0.690 0.734 0.783 0.838 
A2 0.451 0.467 0.485 0.506 0.528 0.554 0.584 0.618 0.657 0.701 0.752 
A3 0.531 0.550 0.572 0.596 0.624 0.656 0.692 0.733 0.781 0.836 0.899 
A4 0.510 0.529 0.550 0.573 0.599 0.628 0.661 0.699 0.741 0.790 0.846 

 

0 0.2 0.4 0.6 0.8 1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Confidence Value

P
er

fo
rm

an
ce

 v
al

ue

Confidence Level Sensitivity Analysis

← A1

← A2

← A3

← A4

 
Figure 6.5 Performance value under N with respect to confidence levels 

 

Table 6.17 Performance index under N with respect to confidence attitudes 

A1 A2 A3 A4   
P Order P Order P Order P Order 

AC      0.8384 3 0.7522 4 0.8988 1 0.8456 2 
VC 0.7389 3 0.6621 4 0.7877 1 0.7468 2 
C 0.6984 3 0.6256 4 0.7433 1 0.7064 2 
FC 0.6786 3 0.6079 4 0.7215 1 0.6868 2 
N 0.6333 3 0.5674 4 0.6722 1 0.6415 2 
FNC 0.5900 3 0.5287 4 0.6248 1 0.5984 2 
NC 0.5681 3 0.5091 4 0.6011 1 0.5765 2 
VNC 0.5508 3 0.4938 4 0.5822 1 0.5592 2 
ANC 0.5026 3 0.4513 4 0.5307 1 0.5103 2 
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Performance under FP Attitude 

Table 6.18 Performance index under FP with 11 confidence levels 

Confidence level  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

A1   0.478 0.493 0.512 0.532 0.557 0.585 0.618 0.658 0.705 0.756 0.815 
A2 0.428 0.441 0.457 0.475 0.496 0.521 0.551 0.586 0.628 0.674 0.728 
A3 0.503 0.519 0.538 0.559 0.584 0.613 0.648 0.690 0.740 0.796 0.861 
A4 0.488 0.505 0.525 0.547 0.573 0.602 0.637 0.678 0.727 0.779 0.842 
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Figure 6.6 Performance value under FP with respect to confidence levels 

 

Table 6.19 Performance index under FP with respect to confidence attitudes 

A1 A2 A3 A4   
P Order P Order P Order P Order 

AC      0.8150 3 0.7276 4 0.8608 1 0.8416 2 
VC 0.7101 3 0.6333 4 0.7472 1 0.7324 2 
C 0.6689 3 0.5965 4 0.7034 1 0.6895 2 
FC 0.6486 3 0.5785 4 0.6818 1 0.6682 2 
N 0.6036 3 0.5386 4 0.6345 1 0.6211 2 
FNC 0.5597 3 0.4996 4 0.5880 1 0.5752 2 
NC 0.5383 3 0.4807 4 0.5655 1 0.5528 2 
VNC 0.5214 3 0.4660 4 0.5480 1 0.5348 2 
ANC 0.4775 3 0.4277 4 0.5028 1 0.4878 2 
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Performance under P Attitude 

Table 6.20 Performance index under P with 11 confidence levels 

Confidence level  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

A1   0.453 0.466 0.481 0.499 0.520 0.546 0.577 0.615 0.658 0.713 0.782 
A2 0.405 0.416 0.428 0.443 0.462 0.484 0.512 0.545 0.582 0.630 0.693 
A3 0.475 0.488 0.502 0.519 0.540 0.565 0.596 0.634 0.678 0.735 0.807 
A4 0.465 0.481 0.498 0.519 0.543 0.573 0.608 0.650 0.698 0.759 0.835 
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Figure 6.7 Performance value under P with respect to confidence levels 

 

Table 6.21 Performance index under P with respect to confidence attitudes 

A1 A2 A3 A4   
P Order P Order P Order P Order 

AC      0.7821 3 0.6927 4 0.8069 2 0.8354 1 
VC 0.6704 3 0.5936 4 0.6919 2 0.7113 1 
C 0.6301 3 0.5582 4 0.6509 2 0.6666 1 
FC 0.6103 3 0.5409 4 0.6310 2 0.6443 1 
N 0.5678 3 0.5039 4 0.5886 2 0.5966 1 
FNC 0.5253 3 0.4668 4 0.5459 2 0.5488 1 
NC 0.5055 3 0.4497 4 0.5262 2 0.5267 1 
VNC 0.4905 3 0.4369 4 0.5118 1 0.5091 2 
ANC 0.4527 3 0.4048 4 0.4751 1 0.4654 2 
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Performance under VP Attitude 

