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SUMMARY 

 

 

Various computing systems have been rapidly developed in recent years and widely 

implemented in many fields. The functionality, size and complexity of the computing 

systems keep on increasing nowadays, which makes their quantitative evaluation more 

difficult than ever before.  

  Reliability is a useful measure for quantitatively evaluating the computing 

systems. Intensive studies on reliability models and analytical methods have been 

carried out to improve the chance that the computing systems will behave satisfactorily 

in operation. Since the computing operations become more essential and important 

nowadays, the objective of this dissertation is to study the reliability models and 

analysis for various computing systems. 

 As a powerful analytical tool, Markov models have been widely implemented 

in reliability analysis, so this dissertation comprehensively reviews many typical 

Markov models and further develops some new ones for different computing systems.  

Software and hardware are two major building blocks in the computing systems. 

They interact together to complete many critical computing tasks. This dissertation 

systematically studies the reliability of software, hardware and integrated 

software/hardware systems. 
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Distributed computing system is widely used today. Its reliability is affected not 

only by software/hardware but also by network communication. Thus, this dissertation 

introduces some typical models in the distributed/networked system reliability, and 

then further develops some new models and analytical methods for it. 

“Grid” computing system has emerged as an important new field, distinguished 

from the conventional distributed computing systems by its focus on large-scale 

resource sharing, innovative applications, and, in many cases, high-performance 

orientation. This dissertation originally constructs general reliability models for the 

grid and presents new analytical methods to estimate the grid reliability related to 

resource management system, wide-area network communication, and parallel running 

programs with multiple shared resources.  

Multi-state system is also a popular topic in the reliability analysis, which is of 

recent interest to many researchers. This dissertation also presents some new reliability 

models for various multi-state systems considering multi-level protections and failure 

correlations. 

Today’s software development is no longer an isolated task of a single program. 

Large systems are usually developed in a multi-language environment and run 

simultaneously on various platforms. The software testing resource is a kind of entities, 

which can be measured and controlled early in the development cycle. Thus, for the 

development of large and complex systems, how to allocate the limited testing 

resources so that the overall system reliability is maximized is an important 

decision-making problem. Therefore, this work also studies some interesting 
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optimization problems in the testing resource allocation.  

Many models and results found in the literature and from our research are 

presented in this dissertation. It is hoped that these approaches are easily implemented 

in practice by engineers/practitioners. It is also hoped that this work is able to serve as 

reference for students, professors, and researchers in many related fields. Moreover, 

they may also find some useful ideas for their academic work out of this dissertation.  
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CHAPTER 1               

   INTRODUCTION 

 

 

This dissertation focuses on some key issues mainly concerning reliability models and 

analysis in the area of the computing systems. These key issues include 

software/hardware/network reliability, reliability of homogeneous/heterogeneous 

distributed computing systems, grid computing reliability, multi-state system reliability, 

failure correlation, and optimal testing resource allocation. 

  This chapter demonstrates the necessity to study the reliability of the 

computing systems, briefly introduces some basic concepts, presents some commonly 

used techniques, and finally outlines the scope of this dissertation.  

 

1.1. Need for the Computing System Reliability 

Computer systems have been the fastest developing technology during the last century. 

They have been widely implemented in many areas, and are desired to achieve various 

complex and safety-critical missions. In our modern society, the applications of the 

computing systems have now crossed many different fields, for example, air traffic 

control, nuclear reactors, aircraft, real-time military, industrial process control, 
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automotive mechanical and safety control, telephone switching, bank auto-payment, 

hospital patient monitoring systems, and so forth. 

The size and complexity of the computing systems keep on increasing from one 

single processor to multiple distributed processors, from individual systems to 

networked systems, from small-scale program running to large-scale resource sharing, 

and from local-area computation to global-area collaboration.  

The computing systems may contain many processors and communication 

channels and cover a wide area all over the world. They combine both software and 

hardware that function together to complete various tasks. They can also run diverse 

programs and share different resources. They may incorporate multiple states and their 

failures may be correlated with one another. These interacted factors make system 

modeling and analysis very complicated and difficult. 

Thus, complete, scientific, quantitative measures are required to evaluate the 

computing systems. Reliability is one such useful measure for evaluating the 

computing systems. Hence, intensive studies on reliability models and analytical 

methods have been carried out to improve the chance that the computing systems will 

perform satisfactorily in operation. As the functionality of computing operations 

becomes more essential, there is a greater need for the reliability of the computing 

systems.  

Moreover, in order to increase the behavior of the computing systems and to 

improve its development process, we must make thorough reliability analysis. Based on 

models and analysis, approaches to improve system reliability can be further 
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implemented, such as optimization methods, heuristic algorithms etc, see e.g. Kuo and 

Zuo (2003). Although improving the system reliability is more or less studied by this 

thesis, the thesis still mainly focuses on the reliability measurements, modeling and 

analysis. 

 

1.2. Computing System Reliability Concepts 

In general, basic reliability concept is usually considered as the probability that a 

system will perform its intended function during a period of running time without any 

failures (Musa, 1998).  

  A failure makes system behavior deviate from its specified behavior. The 

failure may be caused by a fault or by other reasons, such as human mistakes. For 

example using wrong input data, incorrect printing of output result, misinterpretation of 

output, etc. may also cause failures. Thus, failure and success are two different possible 

states of the output. Usually we exclude those failures that are not caused by any faults, 

so in this case a failure corresponds to one or more faults in the system. After removing 

those faults, the same failure cannot occur again. 

A fault is an erroneous state of a system. Although the definitions of the fault are 

different for specific systems or under diversified situations, a fault is always an 

existing part in the system and it can be removed by correcting the erroneous part of the 

system. Although various terminologies are used to represent the same meaning of the 

fault by different articles, such as “error”, “bug”, “deficiency”, “mistake”, “defect” and 

so on, this thesis uses the “fault”, which has been commonly accepted, to represent such 
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meaning.  

  For the computing system, the basic reliability concept can be adapted to some 

specific forms such as “software reliability”, “system reliability”, “service reliability”, 

“system availability” etc for different purposes.  

  Most computing systems contain software programs to achieve various 

computing tasks. Software reliability is an important metric to evaluate the software 

behavior. Similar to the general reliability concept, software reliability is defined as the 

probability that software will be functioning without failure under a given 

environmental condition during a specified period of time (Xie, 1991). Here, a software 

failure generally means the inability of performing an intended task specified by some 

requirements. 

  The software reliability is only the measure of a specific software program. In 

order to evaluate a whole computing system that may contain multiple software 

programs, system reliability is a good measure. System reliability is defined as the 

probability that all the tasks for which the system is desired can be successfully 

completed (Kumar et al., 1986). Those software programs may be structured in parallel 

or serial topologies or even in an arbitrarily distributed topology, so the system 

reliability should be respectively computed according to the structure and distributions 

of these programs. The system reliability is different from the above software reliability 

by the capacity in tolerating failures. For example, the software reliability does not 

allow any failure in running the given software program, but the system reliability can 

tolerate the failures of some programs if the redundancies of those failed programs can 
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make up their functions.  

  Some computing systems are developed to provide different services for users. 

The users may only care whether the service they are using is reliable or not, no matter 

what the conditions of other services are in a system. Thus, from the users’ point of 

view, service reliability is a good measure, which is defined as the probability for a 

given service to be achieved successfully (Dai et al.,2003a). Obviously, the service 

reliability is different from the above software or system reliability by its focus on part 

(not all) of the software programs contained in the system.  

  Moreover, whether the computing system is able to be used or not is also of 

concern to users. Thus, system availability is another good measurement for this 

purpose, which is defined as the probability of a system to be available at a time instant 

(Trivedi, 2001). Different from the reliability that focuses on a period of time when it is 

free of failures, the system availability is concerned with a time point at which the 

system is able to be used (i.e. available).  

 

1.3. Approaches to the Computing System Modeling 

The computing system reliability is an interesting, but difficult, research area. Although 

there are many reliability models suggested and studied, none of them are valid at all 

times and there is no unique model which can perform well for all situations. A reason 

for this is probably that assumptions made for each model are correct or are good 

approximations of the reality only in some specific situations. 

  In a computing system, hardware (such as computers, routers, processors, 
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CPUs, memories, disks, etc.) provides fundamental configurations to support 

computing tasks. Many traditional reliability models mainly dealt with hardware 

reliability, such as Duane (1964), Akhtar (1994), Pukite and Pukite (1998), and Trivedi 

(2001).  

  Software is another important element in the computing system besides the 

hardware. Different from the hardware, the software does not wear-out and it can be 

easily reproduced. Furthermore, software is usually debugged during 

developing/testing phase so its reliability is changing over time when detecting and 

removing faults. Many software reliability models have been proposed for the study of 

software reliability, see e.g. Jelinski and Moranda (1972), Littlewood (1975), Goel and 

Okumoto (1979), Xie (1991), Lyu (1996), Musa (1998), Pham (2000), Gokhale and 

Trivedi (1999) and Kuo and Zuo (2003). 

  However, a computing system usually contains both hardware and software, 

which ought not to be separately studied. Both types of failures should be integrated 

together in analyzing the whole system reliability. Many reliability models for the 

integrated software and hardware systems have been presented recently, such as Goel 

and Soenjoto (1981), Siegrist (1988), Laprie and Kanoun (1992), Dugan and Lyu, 

(1994), Welke et al. (1995), Garg et al. (1999), Trivedi (2001) and Lai et al. (2002). 

  Accompanying the development of network techniques, many computing 

systems need to communicate through networks. The programs and resources of such 

systems are distributed or shared all over the networks. This kind of computing system 

is usually called distributed computing system. Reliability of the distributed computing 
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system is determined not only by the software/hardware reliability but also by the 

reliability of communication. Therefore, there are many models and algorithms 

presented for the distributed system reliability, see e.g. Hariri et al. (1985), Kumar et al. 

(1986), Chen and Huang (1992), Chen et al. (1997), Lin et al. (1999, 2001) and Dai et 

al. (2003a). 

  As a special type of the distributed computing systems, “Grid computing” is a 

recently developed technique by its focus on various shared resources, large-scale 

networks, wide-area communications, real-time programs, diverse virtual 

organizations, heterogeneous platforms etc. Many experts believe that the grid 

computing will offer a second chance to fulfill the promises of the Internet, see e.g. 

Foster and Kesselman (1998). Although it is difficult to study the grid reliability due to 

its complexity, the reliability of the grid computing systems is of much concern now. 

Dai et al. (2002, 2003c) started some initial studies in this new field. 

  Most reliability models for computing systems assume only two possible 

states of the system. In reality, many practical computing systems may contain more 

than two states (Lisnianski and Levitin, 2003), especially for those real-time systems. 

For example, if some computing elements in a real-time system fail, the system may 

still continue working but its performance should be degraded. Such a degradation 

state is another state between the perfect working and completely failed states. To 

study these types of systems, Multi-State system reliability is also investigated 

recently by many researchers, e.g. Brunelle and Kapur (1999), Pourret et al. (1999), 

Levitin et al. (2003), Wu and Chan (2003) and Zang et al. (2003). 
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1.4. Common Techniques in Reliability Analysis 

There are many techniques in reliability analysis. Some of the most widely used 

techniques in computing systems are introduced here. They are reliability block 

diagrams, network diagrams, fault tree analysis and Markov modeling. 

 

1.4.1. Reliability block diagram 

A reliability block diagram is one of the conventional and most common techniques 

of system reliability analysis. A major advantage of using the reliability block 

diagram approach is the ease of reliability expression and evaluation.  

A reliability block diagram shows a system reliability structure. It is made up 

of individual blocks and each block corresponds to a system module or function. 

These blocks are connected with one another through certain basic relationships, such 

as series and parallels. The series relationship between two blocks is depicted by Fig. 

1.1 (a) and parallel by Fig. 1.1 (b). 

 

1

2
21

 

        (a) Series connected blocks  (b) Parallel connected blocks 

Fig. 1.1. Basic relationships between two blocks. 
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The reliability of a block for module i is usually assumed to be known, and is denoted 

by iR . Assuming that the blocks are independent from a reliability point of view, the 

reliability of a system with two serially connected blocks is  

21RRRs =  

and that of a system with two parallel blocks is  

∏
=

−−=
2

1

)1(1
i

ip RR  

The blocks in either series or parallel structure can be merged into a new block with 

the reliability expression of the above equations. Using such combinations, any 

parallel-series system can be eventually merged to one block and its reliability can be 

easily computed by repeatedly using the above two equations.  

Furthermore, a library for reliability block diagrams can be constructed in order 

to include other configurations or relationships. Additional notational description is 

needed and specific formulas for evaluating these blocks must be obtained and added to 

a library, see e.g. Sahner et al. (1995). 

 

1.4.2. Network diagram 

Network diagrams are commonly used in representing communication networks 

consisting of individual links. Most network applications are in a communication 

domain. The computation of network reliability is the primary application of network 

diagrams, see e.g. Sahner et al. (1995) and Findeisen (2000, pp. 48-58). 

  The purpose of a network is to execute programs by connecting different sites 

that contain processing elements and resources. For simple network diagrams, 



Chapter 1 Introduction 

 10

computation is not complex and reliability block diagrams can alternatively be used. 

For example, Fig. 1.2 shows the network diagrams that are connected through series or 

parallel links. 

 

Path A

Path B

Path A Path B

 
         (a) Series connected links   (b) Parallel connected links 

Fig. 1.2. Network diagram representing series and parallel two links. 

 

Fig. 1.2 can alternatively be represented by the reliability block diagrams if we view 

each link as a block, depicted by Fig. 1.1.  

The choice of reliability block diagram or network diagram depends on the 

convenience of their usage and description for certain specific problems. Usually, the 

reliability block diagram is mainly used in a modular system that consists of many 

independent modules and each module can be easily represented by a reliability block. 

The network diagram is often used in networked system where processing nodes are 

connected and communicate through links, such as the distributed computing system, 

local/wide area networks and wireless communication channels etc. 

However, a main disadvantage of the network diagram analysis is that 

individual links and nodes are assumed to be either operational or failed. This is a 

Boolean analysis, which limits the application domains of the network diagrams to 

contain multiple states. 
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1.4.3. Fault tree analysis 

Fault tree analysis is a common technique in system safety analysis, see e.g. Fussell 

(1975) and Rai et al. (1995). Fault tree analyses have been adapted for a range of 

reliability applications.  

  The fault tree diagram is the underlying graphical model in fault tree analysis. 

Whereas the reliability block diagram is mission success oriented, the fault tree shows 

which combinations of component failures will result in a system failure.  

Actually, the fault tree diagram represents the logical relationships of ‘AND’ 

and ‘OR’ among diverse failure events. Various shapes represent different meanings. In 

general, four basic shapes corresponding to four relationships are depicted by Fig. 1.3. 

 

Input event ‘and’ gate ‘or’ gate Output/Top event

 
Fig. 1.3. Basic shapes of fault tree diagram. 

 

Since any logical relationships can be transformed into the combinations of ‘AND’ and 

‘OR’ relationships, the status of output/top event can be derived by the status of input 

events and the connections of the logical gates. Moreover, repair and maintenance are 

two important operations in system analysis that can also be expressed by a fault tree, 

see e.g. Malhotra and Trivedi (1994) and Trivedi (2001). 

  The fault tree diagram can clarify fault processes and, in particular, fault 

propagation in a system. However, complex systems exhibit complex failure behavior, 



Chapter 1 Introduction 

 12

including multiple failure modes. These failures will have different effects on a mission 

outcome. The basic fault tree analysis does not support this type of modeling.  

 

1.4.4. Markov Modeling 

The Markov model is another widely used technique in reliability analysis. It 

overcomes most disadvantages of other techniques and is more flexible to be 

implemented in reliability analysis for various computing systems, which will be 

applied in later chapters. We classify the Markov models into two major types: 

standard Markov models and non-standard Markovian models, which are respectively 

introduced here. 

 

Standard Markov models 

In general, there are four types of standard Markov models corresponding to four types 

of Markov processes classified according to their state-space and time characteristics as 

Table 1.1 shows below.  

Table 1.1. Four distinct types of Markov processes. 

Type State Space Time Space 
1 Discrete Discrete 
2 Discrete Continuous 
3 Continuous Discrete 
4 Continuous Continuous 

 

The standard Markov models satisfy the Markov property, which is defined here: for a 

stochastic process that possesses Markov property, the probability of any particular 

future behavior of the process, when its current state is known exactly, is not altered by 
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additional knowledge concerning its past behavior. 

  The discrete-state process is referred to as chain, so the discrete-state and 

discrete-time Markov process is usually called discrete time Markov chain (DTMC). 

Similar to the case of DTMC, discrete-state and continuous-time Markov process is 

usually called the continuous time Markov chain (CTMC). In the two types of Markov 

models, the Chapman-Kolmogorov equation is famous and often used to solve state 

probabilities. For details, please refer to Ross (2000). 

  Since little work has been done in the area of the continuous state (Type 3 and 

4 in Table 1.1), the continuous-state Markov process will not be discussed any more in 

this work. For details about them, please refer to Kijima (1997). 

 

Non-standard Markovian Models 

The modeling framework presented above allows the solution of stochastic problems 

enjoying the Markov property. However, some important aspects of system behavior in 

a dependability model cannot be easily captured in certain types of the above Markov 

models. The common characteristic these problems share is that the Markov property is 

not valid at all time instants. This category of problems is jointly referred to as 

non-Markovian models and can be analyzed using several approaches, see e.g. Limnios 

and Oprisan (2000). 

  A set of techniques that are proved very powerful for the solution of 

non-Markovian models of dependability is based on concepts grouped under the 

umbrella of Markov renewal theory, e.g. Cinlar (1975) and Fricks et al. (1998). It is a 
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collective name that includes Markov renewal sequences and two other important 

classes of stochastic processes with embedded Markov renewal sequences, named 

semi-Markov processes and Markov regenerative processes. 

 

1.5. Scope of This Dissertation 

This dissertation has nine chapters. A summary is given in Table 1.2.  

Table 1.2. The Structure of the Dissertation. 

Chapter Title 
Introduction 1 

 
2 

Literature Review 

3 Parallel Homogeneous Distributed System Reliability 

4 Centralized Heterogeneous Distributed System Reliability 

5 Grid Computing Systems Reliability 

6 Multi-Type Failure Correlation Models 

7 Multi-State Systems with Multi-Level Protections 

8 Optimal Testing-Resource Allocation 

9 Conclusions and Future Work 

 

Chapter 2 comprehensively reviews and systematically classifies the existing 

work in the area of the computing system reliability. 

Chapter 3 to 5 study three types of computing systems that are of much concern 

now. Chapter 3 studies parallel homogeneous distributed systems considering both 

software and hardware failures. A perfect debugging case is modeled first, and then an 

imperfect debugging model is further analyzed. However, chapter 3 does not consider 

heterogeneous property of the computing systems, so Chapter 4 further studies 
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centralized heterogeneous distributed systems, and service reliability is presented and 

analyzed. Since the “grid” is a newly developed technology in which its reliability has 

not been systematically explored, the grid computing system reliability is then studied 

in Chapter 5. 

After studying those specific computing systems, Chapter 6 to 8 solve some 

difficult problems in the system reliability analysis, such as failure correlations, 

multi-state systems, multi-level protections, and testing resource allocation. Chapter 6 

studies the cases of correlated multi-type failures between successive runs. Chapter 7 

extends the optimization of Multi-State System (MSS) structure into a more general 

case with multi-level protections.  Finally, Chapter 8 studies the optimization 

problems of testing resource allocation on both independent modules and dependent 

versions.  

The last chapter 9 gives conclusions and possible further extensions related to 

the thesis. 

  As many models, analyses and algorithms are studied throughout the thesis, it 

is hoped that these approaches are easily adapted by practitioners. In addition, many 

examples and case studies are illustrated to help understand and apply those 

demonstrated techniques.
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CHAPTER 2               

  LITERATURE REVIEW 

 

 

Many models have been developed in the area of software and system reliability 

analysis. This chapter reviews and categorizes these models according to their 

characters, applications and so on. Section 2.1 discusses the existing literatures on 

Markov models in software reliability, and then Section 2.2 goes over some basic 

Nonhomogeneous Poisson process (NHPP) models, a special type of Markov models. 

Finally, Section 2.3 reviews the reliability models for integrated software and hardware 

systems.  

 

2.1. Markov Models in Software Reliability 

Software is an important element in computing systems. Different from hardware, the 

software does not wear-out and it can be easily reproduced. Furthermore, software 

systems are usually debugged during developing/testing phase so that its reliability is 

changing over time when detecting and removing faults. As a result, debugging 

process usually makes software reliability increase over time. Many software 

reliability growth models have been proposed for the study of software reliability, e.g. 

Xie (1991) and Lyu (1996). 
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Markov model are one of the first type of models proposed in the software 

reliability analysis. This chapter summarizes software reliability models of this type. 

As a special type of Markov models, Nonhomogeneous Poisson Process (NHPP) 

models that are often used in software reliability analysis, are discussed in this chapter 

too. 

 

2.1.1. Basic Markov model 

A basic Markov model in software reliability is the model originally developed by 

Jelinski and Moranda (1972). It is one of the earliest models and has had a strong 

influence on many later Markov models which can be considered as modifications or 

extensions of this basic Markov model. 

 

Model description 

The underlying assumptions of the Jelinski-Moranda (JM) model are: 

(1) the number of initial software faults is an unknown but fixed constant; 

(2) a detected fault is removed immediately and no new fault is introduced; 

(3) times between failures are independent, exponentially distributed random 

variable; 

(4) all remaining faults in the software contribute the same amount to the software 

failure rate. 
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The initial number of faults in the software before the testing starts is denoted by 0N . 

According to the assumptions (3) and (4), the initial failure rate is then equal to 

φ⋅0N , where φ  is a constant of proportionality denoting the failure rate contributed 

by each fault. It follows from the assumption (2) that, after a new fault is detected and 

removed, the number of remaining faults is decreased by one. Hence after the i:th 

failure, there are iN −0  faults left, and the failure rate decreases to ( )iN −0φ . This 

Markov chain is depicted by Fig. 2.1 where state k means that there are k faults left in 

the software. 

 

φ⋅0N
0N 10 −N k 0

φ⋅− )1( 0N φ⋅k φ
11−k

 
Fig. 2.1. Markov chain of the JM-model. 

 

The time between the (i-1):st and the i:th failures is denoted by iT , 0,,2,1 Ni K= . By 

the assumptions, iT ’s are then exponentially distributed random variables with 

parameter 

)1()]1([)( 00 +−=−−= iNiNi φφλ , 0,,2,1 Ni K=     (2.1) 

The distribution of iT  is given by 

})1(exp{)1()( 00 iii tiNiNtTP +−−+−=< φφ , 0,,2,1 Ni K=   (2.2) 

The main property of the JM-model is that the failure rate is constant between the 

detection of two consecutive failures. It is reasonable if the software is unchanged and 

the testing is random and homogeneous. 
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Parameter estimation 

The parameters of the JM-model may easily be estimated by using the method of 

maximum likelihood. Let it  denotes the observed i:th failure-free time interval during 

the testing phase, i.e. it  is the observed time between the (i-1):st and the i:th failure. 

The number of faults detected is denoted here by n which will be called the sample size. 

If the failure data set { }0;,...,, 21 >= ntttt n
v

 is given, the parameters φ  and 0N  in the 

JM-model can easily be estimated by maximizing the likelihood function. 

The likelihood function of the parameters φ  and 0N  is given by 

),,...;,( 021 φNttL =∏
=

+−−+−
n

i
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00 })1(exp{)1( φφ  
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The natural logarithm of the above likelihood function is 

Lln = 
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0 )1(φ    (2.4) 

By taking the partial derivatives of this log-likelihood function above with respect to 

0N  and φ , respectively, and equating them to zero, the following likelihood equations 

can be obtained, 

 ∑∑
==

=⋅−
+−

=
∂
∂ n

i
i

n

i
t

iNN
L

11 00

0
1

1ln φ      (2.5) 

and 
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     (2.6) 

Usually numerical procedures have to be used to solve the two equations. However, the 

equation system can be simplified as follows. By solving φ  from the second equation 

above, we get 

 
1

1
0 )1(
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+−= ∑
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itiNnφ       (2.7) 

and by inserting this into (2.5), we obtain an equation independent of φ  

∑
∑

=

=

+−
=

+−
++

−
+ n

i i

n

i i

tiN

tn
nNNN

1 0

1

000 )1(1
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11    (2.8) 

The estimation of 0N  can then be obtained by solving this equation. Inserting the 

estimated 0N  into the expression of φ , we can then get the maximum likelihood 

estimate of φ . 

Note that the estimation of the number of initial faults might be unreasonable. 

The problem is expected since the probability of getting disordered data such as 

observing more failures when their probability should be less, is high initially, see Joe 

and Reid (1985). Usually more failure data should be accumulated for an estimate to be 

accurate. 

In many cases, the basic Markov model (JM-model) is not good enough and this 

has led to models with more realistic assumptions. Some extended models, which relax 

some assumptions of the JM model, are introduced in this section.  

 

2.1.2. Proportional models 

Moranda (1979) presented an extended Markov model whose basic assumptions are 
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same as JM model except assume that the (i+1):st failure rate is proportional to the i:th 

failure rate, i.e.  

iii C λλ =+1 , i=0,1,2…       (2.9) 

Its Markov process can be depicted by a Markov chain in Fig. 2.2, where state i 

represents that i failures have occurred.  

 

i0
∏
=

i

j
jC

1
1λ

1λ 1 1+i211Cλ

 
Fig. 2.2. Markov chain for the proportional model. 

 

This kind of model is called proportional model in Gaudoin et al. (1994). The idea is to 

consider that the difference between two successive failure rates is due only to the 

debugging, and practical constraints lead us to believe that the effect of this debugging 

is multiplicative. A proportional model is completely defined, given the rate 1λ  and 

the set C={ },...,, 321 CCC . 

In the simplest proportional model, all parameter values are fixed constants, i.e. 

1λ  and C are constant. Hence it is called Deterministic Proportional Model. The 

Deterministic Proportional Model, with parameters λ  and θ , is the software 

reliability model where the random variable iT  are independent and exponentially 

distributed with parameter  

})1(exp{ θλ −−⋅ i , 1≥i        (2.10) 

This model was suggested by Moranda (1979) as geometric de-eutrophication model. 
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Its detailed statistical property was studied by Gaudoin and Soler (1992).  

  In fact, the assumption of Deterministic Proportional Model that the iC  

(mean quality) is constant, is not realistic. A plausible assumption would be that the 

mean qualities of the successive debugging are independent random variables iQ  with 

a homogeneous normal distribution. Then, 

)exp( ii QC −=  

is a lognormal distribution. Gaudoin et al. (1994) presented a lognormal proportional 

model with 

iii Q λλ )exp(1 −=+  

in which iQ  is normally distributed with mean θ  and standard deviation σ . 

 

2.1.3. DFI (Decreasing Failure Intensity) model 

A serious critique of the JM-model is that not all software faults are of the same size. 

Some faults are more easily detected than others. By incorporating this fact, some 

generalizations and modifications of the JM-model are presented in Xie (1987). We 

briefly describe this general formulation together with some special cases in this 

section. 

 

General DFI formulation 

The JM-model can be modified by using other function for )(iλ . Note that )(iλ  is 

defined as the rate of the occurrence of the next failure after the removal of the (i-1):st 

fault. The failure intensity is DFI (Decreasing Failure Intensity) if )(iλ  is a decreasing 
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function of i. A DFI model is thus a Markov counting process model with decreasing 

failure intensity. DFI models relax the assumption of JM-model that all faults 

contributed the same amount to the failure probability was not used. The other 

assumptions of the DFI Markov model are the same as those for the JM-model (Xie, 

1991).  

  It can be observed that the failure rate function )(iλ  for the JM-model is a 

linear function of the number of remaining faults. In fact, since at the beginning big 

faults are likely to be detected, the decrease of the failure rate is probably larger at the 

beginning than that in the end of the testing phase. As a function of the number of 

remaining faults, the failure rate function is likely to be convex function. 

  Under the general assumptions above, the cumulative number of faults 

detected and removed, { }0),( ≥ttN , is a Markov process with decreasing failure rate 

)(iλ . The theory for CTMC can be applied.  

If })({)( itNPtPi == , 0,...,1,0 Ni = , the Chapman-Kolmogorov equations are 

given as 

)()1()(' 00 tPtP λ−=  

)()()()1()(' 1 tPitPitP iii −++−= λλ , 1,...,3,2 0 −= Ni    (2.11) 

)()()(' 10 00
tPNtP NN −−= λ  

with the initial conditions 

1)0(0 =P  and 0)0( =iP  for 0>i  

The above equations can easily be solved and the solution is as follows 

})1(exp{)(0 ttP λ−=  
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where the quantities je ,  j=0,1,…, 10 −N , are defined as 

})1(exp{ tje j ⋅+−= λ ,  j=0,1,…, 10 −N  

and )(i
jA  can be calculated recursively through 
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Some specific DFI models 

A direct generalization of the JM-model is to use a power-type function for )(iλ . The 

power type DFI Markov model was studied by Xie and Bergman (1988) assuming the 

failure rate 

00 ,...,2,1,)]1([)( NiiNi =−−= αφλ  

It is reasonable to assume that )(iλ  is a convex function of i and α  is likely to be 

greater than one, since in this case, the decrease of the failure rate is larger at the 

beginning. 

Another special case of the DFI model is an exponential-type Markov model 

which assumes that the failure rate is an exponential function of the number of 
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remaining faults. It is characterized by the failure rate function 

00 ,...,2,1],1)}1([exp{)( NiiNi =−+−−= βφλ   

For the exponential-type DFI model, the decrease of the failure intensity at the 

beginning is much larger than that at a later phase.  

It is interesting to note that some of the proportional models can also be 

attributed to DFI model. If all the 1<iC  ( 0,...,2,1 Ni = ) in a proportional model, the 

failure rate )(iλ  is actually a decreasing function of the number of remaining faults, 

which follows the DFI definition. 

