

RELIABILITY MODELS AND ANALYSES
OF THE COMPUTING SYSTEMS

YUAN-SHUN DAI

(B.Eng. TSINGHUA UNIVERSITY)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING
NATIONAL UNIVERSITY OF SINGAPORE

2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

 I

ACKNOWLEDGEMENTS

This dissertation has evolved over the past four years. I would like to thank my

supervisors, Prof. Min Xie and Prof. Kim-Leng Poh, who have advised me a lot on my

research. I also appreciate Prof. Ang, Prof. Tang and other faculties for their help in my

life and study in the department of Industrial and Systems Engineering.

 We are fortunate to have worked closely with many colleagues, such as C.D.

Lai, G. Levitin, O. Gaudoin, L.R. Cui, S.H. Ng among others. This has helped broaden

our view which is needed for this dissertation as such.

 My research is supported by the National University of Singapore. I am also

grateful to Ow Lai Chun, Liu Guoquan, Xiang Yanping, and all the other staffs and

students in the department of Industrial and Systems Engineering for their help in one

way or another.

 Finally, I would like to thank my families for their understanding and support

during these years.

Summary

 II

SUMMARY

Various computing systems have been rapidly developed in recent years and widely

implemented in many fields. The functionality, size and complexity of the computing

systems keep on increasing nowadays, which makes their quantitative evaluation more

difficult than ever before.

 Reliability is a useful measure for quantitatively evaluating the computing

systems. Intensive studies on reliability models and analytical methods have been

carried out to improve the chance that the computing systems will behave satisfactorily

in operation. Since the computing operations become more essential and important

nowadays, the objective of this dissertation is to study the reliability models and

analysis for various computing systems.

 As a powerful analytical tool, Markov models have been widely implemented

in reliability analysis, so this dissertation comprehensively reviews many typical

Markov models and further develops some new ones for different computing systems.

Software and hardware are two major building blocks in the computing systems.

They interact together to complete many critical computing tasks. This dissertation

systematically studies the reliability of software, hardware and integrated

software/hardware systems.

Summary

 III

Distributed computing system is widely used today. Its reliability is affected not

only by software/hardware but also by network communication. Thus, this dissertation

introduces some typical models in the distributed/networked system reliability, and

then further develops some new models and analytical methods for it.

“Grid” computing system has emerged as an important new field, distinguished

from the conventional distributed computing systems by its focus on large-scale

resource sharing, innovative applications, and, in many cases, high-performance

orientation. This dissertation originally constructs general reliability models for the

grid and presents new analytical methods to estimate the grid reliability related to

resource management system, wide-area network communication, and parallel running

programs with multiple shared resources.

Multi-state system is also a popular topic in the reliability analysis, which is of

recent interest to many researchers. This dissertation also presents some new reliability

models for various multi-state systems considering multi-level protections and failure

correlations.

Today’s software development is no longer an isolated task of a single program.

Large systems are usually developed in a multi-language environment and run

simultaneously on various platforms. The software testing resource is a kind of entities,

which can be measured and controlled early in the development cycle. Thus, for the

development of large and complex systems, how to allocate the limited testing

resources so that the overall system reliability is maximized is an important

decision-making problem. Therefore, this work also studies some interesting

Summary

 IV

optimization problems in the testing resource allocation.

Many models and results found in the literature and from our research are

presented in this dissertation. It is hoped that these approaches are easily implemented

in practice by engineers/practitioners. It is also hoped that this work is able to serve as

reference for students, professors, and researchers in many related fields. Moreover,

they may also find some useful ideas for their academic work out of this dissertation.

Table of Content

 V

TABLE OF CONTENT

ACKNOWLEDGEMENTS ..I

SUMMARY ..II

TABLE OF CONTENT.. V

FIGURES .. IX

TABLES ... XII

CHAPTER 1 INTRODUCTION...1

1.1. Need for the Computing System Reliability ..1

1.2. Computing System Reliability Concepts ...3

1.3. Approaches to the Computing System Modeling..5

1.4. Common Techniques in Reliability Analysis...8
1.4.1. Reliability block diagram...8
1.4.2. Network diagram ...9
1.4.3. Fault tree analysis ..11
1.4.4. Markov Modeling ..12

1.5. Scope of This Dissertation ...14

CHAPTER 2 LITERATURE REVIEW ..16

2.1. Markov Models in Software Reliability...16
2.1.1. Basic Markov model ..17
2.1.2. Proportional models ...20
2.1.3. DFI (Decreasing Failure Intensity) model ...22
2.1.4. Time-dependent transition probability models ..25
2.1.5. Imperfect debugging models..26
2.1.6. Modular software models ..31

2.2. NHPP Models in Software Reliability..37
2.2.1. The Goel-Okumoto (GO) model..37
2.2.2. S-shaped NHPP models ...40
2.2.3. Some other NHPP models ...42

Table of Content

 VI

2.2.4. Other software reliability models...46

2.3. Models in Integrated Software and Hardware Systems.............................48
2.3.1. Single-processor model..48
2.3.2. Modular system model...51
2.3.3. Clustered system model ...52
2.3.4. A unified NHPP Markov model ..57
2.3.5. Other models for integrated software/hardware systems.........................58

CHAPTER 3 PARALLEL HOMOGENEOUS DISTRIBUTED SYSTEM
RELIABILITY..60

3.1. Models with Perfect Debugging Process ..60
3.1.1. Introduction..60
3.1.2. Availability model ...62

3.2. Models with Imperfect Debugging Process ...68
3.2.1. Markov modeling...68
3.2.2. Other measures on the debugging process...72

3.3. Optimal Number of Redundant Hosts ...74
3.3.1. The cost model...75
3.3.2. System availability...78
3.3.3. Optimization model and solution procedure..79

3.4. Conclusion ..84

CHAPTER 4 CENTRALIZED HETEROGENEOUS DISTRIBUTED
SYSTEM RELIABILITY ..85

4.1. Introduction..85

4.2. CHDS and Analysis ...87
4.2.1. Description of the systems and services ..87
4.2.2. A case study ...93

4.3. Further Analysis and Application of the General Model.........................100
4.3.1. A general approach ..100
4.3.2. The application example revisited ...102

4.4. Conclusions...106

Table of Content

 VII

CHAPTER 5 GRID COMPUTING SYSTEM RELIABILITY...........108

5.1. Introduction of the Grid Computing System ..109
5.1.1. Grid technology ...109
5.1.2. General architecture of grid computing system.....................................112

5.2. Grid Reliability of the Resource Management System114
5.2.1. Introduction of resource management system115
5.2.2. Markov modeling...117

5.3. Grid Reliability on Network ...119
5.3.1. Reliability model for the grid network...120
5.3.2. Reliability of minimal resource spanning tree122
5.3.3. Grid program and system reliability ..127

5.4. Grid Reliability on Software and Resources ...136
5.4.1. Failures of software programs and resources...137
5.4.2. Approach to grid reliability integrating software and resource failures 138

CHAPTER 6 MULTI-TYPE FAILURE CORRELATION MODELS.........141

6.1. Introduction..141

6.2. Markov Renewal Model for the Multi-Type Correlated Failures...........143
6.2.1. Model for two failure states ...144
6.2.2. Model for two failure states with debugging ...146
6.2.3. General model for n failure states..148

6.3. Implementations of the model...151
6.3.1. Some quantitative measures...152
6.3.2. Application to the validation phase..153
6.3.3. Illustrative example..156

CHPATER 7 MULTI-STATE SYSTEMS WITH MULTI-LEVEL
PROTECTIONS ..159

7.1. Introduction..160

7.2. Model Description and Problem Formulation ..164

7.3. Survivability Estimated by Universal Generating Function....................169
7.3.1. U-functions of individual elements and their parallel compositions170
7.3.2. U-functions of parallel PGs and their compositions171
7.3.3. U-functions of system consisting of components connected in series...173
7.3.4. Algorithm for MSS survivability evaluation ...174

7.4. Optimization Technique..176

Table of Content

 VIII

7.4.1. Multiprocessor genetic algorithm ..176
7.4.2. Solution Representation ...178
7.4.3. Solution decoding procedure ...181
7.4.4. Crossover and mutation procedures...183
7.4.5. Choice of the GA parameters...183

7.5. Illustrative Example...184
7.5.1. Minimal cost MSS with single-level protection184
7.5.2. Minimal cost MSS with multi-level protection187
7.5.3. Computational effort and algorithm consistency...................................191

7.6. Conclusion ..193

CHAPTER 8 OPTIMAL TESTING RESOURCE ALLOCATION.....195

8.1. Introduction..195

8.2. Testing Resource Allocation on Independent Modules196
8.2.1. Optimization model of the parallel-series modular software.................197
8.2.2. Single objective of maximizing reliability...198
8.2.3. Multiple objectives of maximizing reliability and minimizing cost198

8.3. Testing Resource Allocation on Dependent N Versions201
8.3.1. Reliability analysis for dependent N-version programming202
8.3.2. Optimal testing resource allocation ...208

CHAPTER 9 CONCLUSIONS AND FUTURE WORK212

BIBLIOGRAPHY ..217

Figures

 IX

FIGURES

Fig. 1.1. Basic relationships between two blocks. ...8

Fig. 1.2. Network diagram representing series and parallel two links.........................10

Fig. 1.3. Basic shapes of fault tree diagram...11

Fig. 2.1. Markov chain of the JM-model. ..18

Fig. 2.2. Markov chain for the proportional model..21

Fig. 2.3. CTMC for time dependent transition probability models.25

Fig. 2.4. DTMC for the monotonous death process of imperfect debugging model. ..27

Fig. 2.5. CTMC for the birth-death process of imperfect debugging model.29

Fig. 2.6. The S-shaped mean value function..40

Fig. 2.7. Mean value functions of Duane NHPP models. ..43

Fig. 2.8. Markov chain for the transitions between states of)(tX50

Fig. 2.9. A general architecture of kn + clustered computing systems.54

Fig. 2.10. CTMC for repairable clustered systems. ...55

Fig. 2.11. CTMC for repairable cluster with different software/hardware repair rate. 56

Fig. 3.1. A general homogeneous distributed software/hardware system....................62

Fig. 3.2. The partial state transition graph for the N-host system.64

Fig. 3.3. A typical curve of the system availability function.67

Fig. 3.4. The state transition graph for the N-host system. ..69

Fig. 3.5. The curves of system availability of different number of hosts.71

Fig. 3.6. Expected number of remaining/removed faults...73

Fig. 3.7. Density function of the expected number of removed faults.........................74

Fig. 3.8. Influence diagram for the cost affected by redundant hosts.76

Fig. 3.9. System availability for different number of redundant hosts.79

Fig. 3.10. Total mean cost vs. release time of different number of hosts.....................83

Fig. 4.1. Structure of the centralized heterogeneous distributed service system.88

Fig. 4.2. A simple and abstracted military system. ..89

Figures

 X

Fig. 4.3. A centralized distributed service system..94

Fig. 4.4. The separated subsystems from Fig. 4.3..97

Fig. 4.5. Critical Path for Table 4.2. The value marked on the edge is the execution time

and those on the node is the starting time and the black-dashed lines is the critical

path...98

Fig. 4.6. Typical distributed service reliability function to service starting time.99

Fig. 4.7. Sensitivity of µ (left) and 0K (right). ...104

Fig. 4.8. Sensitivity of φ ...105

Fig. 4.9. Sensitivity analysis of repair rate...106

Fig. 5.1. A grid computing system containing many virtual organizations.110

Fig. 5.2. General architecture of grid computing systems. ..113

Fig. 5.3. Layers of resource management system..115

Fig. 5.4. CTMC for resource management system reliability model.........................118

Fig. 5.5. A four-node computing system..125

Fig. 5.6. Searching the MRST’s of P1 executed by G1. ..127

Fig. 5.7. Binary search tree for calculating),Pr(321 EEE ..131

Fig. 5.8. Virtual node and its sub nodes of programs and resources..........................138

Fig. 5.9. Grid network containing the sub nodes of programs and resources............108

Fig. 6.1. Markov interpretation of dependent runs. ...145

Fig. 6.2. Nonhomogeneous DTMC for system reliability model.147

Fig. 6.3. Markov interpretation for n-type correlated state transition........................149

Fig. 6.4. Markov renewal model for n-type failure states..150

Fig. 6.5. Cdf of the time between failures..157

Fig. 7.1. MSS structure encoded by the integer string...181

Fig. 7.2. Lowest cost MSS with single-level protection for S*=0.99.186

Fig. 7.3. Lowest cost MSS with multilevel protection for S*=0.85.189

Fig. 7.4. Lowest cost MSS with multilevel protection for S*=0.90.189

Fig. 7.5. Lowest cost MSS with multilevel protection for S*=0.95.190

Fig. 7.6. Lowest cost MSS with multilevel protection for S*=0.99.190

Figures

 XI

Fig. 7.7. Running time vs. number of processors...192

Fig. 7.8. Coefficient of variation vs. number of crossovers.193

Fig. 8.1. The structure of a parallel-series modular software system.197

Fig. 8.2. The structure of a complex Parallel-Series modular software system.........200

Fig. 8.3. Three dependent versions of software. ..204

Fig. 8.4. Reliability block diagram of the decomposed components in Fig. 8.3.205

Tables

 XII

TABLES

Table 1.1. Four distinct types of Markov processes...12

Table 1.2. The Structure of the Dissertation. ...14

Table 3.1. Numerical values of the minimum cost for different N.83

Table 4.1. The programs and prepared files in different nodes....................................94

Table 4.2. Required files, precedent programs and execution time for programs.95

Table 5.1. The order of communication time of different elements...........................130

Table 5.2. Result outputted by Step 1. ...130

Table 5.3. Failure rate and speed of elements (links and nodes).134

Table 5.4. Processing time and information exchanged with the resources.134

Table 5.5. Evaluation for the grid program reliability of P1......................................135

Table 7.1. Parameters of available elements ..185

Table 7.2. Characteristics of available protection for single-level protection example

...185

Table 7.3. Characteristics of protections available within components.....................187

Table 7.4. Characteristics of protections available for entire components188

Table 8.1. The parameters of parallel-series modular software system.201

Chapter 1 Introduction

 1

CHAPTER 1

 INTRODUCTION

This dissertation focuses on some key issues mainly concerning reliability models and

analysis in the area of the computing systems. These key issues include

software/hardware/network reliability, reliability of homogeneous/heterogeneous

distributed computing systems, grid computing reliability, multi-state system reliability,

failure correlation, and optimal testing resource allocation.

 This chapter demonstrates the necessity to study the reliability of the

computing systems, briefly introduces some basic concepts, presents some commonly

used techniques, and finally outlines the scope of this dissertation.

1.1. Need for the Computing System Reliability

Computer systems have been the fastest developing technology during the last century.

They have been widely implemented in many areas, and are desired to achieve various

complex and safety-critical missions. In our modern society, the applications of the

computing systems have now crossed many different fields, for example, air traffic

control, nuclear reactors, aircraft, real-time military, industrial process control,

Chapter 1 Introduction

 2

automotive mechanical and safety control, telephone switching, bank auto-payment,

hospital patient monitoring systems, and so forth.

The size and complexity of the computing systems keep on increasing from one

single processor to multiple distributed processors, from individual systems to

networked systems, from small-scale program running to large-scale resource sharing,

and from local-area computation to global-area collaboration.

The computing systems may contain many processors and communication

channels and cover a wide area all over the world. They combine both software and

hardware that function together to complete various tasks. They can also run diverse

programs and share different resources. They may incorporate multiple states and their

failures may be correlated with one another. These interacted factors make system

modeling and analysis very complicated and difficult.

Thus, complete, scientific, quantitative measures are required to evaluate the

computing systems. Reliability is one such useful measure for evaluating the

computing systems. Hence, intensive studies on reliability models and analytical

methods have been carried out to improve the chance that the computing systems will

perform satisfactorily in operation. As the functionality of computing operations

becomes more essential, there is a greater need for the reliability of the computing

systems.

Moreover, in order to increase the behavior of the computing systems and to

improve its development process, we must make thorough reliability analysis. Based on

models and analysis, approaches to improve system reliability can be further

Chapter 1 Introduction

 3

implemented, such as optimization methods, heuristic algorithms etc, see e.g. Kuo and

Zuo (2003). Although improving the system reliability is more or less studied by this

thesis, the thesis still mainly focuses on the reliability measurements, modeling and

analysis.

1.2. Computing System Reliability Concepts

In general, basic reliability concept is usually considered as the probability that a

system will perform its intended function during a period of running time without any

failures (Musa, 1998).

 A failure makes system behavior deviate from its specified behavior. The

failure may be caused by a fault or by other reasons, such as human mistakes. For

example using wrong input data, incorrect printing of output result, misinterpretation of

output, etc. may also cause failures. Thus, failure and success are two different possible

states of the output. Usually we exclude those failures that are not caused by any faults,

so in this case a failure corresponds to one or more faults in the system. After removing

those faults, the same failure cannot occur again.

A fault is an erroneous state of a system. Although the definitions of the fault are

different for specific systems or under diversified situations, a fault is always an

existing part in the system and it can be removed by correcting the erroneous part of the

system. Although various terminologies are used to represent the same meaning of the

fault by different articles, such as “error”, “bug”, “deficiency”, “mistake”, “defect” and

so on, this thesis uses the “fault”, which has been commonly accepted, to represent such

Chapter 1 Introduction

 4

meaning.

 For the computing system, the basic reliability concept can be adapted to some

specific forms such as “software reliability”, “system reliability”, “service reliability”,

“system availability” etc for different purposes.

 Most computing systems contain software programs to achieve various

computing tasks. Software reliability is an important metric to evaluate the software

behavior. Similar to the general reliability concept, software reliability is defined as the

probability that software will be functioning without failure under a given

environmental condition during a specified period of time (Xie, 1991). Here, a software

failure generally means the inability of performing an intended task specified by some

requirements.

 The software reliability is only the measure of a specific software program. In

order to evaluate a whole computing system that may contain multiple software

programs, system reliability is a good measure. System reliability is defined as the

probability that all the tasks for which the system is desired can be successfully

completed (Kumar et al., 1986). Those software programs may be structured in parallel

or serial topologies or even in an arbitrarily distributed topology, so the system

reliability should be respectively computed according to the structure and distributions

of these programs. The system reliability is different from the above software reliability

by the capacity in tolerating failures. For example, the software reliability does not

allow any failure in running the given software program, but the system reliability can

tolerate the failures of some programs if the redundancies of those failed programs can

Chapter 1 Introduction

 5

make up their functions.

 Some computing systems are developed to provide different services for users.

The users may only care whether the service they are using is reliable or not, no matter

what the conditions of other services are in a system. Thus, from the users’ point of

view, service reliability is a good measure, which is defined as the probability for a

given service to be achieved successfully (Dai et al.,2003a). Obviously, the service

reliability is different from the above software or system reliability by its focus on part

(not all) of the software programs contained in the system.

 Moreover, whether the computing system is able to be used or not is also of

concern to users. Thus, system availability is another good measurement for this

purpose, which is defined as the probability of a system to be available at a time instant

(Trivedi, 2001). Different from the reliability that focuses on a period of time when it is

free of failures, the system availability is concerned with a time point at which the

system is able to be used (i.e. available).

1.3. Approaches to the Computing System Modeling

The computing system reliability is an interesting, but difficult, research area. Although

there are many reliability models suggested and studied, none of them are valid at all

times and there is no unique model which can perform well for all situations. A reason

for this is probably that assumptions made for each model are correct or are good

approximations of the reality only in some specific situations.

 In a computing system, hardware (such as computers, routers, processors,

Chapter 1 Introduction

 6

CPUs, memories, disks, etc.) provides fundamental configurations to support

computing tasks. Many traditional reliability models mainly dealt with hardware

reliability, such as Duane (1964), Akhtar (1994), Pukite and Pukite (1998), and Trivedi

(2001).

 Software is another important element in the computing system besides the

hardware. Different from the hardware, the software does not wear-out and it can be

easily reproduced. Furthermore, software is usually debugged during

developing/testing phase so its reliability is changing over time when detecting and

removing faults. Many software reliability models have been proposed for the study of

software reliability, see e.g. Jelinski and Moranda (1972), Littlewood (1975), Goel and

Okumoto (1979), Xie (1991), Lyu (1996), Musa (1998), Pham (2000), Gokhale and

Trivedi (1999) and Kuo and Zuo (2003).

 However, a computing system usually contains both hardware and software,

which ought not to be separately studied. Both types of failures should be integrated

together in analyzing the whole system reliability. Many reliability models for the

integrated software and hardware systems have been presented recently, such as Goel

and Soenjoto (1981), Siegrist (1988), Laprie and Kanoun (1992), Dugan and Lyu,

(1994), Welke et al. (1995), Garg et al. (1999), Trivedi (2001) and Lai et al. (2002).

 Accompanying the development of network techniques, many computing

systems need to communicate through networks. The programs and resources of such

systems are distributed or shared all over the networks. This kind of computing system

is usually called distributed computing system. Reliability of the distributed computing

Chapter 1 Introduction

 7

system is determined not only by the software/hardware reliability but also by the

reliability of communication. Therefore, there are many models and algorithms

presented for the distributed system reliability, see e.g. Hariri et al. (1985), Kumar et al.

(1986), Chen and Huang (1992), Chen et al. (1997), Lin et al. (1999, 2001) and Dai et

al. (2003a).

 As a special type of the distributed computing systems, “Grid computing” is a

recently developed technique by its focus on various shared resources, large-scale

networks, wide-area communications, real-time programs, diverse virtual

organizations, heterogeneous platforms etc. Many experts believe that the grid

computing will offer a second chance to fulfill the promises of the Internet, see e.g.

Foster and Kesselman (1998). Although it is difficult to study the grid reliability due to

its complexity, the reliability of the grid computing systems is of much concern now.

Dai et al. (2002, 2003c) started some initial studies in this new field.

 Most reliability models for computing systems assume only two possible

states of the system. In reality, many practical computing systems may contain more

than two states (Lisnianski and Levitin, 2003), especially for those real-time systems.

For example, if some computing elements in a real-time system fail, the system may

still continue working but its performance should be degraded. Such a degradation

state is another state between the perfect working and completely failed states. To

study these types of systems, Multi-State system reliability is also investigated

recently by many researchers, e.g. Brunelle and Kapur (1999), Pourret et al. (1999),

Levitin et al. (2003), Wu and Chan (2003) and Zang et al. (2003).

Chapter 1 Introduction

 8

1.4. Common Techniques in Reliability Analysis

There are many techniques in reliability analysis. Some of the most widely used

techniques in computing systems are introduced here. They are reliability block

diagrams, network diagrams, fault tree analysis and Markov modeling.

1.4.1. Reliability block diagram

A reliability block diagram is one of the conventional and most common techniques

of system reliability analysis. A major advantage of using the reliability block

diagram approach is the ease of reliability expression and evaluation.

A reliability block diagram shows a system reliability structure. It is made up

of individual blocks and each block corresponds to a system module or function.

These blocks are connected with one another through certain basic relationships, such

as series and parallels. The series relationship between two blocks is depicted by Fig.

1.1 (a) and parallel by Fig. 1.1 (b).

1

2
21

 (a) Series connected blocks (b) Parallel connected blocks

Fig. 1.1. Basic relationships between two blocks.

Chapter 1 Introduction

 9

The reliability of a block for module i is usually assumed to be known, and is denoted

by iR . Assuming that the blocks are independent from a reliability point of view, the

reliability of a system with two serially connected blocks is

21RRRs =

and that of a system with two parallel blocks is

∏
=

−−=
2

1

)1(1
i

ip RR

The blocks in either series or parallel structure can be merged into a new block with

the reliability expression of the above equations. Using such combinations, any

parallel-series system can be eventually merged to one block and its reliability can be

easily computed by repeatedly using the above two equations.

Furthermore, a library for reliability block diagrams can be constructed in order

to include other configurations or relationships. Additional notational description is

needed and specific formulas for evaluating these blocks must be obtained and added to

a library, see e.g. Sahner et al. (1995).

1.4.2. Network diagram

Network diagrams are commonly used in representing communication networks

consisting of individual links. Most network applications are in a communication

domain. The computation of network reliability is the primary application of network

diagrams, see e.g. Sahner et al. (1995) and Findeisen (2000, pp. 48-58).

 The purpose of a network is to execute programs by connecting different sites

that contain processing elements and resources. For simple network diagrams,

Chapter 1 Introduction

 10

computation is not complex and reliability block diagrams can alternatively be used.

For example, Fig. 1.2 shows the network diagrams that are connected through series or

parallel links.

Path A

Path B

Path A Path B

 (a) Series connected links (b) Parallel connected links

Fig. 1.2. Network diagram representing series and parallel two links.

Fig. 1.2 can alternatively be represented by the reliability block diagrams if we view

each link as a block, depicted by Fig. 1.1.

The choice of reliability block diagram or network diagram depends on the

convenience of their usage and description for certain specific problems. Usually, the

reliability block diagram is mainly used in a modular system that consists of many

independent modules and each module can be easily represented by a reliability block.

The network diagram is often used in networked system where processing nodes are

connected and communicate through links, such as the distributed computing system,

local/wide area networks and wireless communication channels etc.

However, a main disadvantage of the network diagram analysis is that

individual links and nodes are assumed to be either operational or failed. This is a

Boolean analysis, which limits the application domains of the network diagrams to

contain multiple states.

Chapter 1 Introduction

 11

1.4.3. Fault tree analysis

Fault tree analysis is a common technique in system safety analysis, see e.g. Fussell

(1975) and Rai et al. (1995). Fault tree analyses have been adapted for a range of

reliability applications.

 The fault tree diagram is the underlying graphical model in fault tree analysis.

Whereas the reliability block diagram is mission success oriented, the fault tree shows

which combinations of component failures will result in a system failure.

Actually, the fault tree diagram represents the logical relationships of ‘AND’

and ‘OR’ among diverse failure events. Various shapes represent different meanings. In

general, four basic shapes corresponding to four relationships are depicted by Fig. 1.3.

Input event ‘and’ gate ‘or’ gate Output/Top event

Fig. 1.3. Basic shapes of fault tree diagram.

Since any logical relationships can be transformed into the combinations of ‘AND’ and

‘OR’ relationships, the status of output/top event can be derived by the status of input

events and the connections of the logical gates. Moreover, repair and maintenance are

two important operations in system analysis that can also be expressed by a fault tree,

see e.g. Malhotra and Trivedi (1994) and Trivedi (2001).

 The fault tree diagram can clarify fault processes and, in particular, fault

propagation in a system. However, complex systems exhibit complex failure behavior,

Chapter 1 Introduction

 12

including multiple failure modes. These failures will have different effects on a mission

outcome. The basic fault tree analysis does not support this type of modeling.

1.4.4. Markov Modeling

The Markov model is another widely used technique in reliability analysis. It

overcomes most disadvantages of other techniques and is more flexible to be

implemented in reliability analysis for various computing systems, which will be

applied in later chapters. We classify the Markov models into two major types:

standard Markov models and non-standard Markovian models, which are respectively

introduced here.

Standard Markov models

In general, there are four types of standard Markov models corresponding to four types

of Markov processes classified according to their state-space and time characteristics as

Table 1.1 shows below.

Table 1.1. Four distinct types of Markov processes.

Type State Space Time Space
1 Discrete Discrete
2 Discrete Continuous
3 Continuous Discrete
4 Continuous Continuous

The standard Markov models satisfy the Markov property, which is defined here: for a

stochastic process that possesses Markov property, the probability of any particular

future behavior of the process, when its current state is known exactly, is not altered by

Chapter 1 Introduction

 13

additional knowledge concerning its past behavior.

 The discrete-state process is referred to as chain, so the discrete-state and

discrete-time Markov process is usually called discrete time Markov chain (DTMC).

Similar to the case of DTMC, discrete-state and continuous-time Markov process is

usually called the continuous time Markov chain (CTMC). In the two types of Markov

models, the Chapman-Kolmogorov equation is famous and often used to solve state

probabilities. For details, please refer to Ross (2000).

 Since little work has been done in the area of the continuous state (Type 3 and

4 in Table 1.1), the continuous-state Markov process will not be discussed any more in

this work. For details about them, please refer to Kijima (1997).

Non-standard Markovian Models

The modeling framework presented above allows the solution of stochastic problems

enjoying the Markov property. However, some important aspects of system behavior in

a dependability model cannot be easily captured in certain types of the above Markov

models. The common characteristic these problems share is that the Markov property is

not valid at all time instants. This category of problems is jointly referred to as

non-Markovian models and can be analyzed using several approaches, see e.g. Limnios

and Oprisan (2000).

 A set of techniques that are proved very powerful for the solution of

non-Markovian models of dependability is based on concepts grouped under the

umbrella of Markov renewal theory, e.g. Cinlar (1975) and Fricks et al. (1998). It is a

Chapter 1 Introduction

 14

collective name that includes Markov renewal sequences and two other important

classes of stochastic processes with embedded Markov renewal sequences, named

semi-Markov processes and Markov regenerative processes.

1.5. Scope of This Dissertation

This dissertation has nine chapters. A summary is given in Table 1.2.

Table 1.2. The Structure of the Dissertation.

Chapter Title
Introduction 1

2

Literature Review

3 Parallel Homogeneous Distributed System Reliability

4 Centralized Heterogeneous Distributed System Reliability

5 Grid Computing Systems Reliability

6 Multi-Type Failure Correlation Models

7 Multi-State Systems with Multi-Level Protections

8 Optimal Testing-Resource Allocation

9 Conclusions and Future Work

Chapter 2 comprehensively reviews and systematically classifies the existing

work in the area of the computing system reliability.

Chapter 3 to 5 study three types of computing systems that are of much concern

now. Chapter 3 studies parallel homogeneous distributed systems considering both

software and hardware failures. A perfect debugging case is modeled first, and then an

imperfect debugging model is further analyzed. However, chapter 3 does not consider

heterogeneous property of the computing systems, so Chapter 4 further studies

Chapter 1 Introduction

 15

centralized heterogeneous distributed systems, and service reliability is presented and

analyzed. Since the “grid” is a newly developed technology in which its reliability has

not been systematically explored, the grid computing system reliability is then studied

in Chapter 5.

After studying those specific computing systems, Chapter 6 to 8 solve some

difficult problems in the system reliability analysis, such as failure correlations,

multi-state systems, multi-level protections, and testing resource allocation. Chapter 6

studies the cases of correlated multi-type failures between successive runs. Chapter 7

extends the optimization of Multi-State System (MSS) structure into a more general

case with multi-level protections. Finally, Chapter 8 studies the optimization

problems of testing resource allocation on both independent modules and dependent

versions.

The last chapter 9 gives conclusions and possible further extensions related to

the thesis.

 As many models, analyses and algorithms are studied throughout the thesis, it

is hoped that these approaches are easily adapted by practitioners. In addition, many

examples and case studies are illustrated to help understand and apply those

demonstrated techniques.

Chapter 2 Literature Review

 16

CHAPTER 2

 LITERATURE REVIEW

Many models have been developed in the area of software and system reliability

analysis. This chapter reviews and categorizes these models according to their

characters, applications and so on. Section 2.1 discusses the existing literatures on

Markov models in software reliability, and then Section 2.2 goes over some basic

Nonhomogeneous Poisson process (NHPP) models, a special type of Markov models.

Finally, Section 2.3 reviews the reliability models for integrated software and hardware

systems.

2.1. Markov Models in Software Reliability

Software is an important element in computing systems. Different from hardware, the

software does not wear-out and it can be easily reproduced. Furthermore, software

systems are usually debugged during developing/testing phase so that its reliability is

changing over time when detecting and removing faults. As a result, debugging

process usually makes software reliability increase over time. Many software

reliability growth models have been proposed for the study of software reliability, e.g.

Xie (1991) and Lyu (1996).

Chapter 2 Literature Review

 17

Markov model are one of the first type of models proposed in the software

reliability analysis. This chapter summarizes software reliability models of this type.

As a special type of Markov models, Nonhomogeneous Poisson Process (NHPP)

models that are often used in software reliability analysis, are discussed in this chapter

too.

2.1.1. Basic Markov model

A basic Markov model in software reliability is the model originally developed by

Jelinski and Moranda (1972). It is one of the earliest models and has had a strong

influence on many later Markov models which can be considered as modifications or

extensions of this basic Markov model.

Model description

The underlying assumptions of the Jelinski-Moranda (JM) model are:

(1) the number of initial software faults is an unknown but fixed constant;

(2) a detected fault is removed immediately and no new fault is introduced;

(3) times between failures are independent, exponentially distributed random

variable;

(4) all remaining faults in the software contribute the same amount to the software

failure rate.

Chapter 2 Literature Review

 18

The initial number of faults in the software before the testing starts is denoted by 0N .

According to the assumptions (3) and (4), the initial failure rate is then equal to

φ⋅0N , where φ is a constant of proportionality denoting the failure rate contributed

by each fault. It follows from the assumption (2) that, after a new fault is detected and

removed, the number of remaining faults is decreased by one. Hence after the i:th

failure, there are iN −0 faults left, and the failure rate decreases to ()iN −0φ . This

Markov chain is depicted by Fig. 2.1 where state k means that there are k faults left in

the software.

φ⋅0N
0N 10 −N k 0

φ⋅−)1(0N φ⋅k φ
11−k

Fig. 2.1. Markov chain of the JM-model.

The time between the (i-1):st and the i:th failures is denoted by iT , 0,,2,1 Ni K= . By

the assumptions, iT ’s are then exponentially distributed random variables with

parameter

)1()]1([)(00 +−=−−= iNiNi φφλ , 0,,2,1 Ni K= (2.1)

The distribution of iT is given by

})1(exp{)1()(00 iii tiNiNtTP +−−+−=< φφ , 0,,2,1 Ni K= (2.2)

The main property of the JM-model is that the failure rate is constant between the

detection of two consecutive failures. It is reasonable if the software is unchanged and

the testing is random and homogeneous.

Chapter 2 Literature Review

 19

Parameter estimation

The parameters of the JM-model may easily be estimated by using the method of

maximum likelihood. Let it denotes the observed i:th failure-free time interval during

the testing phase, i.e. it is the observed time between the (i-1):st and the i:th failure.

The number of faults detected is denoted here by n which will be called the sample size.

If the failure data set { }0;,...,, 21 >= ntttt n
v

 is given, the parameters φ and 0N in the

JM-model can easily be estimated by maximizing the likelihood function.

The likelihood function of the parameters φ and 0N is given by

),,...;,(021 φNttL =∏
=

+−−+−
n

i
itiNiN

1
00 })1(exp{)1(φφ

 =

+−−+− ∑∏
==

n

i
i

n

i

n tiNiN
1

0
1

0)1(exp)1(φφ (2.3)

The natural logarithm of the above likelihood function is

Lln =

+−−+− ∑∏
==

n

i
i

n

i

n tiNiN
1

0
1

0)1(exp)1(ln φφ

 = φlnn +∑
=

+−
n

i

iN
1

0)1ln(∑
=

+−−
n

i
itiN

1
0)1(φ (2.4)

By taking the partial derivatives of this log-likelihood function above with respect to

0N and φ , respectively, and equating them to zero, the following likelihood equations

can be obtained,

 ∑∑
==

=⋅−
+−

=
∂
∂ n

i
i

n

i
t

iNN
L

11 00

0
1

1ln φ (2.5)

and

Chapter 2 Literature Review

 20

 ∑
=

=+−−=
∂
∂ n

i
itiNnL

1
0 0)1(ln

φφ
 (2.6)

Usually numerical procedures have to be used to solve the two equations. However, the

equation system can be simplified as follows. By solving φ from the second equation

above, we get

1

1
0)1(

−

=

+−= ∑

n

i
itiNnφ (2.7)

and by inserting this into (2.5), we obtain an equation independent of φ

∑
∑

=

=

+−
=

+−
++

−
+ n

i i

n

i i

tiN

tn
nNNN

1 0

1

000)1(1
1...

1
11 (2.8)

The estimation of 0N can then be obtained by solving this equation. Inserting the

estimated 0N into the expression of φ , we can then get the maximum likelihood

estimate of φ .

Note that the estimation of the number of initial faults might be unreasonable.

The problem is expected since the probability of getting disordered data such as

observing more failures when their probability should be less, is high initially, see Joe

and Reid (1985). Usually more failure data should be accumulated for an estimate to be

accurate.

In many cases, the basic Markov model (JM-model) is not good enough and this

has led to models with more realistic assumptions. Some extended models, which relax

some assumptions of the JM model, are introduced in this section.

