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Summary

The detection of multiple curves in a noisy image is an important task in computer

vision. Linearly parameterizable models such as straight lines, circles and ellipses

have attracted a lot of attention because they efficiently describe large parts of

man-made objects. Robust estimation techniques are needed to successfully fit

linearly parameterizable functions to edge data while ignoring outliers in the data.

A model-fitting algorithm should be robust against an arbitrarily high percentage

of outliers, capable of handling an unknown number of models, insensitive to noise,

and most importantly, not miss meaningful models while avoiding false detections.

A variety of techniques have been developed to extract multiple linearly pa-

rameterizable models. The Hough Transform is a well-established shape detection

method. However, the high computational cost and low accuracy due to the high

dimensionality and quantization of the parameter space degrade the performance

of this approach. Another serious problem is that it often yields many wrong

detections in complex and noisy images. Robust regression techniques, e.g., the

least median of squares, are other important statistical tools frequently employed

in computer vision for fitting a model to noisy data. They work well when the

number of outliers does not exceed 50%. The LS method, while achieving opti-

xiii
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mum results when the noise distribution is Gaussian, is unreliable for the fitting

of multiple models because outliers may severely affect performance.

The objective of this thesis is to develop a robust approach for fitting multiple

curves, which is robust against more than 50% outliers and able to extract a priori

unknown number of occluded or touching models.

Firstly, after a brief mathematical description of the linearly parameterizable

curves estimation problem, we develop a novel shulidu-based data cloud center

estimator. A general framework for fitting multiple touching or occluded linearly

parameterizable curves is presented. A robust single-model extractor is used for

detecting single models by employing a region trimming scheme that is robust

against an arbitrarily high percentage of outliers. The underlying models can then

be extracted sequentially by repeatedly applying this extractor to the updated edge

data set. A model verifier is used to evaluate the validity of the models detected

by single-model extractor such that false models are effectively excluded.

Secondly, a connectivity-based multiple curve estimator is devised by introduc-

ing pixel connectivity into the general framework. The curve fitting turns to be

a task of the search for meaningful arcs. The criteria for inliers and valid arcs

are discussed in detail. A search strategy based on both pixel connectivity and

region trimming scheme is devised for detecting outliers. False detection is effec-

tively avoided due to the intra-connectivity feature of valid arcs. Restricting the

search of curves within the intra-connected data subsets significantly reduces the

computational complexity.

Thirdly, circle fitting is accomplished by using the connectivity-based multiple
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curve fitting algorithm. The appropriate error function for circle fitting as well as

the criteria for valid circular arcs are proposed. The LS estimator for circular model

fitting is discussed. A new efficient method is developed for finding the endpoints

of circular arcs and the angles subtended by circular arcs. Multiple occluded circles

in noisy synthetic and real images are well reconstructed without false detections.

Fourthly, the connectivity-based multiple curve fitting algorithm is applied to

ellipse fitting. Error function for ellipse extraction is chosen. The search of the

endpoints of elliptic arcs and computing the angles subtended by elliptic arcs are

achieved with an efficient method. The estimator successfully extracts a priori un-

known number of multiple ellipses from synthetic and real examples in the presence

of more than 50% outliers and severe salt and pepper noise.



Chapter 1

Introduction

1.1 Motivation and research objectives

The detection of curves in a noisy image is an important task in computer vision.

For example, the accurate identification of spherical objects is crucial in many areas

of image analysis [11]. It is especially important in industrial applications such as

automatic inspection and assembly. In the semiconductor device inspection, the

circular balls on the package need to be located and measured with high precision

such that good devices and bad devices are discriminated. In the automotive

industry many circular components are used. These manufactured parts also need

to be checked. In many situations round objects are viewed obliquely and ellipse

detection is thus required.

Linearly parameterizable models such as straight lines, circles and ellipses are

of great importance because they efficiently describe large parts of man-made ob-

jects [15], [34], [46], [37]. Robust estimation techniques are needed to successfully

1



Chapter 1. Introduction 2

fit linearly parameterizable functions to edge data while ignoring outliers in the

data [35], [43]. Three requirements for a desired parametric model-fitting algorithm

have been proposed [8]:

1. The fitting algorithm should achieve the desired results, i.e., it should be able

to extract all meaningful curves while avoiding any false detection.

2. The approach must be robust against an arbitrarily high percentage of out-

liers in the input data.

3. The algorithm must be capable of handling an unknown number of curves.

The Hough transform (HT) is a well-established circle detection method [21].

It is an efficient tool for the detection of multiple curves and is robust with respect

to outliers. However, the high computational cost and low accuracy due to the

high dimensionality and quantization of the parameter space [20] degrade the per-

formance of this approach. Another serious problem is that it often yields many

wrong detections in complex and noisy images.

In order to alleviate these problems, improved HT schemes have been proposed,

for example, the randomized Hough transform (RHT), the probabilistic Hough

transform (ProbHT), the dynamic combinatorial Hough transform (DCHT) [23],

and their variants. However, almost all of them focus on easing computational

complexity by random sampling or by reducing the search area in the image space,

but are less effective in reducing wrong detections. Furthermore, unlike the least

squares (LS) method, the HT transform and its variants cannot offer an optimal

fitting when the inliers of the model are corrupted by Gaussian noise.
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Robust regression techniques, e.g., the least median of squares (LMedS) [35],

are other important statistical tools frequently employed in computer vision for

fitting a model to noisy data. They work well when the number of outliers does

not exceed 50% [35]. However, robust statistical methods usually have to make a

tradeoff between accuracy and robustness, and are of low computational efficiency.

The second requirement above implies that the breakdown point of a model-fitting

technique should be more than 50%. Unfortunately, most robust methods have a

breakdown point below this [35]. Stewart’s MINPRAN estimator is able to handle

more than 50 percent outliers but requires a fixed outlier distribution, which is not

feasible in practice [45].

The least squares (LS) method has been widely adopted in computer vision

and pattern recognition. It achieves optimum results when the noise distribution

is Gaussian. However, the method becomes unreliable for the fitting of multiple

models because outliers may severely affect performance. Therefore the key issue

is to find a modified LS approach that is robust against outliers. M-estimators can

be regarded as a re-weighted LS methods [16], [19], [1]. The major weakness of

the re-weighted LS method is that the fitting results depend to a large extent on

the quality of the initial guess [35]. To avoid the initialization problem of the M-

estimator, Chen [7] applied a statistical windowing technique to obtain an initial

estimate. However, a meaningful initial guess requires that the data come from

the same model, which is difficult to guarantee. A parametric model fitting frame-

work based on inlier characterization has been proposed for the fitting of multiple

parametric models [8]. Its major shortcoming is that inlier characterization of the



Chapter 1. Introduction 4

input data, e.g., the covariance matrix, is required. Furthermore, a poor initial

guess will lead to a non-meaningful estimate.

Based on the above analysis, there is almost no estimation method that can

satisfy all three requirements for a desired estimator [8]. Our research goal in this

thesis is to develop an approach for multiple model estimation that satisfies all

three requirements and is practical in real applications.

It is worth pointing out that in many real machine vision applications, the

underlying curves to be detected are characterized by arcs, which are actually intra-

connected subsets that fit the correct curve models. Since most model estimation

methods do not consider the geometric relationship among the candidate points,

a common failing is the production of a false model. Edge points that fit the false

model in this kind of images are considered to satisfy the criterion for curve validity

even though they may actually belong to other geometric shapes.

Our proposed estimator is motivated by some observations of how the human

visual system can easily classify the data and ignore the outliers while fitting mul-

tiple models. First, approximate estimations are made by examining data taken

over the entire image, i.e., it is a global process. Second, closely connected edge

points are likely assumed to come from the same model. Third, the full set of

inliers is not needed to extract meaningful models, only the inlier subset consists

of meaningful arcs are necessary.

This thesis presents a general multiple-model estimation framework that is

robust against an arbitrarily high percentage of outliers and is able to extract an

unknown number of touching or occluded models. In our framework, an image
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pre-partitioning technique is used to classify edge data into groups based on some

a priori application dependent assumptions. A single-model extractor, which is

actually an iterative weighted LS approach, is then applied to each group of data

for the detection of underlying curves formed by edge points in this group. It starts

from an initial global model estimate based on the data in each group. The most

qualified outliers that have the largest deviation are first kept out of the following

estimation. The most significant subset from the remaining edge data is taken as

the updated data set for the next round of model estimation. In this way, this

region trimming scheme drives the estimate from a initial global model to converge

to a final local desired model by iterative elimination of detected outliers. All

underlying models in the image can be reconstructed sequentially by repeatedly

applying the single-model extractor to the edge data that were excluded in the

previous fitting. A model verifier is applied to all extracted models to determine

whether they are desired models or pseudo models. The only condition that assures

the success of our approach in handling outliers is that there should be enough

inliers to construct the meaningful models.

The connectivity-based multiple curve estimator, an example of the general

multiple-model estimation framework, is realized by using pixel connectivity as one

of the most important features of meaningful arcs. The connectivity-based single-

model extractor and model verifier are well developed. The appropriate criteria

for curve inliers and valid arcs are proposed by considering the connectivity among

edge points from the same meaningful curves.

The application of our connectivity-based multiple curve estimator into multiple
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circle and ellipse fitting shows the following advantages:

1. It can extract all meaningful curves while producing no false detection.

2. It is robust against an arbitrarily high percentage of outliers in the input

data.

3. It is capable of handling an unknown number of same kind of curve models.

4. It works well with the edge data heavily corrupted by noise.

5. It effectively fits occluded or touching curves.

1.2 Thesis Contributions

The major contributions of this thesis are summarized below:

• Multiple model estimation: A novel general framework for fitting multi-

ple touching or occluded linearly parameterizable curves is developed. This

framework presents a new approach for handling cases with a high percent-

age of outliers. A robust single-model extractor employing a region trimming

scheme is used for outlier detection. The underlying models can be extracted

sequentially by repeatedly applying this extractor to the updated edge data

set. The detected models are then evaluated with a model verifier to deter-

mine their validity. The robustness against an arbitrarily high percentage of

outliers is achieved by region trimming scheme. This framework facilitates

the handling of an a priori unknown number of meaningful models by up-

dating data set during the iterative estimation process. Effective fitting of
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multiple occluded or touching curves is obtained by the initial estimate start-

ing from the entire data set as well as the treatment of other model inliers as

outliers in the single-model extractor. False models are effectively excluded

by the model verifier.

• Connectivity-based multiple curve fitting: The introduction of pixel

connectivity in the general estimation framework generates an efficient mul-

tiple curve fitting approach, which is an application of the general framework

and inherits all of its advantages. The estimation of curve models is per-

formed by a search of meaningful arcs instead of a set of single inliers. The

intra-connectivity feature of valid arcs effectively prevent from false curve de-

tection comprised by unrelated data. It improves the robustness against noise

by excluding unconnected noisy data. The computational complexity is sig-

nificantly reduced by limiting the search of curves within the intra-connected

data subsets.

• Fitting circles: The connectivity-based multiple curve fitting algorithm is

applied to circle fitting [40]. The appropriate error function for circle fitting

is proposed. The criteria for valid circular arcs are discussed. The LS estima-

tor used in the single-model extractor for circular model fitting is presented.

A new efficient connectivity-based method for finding endpoints of circular

arcs and calculating the angles subtended by circular arcs is developed. The

performances of this estimator in both synthetic and real applications of fit-

ting multiple touching or occluded circles in the presence of heavily corrupted
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noisy data and much more than 50% outliers are demonstrated.

• Multiple ellipse estimation: The problem of ellipse fitting is more com-

plicated that of circle fitting. The circle is rotation invariant while the ellipse

has major and minor functions and thus generates different conic models

rotated by different angles. The translation of different ellipse models is re-

quired in the procedure of ellipse fitting. The estimation of multiple occluded

or touching ellipses is achieved by the application of the connectivity-based

multiple curve estimator. Error function for ellipse extraction is selected. A

new efficient method based on pixel connectivity for the search of endpoints

of elliptic arcs and computing the angles subtended by elliptic arcs is devised

using location-dependent threshold values. The results of applying this esti-

mator to fitting multiple occluded or touching ellipses in synthetic and real

images are analyzed.

1.3 Organization of the thesis

The subject of this thesis focuses on the robust algorithm for fitting multiple touch-

ing or occluded curves in the presence of noise and more than 50% outliers. It is

organized in six chapters followed by appendices and a bibliography.

In Chapter 2, we give a brief review of some previous works for multiple curve

fitting, such as Hough transform (HT) and its variants, Robust regression meth-

ods and Least squares (LS) based algorithms. The relationships between these

approaches and our work are highlighted.
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Chapter 3 describes the problem of fitting multiple linearly parameterizable

curve model. The criteria for testing the validity of extracted models are then

discussed. A new concept, shulidu, which describes the relationship between a

single element and the entire set, is developed and applied to the data cloud cen-

ter estimation. We then present a general framework for effective estimation of

multiple-model that is robust against an arbitrarily high percentage of outliers and

is able to extract an unknown number of touching or intersecting models. In our

framework, an image pre-partitioning technique is used to classify edge data into

groups based on some application dependent assumptions. The region trimming

scheme is proposed, which is an effective way to deal with outliers. A single-model

extractor, which is actually an iterative weighted LS approach, is then applied to

each group of data for the detection of underlying curves formed by edge points in

this group. All underlying models in the image can be reconstructed sequentially

by repeatedly applying the single-model extractor to the edge data that were ex-

cluded in the previous fitting. A model verifier is applied to all extracted models

to determine whether they are desired models or pseudo models. The advantages

of this framework are discussed.

In Chapter 4, a connectivity-based method for curve fitting is developed. The

motivation of introducing pixel connectivity into the general framework for curve

fitting (Chapter 3) is discussed. The criteria for intra-connected subsets and valid

arcs are presented in details. A search strategy based on both pixel connectivity

and region trimming scheme is devised for excluding outliers. The connectivity-

based single-model extractor is then developed for fitting meaningful arcs. The
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model verifier is designed to test the meaningfulness of models extracted by single-

model extractor using the intra-connectivity feature of arcs.

Chapter 5 presents the application of connectivity-based multiple curve estima-

tor to circle fitting. We develop the appropriate error function for circle fitting and

criteria for valid circular arcs. The mathematical model of the LS estimator for

circle extraction is presented. A new effective method for detecting endpoints of

circular arc and the angles subtended by circular arcs is proposed. The advantages

of our estimator for circle estimation are analyzed in detail. The results of using

our estimators for fitting circles in real examples are explained.

In Chapter 6, the performance of using connectivity-based multiple curve esti-

mator for ellipse estimation is evaluated. The translation between both nominal

and general elliptic models is discussed. The criteria for valid elliptic arcs are de-

scribed. We then develop an efficient approach to search for endpoints of elliptic

arcs and calculate the angles subtended by the elliptic arc. A comparison between

our estimator and other methods is presented based on the results of our estimator

on some synthetic images. The results of applying our estimator to real multiple

ellipse detection are given.

Chapter 7 summarizes our work in this thesis and discusses future research.

Supplementary materials, including the derivation of an approach for finding end-

points of both circular and elliptic arcs as well as the calculation of angles subtended

by circular and elliptic arcs, are included in the appendices.



Chapter 2

Literature Review

In this chapter, we give a brief review of previous work in multiple curve fitting.

The relationship with our work is highlighted to emphasize our motivations and

contributions.

2.1 Robust fitting of multiple curves

The detection of multiple curves in a noisy image is an important task in computer

vision. Linearly parameterizable models such as straight lines, circles and ellipses

are of great importance because they efficiently describe large parts of man-made

objects [15], [34], [46], [37]. Robust estimation techniques are needed to suc-

cessfully fit linearly parameterizable functions to edge data while ignoring outliers

in the data [35], [43]. Three requirements for a desired parametric model-fitting

algorithm have been proposed [8]:

1. The fitting algorithm should achieve the desired results, i.e., no false models

11
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will be extracted.

2. The fitting algorithm must be robust against an arbitrarily high percentage

of outliers in the input data.

3. The algorithm must be capable of handling an unknown number of curve

models.

Since edge data classification and parameter estimation strongly influence each

other, it is difficult to satisfy the above mentioned requirements for multiple curve

fitting [8]. On the one hand, if the data is correctly classified to be the inliers of

a certain model, it would be easier to extract the accurate curve model because it

avoids the difficult problem of outliers. On the other hand, if the parameters of

the curve model are determined, then it would be straightforward to evaluate the

data with the available curve model. The difficulty of the co-dependence of inlier

classification and parameter estimation requires a robust multiple curve fitting

algorithm to be a “classify-while-fit” approach [8].

Various curve fitting methods have been proposed to solve this problem, such as

the Hough Transform (HT) and its variants, Rough Regression methods and least

squares (LS) based approaches etc.. However, none of them meets all the three

requirements of a desired multiple curve estimation algorithm discussed above.

2.2 The Hough transform

The Hough transform is a well accepted shape detection method [21]. It is robust

against outliers and it can handle multiple models. In this method, each edge point
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in the image space is first transformed into a parametric curve of the parameter

space. Then an accumulator corresponding to a cell of the parameter space is used

to count the number of curves that pass through this cell. Finally, the parameter

coordinates of those cells with a local maximum of scores are selected as the esti-

mation of model parameters in the image space. In this way, it attempts to solve

a continuous problem with a discrete method via a voting scheme [8]. As a conse-

quence, it cannot achieve the optimally accurate estimation of model parameters

due to the finite quantization of the parameter space [20]. What is more, model

estimation with the Hough transform is often of high computational complexity

and storage requirement because of the high dimensionality of parameter space.

Many modified Hough transforms have been studied to alleviate some of the

shortcomings of the standard Hough transform (SHT). They can be classified into

two major categories: probabilistic and non-probabilistic Hough transforms [23].

The probabilistic HT method is characterized by a many-to-one mapping and se-

lecting only a small subset of data using random sampling for parameter-space cell

voting.