 

2.1.4. Time-dependent transition probability models 

Sometimes the failure rate function depends not only on the number of detected faults 

i but also on a local time it  whose Markov process is shown as Fig. 2.3. This 

Markov chain is a type of NHCTMC (Non-Homogeneous Continuous Time Markov 

Chain) model, see e.g. Trivedi (2001). 

 

),1( 1tλ
0N 10 −N 01),( itiλ ),(

00 NtNλ
iN −0

),2( 2tλ

 
Fig. 2.3. NHCTMC for time dependent transition probability models. 

 

There are some existing models which extend the JM-model by assuming that 

the probability of state change is also time-dependent. Schick-Wolverton model is one 

of the first models of this type, presented by Schick and Wolverton (1978). The general 
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assumptions made by the Schick-Wolverton model are the same as those for the 

JM-model except that the times between failures are independent with density function 

given by  

0

2
0

0 ,...,2,1,
2

)1(
exp)1()( Ni

tiN
tiNtf i

ii =






 +−−

+−=
φ

φ     (2.12) 

in which 0N  is the number of initial faults and φ  is another parameter.  

Hence, the main difference between the Schick-Wolverton model and the 

JM-Model is that the times between failures are not exponential. In the 

Schick-Wolverton model the failure rate function after detecting the i:th fault is  

ii tiNti )1(),( 0 +−= φλ         (2.13) 

Note that the failure rate function of the Schick-Wolverton model depends both on i, the 

number of removed faults and it , the time since the removal of last fault.  

The Schick-Wolverton model with time-dependent failure rate was further 

extended by Shanthikumar (1981). Shanthikumar (1981) model supposes that there are 

0N  initial software faults and assumed that after i faults are removed, the failure rate of 

the software is given by 

))((),( 0 iNtti −= φλ , i=0,1,…      (2.14) 

where )(tφ  is a proportionality factor. The parameter estimation can also be carried 

out using the method of maximum likelihood.  

  

2.1.5. Imperfect debugging models 

The imperfect removal of a detected fault is a common situation in practice and the JM 

model does not take this into account. This section extends the JM-model by relaxing 
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the assumption of perfect debugging process. During an imperfect debugging process, 

there are two kinds of imperfect removal:  

1) A detected fault is not removed successfully while no new fault is 

introduced;  

2) A detected fault is not removed successfully while new faults are generated 

due to incorrect diagnoses.  

For the former type of imperfect condition, it is still a pure death process in the number 

of remaining faults; while the latter one is in fact a birth-death process in the number of 

remaining faults. The following will discuss both types of imperfect debugging models, 

respectively.  

 

Monotonous death process 

Goel (1985) suggested a Markov model by assuming that each detected fault is 

removed with probability p. Hence, with probability q=1-p, a detected fault is not 

perfectly removed and the quantity q can be interpreted as the imperfect debugging 

probability. This process can be modeled by a DTMC as depicted by Fig. 2.4 where i is 

the number of detected failures. 

 

p
0N 10 −N 01iN −0

q

p

q

p

q

p

q 1

 
Fig. 2.4. DTMC for the monotonous death process of imperfect debugging 

model. 
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The counting process of the cumulative number of detected faults at time t is 

modeled as a Markov process with transition probability depending on the probability 

of imperfect debugging. Still it is assumed that times between the transitions are 

exponential with a parameter which depends only on the number of remaining faults. 

After the occurrence of the (i-1):st failure, )1( −⋅ ip  faults are removed on the average. 

Hence, approximately, there are )1(0 −− ipN  faults left, where 0N  denotes the 

number of initial faults as before. The failure rate between the (i-1):st and the i:th 

failures is then  

[ ])1()( 0 −−= ipNi φλ  

Using this transition function, other reliability measures can be calculated as for 

the JM-model. Note that the above rate function can be rewritten as  









−−⋅= )1()( 0 i

p
N

pi φλ  

and from this it can be seen that it is just the same as that for the JM-model with φ  

replaced by p⋅φ  and 0N  replaced by pN0 . 

As a consequence, p, 0N  and φ  are indistinguishable. However, p⋅φ  and 

pN0  can still be estimated similar to that for the parameters in the JM-model and 

pN0  can be interpreted as the expected number of failures that will eventually occur. 

Another advantage of this model is when we know the probability of imperfect 

debugging, p. For example, from previous experience or by checking after correction, 

the number of initial faults 0N  and the constant of proportionality φ  can be 

estimated.  
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Birth-death process 

Furthermore, if we allow the imperfect debugging process to introduce new faults into 

the software due to wrong diagnoses or modifications, the debugging process becomes 

a birth-death Markov process. Kremer (1983) assumes that when a failure occurs, the 

fault content is assumed to be reduced by 1 with probability p, the fault content is not 

changed with probability q, and a new fault is generated with probability r. The obvious 

equality is that  

p+q+r=1 

This implies that we have a birth-death process with a death rate )()( trtv λ⋅=  and a 

birth rate )()( tpt λµ ⋅= . It can be depicted by a CTMC as Fig. 2.5. 

)( 1tv

0N 10 −N 01iN −0)( 1tu

)( 2tv

)( 2tu

)( itv

)( itu

)(
0Ntv

)(
0Ntu

 
Fig. 2.5. CTMC for the birth-death process of imperfect debugging model. 

 

However, in order to fit failure data and obtain further applicable results, assumptions 

on the failure rate function )(tλ  must be made. 

Denoted by )(tN  the number of remaining faults in the software at time t and 

let  

{ }itNtPi == )(Pr)( ,  i=0,1,…, 0N . 

We obtain the forward Kolmogorov equations of this Markov process as 

)()()1()()]()([)()()1()(' 11 tPtitPttvitPtvitP iiii +− +++−−= µµ , 0≥i  (2.15) 

Generally, by inserting )(tv  and )(tµ  and using the initial conditions 1)0(
0

=NP , the 
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differential equations can be solved by using the probability generating function 

suggested in Kremer (1983).  

 

Multi-type failure model considering imperfect debugging 

In practice, software failures can be classified into different types according to their 

severity or characteristics. Different types of failures may cause different software 

reliability behavior. Although many Markov models assume that the failures have one 

unique effect on the software, the realistic situation requires the models to treat those 

failures differently. 

Tokuno and Yamada (2000) presented a Markov model with two types of 

failures that have different kinds of failure rates at the same time incorporating the 

imperfect debugging process. The first type of failures is due to faults originally latent 

in the system prior to the testing, denoted by F1. The second type of failures is due to 

faults randomly introduced or regenerated during the testing phase, denoted by F2.  

They assumed that  

1) The failure rate for F1 is constant between failures and decreases 

geometrically as each fault is corrected, and the failure rate for F2 is constant 

throughout the testing phase;  

2) The debugging activity for the fault is imperfect: denoted by p the 

probability for a fault to be removed successfully and q(=1-p) the probability that fails 

to remove the fault, similar to the above Monotonous death model (Goel, 1985);  
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3) The debugging activity is performed without distinguishing between F1 and 

F2;  

4) The probability that two or more software failures occur simultaneously is 

negligible;  

5) At most one fault is corrected when the debugging activity is performed, 

and fault-correction time is negligible or not considered. 

Let X(t) be a counting process representing the cumulative number of faults corrected 

up to testing time t. From the assumption 2, when i faults have been corrected by an 

arbitrary testing time t, after the next software failure occurs,  




+

=
)y probabilit(with ,1

)y probabilit(with ,
)(

pi
qi

tX      (2.16) 

from the assumptions 1 and 3, when i faults have been corrected, the failure rate for the 

next software failure-occurrence is given by 

 θλ +⋅= ikDi)( , ,,2,1,0 K=i  0>D , 10 << k , 0≥θ   (2.17) 

where D is the initial failure rate for F1, k is the decreasing ratio of the failure rate, and 

θ  is the failure rate for F2. The expression of the above equation is from the point of 

view that software reliability depends on the debugging efforts, not the residual fault 

content.  

 The reliability function to the next software failure is given by 

})(exp{)( tkDtR i
i θ+⋅−=       (2.18) 

 

2.1.6. Modular software models 

If possible, architecture of software should be taken into account instead of considering 
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the software as a black-box system. Markov models can also be applied in analyzing the 

modular software reliability. 

 

The Littlewood semi-Markov model 

Littlewood (1979) incorporated the structure of the software using a semi-Markov 

model. This model assumed that the system architecture of continuously running 

application can be described by an irreducible semi-Markov process.  

  The program is comprised of a finite number of modules and the transfer of 

control between modules is described by the probability  

ijp =Pr{program transits from module i to module j} 

The time spent in each module has a general distribution )(tFij  which depends upon i 

and j, with finite mean ijm . When module i is executed, failures occur according to a 

Poisson process with parameter iλ . The transfer of control between modules 

(interfaces are themselves subject to failure; when module i calls module j there is a 

probability ijv  of a failure occurring. 

The interest of the composite model is focused on the total number of failures of 

integrated software system in time interval ( ]t,0 , denoted by N(t). This is the sum of 

the failures in different modules during their sojourn times, together with the interface 

failures.  

The asymptotic Poisson process approximation for N(t) is obtained under the 

assumption that failures are very infrequent. The times between failures will tend to be 

much larger than the times between exchanges of control, that is, many exchanges of 
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control would take place between successive program failures. The failure occurrence 

rate of this Poisson process is given by  

∑∑ +=
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ijij
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,

λλ  
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represents the proportion of time spent in module i, and  

∑∑
=

j ijiji i

iji
ij mp

p
b
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is the frequency of transfer of control between i and j. These terms depend only on 

parameters that characterize modular software architecture: transition probabilities ijp , 

mean execution times ijm , and steady-state probabilities of the embedded Markov 

chain iπ . 

 

User-oriented model 

Similar to the Littlewood semi-Markov model, an interesting model called 

user-oriented model, was developed by Cheung (1980) where user profile was 

incorporated into the modular software reliability model. The model is a Markov model 

based on the reliability of each individual module and the inter-modular transition 

probabilities as the user profile. Also the most critical module of the system can be 

determined by using sensitivity analysis techniques. 

  Assume that software is decomposed into a number of modules. It is also 

assumed that the program flow graph of a terminating application has a single entry and 
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a single exit node, and that the transfer of control among modules can be described by 

an absorbing DTMC with a transition probability matrix P= }{ ijp . Modules fail 

independently and the reliability of the module i is the probability iR  that the module 

performs its function correctly, i.e., the module produces the correct output and 

transfers control to the next module correctly. 

Two absorbing states C and F are added, representing the correct output and 

failure, respectively, and the transition probability matrix P is modified appropriately to 

P̂ . The original transition probability ijp  between the modules i and j is modified to 

iji pR . This represents the probability that the module i produces the correct result and 

the control is transferred to module j. From the exit state n, a directed edge to state C is 

created with transition probability nR  to represent the correct execution. The failure of 

a module i is considered by creating a directed edge to failure state F with transition 

probability iR−1 . Hence, DTMC defined with transition probability matrix P̂  is a 

composite model of the software system. The reliability of the program is the 

probability of reaching the absorbing state C of the DTMC. 

Let Q be the matrix obtained from P̂  by deleting rows and columns 

corresponding to the absorbing states C and F. ),1( nQk  represents the probability of 

reaching state n from 1 through k transitions. From initial state 1 to final state n, the 

number of transitions k may vary from 0 to infinity. It is not difficult to show that 

( )∑
∞

=

−−==++++=
0

132

k

k QIQQQQIS L     (2.19) 

and it follows that the overall system reliability can be computed as  

nRnSR ⋅= ),1(         (2.20) 
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Task-oriented model 

A modular software is usually developed to complete certain tasks. Kubat (1989) 

presented a task-oriented model which considered the case of a terminating software 

application composed of n modules designed for K different tasks. Each task may 

require several modules and the same module can be used for different tasks. 

Transitions between modules follow a DTMC such that with probability )(kqi  task k 

will first call module i and with probability )(kpij  task k will call module j after 

executing in module i. The sojourn time during the visit in module i by task k has the 

density function ),( tkgi . Hence, the architecture model for each task becomes an 

semi-Markov process.  

The failure rate of module i is iλ . As derived by Kubat (1989), the probability 

that no failure occurs during the execution of task k, while in module i is 

∫
∞ −=
0

),()( dttkgekR i
t

i
iλ        (2.21) 

The expected number of visits in module i by task k, denoted by )(kVi , can be obtained 

by solving  

∑
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n

j
ijjii kpkVkqkV

1
)()()()( ; ni ,...,2,1= , Kk ,...,2,1=   (2.22) 

The probability that there will be no failure when running for task k can be 

approximated by  

∏
=

≈
n

i

kV
i

ikRkR
1

)()]([)(       (2.23) 

and the system failure rate is calculated by  
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where kr  is the arrival rate of task k.  

 

Multi-type failure model in modular software  

Ledoux (1999) further proposed a Markov model to include multi-type failures into 

modular software reliability analysis. They constructed an irreducible CTMC with 

transition rates ijq  to model the software composed of a set of components C. In their 

Markov model, two types of failures are considered: primary failures and secondary 

failures. The primary failure leads to an execution break; the execution is restarted after 

some delay. A secondary failure does not affect the software because the execution is 

assumed to be restarted instantaneously when the failure appears. For an active 

component ic , a primary failure occurs with constant rate 'iλ , while the secondary 

failures are described as Poisson process with rate ''iλ . When control is transferred 

between two components i and j then a primary (secondary) interface failure occurs 

with probability 'ijv  ( ''ijv ). 

  Following the occurrence of a primary failure, a recovery state is occupied, 

and the delay of the execution break is a random variable with a phase type distribution. 

Denoting by R the set of recovery states, the state space becomes RC ∪ . Hence, the 

CTMC that defines the architecture is replaced by a CTMC that models alternation of 

operational-recovery periods. The associated generator matrix defines the following 

transition rates: from ic  to jc  with no failure; from ic  to jc  with a secondary 

failure; from ic  to jc  with a primary failure; from recovery state i to recovery state j; 
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and from recovery state i to jc .  

Thus, the Markov model can be constructed according to the architecture of 

different modules and their states. Based on the CTMC, the Chapman-Kolmogorov 

equations can be obtained and solved by certain computational tools.  

 

2.2. NHPP Models in Software Reliability 

Although some basic and advanced Markov models are presented in the previous 

sections, some NHPP models (as a special type of Markov models) are mentioned here 

due to their significant impact on the software reliability analysis. NHPP is a special 

class of counting process { }0),( ≥ttN  to cumulate the number of events (such as 

software failures) in a time interval ),0[ t . It can be classified as a very special case of 

the NHCTMC (Non-Homogeneous Continuous Time Markov Chain) models, see e.g. 

Gokhale et al. (1997). 

 

2.2.1. The Goel-Okumoto (GO) model 

In 1979, Goel and Okumoto presented a simple model for the description of software 

failure process by assuming that the cumulative failure process is NHPP with a simple 

mean value function. Although NHPP models have been studied before, see e.g. 

Schneidewind (1975), the GO-model is the basic NHPP model that later has had a 

strong influence on the software reliability modeling history.  

 

Model description 
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The general assumptions of the GO-model are 

1) The cumulative number of faults detected at time t follows a Poisson 

distribution; 

2) All faults are independent and have the same chance of being detected; 

3) All detected faults are removed immediately and no new faults are introduced; 

 

Specifically, the GO-model assumes that the failure process is modeled by an NHPP 

model with mean value function )(tm  given by 

)]exp(1[)( btatm −−= , 0,0 >> ba  

The failure intensity function can be derived by 

)exp()()( btabtm
dt
dt −==λ  

where a and b are positive constant. Note that am =∞)( . The physical meaning of 

parameter a can be explained as the expected number of faults which are eventually 

detected. The quantity b can be interpreted as the failure occurrence rate per fault. 

  The expected number of remaining faults at time t can be calculated as 

)exp()]exp(1[)()()]()([ btabtaatmmtNNE −=−−−=−∞=−∞  

 

A heuristic derivation of the GO-model 

Suppose that the expected number of faults detected in a time interval [ )ttt ∆+,  is 

proportional to the number of remaining faults, we have that, 

ttmabttm ∆−=∆+ )]([)(  

where b is a constant of proportionality. 
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  The above difference equation can be transformed into a differential equation. 

Divide both sides by t∆  and take limits by letting t∆  tend to zero, we get the 

following equation, 

)()(' tmbbatm ⋅−⋅=  

It can easily be verified that the solution of this differential equation, together with the 

initial condition 0)0( =m , we get the mean value function of the GO-model. 

  Both the GO-model and JM-model give the exponentially decreasing number 

of remaining faults. It can be shown that these two models cannot be distinguished 

using only one realization from each model. However, the models are different because 

the JM-model assumes a discrete change of the failure intensity at the time of the 

removal of a fault while the GO-model assumes a continuous failure intensity function 

over the whole time domain. 

It should be pointed out here that the GO-model makes the assumption that all 

faults contribute the same amount to the software failure intensity which is unrealistic. 

Some extended models, which relax this assumption, will be discussed later. 

 

Parameter estimation  

Denoted by in  the number of faults detected in time interval [ )ii tt ,1− , where 

kttt <<<= L100  and it  are running times since the software testing begins. The 

estimation of model parameters a and b can be carried out by maximizing the likelihood 

function, see e.g. Goel and Okumoto (1979). The likelihood function can be reduced to 
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Solving this equation to calculate the estimate of b, and then a can be estimated as 

)exp(1
1

k

k

i
i

bt

n
a

−−
=

∑
=         (2.26) 

Usually, the above two equations has to be solved numerically. It can also be 

shown that the estimates are asymptotically normal and a confidence region can easily 

be established. A numerical example is illustrated below. 

 

 

2.2.2. S-shaped NHPP models 

The mean value function of the GO-model is exponential-shaped. Based on experience, 

it is observed that the curve of the cumulative number of faults is often S-shaped as 

shown by Fig. 2.6, see e.g. Yamada et al. (1984). 

 

 
Fig. 2.6. The S-shaped mean value function. 
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  Generally, the S-shaped curve can be explained by the fact that faults are 

neither independent nor of the same size. At the beginning of the testing, some faults 

might be “covered” by other faults. Removing a detected fault at the beginning does not 

decrease the failure intensity very much since the same test data will still lead to a 

failure caused by other faults. In a later phase, large faults are already removed and the 

remaining faults have small size so that the fault-detection rate is of moderate size. Also 

because there are not many faults left in the software, the coverage has no significant 

effect at the end of the testing phase. Another reason of the S-shaped behavior is the 

learning effect as indicated in Yamada et al. (1984).  

  Several different S-shaped NHPP models have been proposed in the existing 

literature. The most interesting ones are the delayed S-shaped NHPP model and the 

inflected S-shaped NHPP model. 

 

Delayed S-shaped NHPP model 

The mean value function of the delayed S-shaped NHPP model is 

)]exp()1(1[)( btbtatm −+−= ; 0>b ,      (2.27) 

This is a two-parameter S-shaped curve with parameter a denoting the number of faults 

to be detected and b corresponding to a fault detection rate. The corresponding failure 

intensity function of this delayed S-shaped NHPP model is 

)exp()exp()exp()1()()( 2 bttabbtabbtbtab
dt

tdmt −=−−−+==λ  

The expected number of remaining faults at time t is then 

)exp()1()()( btbtatmm −+=−∞  
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Inflected S-shaped NHPP model 

The mean value function of the inflected S-shaped NHPP model is 

[ ]
)exp(1
)exp(1)(

btc
btatm
−+
−−

= ; 0,0 >> cb  

In the above a is again the total number of faults to be detected while b and c are called 

the fault detection rate and the inflection factor, respectively. The intensity function of 

this inflected S-shaped NHPP model can easily be derived as follows. 

[ ]2)exp(1
)exp()1()()(

btc
btcab

dt
tdmt

−+
−⋅+

==λ  

Given a set of failure data, for both delayed and inflated S-shaped NHPP models, 

numerical methods have to be used to solve the likelihood equation so that estimates of 

the parameters can be obtained. 

 

2.2.3. Some other NHPP models 

Besides the S-shaped models, there are many other NHPP models that extend the 

GO-model for different specific conditions. 

 

Duane NHPP models 

Here, we will briefly describe some existing reliability growth models which inherit or 

modify the Weibull model properties. The first is the Duane model interpreted as a 

NHPP model for reliability growth, see e.g. Duane (1964). A modification of this model 

due to Littlewood (1984) is also presented. 
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  The Duane model is referred to as the Weibull process model assumes that the 

mean value function satisfies 

β

α






=

ttm )( , 0>α , 0>β       (2.28) 

In the above, α  and β  are parameters which can be estimated by using collected 

failure data. The mean value functions with 100=α  and different }2,1,5.0{=β  are 

depicted by the Fig. 2.7. When 1=β , the Duane NHPP model is reduced to a Poisson 

process whose mean value function is a straight line. 
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Fig. 2.7. Mean value functions of Duane NHPP models. 

 

The failure intensity function, )(tλ , can thus be derived as 

1

)()(
−
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β

αα
βλ ttm

dt
dt , 0>α , 0>β  

One of the most important advantages of the Duane model is that if we plot the 

cumulative number of failure versus the cumulative testing time on a log-log-scale, the 

)(tm  

t

5.0=β  

1=β  

2=β  
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plotted points tends to be close to a straight line if the model is valid. This can be seen 

from the fact that the relation between )(tm  and t can be rewritten as 

tbattm lnlnln)(ln +=+−= βαβ  

where αβ ln−=a  and β=b . Hence, )(ln tm  is a linear function of tln  and due to 

this linear relation, the parameters α  and β  may be estimated graphically and the 

model validity can easily be verified. 

  The Duane model gives an infinite failure intensity at time zero. Littlewood 

(1984) proposed a modified Duane model with the mean value function 




















+
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α
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t
ktm 1)( , 0>α , 0>β , 0>k  

The parameter k can be interpreted as the number of faults eventually to be detected.  

 

Log-power model  

Xie and Zhao (1993) presented a log-power model. The mean value function of this 

model can be written as 

)1(ln)( tatm b += ; 0, >ba , 0≥t     (2.29) 

This model has shown to be useful for software reliability analysis as it is a pure 

reliability growth model. It is also easy to use due to its graphical interpretation. The 

plot of the cumulative number of failures at time t against t+1 will tend to be a straight 

line on a log-loglog scale if the failures follow the log-power model. This can be seen 

from the following relationship 

)1ln(lnln)(ln tbatm ++=  

The slope of the fitted line gives an estimation of b and its intercept on the vertical axis 
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gives an estimation of aln .  

The above graphical approach makes it easy to validate the model and carry out 

the estimation of the parameters. This approach is also called as “first model validation 

and then parameter estimation”, see for details in Xie and Zhao (1993). 

  The failure intensity function of the log-power model can be obtained as 

t
tabt

b

+
+

=
−

1
)1(ln)(

1

λ  , 0≥t         (2.30) 

The failure intensity function is interesting from a practical point of view. The 

log-power model is able to analyze both the case of strictly decreasing failure intensity 

and the case of increasing-then-decreasing failure intensity function. For example, if 

1≤b , then )(tλ  of the above equation is a monotonic decreasing function of t; 

Otherwise given 1>b , )(tλ  is increasing if )1exp(0 −<≤ bt  and decreasing if 

)1exp( −≥ bt .  

  The estimation of the parameters a and b is simple. Suppose total n failures are 

detected during the a testing period ( ]T,0  and the times to failures are ordered by 

Tttt n ≤<<<< L210 . The maximum likelihood estimation of a and b is then given 

by: 

∑
=

+−+
= n

i
itTn

nb

1

)1ln(ln)1ln(ln

ˆ  
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)1(ln
ˆ ˆ T

na
b +

=  

They can thus be simply calculated without numerical procedures. 
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Musa-Okumoto model 

Musa and Okumoto (1984) is another model for infinite failures. This NHPP model is 

also called the logarithmic Poisson model. The mean value function is  

0),1ln()( >+= tbtatm           (2.31) 

This model can deal with the case that faults with larger size are found earlier. The 

failure intensity function is derived as 

 

bt
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=
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)(λ  

Given a set of failure time data },...,2,1,{ niti = , the maximum likelihood estimates of 

the parameters are the solutions of the following equations: 
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These equations have to be solved numerically. 

 

2.2.4. Other software reliability models 

Software reliability is an important research area that has thousands of papers. Some 

books that comprehensively review them are Xie (1991), Lyu (1996), Musa (1998) and 

Pham (2000). 

  Other than Markov models discussed in this chapter, Limnios (1997) analyzed 

the dependability of semi-Markov systems with finite state space based on algebraic 

calculus within a convolution algebra. Tokuno and Yamada (2000) constructed a 
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Markov model, which related the failure and restoration characteristics of the software 

system with the cumulative number of corrected faults, and also considered the 

imperfect debugging process together with the time-dependent property. Becker et al. 

(2000) presented a semi-Markov model for software reliability allowing for 

inhomogenities with respect to process time. Rajgopal and Mazumdar (2002) also 

presented a Markov model for the transfer of control between different software 

modules.  

For the NHPP models, Yamada and Osaki (1985b) summarized some existing 

software reliability growth models. Recently, some other NHPP models have been 

further developed. For example, Kuo et al. (2001) proposed a scheme for constructing 

software reliability growth models based on a NHPP model. The main focus is to 

provide an efficient parametric decomposition method for software reliability modeling. 

Huang et al. (2003) further described how several existing software reliability growth 

models based on NHPP can be comprehensively derived by applying the concept of 

weighted arithmetic, weighted geometric, or weighted harmonic mean. Pham (2003) 

recently presented studies in software reliability that includes NHPP software 

reliability models, NHPP models with environmental factors, and cost models. 

   Although the Markov and NHPP models are widely used in software reliability, 

some other models and tools might be also useful. Miller (1986) introduced “Order 

Statistic” models in studying the software reliability, which can also be found in the 

later research of Block et al. (1987), Kaufman (1996), Aki and Hirano (1996) etc. Xie et 

al. (1998) described a double exponential smoothing technique to predict software 
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failures. Helander et al. (1998) presented planning models for distributing development 

effort among software components to facilitate cost-effective progress toward a system 

reliability goal. Trivedi (2002) presented a tool called SREPT that allows users to 

analyze the effect of non-zero debug times to reflect more realistic scenarios. 

Littlewood et al. (2003) used the Bayesian inference to estimate the reliability of 

diverse fault-tolerant software-based systems. 

 

2.3. Models in Integrated Software and Hardware Systems 

A computing system usually integrates both software and hardware, and software 

cannot work without hardware’s support. Hence, system reliability should be analyzed 

by integrating both software and hardware influences.  

This chapter presents some reliability models on the system level in which the 

reliability analysis considers both software and hardware failures. First, a single 

processor integrating software and hardware is studied. Second, modular system 

reliability is discussed. Following that, Markov models for clustered computing system 

are presented. Then, a unified model that integrates NHPP software model into the 

Markov hardware model is shown. Finally, some other models developed for the 

integrated software and hardware systems are briefly reviewed. 

  

2.3.1. Single-processor model 

The simplest case for the integrated software and hardware system is to view it as a 

single processor which can be generally separated in two subsystems: software and 
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hardware subsystems. The software subsystem and hardware subsystem are considered 

as two different blackboxes, although integrated together, due to their distinct 

properties. Considering such type of system, Goel and Soenjoto (1981) presented one 

of the first Markov models. The assumptions of the model are listed below:  

1) A computing processor consists of a hardware subsystem and a software 

subsystem. The faults in the software subsystem are independent from one 

another and each has a failure occurrence rate of λ .  

2) Failures of hardware subsystem are also independent and have a failure 

occurrence rate of hλ .  

3) The time to remove a software fault, when there are i such faults in the system 

follows an exponential distribution with parameter iµ .  

4) The time to remove the cause of a hardware failure also follows an exponential 

distribution with parameter hµ .  

5) Failures and repairs of the hardware subsystem are independent of both the 

failures and repairs of the software subsystem.  

6) At most one software fault is removed and no new software faults are 

introduced during the fault correction stage.  

7) When the system is inoperative due to the occurrence of a software failure, the 

fault causing the failure is corrected with probability sp . Also, ss pq −= 1 , is 

the probability of imperfect repair of software.  

8) After the occurrence of a hardware failure, the hardware subsystem is recovered 

with probability, hp  and hh pq −= 1  is the probability for the hardware still 
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staying at the failed state after the repair. 

 

   Let )(tX  denote the state of the system at time t and ‘ itX =)( ’, i=0,1,…,N, 

implies that the system is operational while there are i remaining software faults,. Here 

N is the initial number of software faults. Also, ‘ sitX =)( ’, ssss Ni ,...,2,1= , implies 

that the system is down for repair of software with i remaining software faults at the 

time of failure. Similarly, ‘ hitX =)( ’, hhhh Ni ,...,2,1= , implies the system is down for 

repair of hardware with i remaining software faults at the time of failure. The Markov 

chain is shown in Fig. 2.8. 
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Fig. 2.8. Markov chain for the transitions between states of )(tX . 

 

Suppose that the system is at state i (an operational state containing i software faults), 

i=1,2,…,N. The system may fail due to the software failure with probability ip  to state 

si  and due to the hardware failure with the probability iq  to state hi . At state si , 

debugging process is undertaken to remove the fault that causes the software failure. 

With probability sp , the software fault is successfully removed and the system goes to 
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state i-1. Otherwise with probability sq , the fault is not removed and the software is 

only restarted at state i . For state hi , maintenance personnel will try to recover the 

hardware failure and it has a probability hp  to return to the operational state i and 

probability hq  to remain at the failure state hi . After the software is fault-free, i.e. at 

the state 0, the system reduces to a hardware system subject to hardware failures only.  