2.1.2. Proportional models

Moranda (1979) presented an extended Markov model whose basic assumptions are

Chapter 2 Literature Review

 21

same as JM model except assume that the (i+1):st failure rate is proportional to the i:th

failure rate, i.e.

iii C λλ =+1 , i=0,1,2… (2.9)

Its Markov process can be depicted by a Markov chain in Fig. 2.2, where state i

represents that i failures have occurred.

i0
∏
=

i

j
jC

1
1λ

1λ 1 1+i211Cλ

Fig. 2.2. Markov chain for the proportional model.

This kind of model is called proportional model in Gaudoin et al. (1994). The idea is to

consider that the difference between two successive failure rates is due only to the

debugging, and practical constraints lead us to believe that the effect of this debugging

is multiplicative. A proportional model is completely defined, given the rate 1λ and

the set C={ },...,, 321 CCC .

In the simplest proportional model, all parameter values are fixed constants, i.e.

1λ and C are constant. Hence it is called Deterministic Proportional Model. The

Deterministic Proportional Model, with parameters λ and θ , is the software

reliability model where the random variable iT are independent and exponentially

distributed with parameter

})1(exp{ θλ −−⋅ i , 1≥i (2.10)

This model was suggested by Moranda (1979) as geometric de-eutrophication model.

Chapter 2 Literature Review

 22

Its detailed statistical property was studied by Gaudoin and Soler (1992).

 In fact, the assumption of Deterministic Proportional Model that the iC

(mean quality) is constant, is not realistic. A plausible assumption would be that the

mean qualities of the successive debugging are independent random variables iQ with

a homogeneous normal distribution. Then,

)exp(ii QC −=

is a lognormal distribution. Gaudoin et al. (1994) presented a lognormal proportional

model with

iii Q λλ)exp(1 −=+

in which iQ is normally distributed with mean θ and standard deviation σ .

2.1.3. DFI (Decreasing Failure Intensity) model

A serious critique of the JM-model is that not all software faults are of the same size.

Some faults are more easily detected than others. By incorporating this fact, some

generalizations and modifications of the JM-model are presented in Xie (1987). We

briefly describe this general formulation together with some special cases in this

section.

General DFI formulation

The JM-model can be modified by using other function for)(iλ . Note that)(iλ is

defined as the rate of the occurrence of the next failure after the removal of the (i-1):st

fault. The failure intensity is DFI (Decreasing Failure Intensity) if)(iλ is a decreasing

Chapter 2 Literature Review

 23

function of i. A DFI model is thus a Markov counting process model with decreasing

failure intensity. DFI models relax the assumption of JM-model that all faults

contributed the same amount to the failure probability was not used. The other

assumptions of the DFI Markov model are the same as those for the JM-model (Xie,

1991).

 It can be observed that the failure rate function)(iλ for the JM-model is a

linear function of the number of remaining faults. In fact, since at the beginning big

faults are likely to be detected, the decrease of the failure rate is probably larger at the

beginning than that in the end of the testing phase. As a function of the number of

remaining faults, the failure rate function is likely to be convex function.

 Under the general assumptions above, the cumulative number of faults

detected and removed, { }0),(≥ttN , is a Markov process with decreasing failure rate

)(iλ . The theory for CTMC can be applied.

If })({)(itNPtPi == , 0,...,1,0 Ni = , the Chapman-Kolmogorov equations are

given as

)()1()(' 00 tPtP λ−=

)()()()1()(' 1 tPitPitP iii −++−= λλ , 1,...,3,2 0 −= Ni (2.11)

)()()(' 10 00
tPNtP NN −−= λ

with the initial conditions

1)0(0 =P and 0)0(=iP for 0>i

The above equations can easily be solved and the solution is as follows

})1(exp{)(0 ttP λ−=

Chapter 2 Literature Review

 24

)(
)1()2(

)1()(011 eetP −
−

=
λλ

λ

j

N

j

N
ji eAtP ∑

−

=

−=
1

0

)1(
0

0)(, 1,...,3,2 0 −= Ni

and for 0Ni = , we have

j

N

j

N
jN e

j
N

AtP ∑
−

=

−

+
−=

1

0

0)1(
0

0
0)1(

)(
)(

λ
λ

where the quantities je , j=0,1,…, 10 −N , are defined as

})1(exp{ tje j ⋅+−= λ , j=0,1,…, 10 −N

and)(i
jA can be calculated recursively through

)1()(

)1()1(
)(−

+−+
= i

j
i

j A
ji

iA
λλ

λ , ij <

∑
−

=

−=
1

0

)()(
i

j

i
j

i
i AA

Some specific DFI models

A direct generalization of the JM-model is to use a power-type function for)(iλ . The

power type DFI Markov model was studied by Xie and Bergman (1988) assuming the

failure rate

00 ,...,2,1,)]1([)(NiiNi =−−= αφλ

It is reasonable to assume that)(iλ is a convex function of i and α is likely to be

greater than one, since in this case, the decrease of the failure rate is larger at the

beginning.

Another special case of the DFI model is an exponential-type Markov model

which assumes that the failure rate is an exponential function of the number of

Chapter 2 Literature Review

 25

remaining faults. It is characterized by the failure rate function

00 ,...,2,1],1)}1([exp{)(NiiNi =−+−−= βφλ

For the exponential-type DFI model, the decrease of the failure intensity at the

beginning is much larger than that at a later phase.

It is interesting to note that some of the proportional models can also be

attributed to DFI model. If all the 1<iC (0,...,2,1 Ni =) in a proportional model, the

failure rate)(iλ is actually a decreasing function of the number of remaining faults,

which follows the DFI definition.

2.1.4. Time-dependent transition probability models

Sometimes the failure rate function depends not only on the number of detected faults

i but also on a local time it whose Markov process is shown as Fig. 2.3. This

Markov chain is a type of NHCTMC (Non-Homogeneous Continuous Time Markov

Chain) model, see e.g. Trivedi (2001).

),1(1tλ
0N 10 −N 01),(itiλ),(

00 NtNλ
iN −0

),2(2tλ

Fig. 2.3. NHCTMC for time dependent transition probability models.

There are some existing models which extend the JM-model by assuming that

the probability of state change is also time-dependent. Schick-Wolverton model is one

of the first models of this type, presented by Schick and Wolverton (1978). The general

Chapter 2 Literature Review

 26

assumptions made by the Schick-Wolverton model are the same as those for the

JM-model except that the times between failures are independent with density function

given by

0

2
0

0 ,...,2,1,
2

)1(
exp)1()(Ni

tiN
tiNtf i

ii =

 +−−

+−=
φ

φ (2.12)

in which 0N is the number of initial faults and φ is another parameter.

Hence, the main difference between the Schick-Wolverton model and the

JM-Model is that the times between failures are not exponential. In the

Schick-Wolverton model the failure rate function after detecting the i:th fault is

ii tiNti)1(),(0 +−= φλ (2.13)

Note that the failure rate function of the Schick-Wolverton model depends both on i, the

number of removed faults and it , the time since the removal of last fault.

The Schick-Wolverton model with time-dependent failure rate was further

extended by Shanthikumar (1981). Shanthikumar (1981) model supposes that there are

0N initial software faults and assumed that after i faults are removed, the failure rate of

the software is given by

))((),(0 iNtti −= φλ , i=0,1,… (2.14)

where)(tφ is a proportionality factor. The parameter estimation can also be carried

out using the method of maximum likelihood.

2.1.5. Imperfect debugging models

The imperfect removal of a detected fault is a common situation in practice and the JM

model does not take this into account. This section extends the JM-model by relaxing

Chapter 2 Literature Review

 27

the assumption of perfect debugging process. During an imperfect debugging process,

there are two kinds of imperfect removal:

1) A detected fault is not removed successfully while no new fault is

introduced;

2) A detected fault is not removed successfully while new faults are generated

due to incorrect diagnoses.

For the former type of imperfect condition, it is still a pure death process in the number

of remaining faults; while the latter one is in fact a birth-death process in the number of

remaining faults. The following will discuss both types of imperfect debugging models,

respectively.

Monotonous death process

Goel (1985) suggested a Markov model by assuming that each detected fault is

removed with probability p. Hence, with probability q=1-p, a detected fault is not

perfectly removed and the quantity q can be interpreted as the imperfect debugging

probability. This process can be modeled by a DTMC as depicted by Fig. 2.4 where i is

the number of detected failures.

p
0N 10 −N 01iN −0

q

p

q

p

q

p

q 1

Fig. 2.4. DTMC for the monotonous death process of imperfect debugging

model.

Chapter 2 Literature Review

 28

The counting process of the cumulative number of detected faults at time t is

modeled as a Markov process with transition probability depending on the probability

of imperfect debugging. Still it is assumed that times between the transitions are

exponential with a parameter which depends only on the number of remaining faults.

After the occurrence of the (i-1):st failure,)1(−⋅ ip faults are removed on the average.

Hence, approximately, there are)1(0 −− ipN faults left, where 0N denotes the

number of initial faults as before. The failure rate between the (i-1):st and the i:th

failures is then

[])1()(0 −−= ipNi φλ

Using this transition function, other reliability measures can be calculated as for

the JM-model. Note that the above rate function can be rewritten as

−−⋅=)1()(0 i

p
N

pi φλ

and from this it can be seen that it is just the same as that for the JM-model with φ

replaced by p⋅φ and 0N replaced by pN0 .

As a consequence, p, 0N and φ are indistinguishable. However, p⋅φ and

pN0 can still be estimated similar to that for the parameters in the JM-model and

pN0 can be interpreted as the expected number of failures that will eventually occur.

Another advantage of this model is when we know the probability of imperfect

debugging, p. For example, from previous experience or by checking after correction,

the number of initial faults 0N and the constant of proportionality φ can be

estimated.

Chapter 2 Literature Review

 29

Birth-death process

Furthermore, if we allow the imperfect debugging process to introduce new faults into

the software due to wrong diagnoses or modifications, the debugging process becomes

a birth-death Markov process. Kremer (1983) assumes that when a failure occurs, the

fault content is assumed to be reduced by 1 with probability p, the fault content is not

changed with probability q, and a new fault is generated with probability r. The obvious

equality is that

p+q+r=1

This implies that we have a birth-death process with a death rate)()(trtv λ⋅= and a

birth rate)()(tpt λµ ⋅= . It can be depicted by a CTMC as Fig. 2.5.

)(1tv

0N 10 −N 01iN −0)(1tu

)(2tv

)(2tu

)(itv

)(itu

)(
0Ntv

)(
0Ntu

Fig. 2.5. CTMC for the birth-death process of imperfect debugging model.

However, in order to fit failure data and obtain further applicable results, assumptions

on the failure rate function)(tλ must be made.

Denoted by)(tN the number of remaining faults in the software at time t and

let

{ }itNtPi ==)(Pr)(, i=0,1,…, 0N .

We obtain the forward Kolmogorov equations of this Markov process as

)()()1()()]()([)()()1()(' 11 tPtitPttvitPtvitP iiii +− +++−−= µµ , 0≥i (2.15)

Generally, by inserting)(tv and)(tµ and using the initial conditions 1)0(
0

=NP , the

Chapter 2 Literature Review

 30

differential equations can be solved by using the probability generating function

suggested in Kremer (1983).

Multi-type failure model considering imperfect debugging

In practice, software failures can be classified into different types according to their

severity or characteristics. Different types of failures may cause different software

reliability behavior. Although many Markov models assume that the failures have one

unique effect on the software, the realistic situation requires the models to treat those

failures differently.

Tokuno and Yamada (2000) presented a Markov model with two types of

failures that have different kinds of failure rates at the same time incorporating the

imperfect debugging process. The first type of failures is due to faults originally latent

in the system prior to the testing, denoted by F1. The second type of failures is due to

faults randomly introduced or regenerated during the testing phase, denoted by F2.

They assumed that

1) The failure rate for F1 is constant between failures and decreases

geometrically as each fault is corrected, and the failure rate for F2 is constant

throughout the testing phase;

2) The debugging activity for the fault is imperfect: denoted by p the

probability for a fault to be removed successfully and q(=1-p) the probability that fails

to remove the fault, similar to the above Monotonous death model (Goel, 1985);

Chapter 2 Literature Review

 31

3) The debugging activity is performed without distinguishing between F1 and

F2;

4) The probability that two or more software failures occur simultaneously is

negligible;

5) At most one fault is corrected when the debugging activity is performed,

and fault-correction time is negligible or not considered.

Let X(t) be a counting process representing the cumulative number of faults corrected

up to testing time t. From the assumption 2, when i faults have been corrected by an

arbitrary testing time t, after the next software failure occurs,

+

=
)y probabilit(with ,1

)y probabilit(with ,
)(

pi
qi

tX (2.16)

from the assumptions 1 and 3, when i faults have been corrected, the failure rate for the

next software failure-occurrence is given by

 θλ +⋅= ikDi)(, ,,2,1,0 K=i 0>D , 10 << k , 0≥θ (2.17)

where D is the initial failure rate for F1, k is the decreasing ratio of the failure rate, and

θ is the failure rate for F2. The expression of the above equation is from the point of

view that software reliability depends on the debugging efforts, not the residual fault

content.

 The reliability function to the next software failure is given by

})(exp{)(tkDtR i
i θ+⋅−= (2.18)

2.1.6. Modular software models

If possible, architecture of software should be taken into account instead of considering

Chapter 2 Literature Review

 32

the software as a black-box system. Markov models can also be applied in analyzing the

modular software reliability.

The Littlewood semi-Markov model

Littlewood (1979) incorporated the structure of the software using a semi-Markov

model. This model assumed that the system architecture of continuously running

application can be described by an irreducible semi-Markov process.

 The program is comprised of a finite number of modules and the transfer of

control between modules is described by the probability

ijp =Pr{program transits from module i to module j}

The time spent in each module has a general distribution)(tFij which depends upon i

and j, with finite mean ijm . When module i is executed, failures occur according to a

Poisson process with parameter iλ . The transfer of control between modules

(interfaces are themselves subject to failure; when module i calls module j there is a

probability ijv of a failure occurring.

The interest of the composite model is focused on the total number of failures of

integrated software system in time interval (]t,0 , denoted by N(t). This is the sum of

the failures in different modules during their sojourn times, together with the interface

failures.

The asymptotic Poisson process approximation for N(t) is obtained under the

assumption that failures are very infrequent. The times between failures will tend to be

much larger than the times between exchanges of control, that is, many exchanges of

Chapter 2 Literature Review

 33

control would take place between successive program failures. The failure occurrence

rate of this Poisson process is given by

∑∑ +=
ji

ijij
i

iis vba
,

λλ

where

∑∑
∑

=
j ijiji i

j ijiji

i mp

mp
a

π

π

represents the proportion of time spent in module i, and

∑∑
=

j ijiji i

iji
ij mp

p
b

π
π

is the frequency of transfer of control between i and j. These terms depend only on

parameters that characterize modular software architecture: transition probabilities ijp ,

mean execution times ijm , and steady-state probabilities of the embedded Markov

chain iπ .

User-oriented model

Similar to the Littlewood semi-Markov model, an interesting model called

user-oriented model, was developed by Cheung (1980) where user profile was

incorporated into the modular software reliability model. The model is a Markov model

based on the reliability of each individual module and the inter-modular transition

probabilities as the user profile. Also the most critical module of the system can be

determined by using sensitivity analysis techniques.

 Assume that software is decomposed into a number of modules. It is also

assumed that the program flow graph of a terminating application has a single entry and

Chapter 2 Literature Review

 34

a single exit node, and that the transfer of control among modules can be described by

an absorbing DTMC with a transition probability matrix P= }{ ijp . Modules fail

independently and the reliability of the module i is the probability iR that the module

performs its function correctly, i.e., the module produces the correct output and

transfers control to the next module correctly.

Two absorbing states C and F are added, representing the correct output and

failure, respectively, and the transition probability matrix P is modified appropriately to

P̂ . The original transition probability ijp between the modules i and j is modified to

iji pR . This represents the probability that the module i produces the correct result and

the control is transferred to module j. From the exit state n, a directed edge to state C is

created with transition probability nR to represent the correct execution. The failure of

a module i is considered by creating a directed edge to failure state F with transition

probability iR−1 . Hence, DTMC defined with transition probability matrix P̂ is a

composite model of the software system. The reliability of the program is the

probability of reaching the absorbing state C of the DTMC.

Let Q be the matrix obtained from P̂ by deleting rows and columns

corresponding to the absorbing states C and F.),1(nQk represents the probability of

reaching state n from 1 through k transitions. From initial state 1 to final state n, the

number of transitions k may vary from 0 to infinity. It is not difficult to show that

()∑
∞

=

−−==++++=
0

132

k

k QIQQQQIS L (2.19)

and it follows that the overall system reliability can be computed as

nRnSR ⋅=),1((2.20)

Chapter 2 Literature Review

 35

Task-oriented model

A modular software is usually developed to complete certain tasks. Kubat (1989)

presented a task-oriented model which considered the case of a terminating software

application composed of n modules designed for K different tasks. Each task may

require several modules and the same module can be used for different tasks.

Transitions between modules follow a DTMC such that with probability)(kqi task k

will first call module i and with probability)(kpij task k will call module j after

executing in module i. The sojourn time during the visit in module i by task k has the

density function),(tkgi . Hence, the architecture model for each task becomes an

semi-Markov process.

The failure rate of module i is iλ . As derived by Kubat (1989), the probability

that no failure occurs during the execution of task k, while in module i is

∫
∞ −=
0

),()(dttkgekR i
t

i
iλ (2.21)

The expected number of visits in module i by task k, denoted by)(kVi , can be obtained

by solving

∑
=

+=
n

j
ijjii kpkVkqkV

1
)()()()(; ni ,...,2,1= , Kk ,...,2,1= (2.22)

The probability that there will be no failure when running for task k can be

approximated by

∏
=

≈
n

i

kV
i

ikRkR
1

)()]([)((2.23)

and the system failure rate is calculated by

Chapter 2 Literature Review

 36

∑
=

−=
K

k
ks kRr

1

)](1[λ (2.24)

where kr is the arrival rate of task k.

Multi-type failure model in modular software

Ledoux (1999) further proposed a Markov model to include multi-type failures into

modular software reliability analysis. They constructed an irreducible CTMC with

transition rates ijq to model the software composed of a set of components C. In their

Markov model, two types of failures are considered: primary failures and secondary

failures. The primary failure leads to an execution break; the execution is restarted after

some delay. A secondary failure does not affect the software because the execution is

assumed to be restarted instantaneously when the failure appears. For an active

component ic , a primary failure occurs with constant rate 'iλ , while the secondary

failures are described as Poisson process with rate ''iλ . When control is transferred

between two components i and j then a primary (secondary) interface failure occurs

with probability 'ijv (''ijv).

 Following the occurrence of a primary failure, a recovery state is occupied,

and the delay of the execution break is a random variable with a phase type distribution.

Denoting by R the set of recovery states, the state space becomes RC ∪ . Hence, the

CTMC that defines the architecture is replaced by a CTMC that models alternation of

operational-recovery periods. The associated generator matrix defines the following

transition rates: from ic to jc with no failure; from ic to jc with a secondary

failure; from ic to jc with a primary failure; from recovery state i to recovery state j;

Chapter 2 Literature Review

 37

and from recovery state i to jc .

Thus, the Markov model can be constructed according to the architecture of

different modules and their states. Based on the CTMC, the Chapman-Kolmogorov

equations can be obtained and solved by certain computational tools.

2.2. NHPP Models in Software Reliability

Although some basic and advanced Markov models are presented in the previous

sections, some NHPP models (as a special type of Markov models) are mentioned here

due to their significant impact on the software reliability analysis. NHPP is a special

class of counting process { }0),(≥ttN to cumulate the number of events (such as

software failures) in a time interval),0[t . It can be classified as a very special case of

the NHCTMC (Non-Homogeneous Continuous Time Markov Chain) models, see e.g.

Gokhale et al. (1997).

2.2.1. The Goel-Okumoto (GO) model

In 1979, Goel and Okumoto presented a simple model for the description of software

failure process by assuming that the cumulative failure process is NHPP with a simple

mean value function. Although NHPP models have been studied before, see e.g.

Schneidewind (1975), the GO-model is the basic NHPP model that later has had a

strong influence on the software reliability modeling history.

Model description

Chapter 2 Literature Review

 38

The general assumptions of the GO-model are

1) The cumulative number of faults detected at time t follows a Poisson

distribution;

2) All faults are independent and have the same chance of being detected;

3) All detected faults are removed immediately and no new faults are introduced;

Specifically, the GO-model assumes that the failure process is modeled by an NHPP

model with mean value function)(tm given by

)]exp(1[)(btatm −−= , 0,0 >> ba

The failure intensity function can be derived by

)exp()()(btabtm
dt
dt −==λ

where a and b are positive constant. Note that am =∞)(. The physical meaning of

parameter a can be explained as the expected number of faults which are eventually

detected. The quantity b can be interpreted as the failure occurrence rate per fault.

 The expected number of remaining faults at time t can be calculated as

)exp()]exp(1[)()()]()([btabtaatmmtNNE −=−−−=−∞=−∞

A heuristic derivation of the GO-model

Suppose that the expected number of faults detected in a time interval [)ttt ∆+, is

proportional to the number of remaining faults, we have that,

ttmabttm ∆−=∆+)]([)(

where b is a constant of proportionality.

Chapter 2 Literature Review

 39

 The above difference equation can be transformed into a differential equation.

Divide both sides by t∆ and take limits by letting t∆ tend to zero, we get the

following equation,

)()(' tmbbatm ⋅−⋅=

It can easily be verified that the solution of this differential equation, together with the

initial condition 0)0(=m , we get the mean value function of the GO-model.

 Both the GO-model and JM-model give the exponentially decreasing number

of remaining faults. It can be shown that these two models cannot be distinguished

using only one realization from each model. However, the models are different because

the JM-model assumes a discrete change of the failure intensity at the time of the

removal of a fault while the GO-model assumes a continuous failure intensity function

over the whole time domain.

It should be pointed out here that the GO-model makes the assumption that all

faults contribute the same amount to the software failure intensity which is unrealistic.

Some extended models, which relax this assumption, will be discussed later.

Parameter estimation

Denoted by in the number of faults detected in time interval [)ii tt ,1− , where

kttt <<<= L100 and it are running times since the software testing begins. The

estimation of model parameters a and b can be carried out by maximizing the likelihood

function, see e.g. Goel and Okumoto (1979). The likelihood function can be reduced to

Chapter 2 Literature Review

 40

∑
= −

−−

−−−
−−−k

i ii

iiiii

btbt
bttbttn

1 1

11

)exp()exp(
)]exp()exp([

=
)exp(1

)exp(
1

k

k

i
ikk

bt

nbtt

−−

⋅− ∑
= (2.25)

Solving this equation to calculate the estimate of b, and then a can be estimated as

)exp(1
1

k

k

i
i

bt

n
a

−−
=

∑
= (2.26)

Usually, the above two equations has to be solved numerically. It can also be

shown that the estimates are asymptotically normal and a confidence region can easily

be established. A numerical example is illustrated below.

2.2.2. S-shaped NHPP models

The mean value function of the GO-model is exponential-shaped. Based on experience,

it is observed that the curve of the cumulative number of faults is often S-shaped as

shown by Fig. 2.6, see e.g. Yamada et al. (1984).

Fig. 2.6. The S-shaped mean value function.

t

S-shaped model

the GO-model

)(tm

Chapter 2 Literature Review

 41

 Generally, the S-shaped curve can be explained by the fact that faults are

neither independent nor of the same size. At the beginning of the testing, some faults

might be “covered” by other faults. Removing a detected fault at the beginning does not

decrease the failure intensity very much since the same test data will still lead to a

failure caused by other faults. In a later phase, large faults are already removed and the

remaining faults have small size so that the fault-detection rate is of moderate size. Also

because there are not many faults left in the software, the coverage has no significant

effect at the end of the testing phase. Another reason of the S-shaped behavior is the

learning effect as indicated in Yamada et al. (1984).

 Several different S-shaped NHPP models have been proposed in the existing

literature. The most interesting ones are the delayed S-shaped NHPP model and the

inflected S-shaped NHPP model.

Delayed S-shaped NHPP model

The mean value function of the delayed S-shaped NHPP model is

)]exp()1(1[)(btbtatm −+−= ; 0>b , (2.27)

This is a two-parameter S-shaped curve with parameter a denoting the number of faults

to be detected and b corresponding to a fault detection rate. The corresponding failure

intensity function of this delayed S-shaped NHPP model is

)exp()exp()exp()1()()(2 bttabbtabbtbtab
dt

tdmt −=−−−+==λ

The expected number of remaining faults at time t is then

)exp()1()()(btbtatmm −+=−∞

Chapter 2 Literature Review

 42

Inflected S-shaped NHPP model

The mean value function of the inflected S-shaped NHPP model is

[]
)exp(1
)exp(1)(

btc
btatm
−+
−−

= ; 0,0 >> cb

In the above a is again the total number of faults to be detected while b and c are called

the fault detection rate and the inflection factor, respectively. The intensity function of

this inflected S-shaped NHPP model can easily be derived as follows.

[]2)exp(1
)exp()1()()(

btc
btcab

dt
tdmt

−+
−⋅+

==λ

Given a set of failure data, for both delayed and inflated S-shaped NHPP models,

numerical methods have to be used to solve the likelihood equation so that estimates of

the parameters can be obtained.

2.2.3. Some other NHPP models

Besides the S-shaped models, there are many other NHPP models that extend the

GO-model for different specific conditions.

Duane NHPP models

Here, we will briefly describe some existing reliability growth models which inherit or

modify the Weibull model properties. The first is the Duane model interpreted as a

NHPP model for reliability growth, see e.g. Duane (1964). A modification of this model

due to Littlewood (1984) is also presented.

Chapter 2 Literature Review

 43

 The Duane model is referred to as the Weibull process model assumes that the

mean value function satisfies

β

α

=

ttm)(, 0>α , 0>β (2.28)

In the above, α and β are parameters which can be estimated by using collected

failure data. The mean value functions with 100=α and different }2,1,5.0{=β are

depicted by the Fig. 2.7. When 1=β , the Duane NHPP model is reduced to a Poisson

process whose mean value function is a straight line.

0

1

2

3

4

0 50 100 150 200

Fig. 2.7. Mean value functions of Duane NHPP models.

The failure intensity function,)(tλ , can thus be derived as

1

)()(
−

==

β

αα
βλ ttm

dt
dt , 0>α , 0>β

One of the most important advantages of the Duane model is that if we plot the

cumulative number of failure versus the cumulative testing time on a log-log-scale, the

)(tm

t

5.0=β

1=β

2=β

Chapter 2 Literature Review

 44

plotted points tends to be close to a straight line if the model is valid. This can be seen

from the fact that the relation between)(tm and t can be rewritten as

tbattm lnlnln)(ln +=+−= βαβ

where αβ ln−=a and β=b . Hence,)(ln tm is a linear function of tln and due to

this linear relation, the parameters α and β may be estimated graphically and the

model validity can easily be verified.

 The Duane model gives an infinite failure intensity at time zero. Littlewood

(1984) proposed a modified Duane model with the mean value function

+
−=

β

α
α

t
ktm 1)(, 0>α , 0>β , 0>k

The parameter k can be interpreted as the number of faults eventually to be detected.

Log-power model

Xie and Zhao (1993) presented a log-power model. The mean value function of this

model can be written as

)1(ln)(tatm b += ; 0, >ba , 0≥t (2.29)

This model has shown to be useful for software reliability analysis as it is a pure

reliability growth model. It is also easy to use due to its graphical interpretation. The

plot of the cumulative number of failures at time t against t+1 will tend to be a straight

line on a log-loglog scale if the failures follow the log-power model. This can be seen

from the following relationship

)1ln(lnln)(ln tbatm ++=

The slope of the fitted line gives an estimation of b and its intercept on the vertical axis

Chapter 2 Literature Review

 45

gives an estimation of aln .

The above graphical approach makes it easy to validate the model and carry out

the estimation of the parameters. This approach is also called as “first model validation

and then parameter estimation”, see for details in Xie and Zhao (1993).

 The failure intensity function of the log-power model can be obtained as

t
tabt

b

+
+

=
−

1
)1(ln)(

1

λ , 0≥t (2.30)

The failure intensity function is interesting from a practical point of view. The

log-power model is able to analyze both the case of strictly decreasing failure intensity

and the case of increasing-then-decreasing failure intensity function. For example, if

1≤b , then)(tλ of the above equation is a monotonic decreasing function of t;

Otherwise given 1>b ,)(tλ is increasing if)1exp(0 −<≤ bt and decreasing if

)1exp(−≥ bt .

 The estimation of the parameters a and b is simple. Suppose total n failures are

detected during the a testing period (]T,0 and the times to failures are ordered by

Tttt n ≤<<<< L210 . The maximum likelihood estimation of a and b is then given

by:

∑
=

+−+
= n

i
itTn

nb

1

)1ln(ln)1ln(ln

ˆ

and

)1(ln
ˆ ˆ T

na
b +

=

They can thus be simply calculated without numerical procedures.

Chapter 2 Literature Review

 46

Musa-Okumoto model

Musa and Okumoto (1984) is another model for infinite failures. This NHPP model is

also called the logarithmic Poisson model. The mean value function is

0),1ln()(>+= tbtatm (2.31)

This model can deal with the case that faults with larger size are found earlier. The

failure intensity function is derived as

bt
abt
+

=
1

)(λ

Given a set of failure time data },...,2,1,{ niti = , the maximum likelihood estimates of

the parameters are the solutions of the following equations:

=
++

−
+

+
=

∑
=

n

i nn

n

i

n

tbtb
nt

tbb

tb
na

1
0

)ˆ1ln()ˆ1(ˆ1
1

ˆ
1

)ˆ1ln(
ˆ

 (2.32)

These equations have to be solved numerically.

2.2.4. Other software reliability models

Software reliability is an important research area that has thousands of papers. Some

books that comprehensively review them are Xie (1991), Lyu (1996), Musa (1998) and

Pham (2000).

 Other than Markov models discussed in this chapter, Limnios (1997) analyzed

the dependability of semi-Markov systems with finite state space based on algebraic

calculus within a convolution algebra. Tokuno and Yamada (2000) constructed a

Chapter 2 Literature Review

 47

Markov model, which related the failure and restoration characteristics of the software

system with the cumulative number of corrected faults, and also considered the

imperfect debugging process together with the time-dependent property. Becker et al.

(2000) presented a semi-Markov model for software reliability allowing for

inhomogenities with respect to process time. Rajgopal and Mazumdar (2002) also

presented a Markov model for the transfer of control between different software

modules.

For the NHPP models, Yamada and Osaki (1985b) summarized some existing

software reliability growth models. Recently, some other NHPP models have been

further developed. For example, Kuo et al. (2001) proposed a scheme for constructing

software reliability growth models based on a NHPP model. The main focus is to

provide an efficient parametric decomposition method for software reliability modeling.

Huang et al. (2003) further described how several existing software reliability growth

models based on NHPP can be comprehensively derived by applying the concept of

weighted arithmetic, weighted geometric, or weighted harmonic mean. Pham (2003)

recently presented studies in software reliability that includes NHPP software

reliability models, NHPP models with environmental factors, and cost models.

 Although the Markov and NHPP models are widely used in software reliability,

some other models and tools might be also useful. Miller (1986) introduced “Order

Statistic” models in studying the software reliability, which can also be found in the

later research of Block et al. (1987), Kaufman (1996), Aki and Hirano (1996) etc. Xie et

al. (1998) described a double exponential smoothing technique to predict software

Chapter 2 Literature Review

 48

failures. Helander et al. (1998) presented planning models for distributing development

effort among software components to facilitate cost-effective progress toward a system

reliability goal. Trivedi (2002) presented a tool called SREPT that allows users to

analyze the effect of non-zero debug times to reflect more realistic scenarios.

Littlewood et al. (2003) used the Bayesian inference to estimate the reliability of

diverse fault-tolerant software-based systems.

2.3. Models in Integrated Software and Hardware Systems

A computing system usually integrates both software and hardware, and software

cannot work without hardware’s support. Hence, system reliability should be analyzed

by integrating both software and hardware influences.

This chapter presents some reliability models on the system level in which the

reliability analysis considers both software and hardware failures. First, a single

processor integrating software and hardware is studied. Second, modular system

reliability is discussed. Following that, Markov models for clustered computing system

are presented. Then, a unified model that integrates NHPP software model into the

Markov hardware model is shown. Finally, some other models developed for the

integrated software and hardware systems are briefly reviewed.

2.3.1. Single-processor model

The simplest case for the integrated software and hardware system is to view it as a

single processor which can be generally separated in two subsystems: software and

Chapter 2 Literature Review

 49

hardware subsystems. The software subsystem and hardware subsystem are considered

as two different blackboxes, although integrated together, due to their distinct

properties. Considering such type of system, Goel and Soenjoto (1981) presented one

of the first Markov models. The assumptions of the model are listed below:

1) A computing processor consists of a hardware subsystem and a software

subsystem. The faults in the software subsystem are independent from one

another and each has a failure occurrence rate of λ .

2) Failures of hardware subsystem are also independent and have a failure

occurrence rate of hλ .

3) The time to remove a software fault, when there are i such faults in the system

follows an exponential distribution with parameter iµ .

4) The time to remove the cause of a hardware failure also follows an exponential

distribution with parameter hµ .

5) Failures and repairs of the hardware subsystem are independent of both the

failures and repairs of the software subsystem.

6) At most one software fault is removed and no new software faults are

introduced during the fault correction stage.

7) When the system is inoperative due to the occurrence of a software failure, the

fault causing the failure is corrected with probability sp . Also, ss pq −= 1 , is

the probability of imperfect repair of software.

8) After the occurrence of a hardware failure, the hardware subsystem is recovered

with probability, hp and hh pq −= 1 is the probability for the hardware still

Chapter 2 Literature Review

 50

staying at the failed state after the repair.

 Let)(tX denote the state of the system at time t and ‘ itX =)(’, i=0,1,…,N,

implies that the system is operational while there are i remaining software faults,. Here

N is the initial number of software faults. Also, ‘ sitX =)(’, ssss Ni ,...,2,1= , implies

that the system is down for repair of software with i remaining software faults at the

time of failure. Similarly, ‘ hitX =)(’, hhhh Ni ,...,2,1= , implies the system is down for

repair of hardware with i remaining software faults at the time of failure. The Markov

chain is shown in Fig. 2.8.

N

Np

N-1 01i

Ns

Nh

sq sp

Nqhp

hq

1−Np N-1s

N-1h

sq sp

1−Nqhp

hq

ip is

ih

sq sp

iqhp

1p 1s

1h

sq sp

1qhp

hq hq

0h

0qhp

hq

Fig. 2.8. Markov chain for the transitions between states of)(tX .

Suppose that the system is at state i (an operational state containing i software faults),

i=1,2,…,N. The system may fail due to the software failure with probability ip to state

si and due to the hardware failure with the probability iq to state hi . At state si ,

debugging process is undertaken to remove the fault that causes the software failure.

With probability sp , the software fault is successfully removed and the system goes to

Chapter 2 Literature Review

 51

state i-1. Otherwise with probability sq , the fault is not removed and the software is

only restarted at state i . For state hi , maintenance personnel will try to recover the

hardware failure and it has a probability hp to return to the operational state i and

probability hq to remain at the failure state hi . After the software is fault-free, i.e. at

the state 0, the system reduces to a hardware system subject to hardware failures only.

Then, the basic equations describing the stochastic process as a CTMC can be

formulated, see for details in Goel and Soenjoto (1981). The solutions are used to

derive some system-performance measures, such as time to a specified number of

software faults, system operational probabilities, system reliability and availability, and

expected number of software, hardware and total failures by time t.

2.3.2. Modular system model

Similar to the case of modular software presented in the previous chapter, integrated

software and hardware systems can also be decomposed into a finite number of

modules. Markov models can also be used in analyzing such modular systems as shown

below.

Siegrist (1988) might be one of the first models using Markov processes to

analyze modular software/hardware systems. He assumed that the control of a system is

transferred among modules according to a Markov process. Each module has an

associated reliability which gives the probability that the module will operate correctly

when called and will transfer control successfully when finished. The system will

eventually either fail or complete its task successfully so that to enter a terminal state.