The SHT is a typical non-probabilistic HT, which is the most accurate method,

but has the disadvantages of low computational speed and large storage require-

ments [21]. The hierarchical Hough transform (HHT) was introduced by Illing-

worth et al. for line fitting [38]. In the HHT, the image is separated into small

subimages and the HT is applied to each subimage. The curves are extracted from

subimages. The accumulation procedure of the HT stops when the maximum value

of the accumulators reach a predefined threshold. As a consequence, a group of
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models is detected for each subimage. The line segments detected from subimages

are grouped hierarchically level by level with the HT. The size of the accumulator

array can be kept small due to the introduction of subimages. It thus reduces

significantly the storage requirement.

The combinatorial Hough transform (CHT) was proposed by Ben-Tzvi and

Sandler [3]. It is a fast HT algorithm for line fitting. In this algorithm, two edge

data of the image are used to calculate the line parameters. One vote in a (ρ, θ)

cell in the parameter space is determined by each pair of two image edge data. The

selection of image pixel pair is limited in an image segment. This greatly reduces

the number of pixel pair combination. The CHT is faster than the SHT. However,

this method may miss some lines if the segment size is too small. If the segment

size is enlarged, the computation speed is lower. Another disadvantage of the CHT

is that it depends more upon the distribution of the image edge data than other

HT methods.

The curve fitting Hough transform (CFHT) was suggested by Liang [31]. In

this method, only a small neighborhood of edge points in the image space is used

in the voting procedure in the parameter space to fit the curve parameters. If

the edge points in the neighborhood fit the model within a given tolerance, the

model is mapped to a single point in the parameter space. The process of fitting is

performed to each M×M window in the edge image. Then the parameter space is

examined to extract the curve model. It is actually a many-to-one mapping from a

small neighborhood of edge points in the image to a single point in the parameter

space. Therefore the CFHT is the fastest non-probabilistic HT [23]. However, the
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CFHT seems to be one of the most inaccurate methods of HT. It fails to find some

obvious lines due to the selection of edge points in a small neighborhood [32].

Recently, several probabilistic HT methods have been developed. The basic

idea of these methods are the random sampling of edge data in the image and the

mapping of a group of data samples in the image space to a point in parameter

space. This mechanism significantly reduce the computation time and memory

storage. The RANSAC approach proposed by Fischler and Firschein is one of the

earliest random methods [13]. The basic idea of the RANSAC method is that n

pixels are randomly selected for obtaining an estimate of curve parameters, and

then other pixels are used to test the estimate.

Kiryati et al. proposed the probabilistic Hough transform (ProbHT) [27], in

which only a small randomly selected data subset instead of entire data set is used

for the HT. Because the size of the subset is quite small, the time complexity of

the HT is reduced considerably. However, it is still a one-to-many mapping. Each

data in the subset is mapped to a curve in the parameter space by the SHT.

The randomized Hough transform (RHT) proposed by Xu et al. is a basic

probabilistic HT for curve fitting [49], [28]. In this method for fitting curve models

with n parameters, n pixels are randomly selected in the image space and mapped

into one point of the parameter space. It is quite different from the SHT in which

one pixel of image space is transformed into an n − 1 dimensional hypersurface

of parameter space. In other words, the mapping is a many-to-one in the RHT

in contrast to one-to-many in the SHT. Compared with SHT, it has the advan-

tages of small storage, high speed, infinite accumulator space and arbitrarily high
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resolution [48].

The dynamic RHT (DRHT) method is an iterative process of two RHTs for line

fitting [23]. In the first iteration stage the original RHT is performed until the value

of some accumulator cell reaches the accumulator threshold. During the second

iteration, the feature points in the parameter space is determined by collecting the

edge data that are close to the line extracted from the first iteration. The RHT

is performed on these data near the line with higher accumulator resolution and

higher threshold in the zeroed accumulator space. When the accumulator threshold

has been exceeded by the maximum value of accumulators, the line is found. The

time complexity is reduced due to the lower resolution and lower threshold in

the first iteration and the small number of edge data investigated in the second

iteration.

A novel windowing version of the RHT, the window RHT (WRHT), was pro-

posed by Kälviäinen et al. [24]. In the WRHT, one edge point is selected randomly,

which represents the location of window. A fixed size window is determined, which

is actually a neighborhood of the selected edge point. Then certain model es-

timation techniques are employed in this window to extract curves. Only the

models supported by enough data samples in the window are accepted to update

the accumulator space. The procedure for random window selection and model

extraction in the window is repeated until the maximum score in the accumulator

space reaches a predefined threshold. The model parameters represented by the

cell with maximum score is then extracted. The most important constraint of the

WRHT is window size. Desired detection accuracy require a large enough window
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size while the average separation distance of adjacent curves limits the window

size.

In order to solve the problem of window size constraint, Kälviäinen et al. [24]

presented the improved version of the WRHT, the random window RHT (RWRHT).

The window size of the RWRHT is changed randomly. Like the WRHT, an edge

point representing the location of window is first chosen randomly. Then the size

of the window located here is also randomized. The RHT procedure is applied to

this window for model extraction. The maximum amount of the random sampling

in this window is a randomly selected number R, where R could be a function of

window size. During the RHT procedure in this window, if the curve is fitted when

the number of random sampling is less than R, the extracted model is stored and

start the search for other curves by forming a new random window; otherwise, this

window is deserted and a new random window is selected for model estimation.

Compared with the basic RHT, the random sampling is limited to a smaller ran-

dom window and the number of random sampling is also restricted by a random

value in the RWRHT.

Ben-Tzvi proposed the dynamic combinatorial Hough transform (DCHT) for

line fitting [2], [29]. In the DCHT, the line parameter is (ρ, θ). At first, a seed

point is randomly selected among feature points. Every pair of edge data with

the seed point is accumulated into a single value in a θ-histogram. The process

continues until the height of some seed points in θ-histogram reaches a predefined

threshold. In the next step, a detected line together with edge data lying on it is

removed. The whole process is repeated until all points have been removed. The
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speed of this method is obviously faster than the SHT or even the CHT.

2.3 Robust regression techniques

Regression analysis is a basic statistical tool frequently employed in computer

vision for fitting a model to noisy data. Three criteria are usually used to evaluate

a regression method [35]:

1. Relative efficiency: the ratio between lowest achievable variance of the esti-

mated parameters and the actual variance of the method.

2. Breakdown point: the ratio between the largest amount of outlier that make

the estimate meaningful and the total number of edge data.

3. Time complexity: the computation time of the method for model estimation.

Based on these criteria, three requirements that a good robust regression method

should satisfy are stated [35]:

1. Reliability when edge data are contaminated by various types of noise.

2. Large breakdown point, i.e., robustness against a high percentage of outliers.

3. A time complexity not much greater than that of the LS method (O(n2)).

Many statistical regression methods have been proposed that satisfy some of the

above requirements. They can be classified into M-estimators, R-estimators and

L-estimators [19].
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The M-estimators are the most popular robust regression methods for model es-

timation. They estimate model parameters by minimizing the sum of a symmetric,

positive-definite function l(ri) of the residual ri, i.e.,

min
∑

i

l(ri). (2.1)

The minimization problem is usually converted into a weighted LS problem. The

weights of the LS method depend on the function l(.) The reliability of estimates

depends heavily on the quality of the initial guess.

The R-estimators use the idea of ordering the set of residuals. A R-estimator

proposed by Jaeckel [22] estimates the curve parameters by solving the minimiza-

tion problem

min
∑

i

an(Ri)ri, (2.2)

where ri is the residual; an(Ri) is a score function of the rank Ri of the residual ri

in the ordered list. An important advantage of R-estimators over M-estimators is

that the result of R-estimators is independent from the variance of the noise.

The L-estimators are based on the linear combinations of order statistics [19].

The median and α-trimmed-mean based methods are popular L-estimators. Vari-

ous simulations and experiments show that L-estimators produce less satisfactory

estimates than the M- and R-estimators [18].

Although these three kinds of estimators (M-, R- and L-estimators) are robust

against various distributions, their breakdown points are less than 1/(p+1), where

p is the number of model parameters estimated in regression methods [16].
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The least median of squares (LMeds) robust regression method proposed by

Rousseeuw [41] is a popular regression method that achieves a breakdown point of

0.5. The model parameters are estimated by solving the nonlinear minimization

problem

min med
i

r2
i . (2.3)

The estimate of LMeds is actually the model with the minimum value for the

median of squared residuals r2
i for all data samples. The LMeds estimate is achieved

by a nonlinear search in the space of the median of the squared residuals of all

possible models generated by the data samples. The projection pursuit technique

is employed to reduce a multidimensional regression problem to one dimension.

Mode-estimation is used in the search of the median. The time complexity is, not

surprisingly, very high. The time complexity required for the basic LMeds method

is O(np+1 log n) for the estimation of model with p-tuple parameters [35].

To alleviate the high computational complexity, Monte Carlo type speed-up

techniques are employed in the case that a probability of errorQ≪ 1 is allowed [35].

Then the probability that all m different p-tuple data samples selected randomly

contain at least one or more outliers is

P = [1 − (1 − ǫ)p]m, (2.4)

where ǫ is the ratio of outliers in the sample data and p is the number of param-

eters of the model. Then 1 − P is the probability that at least one p-tuple data

sample from the chosen m data groups has all uncorrupted samples and the correct

parameter values can be recovered. The minimum acceptable value for m is the
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integer rounded upward by the solution of P = Q. It is independent of the size of

data n. The time complexity is thus significantly reduced to O(mn log n) [35].

Stewart proposed a new robust estimator, minimize the probability of random-

ness (MINPRAN), which is able to handle more than 50 percent outliers [45].

Unlike other techniques relying on the a known error bound for the good data,

MINPRAN assumes that the bad data are uniformly distributed. Based on this

assumption, MINPRAN extracts an accurate estimate of the model from random

sampling data and finds the inliers to this estimate that are least likely to occur

randomly. The time complexity for MINPRAN is O(n2 + mn log n), where n is

the amount of data sample and m is the number of random samples.

Boyer and Mirza have developed a robust sequential estimator(RSE) that ac-

commodates the assumption that the noise model follows a t distribution, which

is a more realistic model than the Gaussian distribution [6], [36]. It can efficiently

reconstruct the 3D surfaces in the noisy image from a fixed library of models whose

number and complexity are application dependent.

2.4 Fuzzy Clustering Technique-based methods

The fuzzy c-means algorithm and various fuzzy c-shells clustering techniques are

also good choices for extracting circular, elliptic and straight lines in images [9],

[10], [50]. The data samples are clustered into different groups based on fuzzy mem-

bership with each group representing a valid curve model. Curve model parameters

are then estimated for the clustered data,.
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Fuzzy c-means algorithms (FCM) is a square-error clustering method, where the

sum of weighted distances of the points from the cluster prototype is minimized [10].

The weight is calculated with the fuzzy membership of the sample to the cluster.

The use of different norms make it available to detect various shapes such as

spherical or elongated clusters. However, it can only be applied to the detection

of clusters whose prototype is a point and would fail to detect curves which have

hollow interiors [9].

Fuzzy c-shells (FCS) algorithms utilize shells, which are p-dimensional hyper-

spherical surfaces, as the cluster prototype [9]. The distance of a sample from the

hyper-spherical surface is defined as the distance measurement of a sample from

the cluster. The FCS can be used to detect circular shapes in two-dimensional

digital images. The hyper-spherical shell prototype, SI , is the set

SI(
→
v , r) = {→x∈ Rp | (

→
x − →

v )T I(
→
x − →

v ) = r2}, (2.5)

where p is the dimension of the sample and curve spaces,
→
v∈ Rp is the cluster

center, r ∈ R+ is the radius,
→
x∈ Rp is the sample and I is a p × p identity

matrix [10]. The distance of a point
→
xk from the ith shell SI(

→
v i, ri), (Dik)

2, is

(Dik)
2 = ([(

→
xk − →

v i)
T I(

→
xk − →

v i)]
1/2 − ri)

2. (2.6)

The FCS seeks the best shell clustering by minimizing the functional

Js(U, V,R) =
c

∑

i=1

n
∑

k=1

(uik)
m(Dik)

2, (2.7)

where c is the number of clusters, n is the amount of samples, uik is the fuzzy mem-

bership of the kth sample in the ith cluster and exponent m ∈ [1,∞). The fixed

point iteration scheme is used for searching the minimum of functional Js(U, V,R).
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The adaptive fuzzy c-shell (AFCS) algorithm is proposed to detect ellipsoidal

shell clustering in two-dimensional digital images [9], [10]. The shell prototype

is generalized by introducing the matrix A, which is a p × p symmetric positive

definite matrix that stores the information about the eccentricity and orientation

of the ellipsoid. The prototype used by AFCS is

SI(
→
v , r, A) = {→x∈ Rp | (

→
x − →

v )TA(
→
x − →

v ) = r2}. (2.8)

The distance of a point
→
xk from the ith shell SI(

→
v , r, A), (Dik)

2, is then defined as

(Dik)
2 = ([(

→
xk − →

v i)
TAi(

→
xk − →

v i)]
1/2 − ri)

2. (2.9)

The performance functional of the AFCS also changes to

Js(U, V,R,A) =
c

∑

i=1

n
∑

k=1

(uik)
m(Dik)

2, (2.10)

The AFCS seeks the minimum of Js(U, V,R,A) to optimize the cluster parameters

U, V,R and A [9], [10]. The fixed point iteration scheme is applied to finish the task.

At each iteration, Newton’s methods is used to search the solution of nonlinear

equations.

FCS and AFCS work well for circle and ellipse fitting in two-dimensional images

which includes only circular or elliptic shapes. However, they have some drawbacks

that limit their usefulness in the extraction of circles and ellipses from more complex

images.

• FCS and AFCS cannot avoid the false detections that occur in HT-based

methods, which are comprised by unrelated samples. The reason for false

fitting is that the connectivity of samples is not considered in FCS and AFCS.
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• The search strategy of FCS and AFCS is to select as inlier the data with small

deviation from current estimated model [9], [10]. Hence they are sensitive to

outliers since the estimated model may be pulled off significantly from the

expected models by the outliers. In that case, the data with small deviation

from current models may not necessarily be inliers of expected models.

• FCS and AFCS depend heavily on the quality of the initial guess. The data

set is divided into several subsets during initialization. These algorithms

require good initializations for the memberships as well as model parameters.

If the initial partition is not close enough to the expected partition, the

solutions may not converge [9], [10].

• The number of clusters is fixed in FCS and AFCS [9], [10]. They cannot

detect an a priori unknown number of models.

• FCS and AFCS have difficulty in extracting partial shapes [9], [10]. They

cannot extract circles and ellipses in the digital images that include different

geometric shape due to the constraint of the fuzzy membership
∑c

i=1 uik = 1.

• They may not work well in the presence of considerable overlap or inclu-

sions [9], [10].

• They are not robust against noise [9], [10].

• The Newton methods for solving the nonlinear equation will lead to local

minima in AFCS. They may not converge to a global optimum if the initial-

izations are not good [9], [10].
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• The computational burden is heavy due to the search of nonlinear equations

solutions.

The fuzzy curve tracing (FCT) algorithm extracts a smooth curve from un-

ordered noisy data that describe the local and global features [50]. It focuses more

on edge data thinning techniques and describes the local features with smooth

curves. The algorithm consists of three steps: data thinning, region ordering and

curve parameter estimation. In the first stage, the input data are clustered into

different regions using the FCM algorithm. Then the region is ordered by determin-

ing the closeness of one region to its neighboring regions using the averages of the

class membership values. A graph is formed by linking the region to its two closest

regions. The initial representation of the curve is obtained by removing small loops

in the graph. In the parameter estimation step, the initial representation converges

to a local optimum smooth curve with a smooth constraint. FCT is powerful in

dealing with unordered data, compared with polygon approximation [50]. However,

FCT is a local shape description technique. One single circular or elliptic models

may be represented by piecewise smooth different nonlinear curves with FCT. The

circular or elliptic representation cannot be guaranteed. FCT represents the local

data distribution with smooth curves. Therefore it is not robust against noise. The

presence of outliers will cause the local smooth curve to drift away from the true

model though both true and false extracted curves are smooth.

Principal curves are smooth one-dimensional curve passing through the middle

of a p-dimensional data cloud and provide a nonlinear summary of the data. They

are nonparametric, and their shape is suggested by the data [17] [25]. The principal
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curve does not intersect itself and has finite length inside any bounded subset. It

is a self consistent curve, which means that each point of the curve is the average

of all the data that project there. It is obvious that the principal curve is a concise

summary of local data distribution. The characteristics of self consistency makes

it sensitive to the outliers because the existence of outliers may bias the average of

the data on a single projection line from the expected place. Naturally, the shape

of the principal curve also changes. The principal curve works well only for some

special data distribution density, like radially symmetric densities and uniform

density. The summary of local data distribution may cause the phenomenon that

a global circular shape will be represented by several smooth non-circular principal

curves. Thus it may fail to extract the global data distribution shape.

2.5 LS-based methods

The least squares (LS) method has been widely adopted in computer vision and

pattern recognition. It achieves optimum results when the noise distribution is

Gaussian. Apart from the optimality in dealing with Gaussian noise, the LS al-

gorithm also has the advantage of significantly lower computational complexity

(O(n2)) compared with those of above mentioned HT-based approaches and ro-

bust regression methods [8].

However, the LS method becomes unreliable when fitting multiple models be-

cause outliers may severely affect performance. Therefore the key issue is to find a

modified LS approach that is robust against outliers. Re-weighted LS methods are
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proposed to solve the problem of outliers [16], [19], [1]. The trimmed LS method is

robust against outliers only if the number of outliers in the data sample is known

a priori [42]. This condition is not possible for most applications. The robust

regression methods, M-estimators, can also be regarded as re-weighted LS meth-

ods because the weight of data in M-estimators are determined by a symmetric,

positive-definite function of residuals [35]. The major weakness of the re-weighted

LS method is that the fitting results depend to a large extent on the quality of the

initial guess [35]. If the initial guess is biased, the estimators have a large proba-

bility to extract a non-meaningful model. Hence, these re-weighted LS estimators

can only be used in applications in which a good initial guess is available.

