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Dr. Robert Bregović, at the Institute of Signal Processing, Tampere University of

Technology, for precious discussion, and to Professor Wu-Shen Lu, at the Depart-

ment of Electrical Engineering, University of Victoria and Professor Teo Kok Lay

of the Applied Mathematics Department, the Hong Kong Polytechnic University,

for their advices on optimization techniques.

The pleasant research atmosphere in the lab is due to several factors. One of the

most important factors are the people through the different stages of my own stay

here: Mr. Shi Qian, Mr. Shen Ling, Mr. Guan Xiang, Dr. Ha Yajun, Mr. Anslem

Yep, Mr. Zhu Haiqing, Dr. Goh Chee-Kiang, Ms. Zhang Xiwen, Mr. Francis Boey,

Mr. Yu Wen, Mr. Wu Haijie, Ms. Xu Lianchun, Mr. Jiang Bin, Mr. Liu Xiaoyun,

Mr. Yang Chunzhu, Mr. Yu Jianghong, Ms. Cui Jiqing, Mr. Luo Zhenyin, Mr. Zhou

ii



Xiangdong, Mr. Liang Yunfeng, Ms. Zheng Huanqun, Ms. Sun Pinping, Mr. Wang

Xiaofeng, Mr. Lee Jun Wei, Ms. Cen Lin, Mr. Xia Xiaojun.

Of these I want to give special thanks to Shi Qian, Shen Ling and Xia Xiaojun

for the happy hours we played tennis together during the years, to Yang Chunzhu

for his delicious food cooked for us, and to Yu Wen for his kindness in providing

accommodations for me at one stage.

Finally, I would like to give my special thanks to my parents, Yu Qijia and Peng

Wensen, and my sister, Yu Yachen, whose love and trust enabled me to complete

this work. I also want to thank all of my friends for their invaluable support,

patience and encouragement throughout my years of study.

iii



Contents

Acknowledgements ii

Summary vii

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Multirate Systems 8

2.1 Decimation and Interpolation . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 The Decimation Process . . . . . . . . . . . . . . . . . . . . 8

2.1.2 The Interpolation Process . . . . . . . . . . . . . . . . . . . 10

2.1.3 Cascade Equivalences . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Polyphase Decomposition . . . . . . . . . . . . . . . . . . . 13

2.2 Two-Channel Filter Banks . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Basic Operation of a Two-Channel Filter Bank . . . . . . . 15

2.2.2 Aliasing-Free QMF Banks . . . . . . . . . . . . . . . . . . . 17

2.2.3 Perfect Reconstruction Orthogonal Filter Banks . . . . . . . 18

2.2.4 Perfect Reconstruction Lattice Orthogonal Filter Banks . . . 20

2.3 Signed Power-of-Two Coefficient Design Issues . . . . . . . . . . . . 22

2.3.1 Signed Power-of-Two Numbers . . . . . . . . . . . . . . . . 22

2.3.2 Existing Optimization Techniques . . . . . . . . . . . . . . . 25

2.3.3 SPT term allocation . . . . . . . . . . . . . . . . . . . . . . 27

3 Successive Reoptimization Approach 29

3.1 Continuous Coefficient Filter Bank Design . . . . . . . . . . . . . . 30

iv



3.1.1 The Least Squares Approach . . . . . . . . . . . . . . . . . . 30

3.1.2 A Line Search Algorithm . . . . . . . . . . . . . . . . . . . . 32

3.1.3 Lim-Lee-Chen-Yang Algorithm . . . . . . . . . . . . . . . . 33

3.2 Successive Reoptimization Approach . . . . . . . . . . . . . . . . . 36

3.2.1 Coefficient Sensitivity Analysis . . . . . . . . . . . . . . . . 37

3.2.2 Coefficient Quantization Algorithm . . . . . . . . . . . . . . 39

3.2.3 Design Example . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Genetic Algorithm 44

4.1 The Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Filter Coefficient Encoding and Fitness Evaluation . . . . . . . . . 46

4.3 Improved Genetic Operations . . . . . . . . . . . . . . . . . . . . . 49

4.4 Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Width-Recursive Depth-First Search 56

5.1 Frequency Response Deterioration Measure . . . . . . . . . . . . . . 57

5.2 Width-Recursive Depth-First Tree Search . . . . . . . . . . . . . . . 58

5.3 Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Analysis of SPT Number Effects 74

6.1 Rounding Error Probability Density Function Analysis . . . . . . . 75

6.1.1 Error Probability Density Function . . . . . . . . . . . . . . 77

6.1.2 Mean and Variance . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Statistical Effect of Coefficient Quantization . . . . . . . . . . . . . 85

6.2.1 Statistical Boundary of Stopband Attenuation Deterioration 87

6.2.2 Effective Selections of Q and K for Coefficient Rounding . . 92

6.3 SPT Term Allocation Scheme Based on Statistical Analysis . . . . . 95

v



6.4 Incorporating the SPT Allocation Scheme with the Tree Search Al-

gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Symmetrical Polyphase Implementation 122

7.1 Polyphase Expression . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Polyphase Implementation Exploiting Coefficient Symmetry . . . . 126

7.3 Comparison and Discussion . . . . . . . . . . . . . . . . . . . . . . 133

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 Conclusion 141

Bibliography 144

vi



Summary

Multirate systems and filter banks have found various applications in many areas,

such as speech coding, image compression, adaptive signal processing as well as

signal transmission. The function of a multirate filter bank is to separate the

input signal into two or more frequency bands of signals, or combining two or more

different frequency bands of signals into a single output signal. The two-channel

filter bank is an important filter bank family. It can be used as a basic building

block to construct an M -channel filter bank.

Multiplierless techniques have been successfully applied in the synthesis of linear

phase FIR filters with very low complexity. Recently, much attention has been given

to the design of multiplierless multirate filter banks. Among all the various types

of this class of filter bank, the lattice-structure perfect-reconstruction (PR) filter

bank presents a desirable feature that the PR property is preserved even under the

lattice coefficient quantization.

In this thesis, the design of multiplierless two-channel lattice filter bank is dis-

cussed with respect to two aspects. First, several optimization techniques for the

design of signed power-of-two (SPT) coefficient lattice filter bank are developed.

The optimization techniques include the successive reoptimization technique, im-

proved genetic algorithm, and width-recursive depth-first tree search algorithm.

Based upon the new results obtained in this thesis and those reported in the previ-

ous literatures, it can be concluded that the tree search algorithm is more suitable

than the other techniques for the design of the multiplierless two-channel lattice

filter bank. Second, the statistical SPT rounding error distribution and the effects

vii



of rounding the coefficient values to SPT values on the filter bank frequency re-

sponses are studied. Based on the knowledge of the SPT rounding error and its

effects on the frequency response, an SPT term allocation scheme is developed. A

tree search algorithm incorporating the SPT term allocation scheme is developed

for the design of SPT coefficient filter banks with different number of SPT terms

being allocated to each coefficient keeping the total number of SPT terms fixed; the

stopband attenuation achieved is very much superior to the filters designed when

each coefficient is allocated the same number of SPT terms.

In addition, a new polyphase implementation technique is introduced in the

thesis. In this new technique, coefficient symmetry is preserved for each of the

polyphase components. This results in a factor-of-two reduction in the multiplica-

tion rate.

viii
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Chapter 1

Introduction

FINITE IMPULSE RESPONSE (FIR) filters possess many virtues, such as

exact linear phase property, guaranteed stability, free of limit cycle oscilla-

tions, and low coefficient sensitivity [61,63,64]. However, the order of an FIR filter

is generally higher than that of a corresponding infinite impulse response (IIR)

filter meeting the same magnitude response specifications. Thus, FIR filters re-

quire considerably more arithmetic operations and hardware components — delay,

adder and multiplier. This makes the implementation of FIR filters, especially in

applications demanding narrow transition bands, very costly. When implemented

in VLSI (Very Large Scale Integration) technology, the coefficient multiplier is the

most complex and the slowest component. The cost of implementation of an FIR

filter can be reduced by decreasing the complexity of the coefficients [41,48,52,68].

Coefficient complexity reduction includes reducing the coefficient wordlength and

coefficient representation using a limited number of signed power-of-two (SPT)

terms.

Since the 60’s, much attention has been put into the study of the effect of co-

efficient quantization on the frequency responses of FIR filters [11, 16, 39, 40] for

implementation on general purpose digital computer or special purpose hardware.

A statistical bound on the error due to coefficient quantization was developed. Sub-

sequently, optimal finite wordlength FIR digital filters in the minimax sense were

designed by using mixed integer linear programming (MILP) [12, 41]. It was re-

ported that the computing resources required by running MILP algorithm were very

1



CHAPTER 1. INTRODUCTION 2

high. However, coefficient wordlength of the optimum solution obtained by using

MILP is only a few bits shorter than that obtained by simple coefficient rounding.

Almost concurrent with the use of MILP for the design of limited wordlength FIR

filter was the use of MILP for the design of FIR filter with SPT coefficients [49,52].

Filters with SPT coefficients have the advantage that they can be implemented

without multipliers, i.e., the filter’s coefficient multipliers can be replaced by simple

shift-and-add circuits. Thus, the computational complexity of the filter is reduced.

During the past decades, numerous algorithms have been proposed for the de-

sign of FIR filters with SPT coefficients. Besides the “optimal” technique employing

MILP, there are other suboptimal techniques such as local search methods [67,86],

tree searches with weighted least-squares criteria [45, 53], stochastic optimization,

for example, simulated annealing [5] and genetic algorithms [26,46], dynamic SPT

terms allocation algorithms [47], quantization by coefficient sensitivity [10,72], and

SPT terms allocation incorporating local search approach [15].

With increasing applications of multirate systems and filter banks in many

areas [79], recently, much attention has been given to the design of multiplierless

multirate filter banks [34, 35]. Among the various types of this class of filter bank

structures, the lattice-structure perfect-reconstruction (PR) filter bank [81] has

attracted particular attention because it possesses the desirable feature that the

PR property is preserved even under coefficient quantization.

1.1 Contributions

Filter banks have found applications in audio and video signal processing [24, 79],

especially for subband coding of speech and image signals. The main function of

a multirate filter bank is to separate the input signal into two or more frequency

bands of signals or for recombining two or more different frequency bands of signals

into a single signal. The two-channel filter bank is an important member of the

filter bank family. It can be used as a fundamental building block to construct an



CHAPTER 1. INTRODUCTION 3

M -channel filter bank in a tree structure.

The two-channel FIR filter banks can be classified into three types, viz., quadra-

ture mirror filter banks, orthogonal filter banks, and biorthogonal filter banks [20].

During the last two decades, many techniques have been developed to optimize the

two-channel filter banks [6–9,13,30,31,35,54,58,70,81–83,85]. The finite wordlength

effects [71] and the design techniques [14,34,43,57,75,76] for the finite wordlength

coefficient filter banks have also been extensively studied.

The lattice orthogonal filter bank [81] has the property that the PR property

is satisfied for any combination of the lattice coefficients. This property is very

attractive for discrete coefficient optimization. The quantization of the lattice

coefficients, however, still affects the frequency response of the filter bank. Several

algorithms have been proposed to design the multiplierless lattice filter banks [34,

75]; however, these algorithms involved direct application of the conventional linear

phase FIR filter design techniques without taking into consideration the properties

of the filter bank. Furthermore, these existing algorithms are heuristic in nature

and do not promise optimum solution. It is noted that there has been no report

on the study of SPT rounding error distribution and its effects on the filter bank

frequency response.

In this thesis, the design of multiplierless two-channel lattice filter bank is in-

vestigated in two aspects. First, several optimization techniques for the design

of SPT coefficient lattice filter bank are developed with the consideration of the

filter banks’ property. Second, the statistical SPT rounding error distribution and

the effects of rounding the coefficient to SPT values on the filter bank’s frequency

response are studied. Based on the knowledge of the SPT rounding error distribu-

tion and its effects on the filter bank, an SPT term allocation scheme is developed.

The SPT term allocation scheme when incorporated into a suitable optimization

algorithm is able to design the SPT coefficient filter banks with different number

of SPT terms to each coefficient.

Under the conventional wisdom, coefficient symmetry is lost when a filter is
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split into its polyphase components. In this thesis, a technique for preserving the

coefficient symmetry under polyphase implementation is introduced. This results

in a factor-of-two reduction in the multiplication rate required in the polyphase

implementation.

For the multiplierless two-channel lattice orthogonal filter bank design and the

polyphase implementation, the following is claimed to be original.

• A successive reoptimization approach is proposed for the design of the lattice

filter bank. In this technique, the coefficient values are quantized sequen-

tially one at a time. The order of selection of the coefficient for quantization

is based on a coefficient sensitivity measure. It is observed that the lattice

coefficient sensitivities differ greatly from coefficient to coefficient. The suc-

cessive reoptimzation approach exploit this property by first quantizing the

coefficient with the highest sensitivity measure and reoptimize the remaining

coefficients to compensate for the frequency response deterioration caused by

the coefficient quantization.

• An improved genetic algorithm is developed to optimize the lattice filter bank.

A new coding scheme is introduced to code the SPT coefficients in such a

way that the canonic property of the SPT values is preserved under genetic

operation. Additionally, two new features which dramatically improve the

genetic algorithm are introduced.

• A width-recursive depth-first tree search technique is developed to optimize

the lattice filter bank. Compared with existing tree search methods, this

technique has two advantages. First, it quickly yields a suboptimal discrete

solution; second, it covers a large search space if the necessary computing

resources are available. In this method, a frequency response deterioration

measure is introduced to serve as a branching criterion for the search.
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• SPT rounding error distribution is studied. A formula for the error probabil-

ity density function is developed.

• The statistical effect of quantizing the lattice filter banks’ coefficients to SPT

values is studied. Based on this analysis, an SPT term allocation scheme

is developed for the design of SPT coefficient lattice filter bank where each

coefficient is allocated with a different number of SPT terms while keeping

the total number of SPT terms allocated to the entire filter fixed.

• A polyphase implementation of the filter bank preserving the coefficient sym-

metry is presented.

Findings reported in this paper have been published or are being submitted for

consideration for publication or are being prepared for publication in the following

papers:

• Y.C. Lim and Y.J. Yu, “A successive reoptimization approach for the de-

sign of discrete coefficient perfect reconstruction lattice filter bank,” in Proc.

IEEE. Int. Symp. Circuits and Syst., vol. 2, pp. 69-72, Switzerland, June

2000.

• Y.J. Yu and Y.C. Lim, “A sequential reoptimization approach for the de-

sign of signed power-of-two coefficient lattice QMF bank,” in Proc. IEEE.

TENCON, pp. 57-60, Singapore, Aug. 2001.

• Y.J. Yu and Y.C. Lim, “New natural selection process and chromosome en-

coding for the design of multiplierless lattice QMF using genetic algorithm,”

in Proc. IEEE. Int. Conf. Elect. Compt. Syst., pp. 1273-1276, Malta, Sept.

2001.

• Y.J. Yu and Y.C. Lim, “A novel genetic algorithm for the design of a signed

power-of-two coefficient quadrature mirror filter lattice filter bank,” Circuit

Syst. Signal Process., vol. 21, pp. 263-276, May/June, 2002.
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• Y.C. Lim and Y.J. Yu, “A width-recursive depth-first tree search approach

for the design of discrete coefficient perfect reconstruction lattice filter bank,”

IEEE Trans. Circuits, Syst. II, vol. pp, 257-266, June 2003.

• Y.J. Yu, Y.C. Lim and T. Saramäki, “Restoring Coefficient Symmetry in

Polyphase Implementation of Linear Phase FIR Filters,” Submitted to IEEE

Trans. Circuits, Syst. I.

• Y. J. Yu, Y.C. Lim and K.L. Teo, “An Analysis on Signed Power-of-Two

Rounding Errors and Effects. I: Statistical Rounding Error Distributions,”

to be submitted to IEEE Trans. Circuits, Syst. I.

• Y. J. Yu, Y.C. Lim and K.L. Teo, “An Analysis on Singed Power-of-Two

Rounding Errors and Effects. II: Statistical Rounding Error Effects and their

Applications on the Design of Lattice Filter Banks with SPT coefficients,” to

be submitted to IEEE Trans. Circuits, Syst. I.

1.2 Thesis Outline

Chapter 1 gives an introduction to the problems considered and the contributions

made in this thesis.

In Chapter 2, a literature review briefly describes the multirate systems and

filter banks. Also presented in Chapter 2 are the property and necessary conditions

for alias-free, perfect reconstruction two-channel filter banks. The signed power-

of-two coefficient property and the existing SPT coefficient design techniques are

also reviewed.

In Chapters 3, 4 and 5, the problems encountered in the optimization pro-

cess of designing the two-channel lattice filter bank with SPT coefficients are dis-

cussed. Chapter 3 introduces a successive reoptimization approach, while Chapter 4

presents an improved genetic algorithm. A tree search algorithm for the design of

SPT coefficient filter banks is proposed in Chapter 5. A comparison among the
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techniques proposed in these three chapters and those reported in the previous

literatures is also presented in Chapter 5.

Studies on the error distribution for quantizing a number to an SPT value

are presented in Chapter 6. In Section 6.1, mathematical expressions of the error

probability density function for representing a number by a given number of SPT

terms and a given precision are deduced. Based on the error distributions, in

Section 6.2, the statistical SPT quantization effects for the two-channel lattice

orthogonal filter banks are discussed. An SPT term allocation scheme is developed

in Section 6.3. This SPT term allocation scheme is incorporated into the width-

cursive depth-first tree search algorithm in Section 6.4 to design the SPT coefficient

lattice filter bank.

In Chapter 7, a new polyphase implementation technique is presented. In this

technique, the coefficient symmetry of linear phase FIR filter is preserved for each

polyphase component. A comparison among the proposed implementation, tradi-

tional polyphase implementation and direct form implementation is performed.

Chapter 8 contains a summary of the key results obtained in this research

together with relevant conclusions drawn.



Chapter 2

Multirate Systems

TWO-CHANNEL FILTER BANKS operate at more than one sampling rate.

Such systems are called multirate digital systems. In comparison with single

rate digital system, a multirate digital system has two additional processes: the

decimation process and interpolation process. The decimation process decreases

the sampling rate, whereas the interpolation process increases the sampling rate.

This chapter reviews several basic topics on multirate systems and filter banks.

First, the decimation and interpolation processes are introduced. Second, basic op-

eration principles of a two-channel filter bank are discussed and the necessary con-

ditions for aliasing-free and perfect-reconstruction (PR) filter banks are described.

Last, the representation and properties of signed power-of-two (SPT) coefficients

are described. Existing SPT coefficient design techniques are reviewed.

2.1 Decimation and Interpolation

The most basic operations in multirate digital signal processing are decimation and

interpolation.

2.1.1 The Decimation Process

The decimation process reduces the sampling rate of a signal. It consists of an

M -fold decimator, preceded by an anti-aliasing filter, H(z), as shown in Fig. 2.1.

The M -fold decimator takes an input sequence x(n) and produces one output

sample in every M input samples. The relationship between the output sequence

8
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)(nu
)(zH

)(nx )(my
M

Fig. 2.1: The decimation process consisting of an anti-aliasing filter
H(z) and a decimator.

(a)

(b)

)( ωjeX
)(nx

)(my

n

m

π0π− π2π2−

π0π− π2π2−

)( 2/ωjeX )( 2/ωjeX −)( ωjeY

(c)

(d)
ω

ω

Fig. 2.2: A decimator for M = 2. (a) Input sequence x(n), (b) Dec-
imated output sequence y(m), (c) Fourier transform of the input se-
quence, X(ejω), and (d) Fourier transform of the decimated output
sequence, Y (ejω).

y(m) and the input signal x(n) is as follows:

y(m) = x(Mm), (2.1)

where M is an integer. The sampling rate at the output of the M -fold decimator is

M times slower than the sampling rate at the input of the M -fold decimator. An

example of a 2-fold decimation process is shown in Fig. 2.2. Given an input sequence

x(n) as shown in Fig. 2.2(a), the output of the 2-fold decimator is illustrated

in Fig. 2.2(b). Since the decimator retains only one in every M input samples,

in general, it may not be possible to recover x(n) from y(m) because of loss of

information.

Denote the z-transform of x(n) as X(z), and the z-transform of y(m) as Y (z).
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Y (z) can be expressed in terms of X(z) as

Y (z) =
1

M

M−1∑

k=0

X
(
z

1
M e−j 2kπ

M

)
. (2.2)

By substituting z by ejω in (2.2), the Fourier transform of the decimator output is

obtained as

Y (ejω) =
1

M

M−1∑

k=0

X
(
e

jω−j2πk
M

)
. (2.3)

It can be seen that Y (ejω) is a sum of M stretched (by a factor of M) and shifted

(uniformly in successive amount of 2π) versions of X(ejω), followed by scaling the

magnitude by a factor of M . Assume that the Fourier transform of the input

sequence x(n) in Fig. 2.2(a) is as shown in Fig. 2.2(c), the Fourier transform of its

M decimated output, where M = 2, is illustrated in Fig. 2.2(d).

From Fig. 2.2(d), it can be seen that these M stretched and shifted versions of

X(ejω), in general, may overlap. This overlap effect is called aliasing. x(n) cannot

be recovered from the decimated version y(m) if aliasing occurs. The aliasing,

in general, can be avoided if x(n) is a lowpass signal bandlimited to the region

|ω| < π
M

. Therefore, in most applications, the decimator is preceded by a filter

H(z), as shown in Fig. 2.1, to ensure that the signal being decimated is bandlimited.

Such a filter is called the decimation filter.

2.1.2 The Interpolation Process

In contrast to the decimation process which decreases the sampling rate, the in-

terpolation process increases the sampling rate. It consists of an L-fold expander,

followed by an anti-image filter, H(z). The block diagram of an L-fold interpolation

process is shown in Fig. 2.3.

)(nx
)(zH

)(my )(mu
L

Fig. 2.3: The interpolation process consisting of an expander and an
anti-image filter H(z).
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� � �

� � �

)( ωjeX)(nx

)(my

n

m

ππ− π2π2− � � �

� � � ω

ω

m

)( ωjeY

� � � � � � ω

)( ωjeU)(mu

ππ− π2π2−

ππ− π2π2−

Fig. 2.4: An interpolation process for L = 2. (a) Input sequence
x(n), (b) expanded sequence, y(m), (c) interpolated output, u(m), (d)
Fourier transform of the input sequence, X(ejω), (e) Fourier transform
of the expanded sequence, Y (ejω), and (f) Fourier transform of the
interpolated output sequence, U(ejω).

The expander takes an input sequence x(n) and produces an output sequence

y(m) =





x(m
L

), m = kL, k is integer

0, otherwise,

(2.4)

by placing (L − 1) equally spaced zeros between each pair of input samples. The

sampling rate at the output of the L-fold expander is L times faster than that at

the input. Fig. 2.4(a) and Fig. 2.4(b) demonstrate an input sequence, x(n), and

expanded sequence, y(m), of an expander for L = 2. The expander does not cause

any loss of information. The input sequence x(n) can be recovered from y(m) by

an appropriate L-fold decimation.

Denoting the z-transform of x(n) by X(z), and the z-transform of y(m) by
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Y (z). Y (z) can be easily expressed in terms of X(z) as

Y (z) = X(zL). (2.5)

The Fourier transform relationship between the input and output sequences of the

expander is Y (ejω) = X(ejωL). This means that Y (ejω) is an L compressed version

of X(ejω) as shown in Figs. 2.4(d) and Figs. 2.4(e). The expander introduces

images in Y (ejω) due to the periodicity of X(ejω). To suppress all those images,

the expander is followed by an interpolation filter, H(z), as shown in Fig. 2.3.

Typically, the interpolation filter is lowpass with cutoff frequency π/L. Thus,

only the spectrum in Fig. 2.4(f) is retained. The effect in time domain, as shown

in Fig. 2.4(c), is that the zero-valued samples introduced by the expander are

interpolated.

2.1.3 Cascade Equivalences

As shown in Section 2.1.1 and Section 2.1.2, a multirate system is formed by an

interconnection of a sampling rate change component and a digital filter. These

components appear in a cascade form. An interchange of the components’ posi-

tions may lead to a computationally efficient realization. Two important cascade

equivalence relations are depicted in Fig. 2.5. The validity of these equivalences

can be readily established by using (2.2) and (2.5).

M
)(my )(my)(nx

� � �

� � �

)( MzH M )(zH
)(nx

)(nx )(my
L

)(nx
)( LzH)(zH L

)(my

Fig. 2.5: Cascade equivalences: (a) the first equivalence, and (b) the
second equivalence.

These two cascade equivalences enable us to move the basic sampling rate
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change devices in multirate systems to more advantageous positions. They are

extremely useful for efficient implementation of multirate systems.

2.1.4 Polyphase Decomposition

For decimation and interpolation processes, the computational complexity of the

FIR filter may be reduced by using the polyphase decomposition [4] technique. The

polyphase decomposition technique is reviewed in this section and its applications

in the efficient realization of the decimation and interpolation processes are also

illustrated.

Consider a filter h(n) with z-transform H(z):

H(z) =
+∞∑

n=−∞
h(n)z−n. (2.6)

H(z) can be rewritten as

H(z) =
R−1∑

r=0

z−rEr(z
R) =

R−1∑

r=0

z−r
+∞∑

k=−∞
h(kR + r)z−kR, (2.7)

where

Er(z
R) =

+∞∑

k=−∞
er(k)z−kR =

+∞∑

k=−∞
h(kR + r)z−kR, r = 0, 1, ..., R− 1 (2.8)

denotes the r-th polyphase component of H(z).

Therefore, an M -fold decimation filter, as shown in Fig. 2.6(a), can be de-

composed into its M polyphase components according to (2.7). The polyphase

decomposition of the M -fold decimation filter is illustrated in Fig. 2.6(b).