The modules (or states) of the system is denoted by i (i=1,2,…,n). Usually, state

Chapter 2 Literature Review

 52

1 is designated as the initial state. The ideal (failure free) system is described by a

Markov chain with state space },,2,1{ nK and transition matrix P. That is, ijP is the

conditional probability that the next state will be j given that the current state is i. The

reliability of state i, denoted by iR , is the probability that state i will function correctly

when called and will transfer control successfully when finished. Equivalently, the

system will fail with probability iR−1 each time state i is entered. The imperfect

system is modeled by adding an absorbing state F (failure state) and modifying the

transition probabilities appropriately. Specifically, the imperfect system is described by

a Markov chain with state space },,,2,1{ FnK and transition matrix P̂ given by

ijiij PRP =ˆ , for i, j=1,…,n

iiF RP −= 1ˆ , for i =1,…,n (2.33)

1ˆ =FFP

Suppose that 1<iR for each i and hence each of the states n,,2,1 K

eventually leads to the absorbing state F. Note that the dynamics of the imperfect

system are completely described by the state reliability function R and the transition

matrix P since this description is equivalent to specifying the transition matrix P̂ of

the imperfect system. Then, based on the Markov model, Siegrist (1988) further

presented the expected number of transitions until failure as the measure of system

reliability.

2.3.3. Clustered system model

Introduction

Chapter 2 Literature Review

 53

Traditionally, highly reliable systems have employed proprietary fault tolerant software

and hardware, implemented with tightly coupled replicated processors and programs.

Through very effective in providing high levels of reliability, proprietary fault tolerant

systems are expensive to develop and usually cannot keep pace with the computing

industry technology curve, see e.g. Mendiratta (1998).

Clustered computing systems uses commercially available computers

networked in a loosely-coupled fashion. It can provide high levels of reliability if

appropriate levels of fault detection and recovery software are implemented in the

middleware (an application layers). The application, therefore, can be made as reliable

as the user requires and it is constrained only by the upper bounds on reliability

imposed by the architecture, performance and cost considerations.

A cluster is a collection of computers in which any member of the cluster is

capable of supporting the processing functions of any other member. A clustered

computing system has a redundant kn + configuration, where n processing nodes

are actively processing the application and k processing nodes are in a standby state,

serving as spares. In the event of a failure of an active node, the application that was

running on the failed node is moved to one of the standby nodes.

The simplest cluster system is one active and one standby, in which one node is

actively processing the application and the other node is in a standby state. Other

common cluster systems include simplex (one active node, no spare), n+1 (n active

nodes, 1 spare), and n+0 (all n active nodes). In a system with n active nodes, the

applications from the failed node are redistributed among the other active nodes using a

Chapter 2 Literature Review

 54

pre-specified algorithm.

 Consider a general clustered computing system with n active processors and k

spares, see e.g. Mendiratta (1998). In this system, there is a Power Dog (PD) attached to

each processor that can power cycle or power down the processor, and a Watch Dog

(WD) with connections to each processor that monitors behavior from each processor

and initiate failover if it detects a processor failure. Then, the failover information is

transferred to a switching system (SS) that can turn on the Power Dog of the standby

processors to replace the failed ones. The block diagram for this clustered system

architecture is shown in Fig. 2.9 and represents the system to be modeled.

1 PD

2 PD

n PD

Active
Processors

WD SS

1

2

k

PD

PD

PD

Standby
Processors

Fig. 2.9. A general architecture of kn + clustered computing systems.

Markov Modeling

For each processor, there are two types of failures: software and hardware failures.

Suppose the failure rate for software is sλ and for hardware hλ . If a system is

repairable, the failed processor can be recovered with a repair rate iµ from state i-1

back to state i. The Markov model is built as the CTMC of Fig. 2.10.

Chapter 2 Literature Review

 55

n+k

)(hsn λλ +⋅

n

…
n-1n+k-1

)(hsn λλ +⋅)(hsn λλ +⋅)(hsn λλ +⋅

n-2

))(1(hsn λλ +− …

1
)(2 hs λλ +

0

)(hs λλ +

1µ… 2µ1−nµ

… nµkn+µ

Fig. 2.10. CTMC for repairable clustered systems.

In the above model for repairable clusters, iµ is the expected system repair rate no

matter whether the failed processors are caused by software failures or hardware

failures. Actually, the rate for repairing software failure should be different from that

for repairing hardware failure.

Let sµ be the rate to repair one failed processor caused by software failure and

hµ by hardware failure. Then part of the CTMC can be depicted by the Fig. 2.11. In the

figure,

>+−−
≤+

=
kjijin
kjin

ji
s

s
s if)(

 if
),(

λ
λ

λ

and

>+−−
≤+

=
kjijin
kjin

ji
h

h
h if)(

 if
),(

λ
λ

λ

Chapter 2 Literature Review

 56

i, j

i, j-1

i-1, j i+1, j

i, j+1

sµ

sµ

hµ hµ

)1,(−jisλ

),(jisλ

),1(jih −λ),(jihλ

State(i,j): i hardware down, j software down (on
different processors)

Fig. 2.11. CTMC for repairable cluster with different software/hardware repair
rate.

The corresponding Chapman-Kolmogorov differential equation for the probability that

the system is in the state (i, j) at time t is, for 1;,0, −+≤++≠ knjiknji ,

)(]),(),([)(
)()1,()(),1()()(

,1,

1,,1,1
'
,

tPjijitP
tPjitPjitPtP

jihshsjis

jisjihjihji

µλλµµ

λλµ

+++−+

−+−+=

+

−−+ (2.34)

The initial conditions are

1)0(0,0 =P and 0,,0)0(, ≠= jiforP ji (2.35)

The boundary conditions are:

)()()()()(0,01,00,1
'
0,0 tPntPtPtP hssh λλµµ +−+=

1,...,2,1for)()],0(),0([

)()()1,0()()(

,0

1,01,0,1
'
,0

−+=+++−

+−+= +−

knjtPjj

tPtPjtPtP

jhssh

jsjsjhj

λλµµ

µλµ

1,...,2,1for)()]0,()0,([
)()()0,1()()(

0,

1,0,10,1
'
0,

−+=+++−

+−+= −+

knitPii
tPtPitPtP

ihssh

isihihi

λλµµ
µλµ

 (2.36)

knjiknjitP

tPjitPjitP

jihs

jisjihji

+<<+=++−

−+−= −−

,0 ; for)()(

)()1,()(),1()(

,

1,,1
'
,

µµ

λλ

)()()(0,0,1
'

0, tPtPtP knhknhkn +−++ −= µλ

Chapter 2 Literature Review

 57

and

)()()()(,01,0
'
,0 tPtPttP knsknskn +−++ −= µλ

The above equations can be numerically solved by certain computing programs, and

then the system availability for the n+k clustered system can be calculated by

∑
+<+

=
knji

ji tPtA)()(, (2.37)

2.3.4. A unified NHPP Markov model

In order to incorporate the NHPP software reliability model into the Markov hardware

reliability model, Welke et al. (1995) developed a unified NHPP Markov model. The

unified model is accomplished by determining a transition probability for a software

failure and then incorporating the software failure transitions into the hardware

reliability model. Based on this unified model, the differential equations can be easily

established and solved despite the time-varying software failure rates.

The basic assumptions of this unified model are listed below:

1) Software failures are described by a general NHPP model, with the probability

function

),(tnP =)}(exp{
!
)]([})(Pr{ tm

n
tmntN

n

−== , n=0,1,2,…. (2.38)

where)(tm is the mean value function and n is the number of failures occurring

up to time t.

2) The times between hardware failures are exponentially distributed random

variable.

Chapter 2 Literature Review

 58

For more details, see Welke et al. (1995). Based on the above equations, the differential

equations can be obtained and solved as usual.

2.3.5. Other models for integrated software/hardware systems

Similar to the single-processor model presented in this section, Hecht and Hecht (1986)

also studied the reliability in system context considering both software and hardware.

Fryer (1985) implemented the fault tree analysis in analyzing the reliability of

combined software/hardware systems, which determines how component failures can

contribute to system failure. Sumita and Masuda (1986) developed a combined

hardware/software reliability model where both lifetimes and repair times of software

and hardware subsystems are considered together. Kim and Welch (1989) examined the

concept of distributed execution of recovery blocks as an approach for uniform

treatment of hardware and software faults. Keene and Lane (1992) reviewed the

similarities and differences between hardware, software and system reliability.

Recently, Pukite and Pukite (1998) summarized some simple models for the reliability

analysis of the hardware and software system.

 For the clustered systems, Laprie and Kanoun (1992) presented Markov

models for analyzing the system availability. Later, Dugan and Lyu (1995) discussed

the modeling and analysis of three major architectures of the clustered system

containing multiple versions of software/hardware, and they combined fault tree

analysis techniques and Markov modeling techniques to incorporate transient and

Chapter 2 Literature Review

 59

permanent hardware faults as well as unrelated and related software faults. Later, Lyu

and Mendiratta (1999) studied the reliability modeling and analysis of the clustered

system by defining the hardware, operating system, and application software reliability

techniques that need to be implemented to achieve different levels of reliability and

comparable degrees of data consistency.

Recently, Zhang and Horigome (2001) studied the availability and reliability on

the system level considering the time-varying failures that are dependent among the

software/hardware components. Lai et al. (2002) studied the reliability of the

distributed software/hardware systems, where Markov models were implemented by

assuming that the software failure rate is decreasing while the hardware has a constant

failure rate. Dai et al. (2003a) further studied the reliability and availability of

distributed services which combined both software program failures and hardware

network failures altogether.

Chapter 3 Parallel Homogeneous Distributed System Reliability

 60

CHAPTER 3

 PARALLEL HOMOGENEOUS

DISTRIBUTED SYSTEM RELIABILITY

Parallel homogeneous distributed systems are widely used in many areas. This chapter

models and analyzes the reliability of such systems combining both software and

hardware failures. Section 3.1 constructs a Markov model to analyze this type of

systems assuming the debugging process is perfect, and then Section 3.2 extends the

model to include the condition of imperfect debugging. Furthermore, Section 3.3

makes thorough analysis of cost for the systems and presents an optimization model to

determine the number of the redundancies.

3.1. Models with Perfect Debugging Process

3.1.1. Introduction

The distributed computing systems have gained in popularity due to low-cost

processors in the recent years. A distributed system is composed of several hosts

connected to a network where computing functions are shared among the hosts. It

provides many advantages over centralized systems, including high throughput,

Chapter 3 Parallel Homogeneous Distributed System Reliability

 61

cost/performance benefits, and potential for enhanced reliability. A typical application

on distributed systems is distributed software of which identical copies run on each host.

Examples of such applications can be found in communication protocols, networking

software, and distributed database management systems, etc.

System availability is a major concern in the distributed systems. It represents

the percentage of time the system is available to users. Availability of distributed

systems in terms of hardware can be obtained from conventional reliability theories. A

more interesting measure is the availability of the whole software/hardware system.

There are some related studies. Goel and Soejoto (1982) first considered the behavior

of combined software and hardware system. A generalized model is also proposed in

Sumita and Masuda (1986). Goyal and Lavenburg (1987) dealt with the availability

issue. Some other related references are Laprie and Kanoun (1992), Garg et al. (1999),

Trivedi (2001), Liu et al. (2002) and Chen et al. (2002).

In fact, it is difficult to evaluate system availability of combined

software/hardware systems, as explained by Lin et al. (1999), even for simple systems.

Some models describing system availability of single-host based software/hardware

systems with only one computer are presented in Goel and Soejoto (1982) and Sumita

and Masuda (1986). We will emphasize on this topic in this section by extending some

of their results.

A typical kind of application on distributed systems has a homogeneously

distributed software/hardware structure. The physical system is assumed to contain N

software subsystems (SW1-SWN) running on N hosts (HW1-HWN) as depicted in Fig.

Chapter 3 Parallel Homogeneous Distributed System Reliability

 62

3.1.

HW1
SW1

HW2
SW2

HWN
SWN

Network

Uncorrelated

Requests

Fig. 3.1. A general homogeneous distributed software/hardware system.

That is, identical copies of distributed application software run on the same type of

hosts, called Homogeneous Distributed Software/Hardware System. This system may

be implemented to provide services for uncorrelated random requests of customers.

In this system, the software is usually improved during the testing phase. Since

the system considers combined software and hardware failures as well as maintenance

process, its reliability cannot be simply estimated by the above analytical methods for

computing the distributed program reliability. The availability models and analyses of

the homogeneous distributed software/hardware system are studied here.

3.1.2. Availability model

Actually, homogeneous distributed software/hardware system is a type of cluster

system, which is a collection of computers in which any member of the cluster is

Chapter 3 Parallel Homogeneous Distributed System Reliability

 63

capable of supporting the processing functions of any other member Mendiratta (1998)

and Lyu and Mendiratta (1999). A cluster has a redundant n+k configuration, where n

processing nodes are necessary and k processing nodes are in spare state, serving as

backup. In this subsection, our model is a cluster of N homogeneous hosts that are

working in parallel. This means that if all of the N hosts failed, the system fails.

Otherwise whenever one or more hosts can work, the system is still working.

 The following are the assumptions concerning this system:

(a) All the hosts have the same hardware failure rate λh arising from an exponential

distribution.

(b) Each of the hosts runs a copy of the same software with a failure rate function

)(tsλ of a given software model.

(c) Both the software and hardware have only two states, up (working state) and

down (malfunctioning state), which means all the failures of software or

hardware are crash failures.

(d) There are maintenance personnel to repair the system upon software or

hardware malfunction. The repair time has an exponential distribution with

parameter µs for software and parameter µh for hardware, respectively.

(e) All the failures involved (either software or hardware) are mutually

independent.

(f) No two or more failures (either software or hardware) occur at the same time.

There are some real cases of homogeneously distributed software/hardware

Chapter 3 Parallel Homogeneous Distributed System Reliability

 64

system in which all the hosts can work independently for random/unknown request.

Such applications can also be found in telephone switching system and bank system etc.

Most homogeneous distributed software/hardware systems that work independently

under the case of uncorrelated random requests can implement our models.

 Systems in practice can be complex and usually we have a multi-host situation.

Lai et al. (2002) implemented a Markov process to model it. Fig. 3.2 illustrates a partial

system state transition of the Markov process, in which (i, j) is the state when i hosts

suffer hardware failures and j hosts suffer software failures.

i, j

i, j-1

i-1, j i+1, j

i, j+1

sµ

sµ

hµ hµ

)()1(tjiN sλ+−−

)()(tjiN sλ−−

hjiN λ)1(+−− hjiN λ)(−−

State(i,j): i hw down, j sw (on different hosts) down

Fig. 3.2. The partial state transition graph for the N-host system.

The corresponding Kolmogorov differential equation for the probability that the system

is in the state (i,j) at time t is, for 1;,0, −≤+≠ NjiNji ,

Chapter 3 Parallel Homogeneous Distributed System Reliability

 65

)()()()()1(
)()1()()(

,,1,1,

,1,1
'
,

tPxtPtPtjiN
tPjiNtPtP

jijijisjis

jihjihji

−++−−+

+−−+=

+−

−+

µλ

λµ
 (3.1)

where

hshsji tjiNjiNx µλλµ +−−+−−+=)()()(, (3.2)

The initial conditions are

1)0(0,0 =P and 0,for,0)0(, ≠= jiP ji

The equations for the boundary states are:

)(])([)()()(0,01,00,1
'
0,0 tPtNtPtPtP hssh λλµµ +−+=

1,...,2,1for)(]})()[({
)()()()1()()(

,0

1,01,0,1
'
,0

−=+−++−

++−+= +−

NjtPtjN
tPtPtjNtPtP

jhssh

jsjsjhj

λλµµ

µλµ

1,...,2,1for)(]})()[({
)()()1()()(

0,

1,0,10,1
'
0,

−=+−++−

++−+= −+

NitPtiN
tPtPiNtPtP

ihssh

isihihi

λλµµ
µλµ

 (3.3)

() knjiknjitP
tPtjiNtPjiNtP

jihs

jisjihji

+<<+=++−

+−−++−−= −−

,0 ;for)(
)()()1()()1()(

,

1,,1
'
,

µµ

λλ

)()()(0,0,1
'

0, tPtPtP NhNhN µλ −= −

)()()()(,01,0
'
,0 tPtPttP NsNsN µλ −= −

The system availability for the N-host based system can be calculated by

∑
<+

=
Nji

ji tPtA)()(, (3.4)

Here, we assume each copy of software suffers a failure rate of the JM model (Jelinski

and Moranda, 1972), i.e.

φλ ts kt =)(

To solve the above differential equations, we need to know the expected number

of remaining software faults (tk). However, since tk changes with software

debugging, it is usually a function of time. We have used the following scheme for the

Chapter 3 Parallel Homogeneous Distributed System Reliability

 66

numerical calculation, as shown by Lai et al. (2002). According to the JM model, the

probability of software having k remaining faults at time t is

kKttk
k

K
tkP −−−⋅−

= 0)]exp(1[)exp(),(0 φφ for 00 Kk ≤≤ (3.5)

Based on this equation, the expected number of remaining software faults at time t can

be computed as

∑
=

⋅=
0

0
),(

K

k
t tkPkk

The system availability can be computed using any available numerical

algorithm to solve the differential equations, such as the SHARP and so on. An example

using our above Markov model to analyze availability of homogeneous distributed

software/hardware system is numerically illustrated below.

Example 3.1. We assume that the hardware failure rate is 0.02 and software failure rate

per fault is 0.006. The repair rate for hardware is 0.1 while that for software is 0.12. Fig.

3.3 depicts the result of system availability of a triple-host system with different

number of initial faults.

Chapter 3 Parallel Homogeneous Distributed System Reliability

 67

K0=50

K0=30

K0=10

λh=0.02;
φ=0.006;
µh =0.1;
µs=0.12

 0.9744

Fig. 3.3. A typical curve of the system availability function.

It can be seen from Fig. 3.3 that the system availability reaches the lowest point at an

early stage. This is because a large number of faults are identified when software

system testing begins. System availability starts recovering after the lowest point and

approaches a certain value less than 1 asymptotically after a longer period of time. This

is because identified faults are fixed and as a result software failure rate decreases.

The initial software fault number affects the system availability only at the early

stage. The more the testing time passes, the less effect the K0 has. In the end, the steady

availability will be same as "fault free", no matter what the initial software fault number

is.

Chapter 3 Parallel Homogeneous Distributed System Reliability

 68

3.2. Models with Imperfect Debugging Process

In the above section, the model assumed that the debugging process was a perfect one.

However, it is possible in reality that the fault that is supposed to have been removed

may cause a failure again. It may be due to the spawning of a new fault by the imperfect

debugging process, see e.g. Fakhre-Zakeri and Slud (1995), Sridharan and Jayashree

(1998), Pham et al. (1999) and Tokuno and Yamada (2000).

3.2.1. Markov modeling

The assumptions used in this imperfect debugging model are almost the same as the

assumptions (a-f) in earlier model except add the following assumption.

(g) When a software failure occurs, repair starts with the following debugging

probabilities:

The software fault content is reduced by one with probability p

The software fault content remains unchanged with probability r

The software fault content is increased by one with probability q.

This assumption is same as the birth-death process that was introduced in Kremer

(1983).

Fig. 3.4 illustrates a partial system state transition, in which (i, j, k) is the state

when i hosts suffer hardware failures, j hosts suffer software failures and k is the

number of remaining software faults at that time. Here N is the total number of hosts in

the system.

Chapter 3 Parallel Homogeneous Distributed System Reliability

 69

 (N-i-j+1)λs(k)
 p.µs r.µs q.µs

 (N-i-j+1)λh (N-i-j)λh

 µh µh

 q.µs r.µs p.µs

 (N-i-j)λs(k)

i,j-1,k-1 i,j-1,k i,j-1,k+1

 i,j,k

 i,j+1,k-1 i,j+1,k i,j+1,k+1

 i-1,j,k i+1,j,k

Fig. 3.4. The state transition graph for the N-host system.

The corresponding Chapman-Kolmogorov differential equation for the probability that

the system is in the state (i, j, k) at time t can be obtained as:

)()()()1()()1(

)()()()()(

,,,,,1,,,1

1,1,,1,1,1,,,1
'

,,

tPAtPkjiNtPjiN

tPqtPrtPptPtP

kjikjikjiskjih

kjiskjiskjiskjihkji

−+−−++−−+

+++=

−−

−+++++

λλ

µµµµ

)1...2,1;1;1,....,2,1,(0 −=−≤+−= KkNjiNji (3.6)

where

hshskji kjiNA µλλµ ++−−+=)]()[(,,

The boundary conditions are (0,0;;,0, KkNjiNji =≤+=):

)()()()1(
)()1()(

)()()()(

,,,,,1,6

,,151,1,4

,1,31,1,2,,11
'

,,

tPBtPkjiNz
tPjiNztPqz

tPrztPpztPztP

kjikjikjis

kjihkjis

kjiskjiskjihkji

−+−−+

+−−++

++=

−

−−+

++++

λ

λµ

µµµ
 (3.7)

where

Chapter 3 Parallel Homogeneous Distributed System Reliability

 70

01 =z for Ni = , and 1 for otherwise

02 =z for Nj = or 0Kk = , and 1 for otherwise

03 =z for Nj = , and 1 for otherwise

04 =z for Nj = or 0=k , and 1 for otherwise

05 =z for 0=i , and 1 for otherwise

06 =z for 0=j , and 1 for otherwise

hshskji dkjiNdjiNdqdrdpdB µλλµ 651321,,)()()()(+−−+−−+++=

and in the above

01 =d for 0=j or 0=k , and 1 for otherwise

02 =d for 0=j , and 1 for otherwise

03 =d for 0=j or 0Kk = , and 1 for otherwise

04 =d for Ni = , and 1 for otherwise

05 =d for Nj = , and 1 for otherwise

06 =d for 0=i , and 1 for otherwise.

Let K0 be the initial number of faults in the software. Then the initial conditions are

1)0(
0,0,0 =KP and others are 0 (3.8)

The solutions can be obtained by solving the above equations.

The system availability at time t can be calculated as

∑ ∑ ∑
−

=

−−

= =

=
1

0

1

0 0
,,

0

)()(
N

i

iN

j

K

k
kji tPtA (3.9)

Although those differential equations can be solved, the procedure becomes

difficult when the number of hosts is large. Hence, some computing tools can be used to

Chapter 3 Parallel Homogeneous Distributed System Reliability

 71

solve them. An example is illustrated below.

Example 3.2. In this numerical case, the software failures are assumed to follow the

JM-model. For the multi-host systems with different number of hosts, the system

availability functions can be obtained numerically. The curves of system availability

functions for (N=2,3,4,5) are depicted in Fig. 3.5 with parameters

µh=0.1536, µs=0.1331, p=0.831, q=0.078,

r=0.091, K0=42, 0013.0=φ and 005.0=hλ .

N=2

N=3

N=4
N=5

µh=0.1536,
µs=0.1331,
p=0.831,
q=0.078,
r =0.091,
K0=42,

0013.0=φ ,
005.0=hλ

Fig. 3.5. The curves of system availability of different number of hosts.

Fig. 3.5 shows a similar trend as that of Fig. 3.3. System availability reaches the lowest

point at an early stage. After that period, system availability starts recovering because

Chapter 3 Parallel Homogeneous Distributed System Reliability

 72

identified faults are fixed and as a result software failure occurrence rate decreases.

3.2.2. Other measures on the debugging process

Besides the availability function, some other measures related to the imperfect

debugging process are also important, such as the expected number of

remaining/removed faults and the density function for removing the faults etc.

The expected number of remaining/removed faults at time t

The expected number of remaining/removed faults is an important measure in software

quality analysis. The function of the expected number of remaining faults is denoted by

)(tE , which can be expressed as

)(tE =)(
0

0
tPk k

K

k
∑
=

 (3.10)

in which)(tPk is the distribution of k remaining faults is described by the probability

for the remaining software faults to be k at time t. It can be expressed by

)(tPk =∑∑
= =

N

i

N

j
kji tP

0 0
,,)((3.11)

The expected number of removed faults at time t can be derived as

 =)(tF)(0 tEK − =)(
0

0
0 tPkK k

K

k
∑
=

− (3.12)

Continued with the above example, the expected numbers of remaining/removed faults

as a function of time t are depicted in Fig. 3.6.

Chapter 3 Parallel Homogeneous Distributed System Reliability

 73

 Expected number of faults

t

)(tF

)(tE

 : Removed faults

 : Remaining faults

Fig. 3.6. Expected number of remaining/removed faults.

From the Fig. 3.6, it can be observed that the expected number of remaining/removed

faults is a decreasing/increasing function when testing time goes by. It is because the

faults are debugged during the testing period and all of the faults are expected to

remove eventually and ideally.

The density function of the expected number of removed faults

The density function of the expected number of removed faults is also important as it

reflects the effectiveness of the imperfect debugging process. Therefore, this density

function can be derived by

)(tf = =)(' tF)('
0

0
tPk k

K

k
∑
=

− = ∑∑∑
= = =

−
0

0 0 0
,,)('

K

k

N

i

N

j
kji tkP (3.13)

Substituting)(' ,, tP kji into the above equation, the fault removal rate can then be

numerically computed. Continued to the above example, the density function is

Chapter 3 Parallel Homogeneous Distributed System Reliability

 74

depicted by Fig. 3.7.

At the beginning, the density function increases quickly as curve (a) in Fig. 3.7.

The reason may be that the faults are being emerged at the beginning time. After the

peak point, it decreases and trends to 0 as curve (b) in Fig.3.7. This property of density

function to increase first and then decrease shows that the density function of removed

faults for the imperfect debugging is slightly S-shaped.

)(tf

t

 (a) Initial phase (b) Long-term trend

Fig. 3.7. Density function of the expected number of removed faults.

3.3. Optimal Number of Redundant Hosts

An important goal in the design of the parallel homogeneous distributed

systems is to achieve a high reliability or availability through some kind of

redundancy (such as redundant hosts) or fault tolerance. Many systems are developed

in the environment with redundant hosts. The number of redundant hosts has

significant influence on the cost and system availability because it can be very costly

while they are able to improve system availability easily. How to optimally design the

)(tf

t

Chapter 3 Parallel Homogeneous Distributed System Reliability

 75

number of redundant hosts is an important decision in the systems. The objective here

in system design is to minimize the total cost based on the following cost model.

3.3.1. The cost model

In order to illustrate the relationships among the decisions and cost, an influence

diagram, which provides simple graphical representations of decision situations, is

displayed in Fig. 3.8. Different decision elements are shown in the influence diagram as

of different shapes, see e.g., Clemen (1995 pp. 50-65).

The number of redundant hosts will affect the optimal decision of the release

time. Both the number of redundant hosts and release time will affect the system

availability. These three factors determine the development cost. The number of hosts

also determines the cost of redundant hosts. The release time determines the rewards or

penalty depending on whether the release is before or after the deadline. If the system is

unavailable after release, a risk cost is incurred. Hence, the cost of redundant hosts, the

development cost, reward and penalty should be considered together when deriving the

total expected cost. Each cost component will be described in the following.

Chapter 3 Parallel Homogeneous Distributed System Reliability

 76

Number
of Hosts

Release
time Availability

Benefit for
release ahead

Cost of
host

Risk cost for
unavailable

Development
cost

Total Cost

Fig. 3.8. Influence diagram for the cost affected by redundant hosts.

Cost of redundant hosts

The cost function for a multi-version fault-tolerant system can be described as a linear

function to the number of versions. This is used in Laprie et al. (1990) originated

from Boehm (1981), and we have

11)(bNaNCh += (3.14)

where N is the number of hosts, 1b is a constant, and 1a is defined as the expected

cost per host. Here we have assumed the redundant hosts used in the system are of the

same type.

Reward for early release

Chapter 3 Parallel Homogeneous Distributed System Reliability

 77

Usually there is a deadline for release. This is the case when the penalty cost for delay

is very high and the system has to be released even if it is not as reliable, with the

consequence of high maintenance and other costs. On the other hand, because of the

competitive market place, there is a reward for releasing the system earlier. We

assume 2b is a constant rewarded if the system can be released in time, no matter

how early the release time is and 2a is the expected reward per unit time before the

deadline. Thus, the reward function of the release time can be expressed as

22)()(btTatB rdr +−= , tr < Td (3.15)

where Td is the deadline for release, tr is the release time so that rd tT − is the time

ahead of the schedule.

Risk cost for system being unavailable

After the system is released, there is a risk for it to be unavailable, and there are

contractual consequences. This cost factor is generated by the unavailable system after

releasing, termed risk cost as in Pham and Zhang (1999). Here we assume the risk cost

for unavailable system is a function of system availability and release time:

dttAatNC
e

r

T

t
Nrr ∫ −=)](1[),(3 (3.16)

where tr is the release time, Te is the ending time for contracted maintenance after

release,)(tAN is the availability function at time t for N-host system, and a3 is the

risk cost per unit time when the system is not available. In the equation above,

)(1 tAN− is the probability for the system to be unavailable at time t. Hence, the

integral above is the expected time for the system to be unavailable from rt to eT .

Chapter 3 Parallel Homogeneous Distributed System Reliability

 78

Development cost

Since our focus is on system integration testing with the emphasis on software testing

and debugging, software development cost includes the cost occurring in

testing/debugging phase to improve the software reliability. The development cost

function for a single software module proposed in Kumar and Malik (1991) is

)exp()(iiiiii DRBHRC −= (3.17)

where Hi, Bi and Di are constants and Ri is the individual module software reliability

achieved at the end of testing. These parameters are explained in Kumar and Malik

(1991). Briefly, the cost is exponentially increasing to the improved reliability of a

single module.

 Then, the total expected cost can be expressed as

=),(rtNC)(NCh +),(rr tNC + ())(rt tRC -)(rtB (3.18)

3.3.2. System availability

An important problem is to obtain the system availability function for calculating the

risk cost. The availability of a system is affected by both software and hardware

components. The system availability model for a homogeneous distributed

software/hardware system can be obtained straightforward from section 3.1. A

numerical example is shown below.

Example 3.3. Suppose 320 =K and λ =0.006, hλ =0.01, hµ =0.1 and sµ =0.13, the

Chapter 3 Parallel Homogeneous Distributed System Reliability

 79

system availability for different number of hosts can be obtained from the analysis

presented in section 3.1. The results are depicted in Fig. 3.9.

N=1

N=2
N=3

Availability

Time (hr)

N=4
N=5

Fig. 3.9. System availability for different number of redundant hosts.

We can observe that when the number of redundant hosts increases, the system

availability increases. The system availability function can be used in the optimization

model which will be described in the following.

3.3.3. Optimization model and solution procedure

The optimization model is based on the cost criteria and the decision variables are the

number of redundant hosts and the release time. Its objective is to minimize the

expected total cost. There are three types of constraints in this decision problem. First,

Chapter 3 Parallel Homogeneous Distributed System Reliability

 80

the customers may require a least system availability *A after the release. Second, there

is a deadline for the system to be released so the release time should be earlier than that.

Finally, the customers may limit the maximum number of redundant hosts *N due to

their budget and other physical restrictions.

The optimization model is then constructed as follows.

Decision variables: N and rt .

Objective function: Minimize{ }),(rtNC

Subject to: 0)(* ≥≥ AtA rN

dr Tt ≤≤0

*,...,3,2,1 NN =

where *A is the required system availability after the release, dT is the deadline for

release and *N is the maximum number of redundant hosts allowed because of any

physical such as space constraints. If there is no such constraint, we can assume a large

enough value of *N in this model. However, usually only a small number of

redundant hosts will be practical.

For obtaining the optimal solution, the solving procedures are described as

follows.

Step 1: Derive the system availability function of the distributed system with N

redundant hosts,

Step 2: Derive each cost function and obtain the expected total cost,

Step 3: Let N take each integer value from 1 to *N to obtain the expected total

cost and save the results from),1(rtC to),(*
rtNC , which does not

Chapter 3 Parallel Homogeneous Distributed System Reliability

 81

break the constraints,

Step 4: For each expected total cost in),1(rtC to),(*
rtNC , compute the

optimal release time, and save the results as OpTr(1) to OpTr(*N) , so

that we can get the minimal expected total cost and save them in MinC(1)

to MinC(*N) that MinC(n)=C(n,OpTr(n)) (n=1,2,…, *N),

Step 5: Compare the minimal total mean cost from MinC(1) to MinC(*N) in

order to select the optimum number of redundant hosts

OpN= ()MinC(n)Min (n=1,2,…, *N) and output the results.

The above procedure can be easily realized in Matlab or other computational programs.

It is noted that usually the number of redundant hosts is not very large. A numerical

example is presented to illustrate the optimization procedures.

Example 3.4. This application example is based on a telephone switching system

development. Company X was awarded a contract to develop the system for a customer.

After the development, testing and debugging are carried out, especially on the

software systems. In this case, the hardware hosts are brought from external suppliers,

but the software is developed in house and tested with the system. The management is

concerned of how many redundant hosts are needed and also when the system can be

released so that the total cost is minimized. For illustrative purpose, the following input

values are used:

Chapter 3 Parallel Homogeneous Distributed System Reliability

 82

1. The customer requires the system availability to be higher than 0.88 when it is

released.

2. The deadline for releasing the system is about 800 hours from now on.

3. By contract, the company will be penalized for unavailable system about $8000 per

hour during the first 300 hours after release.

4. Each redundant host cost about $17600 and the other fee for all the hosts is about

$1293, such as installation fee software copyright fee and etc.

5. The maximum number of redundant hosts is five.

6. If the company can release the system earlier than the deadline, there is a constant

reward of $2123.7 and a cumulative reward of $31.5 per hour less than the deadline.

Based on the conditions and the assumptions given above, the values of the

parameters can be obtained as

1a =17600, 1b =1293, 2a =31.5, 2b =2123.7, 3a =8000, dT =800 hours,

and

1100300800 =+=eT hours.

The parameters for software development cost (4.27) are assumed as H=10232,

B=16, D=14. The optimization problem can be solved with the required system

availability when releasing, *A , of 0.88 and the maximum number of redundant hosts,

*N , equal to 5.

Here we assume the system is a kind of homogeneous distributed

software/hardware system whose availability function is depicted by Fig. 3.8. With the

Chapter 3 Parallel Homogeneous Distributed System Reliability

 83

values of parameters given above, we can obtain the total mean cost through Eq. (3.18)

as

=),(rtNC N17600 + rt5.31 + dttA
rt

N∫ −
1100

)](1[8000 +10233 −− }14)(16exp{ rtR 26030.7

Finally, the total expected cost as a function of release time for different number of

redundant hosts are depicted by Fig. 3.10 and the overall results are given in Table 3.1.

tr (hr)

Cost TMC(2,tr)

TMC(3,tr)

TMC(4,tr)

TMC(5,tr)

Fig. 3.10. Total mean cost vs. release time of different number of hosts.

Table 3.1. Numerical values of the minimum cost for different N.

N 1 2 3 4 5
MinC(N) 326970 153060 116690 104580 110880
OpTr(N) 800 800 324.2 261.7 232

Chapter 3 Parallel Homogeneous Distributed System Reliability

 84

From the Table 3.1, the global minimum cost is 104580 (Units) with the number of

redundant hosts N=4 and the optimum release time rt =261.7 (hrs). The optimum

results indicate that there should be four redundant hosts and the system is tested for

261.7 hours.

3.4. Conclusion

This chapter studied the parallel homogeneous distributed systems with perfect and

imperfect debugging process, respectively. Then, it conducted a cost analysis for the

systems and presented an optimization model to determine the number of the parallel

redundancies and the best release time.

 However, this chapter assumed that all the processors in the systems were

homogeneous, which is not always true in the distributed system analysis. Hence, the

next chapter will extend it to study a kind of heterogeneous distributed system and

analyze its behavior and reliability from the service point of view.

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 85

CHAPTER 4

 CENTRALIZED HETEROGENEOUS

DISTRIBUTED SYSTEM RELIABILITY

4.1. Introduction

Most of the computing systems can be modeled as a centralized heterogeneous

distributed system, which is the same common as the parallel homogeneous distributed

system discussed in the previous chapter. This type of system consists of some

subsystems managed by a control center. For example of a system with Client/Server

structure, every Client in the sub-distributed systems is managed by a control center of

Servers.

Since the computing systems are developed to provide different services with

specific objectives such as running a computer program, controlling a production

process, and completing some other tasks, the service reliability of the distributed

system is a key point of the QoS (Quality of Service). A definition of distributed service

reliability can be the probability to successfully provide the service in a distributed

environment. This is the definition that will be adopted in this chapter. The service

reliability in a centralized heterogeneous distributed system is determined not only by

the system availability of the control center, but also by distributed program reliabilities

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 86

of the subsystems.

The system availability of the control center is of major concern because an

unavailable control center will sometimes cause critical problems to a service, see e.g.