To avoid the initialization problem of the M-estimator, Chen [7] proposed a

data-driven intermediate level feature extraction algorithm. In this method, he

applied a statistical windowing technique to obtain an initial estimate. A search

region (which grows during the iterative estimation) is then determined. All data

in the search region are verified for their goodness-of-fit to the current estimated

model. The current model is then re-estimated with the sample of favorable

goodness-of-fit value. Other data with poor goodness-of-fit are rejected as out-

liers. In the iterative process, the algorithm drives the estimate to converge to a

local optimum model. Multiple models can be extracted by repeatedly applying

the algorithm to updated data sample set that exclude the inliers of previous esti-

mates. However, a meaningful initial guess of this method requires that the data

come from the same model, which is difficult to guarantee in the applications of

multiple model estimation.
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A parametric model fitting framework based on inlier characterization has been

proposed for the fitting of multiple parametric models [8]. It consists of a parameter

estimation module based on a general LS method for model extraction and of a

error propagation procedure. In the error propagation procedure, a data snooping

technique is employed to exclude outliers, in which all residuals of data sample

are analyzed based on the statistical output of the LS method. Based on the

the result from error propagation, the model parameters are complemented with a

precision estimate, inliers are assigned to the fitted model and the a priori unknown

number of models are extracted. A major advantage of this method is that no

assumption on the outlier distribution is required. Its major shortcoming is that

inlier characterization of the input data, e.g., the covariance matrix, is required.

Furthermore, a poor initial guess may still lead to a non-meaningful estimate.

2.6 Conclusion

The Hough transform (HT) is a well-established curve detection method [21]. It

is an efficient tool for the detection of multiple curves and is robust with respect

to outliers. However, the high computational cost and low accuracy due to the

high dimensionality and quantization of the parameter space [20] degrade the per-

formance of this approach. Another serious problem is that it often yields many

wrong detections in complex and noisy images.

In order to alleviate these problems, improved HT schemes have been proposed,

like RHT, ProbHT, DCHT [23], and their variants. However, almost all of them
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focus on easing computational complexity by random sampling or by reducing the

search area in the image space, but are less effective in reducing wrong detections.

Furthermore, unlike the least squares (LS) method, the HT transform and its

variants cannot offer an optimal fitting when the inliers of the model are corrupted

by Gaussian noise.

Robust regression is another important statistical tool frequently employed in

computer vision for fitting a model to noisy data. However, robust statistical

methods usually have to make a tradeoff between accuracy and robustness, and

are of low computational efficiency. The second requirement above for a good

robust regression approach implies that the breakdown point of a model-fitting

technique should be more than 50 percent. Unfortunately, most robust methods

have a breakdown point below this [35]. Stewart’s MINPRAN estimator is able

to handle more than 50 percent outliers but requires a fixed outlier distribution,

which is not feasible in practice [45].

FCS and AFCS are curve fitting algorithms based on fuzzy clustering technique.

The ignorance of geometric relationship among samples may produce wrong de-

tections with FCS and AFCS. The inlier search strategy makes them sensitive to

the outliers and noises. FAC and AFCS depend crucially on the quality of initial

guess and will not converge if the initialization is not good enough. They may

work poorly in the presence of considerable overlap or inclusions of models. FCT

and principal curve-based curve fitting algorithms provide piecewise smooth curves

passing through the middle of the data cloud for the summary of local data fea-

tures. They are sensitive to the local data distribution and may miss the global
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shape feature due to the occurrence of outliers and noise.

The LS method, while achieving optimum results when the noise distribution

is Gaussian, is unreliable for the fitting of multiple models because only one outlier

can severely deviate the LS estimates. Re-weighted LS methods [19] are popular

methods to avoid the influence of outliers, but a major weakness is that the fitting

results depend crucially on the quality of the initial guess [35]. Several approaches

have been proposed for solving the initialization problem of the M-estimator [8], [7].

The quality of initialization is improved with these methods, but a poor initial guess

may still lead to an undesired estimate.

It is worth pointing out that in many real machine vision applications, the

underlying curves to be detected are characterized by arcs, which are actually intra-

connected subsets that fit the correct curve models. Since most model estimation

methods do not consider the geometric relationship among the candidate points,

a common failing is the production of false models. Edge points that fit the false

model in this kind of images are considered to satisfy the criterion for curve validity

even though they may actually belong to other geometric shapes.

The estimator proposed in this thesis is motivated by some observations of how

the human visual system can easily classify the data and ignore the outliers while

fitting multiple models. First, approximate estimations are made by examining

data taken over the entire image, i.e., it is a global process. Second, closely con-

nected edge points are likely assumed to come from the same model. Third, the

full set of inliers is not needed to extract meaningful models.



Chapter 3

Mathematical Modelling and

Shulidu-based Estimation

3.1 Introduction

In this chapter a new concept called shulidu is developed, which describe the rela-

tionship between a single element and the entire set. A robust method for estimat-

ing data cloud center is proposed by incorporating the concept of shulidu. We then

describe a novel estimator for fitting multiple intersecting linearly parameterizable

curves. This estimator presents a new approach for handling cases with a high

percentage of outliers. A robust single-model extractor employing a region trim-

ming scheme is used for outlier detection. This extractor drives the initial global

estimate to the desired model by eliminating outliers iteratively. The underlying

models can be extracted sequentially by repeatedly applying this extractor to the

updated edge data set. The detected models are then evaluated with a model

31
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verifier to determine their validity.

Three major distinguishing features of this estimator are:

1. It is robust against an arbitrarily high percentage of outliers.

2. It is able to handle an a priori unknown number of meaningful models in

the edge data without any statistical information of the inlier and outlier

distribution.

3. It is effective fitting of multiple intersecting or touching curves.

3.2 Linearly parameterizable curve model

In computer vision, conic and polynomial curves are of great importance because

they efficiently describe large parts of man-made objects. They are linearly param-

eterizable models that can be used to approximate most other complex models in

a piecewise fashion. Therefore we devote our attention to linearly parameterizable

models in the Euclidean plane.

Let the vector
→
x= (x, y) be an edge point in image space I and the vector

→
α

denote a point in parameter space P . A linearly parameterizable curve C(
→
α) can

be represented by

C(
→
α) = {→x∈ I | f(

→
α,

→
x) = 0}, (3.1)

where
→
α= (α0, α1, · · · , αp−1)

T is the parameter vector and f(
→
α,

→
x), given by

f(
→
α,

→
x) =

p−1
∑

i=0

αifi(
→
x) + fp(

→
x), (3.2)
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is the linearly parameterizable model of the curve. We let fi(
→
x), i = 0, 1, · · · , p,

be polynomial functions on I,

fi(
→
x) = xniymi , i = 0, 1, · · · , p, (3.3)

where ni and mi are non-negative integers. Then the polynomial surface of order

N has the form of (3.1), and

f(
→
α,

→
x) =

N
∑

n=0

n
∑

k=0

αnkx
n−kyk, (3.4)

where αnk are polynomial coefficients. Obviously, a polynomial surface of the

Nth order is linearly parameterizable. Besl and Jain [4] demonstrated that many

common surfaces in range images can be well approximated by polynomial surfaces

of up to order 4.

3.3 Problem formulation

We now present a mathematical formulation of the parameter estimation problem

for the class of multiple curves described by the linearly parameterizable model.

Generally, there is more than one curve in an image. For any one of these curves,

the edge points of other curves can be viewed as outliers; more often than not,

the outliers outnumber the edge points and may make the fitting results far from

the true value. The detection and removal of outliers from the set of edge points,

which is a classification problem, is the key to multiple-curve estimation.

For each underlying curve in the image, the entire edge point set S can be

separated into two subsets, Ω and Ω. Ω denotes the subset of the edge points that
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may lie on the fitted curve or slightly deviate from it and is the inlier subset of

the curve C(
→
α). Ω, on the other hand, is the outlier set of this underlying curve.

For a valid curve, its inlier subset Ω should satisfy some requirements that would

ensure that the curve is meaningful.

We now construct a performance function that appropriately formulates the

multiple-curve fitting problem by taking the inlier-outlier classification into con-

sideration:

L(
→
α,Ω) =

N
∑

i=1

w2
i l(

→
α,

→
x i), (3.5)

where

Ω and
→
α satisfy q(

→
α,Ω), (3.6)

wi =















w(
→
x i,Ω), if

→
x i∈ Ω

0, if
→
x i∈ Ω

, (3.7)

and N is the total number of edge points. l(
→
α,

→
x i) is a loss function that quantifies

the loss when the edge data
→
x i are not exactly on the estimated curve C(

→
α),

q(α,Ω) are the inlier criteria that a valid inlier subset Ω of the underlying curve

C(
→
α) should satisfy, and w(

→
x i,Ω) is a weight function with respect to the inlier

subset Ω that assigns weights to each of the edge data in Ω.

Thus the problem of multiple-model estimation is to find a group of parameter

vectors,
→
αk, and the corresponding inlier set Ωk such that they comprise the local

minima of the performance function (3.5) while the valid inlier requirements (3.6)

are concurrently satisfied. It is clear that the selection of the inlier set Ωk greatly

influences the estimation of parameter vector
→
αk. It is also worth noting that the

weights w are closely related to the final estimate C(
→
α). Therefore the linearly
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parameterizable multiple-model estimation problem requires not only the estima-

tion of the curve model but also the detection of its inlier set. It is essentially a

“classify and fit” problem.

3.4 Inlier criteria and weight function

The linearly parameterizable multiple-model estimation problem that has been

formulated is actually a problem involving both data classification and parameter

estimation. Parameter estimation is strongly related to the weight of each edge

point, which in turn is obviously determined by the inlier set Ω as well as the weight

function. A good set of inlier criteria will be helpful in preventing unwanted inlier

subsets as well as pseudo curves.

Generally, the inliers of a curve are those edge data that lie exactly on or,

because of random errors, slightly away from it. Hence we propose the following

inlier criterion to determine whether an edge point is an inlier:

Criterion 3.1 (Inlier Criterion).

g(
→
α,

→
x i) ≤ Tg, (3.8)

where Tg is a predefined threshold and g(
→
α,

→
x i) is a distance function that measures

the closeness of edge data
→
x i to the curve C(

→
α).

The edge data that satisfy Criterion 3.1 consist of the inlier subset

Ω(
→
α) = {→x i |g(

→
α,

→
x i) ≤ Tg, i = 1, · · · ,N (

→
α)}, (3.9)
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where N (
→
α) is the number of edge data in Ω(

→
α), i.e., the number of inliers of the

curve C(
→
α). It is a reasonable requirement that a meaningful curve should have

enough inliers. Therefore the second inlier criterion for the number of inliers(NOI)

is

Criterion 3.2 (NOI Criterion).

N(
→
α,N (

→
α)) ≥ TN , (3.10)

where TN is a threshold value. N(
→
α,N (

→
α)) represents in some sense the arc of the

curve formed by the inlier set. It is a function of number of edge data in the inlier

set.

In most real images, some of the inliers in Ω(
→
α) should form at least one mean-

ingful part of the curve that distinguishes this curve from others. This group,

which includes those edge data that form the most significant part of the curve,

is referred to as the Significant Inlier Subset(SIS). In fact the SIS can be in some

sense regarded as the feature subset of the curve.

Pseudo curves are a serious problem in curve estimation. In the detection of

multiple curves, pseudo curves whose inlier subsets comprise many unrelated edge

points or the inliers of other curves will be frequently regarded as valid according

to NOI Criterion (Criterion 3.2). Therefore only NOI Criterion (Criterion 3.2)

is not a robust criterion against pseudo inlier subsets. Instead, we focus on the

most salient arc of the underlying curve and then extend this meaningful arc to

reconstruct the entire curve, which leads to the following robust inlier criterion:
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Criterion 3.3 (SIS Criterion).

φ(
→
α,Ωs(

→
α)) ≥ Tφ, (3.11)

where Ωs(
→
α) is the SIS of curve C(

→
α), φ(

→
α,Ωs(

→
α)) is a feature measurement of

curve
→
α and its SIS Ωs(

→
α), Tφ is a threshold value. This criterion requires that a

meaningful curve should have at least one significant arc that confirms its validity.

A reasonable assumption for SIS is that all edge data in the SIS are connected

according to some connection criteria. The inlier set can be divided into several

intra-connected inlier subsets. In most applications, the SIS is the largest intra-

connected subset. However the definition of the SIS is not limited to connectivity

but can be determined with any appropriate criteria that describe the features of

the model better and, in fact, it can be application dependent.

The SIS Criterion is a robust criterion for arc because it depends on the mean-

ingful inlier subset. What is more, it can be curve size independent if SIS feature

is selected appropriately, which means it will represent the arc feature no matter

whether the curve is large or small. For example, the angle subtended by arc is

a good choice for a curve size independent arc feature. On the contrary, the NOI

Criterion is severely influenced by the curve size. The number of inliers in an arc

of large circle with small subtended angle may be much more than that of a com-

plete circle with small radius. Therefore it does not represent complete feature of

arc. However, it is very useful to prevent a small crowd of edge data from being

mistakenly treated as a valid arc. Because with only SIS Criterion, this small block

of edge data caused by noise or the intersection of different curves may be verified
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as a complete small circle or ellipse, which is obviously an incorrect decision. The

NOI Criterion require a valid arc to have enough inliers , which will avoid these

pseudo curve models.

When the SIS, Ωs, is available, the weight function can be defined. Since only

the SIS is employed in multiple-curve detection, we assign non-zero weights to edge

data in the SIS instead of those in the entire inlier set. Then edge points are inliers

and can be assigned positive weight:

wi =















vi, if
→
x i∈ Ωs

0, elsewhere

. (3.12)

where vi ≥ 0 and
∑Ns

i=0 vi = 1. The basic idea behind the weight function (3.12)

and Criterion 3.3 is that only the inlier points in the SIS are employed in data clas-

sification and parameter estimation. The weight function, Inlier Criterion (Crite-

rion 3.1), NOI Criterion (Criterion 3.2) and SIS Criterion (Criterion 3.3) together

provide an efficient and robust formulation for the problem of multiple-curve de-

tection.

3.5 Using shulidu for sound estimation

Measurement is a fundamental part of science. Like multiple curve fitting, it is

also adversely affected by outlier corruption. An effective estimation method was

proposed to remove a priori unknown outliers in the observation set when it follows

a unimodal distribution [39]. Since the measurement problem can be regarded as
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the model estimation problem with curve model

f(x) = x− a, (3.13)

this method is in fact a powerful tool to deal with outliers in this kind of estimation

problem. Its basic idea together with its key concept, shulidu, form the basis of

our new multiple-model estimator for linearly parameterizable curve fitting.

3.5.1 Basic ideas

All measurements are invariably subject to error and uncertainty. If the values

of a set of raw observations vary due to random errors, it would be natural to

take the mean of the set as the best estimate. Sometimes, however, observations

are corrupted by systematic errors or gross errors that bias the mean significantly.

Many techniques have been developed to remove the influence of outliers, most of

which are based on statistical assumptions about observation distributions, such

as Chauvenets’s criterion [47]. However, it is a difficult if not an impossible task

to design an effective statistical model that fits the observed data.

To avoid this problem, we can identify outliers based on the mutual displace-

ment of the entire observation set. It is also pertinent to note that in the obser-

vations of a certain measured quantity, the true value may generally be located

within the largest dense area of the observation set, called the Significant Dense

Area (SDA), and only the observations here should be used to make the estimation.
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3.5.2 Shulidu

In order to reveal the mutual displacement relation among the observation set in

a mathematical way, Qiao [39] developed a new concept, shulidu, a Chinese term

that means the metric that is used to represent the closeness of a single element

in the set to the entire set. The shulidu of each observation is defined as the sum

of pre-defined distances between this observation and any other observation in the

set [39]:

s(xi) =
n

∑

k=1

d(xi, xk), (3.14)

where d(xi, xk) is a pre-defined distance function between xi and xk. With this

definition of shulidu, an observation that deviates greatly from other observations

has a very large shulidu value, while the observation located in the dense area has

a relatively small value. It is worth pointing out that distance does describe the

similarity between two single observations, and shulidu does reveal the proximity

of a single observation to the entire data set. It can also be proved that the shulidu

values contain the complete distribution information of the set, and hence the

entire data set can be exactly reconstructed with only the shulidu of each point in

the set.

With the available shulidu, we can assign to each observation a weight factor

that can be regarded as the strength of the influence of the observation on the

weighted mean. The weight is calculated by [39]

w(xi) =

1
s(xi)

∑n
j=1

1
s(xj)

. (3.15)

It is not difficult to see that when the observation has a large shulidu value it
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is far from the entire set and hence its influence upon the mean should be greatly

reduced, which indicates a small weight assigned for this observation. The weight

can be expressed in a more general form of the shulidu function:

w(xi) = W (s(xi)|s(x1), · · · , s(xn)) for i = 1, · · · , n, (3.16)

where W (s(xi)|s(x1), · · · , s(xn)) should satisfy the following three conditions:

Condition 3.1.

W (s(xi)|s(x1), · · · , s(xn)) ≥ 0 for i = 1, · · · , n. (3.17)

Condition 3.2.
n

∑

i=1

W (s(xi)|s(x1), · · · , s(xn)) = 1. (3.18)

Condition 3.3.

W (s(xi)|s(x1), · · · , s(xn)) ≤ W (s(xk)|s(x1), · · · , s(xn)), if s(xi) > s(xk),(3.19)

W (s(xi)|s(x1), · · · , s(xn)) ≥ W (s(xk)|s(x1), · · · , s(xn)), if s(xi) < s(xk),(3.20)

W (s(xi)|s(x1), · · · , s(xn)) = W (s(xk)|s(x1), · · · , s(xn)), if s(xi) = s(xk).(3.21)

Conditions 3.1 and 3.2 ensure that the weights are non-negative and normalized.

Condition 3.3 reveals the influence of the shulidu function on weights of individual

observations. According to Condition 3.3, the observation that has a large shulidu

value will be assigned a small weight and vice versa.