Applying the first cascade equivalence shown in Fig. 2.5(a), Fig. 2.6(b) can be

redrawn as shown in Fig. 2.6(c), which is computationally more efficient than the

structure shown in Fig. 2.6(a). Each polyphase component in Fig. 2.6(c) operates

at the output sampling rate, which is 1
M

of the input rate. Therefore, the total

computation rate in the system is reduced by a factor of M . By realizing each of the

polyphase components in the structure shown in Fig. 2.6(c) as a transposed direct

form FIR filter, as shown in Fig. 2.6(d), it can be observed that the same delay
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Fig. 2.6: M -fold decimation filter implemented based on (a) direct form,
(b) polyphase decomposition, (c) polyphase decomposition applying the
first cascade equivalence, (d) polyphase decomposition using shared
delay elements. L-fold interpolation filter implemented based on (e)
direct form, (f) polyphase decomposition, (g) polyphase decomposition
applying the second cascade equivalence, (h) polyphase decomposition
using shared delay elements.
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elements can be shared among the polyphase components to hold the intermediate

sum values. Therefore, the total storage requirement for data storage, as well as

the computation rate, is reduced by a factor of M .

Transposing the structure of the polyphase M -fold decimation shown in Fig. 2.6(c),

the L-fold interpolation structure is obtained as shown in Fig. 2.6(g), where M is

replaced by L. Again the filtering operation of the polyphase components oc-

curs at the lower-sampling rate side of the system. In comparison with the struc-

ture of Fig. 2.6(e), the computation rate is reduced by a factor of L. If each

of the polyphase components is realized by a direct form FIR filter, as shown in

Fig. 2.6(h), the same delay elements for holding the delayed values of x(n) can be

shared among the polyphase components. Therefore, the total data storage is also

reduced by a factor of L.

2.2 Two-Channel Filter Banks

Decimating the signal gives rise to aliasing distortion. Bandlimiting the signal by a

decimation filter may minimize aliasing distorting but leads to a loss in information

content. Digital filter banks provide a way to get around this difficulty.

A digital filter bank is a set of digital bandpass filters with either a common

input or a summed output. The filters are chosen such that a signal can be split

into subband components and then decimated. During signal encoding, different

bit rates are allocated to signals in different subbands depending on various crite-

ria such as energy content, perceptual effects, etc. This is the basic principle of

subband codding. The subband signals are then decoded and reconstructed to give

the full band signal.

2.2.1 Basic Operation of a Two-Channel Filter Bank

The analysis/synthesis scheme used in most subband coding [21,28,74,78] systems

is maximal decimation, i.e., the decimation factor is equal to the number of bands
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Fig. 2.7: Two-channel filter bank.

of the filter bank. Fig. 2.7 shows a two-channel filter bank. In subband process-

ing, the input signal x(n) is first filtered by two filters H0(z) and H1(z), which

are the low-pass and high-pass filters, respectively. The subband signals are then

decimated by a factor of two and encoded for transmission. At the receiver end,

the subband signals are decoded, interpolated, and filtered by the filters G0(z)

and G1(z) and then summed to produce the output signal x̂(n). H0(z) and H1(z)

are called the analysis filters, whereas G0(z) and G1(z) are the synthesis filters.

This analysis/synthesis system, however, may introduce three separate types of

distortions: aliasing, amplitude distortion and phase distortion, which cause the

reconstructed signal x̂(n) to differ from x(n).

Consider the system shown in Fig. 2.7. Let the z-transforms of x(n), x0(n),

x1(n), v0(n), v1(n), w0(n), w1(n), y0(n), y1(n) and x̂(n) be X(z), X0(z), X1(z),

V0(z), V1(z), W0(z), W1(z), Y0(z), Y1(z) and X̂(z), respectively. Hence,

Xk(z) = Hk(z)X(z), for k = 0, 1. (2.9)

By using (2.2) and (2.9), Vk(z)’s, are expressible as

Vk(z) =
1

2

[
Hk(z

1
2 )X(z

1
2 ) + Hk(−z

1
2 )X(−z

1
2 )

]
, for k = 0, 1. (2.10)

Assume that the processing unit in Fig. 2.7 is lossless. By using (2.5) and (2.10),

the output of the 2-fold expanders are given by

Yk(z) = Wk(z
2) = Vk(z

2) =
1

2

[
Xk(z) + Xk(−z)

]
, for k = 0, 1, (2.11)

and the overall output is given by

X̂(z) = G0(z)Y0(z) + G1(z)Y1(z). (2.12)
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The general relation between X̂(z) and X(z), thus, is given by:

X̂(z) =
1

2

[
H0(z)G0(z) + H1(z)G1(z)

]
X(z)

+
1

2

[
H0(−z)G0(z) + H1(−z)G1(z)

]
X(−z) (2.13)

=
1

2
H(z)X(z) + aliasing term,

where

H(z) = H0(z)G0(z) + H1(z)G1(z). (2.14)

2.2.2 Aliasing-Free QMF Banks

It was first shown by Croisier, et al [19] in the mid senventies that the alias-

ing problem in decimation-interpolation process can be completely eliminated by

requiring that all of the analysis and synthesis filters involved be either scaled ver-

sion or frequency shifted scaled versions of the same half-band lowpass filter. Such

aliasing-free two-channel analysis/syntheis system is popularly called the Quadra-

ture Mirror Filter (QMF) bank.

The second term of (2.13) represents the aliasing term. For aliasing free recon-

struction, the second term of (2.13) must be zero, i.e.,

H0(−z)G0(z) + H1(−z)G1(z) = 0. (2.15)

Choosing G0(z) and G1(z) as in (2.16) and (2.17) will satisfy (2.15).

G0(z) = H1(−z) (2.16)

G1(z) = −H0(−z). (2.17)

Thus, the overall transfer function H(z) becomes

H(z) = H0(z)H1(−z)−H0(−z)H1(z). (2.18)

In addition, (2.19) ensures that H1(z) is highpass if H0(z) is lowpass.

H1(z) = H0(−z). (2.19)
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Substituting (2.16), (2.17) and (2.19) into (2.14), the overall transfer function of

the alias-free system is given by

H(z) =
1

2

[
H2

0 (z)−H2
0 (−z)

]
. (2.20)

2.2.3 Perfect Reconstruction Orthogonal Filter Banks

Design techniques for QMF bank were later developed by other authors to mini-

mize the remaining distortions [3, 17,22,36–38]. It was independently observed by

Mintzer [59] and Smith and Barnwell [73] that all the three distortions mentioned

above can be eliminated and thus it results in exact reconstruction of the input

signal.

For the above QMF class of analysis/synthesis system, perfect reconstruction

requires that

H2
0 (z)−H2

0 (−z) = 2. (2.21)

However, the perfect reconstruction condition of (2.21) leads to either the trivial

case where H0(z) = 1 + z−1, H1(z) = 1 − z−1, or a pair of infinitely long, ideal

half-band filters. Nevertheless, it will be shown that if (2.19) is relaxed, perfect

reconstruction is possible without the above shortcomings.

From (2.13), it is clear that distortionless reconstruction is achieved for the class

of filters which satisfies the condition

H0(z)G0(z) + H1(z)G1(z) = 2z−L, (2.22)

H0(−z)G0(z) + H1(−z)G1(z) = 0, (2.23)

where L is a nonzero integer. Solving the simultaneous equations of (2.22) and

(2.23) yields (2.24) and (2.25).

G0(z) =
2H1(−z)z−L

H0(z)H1(−z)−H0(−z)H1(z)
, (2.24)

G1(z) =
−2H0(−z)z−L

H0(z)H1(−z)−H0(−z)H1(z)
. (2.25)
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Constraining both the analysis filters and the synthesis filters to be FIR filters, the

denominator of (2.24) and (2.25) must satisfy (2.26).

H0(z)H1(−z)−H0(−z)H1(z) = Kz−N (2.26)

for some values of N and K. A solution meeting the requirement of (2.24), (2.25)

and (2.26) is

G0(z) = H1(−z) (2.27)

G1(z) = −H0(−z). (2.28)

A new class of filters called conjugate quadrature filters (CQF) which satisfy (2.29)

is introduced.

H1(z) = −H0(−z−1)z−N . (2.29)

Assuming that N is odd, substituting (2.27), (2.28) and (2.29) into (2.14), the

overall transfer function of the analysis/synthesis system, which is free of aliasing,

is given by

H(z) =
1

2

[
H0(z)H0(z

−1) + H0(−z)H0(−z−1)
]
z−N

=
1

2
[F0(z) + F0(−z)] z−N , (2.30)

where F0(z) is called the product filter given by

F0(z) = H0(z)H0(z
−1). (2.31)

It is obvious from (2.30) that, for perfect reconstruction, the product filter F0(z)

must meet two conditions. First, F0(z) must meet (2.32)

F0(z) + F0(−z) = 2, (2.32)

i.e., F0(z) is a half-band filter. Second, F0(z) must be decomposable into analysis

and synthesis filters in such a way that (2.31) is valid. Under these conditions,

perfect reconstruction is achieved with a delay of N samples.
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The design procedure, therefore, is divided into two steps: first, a half band

product filter F0(z) is designed to meet the condition (2.32); second, the product

filter is decomposed into H0(z) and H0(z
−1) as shown in (2.31).

Analysis/synthesis filters obtained by this procedure are no longer quadrature

mirror symmetric. This class of analysis/synthesis systems is called orthogonal

filter banks recently [20].

Later studies [79] showed that PR orthogonal filter banks are a special case of

the PR two-channel filter banks. From (2.18), it is obvious that, for an aliasing-free

two-channel filter bank, given:

H0(z) =
N0∑

n=0

h0(n)z−n, and H1(z) =
N1∑

n=0

h1(n)z−n,

the PR condition, H(z) = z−L, is met provided that the impulse response of

F (z) = H0(z)H1(−z) =
N0+N1∑

n=0

f(n)z−n, (2.33)

satisfies

f(n) =





1
2

for n = L

0 for n odd and n 6= L,

when L is odd and (N0 + N1) is even [20,79].

2.2.4 Perfect Reconstruction Lattice Orthogonal Filter Banks

The implementation of a perfect reconstruction filter bank using the tap delay line

structure suffers from the disadvantage that the perfect reconstruction property

is affected by coefficient quantization. A lattice analysis/systhesis system, which

structurally ensures perfect reconstruction, was introduced by Vaidyanathan and

Hoang in [81]. The analysis bank is shown in Fig. 2.8. An important virtue of the

lattice structure filter bank is that the perfect reconstruction property is preserved

even under severe coefficient quantization. Since the perfect reconstruction prop-

erty is structurally ensured, it is only necessary to consider the frequency response

when the coefficient values are optimized in discrete value space.
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Fig. 2.8: Analysis bank of the perfect reconstruction lattice orthogonal
filter bank.

Consider a (2N−1)-th order lattice structure (with N coefficients) implementing

the analysis bank shown in Fig. 2.8. Let the z-transform transfer functions of the

two channels be HN,0(z) and HN,1(z), respectively. Thus,



HN,0(z)

HN,1(z)




= βN A(αN−1) Λ A(αN−2) Λ · · ·Λ A(αk) Λ · · ·Λ A(α0)




1

z−1




,(2.34)

where

β2
N =

1

2

N−1∏

k=0

1

1 + α2
k

, A(αk) =




1 −αk

αk 1




, Λ =




1 0

0 z−2




. (2.35)

In Fig. 2.8, βN appears as a scaling amplifier at the input. This is purely for the

convenience of simplifying Fig. 2.8. In actual implementation, βN may be factored

and the factors distributed in between the lattice stages to optimize for roundoff

noise performance.

It has been proved that the lattice structure of Fig. 2.8 satisfies the “power

complementary property”

∣∣∣HN,0(e
jω)

∣∣∣
2
+

∣∣∣HN,1(e
jω)

∣∣∣
2

= 1, (2.36)

and the conjugate quadrature condition in equation (2.29). Conditions (2.29) and

(2.36) ensure perfect reconstruction.

To determine the lattice coefficients of the filter bank, only the stopband en-

ergy of HN,0(e
jω) should be considered, since the lattice structure ensures that the
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stopband energy of HN,1(e
jω) is equal to that of HN,0(e

jω) and is automatically

minimized. Moreover, a good stopband of HN,0(e
jω) ensures a good passband of

HN,1(e
jω), and vice versa.

A minimax sense weighted least squares objective function is given by

f =
∑

ω∈[ωs,π]

B(ω)|HN,0(e
jω)|2. (2.37)

In (2.37), B(ω) is the error weighting function and ωs is the stopband edge. The

stopband edge satisfies the constraint π
2

< ωs ≤ π.

2.3 Signed Power-of-Two Coefficient Design Is-

sues

FIR digital filters designed over the signed power-of-two (SPT) discrete space was

first proposed by Lim and Constantinides [49]. Extensive research has shown that

the complexity of an FIR digital filter can be reduced by implementing its coef-

ficients as sums of SPT terms. This section briefly describes the SPT number

characteristics and existing optimization techniques for the design of digital filters

subject to SPT coefficients.

2.3.1 Signed Power-of-Two Numbers

A number, Y , can be represented to a precision 2Q by L − Q trinary digits y(i)

according to

Y =
L−1∑

i=Q

y(i)2i, y(i) ∈ {1̄, 0, 1}, Q ≤ i ≤ L− 1, (2.38)

where, 1̄ is equal to −1, L and Q are integers. A number represented in such a

way is called an SPT number in this thesis. Each nonzero digit term , y(i) 6= 0, is

counted as an SPT term. The wordlength of Y is (L−Q)-bit. Y is discrete values

in increments of 2Q in the range

−2L + 2Q ≤ Y ≤ 2L − 2Q, (2.39)
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in which there are 2L−Q+1 − 1 distinct values. However, with L − Q digits each

having 3 possibilities, there are 3L−Q representations. For L−1 > Q, 3L−Q is larger

than 2L−Q+1 − 1 and hence some numbers have more than one representation. A

minimum representation refers to a representation requiring the minimum number

of non-zero digits, i.e., minimum number of SPT terms, of which one number may

also has more than one representation. A canonic representation is the unique

minimum representation requiring y(i) satisfying the constraints

y(i)y(i + 1) = 0, (2.40)

i.e., there are no two SPT terms that are adjacent.

The canonic representation requirement imposes a further constraint on the rep-

resentation; this will exclude the representation of some numbers that can be repre-

sented without the canonic representation requirement under the same wordlength.

For example, with L = 4 in (2.38), one cannot represent say 12 in the canonic form

but it is possible in the non-canonic form. To represent 12 in a canonic form, it is

necessary to increase L to 5 which is a drawback compared to the case with L = 4

that allows non-canonic forms. However, because of the unique representation of

the canonic SPT number which is very attractive for monitoring and ensuring the

minimum representation of the number, many researches on the SPT coefficient

design imposed the canonic condition on the SPT numbers for easy analysis and

derivation [26, 34, 55, 67, 84], although there may exist other minimum representa-

tions.

For the particular condition where Q = 0, the number Y is the set of all

integers with magnitude less than 2L+1

3
when the canonic constraint is imposed on

the number. For the particular condition where L = 0, the number Y lies in the

range −1 < Y < 1.

Since in canonic SPT representation, no two consecutive y(i)’s are non-zero, an

R-bit Y can be represented using no more than R+1
2

SPT terms. Often, fewer terms

are needed, and it has been shown in [65] that the expected number of SPT terms



CHAPTER 2. MULTIRATE SYSTEMS 24

in an R-bit canonic SPT number tends asymptotically to (R
3

+ 1
9
) as R increases.

A number represented in two’s complement format can be easily converted to

an equivalent canonic SPT representation as follows:

Let

X = (xR−1, · · · , x1, x0) (2.41)

be an R-bit two’s complement number and

Y = (yR−1, · · · , y1, y0) (2.42)

be the equivalent SPT number, where xi ∈ {0, 1} and yi ∈ {1̄, 0, 1} for i =

0, · · · , R − 1. The numerical value of X is the same as that for Y . For every

digit xi, yi is generated using the following algorithm [65].

1. Initialize i = 0 and γ−1 = x−1 = 0. Arbitrarily define xR as xR = xR−1.

2. Let θi = xi ⊕ xi−1.

3. Let γi = γi−1θi.

4. yi = (1− 2xi+1)γi.

5. If i = R− 1, stop; otherwise increment i and go to Step 2. 2

In the above algorithm, the symbol ⊕ denotes exclusive OR and the overbar indi-

cates complementation.

The following algorithm finds the best approximation [x]u for a number x using

u SPT terms [50]:

1. Initialize m = 1 and s0 = x.

2. Find y(m)2g(m) which minimizes
∣∣∣sm−1 − y(m)2g(m)

∣∣∣.

3. If either y(m) = 0 or m = u, go to Step 6. Otherwise go to Step 4.

4. Update sm = sm−1 − y(m)2g(m).
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5. m = m + 1. Go to Step 2.

6. [x]u =
∑m

i=1 y(i)2g(i). Stop. 2

2.3.2 Existing Optimization Techniques

As analyzed in Section 2.3.1, when a number is represented as a sum of SPT terms,

it has less or equal nonzero digits than when it is represented in two’s complement.

More interestingly, preliminary studies show that only a limited number of SPT

terms are required to meet a respectable set of specifications if a good optimization

technique exists. Hence, the coefficient multipliers can be replaced by a small

number of add/subtract-shift operations. The hardware complexity as well as

power consumption is therefore very much reduced.

Many methods have been developed for optimizing the frequency response of a

digital filter subject to SPT constrains imposed on its coefficient values. These in-

clude the use of mixed-integer linear programming (MILP) [48,49,52], local search

methods [67, 86], tree search with weighted least-squares criteria [45, 53], simu-

lated annealing [5], genetic algorithm [26, 46], quantization guided by coefficient

sensitivity analysis [10, 72], and optimization techniques incorporating SPT terms

allocation strategies [15,47,55].

In MILP, linear programming is coupled with a suitable branch-and-bound

search algorithm, such as the isocost search or depth-first search. The depth-first

branch-and-bound search is often preferred for high-order filter design since the iso-

cost search may not be able to produce a solution because of insufficient computing

resources. The filters obtained by using MILP are optimized in the minimax sense.

So far, MILP is the only known method which can guarantee global optimality in

the minimax sense for a given SPT term allocation. Furthermore, MILP can mini-

mize the total number of SPT terms if the problem is appropriately formulated [33],

thus leading to a filter with minimal implementation cost. However, MILP requires

excessive computing resources if the filter length is long. The computational cost

required increases exponentially with the number of variables to be optimized.
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Local search methods involve searching in the discrete space in the vicinity of the

optimum continuous coefficient space. The solution obtained is a local optimum.

Popular local search methods are the univariate or bivariate local search. Univariate

local search employs the simplest neighborhood search technique by perturbing

each coefficient one-at-a-time and increasing or decreasing one discrete step at a

time. In the more powerful bivariate local search, coefficients are selected two-at-

a-time (over all possible pairs). Each of the two selected coefficients is perturbed

by one step leading to four combinations. The univariate and bivariate local search

take trivial computing resources to arrive at a discrete solution in the immediate

neighborhood of the continuous optimum solution but will require great computing

resources to arrive at a good local optimum (if it ever happen) at a considerable

distance away from the continuous optimum.

There are reports on replacing the linear programming algorithm in tree search

method by a suitable weighted least-squares algorithm in the design of certain

types of filters. In such algorithms, the filter’s coefficient values are quantized one

at a time. The remaining unquantized coefficients are optimized in the weighted

least-squares sense. The computing time required is approximately proportional

to the cube of the number of filter coefficients to be optimized but the optimal

solution is not guaranteed.

Simulated annealing (SA) and genetic algorithm (GA) belong to the class of

stochastic optimization techniques. SA is based on random moves and has some

ability to overcome local optimums found on the way as it moves towards a better

local optimum by accepting unfavourable move at a certain probability. Since SA

is inherently suited for continuous space optimization, proper discretization of the

variables’ values is necessary. In contrast to SA, GA is inherently suited for discrete

space optimization. It is a simulation of the evolution process of natural selection,

where variables are encoded and the fitter ones have more probabilities to survive

and produce offsprings. Both SA and GA are global optimization techniques in

theory, but the computation cost is very expensive.
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In the quantization guided by coefficient sensitivity analysis technique, each co-

efficient is first set to its nearest single-SPT-term number. The second-SPT-term

is then allocated to the filters’ coefficients one at a time in decreasing order of the

coefficient sensitivity, until the frequency response meets the given specification.

Coefficient sensitivity is defined as the sum of the increase in the peak passband

ripple value and the increase in the peak stopband ripple value when the coeffi-

cient is set to its nearest single-SPT-term number. A modified sensitivity criterion

considers the average ripple magnitude changes over all the frequency grid points

in the passband and stopband.

Several authors reported techniques for optimizing FIR filters subject to a given

total number of SPT terms; each coefficient value may have a different number of

SPT terms. In such quantization scheme, the quantization step size is non-uniform.

In [55], each coefficient of the filter is allocated a certain number of SPT terms ac-

cording to the coefficient’s statistical quantization step-size and sensitivity. After

the assignment of the SPT terms, MILP is used to optimize the coefficient values.

In [47], SPT terms are dynamically allocated to the currently most deserving co-

efficient, one at a time, to minimize the L∞ distance between the SPT coefficients

and their corresponding infinite wordlength values. In [15], each coefficient is first

assigned SPT terms using the technique of [47]. Subsequently, a pool of SPT terms

is created for each coefficient according to the coefficient’s infinite precision value.

A dynamic programming technique is used to allocate SPT terms taken from the

coefficient’s pool of SPT terms to each coefficient.

Among the above techniques, the local search approach and the GA has been

applied to design the SPT coefficient lattice filter banks.

2.3.3 SPT term allocation

There are several schools of thoughts for the distribution of the SPT terms to the

coefficients. Some researchers design filters where each coefficient is allocated with
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the same number of SPT terms. Some researchers design filters where each coeffi-

cient is allocated with different number of SPT terms but the total number of SPT

terms for the entire filter is fixed. It has been demonstrated in [55] that filters with

different number of SPT terms allocated to each coefficient have significantly better

frequency response performance than filters with the same number of total SPT

terms but with all coefficients allocated with the same number of SPT terms. Both

schools of thoughts have their own respective merits; it depends on the hardware

platform used to implement the filters. For example, in a given implementation

platform where only a fixed number of shifters are provided to each coefficients, the

filter coefficient have to be optimized with the constraint that each coefficient is al-

located with the number of SPT terms not more than the given number of shifters.

If the implementation platform does not have such constraint on the number of

shifters for each coefficient, the filter coefficients can be optimized under a total

number of SPT terms to minimize the filter complexity.



Chapter 3

Successive Reoptimization
Approach

OPTIMIZATION TECHNIQUES for the design of a transversal FIR filter

with SPT coefficient values subject to a given frequency response require-

ment have been reviewed in Section 2.3.2. Unfortunately, many of the existing

optimization techniques are not suitable for the design of lattice filters due to the

lattice filters’ special properties. For example, MILP cannot be used since the ob-

jective function for the lattice filter design is not a linear function of the lattice

filter’s coefficient values; in lattice orthogonal filter banks, the lattice coefficients

cannot be scaled freely as those in transversal FIR filters due to the nonlinear

property. The optimization techniques proposed, up to now, for the design of two-

channel lattice orthogonal filter banks with SPT coefficients are mainly local search

methods [34] and genetic algorithm [75].

In this chapter, as well as in the following two chapters, several methods for

the design of SPT coefficient two-channel lattice orthogonal filter banks will be

introduced. In this chapter, a successive reoptimization approach is proposed.

Section 3.1 presents a weighted least squares algorithm for the design of the con-

tinuous coefficient filter banks, since generally a discrete coefficient design starts

from a continuous optimum. The detailed successive reoptimization algorithm is

introduced in Section 3.2.

29
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3.1 Continuous Coefficient Filter Bank Design

A weighted least squares objective function which will produce minimax optimum

results was given in (2.37). For easy reference, the objective function is reproduced

in (3.1).

f =
∑

ω∈[ωs,π]

B(ω)|HN,0(e
jω)|2. (3.1)

If the error weighting function B(ω) is uniform over all frequencies ω, minimiz-

ing (3.1) is a least squares optimization problem. A quasi-Newton approach for

optimizing the least squares problem will be described in Section 3.1.1. An ef-

ficient line search algorithm which is necessary in the quasi-Newton approach is

introduced in Section 3.1.2. The minimax sense minimum is achieved by Lim-Lee-

Chen-Yang weighting function updating algorithm [29,51], which will be reviewed

in Section 3.1.3 for completeness.

3.1.1 The Least Squares Approach

The approach to minimize the least squares objective function is an iterative pro-

cedure. To design a (2N − 1)-th order lattice filter, an N by 1 vector of lattice

coefficients, α, at the p-th iteration is defined as

α(p) =
[

α
(p)
0 , α

(p)
1 , · · · , α(p)

N−1

]T
. (3.2)

The updating equation is

α(p+1) = α(p) + γ(p)s(α(p)), (3.3)

where, s(α(p)) is a search direction in the N dimensional space of α, and γ(p) (a

positive scaler at the p-th iteration) is selected so as to minimize f in the s(α(p))

direction.

Let the objective function value f at the p-th iteration be denoted by f (p). In

this proposed algorithm, a quasi-Newton method is employed [66]. In this method,

the search direction, s(α(p)), is given by

s(α(p)) = −H(p)∇αf (p), (3.4)
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where ∇αf (p) is the derivative of the objective function f at the p-th iteration

with respect to α(p). H(p) is an N × N matrix which is an approximation to the

inverse of the Hessian, H−1 = {∇2fopti}−1, where fopti is the optimum value of f .