Pham et al. (1997) and Sols and Nachlas (1995). Srinivasan and Jha (1999) described a

method to determine an allocation that introduces safety into a heterogeneous

distributed system and at the same time attempts to maximize its availability. There is

some research on increasing system availability, see e.g. Lutfiyya et al. (2000). Goel

and Soejoto (1981) first considered the behavior of combined software and hardware

system. A generalized model is also proposed in Sumita and Masuda (1986). Markov

models are also implemented to analyze the system availability, which combines both

software and hardware failures and maintenance processes, see e.g. Welke et al. (1995)

and Lai et al. (2002).

On the other hand, the reliability of each program in the system is also important

to a service. The distributed program reliability is defined as the probability of

successful execution of a program running on multiple processing elements and it

needs to retrieve data files from other processing elements. Kumar et al. (1986)

proposed a useful notion called a Minimal File Spanning Tree (MFST) and developed

an algorithm also called MFST to find MFSTs within a graph. To improve the MFST

algorithm, there are some further developed algorithms, see e.g. Kumar et al. (1988),

Chen and Huang (1992), Kumar and Agrawal (1993), Chen et al. (1997) and Lin et al.

(1999).

However, most of the earlier research on system availability or distributed

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 87

program/system reliability cannot be simply implemented to analyze the service

reliability of the centralized heterogeneous distributed systems because it is affected by

many factors including system availability, software/hardware/network reliability. This

chapter studies the property of centralized heterogeneous distributed system and

develops a general model for the analysis. Based on the model, algorithms to obtain the

service reliability of the system are also presented.

This part is organized as follows. Section 4.2 presents a model for a centralized

heterogeneous distributed system (CHDS), and develops a solution algorithm for the

distributed service reliability in CHDS. Then, an application example is illustrated to

illustrate the procedure and the feasibility of the algorithm. Furthermore, we analyze

the behavior and sensitivity of the system availability function in Section 4.3, which are

important issues in the application of this type of model.

4.2. CHDS and Analysis

4.2.1. Description of the systems and services

Service of Centralized Heterogeneous Distributed System and its reliability

The structure of the Centralized Heterogeneous Distributed System is depicted by Fig.

4.1. The control center may consist of many servers. These servers support a virtual

machine. The virtual machine can manage programs and data from heterogeneous

subsystems through virtual nodes. The virtual nodes can mask the differences among

various platforms. They are a kind of virtual executing elements, which only includes a

basic unit for executing data, i.e. CPU and Memory. The entities of virtual machine and

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 88

virtual nodes are supported by the software and hardware in the control center.

The heterogeneous sub-distributed systems are composed of different types of

computers with various operating systems connected by different topologies of

networks. These subsystems exchange data with virtual machine through System

Service Provider Interface (SSPI). They are connected with virtual nodes by routers.

They can cooperate to achieve a distributed service under the management of the virtual

machine.

Sub
Distributed
System-1

Sub
Distributed
System-2

Sub
Distributed
System-N

Router Router Router

Server 1 Server 2 Server M

Virtual Machine

SSPI

Control
Center Virtual

Node

Sub
Distributed

Systems

Fig. 4.1. Structure of the centralized heterogeneous distributed service system.

Most of the computing systems can be categorized as centralized heterogeneous

distributed systems. For example, in modern warfare, each soldier can be considered as

an element in a military system and furnished with different electrical equipments for

diverse purposes. The information collected from each soldier is sent back to a control

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 89

center through wireless communication channels. Then, the control center can analyze

all the information and send out commands to respective soldiers. The functions of

different groups of soldiers are diversified in a war (such as attacking, defending,

supplying, saving etc.) so their electrical equipments should also be heterogeneous.

Thus, it is a typical Centralized Heterogeneous Distributed System, as depicted by Fig.

4.2.

Control
Center

Subsystem of
Soldiers to attackSubsystem of

Soldiers to defend

Subsystem of
Soldiers to supply

Subsystem of
Soldiers to save

Fig. 4.2. A simple and abstracted military system.

 The whole process for a service provided by a system is repeated so the

reliability analysis of a distributed service is crucial for a distributed system. The

distributed service reliability is defined as below.

Definition 6.5. Distributed service reliability is the probability for a service to be

successfully achieved in a distributed computing system.

Model of distributed service reliability

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 90

In a distributed service system, a service includes various distributed programs

completed by diverse computers. Some later programs might require several precedent

programs to be completed. Every program requires a certain execution time. The

execution of some programs might require certain input files that are saved or generated

in different computers of the distributed systems. The overall distributed service

reliability depends on the reliability of a program, the availability of input files to the

program and the system reliability of the subsystem.

The reliability of a service is determined by the distributed programs reliability

in each subsystem and the availability of the control center. If a service can be achieved

successfully, the programs running in every subsystem must be successful. The virtual

machine should be available at the moment when any program needs certain input file

prepared in the virtual machine. It has to be also available during the period when the

programs are being executed in the virtual machine.

It can be obtained through the critical path method, see e.g. Hillier and

Lieberman (1995), that the time point when the programs require the files prepared in

the virtual machine (j
bfT), j=1,2,…J. We can also obtain the starting time when the

programs run in the virtual machine (k
bpT) and the corresponding execution time period

for those programs (k
exT), k=1,2,…,K.

 It is noted that)(tA is the availability of the virtual machine at time t. We also

assume that the programs require input files at the beginning time, j
bfT , so the

availability of the input files can be calculated as

)()(j
bff TAjP = =)(j

bfTA , j=1,2,…J (4.1)

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 91

It is assumed that the virtual machine has to be available from the beginning to the end

when a program runs in it; otherwise, the program fails. The average availability of the

programs, which start at time k
bpT with the execution time period k

exT , can be

calculated as

 k
ex

TT

T
pr TdttAkP

k
ex

k
bp

k
bp

/)()(∫
+

= = k
ex

TT

T

TdttA
k

ex
k

bp

k
bp

/)(∫
+

, k=1,2,…,K (4.2)

Let N be the number of subsystems. The distributed system reliability for the

i:th subsystem is denoted by DSRi (i=1,2,…,N) where the virtual machine is viewed as a

perfect node in each sub-distributed systems at first. The DSRi (i=1,2,…,N) can be

computed by the various algorithms presented in the previous section. Then, the

availability of the virtual machine is incorporated into the distributed service reliability

together with the DSRi.

In order to calculate distributed service reliability, some additional assumptions

on statistical independence are needed:

1) DSRi (i=1,2,…,N) is assumed to be mutually independent;

2) The files prepared in the virtual machine are also mutually independent;

3) The programs running in the virtual machine are mutually independent.

Although the independence assumption may not always be true, they are first

order approximation.

The distributed service reliability function to the initial time, bt , can be

calculated by

)(bs tR =∏ ∏ ∏
= = =

N

i

J

j

K

k
prfi kPjPDSR

1 1 1

)()((4.3)

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 92

In this calculation, the evaluation has two steps: 1) given the virtual machine (VM) is

always available (or called perfect) when its programs are executed and its files are

used, the service reliability is determined by the reliability of those subsystems,

calculated by ∏
=

N

i
iDSR

1

; 2) the availability for the programs and files in the virtual

machine can be computed by ∏
=

J

j
f jP

1

)(∏
=

K

k
pr kP

1

)(, so that according to the conditional

probability, we get

)(bs tR =Pr(service reliability| VM’s programs and files are available)×Pr(VM’s

programs and files are available) =∏ ∏ ∏
= = =

N

i

J

j

K

k
prfi kPjPDSR

1 1 1

)()(.

Algorithm for distributed service reliability

In applying the general approach, we will need the system structure and then the above

model can be used. The algorithm for the calculation of the distributed service

reliability can be presented as the following six steps:

Step 1: Identify the structure of Centralized Heterogeneous Distributed System

and relationship between programs and files;

Step 2: Obtain the availability function of the virtual machine with any existing

models;

Step 3: Let the virtual machine to be a perfect node in every subsystem and

calculate DSRi (i=1,2,…,N);

Step 4: Using the critical path method to determine j
bfT (j=1,2,…J) and k

bpT , k
exT

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 93

(k=1,2,…,K);

Step 5: Calculate)(jPf and)(kPpr ;

Step 6: Calculate the distributed service reliability function to the initial time, bt .

Note that we can implement different models and methods to calculate distributed

service reliability. For subsystems, the DSRi can be calculated through the algorithms,

e.g. MFST (Kumar et al., 1986), FST (Chen and Huang, 1992), HRFST (Chen et al.,

1997) etc. For the availability function of the virtual machine)(tA , it can be calculated

through the models presented by Lai et al. (2002).

4.2.2. A case study

The system structure

The structure of this distributed service system is described in Fig. 4.3. The service

includes the programs and files as shown in Table 4.1. The execution time, required

files and precedent programs are given in Table 4.2.

In Fig. 4.3, there are three subsystems. The network topologies are various, in

which “R” means router. Table 4.1 shows the programs and prepared files arranged in

the distributed system. Table 4.2 shows the relationship between programs and their

precedent programs. If there are no precedent programs for a program, it can run at

initial time if input files are available. Table 4.2 also shows the input files and execution

time for every program. If there are no input files required by a program, it means the

program can run immediately after its precedent programs are completed.

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 94

Virtual

Machine

e1

e4

e2

e3

e5
e6

e7 e8

1

2 3

4 5

R

R

6

7 8

9

10

R

11

14

12

13

e9

e10

e11

e12

e13

e14

e15

e16

e17
e18

e19

e20

e21 Router

Fig. 4.3. A centralized distributed service system.

Table 4.1. The programs and prepared files in different nodes.

Node 1 2 3 4 5 6 7 8
Progs P1 P4 P2,P3 P2,P3 P4 P5,P7 P6 P7
Files F1,F5 F1,F2 F2,F5 F2,F5 F3,F6 F6 F7, F8, F9 F7,F8,F9

Node 9 10 11 12 13 14 Virtual Machine
Progs P5,P6 P8,P11 P9 P10 P9,P10 P8,P11 SP1,SP2,SP3,SP4
Files F6 F10,F11,

F12
F11 F10 F12 F10,F11

F12
F4,F13,F14

IBM RS/6000
Unix (AIX 4.3)

Sun Workstation
Sun Solaris 2.5

Compaq Pentium

IBM Mainframe (ES/9000)

MVS (Multi Virtual Systems)

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 95

Table 4.2. Required files, precedent programs and execution time for programs.

Programs Required Files Precedent Programs Execution Time (exT)

P1 F1,F2,F3 ------ 5
P2 F2,F4,F6 ------ 25
P3 F1,F3,F5 P1,P2 32
P4 F1,F2,F4,F6 SP1,SP2 33

SP1 F6 P3,P6 43
P5 ------ ------ 17
P6 F6,F13,F9 P5 19
P7 F6,F8 SP2,SP3 21

SP2 F2,F11 P9,P10 16
P8 ------ P1 45
P9 F11,F12 P5 121
P10 F11,F14 SP1 37
SP3 F3,F8 P8,P10 21
P11 F14,F10,F12 SP3 32
SP4 F5,F12 P4,P7,P11 20

 “------” means no precedent programs or no input files.

The availability function

The failures of the virtual machine is assumed to follow the JM model (Jelinski and

Moranda, 1972) with the failure intensity function

tt kk ⋅= φλ)(, 00 Kkt ≤≤ (4.4)

where φ is the expected failure rate per fault, tk is the expected number of remaining

faults at time t and 0K is the initial number of faults. The parameters of 0K and φ

are assumed to be 10 and 0.01, respectively.

We also assume that there are maintenance personnel to repair the failure of the

virtual machine and the repair time is exponentially distributed with parameter

5.0=µ .

 The virtual machine has two states: state 0 is the working state and state 1 the

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 96

malfunctioning state, with transition rate)(tkλ (from 0 to 1) and µ (from 1 to 0).

Let)(0 tP be the probability for the virtual machine to be working at time t, and)(1 tP

be the probability for it to be at a malfunctioning state at time t. The corresponding

Chapman-Kolmogorov differential equations are

)('0 tP =)()()(01 tPktP tλµ − (4.5)

where tk can be obtained by

∑
=

⋅=
0

0
),(

K

k
t tkPkk (4.6)

in which

kKxxk ee
k

K
tktkP

−−− −⋅

=

=

0)]1[

) at time machine virtualin the remaining faults Pr(),(

0 φφ (4.7)

Also the following equation is satisfied at any time t,

)(1 tP =)(1 0 tP− (4.8)

Together with the initial conditions)0(0P =1,)0(1P =0, the availability function can be

obtained as

}exp{)exp(}exp{)()(00
0

00
x

t
x eKtKdxeKxtPtA φφ µµµ −− +−⋅

−+−== ∫ (4.9)

The distributed system reliability

The distributed system reliability from the left subsystem to the right subsystem in Fig.

4.3 is denoted by DSRi (i=1,2,3). The three subsystems can be separated as shown in

Fig. 4.4.

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 97

e1

e4

e2

e3

e5
e6

e7 e8

1

2 3

4 5

R

R

6

7 8

9

10

R

11

14

12

13

e9

e10

e11

e12

e13

e14

e15

e16

e17
e18

e19

e20

e21

VM1 VM2 VM3

Fig. 4.4. The separated subsystems from Fig. 4.3.

VMi (i=1,2,3) represents the virtual machine used in subsystem i. DSRi (i=1,2,3) can

then be calculated numerically with the assumptions that all the nodes are perfect and

the probability for every communication edge to be available is 0.99. Hence, we can

obtain the result of DSR1=0.9998 through the HRFST algorithm (Chen et al., 1997). In

the same way, we get DSR2=0.9699 and DSR3=0.9975.

The distributed service reliability function

The critical path graph, see Hillier and Lieberman (1995, pp. 389-395) for details, of

this example given in above Table 4.2 is drawn in Fig. 4.5.

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 98

1P

2P

5P

8P

3P

6P

9P

1SP 10P

3SP

2SP

11P

7P

4P

4SP B
E

bt

bt

bt

bt +5
5

5

25

17

17

45

 32

19

43

121

21

21
37

37 16

16

32

 21

 33

20

bt

bt

bt

bt +25

bt +17

bt +17

bt +57

bt +137

bt +100

bt +138

bt +158

bt +158 bt +190 bt +210

bt +154

Fig. 4.5. Critical Path for Table 4.2. The value marked on the edge is the
execution time and those on the node is the starting time and the black-dashed

lines is the critical path.

From the critical path shown in Fig. 4.5 and Table 4.2, j
bfT (j=1,2,…,5) can be shown

to be { bt , bt +17, bt +100, bt +154, bt +158} for the programs {P2, P6, P10, P4, P11}

using the files prepared in the virtual machine. We can also get k
bpT (k=1,2,3,4) to be

{ bt +57, bt +137, bt +138, bt +190) and the corresponding execution time period k
exT

to be {43, 21, 16, 20} for the programs {SP1, SP2, SP3, SP4} executed in the virtual

machine.

Then, we can get

)(jPf =)(j
bfTA , j=1,2,…,5

in which j
bfT is { bt , bt +17, bt +100, bt +154, bt +158} and

)(kPpr = k
ex

TT

T

TdttA

k
ex

k
bp

k
bp

/)(∫
+

, k=1,2,3,4

in which k
bpT is { bt +57, bt +137, bt +138, bt +190) and k

exT is {43, 21, 16, 20}.

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 99

Thereafter, we can obtain the distributed service reliability function to service

starting time bt as

)(bs tR =∏ ∏ ∏
= = =

3

1

5

1

4

1

)()(
i j k

prfi kPjPDSR

This distributed service reliability function has the form displayed in Fig. 4.6.

Fig. 4.6. Typical distributed service reliability function to service starting time.

From Fig. 4.6, it can be observed that the lowest service reliability is not at the initial

time point when the software failure rate of the virtual machine is the highest. This is

because we assumed that the initial state for the virtual machine is up (working). When

bt is larger than the lowest point, the distributed service reliability increases. It is

because those identified bugs of the virtual machine are fixed, which results a decrease

in the failure rate. Towards the end, the distributed service reliability approaches a

steady value of 0.9673. It is obtained by the reliability of subsystems that cannot be

improved by debugging the control center:

Service
Reliability

bt

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 100

∏
=

3

1i
iDSR = 0.9998×0.9699×0.9975=0.9673

When the availability of the virtual machine approaches 1, the distributed service

reliability is approaching to 0.9673.

4.3. Further Analysis and Application of the General Model

With specific input parameters, the distributed service reliability can be computed. Via

the modeling and further analysis, some general conclusions can be drawn. The VM in

the control center is the heart of the CHDS, and hence, the system availability)(tA of

the VM is critical to the distributed service reliability. In order to achieve a high

reliability of the service, the control center should be equipped with sufficient

maintenance personnel to repair the failures of the VM. The availability function of the

VM can help the decision maker to allocate maintenance personnel effectively at

different stages and decide the release time that reaches certain pre-required system

availability. In this section we discuss some related analysis that makes use of the

general model that could be of importance in practical applications.

4.3.1. A general approach

The system availability reaches the lowest point at an early stage. This is because a

large number of faults are identified when system testing begins. The system

availability starts recovering after the lowest point and approaches to a steady value

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 101

after a long period of time. This is the case when identified faults are fixed. The time at

which the system availability reaches its minimum is important. Around the minimal

system availability time point *t , a significant amount of effort needs to be put into

fault fixing and system testing to help increase system availability of the VM quickly.

When the faults are fixed, the system availability recovers, and effort on fault fixing

and testing can be reduced accordingly. Eventually, only a few faults will be left. At this

stage, the manpower for the fault fixing and system testing of the VM can be moved to

somewhere else. Hence, the minimum system availability time point *t is an important

indicator for the managers of the control center to distribute the resources on the VM at

different stages.

 It is easy to calculate the time of minimum system availability if the

availability function of the VM,)(tA , is known. By differentiating)(tA , and then

solving)(' tA =0, we can get the solution that is the minimum time point *t .

 Furthermore, if the management wants to know the time when the system of

VM reaches certain availability level LA , the system availability function)(tA can

also be used by solving the equation of)(tA = LA . Its solution can help the managers to

decide the release time of the VM accordingly. For example, the customers may require

the system availability to be at least LA . Hence, we need to know the time point when

the system availability reaches this required system availability level. The testing can

be stopped and the system can be released after that.

 Another important issue in this type of analysis is the sensitivity studies.

Usually the model parameters are assumed to be known. A deviation from the assumed

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 102

value could lead to significant difference between the actual and the calculated values.

To minimize the error, effort should be allocated to obtain accurate estimates of the

important parameters. Since a number of parameters are involved, it is useful to identify

the ones that influence the results most. Sensitivity analysis of the parameters is highly

recommended. This type of results can help decision makers and analysts to better

allocate the resources.

4.3.2. The application example revisited

To clearly address some of the issues raised in the previous section, we revisit the

application example in Section 4.2 with some further analysis. This type of study is

important in system studies and for the management to fully make use of the modeling

and analysis.

Minimum system availability of the VM

The minimum availability point can be obtained by taking the derivative of Eq. (4.9)

and set it to be zero. That is

)(' tA = µ +)(}exp{1}exp{ 00
0

0
tx

a

t
x eKeKx

e
dxeKx φφφ φµµµ −−− −−⋅+−⋅

+−∫

Let)(' tA =0 and let t* be the solution, i.e.,

µ +)(}exp{1}exp{ 00
0

0
tx

a

t
x eKeKx

e
dxeKx φφφ φµµµ −−− −−⋅+−⋅

+−∫ =0 (4.10)

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 103

We can easily obtain the value of t* numerically or using Maple or Mathematica, or

other symbolic software.

 For example, with parameters 0K =10, φ =0.01 µ =0.5, Eq. (4.10) can be

solved by Maple that t*=8.88 and the minimum system availability A(t*)=0.8453.

Time to achieve a required system availability

Suppose that the customers require the system availability to be at least LA when

release. From the Eq. (4.9), the result can be obtained by solving the following

equation

}exp{)exp(}exp{)(00
0

0
x

t
x eKtKdxeKxtA φφ µµµ −− +−⋅

−+−= ∫ = LA

 (4.11)

Since there are two solutions, we require that *tt ≥ where *t can be solved by (4.10)

first.

 A simple approximation is presented here for solving (4.11) and carrying out

further analytical study. In a Markov Chain, there is a transition time from initial state to

steady state. We assume that it takes more time between the initial time and the release

time of the test than the transition time of the Markov process. Based on the assumption,

from the equations for long-run Markov chain (Hillier and Lieberman, 1995 pp.

640-642), we get

)(tA =)(0 tP =
µφ

µ
φ +− teK 0

 (4.12)

In order to calculate the time point that is satisfied with the customers’ requirement LA ,

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 104

let)(tA = LA and t can be obtained as

⋅−⋅−=

φ
µ

φ 0

)11(ln1
KA

t
L

 (4.13)

Sensitivity analysis

There are three parameters in the availability function (4.9), 0K , φ and µ . The

sensitivity of different parameters is described in Fig. 4.7 and Fig. 4.8.

0K =10
φ =0.01

µ =0.3

µ =0.5

µ =0.7

µ =0.9

t

Availability

Fig. 4.7. Sensitivity of µ (left) and 0K (right).

As expected, a greater repair rate implies higher system availability. Similarly, when

0K increases, the system availability decreases because the failure intensity function

increases. However, the case of parameter φ is not obvious, as shown in Fig. 4.8.

µ =0.5
φ =0.01

t

Availability

0K =6
0K =12

0K =8

0K =10

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 105

µ =0.5

0K =10

φ =0.012

t

Availability

φ =0.01

φ =0.008

φ =0.006

Fig. 4.8. Sensitivity of φ .

The curves in the Fig. 4.8 are crossed with one another. It means when φ increases,

system availability decreases at the early stage and increases at the later stage.

With Eq. (4.10), we can calculate the time point of the minimum system

availability and the time a certain availability is achieved. On the other hand, it would

be useful to see the influence of the repair rate on these two quantities. We analyze the

Markov model with the numerical example presented above. It is assumed that 0K =10

and φ =0.01. Let µ change from 0.3 to 0.7 to calculate the minimum system

availability point through Eq. (4.10). The time of the minimum system availability *t

vs. the repair rateµ is described in the left curve of Fig. 4.9. The minimum system

availability A(t*) vs. µ is depicted in the right curve of Fig. 4.9.

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 106

µ

*t

Fig. 4.9. Sensitivity analysis of repair rate.

From Fig. 4.9, we can see the rate of decrease in t* (rate of increase in A(t*)) as the

repair rate µ increases. We can also see that A(t*) is a convex function of µ . This

means that adding µ∆ on a smallµ improves more availability than adding the same

µ∆ on a large µ . The curve of “t* vs. µ ” is concave, which means that adding

µ∆ on a smallµ reduces more time of minimum availability than adding the same

µ∆ on a large µ . This type of study is useful when allocating the maintenance

personnel optimally although is another interesting problem for further research.

4.4. Conclusions

In this part, a general model was presented for the centralized heterogeneous distributed

system. Based on this model, solution algorithm was presented and the time for the

virtual machine to reach its minimum system availability or required system

availability was studied. An application of the model on an actual bank automatic

payment system was shown. Furthermore, sensitivity analysis of the intrinsic

µ

A(t*)

Chapter 4 Centralized Heterogeneous Distributed System Reliability

 107

parameters to affect the system availability and the lowest availability point was

conducted.

 Since our approach is general and the CHDS has been applied in different

areas, the algorithm for the distributed service reliability analysis can be used to

estimate the reliability of the service in a distributed system during both the testing

phase and the operational phase. During the testing phase, the service reliability

function can help to allocate testing resources accordingly. For example, around the

minimum service reliability time, more maintenance persons and testing resources

should be allocated to test and repair the system; and at the later stage, the service

reliability is high so that the amount of testing resource can be reduced. Also, if given a

requirement on the service reliability after release, the time for release can also be

determined. Moreover, for projects with fixed deadline, the model can help system

managers to determine the testing intensity or manpower according to the estimated

reliability given different levels of testing intensity. Furthermore, during the operational

phase, the quality of service can also be assessed through the service reliability

measure.

 For wide-area distributed computing, the structure of centralized

heterogeneous distributed systems is just a classical and conventional structure.

Nowadays, the grid computing system is a newly developed system in wide-area

distributed systems by focusing on large-scale resource sharing. The structure of the

grid is not only CHDS but also a kind of peer-to-peer structure. Thus, the next chapter

will study the behavior and reliability of the grid computing systems.

Chapter 5 Grid Computing System Reliability

 108

CHAPTER 5

 GRID COMPUTING SYSTEM

RELIABILITY

The grid computing system is a recently developed technique for complex systems with

large-scale resource sharing, wide-area program communicating, and

multi-institutional organization collaborating etc. Many experts believe that the grid

technologies will offer a second chance to fulfill the promises of the Internet. However,

it is difficult to analyze the grid reliability due to its complexity.

 This chapter first constructs a grid reliability model and then presents

approaches to estimate the grid reliability related to different aspects of the grid,

including the resource management system, networks and programs/resources. Section

5.1 introduces the evolutionary of the grid technology and builds a general model for

the grid architecture. Section 5.2 studies the grid reliability related to the resource

management system. Then, Section 5.3 presents a new reliability model for the grid

networks. Finally, Section 5.4 further extended the previous model by combining the

reliability of software programs and resources together with the hardware reliability of

the network.

Chapter 5 Grid Computing System Reliability

 109

5.1. Introduction of the Grid Computing System

5.1.1. Grid technology

The term “Grid” was created in the mid 1990s to denote a proposed distributed

computing infrastructure for advanced science and engineering (Foster and Kesselman,

1998). Grid concepts and technologies were first developed to enable resource sharing

within far-flung scientific collaborations. Applications include collaborative

visualization of large scientific datasets (pooling of expertise), distributed computing

for computationally demanding data analyses (pooling of compute power and storage),

and coupling of scientific instruments with remote computers and archives (increasing

functionality as well as availability).

The Grid concept is motivated by real and specific problems and there is an

emerging, well-defined Grid technology that addresses significant aspects of this

problem. The Grid technology is distinct from other major technology trends, such as

Internet, enterprise, distributed, and peer-to-peer computing.

The real and specific problem that underlies the Grid concept is coordinated

resource sharing and problem solving in dynamic, multi-institutional virtual

organizations (Foster et al., 2001). The sharing that we are concerned with is not

primarily file exchange but rather direct access to computers, software, data, and other

resources, as is required by a range of collaborative problem-solving and

resource-brokering strategies emerging in industry, science, and engineering. This

sharing is, necessarily, highly controlled, with resource providers and consumers

defining clearly and carefully just what is shared, who is allowed to share, and the

Chapter 5 Grid Computing System Reliability

 110

conditions under which sharing occurs. A set of individuals or institutions are defined

by such sharing rules form what we call virtual organization (VO).

For example, in a data grid project thousands of physicists at hundreds of

laboratories could be involved, and they can be divided into different virtual

organizations according to their locations or functions. It is depicted by Fig. 5.1.

Global
Network

VO: Labs in MIT

: VO

: Lab

: Processor

Local
Network

Labs in NUS

Fig. 5.1. A grid computing system containing many virtual organizations.

In this case, virtual organizations can vary tremendously in their purpose, scope,

size, duration, structure, community, and sociology. Nevertheless, careful study of

underlying technology requirements leads us to identify a broad set of common

concerns and requirements and current distributed computing technologies do not

address the concerns and requirements of the grid.

Over the past several years, research and development efforts within the grid

community have produced protocols, services, and tools that address precisely the

Chapter 5 Grid Computing System Reliability

 111

challenges that arise when we seek to build scalable virtual organizations, e.g. Foster

and Kesselman (1998), Hoschek et al. (2000), Foster et al. (2001, 2002), Frey et al.

(2002) and Buyya et al. (2003).

Because of their focus on dynamic, cross-organizational sharing, Grid

technologies complement rather than compete with the existing distributed computing

technologies. For example, enterprise distributed computing systems can use the grid

technologies to achieve resource sharing across institutional boundaries. The grid

technologies can also be used to establish dynamic markets for computing and storage

resources, hence overcoming the limitations of current static configurations.

 The continuing decentralization and distribution of software, hardware, and

human resources make it essential that we achieve the desired quality of service (QoS)

on resources assembled dynamically from enterprise, service provider, and customer

systems. This requires new abstractions and concepts that let applications access and

share resources across wide-area networks. This also requires to providing common

security semantics, system reliability, distributed resource management performance,

or other QoS metrics that are of importance in a particular context. For some time, such

problems have been of central concern to developers of distributed systems for

large-scale scientific research. Work within this community has led to the development

of Grid technologies, which have been widely adopted in scientific and technical

computing.

Although the development tools and techniques for the grid have been studied

and equipped, the analytical tools for the grid reliability analysis are just inchoate and

Chapter 5 Grid Computing System Reliability

 112

hard to approach perhaps due to the complexity of the grid. Thus, as one of the

important measures of QoS for the grid, the grid reliability needs to be precisely and

effectively assessed using new analytical tools. There are many analytical tools for the

reliability analysis of the conventional distributed systems. However, they cannot be

directly implemented in the reliability analysis of the grid because of some of their

impractical assumptions.

Models and tools are needed to analyze the grid reliability. This chapter presents

some new results based on general grid reliability models that relax some unsuitable

traditional assumptions in the small-scale distributed computing systems.

5.1.2. General architecture of grid computing system

The general architecture of the grid computing systems can be depicted as Fig. 5.2. The

virtual node is a general unit in the grid, which can execute programs or share resources.

Virtual nodes are connected with one another through the virtual links. Virtual

organizations are made up of a number of virtual nodes.

Chapter 5 Grid Computing System Reliability

 113

VN VN

VN

RMS and
Network

VN: Virtual Node

VO: Virtual Organization

VL: Virtual Link

VO
VO

VL
VL

VL

VL

VO

VO

1 n

N RMS: Resource Management System

Fig. 5.2. General architecture of grid computing systems.

A grid system is designed to complete a set of programs/applications, so that to

complete certain tasks. Executing those programs need use some resources in the grid.

These programs and resources are distributed on the virtual nodes as in Fig. 5.2. A

virtual link between two virtual nodes (i and j), denoted by L(i, j), is defined as a direct

communication channel between the two nodes i and j without passing through other

virtual nodes.

Let nU
v

 represent the set of resources shared by the n:th virtual node and nV
v

represent the set of programs executed by the n:th virtual node, (n=1,2,…,N). We also

assume that M programs denoted by MPPP ,...,, 21 are running in the grid system. The

required processing time for each program is denoted by)(...,),2(),1(Mttt ,

respectively. The programs may use some necessary resources during their execution,

which is in fact to exchange information between them through the network. These

resources are denoted by HRRR ...,,, 21 which is registered in a resource management

system of the grid.

Chapter 5 Grid Computing System Reliability

 114

When a program requests certain remote resources, the resource management

system receives these requests, matches the registered resources to the requests, and

then “tells” the program the sites of those matched resources. After the programs

“know” the sites of their required resources, they begin to “access to” them through the

network.

In an early stage, the grid reliability is mainly determined by the reliability of

the resource management system, while in a later stage, the grid reliability is mostly

affected by the reliability of the network for communicating or processing. The grid

reliability model related to the two stages will be studied respectively in the following

two sections. Then, section 5.4 further integrates other components such as software

and resources etc into the grid reliability analysis.

5.2. Grid Reliability of the Resource Management System

Before the programs begin to access to their required resources in the grid, they have to

know the sites of those resources, which is managed by the resource management

system. The resource management system of the grid, see e.g. Livny and Raman (1998),

is to receive the resource requests from application programs, and then to match the

requests with the registered resources.

The resource management system is not perfect. It is possible to assign wrong

resources to a program. Although the failures of resource management system might be

sporadic compared to those of programs, resources, networks or processors, to estimate

the grid reliability the resource management system have to be considered because it is

Chapter 5 Grid Computing System Reliability

 115

one of the most important factors in affecting the quality of service of the grid.

5.2.1. Introduction of resource management system

For grid computing, the resource management system that manages its pool of shared

resources is very important. This is especially the case for Open Grid Service

Architecture, see e.g. Foster et al. (2002), that allows individual virtual organizations to

aggregate their own resources on the grid.

 The resource management system provides resource management services,

which can be divided into four general layers as depicted by Fig. 5.3. They are program

layer, request layer, management layer and resource layer.

Registered
Resource

Access
Control

Global resource management
(Intercustomer Resource Management)

Interrequest
Resource

Management
Request
queue

Application
Programs

Resource
offers

Resource
requests

Matches

Matches

cl
ai

m
in

g

Resource
descriptions

Resource
sites

R
es

ou
rc

e
ac

ce
ss

Registered
Resource

Access
Control

Interrequest
Resource

Management
Request
queue

Application
Programs

Resource
offers

Resource
requests

Matches

Matches

Resource
descriptions

Resource
sites

…

…

…
…

Program
Layer

Request
Layer

Management
Layer

Resource
Layer

Fig. 5.3. Layers of resource management system.

Chapter 5 Grid Computing System Reliability

 116

1) Program layer: The program layer represents the programs (or tasks) of the

customer’s applications. The programs describe their required resources and

constraint requirements (such as deadline, budget, function etc).

2) Request layer: The request layer represents the program’s requirement for the

resources. This layer provides the abstraction of “program requirements” as a

queue of resource requests.

3) Management layer: The management layer may be thought of as the global

resource allocation layer and its principal function is to match the resource

requests and resource offers so that the constraints of both are satisfied.

4) Resource layer: The resource layer represents the registered resources from

different sites including the requirements and conditions.

In the grid computing, failures may occur at any of the layers in the resource

management system. For example,

1) In the program layer, the resource described by the program may be unclear or

translated into wrong resource requests;

2) In the request layer, the request queue may be too long to be waited by the

program (generating so called time-out failures), or some requests may be lost

due to certain management faults;

3) In the management layer, the request may be matched to a wrong resource

because of misunderstanding or faulty matching;

Chapter 5 Grid Computing System Reliability

 117

4) In the resource layer, the virtual organization may register wrong information

of their resources or remove its registered resources without

notifying/updating the resource management system.

If a grid program experiences the above resource management system failures, the

program cannot be achieved successfully. The grid reliability should be computed by

considering not only the reliability of physical networks or processing elements but

also the resource management system reliability. In order to analyze the resource

management system reliability, we construct a Markov model below.

5.2.2. Markov modeling

For the resource management system, if any failure that the program is matched to a

wrong resource occurs, the program will send a failed feedback to it. It will remove the

faults that cause the failures through an updating/debugging process. It is also possible

for new faults to be generated in the resource management system such as some virtual

organizations register wrong resources to it, etc. The assumptions for the resource

management system reliability model are listed as follows:

1) The failures of resource management system follow an exponential distribution

with failure rate function)(kλ where k is the number of contained faults.

2) If any failure occurs, a fault that causes this failure is assumed to be removed

immediately by an updating/debugging process, i.e. the time for removing the

detected fault is not counted.

Chapter 5 Grid Computing System Reliability

 118

3) The resource management system may generate a new fault, and the

occurrence of such event follows an exponential distribution with a constant

rate v .

According to the above assumptions, the reliability model of resource management

system can be built by a continuous time Markov chain (CTMC). This Markov model

depicted in Fig. 5.4 is a typical birth-death Markov process with infinite number of

states, where state k represents k faults contained in the resource management system.

1+k k 011−k

)1(λ

v

)(kλ

v

)1(+kλ

v

Fig. 5.4. CTMC for resource management system reliability model.

In this model,)(kλ can be a general function to the number of remaining faults k.

Usually,)(kλ is an increasing function to the number of remaining faults k. The

resource management system is desired to serve a long time, especially for the Open

Grid Service Architecture (Foster et al., 2002), so the birth-death process of failures can

be viewed as a long-run Markov process (Trivedi, 1982). After running a long time, the

expected death rate)(kλ will trend to a steady value.

Therefore, after a long time run, the failure rate)(kλ can be approximately

viewed as a constant during a small enough time. An example is illustrated below.

Chapter 5 Grid Computing System Reliability

 119

Example 5.1. Consider a grid program denoted by P1 need access to remote resources.

The time for resource management system to deal with its request is supposed t=15

seconds and the failure rate of resource management system at that time slot

0005.0=λ per second. The reliability for the resource management system to deal

with the request is computed as

}exp{)1(tPRRMS ⋅−= λ =0.992528

Based on the long-run birth-death Markov process, this approximation of

constant failure rate indicates a way to reasonably and dynamically update the failure

rate at different time slots. The resource management system can count the number of

failures, say n, reported by the grid programs between a relatively small time interval,

say t∆ , and dynamically updates the value of failure rate by tn ∆= /λ̂ .