With the acquired weights, the weighted estimate is

x =
n

∑

k=1

w(xk)xk. (3.22)
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Table 3.1. Observations, shulidu and weights

i xi s(xi) w(xi) i xi s(xi) w(xi) i xi s(xi) w(xi)

1 0.9 36.9 0.0778 6 1.2 36.8 0.0778 11 0.8 38 0.0758

2 0.8 38 0.0758 7 1.1 36.3 0.079 12 1.1 36.3 0.079

3 1.0 36.2 0.0795 8 0.9 36.9 0.0778 13 1.2 36.8 0.0778

4 1.0 36.2 0.0795 9 13.0 149 0.019 14 15.0 175 0.016

5 10.0 116 0.0252 10 1.0 36.2 0.0795 15 1.0 36.2 0.0795

Clearly, from (3.15), we see that the greater the shulidu, the lower the weight.

Therefore, the contribution of significantly deviated observations that have large

shulidu is sharply reduced while the normal observations exert more influence on

the estimate. For example, in Table 3.1, which includes 15 observations of a mea-

surement with true value 1, x14 has the largest shulidu value and hence is regarded

currently as the most qualified outlier. Further, the biasing influence of x14 is

heavily suppressed because of the relatively large value of its shulidu s(x14). The

shulidu-based weight of x14, w(x14) is only about one-fifth of that of x3, whose

shulidu is minimum. Compared with the conventional algorithmic mean of 3.3,

the shulidu-weighted estimate, 1.6, is much less biased from the true value caused

by the outliers.

3.5.3 A robust method for sound estimation

The shulidu-weighted mean is still heavily corrupted by outliers when there is more

than one outlier in the observation set even though the undesired influence is sig-
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Figure 3.1. Scheme of shulidu-based estimation

nificantly suppressed. An improved estimate is obtained by an iterative method

(Fig. 3.1) in which a series of estimates converges to the SDA of the observation

set [39]. The current estimate contains the information of all observations and,

compared with the arithmetic mean, is closer to the true value, while the observa-

tions with the largest shulidu are most likely to be outliers (provided the outliers

exist). Hence the current estimated mean is used to replace the observation with

the largest shulidu in the current iteration and the observation data set is then

updated. In the next iteration, the influence of the discarded data is further weak-

ened and, naturally, the new estimate is closer to the desired value. The iterative

process terminates when the difference between two successive estimates is suffi-

ciently small. With the weakening influence of the outliers, the shulidu-weighted

estimates would converge to the SDA, which is within the desired neighborhood of

the true values.

The iterative estimation method consists of three major steps:
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(1) Calculate the shulidu of each observation.

(2) Determine the shulidu-weighted estimate.

(3) Examine the result and update the observation set. If the result is desired,

e.g., the difference of the last two shulidu-weighted estimate is small enough,

stop; otherwise, go back to step (1).

The algorithm achieves satisfactory results when the observation set is uni-

modally distributed. In the example of Table 3.1, there are three outliers, x5 =

10.0, x9 = 13.0, x14 = 15.0. They are replaced by the temporary estimates during

the iteration. The final estimate is 1.02, which is very close to the true value.

Clearly, the biasing influence of the three outliers has been almost completely re-

moved.

3.5.4 Analysis

In clustering approaches, the similarity measurements of a sample to the cluster is

a critical criterion when classifying samples into clusters. Usually the sample will

be assigned to a cluster according to its similarity measurement. In conventional

clustering methods, the similarity measurement of a sample to a cluster is gener-

ally defined as the the distance between the sample and the mean vector of this

cluster [12],

J(xi) = d(xi,m), (3.23)

where m is the mean vector of the samples in the cluster,

m =
1

n

n
∑

i=1

xi, (3.24)
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and n is the number of samples in this cluster. A simple interpretation is that the

mean vector of a given cluster best represent samples in the cluster in the sense

that it minimizes the sum of the squared errors of all samples of the cluster to

the cluster mean. The above similarity measurement is actually the deviation of

a sample from the mean vector of the cluster. Therefore the performance of this

similarity measurement (3.23) depends critically on the mean vector.

The deviation d(xi,m) in (3.23) can be various forms of distance. The Euclidean

distance is most commonly used in the deviation with the similarity measurement

of the form

Je(xi) = |xi −m|. (3.25)

The Mahalanobis distance is another popular selection for deviation. The similarity

measurement using the Mahalanobis distance is

Jm(xi) = (xi −m)A−1(xi −m), (3.26)

where A is the estimation of the covariance matrix

A =
1

n− 1

n
∑

i=1

(xi −m)(xi −m)′, (3.27)

These mean-based similarity measurements (Je(xi) and Jm(xi)) are appropriate

criteria for distinguishing outliers and inliers if the cluster forms a compact cloud.

The mean vector is located near the center of the cluster in this situation. However,

if there are some outliers in the cluster, the mean vector may be significantly biased

away from the cluster center. Then this mean-based similarity measurement (3.23)

may provide the wrong information about the closeness of a sample to the cluster.
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Table 3.2. Observations, Euclidean distance, Mahalanobis distance and shulidu

i xi Je(xi) Jm(xi) s(xi)

1 0.941 3.983 0.241 59.824

2 0.940 3.984 0.241 59.831

3 1.021 3.903 0.231 59.514

4 0.954 3.969 0.239 59.727

5 0.940 3.984 0.241 59.831

6 0.903 4.021 0.245 60.308

7 1.049 3.874 0.228 59.542

8 0.989 3.935 0.235 59.554

9 1.086 3.837 0.223 59.653

10 0.993 3.930 0.234 59.541

11 4.919 0.005 0.000 78.815

12 5.346 0.423 0.003 82.450

13 5.025 0.102 0.000 79.560

14 22.026 17.103 4.435 265.933

15 26.721 21.798 7.205 326.967
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An example in Table 3.2 shows that some outliers cannot be recognized with

the mean-based similarity measurement. There are 15 observations of a measure-

ment with true value 1. The data x(1) - x(10) are inliers while the data x(11) -

x(15) are outliers. The mean of all observations m = 4.92 is significantly biased

from the true value and close to the outlier data x(11) - x(13). Consequently, the

mean-based similarity measurement of these three outliers (both Je(x11) - Je(x13)

and Jm(x11) - Jm(x13)) are much smaller than those of inliers (both Je(x1) - Je(x10)

and Jm(x1) - Jm(x10)). Suppose we have a priori information that there are five

outliers, we cannot identify the outliers x(11) - x(13) if we use the mean-based sim-

ilarity measurements (Je(xi) and Jm(xi)). Actually, due to the closeness between

the mean and outliers x(11) - x(13), the mean-based similarity measurement will

fail to recognize the outliers x(11) - x(13) no matter what kind of distance is used.

On the contrary, the shulidu is not influenced by the emergence of outliers. From

Table 3.2, the shulidu of all inliers (s(1) - s(10)) are smaller than those of the out-

liers (s(11) - s(15)). With the shulidu, all five outliers will be correctly recognized.

The initial shulidu-weighted mean is 2.454063, which is also sharply biased from the

true value. However, it is much closer to the true value than the mean value defined

in (E:Mean). Actually, the deviations of all outliers to the initial shulidu-weighted

mean are larger than those of inliers. Therefore the mean-based similarity mea-

surement can work for outlier recognition with the initial shulidu-weighted mean.

The shulidu-weighted mean converges to 1.004920 with the method proposed in

Section 3.5.3, which is close enough to the true value.

Example in Table 3.2 illustrates that the shulidu is much more reliable than the
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mean-based similarity measurement in the presence of outliers. The shulidu em-

ploys the sum of distance of this sample to each member of a cluster to describe the

similarity of a sample to this cluster. Thus the shulidu contains more information

of the cluster distribution than the mean-based similarity measurement (3.23). It

ensures the robustness of the shulidu against outliers and avoids the sensitiveness

of the mean to outliers.

3.6 Extracting a single model

Before we investigate the problem of fitting multiple linearly parameterizable curves,

we need an effective method for extracting a single model. LS optimization is a

popular choice, but there are generally some a priori unknown outliers in the im-

age that will severely distort the estimation results of the LS method. We use the

iterative weighted LS approach to circumvent the outlier problem. We then present

an effective strategy, the region trimming scheme, that defines weight functions to

handle outliers. The above techniques form an effective single-model extractor for

the fitting of multiple linearly parameterizable curves.

3.6.1 Iterative Weighted LS Approach

The iterative weighted LS approach is an efficient mathematical framework for

solving the curve fitting problem (Section 3.3). In this iterative method, weights

of the edge data and the curve model converge to the correct values by adjusting

the weights and making an optimal model estimation at every cycle.
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Let Ω = {→x i, i = 1, 2, · · · , Q} denote the edge data set where Q is the number

of edge points in Ω. The parametric form of the underlying curve is described

by (3.1). For simplicity, we use the matrix notation of (3.2),

Y = X
→
α, (3.28)

where

Y =

























fp(
→
x1)

fp(
→
x2)

...

fp(
→
xq)
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q×p

. (3.31)

For a certain curve C(
→
α), the error is

ei = f(
→
α,

→
x i) =

p−1
∑

j=0

αjfj(
→
x i) + fp(

→
x i). (3.32)

The matrix form of (3.32) is

Y = X
→
α +

→
e , (3.33)
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where
→
e= [e1, e2, · · · , eq]

T .

The initial estimates of the curve parameters,
→
α

(0)
, are known either a priori

or by applying the conventional LS method. The current weight w
(n)
i for

→
x i∈ Ω is

obtained by different inlier search strategy. We define the total weighted deviation

of the points in Ω from the current estimated curve C(
→
α

(n)
) by

Ew(
→
α

(n)
) =

∑

→

x i∈Ω

[w
(n)
i f(

→
α

(n)
,
→
x i)]

2 =
∑

→

x i∈Ω

[w
(n)
i ei]

2. (3.34)

The subproblem of reconstructing a curve from edge data based on the previous

estimate
→
α

(n−1)
is to find the estimated curve parameters

→
α

(n)
such that the total

weighted deviation over Ω is minimized, i.e.,

Ew(
∧
→
α

(n)

) = min
→

α
(n)
E(

→
α

(n)
). (3.35)

This is exactly a weighted LS optimization problem. Let W be a diagonal weight

matrix, i.e.,

W (n) =

































w
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. . . 0 · · · 0

0 0 w
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i 0 0

... 0 0
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0 · · · 0 0 w
(n)
Q

































Q×Q

. (3.36)

We then obtain the matrix form of (3.34):

Ew(
→
α

(n)
) = ‖W (n)Y −W (n)X

→
α

(n)‖2
2. (3.37)

The solution to

Ew(
∧
→
α

(n)

) = min
→

α
(n)

‖W (n)Y −W (n)X
→
α

(n)‖2
2 (3.38)
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is equivalent to solving the equations

XT (W (n))
T
W (n)X

→
α

(n)
= XT (W (n))

T
W (n)Y, (3.39)

where (·)T denotes the matrix transpose. The solution
→
α

(n)
is used to evaluate

the new weights W (n+1) for further estimation of
→
α

(n+1)
and so on. The itera-

tive estimation procedure will not be terminated until the curve models meet the

termination criteria.

3.6.2 Region Trimming Scheme

In an image with multiple curves, most of the outliers are edge points that sup-

port other curves. Hence they generally do not scatter in the form of a Gaussian

distribution with respect to the fixed curve. Due to the outliers’ diverse statistical

distribution characterization, conventional methods based on statistical assump-

tions often offer no solution to the elimination of outliers and may even yield

non-meaningful results. A further difficulty is that such methods require a good

initial estimate of the model.

To solve the initialization problem, we propose a novel global-based estimation

strategy. It detects a globally favorable curve of the image by identifying and

discarding outliers from the current available data set in an iterative process.

The original data set is grouped into several subsets called the initial inlier

candidate sets. The strategy uses all the data in the initial inlier candidate set

to make an initial estimate of the underlying curve models. Since the initial set

may be the union of the inliers of all the intersecting or touching curves, the initial
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estimate may not necessarily be a meaningful one for any of these underlying

curves. However, it would be a useful model for detecting the outliers of the

current favorable curve.

The current most qualified outlier candidates should be the data that have the

maximum deviation from the current estimated model and also contribute most to

make the present estimate far from the underlying favorable curve. Therefore, the

detected outlier data are removed from the current inlier candidate set. Moreover,

in order to overcome noise and pseudo curves, the most significant subset of the new

reduced set, which is obtained according to some application-dependent criteria,

is selected as the new updated inlier candidate set for next iteration. Hence the

new estimate is expected to be improved with the updated inlier candidate set.

With outliers being discarded, not only do the estimates converge to the correct

favorable curve model, the updated inlier candidate set converges to the SIS of

the favorable curve as well. When the residuals of all the inlier candidates satisfy

the fitting requirements, the present estimate will fit the desired underlying curve

model. The remaining inlier candidates are the true inliers of the fitted curve.

There is obviously no initialization problem in the above global-based estima-

tion strategy. The major feature that distinguishes this scheme from conventional

methods is that the detection of outliers is based on the global inlier candidate

set instead of being dependent on an accurate local guess about the model inliers.

The proposed strategy is very similar to the process of tree trimming in which

unwanted branches are removed; hence we call it global-based region trimming.

Fig. 3.2 shows the flowchart of the single-model extractor. The iterative weighted
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Figure 3.2. Single-model extraction

LS approach discussed in Section 3.6.1 provides the general mathematical frame-

work for the single-model extractor. The region trimming strategy can be well

formulated by the iterative weighted LS approach by setting the weight of edge

points excluded at each iteration as 0.

3.7 Fitting multiple curves

Fig. 3.3 describes the multiple-model estimator, which can handle multiple touch-

ing or intersecting linearly parameterizable curves in the presence of an arbitrarily

high percentage of a priori unknown outliers. The estimator consists of three ma-

jor steps: (1) preprocessing the original data, (2) fitting meaningful curves, and

(3) verifying the fitted curves.

Step 1: Preprocessing the original data.

We first examine the edge data in the entire image I and divide them into
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different groups, Gj, according to some criterion based on some a priori knowledge,

i.e., I = ∪ Gj, where Gj ∩ Gi = ∅ for any j 6= i. The data subsets Gj are the

initial inlier candidates subsets.

Step 2: Fitting meaningful curves.

Due to possible intersection of different curves, a single subset Gj may still

contain multiple curves. The global-based region trimming scheme is used in Gj to

find the outliers as well as estimate the model parameters. When the most favorable

model C(
∧
→
α) is reconstructed with the single-model extractor, the current inlier

candidate set R
(k)
j that satisfies both NOI Criterion and SIS Criterion is in fact its

SIS. Since the inliers of C(
∧
→
α) will become the outliers of other underlying curves,

these inliers are discarded for subsequent model estimation. If the reconstruction

fails this time, the remaining subset R
(k)
j that meets neither of NOI Criterion and

SIS Criterion is still discarded such that the estimates of other models is available.

The initial edge data set Gj is then updated by
∼

Gj= Gj − R
(k)
j , where

∼

Gj is the

updated initial inlier candidate set. All inliers of curves in their respective SIS’s

that have already been extracted are excluded from this updated subset. Data set

∼

Gj can be separated into subsets that can be used for other curve fitting. The other

curves of the same parametric form are reconstructed by repeating step (2) with

the original or updated initial inlier candidate sets until no such kind of subset is

available for curve fitting.

Step 3: Verifying fitted curves.

When all initial inlier candidate sets have been investigated for curve recon-

struction, we obtain a set of estimated models. However, the edge points of a



Chapter 3. Mathematical Modelling and Shulidu-based Estimation 55

select the

current

largest

subset

single model

extraction

Yes

update

subset by
excluding

significant

inlier subset

of the

detected

model

updated
subset

has

enough

data ?

Yes

No
any

undetected

subset ?

No
model

verification

initial

edge

data

set

initial set

is divided
into a

group of

edge

data

subset

Figure 3.3. Multiple-model estimation

single curve may override several initial inlier candidate sets, and edge data from

different curves in an initial inlier candidate set may be mistakenly used to recon-

struct pseudo curves (curves that do not have enough non-overlapping inliers). In

order to detect these pseudo curves, we must obtain the true non-overlapping in-

liers of each curve. The model verifier (Section 4.7) is used to discriminate between

true curves and pseudo curves.

The iterative multiple-model estimation approach to reconstruct 2-D curves

from edge data can be easily extended to multi-dimensional model reconstruction

since the edge data
→
x are treated as a multi-dimensional vector in the linearly

parameterizable curve models.

3.8 Model verification

Since a single curve may be separated into several parts in different initial inlier

candidate sets, the fitting results may be repeated. Moreover, pseudo curves are

likely to occur when the edge data in SIS are heavily corrupted by noise. The
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Figure 3.4. Model verification

model verifier (Fig. 3.4) is employed to evaluate the validity of fitted curves.

The verification process comprises three major steps: (1) merging identical

curves, (2) evaluating the current most favorable curve, and (3) updating the orig-

inal edge data set I.

Step 1: Merging identical curves.

We merge curves that are extracted from different initial inlier candidate sets

when the difference between the curve parameters is sufficiently small. If C(
→
αi)

and C(
→
αj) are regarded as identical curves, a new curve C(

→
α

′

i) is obtained by

taking the mean of the two extracted curve parameters. Then both C(
→
αi) and

C(
→
αj) are removed from the fitted curve set while the new model C(

→
α

′

i) is added
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to the curve set to represent them. After all identical curves are detected and

merged, we obtain a set of distinct estimated models.

Step 2: Evaluating the current most favorable curve.

Using the current updated edge data Ik, we sort all unverified curves according

to their favorable function. Here we take the feature measurement of the SIS,

φ(
→
α,Ns(

→
α)), as the favorable function. The curves in the current evaluated curve

set Θk are sorted according to their favorable function:

Θk = {C(
→
αi)|φ(

→
αi,Ωs(

→
αi)) ≥ φ(

→
αj,Ωs(

→
αj)) for any j ≥ i ≥ k}. (3.40)

The top ranked curve C(
→
αk) in Θk is actually the most favorable curve of the

current unverified models. The inlier set of C(
→
αk) in the entire image, Γ(

→
αk), in-

cludes all current available edge data that fulfill Inlier Criterion. If C(
→
αk) satisfies

both NOI Criterion and SIS Criterion, then it is a valid model, go to step 3 for up-

dating edge data set; otherwise, it will be treated as a pseudo curve and discarded.