Then, the basic equations describing the stochastic process as a CTMC can be 

formulated, see for details in Goel and Soenjoto (1981). The solutions are used to 

derive some system-performance measures, such as time to a specified number of 

software faults, system operational probabilities, system reliability and availability, and 

expected number of software, hardware and total failures by time t.  

 

2.3.2. Modular system model 

Similar to the case of modular software presented in the previous chapter, integrated 

software and hardware systems can also be decomposed into a finite number of 

modules. Markov models can also be used in analyzing such modular systems as shown 

below. 

Siegrist (1988) might be one of the first models using Markov processes to 

analyze modular software/hardware systems. He assumed that the control of a system is 

transferred among modules according to a Markov process. Each module has an 

associated reliability which gives the probability that the module will operate correctly 

when called and will transfer control successfully when finished. The system will 

eventually either fail or complete its task successfully so that to enter a terminal state.  

The modules (or states) of the system is denoted by i (i=1,2,…,n). Usually, state 
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1 is designated as the initial state. The ideal (failure free) system is described by a 

Markov chain with state space },,2,1{ nK  and transition matrix P. That is, ijP  is the 

conditional probability that the next state will be j given that the current state is i. The 

reliability of state i, denoted by iR , is the probability that state i will function correctly 

when called and will transfer control successfully when finished. Equivalently, the 

system will fail with probability iR−1  each time state i is entered. The imperfect 

system is modeled by adding an absorbing state F (failure state) and modifying the 

transition probabilities appropriately. Specifically, the imperfect system is described by 

a Markov chain with state space },,,2,1{ FnK  and transition matrix P̂  given by 

ijiij PRP =ˆ ,  for i, j=1,…,n 

iiF RP −= 1ˆ ,  for i =1,…,n           (2.33) 

1ˆ =FFP                  

Suppose that 1<iR  for each i and hence each of the states n,,2,1 K  

eventually leads to the absorbing state F. Note that the dynamics of the imperfect 

system are completely described by the state reliability function R and the transition 

matrix P since this description is equivalent to specifying the transition matrix P̂  of 

the imperfect system. Then, based on the Markov model, Siegrist (1988) further 

presented the expected number of transitions until failure as the measure of system 

reliability. 

 

2.3.3. Clustered system model 

Introduction 
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Traditionally, highly reliable systems have employed proprietary fault tolerant software 

and hardware, implemented with tightly coupled replicated processors and programs. 

Through very effective in providing high levels of reliability, proprietary fault tolerant 

systems are expensive to develop and usually cannot keep pace with the computing 

industry technology curve, see e.g. Mendiratta (1998).  

Clustered computing systems uses commercially available computers 

networked in a loosely-coupled fashion. It can provide high levels of reliability if 

appropriate levels of fault detection and recovery software are implemented in the 

middleware (an application layers). The application, therefore, can be made as reliable 

as the user requires and it is constrained only by the upper bounds on reliability 

imposed by the architecture, performance and cost considerations. 

A cluster is a collection of computers in which any member of the cluster is 

capable of supporting the processing functions of any other member. A clustered 

computing system has a redundant kn +  configuration, where n  processing nodes 

are actively processing the application and k  processing nodes are in a standby state, 

serving as spares. In the event of a failure of an active node, the application that was 

running on the failed node is moved to one of the standby nodes.  

The simplest cluster system is one active and one standby, in which one node is 

actively processing the application and the other node is in a standby state. Other 

common cluster systems include simplex (one active node, no spare), n+1 (n active 

nodes, 1 spare), and n+0 (all n active nodes). In a system with n active nodes, the 

applications from the failed node are redistributed among the other active nodes using a 
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pre-specified algorithm. 

  Consider a general clustered computing system with n active processors and k 

spares, see e.g. Mendiratta (1998). In this system, there is a Power Dog (PD) attached to 

each processor that can power cycle or power down the processor, and a Watch Dog 

(WD) with connections to each processor that monitors behavior from each processor 

and initiate failover if it detects a processor failure. Then, the failover information is 

transferred to a switching system (SS) that can turn on the Power Dog of the standby 

processors to replace the failed ones. The block diagram for this clustered system 

architecture is shown in Fig. 2.9 and represents the system to be modeled. 

 

1 PD

2 PD

n PD

Active
Processors

WD SS

1

2

k

PD

PD

PD

Standby
Processors

 
Fig. 2.9. A general architecture of kn +  clustered computing systems. 

 

Markov Modeling 

For each processor, there are two types of failures: software and hardware failures. 

Suppose the failure rate for software is sλ  and for hardware hλ . If a system is 

repairable, the failed processor can be recovered with a repair rate iµ  from state i-1 

back to state i. The Markov model is built as the CTMC of Fig. 2.10. 
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n+k
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1
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1µ… 2µ1−nµ

… nµkn+µ

 

Fig. 2.10. CTMC for repairable clustered systems. 

 

In the above model for repairable clusters, iµ  is the expected system repair rate no 

matter whether the failed processors are caused by software failures or hardware 

failures. Actually, the rate for repairing software failure should be different from that 

for repairing hardware failure.  

Let sµ  be the rate to repair one failed processor caused by software failure and 

hµ  by hardware failure. Then part of the CTMC can be depicted by the Fig. 2.11. In the 

figure, 
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i, j 

i, j-1

i-1, j i+1, j 

i, j+1

sµ

sµ

hµ  hµ

)1,( −jisλ

),( jisλ

),1( jih −λ ),( jihλ

State(i,j): i hardware down, j software down (on 
different processors)  

Fig. 2.11. CTMC for repairable cluster with different software/hardware repair 
rate. 

 

The corresponding Chapman-Kolmogorov differential equation for the probability that 

the system is in the state (i, j) at time t is, for 1;,0, −+≤++≠ knjiknji , 

)(]),(),([)(              
)()1,()(),1()()(

,1,

1,,1,1
'
,

tPjijitP
tPjitPjitPtP

jihshsjis

jisjihjihji

µλλµµ

λλµ

+++−+

−+−+=

+

−−+    (2.34) 

The initial conditions are 

1)0(0,0 =P  and 0,,0)0(, ≠= jiforP ji      (2.35) 

The boundary conditions are: 

)()()()()( 0,01,00,1
'
0,0 tPntPtPtP hssh λλµµ +−+=  

1,...,2,1for)()],0(),0([

)()()1,0()()(
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'
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−+=+++−

+−+= +−

knjtPjj

tPtPjtPtP

jhssh
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λλµµ

µλµ
 

1,...,2,1for)()]0,()0,([
)()()0,1()()(

0,

1,0,10,1
'
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−+=+++−

+−+= −+

knitPii
tPtPitPtP

ihssh

isihihi

λλµµ
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   (2.36) 
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and 

)()()()( ,01,0
'
,0 tPtPttP knsknskn +−++ −= µλ          

The above equations can be numerically solved by certain computing programs, and 

then the system availability for the n+k clustered system can be calculated by 

∑
+<+

=
knji

ji tPtA )()( ,         (2.37) 

 

2.3.4. A unified NHPP Markov model 

In order to incorporate the NHPP software reliability model into the Markov hardware 

reliability model, Welke et al. (1995) developed a unified NHPP Markov model. The 

unified model is accomplished by determining a transition probability for a software 

failure and then incorporating the software failure transitions into the hardware 

reliability model. Based on this unified model, the differential equations can be easily 

established and solved despite the time-varying software failure rates. 

The basic assumptions of this unified model are listed below:  

1) Software failures are described by a general NHPP model, with the probability 

function 

),( tnP = )}(exp{
!
)]([})(Pr{ tm

n
tmntN

n

−== , n=0,1,2,….  (2.38) 

where )(tm  is the mean value function and n is the number of failures occurring 

up to time t. 

2) The times between hardware failures are exponentially distributed random 

variable. 
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For more details, see Welke et al. (1995). Based on the above equations, the differential 

equations can be obtained and solved as usual.  

 

2.3.5. Other models for integrated software/hardware systems 

Similar to the single-processor model presented in this section, Hecht and Hecht (1986) 

also studied the reliability in system context considering both software and hardware. 

Fryer (1985) implemented the fault tree analysis in analyzing the reliability of 

combined software/hardware systems, which determines how component failures can 

contribute to system failure. Sumita and Masuda (1986) developed a combined 

hardware/software reliability model where both lifetimes and repair times of software 

and hardware subsystems are considered together. Kim and Welch (1989) examined the 

concept of distributed execution of recovery blocks as an approach for uniform 

treatment of hardware and software faults. Keene and Lane (1992) reviewed the 

similarities and differences between hardware, software and system reliability. 

Recently, Pukite and Pukite (1998) summarized some simple models for the reliability 

analysis of the hardware and software system. 

  For the clustered systems, Laprie and Kanoun (1992) presented Markov 

models for analyzing the system availability. Later, Dugan and Lyu (1995) discussed 

the modeling and analysis of three major architectures of the clustered system 

containing multiple versions of software/hardware, and they combined fault tree 

analysis techniques and Markov modeling techniques to incorporate transient and 
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permanent hardware faults as well as unrelated and related software faults. Later, Lyu 

and Mendiratta (1999) studied the reliability modeling and analysis of the clustered 

system by defining the hardware, operating system, and application software reliability 

techniques that need to be implemented to achieve different levels of reliability and 

comparable degrees of data consistency.  

Recently, Zhang and Horigome (2001) studied the availability and reliability on 

the system level considering the time-varying failures that are dependent among the 

software/hardware components. Lai et al. (2002) studied the reliability of the 

distributed software/hardware systems, where Markov models were implemented by 

assuming that the software failure rate is decreasing while the hardware has a constant 

failure rate. Dai et al. (2003a) further studied the reliability and availability of 

distributed services which combined both software program failures and hardware 

network failures altogether.
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CHAPTER 3               

      PARALLEL HOMOGENEOUS 

DISTRIBUTED SYSTEM RELIABILITY 

 

 

Parallel homogeneous distributed systems are widely used in many areas. This chapter 

models and analyzes the reliability of such systems combining both software and 

hardware failures. Section 3.1 constructs a Markov model to analyze this type of 

systems assuming the debugging process is perfect, and then Section 3.2 extends the 

model to include the condition of imperfect debugging. Furthermore, Section 3.3 

makes thorough analysis of cost for the systems and presents an optimization model to 

determine the number of the redundancies. 

 

3.1. Models with Perfect Debugging Process 

3.1.1. Introduction 

The distributed computing systems have gained in popularity due to low-cost 

processors in the recent years. A distributed system is composed of several hosts 

connected to a network where computing functions are shared among the hosts. It 

provides many advantages over centralized systems, including high throughput, 
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cost/performance benefits, and potential for enhanced reliability. A typical application 

on distributed systems is distributed software of which identical copies run on each host. 

Examples of such applications can be found in communication protocols, networking 

software, and distributed database management systems, etc. 

System availability is a major concern in the distributed systems. It represents 

the percentage of time the system is available to users. Availability of distributed 

systems in terms of hardware can be obtained from conventional reliability theories. A 

more interesting measure is the availability of the whole software/hardware system. 

There are some related studies. Goel and Soejoto (1982) first considered the behavior 

of combined software and hardware system. A generalized model is also proposed in 

Sumita and Masuda (1986). Goyal and Lavenburg (1987) dealt with the availability 

issue. Some other related references are Laprie and Kanoun (1992), Garg et al. (1999), 

Trivedi (2001), Liu et al. (2002) and Chen et al. (2002).  

In fact, it is difficult to evaluate system availability of combined 

software/hardware systems, as explained by Lin et al. (1999), even for simple systems. 

Some models describing system availability of single-host based software/hardware 

systems with only one computer are presented in Goel and Soejoto (1982) and Sumita 

and Masuda (1986). We will emphasize on this topic in this section by extending some 

of their results. 

A typical kind of application on distributed systems has a homogeneously 

distributed software/hardware structure. The physical system is assumed to contain N 

software subsystems (SW1-SWN) running on N hosts (HW1-HWN) as depicted in Fig. 
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3.1.  

 

HW1
SW1

HW2
SW2

HWN
SWN

Network

Uncorrelated 

Requests

 
Fig. 3.1. A general homogeneous distributed software/hardware system. 

 

That is, identical copies of distributed application software run on the same type of 

hosts, called Homogeneous Distributed Software/Hardware System. This system may 

be implemented to provide services for uncorrelated random requests of customers. 

In this system, the software is usually improved during the testing phase. Since 

the system considers combined software and hardware failures as well as maintenance 

process, its reliability cannot be simply estimated by the above analytical methods for 

computing the distributed program reliability. The availability models and analyses of 

the homogeneous distributed software/hardware system are studied here. 

 

3.1.2. Availability model 

Actually, homogeneous distributed software/hardware system is a type of cluster 

system, which is a collection of computers in which any member of the cluster is 
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capable of supporting the processing functions of any other member Mendiratta (1998) 

and Lyu and Mendiratta (1999). A cluster has a redundant n+k configuration, where n 

processing nodes are necessary and k processing nodes are in spare state, serving as 

backup. In this subsection, our model is a cluster of N homogeneous hosts that are 

working in parallel. This means that if all of the N hosts failed, the system fails. 

Otherwise whenever one or more hosts can work, the system is still working. 

 The following are the assumptions concerning this system: 

(a) All the hosts have the same hardware failure rate λh arising from an exponential 

distribution. 

(b) Each of the hosts runs a copy of the same software with a failure rate function 

)(tsλ  of a given software model.  

(c) Both the software and hardware have only two states, up (working state) and 

down (malfunctioning state), which means all the failures of software or 

hardware are crash failures. 

(d) There are maintenance personnel to repair the system upon software or 

hardware malfunction. The repair time has an exponential distribution with 

parameter µs for software and parameter µh for hardware, respectively. 

(e) All the failures involved (either software or hardware) are mutually 

independent. 

(f) No two or more failures (either software or hardware) occur at the same time. 

    

There are some real cases of homogeneously distributed software/hardware 
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system in which all the hosts can work independently for random/unknown request. 

Such applications can also be found in telephone switching system and bank system etc. 

Most homogeneous distributed software/hardware systems that work independently 

under the case of uncorrelated random requests can implement our models. 

   Systems in practice can be complex and usually we have a multi-host situation. 

Lai et al. (2002) implemented a Markov process to model it. Fig. 3.2 illustrates a partial 

system state transition of the Markov process, in which (i, j) is the state when i hosts 

suffer hardware failures and j hosts suffer software failures.  

 

 

i, j 

i, j-1

i-1, j i+1, j 

i, j+1

sµ

sµ

hµ  hµ

)()1( tjiN sλ+−−  

)()( tjiN sλ−−

hjiN λ)1( +−− hjiN λ)( −−  

State(i,j): i hw down, j sw (on different hosts) down 

 

Fig. 3.2. The partial state transition graph for the N-host system. 

 

The corresponding Kolmogorov differential equation for the probability that the system 

is in the state (i,j) at time t is, for 1;,0, −≤+≠ NjiNji , 
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where 

hshsji tjiNjiNx µλλµ +−−+−−+= )()()(,    (3.2) 

The initial conditions are 

1)0(0,0 =P  and 0,for,0)0(, ≠= jiP ji  

The equations for the boundary states are: 
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,0 tPtPttP NsNsN µλ −= −            

The system availability for the N-host based system can be calculated by 

∑
<+

=
Nji

ji tPtA )()( ,          (3.4) 

Here, we assume each copy of software suffers a failure rate of the JM model (Jelinski 

and Moranda, 1972), i.e.  

φλ ts kt =)(  

To solve the above differential equations, we need to know the expected number 

of remaining software faults ( tk ). However, since tk  changes with software 

debugging, it is usually a function of time. We have used the following scheme for the 
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numerical calculation, as shown by Lai et al. (2002). According to the JM model, the 

probability of software having k remaining faults at time t is 

kKttk
k

K
tkP −−−⋅−








= 0)]exp(1[)exp(),( 0 φφ   for 00 Kk ≤≤   (3.5) 

Based on this equation, the expected number of remaining software faults at time t can 

be computed as 

∑
=

⋅=
0

0
),(

K

k
t tkPkk  

The system availability can be computed using any available numerical 

algorithm to solve the differential equations, such as the SHARP and so on. An example 

using our above Markov model to analyze availability of homogeneous distributed 

software/hardware system is numerically illustrated below. 

 

Example 3.1. We assume that the hardware failure rate is 0.02 and software failure rate 

per fault is 0.006. The repair rate for hardware is 0.1 while that for software is 0.12. Fig. 

3.3 depicts the result of system availability of a triple-host system with different 

number of initial faults. 
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K0=50 

K0=30 

K0=10 

λh=0.02; 
φ=0.006; 
µh =0.1; 
µs=0.12 

 0.9744 

 
Fig. 3.3. A typical curve of the system availability function. 

 

It can be seen from Fig. 3.3 that the system availability reaches the lowest point at an 

early stage. This is because a large number of faults are identified when software 

system testing begins. System availability starts recovering after the lowest point and 

approaches a certain value less than 1 asymptotically after a longer period of time. This 

is because identified faults are fixed and as a result software failure rate decreases. 

The initial software fault number affects the system availability only at the early 

stage. The more the testing time passes, the less effect the K0 has. In the end, the steady 

availability will be same as "fault free", no matter what the initial software fault number 

is.  
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3.2. Models with Imperfect Debugging Process 

In the above section, the model assumed that the debugging process was a perfect one. 

However, it is possible in reality that the fault that is supposed to have been removed 

may cause a failure again. It may be due to the spawning of a new fault by the imperfect 

debugging process, see e.g. Fakhre-Zakeri and Slud (1995), Sridharan and Jayashree 

(1998), Pham et al. (1999) and Tokuno and Yamada (2000). 

 

3.2.1. Markov modeling 

The assumptions used in this imperfect debugging model are almost the same as the 

assumptions (a-f) in earlier model except add the following assumption. 

(g) When a software failure occurs, repair starts with the following debugging 

probabilities: 

The software fault content is reduced by one with probability p 

The software fault content remains unchanged with probability r 

The software fault content is increased by one with probability q. 

This assumption is same as the birth-death process that was introduced in Kremer 

(1983). 

Fig. 3.4 illustrates a partial system state transition, in which (i, j, k) is the state 

when i hosts suffer hardware failures, j hosts suffer software failures and k is the 

number of remaining software faults at that time. Here N is the total number of hosts in 

the system. 
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Fig. 3.4. The state transition graph for the N-host system. 

 

The corresponding Chapman-Kolmogorov differential equation for the probability that 

the system is in the state (i, j, k) at time t can be obtained as: 
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where 
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01 =z  for Ni = , and 1 for otherwise 

02 =z  for Nj =  or 0Kk = , and 1 for otherwise 

03 =z  for Nj = , and 1 for otherwise 

04 =z  for Nj =  or 0=k , and 1 for otherwise 

05 =z  for 0=i , and 1 for otherwise 

06 =z  for 0=j , and 1 for otherwise 

hshskji dkjiNdjiNdqdrdpdB µλλµ 651321,, )()()()( +−−+−−+++=

 

and in the above 

01 =d  for 0=j  or 0=k , and 1 for otherwise 

02 =d  for 0=j , and 1 for otherwise 

03 =d  for 0=j  or 0Kk = , and 1 for otherwise 

04 =d  for Ni = , and 1 for otherwise 

05 =d  for Nj = , and 1 for otherwise 

06 =d  for 0=i , and 1 for otherwise. 

Let K0 be the initial number of faults in the software. Then the initial conditions are 

1)0(
0,0,0 =KP  and others are 0       (3.8) 

The solutions can be obtained by solving the above equations. 

The system availability at time t can be calculated as 
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kji tPtA        (3.9) 

Although those differential equations can be solved, the procedure becomes 

difficult when the number of hosts is large. Hence, some computing tools can be used to 
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solve them. An example is illustrated below. 

 

Example 3.2. In this numerical case, the software failures are assumed to follow the 

JM-model. For the multi-host systems with different number of hosts, the system 

availability functions can be obtained numerically. The curves of system availability 

functions for (N=2,3,4,5) are depicted in Fig. 3.5 with parameters  

µh=0.1536,  µs=0.1331,  p=0.831,  q=0.078,  

r=0.091,  K0=42,  0013.0=φ   and 005.0=hλ . 

 

 

N=2 

N=3 

N=4 
N=5 

µh=0.1536, 
µs=0.1331, 
p=0.831, 
q=0.078,  
r =0.091, 
K0=42, 

0013.0=φ  , 
005.0=hλ  

 
Fig. 3.5. The curves of system availability of different number of hosts. 

 

Fig. 3.5 shows a similar trend as that of Fig. 3.3. System availability reaches the lowest 

point at an early stage. After that period, system availability starts recovering because 
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identified faults are fixed and as a result software failure occurrence rate decreases. 

 

3.2.2. Other measures on the debugging process 

Besides the availability function, some other measures related to the imperfect 

debugging process are also important, such as the expected number of 

remaining/removed faults and the density function for removing the faults etc. 

 

The expected number of remaining/removed faults at time t 

The expected number of remaining/removed faults is an important measure in software 

quality analysis. The function of the expected number of remaining faults is denoted by 

)(tE , which can be expressed as 

 )(tE = )(
0

0
tPk k

K

k
∑
=

          (3.10) 

in which )(tPk  is the distribution of k remaining faults is described by the probability 

for the remaining software faults to be k at time t. It can be expressed by 

 )(tPk =∑∑
= =

N

i

N

j
kji tP

0 0
,, )(         (3.11) 

The expected number of removed faults at time t can be derived as 

 =)(tF )(0 tEK − = )(
0

0
0 tPkK k

K

k
∑
=

−       (3.12) 

Continued with the above example, the expected numbers of remaining/removed faults 

as a function of time t are depicted in Fig. 3.6. 
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 Expected number of faults 

t

)(tF  

)(tE  
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 : Remaining faults 

 
Fig. 3.6. Expected number of remaining/removed faults. 

 

From the Fig. 3.6, it can be observed that the expected number of remaining/removed 

faults is a decreasing/increasing function when testing time goes by. It is because the 

faults are debugged during the testing period and all of the faults are expected to 

remove eventually and ideally. 

 

The density function of the expected number of removed faults 

The density function of the expected number of removed faults is also important as it 

reflects the effectiveness of the imperfect debugging process. Therefore, this density 

function can be derived by  

 )(tf = =)(' tF )('
0

0
tPk k

K

k
∑
=

− = ∑∑∑
= = =

−
0

0 0 0
,, )('

K
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i

N

j
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Substituting )(' ,, tP kji  into the above equation, the fault removal rate can then be 

numerically computed. Continued to the above example, the density function is 
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depicted by Fig. 3.7. 

At the beginning, the density function increases quickly as curve (a) in Fig. 3.7. 

The reason may be that the faults are being emerged at the beginning time. After the 

peak point, it decreases and trends to 0 as curve (b) in Fig.3.7. This property of density 

function to increase first and then decrease shows that the density function of removed 

faults for the imperfect debugging is slightly S-shaped.  

 

 

)(tf

t  

   (a) Initial phase               (b) Long-term trend 

Fig. 3.7. Density function of the expected number of removed faults. 
 

3.3. Optimal Number of Redundant Hosts 

An important goal in the design of the parallel homogeneous distributed 

systems is to achieve a high reliability or availability through some kind of 

redundancy (such as redundant hosts) or fault tolerance. Many systems are developed 

in the environment with redundant hosts. The number of redundant hosts has 

significant influence on the cost and system availability because it can be very costly 

while they are able to improve system availability easily. How to optimally design the 
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number of redundant hosts is an important decision in the systems. The objective here 

in system design is to minimize the total cost based on the following cost model. 

 

3.3.1. The cost model 

In order to illustrate the relationships among the decisions and cost, an influence 

diagram, which provides simple graphical representations of decision situations, is 

displayed in Fig. 3.8. Different decision elements are shown in the influence diagram as 

of different shapes, see e.g., Clemen (1995 pp. 50-65).  

The number of redundant hosts will affect the optimal decision of the release 

time. Both the number of redundant hosts and release time will affect the system 

availability. These three factors determine the development cost. The number of hosts 

also determines the cost of redundant hosts. The release time determines the rewards or 

penalty depending on whether the release is before or after the deadline. If the system is 

unavailable after release, a risk cost is incurred. Hence, the cost of redundant hosts, the 

development cost, reward and penalty should be considered together when deriving the 

total expected cost. Each cost component will be described in the following. 
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Fig. 3.8. Influence diagram for the cost affected by redundant hosts. 

 

Cost of redundant hosts 

The cost function for a multi-version fault-tolerant system can be described as a linear 

function to the number of versions. This is used in Laprie et al. (1990) originated 

from Boehm (1981), and we have 

11)( bNaNCh +=         (3.14) 

where N is the number of hosts, 1b  is a constant, and 1a  is defined as the expected 

cost per host. Here we have assumed the redundant hosts used in the system are of the 

same type. 

 

Reward for early release 
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Usually there is a deadline for release. This is the case when the penalty cost for delay 

is very high and the system has to be released even if it is not as reliable, with the 

consequence of high maintenance and other costs. On the other hand, because of the 

competitive market place, there is a reward for releasing the system earlier. We 

assume 2b  is a constant rewarded if the system can be released in time, no matter 

how early the release time is and 2a  is the expected reward per unit time before the 

deadline. Thus, the reward function of the release time can be expressed as 

22 )()( btTatB rdr +−= ,  tr < Td      (3.15) 

where Td is the deadline for release, tr is the release time so that rd tT −  is the time 

ahead of the schedule.  

 

Risk cost for system being unavailable 

After the system is released, there is a risk for it to be unavailable, and there are 

contractual consequences. This cost factor is generated by the unavailable system after 

releasing, termed risk cost as in Pham and Zhang (1999). Here we assume the risk cost 

for unavailable system is a function of system availability and release time: 

dttAatNC
e

r

T

t
Nrr ∫ −= )](1[),( 3       (3.16) 

where tr is the release time, Te is the ending time for contracted maintenance after 

release, )(tAN  is the availability function at time t for N-host system, and  a3 is the 

risk cost per unit time when the system is not available. In the equation above, 

)(1 tAN−  is the probability for the system to be unavailable at time t. Hence, the 

integral above is the expected time for the system to be unavailable from rt  to eT .  
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Development cost 

Since our focus is on system integration testing with the emphasis on software testing 

and debugging, software development cost includes the cost occurring in 

testing/debugging phase to improve the software reliability. The development cost 

function for a single software module proposed in Kumar and Malik (1991) is  

)exp()( iiiiii DRBHRC −=        (3.17) 

where Hi, Bi and Di are constants and Ri is the individual module software reliability 

achieved at the end of testing. These parameters are explained in Kumar and Malik 

(1991). Briefly, the cost is exponentially increasing to the improved reliability of a 

single module.  

 Then, the total expected cost can be expressed as 

=),( rtNC )(NCh + ),( rr tNC + ( ))( rt tRC - )( rtB     (3.18) 

 

3.3.2. System availability 

An important problem is to obtain the system availability function for calculating the 

risk cost. The availability of a system is affected by both software and hardware 

components. The system availability model for a homogeneous distributed 

software/hardware system can be obtained straightforward from section 3.1. A 

numerical example is shown below. 

 

Example 3.3. Suppose 320 =K  and λ =0.006, hλ =0.01, hµ =0.1 and sµ =0.13, the 
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system availability for different number of hosts can be obtained from the analysis 

presented in section 3.1. The results are depicted in Fig. 3.9. 

 

 

N=1 

N=2 
N=3 

Availability 

Time (hr)

N=4 
N=5 

 
Fig. 3.9. System availability for different number of redundant hosts. 

 

We can observe that when the number of redundant hosts increases, the system 

availability increases. The system availability function can be used in the optimization 

model which will be described in the following.  

 

3.3.3. Optimization model and solution procedure  

The optimization model is based on the cost criteria and the decision variables are the 

number of redundant hosts and the release time. Its objective is to minimize the 

expected total cost. There are three types of constraints in this decision problem. First, 
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the customers may require a least system availability *A  after the release. Second, there 

is a deadline for the system to be released so the release time should be earlier than that. 

Finally, the customers may limit the maximum number of redundant hosts *N  due to 

their budget and other physical restrictions.   

The optimization model is then constructed as follows. 

Decision variables:  N and rt . 

Objective function: Minimize{ }),( rtNC          

Subject to:    0)( * ≥≥ AtA rN             

dr Tt ≤≤0           

*,...,3,2,1 NN =          

where *A  is the required system availability after the release, dT  is the deadline for 

release and *N  is the maximum number of redundant hosts allowed because of any 

physical such as space constraints. If there is no such constraint, we can assume a large 

enough value of *N  in this model. However, usually only a small number of 

redundant hosts will be practical. 

For obtaining the optimal solution, the solving procedures are described as 

follows.  

Step 1: Derive the system availability function of the distributed system with N 

redundant hosts, 

Step 2: Derive each cost function and obtain the expected total cost, 

Step 3: Let N take each integer value from 1 to *N  to obtain the expected total 

cost and save the results from ),1( rtC  to ),( *
rtNC , which does not 
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break the constraints, 

Step 4: For each expected total cost in ),1( rtC  to ),( *
rtNC , compute the 

optimal release time, and save the results as OpTr(1) to OpTr( *N ) , so 

that we can get the minimal expected total cost and save them in MinC(1) 

to MinC( *N ) that MinC(n)=C(n,OpTr(n)) (n=1,2,…, *N ), 

Step 5: Compare the minimal total mean cost from MinC(1) to MinC( *N ) in 

order to select the optimum number of redundant hosts 

OpN= ( )MinC(n)Min  (n=1,2,…, *N ) and output the results. 

 

The above procedure can be easily realized in Matlab or other computational programs. 

It is noted that usually the number of redundant hosts is not very large. A numerical 

example is presented to illustrate the optimization procedures. 

 

Example 3.4. This application example is based on a telephone switching system 

development. Company X was awarded a contract to develop the system for a customer. 