Also, the fault birth rate v can be reduced through some information controls

such as standardized resource registering, synchronic resource updating, consistent

resource descriptions etc, so that to reduce the reliability of the resource management

system.

5.3. Grid Reliability on Network

If the resource management system has informed the programs of the sites of their

required resources in the grid after matchmaking, the running programs are able to

access to those resources through the grid network as depicted by the previous Fig. 5.2.

Then, the grid program/system/service reliability is mainly determined by the

Chapter 5 Grid Computing System Reliability

 120

reliability of network, which will be studied in the following subsections.

5.3.1. Reliability model for the grid network

After the resource matching process, during the execution process of the programs,

failures may occur on either virtual nodes or virtual links (Fig. 5.2). If a failure occurs

on the virtual node when it is executing a program, the result out of the program is

wrong. If a failure occurs on the link when some information is communicated through

it, the communication is incorrect. To analyze the grid reliability, two assumptions

about the model are given below:

1) The failures of virtual nodes and virtual links can be modeled by Poisson

processes,

2) The failures of different elements (nodes and links) are independent from one

another.

The first assumption can be justified as the operational phase without debugging

process so that the failure rates can remain constant, see e.g. Yang and Xie (2000). The

second assumption can be explained as that since the grid is a wide-area distributed

system, the nodes and links should be allocated far away from one another so that the

possibility of correlation among them can be viewed as very slight or even negligible.

 Different programs can exchange information of different sizes with the same

resources. Denote by mhD the size of information exchanged between program mP

(m=1,2,…,M) and resource hR (h=1,2,…,H). The communication time),(jiTc

Chapter 5 Grid Computing System Reliability

 121

between node i and node j, can be derived from

),(jiTc =
),(
),(

jiS
jiD (5.1)

where D(i,j) is the total size of information exchanged through the L(i,j), and S(i,j) is the

expected bit rate of the link.

 Denote the failure rate of the node n by nλ and of the link L(i, j) by ji ,λ . If

any failure occurs either on the link or on the connected two nodes during the

communication, the communication process is viewed as a failed process. The

reliability of communication between node i and node j through the link L(i,j) can be

expressed as

),(jiRc =)},()({exp , jiTcjiji λλλ ++− (5.2)

 Similarly, during the execution of a program, any failure occurring on the

virtual node that executes the program will also make the program failed. The

reliability of the node n to run the program mP , is then given by

),(nmRp =)}(exp{ mtnλ− (5.3)

 This network reliability model is much more reasonable for the grid than that

of conventional distributed systems (e.g. Kumar et al. 1986, Kumar and Agrawal, 1993;

Chen et al., 1997; Lin et al., 1999, 2001; Dai et al., 2003a). Those conventional models

somehow inherit the assumptions of Kumar (1986) model. The most stringent

assumption that is not suitable for the grid is that the operational probabilities of nodes

or links are assumed constant, i.e.),(jiRc and),(nmRp in the above two equations

are constant no matter how long or how different the),(jiTc and)(mt are.

Some concepts of grid reliability are defined as follows.

Chapter 5 Grid Computing System Reliability

 122

Definition 5.1. Grid program reliability (GPR) is defined as the probability of

successful execution of a given program running on multiple virtual nodes and

exchanging information through virtual links with the remote resources, under the

environment of grid computing system.

Then, the grid system reliability (GSR) can be defined as the probability for all of the

programs involved in the considered grid system to be executed successfully.

Furthermore, a grid service is to complete certain programs by using some

resources distributed in the grid. The grid service reliability is similar to the grid system

reliability by considering the programs of the given service, i.e. without taking other

programs that are not used by the service into account. Thereby, the grid service

reliability is defined as the probability that all the programs of a given service are

achieved successfully.

5.3.2. Reliability of minimal resource spanning tree

Recall that the set of virtual nodes and virtual links involved in running the given

programs and exchanging information with the resources form a resource spanning tree.

The smallest dominating resource spanning tree (RST) is called MRST (Minimal

Resource Spanning Tree). The reliability of an MRST is the probability for the MRST to

be operational to execute the given program. The reliability of an MRST denoted by

Chapter 5 Grid Computing System Reliability

 123

MRSTR has three parts:

1. Reliability of all the links contained in the MRST during the

communication;

2. Reliability of all the nodes contained in the MRST during the

communication;

3. Reliability of the root node that executes the program during the

processing time of the program.

The reliability of the link L(i, j) for exchanging the information can be

expressed by

),(jiRL =)},(exp{ , jiTcjiλ− (5.4)

The total communication time of the node jG can be calculated by

)(jT =∑
∈ jDi

c jiT),((5.5)

where jD represents the set of nodes that communicate with the node jG in the

MRST. The reliability function of the node jG for communication is

)(jRc =)}(exp{ jTjλ− (5.6)

Finally, the reliability for a program mP to be executed successfully during the

processing time)(mt on the node n is),(nmRp .

 The reliability of the MRST can be derived from the above equations as

 MRSTR =),(nmRp ∏
∈MRSTjiL

L jiR
),(

),(∏
∈MRSTG

c
j

jR)(

 = ∏∏
∈∈

−−−
MRSTG

j
MRSTjiL

cjin
j

jTjiTmt)}(exp{)},(exp{)}(exp{
),(

, λλλ

= ∏∏
≠

∈∈

−−+−

nj
MRSTG

j
MRSTjiL

cjin
j

jTjiTnTmt)}(exp{)},(exp{)]}()([exp{
),(

, λλλ

Chapter 5 Grid Computing System Reliability

 124

 (5.7)

In order to simplify the expression of the above equation, we generalize the term of

“communication time” for the root node that contains not only the time of exchanging

information with other elements but also the time of executing the given program, i.e.

)()(nTmt + .

The term of “element” is defined here to represent both the nodes and links of

the MRST. Assume there are totally K elements in an MRST, so that

ielement (i=1,2…,K) denotes the i:th element in the MRST. Accordingly, the

communication time of the i:th element is denoted by)(iw elementT and)(ielementλ

represents its failure rate. The reliability of the MRST of the above equation can be

simply expressed as

 MRSTR =∏
=

⋅
K

i
iiw elementelementT

1
)}()(exp{ λ (5.8)

With this equation, the reliability of an MRST can be computed if the communication

time and failure rate of all the elements are given. Hence, finding all the MRST’s and

determining the communication time of their elements are the first step in deriving the

grid program reliability and grid system reliability.

The same program executed by different root nodes may cause different

communication time on the same elements. Hence, the MRST’s should be treated

distinctly for the same program executed by different nodes. An example is given

below.

Example 5.2. As shown in Fig. 5.5, program P1 can run successfully when either

Chapter 5 Grid Computing System Reliability

 125

computing node G1 or G4 is successfully working during the processing time and it is

able to successfully exchange information with the required resources (say R1, R2 and

R3) .

R1,R2
P1

R3
P2

R1,R4

R2,R3
P1

L(1-2)

L(1-3)

L(2-3)

L(2-4)

L(3-4)

G1

G2

G4

G3

Fig. 5.5. A four-node computing system.

The MRST’s considering the communication time of the elements should be separated

into two parts:

a) P1 being executed by G1 contains three MRST’s: 1) {G1, G2, L(1,2)}; 2)

{G1,G2,G3, L(1,3); 3) {G1,G3,G4,L(1,3),L(3,4)}.

b) P1 being executed by G4 contains another three MRST’s: 4) {G3, G4, L(3,4)}; 5)

{G2, G3, G4, L(2,4), L(2,3)}; 6) {G1,G2,G4,L(1,2),L(2,4)}

If not considering the difference of communication time, the first tree dominates the

sixth tree and the fourth tree dominates the third tree. However, in the grid computing

system, P1 executed by G1 needs to communicate with the remote resource R3 through

the network while P1 executed by G4 needs to communicate with the another remote

resource R1, which will differ the communication time of the same elements in the first

MRST from the sixth MRST and the fourth MRST from the third MRST. Hence they

Chapter 5 Grid Computing System Reliability

 126

should be treated as different MRST’s, i.e. one cannot dominate another.

An algorithm is presented in Dai et al. (2002) to search the MRST’s for a given

program executed by one given virtual node. Repeatedly using this algorithm, all the

MRST’s for different virtual nodes to execute this program can be found, respectively.

This algorithm can be briefly described as follows:

Step 1. Start from the given node to search the required resources along the possible

links, and record elements that compose the searching route and their

communication times.

Step 2. Until all the required resources are reached, an MRST is found, and record this

MRST.

Step 3. Then other routes are tried to search other MRST’s until all the MRST’s are

searched.

An example of the algorithm to search the MRST’s is illustrated below.

Example 5.3. Continue to the above Example 5.2 and see Fig. 5.5 again. The program

1P is assumed to exchange information with resources R1,R2,R3 (corresponding

exchanged information size are: 500,400,300 Kbit). The bit rates of links L(1,2),

L(1,3), L(2,3), L(2,4), L(3,4) are assumed 30, 20, 40, 50, 45 (Kbit/s). Then, search the

MRST’s for 1P executed by the node G1 and compute the communication time of

each elements in those MRST’s, as shown by Fig. 5.6.

Chapter 5 Grid Computing System Reliability

 127

G1
RV=(0010)
TV=(0ddd)
EV=(100000000)
WV=(30,0,0,0,0,0

0,0,0)
GV=(1000)
LV=(00000)

G1-G2
RV=(0000)
TV=(01dd)
EV=(110010000)
WV=(40,10,0,0,

10,0,0,0,0)
GV=(1100)
LV=(10000)

G1-G3
RV=(0010)
TV=(0d1d)
EV=(101001000)
WV=(30,0,0,0,0,0

0,0,0)
GV=(1010)
LV=(11000)

G3-G2
RV=(0000)
TV=(031d)
EV=(111001100)
WV=(45,7.5,22.5,

0,0,15,7.5,0,0)
GV=(1110)
LV=(11100)

G3-G4
RV=(0000)
TV=(0d13)
EV=(101101001)
WV=(45,0,21.7,

6.7,0,15,0,0,6.7)
GV=(1011)
LV=(11101)

☺MRST1 ☺MRST2

☺MRST3

L(1,2)

L(1,3)

L(2,3)

L(3,4)

Fig. 5.6. Searching the MRST’s of P1 executed by G1.

Three MRST’s are found by the algorithm marked by ☺ in the Fig. 5.6 where

all the values in vector RV are 0. The corresponding elements contained in those

MRST’s are recorded in vector EV with the value 1 and the corresponding

communication time is saved in vector WV. Similarly, other three MRST’s for 1P

executed by the other node G4 can also be obtained as listed in the above Example

5.2.

5.3.3. Grid program and system reliability

Grid program reliability

Note that failures of all the MRSTs will lead to the failure of the given program, and any

one of the MRST’s can successfully complete the program only if all of its elements are

Chapter 5 Grid Computing System Reliability

 128

reliable. The grid program reliability of a given program can be described as the

probability of having at least one of the MRST’s working successfully,

)(mPR = Pr(at least one MRST of a given program mP is reliable)

Let)(mt PN be the total number of MRST’s for the given program of mP and jE be

the event in which the jMRST , j=1,2,…,)(mt PN , is able to successfully execute the

given program. The grid program reliability of a given program mP can be written as

)(mPR =

=
U

)(

1

Pr
mt PN

j
jE (5.9)

By using the concept of conditional probability, the events considered in this equation

can be decomposed into mutually exclusive events as

)(mPR = ()1Pr E + ())Pr(Pr 212 EEE …+ { })(1)(21)(,,,Pr}Pr{
mtmtmt PNPNPN EEEEE −L

 (5.10)

where)Pr(21 EE denotes the conditional probability that 1MRST is in the failure state

given that 2MRST is in the successful state.

Hence, the grid program reliability can be evaluated in terms of the probability

of two distinct events. The first event indicates that the iMRST is in the operational

state while the second indicates that all of its previous trees jMRST (j=1,2,…,i-1) are

in the failure state given that iMRST is in the operational state. The probability of the

first event, ()iEPr is straightforward, and it can be calculated through Eq. (5.8). The

probability of the second event,),,,Pr(121 ii EEEE −L , can be computed using the

algorithms presented by Dai et al. (2002).

The brief introduction of the algorithm is given here, which has two steps:

Step 1 identifies all the conditional elements that can lead to the failure of any

Chapter 5 Grid Computing System Reliability

 129

jMRST (j=1,2,…, 1−i) while keeping iMRST to be operational.

Such a conditional element, say kelement (contained in any jMRST ,

j=1,2,…, 1−i), has starting time and end time. If any failure occurs on the kelement

between its starting time and end time, it can lead the jMRST to fail. To keep iMRST

operational, the starting time must be greater than the end time of the same kelement

in iMRST .

Step 2 uses a binary search tree (Johnsonbaugh, 2001: pp. 349-354) to seek the

possible combinations of these identified elements that can make all the jMRST

(j=1,2,…, 1−i) fail and computes the probabilities of those combinations.

The summation of the probabilities is the result of),,,Pr(121 ii EEEE −L . For

detailed procedures of the two steps can be found in Dai et al. (2002). An example of

this algorithm is illustrated below.

Example 5.4. Continue to the above Example 5.3 and revisit the results recorded in the

vectors (EV and WV) as Fig. 5.6. We now use the above algorithm to evaluate

),Pr(321 EEE , the probability that 1MRST and 2MRST fails given 3MRST is

operational.

Use step 1 to identify the conditional elements that can fail either 1MRST or

2MRST and keep 3MRST to be operational. Table 5.1 shows the order for

communication time wT of different elements. As step 1, the starting time of any

conditional element’s failure must be greater than the end time of the same element in

3MRST (shown by the second row). Then, the set of conditional elements can be

Chapter 5 Grid Computing System Reliability

 130

obtained in Table 5.2 where CEV(m) denotes the vector of the m:th conditional element,

)(mTb its starting time,)(mTe its end time, and its reliability is

{ })]()([)(exp)(mTmTelementmR bem −⋅= λ .

Table 5.1. The order of communication time of different elements.

Elements G1 G2 G3 L(1,2) L(1,3) L(2,3) L(3,4)

wT of 3MRST 45 0 21.7 0 15 0 6.7

7.5 22.5 10 7.5 Others’ wT >

that of 3MRST

None
10

None

None

Table 5.2. Result outputted by Step 1.

CEV(m) CEV(1) CEV(2) CEV(3) CEV(4) CEV(5)
Element G2 G2 G3 L(1,2) L(2,3)

)(mTb 0 7.5 21.7 0 0

)(mTe 7.5 10 22.5 10 7.5

)(mR 0.9993 0.9998 0.9976 0.9900 0.9778

As Step 2, the binary search tree for calculating),Pr(321 EEE is depicted in the Fig.

5.7.

Chapter 5 Grid Computing System Reliability

 131

[ddddd]
[11]

[CV]
[OV]

[0dddd]
[00]

☺7.497×10-4 [10ddd]
[01]

[100dd]
[00]

[1010d]
[01]

[10100]
[00]

[110dd]
[10]

[1100d]
[00]

[11010]
[10]

[1110d]
[01]

[11100]
[00]

[11110]
[10]

[10110]
[00]

☺ Denotes the available leaf for the calculation of probability
Denotes the unavailable leaf without contribution to the probability

[1dddd]
[11]

[11ddd]
[11]

[101dd]
[01]

[1011d]
[01]

[111dd]
[11]

[1111d]
[11]

[10101]
[01]

[1101d]
[10]

[10111]
[01]

[11011]
[10]

[11101]
[01]

[11111]
[11]

☺5.988×10-7

☺5.516×10-8 ☺5.489×10-6

☺2.383×10-5

☺2.206×10-4

Fig. 5.7. Binary search tree for calculating),Pr(321 EEE .

In Fig. 5.7, the leaves marked by ☺ represents the case that 1MRST and 2MRST fails

while 3MRST is operational, and the float value beside ☺ is the probability for the

corresponding case to happen. Thus, summing up all the probabilities, we get that

),Pr(321 EEE =0.001000.

After computing all the),,,Pr(121 ii EEEE −L and ()iEPr , i=1,2,…,)(mt PN , we can

calculate the grid program reliability of the given program mP by substituting them

into the reliability expression.

Grid system reliability

For the grid system, it is important to obtain a global reliability measure that describes

Chapter 5 Grid Computing System Reliability

 132

how reliable the grid system is. One way of measuring the reliability of the grid system

is given by determining grid system reliability. The grid system reliability equation can

be written as the probability of the intersection of the set of MRST’s of each program,

which is

=
=
I
M

m
mS PMRSTR

1

)(Pr (5.11)

where)(mPMRST denotes the set of all the MRST’s associated with the program mP .

The intersection of the trees of each)(mPMRST can be evaluated first by intersecting

)(1PMRST and)(2PMRST , i.e. intersect all the combinations of two MRST’s one of

which is from)(1PMRST and the other is from)(2PMRST , and so on until all the

)(mPMRST (m=1,2,…,M) are intersected. The intersected tree of two MRST’s is

generated by putting all the elements of the two MRST’s together, where the

communication time of overlapped elements should be added together. An example of

intersected MRST is illustrated below.

Example 5.5. Suppose one MRST related to program 1P is {G1,G2,G3,L(1,3),L(2,3)}

with the communication time {45, 7.5, 22.5, 15, 7.5} and one MRST related to program

2P is {G1,G2,G3,L(1,2),L(1,3)} with the communication time {50, 70, 30, 20, 30}.

Then, the intersected MRST of the above two MRST’s should be

{G1,G2,G3,L(1,2),L(1,3),L(2,3)} with the communication time {95, 77.5, 52.5, 20, 45,

7.5}.

In fact, if any one of the intersected MRST’s of)(mPMRST (m=1,2,…,M) is reliable,

Chapter 5 Grid Computing System Reliability

 133

all the programs required in the grid system can be successfully completed; If all the

intersected MRST’s fail, the grid system cannot be successfully completed.

 After generating all the intersected MRST’s, the grid system reliability can be

written as

 SR =

=
U

tN

j
jE

1
Pr (5.12)

where tN is the total number of intersected MRST’s. This equation is similar to the

prevous Eq. (5.9), so the above algorithms for deriving the grid program reliability can

be similarly used in deriving the grid system reliability here.

Grid service reliability

The grid service reliability can be viewed as a special type of the grid system reliability

if we consider the grid service in a way that the whole grid system is only providing this

required service and other services are not considered now. With this classification, the

concept of grid system reliability is generalized to include the reliability of different

number of services.

All the above algorithms computing the grid program/system reliability are

illustrated by a numerical example as below, and then the reliability of resource

management system is also integrated into the grid reliability analysis.

Example 5.6. Suppose that a simple grid system is to provide a web service of “Stock

Analysis” for different countries. Three different resources (R1,R2,R4) store the

real-time stock price of different countries, and another resource (R3) is the database of

Chapter 5 Grid Computing System Reliability

 134

a website that outputs and shows the results out of the “Stock Analysis”. The service

procedure can be described as that two programs (P1 and P2) collect data from the three

resources (R1,R2,R4) to analyze the stock market information for different countries,

and then output the results into the database (R3) which can be loaded by a website

service.

 Revisit Fig. 5.5 that contains four virtual nodes and five virtual links and runs

the two programs and prepare the four resources. Tables 7.3-7.4 show necessary input

information.

Table 5.3. Failure rate and speed of elements (links and nodes).

Elements L(1,2) L(1,3) L(2,3) L(2,4) L(3,4) G1 G2 G3 G4
Failure rate 0.001 0.002 0.003 0.004 0.005 0.001 0.0001 0.003 0.004
Speed (Kbps) 30 20 40 50 45

Table 5.4. Processing time and information exchanged with the resources.

Program Run Time (Sec) Resources Exchanged information (Kbit)
P1 30 R1, R2, R3 500,400,300
P2 50 R3, R4 200,600

With the approaches presented above, Table 5.5 shows all MRST’s of the program P1

with the communication time of each element evaluated by the above Example 5.3 and

its reliability ()iEPr calculated by Eq. (5.8). Table 5.5 also shows the conditional

probability of p=),,,Pr(121 ii EEEE −L evaluated similarly as the above Example 5.4.

Chapter 5 Grid Computing System Reliability

 135

Table 5.5. Evaluation for the grid program reliability of P1.

MRSTi Elements Communication time (wT) ()iEPr p

1MRST
G1,G2,L(1,2)

40,10,10 0.950279 -----------

2MRST G1,G2,G3,L(1,3),L(2,3) 45,7.5,22.5,15,7.5 0.847258 0.010198

3MRST G1,G3,G4,L(1,3),L(3,4) 45,21.7,6.7,15,6.7 0.818403 0.001000

4MRST G3,G4,L(3,4) 11.1,41.1,11.1 0.776313 0.039890

5MRST G2,G3,G4,L(2,4),L(2,3) 22.5,12.5,40,10,12.5 0.755973 0.002314

6MRST G1,G2,G4,L(1,2),L(2,4) 16.7,26.7,40,16.7,10 0.789725 0.000810

Substituting the values of ()iEPr and),,,Pr(121 ii EEEE −L of Table 5.5 into Eq.

(5.10), the grid program reliability of P1 is

R(P1)= 0.99309 (5.13)

Similarly, the grid program reliability of P2 can be obtained as

 R(P2)= 0907.090801.0122694.0769665.0773368.0 ×+×+ =0.950158

 (5.14)

where three MRST’s are found for P2 to be executed by G2.

The grid system reliability can then be derived. The total number of intersected
trees is 36× =18. Similar to grid program reliability, the grid system reliability is
obtained as

SR =0.926380 (5.15)

 Suppose total time for resource management system to deal with the program

P1’s requests is t=15 seconds and the failure rate at that time slot 0005.0=λ (sec-1).

The reliability for the request of the program P1 is then computed as

Chapter 5 Grid Computing System Reliability

 136

)exp()1(tPRRMS λ−= =0.992528 (5.16)

The grid program reliability of P1 considering the reliability of resource management

system can be calculated by multiplying the above RMSR together with)1(PR as

98567.099309.0992528.0)()1()1(=×=⋅= PRPRPGPR RMS

For P2, if the total time for resource management system to deal with its

resource requests is 10 seconds, a similar way can be used to obtain

99501.0)100005.0exp()2(=×−=PRRMS

Multiplying it with)2(PR , we get

94542.0950158.099501.0)2()2()2(=×=⋅= PRPRPGPR RMS

For the grid system reliability that includes both P1 and P2, the reliability can be

computed as

0.914870.92638099501.0992528.0)2()1(=××=⋅⋅= sRMSRMS RPRPRGSR

5.4. Grid Reliability on Software and Resources

In the above section, the grid reliability is analyzed by considering only the network

hardware failures, i.e. failures of processing nodes and communicating links. However,

besides the hardware failures, the software program failures and the resource failures

should also be integrated into the grid reliability analysis, which model is more

practical and reasonable.

Chapter 5 Grid Computing System Reliability

 137

5.4.1. Failures of software programs and resources

Besides the hardware causes, the failures of a software program may also be caused by

the faults in the program itself. Justified as in the operational phase (Yang and Xie,

2000), the software program failures can be assumed to follow the exponential

distributions here. The software failure occurrence rate of program iP running on

processing node jG is denoted by),(jisλ , because a same program running on

different processing nodes may have different failure rates. Also, the processing time of

iP on jG is denoted by),(jit . Thus, the reliability of the software program iP

running on jG can be simply computed by

)},(),(exp{),(prog jitjijiR s ⋅−= λ (5.17)

 For the resource reliability, previous section assumes that if the program uses

the resource, the resource itself is perfect and the failures only occur when transferring

the information through the communication network.

However, the resource may be a software, hardware, database, digital product,

etc, that ought to contain faults too. In reality, the resource possibly risks failures when

it is working (such as dealing with the information that the programs send or generating

the results that the programs need). Suppose the time for resource h to work is

determined by the program iP by which the resource is requested and the node jG on

which the resource is integrated, denoted by),,(jiht . Also, considering the

operational phase for the integrated resources, we denote the failure rate of the resource

h on the node jG by),(jhrλ , which follows the exponential distribution. Thus, the

reliability of resource h requested by iP and integrated on jG can be simply

Chapter 5 Grid Computing System Reliability

 138

expressed by

)},,(),(exp{),,(res jihtjhjihR r ⋅−= λ (5.18)

5.4.2. Approach to grid reliability integrating software and resource failures

In order to integrate the software program and resource failures into grid reliability

analysis together with the hardware network reliability, we revise the model presented

by section 5.3. For each virtual node, we abstract its programs and resources as its sub

nodes, as shown by Fig. 5.8 where jG is a virtual node on which 1xP ,…, xmP are

attached as the sub nodes representing programs and 1yR … ykR corresponding to

resources.

Fig. 5.8. Virtual node and its sub nodes of programs and resources.

Such abstraction of the Fig. 5.8 has the following advantages:

Chapter 5 Grid Computing System Reliability

 139

1) The reliability of different software programs and resources can be integrated

into the whole grid reliability analysis given the failure rates of all the sub

nodes and their communication time.

2) It also combines the hardware reliability into the grid reliability analysis and

the common cause failures among those programs and resources are somewhat

considered. For example, if jG fails, all its sub nodes (corresponding to the

programs or resources executed by or integrated on the same virtual node) are

no longer available for running or using.

3) All the approaches presented in the Section 5.3 can be directly implemented to

compute grid program/system/service reliability if each sub node is viewed as

an element of failure rate and communication time of its corresponding

program/resource, and the link between the virtual node and its sub node is

viewed as perfect (i.e. failure rate is 0). Thus, this model integrating the

software/resource failures is generalized to satisfy the common condition as Eq.

(5.8) of the MRST approaches presented by the previous section 5.3.

Example 5.7. Revisit Fig. 5.5. Replace the nodes with those in the Fig. 5.8 that

considers the software program and resource failures. Fig. 5.9 depicts the new network

graph for the grid computing system containing the sub nodes of programs and

resources. According to the third advantage as above, the approaches presented by

Section 5.3 can be directly and similarly implemented in deriving the grid reliability of

Fig. 5.9.

Chapter 5 Grid Computing System Reliability

 140

G1

G2

G3

G4

L(1-2)

L(1-3)

L(2-3)

L(2-4)

L(3-4)

P1

R1

R2

P2R3

R1 R4

P1

R3

R2

Fig. 5.9. Grid network containing the sub nodes of programs and resources.

Chapter 6 Multi-Type Failure Correlation Models

 141

CHAPTER 6

 MULTI-TYPE FAILURE

CORRELATION MODELS

Most software reliability models assume independence of successive software runs. It

is a very strong assumption and it is usually not valid in reality. Goseva-Popstojanova

and Trivedi (2000) presented an interesting study on failure correlation in software runs.

In this chapter, by extending their results, a Markov renewal model is developed for

such failure correlation, and further considers multiple types of failures. In addition,

the cases of restarting with repair and without repair are both studied. Although such

a model is more complex than the traditional approach based on reliability growth, it

incorporates more information about the failures and system structure.

6.1. Introduction

Reliability and availability analysis of software systems is a very important issue today.

There are many papers and books dealing with software reliability modeling and

analysis, for some recent articles, see e.g. Zhang and Pham (2000), Xie (2000), Kuo

et al. (2001) and Zhang and Horigome (2001). However, a common assumption is the

independence of successive software runs, which is not realistic in practice. For

Chapter 6 Multi-Type Failure Correlation Models

 142

example, distributed computing systems have become popular recently, and it is

modeled as a collection of resources interconnected via an arbitrary communication

network and controlled by a distributed operating system as described by Lin (1999).

For this kind of systems, the successive software runs are dependent because the

resources is interconnected with one another through the network so that the previous

run affect the resources of the next run.

Recently, Goseva-Popstojanova and Trivedi (2000) formulated a Markov

model for failure correlation and studied its effects on the software reliability

measures. This model assumes a two-state Markov Renewal model. One state is a

successful state and another is a failure state among successive runs. The result of

next run can be affected by the outcome of the previous run.

In practice, failures can be classified in different types, see e.g. Bukowski and

Goble (2001), and a common classification is according to the severity (Lyu, 1996).

Other classification schemes are also possible. For example, Tukona (2000)

introduced two types of failures. The first type is caused by the faults latent in the

system before the testing; the second type is caused by the faults regenerated

randomly during the testing phase. Different types of failures may also induce

different conditional probability to the next run and there are some examples for

failure correlation conditions as described in Kim et al. (1996).

In this chapter, as an extension of Goseva-Popstojanova and Trivedi (2000), we

present a new Markov Renewal model that allows software failures to be in one of

multiple states. Note that if the failures can be of n different types, the total number of

Chapter 6 Multi-Type Failure Correlation Models

 143

possible states for every run will be n+1, in which there is a successful state. Thus the

two states model in Goseva-Popstojanova (2000) is a special case of our new model.

This chapter is organized as follows. In Section 6.2, a brief overview of

multiple failure states and Markov Renewal Model is provided and a model for two

types of failure is developed and analyzed. Generalization of the model to n-type

failure Markov Renewal Model is also given. In Section 6.3, formulas for probability

computation are derived and a numerical example is illustrated. Although the model is

complicated, it is still computationally tractable.

6.2. Markov Renewal Model for the Multi-Type Correlated

Failures

Except the perfect working state, other states in the system can be viewed as different

types of failure states. For example, according to the severity, Lyu (1996) divided the

failures into four states: minor, marginal, critical and catastrophic.

Note that if the failures can be of n different types, the total number of possible

states for the system will be n+1, in which there is a perfect state. The system state in

the next run depends on its state in the current run. This is a kind of multi-type failure

correlation among successive runs. Under such conditions, Markov model is also a

good tool for analyzing the reliability as it is able to handle one-step dependence.

 For the correlated system with n types of failures and a successful state, a

general Markov process can be constructed as follows:

Chapter 6 Multi-Type Failure Correlation Models

 144

1) Build an n+1-state discrete time Markov chain with transition probability

matrix

P=

nnnn

n

n

PPP

PPP
PPP

L

MMMM

L

L

10

11110

00100

2) To overcome the dependence, introduce a process in continuous time by letting

the time spent in a transition from state k to state l to have Cdf)(, tF lk .

Such a process is attributed to a Semi-Markov Process.

6.2.1. Model for two failure states

When there are two failure states, there will be three states for the system after a run;

a successful state, Type A failure state and Type B failure state. Type A failure could

be a kind of serious failure such as Catastrophic or Critical failure. Type B failure

could be less serious than Type A failure such as Minor or Marginal failure.

 A common situation is that the system is not able to continue to perform its

function when Type A failure occurs, but when Type B failure occurs, the system can

still work, although it will have more chances to induce a Type A failure in the next

run. For example, in a replicated file system, copies of the same file are kept in

different servers so that failures of some servers can be tolerant in Chang (1999). If a

minor failure does not destroy all the servers which contain the replicated files, the

replicated file system is able to keep on working. Thus this kind of failure can be

classified as Type B failure. Otherwise, if the replicated files of all the servers are

Chapter 6 Multi-Type Failure Correlation Models

 145

corrupted by a failure to make the system down, this kind of failure is Type A failure.

The result from a run will affect the probable state in the next run as shown in

Fig. 6.1. In this part, we consider the case when there is no debug except the

resetting or restarting when Type A failure occurs. The transition probability will

remain unchanged under this assumption.

0 1

2

P00 P11

P22

P01
P10

P20
P02

P12
P21

State 0: Successful state after a run
State 1: Type A failure occurs after a run

State 2: Type B failure occurs after a run

Fig. 6.1. Markov interpretation of dependent runs.

Let Zk be a random variable of the state after a run, and denote by

2,1,0,},|{ 1 ==== + jmmZjZPP kkmj

The transition matrix is

P=

222120

121110

020100

PPP
PPP
PPP

 (6.1)

in which

Chapter 6 Multi-Type Failure Correlation Models

 146

1
2

0
=∑

=j
mjP , m=0,1,2 (6.2)

The unconditional probability of failure on run (i+1) is:

∑
=

+ ===
2

0
1 }{}{

m
imji mZPPjZP , j=0, 1, 2 (6.3)

Substituting Eq. (6.3) into the above equation, we have that

jijjijji PZPPPZPPPjZP 001021 }1{)(}2{)(}{ +=−+=−==+ , j=0,1,2 (6.4)

we can see from this equation that if

jjj PPP 210 == , j=0,1,2

the results from two successive runs are independent. If the system does not satisfy this

condition, it is dependent.

The next step is to develop a model in continuous time, considering the time

that the system spends on running. Let Fk,l(t) be a Cdf of the time spent in a transition

from state k to state l of the DTMC in Fig. 6.1. Here, Fk,l(t) is assumed to depend only

on the state at the end of each interval in a system run, see e.g. Goseva-Popstojanova

and Trivedi (2000) as:

)()()()(,2,1,0 tFtFtFtF jjjj •=== , j=0,1,2

With the addition of the)(tF j• to the transitions of discrete time Markov chain, we

obtain a Semi-Markov Process as the system reliability model in continuous time.

6.2.2. Model for two failure states with debugging

Furthermore, we assume that after a Type A failure, the system may be debugged and it

Chapter 6 Multi-Type Failure Correlation Models

 147

is an instantaneous fault removing process. Hence, after removing the fault, the

transition probability matrix will be changed. When the successive runs are successful

or only cause the Type B failure, the system does not have to be debugged and it will

continue running in the same way. The transition probability matrix is able to be

assumed unchanged until a Type A failure happens. The Markov renewal model is

modified as the Fig. 6.2.

1 2

10

12

1
10P

1
12P

1
01P

1
21P

1
11P

1
20P 1

02P

 i

 i0

 i2

iP11 i+1

1
22P

1
00P

.10
iP

.12
iP

.01
iP

.21
iP

.20
iP .02

iP

iP22

iP00

0
0

01P

0
00P

……

2

0
22P

0
20P 0

02P
0

21P

Fig. 6.2. Nonhomogeneous DTMC for system reliability model.

‘i’ is the number of Type A failures, which is already detected and removed. During the

testing phase, system is subjected to a sequence of runs, making no changes if there is

no Type A failure. When a Type A failure occurs on any run, then an attempt is made to

fix the underlying fault, which causes the conditional probabilities of the state on the

next run to change. The transition probability matrix for the period from the occurrence

of the i:th Type A failure to the occurrence of the next (i+1):st Type A failure, is

iii

iii

iii

PPP
PPP
PPP

222120

121110

020100

 (6.5)

0

Chapter 6 Multi-Type Failure Correlation Models

 148

Assume mS is the total number of Type A failures after m runs. The sequence mS

provides an alternate description of system reliability model with debugging process

considered here. Thus, { mS } defines the DTMC presented in the above Fig. 6.2. All

states, i, i0 and i2, represent that the Type A failure state has been occupied i times. State

i represents the initial state for which iSm = . State i0 represents all the successful

subsequent trials for which iSm = , State i2 represents all Type B failures subsequent

trials for which iSm = .

6.2.3. General model for n failure states

The above models can be extended to the case of general multi-state of failures.

Assume that the failures can be divided into n states, so the system totally contains

n+1 states including the perfect state. Denote again the critical failure type as Type A

failure state. When this type of failures occurs, the system will completely stop

working and action has to be taken. First we assume there are no changes in the

system except resetting and restarting when Type A failure occurs. The transition

probability matrix for the successive runs will remained unchanged. The Markov

process can be expressed as the Fig. 6.3.

Chapter 6 Multi-Type Failure Correlation Models

 149

0 1

2

P00 P11

P22

P01
P10

Pn0 P0n
P12 P21

n
Pnn

 Pij

State 0: Successful state after a run

 State 1: Type A failure occurs after a run

 States 2 to n: The other n-1 types of failures occur after a run

Fig. 6.3. Markov interpretation for n-type correlated state transition.

Denote

njmmZjZPP kkmj ,,2,1,0,},|{ 1 L==== +

and the transition probability matrix is then

P=

nnnn

n

n

n

PPP

PPPP
PPPP
PPPP

LL

MLLM

L

L

L

10

2222120

1121110

0020100

and transition probabilities should satisfy

1
0

=∑
=

n

j
mjP , m=0,1,2,…,n (6.6)

The unconditional probability of failure on run (i+1) is:

∑
=

+ ===
n

m
imji mZPPjZP

0
1 }{}{ , j=0, 1, 2,…,n (6.7)

Chapter 6 Multi-Type Failure Correlation Models

 150

Similar to the previous case of two types of failures, when there is a debugging after

Type A failure, the transition probability matrix changes accordingly. The n-type

failure states Markov renewal model can be constructed as depicted by Fig. 6.4.