Its inliers will not be excluded and still available for other verified curves. We then

evaluate the second most favorable model, and so on. This step is not terminated

until we either extract a valid model or find that none of them is valid, in which

case the procedure of model verification stops.

Step 3: Updating the original edge data set after curve C(
→
αk) has been verified.

The original edge data set Ik is updated by discarding Γ(
→
αk), i.e., Ik+1 =

Ik − Γ(
→
αk), where I1 = I. We then return to Step 2 to select and evaluate the

next most favorable curve C(
→
αk+1) with the updated edge data set Ik+1. When

the above iterative model verification procedure is completed, we obtain the non-

overlapping inlier set of each curve. The pseudo curves are those that cannot satisfy
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both NOI Criterion and SIS Criterion are discarded.

In this iterative fashion, the curve with the largest SIS feature φ(
→
αi,Ωs(

→
αi)) is

given priority in selecting its non-overlapping inliers. This scheme is efficient in

preventing pseudo curves from surviving because they are reasonably supposed to

have smaller SIS features than genuine curves and are hence verified after those

genuine models. This model verifier not only detects the pseudo curves but also

gives the non-overlapping inlier set of the genuine curves.

3.9 Conclusion

In this chapter we propose a new shulidu-based method for the estimation prob-

lem of the model f(x) = x − a = 0 for a unimodal sample distribution. Shulidu

is a new similarity measurement of a sample from the cluster, which is actually

the sum of the distances of the sample to each member of the cluster. Compared

with the conventional similarity measurement - the distance from a sample to the

mean vector of the cluster - shulidu is more robust against outliers and contains

more information about the cluster distribution. Examples show that shulidu is a

reliable criterion in the presence of considerable outliers while conventional similar-

ity measurement fail to provide the correct similarity measurements of both inliers

and outliers due to the significant bias of mean vector. The shulidu-weighted mean

appears to be closer to the center of compact data clouds than the conventional

mean, which is calculated by assigning each sample of the cluster the same weight.

We present in this chapter a multiple-model estimator that is robust against an
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arbitrarily high percentage of outliers and is able to extract an unknown number of

touching or intersecting models. In our estimator, an image pre-partitioning tech-

nique is used to classify edge data into groups based on some application dependent

assumptions. A single-model extractor, which is actually an iterative weighted LS

approach, is then applied to each group of data for the detection of underlying

curves formed by edge points in this group. It starts from an initial global model

estimate based on the data in this group. The most qualified outlier candidates

that have the largest deviations are first kept out of the following estimation. The

most significant subset from the remaining edge data is taken as the updated data

set for the next round of model estimation. In this way, this scheme drives the

estimate from a initial global model to converge to a final local desired model by

iterative elimination of detected outliers. All underlying models in the image can

be reconstructed sequentially by repeatedly applying the single-model extractor to

the edge data that were excluded in the previous fitting. A model verifier is applied

to all extracted models to determine whether they are desired models or pseudo

models.

This multiple-model estimator has several novel features and compares favor-

ably with parametric model fitting algorithms proposed previously:

• It does not require an accurate initial guess of curves. Due to the global

outlier search style of the region trimming scheme, the single-model extractor

starts outlier detection from the entire edge data set rather than from a

subset.
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• It is able to handle an arbitrarily high percentage of outliers. The strategy

of removing only the current most qualified outliers enables the single-model

extractor to drive the global initial estimate towards the local desired solu-

tion.

• The use of the most significant subset in the updating of inlier candidate

set dramatically reduces the possibility of producing pseudo curves. The

introduction of the SIS in inlier criterion, updating initial inlier subset and

ranking of verified curves enables our estimator to extract and evaluate curves

based on their significant features.

These effective strategies protect our estimator from producing pseudo models.

The distinctive abilities of successfully dealing with a high percentage of outliers

and pseudo curves results in an estimator capable of extracting meaningful models

from touching or intersecting curves.



Chapter 4

Connectivity-based Multiple

Curve Fitting

4.1 Introduction

This chapter proposes a connectivity-based method for curve fitting. The use of

pixel connectivity in the iterative LS estimation algorithm using region trimming

technique (Chapter 3) effectively avoids false curve detection, improves the robust-

ness against noise and significantly reduces the computational load. The desired

curve models are extracted by searching for meaningful arcs. The algorithm does

not require a good initial guess and is effective for extracting an a priori unknown

number of curves even when the number of outliers exceeds 50%.

61
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4.2 Basic idea

Model reconstruction from a complex image is an important and difficult task in

computer vision. One of the difficulties often encountered is the fitting of false

models. HT-based methods are one-to-many maps from image space to parame-

ter space that employ a voting scheme in the parameter space to extract model

parameters [21]. Robust regression and LS-based methods merely use the error of

edge points with respect to the verified model as the inlier criterion [35] [19]. All

pixels are treated equally in these methods regardless of the geometric relation-

ship among them. Thus, individual pixels that are far away from each other may

be thought to constitute a meaningful model that actually does not exist. If the

number of inliers is used as the criterion, it would be difficult to discriminate these

false models from meaningful ones.

Valid curves in real applications consist not only of individual inliers but also

of meaningful arcs. These arcs are actually intra-connected pixel subsets with

sufficiently large extent. Consequently, by introducing pixel connectivity, the task

of curve fitting is not one of finding enough individual inliers but of searching for

meaningful arcs. With this criterion for curve validity, false models whose inliers

are unconnected pixels or are made up of invalid arcs are easily recognized since

they are not formed from meaningful arcs.

The iterative weighted LS approach using region trimming searching technique

discussed in Section 3.6.1 provides a good mathematical framework for curve fit-

ting, which are robustness against an arbitrarily high percentage of outliers and

able to handle an a priori unknown number of meaningful models in the edge
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data without any statistical information of both inlier and outlier distribution. In

this chapter, we develop an efficient multiple model fitting algorithm based on the

concept of pixel connectivity and valid arcs that can handle false curve fitting and

greatly reduce the computational complexity.

4.3 Connectivity and valid curve criterion

4.3.1 Connectivity

We use the Euclidean distance d(·) to measure the connectivity between two points

p1(x1, y1) and p2(x2, y2):

d(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2. (4.1)

Then two edge points p1(x1, y1) and p2(x2, y2) are connected to each other if the

distance satisfy

Criterion 4.1 (Point Connection Criterion).

d(p1, p2) < Tc, (4.2)

where Tc is a threshold for connectivity. Based on the connectivity between two

edge points, an intra-connected data set can be defined. The data set Ω =

{(xi, yi), i = 1, 2, · · · , q} is an intra-connected data set if, for any two points

pi(xi, yi) and pj(xj, yj) in Ω, there exists a sequence of points {pkn
∈ Ω, n =

1, 2, · · · ,m} such that they satisfy
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Criterion 4.2 (Set Connection Criterion).

max
n=1,2,··· ,m−1

(d(pi, pk1), d(pkm
, pj), d(pkn

, pkn+1)) < Tc. (4.3)

The inequality (4.3) indicates that in the intra-connected set there is a path be-

tween all pairs of points in which the two endpoints of each step are connected.

4.3.2 Valid arcs

An important step in our curve fitting algorithm is the detection of meaningful

arcs. An arc is an intra-connected edge-point subset whose elements are inliers

of curves. For an arc to be considered valid (i.e., meaningful), it should be of

significant extent. Therefore, the geometrical residuals of points in the data set

and the angle subtended by the corresponding arc are the two evaluation criteria.

The closeness of an edge point P (x, y) to the curve C(
→
α) is measured by the

point error function g(
→
α, P ). A point P (x, y) is an inlier if its point error function

g(
→
α, P ) satisfies the Inlier Criterion (Criterion 3.1), which means that its error is

sufficiently small. Here the error of a point with respect to the curve g(
→
α, P ) is

regarded as its deviation with respect to the edge point set. A set error function

G(
→
α,Ω), which describes the fitness of the data subset Ω to the curve model C(

→
α),

is defined as

G(
→
α,Ω) = max

Pi∈Ω
g(

→
α, Pi). (4.4)

The data set Ω is an inlier set of circle C(
→
α) if the set error function also satisfies

the Inlier Criterion, i.e.

G(
→
α,Ω) < Tg. (4.5)
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To summarize, the data set Ω forms a valid arc of curve C(
→
α) if

(1) Ω is an intra-connected data set.

(2) Ω is an inlier set of curve C(
→
α) (4.5).

(3) the feature measurement of extent of arc formed by Ω, φ(
→
α,Ω), is large

enough (NOI Criterion and SIS Criterion).

4.4 Search strategy

A meaningful arc is an intra-connected edge-point subset in which the points fit

the curve model within a pre-defined error tolerance. To identify potential arcs,

it is natural to first partition the data set into intra-connected subgroups. Each

subgroup may consist of intersecting arcs from different curve models or even other

kind of curve models. The search for meaningful arcs may be complicated by a

significantly larger population of outliers, but the scope of investigation is now

narrowed to the intra-connected subgroups, thus greatly simplifying the computa-

tional load.

A simple iterative technique to deal with outliers is described in [44]. Points

that are located far from the model extracted by LS fitting are regarded as outliers.

They are removed and LS fitting is repeated. However, the accurate classification

of outliers is a difficult problem and requires a priori knowledge about the noise

and outlier statistics.

If no such a priori information is available, only the point with the largest

error — the extreme point — can be treated as the outlier. Other points with
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large errors may be inliers, while points with small errors may not necessarily be

inliers. Since the current estimate may be pulled off significantly by the extreme

point and other unknown outliers, a safe strategy is to remove only the extreme

point at each iteration of LS fitting. This cautious approach is robust against a

high percentage of outliers but the computational complexity is a serious problem

because only one bad point is deleted at each iteration.

In order to reduce the amount of computation, we employ pixel connectivity

in the search for potential arcs. We first define the expanded neighborhood of an

extreme point as the edge set satisfying these two properties:

(i) the error of any point in the neighborhood is larger than the error of any

point not in the neighborhood;

(ii) all points in the neighborhood are connected to each other, that is, it is an

intra-connected set.

Therefore, with respect to a curve model C(
→
α), ∆, the expanded neighborhood of

an extreme point of a given data set Ω, is an intra-connected data subset such that

min
pi∈∆

g(
→
α, pi) > G(

→
α,Γ), (4.6)

where Γ = Ω − ∆. According to this definition, there may exist several expanded

neighborhoods corresponding to an extreme point. All these expanded neighbor-

hoods can be regarded as outlier subsets. Since the extreme point is an outlier,

the points in its neighborhood that have errors larger than the errors of points

outside the neighborhood are also very likely outliers. In our proposed strategy,
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the largest expanded neighborhood of the extreme point, which is regarded as an

outlier subset, is removed from the data set at each iteration.

After an outlier subset is removed from the current data set, the points left

behind may not necessarily be inter-connected. We partition the remaining points

into intra-connected subgroups. The largest subgroup is taken as the potential SIS

of the underlying curve and thus treated as the updated data set in the subsequent

search for search of desired arcs. Other subgroups are also treated as outliers and

rejected from the following fitting, thus significantly reducing the search space.

When a valid or invalid arc is finally detected, the points belonging to this arc

are eliminated from the original data set since they are the outliers of other valid

curves. Outliers that have been removed in the previous fitting process are used in

seeking further potential arcs. In this way, multiple curve models in this subgroup

are sequentially extracted.

4.5 Connectivity-based weight function and LS

estimator

The iterative weighted LS approach discussed in Section 3.6.1 provides a good

mathematical framework for multiple curve fitting. We describe connectivity-based

weight function and the LS estimator for multiple curve fitting using the idea of

pixel connectivity and valid arcs.

From the search strategy described in Section 4.4, we learn that at each iteration

of curve fitting, the original data set is updated by removing the outlier subset.
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Then the updated set is further segmented into intra-connected subsets. Only the

edge data in the largest subset Ω will be used in the next round estimation. Other

subsets are also regarded as outliers. Therefore the connectivity-based weight

function is defined as

w(Pi, g(
→
α, Pi)) =















1, if Pi ∈ Ω

0, if Pi 6∈ Ω

, (4.7)

In this search strategy, the LS estimator is applied only to the edge data in

updated edge data subset Ω. Therefore the matrix form of (4.7) for subset Ω is

W = I =

































1 0 0 · · · 0

0
. . . 0 · · · 0

0 0 1 0 0

... 0 0
. . .

...

0 · · · 0 0 1

































Q×Q

, (4.8)

where Q is the number of edge data in subset Ω.

Based on the search strategy, together with weight function 4.8, the LS estima-

tor of Eq. (3.39) simplifies to

XT (
→
α

(n)
)X(

→
α

(n)
) = XT (

→
α

(n)
)Y. (4.9)

4.6 Single-model extractor

In an image with multiple curves, most outliers are edge points that support other

curves. The outliers do not follow Gaussian distributions; hence conventional meth-

ods based on statistical assumptions usually offer no solution to their elimination
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and may even yield non-meaningful results. To solve the outlier problem, we em-

ploy an LS-based single model extractor that follows the search strategy outlined

in Section 4.4. It detects a meaningful arc by identifying and discarding outliers

iteratively.

Consider an intra-connected data set S = {pi, i = 1, 2, · · · , q}, in which pi is

an edge point with coordinate (xi, yi). The detailed algorithm is as follows.

1. Initialize edge data set Ω(1) = S. Let k = 1.

2. Estimate the curve model C(
→
α

(k)
) of current data set Ω(k) with Eq. (4.9).

3. Evaluate the quality of the detected arc formed by Ω(k). If Ω(k) forms a valid

arc, go to step 7; otherwise proceed to step 4.

4. Update the current data set Ω(k).

4.1. Seek the outlier subset ∆(k) such that min
pi∈∆(k)

g(
→
α

(k)
, pi) > G(

→
α

(k)
,Γ(k)),

where Γ(k) = Ω(k) − ∆(k).

4.2. Remove outlier subset ∆(k) and divide the remaining subset Γ(k) into

intra-connected subsets. Select the largest intra-connected subset as

the updated data set Ω(k+1).

5. If Ω(k+1) does not include enough points, go to step 6. If Ω(k+1) has enough

points, let k = k + 1, and go to step 2 for the next iteration.

6. Determine the failure of estimation, output the remaining data set, Ω(k+1),

and go to step 8.
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Figure 4.1. Flowchart describing single-model extraction.

7. Determine the success of estimation, output circle model C(
→
α

(k)
) and its

inlier data set Ω(k), and go to step 8.

8. End.

Fig. 4.1 shows the flowchart of the single-model extractor. In this extractor,

an intra-connected outlier subset ∆(k) is first removed from the current data set

Ω(k) after a curve model C(
→
α

(k)
) is extracted with LS fitting on Ω(k). The largest

intra-connected data subset is extracted from the remaining data set Γ(k) and is

taken as the updated subset Ω(k+1) for the following fitting. This process continues

until a valid arc is found or there are not enough data left for curve estimation.
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4.7 Model evaluation

A group of curve models are extracted by single-model extractor. However, not

all detected models are valid. Some valid models have several disconnected arcs

in the image. Due to the introduction of intra-connected inlier subset, more than

one model with same parameters may be extracted from different arcs of the same

curve. On other hand, there may be pseudo curve models estimated with inlier

subsets of other valid models because the competition between these false models

and valid models on these inlier subsets are determined not only by the fitting these

valid and false models but also by the distribution of other edge data connected

to these inlier subsets. Moreover, pseudo curves are likely to occur when the edge

data in SIS are heavily corrupted by noise. Therefore we applied model evaluation

(Fig. 4.2) to all detected curve models to search for valid models and discriminate

false models.

Let I = {pi, i = 1, 2, · · · , n}, in which pi is an edge point with coordinate

(xi, yi) and n is the total number of edge points in this image. Following is the

model verification process.

1. Initialize current edge data set I(1) = I. Let k = 1.

2. Merge curves that are extracted from different initial inlier candidate sets

when the difference between the curve parameters is sufficiently small such

that curve models candidates C(
→
αi) are non-overlapping curves.

3. In the current updated edge data set I(k), search for the SIS arc Ωs(
→
αi) of

all available curve model candidates C(
→
αi), then calculate their SIS feature
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φ(
→
αi,Ωs(

→
αi)).

4. Rank the current available curve model candidates C(
→
αi) according to the

value of their SIS feature φ(
→
αi,Ωs(

→
αi)), select the curve model C(

∧
→
α) with

best SIS feature, i.e.,

φ(
∧
→
α,Ωs(

∧
→
α) = max

→

α
(i)
φ(

→
αi,Ωs(

→
αi)). (4.10)

5. If the SIS arc Ωs(
∧
→
α) satisfies NOI Criterion and SIS Criterion, go to step 7;

Otherwise, go to step 6.

6. Remove the selected model C(
∧
→
α) from the list of current available curve

model candidates C(
→
αi) because it is not valid. If there are available model

candidates on the list to be evaluated, go to step 4; otherwise, go to step 9.

7. The evaluated model C(
∧
→
α) is a valid model; output this model and remove

it from list of current available curve model candidates C(
→
αi), go to step 8.

8. Update edge data set I(k+1) by

I(k+1) = I(k) − Ω(
∧
→
α), (4.11)

where Ω(
∧
→
α) is the inlier subset of curve model C(

∧
→
α). Let k = k + 1, go to

step 3.

9. End

During the iterative model evaluation procedure, the curve with the better

SIS feature φ(
→
αi,Ωs(

→
αi)) has the opportunity to choose its non-overlapping inliers
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Figure 4.2. Flowchart describing model evaluation



Chapter 4. Connectivity-based Multiple Curve Fitting 74

before others. It is an efficient mechanism to prevent false curves from being

misclassified as valid because they are usually formed by inliers of other valid

models and thus their SIS features are smaller than those of valid curves. In

this way those pseudo curves are verified after those genuine models. Hence the

edge data that support them have been evaluated as the inliers of valid models

verified before them and they cannot benefit from those edge data. This model

evaluation scheme not only discriminates against the pseudo curves but also find

the corresponding non-overlapping inlier set of the valid models.