The computation of the second order derivative of the objective function is, thus,

avoided.

Denoting ∇αf (p) by g(p), ∆α(p) and ∆g(p) are given by

∆α(p) = α(p+1) −α(p), (3.5)

∆g(p) = g(p+1) − g(p). (3.6)

The matrix H is updated by using BFGS method [23],

H(p) = H(p−1) +
∆α(p−1)

(
∆α(p−1)

)T

(
∆α(p−1)

)T
∆g(p−1)


1 +

(
∆g(p−1)

)T
H(p−1)∆g(p−1)

(
∆α(p−1)

)T
∆g(p−1)




−
∆α(p−1)

(
∆g(p−1)

)T
H(p−1) + H(p−1)∆g(p−1)

(
∆α(p−1)

)T

(
∆α(p−1)

)T
∆g(p−1)

, (3.7)

and H(0) is initialized to the identity matrix, I.

In the optimization of the lattice filter coefficients, the frequency response of

the lowpass analysis filter H
(p)
N,0(e

jω) is obtained using (2.34). The derivative of the

objective function, ∇αf (p), is given by

∇αf (p) = 2
∑

ω∈Ω

<
{
B(ω)H

(p)
N,0(e

jω)∇αH
(p)
N,0(e

jω)
}
, (3.8)

where < denotes the real part of the complex value, ∇αH
(p)
N,0(e

jω) is the derivative of

H
(p)
N,0(e

jω) with respect to α(p), and Ω = [ωs, π]. For zero-phase frequency response,

∇αH
(p)
N,0(e

jω) is given by

∇αH
(p)
N,0(e

jω) =
[
∇α0H

(p)
N,0(e

jω), · · · ,∇αk
H

(p)
N,0(e

jω), · · · ,∇αN−1
H

(p)
N,0(e

jω)
]T

. (3.9)

In (3.9), ∇αk
H

(p)
N,0(e

jω) is given by




∇αk
H

(p)
N,0(e

jω)

∇αk
H

(p)
N,1(e

jω)




= β
(p)
N A

(
α

(p)
N−1

)
Λ A

(
α

(p)
N−2

)
Λ · · ·ΛA

(
α

(p)
k+1

)
Λ
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1

1 +
(
α

(p)
k

)2A
(
α

(p)
k

)




0 −1

1 0



ΛA

(
α

(p)
k−1

)
Λ · · ·ΛA

(
α

(p)
0

)




1

e−jω




,(3.10)

where

β
(p)
N =




1

2

N−1∏

k=0

1

1 +
(
α

(p)
k

)2




1
2

, A
(
α

(p)
k

)
=




1 −α
(p)
k

α
(p)
k 1




, Λ =




1 0

0 e−j2ω




.(3.11)

The iterative procedure starts with an arbitrary vector α0 and B(ω) = 1 for all

ω. Subsequently, α(p+1) is obtained using (3.3). The value of s(α(p)) is obtained

using (3.4) and γ(p) is obtained by using an efficient line search procedure described

in Section 3.1.2. The iterative process terminates when

|γ(p)s(α(p))| < ξ, (3.12)

where ξ is a predefined error tolerance. After (3.12) is satisfied, B(ω) is updated

by using the Lim-Lee-Chen-Yang algorithm [51], which will be reviewed in Sec-

tion 3.1.3.

3.1.2 A Line Search Algorithm

In the proposed line search algorithm, given the lattice coefficients α(p) and search

direction s(α(p)) at the p-th iteration, an initial guess of γ1 is obtained. The procure

is carried out as follows:

1. Evaluate f for α(p) and denote the obtained value by f0.

Set γ1 = 100 × min
(
α(p)./s(α(p))

)
, where ‘./’ denotes element by element

division.

If γ1 > 2−10, set γ1 = 2−10.

2. Evaluate f for γ1 and denote the obtained value by f1.

3. If f1 < f0, go to Step 4. Otherwise, go to Step 5.
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4. Set γ0 = γ1, f0 = f1.

Replace γ1 by 2γ1.

Evaluate f for γ1 and denote the obtained value by f1.

If f1 < f0, go to Step 4. Otherwise, set γ(p) = γ0 and stop.

5. Set γ1 = γ1/2.

Evaluate f for γ1 and denote the obtained value by f1.

If f1 > f0, go to Step 5. Otherwise, set γ(p) = γ1 and stop. 2

This line search algorithm only requires the objective function values, therefore,

practically it is simple and fast. From the experiences, if the step size obtained

using the above algorithm is larger than 2, for some examples, the results may

deviate from the optimum solution. Therefore, in Step 4, a judgement of whether

γ0 is larger than 2 can be included to restrict the step size, γ(p), not to be larger

than 2. A comparison of the proposed line search algorithm with Fletcher’s line

search algorithm [1, 23] is tabulated in Table 3.1. In Table 3.1, the two-channel

lattice filter bank with stopband edges at ωs = 0.52π, ωs = 0.54π and ωs = 0.58π

is optimized in the least squares sense. The filter length related parameter, N ,

ranges from 20 to 36.

From Table 3.1, it can be seen that the convergent time of the proposed al-

gorithm is approximately one third of that of Fletcher’s algorithm, whereas the

stopband attenuation achieved by the two algorithms are consistent with the ex-

ception for the example for ωs = 0.58π, N = 32, where the stopband attenuation

of the proposed algorithm is 1.82 dB inferior to that of the Fletcher’s algorithm.

3.1.3 Lim-Lee-Chen-Yang Algorithm

In the previous two sections, iterative procedures have been presented to derive

an optimal α which minimizes the objective function defined in (3.1) for a given

weighting function. An appropriate weighting function can be derived such that

the optimal α with respect to (3.1) is also optimal in the weighted minimax sense.
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Table 3.1: A comparison of the proposed line search algorithm with
Fletcher’s line search algorithm.

Time(sec)/Stopband attenuation(dB)

ωs = 0.52π ωs = 0.54π ωs = 0.58π

N Proposed Fletcher’s Proposed Fletcher’s Proposed Fletcher’s

20 < 1/09.49 1/09.49 < 1/18.96 2/18.96 1/40.89 3/40.49

24 1/11.18 2/11.18 1/23.03 3/23.01 3/49.72 8/49.72

28 1/12.96 5/12.96 2/27.19 7/27.18 4/58.62 9/58.14

32 3/14.81 9/14.81 5/31.43 14/31.43 7/65.76 22/67.58

36 5/16.73 14/16.73 8/35.72 24/35.72 16/76.59 50/76.59

Frequency

ω
 

E
 (

   
) 

ω s 

Extrema 

U (   ) ω 

π 

Fig. 3.1: An example of the error function.

This section reviews the Lim-Lee-Chen-Yang weighting function update algorithm.

The error function at the q-th iteration of updating the weighting function,

B(ω), is given by

Eq(ω) = H2
0,N(ejω), for ωs ≤ ω ≤ π, (3.13)

where ωs is the stopband edge of H0,N(ejω). An example of Eq(ω) is shown in

Fig. 3.1.

Assume that the extrema of Eq(ω), indicated by symbol ’◦’ in Fig. 3.1, occur at

frequency grid points ωi for 1 ≤ i ≤ Ne, where Ne is the total number of extrema.

These frequency grid points are labeled consecutively so that ω1 < ω2 < · · · < ωNe .
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Eq(ωs) and Eq(π) are also considered as extrema. The values of the i-th extremum

in Eq(ω) at the q-th iteration is denoted as

Vq(i) = Eq(ωi). (3.14)

For any non-band-edge Vq(i) less than 0.1 of min
(
Vq(i− 1), Vq(i + 1)

)
, let Vq(i) =

0.1 × min
(
Vq(i − 1), Vq(i + 1)

)
. For Vq(i) where ωi is a band-edge frequency, let

Vq(i) = max
(
Vq(i), 0.1× Vq(i

′)
)
, where Vq(i

′) is the neighboring extremum within

the same frequency band, i.e., either Vq(i + 1) or Vq(i− 1) as appropriate.

Based on this set of extrema Vq(i), an envelope function Uq(ω) is defined as

follows:

Uq(ω) =
ω − ωi

ωi+1 − ωi

Vq(i + 1) +
ωi+1 − ω

ωi+1 − ωi

Vq(i), ωi ≤ ω ≤ ωi+1, (3.15)

where 1 ≤ i ≤ Ne−1. An example is shown in Fig. 3.1, where the envelope function

is illustrated as the thickened line joining the extreme points.

The weighting function Bq(ω) is updated as follows:

Bq+1(ω) = Bq(ω)

[
Uq(ω)

Ûq

]θ

. (3.16)

In (3.16), Ûq is given by

Ûq =

∑
ω∈[ωs,π] Uq(ω)

Nω

, (3.17)

where Nω is the number of frequency grid points. The factor θ affects the conver-

gence and convergent rate of this algorithm. An appropriate value is θ = 1.4, as

proposed in [54].

The weighting function update operation is terminated when

max Vq(i)−min Vq(i)

max Vq(i) + min Vq(i)
< ε, (3.18)

where ε is a small constant which specifies the desired “flatness” of the envelope

function, Uq(ω). Typically, (3.18) is achieved in about 6 to 8 iterations of updating

the weighting function for the cases where ε = 0.01.

The Lim-Lee-Chen-Yang algorithm updates the weighting function using the

envelope of the ripple magnitude. It converges many times faster than Lawson’s
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algorithm [44] which updates the weighting function using the magnitude of the

deviation.

The weighted least squares algorithm for the design of two-channel orthogonal

lattice filter bank can now be summarized as follows:

1. Set p = q = 0. Initialize the lattice coefficient α
(p)
k = −(−1/2)k, for 0 ≤ k ≤

N − 1. Set Bq(ω) = 1, ω ∈ [ωs, π].

2. Evaluate the search direction s(α(p)) according to (3.4).

3. Obtain γ(p) by using the line search procedure described in Section 3.1.2.

4. Update α(p+1) according to (3.3).

5. If (3.12) is satisfied, go to step 6, otherwise, set p = p + 1 and go to step 2.

6. Update Bq+1(ω) according to (3.16).

7. If (3.18) is satisfied, stop. Otherwise, set α(0) = α(p), p = 0, q = q + 1 and go

to step 2. 2

3.2 Successive Reoptimization Approach

In this section, a lattice coefficient sensitivity analysis is first performed. It is

shown that the coefficient sensitivities differ greatly from coefficient to coefficient.

Based on this observation, in this technique, the coefficient values are quantized

sequentially one at a time. After each coefficient is being quantized, the remaining

unquantized coefficient values are reoptimized to partially compensate for the fre-

quency response deviation caused by the quantization of that value. The order of

selection of the coefficients for quantization is based on the coefficient sensitivity

measure. Coefficients with higher sensitivity measures are quantized earlier than

coefficients with lower sensitivity measures.
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3.2.1 Coefficient Sensitivity Analysis

For the lattice structure PR orthogonal filter bank, the sensitivities of HN,0(z)

and HN,1(z) with respect to the coefficient αk denoted by PN,k(z) and QN,k(z),

respectively, are given by




PN,k(z)

QN,k(z)




=




∂HN,0(z)

∂αk

∂HN,1(z)

∂αk




= βN A(αN−1) Λ A(αN−2) Λ · · ·ΛA(αk+1)Λ

1

1 + α2
k

A(αk)




0 −1

1 0



ΛA(αk−1)Λ · · ·ΛA(α0)




1

z−1




, (3.19)

and can be rewritten as



PN,k(z)

QN,k(z)




=
βN

βk

1

1 + α2
k

A(αN−1) Λ · · ·ΛA(αk+1)ΛA(αk)




0 −1

1 0



Λ




Hk,0(z)

Hk,1(z)




=
βN

βk

1

1 + α2
k

A(αN−1)Λ · · ·ΛA(αk+1)ΛA(αk)




−z−2Hk,1(z)

Hk,0(z)




. (3.20)

From (3.20), the following can be obtained:

PN,k(z)P̃N,k(z) + QN,k(z)Q̃N,k(z) =
1

(1 + α2
k)

2
< 1, for αk 6= 0, (3.21)

where P̃N,k(z) and Q̃N,k(z) denote the conjugate of PN,k(z) and QN,k(z), respec-

tively.

Proof: This is proved by mathematical induction. From (3.20), for n = k+1,

Pk+1,k(z) and Qk+1,k(z) are given by




Pk+1,k(z)

Qk+1,k(z)




=
βk+1

βk

1

1 + α2
k

A(αk)




−z−2Hk,1(z)

Hk,0(z)






CHAPTER 3. SUCCESSIVE REOPTIMIZATION APPROACH 38

=
1√

1 + α2
k

· 1

1 + α2
k




1 −αk

αk 1







−z−2Hk,1(z)

Hk,0(z)




=
1√

(1 + αk)3




−z−2Hk,1(z)− αkHk,0(z)

− z−2αkHk,1(z) + Hk,0(z)




. (3.22)

Hence,

Pn,k(z)P̃n,k(z) + Qn,k(z)Q̃n,k(z)

=
1

(1 + α2
k)

3

[(
− z−2Hk,1(z)− αkHk,0(z)

)
·
(
−z2H̃k,1(z)− αkH̃k,0(z)

)

+
(
−z−2αkHk,1(z) + Hk,0(z)

) (
−z2αkH̃k,1(z) + H̃k,0(z)

) ]

=
1 + α2

k

(1 + α2
k)

3

[
Hk,0(z)H̃k,0(z) + Hk,1(z)H̃k,1(z)

]
. (3.23)

Since Hk,0 and Hk,1 satisfy the power-complement image condition [81], i.e.,

Hk,0(z)H̃k,0(z) + Hk,1(z)H̃k,1(z) = 1. (3.24)

Hence, (3.21) holds for n = k + 1.

Suppose that (3.21) is true for n = m. Thus,




Pm,k(z)

Qm,k(z)




=
βm

βk

1

1 + α2
k

A(αm−1) Λ · · ·ΛA(αk+1)ΛA(αk)




−z−2Hk,1(z)

Hk,0(z)




,(3.25)

and

Pm,k(z)P̃m,k(z) + Qm,k(z)Q̃m,k(z) =
1

(1 + α2
k)

2
< 1 for αk 6= 0. (3.26)

Then, for n = m + 1,




Pm+1,k(z)

Qm+1,k(z)




=
βm+1

βk(1 + α2
k)

A(αm)Λ · · ·ΛA(αk)




−z−2Hk,1(z)

Hk,0(z)
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=
1√

1 + α2
m

A(αm)Λ




Pm,k(z)

Qm,k(z)




=
1√

1 + α2
m




Pm,k(z)− αmz−2Qm,k(z)

αmPm,k(z) + z−2Qm,k(z)




. (3.27)

It can be shown that

Pm+1,k(z)P̃m+1,k(z) + Qm+1,k(z)Q̃m+1,k(z)

=
1

1 + α2
k

[(
Pm,k(z)− αmz−2Qm,k(z)Bigg) ·

(
P̃m,k(z)− αmz2Q̃m,k(z)

)

+
(
αmPm,k(z) + z−2Qm,k(z)

) (
αmP̃m,k(z) + z−2Q̃m,k(z)

) ]

= Pm,k(z)P̃m,k(z) + Qm,k(z)Q̃m,k(z). (3.28)

Hence, if (3.21) is true for n = m, it is also true for n = m + 1. Since (3.21) is true

for n = k + 1, it is true for all integer n, k + 1 ≤ n ≤ N .

From (3.20) and (3.21), it can be shown that

|PN,k(z)| =
∣∣∣∣∣
∂HN,0(z)

∂αk

∣∣∣∣∣ ≤
1

1 + α2
k

< 1. (3.29)

The coefficient sensitivity |PN,k(e
jω)| is thus bounded by 1

1+α2
k
; in general, it

is a function of frequency. To give an idea on the relative values of (a) the peak

absolute value of PN,k(e
jω), (b) the average of the absolute value of PN,k(e

jω) in

the stopband, (c) αk, and (d) 1
1+α2

k
, these quantities for a particular 27-th order

filter bank are tabulated in Table 3.2. It is interesting to note from Table 3.2 that

the coefficient sensitivity increases with increasing k.

3.2.2 Coefficient Quantization Algorithm

The technique starts with the design of the optimum continuous coefficient value

minimax PR lattice orthogonal filter bank using the weighted least squares algo-

rithm described in Section 3.1.
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Table 3.2: Coefficient values and stopband coefficient sensitivities of a 27-th order
PR orthogonal filter bank.

k αk
1

1+α2
k

Peak Average

sensitivity sensitivity

0 −4.5978691 0.0451663 0.0451663 0.0361323

1 1.5020457 0.3071120 0.3071118 0.2567841

2 −0.8649152 0.5720568 0.5720565 0.5041978

3 0.5793815 0.7486807 0.7486804 0.6888595

4 −0.4115350 0.8551678 0.8551675 0.8116573

5 0.2979295 0.9184744 0.9184740 0.8904599

6 −0.2146259 0.9559642 0.9559638 0.9397591

7 0.1509795 0.9777132 0.9777128 0.9693764

8 −0.1018520 0.9897327 0.9897322 0.9860167

9 0.0645909 0.9958454 0.9958449 0.9944699

10 −0.0375630 0.9985910 0.9985905 0.9981955

11 0.0193403 0.9996261 0.9996259 0.9995473

12 −0.0082989 0.9999311 0.9999307 0.9999225

13 0.0026803 0.9999928 0.9999928 0.9999926

After the continuous optimum solution is obtained, a coefficient sensitivity anal-

ysis is performed. The coefficient with the highest coefficient sensitivity measure

is selected and rounded to its nearest discrete value. All the other coefficients are

then reoptimized to partially compensate for the frequency response deterioration

due to the quantization of the selected coefficient. The rationale for selecting the

most sensitive coefficient for quantization is as follows. The most sensitive coeffi-

cient will cause the largest frequency response deviation. Selecting it to be the first

coefficient to be quantized will have the advantage that there are many other coef-

ficient values which can be reoptimized to compensate for the frequency response

deterioration caused by its quantization. On the contrary, if the most sensitive co-

efficient is quantized after all the other coefficients are quantized, its effect cannot

be compensated for by adjusting other coefficient values.
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Continuous
Optimum Solution

Performing the coefficient
sensitivity analysis

Selecting the most sensitive 
coefficient among all the remaining 

unquantized coefficients

Quantizing it to its
nearest discrete value

All the coefficients
are quantized

Discrete solution

Reoptimizing the 
remaining

unquantized coefficients
Y

N

Fig. 3.2: A flowchart of the successive reoptimization procedure.

After fixing the selected coefficient and the remaining coefficient values reopti-

mized, the most sensitive coefficient among the remaining un-quantized coefficients

is selected for quantization. The process of selecting the most sensitive coefficient

among the unquantized coefficients for quantization and the reoptimization of all

the unquantized coefficients after the quantization of each coefficient is repeated

until all the coefficients are quantized. A flowchart of the successive reoptimization

procedure is shown in Fig. 3.2.

In the proposed successive reoptimization approach, the procedure to reopti-

mize the remaining unquantized coefficients can be carried out as the procedure

described in Section 3.1 by dropping out the quantized coefficients from the variable

vector α.
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Fig. 3.3: Frequency response plots for the analysis lowpass filters. Each
coefficient of the discrete coefficient design is represented by a sum of
two signed power-of-two terms.

3.2.3 Design Example

A 27-th order (14 coefficients) filter bank is chosen as an example to illustrate the

proposed technique. The lowpass filter’s stopband edge is at 0.64π and its stopband

frequency response is equiripple. Each coefficient value of the discrete coefficient

is represented as a sum or difference of not more than two power-of-two terms;

the smallest power-of-two term is 2−12. The frequency responses of the lowpass

filters for the (1) continuous coefficient optimum design, (2) SPT coefficient de-

sign obtained using the proposed successive reoptimization algorithm and (3) SPT

coefficient solution obtained by simple rounding of coefficient values are shown in

Fig. 3.3. The minimum stopband attenuation for the 3 designs in Fig. 3.3 are

60.20dB, 32.57dB and 28.32dB, respectively. The coefficient values of an SPT de-

sign obtained using the successive reoptimization approach are listed in Table. 3.3.

From Fig. 3.3, it is obvious that the stopband attenuation of the discrete space
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Table 3.3: Discrete coefficient values of a 27-th order PR orthogonal
filter bank obtained by using the successive reoptimization approach.
The stopband edge is at ωs = 0.64π.

k SPT coefficients

0 −2+3+2+1

1 2+1−2−2

2 −2+0+2−3

3 2−1+2−5

4 −2−1+2−3

5 2−2+2−7

6 −2−2+2−4

7 2−3+2−6

8 −2−3+2−5

9 2−4−2−9

10 −2−5−2−8

11 2−6+2−9

12 −2−7

13 2−9+2−11

design obtained using the successive reoptimization algorithm is superior to those

obtained by simple rounding of coefficient values.

3.3 Conclusion

In this chapter, a successive reoptimization approach is presented for the design

of SPT coefficient two-channel lattice orthogonal filter banks. A weighted least

squares algorithm is employed to obtain the continuous coefficients; the continuous

solution serves as the starting point for the SPT coefficient optimization process.

The frequency responses of the filter banks obtained using the proposed successive

reoptimization algorithm are significantly superior to those obtained by simple

rounding of the coefficient values.



Chapter 4

Genetic Algorithm

RECENTLY, GENETIC ALGORITHMS [25,26,32,46,75,77] have emerged

as a powerful and robust tool for the design of discrete coefficient digi-

tal filters. Genetic operations including reproduction, crossover and mutation are

employed to minimize the frequency response error and the computational com-

plexity [46,75]. In general, genetic operation will render the SPT representation of

the coefficients non-canonic, i.e. the offsprings produced by the GA operations may

no longer conform to the canonic SPT format. In [46], the offsprings are discarded

if their coefficient values are not in the canonic SPT format. In [25] and [26], a

technique was developed for restoring the canonic SPT numbers.

In this chapter, an improved genetic algorithm for the design of perfect recon-

struction lattice orthogonal filter bank with canonic SPT coefficients is presented.

First, an efficient encoding scheme for encoding the coefficient values of the filter

is presented. In this encoding scheme, the canonic nature of the SPT coefficients is

preserved during genetic operations. This is accomplished by encoding the canonic

SPT numbers as the index of an SPT look-up table. Second, two new features

which drastically improve the performance of GA are introduced. The new fea-

tures are: (1) An additional level of natural selection is introduced to simulate

the effect of natural selection when sperm cells compete to fertilize an ovule; this

dramatically improves the offspring survival rate. Conventional GA is analogous

to intracytoplasmic sperm injection and has an extremely low offspring survival

rate resulting in very slow convergence. (2) The probability of mutation for each

44
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codon of a chromosome is weighted by the reciprocal of its effect. The proposed

GA approach proved to be highly effective and outperforms existing canonic SPT

coefficient lattice orthogonal filter bank design algorithms.

4.1 The Genetic Algorithm

Genetic algorithms are optimization algorithms that simulate the evolution process

of natural selection. When the genetic algorithm is used to optimize the coefficient

values of a filter, the coefficients (which may be expressed in binary form) are

concatenated to represent the chromosome of the filter. A prespecified number of

filters are selected from the population pool and placed in a mating pool. Filters

in the mating pool are paired up at random. The chromosomes of the two filters

(the parents) in each pair are mixed at random to reproduce two new filters (the

offsprings). Both the parent filters and either one or both of the offsprings are re-

leased into the population pool. The mixing of the chromosomes is called crossover.

Mutation may be introduced into the reproduction process by randomly changing

some of the binary bits forming the chromosomes. The size of the population is

controlled by a natural selection process which has the tendency to reject inferior

members of the population.

The breeding of one generation of filters is said to have completed when all

the parents in the mating pool and their offsprings have been released into the

population pool. After elimination by natural selection, the selection of a prespec-

ified number of filters from the population pool to form members of the mating

pool repeats. A second generation of offsprings is thus produced. The GA cy-

cle is repeated until a desired termination criterion is reached. An example of a

termination criterion is that a predefined number of generations is produced.

A detailed review of the genetic algorithms and their applications on the signal

processing can be found in [77].
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4.2 Filter Coefficient Encoding and Fitness Eval-

uation

One of the characteristics of a GA is the direct manipulation on the coded variables.

This provides flexibility for solving different optimization problems. For an SPT

coefficient, the most common encoding scheme is the ternary digit string [26,46,75]

approach, i.e., using 0, 1and − 1 string to represent a coefficient value. However,

such a digit string suffers from the problem that genetic operations may render

the number of SPT terms for each coefficient to be non-minimum requiring more

SPT terms than necessary. As the canonic representation ensures the use of the

minimum number of SPT terms, the canonic representation is adopted. In this

section, a binary digit encoding scheme which will ensure the canonic representation

is developed to represent the SPT coefficients.

Let S+(L,K,Q) be a set of positive canonic SPT values that any n ∈ S+(L,K, Q)

is a sum of no more than K canonic SPT terms and the largest power-of-two term

is less than or equal to 2L−1, whereas the smallest power-of-two term is larger than

or equal to 2Q, i.e.,

n =
m∑

i=0

y(i)2q(i), y(i) ∈ {−1, 1}, (4.1)

where

Q ≤ q(i) ≤ L− 1,

m = 0, 1, . . . , K − 1.

Furthermore, q(i) 6= q(j) if i 6= j and q(i) 6= q(j) + 1 for any i, j. It is known that

the number of elements of the set S+(L,K, Q), represented as M+(L,K, Q), is [55]

M+(L,K, Q) =
K∑

m=1

2m−1

m!

m−1∏

k=0

(L−Q−m + 1− k). (4.2)

Let S(L,K,Q) be a set which is the union of S+(L, K, Q) and 0. Thus, S(L,K, Q)

represents the set of non-negative canonic SPT value with the same constraints as

S+(L,K, Q). Let M(L, K, Q) be the number of elements in the set S(L, K, Q).
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Table 4.1: Look-up table for K = 2, Q = −2 and L = 2.