Fig. 6.4. Markov renewal model for n-type failure states.

As before, 'i' in Fig. 6.4 is the number of Type A failure, which have already been

detected and removed. The transition matrix for the period from the occurrence of the

i:th Type A failure to the occurrence of the next (i+1)st Type A failure, is given as

follow.

i
nn

i
n

i
n

i
n

iii

i
n

iii

i
n

iii

PPP

PPPP
PPPP
PPPP

LL

MLLM

L

L

L

10

2222120

1121110

0020100

and the transition probability should satisfy

1
0

=∑
=

n

j

i
mjP , m=0,1,2,…,n

Again { mS } defines the DTMC presented in above Fig. 6.4. All the states, i, i0, i2,…,

Chapter 6 Multi-Type Failure Correlation Models

 151

in, represent that the Type A failure state has been occupied i times. State i represents

the first trial for which mS =i. State i0 represents all the successful subsequent trials for

which mS =i, State i2 to in represents Type 2 to n failure states subsequent trials for

which mS =i.

6.3. Implementations of the model

The above Markov renewal model can be implemented to analyze the system behavior

in both testing phase and validation phase. In testing phase, the system is debugged, so

the transition probabilities should change after each Type A failure. However, between

two Type A failures, the transition probabilities are constant, so the distribution of time

between two successive Type A failures can be easily derived by using the

Laplace-Stieltjes Transform. Thus, the conditional system reliability, which is defined

as the survivor time distribution between two Type A failures, can also be obtained.

Then, the mean time between failures can be easily computed by either integration or

using the well known property of Laplace-Stieltjes transformation.

On the other hand, the probability transition matrix will be constant during the

validation phase after the test, because no changes are made to the system during that

phase. Thus, the system reliability can be easily calculated. Then, we propose a method

to certify the system given certain confidence level based on the system reliability.

Chapter 6 Multi-Type Failure Correlation Models

 152

6.3.1. Some quantitative measures

From a reliability point of view, the time between failures or the number of failures

over time is very important. Here, we derive the distribution of the discrete random

variable j
iX 1+ (j=0,2,3…n) defined as the number of runs visiting the j:th state

between two successive visits from the i:th Type A failure to the (i+1)st Type A failure.

The probability of every possible number of j
iX 1+ (j=0,2,3…,n) is given by

≠∃

=∀
===

=

=
+)0(),...,,,(

)0(
}...,3,2,0{

,...,3,2,0320

,...,3,2,011
1

njjn

njj
i

j
j

i KKKKKg
KP

njKXP

(6.8)

in which),...,,,(320 nKKKKg is the function of nKKKK ,...,,, 320 , and jK denotes

the number of runs occupied on the j:th failure state (jK =0,1,2…). The value of

),...,,,(320 nKKKKg can be obtained in principle.

Under the condition of that it visits the j:th state with jK times (j=0,2,3,…,n)

and that Type A failure occurs once between the i:th and (i+1):st Type A failures, the

distribution of the time period used for this event can be derived as

)()()()()(1
**

3
*

2
*

0
320 tFtFtFtFtF nK

n
KKK

••••• ⊗⊗⊗⊗ L (6.9)

in which)(* tF jK
j• is the jK -fold convolution of)(tF j•)...,3,2,0(nj = and jK

can be 0,1,2…. Also, '⊗ ' denotes the convolution of the two functions.

Define the distribution of time between the i:th and (i+1):st Type A failures as

)(1 tFi+ . Assume 1+iT is the random variable of time between the i:th and (i+1):st Type

A failure runs. With the above two equations, it can be shown that the distribution of

Chapter 6 Multi-Type Failure Correlation Models

 153

∑∑ ∑
∞

=

∞

=

∞

=
••••+

++

⊗⊗⊗⋅===

≤=

0 0 0
1

**
2

*
01

11

0 2

20)()()()(},...,2,0{...

}{)(

K K K

K
n

KK
j

j
i

ii

n

n tFtFtFtFnjKXP

tTPtF

L

 (6.10)

The Laplace-Stieltjes transform of)(1 tFi+ becomes

∑ ∑ ∑
∞

=

∞

=

∞

=
••••++ ⋅⋅===

0 0 0
12011

0 2

20)(~)(~)(~)(~},...,2,0{...)(~
K K K

K
n

KK
j

j
ii

n

n sFsFsFsFnjKXPsF L

(6.11)

The inversion of the above equation is straightforward, and reasonably simple

closed-form results can be obtained when),...2,1(),(njtF j =• has a rational

Laplace-Stieltjes transform.

The reliability of the system after i:th Type A failure is

)()(1)(111 tTPtFtR iii >=−= +++ (6.12)

Some general properties of the inter-failure time can be developed without

making other assumptions. For example, the mean time between failures (i and i+1

Type A failures) is:

[] ∫
∞

++ =
0

11)(dttRTE ii (6.13)

or, see e.g. Goseva-Popstojanova and Trivedi (2000)

[] 0
1

1
)(~

=
+

+ −= s
i

i ds
sFd

TE (6.14)

6.3.2. Application to the validation phase

Now we discuss the system reliability in validation phases with two-type failure model.

Chapter 6 Multi-Type Failure Correlation Models

 154

After the testing (debugging) phase, the system enters a validation phase to show that it

has a high reliability prior to actual use. In this phase, no changes are made to the

system. Thus the probability transition matrix will not change as the Markov Process

depicted by the previous Fig. 6.1.

Now we consider the independent condition, that is,

jjjj PPPP •=== 210 , j=0,1,2

If the state is not a Type A failure after a run, the system is reliable until the Type A

failure occurs. The reliability in a run is 11 •− P . The reliability for m successive runs is

defined as the probability that m successive independent test runs are conducted

without Type A failure, which can be derived as:

mm PPPmR)()1()(201 ••• +=−= (6.15)

Given a confidence level α , if α≥)(mR , we can say that the system is reliable in

successive m runs without Type A failure with α confidence. In order to satisfy this

condition, the value of 1•P should make

 α≥− •
mP)1(1 (6.16)

Given a confidence level α , we can obtain an upper confidence bound on 1•P , which

is denoted by *
1P . Solving α=− •

mP)1(*
1 , we obtain the upper bound

 mP /1*
1 1 α−=• (6.17)

This can help to test whether the system can be certified or not, i.e., if *
11 •• ≤ PP , the

system is certified with α confidence to say that the system is reliable in n successive

runs without Type A failure. Otherwise, we cannot say that with α confidence.

Now consider a sequence of possibly dependent system runs. During the

Chapter 6 Multi-Type Failure Correlation Models

 155

validation phase, the system is not changing, i.e., ijP does not change. That is, the

sequence of runs can be described by the homogeneous DTMC with the transition

probability matrix. Assume that the DTMC is steady, i.e., each run has the same

failure-probability:

∑
=

+ =====
n

m
imjii mZPPjZPjZP

0
1 }{}{}{ , j=0,1,2 (6.18)

Let }{ jZPP ij == and substitute it into the above equation to get

∑
=

=
n

m
mmjj PPP

0

, j=0,1,2 (6.19)

Solve the above equations to obtain unconditional probability of failure on run as

))(()1)(1(0121021202220111

0211021201
2 PPPPPPPP

PPPPP
P

−−−+−+−
−+

= (6.20)

))(()1)(1(0212012101110222

0122012102
1 PPPPPPPP

PPPPP
P

−−−+−+−
−+

= (6.21)

210 1 PPP −−= (6.22)

The reliability for m successive runs after the system is steady will be

mm PPPmR)()1()(201 +=−= (6.23)

Similarly, given the confidence level α , the largest value of 1P so that

 α≥− mP)1(1 (6.24)

is defined as the upper confidence bound, denoted by *
1P . Solve the above equation for

*
1P given α , we have that

 mP /1*
1 1 α−= (6.25)

Again, this can help to test whether the system is certified or not, i.e., if *
11 PP ≤ , the

system is certified with confidence level α to say that the system is reliable in m

Chapter 6 Multi-Type Failure Correlation Models

 156

successive runs without Type A failure. Otherwise, we cannot say that with confidence

Now we consider the system reliability in validation phases with n-type failure

model as in Fig. 6.3. Assume that the DTMC is homogeneous, we have

∑
=

+ =====
n

m
imjii mZPPjZPjZP

0
1 }{}{}{ , j=0,1,2,…,n (6.26)

Let }{ jZPP ij == and substitute it into the above equation to get

∑
=

=
n

m
mmjj PPP

0

, j=0,1,2,…,n

Solving the above equations, we can obtain unconditional probability of different states

in principle. Then, we can analyze the properties with these values similarly as the

two-type failure model analyzed above.

 Although the analysis presented in the previous section seems to be

complicated, it is numerically tractable. An example is given here to illustrate the

procedure.

6.3.3. Illustrative example

Suppose the distribution of the execution time of each run is exponential so that

)exp(1)(ttF jj µ−−=• , j=0,1,2

It relates the MRP approach to the existing system reliability models. Its

Laplace-Stieltjes transform is

j

j
j s

sF
µ

µ
+

=•)(~

Set the numerical values of 297.0,3.0,302.0 210 === µµµ .

Chapter 6 Multi-Type Failure Correlation Models

 157

In the operational phase we can estimate the transition probability matrix from

empirical data of successive runs. The following transition probability matrix is used

as illustration.

P=

=

7.02.01.0
6.01.03.0
2.01.07.0

222120

121110

020100

PPP
PPP
PPP

Substitute those values into Eq. (6.11), we can obtain the Laplace-Stieltjes transform

equation and then invert it to get the Cdf of the time between failures as:

ttt

tttt

ttt

etee
eeee

eeetF

09.009.0259.0

342.051.005.055.0

297.0302.03.0

111.0127.0157.0
054.0045.045.0041.0

051.0038.0053.01)(

−⋅−−

−−−−

−−−

−−−

−−−−

−−−=

 (6.27)

This equation implies that when successive runs are dependent, the Cdf of the time

between failures is a mixture of exponential distributions. Fig. 6.5 displays the

distribution of)(tF .

F(t)

Fig. 6.5. Cdf of the time between failures.

Chapter 6 Multi-Type Failure Correlation Models

 158

The reliability is then calculated as

ttt

tttt

ttt

etee
eeee

eeetR

09.009.0259.0

342.051.005.055.0

297.0302.03.0

111.0127.0157.0
054.0045.045.0041.0

051.0038.0053.0)(

−⋅−−

−−−−

−−−

+++

++++

++=

 (6.28)

Thereafter, the mean time to failure can be obtained as,

 [] 27.31)(
0

1 == ∫
∞

+ dttRTE i (hours) (6.29)

When the system is in validation phase, no changes are made to the system. Hence, the

probability transition matrix will not change. After some time, the system enters a

steady-state. The unconditional probability of the three different states can be

calculated through Eqs. (6.20-6.22)

522.0
))(()1)(1(0121021202220111

0211021201
2 =

−−−+−+−
−+

=
PPPPPPPP

PPPPP
P

152.0
))(()1)(1(0212012101110222

0122012102
1 =

−−−+−+−
−+

=
PPPPPPPP

PPPPP
P

326.01 210 =−−= PPP

These values reflect that with this transition probability matrix when the system is

steady, the probability of successful state after a run is 0.326, the probability of a

Type B failure occurs after a run is 0.552 and the probability of a Type A failure

occurs after a run is 0.152. The steady probability for the system to be reliability is

848.0522.0326.020 =+=+ PP

Chapter 7 Multi-State Systems with Multi-Level Protections

 159

CHPATER 7

 MULTI-STATE SYSTEMS WITH

MULTI-LEVEL PROTECTIONS

In this chapter, we consider vulnerable systems which can have different states

corresponding to different combinations of available elements composing the system.

Each state can be characterized by a performance rate, which is the quantitative

measure of a system's ability to perform its task. Both the impact of external factors

(stress) and internal causes (failures) affect system survivability, which is determined as

probability of meeting a given demand.

In order to increase the survivability of the system, a multilevel protection is

applied to its subsystems. This means that a subsystem and its inner level of protection

are in their turn protected by the protection of an outer level. This double-protected

subsystem has its outer protection and so forth. In such systems, the protected

subsystems can be destroyed only if all of the levels of their protection are destroyed.

Each level of protection can be destroyed only if all of the outer levels of protection are

destroyed.

We formulate the problem of finding the structure of series-parallel multi-state

system (including choice of system elements, choice of structure of multilevel

Chapter 7 Multi-State Systems with Multi-Level Protections

 160

protection and choice of protection methods) in order to achieve a desired level of

system survivability by the minimal cost. An algorithm based on the universal

generating function method is used for determination of the system survivability. A

multiprocessor version of genetic algorithm is used as optimization tool in order to

solve the structure optimization problem. An application example is presented to

illustrate the procedure presented in this chapter.

7.1. Introduction

Survivability is defined as the ability of a system to tolerate intentional attacks or

accidental failures or errors. It is becoming important in the system performability

(Smith et al., 1988 and Haverkort et al., 2001), especially when a system operates in

battle conditions or is affected by a corrosive medium or other hostile environment. In

this case both the impact of external factors (attack) and internal causes (failures) affect

system survivability.

A system can have different states corresponding to different combinations of

failed or damaged elements composing the system. Each state can be characterized by a

system performance rate, which is the quantitative measure of a system’s ability to

perform its task. For example, in Malakhoff et al. (1998) and Parfenov (1989) each

system state is characterized by an available ship propulsion power or by an available

electric power respectively. Therefore a system should be considered a multi-state one

when its survivability is analyzed, see e.g. Veeraraghavan and Trivedi (1994).

When applied to multi-state systems, mission success depends on a system’s

Chapter 7 Multi-State Systems with Multi-Level Protections

 161

ability to meet the demand (required performance level). In this case, the outage effect

will be essentially different for units with different nominal capacities and will also

depend on demand. Therefore, the performance rates (productivity or capacity) of

system elements should be taken into account as well as the level of demand when the

survivability of the entire system is estimated.

To provide a required level of system availability, redundant elements can be

included. Usually engineers try to achieve this level with minimal cost. The problem of

total investment cost minimization, subject to reliability constraints, is well known as

the redundancy optimization problem. The redundancy optimization problem for a

system with different element performance rates may be considered as a problem of

system structure optimization. The method for solving the structure optimization

problem was suggested in Levitin (1998) and Levitin and Lisnianski (2001).

One of the ways to enhance system survivability is to separate elements with the

same functionality (parallel elements). Adding more parallel elements will improve a

MSS availability but will not be effective from a vulnerability standpoint without

sufficient separation between elements Malakhoff et al. (1998). The separation can be

performed by spatial dispersion, by encapsulating different elements into different

protective casings etc.

Parallel elements not separated from one another are considered to belong to the

same protection group. All elements belonging to the same protection group can be

destroyed by the same impact while at least all the elements belonging to N-1 different

protection groups out of N will survive a single impact. Obviously, separation has its

Chapter 7 Multi-State Systems with Multi-Level Protections

 162

price. Allocating all the parallel elements together (within a single protection group) is

usually cheaper than separating them. The separation usually requires additional areas,

constructions, communications etc. Moreover, each separated group can be

intentionally protected against the external impact, which requires additional

investments. There can be different methods of protection characterized by different

vulnerability of the group and by different cost.

Since system elements with the same functionality can have different

performance rates and different availability, the choice of elements to be included into

the system strongly affects system survivability. Other factors that influence the

survivability are the partitioning of elements into protection groups and the choice of

protection method for each separated group.

The problem of finding structure of series-parallel MSS (including choice of

system elements, their separation and protection) in order to achieve a desired level of

system survivability by the minimal cost has been formulated in Levitin and Lisnianski

(2003). To solve the problem an optimization procedure based on a Genetic Algorithm

was suggested. In this problem each group of elements can have only one level of

protection.

In real systems, a multilevel protection is often used (for example in

defense-in-depth design methodology, Fleming and Silady 2002). The multilevel

protection means that a subsystem and its inner level protection are in their turn

protected by the protection of the outer level. This double-protected subsystem has its

outer protection and so forth. In such systems, the protected subsystems can be

Chapter 7 Multi-State Systems with Multi-Level Protections

 163

destroyed only if all of the levels of their protection are destroyed. Each level of

protection can be destroyed only if all of the outer levels of protection are destroyed.

This creates the statistical dependence among events of destruction of different

protection levels.

In systems consisting of nonidentical elements and having complex multilevel

protection, different protections play different roles in providing for the system's

survivability. Subject to cost limitations, one usually has to find a minimal cost

configuration of protections that provides desired system survivability. The problem of

choosing the optimal multilevel protection in series-parallel systems with a given

structure and a given set of possible protections has been formulated in Levitin (2003)

and solved using the GA.

In this chapter we generalise the structure optimization problem formulated in

Levitin and Lisnianski (2003) to the case of multilevel protection. In this problem one

has to

1) find the optimal system structure by choosing the appropriate product (version

of a system element) from the list of available products for each type of equipment;

2) allocate the chosen elements among different protection groups and to define

the hierarchy of the multilevel protection in the system;

3) choose the method of protection for each protection group.

The formulated problem is extremely complex combinatorial one. Even solving

much simpler single-level protection problem (Levitin and Lisnianski, 2003) requires

more than hour of computations for relatively small system. Therefore the use of the

Chapter 7 Multi-State Systems with Multi-Level Protections

 164

same computational approach for the multi-level protection case seems to be not

realistic. In order to tackle the problem we developed a multiprocessor version of the

GA. We also suggest the new solution encoding technique since the encodings

presented in Levitin and Lisnianski (2003) or Levitin (2003) cannot define solutions of

the formulated problem, which is more general.

In the following section, the system model is presented and the optimization

problem is defined. An algorithm for evaluating the system survivability for arbitrary

set of elements and protections is presented in section 7.3. Section 7.4 describes the

multiple processor based optimization technique. In section 7.5 illustrative examples of

the system survivability optimization problem are presented.

7.2. Model Description and Problem Formulation

Acronyms
PD performance distribution
PG protection group
MSS multi-state system
GA genetic algorithm
UGF universal generating function

Nomenclature

MSSC total MSS cost

d(z) double-u-function (d-function). Composition of u-functions U(z) and)(~ zU

mE maximal allowable number of elements within m-th component

Gm(h) random performance rate of element of version h that can be included in
component m

GMSS random output performance rate of the entire MSS
gMSS,k output performance rate of the entire MSS at state k

Chapter 7 Multi-State Systems with Multi-Level Protections

 165

qk probability that the entire MSS is in state k
gmk(h) performance rate at state k of element of version h that can be included in

component m
Hm number of different versions of elements that can be included in m-th

component
Lm number of protection levels for m-th component
Lcomp number of protection levels for groups of serially connected components
hm vector representing versions of elements belonging to component m
Km(h) number of different states of element of version h that can be included in

component m
pmk(h) probability of state k of element of version h that can be included in

component m
re

m vector representing e-level partition of PGs in component m

re
comp vector representing e-level partition of PGs consisting of serially connected

components

MSSS MSS survivability index

*S desired MSS survivability

)(zU j u-function representing performance distribution of j-th subsystem belonging

to some PG when the protection of this group is destroyed

)(~ zU j u-function representing performance distribution of j-th subsystem belonging

to some PG when the protection of this group is not destroyed
umi(z) u-function representing performance distribution of i-th element belonging to

component m
w system demand
γe

mj method of e-level protection of j-th PG belonging to component m
γe

comp,j method of e-level protection of j-th PG consisting of components connected in
series

Γe
m

 number of available methods for e-level protection in component m
Γe

comp number of available methods for e-level protection of PGs consisting of
components connected in series

ne
mi number of inner PGs in i-th e-level PG belonging to component m

ne
comp,i number of inner PGs in i-th e-level PG consisting of components connected in

series
γe

m vector representing e-level protection methods of corresponding to groups of
elements belonging to component m

γe
comp vector representing e-level protection methods of corresponding to groups of

components connected in series
ve

m(γ) vulnerability of e-level protection of PG belonging to component m when
protection method γ is used

)(hmε cost of element of version h that can be included in component m

Chapter 7 Multi-State Systems with Multi-Level Protections

 166

ce
m cost of e-level protection in component m

ce
comp cost of e-level protection of PG consisting of components connected in series

π (d(z)) operator incorporating protection vulnerability into d-function representing
the

 performance distributions of PG
⊕ composition operator over u-functions for parallel connection of elements
⊗ composition operator over u-functions for series connection of elements

Consider a system consisting of M components connected in series. Each component

contains elements connected in parallel. Different versions and number of elements

may be chosen for any given system component. Elements are characterized by

performance distributions and costs, according to their versions. The states of MSS

elements are mutually statistically independent.

The MSS mission success is defined as its ability to meet a demand W. Therefore

the system survivability is

}Pr{)(wGwS MSSMSS ≥= , (7.1)

where GMSS is output performance of the MSS.

For MSS which have a finite number of states there can be K different levels of

output performance: GMSS∈{gMSS,k, 1≤k≤K} and system output performance

distribution can be defined by two finite vectors g={gMSS,k} and q={qk}, where

qk=Pr{G=gMSS,k}, (1≤k≤K). Therefore we can define MSS survivability as the

probability that a system remains in those states in which gMSS,k≥w:

 ∑
≥

=
wkMSSg

kMSS qwS
,

.)((7.2)

For each component m, there exist a list of Hm different versions of available

elements. A performance distribution gmk(h), pmk(h) (1≤k≤Km(h)) and cost εm(h) can be

Chapter 7 Multi-State Systems with Multi-Level Protections

 167

specified for each version h of element of type m. The structure of system component m

is defined, therefore, by a vector containing numbers of versions of elements chosen for

the component hm={hm1,…,hmEm}, where hmj∈{0,1,…,Hm}. Note that including a

dummy version 0 corresponding to the absence of elements allows one to represent a

different number of elements included in component m by vectors hm of the same length

Em. The total cost of elements chosen for the mth component is

∑
=

=
mE

i
mim

el
m hC

1
)(ε . (7.3)

The elements belonging to component m can be separated into Em independent

protection groups (some of these PGs can be empty and some can contain several

elements). For example, the case when Em-1 PGs are empty and one PG contains all

the elements corresponds to gathering all of the elements within the same PG. The case

when all Em PGs are not empty corresponds to separation of all of the elements one

from another. The partitioning among PGs can be represented by vector r1
mj (1≤j≤Em),

where r1
mj is a number of first-level PG to which element j belongs. The PGs are

protected by first-level protection. For each protection group i within component m

different methods of protection can be chosen γ1
mi∈{0,…,Γ1

m}, where γ1
mi=0

corresponds to absence of protection. The vector γ1
mi (1≤i≤Em) defines the choice of the

first-level protection methods in component m.

The Em protected first-level PGs (that can be considered now as equivalent single

elements) can be further separated into Em second-level PGs and protected using

methods γ2
mj∈{0,…,Γ2

m}. These second-level protection groups can be further

separated and protected by the third-level protection and so forth up to Lm protection

Chapter 7 Multi-State Systems with Multi-Level Protections

 168

level.

The vectors re
m: re

mj (1≤j≤Em) and γe
m: γe

mi (1≤i≤Em) determine the separation and

protection of each level e. Having the vector re
m one can obtain the number of

nonempty inner level PGs belonging to each PG i: ne
mi.

Each e-level protection in component m that uses protection method γ can be

destroyed with probability ve
m(γ). Therefore, the vulnerability of protection of e-level

PG i is ve
m(γe

mi). Observe that unprotected PG has vulnerability ve
m(0)=1.

The protected subsystems can be destroyed only if all of the levels of their

protection are destroyed. Each level of protection can be destroyed only if all of the

outer levels of protection are destroyed.

The cost of protection of the e-level PG i depends on the type of elements

protected (number of component m), on the number of nonempty inner PGs belonging

to the given PG ne
mi and on the chosen protection method γe

mi. This cost can be

expressed as ce
m(ne

mi, γe
mi), where ce

m(0, γe
mi)=0 by definition.

Assume that component m has Lm protection levels. Each level has Em PGs (some

of these groups can be empty). The total cost of protections in the component m is:

.),(
11
∑∑
==

=
mE

i
mi

e
mi

e
m

emL

e

prot
m ncC γ (7.4)

In a similar way one can define the cost protection of components connected in

series prot
compC . Considering each component as equivalent element that can belong to

any PG one can define the partition of components among e-level PGs using vector

re
comp and the methods of protection for these PGs using vector γe

comp (note that the

number of PGs on this level can be not greater than M). The vectors re
comp determine

Chapter 7 Multi-State Systems with Multi-Level Protections

 169

number of components in each PG i: ne
comp,i.

Having the vectors re
m and γe

m for 1≤e≤Lm and 1≤m≤M, the vectors re
comp and

γe
comp for 1≤e≤Lcomp and the vectors hm for 1≤m≤M one can determine the structure of

the entire system. The total MSS cost can be determined as

.)],()],()([

)()(

1 1
,,

111 1

1

∑ ∑∑∑∑ ∑

∑

= ==== =

=

++

=++=

mE

i

M

i
icomp

e
icomp

e
comp

e
compL

e
mi

e
mi

e
m

emL

e

M

m

mE

j
mjm

prot
comp

prot
m

M

m

el
mMSS

ncnch

CCCC

γγε

γr,h,

 (7.5)

where

},...,,,...,,...,,...,{

},,...,,...,,...,,...,{},...,{
Lcomp
comp

1
comp

ML
M

1
M

1L
1

1
1

compL
comp

1
comp

ML
M

1
M

1L
1

1
1M1

γγγγγγγ

rr,rrrrr,hhh

=

==
.

Now we can formulate the optimal separation problem as follows.

Find sets h, r and γ that provide the desired MSS survivability SMSS with the

minimal cost:

 }.)(|min)(arg{) *SSC w,MSSMSS ≥→= γγγ r,h,r,h,r,h,((7.6)

7.3. Survivability Estimated by Universal Generating

Function

To estimate the survivability of MSS with given structure, separation and protection of

elements SMSS(h,r,γ) one has to apply a procedure which calculates the performance

distribution of a given series-parallel structure. The procedure used in this chapter for

the system survivability evaluation is based on the universal generating function

Chapter 7 Multi-State Systems with Multi-Level Protections

 170

(u-function) technique, which was introduced in Ushakov (1986) and which proved to

be very effective for the reliability evaluation of different types of multi-state systems

Lisnianski and Levitin (2003). The detailed description of the procedure can be found

in Lisnianski and Levitin (2003). A brief description of this procedure is given in the

following.

For the sake of simplicity, we consider only those MSS in which the performance

measure is defined as productivity or capacity (continuous materials or energy

transmission systems, manufacturing systems, power supply systems).

7.3.1. U-functions of individual elements and their parallel compositions

The u-function of a discrete random variable X is defined as a polynomial given by

,)(
1

∑
=

=
K

k
kx

k zazu (7.7)

where the variable X has K possible values and ak is the probability that X is equal to xk.

To evaluate the probability that the random variable X is not less than the value w the

coefficients of polynomial u(z) should be summed for every term with xk≥w:

∑
≥

=≥
wkx

kawX .}Pr{ (7.8)

In our case, the polynomial umj(z) can define performance distribution of j-th

element belonging to component m, i.e. it represents all of the possible states of the

element by relating the probabilities of each state to the performance of the element in

that state. Note that the performance distribution of the chosen element (element of

version hmj) defined by the vectors {gmk(hmj), 1≤k≤Km(hmj)} and {pmk(hmj), 1≤k≤Km(hmj)}

can now be represented as

Chapter 7 Multi-State Systems with Multi-Level Protections

 171

.)()(
)(

1

)(
∑
=

=
mjhmK

k

mjhmkg
mjmkmj zhpzu (7.9)

Any subsystem consisting of two elements can be considered as a single

equivalent element with a performance distribution equal to the performance

distribution of the subsystem (represented by u-function obtained by the corresponding

composition operator over u-functions of the two elements).

In MSS of a considered type, the total performance rate of a pair of elements

connected in parallel is equal to the sum of the performance rates of the individual

elements. To obtain the u-function U(z) of a subsystem containing two parallel

elements i and j, composition operator ⊕ is introduced:

∑ ∑

∑∑

= =

+

==

=

=⊕=⊕=

)(

1

)(

1

)()(

)(

1

)(
)(

1

)(

)()(

)()()()()(

mim mjm
mjmfmimk

mjm
mjmf

mim
mimk

hK

k

hK

f

hghg
mjmfmimk

hK

f

hg
mjmf

hK

k

hg
mimkmjmi

zhphp

zhpzhpzuzuzU

 (7.10)

7.3.2. U-functions of parallel PGs and their compositions

The probability of each state of a protected element (or subsystem) depends on the state

of the protection. Therefore, each subsystem belonging to some PG is characterized by

two conditional performance distributions: first corresponding to the case when the

protection of the PG is destroyed and second corresponding to the case when the

protection of the PG survives. In order to represent the performance distributions of an

element j belonging to some PG within the component m we introduce the following

Chapter 7 Multi-State Systems with Multi-Level Protections

 172

double u-function (d-function) dmj(z)=<Umj(z),)(~ zUmj >, where Umj(z) and)(~ zUmj

represent performance distributions for the first and second cases respectively.

Note that if the protection of a basic single element is destroyed, this element is

destroyed with probability 1 and has performance rate 0. Therefore for a basic single

element j of component m that has a performance distribution represented by the

u-function umj(z)

 dmj(z)=<z0, umj(z)>. (7.11)

It can be easily seen that any pair of parallel elements with d-functions dmj(z) and

dmi(z) belonging to the same PG can be replaced by the equivalent element with

d-function

dmj(z)⊕dmi(z) = 〈)(zUmj ,)(~ zUmj 〉 ⊕ 〈)(zUmi ,)(~ zUmi 〉

= 〈)(zUmj ⊕)(zUmi ,)(~ zUmj ⊕)(~ zUmi 〉 (7.12)

Observe that any e-level PG x consists of a subsystem and its protection. The

subsystem can always be replaced by its equivalent element with d-function

dmx(z)=<Umx(z),)(~ zUmx >. The protection of the PG x has vulnerability ve
m(γe

mx). If the

protection survives (with probability 1-ve
m(γe

mx)), the subsystem has its performance

distribution represented by the u-function)(~ zUmx . If the protection is destroyed (with

the probability ve
m(γe

mx), the subsystem has its performance distribution represented by

the u-function Umx(z), Therefore, the performance distribution of the entire PG

(subsystem and its protection) can be obtained as

ve
m(γe

mx))(zUmx + (1- ve
m(γe

mx)))(~ zUmx . (7.13)

If the PG x with its protection are in their turn protected by an e+1- level

Chapter 7 Multi-State Systems with Multi-Level Protections

 173

protection (which means that they belong to another PG), in the case when the outer

protection survives, the inner protection also survives and the subsystem performance

distribution is represented by the u-function)(~ zUmx .

These considerations allow one to replace a subsystem x with d-function

dmx(z)=<Umx(z),)(~ zUmx > and its protection with vulnerability ve
m(γe

mx) by the

equivalent unprotected element y with d-function obtained by applying the following

operator π over dmx(z):

dmy(z)=π (dmx(z)) =π 〈)(zUmx ,)(~ zUmx 〉

= 〈 ve
m(γe

mx))(zUmx +(1-ve
m(γe

mx)))(~ zUmx ,)(~ zUmx 〉 (7.14)

7.3.3. U-functions of system consisting of components connected in series

Applying the operators (7.12) and (7.14) one can obtain d-functions dm(z) 1≤m≤M

corresponding to entire components in the form

).~,())(~),(()(
~

1

~

1
∑∑
==

==
mK

k
mks

mk
mK

k
mks

mkmmm zazazUzUzd (7.15)

When the components are connected in series, the component with the lowest

performance rate becomes the bottleneck of the subsystem. Therefore, for a pair of

components connected in series the performance rate of the subsystem is equal to the

minimum of the performance rates of the individual elements.

Therefore, the composition operators ⊗ defined for the series connection of a pair

of components takes the form

Chapter 7 Multi-State Systems with Multi-Level Protections

 174

 ∑ ∑ ∑∑
= = ==

=⊗=⊗
lK

f

mK

k

lK

f

lfsmks
lfmk

lfs
lf

mK

k
mks

mklm zaazpzazUzU
1 1 1

},min{

1
)()(.

 (7.16)

Using the approach presented in section 3.2 and replacing in (7.12) operator ⊕

with operator ⊗ one can obtain the d-function of PGs consisting of components

connected in series.

7.3.4. Algorithm for MSS survivability evaluation

Consecutively applying the operators presented in the previous section and replacing

pairs of elements belonging to the same PG and a single element with protection by

equivalent unprotected elements one can obtain the d-function representing the

performance distribution of the entire system. The following recursive algorithm

obtains the system survivability:

1. For each component m (1≤m≤M):

1.1. According to the vector hm determine d-functions of elements chosen for

the component using (7.9) and (7.11).

1.2. For each protection level e (1≤e≤Lm):

1.2.1. According to the vectors re
m and γe

m
 determine protection groups and

survivability of each protection.

1.2.2. If the component contains a pair of unprotected elements belonging to

the same PG, replace this pair with an equivalent element with

d-function obtained by ⊕ operator (7.10) using Eq. (7.12).

1.2.3. If some PG contains more than one element, return to step 1.2.2.

Chapter 7 Multi-State Systems with Multi-Level Protections

 175

1.2.4. If the component contains PG consisting of a single element, replace

this element and its protection with a single equivalent element with

d-function obtained using Eq. (7.14).

Obtain the d-function of the entire component consecutively applying Eq. (7.12) over

d-functions of PGs of highest level Lm.

2. For each protection level e (1≤e≤Lcomp):

2.1. According to the vectors re
comp and γe

comp
 determine protection groups

and survivability of each protection.

2.2. If the system contains a pair of unprotected components belonging to the

same PG, replace this pair with an equivalent component with d-function

obtained by substituting the ⊗ operator (7.16) into Eq. (7.12).

2.3. If some PG contains more than one component, return to step 2.2.

2.4. If the system contains PG consisting of a single component, replace this

component and its protection with a single equivalent component with

d-function obtained using Eq. (7.13).

3. Determine the d-function of the entire series-parallel system as the d-function

of the remaining single equivalent element obtained by consecutively applying

Eq. (7.12) over d-functions of PGs of highest level Lcomp. The system

performance distribution is represented by the first u-function of this

d-function.

4. Obtain the system survivability for the given demand w by applying the Eq.

(7.8) over the u-function representing the entire system performance

Chapter 7 Multi-State Systems with Multi-Level Protections

 176

distribution.

7.4. Optimization Technique

Equation (7.6) formulates an extremely complicated combinatorial optimization

problem. An exhaustive examination of all possible solutions is not realistic,

considering reasonable time limitations. Even much simpler optimization problem

(Levitin and Lisnianski, 2003) required considerable computational time for its

solution. In order to solve the optimization problem (7.6) using the same Genetic

Algorithm approach (Goldberg, 1989) that was applied for solving the problems in

Levitin and Lisnianski (2003) and Levitin (2003), a multiprocessor version of the GA

was developed.

7.4.1. Multiprocessor genetic algorithm

The basic structure of the multiprocessor version of GA based on GENITOR method

(Whitley, 1989), is as follows:

Solutions in the GA are coded as a finite length strings. The main server

maintains the population of encoded solutions and values of their fitness. The

processors perform various procedures over individual solutions and their pairs and

return the obtained solutions to the server.

An initial population of Ns solutions (strings) is generated at random by the

processors. Each processor generates solutions, decodes them and evaluates their

Chapter 7 Multi-State Systems with Multi-Level Protections

 177

objective function (fitness). These values, which are a measure of quality, are used to

compare different solutions. Then it sends the solution encoding strings and the

corresponding values of fitness to the server.

During the genetic cycle the server chooses at random pairs of solutions and

sends them to processors. In each processor, new solutions are obtained by using the

crossover operator. This operator produces an offspring from the pair of parent

solutions. The newly obtained offspring undergoes mutation with the probability Pmut.

Each new solution is decoded and its fitness value is estimated. The new solution with

its fitness value returns to the server.

The server accomplishes a selection procedure that determines which solution is

better: the newly obtained solution or the worst solution in the population. The better

solution joins the population, while the other is discarded. If the population contains

equivalent solutions following selection, redundancies are eliminated and the

population size decreases as a result.

After new solutions are produced Nrep times, new randomly constructed solutions

are generated by the processors to replenish the shrunken population, and a new genetic

cycle begins.

The GA is terminated after Nc genetic cycles. The final population contains the

best solution achieved. It also contains different near-optimal solutions which may be

of interest in the decision-making process.