After the development, testing and debugging are carried out, especially on the 

software systems. In this case, the hardware hosts are brought from external suppliers, 

but the software is developed in house and tested with the system. The management is 

concerned of how many redundant hosts are needed and also when the system can be 

released so that the total cost is minimized. For illustrative purpose, the following input 

values are used: 
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1. The customer requires the system availability to be higher than 0.88 when it is 

released. 

2. The deadline for releasing the system is about 800 hours from now on. 

3. By contract, the company will be penalized for unavailable system about $8000 per 

hour during the first 300 hours after release. 

4. Each redundant host cost about $17600 and the other fee for all the hosts is about 

$1293, such as installation fee software copyright fee and etc. 

5. The maximum number of redundant hosts is five. 

6. If the company can release the system earlier than the deadline, there is a constant 

reward of $2123.7 and a cumulative reward of $31.5 per hour less than the deadline. 

 

Based on the conditions and the assumptions given above, the values of the 

parameters can be obtained as  

1a  =17600, 1b  =1293, 2a  =31.5, 2b  =2123.7, 3a =8000, dT =800 hours,  

and  

1100300800 =+=eT  hours.  

The parameters for software development cost (4.27) are assumed as H=10232, 

B=16, D=14. The optimization problem can be solved with the required system 

availability when releasing, *A , of 0.88 and the maximum number of redundant hosts, 

*N , equal to 5. 

Here we assume the system is a kind of homogeneous distributed 

software/hardware system whose availability function is depicted by Fig. 3.8. With the 
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values of parameters given above, we can obtain the total mean cost through Eq. (3.18) 

as  

=),( rtNC N17600 + rt5.31 + dttA
rt

N∫ −
1100

)](1[8000 +10233 −− }14)(16exp{ rtR 26030.7 

Finally, the total expected cost as a function of release time for different number of 

redundant hosts are depicted by Fig. 3.10 and the overall results are given in Table 3.1.  

 

 

tr (hr) 

Cost TMC(2,tr)

TMC(3,tr) 

TMC(4,tr)

TMC(5,tr)

 

Fig. 3.10. Total mean cost vs. release time of different number of hosts. 
 
 

Table 3.1. Numerical values of the minimum cost for different N. 

N 1 2 3 4 5 
MinC(N) 326970 153060 116690 104580 110880 
OpTr(N) 800 800 324.2 261.7 232 
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From the Table 3.1, the global minimum cost is 104580 (Units) with the number of 

redundant hosts N=4 and the optimum release time rt =261.7 (hrs). The optimum 

results indicate that there should be four redundant hosts and the system is tested for 

261.7 hours. 

 

3.4. Conclusion 

This chapter studied the parallel homogeneous distributed systems with perfect and 

imperfect debugging process, respectively. Then, it conducted a cost analysis for the 

systems and presented an optimization model to determine the number of the parallel 

redundancies and the best release time.  

  However, this chapter assumed that all the processors in the systems were 

homogeneous, which is not always true in the distributed system analysis. Hence, the 

next chapter will extend it to study a kind of heterogeneous distributed system and 

analyze its behavior and reliability from the service point of view.
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CHAPTER 4               

   CENTRALIZED HETEROGENEOUS 

DISTRIBUTED SYSTEM RELIABILITY 

 

 

4.1. Introduction 

Most of the computing systems can be modeled as a centralized heterogeneous 

distributed system, which is the same common as the parallel homogeneous distributed 

system discussed in the previous chapter. This type of system consists of some 

subsystems managed by a control center. For example of a system with Client/Server 

structure, every Client in the sub-distributed systems is managed by a control center of 

Servers.  

Since the computing systems are developed to provide different services with 

specific objectives such as running a computer program, controlling a production 

process, and completing some other tasks, the service reliability of the distributed 

system is a key point of the QoS (Quality of Service). A definition of distributed service 

reliability can be the probability to successfully provide the service in a distributed 

environment. This is the definition that will be adopted in this chapter. The service 

reliability in a centralized heterogeneous distributed system is determined not only by 

the system availability of the control center, but also by distributed program reliabilities 
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of the subsystems.  

The system availability of the control center is of major concern because an 

unavailable control center will sometimes cause critical problems to a service, see e.g. 

Pham et al. (1997) and Sols and Nachlas (1995). Srinivasan and Jha (1999) described a 

method to determine an allocation that introduces safety into a heterogeneous 

distributed system and at the same time attempts to maximize its availability. There is 

some research on increasing system availability, see e.g. Lutfiyya et al. (2000). Goel 

and Soejoto (1981) first considered the behavior of combined software and hardware 

system. A generalized model is also proposed in Sumita and Masuda (1986). Markov 

models are also implemented to analyze the system availability, which combines both 

software and hardware failures and maintenance processes, see e.g. Welke et al. (1995) 

and Lai et al. (2002). 

On the other hand, the reliability of each program in the system is also important 

to a service. The distributed program reliability is defined as the probability of 

successful execution of a program running on multiple processing elements and it 

needs to retrieve data files from other processing elements. Kumar et al. (1986) 

proposed a useful notion called a Minimal File Spanning Tree (MFST) and developed 

an algorithm also called MFST to find MFSTs within a graph. To improve the MFST 

algorithm, there are some further developed algorithms, see e.g. Kumar et al. (1988), 

Chen and Huang (1992), Kumar and Agrawal (1993), Chen et al. (1997) and Lin et al. 

(1999).  

However, most of the earlier research on system availability or distributed 
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program/system reliability cannot be simply implemented to analyze the service 

reliability of the centralized heterogeneous distributed systems because it is affected by 

many factors including system availability, software/hardware/network reliability. This 

chapter studies the property of centralized heterogeneous distributed system and 

develops a general model for the analysis. Based on the model, algorithms to obtain the 

service reliability of the system are also presented.   

This part is organized as follows. Section 4.2 presents a model for a centralized 

heterogeneous distributed system (CHDS), and develops a solution algorithm for the 

distributed service reliability in CHDS. Then, an application example is illustrated to 

illustrate the procedure and the feasibility of the algorithm. Furthermore, we analyze 

the behavior and sensitivity of the system availability function in Section 4.3, which are 

important issues in the application of this type of model. 

 

4.2.  CHDS and Analysis  

4.2.1. Description of the systems and services 

Service of Centralized Heterogeneous Distributed System and its reliability 

The structure of the Centralized Heterogeneous Distributed System is depicted by Fig. 

4.1. The control center may consist of many servers. These servers support a virtual 

machine. The virtual machine can manage programs and data from heterogeneous 

subsystems through virtual nodes. The virtual nodes can mask the differences among 

various platforms. They are a kind of virtual executing elements, which only includes a 

basic unit for executing data, i.e. CPU and Memory. The entities of virtual machine and 
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virtual nodes are supported by the software and hardware in the control center. 

The heterogeneous sub-distributed systems are composed of different types of 

computers with various operating systems connected by different topologies of 

networks. These subsystems exchange data with virtual machine through System 

Service Provider Interface (SSPI). They are connected with virtual nodes by routers. 

They can cooperate to achieve a distributed service under the management of the virtual 

machine. 
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Fig. 4.1. Structure of the centralized heterogeneous distributed service system. 

 

Most of the computing systems can be categorized as centralized heterogeneous 

distributed systems. For example, in modern warfare, each soldier can be considered as 

an element in a military system and furnished with different electrical equipments for 

diverse purposes. The information collected from each soldier is sent back to a control 
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center through wireless communication channels. Then, the control center can analyze 

all the information and send out commands to respective soldiers. The functions of 

different groups of soldiers are diversified in a war (such as attacking, defending, 

supplying, saving etc.) so their electrical equipments should also be heterogeneous. 

Thus, it is a typical Centralized Heterogeneous Distributed System, as depicted by Fig. 

4.2. 
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Fig. 4.2. A simple and abstracted military system. 

 

   The whole process for a service provided by a system is repeated so the 

reliability analysis of a distributed service is crucial for a distributed system. The 

distributed service reliability is defined as below. 

 

Definition 6.5. Distributed service reliability is the probability for a service to be 

successfully achieved in a distributed computing system. 

 

Model of distributed service reliability 
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In a distributed service system, a service includes various distributed programs 

completed by diverse computers. Some later programs might require several precedent 

programs to be completed. Every program requires a certain execution time. The 

execution of some programs might require certain input files that are saved or generated 

in different computers of the distributed systems. The overall distributed service 

reliability depends on the reliability of a program, the availability of input files to the 

program and the system reliability of the subsystem.  

The reliability of a service is determined by the distributed programs reliability 

in each subsystem and the availability of the control center. If a service can be achieved 

successfully, the programs running in every subsystem must be successful. The virtual 

machine should be available at the moment when any program needs certain input file 

prepared in the virtual machine. It has to be also available during the period when the 

programs are being executed in the virtual machine.  

It can be obtained through the critical path method, see e.g. Hillier and 

Lieberman (1995), that the time point when the programs require the files prepared in 

the virtual machine ( j
bfT ),  j=1,2,…J. We can also obtain the starting time when the 

programs run in the virtual machine ( k
bpT ) and the corresponding execution time period 

for those programs ( k
exT ), k=1,2,…,K. 

  It is noted that )(tA  is the availability of the virtual machine at time t. We also 

assume that the programs require input files at the beginning time, j
bfT , so the 

availability of the input files can be calculated as 

 )()( j
bff TAjP =  = )( j

bfTA ,  j=1,2,…J      (4.1) 
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It is assumed that the virtual machine has to be available from the beginning to the end 

when a program runs in it; otherwise, the program fails. The average availability of the 

programs, which start at time k
bpT  with the execution time period k

exT , can be 

calculated as 

 k
ex

TT

T
pr TdttAkP

k
ex

k
bp

k
bp

/)()( ∫
+

= = k
ex

TT

T

TdttA
k

ex
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/)(∫
+

,  k=1,2,…,K      (4.2) 

Let N be the number of subsystems. The distributed system reliability for the 

i:th subsystem is denoted by DSRi (i=1,2,…,N) where the virtual machine is viewed as a 

perfect node in each sub-distributed systems at first. The DSRi (i=1,2,…,N) can be 

computed by the various algorithms presented in the previous section. Then, the 

availability of the virtual machine is incorporated into the distributed service reliability 

together with the DSRi.  

In order to calculate distributed service reliability, some additional assumptions 

on statistical independence are needed:  

1) DSRi (i=1,2,…,N) is assumed to be mutually independent;  

2) The files prepared in the virtual machine are also mutually independent;  

3) The programs running in the virtual machine are mutually independent.  

Although the independence assumption may not always be true, they are first 

order approximation.  

The distributed service reliability function to the initial time, bt , can be 

calculated by 

)( bs tR =∏ ∏ ∏
= = =

N

i

J

j

K

k
prfi kPjPDSR

1 1 1

)()(      (4.3) 
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In this calculation, the evaluation has two steps: 1) given the virtual machine (VM) is 

always available (or called perfect) when its programs are executed and its files are 

used, the service reliability is determined by the reliability of those subsystems, 

calculated by ∏
=

N

i
iDSR

1

; 2) the availability for the programs and files in the virtual 

machine can be computed by ∏
=

J

j
f jP

1

)( ∏
=

K

k
pr kP

1

)( , so that according to the conditional 

probability, we get 

 )( bs tR =Pr(service reliability| VM’s programs and files are available)×Pr(VM’s 

programs and files are available) =∏ ∏ ∏
= = =

N

i

J

j

K

k
prfi kPjPDSR

1 1 1

)()( . 

 

 

Algorithm for distributed service reliability 

In applying the general approach, we will need the system structure and then the above 

model can be used. The algorithm for the calculation of the distributed service 

reliability can be presented as the following six steps: 

Step 1: Identify the structure of Centralized Heterogeneous Distributed System 

and relationship between programs and files; 

Step 2: Obtain the availability function of the virtual machine with any existing 

models; 

Step 3: Let the virtual machine to be a perfect node in every subsystem and 

calculate DSRi (i=1,2,…,N); 

Step 4: Using the critical path method to determine j
bfT (j=1,2,…J) and k

bpT , k
exT  



Chapter 4 Centralized Heterogeneous Distributed System Reliability 

 93

(k=1,2,…,K); 

Step 5: Calculate )( jPf  and )(kPpr ; 

Step 6: Calculate the distributed service reliability function to the initial time, bt .  

 

Note that we can implement different models and methods to calculate distributed 

service reliability. For subsystems, the DSRi can be calculated through the algorithms, 

e.g. MFST (Kumar et al., 1986), FST (Chen and Huang, 1992), HRFST (Chen et al., 

1997) etc. For the availability function of the virtual machine )(tA , it can be calculated 

through the models presented by Lai et al. (2002).  

 

4.2.2. A case study 

The system structure  

The structure of this distributed service system is described in Fig. 4.3. The service 

includes the programs and files as shown in Table 4.1. The execution time, required 

files and precedent programs are given in Table 4.2.  

In Fig. 4.3, there are three subsystems. The network topologies are various, in 

which “R” means router. Table 4.1 shows the programs and prepared files arranged in 

the distributed system. Table 4.2 shows the relationship between programs and their 

precedent programs. If there are no precedent programs for a program, it can run at 

initial time if input files are available. Table 4.2 also shows the input files and execution 

time for every program. If there are no input files required by a program, it means the 

program can run immediately after its precedent programs are completed.  
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Fig. 4.3. A centralized distributed service system. 

 

Table 4.1. The programs and prepared files in different nodes. 

Node 1 2 3 4 5 6 7 8 
Progs P1 P4 P2,P3 P2,P3 P4 P5,P7 P6 P7 
Files F1,F5 F1,F2 F2,F5 F2,F5 F3,F6 F6 F7, F8, F9 F7,F8,F9

 
Node 9 10 11 12 13 14 Virtual Machine 
Progs P5,P6 P8,P11 P9 P10 P9,P10 P8,P11 SP1,SP2,SP3,SP4 
Files F6 F10,F11,

F12 
F11 F10 F12 F10,F11

F12 
F4,F13,F14 

 

IBM RS/6000 
Unix (AIX 4.3) 

Sun Workstation 
Sun Solaris 2.5

Compaq Pentium 

IBM Mainframe (ES/9000) 

MVS (Multi Virtual Systems) 
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Table 4.2. Required files, precedent programs and execution time for programs. 

Programs Required Files Precedent Programs Execution Time ( exT ) 

P1 F1,F2,F3 ------ 5 
P2 F2,F4,F6 ------ 25 
P3 F1,F3,F5 P1,P2 32 
P4 F1,F2,F4,F6 SP1,SP2 33 

SP1 F6 P3,P6 43 
P5 ------ ------ 17 
P6 F6,F13,F9 P5 19 
P7 F6,F8 SP2,SP3 21 

SP2 F2,F11 P9,P10 16 
P8 ------ P1 45 
P9 F11,F12 P5 121 
P10 F11,F14 SP1 37 
SP3 F3,F8 P8,P10 21 
P11 F14,F10,F12 SP3 32 
SP4 F5,F12 P4,P7,P11 20 

 “------” means no precedent programs or no input files. 

 

The availability function  

The failures of the virtual machine is assumed to follow the JM model (Jelinski and 

Moranda, 1972) with the failure intensity function  

tt kk ⋅= φλ )( , 00 Kkt ≤≤       (4.4) 

where φ  is the expected failure rate per fault, tk  is the expected number of remaining 

faults at time t and 0K  is the initial number of faults. The parameters of 0K  and φ  

are assumed to be 10 and 0.01, respectively. 

We also assume that there are maintenance personnel to repair the failure of the 

virtual machine and the repair time is exponentially distributed with parameter 

5.0=µ .  

  The virtual machine has two states: state 0 is the working state and state 1 the 
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malfunctioning state, with transition rate )( tkλ  (from 0 to 1) and µ  (from 1 to 0). 

Let )(0 tP  be the probability for the virtual machine to be working at time t, and )(1 tP  

be the probability for it to be at a malfunctioning state at time t. The corresponding 

Chapman-Kolmogorov differential equations are 

 )('0 tP = )()()( 01 tPktP tλµ −        (4.5) 

where tk  can be obtained by 
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Also the following equation is satisfied at any time t, 

)(1 tP = )(1 0 tP−            (4.8) 

Together with the initial conditions )0(0P =1, )0(1P =0, the availability function can be 

obtained as 
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The distributed system reliability 

The distributed system reliability from the left subsystem to the right subsystem in Fig. 

4.3 is denoted by DSRi (i=1,2,3). The three subsystems can be separated as shown in 

Fig. 4.4. 
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Fig. 4.4. The separated subsystems from Fig. 4.3. 

 

VMi (i=1,2,3) represents the virtual machine used in subsystem i. DSRi ( i=1,2,3) can 

then be calculated numerically with the assumptions that all the nodes are perfect and 

the probability for every communication edge to be available is 0.99. Hence, we can 

obtain the result of DSR1=0.9998 through the HRFST algorithm (Chen et al., 1997). In 

the same way, we get DSR2=0.9699 and DSR3=0.9975. 

 

The distributed service reliability function 

The critical path graph, see Hillier and Lieberman (1995, pp. 389-395) for details, of 

this example given in above Table 4.2 is drawn in Fig. 4.5. 
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Fig. 4.5. Critical Path for Table 4.2. The value marked on the edge is the 
execution time and those on the node is the starting time and the black-dashed 

lines is the critical path. 

 

From the critical path shown in Fig. 4.5 and Table 4.2, j
bfT  (j=1,2,…,5) can be shown 

to be { bt , bt +17, bt +100, bt +154, bt +158} for the programs {P2, P6, P10, P4, P11} 

using the files prepared in the virtual machine. We can also get k
bpT  (k=1,2,3,4) to be 

{ bt +57, bt +137, bt +138, bt +190) and the corresponding execution time period k
exT  

to be {43, 21, 16, 20} for the programs {SP1, SP2, SP3, SP4} executed in the virtual 

machine. 

Then, we can get  

)( jPf = )( j
bfTA , j=1,2,…,5 

in which j
bfT   is { bt , bt +17, bt +100, bt +154, bt +158} and  

)(kPpr = k
ex

TT

T

TdttA

k
ex

k
bp

k
bp

/)(∫
+

, k=1,2,3,4 

in which k
bpT  is { bt +57, bt +137, bt +138, bt +190)  and  k

exT   is {43, 21, 16, 20}. 



Chapter 4 Centralized Heterogeneous Distributed System Reliability 

 99

Thereafter, we can obtain the distributed service reliability function to service 

starting time bt  as 

)( bs tR =∏ ∏ ∏
= = =

3

1

5

1

4

1

)()(
i j k

prfi kPjPDSR  

This distributed service reliability function has the form displayed in Fig. 4.6. 

 

 
Fig. 4.6. Typical distributed service reliability function to service starting time. 

 

From Fig. 4.6, it can be observed that the lowest service reliability is not at the initial 

time point when the software failure rate of the virtual machine is the highest. This is 

because we assumed that the initial state for the virtual machine is up (working). When 

bt  is larger than the lowest point, the distributed service reliability increases. It is 

because those identified bugs of the virtual machine are fixed, which results a decrease 

in the failure rate. Towards the end, the distributed service reliability approaches a 

steady value of 0.9673. It is obtained by the reliability of subsystems that cannot be 

improved by debugging the control center: 

Service 
Reliability

bt  
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∏
=

3

1i
iDSR = 0.9998×0.9699×0.9975=0.9673 

When the availability of the virtual machine approaches 1, the distributed service 

reliability is approaching to 0.9673. 

 

4.3. Further Analysis and Application of the General Model 

With specific input parameters, the distributed service reliability can be computed. Via 

the modeling and further analysis, some general conclusions can be drawn. The VM in 

the control center is the heart of the CHDS, and hence, the system availability )(tA  of 

the VM is critical to the distributed service reliability. In order to achieve a high 

reliability of the service, the control center should be equipped with sufficient 

maintenance personnel to repair the failures of the VM. The availability function of the 

VM can help the decision maker to allocate maintenance personnel effectively at 

different stages and decide the release time that reaches certain pre-required system 

availability. In this section we discuss some related analysis that makes use of the 

general model that could be of importance in practical applications. 

 

4.3.1. A general approach 

The system availability reaches the lowest point at an early stage. This is because a 

large number of faults are identified when system testing begins. The system 

availability starts recovering after the lowest point and approaches to a steady value 
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after a long period of time. This is the case when identified faults are fixed. The time at 

which the system availability reaches its minimum is important. Around the minimal 

system availability time point *t , a significant amount of effort needs to be put into 

fault fixing and system testing to help increase system availability of the VM quickly. 

When the faults are fixed, the system availability recovers, and effort on fault fixing 

and testing can be reduced accordingly. Eventually, only a few faults will be left. At this 

stage, the manpower for the fault fixing and system testing of the VM can be moved to 

somewhere else. Hence, the minimum system availability time point *t  is an important 

indicator for the managers of the control center to distribute the resources on the VM at 

different stages.  

  It is easy to calculate the time of minimum system availability if the 

availability function of the VM, )(tA , is known. By differentiating )(tA , and then 

solving )(' tA =0, we can get the solution that is the minimum time point *t . 

  Furthermore, if the management wants to know the time when the system of 

VM reaches certain availability level LA , the system availability function )(tA  can 

also be used by solving the equation of )(tA = LA . Its solution can help the managers to 

decide the release time of the VM accordingly. For example, the customers may require 

the system availability to be at least LA . Hence, we need to know the time point when 

the system availability reaches this required system availability level. The testing can 

be stopped and the system can be released after that. 

  Another important issue in this type of analysis is the sensitivity studies. 

Usually the model parameters are assumed to be known. A deviation from the assumed 
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value could lead to significant difference between the actual and the calculated values. 

To minimize the error, effort should be allocated to obtain accurate estimates of the 

important parameters. Since a number of parameters are involved, it is useful to identify 

the ones that influence the results most. Sensitivity analysis of the parameters is highly 

recommended. This type of results can help decision makers and analysts to better 

allocate the resources.   

 

4.3.2. The application example revisited 

To clearly address some of the issues raised in the previous section, we revisit the 

application example in Section 4.2 with some further analysis. This type of study is 

important in system studies and for the management to fully make use of the modeling 

and analysis. 

 

Minimum system availability of the VM 

The minimum availability point can be obtained by taking the derivative of Eq. (4.9) 

and set it to be zero. That is 
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We can easily obtain the value of t* numerically or using Maple or Mathematica, or 

other symbolic software. 

  For example, with parameters 0K =10, φ =0.01 µ =0.5, Eq. (4.10) can be 

solved by Maple that t*=8.88 and the minimum system availability A(t* )=0.8453. 

 

Time to achieve a required system availability 

Suppose that the customers require the system availability to be at least LA  when 

release.  From the Eq. (4.9), the result can be obtained by solving the following 

equation 

}exp{)exp(}exp{)( 00
0

0
x

t
x eKtKdxeKxtA φφ µµµ −− +−⋅








−+−= ∫ = LA    

 (4.11) 

Since there are two solutions, we require that *tt ≥  where *t  can be solved by (4.10) 

first. 

  A simple approximation is presented here for solving (4.11) and carrying out 

further analytical study. In a Markov Chain, there is a transition time from initial state to 

steady state. We assume that it takes more time between the initial time and the release 

time of the test than the transition time of the Markov process. Based on the assumption, 

from the equations for long-run Markov chain (Hillier and Lieberman, 1995 pp. 

640-642), we get 

 )(tA = )(0 tP =
µφ

µ
φ +− teK 0

     (4.12) 

In order to calculate the time point that is satisfied with the customers’ requirement LA , 
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let )(tA = LA  and t can be obtained as 
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φ 0
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     (4.13) 

  

Sensitivity analysis 

There are three parameters in the availability function (4.9), 0K , φ  and µ . The 

sensitivity of different parameters is described in Fig. 4.7 and Fig. 4.8. 
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Fig. 4.7. Sensitivity of µ  (left) and 0K (right). 

 

As expected, a greater repair rate implies higher system availability. Similarly, when 

0K  increases, the system availability decreases because the failure intensity function 

increases. However, the case of parameter φ  is not obvious, as shown in Fig. 4.8. 
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Fig. 4.8. Sensitivity of φ . 

 

The curves in the Fig. 4.8 are crossed with one another. It means when φ  increases, 

system availability decreases at the early stage and increases at the later stage.  

With Eq. (4.10), we can calculate the time point of the minimum system 

availability and the time a certain availability is achieved. On the other hand, it would 

be useful to see the influence of the repair rate on these two quantities. We analyze the 

Markov model with the numerical example presented above. It is assumed that 0K =10 

and φ =0.01. Let µ  change from 0.3 to 0.7 to calculate the minimum system 

availability point through Eq. (4.10). The time of the minimum system availability *t  

vs. the repair rateµ  is described in the left curve of Fig. 4.9.  The minimum system 

availability A(t*) vs. µ  is depicted in the right curve of Fig. 4.9.  
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Fig. 4.9. Sensitivity analysis of repair rate. 

 

From Fig. 4.9, we can see the rate of decrease in t* (rate of increase in A(t*) ) as the 

repair rate µ  increases.  We can also see that A(t*) is a convex function of µ . This 

means that adding µ∆ on a smallµ  improves more availability than adding the same 

µ∆  on a large µ . The curve of  “t*  vs. µ ” is concave, which means that adding 

µ∆ on a smallµ  reduces more time of minimum availability than adding the same 

µ∆  on a large µ . This type of study is useful when allocating the maintenance 

personnel optimally although is another interesting problem for further research.  

 

4.4. Conclusions 

In this part, a general model was presented for the centralized heterogeneous distributed 

system. Based on this model, solution algorithm was presented and the time for the 

virtual machine to reach its minimum system availability or required system 

availability was studied. An application of the model on an actual bank automatic 

payment system was shown. Furthermore, sensitivity analysis of the intrinsic 

 

µ 

A(t*) 
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parameters to affect the system availability and the lowest availability point was 

conducted. 

  Since our approach is general and the CHDS has been applied in different 

areas, the algorithm for the distributed service reliability analysis can be used to 

estimate the reliability of the service in a distributed system during both the testing 

phase and the operational phase. During the testing phase, the service reliability 

function can help to allocate testing resources accordingly. For example, around the 

minimum service reliability time, more maintenance persons and testing resources 

should be allocated to test and repair the system; and at the later stage, the service 

reliability is high so that the amount of testing resource can be reduced. Also, if given a 

requirement on the service reliability after release, the time for release can also be 

determined. Moreover, for projects with fixed deadline, the model can help system 

managers to determine the testing intensity or manpower according to the estimated 

reliability given different levels of testing intensity. Furthermore, during the operational 

phase, the quality of service can also be assessed through the service reliability 

measure. 

  For wide-area distributed computing, the structure of centralized 

heterogeneous distributed systems is just a classical and conventional structure. 

Nowadays, the grid computing system is a newly developed system in wide-area 

distributed systems by focusing on large-scale resource sharing. The structure of the 

grid is not only CHDS but also a kind of peer-to-peer structure. Thus, the next chapter 

will study the behavior and reliability of the grid computing systems.
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CHAPTER 5               

       GRID COMPUTING SYSTEM 

RELIABILITY 

 

 

The grid computing system is a recently developed technique for complex systems with 

large-scale resource sharing, wide-area program communicating, and 

multi-institutional organization collaborating etc. Many experts believe that the grid 

technologies will offer a second chance to fulfill the promises of the Internet. However, 

it is difficult to analyze the grid reliability due to its complexity.  

  This chapter first constructs a grid reliability model and then presents 

approaches to estimate the grid reliability related to different aspects of the grid, 

including the resource management system, networks and programs/resources. Section 

5.1 introduces the evolutionary of the grid technology and builds a general model for 

the grid architecture. Section 5.2 studies the grid reliability related to the resource 

management system. Then, Section 5.3 presents a new reliability model for the grid 

networks. Finally, Section 5.4 further extended the previous model by combining the 

reliability of software programs and resources together with the hardware reliability of 

the network. 
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5.1. Introduction of the Grid Computing System 

5.1.1. Grid technology 

The term “Grid” was created in the mid 1990s to denote a proposed distributed 

computing infrastructure for advanced science and engineering (Foster and Kesselman, 

1998). Grid concepts and technologies were first developed to enable resource sharing 

within far-flung scientific collaborations. Applications include collaborative 

visualization of large scientific datasets (pooling of expertise), distributed computing 

for computationally demanding data analyses (pooling of compute power and storage), 

and coupling of scientific instruments with remote computers and archives (increasing 

functionality as well as availability).  

The Grid concept is motivated by real and specific problems and there is an 

emerging, well-defined Grid technology that addresses significant aspects of this 

problem. The Grid technology is distinct from other major technology trends, such as 

Internet, enterprise, distributed, and peer-to-peer computing.  

The real and specific problem that underlies the Grid concept is coordinated 

resource sharing and problem solving in dynamic, multi-institutional virtual 

organizations (Foster et al., 2001). The sharing that we are concerned with is not 

primarily file exchange but rather direct access to computers, software, data, and other 

resources, as is required by a range of collaborative problem-solving and 

resource-brokering strategies emerging in industry, science, and engineering. This 

sharing is, necessarily, highly controlled, with resource providers and consumers 

defining clearly and carefully just what is shared, who is allowed to share, and the 
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conditions under which sharing occurs. A set of individuals or institutions are defined 

by such sharing rules form what we call virtual organization (VO).  

For example, in a data grid project thousands of physicists at hundreds of 

laboratories could be involved, and they can be divided into different virtual 

organizations according to their locations or functions. It is depicted by Fig. 5.1. 

 

Global
Network

VO: Labs in MIT

: VO

: Lab

: Processor

Local
Network

Labs in NUS

 
Fig. 5.1. A grid computing system containing many virtual organizations. 

 

In this case, virtual organizations can vary tremendously in their purpose, scope, 

size, duration, structure, community, and sociology. Nevertheless, careful study of 

underlying technology requirements leads us to identify a broad set of common 

concerns and requirements and current distributed computing technologies do not 

address the concerns and requirements of the grid.  