Table 6.22 Performance index under VP with 11 confidence levels 

Confidence level  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

A1   0.429 0.438 0.450 0.463 0.480 0.502 0.528 0.558 0.598 0.653 0.732 
A2 0.383 0.390 0.399 0.411 0.425 0.443 0.464 0.489 0.522 0.569 0.639 
A3 0.448 0.456 0.466 0.478 0.493 0.511 0.534 0.561 0.597 0.649 0.724 
A4 0.444 0.456 0.471 0.490 0.512 0.539 0.572 0.611 0.660 0.728 0.824 
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Figure 6.8 Performance value under VP with respect to confidence levels 

 

Table 6.23 Performance index under VP with respect to confidence attitudes 

A1 A2 A3 A4   
P Order P Order P Order P Order 

AC      0.7316 2 0.6388 4 0.7235 3 0.8244 1 
VC 0.6169 2 0.5398 4 0.6164 3 0.6828 1 
C 0.5797 3 0.5081 4 0.5819 2 0.6372 1 
FC 0.5619 3 0.4932 4 0.5661 2 0.6143 1 
N 0.5247 3 0.4620 4 0.5325 2 0.5677 1 
FNC 0.4864 3 0.4299 4 0.4982 2 0.5190 1 
NC 0.4697 3 0.4159 4 0.4831 2 0.4981 1 
VNC 0.4581 3 0.4067 4 0.4737 2 0.4820 1 
ANC 0.4287 3 0.3828 4 0.4483 1 0.4435 2 
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Performance under AP attitude 

Table 6.24 Performance index under AP with 11 confidence levels 

Confidence level  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

A1   0.406 0.412 0.419 0.427 0.439 0.454 0.468 0.487 0.516 0.562 0.643 
A2 0.362 0.366 0.371 0.377 0.386 0.397 0.407 0.420 0.441 0.476 0.543 
A3 0.423 0.426 0.431 0.436 0.443 0.452 0.460 0.471 0.489 0.518 0.576 
A4 0.422 0.432 0.444 0.459 0.478 0.502 0.527 0.561 0.609 0.681 0.800 
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Figure 6.9 Performance value under AP with respect to confidence levels 

 

Table 6.25 Performance index under AP with respect to confidence attitudes 

A1 A2 A3 A4   
P Order P Order P Order P Order 

AC      0.6429 2 0.5429 4 0.5762 3 0.8000 1 
VC 0.5403 2 0.4619 4 0.5068 3 0.6425 1 
C 0.5109 2 0.4390 4 0.4863 3 0.5978 1 
FC 0.4980 2 0.4296 4 0.4789 3 0.5757 1 
N 0.4708 2 0.4091 4 0.4612 3 0.5324 1 
FNC 0.4424 3 0.3880 4 0.4440 2 0.4855 1 
NC 0.4307 3 0.3792 4 0.4362 2 0.4671 1 
VNC 0.4245 3 0.3755 4 0.4344 2 0.4538 1 
ANC 0.4058 3 0.3621 4 0.4229 1 0.4224 2 
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Performance of the Alternatives under Risk and Confidence Attitudes  

For a clearer representation, we show the alternatives’ performance results under risk and 

confidence attitude simultaneously. The data and figures are as follows. Performance of 

A1 under different risk and confidence attitudes are given in Table 6.26 and shown in 

Figure 6.10. 