4.8 Fitting multiple curves

The flowchart of Fig. 4.3 describes the multiple-model estimator that can detect un-

known number of multiple touching or intersecting linearly parameterizable curves

even there are an arbitrarily high percentage of a priori unknown outliers. The

estimator consists of three major steps: the segmentation of the original data into

intra-connected sets, extracting valid curves with single-model extractor, and eval-

uating the detected curves.

Let I = {pi, i = 1, 2, · · · , n}, in which pi is an edge point with coordinate

(xi, yi) and n is the total number of edge points in this image. The multiple-model

fitting algorithm is presented in the following.

1. Examine the connectivity of all edge data in the image and divide them into

intra-connected subsets, Gj, i.e.,

I = ∪ Gj, where Gj ∩Gi = ∅ for any j 6= i. (4.12)
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These subsets Gj are listed into current intra-connected subsets.

2. Choose the largest subset from the list of current intra-connected subsets as

the initial inlier candidates subset S.

3. Apply the single-model extractor in the initial inlier candidates subset S.

4. If a valid model C(
→
α) is extracted from subset S, record the model and update

the subset S by removing the curve arc Ω of model C(
→
α), i.e. S = S − Ω.

Separate S into intra-connected subsets, Zj,

S = ∪ Zj, where Zj ∩ Zi = ∅ for any j 6= i. (4.13)

Add these intra-connected subsets, Zj into the list of current intra-connected

subsets.

If no valid curve model is extracted in S, update the subset S by removing

subset Ω
′

output by the single-model extractor, i.e. S = S − Ω
′

. Separate S

into intra-connected subsets, Zj,

S = ∪ Zj, where Zj ∩ Zi = ∅ for any j 6= i. (4.14)

Add these intra-connected subsets, Zj, into the list of current intra-connected

subsets.

5. If there is a subset in current intra-connected subsets list, go to step 2. If

none of them in the list is large enough for model extraction, go to step 6.

6. Verify all extracted models with model evaluation module.

7. Output valid models.
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Figure 4.3. Flowchart describing multiple-model estimation.

In the process of the multiple-model estimation, the current edge data set is

updated by excluding the inliers of the models previously extracted by the single-

model extractor. Thus, all the underlying models in the image can be reconstructed

sequentially by repeatedly applying the single-model extractor to the updated edge

data set. Subsequently, all the extracted circle candidates are verified to be either

desired models or false models.

4.9 Conclusion

In this chapter, a connectivity-based algorithm for fitting multiple curves in ma-

chine vision applications is presented. The problem of false-curve detection is

effectively solved by using valid arcs, which are intra-connected data subsets that

agree with the curve models within a specified error, as the criterion for valid

curve. We also propose an efficient outlier search strategy, again based on pixel

connectivity, that greatly speeds up the fitting process. In the proposed algorithm,

a single-model extractor that seeks meaningful arcs is applied to the current edge

points of the image. It does not require a good initial guess but, by deleting
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outliers iteratively, drives the estimate to a good curve model candidate, namely,

one that has an arc formed by an intra-connected edge-point set selected by the

iterative estimation process. In the multiple-model estimator, the current edge

data set is updated by excluding the inliers of the models previously extracted

by the single-model extractor. Thus, all the underlying models in the image can

be reconstructed sequentially by repeatedly applying the single-model extractor to

the updated edge data set. Subsequently, all the extracted model candidates are

verified to be either desired models or false models.

Four major distinguishing features of this multiple-model estimator are: (1)

robustness against an arbitrarily high percentage of outliers; (2) ability to handle

an a priori unknown number of meaningful models in the edge data without any

statistical information of the inlier and outlier distribution; and (3) effective fitting

of multiple intersecting or touching curves; (4) effective prevention of false models

from being extracted.



Chapter 5

Multiple Circle Fitting

5.1 Introduction

The detection of multiple intersecting or occluded geometric shapes such as circles

in a complex image is an important task in computer vision. In this chapter, we

apply the connectivity-based multiple curve estimator discussed in Chapter 4 to

the fitting of unknown number of occluded or intersecting multiple circles [40]. The

advantages of this estimator for circle fitting are analyzed. Experimental results

with real images are also presented.

5.2 LS estimator and valid circular arc for circle

fitting

Before the application of the iterative weighted LS approach (Section 3.6.1) for

multiple circle fitting, we need to define connectivity-based LS estimator, error

78
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and circular arc validity.

Let the circle be represented as

(x− a)2 + (y − b)2 = r2, (5.1)

where (a, b) is the center of circle and r is the radius. To facilitate the use of the

LS method, we describe the circle in the form

f(
→
α, x, y) = −α1x− α2y − α3 + x2 + y2 = 0, (5.2)

where

→
α= [α1 α2 α3]

T , a =
1

2
α1, b =

1

2
α2, r

2 = α3 + a2 + b2 (5.3)

are the unknown parameters that need to be estimated.

Let Ω = {(xi, yi), i = 1, 2, · · · , q} denote the edge data set for LS fitting

with q being the number of edge points in Ω. For simplicity, we use the matrix

representation of (5.2),

→

Y = X
→
α, (5.4)

where

→

Y =

























x2
1 + y2

1

x2
2 + y2

2

...

x2
q + y2

q

























, (5.5)

→
α=

















α1

α2

α3

















, (5.6)
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X =

























x1 y1 1

x2 y2 1

...
...

...

xq yq 1

























. (5.7)

The algebraic residual of edge point (xi, yi) is

ei = f(
→
α, xi, yi)

= x2
i + y2

i − α1xi − α2yi − α3. (5.8)

Then the matrix form of (5.8) is

→

Y = X
→
α+

→
e , (5.9)

where

→
e= [e1, e2, · · · , eq]

T . (5.10)

The total deviation of the edge points in Ω is defined as

E(
→
α,Ω) =

∑

(xi,yi)∈Ω

f 2(
→
α, xi, yi)

=
∑

(xi,yi)∈Ω

e2i =
→
e

T →
e , (5.11)

which is actually the sum of the squared residuals. The problem of finding a

circular model that best fits the edge data set Ω in the sense of minimizing the

total deviation E(
→
α,Ω) is a typical LS fitting problem, which is equivalent to

solving the equations

XTX
→
α = XT

→

Y , (5.12)

where (·)T denotes the matrix transpose.
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For the estimation of circles, the point error g(
→
α, P ), which describe the close-

ness of an edge point P (x, y) to the circle C(
→
α), is defined as,

g(
→
α, P ) =

1

r

∣

∣

∣

√

(x− a)2 + (y − b)2 − r
∣

∣

∣
, (5.13)

where (a, b) is the circle center and r is the radius of the circular model C(
→
α). A

point P (x, y) is an inlier if its error is sufficiently small, i.e.,

g(
→
α, P ) < Tr, (5.14)

where Tr is an error threshold. A set error function G(
→
α,Ω), which describes the

fitness of the data subset Ω to the circular model C(
→
α), is defined as

G(
→
α,Ω) = max

Pi∈Ω
g(

→
α, Pi). (5.15)

The data set Ω is an inlier set of circle C(
→
α) if

G(
→
α,Ω) < Tr. (5.16)

With respect to a circular model C(
→
α), ∆, the expanded neighborhood of an

extreme point of a given data set Ω, is an intra-connected data subset such that

min
pi∈∆

g(
→
α, pi) > G(

→
α,Γ), (5.17)

where Γ = Ω − ∆. The largest expanded neighborhood of the extreme point is

chosen as the outlier subset.

The subtended angle is a measure of the significant extent of a circular arc. It

is independent of the size of the circle and is used as a criterion for determining

the validity of a circular arc.

To summarize, the data set Ω forms a valid arc of circle C(
→
α), if
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1. Ω is an intra-connected data set that satisfies the Set Connection Criterion.

2. Ω is an inlier set of circle C(
→
α), i.e., all edge data in Ω satisfy the Inlier

Criterion.

3. The subtended angle of arc formed by Ω, φ(
→
α,Ω), satisfies the SIS Criterion.

4. The number of inliers in set Ω, N(
→
α,N (

→
α,Ω)) = N (

→
α,Ω), satisfies the NIO

Criterion.

5.3 The angle subtended by a circular arc

The subtended angle is an important feature of a circular arc. It is independent

of the size of circle and thus is taken as the SIS feature in the SIS Criterion to

measure the validity of a circular arc.

For convenience, we assume in this section, that the circle discussed is centered

at the origin of the coordinate system, i.e. a = 0 and b = 0. If the circle center is

not at the origin, we translate the coordinate system by

xnew = xold − a, (5.18)

ynew = yold − b. (5.19)

Suppose the point P (x, y) is an edge data in Fig. 5.1(a). Let θ be a positive polar

angle measured in a counterclockwise direction from OX to OP where θ ∈ [0, 2π).
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clearly,

θ =































































arctan y
x
, if P is in quadrant I

π
2
, if x = 0, y > 0

π + arctan y
x
, if P is in quadrant II or III

3
2
π, if x = 0, y < 0

2π + arctan y
x
, if P is in quadrant IV

. (5.20)

Fig. 5.1(b) shows a circle centered at O and its two arcs
⌢

BC and
⌢

DA. The arc

⌢

BC does not cross the axis OX, hence its subtended angle is φ2 = θB − θC . On

the contrary, the arc
⌢

DA crosses the axis OX, and therefore its subtended angle

is φ1 = 2π + θA − θD.

The recognition of endpoints of the arc is a key to the computation of sub-

tended angle of the arc. However, it is not an easy task to find endpoints. The

coordinates of two endpoints may not necessarily be the extreme values among

that of interior points of the arc. What is more, the polar angles of arc endpoints

may not necessarily be the largest angle or the smallest one. For example, in arc

⌢

DA, both the values of θD and θA are in the middle compared to those of edge

points close to the axis OX in both directions. Fig. 5.1(c) shows a typical case

in which both coordinates and polar angles of the arc endpoints are neither the

largest nor the smallest among those of the edge points of the arc. Points M and

N are the endpoints of arc
⌢

NM , while Points E, F , G, H and K are the edge

points of arc
⌢

NM . For the coordinates of these edge points along the X axis, we

have

xG < xN < xM < xE, (5.21)
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Figure 5.1. (a) The polar angle of edge point, θ; (b) The subtended angles of

circular arcs
⌢

BC and
⌢

DA; (c) The subtended angle of circular arc
⌢

NM ; (d) Polar

angles and their incremental angles of edge data in arcs
⌢

BC and
⌢

DA (black points

represent edge points with (θi,ϕi)).
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for those Y coordinates we have

yH < yN < yM < yF . (5.22)

The polar angles of endpoints M and N are in the middle of those of edge points

E and K, i.e.,

θE < θM < θN < θK . (5.23)

Obviously, we can not directly extract the endpoints of arc
⌢

NM from data set Ω

by simply comparing coordinates and polar angles of edge points.

In order to calculate the subtended angle of an arc, we introduce the incremental

angle of edge point polar angles. Suppose that data set Ω represents an arc such as

⌢

DA in Fig. 5.1(b); we first sort the polar angles of all points in Ω in an increasing

order,

Θ(
→
α, Ω) = {θi|0 ≤ θi ≤ θj ≤ 2π, for all 1 ≤ i < j ≤ n}. (5.24)

Since some points have the same polar angle, the number of polar angles may

be less than the number of edge points, i.e., 1 ≤ n ≤ q. For convenience, let

θ0 = θn − 2π. Obviously, edge points with polar angle θn are actually those with

θ0.

The incremental angle of sorted θi, ϕi, is then defined as:

ϕi = θi − θi−1, for i = 1, · · · , n (5.25)

ϕ1 = θ1−θ0 = 2π+θ1−θn indicates the angle in a counterclockwise direction from

polar angle θn to polar angle θ1. Obviously, each incremental angle is subtended

by a piece of circular arc.
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With the introduction of ϕi, the subtended angle of the detected arc can there-

fore be obtained using the following theorem. Its basic idea is that the angle con-

structed by two connected point and the ellipse center should be below a threshold.

Therefore the method of finding circular arc endpoints is connectivity-based.

Theorem 5.1. Suppose data set Ω is an intra-connected inlier subset of circle

C(
→
α), which contains a circular arc υ(Ω). Let ϕi be the incremental angle of the

sorted polar angle θi of edge points in Ω and Tϕ = arccos 2[(1−Tr)r]2−T 2
c

2[(1−Tr)r]2
.

(1) There is at most one angle ϕk such that

ϕk = θk − θk−1 = max
i
ϕi > Tϕ, (5.26)

0 ≤ ϕi ≤ Tϕ, for all i 6= k. (5.27)

The edge points, which have polar angles θk and θk−1, are the endpoints of the arc

υ(Ω). Hence, the angle subtended by the arc υ(Ω) is

φ(
→
α,Ω) = 2π − ϕk. (5.28)

(2) If no incremental angles is larger than Tϕ, i.e.,

0 ≤ ϕi ≤ Tϕ, i = 1, · · · , n, (5.29)

then the angle subtended by the arc υ(Ω) is

φ(
→
α,Ω) ≥ 2π − Tϕ. (5.30)

(For proof, see Appendix A.)

Fig. 5.1(d), which reveals the relation between θ and ϕ, illustrates Theorem 5.1.

Arcs
⌢

BC and
⌢

DA correspond to case (1) in this theorem. ϕD = θD − θA, which is
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the only angle larger than Tϕ, is of key importance for the recognition of points A

and D, the endpoints of arc
⌢

DA. On the other hand, ϕB = 2π + θB − θC > Tϕ,

helps to find points B and C, the endpoints of arc
⌢

BC. Therefore, the subtended

angles of arc
⌢

BC and
⌢

DA are φ(
⌢

BC) = 2π−ϕB and φ(
⌢

DA) = 2π−ϕD respectively.

Based on this theorem, we then develop an algorithm for detecting the sub-

tended angle of Ω an intra-connected inlier subset of circle C(
→
α):

1. Compute the polar angle θi of edge points (xi, yi) in Ω.

2. Sort the polar angle θi in an increasing order.

3. Calculate ϕi, the incremental angle of the sorted polar angle θi, for each edge

point in Ω.

4. Search for the pair of edge points (xk−1, yk−1) and (xk, yk) with largest ϕi,

i.e., ϕk = max
i
ϕi

5. if ϕk > Tϕ, then the subtended angle of data set Ω, φ(
→
α,Ω) = 2π − ϕk, and

the edge points pair (xk−1, yk−1) and (xk, yk) are the endpoints of arc Ω; if

ϕk ≤ Tϕ, then φ(
→
α,Ω) ≥ 2π − Tϕ, which indicates that no endpoints of this

arc is found.

5.4 Analysis

In this section, we discuss the performance of the proposed algorithm in the pres-

ence of outliers and noise and demonstrate the importance of using pixel connec-

tivity in circle fitting. Comparisons between the algorithm and other curve-fitting
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methods are also presented.

5.4.1 Outliers

The presence of outliers, especially if they are found in overwhelming numbers, is

one of the major reasons for false detection in most curve-fitting algorithms. To

evaluate the ability of our method to deal with outliers, we employ the synthetic

test image of Fig. 5.2(a), which comprises one partially occluded circle and several

polygons. The edge image (Fig. 5.2(b)) is obtained by applying the Canny edge

detector. The outliers, comprising 96.7% of the total edge data, greatly outnumber

the inliers. Fig. 5.2(c) shows that the circle is correctly extracted by our algorithm

and no false circles are mistakenly fitted.

If pixel connectivity is disregarded, a large number of spurious circles are de-

tected (Fig. 5.2(d)). The detected circular models tend to touch as many sides of

the polygons as possible due to the least-squares characteristic and the influence

of all the edge data from the polygons. A very different result is obtained if pixel

connectivity is taken into account; the task of detecting meaningful circles then

becomes one of seeking intra-connected subsets that form valid circular arcs.

It is clear that robust regression methods will not succeed with this example

since they require outliers to number less than 50%. The likelihood of extracting

the true circle by LS-based methods that start circle fitting from an initial guess is

small [8], [7], [30]. This is due to the fact that the probability of randomly selecting

an initial edge data subset that is located exactly on the true circle is below 3.3%.

In contrast, our algorithm does not involve an initial guess and commences circle
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(a) (b) (c)

(d) (e) (f)

Figure 5.2. Example 1: (a) original image of size 512 × 512; (b) edge data; (c)

circles detected by the proposed method; (d) circles detected if pixel connectivity

is not considered; (e) circles detected in (d) that have more inliers than the true

circle; (f) subset of the false circles detected by the Hough transform whose inliers

outnumber that of the true circle.
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fitting with the full set of edge data. The result of every experiment with our

approach is identical and only the true circle in the test image is successfully

extracted.

The Hough transform uses the scores accumulated in the cells of the parameter

space to evaluate the validity of circles represented by the cells. The score of a cell

is the number of edge points lying on the circle whose parameters correspond to

the cell location. The ten circles in Figs. 5.2(e) and (f) have more inliers than the

true circle and are a subset of all the false circles detected by the HT. These ten

circles will be chosen ahead of the true circle. Furthermore, if we know a priori

there is only one circle in the image, the HT is most unlikely to detect it.

The random Hough transform randomly samples three edge data each time from

the image space and maps this triplet to a cell in parameter space. The probability

of choosing three edge points from the true circle is less than 0.0333 = 3.6 × 10−5,

i.e., in a random selection of 100, 000 triplets only four triplets are from the true

circle. It seems that extracting the true circle here is almost an impossible task

for the RHT. It should also be noted that the probability of sampling three points

from the largest false circle of Fig. 5.2(f) is more than 100 times that of the true

circle in Fig. 5.2(c); thus the RHT is much more likely to detect the former than

the latter.

5.4.2 Criterion for determining circle validity

The criterion for evaluating the validity of detected circles is an important compo-

nent of curve fitting algorithms. It plays a key role in preventing false detections.
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The validity criterion frequently used in HT-based methods is the cell score in

parameter space, i.e., the total number of inliers of the evaluated circle. However,

this criterion is significantly influenced by the circle size and is thus not reliable. To

negate the effect of circle size, the ratio of the total inlier number to the circumfer-

ence can be considered. However, when the false circles are supported by polygons

(Fig. 5.2(e)), this ratio fails to extract the true circle and may even become more

unreliable in the regions of high inlier density.