Over the past several years, research and development efforts within the grid 

community have produced protocols, services, and tools that address precisely the 
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challenges that arise when we seek to build scalable virtual organizations, e.g. Foster 

and Kesselman (1998), Hoschek et al. (2000), Foster et al. (2001, 2002), Frey et al. 

(2002) and Buyya et al. (2003).  

Because of their focus on dynamic, cross-organizational sharing, Grid 

technologies complement rather than compete with the existing distributed computing 

technologies. For example, enterprise distributed computing systems can use the grid 

technologies to achieve resource sharing across institutional boundaries. The grid 

technologies can also be used to establish dynamic markets for computing and storage 

resources, hence overcoming the limitations of current static configurations. 

 The continuing decentralization and distribution of software, hardware, and 

human resources make it essential that we achieve the desired quality of service (QoS) 

on resources assembled dynamically from enterprise, service provider, and customer 

systems. This requires new abstractions and concepts that let applications access and 

share resources across wide-area networks. This also requires to providing common 

security semantics, system reliability, distributed resource management performance, 

or other QoS metrics that are of importance in a particular context. For some time, such 

problems have been of central concern to developers of distributed systems for 

large-scale scientific research. Work within this community has led to the development 

of Grid technologies, which have been widely adopted in scientific and technical 

computing. 

Although the development tools and techniques for the grid have been studied 

and equipped, the analytical tools for the grid reliability analysis are just inchoate and 
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hard to approach perhaps due to the complexity of the grid. Thus, as one of the 

important measures of QoS for the grid, the grid reliability needs to be precisely and 

effectively assessed using new analytical tools. There are many analytical tools for the 

reliability analysis of the conventional distributed systems. However, they cannot be 

directly implemented in the reliability analysis of the grid because of some of their 

impractical assumptions.  

Models and tools are needed to analyze the grid reliability. This chapter presents 

some new results based on general grid reliability models that relax some unsuitable 

traditional assumptions in the small-scale distributed computing systems. 

 

5.1.2. General architecture of grid computing system 

The general architecture of the grid computing systems can be depicted as Fig. 5.2. The 

virtual node is a general unit in the grid, which can execute programs or share resources. 

Virtual nodes are connected with one another through the virtual links. Virtual 

organizations are made up of a number of virtual nodes. 
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Fig. 5.2. General architecture of grid computing systems. 

 

A grid system is designed to complete a set of programs/applications, so that to 

complete certain tasks. Executing those programs need use some resources in the grid. 

These programs and resources are distributed on the virtual nodes as in Fig. 5.2. A 

virtual link between two virtual nodes (i and j), denoted by L(i, j), is defined as a direct 

communication channel between the two nodes i and j without passing through other 

virtual nodes.  

Let nU
v

 represent the set of resources shared by the n:th virtual node and nV
v

 

represent the set of programs executed by the n:th virtual node, (n=1,2,…,N). We also 

assume that M programs denoted by MPPP ,...,, 21  are running in the grid system. The 

required processing time for each program is denoted by )(...,),2(),1( Mttt , 

respectively. The programs may use some necessary resources during their execution, 

which is in fact to exchange information between them through the network. These 

resources are denoted by HRRR ...,,, 21  which is registered in a resource management 

system of the grid. 
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When a program requests certain remote resources, the resource management 

system receives these requests, matches the registered resources to the requests, and 

then “tells” the program the sites of those matched resources. After the programs 

“know” the sites of their required resources, they begin to “access to” them through the 

network.  

In an early stage, the grid reliability is mainly determined by the reliability of 

the resource management system, while in a later stage, the grid reliability is mostly 

affected by the reliability of the network for communicating or processing. The grid 

reliability model related to the two stages will be studied respectively in the following 

two sections. Then, section 5.4 further integrates other components such as software 

and resources etc into the grid reliability analysis.  

 

5.2. Grid Reliability of the Resource Management System 

Before the programs begin to access to their required resources in the grid, they have to 

know the sites of those resources, which is managed by the resource management 

system. The resource management system of the grid, see e.g. Livny and Raman (1998), 

is to receive the resource requests from application programs, and then to match the 

requests with the registered resources. 

The resource management system is not perfect. It is possible to assign wrong 

resources to a program. Although the failures of resource management system might be 

sporadic compared to those of programs, resources, networks or processors, to estimate 

the grid reliability the resource management system have to be considered because it is 
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one of the most important factors in affecting the quality of service of the grid.  

  

5.2.1. Introduction of resource management system  

For grid computing, the resource management system that manages its pool of shared 

resources is very important. This is especially the case for Open Grid Service 

Architecture, see e.g. Foster et al. (2002), that allows individual virtual organizations to 

aggregate their own resources on the grid.  

  The resource management system provides resource management services, 

which can be divided into four general layers as depicted by Fig. 5.3. They are program 

layer, request layer, management layer and resource layer. 
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Fig. 5.3. Layers of resource management system. 
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1) Program layer: The program layer represents the programs (or tasks) of the 

customer’s applications. The programs describe their required resources and 

constraint requirements (such as deadline, budget, function etc).  

2) Request layer: The request layer represents the program’s requirement for the 

resources. This layer provides the abstraction of “program requirements” as a 

queue of resource requests.  

3) Management layer: The management layer may be thought of as the global 

resource allocation layer and its principal function is to match the resource 

requests and resource offers so that the constraints of both are satisfied. 

4) Resource layer:  The resource layer represents the registered resources from 

different sites including the requirements and conditions.  

 

In the grid computing, failures may occur at any of the layers in the resource 

management system. For example,  

1) In the program layer, the resource described by the program may be unclear or 

translated into wrong resource requests;  

2) In the request layer, the request queue may be too long to be waited by the 

program (generating so called time-out failures), or some requests may be lost 

due to certain management faults;  

3) In the management layer, the request may be matched to a wrong resource 

because of misunderstanding or faulty matching;  
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4) In the resource layer, the virtual organization may register wrong information 

of their resources or remove its registered resources without 

notifying/updating the resource management system. 

If a grid program experiences the above resource management system failures, the 

program cannot be achieved successfully. The grid reliability should be computed by 

considering not only the reliability of physical networks or processing elements but 

also the resource management system reliability. In order to analyze the resource 

management system reliability, we construct a Markov model below. 

 

5.2.2. Markov modeling 

For the resource management system, if any failure that the program is matched to a 

wrong resource occurs, the program will send a failed feedback to it. It will remove the 

faults that cause the failures through an updating/debugging process. It is also possible 

for new faults to be generated in the resource management system such as some virtual 

organizations register wrong resources to it, etc. The assumptions for the resource 

management system reliability model are listed as follows: 

1) The failures of resource management system follow an exponential distribution 

with failure rate function )(kλ  where k is the number of contained faults. 

2) If any failure occurs, a fault that causes this failure is assumed to be removed 

immediately by an updating/debugging process, i.e. the time for removing the 

detected fault is not counted. 
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3) The resource management system may generate a new fault, and the 

occurrence of such event follows an exponential distribution with a constant 

rate v .  

 

According to the above assumptions, the reliability model of resource management 

system can be built by a continuous time Markov chain (CTMC). This Markov model 

depicted in Fig. 5.4 is a typical birth-death Markov process with infinite number of 

states, where state k represents k faults contained in the resource management system. 
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Fig. 5.4. CTMC for resource management system reliability model. 

 

In this model, )(kλ  can be a general function to the number of remaining faults k. 

Usually, )(kλ  is an increasing function to the number of remaining faults k. The 

resource management system is desired to serve a long time, especially for the Open 

Grid Service Architecture (Foster et al., 2002), so the birth-death process of failures can 

be viewed as a long-run Markov process (Trivedi, 1982). After running a long time, the 

expected death rate )(kλ  will trend to a steady value.  

Therefore, after a long time run, the failure rate )(kλ  can be approximately 

viewed as a constant during a small enough time. An example is illustrated below. 
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Example 5.1. Consider a grid program denoted by P1 need access to remote resources. 

The time for resource management system to deal with its request is supposed t=15 

seconds and the failure rate of resource management system at that time slot 

0005.0=λ  per second. The reliability for the resource management system to deal 

with the request is computed as  

}exp{)1( tPRRMS ⋅−= λ =0.992528 

Based on the long-run birth-death Markov process, this approximation of 

constant failure rate indicates a way to reasonably and dynamically update the failure 

rate at different time slots. The resource management system can count the number of 

failures, say n, reported by the grid programs between a relatively small time interval, 

say t∆ , and dynamically updates the value of failure rate by tn ∆= /λ̂ . 

Also, the fault birth rate v  can be reduced through some information controls 

such as standardized resource registering, synchronic resource updating, consistent 

resource descriptions etc, so that to reduce the reliability of the resource management 

system. 

 

5.3. Grid Reliability on Network 

If the resource management system has informed the programs of the sites of their 

required resources in the grid after matchmaking, the running programs are able to 

access to those resources through the grid network as depicted by the previous Fig. 5.2. 

Then, the grid program/system/service reliability is mainly determined by the 
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reliability of network, which will be studied in the following subsections.  

 

5.3.1. Reliability model for the grid network 

After the resource matching process, during the execution process of the programs, 

failures may occur on either virtual nodes or virtual links (Fig. 5.2). If a failure occurs 

on the virtual node when it is executing a program, the result out of the program is 

wrong. If a failure occurs on the link when some information is communicated through 

it, the communication is incorrect. To analyze the grid reliability, two assumptions 

about the model are given below: 

1)  The failures of virtual nodes and virtual links can be modeled by Poisson 

processes, 

2)  The failures of different elements (nodes and links) are independent from one 

another.  

The first assumption can be justified as the operational phase without debugging 

process so that the failure rates can remain constant, see e.g. Yang and Xie (2000). The 

second assumption can be explained as that since the grid is a wide-area distributed 

system, the nodes and links should be allocated far away from one another so that the 

possibility of correlation among them can be viewed as very slight or even negligible.  

      Different programs can exchange information of different sizes with the same 

resources. Denote by mhD  the size of information exchanged between program mP  

(m=1,2,…,M) and resource hR  (h=1,2,…,H). The communication time ),( jiTc  
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between node i and node j, can be derived from 

),( jiTc = 
),(
),(

jiS
jiD           (5.1) 

where D(i,j) is the total size of information exchanged through the L(i,j), and S(i,j) is the 

expected bit rate of the link.  

      Denote the failure rate of the node n by nλ  and of the link L(i, j) by ji ,λ . If 

any failure occurs either on the link or on the connected two nodes during the 

communication, the communication process is viewed as a failed process. The 

reliability of communication between node i and node j through the link L(i,j) can be 

expressed as 

),( jiRc = )},()({exp , jiTcjiji λλλ ++−          (5.2) 

      Similarly, during the execution of a program, any failure occurring on the 

virtual node that executes the program will also make the program failed. The 

reliability of the node n to run the program mP , is then given by 

),( nmRp = )}(exp{ mtnλ−            (5.3) 

  This network reliability model is much more reasonable for the grid than that 

of conventional distributed systems (e.g. Kumar et al. 1986, Kumar and Agrawal, 1993; 

Chen et al., 1997; Lin et al., 1999, 2001; Dai et al., 2003a). Those conventional models 

somehow inherit the assumptions of Kumar (1986) model. The most stringent 

assumption that is not suitable for the grid is that the operational probabilities of nodes 

or links are assumed constant, i.e. ),( jiRc  and ),( nmRp  in the above two equations 

are constant no matter how long or how different the ),( jiTc  and )(mt  are.  

Some concepts of grid reliability are defined as follows. 
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Definition 5.1. Grid program reliability (GPR) is defined as the probability of 

successful execution of a given program running on multiple virtual nodes and 

exchanging information through virtual links with the remote resources, under the 

environment of grid computing system. 

 

Then, the grid system reliability (GSR) can be defined as the probability for all of the 

programs involved in the considered grid system to be executed successfully.  

Furthermore, a grid service is to complete certain programs by using some 

resources distributed in the grid. The grid service reliability is similar to the grid system 

reliability by considering the programs of the given service, i.e. without taking other 

programs that are not used by the service into account. Thereby, the grid service 

reliability is defined as the probability that all the programs of a given service are 

achieved successfully. 

 

5.3.2. Reliability of minimal resource spanning tree 

Recall that the set of virtual nodes and virtual links involved in running the given 

programs and exchanging information with the resources form a resource spanning tree. 

The smallest dominating resource spanning tree (RST) is called MRST (Minimal 

Resource Spanning Tree). The reliability of an MRST is the probability for the MRST to 

be operational to execute the given program. The reliability of an MRST denoted by 
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MRSTR  has three parts:  

1. Reliability of all the links contained in the MRST during the 

communication;  

2. Reliability of all the nodes contained in the MRST during the 

communication;  

3. Reliability of the root node that executes the program during the 

processing time of the program. 

The reliability of the link L(i, j) for exchanging the information can be 

expressed by 

  ),( jiRL = )},(exp{ , jiTcjiλ−         (5.4) 

The total communication time of the node jG  can be calculated by 

 )( jT =∑
∈ jDi

c jiT ),(         (5.5) 

where jD  represents the set of nodes that communicate with the node jG  in the 

MRST.    The reliability function of the node jG  for communication is 

 )( jRc = )}(exp{ jTjλ−        (5.6) 

Finally, the reliability for a program mP  to be executed successfully during the 

processing time )(mt  on the node n is ),( nmRp . 

  The reliability of the MRST can be derived from the above equations as 

   MRSTR = ),( nmRp ∏
∈MRSTjiL

L jiR
),(

),( ∏
∈MRSTG

c
j

jR )(   

    = ∏∏
∈∈

−−−
MRSTG

j
MRSTjiL

cjin
j

jTjiTmt )}(exp{)},(exp{)}(exp{
),(

, λλλ     

= ∏∏
≠

∈∈

−−+−

nj
MRSTG

j
MRSTjiL

cjin
j

jTjiTnTmt )}(exp{)},(exp{)]}()([exp{
),(

, λλλ  
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 (5.7) 

In order to simplify the expression of the above equation, we generalize the term of 

“communication time” for the root node that contains not only the time of exchanging 

information with other elements but also the time of executing the given program, i.e. 

)()( nTmt + .  

The term of “element” is defined here to represent both the nodes and links of 

the MRST. Assume there are totally K elements in an MRST, so that 

ielement (i=1,2…,K) denotes the i:th element in the MRST. Accordingly, the 

communication time of the i:th element is denoted by )( iw elementT  and )( ielementλ  

represents its failure rate. The reliability of the MRST of the above equation can be 

simply expressed as 

 MRSTR =∏
=

⋅
K

i
iiw elementelementT

1
)}()(exp{ λ      (5.8) 

With this equation, the reliability of an MRST can be computed if the communication 

time and failure rate of all the elements are given. Hence, finding all the MRST’s and 

determining the communication time of their elements are the first step in deriving the 

grid program reliability and grid system reliability. 

The same program executed by different root nodes may cause different 

communication time on the same elements. Hence, the MRST’s should be treated 

distinctly for the same program executed by different nodes. An example is given 

below. 

 

Example 5.2. As shown in Fig. 5.5, program P1 can run successfully when either 
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computing node G1 or G4 is successfully working during the processing time and it is 

able to successfully exchange information with the required resources (say R1, R2 and 

R3) .  

 

R1,R2
P1

R3
P2

R1,R4

R2,R3
P1

L(1-2)

L(1-3)

L(2-3)

L(2-4)

L(3-4)

G1

G2

G4

G3
 

Fig. 5.5. A four-node computing system. 

 

The MRST’s considering the communication time of the elements should be separated 

into two parts: 

a) P1 being executed by G1 contains three MRST’s: 1) {G1, G2, L(1,2)}; 2) 

{G1,G2,G3, L(1,3); 3) {G1,G3,G4,L(1,3),L(3,4)}. 

b) P1 being executed by G4 contains another three MRST’s: 4) {G3, G4, L(3,4)}; 5) 

{G2, G3, G4, L(2,4), L(2,3)}; 6) {G1,G2,G4,L(1,2),L(2,4)} 

If not considering the difference of communication time, the first tree dominates the 

sixth tree and the fourth tree dominates the third tree. However, in the grid computing 

system, P1 executed by G1 needs to communicate with the remote resource R3 through 

the network while P1 executed by G4 needs to communicate with the another remote 

resource R1, which will differ the communication time of the same elements in the first 

MRST from the sixth MRST and the fourth MRST from the third MRST. Hence they 
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should be treated as different MRST’s, i.e. one cannot dominate another. 

An algorithm is presented in Dai et al. (2002) to search the MRST’s for a given 

program executed by one given virtual node. Repeatedly using this algorithm, all the 

MRST’s for different virtual nodes to execute this program can be found, respectively. 

This algorithm can be briefly described as follows:  

 

Step 1. Start from the given node to search the required resources along the possible 

links, and record elements that compose the searching route and their 

communication times.  

Step 2. Until all the required resources are reached, an MRST is found, and record this 

MRST.  

Step 3. Then other routes are tried to search other MRST’s until all the MRST’s are 

searched.  

 
An example of the algorithm to search the MRST’s is illustrated below. 

 

Example 5.3. Continue to the above Example 5.2 and see Fig. 5.5 again. The program 

1P  is assumed to exchange information with resources R1,R2,R3 (corresponding 

exchanged information size are: 500,400,300 Kbit). The bit rates of links L(1,2), 

L(1,3), L(2,3), L(2,4), L(3,4) are assumed 30, 20, 40, 50, 45 (Kbit/s). Then, search the 

MRST’s for 1P  executed by the node G1 and compute the communication time of 

each elements in those MRST’s, as shown by Fig. 5.6. 
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G1
RV=(0010)
TV=(0ddd)
EV=(100000000)
WV=(30,0,0,0,0,0

0,0,0)
GV=(1000)
LV=(00000)

G1-G2
RV=(0000)
TV=(01dd)
EV=(110010000)
WV=(40,10,0,0,

10,0,0,0,0)
GV=(1100)
LV=(10000)

G1-G3
RV=(0010)
TV=(0d1d)
EV=(101001000)
WV=(30,0,0,0,0,0

0,0,0)
GV=(1010)
LV=(11000)

G3-G2
RV=(0000)
TV=(031d)
EV=(111001100)
WV=(45,7.5,22.5,

0,0,15,7.5,0,0)
GV=(1110)
LV=(11100)

G3-G4
RV=(0000)
TV=(0d13)
EV=(101101001)
WV=(45,0,21.7,

6.7,0,15,0,0,6.7)
GV=(1011)
LV=(11101)

☺MRST1 ☺MRST2

☺MRST3

L(1,2)

L(1,3)

L(2,3)

L(3,4)

 
Fig. 5.6. Searching the MRST’s of P1 executed by G1. 

 

Three MRST’s are found by the algorithm marked by ☺ in the Fig. 5.6 where 

all the values in vector RV are 0. The corresponding elements contained in those 

MRST’s are recorded in vector EV with the value 1 and the corresponding 

communication time is saved in vector WV. Similarly, other three MRST’s for 1P  

executed by the other node G4 can also be obtained as listed in the above Example 

5.2. 

 

5.3.3. Grid program and system reliability  

Grid program reliability  

Note that failures of all the MRSTs will lead to the failure of the given program, and any 

one of the MRST’s can successfully complete the program only if all of its elements are 
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reliable. The grid program reliability of a given program can be described as the 

probability of having at least one of the MRST’s working successfully,    

)( mPR = Pr(at least one MRST of a given program mP  is reliable) 

Let )( mt PN  be the total number of MRST’s for the given program of mP  and jE  be 

the event in which the jMRST , j=1,2,…, )( mt PN , is able to successfully execute the 

given program. The grid program reliability of a given program mP  can be written as 

 )( mPR =








=
U

)(

1

Pr
mt PN

j
jE         (5.9) 

By using the concept of conditional probability, the events considered in this equation 

can be decomposed into mutually exclusive events as 

)( mPR = ( )1Pr E + ( ) )Pr(Pr 212 EEE …+ { })(1)(21)( ,,,Pr}Pr{
mtmtmt PNPNPN EEEEE −L

 (5.10) 

where )Pr( 21 EE  denotes the conditional probability that 1MRST  is in the failure state 

given that 2MRST  is in the successful state.  

Hence, the grid program reliability can be evaluated in terms of the probability 

of two distinct events. The first event indicates that the iMRST  is in the operational 

state while the second indicates that all of its previous trees jMRST  (j=1,2,…,i-1) are 

in the failure state given that iMRST  is in the operational state. The probability of the 

first event, ( )iEPr  is straightforward, and it can be calculated through Eq. (5.8). The 

probability of the second event, ),,,Pr( 121 ii EEEE −L , can be computed using the 

algorithms presented by Dai et al. (2002). 

The brief introduction of the algorithm is given here, which has two steps:  

Step 1 identifies all the conditional elements that can lead to the failure of any 
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jMRST  (j=1,2,…, 1−i ) while keeping iMRST  to be operational.  

Such a conditional element, say kelement  (contained in any jMRST , 

j=1,2,…, 1−i ), has starting time and end time. If any failure occurs on the kelement  

between its starting time and end time, it can lead the jMRST  to fail. To keep iMRST  

operational, the starting time must be greater than the end time of the same kelement  

in iMRST . 

Step 2 uses a binary search tree (Johnsonbaugh, 2001: pp. 349-354) to seek the 

possible combinations of these identified elements that can make all the jMRST  

(j=1,2,…, 1−i ) fail and computes the probabilities of those combinations.  

The summation of the probabilities is the result of ),,,Pr( 121 ii EEEE −L . For 

detailed procedures of the two steps can be found in Dai et al. (2002). An example of 

this algorithm is illustrated below. 

 

Example 5.4. Continue to the above Example 5.3 and revisit the results recorded in the 

vectors (EV and WV) as Fig. 5.6. We now use the above algorithm to evaluate 

),Pr( 321 EEE , the probability that 1MRST  and 2MRST  fails given 3MRST  is 

operational.  

Use step 1 to identify the conditional elements that can fail either 1MRST  or 

2MRST  and keep 3MRST  to be operational. Table 5.1 shows the order for 

communication time wT  of different elements. As step 1, the starting time of any 

conditional element’s failure must be greater than the end time of the same element in 

3MRST  (shown by the second row). Then, the set of conditional elements can be 
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obtained in Table 5.2 where CEV(m) denotes the vector of the m:th conditional element, 

)(mTb  its starting time, )(mTe  its end time, and its reliability is 

{ })]()([)(exp)( mTmTelementmR bem −⋅= λ . 

 

Table 5.1. The order of communication time of different elements. 

Elements G1 G2 G3 L(1,2) L(1,3) L(2,3) L(3,4) 

wT  of 3MRST  45 0 21.7 0 15 0 6.7 

7.5 22.5 10 7.5 Others’ wT  > 

that of 3MRST  

None 
10   

None 
 

None 

 

Table 5.2. Result outputted by Step 1. 

CEV(m) CEV(1) CEV(2) CEV(3) CEV(4) CEV(5) 
Element G2 G2 G3 L(1,2) L(2,3) 

)(mTb  0 7.5 21.7 0 0 

)(mTe  7.5 10 22.5 10 7.5 

)(mR  0.9993 0.9998 0.9976 0.9900 0.9778 

 

As Step 2, the binary search tree for calculating ),Pr( 321 EEE  is depicted in the Fig. 

5.7. 
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[ddddd]
[11]

[CV]
[OV]

[0dddd]
[00]

☺7.497×10-4 [10ddd]
[01]

[100dd]
[00]

[1010d]
[01]

[10100]
[00]

[110dd]
[10]

[1100d]
[00]

[11010]
[10]

[1110d]
[01]

[11100]
[00]

[11110]
[10]

[10110]
[00]

☺ Denotes the available leaf for the calculation of probability
Denotes the unavailable leaf without contribution to the probability

[1dddd]
[11]

[11ddd]
[11]

[101dd]
[01]

[1011d]
[01]

[111dd]
[11]

[1111d]
[11]

[10101]
[01]

[1101d]
[10]

[10111]
[01]

[11011]
[10]

[11101]
[01]

[11111]
[11]

☺5.988×10-7

☺5.516×10-8 ☺5.489×10-6

☺2.383×10-5

☺2.206×10-4

 

Fig. 5.7. Binary search tree for calculating ),Pr( 321 EEE . 

 

In Fig. 5.7, the leaves marked by ☺ represents the case that 1MRST  and 2MRST  fails 

while 3MRST  is operational, and the float value beside ☺ is the probability for the 

corresponding case to happen. Thus, summing up all the probabilities, we get that  

),Pr( 321 EEE =0.001000. 

After computing all the ),,,Pr( 121 ii EEEE −L  and ( )iEPr , i=1,2,…, )( mt PN , we can 

calculate the grid program reliability of the given program mP  by substituting them 

into the reliability expression. 

 

Grid system reliability  

For the grid system, it is important to obtain a global reliability measure that describes 
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how reliable the grid system is. One way of measuring the reliability of the grid system 

is given by determining grid system reliability. The grid system reliability equation can 

be written as the probability of the intersection of the set of MRST’s of each program, 

which is 









=
=
I
M

m
mS PMRSTR

1

)(Pr        (5.11) 

where )( mPMRST  denotes the set of all the MRST’s associated with the program mP . 

The intersection of the trees of each )( mPMRST  can be evaluated first by intersecting 

)( 1PMRST  and )( 2PMRST , i.e. intersect all the combinations of two MRST’s one of 

which is from )( 1PMRST  and the other is from )( 2PMRST , and so on until all the 

)( mPMRST  (m=1,2,…,M) are intersected. The intersected tree of two MRST’s is 

generated by putting all the elements of the two MRST’s together, where the 

communication time of overlapped elements should be added together. An example of 

intersected MRST is illustrated below. 

 

Example 5.5. Suppose one MRST related to program 1P  is {G1,G2,G3,L(1,3),L(2,3)} 

with the communication time {45, 7.5, 22.5, 15, 7.5} and one MRST related to program 

2P  is {G1,G2,G3,L(1,2),L(1,3)} with the communication time {50, 70, 30, 20, 30}. 

Then, the intersected MRST of the above two MRST’s should be 

{G1,G2,G3,L(1,2),L(1,3),L(2,3)} with the communication time {95, 77.5, 52.5, 20, 45, 

7.5}. 

 

In fact, if any one of the intersected MRST’s of )( mPMRST  (m=1,2,…,M) is reliable, 
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all the programs required in the grid system can be successfully completed; If all the 

intersected MRST’s fail, the grid system cannot be successfully completed. 

  After generating all the intersected MRST’s, the grid system reliability can be 

written as 

 SR = 










=
U

tN

j
jE

1
Pr          (5.12) 

where tN  is the total number of intersected MRST’s. This equation is similar to the 

prevous Eq. (5.9), so the above algorithms for deriving the grid program reliability can 

be similarly used in deriving the grid system reliability here. 

 

Grid service reliability  

The grid service reliability can be viewed as a special type of the grid system reliability 

if we consider the grid service in a way that the whole grid system is only providing this 

required service and other services are not considered now. With this classification, the 

concept of grid system reliability is generalized to include the reliability of different 

number of services. 

All the above algorithms computing the grid program/system reliability are 

illustrated by a numerical example as below, and then the reliability of resource 

management system is also integrated into the grid reliability analysis. 

 

Example 5.6. Suppose that a simple grid system is to provide a web service of “Stock 

Analysis” for different countries. Three different resources (R1,R2,R4) store the 

real-time stock price of different countries, and another resource (R3) is the database of 
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a website that outputs and shows the results out of the “Stock Analysis”. The service 

procedure can be described as that two programs (P1 and P2) collect data from the three 

resources (R1,R2,R4) to analyze the stock market information for different countries, 

and then output the results into the database (R3) which can be loaded by a website 

service. 

   Revisit Fig. 5.5 that contains four virtual nodes and five virtual links and runs 

the two programs and prepare the four resources. Tables 7.3-7.4 show necessary input 

information. 

 

Table 5.3. Failure rate and speed of elements (links and nodes). 

Elements L(1,2) L(1,3) L(2,3) L(2,4) L(3,4) G1 G2 G3 G4 
Failure rate 0.001 0.002 0.003 0.004 0.005 0.001 0.0001 0.003 0.004
Speed (Kbps) 30 20 40 50 45     

 

Table 5.4. Processing time and information exchanged with the resources. 

Program Run Time (Sec) Resources Exchanged information (Kbit) 
P1 30 R1, R2, R3 500,400,300 
P2 50 R3, R4 200,600 

 

With the approaches presented above, Table 5.5 shows all MRST’s of the program P1 

with the communication time of each element evaluated by the above Example 5.3 and 

its reliability ( )iEPr  calculated by Eq. (5.8). Table 5.5 also shows the conditional 

probability of p= ),,,Pr( 121 ii EEEE −L  evaluated similarly as the above Example 5.4.  
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Table 5.5. Evaluation for the grid program reliability of P1.  

MRSTi Elements Communication time ( wT )  ( )iEPr  p 

1MRST  
G1,G2,L(1,2) 

40,10,10 0.950279 ----------- 

2MRST  G1,G2,G3,L(1,3),L(2,3) 45,7.5,22.5,15,7.5 0.847258 0.010198 

3MRST  G1,G3,G4,L(1,3),L(3,4) 45,21.7,6.7,15,6.7 0.818403 0.001000 

4MRST  G3,G4,L(3,4) 11.1,41.1,11.1 0.776313 0.039890 

5MRST  G2,G3,G4,L(2,4),L(2,3) 22.5,12.5,40,10,12.5 0.755973 0.002314 

6MRST  G1,G2,G4,L(1,2),L(2,4) 16.7,26.7,40,16.7,10 0.789725 0.000810 

 

Substituting the values of ( )iEPr  and ),,,Pr( 121 ii EEEE −L  of Table 5.5 into Eq. 