Index SPT value
Number of

SPT terms

0 0 0

1 0.25 1

2 0.5 1

3 0.75 2

4 1 1

5 1.25 2

6 1.5 2

7 1.75 2

8 2 1

9 2.25 2

10 2.5 2

Therefore, M(L,K,Q) = M+(L,K,Q) + 1. Thus, an M(L,K, Q) element, three

column look-up table can be established. In the look-up table, the elements in

the first column are the set of integers [0, 1, 2, . . . , M(L,K, Q) − 1] arranged in

ascending order. The second column consists of the set of SPT values of S(L, K, Q).

The value in the third column is the number of SPT terms used in the corresponding

SPT value. An example of a look-up table for K = 2, Q = −2 and L = 2 is listed

in Table 4.1.

The proposed technique starts with the design of the optimum continuous coef-

ficient value minimax lattice orthogonal filter bank using the weighted least squares

algorithm described in Section 3.1. After the continuous optimum solution is ob-

tained, each coefficient is allocated a number of SPT terms according to the SPT

term allocation scheme reported in [55]. A continuous coefficient value, αk, is

quantized to the nearest discrete value of |αk| whose number of SPT terms listed

in the SPT coefficient look-up table is equal to the allocated number of SPT terms.

The index, i, of the quantized |αk|, after attaching the sign of αk, is expressed

in two’s complement form. This two’s complement binary string forms a gene of
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a coefficient. In order to avoid invalid genes, the number of bits used to encode

the index and the sign should not be excessive. For example, in Table 4.1, only a

maximum of 4 bits should be used. Concatenating all the genes together forms a

row of binary bit stream which forms the chromosome in the proposed GA.

In the design of filters with SPT coefficients, besides the filter performance

specifications, the smallest SPT term for the coefficient
(
2Q

)
and the total number

of SPT terms, K̂, for all the coefficients are usually pre-specified. The number

of adders needed in the hardware implementation is equal to the total number of

SPT terms minus one. It has been demonstrated [47,55] that significant advantage

can be achieved if the coefficient values are allocated with different number of SPT

terms while keeping the total number of SPT terms fixed.

The advantages of this look-up table binary encoding scheme are manifold.

First, the SPT representation for each number is canonic. Second, it ensures that

the magnitude of the smallest SPT term of the offspring of the genetic operations is

not less than 2Q. Third, it is easy to allocate the coefficients with different number

of SPT terms since the number of SPT terms required by each value is already

tabulated in the SPT look-up table. Last, the gene length is shorter than that

using ternary digit string.

When evaluating the fitness of the chromosome, the signed integer index, i,

represented as the encoded gene is recovered from its binary gene string. The |i|-th
SPT value of the look-up table, after attaching the sign of i, is the coefficient value.

During this decoding procedure, the number of SPT terms used in the coefficient is

also obtained. The number of SPT terms will be used in the fitness measurement

to control the total number of SPT terms.

The fitness of a chromosome is defined as

fitness = −20 log10(f)− µ · p(k̂ − K̂), (4.3)
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where

p(x) =





x if x > 0,

0 otherwise,

(4.4)

and f is an objective function value of a minimax error criterion.

f = max
ω∈[ωs,π]

∣∣∣HN,0(e
jw)

∣∣∣ . (4.5)

In (4.3), K̂ is the pre-specified total number of SPT terms for all the coefficients,

k̂ is the total number of SPT terms actually used in all the coefficients, and µ is a

positive weighting coefficient. From past experience, setting µ to be a value between

1 and 2 usually produces good results. The fitness measure of the population is

defined as the best fitness measure among the members of the population.

4.3 Improved Genetic Operations

An initial population pool of filters is formed by perturbing the coefficient values of

the filter whose coefficient values are obtained by rounding the optimum continuous

coefficient values.

Filters are selected from the population pool using the Roulette Wheel selection

procedure [32] to form members of the mating pool. Members of the mating pool are

paired for mating to reproduce offsprings. The Roulette Wheel selection procedure

ensures that fitter chromosomes have a higher chance of being selected as parents.

In the traditional GA approach, the chromosomes of two selected filters are

mixed in the crossover process subject to a given probability of crossover to produce

a pair of offsprings. The offsprings then compete with existing members of the

population for survivor.

In the proposed algorithm, the two-point crossover process is arbitrarily adopted

in forming the chromosomes of the offspring. In the two-point crossover approach,

two points A and B are marked on each of the chromosomes involved in the

crossover process as shown in Fig. 4.1. A and B are placed at random but they
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Fig. 4.1: Two-point crossover.

must be at corresponding codons of both chromosomes. They may be at both

ends of the chromosomes. The sections of codons between A and B of the two

chromosomes are swept to produce two new offsprings.

From past experience, the survivor rate of offsprings produced in the conven-

tional GA is extremely low. This is because the crossover process is done by mixing

the chromosomes at random and is analogous to intracytoplasmic sperm injection

where the sperm cell is selected at random by a blindfolded gynaecologist. In a

natural reproduction process, the sperm cells compete to fertilize an ovule; this

competition introduces an additional level of natural selection to ensure the repro-

duction of healthy offsprings.

In the proposed algorithm, an additional natural selection process to ensure

the competitiveness of the offspring produced is introduced. The chromosomes of

the selected pair of filters are mixed at random (subject to a given probability of

crossover) for a predefined number of times producing a large number of possible

offsprings. The best two of these possible offsprings are selected as the legitimate

offsprings of the mating; all other possible offsprings are discarded. Owing to this

additional natural selection process, the survival rate of the offsprings is dramati-

cally improved when competing with existing members of the population pool.

Accompanying the benefit of this additional natural selection process is the cost

of an increase in the computation load. The bulk of this increase in computation

load is the evaluation of the frequency responses of the possible offsprings. In
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order to reduce this increase in computation load, the frequency responses of the

possible offsprings are evaluated on a sparse frequency grid. The number of sparse

grid points used is
⌈
(1− ωs

π
)× 0.4×N

⌉
+ 1, where N is the number of coefficients

and dxe is the smallest integer larger than or equal to x. (The number of grid

points used to evaluate the frequency responses of the filters in the population pool

is
⌈
(1− ωs

π
)× 16×N

⌉
+ 1). Although using the sparse frequency grid to evaluate

the chromosome cannot ensure that the two offsprings selected are the fittest, it is

a low cost approach to sift out those low performance candidates.

Mutation is an operator that introduces variations into the chromosome. The

operation occurs with small probability. In the conventional GA, each bit has

the same probability of mutation. This directly simulates the mutation of the

living system. However, there are differences between a living organism and a filter

system. In a living organism, a gene, which comprises the codons, determines or

affects a single characteristic. All codons have equal importance and their function

are not substitutable. In a filter, a gene, which comprises the digit bits, contributes

to the frequency response in such a way that it is impossible to associate which

gene contributes to which specific characteristic of the frequency response. All the

genes work in coordination to determine the frequency response. Moreover, the

importance of each bit in one gene is different from bit to bit and the effect due to

mutating any bit can be partially compensated by mutating other bits.

In the proposed algorithm, when a chromosome is considered for mutation, the

bits do not have equal mutation probability. The more significant bit has smaller

mutation probability while the less significant bit has larger mutation probability.

In the proposed approach, the mutation probability of the least significant bit of

each gene is set to be 0.5
N

. The mutation probability of the second least significant

bit of each gene is (0.5)2

N
and so on such that the mutation probability for the n-th

least significant bit is (0.5)n

N
. Thus, the product of mutation probability and the

weight for each coefficient is kept constant.
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4.4 Design Example

The design of the 27-th order (14 coefficients) filter bank specified in Section 3.2.3

is used as the example to illustrate the proposed algorithm. The specifications are

repeated here, i.e. the lowpass filter’s stopband edge is at 0.64π and its stopband

frequency response is required to be equiripple; each coefficient value is represented

as a sum of a limited number of signed power-of-two (SPT) terms; the smallest

power-of-two term is 2−12. The only difference between the specifications for this

example and those in Section 3.2.3 is that in this example, the average number of

SPT terms allocated to each coefficient is two, whereas not more than two SPT

terms are allocated to each coefficient in Section 3.2.3.

In the GA operation, the population pool size and the mating pool size are set

to be 1000 and 100, respectively. The crossover probability is set to be 0.8. The

evolution process is terminated if the fitness measure of the population remains

unchanged for 1000 generations. During each mating, P possible offsprings are

evaluated and the best two are selected as the legitimate offsprings for introducing

into the general population pool. The best results of the evolution process for

P = 40, 20 and 2 as well as that for the conventional GA are plotted in Fig. 4.2.

The conventional GA corresponds to unweighted probability of mutation for each

bit and P = 2. The difference between the proposed algorithm for P = 2 and that

for the conventional one is that for the proposed algorithm with P = 2, mutation

probability for each bit is weighted whereas that for the conventional one it is

unweighted. As can be seen from Fig. 4.2, the evolution processes for P = 40, 20

and 2 evolved to 45.97dB, 42.95dB and 42.40dB after 78, 76 and 612 generations,

respectively. The conventional GA only evolved to 41.76dB after 340 generations.

The frequency responses of the lowpass filters for the (1) continuous coefficient

optimum design, (2) SPT coefficient design obtained by the proposed GA and

(3) SPT coefficient solution obtained by simple rounding of coefficient values are

plotted in Fig. 4.3. The coefficients of the design obtained using the proposed GA is
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Fig. 4.2: The evolution process of the 27-th order example.

listed in Table 4.2. The superiority of the proposed new GA over the conventional

GA is obvious from the results shown in Fig. 4.2.

Since GA’s are essentially guided random search algorithms, the (sub)optimum

solutions obtained and the number of generations needed to obtain the (sub)optimum

solutions differ widely from run to run. For the 27-th order filter example, the

average stopband attenuation achieved and the average number of generations av-

eraging over ten runs for each GA are listed in Table 4.3. It can be seen that the

average results are consistent with the best results shown in Fig. 4.2.

It should be noted that the frequency responses of the P offsprings produced

from a selected pair of chromosomes are evaluated on a very sparse grid (one

fortieth of the usual grid density). For P = 40, this increase in computation

complexity is equivalent to that of the conventional GA whose population is scaled

up by a factor of 1.5. For comparison, for the design of the 27-th order example,

the best solution obtained using the proposed technique for P = 40 is 45.97dB

in the stopband. Increasing the population by a factor of 1.5, the conventional
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Fig. 4.3: The frequency response of the 27-th order example obtained
using the improved GA, where the average number of SPT terms for
each coefficient is two.

GA achieved a stopband attenuation of 42.95dB. The superiority of the proposed

technique is evident.

4.5 Conclusion

In this chapter, an improved genetic algorithm for the design of SPT coefficient

value lattice orthogonal filter bank has been developed. The design examples pre-

sented in Section 4.4 show that the speed of convergence for the proposed GA is

faster than that for the conventional GA and the quality of the solution obtained

using the proposed GA is also better than that produced by the conventional GA.
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Table 4.2: Discrete coefficient values of the 27-th order orthogonal filter
bank obtained using the proposed GA. The stopband edge is at ωs =
0.64π

k SPT coefficients

0 −2+2

1 2+0+2−2+2−4

2 −2+0+2−2

3 2−1−2−7

4 −2−1+2−3+2−5+2−8

5 2−2−2−6−2−10

6 −2−3−2−5

7 2−3−2−5+2−7−2−9

8 −2−4+2−8

9 2−5−2−9

10 −2−6+2−8

11 2−9

12 0

13 0

Table 4.3: The average stopband attenuations and the number of generations
needed by different GA’s for the design of the 27-th order filter example.

GA’s Stopband attenuation Generations

Conventional 39.09 671.7

P = 2 39.45 522.5

P = 20 39.85 137.7

P = 40 41.29 157.9



Chapter 5

Width-Recursive Depth-First
Search

IN CHAPTER 3, a successive reoptimization approach was proposed for the

design of discrete coefficient lattice orthogonal banks. However, there is still

room for improvement. Two factors are considered in this chapter.

1) In the successive reoptimization approach, the order of selection of the coef-

ficients for quantization is based on the coefficient sensitivity measure. Coefficients

with higher sensitivity measures are quantized earlier than coefficients with lower

sensitivity measures. It does not consider, however, the unevenly distributed grid

space when the coefficients are optimized on the signed power-of-two space. Quan-

tizing a coefficient with lower sensitivity, but located at sparse SPT value section

may cause a larger frequency response deterioration. In order to overcome this

difficulty, a new frequency response deterioration measure is proposed. The new

frequency response deterioration measure includes the coefficient sensitivity as well

as the grid density for the particular coefficient.

2) The selected coefficient, αk, was rounded to its nearest discrete value. As the

optimum value for αk may be at a considerable distance from the infinite precision

solution, the successive reoptimization technique may miss the optimum solution.

It is necessary to assign several discrete values (in the vicinity of its continuous

optimum value) to αk. For each discrete value assigned to αk, the remaining un-

quantized coefficients are reoptimized to partially compensate for the frequency

56
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response deterioration due to the quantization of αk. A tree search procedure

should be developed to obtain the optimal (suboptimal) discrete coefficient values.

5.1 Frequency Response Deterioration Measure

The quantization of a coefficient αk causes the value of αk to be shifted by a small

amount ∆αk from its continuous value. The frequency response deviation caused

by the quantization of αk is represented by ∆Hk
N,0(e

jω), where ∆Hk
N,0(e

jω) is given

by

∆Hk
N,0(e

jω) =
∂HN,0(e

jω)

∂αk

×∆αk = PN,k(e
jω)×∆αk, (5.1)

provided that ∆αk is small.

The quantization of a coefficient with a higher sensitivity and a larger value

of |∆αk| causes a larger deviation to the frequency response. Thus, the product

of coefficient sensitivity and quantization step size is an important measure on

the frequency response deviation caused by quantizing a coefficient. A frequency

response deterioration measure, SN,k, given by

SN,k(z) = PN,k(z)×Gk (5.2)

is defined for the purpose of estimating the effect on the frequency response of

the filter as a result of quantizing αk. In (5.2), Gk is the grid spacing defined

as the distance between the upper discrete level and the lower discrete level of a

continuous coefficient αk. The grid spacing is an indication of the quantization

step size when the coefficient is actually quantized. A coefficient value changes

from iteration to iteration as the optimization process proceeds. Thus, the grid

spacing for a coefficient value changes from iteration to iteration in the case of

a nonuniformly distributed coefficient space such as the power-of-two coefficient

space.

The coefficient with the largest frequency response deterioration measure is

selected to be quantized first. After the quantization of each coefficient, all the
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other coefficients are then reoptimized to partially compensate for the frequency

response deterioration due to the quantization of the selected coefficient.

If the discrete coefficient grid is evenly distributed such as that in the case of

the integer grid where all coefficient values must be an integer after multiplying

by a constant, the grid spacings are equal for all coefficients. In this case, PN,k(z)

may be used instead of SN,k(z) for selecting a coefficient for quantization since the

value of Gk for all k are equal.

5.2 Width-Recursive Depth-First Tree Search

The technique starts with the design of the optimum continuous coefficient value

minimax PR orthogonal filter bank using the weighted least squares algorithm

described in Section 3.1. After the continuous optimum solution is obtained, a

coefficient αk is selected for quantization. The method of selecting αk has been

discussed in Section 5.1. A straightforward method for assigning a discrete value

to αk is to round it to its nearest discrete value. As the optimum value for αk may

be at a considerable distance from the infinite precision solution, it is necessary to

assign several discrete values (in the vicinity of its continuous optimum value) to

αk. For each discrete value assigned to αk, the remaining unquantized coefficients

are reoptimized to partially compensate for the frequency response deterioration

due to the quantization of αk. A tree search algorithm is then produced.

Before embarking on describing the novel tree search algorithm, two existing

tree search algorithms are described briefly. The new algorithm is developed based

on these two algorithms.

1) In the branch and bound depth first search algorithm [27], after the con-

tinuous optimum solution is obtained, a coefficient αk is selected for branching.

Suppose that α2 is selected and that the integer space is the desired discrete coef-

ficient space. Suppose also that the continuous optimum value of α2 is 3.4. Two

subproblem P1 and P2 are created by imposing the bounds α2 ≤ 3 and α2 ≥ 4,
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respectively. See Fig. 5.1, problem P2 is stored and P1 is solved. Another coeffi-

cient (say α1) is then selected for partitioning into two subproblems P3 and P4 by

imposing bounds on the selected coefficient (say α1 ≤ 0 and α1 ≥ 1, respectively).

P4 is stored and P3 is solved. P3 is then further partitioned into P5 and P6. In

a similar way, P6 is stored and P5 is solved. Suppose that P5 yields a discrete

solution. P5 is then fathomed and P6 is solved. In Fig. 5.1, a line underneath a

node indicates that no further exploration from that node can be profitable. Such a

node is said to be fathomed. If P6 yields a discrete solution, P6 is fathomed and the

algorithm backtracks to P3 and switches to solve P4. The branching, backtracking

and searching process continues until all the nodes are fathomed. The algorithm

searches the tree in a depth-first manner and earns its name “depth-first” search.

P0

P1

P3 P4

P2

P7 P8

P5 P6

2α 3 2α 4

1α 0 1α 1

1α 11α 0

Fig. 5.1: An example of a Branch and Bound Tree.

2) A tree search technique which can yield a good suboptimal solution quickly

was described in [53] for the design of filters subject to discrete coefficient con-

straint. In that technique, after obtaining the continuous coefficient value design,

P0, a coefficient αk is selected and L discrete values are assigned to αk. See Fig. 5.2.
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This produces L optimization problems — an optimization problem for each dis-

crete value of αk. Fig. 5.2 shows the case where L is 3. After these L problems

are solved, another coefficient is selected for quantization. Thus, each of the L

problems produces L further optimization problems. Hence, there are L2 problems

when two coefficients are assigned discrete values. In order to limit the size of the

tree, only L out of these L2 problems are selected for further quantization of the

coefficients; the rest are discarded. Each of the L problems selected from the L2

problems produces L further optimization problems when a third coefficient is as-

signed discrete values. The process of selecting L problems from L2 problems and

the branching of each of the selected L problems into further L problems continues

until all the coefficients are assigned discrete values. Increasing the value of L will

increase the chance of obtaining the global optimum solution but will also increase

the computer time requirement.

continuous
coefficients

α4= 3
α = 4

α = 5
4

4

α2= ?

P0

P1 P2 P3

α6= ?

 Choice of three 
lowest cost function

 Choice of three 
lowest cost function

Fig. 5.2: An example of a hybrid of breadth-first and depth-first tree
structure for the case where L = 3.

The ability of the branch and bound depth first search algorithm to produce a

good suboptimal solution early in the search is particularly useful. The branch and
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bound depth first search algorithm is indeed eminently suitable when an efficient

constrained optimization algorithm capable of handling the bounds imposed on

the variables is available. Unfortunately, in the case of designing the lattice PR

orthogonal filter bank, such an efficient constrained optimization algorithm is not

available. Although the tree search algorithm described in [53] does not impose

bounds on the variables (because the variables are fixed at discrete values), it

produces discrete solutions only at the final step of the algorithm. This will be a

problem if there is insufficient computing resources to complete the execution of

the algorithm. The optimization algorithm for optimizing linear phase FIR filters

to meet a given frequency response requirement does not require large computing

resources. Thus, choosing a fairly large value of L is not a problem in the case

of [53]. In the design of lattice perfect reconstruction filter bank, the optimization

algorithm requires long computer time. The type of tree search algorithm used

in [53] is obviously not suitable. A suitable tree search technique should be one

which will produce a good suboptimal solution within a reasonable time and will

produce improved solutions as more time elapsed; that implies some form of depth-

first search strategy. Taking the particular nature of the problem into consideration,

in this section, a width-recursive depth-first tree search algorithm is developed.

The new algorithm is developed from that described in [53]. It starts with

L = 1. At each node of the tree, the coefficient selected for quantization is the one

with the largest performance deterioration measure discussed in Section 5.1. When

the predefined maximum tree width is larger than 1, the above solution with L = 1

becomes the first suboptimal discrete solution.

Since the weighting function B(ω) in (2.37) is updated after every iteration as

the optimization process proceeds, the objective function value f is not a good

indicator of the optimality condition. In the proposed algorithm, the minimum

weighted attenuation in the stopband of the analysis filter is used as a criterion for

evaluating the quality of a solution.

After obtaining the first suboptimal discrete solution (i.e. node PA in Fig. 5.3),
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Fig. 5.3: A width-recursive depth-first tree.

the width of the tree is incremented by one. The search is backtracked to PB and

branched into PC by fixing the last continuous coefficient value to its next nearest

discrete value (It has been fixed at its nearest discrete value at PA). Another

discrete solution is obtained. If this solution is better than the previous one, it

replaces the previous one as the best known discrete solution; otherwise, it is

discarded. The search then backtracks to PD and switches to search along PE and

PF as shown in Fig. 5.3. The process of backtracking, switching, and searching

forward is repeated until all nodes which have the possibility of yielding a better

discrete solution than the best currently known discrete solution are searched. The

search along a given path is terminated whenever the minimum weighted stopband

attenuation is smaller than that of the best known discrete solution. For L = 2,

the tree looks very much like a branch and bound depth first search tree with

the exception that, in the width-recursive depth-first case, the branch length to a

discrete solution is equal to the number of the discrete variables whereas, in the

case of the branch and bound depth first search, the branch lengths leading to a
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Fig. 5.4: An illustration for the proposed width-recursive depth-first
tree search strategy for the case where N = 4 and L = 3.

discrete solution are usually larger than the number of discrete variables.

The width of the tree is increased recursively by one at a time until a predefined

tree width, L, is reached. An example of the tree for N = 4 and L = 3 is shown

in Fig. 5.4. The proposed new tree search strategy has the following advantages.

First, it quickly yields a suboptimal discrete solution; second, it covers a large

search space if the necessary computing resources are available.

5.3 Design Example

The 27-th order (14 coefficients) filter bank, specified in Section 3.2.3, is selected as

an example to illustrate the tree search technique. The specifications are repeated

here for easy reference. The lowpass filter’s stopband edge is at 0.64π and its
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stopband frequency response is equiripple.

The frequency responses of the lowpass filters for the (1) continuous coefficient

optimum design, (2) SPT coefficient design obtained using the proposed tree search

algorithm, (3) SPT coefficient design obtained using the successive reoptimization

approach described in Section 3.2 and (4) SPT coefficient design obtained by simple

rounding of coefficient values are shown in Fig. 5.5. In Fig. 5.5, each coefficient

value is represented as a sum of two SPT terms; the smallest power-of-two term

is 2−12. The minimum stopband attenuations for the four designs in Fig. 5.5 are

60.20dB, 46.20dB, 32.57dB and 28.32dB, respectively. The SPT coefficient values

of the design obtained using the proposed technique are listed in Table 5.1.
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Fig. 5.5: Frequency response plots for the analysis lowpass filters. Each
coefficient of the discrete coefficient design is represented by a sum of
two signed power-of-two terms.

From Fig. 5.5, it is obvious that the stopband attenuation of the discrete space

design obtained using the tree search algorithm is significantly superior to those

obtained by simple rounding of coefficient values and successive reoptimization
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Table 5.1: Discrete coefficient values of the 27-th order PR orthogonal
filter bank obtained using the proposed tree search approach. The
stopband edge is at ωs = 0.64π.

k SPT coefficients

0 −2+2−2−2

1 2+1−2−1

2 −2+0+2−4

3 2−1+2−11

4 2−8−2−11

5 −2−2+2−5

6 −2+1+2−1

7 2+1−2−4

8 2+0−2−2

9 −2+0+2−9

10 −2−4+2−8

11 2−2+2−8

12 −2−3+2−6

13 2−6+2−9

approach.

The stopband attenuation obtained improves with increasing tree width associ-

ated with increasing computing cost. The stopband attenuation obtained for each

tree width and its computing time are plotted in Fig. 5.6 for the 27-th order filter

design. It can be seen from Fig. 5.6 that the computing time of the tree search

algorithm is approximately proportional to L2.

The width-recursive depth-first tree search technique does not necessarily result

in the optimal solution. However, it does provide an efficient and reasonably good

solution to the problem. In order to show the relationship between the filter length

and the performance of a filter and that between the filter length and the computer

time required, a set of PR orthogonal filter banks are designed. The stopband edge

of the filter banks’ lowpass filters is 0.56π. N ranges from 16 to 32, where (2N−1) is

the filter order. Each coefficient value of the discrete coefficient design is represented
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Fig. 5.6: Stopband attenuation and computing cost versus tree width
plot for the example designed using width-recursive depth-first tree
search technique, where each coefficient value is represented by a sum
of two SPT terms.

as a sum of two SPT terms; the smallest SPT term is 2−10. The minimum stopband

attenuations of the lowpass filters for the (1) continuous coefficient optimum design,

(2) SPT coefficient design obtained by simple rounding of coefficient values, and

(3) SPT coefficient design obtained using the tree search technique are shown in

Fig. 5.7. It can be seen from Fig. 5.7 that, for the same filter specifications, the

minimum stopband attenuation of the infinite precision coefficient designs when

expressed in dB is proportional to the filter length 2N . For SPT coefficient designs,

the minimum stopband attenuation is very close to the continuous coefficient design

for small values of N . When N exceeds a certain limit, the peak stopband gain of

the discrete coefficient design deviates away from the infinite precision coefficient

design and finally remains fairly constant despite increasing filter length. As can

be seen from Fig. 5.7, the peak stopband gain of the SPT coefficient filter designed

using the proposed tree search method is significantly smaller than that of the
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simple rounded coefficient design. The computing time required by the proposed

algorithm for tree width equal to two for various filter lengths is plotted in Fig. 5.8.