Our proposed algorithm uses the subtended angle of the largest arc of the

detected circle to determine circle validity. It is clearly effective in preventing the

detection of false circles that are large or touch the sides of polygons. It is also

unaffected by the uneven distribution of edge data.

Fig. 5.3 compares the performance of the three validity criteria in evaluating

the detected circles of the first test image. The graphs show the criterion values for

each of the detected circles, 1 to 11, where circle 1 is the true circle. It is seen in

Fig. 5.3(a) that the subtended angle of the largest arc of the true circle is above 75◦

while those of the false circles (circles 2-11) are less than 50◦. Hence the true circle

is easily identified. From Figs. 5.3(b) and (c), it is clear that both the number of

inliers and the ratio of the total inlier number to the circumference are ineffective

in identifying the true circle.

5.4.3 Overlapping Circles

The presence of overlapping circles is a special form of the outlier problem. For

every circle, the inliers of other overlapping circles are outliers. The test image of
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Figure 5.3. Comparison of different validity criteria: (a) angle subtended by the

largest arc; (b) total number of inliers; (c) ratio of the total number of inliers to

the circumference. Circle 1 is the detected circle in Fig. 5.2(c), circles 2-6 are those

in Fig. 5.2(e) with increasing radii, circles 7-11 are those in Fig. 5.2(f) also with

increasing radii.
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(a) (b)

(c) (d)

Figure 5.4. Example 2: (a) original image of size 512 × 512; (b) edge data; (c)

circles detected by the proposed method; (d) circles detected without considering

pixel connectivity and whose inliers exceed 36 (the number of inliers of the smallest

true circle).
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Fig. 5.4(a) is used to demonstrate the effectiveness of the proposed algorithm in

such a situation. It contains overlapping circles and circles occluded by an octagon.

The edge image obtained with the Canny edge detector is shown in Fig. 5.4(b).

In Fig. 5.4(c), the result obtained with our algorithm is presented. All 15

overlapping incomplete circles are found with the smallest circle containing 36

inliers. If pixel connectivity is ignored, a large number of false circles would be the

outcome. Fig. 5.4(d) shows the detected circles that consist of at least 36 inliers.

None of the true circles is extracted. It is worth pointing out that the 16 false

circles are very likely to be selected if the HT is used. Unlike HT-based methods,

our algorithm successfully solves the problem of detecting multiple overlapping

circles.

5.4.4 Noise

Noise is another important cause of unsuccessful circle detection. Since our al-

gorithm is based on LS estimation, it inherits the robustness of the LS method

against Gaussian noise. Therefore we focus here on salt-and-pepper noise, which

severely distorts the detection in HT-based algorithms.

Fig. 5.5(a) shows the edge image of the second example corrupted by 10% salt-

and-pepper noise. In this noisy image, none of the inlier percentages (the number

of inliers as a percentage of the total number of edge points used in the fitting) of

the 15 true circles exceeds 1.5%, and the sum of the inlier percentages of all the

15 circles is less than 8%. Our algorithm manages to extract all 15 true circles

without any false detection (Fig. 5.5(b)) despite an outlier percentage of 98.5%.
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(a)

(b)

Figure 5.5. (a) Edge data of Fig. 5.4(b) corrupted by salt-and-pepper noise; (b)

circles detected by the proposed method.
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Furthermore, we note that for LS-based methods that commence fitting from an

initial guess, the probability of poor initialization is more than 92%, which will

very likely result in their failure.

The probability of sampling three edge points from a single model of all 15 true

circles is below 1.2 × 10−6. Such a low probability indicates that the RHT is very

likely to fail in this example.

It is clear that our algorithm deals very effectively with salt and pepper noise,

the reason being that scattered noisy edge data are grouped into small intra-

connected subsets that contain very few points. These subsets are rejected during

circle fitting as there are too few points to form a valid circular arc.

5.4.5 Computation Time

Computation time is an important topic in curve estimation, especially when the

number of edge points in the image is large. In most parameter estimation methods,

the computation time depends on the number of edge points of the image, as in

the HT method. Since our method is based on connectivity, computation time is

influenced not only by the number of edge points but also by many other factors

such as the inlier ratio, the number of fitted circles, and the distribution of edge

points with regard to connectivity, e.g., the number of intra-connected subsets.

Table 5.1 presents the computation time for multiple circle fitting using the

images of Fig. 5.2(c)(image IA), Fig. 5.4(c)(IB) and Fig. 5.5(b)(IC) (MATLAB

implementation on a Pentium IV 1.7 GHz PC). It can be seen that the computation

time for IA is less than that for IB, although there are many more edge points in
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Table 5.1. Computation Time of Circle Fitting.

Number Number Of Minimum Canny Circle

Test Image of Edge Intra-connected Inlier Detection Fitting

Points Subsets Percentages Time (s) Time (s)

IA(Fig. 5.2(c)) 3548 5 10.6% 5.2 113

IB(Fig. 5.4(c)) 1554 3 5.9% 7.1 131

IC(Fig. 5.5(b)) 14473 6470 4.3% 7.1 491

the former. One reason is that the number of underlying circles in IB (15) is much

more than that in IA (1). Another reason is that the minimum inlier percentage

of the fitted circles in IB is only half of that in IA; therefore the detection of the

circle with the minimum inlier percentage in IB may require more computation

time compared with that of the circle in IA.

When the image is corrupted by noise as in IC , the number of edge points

is 14473, almost ten times that of IB, but the computation time in IC is only

four times that of IB. The noise points in IC are grouped into more than 6000

intra-connected subsets, and hence most of the latter are too small to form valid

circle arcs and will be discarded. Most of the added computation time is spent in

searching for the connectivity of the new noise points.

The clustering of all edge points into intra-connected subsets before circle esti-

mation requires the detection of connectivity between each pair of edge data. The

computational complexity for connectivity detection ranges from O(n) to the worst
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case of O(n2). The computation burden for outlier search depends on the number

of data in the intra-connected subset and the inlier percentage of the valid models.

The worst case is that all data in the image are connected, then the complexity for

iterative weighted LS methods is O(n2). In a word, the computational complex-

ity with our method is no more than O(n2). It is better than the computational

complexity of the HT method for circle detection, which is O(n3) [26].

Generally speaking, computation time is application dependent in our method

due to the use of connectivity. The number of edge points in the image is no longer

the most important factor that determines computation time. Therefore we may

develop application-specific improvements to speed up circle fitting.

5.5 Experimental results

The proposed multiple-model estimator has been implemented for the reconstruc-

tion of occluded and intersecting circles from real binary edge images. A variety

of images is used to test the performance and versatility of the algorithm. In the

experiments, the edge images are obtained by applying the Canny detector.

Fig. 5.6(a) shows a real image in which most real circles are intersected by

straight lines and hence the number of outliers exceed 50%. The edge image by

Canny detector is shown in Fig. 5.6(b). Fig. 5.6(c) presents the estimation results of

meaningful circles. Here the connectivity threshold is Tc = 2.5, the error threshold

Tr = 0.02 and the subtended angle threshold Tφ = 72◦. All real circles in this

image are successfully detected without producing any false circles.
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(a)

(b)

(c)

Figure 5.6. (a) Original image of size 370 × 246; (b) edges detected by Canny

detector; (c) extracted circles.
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(a)

(b)

(c)

Figure 5.7. (a) Original image of size 512 × 480; (b) edges detected by Canny

detector; (c) extracted circles.
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Fig. 5.7(a) shows a real image containing a spoon, a bowl, a cup and a plate and

Fig. 5.7(b) the edge image. The desired estimation of circles is achieved by applying

the proposed algorithm (Fig. 5.7(c)). With the connectivity threshold Tc = 2.5,

the error threshold Tr = 0.02 and the subtended angle threshold Tφ = 180◦, the

boundary of the plate and the circle generated by the shadow of the plate are

successfully extracted. The concentric circles at the center of the image are due to

the edges generated as a consequence of the illumination pattern on the circular

objects.

A part of a circuit pattern is presented in Fig. 5.8(a) and its edge image in

Fig. 5.8(b). Obviously, there are significant outliers of each real circles. Fig. 5.8(c)

shows the successful extraction of circles with the connectivity threshold Tc = 2.5,

the error threshold Tr = 0.02, the subtended angle threshold Tφ = 180◦ and the

minimum number of inliers threshold TN = 150. All three real circles, whose arcs

are larger than semi-circles, are well extracted.

Fig. 5.9 shows different circle fitting results with different threshold selections.

Fig. 5.9(a) presents extraction results with TN = 0, i.e., there is no requirement for

the minimum number of inliers in a valid circular arc. Hence quite a lot of small

circles formed by small groups of data are identified as valid models. In Fig. 5.9(b),

the threshold for the angle subtended by a valid circular arc, Tφ, is set to 33◦, which

leads to the wrong detection of the circle with the largest radius in the image. The

error threshold Tr is relaxed to 0.1 in Fig. 5.9(c). The consequence is that the inner

one of two valid circular arcs in Fig. 5.8(c) is mistakenly classified as the inliers

of the exterior valid circular arc. Actually, for the exterior circle model, the inner
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(a)

(b)

(c)

Figure 5.8. (a) Original image of size 480 × 426; (b) edges detected by Canny

detector; (c) extracted circles.
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(a)

(b)

(c)

Figure 5.9. (a) Extracted circles with TN = 0; (b) extracted circles with Tφ = 33◦;

(c) extracted circles with Tr = 0.1.
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arc satisfies the Inlier Criterion (Criterion 3.1) with Tr = 0.1. Thus the inner valid

circular arc cannot be extracted. Fig. 5.9 illustrates the fact that the selection of

thresholds is very important to the correctness of extraction results. Inappropriate

thresholds may lead to the false circle detections.

In the three examples, the outlier percentage is greater than 50% for the circles

that intersect other curves. Therefore robust regression methods will not work

well. The presence of a variety of curves in these examples will cause the HT and

its variants to generate false circles formed by the edges of straight lines and other

curves. Our proposed algorithm, however, successfully extracts real circles while

avoiding false circles by searching for valid circular arcs.

5.6 Conclusion

In this chapter, we apply the connectivity-based algorithm for fitting multiple

touching or intersecting circles with appropriately selected LS estimator, error and

feature of valid circular arc. An efficient method to search for the endpoints of

circular arc is presented based on the connectivity feature of the circular arc.

Analysis of algorithm performance and experimental results show five major

advantages of this multiple-model estimator for circle fitting: (1) it can effectively

deal with outliers more than 50% of all edge data; (2) it can extract an a priori

unknown number of meaningful circles in the image; and (3) it can handle fitting of

multiple intersecting or touching circles; (4) it can prevent false circles from being

extracted; (5) it reduces the search field for model fitting using pixel connectivity,
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thus reduce computational complexity significantly.



Chapter 6

Multiple Ellipse Fitting

6.1 Introduction

Ellipse fitting in a noisy image is of great importance for many industrial applica-

tions [15], [37]. Examples include cell counting in the detection of breast cancer

and particle classification in an industrial setting.

Most methods perform ellipse estimation by LS fitting to a general conic model

and rejecting non-elliptical fits. Their performance is unsatisfactory when the

edge data are not strictly elliptical and corrupted by noise. Fitzgibbon et al. [14]

proposed a direct LS ellipse-specific fitting method with the equality constraint

4ac − b2 = 1, which yields only one elliptic solution. It is robust, efficient and

non-iterative. However, it cannot handle multiple occluded or touching ellipses.

An ellipse is a typical kind of linearly parameterizable curve. Therefore the

connectivity-based multiple curve estimator discussed in Chapter 4 is applied to

extract an unknown number of occluded or touching multiple ellipses. In the

106
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single-model extractor, we take the direct LS ellipse-specific fitting method as the

LS estimator for ellipse model fitting. In this chapter we analyze the advantages

of this estimator for ellipse fitting. Experimental results with real images shows

that our connectivity-based estimator is efficient in detection of multiple occluded

or touching ellipses and reliable in situation when outliers exceed 50%.

6.2 Elliptic model

Let (x, y) be an edge point in image space I shown in Fig. 6.1. The nominal model

of ellipse centered at (x0, y0) with both major and minor axes parallel to the axes

of coordinate system can be described by

(x− x0)
2

a2
+

(y − y0)
2

b2
= 1, (6.1)

where a and b are length of semimajor and semiminor axes along the X and Y axes

of the coordinate system.

The ellipse described by the nominal ellipse model (6.1) can also be represented

in polar coordinates

x = x0 + ρ(θ) cos θ, (6.2)

y = y0 + ρ(θ) sin θ, (6.3)

where θ is the point angle of edge data P (x, y) in Fig. 6.1 and

ρ(θ) =
ab√

b2 cos2 θ + a2 sin2 θ
, (6.4)

is a function of θ. When the ellipse is a circle, ρ(θ) = r is the radius of the circle.

From the polar nominal model (6.2) and (6.3), the ellipse can be regarded as a
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Figure 6.1. Nominal model of an ellipse centered at (x0, y0).

generalized circle with the radius varying at different point angles.

Suppose the point P (x, y) is an edge datum and θ be its point angle in Fig. 6.1.

Clearly,

θ =































































arctan y−y0

x−x0
, if x > x0, y > y0

π
2
, if x = x0, y > y0

π + arctan y−y0

x−x0
, if x < x0

3
2
π, if x = x0, y < y0

2π + arctan y−y0

x−x0
, if x > x0, y < y0

. (6.5)

In real applications, the semimajor and semiminor axes of an ellipse may not

necessary be parallel to the axes of coordinate system, i.e., the ellipse is rotated.

Therefore an implicit second order linearly parameterizable curve model is taken
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as the general conic model of the ellipse

f(
→
α, x, y) = α1x

2 + α2xy + α3y
2 + α4x+ α5y + α6

= 0, (6.6)

where
→
α = [α1 α2 α3 α4 α5 α6]. We call f(

→
α, x, y) the algebraic distance of an

edge point (x, y) to the curve f(
→
α, x, y) = 0.

6.3 Translation of the elliptic models

In most applications, due to the rotation of the ellipse, the general elliptic model (6.6)

is the only available model in the original coordinate system, and this general model

is convenient for LS estimation. However, it is difficult to obtain the features of

the ellipse from it, such as the lengths of the semimajor and semiminor axes and

the center of the ellipse. On the other hand, the nominal model (6.1) presents the

features of the ellipse but cannot be directly used in the LS estimation. Hence

there is a need to translate the general model to the nominal model or vice versa.

6.3.1 Translation of the elliptic models without rotation

In some applications, the ellipses are just shifted but not rotated, i.e., their semima-

jor and semiminor axes are still parallel to the axes of coordinate system. Therefore

they can be represented by the nominal elliptic model (6.1) without rotation of the

axes of coordinate system. The translation of coefficients from the nominal elliptic
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model (6.1) to the general model (6.6) is specified by

α1 =
1

a2
, (6.7)

α2 = 0, (6.8)

α3 =
1

b2
, (6.9)

α4 =
−2x0

a2
, (6.10)

α5 =
−2y0

b2
, (6.11)

α6 =
x2

0

a2
+
y2

0

b2
− 1. (6.12)

The translation of coefficients from the general model (6.6) to the nominal elliptic

model (6.1) is achieved by

a =
1√
α1

, (6.13)

b =
1√
α3

, (6.14)

x0 = − α4

2α1

, (6.15)

y0 = − α5

2α3

. (6.16)

It is worthy noting that α2 = 0 is the condition for the translation of general elliptic

models to nominal models with Eq. (6.13)-(6.16).

6.3.2 Translation of the elliptic models by the rotation of

the coordinate system

In many applications for ellipse fitting, the axes of the ellipses are not parallel to

the coordinate axes. In these cases, the coefficient of the term xy is not zero, i.e.,
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α2 6= 0. In order to obtain the features of the ellipse from the general model, we

need to derive the nominal model in a different coordinate system for the same

ellipse.

Suppose the general model of an ellipse (6.6) is known and α2 6= 0, we then

calculate the rotated angle between axes of both the ellipse and the coordinate

system by

ψ =















arctanQ1, if Q1 > 0

arctanQ2, if Q2 > 0

, (6.17)

where

Q1 =
2(α3 − α1) +

√

4(α3 − α1)2 + 4α2
2

2α2

, (6.18)

Q2 =
2(α3 − α1) −

√

4(α3 − α1)2 + 4α2
2

2α2

. (6.19)

A new coordinate system X
′

Y
′

is then set up by rotating the axes of current

coordinate system XY with angle ψ of (6.17). Fig. 6.2 shows the ellipse in two

coordinate systems XY and X
′

Y
′

. The translation of point coordinates between

different coordinate systems is









x
′

y
′









=









cosψ sinψ

− sinψ cosψ

















x

y









, (6.20)









x

y









=









cosψ − sinψ

sinψ cosψ

















x
′

y
′









, (6.21)

where (x, y) and (x
′

, y
′

) are the corresponding coordinates of the same point in

coordinate system XY and X
′

Y
′

.
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By substituting Eq. (6.21) into the general model (6.6), the general model (6.6)

in XY is turned into a new general model in X
′

Y
′

f(
→
α

′

, x
′

, y
′

) = α
′

1x
′2

+ α
′

2x
′

y
′

+ α
′

3y
′2

+ α
′

4x
′

+ α
′

5y
′

+ α
′

6 = 0, (6.22)

where
→
α

′

=
[

α
′

1 α
′

2 α
′

3 α
′

4 α
′

5 α
′

6

]

. The translation of coefficients from the general

elliptic model (6.6) in XY plane to the general model (6.22) in X
′

Y
′

plane is

α
′

1 = α1 cos2 ψ + α2 sinψ cosψ + α3 sin2 ψ (6.23)

α
′

2 = −2α1 sinψ cosψ + α2 cos2 ψ − α2 sin2 ψ + 2α3 sinψ cosψ (6.24)

= 0,

α
′

3 = α1 sin2 ψ − α2 sinψ cosψ + α3 cos2 ψ, (6.25)

α
′

4 = α4 cosψ + α5 sinψ, (6.26)

α
′

5 = −α4 sinψ + α5 cosψ, (6.27)

α
′

6 = α6. (6.28)

The nominal model of this ellipse can be obtained by Eq. 6.13-6.16 with the rotated

general model f(
→
α

′

, x
′

, y
′

).