(5.10), the grid program reliability of P1 is 

R(P1)= 0.99309         (5.13) 

Similarly, the grid program reliability of P2 can be obtained as  

 R(P2)= 0907.090801.0122694.0769665.0773368.0 ×+×+ =0.950158 

 (5.14) 

where three MRST’s are found for P2 to be executed by G2. 

The grid system reliability can then be derived. The total number of intersected 
trees is 36× =18. Similar to grid program reliability, the grid system reliability is 
obtained as  

SR =0.926380        (5.15) 

  Suppose total time for resource management system to deal with the program 

P1’s requests is t=15 seconds and the failure rate at that time slot 0005.0=λ  (sec-1). 

The reliability for the request of the program P1 is then computed as  
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)exp()1( tPRRMS λ−= =0.992528         (5.16) 

The grid program reliability of P1 considering the reliability of resource management 

system can be calculated by multiplying the above RMSR  together with )1(PR  as 

98567.099309.0992528.0)()1()1( =×=⋅= PRPRPGPR RMS  

For P2, if the total time for resource management system to deal with its 

resource requests is 10 seconds, a similar way can be used to obtain  

99501.0)100005.0exp()2( =×−=PRRMS  

Multiplying it with )2(PR , we get  

94542.0950158.099501.0)2()2()2( =×=⋅= PRPRPGPR RMS  

For the grid system reliability that includes both P1 and P2, the reliability can be 

computed as  

0.914870.92638099501.0992528.0)2()1( =××=⋅⋅= sRMSRMS RPRPRGSR  

 

5.4. Grid Reliability on Software and Resources 

In the above section, the grid reliability is analyzed by considering only the network 

hardware failures, i.e. failures of processing nodes and communicating links. However, 

besides the hardware failures, the software program failures and the resource failures 

should also be integrated into the grid reliability analysis, which model is more 

practical and reasonable. 
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5.4.1. Failures of software programs and resources 

Besides the hardware causes, the failures of a software program may also be caused by 

the faults in the program itself. Justified as in the operational phase (Yang and Xie, 

2000), the software program failures can be assumed to follow the exponential 

distributions here. The software failure occurrence rate of program iP  running on 

processing node jG  is denoted by ),( jisλ , because a same program running on 

different processing nodes may have different failure rates. Also, the processing time of 

iP  on jG  is denoted by ),( jit . Thus, the reliability of the software program iP  

running on jG  can be simply computed by 

)},(),(exp{),(prog jitjijiR s ⋅−= λ       (5.17) 

  For the resource reliability, previous section assumes that if the program uses 

the resource, the resource itself is perfect and the failures only occur when transferring 

the information through the communication network.  

However, the resource may be a software, hardware, database, digital product, 

etc, that ought to contain faults too. In reality, the resource possibly risks failures when 

it is working (such as dealing with the information that the programs send or generating 

the results that the programs need). Suppose the time for resource h to work is 

determined by the program iP  by which the resource is requested and the node jG  on 

which the resource is integrated, denoted by ),,( jiht . Also, considering the 

operational phase for the integrated resources, we denote the failure rate of the resource 

h on the node jG  by ),( jhrλ , which follows the exponential distribution. Thus, the 

reliability of resource h requested by iP  and integrated on jG  can be simply 
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expressed by 

)},,(),(exp{),,(res jihtjhjihR r ⋅−= λ       (5.18) 

 

5.4.2. Approach to grid reliability integrating software and resource failures 

In order to integrate the software program and resource failures into grid reliability 

analysis together with the hardware network reliability, we revise the model presented 

by section 5.3. For each virtual node, we abstract its programs and resources as its sub 

nodes, as shown by Fig. 5.8 where jG  is a virtual node on which 1xP ,…, xmP  are 

attached as the sub nodes representing programs and 1yR … ykR  corresponding to 

resources. 

 

 
Fig. 5.8. Virtual node and its sub nodes of programs and resources. 

 

Such abstraction of the Fig. 5.8 has the following advantages: 
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1) The reliability of different software programs and resources can be integrated 

into the whole grid reliability analysis given the failure rates of all the sub 

nodes and their communication time. 

2) It also combines the hardware reliability into the grid reliability analysis and 

the common cause failures among those programs and resources are somewhat 

considered. For example, if jG  fails, all its sub nodes (corresponding to the 

programs or resources executed by or integrated on the same virtual node) are 

no longer available for running or using. 

3) All the approaches presented in the Section 5.3 can be directly implemented to 

compute grid program/system/service reliability if each sub node is viewed as 

an element of failure rate and communication time of its corresponding 

program/resource, and the link between the virtual node and its sub node is 

viewed as perfect (i.e. failure rate is 0). Thus, this model integrating the 

software/resource failures is generalized to satisfy the common condition as Eq. 

(5.8) of the MRST approaches presented by the previous section 5.3. 

 

Example 5.7. Revisit Fig. 5.5. Replace the nodes with those in the Fig. 5.8 that 

considers the software program and resource failures. Fig. 5.9 depicts the new network 

graph for the grid computing system containing the sub nodes of programs and 

resources. According to the third advantage as above, the approaches presented by 

Section 5.3 can be directly and similarly implemented in deriving the grid reliability of 

Fig. 5.9. 



Chapter 5 Grid Computing System Reliability 

 140

 

G1

G2

G3

G4

L(1-2)

L(1-3)

L(2-3)

L(2-4)

L(3-4)

P1

R1

R2

P2R3

R1 R4

P1

R3

R2

 
Fig. 5.9. Grid network containing the sub nodes of programs and resources.
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CHAPTER 6               

         MULTI-TYPE FAILURE 

CORRELATION MODELS 

 

 

Most software reliability models assume independence of successive software runs. It 

is a very strong assumption and it is usually not valid in reality. Goseva-Popstojanova 

and Trivedi (2000) presented an interesting study on failure correlation in software runs. 

In this chapter, by extending their results, a Markov renewal model is developed for 

such failure correlation, and further considers multiple types of failures. In addition, 

the cases of restarting with repair and without repair are both studied. Although such 

a model is more complex than the traditional approach based on reliability growth, it 

incorporates more information about the failures and system structure.  

 

6.1. Introduction 

Reliability and availability analysis of software systems is a very important issue today. 

There are many papers and books dealing with software reliability modeling and 

analysis, for some recent articles, see e.g. Zhang and Pham (2000), Xie (2000), Kuo 

et al. (2001) and Zhang and Horigome (2001). However, a common assumption is the 

independence of successive software runs, which is not realistic in practice. For 
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example, distributed computing systems have become popular recently, and it is 

modeled as a collection of resources interconnected via an arbitrary communication 

network and controlled by a distributed operating system as described by Lin (1999). 

For this kind of systems, the successive software runs are dependent because the 

resources is interconnected with one another through the network so that the previous 

run affect the resources of the next run.  

Recently, Goseva-Popstojanova and Trivedi (2000) formulated a Markov 

model for failure correlation and studied its effects on the software reliability 

measures. This model assumes a two-state Markov Renewal model. One state is a 

successful state and another is a failure state among successive runs. The result of 

next run can be affected by the outcome of the previous run.  

In practice, failures can be classified in different types, see e.g. Bukowski and 

Goble (2001), and a common classification is according to the severity (Lyu, 1996). 

Other classification schemes are also possible. For example, Tukona (2000) 

introduced two types of failures. The first type is caused by the faults latent in the 

system before the testing; the second type is caused by the faults regenerated 

randomly during the testing phase. Different types of failures may also induce 

different conditional probability to the next run and there are some examples for 

failure correlation conditions as described in Kim et al. (1996). 

In this chapter, as an extension of Goseva-Popstojanova and Trivedi (2000), we 

present a new Markov Renewal model that allows software failures to be in one of 

multiple states. Note that if the failures can be of n different types, the total number of 
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possible states for every run will be n+1, in which there is a successful state. Thus the 

two states model in Goseva-Popstojanova (2000) is a special case of our new model.    

This chapter is organized as follows. In Section 6.2, a brief overview of 

multiple failure states and Markov Renewal Model is provided and a model for two 

types of failure is developed and analyzed. Generalization of the model to n-type 

failure Markov Renewal Model is also given. In Section 6.3, formulas for probability 

computation are derived and a numerical example is illustrated. Although the model is 

complicated, it is still computationally tractable.  

 

6.2.  Markov Renewal Model for the Multi-Type Correlated 

Failures 

Except the perfect working state, other states in the system can be viewed as different 

types of failure states. For example, according to the severity, Lyu (1996) divided the 

failures into four states: minor, marginal, critical and catastrophic.  

Note that if the failures can be of n different types, the total number of possible 

states for the system will be n+1, in which there is a perfect state. The system state in 

the next run depends on its state in the current run. This is a kind of multi-type failure 

correlation among successive runs. Under such conditions, Markov model is also a 

good tool for analyzing the reliability as it is able to handle one-step dependence. 

  For the correlated system with n types of failures and a successful state, a 

general Markov process can be constructed as follows: 
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1) Build an n+1-state discrete time Markov chain with transition probability 

matrix  

P=
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2) To overcome the dependence, introduce a process in continuous time by letting 

the time spent in a transition from state k to state l to have Cdf )(, tF lk .  

Such a process is attributed to a Semi-Markov Process.  

 

6.2.1. Model for two failure states  

When there are two failure states, there will be three states for the system after a run; 

a successful state, Type A failure state and Type B failure state. Type A failure could 

be a kind of serious failure such as Catastrophic or Critical failure. Type B failure 

could be less serious than Type A failure such as Minor or Marginal failure.  

 A common situation is that the system is not able to continue to perform its 

function when Type A failure occurs, but when Type B failure occurs, the system can 

still work, although it will have more chances to induce a Type A failure in the next 

run. For example, in a replicated file system, copies of the same file are kept in 

different servers so that failures of some servers can be tolerant in Chang (1999). If a 

minor failure does not destroy all the servers which contain the replicated files, the 

replicated file system is able to keep on working. Thus this kind of failure can be 

classified as Type B failure. Otherwise, if the replicated files of all the servers are 
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corrupted by a failure to make the system down, this kind of failure is Type A failure. 

The result from a run will affect the probable state in the next run as shown in 

Fig.  6.1. In this part, we consider the case when there is no debug except the 

resetting or restarting when Type A failure occurs. The transition probability will 

remain unchanged under this assumption.  
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State 0: Successful state after a run 
State 1: Type A failure occurs after a run 

State 2: Type B failure occurs after a run 

Fig. 6.1. Markov interpretation of dependent runs. 

          

Let Zk be a random variable of the state after a run, and denote by 

2,1,0,},|{ 1 ==== + jmmZjZPP kkmj  

The transition matrix is  

P=
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020100

PPP
PPP
PPP

         (6.1) 

in which 
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1
2

0
=∑

=j
mjP ,  m=0,1,2         (6.2) 

The unconditional probability of failure on run (i+1) is: 

∑
=

+ ===
2

0
1 }{}{

m
imji mZPPjZP ,  j=0, 1, 2    (6.3) 

Substituting Eq. (6.3) into the above equation, we have that 

jijjijji PZPPPZPPPjZP 001021 }1{)(}2{)(}{ +=−+=−==+ ,  j=0,1,2 (6.4) 

we can see from this equation that if  

jjj PPP 210 == , j=0,1,2 

the results from two successive runs are independent. If the system does not satisfy this 

condition, it is dependent. 

The next step is to develop a model in continuous time, considering the time 

that the system spends on running. Let Fk,l(t) be a Cdf of the time spent in a transition 

from state k to state l of the DTMC in Fig. 6.1. Here, Fk,l(t) is assumed to depend only 

on the state at the end of each interval in a system run, see e.g. Goseva-Popstojanova 

and Trivedi (2000) as: 

)()()()( ,2,1,0 tFtFtFtF jjjj •=== ,   j=0,1,2  

With the addition of the )(tF j•  to the transitions of discrete time Markov chain, we 

obtain a Semi-Markov Process as the system reliability model in continuous time. 

 

6.2.2. Model for two failure states with debugging 

Furthermore, we assume that after a Type A failure, the system may be debugged and it 
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is an instantaneous fault removing process. Hence, after removing the fault, the 

transition probability matrix will be changed. When the successive runs are successful 

or only cause the Type B failure, the system does not have to be debugged and it will 

continue running in the same way. The transition probability matrix is able to be 

assumed unchanged until a Type A failure happens. The Markov renewal model is 

modified as the Fig.  6.2. 
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Fig. 6.2. Nonhomogeneous DTMC for system reliability model. 

      

‘i’ is the number of Type A failures, which is already detected and removed. During the 

testing phase, system is subjected to a sequence of runs, making no changes if there is 

no Type A failure. When a Type A failure occurs on any run, then an attempt is made to 

fix the underlying fault, which causes the conditional probabilities of the state on the 

next run to change. The transition probability matrix for the period from the occurrence 

of the i:th Type A failure to the occurrence of the next (i+1):st Type A failure, is 
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iii
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PPP
PPP
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222120

121110

020100

        (6.5) 

0
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Assume mS  is the total number of Type A failures after m runs. The sequence mS  

provides an alternate description of system reliability model with debugging process 

considered here. Thus, { mS } defines the DTMC presented in the above Fig.  6.2. All 

states, i, i0 and i2, represent that the Type A failure state has been occupied i times. State 

i represents the initial state for which iSm = . State i0 represents all the successful 

subsequent trials for which iSm = , State i2 represents all Type B failures subsequent 

trials for which iSm = . 

 

6.2.3. General model for n failure states 

The above models can be extended to the case of general multi-state of failures. 

Assume that the failures can be divided into n states, so the system totally contains 

n+1 states including the perfect state. Denote again the critical failure type as Type A 

failure state. When this type of failures occurs, the system will completely stop 

working and action has to be taken. First we assume there are no changes in the 

system except resetting and restarting when Type A failure occurs. The transition 

probability matrix for the successive runs will remained unchanged. The Markov 

process can be expressed as the Fig.  6.3. 
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State 0: Successful state after a run 

 State 1: Type A failure occurs after a run 

 States 2 to n: The other n-1 types of failures occur after a run 

Fig. 6.3. Markov interpretation for n-type correlated state transition. 

 

Denote 

njmmZjZPP kkmj ,,2,1,0,},|{ 1 L==== +  

and the transition probability matrix is then 

P=
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and  transition probabilities should satisfy  

1
0

=∑
=

n

j
mjP ,  m=0,1,2,…,n      (6.6) 

The unconditional probability of failure on run (i+1) is: 

∑
=

+ ===
n

m
imji mZPPjZP

0
1 }{}{ ,  j=0, 1, 2,…,n    (6.7) 
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Similar to the previous case of two types of failures, when there is a debugging after 

Type A failure, the transition probability matrix changes accordingly. The n-type 

failure states Markov renewal model can be constructed as depicted by Fig.  6.4. 

 

 
Fig. 6.4. Markov renewal model for n-type failure states. 

 

As before, 'i' in Fig. 6.4 is the number of Type A failure, which have already been 

detected and removed. The transition matrix for the period from the occurrence of the 

i:th Type A failure to the occurrence of the next (i+1)st Type A failure, is given as 

follow. 
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and the transition probability should satisfy  

1
0

=∑
=

n

j

i
mjP ,  m=0,1,2,…,n 

Again { mS } defines the DTMC presented in above Fig.  6.4. All the states, i, i0, i2,…, 
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in, represent that the Type A failure state has been occupied i times. State i represents 

the first trial for which mS =i. State i0 represents all the successful subsequent trials for 

which mS =i, State i2 to in represents Type 2 to n failure states subsequent trials for 

which mS =i. 

 

6.3.  Implementations of the model 

The above Markov renewal model can be implemented to analyze the system behavior 

in both testing phase and validation phase. In testing phase, the system is debugged, so 

the transition probabilities should change after each Type A failure. However, between 

two Type A failures, the transition probabilities are constant, so the distribution of time 

between two successive Type A failures can be easily derived by using the 

Laplace-Stieltjes Transform. Thus, the conditional system reliability, which is defined 

as the survivor time distribution between two Type A failures, can also be obtained. 

Then, the mean time between failures can be easily computed by either integration or 

using the well known property of Laplace-Stieltjes transformation.  

On the other hand, the probability transition matrix will be constant during the 

validation phase after the test, because no changes are made to the system during that 

phase. Thus, the system reliability can be easily calculated. Then, we propose a method 

to certify the system given certain confidence level based on the system reliability.  
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6.3.1. Some quantitative measures 

From a reliability point of view, the time between failures or the number of failures 

over time is very important. Here, we derive the distribution of the discrete random 

variable j
iX 1+  (j=0,2,3…n) defined as the number of runs visiting the j:th state 

between two successive visits from the i:th Type A failure to the (i+1)st Type A failure. 

The probability of every possible number of j
iX 1+  (j=0,2,3…,n) is given by 
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(6.8) 

in which ),...,,,( 320 nKKKKg  is the function of nKKKK ,...,,, 320 , and jK  denotes 

the number of runs occupied on the j:th failure state ( jK =0,1,2…). The value of 

),...,,,( 320 nKKKKg  can be obtained in principle.  

Under the condition of that it visits the j:th state with jK  times (j=0,2,3,…,n) 

and that Type A failure occurs once between the i:th and (i+1):st Type A failures, the 

distribution of the time period used for this event can be derived as 

)()()()()( 1
**

3
*

2
*

0
320 tFtFtFtFtF nK

n
KKK

••••• ⊗⊗⊗⊗ L                (6.9) 

in which )(* tF jK
j•  is the jK -fold convolution of )(tF j•  )...,3,2,0( nj =  and jK  

can be 0,1,2…. Also, '⊗ ' denotes the convolution of the two functions.  

Define the distribution of time between the i:th and (i+1):st Type A failures as 

)(1 tFi+ . Assume 1+iT  is the random variable of time between the i:th and (i+1):st Type 

A failure runs. With the above two equations, it can be shown that the distribution of  
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The Laplace-Stieltjes transform of )(1 tFi+ becomes 

∑ ∑ ∑
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(6.11) 

The inversion of the above equation is straightforward, and reasonably simple 

closed-form results can be obtained when ),...2,1(),( njtF j =•  has a rational 

Laplace-Stieltjes transform. 

The reliability of the system after i:th Type A failure is 

 )()(1)( 111 tTPtFtR iii >=−= +++       (6.12) 

Some general properties of the inter-failure time can be developed without 

making other assumptions. For example, the mean time between failures (i and i+1 

Type A failures) is: 

[ ] ∫
∞

++ =
0

11 )( dttRTE ii         (6.13) 

or, see e.g. Goseva-Popstojanova and Trivedi (2000) 

[ ] 0
1

1
)(~

=
+

+ −= s
i

i ds
sFd

TE        (6.14) 

 

6.3.2. Application to the validation phase 

Now we discuss the system reliability in validation phases with two-type failure model. 
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After the testing (debugging) phase, the system enters a validation phase to show that it 

has a high reliability prior to actual use. In this phase, no changes are made to the 

system. Thus the probability transition matrix will not change as the Markov Process 

depicted by the previous Fig. 6.1.  

Now we consider the independent condition, that is,  

jjjj PPPP •=== 210 , j=0,1,2 

If the state is not a Type A failure after a run, the system is reliable until the Type A 

failure occurs. The reliability in a run is 11 •− P . The reliability for m successive runs is 

defined as the probability that m successive independent test runs are conducted 

without Type A failure, which can be derived as: 

mm PPPmR )()1()( 201 ••• +=−=      (6.15) 

Given a confidence level α , if α≥)(mR , we can say that the system is reliable in 

successive m runs without Type A failure with α  confidence. In order to satisfy this 

condition, the value of 1•P  should make 

   α≥− •
mP )1( 1          (6.16) 

Given a confidence level α , we can obtain an upper confidence bound on 1•P , which 

is denoted by *
1P . Solving α=− •

mP )1( *
1 , we obtain the upper bound 

  mP /1*
1 1 α−=•          (6.17) 

This can help to test whether the system can be certified or not, i.e., if *
11 •• ≤ PP , the 

system is certified with α  confidence to say that the system is reliable in n successive 

runs without Type A failure. Otherwise, we cannot say that with α  confidence.  

Now consider a sequence of possibly dependent system runs. During the 
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validation phase, the system is not changing, i.e., ijP  does not change. That is, the 

sequence of runs can be described by the homogeneous DTMC with the transition 

probability matrix. Assume that the DTMC is steady, i.e., each run has the same 

failure-probability: 

∑
=

+ =====
n

m
imjii mZPPjZPjZP

0
1 }{}{}{ ,  j=0,1,2     (6.18) 

Let }{ jZPP ij ==  and substitute it into the above equation to get 

∑
=

=
n

m
mmjj PPP

0

,  j=0,1,2        (6.19) 

Solve the above equations to obtain unconditional probability of failure on run as  

))(()1)(1( 0121021202220111

0211021201
2 PPPPPPPP

PPPPP
P

−−−+−+−
−+

=    (6.20) 

))(()1)(1( 0212012101110222

0122012102
1 PPPPPPPP

PPPPP
P

−−−+−+−
−+

=    (6.21) 

210 1 PPP −−=             (6.22) 

The reliability for m successive runs after the system is steady will be 

mm PPPmR )()1()( 201 +=−=          (6.23) 

Similarly, given the confidence level α , the largest value of 1P  so that 

   α≥− mP )1( 1         (6.24) 

is defined as the upper confidence bound, denoted by *
1P . Solve the above equation for 

*
1P  given α , we have that 

  mP /1*
1 1 α−=         (6.25) 

Again, this can help to test whether the system is certified or not, i.e., if *
11 PP ≤ , the 

system is certified with confidence level α  to say that the system is reliable in m 
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successive runs without Type A failure. Otherwise, we cannot say that with confidence    

Now we consider the system reliability in validation phases with n-type failure 

model as in Fig.  6.3. Assume that the DTMC is homogeneous, we have 

∑
=

+ =====
n

m
imjii mZPPjZPjZP

0
1 }{}{}{ ,   j=0,1,2,…,n     (6.26) 

Let }{ jZPP ij ==  and substitute it into the above equation to get 

∑
=

=
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m
mmjj PPP

0

,  j=0,1,2,…,n 

Solving the above equations, we can obtain unconditional probability of different states 

in principle. Then, we can analyze the properties with these values similarly as the 

two-type failure model analyzed above. 

   Although the analysis presented in the previous section seems to be 

complicated, it is numerically tractable. An example is given here to illustrate the 

procedure.  

 

6.3.3. Illustrative example 

Suppose the distribution of the execution time of each run is exponential so that  

)exp(1)( ttF jj µ−−=• , j=0,1,2 

It relates the MRP approach to the existing system reliability models. Its 

Laplace-Stieltjes transform is 

j

j
j s

sF
µ

µ
+

=• )(~  

Set the numerical values of 297.0,3.0,302.0 210 === µµµ . 
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In the operational phase we can estimate the transition probability matrix from 

empirical data of successive runs. The following transition probability matrix is used 

as illustration. 

P=















=
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2.01.07.0
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020100
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Substitute those values into Eq. (6.11), we can obtain the Laplace-Stieltjes transform 

equation and then invert it to get the Cdf of the time between failures as: 

ttt

tttt

ttt

etee
eeee

eeetF
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342.051.005.055.0
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−−−=

   (6.27) 

This equation implies that when successive runs are dependent, the Cdf of the time 

between failures is a mixture of exponential distributions. Fig.  6.5 displays the 

distribution of )(tF . 

 

 
F(t) 

 
Fig. 6.5. Cdf of the time between failures. 
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The reliability is then calculated as  
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    (6.28) 

Thereafter, the mean time to failure can be obtained as,  

 [ ]  27.31)(
0

1 == ∫
∞

+ dttRTE i  (hours)      (6.29) 

When the system is in validation phase, no changes are made to the system. Hence, the 

probability transition matrix will not change. After some time, the system enters a 

steady-state. The unconditional probability of the three different states can be 

calculated through Eqs. (6.20-6.22) 

522.0
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=
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P  

152.0
))(()1)(1( 0212012101110222

0122012102
1 =

−−−+−+−
−+

=
PPPPPPPP

PPPPP
P  

326.01 210 =−−= PPP  

These values reflect that with this transition probability matrix when the system is 

steady, the probability of successful state after a run is 0.326, the probability of a 

Type B failure occurs after a run is 0.552 and the probability of a Type A failure 

occurs after a run is 0.152. The steady probability for the system to be reliability is  

848.0522.0326.020 =+=+ PP
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CHPATER 7               

    MULTI-STATE SYSTEMS WITH 

MULTI-LEVEL PROTECTIONS 

 

 

In this chapter, we consider vulnerable systems which can have different states 

corresponding to different combinations of available elements composing the system. 

Each state can be characterized by a performance rate, which is the quantitative 

measure of a system's ability to perform its task. Both the impact of external factors 

(stress) and internal causes (failures) affect system survivability, which is determined as 

probability of meeting a given demand. 

In order to increase the survivability of the system, a multilevel protection is 

applied to its subsystems. This means that a subsystem and its inner level of protection 

are in their turn protected by the protection of an outer level. This double-protected 

subsystem has its outer protection and so forth. In such systems, the protected 

subsystems can be destroyed only if all of the levels of their protection are destroyed. 

Each level of protection can be destroyed only if all of the outer levels of protection are 

destroyed. 

We formulate the problem of finding the structure of series-parallel multi-state 

system (including choice of system elements, choice of structure of multilevel 
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protection and choice of protection methods) in order to achieve a desired level of 

system survivability by the minimal cost. An algorithm based on the universal 

generating function method is used for determination of the system survivability. A 

multiprocessor version of genetic algorithm is used as optimization tool in order to 

solve the structure optimization problem. An application example is presented to 

illustrate the procedure presented in this chapter. 

 

7.1. Introduction 

Survivability is defined as the ability of a system to tolerate intentional attacks or 

accidental failures or errors. It is becoming important in the system performability 

(Smith et al., 1988 and Haverkort et al., 2001), especially when a system operates in 

battle conditions or is affected by a corrosive medium or other hostile environment. In 

this case both the impact of external factors (attack) and internal causes (failures) affect 

system survivability.  

A system can have different states corresponding to different combinations of 

failed or damaged elements composing the system. Each state can be characterized by a 

system performance rate, which is the quantitative measure of a system’s ability to 

perform its task. For example, in Malakhoff et al. (1998) and Parfenov (1989) each 

system state is characterized by an available ship propulsion power or by an available 

electric power respectively. Therefore a system should be considered a multi-state one 

when its survivability is analyzed, see e.g. Veeraraghavan and Trivedi (1994). 

When applied to multi-state systems, mission success depends on a system’s 
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ability to meet the demand (required performance level). In this case, the outage effect 

will be essentially different for units with different nominal capacities and will also 

depend on demand.  Therefore, the performance rates (productivity or capacity) of 

system elements should be taken into account as well as the level of demand when the 

survivability of the entire system is estimated. 

To provide a required level of system availability, redundant elements can be 

included. Usually engineers try to achieve this level with minimal cost. The problem of 

total investment cost minimization, subject to reliability constraints, is well known as 

the redundancy optimization problem. The redundancy optimization problem for a 

system with different element performance rates may be considered as a problem of 

system structure optimization. The method for solving the structure optimization 

problem was suggested in Levitin (1998) and Levitin and Lisnianski (2001). 

One of the ways to enhance system survivability is to separate elements with the 

same functionality (parallel elements). Adding more parallel elements will improve a 

MSS availability but will not be effective from a vulnerability standpoint without 

sufficient separation between elements Malakhoff et al. (1998). The separation can be 

performed by spatial dispersion, by encapsulating different elements into different 

protective casings etc.  

Parallel elements not separated from one another are considered to belong to the 

same protection group. All elements belonging to the same protection group can be 

destroyed by the same impact while at least all the elements belonging to N-1 different 

protection groups out of N will survive a single impact. Obviously, separation has its 
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price. Allocating all the parallel elements together (within a single protection group) is 

usually cheaper than separating them. The separation usually requires additional areas, 

constructions, communications etc. Moreover, each separated group can be 

intentionally protected against the external impact, which requires additional 

investments. There can be different methods of protection characterized by different 

vulnerability of the group and by different cost.  

Since system elements with the same functionality can have different 

performance rates and different availability, the choice of elements to be included into 

the system strongly affects system survivability.  Other factors that influence the 

survivability are the partitioning of elements into protection groups and the choice of 

protection method for each separated group. 

The problem of finding structure of series-parallel MSS (including choice of 

system elements, their separation and protection) in order to achieve a desired level of 

system survivability by the minimal cost has been formulated in Levitin and Lisnianski 

(2003). To solve the problem an optimization procedure based on a Genetic Algorithm 

was suggested. In this problem each group of elements can have only one level of 

protection. 

In real systems, a multilevel protection is often used (for example in 

defense-in-depth design methodology, Fleming and Silady 2002). The multilevel 

protection means that a subsystem and its inner level protection are in their turn 

protected by the protection of the outer level. This double-protected subsystem has its 

outer protection and so forth. In such systems, the protected subsystems can be 
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destroyed only if all of the levels of their protection are destroyed. Each level of 

protection can be destroyed only if all of the outer levels of protection are destroyed. 

This creates the statistical dependence among events of destruction of different 

protection levels. 

In systems consisting of nonidentical elements and having complex multilevel 

protection, different protections play different roles in providing for the system's 

survivability. Subject to cost limitations, one usually has to find a minimal cost 

configuration of protections that provides desired system survivability. The problem of 

choosing the optimal multilevel protection in series-parallel systems with a given 

structure and a given set of possible protections has been formulated in Levitin (2003) 

and solved using the GA. 

In this chapter we generalise the structure optimization problem formulated in 

Levitin and Lisnianski (2003) to the case of multilevel protection. In this problem one 

has to 

1) find the optimal system structure by choosing the appropriate product (version 

of a system element) from the list of available products for each type of equipment; 

2) allocate the chosen elements among different protection groups and to define 

the hierarchy of the multilevel protection in the system; 

3) choose the method of protection for each protection group. 