To apply the genetic algorithm to a specific problem, a solution representation

and decoding procedure must be defined as well as basic GA procedures and

Chapter 7 Multi-State Systems with Multi-Level Protections

 178

parameters.

7.4.2. Solution Representation

As described in the previous section, three things determine the structure of MSS:

the list of version numbers of elements chosen for each component

}{ M1 h,...,hh = partition of elements and lower level PGs between PGs of each level

within each component and partition of components and lower level PGs between PGs

consisting of serially connected components

},...,,...,,...,,...,{ compL
comp

1
comp

ML
M

1
M

1L
1

1
1 rr,rrrrr = and methods of protection for each

PG },...,,,...,,...,,...,{ Lcomp
comp

1
comp

ML
M

1
M

1L
1

1
1 γγγγγγγ = .

The sets h, r and γ completely determine the system structure. This three sets can

be combined within an integer string Θ={Θ1,…,ΘM,Θcomp}, where Θm (1≤m≤M) is a

concatenation of the vectors hm, re
m and γe

m (for 1≤e≤Lm) and Θcomp is a concatenation of

the vectors re
comp and γe

comp (for 1≤e≤Lcomp). Each one of the vectors hm, re
m and γe

m has

Em elements, while each one of vectors re
comp and γe

comp has M elements. Therefore the

total length of the string representing the solution is

∑
=

⋅+⋅+
M

m
compmmm LMELE

1
2)2(. (7.17)

Note that all of the string values make sense only in the case when each

component has maximal possible number of elements and all of these elements are

separated one from another (all of the PGs are not empty). Otherwise some of values

of the string should be ignored by the decoding procedure.

Chapter 7 Multi-State Systems with Multi-Level Protections

 179

In the feasible solution the values of substring hm should be distributed in the

range (0, Hm), the values of substrings re
m and re

comp should be distributed in the range (1,

Em) and (1, M) respectively and the values of substrings γe
m and γe

comp should be

distributed in the range (0,Γe
m) and (0,Γe

comp).

In order to allow all the string elements distributed within the same range to

represent feasible solutions, we determine this range as

(0, }max},max,,{max,max{
111

e
comp

compLe

e
m

mLe
mm

Mm
EHM ΓΓ

≤≤≤≤≤≤
). (7.18)

When the string is decoded, we transform each string elements x, corresponding

to substrings hm, re
m , re

comp, γe
m and γe

comp respectively in the following way:

)(mod 1 xh mHmj += , 1)(mod += xr mEmj
e , 1)(mod, += xr Mjcomp

e

)(mod
1

x
memi

e
+

=
Γ

γ ,)(mod
1

x
compemi

e
+

=
Γ

γ . (7.19)

The unification of the distribution range of all the string elements simplifies the

string generation procedure, as well as mutation and crossover operators.

Consider, for example, a series-parallel MSS with M=2, H1=H2=3, E1=E2=3,

L1=2, L2=1, Lcomp=2, Γ1
1=3, Γ2

1=2, Γ1
2=3, Γ1

comp=Γ2
comp=2. In this example we will use

the notation PGne
m to designate nth PG of level e within mth component.

According to (7.18) the solution encoding string should consist of integer

numbers distributed in the range (0, 3). Consider for example the following string

obtained after transformation (7.19):

Θ: 13133223212211220211112312021122

In the first part of this string (Θ1) the substrings 131, 332, 232, 122, and 112

represent h1, r1
1 , γ1

1 , r2
1 and γ2

1 respectively. The versions of elements chosen to fill

Chapter 7 Multi-State Systems with Multi-Level Protections

 180

positions 1, 2 and 3 of the first component are according to h1 1, 3 and 1 respectively.

According to r1
1 elements located at positions 1 and 2 belong to PG31

1, element located

in position 3 belongs to PG21
1 (PG11

1 is empty). According to γ1
1 the PG21

1 has

protection method 3 and the PG31
1 has protection method 2 (the first number of γ1

1 is

ignored because PG11
1 is empty). Substring r2

1 defines the distribution of first-level

PGs among the PGs of the second level. According to r2
1 PG21

1 and PG31
1 belong to

PG22
1

 (fist element of r2
1 is ignored because PG11

1 is empty). PG12
1 and PG32

1 remain

empty. The protection method for PG22
1 according to second element of γ2

1 is 1 (the

first and third elements of γ2
1 are ignored).

In the second part of string (Θ2) substrings 202, 111, 123 represent h2, r1
2 , γ1

2

respectively. Two elements of version 2 are chosen to fill positions 1 and 3 of the

second component according to h2 (0 corresponds to absence of any element).

According to r1
2 elements located at positions 1 and 3 belong to PG12

2
 (PG22

2 and

PG32
2 remain empty). According to γ1

2 the PG12
2 has protection method 1 (the second

and third numbers of γ1
2 are ignored because PG22

2 and PG32
2 are empty).

In the last part of string (Θcomp) substrings 12, 02, 11, 22 represent r1
comp , γ1

comp,

r2
comp and γ2

comp respectively. According to r1
comp component 1 belongs to PG11

comp and

component 2 belongs to PG21
comp. According to γ1

comp the PG11
comp has no protection

(protection method 0) and the PG21
comp has protection method 2. According to r2

comp

both PG11
comp and PG21

comp belong to PG12
comp. According to γ2

comp this PG has

protection method 2 (the second number of γ2
comp is ignored because PG22

comp is

empty).

Chapter 7 Multi-State Systems with Multi-Level Protections

 181

One can see the structure of the system encoded by the given string in Fig. 1. (In

this figure each system element is marked by its version number, protection denoted by

ellipse numbered according to chosen protection method).

Fig. 7.1. MSS structure encoded by the integer string.

7.4.3. Solution decoding procedure

The following procedure determines the fitness value for an arbitrary solution defined

by integer string Θ.

 Assign 1 to the number of component m. Assign 0 to the total cost CMSS.

Decode substring Θm and obtain versions of elements belonging to the

component m, structure of protection groups ang corresponding protection methods at

each protection level. Determine cost and performance distributions of elements in

accordance with their versions and define d-functions of these elements using Eq. (7.9)

and (7.11).

Calculate the cost of elements and protections in the component m using Eq. (7.3)

and (7.4) and add this cost to CMSS.

1

1

3

3

1
2

2

2

21
2

Chapter 7 Multi-State Systems with Multi-Level Protections

 182

For each protection level e (from e=1 to e=Lm), obtain d-functions of PGs and

replace them by equivalent elements using operators (7.10), (7.12) and (7.14).

Obtain the d-function of the m-th component using Eq. (7.12) with operator (7.10)

over d-functions of nonempty PGs of Lm level.

Increment m and if m≤M return to step 2.

Decode substring Θcomp and obtain structure of protection groups ang

corresponding protection methods at each protection level.

Calculate the cost of protections of serially connected components and add this

cost to CMSS.

For each protection level e (from e=1 to e=Lcomp), obtain d-functions of PGs and

replace them by equivalent elements using operators (7.16), (7.12) and (7.14).

 Obtain the d-function of the entire MSS using Eq. (7.12) with operator (7.16)

over d-functions of nonempty PGs of Lcomp level.

 Evaluate the system survivability SMSS for the given demand w using Eq. (7.8)

over the first u-function of d-function corresponding to the entire MSS.

 So that the genetic algorithm will search for the solution with minimal total cost

and with survivability not less than the required value S*, evaluate the solution quality

(fitness) Λ as follows:

 Λ=a⋅exp{-b⋅[CMSS+λ⋅min(S*-SMSS,0)]}, (7.20)

where λ is a sufficiently large penalty and a and b are positive constants. Note

that for solutions with SMSS≥S*, the fitness of the solution depends only on the system

cost.

Chapter 7 Multi-State Systems with Multi-Level Protections

 183

7.4.4. Crossover and mutation procedures

The crossover operator is aimed at producing a new solution (string) which inherits

some properties of both parent solutions by combining parts of their strings.

String elements belonging to the fragment defined by two randomly chosen

crossover sites are copied from the first parent and elements located out of the fragment,

from the second parent.

The following example presents offspring string, obtained by the procedure:

 First parent: 3 0 5 |1 4 7 2 0 1 | 1 0 0 0 2

 Second parent: 2 0 1 | 6 0 2 1 4 3| 4 9 1 3 0

 Crossover offspring: 2 0 1 |1 4 7 2 0 1 |4 9 1 3 0

Mutation is aimed at maintaining a diversity of solutions by providing slight

changes in the structure of the offsprings obtained by the crossover. This procedure

avoids premature convergence to a local optimum and facilitates jumps in the solution

space. The mutation operator replace a randomly chosen element of the solution

encoding string by the random number belonging to the same range.

7.4.5. Choice of the GA parameters

In order to select the GA parameters that provide the fastest algorithm convergence to

the best solutions the tests were performed on a set of 10 randomly generated problems

with 5≤M , 20
1

≤∑
=

M

m
mH , 5

1
≤+∑

=
comp

M

m
m LL , 15

1
≤+∑

=
comp

M

m
m γγ . According to the

Chapter 7 Multi-State Systems with Multi-Level Protections

 184

methodology suggested in Levitin and Lisnianski (2003), the fitness of the obtained

solutions and the GA running time were compared. The chosen combination the GA

parameters is Ns=200, Nrep=2000, Nc=100, Pmut=1.

7.5. Illustrative Example

In order to test the suggested algorithm it was compared with the procedure suggested

in Levitin and Lisnianski (2003) for finding optimal structure of an MSS with single

level protection. In illustrative example presented in Levitin and Lisnianski (2003) the

series-parallel multi-state system (power substation) was considered. The parameters of

this system are M=4, H1=6, H2=3, H3=H4=4, L1=L2=L3=L4=1, Lcomp=0, Γ1
1=3, Γ1

2=1,

Γ1
3=3, Γ1

4=2.

7.5.1. Minimal cost MSS with single-level protection

The cost, performance rate and availability of elements that can be included in each

component are presented in Table 7.1. (All the elements have two states: normal

functioning with performance g and total failure with performance 0. The probability of

normal state is A, the failure probability is 1-A). For the sake of simplicity the cost of

protection for each PG does not depend on the number of elements it contains, but does

depend on the method of protection. The descriptions and costs of different protection

levels available for each component and the vulnerabilities corresponding to these

protection levels are presented in Table 7.2. The system should meet demand w=5.

Chapter 7 Multi-State Systems with Multi-Level Protections

 185

Table 7.1. Parameters of available elements

No of
Component

No of
Version

g A ε

 1 1.2 0.97 3.1
 2 1.6 0.92 4.2
1 3 1.8 0.94 4.7
 4 2.0 0.93 5
 5 5.0 0.86 11
 6 5.0 0.91 14.5
 1 1.8 0.98 3.1
2 2 3.6 0.98 6
 3 5.4 0.96 8.8
 1 1.4 0.9 6.6
3 2 1.6 0.93 7
 3 1.8 0.91 7.9
 4 2.0 0.95 9.4
 1 1.4 0.86 2.6
4 2 2.6 0.91 6
 3 3.8 0.93 7.9
 4 5.0 0.85 9.4

Table 7.2. Characteristics of available protection for single-level protection

example

No of
Component

Protection
method γ

Protection
vulnerability v

Protection
cost c

 1 0.35 0.1
1 2 0.15 4.1
 3 0.05 15.7
2 1 0.01 1.0
 1 0.60 1.0
3 2 0.35 5.5
 3 0.15 17.0

1 0.10 1.1
4 2 0.03 4.2

Chapter 7 Multi-State Systems with Multi-Level Protections

 186

The structure optimization problem for desired system survivability S*=0.99 was

solved in Levitin and Lisnianski (2003) for E1=E2=E3=E4=10 in about 75 minutes (on

Pentium II PC). The obtained cost was CMSS=260.8. The improvement of this solution

can be achieved by increasing the possible number of elements in each component, but

this increases the length of the solution encoding string and slows the GA convergence.

The further increase of the string length was impossible given the reasonable time

limitation. Solving the problem using the five-processor GA on Pentium IV PC took

just 238 seconds for E1=E2=E3=E4=12. The total cost of the obtained solution

(presented in Fig. 7.2) is CMSS=260.4.

3
2

1
1

1
1

1
1

1
1

1
1

1
1

3
1

4
1

4
2

4
2

4
2

1
1

1
1

1
1

1
1

1
1

3
3

3
2
2

3
3

3
2
2

4
3

2
2

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

Component 1

Component 2

Component 3 Component 4

S*=0.99, CMSS=260.4, SMSS=0.9900

Fig. 7.2. Lowest cost MSS with single-level protection for S*=0.99.

Chapter 7 Multi-State Systems with Multi-Level Protections

 187

7.5.2. Minimal cost MSS with multi-level protection

Consider now the same example and assume that the elements within each component

can have two level protections (different types of protection shields and casings).

Assume also that the entire components can be allocated within protecting

constructions and distributed among different protected sites. While the cost and

vulnerability of the shields and the casings do not depend on the number of protected

elements, the number of protected components strictly affects the protection cost and

vulnerability. The parameters of the available protections within the components are

presented in Table 7.3. The parameters of protections of the groups of entire

components are presented in Table 7.4.

Table 7.3. Characteristics of protections available within components

No of
Component

Protection
level e

Protection
method γ

Protection
vulnerability v

Protection
cost c

 1 0.4 0.2
 1 2 0.3 2.1
1 3 0.1 10.7
 1 0.35 0.1
 2 2 0.15 4.1
 3 0.05 15.7
2 1 1 0.1 1.2
 2 2 0.01 1.0
 1 0.5 2.0
 1 2 0.37 4.5
3 3 0.13 12.0
 1 0.60 1.0
 2 2 0.35 5.5
 3 0.15 17.0
 1 1 0.2 1.5
4 2 0.05 4.7
 2 1 0.10 1.1
 2 0.03 4.2

Chapter 7 Multi-State Systems with Multi-Level Protections

 188

Table 7.4. Characteristics of protections available for entire components

Protection
level e

Protection
method γ

No of protected
components

Protection
vulnerability v

Protection
cost c

 1 0.42 2.0
 1 2 0.44 2.2
 3 0.50 2.9
 4 0.55 3.5
 1 0.23 4.1
1 2 2 0.25 4.6
 3 0.30 6.4
 4 0.35 7.3
 1 0.17 5.4
 3 2 0.19 6.0
 3 0.25 7.7
 4 0.30 8.5
 1 0.38 4.0
 1 2 0.39 4.2
 3 0.40 4.3
2 4 0.41 4.4
 1 0.33 8.1
 2 2 0.35 8.6
 3 0.38 9.4
 4 0.39 10.3

The structure optimization problem was solved for four different values of

desired system survivability }99.0,95.0,90.0,85.0{* ∈S . One can see the obtained

solutions in Figs. 7.3-7.6, where the system elements are marked with their version

numbers and each protection group is encased into an ellipse numbered in accordance

with the level and the chosen method of protection (the marks has the form

level/method). Ellipses corresponding to the different protection levels have different

types of lines (solid lines represent the protections for elements within the components,

and dashed lines represent the protections out of the entire components).

Chapter 7 Multi-State Systems with Multi-Level Protections

 189

4
2/1

4
1/1

3

1

2

2/1

2

3

3

1
2/1

1

1

1

2/1

2

2

2

1/1

1/2 2/1

Component 2Component 3 Component 4Component 1

S*=0.85, CMSS=91.9, SMSS=0.8519

Fig. 7.3. Lowest cost MSS with multilevel protection for S*=0.85.

4

2/1

4 1/1

3

1

3

2/1

3

2

2

1
2/1

1

1

1

1/1

1
1
1

2/1
1/3

2/1

Component 2Component 3 Component 4Component 1

S*=0.90, CMSS=96.7, SMSS=0.9006

1/1 1/1

1

1
1

1

Fig. 7.4. Lowest cost MSS with multilevel protection for S*=0.90.

Chapter 7 Multi-State Systems with Multi-Level Protections

 190

1/1

1/14
2/1

3

3

2/1

3
3
2

2/1

2

2

1

1/1

1
1
1

2/11/3

1/1

Component 2Component 3 Component 4Component 1

S*=0.95, CMSS=117.9, SMSS=0.9501

1

2

2

3
2

2/1
1/1

2 1/1
2/1

2

2/1

Fig. 7.5. Lowest cost MSS with multilevel protection for S*=0.95.

1/3

2

2/2

2
3
4

2/1
1
1
1

1/1

1
1
1

1/1
1/3 2/1

Component 2Component 3 Component 4Component 1

S*=0.99, CMSS=154.5, SMSS=0.9901

1

1

4

3
1/1

1
1/1

2/1

4

1/1

1/1
2/1

4

4

4

1/1

1/1
2/2

2/1

2
1 3

1
1

Fig. 7.6. Lowest cost MSS with multilevel protection for S*=0.99.

In this example, a five-processor GA was used on Pentium IV PCs with the following

Chapter 7 Multi-State Systems with Multi-Level Protections

 191

combination of the parameters: Ns=200, Nrep=2000, Nc=100, Pmut=1, a=500, b=0.01 and

λ=10000. The running time for each one of the solved problems did not exceed 2000

seconds.

7.5.3. Computational effort and algorithm consistency

In order to show the impact of the number of processors on the running time of the

multi-processor GA, we conducted an experiment on the problem presented in section

7.2 for 99.0* =S . This problem was solved by Gas with diferent number of parallel

processors N. The GA running times T (obtained as average of 10 GA runs for each

number of processors) are presented in Fig. 7.7. This curve is compared with the

function T’=5123/N corresponding to the perfect work sharing among the processors.

The actual running time of N-processor GA takes more than T’. This can be explained

by the fact that part of the algorithm is performed by the central server and the

communication among the server and the processors take some additional time. The

GA of running time curve trends to a certain constant value when the number of

processors increases. This means that using more than 7-9 the processors cannot

significantly improve the GA efficiency.

Chapter 7 Multi-State Systems with Multi-Level Protections

 192

0

2000

4000

6000

1 2 3 4 5 6 7 8 9 10

No of processors (N)

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

T

T'

Fig. 7.7. Running time vs. number of processors.

To demonstrate the consistency of the suggested algorithm, GA was repeated 10 times

with different starting solutions (initial population) for each one of four problems with

different values of S*. The coefficient of variation was calculated for fitness values of

best-in-population solutions obtained during the genetic search by GA search processes.

The variation of this index during the GA proceeding is presented in Fig. 7.8. One can

see that the standard deviation of the final solution fitness does not exceed 4% of its

average value.

Chapter 7 Multi-State Systems with Multi-Level Protections

 193

0

0.02

0.04

0.06

0.08

0.1

0.12

0 50 100 150

No of crossovers (Thousands)

C
o
e
f
f
i
c
i
e
n
t

o
f

v
a
r
i
a
t
i
o
n

S=0.85 S=0.90 S=0.95 S=0.99

Fig. 7.8. Coefficient of variation vs. number of crossovers.

7.6. Conclusion

In this chapter, we formulated the problem of finding structure of series-parallel MSS

with multi-level protections in order to achieve a desired level of system survivability

by the minimal cost. This chapter also describes a straightforward recursive algorithm

for evaluating the survivability of a series-parallel MSS with multi-level protections.

Then, a multi-processor GA was developed for effectively solving the problems, where

a new encoding scheme was proposed. Finally, two numerical examples were

illustrated.

However, this chapter assumed that the failures of different groups of elements

were independent from one another, which is not always true in practice. The

correlation among different failures should be considered in future research, see e.g.

Chapter 7 Multi-State Systems with Multi-Level Protections

 194

Levitin (2001).

Moreover, this chapter just studied the series-parallel structure. In fact, those

elements may be connected or distributed according to other arbitrary topologies, such

as bridge topology etc. Hence, the problems of other generally distributed systems are

also worth further studying.

Anyway, this chapter extended the previous research (Levitin and Lisnianski,

2003) into a more general and practical case by introducing the multi-level protections.

The general steps of our multi-processor GA can also be implemented in other similar

problems so that the effectiveness of GA can be improved without reducing the quality

of solutions.

Chapter 8 Optimal Testing Resource Allocation

 195

CHAPTER 8

 OPTIMAL TESTING

RESOURCE ALLOCATION

8.1. Introduction

Today’s software development is no longer an isolated task of a single programmer. Large

systems are usually developed in a multi-language environment and run simultaneously on

various platforms. Software development is a very complex process involving various

factors. In Zhang et al. (2001), thirty-two environmental factors are defined and a survey

was launched to investigate the impact of these factors on software reliability assessment.

Tian (1999) describes how to establish predictive linkage between software reliability and

other environmental factors which can be measured and controlled early in the development

cycle, and using such predictive relations to drive continuous reliability improvement. The

software-testing resource is a kind of entities, which can be measured and controlled early

in the development cycle. Thus, for the development of large and complex systems, how to

allocate the limited software-testing resource so that the overall reliability of the system is

maximized is an important decision-making problem.

 Testing-resource usually refers to the resource expenditures spent on software

testing, e.g., man-power and available time, etc. During the testing stage, a project manager

Chapter 8 Optimal Testing Resource Allocation

 196

often faces various problems such as how to allocate available time (the time before

deadline) among the modules and how to assign personnel, etc. In order to combine these

two kinds of resources (man-power and available time) together, we define a term called

total testing time that is calculated by multiplying the number of personnel with the

available time. Each unit of the total testing time represents the resource of one person to

work for one unit of time. For example, if ten persons are prepared to test the software and

the deadline for testing is 1000 hours from now on (available time), the total testing time is

calculated by 10×1000=10000 (hours). Here the testing-resource is referred to as total

testing time and we use the term testing-resource as an exchangeable one with the term total

testing time.

 In this chapter, we study the testing resource allocation problems on both

independent modules and dependent versions of software. Section 8.2 introduces the

optimal testing resource allocation on independent modules with general parallel-series

structures. Then, section 8.3 further extends the resource allocation problem into a more

practical case by considering the failure correlation among different modules.

8.2. Testing Resource Allocation on Independent Modules

It is well known that in the development process of a computing system, the testing phase is

a costly and time-consuming phase (Yamada et al., 1995). During the unit-testing phase, all

the testing activities of different modules are competing for the limited testing-resource.

Thus, a critical problem is how to optimally allocate the total available testing-resource

among software modules so that to achieve high reliability with low cost.

Chapter 8 Optimal Testing Resource Allocation

 197

For the optimal testing-resource allocation problem on independent modules, the

following assumptions are made, which are valid in this section:

(a) n modules in a software are independent during the unit-testing phase

(b) After iT unit time of testing, the failure rate of module i is)(ii Tλ .

The reliability of module i is

{ }xTTxR iiii)(exp)|(λ−= , 0≥x (8.1)

where x is the operational time after testing. Note that in the above, we have used the

operational reliability definition (Yang and Xie, 2000) as it is more common that after the

release, there will be no reliability growth, and hence the failure rate will remain constant

equal to)(ii Tλ .

8.2.1. Optimization model of the parallel-series modular software

The Fig. 8.1 is the structure of a mixed Parallel-Series modular software system. There are n

groups of parallel modules and m serial modules.

P11

P12

11kP

Pn1

Pn2

nnkP

S1 Sm

Fig. 8.1. The structure of a parallel-series modular software system.

Chapter 8 Optimal Testing Resource Allocation

 198

8.2.2. Single objective of maximizing reliability

The reliability for this parallel-series modular software system is calculated as following

equation

[] ∏∏ ∏
== =

−−=
m

j
jj

n

l

k

i
lili TxRTxRTxR

l

11 1

)|()|(11)|((8.2)

where iT is the testing time allocated to module i. Then, the following optimization model

is to maximize system reliability:

Maximize [] ∏∏ ∏
== =

−−=
m

j
jj

n

l

k

i
lilijli TxRTxRTTxR

l

11 1

)|()|(11),|((8.3)

Subject to ∑ ∑∑
= ==

≤+
n

l

m

j
j

k

i
li TTT

l

1 11
 (8.4)

 0, ≥jli TT

in which T is the total resource of time consuming in every modules of parallel group (liT)

and serial modules (jT).

8.2.3. Multiple objectives of maximizing reliability and minimizing cost

Also, note that in the development of a software system, we consider not only the system

reliability but also the testing cost in the process. Hence, to minimize the cost in testing

period, is another important objective to reach.

Assume that the cost function of Module i is)(ii RC in which iR is the

reliability for the i-th module. The total cost in the parallel-series modular software system

of Fig. 8.3 will be

Chapter 8 Optimal Testing Resource Allocation

 199

∑∑ ∑
= = =

+=
n

l

k

i

m

j
jjlilijli

l

RCRCRRC
1 1 1

)()(),((8.5)

where

∑
=

lk

i
lili RC

1
)(is the total cost of the l-th groups of parallel modules

∑∑
= =

n

l

k

i
lili

l

RC
1 1

)(is the total cost of all the n groups of parallel modules, and

∑
=

m

j
jj RC

1
)(is the total cost of all the series modules

Here, we adopt the cost function for individual module i proposed in Kumar and Malik

(1991):

)exp()(iiiiii DRBHRC −= (8.6)

where Hi, Bi and Di are constants and Ri is the individual module software reliability

achieved at the end of testing. These parameters are explained in Kumar and Malik (1991).

Briefly, the cost is exponentially increasing to the improved reliability of a single module.

 The optimal testing-resource allocation problem can then be formulated with two

objectives as

 1) Maximize [] ∏∏ ∏
== =

−−=
m

j
jj

n

l

k

i
lilijli TxRTxRTTxR

l

11 1

)|()|(11),|((8.7)

 2) Minimize ∑∑ ∑
= = =

+=
n

l

k

i

m

j
jjlilijli

l

RCRCRRC
1 1 1

)()(),((8.8)

Subject to ∑ ∑∑
= ==

≤+
n

l

m

j
j

k

i
li TTT

l

1 11
 (8.9)

 0, ≥jli TT

in which T is the total resource of time consuming in every modules of parallel group (liT)

and serial modules (jT).

Chapter 8 Optimal Testing Resource Allocation

 200

 For mixed parallel-series modular software, it is difficult to solve them, so the

heuristic algorithms such as genetic algorithm, simulation annealing or Tabu search can be

applied. Dai et al. (2003b) presented a genetic algorithm to solve the above multi-objective

allocation problems. Here is an example of this type illustrated with that genetic algorithm.

Example 8.1. The structure of this 8 modules example is assumed as Fig. 8.2. We use the

GO model for illustration. The mean value function is:

)]exp(1[)(tbatm iii −−= , 8,...2,1=i (8.10)

 1

 2

 3

 4

 5

 6

 7 8

Fig. 8.2. The structure of a complex Parallel-Series modular software system.

It is assumed that the total testing time is 23000 hours and x is 200 hours to complete the

given task. The values of parameters and optimal solution out of the genetic algorithm are

given in the following Table 8.1 where *
iT (i=1,2,…,8) is the optimal allocated testing

time on different modules.

Chapter 8 Optimal Testing Resource Allocation

 201

Table 8.1. The parameters of parallel-series modular software system.

Modules
ia ib iH iB iD *

iT

1 210 0.00051 3.493 6.011 4.97 93.47
2 199 0.00059 3.503 6.12 4.93 10522
3 453 0.00048 3.498 6.012 4.995 0
4 345 0.00058 3.498 6.001 4.997 54.11
5 258 0.00063 3.499 6.002 4.995 60.48
6 221 0.00074 3.5015 6.15 4.97 8822.8
7 33.99 0.00579 3.495 6.01 4.98 2190.83
8 32.32 0.00593 3.500 6.005 4.01 1256.31

8.3. Testing Resource Allocation on Dependent N Versions

A method to increase the reliability of safety critical software is the N-version programming

technique, e.g. Avizienis (1985). The N-version programming technique involves the

execution of multiple, independently generated, versions of a single program. These

versions receive identical input and each produces its own version of output. A voting

scheme matches and tests the outputs, and then determines a final result. In the analysis of

this type of systems, a common assumption is the independence of different versions, which

was discussed as the independent parallel modules by the previous section.

However, failures of different versions are usually correlated, even though they

could have been developed individually. It is shown in Knight and Leveson (1986) that there

are factors that could affect the behavior of different versions in the same way. Different

versions of software may have used some similar subroutines or functions and sometimes

they may even contain the same part of codes, especially for object-oriented programming.

Hence, certain external or internal reasons may cause part or all of the N versions to fail

Chapter 8 Optimal Testing Resource Allocation

 202

together due to the Common Cause Failures, see e.g. Kvam and Miller (2002).

 Thus, when we allocate the testing resource/time on the N-version software, the

correlated parts among different versions have to be considered because improving the

reliability of one version by testing/debugging may also cause other correlated versions to

change simultaneously. Such phenomenon often occurs when the faults that cause the

common cause failures of those correlated versions are debugged, such as removing the

faults in a subroutine simultaneously called by different versions.

 In the following subsections, we first present a model to approach the reliability

function of the dependent N versions of software. Then, based on the model, optimal

allocation problem of the testing resource/time on the dependent N versions is modeled and

solved.

8.3.1. Reliability analysis for dependent N-version programming

The N-version programming involves the execution of multiple versions of software, which

are possibly dependent on one another by certain correlated failures. These versions receive

identical input and each produces its own version of output. Some inputs may cause part or

all of the N versions to fail together due to the so called Common Cause Failure.

 A voting scheme matches and tests the outputs, and then determines a final result.

There are various voting schemes. We implement here the voting scheme of “selecting the

first qualified result”, which is explained in details in Belli and Jedrzejowicz (1991). In this

voting scheme, if any one version among the N versions of software passes a test, the voter

will select it as the final result no matter whether the other versions are qualified or not. In

Chapter 8 Optimal Testing Resource Allocation

 203

other words, unless all of the N versions fail, the software is still reliable, which is in fact a

1-out-of-N voting system. However, unlike the case with parallel redundant system for

which components can be assumed to be independent, the dependence among the N version

software is an important issue here.

Decomposition by multi-component modeling

In the N-version software, any j versions may fail at the same time because of certain

common cause failures. For example, if j versions of the N-version software share the same

software packages or subroutines, these j versions will fail simultaneously when certain

failure occurs in the common parts. We define a parameter for such failure, called

dependence level, by the number of simultaneously failed versions caused by the failure.

We denote kjM , as the “components” that correspond to different common cause

failures, where j (j=1,2,…,N) is the dependent level that correlates any j out of N versions

and k (k=1,2,…, jNK ,) represents the k-th component among all the j-th dependent

components (•jM), where

=

j
N

K jN ,

If all those failures with the j-th dependent level are numbered by k (k=1,2,…, jNK ,), kjM ,

can represent all the failures with different dependent levels, respectively. The total number

of all “components” kjM , (j=1,2,…,N; k=1,2,…, jNK ,) is equal to

12
11

, −=

= ∑∑

==

N
N

j

N

j
jN j

N
K

 The N dependent versions of software can be decomposed into the mutually

exclusive 12 −N components. Note that the N versions are not physically separated into

Chapter 8 Optimal Testing Resource Allocation

 204

the 12 −N components; the correlated parts objectively exist and our model merely divides

them logically into exclusive components to consider their effects. An example of

three-version programming is illustrated below.

Example 8.2. Three dependent versions are correlated as Fig. 8.3 and can be decomposed

into 7 mutually exclusive components. kM ,1 (k=1,2,3) denote the failures that affect only

the k-th version without influence on the other two versions; kM ,2 (k=1,2) denote the

common cause failures that correlate the k:th and (k+1):st versions without influence on the

other one version; 3,2M represents the failure that correlates the first and the third versions;

and 1,3M denotes the failures that correlate all the three versions.

Version 1 Version 2

Version 3

M21

M23 M22

M31

M11 M12

M13

Fig. 8.3. Three dependent versions of software.

After separating the three dependent versions into 7 independent components, the reliability

block diagram for those components can be built as shown in Fig. 8.4.

Chapter 8 Optimal Testing Resource Allocation

 205

M11

M12

M13

M21

M22

M23

M31

Fig. 8.4. Reliability block diagram of the decomposed components in Fig. 8.3.

The reliability block diagram is complex containing not only many parallel-series units but

also some bridge structures. Moreover, the diagram will become much more complicated

for four or more versions. Hence, the reliability estimation for dependent N-version

programming is not straightforward. In order to analyze the system reliability based on our

above model, a general approach is presented below.

System reliability function

The reliability of a component kjM , is defined as the probability for the corresponding

common cause failure not to occur, which is denoted by)(, tR kj . The software reliability of

the dependent N-version programming is defined as the probability that at least one version

of software can achieve the task successfully. The software reliability function at time t can

be expressed as

 =)(tR Pr(at least one version of software is reliable at time t) (8.11)

Let)(tEi represent the event in which the i-th version of software is reliable to

successfully achieve the given task at time t, (i=1,2,…,N). The software reliability function

for the dependent N-version programming can then be written as

Chapter 8 Optimal Testing Resource Allocation

 206

)(tR = })(Pr{
1
U
N

i
i tE

=

 (8.12)

By using conditional probability, the events considered in the above equation can be

decomposed into mutually exclusive events as

)()()(),(Pr{)}(Pr{

})()(Pr{)}(Pr{)}(Pr{)(

121

2121

tEtEtEtEtE

tEtEtEtEtR

NNN −+

++=

LL
 (8.13)

where })()(Pr{ 21 tEtE denotes the conditional probability that the first version of the

software fails given that the second version of the software is reliable at time t.

 Hence, each term in the software reliability expression of the above equation can

be evaluated in terms of the probability of two distinct events. The first event indicates that

the i-th version of software iV is reliable while the second event indicates that all of its

previous versions mV (m=1,2,…,i-1) fails given that iV is reliable.

The probability of the first event,)}(Pr{ tEi , is straightforward. It can be calculated

by multiplying the reliability functions of all the components that will make the i-th version

iV fail as

)}(Pr{ tEi = ∏
∈ kji MV

kj tR
,

)(, (8.14)

where kji MV ,∈ means that the i-th version of software iV will fail if the component

kjM , fails.

 The probability of the second event, })()()(),(Pr{ 121 tEtEtEtE ii−L , is not as

straightforward to compute. It can be done in the following two steps:

Step 1. select out all those components that can make any version(s) among the

121 ,...,, −iVVV fail while iV is still reliable;

Step 2. use binary search tree (Johnsonbaugh, 2001: pp. 349-354) to find out all the

Chapter 8 Optimal Testing Resource Allocation

 207

exclusive combinations, which can make all the i-1 versions 121 ,...,, −iVVV fail

among those components selected by the previous step 1;

Step 3. sum up all the probabilities of those exclusive combinations to obtain the

probability of })()()(),(Pr{ 121 tEtEtEtE ii−L .

After computing })()()(),(Pr{ 121 tEtEtEtE ii−L and)}(Pr{ tEi , i=1,2,…,N, we can obtain

the software reliability function for the dependent N-version programming by substituting

them into Eq. (8.13). For the whole approach in deriving the dependent N-version

programming reliability, an example of aircraft landing is illustrated below.

Example 8.3. Suppose that three teams will compose three versions of a program to control

the aircraft landing. If any one version is working, the aircraft can land successfully. These

three versions may depend on one another through certain common cause failures. Those

failures may occur on the common parts of some versions, such as using the same external

electrical power, integrating the same software packages, sharing identical subroutines and

so on.

 As in the approaches presented above, the dependent three version software is

first decomposed into its individual components. As shown in example 8.2, The dependent

three versions can be decomposed into 7 components corresponding to different common

cause failures as shown in Fig. 8.4. kjR , denotes the reliability function of kjM , .

Then, the software reliability is derived by applying the approach presented above,

and then substitute into Eq. (8.13) to get

)](1[
)1()(

121112112131232213

11233122211231232111

RRRRRRRRR
RRRRRRRRRRtR

−+−+
−+=

 (8.15)

Chapter 8 Optimal Testing Resource Allocation

 208

8.3.2. Optimal testing resource allocation

Based on the above reliability model and approaches for the dependent N-version software,

the optimal testing resource allocation problem on those dependent versions can be solved.

One optimization problem for testing resource allocation can be formulated to

minimize the total cost for the N versions, when constrained by a fixed testing time budget T

hours. Let it be the testing time allocated on the i-th version iV (i=1,2,…,N), and the

total testing time is less than T The allocation of testing time significantly affects the total

cost. There are mainly two parts in the cost:

1) Test duration cost tC : Here, the N versions of the software can be tested respectively

given their allocated testing time it and their expected cost per unit of testing time ic

(i=1,2,…N). The test duration cost can be expressed as

 ∑
=

=
N

i
iit tcC

1
 (8.16)

where iitc is the expected cost in testing the i-th version.