As can be seen from Fig. 5.8, the computing time increases exponentially with

respect to filter length 2N .

5.4 Discussion

In this chapter, Chapter 3 and Chapter 4, three methods for the design of SPT

coefficient two-channel lattice orthogonal filter banks have been presented. The

three methods are the successive reoptimization approach, the improved genetic

algorithm and the width-recursive depth-first tree search algorithm. The width-

recursive depth-first tree search algorithm is an extension of the successive reopti-

mization approach. Therefore, the tree search algorithm and the genetic algorithm
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Fig. 5.8: The computing time of a set of discrete coefficient designs by
using the proposed algorithm when the tree width is equal to 2.

are the two independent approaches.

As stated in Section 2.3.3, there are two schools of thoughts for the distribution

of the SPT terms to the coefficients. One is that each coefficient is allocated with

the same number of SPT terms. Another one is that each coefficient is allocated

with different number of SPT terms but the total number of SPT terms for the

entire filter is fixed. Both schools of thoughts have their own respective merits.

Also, both the improved genetic algorithm and the tree search optimization tech-

nique are suitable for optimizing both these two cases. If it is desired to optimize

filters with different number of SPT terms for each coefficient using the tree search

algorithm, the SPT terms must be preallocated by using some other SPT term

allocation scheme which will be discussed in Chapter 6.

When compared with the results obtained by using the improved GA presented

in Chapter 4, the tree search algorithm presented in this chapter and the local
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search methods [67, 86] for the design of SPT coefficient lattice filter banks, the

following is observed:

1) The example of the 27-th order filter bank designed showed that the improved

genetic algorithm presented in Chapter 4 is superior over the conventional GA.

However, the result of 46.0dB obtained using the improved genetic algorithm is still

slightly inferior to the result of 46.2dB designed using the tree search algorithm,

although the genetic algorithm has taken the advantage that the coefficient values

are allocated with different number of SPT terms while keeping the total number

of SPT terms fixed; in the tree search algorithm, all the coefficients are allocated

the same number of SPT terms.

2) The above phenomena is frequently observed. The example taken from ref-

erences [34, 75] is selected for another illustration. The filter specifications are as

follows: a 31-st order filter bank with stopband edge at 0.56π, the stopband fre-

quency response is equiripple; a total number of 64 SPT terms are allocated to all

the coefficients. The infinite precision optimum solution has a peak stopband gain

of −30.7dB and the coefficient values are tabulated in column two of Table 5.2.

Reference [34] used a local search algorithm and reference [75] used a genetic algo-

rithm. Both methods reported solutions with 29.0dB attenuation in the stopband.

The proposed tree search method produced a design with peak stopband ripple of

−29.1dB even though a further constraint that all the coefficients must have the

same number of SPT terms is imposed. The coefficients are tabulated in column

three of Table 5.2.

3) Previous reports [42, 67, 86] showed that, for the design of SPT coefficient

linear phase FIR filters, the local search may produce results close to those obtained

by MILP. For the design of lattice filter banks, the results obtained using the

local search method reported in [67, 86] are much inferior to those obtained using

the tree search algorithm, especially when the filter order is high. The stopband

attenuations for the cluster of filters with stopband edge at 0.56π and N ranges

from 16 to 32 are plotted in Fig. 5.9.
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Table 5.2: Coefficient values of the 31-th order design with the stopband
edge at ωs = 0.56π.

Continuous SPT coefficient.

k coefficients Each coefficient has

two SPT terms

0 −2.6619195 −2+2+2+0

1 0.8784588 2+0+2−8

2 −0.5167097 −2−1−2−4

3 0.3580536 2−1−2−3

4 −0.2670765 −2−2−2−5

5 0.2072396 2−2−2−5

6 −0.1640125 −2−3−2−5

7 0.1310766 2−3+2−7

8 −0.1049166 −2−3+2−6

9 0.0835565 2−4+2−6

10 −0.0659682 −2−4−2−8

11 0.0510935 2−4−2−6

12 −0.0388140 −2−5−2−8

13 0.0286118 2−5−2−10

14 −0.0201751 −2−6−2−9

15 0.0228699 2−6+2−8

The reasons that the genetic algorithms and local search methods are not able

to obtain good lattice filter but may obtain good linear phase FIR filter are due to

the following facts:

1) As suggested by the name of the technique, local search methods search

in the discrete space in the vicinity of the the continuous optimum coefficients.

Therefore, such method will be successful only when good discrete solution exists

around the continuous optimum.

2) The frequency response of linear phase FIR filters are linear functions of

the filter coefficients. The shape of the frequency response is unaffected by mul-

tiplying all the coefficients by a constant scaling factor. This scaling factor has
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Fig. 5.9: The stopband attenuation for filter banks with stopband edge
at 0.56π.

significant effect on the coefficient optimization process for SPT design [52] due to

the nonuniformly distributed SPT values. Scaling the continuous coefficients prior

to rounding the coefficients may improve the chances that good discrete solutions

are located near the continuous ones. This is an important reason that local search

may get good results for the design of linear phase FIR filters.

3) The frequency responses of the lattice filter banks are not linear functions of

the lattice coefficients. Therefore, the scaling factor strategy is not adoptable.

4) As shown in Fig. 2 in [86], the SPT coefficients of filter designed by using

MILP are almost the same as those of the continuous coefficients. However, it is

not the case in the lattice filter bank design. For the 27-th order lattice filter bank

with the stopband edge at 0.64π, using the local search method [86], 35.0dB stop-

band attenuation is achieved and the SPT coefficients are almost the same as the

continuous ones, as shown in Fig. 5.10 by the symbols ‘◦’ and ‘+’ for the continuous

and discrete values, respectively. However, a much better solution obtained using

the tree search algorithm achieved 46.2dB stopband attenuation, and some of its
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Fig. 5.10: The coefficient values for the 27-th order example with stop-
band edge at 0.64π. ’◦’: Continuous coefficients, ’+’: SPT coefficients
obtained by local search, ’2’: SPT coefficients obtained by genetic al-
gorithm, and ’¦’: SPT coefficients obtained by tree search.

SPT coefficients deviated far away from the continuous ones, as shown in Fig. 5.10

by the symbol ’¦’.
5) Genetic algorithm also produces discrete solutions near the continuous opti-

mum, as can be seen from the coefficient values shown in Fig. 5.10 by the symbol

’2’.

5.5 Conclusion

In this chapter, Chapter 3 and Chapter 4, two independent methods, improved

genetic algorithm and width-recursive depth-first tree search algorithm, for the

design of SPT coefficient lattice filter banks are presented. Although the new GA

proposed in Chapter 4 is superior to the conventional GA, being GA in nature,

it has the same limitations as those in local search methods in which the discrete

solutions obtained are in the vicinity of the initial continuous coefficients. Local
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search method as well as GA therefore have few chances to hop to discrete solutions

located far away from the the continuous one. The global optimum discrete solution

of the lattice filter bank may be located far away from the continuous optimum.

The tree search algorithm proposed in this chapter overcame this difficulty very

well in two aspects. First, the coefficient selected to be quantized may be fixed

at a considerable distance away from the continuous values for large L. Second

and more importantly, after each coefficient is fixed, the remaining unquantized

coefficients are reoptimized; the reoptimization process may throw the coefficient

values far away from the original continuous optimum coefficients.

.



Chapter 6

Analysis of SPT Number Effects

COEFFICIENT QUANTIZATION may cause the frequency response of an

FIR filter to deteriorate to such an extent that it may no longer be ac-

ceptable. To analyze the effect of coefficient quantization, it is necessary to know

the coefficient quantization error probability density distribution. The error prob-

ability density distribution for quantizing a number to a finite wordlength value

is uniform, and its effects on the frequency response of an FIR filter had been

extensively studied [39, 40]. For SPT values, some statistical analysis had been

reported in [55, 84]. In [55], the statistically estimated number of SPT terms re-

quired to represent a coefficient was investigated. In [84], the distribution of the

SPT terms is deduced. However, there is no report on the statistical distribution

of SPT quantization error.

In this chapter, the distribution of quantization error in the SPT space is stud-

ied. Mathematical expressions for the quantization error distributions is established

subject to a given smallest power-of-two term and a given number of SPT terms.

The effects of quantizing the coefficients to SPT values on the frequency responses

of the two-channel lattice orthogonal filter banks are investigated. A new SPT

term allocation scheme is also developed.

Detailed proofs of the quantization error distributions are given in Appendices

A and B at the end of this chapter. Appendix C presents several lemmas which

are referred by the proofs in Appendices A and B.

Unless stated otherwise, in this chapter, a filter bank refers to a two-channel

74
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lattice orthogonal filter bank.

6.1 Rounding Error Probability Density Func-

tion Analysis

The permitted discrete value of an integer that can be represented as a sum of not

more than K SPT terms is unevenly distributed on the integer space. Therefore,

its error is also unevenly distributed. In this section, a discussion on the error

probability density function (PDF) when infinite precision numbers are represented

using SPT integers is presented.

As the canonic SPT number ensures a unique minimum representation, in the

following analysis, canonic condition is imposed on all SPT numbers to simplify

the derivation.

As reviewed in Section 2.3.1, a number n can be represented to a precision 2Q

by a canonic SPT number with K SPT terms as

n =
K−1∑

i=0

y(i)2q(i), y(i) ∈ {−1, 1}, (6.1)

where Q ≤ q(i) ≤ L − 1. Furthermore, for any i and j, it satisfies the constraints

that q(i) 6= q(j) if i 6= j and that q(i) 6= q(j)+1. Without loss of generality, assume

that q(i) < q(j) if i > j, i.e., q(i) is a decreasing sequence. For the particular

condition where Q = 0, n is an L-bit integer. In this section, this particular case

for quantizing a number to an SPT number where Q = 0 is considered. The case

where Q 6= 0 will be deduced from the case where Q = 0.

Let Z+ denote the set of all positive integers, and let L,K ∈ Z+. As introduced

in Section 2.3.1, an L-bit canonic SPT number has at most
⌊

L+1
2

⌋
SPT terms,

where bxc is the largest integer smaller than or equal to x. Assume further that

L ≥ 2K−1. Let T+(L,K) be a subset of Z+ such that any n ∈ T+(L,K) is a sum

of exactly K canonic SPT terms and the largest power-of-two term is less than or

equal to 2L−1, where n is given by (6.1) in which Q is equal to 0.

It is known that the number of elements of the set T+(L,K), represented as



CHAPTER 6. ANALYSIS OF SPT NUMBER EFFECTS 76

N+(L,K), is [55]

N+(L,K) =
2K−1

K!

K−1∏

k=0

(L−K + 1− k). (6.2)

Let S+(L,K) be a subset of Z+ such that S+(L,K) =
⋃K

k=1 T+(L, k), i.e., any

n ∈ S+(L, K) is a sum of not more than K canonic SPT terms and the largest

power-of-two term is less than or equal to 2L−1. It is noticed that S+(L,K) does

not include zero.

Let M+(L, K) be the number of elements of the set S+(L,K). It is straight-

forward to show that

M+(L,K) =
K∑

k=1

N+(L, k). (6.3)

Therefore, the number of elements of S+
(
L,

⌊
L+1

2

⌋)
is M+

(
L,

⌊
L+1

2

⌋)
. Denote

M+
(
L,

⌊
L+1

2

⌋)
as M+

L , we have

M+
L =

⌊
2L+1

3

⌋
. (6.4)

M+
L is also the largest number which can be represented by a canonic SPT interge

where the largest power-of-two term is less than or equal to 2L−1.

Let

M+
L∞ =

∞∑

k=0

2L−1−2k =
2L+1

3
. (6.5)

M+
L∞ is the largest infinite precision number represented by SPT terms with the

largest power-of-two term less than or equal to 2L−1.

Furthermore, let T (L,K) be the union of T+(L,K) and−T+(L, K), i.e., T (L,K)

is the integer set where each member is an L-bit SPT number with exactly K SPT

terms, including both the positive and negative numbers. S(L,K) is denoted as

the union of S+(L,K), −S+(L,K) and the element 0, i.e., S(L,K) is the inte-

ger set that can be represented by L-bit SPT number with not more than K SPT

terms, including both the positive and negative numbers as well as the zero element.

Obviously, the number of elements in T (L,K) is 2N+(L,K), and the number of

elements in S(L, K) is 2M+(L,K) + 1.
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6.1.1 Error Probability Density Function

Before embarking on the analysis of the error distribution for rounding an infinite

precision number x to the S(L,K) space, it is assumed that x ∈ {x| −M+
L∞ ≤ x ≤

M+
L∞, x ∈ R}, where R is the set of real numbers, and x is uniformly distributed in

[−M+
L∞,M+

L∞], where [a, b] denotes all the infinite precision numbers in the range

bounded by a and b inclusive, as shown in Fig. 6.1. The reason for making the

above assumption is that the error incurred in a number x to be quantized to

SPT form is related to the value of the number. Larger number may cause larger

error for a given K. Therefore, the distribution of x affects the distribution of the

rounding error. In quantizing the coefficient values of a filter, L is selected so that

it is just large enough to accommodate the coefficient values, and assume that the

coefficient values are uniformly distributed in [−M+
L∞,M+

L∞].

Let x̄ be the integer value nearest to x.

+
∞− LM +

∞LM

+
∞LM2

1

� �

)(xp

+− LM +
LM

� � �

ix

�

Fig. 6.1: A uniformly distributed random number x, x ∈ {x| −M+
L∞ ≤

x ≤ M+
L∞, x ∈ R}.

Property 6.1 For L = 2K − 1, the error PDF of rounding a number x ∈ {x| −

M+
L∞ ≤ x ≤ M+

L∞, x ∈ R} to the element in S(L,K) nearest to it, denoted as
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pL,K(e), is as follows:

pL,K(e) =





2M+
L + 1

2M+
L∞

, for e ∈
[
−3−1, 3−1

]
,

M+
L

M+
L∞

, for e ∈ ±
[
3−1, 2−1

]
,

0, otherwise.

(6.6)

2

Proof: For L = 2K − 1, according to (6.4) and (6.5), it is obvious that

M+
L∞ = M+

L +3−1. For any number x ∈
{
x

∣∣∣−M+
L ≤ x ≤ M+

L , x ∈ R
}
, we have x̄ ∈

S(L,K). According to Lemma 6.1 in Appendix C, the rounding error is uniformly

distributed in [−2−1, 2−1] with unity PDF. Furthermore, the probability of x ∈
{x|−M+

L ≤ x ≤ M+
L , x ∈ R} is

2M+
L

2M+
L∞

. The probability of x ∈
{
x

∣∣∣M+
L ≤ x ≤ M+

L∞
}

and x ∈
{
x

∣∣∣−M+
L∞ ≤ x ≤ −M+

L

}
are both 1

6M+
L∞

, and the rounding errors are

distributed uniformly in [0, 3−1] and [−3−1, 0], respectively, with PDF equal to 3.

Therefore,

pL,K(e) =





2M+
L

2M+
L∞

× 1, for e ∈
[
−2−1, 2−1

]
,

1

6M+
L∞

× 3, for e ∈
[
0, 3−1

]
,

1

6M+
L∞

× 3, for e ∈
[
−3−1, 0

]
,

0 otherwise.

=





2M+
L + 1

2M+
L∞

, for e ∈
[
−3−1, 3−1

]
,

M+
L

M+
L∞

, for e ∈ ±
[
3−1, 2−1

]
,

0, otherwise.

Property 6.2 The error PDF for rounding a number x ∈ {x| − ML∞ ≤ x ≤
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Fig. 6.2: The PDF for rounding a number to an L bit SPT integer with
not more than K SPT terms, where L = 8 and K=2.

ML∞, x ∈ R} to an element in S(L,K) when L ≥ 2K is given by:

pL,K(e) =





2M+(L,K) + 1

2M+
L∞

, for e ∈ [−2−1, 2−1],

4M+(L− 1− k, K)− 2M+(L− k, K) + 1

2M+
L∞

, for e ∈ ±[2k−1, 2k],

k = 0, · · · , L− 2K − 1,

1

2M+
L∞

, for e ∈ ±
[
2L−2K−1,

2L−2K+1

3

]

when L− 2K − 1 ≥ 0,

0, otherwise.

(6.7)

2

The proof for Property 6.2 is shown in Appendix A.

An example of the error PDF for rounding an infinite precision number to an

element in S(8, 2) is shown in Fig.6.2.
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6.1.2 Mean and Variance

Property 6.3 The mean of the error caused by rounding a number x to an element

in S(L,K), E(e), is equal to 0. The variance of the error, σ2
L,K(e), is given by

σ2
L,K(e) =





1

12
· 27M+

L + 4

27M+
L + 9

, for L = 2K − 1,

1

12
· 27M+

L + 32

27M+
L + 18

, for L = 2K,

1

2M+
L∞

[ (
7

3
M+(2K, K) +

128

81

)
23(L−2K−1) −M+(L,K)

−
L−2K−2∑

k=0

7M+(L− 1− k,K)23k

]
, for L ≥ 2K + 1.

(6.8)

2

The proof for Property 6.3 is shown in Appendix B.

The quantization process where the smallest power-of-two term is 20 has been

considered. If the smallest power-of-two term is 2Q instead of 20, where the largest

power-of-two term remains at 2L−1, the wordlength of the resulting SPT number

becomes L − Q; the error PDF of this quantization process is a scaled version of

pL−Q,K(e), where the value of the error PDF is scaled by 1
2Q and the error range is

scaled by 2Q. Therefore, when L−Q ≥ 2K, the error PDF for quantizing a number

to an SPT number with K SPT terms, and the largest and smallest power-of-terms

are 2L−1 and 2Q, respectively, denoted as pL,K,Q(e), is given by

pL,K,Q(e) = pL−Q,K

(
2−Qe

)
· 1

2Q
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=





2M+(L−Q, K) + 1

2M+
(L−Q)∞

· 1

2Q
, for e ∈ [−2Q−1, 2Q−1],

4M+(L−Q− 1− k, K)− 2M+(L−Q− k,K) + 1

2M+
(L−Q)∞

· 1

2Q
,

for e ∈ ±[2Q+k−1, 2Q+k],

k = 0, · · · , L−Q− 2K − 1,

1

2M+
(L−Q)∞

· 1

2Q
, for e ∈ ±

[
2L−2K−1,

2L−2K+1

3

]

when L−Q− 2K − 1 ≥ 0,

0, otherwise,

=





2M+(L−Q, K) + 1

2M+
L∞

, for e ∈ [−2Q−1, 2Q−1],

4M+(L−Q− 1− k, K)− 2M+(L−Q− k,K) + 1

2M+
L∞

,

for e ∈ ±[2Q+k−1, 2Q+k],

k = 0, · · · , L−Q− 2K − 1,

1

2M+
L∞

, for e ∈ ±
[
2L−2K−1,

2L−2K+1

3

]

when L−Q− 2K − 1 ≥ 0,

0, otherwise.

(6.9)

Thus, the mean of the errors remains at 0, whereas the variance, σ2
L,K,Q(e), is given
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Table 6.1: Some values of σL,K,Q for Q = −10.

K 2 3 4 5 6
L

4 1.9646E−1 3.6496E−2 6.8449E−3 1.3019E−3 3.4860E−4

3 9.8229E−2 1.8248E−2 3.4244E−3 6.7739E−4 2.9171E−4

2 4.9115E−2 9.1242E−3 1.7178E−3 3.9782E−4 2.8194E−4

1 2.4557E−2 4.5629E−3 8.7432E−4 3.0129E−4 2.8189E−4

0 1.2279E−2 2.2839E−3 4.7644E−4 2.8202E−4 −
−1 6.1396E−3 1.1497E−3 3.1988E−4 2.8183E−4 −
−2 3.0707E−3 5.9718E−4 2.8234E−4 − −

by

σ2
L,K,Q(e) =





22Q

12
· 27M+

L−Q + 4

27M+
L−Q + 9

, for L−Q = 2K − 1,

22Q

12
· 27M+

L−Q + 32

27M+
L−Q + 18

, for L−Q = 2K,

23Q

2M+
L∞

[ (
7

3
M+(2K, K) +

128

81

)
23(L−Q−2K−1)

−M+(L−Q,K)−
L−Q−2K−2∑

k=0

7M+(L−Q−1−k,K)23k

]
,

for L−Q ≥ 2K + 1.

(6.10)

Several values of σL,K,Q(e) for L ranges from 4 to −2 and K ranges from 2 to 6,

corresponding to Q = −10 are listed in Table 6.1. In Table 6.1, each row of values

corresponds to the range
[
−2L+1

3
, 2L+1

3

]
. It can be seen from Table 6.1 that the

variance decreases with increasing K for a given L and decreases with decreasing

L for a given K. Therefore, to achieve approximately the same variance, say 10−3,

when rounding a number to an SPT value, larger L requires larger K, i.e., more

SPT terms. When L = 4, five SPT terms are required, whereas for L = −1, three

SPT terms are required.

If the largest power-of-two term is fixed, i.e., L is fixed, the error variance for

representing a random number to SPT value decreases with decreasing Q for a

given K. In Fig. 6.3, the largest power-of-two term is fixed to be 2L−1 = 24, thus



CHAPTER 6. ANALYSIS OF SPT NUMBER EFFECTS 83

0 5 10
0.39

0.395

0.4

0.405

0.41

0.415

0.42

0.425

0.43

0.435

−Q

σ L,
K

,Q
(e

)

Fig. 6.3: σL,K,Q(e) plot for L = 5 and K = 2. Note that the er-
ror variance decreases with decreasing Q for a given number range[
−2L+1

3
, 2L+1

3

]
and a given K.

the number representable is in
[
−64

3
, 64

3

]
, and K = 2. When Q decreases from

0 to −3, i.e., the smallest power-of-two term decreases from 20 to 2−3, the error

variance drops quickly from 0.431 to 0.393. However, for Q < −3, the decrease

in the variance is almost not noticeable and the variance approaches a constant

asymptotically as Q decreases. Increasing K may reduce the variance further, as

shown in Fig. 6.4 where K = 3. However, the variance in Fig. 6.4 approaches

asymptotically a smaller constant as Q decreases.

The remaining part of this section is devoted to present the error distribution
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and variances for several special cases.

The first case is 0 < L − Q < 2K − 1, i.e., an (L − Q)-bit SPT number is

represented with K SPT terms and K >
⌊

L−Q+1
2

⌋
. For canonic (L − Q)-bit SPT

numbers, at most
⌊

L−Q+1
2

⌋
SPT terms are used. Therefore, the redundant SPT

terms do not contribute to the precision of the number. Thus,

pL,K,Q(e) = pL,bL−Q+1
2 c,Q(e) (6.11)

and

σ2
L,K,Q(e) = σ2

L,bL−Q+1
2 c,Q(e) (6.12)
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for 0 < L−Q < 2K − 1.

All the above expressions are true for L−Q ≥ 1 and K ≥ 1 since the wordlength

(L−Q) and the number of SPT terms (K) cannot be less than unity. Nevertheless,

it is convenient to define several quantities corresponding to the trivial case where

K = 0 or L−Q ≤ 0.

K = 0 is the case that a number is represented with 0 SPT terms. Therefore,

the rounding error is the number itself and the distribution is given as

pL,0,Q =





1

2M+
L∞

, for e ∈
[
−M+

L∞,M+
L∞

]
,

0, otherwise.

(6.13)

According to (6.41), the variance is given by

σ2
L,0,Q(e) =

(M+
L∞)2

3
. (6.14)

The interpretation for L − Q ≤ 0 will be explained in the next section. For

L−Q ≤ 0, define

σ2
L,K,Q(e) =





(
M+

L∞
)2

3
, for L−Q = 0,−1,

(
M+

(L+2)∞
)2

3
, for L−Q ≤ −2.

(6.15)

6.2 Statistical Effect of Coefficient Quantization

A statistical analysis on the effect of coefficient quantization on the frequency

response of the filter bank is presented in this section.

The rounding of an infinite precision coefficient value to its nearest SPT value

may be modeled as adding an error term to the coefficient value. Suppose that the

error term associated with the rounding of the filter coefficient αk is ∆αk. Define

HN,0(e
jω) and H∗

N,0(e
jω) to be the frequency responses of a filter bank which has

unquantized and quantized coefficients, respectively. Let the frequency response

error of HN,0(z) in (2.34) due to the rounding of all its filter coefficients be denoted
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by EN,0(e
jω). Thus,

EN,0(e
jω) = H∗

N,0(e
jω)−HN,0(e

jω). (6.16)

For small |∆αk|, EN,0(e
jω) may be approximated as

EN,0(e
jω) =

N−1∑

k=0

PN,k(e
jω)×∆αk, (6.17)

where, PN,k(e
jω) is given by (3.19). It is reasonable to assume that ∆αk for k =

0, 1, . . . , N − 1, are mutually independent. If each coefficient value is represented

by an L − Q-bit SPT value with not more than K SPT terms, where 2Q is the

smallest power-of-two term, then the PDF of ∆αk is a piecewise constant function

pL,K,Q(∆αk) as given in (6.9), and thus has zero mean and variance σ2
L,K,Q(∆αk),

as given in (6.10). In the derivation, L is selected to be just large enough to

represent the largest lattice coefficient. The statistical model in [11, 40] is used in

the following analysis. From (3.29), (6.17) and the statistical property of ∆αk, it

can be shown that, for coefficient rounding, E(ejω) has zero mean and variance

σ2
EN,0

given by

σ2
EN,0

= EN,0(ejω)2 =
N−1∑

k=0

P 2
N,k(e

jω)×∆α2
k

<
N−1∑

k=0

∆α2
k = σ2

L,K,Q(e)N (6.18)

Define,

σE =
√

σ2
L,K,Q(e)N = σL,K,Q(e)

√
N. (6.19)

It can be seen from (6.17) that EN,0(e
jω) consists of a summation of N terms. With

the operation of the central limit theorem, EN,0(e
jω) becomes Gaussian distributed

when N is large. Thus, for large N , |EN,0(e
jω)| is less than 2σE with 98% chance.