The formulated problem is extremely complex combinatorial one. Even solving 

much simpler single-level protection problem (Levitin and Lisnianski, 2003) requires 

more than hour of computations for relatively small system. Therefore the use of the 
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same computational approach for the multi-level protection case seems to be not 

realistic. In order to tackle the problem we developed a multiprocessor version of the 

GA. We also suggest the new solution encoding technique since the encodings 

presented in Levitin and Lisnianski (2003) or Levitin (2003) cannot define solutions of 

the formulated problem, which is more general. 

In the following section, the system model is presented and the optimization 

problem is defined. An algorithm for evaluating the system survivability for arbitrary 

set of elements and protections is presented in section 7.3. Section 7.4 describes the 

multiple processor based optimization technique. In section 7.5 illustrative examples of 

the system survivability optimization problem are presented. 

 

7.2. Model Description and Problem Formulation 

Acronyms 
PD  performance distribution 
PG  protection group 
MSS multi-state system 
GA  genetic algorithm 
UGF universal generating function 
 
 
Nomenclature 

MSSC  total MSS cost 

d(z) double-u-function (d-function). Composition of u-functions U(z) and )(~ zU  

mE  maximal allowable number of elements within m-th component 

Gm(h) random performance rate of element of version h that can be included in 
component m  

GMSS random output performance rate of the entire MSS 
gMSS,k output performance rate of the entire MSS at state k 
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qk probability that the entire MSS is in state k 
gmk(h)  performance rate at state k of element of version h that can be included in 

component m  
Hm number of different versions of elements that can be included in m-th 

component 
Lm number of protection levels for m-th component 
Lcomp number of protection levels for groups of serially connected components 
hm  vector representing versions of elements belonging to component m 
Km(h) number of different states of element of version h that can be included in 

component m 
pmk(h) probability of state k of element of version h that can be included in 

component m 
re

m  vector representing e-level partition of PGs in component m 

re
comp vector representing e-level partition of PGs consisting of serially connected 

components 

MSSS  MSS survivability index 

*S  desired MSS survivability 

)(zU j  u-function representing performance distribution of j-th subsystem belonging 

to some PG when the protection of this group is destroyed 

)(~ zU j  u-function representing performance distribution of j-th subsystem belonging 

to some PG when the protection of this group is not destroyed 
umi(z) u-function representing performance distribution of i-th element belonging to 

component m 
w system demand 
γe

mj method of e-level protection of j-th PG belonging to component m  
γe

comp,j method of e-level protection of j-th PG consisting of components connected in 
series 

Γe
m

  number of available methods for e-level protection in component m  
Γe

comp number of available methods for e-level protection of PGs consisting of 
components connected in series 

ne
mi number of inner PGs in i-th e-level PG belonging to component m  

ne
comp,i number of inner PGs in i-th e-level PG consisting of components connected in 

series 
γe

m vector representing e-level protection methods of corresponding to groups of 
elements belonging to component m 

γe
comp vector representing e-level protection methods of corresponding to groups of 

components connected in series 
ve

m(γ) vulnerability of e-level protection of PG belonging to component m when 
protection method γ is used 

)(hmε  cost of element of version h that can be included in component m 
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ce
m cost of e-level protection in component m 

ce
comp cost of e-level protection of PG consisting of components connected in series 

π (d(z))  operator incorporating protection vulnerability into d-function representing 
the 

 performance distributions of PG 
⊕ composition operator over u-functions for parallel connection of elements 
⊗ composition operator over u-functions for series connection of elements 
 

 

Consider a system consisting of M components connected in series. Each component 

contains elements connected in parallel. Different versions and number of elements 

may be chosen for any given system component. Elements are characterized by 

performance distributions and costs, according to their versions. The states of MSS 

elements are mutually statistically independent.  

The MSS mission success is defined as its ability to meet a demand W. Therefore 

the system survivability is  

}Pr{)( wGwS MSSMSS ≥= ,       (7.1) 

where GMSS  is output performance of the MSS. 

For MSS which have a finite number of states there can be K different levels of 

output performance: GMSS∈{gMSS,k, 1≤k≤K} and system output performance 

distribution can be defined by two finite vectors g={gMSS,k} and q={qk}, where 

qk=Pr{G=gMSS,k}, (1≤k≤K). Therefore we can define MSS survivability as the 

probability that a system remains in those states in which gMSS,k≥w: 

 ∑
≥

=
wkMSSg

kMSS qwS
,

.)(        (7.2) 

For each component m, there exist a list of Hm different versions of available 

elements. A performance distribution gmk(h), pmk(h) (1≤k≤Km(h)) and cost εm(h) can be 
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specified for each version h of element of type m. The structure of system component m 

is defined, therefore, by a vector containing numbers of versions of elements chosen for 

the component hm={hm1,…,hmEm}, where hmj∈{0,1,…,Hm}. Note that including a 

dummy version 0 corresponding to the absence of elements allows one to represent a 

different number of elements included in component m by vectors hm of the same length 

Em. The total cost of elements chosen for the mth component is 

∑
=

=
mE

i
mim

el
m hC

1
)(ε .       (7.3) 

The elements belonging to component m can be separated into Em independent 

protection groups (some of these PGs can be empty and some can contain several 

elements). For example, the case  when Em-1 PGs are empty and one PG contains all 

the elements corresponds to gathering all of the elements within the same PG. The case 

when all Em PGs are not empty corresponds to separation of all of the elements one 

from another. The partitioning among PGs can be represented by vector r1
mj (1≤j≤Em), 

where r1
mj is a number of first-level PG to which element j belongs. The PGs are 

protected by first-level protection. For each protection group i within component m 

different methods of protection can be chosen γ1
mi∈{0,…,Γ1

m}, where γ1
mi=0 

corresponds to absence of protection. The vector γ1
mi (1≤i≤Em) defines the choice of the 

first-level protection methods in component m. 

The Em protected first-level PGs (that can be considered now as equivalent single 

elements) can be further separated into Em second-level PGs and protected using 

methods γ2
mj∈{0,…,Γ2

m}. These second-level protection groups can be further 

separated and protected by the third-level protection and so forth up to Lm protection 
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level.  

The vectors re
m: re

mj (1≤j≤Em) and γe
m: γe

mi (1≤i≤Em) determine the separation and 

protection of each level e. Having the vector re
m one can obtain the number of 

nonempty inner level PGs belonging to each PG i: ne
mi. 

Each e-level protection in component m that uses protection method γ can be 

destroyed with probability ve
m(γ). Therefore, the vulnerability of protection of e-level 

PG i is ve
m(γe

mi). Observe that unprotected PG has vulnerability ve
m(0)=1. 

The protected subsystems can be destroyed only if all of the levels of their 

protection are destroyed. Each level of protection can be destroyed only if all of the 

outer levels of protection are destroyed.  

The cost of protection of the e-level PG i depends on the type of elements 

protected (number of component m), on the number of nonempty inner PGs belonging 

to the given PG ne
mi and on the chosen protection method γe

mi. This cost can be 

expressed as ce
m(ne

mi, γe
mi), where ce

m(0, γe
mi)=0 by definition. 

Assume that component m has Lm protection levels. Each level has Em PGs (some 

of these groups can be empty). The total cost of protections in the component m is: 

.),(
11
∑∑
==

=
mE

i
mi

e
mi

e
m

emL

e

prot
m ncC γ       (7.4) 

In a similar way one can define the cost protection of components connected in 

series prot
compC . Considering each component as equivalent element that can belong to 

any PG one can define the partition of components among e-level PGs using vector 

re
comp and the methods of protection for these PGs using vector  γe

comp (note that the 

number of PGs on this level can be not greater than M). The vectors re
comp determine 
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number of components in each PG i: ne
comp,i. 

Having the vectors re
m and γe

m for 1≤e≤Lm and 1≤m≤M, the vectors re
comp and 

γe
comp for 1≤e≤Lcomp and the vectors hm for 1≤m≤M one can determine the structure of 

the entire system. The total MSS cost can be determined as 
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Now we can formulate the optimal separation problem as follows.  

Find sets h, r and γ  that provide the desired MSS survivability SMSS with the 

minimal cost: 

  }.)(|min)(arg{) *SSC w,MSSMSS ≥→= γγγ r,h,r,h,r,h,(   (7.6) 

 

7.3. Survivability Estimated by Universal Generating 

Function 

To estimate the survivability of MSS with given structure, separation and protection of 

elements SMSS(h,r,γ) one has to apply a procedure which calculates the performance 

distribution of a given series-parallel structure. The procedure used in this chapter for 

the system survivability evaluation is based on the universal generating function 
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(u-function) technique, which was introduced in Ushakov (1986) and which proved to 

be very effective for the reliability evaluation of different types of multi-state systems 

Lisnianski and Levitin (2003). The detailed description of the procedure can be found 

in Lisnianski and Levitin (2003). A brief description of this procedure is given in the 

following. 

For the sake of simplicity, we consider only those MSS in which the performance 

measure is defined as productivity or capacity (continuous materials or energy 

transmission systems, manufacturing systems, power supply systems).  

7.3.1. U-functions of individual elements and their parallel compositions  

The u-function of a discrete random variable X is defined as a polynomial given by 

,)(
1

∑
=

=
K

k
kx

k zazu         (7.7) 

where the variable X has K possible values and ak is the probability that  X is equal to xk. 

To evaluate the probability that the random variable X is not less than the value w the 

coefficients of polynomial u(z) should be summed for every term with xk≥w:  

∑
≥

=≥
wkx

kawX .}Pr{        (7.8) 

In our case, the polynomial umj(z) can define performance distribution of j-th 

element belonging to component m, i.e. it represents all of the possible states of the 

element by relating the probabilities of each state to the  performance of the element in 

that state. Note that the performance distribution of the chosen element (element of 

version hmj) defined by the vectors {gmk(hmj), 1≤k≤Km(hmj)} and {pmk(hmj), 1≤k≤Km(hmj)} 

can now be represented as  
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Any subsystem consisting of two elements can be considered as a single 

equivalent element with a performance distribution equal to the performance 

distribution of the subsystem (represented by u-function obtained by the corresponding 

composition operator over u-functions of the two elements). 

In MSS of a considered type, the total performance rate of a pair of elements 

connected in parallel is equal to the sum of the performance rates of the individual 

elements. To obtain the u-function U(z) of a subsystem containing two parallel 

elements i and j, composition operator ⊕ is introduced:  
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 (7.10) 

 

7.3.2. U-functions of parallel PGs and their compositions 

The probability of each state of a protected element (or subsystem) depends on the state 

of the protection. Therefore, each subsystem belonging to some PG is characterized by 

two conditional performance distributions: first corresponding to the case when the 

protection of the PG is destroyed and second corresponding to the case when the 

protection of the PG survives. In order to represent the performance distributions of an 

element j belonging to some PG within the component m we introduce the following 
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double u-function (d-function) dmj(z)=<Umj(z), )(~ zUmj >, where Umj(z) and )(~ zUmj  

represent performance distributions for the first and second cases respectively.  

Note that if the protection of a basic single element is destroyed, this element is 

destroyed with probability 1 and has performance rate 0. Therefore for a basic single 

element j of component m that has a performance distribution represented by the 

u-function umj(z)  

 dmj(z)=<z0, umj(z)>.                (7.11) 

It can be easily seen that any pair of parallel elements with d-functions dmj(z) and 

dmi(z) belonging to the same PG can be replaced by the equivalent element with 

d-function 

dmj(z)⊕dmi(z) = 〈 )(zUmj , )(~ zUmj 〉  ⊕ 〈 )(zUmi , )(~ zUmi 〉   

= 〈  )(zUmj ⊕ )(zUmi , )(~ zUmj ⊕ )(~ zUmi 〉      (7.12) 

Observe that any e-level PG x consists of a subsystem and its protection. The 

subsystem can always be replaced by its equivalent element with d-function 

dmx(z)=<Umx(z), )(~ zUmx >. The protection of the PG x has vulnerability ve
m(γe

mx). If the 

protection survives (with probability 1-ve
m(γe

mx)), the subsystem has its performance 

distribution represented by the u-function )(~ zUmx . If the protection is destroyed (with 

the probability ve
m(γe

mx), the subsystem has its performance distribution represented by 

the u-function Umx(z), Therefore, the performance distribution of the entire PG 

(subsystem and its protection) can be obtained as 

ve
m(γe

mx) )(zUmx + (1- ve
m(γe

mx)) )(~ zUmx .         (7.13) 

If the PG x with its protection are in their turn protected by an e+1- level 
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protection (which means that they belong to another PG), in the case when the outer 

protection survives, the inner protection also survives and the subsystem performance 

distribution is represented by the u-function )(~ zUmx . 

These considerations allow one to replace a subsystem x with d-function 

dmx(z)=<Umx(z), )(~ zUmx > and its protection with vulnerability ve
m(γe

mx) by the 

equivalent unprotected element y with d-function obtained by applying the following 

operator π over dmx(z): 

dmy(z)=π (dmx(z)) =π 〈 )(zUmx , )(~ zUmx 〉   

= 〈 ve
m(γe

mx) )(zUmx +(1-ve
m(γe

mx)) )(~ zUmx , )(~ zUmx 〉     (7.14) 

 

7.3.3. U-functions of system consisting of components connected in series  

Applying the operators (7.12) and (7.14) one can obtain d-functions dm(z) 1≤m≤M 

corresponding to entire components in the form 
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When the components are connected in series, the component with the lowest 

performance rate becomes the bottleneck of the subsystem. Therefore, for a pair of 

components connected in series the performance rate of the subsystem is equal to the 

minimum of the performance rates of the individual elements. 

Therefore, the composition operators ⊗ defined for the series connection of a pair 

of components takes the form 
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 (7.16) 

Using the approach presented in section 3.2 and replacing in (7.12) operator ⊕ 

with operator ⊗ one can obtain the d-function of PGs consisting of components 

connected in series.  

7.3.4. Algorithm for MSS survivability evaluation 

Consecutively applying the operators presented in the previous section and replacing 

pairs of elements belonging to the same PG and a single element with protection by 

equivalent unprotected elements one can obtain the d-function representing the 

performance distribution of the entire system. The following recursive algorithm 

obtains the system survivability:  

1. For each component m (1≤m≤M):  

1.1. According to the vector hm determine d-functions of elements chosen for 

the component using (7.9) and (7.11). 

1.2. For each protection level e (1≤e≤Lm): 

1.2.1. According to the vectors re
m and γe

m
 determine protection groups and 

survivability of each protection. 

1.2.2. If the component contains a pair of unprotected elements belonging to 

the same PG, replace this pair with an equivalent element with 

d-function obtained by ⊕ operator (7.10) using Eq. (7.12). 

1.2.3. If some PG contains more than one element, return to step 1.2.2. 
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1.2.4. If the component contains PG consisting of a single element, replace 

this element and its protection with a single equivalent element with 

d-function obtained using Eq. (7.14). 

Obtain the d-function of the entire component consecutively applying Eq. (7.12) over 

d-functions of PGs of highest level Lm. 

2. For each protection level e (1≤e≤Lcomp): 

2.1. According to the vectors re
comp and γe

comp
 determine protection groups  

and survivability of each protection. 

2.2. If the system contains a pair of unprotected components belonging to the 

same PG, replace this pair with an equivalent component with d-function 

obtained by substituting the ⊗ operator (7.16) into Eq. (7.12). 

2.3. If some PG contains more than one component, return to step 2.2. 

2.4. If the system contains PG consisting of a single component, replace this 

component and its protection with a single equivalent component with 

d-function obtained using Eq. (7.13). 

3. Determine the d-function of the entire series-parallel system as the d-function 

of the remaining single equivalent element obtained by consecutively applying 

Eq. (7.12) over   d-functions of PGs of highest level Lcomp. The system 

performance distribution is represented by the first u-function of this 

d-function. 

4. Obtain the system survivability for the given demand w by applying the Eq. 

(7.8) over the u-function representing the entire system performance 
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distribution. 

 

7.4. Optimization Technique 

Equation (7.6) formulates an extremely complicated combinatorial optimization 

problem. An exhaustive examination of all possible solutions is not realistic, 

considering reasonable time limitations. Even much simpler optimization problem 

(Levitin and Lisnianski, 2003) required considerable computational time for its 

solution. In order to solve the optimization problem (7.6) using the same Genetic 

Algorithm approach (Goldberg, 1989) that was applied for solving the problems in 

Levitin and Lisnianski (2003) and Levitin (2003), a multiprocessor version of the GA 

was developed. 

 

7.4.1. Multiprocessor genetic algorithm 

The basic structure of the multiprocessor version of GA based on GENITOR method 

(Whitley, 1989), is as follows: 

Solutions in the GA are coded as a finite length strings. The main server 

maintains the population of encoded solutions and values of their fitness. The 

processors perform various procedures over individual solutions and their pairs and 

return the obtained solutions to the server. 

An initial population of Ns solutions (strings) is generated at random by the 

processors. Each processor generates solutions, decodes them and evaluates their 
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objective function (fitness). These values, which are a measure of quality, are used to 

compare different solutions. Then it sends the solution encoding strings and the 

corresponding values of fitness to the server. 

During the genetic cycle the server chooses at random pairs of solutions and 

sends them to processors.   In each processor, new solutions are obtained by using the 

crossover operator. This operator produces an offspring from the pair of parent 

solutions. The newly obtained offspring undergoes mutation with the probability Pmut. 

Each new solution is decoded and its fitness value is estimated. The new solution with 

its fitness value returns to the server. 

The server accomplishes a selection procedure that determines which solution is 

better: the newly obtained solution or the worst solution in the population. The better 

solution joins the population, while the other is discarded. If the population contains 

equivalent solutions following selection, redundancies are eliminated and the 

population size decreases as a result. 

After new solutions are produced Nrep times, new randomly constructed solutions 

are generated by the processors to replenish the shrunken population, and a new genetic 

cycle begins. 

The GA is terminated after Nc genetic cycles. The final population contains the 

best solution achieved. It also contains different near-optimal solutions which may be 

of interest in the decision-making process. 

To apply the genetic algorithm to a specific problem, a solution representation 

and decoding procedure must be defined as well as basic GA procedures and 
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parameters.  

 

7.4.2. Solution Representation 

As described in the previous section, three things determine the structure of MSS: 

the list of version numbers of elements chosen for each component 

}{ M1 h,...,hh =  partition of elements and lower level PGs between PGs of each level 

within each component and partition of components and lower level PGs between PGs 

consisting of serially connected components 

},...,,...,,...,,...,{ compL
comp

1
comp

ML
M

1
M

1L
1

1
1 rr,rrrrr =  and methods of protection for each 

PG },...,,,...,,...,,...,{ Lcomp
comp

1
comp

ML
M

1
M

1L
1

1
1 γγγγγγγ = . 

The sets h, r and γ completely determine the system structure. This three sets can 

be combined within an integer string Θ={Θ1,…,ΘM,Θcomp}, where Θm (1≤m≤M) is a 

concatenation of the vectors hm, re
m and γe

m (for 1≤e≤Lm) and Θcomp is a concatenation of 

the vectors re
comp and γe

comp (for 1≤e≤Lcomp). Each one of the vectors hm, re
m and γe

m has 

Em elements, while each one of vectors re
comp and γe

comp has M elements. Therefore the 

total length of the string representing the solution is 

∑
=

⋅+⋅+
M

m
compmmm LMELE

1
2)2( .     (7.17) 

Note that all of the string values make sense only in the case when each 

component has maximal possible number of elements and all of these elements are 

separated one from another (all of the PGs are not empty).  Otherwise some of values 

of the string should be ignored by the decoding procedure. 
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In the feasible solution the values of substring hm should be distributed in the 

range (0, Hm), the values of substrings re
m and re

comp should be distributed in the range (1, 

Em) and (1, M) respectively and the values of substrings γe
m  and γe

comp should be 

distributed in the range (0,Γe
m) and (0,Γe

comp). 

In order to allow all the string elements distributed within the same range to 

represent feasible solutions, we determine this range as 

(0, }max},max,,{max,max{
111

e
comp

compLe

e
m

mLe
mm

Mm
EHM ΓΓ

≤≤≤≤≤≤
).  (7.18) 

When the string is decoded, we transform each string elements x, corresponding 

to substrings hm, re
m , re

comp, γe
m  and γe

comp respectively in the following way: 

)(mod 1 xh mHmj += , 1)(mod += xr mEmj
e , 1)(mod, += xr Mjcomp

e  

)(mod
1

x
memi

e
+

=
Γ

γ , )(mod
1

x
compemi

e
+

=
Γ

γ .   (7.19) 

The unification of the distribution range of all the string elements simplifies the 

string generation procedure, as well as mutation and crossover operators. 

Consider, for example, a series-parallel MSS with M=2, H1=H2=3, E1=E2=3, 

L1=2, L2=1, Lcomp=2, Γ1
1=3, Γ2

1=2, Γ1
2=3, Γ1

comp=Γ2
comp=2. In this example we will use 

the notation PGne
m to designate nth PG of level e within mth component. 

According to (7.18) the solution encoding string should consist of integer 

numbers distributed in the range (0, 3). Consider for example the following string 

obtained after transformation (7.19): 

Θ: 13133223212211220211112312021122 

In the first part of this string (Θ1) the substrings 131, 332, 232, 122, and 112 

represent  h1, r1
1 , γ1

1 , r2
1 and γ2

1 respectively. The versions of elements chosen to fill 
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positions  1, 2 and 3 of the first component are according to h1 1, 3 and 1 respectively. 

According to r1
1 elements located at positions 1 and 2 belong to PG31

1, element located 

in position 3 belongs to PG21
1 (PG11

1 is empty). According to γ1
1 the PG21

1 has 

protection method 3 and the PG31
1 has protection method 2 (the first number of γ1

1 is 

ignored because PG11
1 is empty). Substring r2

1 defines the distribution of first-level 

PGs among the PGs of the second level. According to r2
1 PG21

1 and PG31
1 belong to 

PG22
1

  (fist element of r2
1 is ignored because PG11

1 is empty). PG12
1 and PG32

1 remain 

empty. The protection method for PG22
1 according to second element of γ2

1 is 1 (the 

first and third elements of γ2
1 are ignored). 

In the second part of string (Θ2) substrings 202, 111, 123 represent  h2, r1
2 , γ1

2 

respectively. Two elements of version 2 are chosen to fill positions  1 and 3 of the 

second component according to h2 (0 corresponds to absence of any element).  

According to r1
2 elements located at positions 1 and 3 belong to PG12

2
 (PG22

2 and 

PG32
2 remain empty). According to γ1

2 the PG12
2 has protection method 1 (the second 

and third numbers of γ1
2 are ignored because PG22

2 and PG32
2 are empty).  

In the last part of string (Θcomp) substrings 12, 02, 11, 22 represent r1
comp , γ1

comp, 

r2
comp and γ2

comp respectively. According to r1
comp component 1 belongs to PG11

comp and 

component 2 belongs to PG21
comp. According to γ1

comp the PG11
comp has no protection 

(protection method 0) and the PG21
comp has protection method 2. According to r2

comp 

both PG11
comp and PG21

comp belong to PG12
comp. According to γ2

comp this PG has 

protection method 2 (the second number of γ2
comp is ignored because PG22

comp is 

empty). 
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One can see the structure of the system encoded by the given string in Fig. 1. (In 

this figure each system element is marked by its version number, protection denoted by 

ellipse numbered according to chosen protection method).  

 

 
Fig. 7.1. MSS structure encoded by the integer string. 

 

7.4.3. Solution decoding procedure 

The following procedure determines the fitness value for an arbitrary solution defined 

by integer string Θ.  

 Assign 1 to the number of component m. Assign 0 to the total cost CMSS. 

Decode substring Θm and obtain versions of elements belonging to the 

component m, structure of protection groups ang corresponding protection methods at 

each protection level. Determine cost and performance distributions of elements in 

accordance with their versions and define d-functions of these elements using Eq. (7.9) 

and (7.11). 

Calculate the cost of elements and protections in the component m using Eq. (7.3) 

and (7.4) and add this cost to CMSS. 

1

1
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1
2

2

2
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For each protection level e (from e=1 to e=Lm), obtain d-functions of PGs and 

replace them by equivalent elements using operators (7.10), (7.12) and (7.14). 

Obtain the d-function of the m-th component using Eq. (7.12) with operator (7.10) 

over d-functions of nonempty PGs of Lm level. 

Increment m and if m≤M return to step 2. 

Decode substring Θcomp and obtain structure of protection groups ang 

corresponding protection methods at each protection level.  

Calculate the cost of protections of serially connected components and add this 

cost to CMSS. 

For each protection level e (from e=1 to e=Lcomp), obtain d-functions of PGs and 

replace them by equivalent elements using operators (7.16), (7.12) and (7.14). 

 Obtain the d-function of the entire MSS using Eq. (7.12) with operator (7.16) 

over d-functions of nonempty PGs of Lcomp level. 

 Evaluate the system survivability SMSS for the given demand w using Eq. (7.8) 

over the first u-function of d-function corresponding to the entire MSS. 

 So that the genetic algorithm will search for the solution with minimal total cost 

and with survivability not less than the required value S*, evaluate the solution quality 

(fitness) Λ as follows: 

                         Λ=a⋅exp{-b⋅[CMSS+λ⋅min(S*-SMSS,0)]},     (7.20) 

where λ is a sufficiently large penalty and a and b are positive constants. Note 

that for solutions with SMSS≥S*, the fitness of the solution depends only on the system 

cost. 
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7.4.4. Crossover and mutation procedures 

The crossover operator is aimed at producing a new solution (string) which inherits 

some properties of both parent solutions by combining parts of their strings. 

String elements belonging to the fragment defined by two randomly chosen 

crossover sites are copied from the first parent and elements located out of the fragment, 

from the second parent. 

The following example presents offspring string, obtained by the procedure: 

 First parent:    3 0 5 |1 4 7 2 0 1 | 1 0 0 0 2 

 Second parent:   2 0 1 | 6 0 2 1 4 3| 4 9 1 3 0 

 Crossover offspring:  2 0 1 |1 4 7 2 0 1 |4 9 1 3 0 

Mutation is aimed at maintaining a diversity of solutions by providing slight 

changes in the structure of the offsprings obtained by the crossover. This procedure 

avoids premature convergence to a local optimum and facilitates jumps in the solution 

space. The mutation operator replace a randomly chosen element of the solution 

encoding string by the random number belonging to the same range. 

7.4.5. Choice of the GA parameters 

In order to select the GA parameters that provide the fastest algorithm convergence to 

the best solutions the tests were performed on a set of 10 randomly generated problems 

with 5≤M , 20
1

≤∑
=

M

m
mH , 5

1
≤+∑

=
comp

M

m
m LL , 15

1
≤+∑

=
comp

M

m
m γγ . According to the 
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methodology suggested in Levitin and Lisnianski (2003), the fitness of the obtained 

solutions and the GA running time were compared. The chosen combination the GA 

parameters is Ns=200, Nrep=2000,  Nc=100, Pmut=1. 

 

7.5. Illustrative Example 

In order to test the suggested algorithm it was compared with the procedure suggested 

in Levitin and Lisnianski (2003) for finding optimal structure of an MSS with single 

level protection. In illustrative example presented in Levitin and Lisnianski (2003) the 

series-parallel multi-state system (power substation) was considered. The parameters of 

this system are M=4, H1=6, H2=3, H3=H4=4, L1=L2=L3=L4=1, Lcomp=0, Γ1
1=3, Γ1

2=1, 

Γ1
3=3, Γ1

4=2. 

 

7.5.1. Minimal cost MSS with single-level protection 

The cost, performance rate and availability of elements that can be included in each 

component are presented in Table 7.1. (All the elements have two states: normal 

functioning with performance g and total failure with performance 0. The probability of 

normal state is A, the failure probability is 1-A). For the sake of simplicity the cost of 

protection for each PG does not depend on the number of elements it contains, but does 

depend on the method of protection. The descriptions and costs of different protection 

levels available for each component and the vulnerabilities corresponding to these 

protection levels are presented in Table 7.2. The system should meet demand w=5.  
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Table 7.1. Parameters of available elements 

No of 
Component 

No of 
Version 

g A ε 

 1 1.2 0.97 3.1 
 2 1.6 0.92 4.2 
1 3 1.8 0.94 4.7 
 4 2.0 0.93 5 
 5 5.0 0.86 11 
 6 5.0 0.91 14.5 
 1 1.8 0.98 3.1 
2 2 3.6 0.98 6 
 3 5.4 0.96 8.8 
 1 1.4 0.9 6.6 
3 2 1.6 0.93 7 
 3 1.8 0.91 7.9 
 4 2.0 0.95 9.4 
 1 1.4 0.86 2.6 
4 2 2.6 0.91 6 
 3 3.8 0.93 7.9 
 4 5.0 0.85 9.4 
     

 

Table 7.2. Characteristics of available protection for single-level protection 

example 

No of 
Component 

Protection 
method γ 

Protection 
vulnerability v 

Protection 
cost c 

 1 0.35 0.1 
1 2 0.15 4.1 
 3 0.05 15.7 
2 1 0.01 1.0 
 1 0.60 1.0 
3 2 0.35 5.5 
 3 0.15 17.0 

1 0.10 1.1  
4 2 0.03 4.2 
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The structure optimization problem for desired system survivability S*=0.99 was 

solved in Levitin and Lisnianski (2003) for E1=E2=E3=E4=10 in about 75 minutes (on 

Pentium II PC). The obtained cost was CMSS=260.8. The improvement of this solution 

can be achieved by increasing the possible number of elements in each component, but 

this increases the length of the solution encoding string and slows the GA convergence. 

The further increase of the string length was impossible given the reasonable time 

limitation. Solving the problem using the five-processor GA on Pentium IV PC took 

just 238 seconds for E1=E2=E3=E4=12. The total cost of the obtained solution 

(presented in Fig. 7.2) is CMSS=260.4.  
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Fig. 7.2. Lowest cost MSS with single-level protection for S*=0.99. 
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7.5.2. Minimal cost MSS with multi-level protection 

Consider now the same example and assume that the elements within each component 

can have two level protections (different types of protection shields and casings). 