2) Risk cost rC : this is the cost incurred by an unreliable system, see e.g. Pham and

Zhang (1999). This can be expressed as

)1(RdCr −= (8.17)

where d is the expected cost if the system fails and 1-R is the probability for the

system to fail.

Chapter 8 Optimal Testing Resource Allocation

 209

The total cost is the summation of the above two parts.

Denote kjt , the testing time for component kjM , . During the testing period, the

component kjM , continues running and risking the failures unless all the versions related

to kjM , fail. Hence, the testing time of kjt , can be calculated by

)(max, mMmkj tt
jk∈

= (8.18)

where jkMm∈ means version m is related to component kjM , . Hence, the reliability

function of the component kjM , can be written as)|(,, kjkj txR where x is the operation

time after the test. The whole software reliability function)|(txR
r

 can then be derived

through our approach presented above, where t
r

={ }Niti ,...2,1= . The optimization problem

to minimize the total cost by finding a set of testing time allocations t
r

, can be formulated

by

Objective: Minimize [])|(1)(
1

txRdtcCCtC
N

i
iirt

rr
−+=+= ∑

=

 (8.19)

Subject to: ≤∑
=

N

i
it

1
T (8.20)

0≥it (i=1,2,…,N) (8.21)

Solving this problem is also difficult, so heuristic algorithms need be implemented. An

example is illustrated where a genetic algorithm is used here to solve it.

Example 8.4. Continuing with Example 8.3 (the air-craft landing example), suppose that

the testing resource budget is 2000 hours of testing time, i.e. T=2000, that the testing cost

per hour on the three versions are 3.01 =c , 2.02 =c , 28.03 =c , and that the risk cost

Chapter 8 Optimal Testing Resource Allocation

 210

=d 10000 if the aircraft cannot land successfully. The allocation problem becomes how to

optimally allocate the 2000 hours on the three versions in order to minimize the total cost.

 We assume common cause failures arriving on each component satisfy the classic

NHPP model of Goel and Okumoto (1979). With this GO-model, the failure rate function

for the components kjM , (j=1,2,3 and k=1,2,…, jK ,3) is modeled with:

)exp()(,,,, tbbat kjkjkjkj −=λ (8.22)

If the testing is stopped after t units of time, the reliability for a mission of duration t is

given by (Yang and Xie, 2000)

 })(exp{)|(,, xttxR kjkj ⋅−= λ (8.23)

The values of the parameters kja , and kjb , in the GO-model are given in Table 8.2 for

this example.

Table 8.2. parameters of GO-model for each component.

Component
1,1M 2,1M 3,1M 1,2M 2,2M 3,2M 1,3M

kja , 16.91 95.52 21.56 15.80 22.45 26.23 6.25

kjb , 0.0059 0.0006 0.0041 0.0028 0.0021 0.0022 0.0056

Then, the reliability for the dependent three-version software can be obtained through Eq.

(8.15). Substitute the parameters of Table 8.2 into Eq. (8.23) to compute the reliability

functions of all the components, and then substitute them into Eq. (8.15) to compute the

software reliability by assuming x=5 (i.e. it will take 5 hours for the aircraft to land).

 To solve the optimization problem as Eqs. (8.19-8.21), a genetic algorithm is

used to get the solution =t
v

{638.2, 1361.8, 0}. Thus, the best allocation of the 2000 hours

Chapter 8 Optimal Testing Resource Allocation

 211

should be to test: the first version for 638.2 hours; the second for 1361.8 hours and the

third for 0 hour. The total expected cost)(tC
r

=579.48 and the software reliability

)|5(tR
r

=0.988434.

Chapter 9 Conclusions and Future Work

 212

CHAPTER 9

 CONCLUSIONS AND FUTURE WORK

This chapter concludes this dissertation with a summary and assessment of what this

research has achieved in terms of its contributions to various related disciplines.

Comments on the limitations of this work will be given and together with indications on

how they may be addressed or resolved in future work.

 This thesis mainly studied the reliability of various computing systems and

some important issues related to the models and analysis. This work contributed much

in the fields of parallel homogeneous distributed systems, centralized heterogeneous

distributed systems, grid computing systems, multi-state systems, multi-type failures,

failure correlations, multi-level protection, and testing resource allocation.

 Chapter 3 developed a Markov model to analyze the reliability of the parallel

homogeneous distributed systems, which help analyze the combined

software/hardware system availability. Further, this work studied the imperfect

debugging process of this type of system, where a more general Markov model was

constructed. Although the model was more complex than that without considering

Chapter 9 Conclusions and Future Work

 213

imperfect debugging, the estimation of some important measures from this imperfect

debugging model is easier and more reasonable than from the model with perfect

debugging process. However, in those models, there are some unrealistic assumptions

which should be relaxed in future research. The assumption of independent failures

among different hosts and the uncorrelated faults between software and hardware of the

same host might be the most critical assumption, because the failures may be dependent

in practice, which has been revealed by the experiments of Knight and Leveson (1986).

Another assumption of homogeneous property can also be relaxed to further study

heterogeneous systems with various brands of hosts and different versions of software.

Thus, Chapter 4 studied the centralized heterogeneous distributed system

(CHDS) in order to relax the above homogeneous assumption, where the concept of

distributed service reliability was presented as the reliability from a service point of

view. This measure faces directly to customers/users. A time-dependent Markov model

was constructed to analyze the control center of the systems. Moreover, based on the

model, many practical issues such as the determination of release time to achieve a

service reliability requirement, and the sensitivity of model parameters were conducted.

However, the sub-distributed systems of the CHDS inherited one assumption of the

Kumar et al. (1986)’s model: “the operational probabilities of different nodes and links

in the sub-distributed systems are of constant values.” Therefore, it is worthwhile

further to relax the assumption in future study.

 Grid computing system is different from conventional distributed computing

systems by its focus on large-scale resource sharing, where processing elements and

Chapter 9 Conclusions and Future Work

 214

information communication have significant influence on grid computing reliability.

Chapter 5 described the property of the grid computing systems and presented

algorithms to analyze the grid reliability on some important components of the grid,

such as the resource management system, the network, the programs and the resources.

However, this work assumed that the failures occurring on the network satisfying the

homogeneous Poisson processes. This assumption may not always be true. For example,

during the testing phase, the failure rate should decrease if the software or hardware

faults in the system are being debugged. Other reliability analysis methods or models

can be further studied in solving the problem of non-homogeneous Poisson process

(NHPP) or other kinds of processes. If the grid becomes complicated with many nodes,

links, programs and resources, the effectiveness of our algorithms to evaluate grid

reliability should be concerned. Thus, improving the effectiveness of the algorithms for

evaluating the grid reliability is also an interesting topic, which can be further studied in

near future.

 In reliability analysis of the computing systems, it is much possible for the

successive runs to be correlated with one another and the failures may be of multiple

types. In Chapter 6, a software reliability modeling framework based on Markov

renewal processes was studied. It is capable of modeling the dependence among

successive software runs and able to deal with multiple type of failures. With this

model, the phenomena of failure clustering can be specified and analyzed. However,

in this model, some parameters were difficult to precisely estimate, so the sensitivity

analysis is necessary to be carried out in future work if the empirical/estimated values

Chapter 9 Conclusions and Future Work

 215

are used.

 In Chapter 7, we formulated the problem of finding structure of series-parallel

MSS with multi-level protections in order to achieve a desired level of system

survivability by the minimal cost. This chapter also describes a straightforward

recursive algorithm for evaluating the survivability of a series-parallel MSS with

multi-level protections. Then, a multi-processor GA was developed for effectively

solving the problems, in which a new encoding scheme was proposed. However, this

chapter just studied the series-parallel structure, but the components of a system may be

connected or distributed by other topological structure. Hence, the problems of other

generally distributed systems are also worth further studying.

 In software testing, an important issue is to allocate testing resources to

achieve maximum reliability. Chapter 8 studied the optimization problems of testing

resource allocation on both independent modules and dependent versions. At first, this

chapter focused on allocating resources on the independent modules with the

parallel-series structure, and multiple objectives are considered in this optimization

model including maximizing the system reliability and minimizing the cost. However,

this approach was restricted in the parallel-series architecture based modular system.

If it could be generalized into a common model for arbitrary architectures of the

modules, it should be more useful. Then, this chapter further considered the failure

correlation among multiple versions of software and presented optimization models

and algorithms in solving the testing resource allocation problems.

 In addition, although we have tried to be theoretically rigorous, some of the

Chapter 9 Conclusions and Future Work

 216

theoretical topics are omitted. However, as many references as possible are provided to

those interested in exploring and delving into details. Researchers and students may

find many ideas useful in their academic work. Everyone who learns or uses reliability

models in the computing systems should be aware of potential problems discussed in

this work and also have the knowledge of at least the existence of techniques to solve

these problems.

Bibliography

 217

BIBLIOGRAPHY

Akhtar, S. (1994), Reliability of k-out-of-n:G systems with imperfect fault-coverage,
IEEE Transactions on Reliability, 43, 101-106.

Aki, S., Hirano, K. (1996), Lifetime distribution and estimation problems of
consecutive-k-out-of-n:F systems, The Annals of the Institute of Statistical
Mathematics, 48 (1), 185-199.

Avizienis, A. (1985), The N-version approach to fault tolerant software, IEEE
Transactions on Software Engineering, SE-11, 1491-1501.

Becker, G., Camarinopoulos, L., Zioutas, G. (2000), A semi-Markovian model allowing
for inhomogenities with respect to process time, Reliability Engineering and
System Safety, 70 (1), 41-48.

Belli, F., Jedrzejowicz, P. (1991), An approach to the reliability optimization of
software with redundancy, IEEE Transactions on Software Engineering, 17 (3),
310-312.

Block, H.W., Bueno, V., Savits, T.H., Shaked, M. (1987), Probability inequalities via
negative dependence for random variables conditioned on order statistics, Naval
Research Logistics, 34 (4), 547-554.

Brunelle, R.D., Kapur, K.C. (1999), Review and classification of reliability measures
for multistate and continuum models, IIE Transactions, 31 (12), 1171-1180.

Buyya, R., Branson, K., Giddy, J., Abramson, D. (2003), The Virtual Laboratory: a
toolset to enable distributed molecular modelling for drug design on the
World-Wide grid, Concurrency and Computation Practice and Experience, 15 (1),
1-25.

Chang, C.W.J., Hsiao, M.F., Marek-Sadowska, M. (2003), A new reasoning scheme for
efficient redundancy addition and removal, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 22 (7), 945-951.

Chang, H.K., Yuan, S.M. (1999), Minimal cost replicated file system with an
availability constraint, Information Sciences, 119, 107-23.

Chang, M.S., Chen, D.J., Lin, M.S., K.L. Ku (2000), The distributed program reliability
analysis on star topologies, Computers and Operations Research, 27, 129-142.

Chen, D., Chen, D., Li, L., Trivedi, K.S., Some, R.R., Nikora, A.P., Dharmaraja, S.
(2002), Reliability and availability analysis for the JPL remote exploration and
experimentation system, Proceedings of the 2002 International Conference on
Dependable Systems and Networks, pp. 337-342.

Chen, D.J., Chen, R.S., Huang, T.H. (1997), A heuristic approach to generating file
spanning trees for reliability analysis of distributed computing systems, Computers
and Mathematics with Application, 34, 115-131.

Bibliography

 218

Chen, D.J., Huang, T.H. (1992), Reliability analysis of distributed systems based on a
fast reliability algorithm, IEEE Transactions on Parallel and Distributed Systems, 3
(2), 139-154.

Chen, I.R., Bastani, F.B. (1994), Warm standby in hierarchically structured
process-control programs, IEEE Transactions on Software Engineering, 20 (8),
658-663.

Cheung, R.C. (1980), A user-oriented software reliability model, IEEE Transactions on
Software Engineering, 6 (2), 118–125.

Cinlar, E. (1975), Introduction to Stochastic Processes. Englewood Cliffs, NJ: Prentic
Hall.

Clemen, R.T. (1995), Making Hard Decisions: An Introduction to Decision Analysis,
NJ: Duxbury Press.

Dai, Y.S., Xie, M., Poh, K.L. (2002), Reliability analysis of grid computing systems,
Proceeding of Pacific Rim International Symposium on Dependable Computing,
IEEE Computer Press, pp. 97-103.

Dai, Y.S., Xie, M., Poh, K.L. (2003c), A fast algorithm for grid system reliability,
Regional Inter-University Electrical and Electronic Engineering Conference 2003,
Hong Kong.

Dai, Y.S., Xie, M., Poh, K.L., Liu, G.Q. (2003a), A study of service reliability and
availability for distributed systems, Reliability Engineering and System Safety, 79
(1), 103-112.

Dai, Y.S., Xie, M., Poh, K.L., Yang, B. (2003b), Optimal testing-resource allocation
with genetic algorithm for modular software systems, Journal of Systems and
Software, 66 (1), 47-55.

Duane, J.T. (1964), Learning curve approach to reliability monitoring, IEEE
Transactions on Aerospace, AS-2, 563-566.

Dugan, J.B., Lyu, M.R. (1994), System reliability analysis of an N-version
programming application, IEEE Transactions on Reliability, 43 (4), 513-519.

Dugan, J.B., Lyu, M.R. (1995), System-level reliability and sensitivity analyses for
three fault-tolerant system architectures, Dependable Computing for Critical
Applications, 4, 459-477.

Fakhre-Zakeri, I., Slud, E. (1995). Mixture models for reliability of software with
imperfect debugging: identifiability of parameters, IEEE Transactions on
Reliability, 44, 104-113.

Findeisen, D. (2000), System dynamics and mechanical vibrations, Berlin; New York:
Springer.

Fleming, K., Silady, F. (2002), A risk informed defense-in-depth framework for

Bibliography

 219

existing and advanced reactors, Reliability Engineering and System Safety, 78,
205-225.

Foster, I., Kesselman, C. (1998), The Grid: Blueprint for a New Computing
Infrastructure, San Francisco: Morgan-Kaufmann.

Foster, I., Kesselman, C., Nick, J.M., Tuecke, S. (2002), Grid services for distributed
system integration, Computer, 35 (6), 37-46.

Foster, I., Kesselman, C., Tuecke, S. (2001), The anatomy of the Grid: Enabling
scalable virtual organizations, International Journal of High Performance
Computing Applications, 15 (3), 200-222.

Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S. (2002), Condor-G: a
computation management agent for multi-institutional grids, Cluster Computing, 5
(3), 237-246.

Fricks, R., Puliafito, A., Telek, M., Trivedi, K.S. (1996), Markov renewal theory
applied to performability evaluation, In: Bagchi, K.K.; Zobrist, G.: Modeling and
Simulation of Advanced Computer Systems: Applications and Systems. Gordon and
Breach Publishers, pp. 193-236.

Fricks, R.M., Puliafito, A., Trivedi, K.S. (1999), Performance analysis of distributed
real-time databases, Performance Evaluation, 35, 145-169.

Fryer, M.O. (1985), Risk assessment of computer controlled systems, IEEE
Transactions on Software Engineering, SE-11 (1), 125-129.

Fussell, J.B. (1975), A review of fault tree analysis with emphasis on limitations,
Proceedings of the 6th Triennial World Congress of the International Federation of
Automatic Control), 26 (4), 1-6.

Garg, S., Huang, Y., Kintala, C.M.R., Trivedi, K.S., Yajnik, S (1999), Performance and
reliability evaluation of passive replication schemes in application level fault
tolerance, Digest of Papers. Twenty-Ninth Annual International Symposium on
Fault-Tolerant Computing, pp. 322-329.

Gaudoin, O., Lavergne, C., Soler, J.L. (1994), A generalized geometric
de-eutrophication software-reliability model, IEEE Transactions on Reliability, 43
(4), 536-541.

Gaudoin, O., Soler, J.L. (1992), Statistical analysis of the geometric de-eutrophication
software-reliability model, IEEE Transactions on Reliability, 41 (4), 518-524.

Gnedenko, B., Ushakov, I. (1995), Probabilistic Reliability Engineering, New York:
John Wiley and Sons, Inc.

Goel, A.L. (1980), A summary of the discussion on “an analysis of competing software
reliability models”, IEEE Transactions on Software Engineering, SE-6, 501-502.

Goel, A.L. (1985), Software reliability models: assumptions, limitations, and

Bibliography

 220

applicability, IEEE Transactions on Software Engineering, SE-11, 1411-1423.

Goel, A.L., Soenjoto, J. (1981), Models for hardware-software system operational
performance evaluation, IEEE Transactions on Reliability, 30, 232-239.

Goel, A.L., Okumoto, K. (1979), Time dependent error-detection rate model for
software reliability and other performance measures, IEEE Transactions on
Reliability, R-28, 206-211.

Gokhale, S.S., Marinos, P.N., Lyu, M.R., Trivedi, K.S. (1997), Effect of repair policies
on software reliability, COMPASS-Proceedings of the Annual Conference on
Computer Assurance, pp. 105-116.

Gokhale, S.S., Trivedi, K.S. (1999), A time/structure based software reliability model,
Annals of Software Engineering, 8, 85-121.

Goldberg, D.E. (1989), Genetic Algorithms in Search of Optimization and Machine
Learning, NJ: Addison Wesley.

Goseva-Popstojanova, K., Trivedi, K.S. (2000), Failure correlation in software
reliability model, IEEE Transactions on Reliability, 49, 37-48.

Goseva-Popstojanova, K., Trivedi, K.S. (2001), Architecture-based approach to
reliability assessment of software systems, Performance Evaluation, 45 (2-3),
179-204.

Goyal, A., Lavenberg, S.S (1987), Modelling and analysis of computer system
availability, IBM J. Research and Development, 31, 651-664.

Hariri, S., Mutlu, H. (1995), Hierarchical modeling of availability in distributed
systems, IEEE Transactions on Software Engineering, SE-21, 50-56.

Hariri, S., Raghavendra, C.S., Kumar, V.K.P. (1985), Measures for distributed
processing systems, Proc. of Int. Directions in Comput., Trondheim, Norway.

Haverkort, B.R., Marie, R., Rubino, G., Trivedi, K.S. (2001), Performability Modelling,
Chichester, England: Wiley.

Hecht, H., Hecht, M. (1986), Software reliability in the system context, IEEE
Transactions on Software Engineering, SE-12 (1), 51-58.

Helander, M.E., Zhao, M., Ohlsson, N. (1998), Planning models for software reliability
and cost, IEEE Transactions on Software Engineering, 24 (6), 420-434.

Hillier, F.S., Lieberman, G.J. (1995), Introduction to Operations Research, New York:
McGraw-Hill, Inc.

Hoschek, W., Jaen-Martinez, J., Samar, A., Stockinger, H., Stockinger, K. (2000), Data
management in an international data grid project, In Proc. 1st IEEE/ACM
International Workshop on Grid Computing, Springer Verlag Press.

Huang, C.Y., Lyu, M.R., Kuo, S.Y. (2003), A unified scheme of some Nonhomogenous

Bibliography

 221

Poisson process models for software reliability estimation, IEEE Transactions on
Software Engineering, 29 (3), 261-269.

Jelinski, Z., Moranda, P.B. (1972), Software reliability research. In: Freiberger W, (ed).
Statistical Computer Performance Evaluation, New York: Academic Press, pp.
465-497.

Joe, H., Reid, N. (1985), On the software reliability models of Jelinski-Moranda and
Littlewood, IEEE Transactions on Reliability, R-34 (3), 216-218.

Johnsonbaugh, R. (2001), Discrete Mathematics, fifth edition, Upper Saddle River,
New Jersey: Prentice Hapll.

Kaufman, G.M. (1996), Successive sampling and software reliability, Journal of
Statistical Planning and Inference, 49 (3), 343-369.

Ke, W.J., Wang, S.D. (1997), Reliability evaluation for distributed computing networks
with imperfect nodes, IEEE Transactions on Reliability, 46 (3), 342-349.

Keene, S., Lane, C. (1992), Combined hardware and software aspects of reliability,
Quality and Reliability Engineering International, 8 (5), 419-426.

Kijima, M. (1997), Markov processes for stochastic modeling, London: New York:
Chapman and Hall.

Kim, K.H., Welch, H.O. (1989), Distributed execution of recovery blocks: An approach
for uniform treatment of hardware and software faults in real-time applications,
IEEE Transactions on Computers, C-38, 626-636.

Knight, J.C., Leveson, N.G. (1986), An experimental evaluation of the assumption of
independence in multiversion programming, IEEE Transactions on Software
Engineering, SE-12, 96-109.

Kremer, W. (1983), Birth-death and bug counting (software reliability), IEEE
Transactions on Reliability, R-32 (1), 37-47.

Kubat, P. (1989), Assessing reliability of modular software, Operation Research
Letters, 8, 35-41.

Kumar, A., Agrawal, D.P. (1993), A generalized algorithm for evaluating
distributed-program reliability, IEEE Transactions on Reliability, 42, 416-424.

Kumar, A., Agrawal, D.P. (1996), Parameters for system effectiveness evaluation of
distributed systems, IEEE Transactions on Computers, 45 (6), 746-752.

Kumar, A., Malik, K. (1991), Voting mechanisms in distributed systems, IEEE
Transactions on Reliability, 40 (5), 593-600.

Kumar, A., Rai, S., Agarwal, D.P. (1988), On computer communication network
reliability under program execution constraints, IEEE Journal of Selected Areas in
Communications, 6, 1393-1400.

Bibliography

 222

Kumar, V.K., Hariri, S., Raghavendra, C.S. (1986), Distributed program reliability
analysis, IEEE Transactions on Software Engineering, SE-12, 42-50.

Kuo, S.Y., Huang, C.Y., Lyu, M.R. (2001), Framework for modeling software
reliability, using various testing-efforts and fault-detection rates, IEEE
Transactions on Reliability, 50, 310-320.

Kuo, W., Prasad, V.R. (2000), An annotated overview of system-reliability
optimization, IEEE Transactions on Reliability, 49, 176-187.

Kuo, W., Zuo, M.J. (2003), Optimal reliability modeling: principles and applications,
New York : John Wiley and Sons.

Kvam, P.H., Miller, J.G. (2002), Common cause failure prediction using data mapping,
Reliability Engineering and System Safety, 76, 273-278.

Lai, C.D., Xie, M., Poh, K.L., Dai, Y.S., Yang, P. (2002), A model for availability
analysis of distributed software/hardware systems, Information and Software
Technology, 44 (6), 343-350.

Laprie, J.C. (1984), Dependability evaluation of software systems in operation, IEEE
Transactions on Software Engineering, SE-10 (6), 701-714.

Laprie, J.C. (1990), On the assessment of safety-critical software systems, 12th
International Conference on Software Engineering, p. 222.

Laprie, J.C., Arlat, J., Biounes, C., Kanoun, K. (1990), Definition and analysis of
hardware and software-fault-tolerant architectures, IEEE Computer, 23 (7), 39-51.

Laprie, J.C., Kanoun, K. (1992), X-ware reliability and availability modeling, IEEE
Transactions on Software Engineering, 18, 130-147.

Ledoux, J. (1999), Availability modeling of modular software, IEEE Transactions on
Reliability, 48 (2), 159-168.

Levitin, G. (2001), Analysis and optimization of weighted voting systems consisting of
voting units with limited availability, Reliability Engineering and System Safety, 73
(1), 91-100.

Levitin, G. (2002), Asymmetric weighted voting systems, Reliability Engineering and
System Safety, 76 (2), 205-212.

Levitin, G. (2003), Optimal multilevel protection in series-parallel systems, to appear in
Reliability Engineering and System Safety.

Levitin, G., Dai, Y.S., Xie M., Poh, K.L (2003), Optimizing survivability of multi-state
systems with multi-level protection by multi-processor genetic algorithm,
Reliability Engineering and System Safety, 82, 93-104.

Levitin, G., Lisnianski, A. (2001), A new approach to solving problems of multi-state
system reliability optimization, Quality and Reliability Engineering International,
17 (2), 93-104.

Bibliography

 223

Levitin, G., Lisnianski, A. (2003), Optimizing survivability of vulnerable
series-parallel multi-state systems, Reliability Engineering and System Safety, 79
(3), 319-331.

Levitin, G., Lisnianski, A., Beh-Haim, H., Elmakis, D. (1998), Redundancy
optimization for series-parallel multi-state systems, IEEE Transactions on
Reliability, 47, 165-172.

Limnios, N. (1997), Dependability analysis of semi-Markov systems, Reliability
Engineering and System Safety, 55 (3), 203-207.

Limnios, N., Oprisan G. (2000), Semi-Markov processes and reliability, Boston:
Birkhauser.

Lin, M.S., Chang, M.S., Chen, D.J. (1999), Distributed-program reliability analysis:
complexity and efficient algorithms, IEEE Transactions on Reliability, R-48,
87-95.

Lin, M.S., Chang, M.S., Chen, D.J. (1999), Efficient algorithms for reliability analysis
of distributed computing systems, Information Sciences, 117 (1-2), 89-106.

Lin, M.S., Chang, M.S., Chen, D.J., Ku, K.L. (2001), The distributed program
reliability analysis on ring-type topologies, Computers and Operations Research,
28, 625-635.

Lin, M.S., Chen, D.J. (1997), The computational complexity of the reliability problem
on distributed systems, Information Processing Letters, 64, 143-147.

Lin, M.S., Chen, D.J., Hong, M.S. (1999), The reliability analysis of distributed
computing systems with imperfect nodes, The Computer Journal, 42 (2), 129-141.

Lisnianski, A., Levitin, G. (2003), Multi-state System Reliability, Singapore: World
Scientific.

Littlewood, B. (1975), A reliability model for systems with Markov structure, Applied
Statistics, 24 (2), 172–177.

Littlewood, B. (1979), How to measure software reliability and how not to, IEEE
Transactions on Reliability, R-28 (2), 103-110.

Littlewood, B., Popov, P., Strigini, L. (2003), Assessing the reliability of diverse
fault-tolerant software-based systems, Safety Science, 40 (9), 781-796.

Littlewood, B., Verrall, J.L. (1981), Likelihood function of a debugging model for
computer software reliability, IEEE Transactions on Reliability, R-30, 145-148.

Liu, Y., Trivedi, K.S., Ma, Y., Han, J.J., Levendel, H. (2002), Modeling and analysis of
software rejuvenation in cable modem termination systems, Proceedings of the 13th
International. Symposium on Software Reliability Engineering (ISSRE2002), pp.
159-170.

Livny, M., Raman, R. (1998), High-throughput resource management, The Grid:

Bibliography

 224

Blueprint for a New Computing Infrastructure, San Francisco: Morgan-Kaufmann,
pp. 311-338.

Lutfiyya, H.L., Bauer, M.A., Marshall, A.D., Stokes, D.K. (2000), Fault management
in distributed systems: a policy-driven approach, Journal of Network and Systems
Management, 8 (4), 499-525.

Lyu, M.R. (1996), Handbook of Software Reliability Engineering, IEEE Computer
Society Press, McGraw-Hill.

Lyu, M.R., Mendiratta, V.B. (1999), Software fault tolerance in a clustered architecture:
techniques and reliability modeling, Proc. of the 1999 IEEE Aerospace Conference,
5, 141 –150.

Malakhoff, A., Klinkhamer, D., McKesson, C. (1998), Analysis of the impact of
reliability, availability and maintainability on ship survivability, 6th International
Conference on High Speed Marine Craft, Norwegian Society of Chartered
Engineers, (available at http://www.hurricane.net/~chrism/availability.htm)

Malhotra, M., Trivedi, K.S. (1994), Power-hierarchy of dependability-model types,
IEEE Transactions on Reliability, 43 (3), 493-502.

Mendiratta, V.B. (1998), Reliability analysis of clustered computing systems, Proc. of
the Ninth International Symposium on Software Reliability Engineering, pp.
268-272.

Miller, D.R. (1986), Exponential order statistic models of software reliability growth,
IEEE Transactions on Software Engineering, SE-12 (1), 12-24.

Moranda, P.B. (1979), Event-altered rate models for general reliability analysis, IEEE
Transactions on Reliability, R-28 (5), 376-381.

Musa, J.D. (1998), Software Reliability Engineering: More Reliable Software, Faster
Development and Testing, New York: McGraw-Hill.

Parfenov, U. (1989), Reliability, Survivability and Effectiveness of Ship Electric Power
Systems, Russian naval academy, Leningrad, (in Russian).

Pham, H. (1992), Optimal design of k-out-of-n redundant systems, Microelectronics
and Reliability, 32 (1-2), 119-126.

Pham, H. (1997), Reliability analysis of digital communication systems with imperfect
voters, Mathematical and Computer Modelling, 26, 103-112.

Pham, H. (2000), Software Reliability, Singapore: Springer-Verlag.

Pham, H. (2003), Software reliability and cost models: Perspectives, comparison, and
practice, European Journal of Operational Research, 149 (3), 475-489.

Pham, H., Nordmann, L., Zhang, X.M. (1999), General imperfect-software-debugging
model with S-shaped fault-detection rate, IEEE Transactions on Reliability, 48,

Bibliography

 225

169-175.

Pham, H., Suprasad, A., Misra, R.B. (1997), Availability and mean life time prediction
of multistage degraded system with partial repairs, Reliability Engineering and
System Safety, 56 (2), 169-173.

Pham, H., Zhang, X.M. (1999), A software cost model with warranty and risk cost,
IEEE Transactions on Computers, 48 (1), 71-75.

Pourret, O., Collet, J., Bon, J.L. (1999), Evaluation of the unavailability of a
multistate-component system using a binary model, Reliability Engineering and
System Safety, 64 (1), 13-17.

Pukite, P., Pukite, J. (1998), Modeling for reliability analysis : Markov modeling for
reliability, maintainability, safety, and supportability analysis of complex systems,
New York : IEEE Press.

Rai, S., Veeraraghavan, M., Trivedi, K.S. (1995), A survey of efficient reliability
computation using disjoint products approach, Networks, 25 (3), 147-163.

Rajgopal, J., Mazumdar, M. (2002), Modular operational test plans for inferences on
software reliability based on a Markov model, IEEE Transactions on Software
Engineering, 28 (4), 358-363.

Ross, S.M. (2000), Introduction to Probability Models, A Harcourt Science and
Technology Company.

Sahner, R., Trivedi, K.S., Puliafito, A. (1995), Performance and reliability analysis of
computer systems: an example-based approach using the SHARPE software
package, Boston: Kluwer Academic Publishers.

Schick, G.J., Wolverton, R.W. (1978), An analysis of competing software reliability
models, IEEE Transactions on Software Engineering, SE-4, 104-120.

Schneidewind, N.F. (1975), Analysis of error processes in computer software, Sigplan
Notices, 10, 337-346.

Shanthikumar, J.G. (1981), A general software reliability model for performance
prediction, Microelectronics and Reliability, 23, 903-943.

Siegrist, K. (1988), Reliability of systems with Markov transfer of control, II, IEEE
Transactions on Software Engineering, 14 (10), 1478-1480.

Smith, R.M., Trivedi, K.S., Ramesh, A.V. (1988), Performability analysis: measures, an
algorithm, and a case study, IEEE Transactions on Computers, 37 (4), 406-417.

Sols, A., Nachlas, J.A. (1995), Availability of multifunctional systems, Reliability
Engineering and System Safety, 47 (2), 69-74.

Sridharan, V., Jayashree, P.R. (1998), Transient solutions of a software model with
imperfect debugging and generation of errors by two servers, Mathematical and
Computer Modelling, 27, 103-108.

Bibliography

 226

Srinivasan, S., Jha, N.K. (1999), Safety and reliability driven task allocation in
distributed systems, IEEE Transactions on Parallel and Distributed Systems, 10 (3),
238-251.

Sumita, U., Masuda, Y. (1986), Analysis of software availability/reliability under the
influence of hardware failures, IEEE Transactions on Software Engineering, SE-12
(1), 32-41.

Tian, J. (1999), Measurement and continuous improvement of software reliability
throughout software life-cycle, Journal of Systems and Software, 47 (2-3), 189-195.

Tokuno, K., Yamada, S. (2000), An imperfect debugging model with two types of
hazard rates for software reliability measurement and assessment, Mathematical
and Computer Modelling, 31 (10-12), 343-352

Tokuno, K., Yamada, S. (2000), Markovian software availability measurement based
on the number of restoration actions, IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, E83-A (5), 835-841.

Tokuno, K., Yamada, S. (2001), Markovian modeling for software availability Analysis
under intermittent use, International Journal of Reliability, Quality and Safety
Engineering, 8 (3), 249-258

Trivedi, K.S. (1982), Probability and Statistics with Reliability, Queueing, and
Computer Applications, Englewood, NJ: Prentice-Hall.

Trivedi, K.S. (2001), Probability and Statistics with Reliability, Queuing, and
Computer Science Applications, New York: John Wiley and Sons.

Trivedi, K.S. (2002), SREPT: A tool for software reliability estimation and prediction,
Proc. of the International Conference on Dependable Systems and Networks, p.
546.

Ushakov, I. (1986), Universal generating function, Sov. J. Computing System Science,
24, 118-129.

Veeraraghavan, M., Trivedi, K.S. (1994), A combinatorial algorithm for performance
and reliability analysis using multistate models, IEEE Transactions on Computers,
43 (2), 229-234.

Welke, S.R., Johnson, B.W., Aylor, J.H. (1995), Reliability modeling of
hardware/software systems, IEEE Transactions on Reliability, 44 (3), 413-418.

Whitley, D. (1989), The GENITOR algorithm and selective pressure: why rank-based
allocation of reproductive trials is best, Proc. 3th International Conf. on Genetic
Algorithms., pp. 116-121.

Wu, S.M., Chan, L.Y. (2003), Performance utility-analysis of multi-state systems, IEEE
Transactions on Reliability, 52 (1), 14-21.

Xie, M. (1987), A shock model for software failures, Microelectronics and Reliability,
27, 717-724.

Bibliography

 227

Xie, M. (1991), Software Reliability Modelling. Singapore: World Scientific.

Xie, M. (2000), Software reliability models - past, present and future, In Recent
Advances in Reliability Theory: Methodology, Practice, and Inference, Eds. N.
Limnios, M. Nikulin, Boston: Birkhäuser, pp. 325-340.

Xie, M., Hong, G.Y., Wohlin, C. (1997), A study of the exponential smoothing
technique in software reliability growth prediction, Quality and Reliability
Engineering International, 13 (6), 347-353.

Xie, M., Zhao, M. (1993), On some reliability growth models with graphical
interpretations, Microelectronics and Reliability, 33 (2), 149-167.

Xue, J., Yang, K. (1995), Dynamic reliability analysis of coherent multistate systems,
IEEE Transactions on Reliability, 44 (4), 683-688.

Yamada, S., Ohba, M., Osaki, S. (1984), S-shaped software reliability growth models
and their applications, IEEE Transactions on Reliability, R-33 (4), 289-292.

Yamada, S., Ohtera, H. (1990), Software reliability growth models for testing-effort
control, European Journal Operations Research, 46, 343-349.

Yamada, S., Osaki, S. (1985), Cost-reliability optimal release policies for software
systems, IEEE Transactions on Reliability, R-34, 422-424.

Yamada, S., Osaki, S. (1985b), Software reliability growth modeling: models and
applications, IEEE Transactions on Software Engineering, SE-11, 1431-1437.

Yamada, S.T., Nishiwaki, I.M., (1995), Optimal allocation policies for testing-resource
based on a software reliability growth model, Mathematical and Computer
Modelling, 22 (10-12), 295-301.

Yang, B. Xie, M. (2000), A study of operational and testing reliability in software
reliability analysis, Reliability Engineering and System Safety, 70, 323-329.

Yang, B., Xie, M. (2001), Optimal testing-time allocation for modular systems,
International Journal of Quality and Reliability Management, 18 (8), 854-863

Zang, X., Sun, N., Trivedi, K.S. (1999), A BDD-based algorithm for reliability analysis
of phased-mission systems, IEEE Transactions on Reliability, 48 (1), 50-60.

Zang, X., Wang, D., Sun, H., Trivedi, K.S. (2003), A BDD-based algorithm for analysis
of multistate systems with multistate components, IEEE Transactions on
Computers, 52 (12), 1608-1618.

Zhang, T.L., Horigome, M. (2001), Availability and reliability of system with
dependent components and time-varying failure and repair rates, IEEE
Transactions on Reliability, 50, 151-158.

Zhang, X.M., Shin, M.Y., Pham, H. (2001), Exploratory analysis of environmental
factors for enhancing the software reliability assessment, Journal of Systems and
Software, 57 (1), 73-78.