 

Table 6.26 Performance index of A1 under risk and confidence attitudes  

A1 AO VO O FO N FP P VP AP 
AC 0.8576 0.8535 0.8489 0.8437 0.8384 0.8150 0.7821 0.7316 0.6429 
VC       0.8001 0.7883 0.7744 0.7581 0.7389 0.7101 0.6704 0.6169 0.5403 
C 0.7685 0.7546 0.7386 0.7200 0.6984 0.6689 0.6301 0.5797 0.5109 
FC 0.7549 0.7396 0.7220 0.7018 0.6786 0.6486 0.6103 0.5619 0.4980 
N 0.7165 0.6993 0.6797 0.6578 0.6333 0.6036 0.5678 0.5247 0.4708 
FNC 0.6845 0.6645 0.6422 0.6174 0.5900 0.5597 0.5253 0.4864 0.4424 
NC 0.6646 0.6439 0.6209 0.5956 0.5681 0.5383 0.5055 0.4697 0.4307 
VNC 0.6501 0.6283 0.6044 0.5785 0.5508 0.5214 0.4905 0.4581 0.4245 
ANC 0.5977 0.5756 0.5522 0.5277 0.5026 0.4775 0.4527 0.4287 0.4058 
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Figure 6.10 Performance index of A1 under risk and confidence attitudes 
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The performance of A2 under different risk and confidence attitudes are given in Table 

6.27 and shown in Figure 6.11. 

 

Table 6.27 Performance index of A2 under risk and confidence attitudes 

A2 AO VO O FO N FP P VP AP 
AC 0.7743 0.7697 0.7645 0.7586 0.7522 0.7276 0.6927 0.6388 0.5429 
VC       0.7242 0.7119 0.6977 0.6812 0.6621 0.6333 0.5936 0.5398 0.4619 
C 0.6960 0.6817 0.6655 0.6470 0.6256 0.5965 0.5582 0.5081 0.4390 
FC 0.6840 0.6683 0.6507 0.6306 0.6079 0.5785 0.5409 0.4932 0.4296 
N 0.6498 0.6323 0.6128 0.5913 0.5674 0.5386 0.5039 0.4620 0.4091 
FNC 0.6215 0.6013 0.5792 0.5550 0.5287 0.4996 0.4668 0.4299 0.3880 
NC 0.6036 0.5828 0.5601 0.5355 0.5091 0.4807 0.4497 0.4159 0.3792 
VNC 0.5908 0.5689 0.5454 0.5203 0.4938 0.4660 0.4369 0.4067 0.3755 
ANC 0.5438 0.5217 0.4987 0.4751 0.4513 0.4277 0.4048 0.3828 0.3621 
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Figure 6.11 Performance index of A2 under risk and confidence attitudes 
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The performance of A3 under different risk and confidence attitudes are given in Table 

6.28 and shown in Figure 6.12. 

 

Table 6.28 Performance index of A3 under risk and confidence attitudes 

A3 AO VO O FO N FP P VP AP 
AC 0.9444 0.9363 0.9265 0.9143 0.8988 0.8608 0.8069 0.7235 0.5762 
VC       0.8727 0.8571 0.8383 0.8155 0.7877 0.7472 0.6919 0.6164 0.5068 
C 0.8355 0.8182 0.7975 0.7728 0.7433 0.7034 0.6509 0.5819 0.4863 
FC 0.8188 0.8001 0.7781 0.7522 0.7215 0.6818 0.6310 0.5661 0.4789 
N 0.7736 0.7534 0.7301 0.7031 0.6722 0.6345 0.5886 0.5325 0.4612 
FNC 0.7349 0.7124 0.6866 0.6575 0.6248 0.5880 0.5459 0.4982 0.4440 
NC 0.7117 0.6887 0.6626 0.6334 0.6011 0.5655 0.5262 0.4831 0.4362 
VNC 0.6939 0.6702 0.6435 0.6141 0.5822 0.5480 0.5118 0.4737 0.4344 
ANC 0.6332 0.6101 0.5850 0.5584 0.5307 0.5028 0.4751 0.4483 0.4229 
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Figure 6.12 Performance index of A3 under risk and confidence attitudes 
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The performance of A4 under different risk and confidence attitudes are given in Table 

6.29 and shown in Figure 6.13. 