Thus,
∣∣∣EN,0(e

jω)
∣∣∣ ≤̃2σE, (6.20)

where ≤̃ denotes “is 98% chance less than or equal to”.
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6.2.1 Statistical Boundary of Stopband Attenuation Dete-
rioration

Suppose that HN,0(e
jω) has been designed to minimize the maximum stopband

ripple so that

max
ω∈[ωs,π]

|HN,0(e
jω)| = δ, (6.21)

where, δ is the maximum stopband ripple. Therefore, for all ω

|H∗
N,0(e

jω)| ≤ |H∗
N,0(e

jω)−HN,0(e
jω)|+ |HN,0(e

jω)|

≤ max
ω∈[ωs,π]

|EN,0(e
jω)|+ δ

≤̃ 2σL,K,Q(e)
√

N + δ. (6.22)

Let D∗ and D denote the minimum stopband attenuation in dB of the rounded

coefficient filter and the infinite precision coefficient filter, respectively. Thus,

D = −20 log10

(
max

ω∈[ωs,π]
|H(ejω)|

)

= −20 log10(δ), (6.23)

and

D∗ = −20 log10

(
max

ω∈[ωs,π]

∣∣∣H∗(ejω)
∣∣∣
)

≥̃ −20 log10(2σL,K,Q(e)
√

N + δ). (6.24)

From (6.23), δ can be written as

δ = 10−D/20. (6.25)

Substitute δ into (6.24), it can be shown that

D∗≥̃ − 20 log10

(
10−D/20 + 2σL,K,Q(e)

√
N

)
. (6.26)

From (6.23) and (6.26), we arrive at

D −D∗≤̃ 20 log10

(
1 + 2 · 10D/20σL,K,Q(e)

√
N

)
. (6.27)

(6.27) gives a statistical bound on the increase in ripple magnitude due to

filter coefficient quantization. However, this bound is conservative since it assumes
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Fig. 6.5: Comparison between experimental data and predicted statis-
tical bound for the stopband attenuation.

that the largest power-of-two terms of all the coefficients are 2L−1. In fact, the

magnitude of the coefficient values, |αk|, decreases with increasing k, and usually,

the largest power-of-two terms of smaller coefficients are less than 2L−1.

Fig. 6.5 shows a (D − D∗) versus N plot for several examples of filter banks

with Q = − 7, D = 30.5dB and N ranging from 4 to 40. In Fig. 6.5, the filters

obtained using simple coefficient rounding are denoted using ‘o’ and those obtained

using the depth-first width-recursive algorithm are denoted using ‘4’. The function

20 log10

(
1 + 2 · 10D/20σL,K,Q(e)

√
N

)
, where L = 2, K = 2 and Q = −7 is also plot-

ted (dash-dot curve) in Fig. 6.5. It can be seen from Fig. 6.5 that the examples have

(D − D∗) values significantly smaller than 20 log10

(
1 + 2 · 10D/20σL,K,Q(e)

√
N

)
.

The (D−D∗) values for those designed using the tree search algorithm are signifi-

cantly smaller than the (D−D∗) values for those obtained using simple coefficient

rounding.
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A more stringent bound can be obtained if the continuous design is known a

priori. Supposing that the permitted smallest power-of-two term is not smaller

than 2Q, and Lk is selected such that 2Lk−1 is the largest power-of-two term for

the coefficient αk. Thus, αk can be represented by an Lk − Q bit SPT number.

As it has been assumed that each coefficient is allocated with K SPT terms, for

the coefficient αk, the most significant bit 2Lk−1 must be 1 or −1 and it requires

one SPT term. For the remaining (Lk −Q− 2) bits, there are (K − 1) SPT terms

available for use. The error PDF for the rounding process is pLk−2,K−1,Q(e) and

the error variance is σ2
Lk−2,K−1,Q(e). Therefore, the variance of frequency response

error can be written as

σ2
EN,0

=
N−1∑

k=0

1

(1 + α2
k)

2
× σ2

Lk−2,K−1,Q(e). (6.28)

It meets the requirement described in (6.15), i.e., (Lk−Q− 2) may be less than or

equal to 0 for σ2
Lk−2,K−1,Q. If Lk−2−Q is equal to 0 or −1, then the largest power-

of-two term for αk

(
2Lk−1

)
is 2Q+1 or 2Q, respectively; those bits with weights less

than or equal to 2Lk−3 constitute rounding errors. Therefore, the rounding error

of the coefficient is uniformly distributed in the range of
[
−M+

(Lk−2)∞, M+
(Lk−2)∞

]

and the variance, according to (6.41), is given by

(
M+

(Lk−2)∞

)2

3
. If Lk − 2 ≤ −2,

the largest power-of-two term for αk is less than 2Q and cannot be represented

by any SPT term. Therefore, the rounding error is distributed in the range

of
[
−M+

(Lk)∞, M+
(Lk)∞

]
, i.e.,

[
−M+

(Lk−2+2)∞,M+
(Lk−2+2)∞

]
. Thus, the variance is

M2
(Lk−2+2)∞

3
. This qualifies (6.15).

Hence, define

σ′E =

√√√√
N−1∑

k=0

1

(1 + α2
k)

2
× σ2

Lk−2,K−1,Q(e). (6.29)

Substitute σL,K,Q(∆αk)
√

N in (6.27) with (6.29), a more stringent bound is given

by

D −D∗≤̃ 20 log10


1 + 2 · 10D/20

√√√√
N−1∑

k=0

σ2
Lk−2,K−1,Q(e)

(1 + α2
k)

2


 . (6.30)

It should be noted that the application of the central limit theorem requires that
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Fig. 6.6: The lattice coefficient values for N = 12 and N = 16 when
D = 30.5dB.

the PDF of all the variables involved in the summation are to be the same. In

(6.30), the PDF’s of the variables are not the same and hence the central limit

theorem does not apply in the strictest sense. Nevertheless, in order to facilitate

theoretical analysis, the central limit theorem is employed.

The more stringent bound in (6.30) is also plotted in Fig. 6.5 in solid line, which

is smoothed by piecewise cubic spline interpolation. No example has (D−D∗) value

larger than the boundary. It is interesting to note that this boundary is flat and

increases very slowly with increasing N , which is consistent with observed results.

The reason for this phenomenon is that for a given D, it has been observed that the

magnitudes of the coefficients increase with increasing filter length. The coefficient

values for an example with D = 30.5dB and N = 12 or 16 are shown in Fig. 6.6.

If the increase in the magnitude of the coefficient does not result in more bits to

represent the new coefficient value, the coefficient rounding error variance remains

unchanged. Since the magnitude of αk diminishes with increase k, the additional
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Fig. 6.7: D −D∗ versus N plot for K = 2 and 3 and Q = −7,−8,−9
and −10.

coefficients causes small additional quantization errors.

Decreasing Q from −7 to −9 while maintaining K = 2 only lowers the bound

by a small amount as shown in Fig. 6.7, whereas increasing K by 1, causes a big

drop on the statistical bound. It can be seen that when K = 3, the bounds for

Q = −7 and Q = −8 increases more rapidly with increasing N than those for

Q = −9 and Q = −10. This can be explained as follows: as N increases, the

magnitudes of those additional coefficients are small and decrease with increases

N . Some of these small magnitude coefficients have values smaller than 2−5 and so

are represented using less than three SPT terms when Q=−7; the quantization step

could not decrease as the coefficient magnitude decreases. Thus, D−D∗ increases

rapidly as N increases. The story is different for Q = −10; the small magnitude

coefficients will be represented by three SPT terms and so have significantly smaller

quantization errors. In this case, as N increases, the increase in D − D∗ is very
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Fig. 6.8: D−D∗ versus −Q plot. The minimum stopband attenuation
of the infinite precision prototype is 30dB.

small. Hence, the curve for Q = −10 is flat.

6.2.2 Effective Selections of Q and K for Coefficient Round-
ing

From the above analysis, it is clear that if the coefficients of the filter banks are to

be quantized to SPT values with fixed number of SPT terms by simple rounding,

arbitrarily choosing Q and K values may cause wastage on hardware resources.

Fig. 6.8, Fig. 6.9 and Fig. 6.10 show (D−D∗) values with various K’s and Q’s

for D equal to 30dB, 45dB and 60dB, respectively.

It can be seen from these figures that for a given K, decreasing Q beyond

certain value will not decrease D −D∗ much further if simple rounding is used as

the quantization technique. Similarly, for a given Q, increasing K beyond certain

value also will not decrease D −D∗ much further.

For a given K, let dK = D − D∗
K where D∗

K is obtained by setting Q = −30

(assuming that 2−30 is sufficiently close to zero for practical purpose). Thus, dK may
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Fig. 6.9: D−D∗ versus −Q plot. The minimum stopband attenuation
of the infinite precision prototype is 45dB.

be considered as the minimum deterioration when quantizing the filter coefficients

to a given K SPT terms. Graphs of Q versus K that will cause a deterioration less

than (dK + 1)dB with 98% chance are plotted in Fig. 6.11 for various values of K.

Therefore, the chance of having a better than 1dB improvement in the stopband

attenuation by using a value of Q smaller that shown in Fig. 6.11 is 2%.

Fig. 6.12 shows the values of K for a given Q, where the chance of achieving a

better than 1dB improvement in the stopband attenuation by increasing K is 2%.

It should be noted that the above analysis is applicable for direct rounding of

the coefficients of a lattice filter bank to SPT values and all the coefficients have

the same number of SPT terms. For other type of filter structures, K and Q may

be related in some other ways.
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6.3 SPT Term Allocation Scheme Based on Sta-

tistical Analysis

In many applications, it is not necessary to make all the coefficient values to have

the same number of SPT terms. In this case, it is desirable to minimize the total

number of SPT terms for the entire filter. It has been demonstrated in [47,55] that

significant advantage can be achieved if the coefficient values are allocated with

different number of SPT terms while keeping the total number of SPT terms fixed.

In [55], the SPT terms are assigned based on a statistical analysis on the number

of SPT terms required to represent an integer, whereas in [47], the SPT terms are

allocated to the coefficients one by one to the currently most deserving coefficient

to minimize the L∞ distance between the SPT coefficients and their corresponding

infinite precision values. In this section, an SPT term-allocation scheme based on

the statistical analysis on the rounding error distribution is presented.

From the coefficient quantization analysis presented in the previous section,

it can be seen that the frequency response deviation of a filter bank caused by
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coefficient quantization is bounded by (6.31)

D −D∗≤̃ 20 log10

(
1 + 2 · 10D/20σEN,0

)
. (6.31)

where,

σ2
EN,0

=
N−1∑

k=0

1

(1 + α2
k)

2
× f(Lk, Kk, Q). (6.32)

In (6.32), the function f(Lk, Kk, Q) is given by

f(Lk, Kk, Q) =





σ2
Lk−2,Kk−1,Q(e), for Kk > 0,

σ2
Lk,Kk,Q(e), for Kk = 0,

(6.33)

where Lk is selected such that 2Lk−1 is the largest power-of-two term of αk, Kk

is the number of SPT terms allocated to αk, and 2Q is the smallest power-of-two

term allowed for all the coefficients. Equation (6.33) is to be interpreted as follows:

When αk for any given k is allocated at least one SPT term, its rounding error

variance is given by σ2
Lk−2,Kk−1,Q(e), whereas if no SPT term is allocated to αk, its

rounding error variance is given by σ2
Lk,0,Q(e).

For any given set of infinite precision coefficient values, the largest power-of-two

term for each coefficient is known, and thus Lk for all k are known. Thus, for a

given Q and K̂ (the total number of SPT terms for all the coefficients), the problem

is to devise a method for determining Kk to minimize the frequency response

deterioration. Since σ2
EN,0

determines the lower bound of the frequency response

deterioration as shown in (6.31), the frequency response deviation is minimized

when σ2
EN,0

is minimized.

Since an analytic solution for SPT term allocation that will result in the min-

imum σ2
EN,0

is not available, an iterative scheme that assigns one SPT term at a

time to the coefficients is proposed. The coefficient to receive an SPT term is the

one with the largest value of

E2(∆αk) =
1

(1 + α2
k)

2
× f(Lk, Kk, Q). (6.34)

The SPT term allocation scheme runs as follow:
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1. Let K̂ be the total number of SPT terms to be allocated. Let Kk be the

number of SPT terms to be assigned to αk. Initialize Kk = 0 for all k.

Obtain the infinite precision αk and select Lk in such a way that the largest

power-of-two term of αk is 2Lk−1, and 2Q is the permitted smallest power-of-

two term.

2. Evaluate E2(∆αk) according to (6.34) for all k.

3. Let E2(∆αi) be the largest E2(∆αk) for all k, i.e., E2(∆αi) ≥ E2(∆αj) for

all j 6= i.

4. Ki = Ki + 1 and K̂ = K̂ − 1.

5. If K̂ = 0, stop; otherwise, go to Step 2. 2

In the above SPT term allocation scheme, SPT terms are assigned to the coef-

ficient with the largest value for the product of coefficient sensitivity and rounding

error variance. For a given Q, the error variance f(Lk, Kk, Q) obtained in (6.33)

is determined by Lk, the largest power-of-two term of the coefficient, and Kk, the

number of SPT terms which have been assigned to the coefficient. As the rounding

error variance was deduced by the assumption that the number under consideration

is uniformly distributed in a range determined by Lk, a more accurate estimation

of Lk leads to a more accurate error PDF. Therefore, once a coefficient αk with the

largest power-of-two term 2Lk−1 is assigned with an SPT term, if the coefficient

value is updated by αk = αk − 2Lk−1 (or αk = αk + 2Lk−1 depending on the sign of

αk), a new Lk is produced for the new αk. The error variance estimated by using

the new αk and Lk will be closer to the actual error distribution. A modified SPT

term allocation scheme is derived as follows:

1. Let K̂ be the total number of SPT terms to be allocated. Let Kk be the

number of SPT terms to be assigned to αk. Initialize Kk = 0 for all k.

Obtain the infinite precision αk and select Lk in such a way that the largest
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power-of-two term for αk is 2Lk−1, and 2Q is the permitted smallest power-

of-two term. Evaluate the coefficient sensitivity S2
k = 1

(1+α2
k
)2

.

2. Evaluate E2(∆αk) = S2
k × f(Lk, Kk, Q) for all k.

3. Let E2(∆αi) be the largest E2(∆αk) for all k, i.e., E2(∆αi) ≥ E2(∆αj) for

all j 6= i.

4. Ki = Ki + 1, K̂ = K̂ − 1.

5. αi = αi − sign(αi)× 2Li−1.

6. Li is updated such that 2Li−1 is the largest power-of-two term of the new αi.

7. If K̂ = 0, stop; otherwise, go to Step 2. 2

A series of examples based on the following specifications are selected to illus-

trate the advantage that can be gained from the proposed allocation scheme over

that where all the coefficient are allocated with the same number of SPT terms.

Comparisons between the proposed technique and those reported in [47, 55] will

also be made. The specifications are:

1) Filter order: 2N − 1 for N ranging from 16 to 40.

2) Stopband edge: ωs = 0.56π.

3) The allowed smallest power-of-two term: 2Q = 2−10.

When each coefficient value is allocated with two SPT terms, the total number

of SPT terms allocated is 2N . Alternatively, these 2N SPT terms are allocated

to the coefficients using some SPT term-allocation techniques in such a way that

different coefficient may have a different number of SPT terms. After obtaining

the infinite precision coefficients, the coefficients are rounded using the proposed

SPT term allocation scheme. The stopband attenuation deterioration, (D −D∗),

are plotted in Fig. 6.13 for N ranging from 16 to 40 for the following cases:

1) The number of SPT terms allocated to each coefficient is not more than two.
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Fig. 6.13: In the proposed scheme and those schemes reported in [55]
and [47], each coefficient values is allocated with a different number of
SPT terms such that the average number of SPT terms per coefficient
is two.

2) The average number of SPT terms allocated to each coefficient is not more

than two. The SPT terms are allocated using the proposed allocation scheme.

3) The average number of SPT terms allocated to each coefficient is not more

than two. The SPT terms are allocated using the allocation scheme reported

in [55].

4) The average number of SPT terms allocated to each coefficient is not more

than two. The SPT terms are allocated using the allocation scheme reported

in [47].
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Fig. 6.13 shows that the proposed allocation scheme produced filters with very

much smaller deterioration when compared with the allocation scheme where each

coefficient is allocated with two SPT terms. The improvement in the reduction

of the stopband attenuation deterioration ranges from a few dB to approximately

20dB. The improvement increases with increasing N although the increase is not

monotonous. In Fig. 6.13, the largest stopband attenuation improvement is 18.9dB

occurring at N = 34. Furthermore, compared with the allocation schemes reported

in [47, 55], the proposed allocation scheme produced the smallest deterioration for

the majority of the cases.

6.4 Incorporating the SPT Allocation Scheme with

the Tree Search Algorithm

In Chapter 5, a depth-first width-recursive tree search algorithm was proposed

to design SPT coefficient filter banks. In that algorithm, each coefficient was

allocated with the same number of SPT terms. The tree search algorithm was

also suitable for optimizing the lattice filter bank with different number of SPT

terms for each coefficient by incorporating an SPT term allocation scheme. In this

section, the tree search algorithm incorporating the SPT term allocation scheme

reported in Section 6.3 is discussed. Examples are included to show the efficiency

of the combination of these two techniques.

In the algorithm described in Chapter 5, when a node of the tree is created,

the deterioration measures of the coefficients which have not been quantized are

evaluated. The coefficient with the largest deterioration measure is fixed to its

nearest discrete value with a pre-determined number of SPT terms. The remaining

infinite precision coefficients are reoptimized. This particular coefficient may be

fixed to other discrete values in subsequent search until a pre-determined tree

width is achieved.

To incorporate the proposed SPT term allocation scheme to the tree search

algorithm, after a node of the tree is created and the deterioration measures of all
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the unquantized coefficients are evaluated, the SPT allocation procedure described

in Section 6.3 is performed to all the infinite precision coefficients subject to a total

number of SPT terms. This total number of SPT terms is the predetermined total

number of SPT terms less the number of SPT terms which have been assigned to

the quantized coefficients at the current node. The coefficient with the largest de-

terioration measure is fixed to the nearest discrete value with the allocated number

of SPT terms. The remaining infinite precision coefficients are reoptimized. This

particular coefficient may also be fixed to other discrete values with the allocated

number of SPT terms in subsequent search until a pre-determined tree width is

achieved.

The tree search algorithm incorporating the SPT term allocation scheme is

used to design the set of filter banks which have been designed using the tree

search algorithm alone as reported in Section 5.3. The specifications are repeated

here:

1) Filter order: 2N − 1 for N ranging from 16 to 32.

2) Stopband edge: ωs = 0.56π.

3) Average number of SPT terms allocated to each coefficient: not more than

two.

4) The allowed smallest power-of-two term: 2Q = 2−10.

The stopband attenuations versus N are plotted for N ranging from 16 to 32

for the following cases, as shown in Fig. 6.14:

a) Each coefficient value is represented to infinite precision.

b) Tree search algorithm incorporating the proposed SPT term allocation scheme.

The average number of SPT terms allocated to each coefficient is not more

than two.

c) Tree search algorithm incorporating the proposed SPT term allocation scheme.

The number of SPT terms allocated to each coefficient is not more than two.
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Fig. 6.14: Stopband attenuations. a) Infinite precision design; b) Tree
search design where the average number of SPT terms is not more than
two per coefficient; c) Tree search design where the number of SPT
terms for each coefficient is not more than two; d) Simple rounding
result where the average number of SPT terms is not more than two
per coefficient; e) Simple rounding result where the number of SPT
terms for each coefficient is not more than two.

d) Simple rounding. The average number of SPT terms allocated to each coef-

ficient is not more than two.

e) Simple rounding. The number of SPT terms allocated to each coefficient is

not more than two.

It can be seen from Fig. 6.14 that compared to the tree search design where

each coefficient is allocated with not more than two SPT terms, the tree search

algorithm incorporating the proposed SPT allocation scheme produces filters with

very much larger stopband attenuation.
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Fig. 6.15: Frequency responses of the analysis filters of the 31-th order
filter bank with stopband edge at 0.56π.

Fig. 6.15 shows the frequency responses of the analysis filters of the 31-th order

filter bank. The infinite precision optimum solution has a peak stopband gain of

−30.7dB and the coefficient values are tabulated in column two of Table 6.2. This

example has been designed in Section 5.4 using the tree search algorithm and each

of the coefficients is allocated with two SPT terms. The stopband attenuation

achieved is 29.1dB. In this section, the filter bank is designed using the tree search

algorithm incorporating the proposed SPT allocation scheme and not more than

32 SPT terms are allowed for the entire filter. Reference [34] reported solutions

with 28.9dB attenuation in the stopband. The proposed technique produces a

design with a peak stopband gain of −29.9dB. The coefficient values for the design

obtained using the proposed algorithm were tabulated in column three of Table 6.2.

The frequency responses of the filters are shown in Fig. 6.15.

Another example taken from reference [34] is also designed. It is a 47-th order

filter bank with stopband edge at ωs = 0.605π. The infinite precision optimum
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Table 6.2: Coefficient values of the 31-th order filter bank, whose stopband edge is
ωs = 0.56π.

Continuous SPT coefficient.

k coefficients Each coefficient has on

average two SPT terms.

0 −2.6619195 −2+1−2−1−2−3

1 0.8784588 2+0−2−3−2−5+2−8

2 −0.5167097 −2−1

3 0.3580536 2−1−2−3−2−5

4 −0.2670765 −2−2−2−8

5 0.2072396 2−2−2−4+2−7+2−9

6 −0.1640125 −2−3−2−5

7 0.1310766 2−3

8 −0.1049166 −2−3+2−5−2−8

9 0.0835565 2−4+2−6

10 −0.0659682 −2−4

11 0.0510935 2−4−2−6

12 −0.0388140 −2−5

13 0.0286118 2−5

14 −0.0201751 −2−6

15 0.0228699 2−6

solution has a peak stopband gain of −74.7dB and the coefficient values are tab-

ulated in column two of Table 6.3. For the SPT coefficient design, not more than

100 SPT terms are allocated to the entire filter coefficients. Reference [34] reported

a solution with 71.8dB attenuation in the stopband. The proposed technique pro-

duces a design with a peak stopband gain of −74.0dB. The frequency responses of

the filters are plotted in Fig. 6.16. The coefficient values for the design using the

proposed algorithm were tabulated in Table 6.3.



CHAPTER 6. ANALYSIS OF SPT NUMBER EFFECTS 105

Table 6.3: Coefficient values of the 47-th order filter bank, whose stopband edge is
ωs = 0.605π.

Continuous SPT coefficient.

k coefficients Entirely 100 SPT terms

0 −6.2685829 −2+3 + 2+1 − 2−1 − 2−3 + 2−5 + 2−8

1 2.0661994 2+1 + 2−3 + 2−5 + 2−7 + 2−14

2 −1.2148287 −2+0 − 2−2 − 2−6

3 0.8438989 2+0 − 2−3 − 2−11 − 2−14

4 −0.6336645 −2−1 − 2−3 − 2−5 + 2−8 − 2−10 − 2−12

5 0.4965643 2−1 + 2−7 + 2−9 + 2−11

6 −0.3988496 −2−1 + 2−3 − 2−5 − 2−9 − 2−11

7 0.3247923 2−2 + 2−4 + 2−6 + 2−8 + 2−14

8 −0.2661209 −2−2 − 2−5 + 2−7 + 2−9 − 2−12

9 0.2181214 2−2 − 2−5 + 2−8 − 2−13

10 −0.1779513 −2−2 + 2−4 + 2−7 − 2−9 + 2−13

11 0.1438487 2−3 + 2−5 − 2−7 − 2−9 + 2−12 + 2−15

12 −0.1146933 −2−3 + 2−7 + 2−13 − 2−15

13 0.0897830 2−3 − 2−5 − 2−9

14 −0.0686552 −2−4 − 2−7

15 0.0510080 2−4 − 2−7 − 2−9 − 2−11 + 2−13

16 −0.0365852 −2−5 − 2−7 + 2−9 − 2−11 − 2−14

17 0.0251540 2−5 − 2−7 + 2−9 + 2−11 + 2−13

18 −0.0164216 −2−6 − 2−9 + 2−11 + 2−14

19 0.0100694 2−6 − 2−8 − 2−10 − 2−12

20 −0.0056912 −2−7 + 2−9 − 2−13

21 0.0029051 2−8 − 2−10 + 2−13

22 −0.0012505 −2−9 + 2−11 + 2−13

23 0.0004620 2−11
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Fig. 6.16: Frequency responses of the analysis filters of the 47-th order
filter bank.

6.5 Conclusion

In this chapter, the error distribution for quantizing infinite precision numbers to

SPT values for a given L, K, Q is deduced, where K is the number of SPT terms,

2L−1 and 2Q are the largest and smallest power-of-two terms, respectively. The error

probability density function is an even symmetrical piecewise constant function. It

has zero mean value. The variance of the error is also derived. The effect of

quantizing the coefficients to SPT values for the filter bank is analyzed statistically

based on the knowledge of the quantization error PDF. Statistical bounds on the

stopband attenuation deterioration for quantizing the coefficient values to SPT

values are developed. Guidelines for the selection of proper K and Q are developed

for simple rounding technique.