Assume also that the entire components can be allocated within protecting 

constructions and distributed among different protected sites. While the cost and 

vulnerability of the shields and the casings do not depend on the number of protected 

elements, the number of protected components strictly affects the protection cost and 

vulnerability. The parameters of the available protections within the components are 

presented in Table 7.3. The parameters of protections of the groups of entire 

components are presented in Table 7.4.  

Table 7.3. Characteristics of protections available within components 

No of 
Component 

Protection 
level e 

Protection 
method γ 

Protection 
vulnerability v 

Protection 
cost c 

  1 0.4 0.2 
 1 2 0.3 2.1 
1  3 0.1 10.7 
  1 0.35 0.1 
 2 2 0.15 4.1 
  3 0.05 15.7 
2 1 1 0.1 1.2 
 2 2 0.01 1.0 
  1 0.5 2.0 
 1 2 0.37 4.5 
3  3 0.13 12.0 
  1 0.60 1.0 
 2 2 0.35 5.5 
  3 0.15 17.0 
 1 1 0.2 1.5 
4  2 0.05 4.7 
 2 1 0.10 1.1 
  2 0.03 4.2 
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Table 7.4. Characteristics of protections available for entire components 

Protection 
level e 

Protection 
method γ 

No of protected 
components 

Protection 
vulnerability v 

Protection 
cost c 

  1 0.42 2.0 
 1 2 0.44 2.2 
  3 0.50 2.9 
  4 0.55 3.5 
  1 0.23 4.1 
1 2 2 0.25 4.6 
  3 0.30 6.4 
  4 0.35 7.3 
  1 0.17 5.4 
 3 2 0.19 6.0 
  3 0.25 7.7 
  4 0.30 8.5 
  1 0.38 4.0 
 1 2 0.39 4.2 
  3 0.40 4.3 
2  4 0.41 4.4 
  1 0.33 8.1 
 2 2 0.35 8.6 
  3 0.38 9.4 
  4 0.39 10.3 

 

The structure optimization problem was solved for four different values of 

desired system survivability }99.0,95.0,90.0,85.0{* ∈S . One can see the obtained 

solutions in Figs. 7.3-7.6, where the system elements are marked with their version 

numbers and each protection group is encased into an ellipse numbered in accordance 

with the level and the chosen method of protection (the marks has the form 

level/method). Ellipses corresponding to the different protection levels have different 

types of lines (solid lines represent the protections for elements within the components, 

and dashed lines represent the protections out of the entire components). 
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Fig. 7.3. Lowest cost MSS with multilevel protection for S*=0.85. 
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Fig. 7.4. Lowest cost MSS with multilevel protection for S*=0.90. 
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Fig. 7.5. Lowest cost MSS with multilevel protection for S*=0.95. 
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Fig. 7.6. Lowest cost MSS with multilevel protection for S*=0.99. 

 

In this example, a five-processor GA was used on Pentium IV PCs with the following 
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combination of the parameters: Ns=200, Nrep=2000, Nc=100, Pmut=1, a=500, b=0.01 and 

λ=10000. The running time for each one of the solved problems did not exceed 2000 

seconds. 

 

7.5.3. Computational effort and algorithm consistency 

In order to show the impact of the number of processors on the running time of the 

multi-processor GA, we conducted an experiment on the problem presented in section 

7.2 for 99.0* =S . This problem was solved by Gas with diferent number of parallel 

processors N. The GA running times T (obtained as average of 10 GA runs for each 

number of processors) are presented in Fig. 7.7. This curve is compared with the 

function T’=5123/N corresponding to the perfect work sharing among the processors. 

The actual running time of N-processor GA takes more than T’.  This can be explained 

by the fact that part of the algorithm is performed by the central server and the 

communication among the server and the processors take some additional time. The 

GA of running time curve trends to a certain constant value when the number of 

processors increases. This means that using more than 7-9 the processors cannot 

significantly improve the GA efficiency. 
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Fig. 7.7. Running time vs. number of processors. 

 

To demonstrate the consistency of the suggested algorithm, GA was repeated 10 times 

with different starting solutions (initial population) for each one of four problems with 

different values of S*. The coefficient of variation was calculated for fitness values of 

best-in-population solutions obtained during the genetic search by GA search processes. 

The variation of this index during the GA proceeding is presented in Fig. 7.8. One can 

see that the standard deviation of the final solution fitness does not exceed 4% of its 

average value. 
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Fig. 7.8. Coefficient of variation vs. number of crossovers. 
 

7.6. Conclusion 

In this chapter, we formulated the problem of finding structure of series-parallel MSS 

with multi-level protections in order to achieve a desired level of system survivability 

by the minimal cost. This chapter also describes a straightforward recursive algorithm 

for evaluating the survivability of a series-parallel MSS with multi-level protections. 

Then, a multi-processor GA was developed for effectively solving the problems, where 

a new encoding scheme was proposed. Finally, two numerical examples were 

illustrated. 

However, this chapter assumed that the failures of different groups of elements 

were independent from one another, which is not always true in practice. The 

correlation among different failures should be considered in future research, see e.g. 
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Levitin (2001). 

Moreover, this chapter just studied the series-parallel structure. In fact, those 

elements may be connected or distributed according to other arbitrary topologies, such 

as bridge topology etc. Hence, the problems of other generally distributed systems are 

also worth further studying. 

Anyway, this chapter extended the previous research (Levitin and Lisnianski, 

2003) into a more general and practical case by introducing the multi-level protections. 

The general steps of our multi-processor GA can also be implemented in other similar 

problems so that the effectiveness of GA can be improved without reducing the quality 

of solutions.
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CHAPTER 8                

         OPTIMAL TESTING 

RESOURCE ALLOCATION  

 

 

8.1. Introduction 

Today’s software development is no longer an isolated task of a single programmer. Large 

systems are usually developed in a multi-language environment and run simultaneously on 

various platforms. Software development is a very complex process involving various 

factors. In Zhang et al. (2001), thirty-two environmental factors are defined and a survey 

was launched to investigate the impact of these factors on software reliability assessment. 

Tian (1999) describes how to establish predictive linkage between software reliability and 

other environmental factors which can be measured and controlled early in the development 

cycle, and using such predictive relations to drive continuous reliability improvement. The 

software-testing resource is a kind of entities, which can be measured and controlled early 

in the development cycle. Thus, for the development of large and complex systems, how to 

allocate the limited software-testing resource so that the overall reliability of the system is 

maximized is an important decision-making problem.  

  Testing-resource usually refers to the resource expenditures spent on software 

testing, e.g., man-power and available time, etc. During the testing stage, a project manager 
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often faces various problems such as how to allocate available time (the time before 

deadline) among the modules and how to assign personnel, etc. In order to combine these 

two kinds of resources (man-power and available time) together, we define a term called 

total testing time that is calculated by multiplying the number of personnel with the 

available time. Each unit of the total testing time represents the resource of one person to 

work for one unit of time. For example, if ten persons are prepared to test the software and 

the deadline for testing is 1000 hours from now on (available time), the total testing time is 

calculated by 10×1000=10000 (hours). Here the testing-resource is referred to as total 

testing time and we use the term testing-resource as an exchangeable one with the term total 

testing time. 

  In this chapter, we study the testing resource allocation problems on both 

independent modules and dependent versions of software. Section 8.2 introduces the 

optimal testing resource allocation on independent modules with general parallel-series 

structures. Then, section 8.3 further extends the resource allocation problem into a more 

practical case by considering the failure correlation among different modules. 

 

8.2. Testing Resource Allocation on Independent Modules 

It is well known that in the development process of a computing system, the testing phase is 

a costly and time-consuming phase (Yamada et al., 1995). During the unit-testing phase, all 

the testing activities of different modules are competing for the limited testing-resource. 

Thus, a critical problem is how to optimally allocate the total available testing-resource 

among software modules so that to achieve high reliability with low cost. 
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For the optimal testing-resource allocation problem on independent modules, the 

following assumptions are made, which are valid in this section: 

(a)  n modules in a software are independent during the unit-testing phase 

(b)  After iT  unit time of testing, the failure rate of module i is )( ii Tλ .  

The reliability of module i is  

{ }xTTxR iiii )(exp)|( λ−= ,  0≥x       (8.1) 

where x is the operational time after testing. Note that in the above, we have used the 

operational reliability definition (Yang and Xie, 2000) as it is more common that after the 

release, there will be no reliability growth, and hence the failure rate will remain constant 

equal to )( ii Tλ . 

 

8.2.1. Optimization model of the parallel-series modular software 

The Fig. 8.1 is the structure of a mixed Parallel-Series modular software system. There are n 

groups of parallel modules and m serial modules. 

 
 

P11 

P12 

11kP  

Pn1 

Pn2 

nnkP

S1 Sm 

 
Fig. 8.1. The structure of a parallel-series modular software system. 
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8.2.2. Single objective of maximizing reliability 

The reliability for this parallel-series modular software system is calculated as following 

equation 

[ ] ∏∏ ∏
== = 
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where iT  is the testing time allocated to module i. Then, the following optimization model 

is to maximize system reliability: 

Maximize [ ] ∏∏ ∏
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            0, ≥jli TT   

in which T is the total resource of time consuming in every modules of parallel group ( liT ) 

and serial modules ( jT ). 

 

8.2.3. Multiple objectives of maximizing reliability and minimizing cost 

Also, note that in the development of a software system, we consider not only the system 

reliability but also the testing cost in the process. Hence, to minimize the cost in testing 

period, is another important objective to reach. 

Assume that the cost function of Module i is )( ii RC  in which iR  is the 

reliability for the i-th module. The total cost in the parallel-series modular software system 

of Fig. 8.3 will be 
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where  

∑
=

lk

i
lili RC

1
)(  is the total cost of the l-th groups of parallel modules  

∑∑
= =

n

l

k

i
lili

l

RC
1 1

)(  is the total cost of all the n groups of parallel modules, and  
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1
)(  is the total cost of all the series modules  

Here, we adopt the cost function for individual module i proposed in Kumar and Malik 

(1991): 

)exp()( iiiiii DRBHRC −=          (8.6) 

where Hi, Bi and Di are constants and Ri is the individual module software reliability 

achieved at the end of testing. These parameters are explained in Kumar and Malik (1991). 

Briefly, the cost is exponentially increasing to the improved reliability of a single module. 

   The optimal testing-resource allocation problem can then be formulated with two 

objectives as 
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             0, ≥jli TT   

in which T is the total resource of time consuming in every modules of parallel group ( liT ) 

and serial modules ( jT ). 
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  For mixed parallel-series modular software, it is difficult to solve them, so the 

heuristic algorithms such as genetic algorithm, simulation annealing or Tabu search can be 

applied. Dai et al. (2003b) presented a genetic algorithm to solve the above multi-objective 

allocation problems. Here is an example of this type illustrated with that genetic algorithm. 

 

Example 8.1. The structure of this 8 modules example is assumed as Fig. 8.2. We use the 

GO model for illustration. The mean value function is: 

                )]exp(1[)( tbatm iii −−= , 8,...2,1=i       (8.10) 

 

 

 1 

 2 

 3

 4

 5

 6

 7  8 

 
Fig. 8.2. The structure of a complex Parallel-Series modular software system. 

 

It is assumed that the total testing time is 23000 hours and x is 200 hours to complete the 

given task. The values of parameters and optimal solution out of the genetic algorithm are 

given in the following Table 8.1 where *
iT  (i=1,2,…,8) is the optimal allocated testing 

time on different modules. 
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Table 8.1. The parameters of parallel-series modular software system. 

Modules 
ia  ib  iH  iB  iD  *

iT  

1 210 0.00051 3.493 6.011 4.97 93.47 
2 199 0.00059 3.503 6.12 4.93 10522 
3 453 0.00048 3.498 6.012 4.995 0 
4 345 0.00058 3.498 6.001 4.997 54.11 
5 258 0.00063 3.499 6.002 4.995 60.48 
6 221 0.00074 3.5015 6.15 4.97 8822.8 
7 33.99 0.00579 3.495 6.01 4.98 2190.83 
8 32.32 0.00593 3.500 6.005 4.01 1256.31 

 

8.3. Testing Resource Allocation on Dependent N Versions 

A method to increase the reliability of safety critical software is the N-version programming 

technique, e.g. Avizienis (1985). The N-version programming technique involves the 

execution of multiple, independently generated, versions of a single program. These 

versions receive identical input and each produces its own version of output. A voting 

scheme matches and tests the outputs, and then determines a final result. In the analysis of 

this type of systems, a common assumption is the independence of different versions, which 

was discussed as the independent parallel modules by the previous section. 

However, failures of different versions are usually correlated, even though they 

could have been developed individually. It is shown in Knight and Leveson (1986) that there 

are factors that could affect the behavior of different versions in the same way. Different 

versions of software may have used some similar subroutines or functions and sometimes 

they may even contain the same part of codes, especially for object-oriented programming. 

Hence, certain external or internal reasons may cause part or all of the N versions to fail 
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together due to the Common Cause Failures, see e.g. Kvam and Miller (2002). 

  Thus, when we allocate the testing resource/time on the N-version software, the 

correlated parts among different versions have to be considered because improving the 

reliability of one version by testing/debugging may also cause other correlated versions to 

change simultaneously. Such phenomenon often occurs when the faults that cause the 

common cause failures of those correlated versions are debugged, such as removing the 

faults in a subroutine simultaneously called by different versions. 

  In the following subsections, we first present a model to approach the reliability 

function of the dependent N versions of software. Then, based on the model, optimal 

allocation problem of the testing resource/time on the dependent N versions is modeled and 

solved. 

 

8.3.1. Reliability analysis for dependent N-version programming 

The N-version programming involves the execution of multiple versions of software, which 

are possibly dependent on one another by certain correlated failures. These versions receive 

identical input and each produces its own version of output. Some inputs may cause part or 

all of the N versions to fail together due to the so called Common Cause Failure.  

  A voting scheme matches and tests the outputs, and then determines a final result. 

There are various voting schemes. We implement here the voting scheme of “selecting the 

first qualified result”, which is explained in details in Belli and Jedrzejowicz (1991). In this 

voting scheme, if any one version among the N versions of software passes a test, the voter 

will select it as the final result no matter whether the other versions are qualified or not. In 
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other words, unless all of the N versions fail, the software is still reliable, which is in fact a 

1-out-of-N voting system. However, unlike the case with parallel redundant system for 

which components can be assumed to be independent, the dependence among the N version 

software is an important issue here. 

 

Decomposition by multi-component modeling 

In the N-version software, any j versions may fail at the same time because of certain 

common cause failures. For example, if j versions of the N-version software share the same 

software packages or subroutines, these j versions will fail simultaneously when certain 

failure occurs in the common parts. We define a parameter for such failure, called 

dependence level, by the number of simultaneously failed versions caused by the failure.   

We denote kjM ,  as the “components” that correspond to different common cause 

failures, where j (j=1,2,…,N)  is the dependent level that correlates any j out of N versions 

and k (k=1,2,…, jNK , ) represents the k-th component among all the j-th dependent 

components ( •jM ), where  









=

j
N

K jN ,  

If all those failures with the j-th dependent level are numbered by k (k=1,2,…, jNK , ), kjM ,  

can represent all the failures with different dependent levels, respectively. The total number 

of all “components” kjM ,  (j=1,2,…,N; k=1,2,…, jNK , )  is equal to  
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  The N dependent versions of software can be decomposed into the mutually 

exclusive 12 −N  components. Note that the N versions are not physically separated into 
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the 12 −N  components; the correlated parts objectively exist and our model merely divides 

them logically into exclusive components to consider their effects. An example of 

three-version programming is illustrated below.  

 

Example 8.2. Three dependent versions are correlated as Fig. 8.3 and can be decomposed 

into 7 mutually exclusive components. kM ,1  (k=1,2,3) denote the failures that affect only 

the k-th version without influence on the other two versions; kM ,2  (k=1,2) denote the 

common cause failures that correlate the k:th and (k+1):st versions without influence on the 

other one version; 3,2M  represents the failure that correlates the first and the third versions; 

and 1,3M  denotes the failures that correlate all the three versions. 

 

Version 1 Version 2

Version 3

M21

M23 M22

M31

M11 M12

M13

 
Fig. 8.3. Three dependent versions of software. 

 

After separating the three dependent versions into 7 independent components, the reliability 

block diagram for those components can be built as shown in Fig. 8.4. 
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M11

M12

M13

M21

M22

M23

M31

 

Fig. 8.4. Reliability block diagram of the decomposed components in Fig. 8.3. 

 

The reliability block diagram is complex containing not only many parallel-series units but 

also some bridge structures. Moreover, the diagram will become much more complicated 

for four or more versions. Hence, the reliability estimation for dependent N-version 

programming is not straightforward. In order to analyze the system reliability based on our 

above model, a general approach is presented below. 

 

System reliability function 

The reliability of a component kjM ,  is defined as the probability for the corresponding 

common cause failure not to occur, which is denoted by )(, tR kj . The software reliability of 

the dependent N-version programming is defined as the probability that at least one version 

of software can achieve the task successfully. The software reliability function at time t can 

be expressed as 

 =)(tR Pr(at least one version of software is reliable at time t)    (8.11) 

Let )(tEi  represent the event in which the i-th version of software is reliable to 

successfully achieve the given task at time t, (i=1,2,…,N). The software reliability function 

for the dependent N-version programming can then be written as 
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By using conditional probability, the events considered in the above equation can be 

decomposed into mutually exclusive events as 

)()()(),(Pr{)}(Pr{

})()(Pr{)}(Pr{)}(Pr{)(
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2121

tEtEtEtEtE

tEtEtEtEtR

NNN −+

++=

LL
     (8.13) 

where })()(Pr{ 21 tEtE  denotes the conditional probability that the first version of the 

software fails given that the second version of the software is reliable at time t. 

  Hence, each term in the software reliability expression of the above equation can 

be evaluated in terms of the probability of two distinct events. The first event indicates that 

the i-th version of software iV  is reliable while the second event indicates that all of its 

previous versions mV  (m=1,2,…,i-1) fails given that iV  is reliable.  

The probability of the first event, )}(Pr{ tEi , is straightforward. It can be calculated 

by multiplying the reliability functions of all the components that will make the i-th version 

iV  fail as  

)}(Pr{ tEi = ∏
∈ kji MV

kj tR
,

)(,       (8.14) 

where kji MV ,∈  means that the i-th version of software iV  will fail if the component 

kjM ,  fails. 

  The probability of the second event, })()()(),(Pr{ 121 tEtEtEtE ii−L , is not as 

straightforward to compute. It can be done in the following two steps:  

Step 1. select out all those components that can make any version(s) among the 

121 ,...,, −iVVV  fail while iV  is still reliable;  

Step 2. use binary search tree (Johnsonbaugh, 2001: pp. 349-354) to find out all the 
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exclusive combinations, which can make all the i-1 versions 121 ,...,, −iVVV  fail 

among those components selected by the previous step 1;  

Step 3. sum up all the probabilities of those exclusive combinations to obtain the 

probability of })()()(),(Pr{ 121 tEtEtEtE ii−L .  

After computing })()()(),(Pr{ 121 tEtEtEtE ii−L  and )}(Pr{ tEi , i=1,2,…,N, we can obtain 

the software reliability function for the dependent N-version programming by substituting 

them into Eq. (8.13). For the whole approach in deriving the dependent N-version 

programming reliability, an example of aircraft landing is illustrated below. 

 

Example 8.3. Suppose that three teams will compose three versions of a program to control 

the aircraft landing. If any one version is working, the aircraft can land successfully. These 

three versions may depend on one another through certain common cause failures. Those 

failures may occur on the common parts of some versions, such as using the same external 

electrical power, integrating the same software packages, sharing identical subroutines and 

so on.  

   As in the approaches presented above, the dependent three version software is 

first decomposed into its individual components. As shown in example 8.2, The dependent 

three versions can be decomposed into 7 components corresponding to different common 

cause failures as shown in Fig. 8.4. kjR ,  denotes the reliability function of kjM , .  

Then, the software reliability is derived by applying the approach presented above, 

and then substitute into Eq. (8.13) to get 

)](1[
)1()(

121112112131232213

11233122211231232111

RRRRRRRRR
RRRRRRRRRRtR
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−+=

         (8.15) 
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8.3.2. Optimal testing resource allocation 

Based on the above reliability model and approaches for the dependent N-version software, 

the optimal testing resource allocation problem on those dependent versions can be solved. 

One optimization problem for testing resource allocation can be formulated to 

minimize the total cost for the N versions, when constrained by a fixed testing time budget T 

hours.  Let it  be the testing time allocated on the i-th version iV  (i=1,2,…,N), and the 

total testing time is less than T The allocation of testing time significantly affects the total 

cost. There are mainly two parts in the cost:  

1) Test duration cost tC : Here, the N versions of the software can be tested respectively 

given their allocated testing time it  and their expected cost per unit of testing time ic  

(i=1,2,…N). The test duration cost can be expressed as   

 ∑
=

=
N

i
iit tcC

1
        (8.16) 

where iitc  is the expected cost in testing the i-th version. 

 

2) Risk cost rC : this is the cost incurred by an unreliable system, see e.g. Pham and 

Zhang (1999). This can be expressed as  

)1( RdCr −=         (8.17) 

where d  is the expected cost if the system fails and 1-R is the probability for the 

system to fail.  
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The total cost is the summation of the above two parts. 

Denote kjt ,  the testing time for component kjM , . During the testing period, the 

component kjM ,  continues running and risking the failures unless all the versions related 

to kjM ,  fail. Hence, the testing time of kjt ,  can be calculated by 

)(max, mMmkj tt
jk∈

=          (8.18) 

where jkMm∈  means version m is related to component kjM , . Hence, the reliability 

function of the component kjM ,  can be written as )|( ,, kjkj txR  where x is the operation 

time after the test. The whole software reliability function )|( txR
r

 can then be derived 

through our approach presented above, where t
r

={ }Niti ,...2,1= . The optimization problem 

to minimize the total cost by finding a set of testing time allocations t
r

, can be formulated 

by 

Objective: Minimize [ ])|(1)(
1

txRdtcCCtC
N

i
iirt

rr
−+=+= ∑

=

  (8.19) 

Subject to: ≤∑
=

N

i
it

1
T            (8.20) 

0≥it    (i=1,2,…,N)       (8.21) 

 

Solving this problem is also difficult, so heuristic algorithms need be implemented. An 

example is illustrated where a genetic algorithm is used here to solve it. 

 

Example 8.4. Continuing with Example 8.3 (the air-craft landing example), suppose that 

the testing resource budget is 2000 hours of testing time, i.e. T=2000, that the testing cost 

per hour on the three versions are 3.01 =c , 2.02 =c , 28.03 =c , and that the risk cost 
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=d 10000 if the aircraft cannot land successfully. The allocation problem becomes how to 

optimally allocate the 2000 hours on the three versions in order to minimize the total cost.  

  We assume common cause failures arriving on each component satisfy the classic 

NHPP model of Goel and Okumoto (1979). With this GO-model, the failure rate function 

for the components kjM ,  (j=1,2,3 and k=1,2,…, jK ,3 ) is modeled with: 

    )exp()( ,,,, tbbat kjkjkjkj −=λ       (8.22) 

If the testing is stopped after t units of time, the reliability for a mission of duration t is 

given by (Yang and Xie, 2000) 

                })(exp{)|( ,, xttxR kjkj ⋅−= λ       (8.23) 

The values of the parameters kja ,  and kjb ,  in the GO-model are given in Table 8.2 for 

this example. 

 

Table 8.2. parameters of GO-model for each component. 

Component 
1,1M  2,1M  3,1M  1,2M  2,2M  3,2M  1,3M  

kja ,  16.91 95.52 21.56 15.80 22.45 26.23 6.25 

kjb ,  0.0059 0.0006 0.0041 0.0028 0.0021 0.0022 0.0056 

 

Then, the reliability for the dependent three-version software can be obtained through Eq. 

(8.15). Substitute the parameters of Table 8.2 into Eq. (8.23) to compute the reliability 

functions of all the components, and then substitute them into Eq. (8.15) to compute the 

software reliability by assuming x=5 (i.e. it will take 5 hours for the aircraft to land). 

  To solve the optimization problem as Eqs. (8.19-8.21), a genetic algorithm is 

used to get the solution =t
v

{638.2, 1361.8, 0}. Thus, the best allocation of the 2000 hours 
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should be to test: the first version for 638.2 hours; the second for 1361.8 hours and the 

third for 0 hour. The total expected cost )(tC
r

=579.48 and the software reliability 

)|5( tR
r

=0.988434. 



Chapter 9 Conclusions and Future Work 

 212

 
 
 
 
 
 

CHAPTER 9               

    CONCLUSIONS AND FUTURE WORK 
 

 

 

 

This chapter concludes this dissertation with a summary and assessment of what this 

research has achieved in terms of its contributions to various related disciplines. 

Comments on the limitations of this work will be given and together with indications on 

how they may be addressed or resolved in future work. 

  This thesis mainly studied the reliability of various computing systems and 

some important issues related to the models and analysis. This work contributed much 

in the fields of parallel homogeneous distributed systems, centralized heterogeneous 

distributed systems, grid computing systems, multi-state systems, multi-type failures, 

failure correlations, multi-level protection, and testing resource allocation.  

  Chapter 3 developed a Markov model to analyze the reliability of the parallel 

homogeneous distributed systems, which help analyze the combined 

software/hardware system availability. Further, this work studied the imperfect 

debugging process of this type of system, where a more general Markov model was 

constructed. Although the model was more complex than that without considering 
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imperfect debugging, the estimation of some important measures from this imperfect 

debugging model is easier and more reasonable than from the model with perfect 

debugging process. However, in those models, there are some unrealistic assumptions 

which should be relaxed in future research. The assumption of independent failures 

among different hosts and the uncorrelated faults between software and hardware of the 

same host might be the most critical assumption, because the failures may be dependent 

in practice, which has been revealed by the experiments of Knight and Leveson (1986). 

Another assumption of homogeneous property can also be relaxed to further study 

heterogeneous systems with various brands of hosts and different versions of software. 

Thus, Chapter 4 studied the centralized heterogeneous distributed system 

(CHDS) in order to relax the above homogeneous assumption, where the concept of 

distributed service reliability was presented as the reliability from a service point of 

view. This measure faces directly to customers/users. A time-dependent Markov model 

was constructed to analyze the control center of the systems. Moreover, based on the 

model, many practical issues such as the determination of release time to achieve a 

service reliability requirement, and the sensitivity of model parameters were conducted. 

However, the sub-distributed systems of the CHDS inherited one assumption of the 

Kumar et al. (1986)’s model: “the operational probabilities of different nodes and links 

in the sub-distributed systems are of constant values.” Therefore, it is worthwhile 

further to relax the assumption in future study. 

  Grid computing system is different from conventional distributed computing 

systems by its focus on large-scale resource sharing, where processing elements and 
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information communication have significant influence on grid computing reliability. 

Chapter 5 described the property of the grid computing systems and presented 

algorithms to analyze the grid reliability on some important components of the grid, 

such as the resource management system, the network, the programs and the resources.  

However, this work assumed that the failures occurring on the network satisfying the 

homogeneous Poisson processes. This assumption may not always be true. For example, 

during the testing phase, the failure rate should decrease if the software or hardware 

faults in the system are being debugged. Other reliability analysis methods or models 

can be further studied in solving the problem of non-homogeneous Poisson process 

(NHPP) or other kinds of processes. If the grid becomes complicated with many nodes, 

links, programs and resources, the effectiveness of our algorithms to evaluate grid 

reliability should be concerned. Thus, improving the effectiveness of the algorithms for 

evaluating the grid reliability is also an interesting topic, which can be further studied in 

near future. 

  In reliability analysis of the computing systems, it is much possible for the 

successive runs to be correlated with one another and the failures may be of multiple 

types. In Chapter 6, a software reliability modeling framework based on Markov 

renewal processes was studied. It is capable of modeling the dependence among 

successive software runs and able to deal with multiple type of failures. With this 

model, the phenomena of failure clustering can be specified and analyzed. However, 

in this model, some parameters were difficult to precisely estimate, so the sensitivity 

analysis is necessary to be carried out in future work if the empirical/estimated values 
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are used. 

  In Chapter 7, we formulated the problem of finding structure of series-parallel 

MSS with multi-level protections in order to achieve a desired level of system 

survivability by the minimal cost. This chapter also describes a straightforward 

recursive algorithm for evaluating the survivability of a series-parallel MSS with 

multi-level protections. Then, a multi-processor GA was developed for effectively 

solving the problems, in which a new encoding scheme was proposed. However, this 

chapter just studied the series-parallel structure, but the components of a system may be 

connected or distributed by other topological structure. Hence, the problems of other 

generally distributed systems are also worth further studying. 

  In software testing, an important issue is to allocate testing resources to 

achieve maximum reliability. Chapter 8 studied the optimization problems of testing 

resource allocation on both independent modules and dependent versions. At first, this 

chapter focused on allocating resources on the independent modules with the 

parallel-series structure, and multiple objectives are considered in this optimization 

model including maximizing the system reliability and minimizing the cost. However, 

this approach was restricted in the parallel-series architecture based modular system. 

If it could be generalized into a common model for arbitrary architectures of the 

modules, it should be more useful. Then, this chapter further considered the failure 

correlation among multiple versions of software and presented optimization models 

and algorithms in solving the testing resource allocation problems. 

 In addition, although we have tried to be theoretically rigorous, some of the 
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theoretical topics are omitted. However, as many references as possible are provided to 

those interested in exploring and delving into details. Researchers and students may 

find many ideas useful in their academic work. Everyone who learns or uses reliability 

models in the computing systems should be aware of potential problems discussed in 

this work and also have the knowledge of at least the existence of techniques to solve 

these problems.
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