 

Table 6.29 Performance index of A4 under risk and confidence attitudes 

A4 AO VO O FO N FP P VP AP 
AC 0.8264 0.8291 0.8327 0.8378 0.8456 0.8416 0.8354 0.8244 0.8000 
VC       0.7744 0.7688 0.7624 0.7550 0.7468 0.7324 0.7113 0.6828 0.6425 
C 0.7456 0.7376 0.7285 0.7181 0.7064 0.6895 0.6666 0.6372 0.5978 
FC 0.7338 0.7242 0.7132 0.7001 0.6868 0.6682 0.6443 0.6143 0.5757 
N 0.6995 0.6873 0.6735 0.6582 0.6415 0.6211 0.5966 0.5677 0.5324 
FNC 0.6714 0.6559 0.6386 0.6195 0.5984 0.5752 0.5488 0.5190 0.4855 
NC 0.6534 0.6369 0.6185 0.5984 0.5765 0.5528 0.5267 0.4981 0.4671 
VNC 0.6413 0.6233 0.6036 0.5822 0.5592 0.5348 0.5091 0.4820 0.4538 
ANC 0.5946 0.5751 0.5543 0.5326 0.5103 0.4878 0.4654 0.4435 0.4224 
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Figure 6.13 Performance index of A4 under risk and confidence attitudes 
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Ranking Order of the Alternatives 

The ranking orders of A1 under different risk and confidence attitudes are given in Table 

6.30. 

 

Table 6.30 Ranking order of A1 under risk and confidence attitudes  

A1 AO VO O FO N FP P VP AP 
AC 2 2 2 2 3 3 3 2 2 
VC       2 2 2 2 3 3 3 2 2 
C 2 2 2 2 3 3 3 3 2 
FC 2 2 2 2 3 3 3 3 2 
N 2 2 2 3 3 3 3 3 2 
FNC 2 2 2 3 3 3 3 3 3 
NC 2 2 2 3 3 3 3 3 3 
VNC 2 2 2 3 3 3 3 3 3 
ANC 2 2 3 3 3 3 3 3 3 

 

The ranking orders of A2 under different risk and confidence attitudes are given in Table 

6.31. 

 

Table 6.31 Ranking order of A2 under risk and confidence attitudes  

A2 AO VO O FO N FP P VP AP 
AC 4 4 4 4 4 4 4 4 4 
VC       4 4 4 4 4 4 4 4 4 
C 4 4 4 4 4 4 4 4 4 
FC 4 4 4 4 4 4 4 4 4 
N 4 4 4 4 4 4 4 4 4 
FNC 4 4 4 4 4 4 4 4 4 
NC 4 4 4 4 4 4 4 4 4 
VNC 4 4 4 4 4 4 4 4 4 
ANC 4 4 4 4 4 4 4 4 4 

 

The ranking orders of A3 under different risk and confidence attitudes are given in Table 

6.32. 
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Table 6.32 Ranking order of A3 under risk and confidence attitudes  

A3 AO VO O FO N FP P VP AP 
AC 1 1 1 1 1 1 2 3 3 
VC       1 1 1 1 1 1 2 3 3 
C 1 1 1 1 1 1 2 2 3 
FC 1 1 1 1 1 1 2 2 3 
N 1 1 1 1 1 1 2 2 3 
FNC 1 1 1 1 1 1 2 2 2 
NC 1 1 1 1 1 1 2 2 2 
VNC 1 1 1 1 1 1 1 2 2 
ANC 1 1 1 1 1 1 1 1 1 

 

The ranking orders of A4 under different risk and confidence attitudes are given in Table 

6.33. 

 

Table 6.33 Ranking order of A4 under risk and confidence attitudes  

A4 AO VO O FO N FP P VP AP 
AC 3 3 3 3 2 2 1 1 1 
VC       3 3 3 3 2 2 1 1 1 
C 3 3 3 3 2 2 1 1 1 
FC 3 3 3 3 2 2 1 1 1 
N 3 3 3 2 2 2 1 1 1 
FNC 3 3 3 2 2 2 1 1 1 
NC 3 3 3 2 2 2 1 1 1 
VNC 3 3 3 2 2 2 2 1 1 
ANC 3 3 2 2 2 2 2 2 2 

 

Finally, the DM prioritizes and selects the alternatives. 

 

6.2 Summary 

 

Multicriteria decision problems generally involve uncertain and imprecise data. To 

consider the DM’s risk and confidence attitude towards intervals of uncertainty, we 

propose a fuzzy MCDM approach based on attitude and confidence analysis. Triangular 

fuzzy numbers are constructed to incorporate the DM’s optimism (pessimism) attitude 
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towards risk. The DM’s confidence attitudes on the assessments of uncertainty are 

incorporated based on the α-cut concept. By incorporating the DM’s subjectiveness 

towards uncertainty, this approach is effective in expressing human adaptability, 

intransitivity, and dynamic adjustment of preferences in the decision process. A numerical 

example is given to demonstrate its effectiveness in solving fuzzy MCDM problems.  
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Chapter 7 

Conclusion and Future Work 

 

This chapter concludes the thesis with a summary of the accomplishments and future work.  