Based on the statistical analysis, an SPT term allocation scheme is also devel-

oped to design filters with different number of SPT terms. This allocation scheme



CHAPTER 6. ANALYSIS OF SPT NUMBER EFFECTS 107

shows superiority compared with those reported in previous literatures. The width-

recursive depth-first tree search algorithm incorporating the SPT term allocation

scheme produces excellent results when it is employed to design the examples taken

from published literatures.

Appendix A: Proof for Property 6.2

Proof: According to Lemma 6.2 in Appendix C, it is noted that (6.7) is

true for L = 2K. For L ≥ 2K + 1, (6.7) is proved by mathematical induction.

According to (6.3), when L = 2K + 1, M+(L, K + 1) = 2M+(L− 1, K) + 1. Since

M+(L,K + 1) = M+(L,K) + N+(L,K + 1), therefore,

2N+(L,K + 1)− 1 = 4M+(L− 1, K)− 2M+(L,K) + 1. (6.35)

Furthermore, according to Lemma 6.4 in Appendix C, (6.53) is true when L =

2K + 1. Substituting (6.35) into (6.53), we have

pL,K(e|e ∈ ±[2−1, 20]) =
4M+(L− 1, K)− 2M+(L,K) + 1

2M+
L∞

. (6.36)

Therefore, (6.53) can be written as

pL,K(e) =





2M+(L,K) + 1

2M+
L∞

, for e ∈ [−2−1, 2−1],

4M+(L− 1, K)− 2M+(L,K) + 1

2M+
L∞

, for e ∈ ±[2−1, 20],

1

2M+
L∞

, for e ∈ ±
[
20,

22

3

]
,

0, otherwise.

(6.37)

Hence, (6.7) is true for L = 2K + 1.

Assume that the error PDF for rounding a number x to an element in S(L,K)

for L ≥ 2K + 1 is given by (6.7), where x ∈ {x| − M+
L∞ ≤ x ≤ M+

L∞, x ∈ R}.
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According to Lemma (6.5) in Appendix C,

pL+1,K(e) =





2M+(L + 1, K) + 1

2M+
(L+1)∞

, for e ∈
[
−2−1, 2−1

]
,

4M+(L,K)− 2M+(L + 1, K) + 1

2M+
(L+1)∞

, for e ∈ ±
[
2−1, 20

]
,

pL,K

(
e
∣∣∣e ∈ ±

[
2k−1, 2k

])

2
, for e ∈ ±

[
2k, 2k+1

]
,

k = 0, · · · , L + 1− 2K − 2,

pL,K

(
e
∣∣∣e ∈ ±

[
2L+1−2K−2, 2L+1−2K

3

])

2
,

for e ∈ ±
[
2L+1−2K−1,

2L+1−2K+1

3

]

when L + 1− 2K − 1 ≥ 0,

0, otherwise.

=





2M+(L + 1, K) + 1

2M+
(L+1)∞

, for e ∈
[
−2−1, 2−1

]
,

4M+(L,K)− 2M+(L + 1, K) + 1

2M+
(L+1)∞

, for e ∈ ±
[
2−1, 20

]
,

4M+(L− 1− k, K)− 2M+(L− k,K) + 1

2 · 2M+
L∞

, for e ∈ ±
[
2k, 2k+1

]
,

k = 0, · · · , L + 1− 2K − 2,

1

2 · 2M+
L∞

, for e ∈ ±
[
2L+1−2K−1,

2L+1−2K+1

3

]

when L + 1− 2K − 1 ≥ 0,

0, otherwise.

(6.38)
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Since 2M+
L∞ = M+

(L+1)∞, (6.38) can be written as

pL+1,K(e) =





2M+(L + 1, K) + 1

2M+
(L+1)∞

, for e ∈
[
−2−1, 2−1

]
,

4M+(L,K)− 2M+(L + 1, K) + 1

2M+
(L+1)∞

, for e ∈ ±
[
2−1, 20

]
,

4M+(L− k, K)− 2M+(L + 1− k, K) + 1

2M+
(L+1)∞

, for e ∈ ±
[
2k−1, 2k

]
,

k = 1, · · · , L + 1− 2K − 1,

1

2M+
(L+1)∞

, for e ∈ ±
[
2L+1−2K−1,

2L+1−2K+1

3

]

when L + 1− 2K − 1 ≥ 0,

0, otherwise.

=





2M+(L + 1, K) + 1

2M+
(L+1)∞

, for e ∈
[
−2−1, 2−1

]
,

4M+(L + 1− 1− k, K)− 2M+(L + 1− k, K) + 1

2M+
(L+1)∞

,

for e ∈ ±
[
2k−1, 2k

]
,

k = 0, · · · , L + 1− 2K − 1,

1

2M+
(L+1)∞

, for e ∈ ±
[
2L+1−2K−1,

2L+1−2K+1

3

]

when L + 1− 2K − 1 ≥ 0,

0, otherwise.

Hence, if (6.7) is true for L where L ≥ 2K + 1, it is also true for L + 1. Since (6.7)

is true for L = 2K + 1, it is true for all integer L ≥ 2K + 1.

Therefore, the error probability density function for L ≥ 2K can be written as

(6.7) and thus, Property 6.2 is proved.
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Appendix B: Proof for Property 6.3

Proof: The error PDF is symmetric with respect to e = 0. Therefore, it is

obvious that the mean of the errors, denoted as E(e), caused by rounding a number

x to an element in S(L,K), is equal to 0, i.e.,

E(e) = 0. (6.39)

The variance of the error is defined as:

σ2(e) =
∫ ∞

−∞

(
e− E(e)

)2
p(e)de =

∫ ∞

−∞
e2p(e)de. (6.40)

The error PDF p(e) is a piecewise constant function. Given zero mean, the variance

of any piece of the piecewise constant function, as shown in Fig. 6.17, is

∫ b

a
ce2de =

c

3
e3

∣∣∣
b

a
=

c

3
(a3 − b3). (6.41)

�

� � � �

� ��

�

Fig. 6.17: A piece of the error PDF.

When L = 2K − 1, it is seen from Property 6.1 that there are three pieces of

piecewise constant values in the error PDF, where two of the three pieces have the

same value, i.e., pL,K

(
e
∣∣∣e ∈ [−3−1, 3−1]

)
and pL,K

(
e
∣∣∣e ∈ ± [3−1, 2−1]

)
. Thus,

σ2
L,K(e) =

2M+
L + 1

2M+
L∞

× 1

3

((
1

3

)3

−
(
−1

3

)3
)

+
M+

L

M+
L∞

× 2

3

((
1

2

)3

−
(

1

3

)3
)

=
1

12
· 27M+

L + 4

27M+
L∞

=
1

12
· 27M+

L + 4

27M+
L + 9

. (6.42)

When L = 2K, it is seen from Lemma 6.2 in Appendix C that there are three

pieces of piecewise constant values in the PDF, i.e., pL,K

(
e
∣∣∣e ∈ [−2−1, 2−1]

)
and
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pL,K

(
e
∣∣∣e ∈ ±

[
2−1, 2

3

])
. Thus,

σ2
L,K(e) =

2M+
L + 1

2M+
L∞

× 1

3

((
1

2

)3

−
(
−1

2

)3
)

+
1

2M+
L∞

× 2

3

((
2

3

)3

−
(

1

2

)3
)

=
1

12
· 27M+

L + 32

27M+
L∞

=
1

12
· 27M+

L + 32

27M+
L + 18

. (6.43)

When L ≥ 2K + 1, from Property 6.2, we have

σ2
L,K(e) =

1

2M+
L∞

[
2M+(L,K) + 1

3
·
((

1

2

)3

−
(
−1

2

)3
)

+
L−2K−1∑

k=0

2
(
4M+(L− 1− k, K)− 2M+(L− k, K) + 1

)

3
·
(
23k − 23(k−1)

)

+
2

3




(
2L−2K+1

3

)3

−
(
2L−2K−1

)3







=
1

2M+
L∞

[
M+(L,K)

6
+

1

12
+

74

81
· 23(L−2K−1)

+
L−2K−1∑

k=0

(
4M+(L− 1− k, K)− 2M+(L− k, K) + 1

)
· 7

12
· 23k

]
. (6.44)

Therefore, for L ≥ 2K + 1, from (6.44), we arrive at

σ2
L,K(e) =

1

2M+
L∞

[(
7

3
M+(2K, K) +

128

81

)
23(L−2K−1) −M+(L,K)

−
L−2K−2∑

k=0

7M+(L− 1− k,K)23k

]
.

Appendix C

Lemma 6.1 Given a random number x ∈ {x| − M+
L ≤ x ≤ M+

L , x ∈ R} and

given x̄ ∈ S(L,K), the rounding error caused by quantizing x to the element in

S(L,K) nearest to it is statistically uniformly distributed in [−2−1, 2−1]. Let the

error PDF be pL,K

(
e, x

∣∣∣ − 2−1 ≤ e ≤ 2−1, x̄ ∈ S(L,K)
)
. The error PDF is unity

for −2−1 ≤ e ≤ 2−1. 2

Proof: For any number x ∈ {x|−M+
L ≤ x ≤ M+

L , x ∈ R}, since x̄ ∈ S(L,K),

if x̄ 6= ±M+
L , the rounding error PDF is unity in [−2−1, 2−1]. The probability of
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x̄ 6= ±M+
L given that x̄ ∈ S(L,K) is

2M+
L−1

2M+
L

. The probabilities of x̄ = M+
L or

x̄ = −M+
L given that x̄ ∈ S(L,K) are 0.5

2M+
L

, respectively. The rounding error PDF

in each of [0, 0.5] and [−0.5, 0] is 2. Therefore,

pL,K

(
e, x

∣∣∣− 2−1 ≤ e ≤ 2−1, x̄ ∈ S(L,K)
)

=





2M+
L − 1

2M+
L

× 1 for −2−1 ≤ e ≤ 2−1,

0.5

2M+
L

× 2 for 0 ≤ e ≤ 2−1,

0.5

2M+
L

× 2 for −2−1 ≤ e ≤ 0,

0 otherwise.

=





1 for −2−1 ≤ e ≤ 2−1,

0 otherwise.

(6.45)

Lemma 6.2 For L = 2K, the error PDF for rounding a number x ∈ {x|−M+
L∞ ≤

x ≤ M+
L∞, x ∈ R} to the member in S(L,K) nearest to it, denoted as pL,K(e), is

as follows:

pL,K(e) =





2M+
L + 1

2M+
L∞

, for e ∈
[
−1

2
,
1

2

]
,

1

2M+
L∞

, for e ∈ ±
[
1

2
,
2

3

]
,

0, otherwise.

(6.46)

2

Proof: The proof is similar to that for Property 6.1. For L = 2K, M+
L∞ =

M+
L + 2

3
. For any number x ∈ {x| −M+

L ≤ x ≤ M+
L , x ∈ R}, we have x̄ ∈ S(L,K).

According to Lemma 6.1, the rounding error is uniformly distributed in [−2−1, 2−1]

with unity PDF; the probability of x ∈ {x|−M+
L ≤ x ≤ M+

L , x ∈ R} is
2M+

L

2M+
L∞

. The

probabilities of x ∈ {x|M+
L ≤ x ≤ M+

L∞} and x ∈ {x| −M+
L∞ ≤ x ≤ −M+

L } are

both 1
3M+

L∞
, and the rounding errors are uniformly distributed in

[
0, 2

3

]
and

[
−2

3
, 0

]
,
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respectively, with PDF equal to 3
2
. Therefore,

pL,K(e) =





2M+
L

2M+
L∞

× 1, for e ∈ [−2−1, 2−1],

1

3M+
L∞

× 3

2
, for e ∈

[
0,

2

3

]
,

1

3M+
L∞

× 3

2
, for e ∈

[
−2

3
, 0

]
,

0 otherwise.

=





2M+
L + 1

2M+
L∞

, for e ∈
[
−1

2
,
1

2

]
,

1

2M+
L∞

, for e ∈ ±
[
1

2
,
2

3

]
,

0, otherwise.

Lemma 6.3 Given a random number x ∈ {x| −M+
L∞ ≤ x ≤ M+

L∞, x ∈ R}, and

given x̄ ∈ T (L,K + 1), according to (6.1), x̄ can be written as x̄ =
∑K

i=0 y(i)2q(i).

Given the least significant SPT term of x̄ is y(K)2q(K), where q(K) = L−2K−1 ≥ 0

and y(K) = 1 or −1, the error caused by rounding x to the member in S(L,K)

nearest to it is uniformly distributed with unity PDF in
[
2q(K) − 2−1, 2q(K)

]
∪

[
−2q(K),−2q(K) + 2−1

]
. 2

Proof: According to the given conditions, x̄ is an L-bit integer with K + 1

SPT terms; these K + 1 SPT terms are occurring at the most significant 2K + 1

bits. Since in canonic representations, there are no two nonzero adjacent bits, the

K + 1 bits corresponding to the K + 1 SPT terms must occur at every other bit

locations.

First, consider the case where x is positive. We have x̄−2−1 ≤ x < x̄+2−1 and

x̄ =
K−1∑

i=0

y(i)2L−2i−1 + y(K)2L−2K−1. (6.47)

From (6.47), it can be shown that

x̄− y(K)2L−2K−1 =
K−1∑

i=0

y(i)2L−2i−1 ∈ S(L,K), (6.48)

and that

x̄ + y(K)2L−2K−1 =
K−1∑

i=0

y(i)2L−2i−1 + y(K)2L−2K . (6.49)
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Fig. 6.18: For x̄ =
∑K−1

i=0 y(i)2L−2i−1 + y(K)2L−2K−1, we have x̄ +
y(K)2L−2K−1 ∈ S(L,K).

When x̄ 6= ∑K
i=0 2L−2i−1, at least one of y(i) for i = 0, 1, · · · , K − 1 is not equal to

y(K), i.e., they have different signs. An example of x̄ is shown in Fig. 6.18(a), where

y(K) = 1 and y(K − 2) has a different sign from y(K). Thus, x̄ + y(K)2L−2K−1

has K + 1 SPT terms as shown in Fig. 6.18(c), where two nonzero bits occur

adjacently. From Fig. 6.18(c) to Fig. 6.18(e), it is shown that this number (with

K + 1 SPT terms), x̄ + y(K)2L−2K−1 as shown in Fig. 6.18(c), can be represented

using K SPT terms canonically, as shown in Fig. 6.18(e), provided that there exists

an integer i > 0 and for all j where 0 ≤ j < i such that y(K − i) = −y(K) and

y(K − j) = y(K). In this example, i equals to 2. Therefore, under the given

conditions, x̄ + y(K)2L−2K−1 is an element in S(L,K), i.e.,

x̄ + y(K)2L−2K−1 ∈ S(L,K). (6.50)

From (6.48) and (6.50), it is shown that

x̄± y(K)2L−2K−1 ∈ S(L, K). (6.51)

Moreover, it is obvious that x̄ ± 2L−2K−j /∈ S(L,K) for any j > 1. That

means any number in
(
x̄− 2L−2K−1, x̄ + 2L−2K−1

)
is not in S(L,K), where (a, b)
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denotes all the infinite precision numbers in the range bounded by a and b exclusive.

Therefore, the result of rounding x to an element in S(L,K) is equal to x̄± 2q(K).

Since x is uniformly distributed in
[
x̄ − 2−1, x̄ + 2−1

]
, so that rounding x to the

element in S(L,K) nearest to it will lead to an error distributed uniformly in

±
[
2q(K) − 2−1, 2q(K)

]
, with PDF equal to 1

2[2q(K)−(2q(K)−2−1)]
= 1. For a negative

number x and x̄ 6= −∑K
i=0 2L−2i−1, the same conclusion can be obtained. The

probability of x̄ 6= ±∑K
i=0 2L−2i−1 for the given x̄ is 2N+(L,K+1)−1

J
, where J =

2N+(L,K + 1) + 1 if
∑K

i=0 2L−2i−1 + 0.5 ≤ M+
L∞; otherwise, J = 2N+(L,K + 1) +

2
(
M+

L∞ −
∑K

i=0 2L−2i−1
)
.

When x̄ =
∑K

i=0 2L−2i−1
(
occurring with probability of

J−(2N+(L,K+1)−1)
2J

)
, x is

uniformly distributed in
[
x̄ − 2−1, x̄

]
. Furthermore, x̄ − 2L−2K−1 ∈ S(L,K) and

x̄− 2L−2K−j /∈ S(L,K) for any j > 1. Therefore, the error is uniformly distributed

in
[
2q(K) − 2−1, 2q(K)

]
, with PDF equal to 1

2q(K)−(2q(K)−2−1)
= 2. Similarly, when x̄ =

−∑K
i=0 2L−2i−1

(
occurring with probability of

J−(2N+(L,K+1)−1)
2J

)
, the rounding error

is uniformly distributed in
[
−2q(K),−2q(K) + 2−1

]
with PDF equal to 2. Therefore,

pL,K

(
e, x

∣∣∣e ∈ ±
[
2q(K) − 2−1, 2q(K)

]
, x̄ ∈ T (L,K + 1), q(K) = L− 2K − 1

)

=





2N+(L,K + 1)− 1

J
× 1 for e ∈ ±

[
2q(K) − 2−1, 2q(K)

]

J − (2N+(L,K + 1)− 1)

2J
× 2 for e ∈

[
2q(K) − 2−1, 2q(K)

]

J − (2N+(L,K + 1)− 1)

2J
× 2 for e ∈ −

[
2q(K) − 2−1, 2q(K)

]

0 otherwise

=





1 for e ∈ ±
[
2q(K) − 2−1, 2q(K)

]
,

0 otherwise.

(6.52)

Lemma 6.4 For L = 2K + 1, the error PDF of rounding a number x ∈ {x| −

M+
L∞ ≤ x ≤ M+

L∞, x ∈ R} to be an element in S(L,K), denoted as pL,K(e), is as
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follows:

pL,K(e) =





2M+(L,K) + 1

2M+
L∞

, for e ∈
[
−2−1, 2−1

]
,

2N+(L,K + 1)− 1

2M+
L∞

, for e ∈ ±
[
2−1, 20

]
,

1

2M+
L∞

, for e ∈ ±
[
20,

4

3

]
,

0, otherwise.

(6.53)

2

Proof: First, x ∈ {x| −M+
L ≤ x ≤ M+

L , x ∈ R} is considered. In this case,

since L = 2K+1, we have M+
L = M+(L,K+1) and x̄ ∈ S(L,K)∪T (L,K+1) . The

probability for x ∈ {x| −M+
L ≤ x ≤ M+

L , x ∈ R} and x̄ ∈ S(L,K) is 2M+(L,K)+1

2M+
L∞

and is denoted as PL

(
x

∣∣∣x̄ ∈ S(L,K)
)
. According to Lemma 6.1, rounding x for

x̄ ∈ S(L,K) to an element in S(L,K) leads to an error in [−2−1, 2−1]. Therefore,

pL,K

(
e
∣∣∣e ∈

[
−2−1, 2−1

])

= PL

(
x

∣∣∣x̄ ∈ S(L,K)
)
× pL,K

(
e, x

∣∣∣e ∈
[
−2−1, 2−1

]
, x̄ ∈ S(L, K)

)

=
2M+(L,K) + 1

2M+
L∞

. (6.54)

The probability for x ∈ {x| −M+
L ≤ x ≤ M+

L , x ∈ R} and x̄ ∈ T (L, K + 1),

denoted as PL

(
x

∣∣∣x̄ ∈ T (L,K + 1)
)
, is 2N+(L,K+1)−1

2M+
L∞

. For L = 2K + 1 and x̄ ∈
T (L,K +1), we have x̄ =

∑K
i=0 y(i)2q(i) where q(K) = 0. According to Lemma 6.3,

rounding x for x̄ ∈ T (L,K + 1) to an element in S(L,K) nearest to it leads to an

error distributed in ± [2−1, 20]. Therefore, the error PDF for e ∈ ± [2−1, 20] is:

pL,K

(
e
∣∣∣e ∈ ±

[
2−1, 20

])

= PL

(
x

∣∣∣x̄ ∈ T (L,K + 1)
)
× pL,K

(
e, x|e ∈ ±

[
2−1, 20

]
, x̄ ∈ T (L,K + 1)

)

=
2N+(L,K + 1)− 1

2M+
L∞

. (6.55)

Finally, the probabilities for x ∈ {x|M+
L ≤ x ≤ M+

L∞, x ∈ R} and x ∈ {x| −
M+

L∞ ≤ x ≤ −M+
L , x ∈ R} are both

M+
L∞−M+

L

2M+
L∞

; rounding x to an element in S(L,K)
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leads to an error which is uniformly distributed in ±
[
20,

∑∞
k=0 2−2k

]
= ±

[
1, 4

3

]
with

PDF equal to 3. Therefore,

pL,K

(
e
∣∣∣e ∈ ±

[
1,

4

3

])
=





M+
L∞ −M+

L

2M+
L∞

× 3, for e ∈
[
1,

4

3

]

M+
L∞ −M+

L

2M+
L∞

× 3, for e ∈
[
−4

3
,−1

] =
1

2M+
L∞

.(6.56)

Combining (6.54), (6.55) and (6.56), (6.4) is proved.

Lemma 6.5 For L > 2K + 1, the error PDF for rounding a number x ∈ {x| −

M+
L∞ ≤ x ≤ M+

L∞, x ∈ R} to an element in S(L,K), denoted as pL,K(e), is as

follows:

pL,K(e) =





2M+(L,K) + 1

2M+
L∞

, for e ∈ [−2−1, 2−1],

4M+(L− 1, K)− 2M+(L,K) + 1

2M+
L∞

, for e ∈ ±[2−1, 20],

pL−1,K(e|e ∈ ±[2k−1, 2k])

2
, for e ∈ ±[2k, 2k+1],

k = 0, · · · , L− 2K − 2,

pL−1,K

(
e
∣∣∣e ∈ ±

[
2L−2K−2, 2L−2K

3

])

2
, for e ∈ ±

[
2L−2K−1,

2L−2K+1

3

]

when L− 2K − 1 ≥ 0,

0, otherwise.

(6.57)

2

Proof: Assume that when L ≥ 2K+1, the error PDF for rounding a number

x′, x′ ∈ {x′| −M+
L∞ ≤ x′ ≤ M+

L∞, x′ ∈ R} to an element in S(L,K) is as follows:
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Fig. 6.19: A number x′, x′ ∈ {x′| − M+
L ≤ x′ ≤ M+

L , x′ ∈ R} is
represented in SPT form. (a) The integer part of x′ has more than K
SPT terms; (b) the integer part of x′ has not more than K SPT terms,
where K = 2.

pL,K(e) =





pL,K

(
e
∣∣∣e ∈ [−2−1, 2−1]

)
,for e ∈

[
−2−1, 2−1

]
,

pL,K

(
e
∣∣∣e ∈ ±[2k−1, 2k]

)
, for e ∈ ±

[
2k−1, 2k

]
,

k = 0, · · · , L− 2K − 1,

pL,K

(
e
∣∣∣e ∈ ±

[
2L−2K−1,

2L−2K+1

3

])
,

for e ∈ ±
[
2L−2K−1,

2L−2K+1

3

]

when L− 2K − 1 ≥ 0,

0, otherwise.

(6.58)

In (6.58), the error e ∈ [−2−1, 2−1] is produced when the integer part of x̄ has

not more than K SPT terms, whereas the errors in the other ranges in (6.58)

are produced when the integer part of x′ has more than K SPT terms. From

Lemma 6.4, it is shown that this assumption is true for L = 2K + 1.

Since M+
(L+1)∞ = 2M+

L∞, the number x = 2x′ is obtained by shifting the binary

point for x′ by one bit to the right.

i) When the integer part of x′ has more than K SPT terms, as shown in
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Fig. 6.19(a), it is obvious that the error caused by rounding x = 2x′ to an ele-

ment in S(L + 1, K) is distributed in ±[2k, 2k+1] for k = 0, · · · , L− 2K − 1, or an

error in ±
[
2L−2K , 2L−2K+2

3

]
. Therefore,

pL+1,K

(
e
∣∣∣e ∈ ±

[
2k, 2k+1

])
× 2

(
2k+1 − 2k

)

= pL,K

(
e
∣∣∣e ∈ ±

[
2k−1, 2k

])
× 2

(
2k − 2k−1

)

for k = 0, · · · , L− 2K − 1, (6.59)

and

pL+1,K

(
e
∣∣∣e ∈ ±

[
2L−2K ,

2L−2K+2

3

])
× 2L−2K

3

= pL,K

(
e
∣∣∣e ∈ ±

[
2L−2K−1,

2L−2K+1

3

])
× 2L−2K−1

3
,

for L− 2K − 1 ≥ 0, (6.60)

where pL+1,K

(
e
∣∣∣e ∈ ±

[
2k, 2k+1

])
and pL+1,K

(
e
∣∣∣e ∈ ±

[
2L−2K , 2L−2K+2

3

])
are the er-

ror PDF’s for e in ±[2k, 2k+1] and ±
[
2L−2K , 2L−2K+2

3

]
, respectively, when rounding

x to an element in S(L + 1, K). From (6.59) and (6.60), we have

pL+1,K

(
e
∣∣∣e ∈ ±

[
2k, 2k+1

])
=

1

2
× pL,K

(
e
∣∣∣e ∈ ±

[
2k−1, 2k

])
, (6.61)

and

pL+1,K

(
e
∣∣∣e ∈ ±

[
2(L+1)−2K−1,

2(L+1)−2K+1

3

])

=
1

2
× pL,K

(
e
∣∣∣e ∈ ±

[
2L−2K−1,

2L−2K+1

3

])
. (6.62)

ii) When the integer part of x′ has not more than K SPT terms, rounding x′

to an element in S(L,K) leads to an error uniformly distributed in [−2−1, 2−1] and

occurring with probability

PL

(
x′

∣∣∣x̄′ ∈ S(L,K)
)

=
2M+(L,K) + 1

2M+
L∞

. (6.63)

Therefore, rounding 2x′ to an element in S(L + 1, K) leads to an error in [−20, 20].

For all x̄′ ∈ S(L,K), some of the 2̄x′ belong to S(L+1, K), whereas the others

belong to S(L + 1, K + 1). For example, the number 2̄x, where x̄ is shown in
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Fig. 6.19(b), belongs to S(L + 1, K + 1). For L + 1 > 2K + 1,

M+
(L+1)∞ −M+(L + 1, K) ≥

∞∑

k=K

2L−2k > 1. (6.64)

Therefore, the probability of x̄ = 2̄x′ ∈ S(L + 1, K), i.e, x̄ can be represented

exactly by an element in S(L+1, K), is 2M+(L+1,K)+1

2M+
(L+1)∞

and is denoted as PL+1

(
x

∣∣∣x̄ ∈
S(L + 1, K)

)
, so that these x will lead to errors in [−2−1, 2−1]. The error PDF for

e ∈ [−2−1, 2−1] is thus given by

pL+1,K(e| − 2−1 ≤ e ≤ 2−1)

= PL+1

(
x

∣∣∣x̄ ∈ S(L + 1, K)
)
× pL+1,K

(
e, x

∣∣∣− 2−1 ≤ e ≤ 2−1, x̄ ∈ S(L + 1, K)
)
,

(6.65)

where pL+1,K

(
e, x

∣∣∣− 2−1 ≤ e ≤ 2−1, x̄ ∈ S(L + 1, K)
)

is equal to 1 according to

Lemma 6.1. Therefore, we have

pL+1,K(e| − 2−1 ≤ e ≤ 2−1) =
2M+(L + 1, K) + 1

2M+
(L+1)∞

× 1

=
2M+(L + 1, K) + 1

2M+
(L+1)∞

. (6.66)

Rounding the remaining x, where x̄ ∈ S(L + 1, K + 1), will lead to errors

distributed in ±[2−1, 20]. We have

pL+1,K(e|e ∈ ±[2−1, 20])

=
[
PL

(
x′

∣∣∣x̄′ ∈ S(L,K)
)
− PL+1

(
x

∣∣∣x̄ ∈ S(L + 1, K)
)]

× pL+1,K

(
e, x

∣∣∣x ∈ ±[2−1, 20], x̄ ∈ S(L + 1, K + 1)
)
, (6.67)

where pL+1,K

(
e, x

∣∣∣x ∈ ±[2−1, 20], x̄ ∈ S(L + 1, K + 1)
)

is equal to 1 according to

Lemma 6.5. Therefore, we have

pL+1,K(e|e ∈ ±[2−1, 20]) =


2M+(L,K) + 1

2M+
L∞

− 2M+(L + 1, K) + 1

2M+
(L+1)∞


× 1

=
4M+(L, K)− 2M+(L + 1, K) + 1

2M+
(L+1)∞

. (6.68)

Combining (6.66), (6.68), (6.61) and (6.62), it can be seen if the assumption in

(6.58) is true for pL,K(e) where L ≥ 2K + 1, (6.57) is true for pL+1,K(e). As the
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assumption in (6.58) is true for pL,K(e) where L = 2K + 1 as stated in Lemma 6.4

and it is also true for the deduced pL+1,K(e), (6.5) is true for pL,K(e) for all L ≥
2K + 1.



Chapter 7

Symmetrical Polyphase

Implementation

POLYPHASE STRUCTURES are widely adopted in multirate system such

as interpolators, decimators, and filter banks, to effectively reduce the mul-

tiplication rate and data storage [18, 79]. Applications are also found in the im-

plementation of frequency-response masking (FRM) techniques [56] to reduce the

memory accesses. While the number of multipliers can be reduced by a factor of

two in direct form implementation by exploiting the coefficient symmetry, it is, in

general, not the case in polyphase implementation because the impulse response of

each polyphase component is no longer symmetrical.

Over the past decades, there has been much effort spent in obtaining polyphase

components with symmetrical impulse responses. A generalized polyphase de-

composition approach [62, 80] was reported to realize an FIR filter as a parallel

connection of several branches. Each branch is of the form of a narrow-band FRM

(also known as IFIR) filter and optimized with coefficient symmetry imposed. The

generalized polyphase structure is effective only when the filter length is even and

the number of branches is an integer power of two.

A multiple branch FIR filter structure was presented in [2,69]. In the multiple

122
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branch FIR filter, an additional common stage was extracted from the general-

ized polyphase decomposition structure to reduce the delay elements required in

the implementation. By applying the specially developed optimization technique

presented in [2], the delay elements as well as the multipliers can be minimized.

A computationally efficient polyphase structure was also reported in [60]. It

made use of the fact that the impulse response of non-symmetrical polyphase com-

ponents exist in mirror image pairs, and a polyphase structure for decimator was

presented. In [60], the two signals, which will be multiplied by the same coefficient

in the two filters with mirror image impulse responses, were summed first. A trans-

posed structure for interpolator can also be developed in a similar way, where after

the input signal is multiplied by the same coefficient in the two polyphase compo-

nents, they are summed through separate delay lines to their respective polyphase

components. Compared with the traditional polyphase implementation, the mul-

tipliers used and the multiplication rate are reduced by a factor of two. However,

the method reported in [60] requires a large amount of delay elements and memory

accesses.

In this chapter, a technique is introduced to exploit the coefficient symmetry

when a linear phase FIR filter is implemented in its polyphase components. In

this technique, each pair of the time reversed polyphase components are synthe-

sized from a pair of symmetrical and anti-symmetrical impulse response filters.

Compared with the conventional polyphase implementation, there is a factor of

two saving in the number of multipliers. Under certain conditions, the number of

adders is slightly (and insignificantly) increased, whereas, under other conditions,

the number of adders is reduced. The number of delay elements and memory

accesses remain approximately the same as those of the conventional polyphase

structure.

The remaining of this chapter is organized as follows. In section 7.1, FIR filter’s

polyphase expression is reviewed. The proposed new technique for restoring the
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coefficient symmetry is presented in section 7.2. Comparison between the com-

plexities of the filters implemented using the proposed new technique and previous

techniques is presented in Section 7.3.

7.1 Polyphase Expression

The even and odd order filters are considered separately. First, an even order linear

phase FIR filter is considered. Let the z-transform transfer function of a 2N -th

order FIR filter, H(z), be given by

H(z) =
2N∑

n=0

h(n)z−n, (7.1)

where

h(n) = h(2N − n), 0 ≤ n ≤ 2N. (7.2)

H(z) may be expressed in its R polyphase components as

H(z) =

2dN
R e∑

k=0

h(kR)z−kR +
R−1∑

r=1

z−r

2dN
R e−1∑

k=0

h(kR + r)z−kR, (7.3)

where, dxe is the smallest integer larger than or equal to x. If N is divisible

by R, N
R

is an integer and
⌈

N
R

⌉
= N

R
. If N is not divisible by R, N may be

arbitrarily increased to an integer multiple of R by padding the filter with zero

valued coefficients.

Let

hr(k) = h(kR + r), r = 0, 1, ..., R− 1 (7.4)

be the k-th impulse response of the r-th polyphase component. Let

H0(z) =

2dN
R e∑

k=0

h0(k)z−k (7.5)

and

Hr(z) =

2dN
R e−1∑

k=0

hr(k)z−k, r = 1, 2, · · · , R− 1. (7.6)
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Fig. 7.1: A 2Nth-order filter and its R polyphase components, where N = 12 and
R = 4.

From (7.2) and (7.4), it can be seen that when R is even, H0(z) is odd symmetrical,

HR/2(z) is even symmetrical and the other polyphase filters are not symmetrical.

When R is odd, only H0(z) is odd symmetrical. An example of the impulse re-

sponses of a 2N -th order linear phase FIR filter and its R polyphase filters for

N = 12, R = 4 is shown in Fig. 7.1.
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7.2 Polyphase Implementation Exploiting Coef-

ficient Symmetry

The case where R is even is considered in this section. The case where R is odd

can be deduced in a similar way.

Although the polyphase filters, Hr(z) for all r except for r = 0 and r = R
2
,

are not symmetrical, it is observed from (7.2) and (7.4) that Hr(z) and HR−r(z)

for r = 1, ..., R
2
− 1 are mirror image filters, i.e. hr(k) = hR−r

(
2

⌈
N
R

⌉
− 1− k

)
.

Furthermore, we have

z−rHr(z
R) + z−(R−r)HR−r(z

R)

= z−r

2dN
R e−1∑

k=0

hr(k)z−kR + z−(R−r)

2dN
R e−1∑

k=0

hR−r(k)z−kR. (7.7)

Define

h′r(k) =
1

2
[hr(k) + hR−r(k)],

h′R−r(k) =
1

2
[hr(k)− hR−r(k)], (7.8)

for r = 1, 2, ..., R
2
− 1. Thus,

hr(k) = h′r(k) + h′R−r(k),

hR−r(k) = h′r(k)− h′R−r(k), (7.9)

for r = 1, 2, ..., R
2
− 1. Further define

H ′
r(z) =

2dN
R e−1∑

k=0

h′r(k)z−k, r = 1, 2, · · · , R− 1. (7.10)

It is obvious that H ′
r(z) and H ′

R−r(z) are even symmetrical and even antisymmet-

rical
(
2

⌈
N
R

⌉)
-tap filters, respectively, i.e.

h′r(k) = h′r

(
2

⌈
N

R

⌉
− 1− k

)
, (7.11)

h′R−r(k) = −h′R−r

(
2

⌈
N

R

⌉
− 1− k

)
, (7.12)
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for r = 1, 2, ..., R− 1 and k = 0, 1, ...,
⌈

N
R

⌉
− 1. Therefore, (7.7) can be expressed as

z−rHr(z
R) + z−(R−r)HR−r(z

R)

= z−r




(
1 + z−(R−2r)

) 2dN
R e−1∑

k=0

h′r(k)z−kR +
(
1− z−(R−2r)

) 2dN
R e−1∑

k=0

h′R−r(k)z−kR




= z−r
[(

1 + z−(R−2r)
)
H ′

r(z
R) +

(
1− z−(R−2r)

)
H ′

R−r(z
R)

]
. (7.13)

Therefore, the overall filter H(z) is expressed as

H(z) =
R−1∑

r=0

z−rHr(z
R)

=

R
2
−1∑

r=1

z−r
[(

1 + z−(R−2r)
)
H ′

r(z
R) +

(
1− z−(R−2r)

)
H ′

R−r(z
R)

]

+H0(z
R) + z−

R
2 HR/2(z

R). (7.14)

Thus, z−rHr(z
R) + z−(R−r)HR−r(z

R) can be implemented using (7.13) involving

H ′
r(z) and H ′

R−r(z) whose coefficients are either symmetrical or anti-symmetrical.

Incorporating sampling rate change, the overall filter implementations for decima-

tors and interpolators, referred to as Type I and Type II symmetrical polyphase

structures, respectively, are shown in Fig. 7.2. It can be seen from Fig. 7.2 that all

the filters are operating at either input or output rate whichever is lower and all

the filters have either symmetrical or antisymmetrical coefficients.

Fig. 7.3 shows the implementation for one pair of mirror image pair in the form

of z−rHr(z
R) + z−(R−r)HR−r(z

R) with down sampling rate R for the decimators.

From Fig. 7.3, it can be seen that the signal x(n) passes through a tapped delay

line marked as “side delay chain”. The delayed versions of x(n), x(n − r) and

x(n − R + r), are down sampled by R and summed and subtracted before being

filtered by the symmetrical and anti-symmetrical filters, H ′
r(z) and H ′

R−r(z). H ′
r(z)

and H ′
R−r(z) share the same delay line marked as “main delay chain” in Fig. 7.3. A

total of
(
2

⌈
N
R

⌉)
multiplications and

(
4

⌈
N
R

⌉
+ 2

)
additions are required to produce

the output yr(m)+yR−r(m), where the overall output of the decimator is produced

by y(m) =
∑R−1

r=0 yr(m).
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Fig. 7.2: Symmetrical polyphase structures. (a) Type I for decimator;
(b) Type II for interpolator.

Unless stated otherwise, in this chapter, the arithmetic complexities are counted

at either input or output sampling rate whichever is lower.

In the R polyphase implementation, there are
(

R
2
− 1

)
such mirror image filter

pairs. Therefore, each pair of mirror image filters need
(
2

⌈
N
R

⌉)
multiplications

and
(
4

⌈
N
R

⌉
+ 2

)
additions. Only one set each of the “main delay chain” and the

“side delay chain” is needed because all the mirror image pairs share the same

set of “main delay chain” and ”side delay chain”. The length of the “side delay

chain” is (R−1), whereas the length of the “main delay chain” is
(
2

⌈
N
R

⌉
− 1

)
. The

odd symmetrical and even symmetrical polyphase components, H0(z) and HR/2(z)

also share the same set of “main delay chain” and “side delay chain”, as shown in

Fig. 7.4. It can be seen from Fig. 7.4 that, when compared with Fig. 7.3, the “main
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delay chain” has been appended with an additional delay at the output. Therefore,

the total length of the “main delay chain” becomes
(
2

⌈
N
R

⌉)
. Furthermore, H0(z)

requires
(⌈

N
R

⌉
+ 1

)
multiplications,

(
2

⌈
N
R

⌉
+ 1

)
additions, and HR/2(z) requires

⌈
N
R

⌉
multiplications and

(
2

⌈
N
R

⌉)
additions.

The computation and storage cost for implementing the
(

R
2
− 1

)
pairs of mirror

image filters are listed in the 2nd column of Table 7.1. In certain implementation

platform [56], it is necessary to reduce the number of data fetches from memory.

Therefore, for the purpose of comparison, the number of memory accesses, des-

ignated as memory read (MR) and memory write (MW) are also listed in Table

7.1.

The implementation complexities for H0(z) and HR/2(z) are listed in the 3rd

and 4th columns of Table 7.1. Listed in the 5th column of Table 7.1 are the total

complexities to implement the R polyphase structure.

Fig. 7.3 and Fig. 7.4 are eminently suited for implementing the mirror image

pairs of decimators. Their transposes as shown in Fig. 7.5 and Fig. 7.6, are emi-

nently suited for implementing the mirror image pairs of interpolators.

The number of multipliers, delays and memory read operations for the Type II

symmetrical polyphase structure are the same as those for the Type I, however, the

number of adders and memory write cycles differ slightly from those for Type I. As

can be seen from Fig.7.5, the signal x(n) passes through the “main delay chain”

and those delayed versions of x(n) which will be multiplied by the symmetrical

and anti-symmetrical coefficients are summed and subtracted before the multipli-

cation processes. All the mirror image pairs of the polyphase components share

the same set of “main delay chain” and “side delay chain”. The sum and difference

of x(n − k) and x
(
n− 2

⌈
N
R

⌉
+ k + 1

)
are fanned out to h′r(k) and h′R−r(k) for

k = 0, 1, · · · ,
⌈

N
R

⌉
− 1 and r = 1, 2, · · · , R

2
− 1. In addition to the

(
2

⌈
N
R

⌉)
adders

enclosed in the “main delay chain” whose sums are fanned out to all the mirror im-

age polyphase pairs, each pair of the polyphase components require an additional
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(
2

⌈
N
R

⌉
− 2

)
additions to produce u′r(n) and u′R−r(n), and 4 additions to sum u′r(n)

and u′R−r(n) to form the final output.

The odd symmetrical polyphase component, H0(z), is implemented by append-

ing the “main delay chain” by an additional delay, as shown in Fig. 7.6. H0(z)

is not able to use the sum obtained from the adders enclosed in the “main delay

chain” in Fig. 7.5, therefore, it needs
(
2

⌈
N
R

⌉)
additions. The even symmetrical

polyphase component, HR/2(z), is able to share both the “main delay chain” and

“side delay chain” and use the sum obtained from the adders enclosed in the “main

delay chain” in Fig. 7.5. The implementation of HR/2(z) is also shown in Fig. 7.6.

HR/2(z) needs
⌈

N
R

⌉
additions. The numbers of additions for Type II symmetrical

polyphase structure are listed in Table 7.2. Also listed in Table 7.2 are the numbers

of memory write cycles.

7.3 Comparison and Discussion

The computation and storage requirements for a 2N -th order linear phase FIR

filter implemented using the: 1) direct form structure exploiting the coefficient

symmetry; 2) conventional polyphase structure without exploiting the coefficient

symmetry; 3) polyphase structure reported in [60] and 4) new technique proposed

in this chapter, are listed in Table 7.3.

It can be seen from Table 7.3 that when compared with the conventional

polyphase structure, the proposed structure achieves a 50% reduction in the num-

ber of multipliers and the multiplication rate, whereas the delay elements used

and memory access remain approximately the same. When compared with the

polyphase structure reported in [60], the proposed structure achieves approximately

a factor of R reduction in the number of delay elements and a factor of R
2

reduction

in the number of memory access, whereas the number of multipliers and multipli-

cation rate remain the same.
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The addition rate of the conventional polyphase structure and the structure

reported in [60] are approximately 2N , which is a factor of R less than that of

the direct form structure. For Type I symmetrical polyphase structure with N

divisible by R, the proposed technique also produces the same statistics as that

in the conventional polyphase structure. When N is not divisible by R, Type I

structure needs an additional (R − 1) additions. On the other hand, in Type II

structure, the addition rate may be less than 2N under certain circumstances. The

addition rate is reduced if (7.15) is satisfied.

(R + 3)
⌈
N

R

⌉
+ R− 2 ≤ 2N. (7.15)

Let L = N
R

> 1. In this case, (7.15) reduces to

R ≥ 3L− 2

L− 1
. (7.16)

It can be easily verified by substituting positive integer values of L that

3 <
3L− 2

L− 1
= 3 +

1

L− 1
≤ 4. (7.17)

Therefore, when 3 < R < N , the addition rate is reduced. The maximum reduction

is
(
N − 2

√
3N + 2

)
and occurs at R =

√
3N if N is divisible by R. When R = 2,

only H0(z) and HR/2(z) exist and there are no other mirror image filter pairs. The

addition rate listed in Table 7.1 is not applicable; the addition rate remains at 2N ,

the same as the case in the conventional polyphase implementation.

The above derivations are developed for even R. It is straightforward to derive

similar expressions for odd R. When R is odd, H0(z) is odd symmetrical and there

are R−1
2

pairs of mirror image filters, i.e. Hr(z) and HR−r(z) for r = 1, 2, ..., R−1
2

.

The mirror image filter pairs as well as H0(z) can be implemented in the same

way as those for even R. The computational complexities are listed in Table 7.4.

It is shown that, besides the reduction in multiplication rate (compared with the

conventional polyphase structure) and delay elements used (compared with the

structure reported in [60]), when 3 < R < N , the addition rate is reduced compared
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with that in the other methods for Type II case and the maximum reduction occurs

when R =
√

3N .

For a (2N − 1)-th order linear phase FIR filter, its transfer function, H(z), is

given by

H(z) =
2N−1∑

n=0

h(n)z−n (7.18)

where

h(n) = h(2N − 1− n), 0 ≤ n ≤ 2N − 1. (7.19)

H(z) may be expressed in its R polyphase components as

H(z) =
R−1∑

r=0

z−r

2dN
R e−1∑

k=0

h(kR + r)z−kR. (7.20)

The k-th impulse response of the r-th polyphase component, hr(k) for r = 0, 1, ..., R−
1, is expressed as shown in (7.4). From (7.19) and (7.4), it can be seen that when R

is even, the R polyphase components consist of R
2

pairs of mirror image filters, i.e.

hr(k) = hR−r−1

(
2

⌈
N
R

⌉
− 1− k

)
for r = 0, 1, ..., R

2
− 1. Therefore, the polyphase

structure can be implemented by R
2

pairs of mirror image filters in the way described

in Section 7.2, and the complexities are listed in Table 7.4. Similarly, if R is odd,

H(R−1)/2(z) is even symmetrical and Hr(z) and HR−r−1(z) for r = 0, 1, ..., R−3
2

, are

R−1
2

pairs of mirror image filters. The complexities of its implementation by using

the proposed technique are listed in Table 7.4. It also shows that, for both the

even R and odd R cases, when 2 < R < N , the number of adders is fewer than

the number of adders used in the other implementations for Type II case and the

maximum reduction occurs when R =
√

2N .

For completeness, the implementation complexities for 2N -th order filter with

even R are also listed in Table 7.4.

Before concluding this chapter, the proposed symmetrical polyphase structure

is compared with the polyphase decomposition in [62]. It is obvious from (7.14)

that the proposed symmetrical polyphase structure may also be expressed using
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the generalized polyphase decomposition form as

H(z) =
R∑

r=0

Fr(z)H ′
r(z) (7.21)

where Fr(z) is usually a multiplier free polynomial and H ′
r(z) is symmetrical or

antisymmetrical filters.

The generalized polyphase decomposition reported in [62] resulted in Fr(z)

becoming an R-term polynomial. H ′
r(z) is optimized one by one to approximate

the original frequency response. The decomposition in [62] is effective only when

the overall filter length is even and R is an integer power-of-two.

For the proposed symmetrical polyphase structure, Fr(z) is a two-term polyno-

mial and H ′
r(z) is transformed from the original polyphase component Hr(z). The

transformation is an identity transformation; there is no approximation involved.

The proposed structure is effective for both even and odd length filters and effective

for any R < N .

7.4 Conclusion

In this chapter, a technique to implement linear phase FIR filters in polyphase

structures while restoring the coefficient symmetry property is presented. In the

proposed new technique, each non-symmetrical but mirror image polyphase com-

ponent pair are synthesized as a sum or difference of two symmetrical and antisym-

metrical filters. Thus, a linear phase FIR filter can be implemented in its polyphase

components using symmetrical and antisymmetrical filters. Two types of the struc-

tures are proposed to implement, respectively, decimators and interpolators. There

is a 50% saving in the multiplication rate compared with the conventional polyphase

structure. The proposed new technique may result in a slight increase (less than R)

in the additions rate for the decimator structure and for the interpolator structure

under certain circumstances. For the implementation of interpolators, under most
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circumstances, the proposed technique results in a reduction in the addition rate;

the maximum possible reduction is
(
N − 2

√
2N + 2

)
. The storage elements used

and memory accesses remain approximately the same.



Chapter 8

Conclusion

IN THIS THESIS , design techniques for the SPT coefficient lattice filter bank

are developed. The SPT coefficient optimum solution may be located very far

away from the infinite precision coefficient solution. Local search and GA can only

obtain SPT design near the infinite precision coefficient solution with reasonable

high probability. For the linear phase FIR filter design, the chance that a very

good SPT coefficient solution may be located near the infinite precision coefficient

solution can be improved tremendously by simply scaling the passband gain of the

filter. However, this is not the case for the lattice filter bank. Therefore, the scaling

strategy which shows great potential for linear phase FIR filters is not suitable for

the lattice filter bank. This leads to the consequence that the local search approach

and GA are not very efficient for the design of SPT coefficient lattice filter bank.

The width-recursive depth-first tree search algorithm proposed in this thesis

quantizes the coefficients one at a time and reoptimizes the remaining unquantized

coefficients. The tree is developed in the so called width-recursive and depth-

first manner. The order of the coefficients selected to be quantized is based on a

frequency response deterioration measure, which is the product of the coefficient

sensitivity of the frequency response and the grid spacing of the infinite precision

coefficients in the SPT space. The maximum value of the coefficient sensitivity of

141
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each coefficient is proved to be inversely proportional to one plus the square of the

corresponding coefficient. The tree search algorithm is very suitable for the SPT

coefficient lattice filter design and it overcomes the difficulty that the SPT optimum

may be located far away from the infinite precision design values in two aspects.

First, the coefficient selected to be quantized is fixed at discrete values step by step

and further and further away from its continuous value with the increasing tree

width. Second and more importantly, after each coefficient is fixed, the remaining

unquantized coefficients are reoptimized; the reoptimization process may throw the

coefficients far away from the original continuous optimum values.

The SPT numbers are unevenly distributed for a given wordlength L−Q, pre-

cision 2Q and the number of SPT terms K. Therefore, the rounding error is also

unevenly distributed. A mathematical representation of the SPT rounding error

density function is developed; it is a piecewise constant staircase function symmet-

rical about zero. The error probability density function has larger magnitude for

errors closed to zero. Its magnitude decreases with increasing error magnitude.

The variance of the error probability density decreases with decreasing Q for given

L and K. The variance approaches asymptotically to a constant as Q approaches

minus infinity (−∞). Increasing K may significantly reduce the variance, however,

it will approach asymptotically to another constant as Q approaches −∞ for given

L and K.

The effects of quantizing the coefficient values to SPT values are analyzed us-

ing the SPT rounding error probability density function. The analysis showed that

when directly rounding the coefficients to SPT values with a given K and a suffi-

ciently small Q, for a given infinite precision stopband attenuation, the stopband

attenuation deterioration increases very slowly with increasing filter length, i.e., the

stopband attenuation deterioration versus the filter length plot is a flat line with

small up slope. Analysis also showed that when directly rounding the coefficient

values to SPT values, once one of K and Q is determined, the statistical bound

of the other value is also determined, i.e., using K larger than a value or using Q
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smaller than a value is not beneficial. It is very useful when direct rounding of the

lattice filter coefficients to SPT values is considered.

Based on the statistical analysis of the SPT value and the effects on the fre-

quency response of filter bank, an SPT term allocation scheme is also presented

for the design of the SPT coefficient lattice filter bank. The tree search algorithm

incorporating the SPT term allocation scheme is able to design SPT coefficient

filter banks with different number of SPT terms efficiently.

Finally, a polyphase implementation of multirate system is presented. In the

proposed implementation, the filter coefficients’ symmetry which has been de-

stroyed by the conventional polyphase implementation is restored.
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