 

7.1 Conclusion 

 

MCDM refers to making decisions in the presence of multiple criteria. The application of 

fuzzy set theory to MCDM methods can provide an effective way to solve problems 

involving uncertainty. An effective way to express the vagueness, impreciseness, and 

subjectiveness of uncertain information is to use fuzzy numbers. Fuzzy numbers usually 

express the uncertain numerical value for the ratings of the alternatives and weights of the 

criteria in MCDM. The linguistic approach relies on a systematic use of words to 

characterize the values of variables and the relations between variables. It is used in 

situations in which the problem under analysis is too complex or too ill-defined to be 

amenable to quantitative characterization.  

 

In this thesis, we developed two approaches to solve the MCDM problems in the fuzzy 

environment. 

 

In the fuzzy extension of ELECTRE, we propose a method to establish fuzzy outranking 

relations between alternatives. With reference to the DM’s preference attitude, the 
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concordance and discordance sets, as well as the concordance and discordance indices, are 

obtained to express the strength of agreement and disagreement in outranking relations 

among alternatives. The net concordance index and net discordance index are constructed 

to represent the strength and weakness of one alternative’s domination over other 

alternatives. Finally, the performance index is obtained based on the net concordance 

index and the net discordance index. This fuzzy ELECTRE method provides a more 

flexible way to solve problems based on the DM’s preference attitudes. 

 

In the second proposed method, we introduced the concept of confidence attitude and risk 

attitude towards uncertainty in supporting normative decision making. A fuzzy MCDM is 

proposed by incorporating the DM’s subjectiveness and imprecision into the decision 

process. The linguistic term of risk attitude is expressed as a triangular fuzzy number 

toward the interval of uncertainty. The optimism attitude towards risk prefers the 

uncertainty to be solved in a favorable way, while the pessimism attitude towards risk 

prefers the uncertainty to be solved in an unfavorable way. Based on the α-cut concept, a 

refined triangular fuzzy number is defined to incorporate the DM’s confidence towards 

uncertainty. Higher confidence means a higher preference towards values with a higher 

possibility. The basic confidence attitude is established linearly with respect to the 

confidence levels. The other linguistic terms are established by modifier or hedge 

operations accordingly. Confidence vectors are established on the membership functions 

of the confidence attitudes. By making use of confidence vectors, the alternatives’ 

performances on confidence levels are aggregated to obtain the overall performance of 

alternatives. Sensitivity analysis can help gain a deep insight and understanding of the 
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problem. Therefore, it provides an effective way to solve complex, ill-defined and human-

oriented MCDM problems.  

 

7.2 Future Work 

 

The triangular fuzzy number and linguistic terms are effective and flexible in fuzzy 

decision modeling. The systematic establishment and assignment of fuzzy numbers 

require a theoretical approach. We need more study on the triangular fuzzy number, the 

trapezoidal fuzzy number and other types of fuzzy number, as well as fuzzy operations 

and measures in decision analysis. 

 

For the fuzzy ELECTRE method, possibility and necessity measures may be considered as 

ways to establish the outranking relations. For the fuzzy MCDM method based on risk and 

confidence attitudes, we may further consider other preference attitudes for supporting 

normative decision making.   

 

We may also extend our work by considering multiple decision makers in our fuzzy 

decision models. Moving away from a single decision maker’s setting introduces a great 

deal of complexity into the decision analysis process, as it no longer considers only one 

individual’s preference structure. The analysis must be extended to account for the 

conflicts among different interest groups who have different objectives or criteria. By the 

application of fuzzy set theory and other theories such as utility theory, game theory, and 

social choice theory, appropriate methods can be proposed to solve the problem under 

different situations.  
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Currently, there is no single method that is good for solving all the different types of 

decision problems. Thus we need to establish the rules to choose a right method to solve 

the problems. Expert decision support systems can assist the DM in implementing MCDM 

methods for the appropriate problem.  

 

In summary, this thesis presents an overview of MCDM methods and fuzzy MCDM 

methods, and develops two fuzzy MCDM methods. More research and application of such 

methods will be done in the future.  
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