The process to obtain the nominal model of a rotated and translated ellipse

from a general conic model can be summarized in the following:

1. Calculate ψ, the rotated angle of the ellipse, with Eq. (6.17).

2. Set up a new coordinate system X
′

Y
′

by rotating XY with the angle ψ.

3. Translate the general conic model f(
→
α, x, y) in XY plane into a new model

f(
→
α

′

, x
′

, y
′

) in X
′

Y
′

such that α
′

2 = 0.
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Figure 6.2. The ellipse model in two coordinate system XY and X
′

Y
′

.

4. Obtain the nominal model of (6.1) in X
′

Y
′

plane from general model f(
→
α

′

, x
′

, y
′

) by Eq. 6.13-6.16. Obtain the ellipse center and the lengths of the

semimajor and semiminor axes.

6.4 Direct LS ellipse-specific fitting

Ellipse fitting methods are divided into two broad categories: clustering (such as

the Hough transform) and LS fitting. LS-based methods find the ellipse parameters

by minimizing the distance between the edge points and the ellipse. The most

commonly used metric is the algebraic distance f(
→
α, x, y) defined in (6.6). In

this case, the problem of ellipse fitting turns to be an optimization problem by

minimizing the sum of squared algebraic distances

EΩ(
→
α) =

q
∑

i=1

f(
→
α, xi, yi)

2, (6.29)
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where Ω = {(xi, yi), i = 1, 2, · · · , q} denotes the edge data set and where q is the

number of edge points in Ω.

The general elliptic model of (6.6) can be represented by

f(
→
α, xi, yi) = α1x

2
i + α2xiyi + α3y

2
i + α4xi + α5yi + α6

= f(
→
α,

→
xi) =

→
α · →

xi= 0, (6.30)

where

→
α = [α1 α2 α3 α4 α5 α6]

T , (6.31)

→
xi=

[

x2
i xiyi y

2
i xi yi 1

]T
. (6.32)

In order to avoid the trivial solution
→
α= [0 0 0 0 0 0]T , some constraints for

the parameter vector
→
α are necessary. The quadratic constraints can be represented

by

→
α

T
C

→
α= 1 (6.33)

where C is a 6 × 6 constraint matrix. Then the performance function turns to be

EΩ(
→
α) =

q
∑

i=1

f(
→
α,

→
xi)

2 + λ(1− →
α

T
C

→
α)

=

q
∑

i=1

(
→
α · →

xi)
2 + λ(1− →

α
T

C
→
α)

= (H
→
α)TH

→
α +λ(1− →

α
T

C
→
α), (6.34)

where λ is a Lagrange multiplier and H =
[

→
x1

→
x2 · · · →

xq

]T

.

Bookstein [5] has shown that if the constraint is quadratic the optimization

problem of (6.34) can be solved by seeking the solution of the generalized eigenvalue

problem

→
α

T
C

→
α= 1 (6.35)
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HTH
→
α= λC

→
α, (6.36)

Actually Eq. (6.35) and Eq. (6.36) are obtained by differentiating (6.34) with re-

spect to
→
α and λ.

Various constraints have been proposed. Fitzgibbon et al. [14] used the equality

constraint

4ac− b2 = 1. (6.37)

This constraint can be expressed in the form of (6.35) with the constraint matrix

C =









































0 0 2 0 0 0

0 −1 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0









































. (6.38)

Then the ellipse estimation problem is reduced to finding
→
α, which minimizes ‖H →

α

‖2 subject to the constraint (6.35). It is in fact the solution of (6.35) and (6.36).

Fitzgibbon et al. [14] proved that (6.35) and (6.36) with the constraint C defined

in (6.38) has exactly one elliptic solution, which corresponds to the single positive

generalized eigenvalue of (6.36).

The direct LS ellipse-specific fitting method is a robust, efficient and non-

iterative ellipse fitting approach due to the fact that its constraint 4ac − b2 = 1

enables this method to yield a unique elliptical solution. However, it is only valid

for extracting a single ellipse and does not work well when there are multiple

touching or occluded ellipses.
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6.5 Valid elliptic arcs for ellipse fitting

Before the application of the iterative weighted LS approach (Section 3.6.1) for

multiple ellipse fitting, we need to define error and elliptic arc validity.

For the estimation of ellipses, the point error g(
→
α, P ), which describe the close-

ness of an edge point P (x, y) to the ellipse C(
→
α) represented by the nominal

model (6.1), is defined as,

g(
→
α, P ) =

1

ρ(θ)

∣

∣

∣

√

(x− x0)2 + (y − y0)2 − ρ(θ)
∣

∣

∣
, (6.39)

where (x0, y0) is the ellipse center and θ is the point angle of P (x, y) using (6.5).

ρ(θ) in Fig. 6.1 can be obtained with Eq. 6.4. A point P (x, y) is an inlier if its

error is sufficiently small, i.e.,

g(
→
α, P ) < Tρ, (6.40)

where Tρ is an error threshold. A set error function G(
→
α,Ω), which describes the

fitness of the data subset Ω to the elliptic model C(
→
α), is defined as

G(
→
α,Ω) = max

Pi∈Ω
g(

→
α, Pi). (6.41)

The data set Ω is an inlier set of ellipse C(
→
α) if

G(
→
α,Ω) < Tρ. (6.42)

With respect to a elliptic model C(
→
α), ∆, the expanded neighborhood of an

extreme point of a given data set Ω, is an intra-connected data subset such that

min
pi∈∆

g(
→
α, pi) > G(

→
α,Γ), (6.43)
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where Γ = Ω − ∆. The largest expanded neighborhood of the extreme point is

chosen as the outlier subset.

The subtended angle is a measure of the significant extent of an elliptic arc.

It is independent of the ellipse size and is used as a criterion for determining the

validity of an elliptic arc.

To summarize, the data set Ω forms a valid arc of ellipse C(
→
α), if

1. Ω is an intra-connected data set that satisfies the Set Connection Criterion.

2. Ω is an inlier set of ellipse C(
→
α), i.e., all edge data in Ω satisfy the Inlier

Criterion.

3. The subtended angle of arc formed by Ω, φ(
→
α,Ω), satisfies the SIS Criterion.

4. The number of inliers in set Ω, N(
→
α,N (

→
α,Ω)) = N (

→
α,Ω), satisfies the NIO

Criterion.

6.6 Angles subtended by elliptic arcs

The subtended angle is an important feature of an elliptic arc. It is independent of

the ellipse size and thus is taken as the SIS feature in the SIS Criterion to measure

the validity of an elliptic arc.

For convenience, we assume in this section, that the ellipse discussed is centered

at the origin of the coordinate system, i.e., x0 = 0 and y0 = 0. Its semimajor and

semiminor axes are parallel to the coordinate axes. This indicates that the ellipse

can be represented by the nominal model (6.1) with x0 = 0 and y0 = 0. If the
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ellipse center is not at the origin, we translate the coordinate system by

xnew = xold − x0, (6.44)

ynew = yold − y0. (6.45)

Fig. 6.3(a) shows an ellipse centered at O and its two arcs
⌢

BC and
⌢

DA. The

arc
⌢

BC does not cross the the axis OX, hence its subtended angle is φ2 = θB − θC .

On the contrary, the arc
⌢

DA crosses the axis OX and therefore its subtended angle

is φ1 = 2π + θA − θD.

The recognition of the endpoints of an arc is a key to the computation of sub-

tended angle of the arc. However, the endpoints of the arc cannot be directly de-

tected by simply comparing coordinates and polar angles of edge points. Fig. 6.3(b)

shows a typical case in which both coordinates and polar angles of the arc end-

points are neither the largest nor the smallest among those of the edge points of

the arc. Points M and N are the endpoints of arc
⌢

NM , while Points E, F , G, H

and K are the edge points of arc
⌢

NM . For the coordinates of these edge points

along the X axis, we have

xG < xN < xM < xE, (6.46)

and for the Y coordinates we have

yH < yN < yM < yF . (6.47)

The polar angles of endpoints M and N are in the middle of those of edge points

E and K, i.e.,

θE < θM < θN < θK . (6.48)
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Figure 6.3. (a) The subtended angles of elliptic arcs
⌢

BC and
⌢

DA; (b) The sub-

tended angle of elliptic arc
⌢

NM .
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Obviously, we cannot directly extract the endpoints of arc
⌢

NM from data set Ω

by simply comparing coordinates and polar angles of edge points.

In order to calculate the subtended angle of an arc, we introduce the incremental

angle of edge point polar angles. Suppose that data set Ω represents an arc such

as
⌢

DA in Fig. 6.3(a); we first sort the polar angles of all points in Ω in increasing

order,

Θ(
→
α, Ω) = {θi|0 ≤ θi ≤ θj ≤ 2π, for all 1 ≤ i < j ≤ n}. (6.49)

Since some points have the same polar angle, the number of polar angles may

be less than the number of edge points, i.e., 1 ≤ n ≤ q. For convenience, let

θ0 = θn − 2π. Obviously, edge points with polar angle θn are actually those with

θ0.

The incremental angle of sorted θi, ϕi, is then defined as:

ϕi = θi − θi−1, for i = 1, · · · , n (6.50)

ϕ1 = θ1−θ0 = 2π+θ1−θn indicates the angle in a counterclockwise direction from

polar angle θn to polar angle θ1. Obviously, each incremental angle is subtended

by a piece of elliptic arc.

With the introduction of ϕi, the subtended angle of the detected arc can be

obtained using the following theorem. It is based on the fact that the angle con-

structed by two connected point and the ellipse center should be below a threshold.

Compared with the recognition of circular arc endpoints, the problem for elliptic

arc is more complicated. The threshold value for elliptic arc endpoints is point

angle-variant while the threshold for a circular arc is constant. Therefore the ap-
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proach for finding circular arc endpoints is connectivity-based.

Theorem 6.1. Suppose data set Ω is an intra-connected inlier subset of ellipse

C(
→
α), which contains an elliptic arc υ(Ω). Let ϕi be the incremental angle of the

sorted polar angle θi of edge points in Ω. Let Tϕ(θi) = arccos 2[(1−Tρ)ρ(θi)]
2−T 2

c

2[(1−Tρ)ρ(θi)]2
.

(1) There is at most one angle ϕk such that

ϕk = θk − θk−1 > max(Tϕ(θk−1), Tϕ(θk)), (6.51)

0 ≤ ϕi ≤ max(Tϕ(θi−1), Tϕ(θi)), for all i 6= k. (6.52)

The edge points, which have polar angles θk and θk−1, are the endpoints of the arc

υ(Ω). Hence, the angle subtended by the arc υ(Ω) is

φ(
→
α,Ω) = 2π − ϕk. (6.53)

(2) If no incremental angles is larger than max(Tϕ(θi), Tϕ(θi−1)), i.e.,

0 ≤ ϕi ≤ max(Tϕ(θi−1), Tϕ(θi)), i = 1, · · · , n, (6.54)

then the angle subtended by the arc υ(Ω) is

φ(
→
α,Ω) ≥ 2π − max

i
Tϕ(θi). (6.55)

(For the proof, see Appendix B.)

Fig. 6.3(a), which reveals the relation between θ and ϕ, illustrates Theorem 6.1.

Arcs
⌢

BC and
⌢

DA correspond to case (1) in this theorem. ϕD = θD − θA, which

is the only angle larger than max(Tϕ(θA), Tϕ(θD)), is of key importance for the

recognition of points A and D, the endpoints of arc
⌢

DA. On the other hand,
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ϕB = 2π + θB − θC > max(Tϕ(θB), Tϕ(θC)), helps to find points B and C, the

endpoints of arc
⌢

BC. Therefore, the subtended angles of arc
⌢

BC and
⌢

DA are

φ(
⌢

BC) = 2π − ϕB and φ(
⌢

DA) = 2π − ϕD, respectively.

It is worth pointing out that the threshold Tϕ(θi) for the incremental angle

ϕi is not a constant like that in circle fitting but a function of θi. It indicates

that the Tϕ(θi) varies at different point angle θi. This is due to the fact that the

distance between the ellipse center and the ellipse edge point, ρ(θ), changes when

θ changes (Eq. 6.4). For the circle, the radius r is constant for any point angle θ.

Based on this theorem, we then develop an algorithm for detecting the sub-

tended angle of Ω, which is an intra-connected inlier subset of ellipse C(
→
α):

1. Compute the polar angle θi of edge points (xi, yi) in Ω.

2. Sort the polar angles θi in an increasing order.

3. Calculate ϕi, the incremental angle of the sorted polar angle θi, for each edge

point in Ω.

4. Search for the pair of edge points (xk−1, yk−1) and (xk, yk) with ϕk >

max(Tϕ(θk−1), Tϕ(θk))

5. if the pair of edge points (xk−1, yk−1) and (xk, yk) is found, then the sub-

tended angle of data set Ω, φ(
→
α,Ω) = 2π − ϕk, and the edge points pair

(xk−1, yk−1) and (xk, yk) are the endpoints of arc Ω; if the pair of edge points

(xk−1, yk−1) and (xk, yk) is not found, then φ(
→
α,Ω) ≥ 2π−max

i
Tϕ(θi), which

indicates that no endpoints of this arc is found.
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6.7 Analysis

In this section, we discuss the performance of the proposed connectivity-based

multiple curve estimator in the presence of outliers and noise and demonstrate the

advantages of using pixel connectivity in ellipse fitting. Comparisons between the

algorithm and other curve-fitting methods are also presented.

6.7.1 Outliers

Outliers, especially if they are found in overwhelming numbers, is one of the major

reasons for false detection in most curve-fitting algorithms. To evaluate the ability

of our method to deal with outliers, we use the synthetic test image of Fig. 6.4(a),

which comprises one partially occluded ellipse and several polygons. The edge

image (Fig. 6.4(b)) is obtained by applying the Canny edge detector.

The inlier number of the detected ellipse in Fig. 6.4(c) is 117, while the total

amount of edge data in Fig. 6.4(b) is 3155. The outliers, comprising 96.3% of the

total edge data, greatly outnumber the inliers.

If pixel connectivity is taken into account, the task of detecting meaningful

ellipses then becomes one of seeking intra-connected subsets that form valid elliptic

arcs. The number of edge data in the intra-connected data subset containing the

ellipse is 1447; resulting in the inlier ratio increasing sharply from 3.7% of the

entire data set to 8.1% of this intra-connected data subset. The difficulty caused

by the outliers is greatly reduced. Though they still number much more than the

inliers. Fig. 6.4(c) shows that the ellipse is correctly extracted by our algorithm
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and no false detection is produced.

If pixel connectivity is not considered, a large number of false ellipses are de-

tected. Fig. 6.4(d) shows only parts of ellipses with inliers more than that of the

true ellipse. The extracted ellipses tend to touch as many sides of the polygons

as possible due to the least-squares characteristic and the influence of all the edge

data from the polygons.

Since the outlier ratio goes up to 96.3%, robust regression methods may fail with

this example as they require outliers to number less than 50%. The opportunity of

extracting the true ellipse by LS-based methods that start fitting from an initial

guess is quite small [8], [7], [30] because the probability of randomly selecting an

initial edge data subset located exactly on the true ellipse is less than 3.7%.

The HT method uses the the number of edge points lying on the ellipse whose

parameters correspond to the cell mapped by these edge data. All seven ellipses

in Figs. 6.4(d) may be extracted by the HT method. They have more inliers than

the true one. These ellipses will be chosen ahead of the true ellipse. Furthermore,

if we know a priori there is only one ellipse in the image, the HT is very unlikely

to detect it.

The RHT randomly samples 5-tuple edge data from the image space and maps

this 5-tuple into a cell in parameter space. The probability of choosing five edge

points from the true ellipse is less than 0.0375 = 6.9 × 10−8, i.e., in a random

selection of 10, 000, 000 5-tuple edge data only seven 5-tuples on average are from

the true ellipse. The extraction of the true ellipse in this example is almost an

impossible task for the RHT. It should also be noted that the number of edge data
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(a) (b)

(c) (d)

Figure 6.4. Example 1: (a) original image of size 512× 512; (b) edge data; (c) the

true ellipse detected by the proposed method; (d) part of extracted ellipses if pixel

connectivity is not considered, which have more inliers than the true ellipse.
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from the largest false ellipse is 978, hence the probability of sampling 5-tuple edge

data from this false ellipse is more than 85 = 32768 times that of the true ellipse;

thus the RHT is much more likely to extract the false model than the true model.

In contrast, our connectivity-based multiple curve estimator does not involve

an initial guess and start ellipse fitting with the full intra-connected data subset.

The result of every experiment with our approach is identical and only the true

ellipse in the test image is successfully extracted.

6.7.2 Criterion for determining ellipse validity

The criterion for evaluating the validity of extracted ellipse is of great importance

for curve fitting algorithms. It plays a key role in preventing false detections.

The validity criterion frequently used in HT-based methods is the cell score in

parameter space, i.e., the total number of inliers of the evaluated ellipses. However,

this criterion is not independent of the ellipse size and is thus not reliable.

The subtended angle of the largest elliptic arc is employed in our proposed

estimator to evaluate ellipse validity. Obviously it is effective in preventing the

detection of false ellipses that are large or touch the sides of polygons. It is also

not influenced by the uneven distribution of edge data.

Fig. 6.5 compares the performance of the two validity criteria in evaluating the

ellipses in Fig 6.4(c) and (d). The graphs present the criterion values for each of

the ellipses. Fig. 6.5(a) shows that the subtended angle of the largest elliptic arc

of the true ellipse is greater than 250◦ while those of the false ellipses (2-8) are

less than 50◦. Hence the true ellipse is easily identified. From Fig. 6.5(b), it is
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Figure 6.5. Comparison of different validity criteria: (a) angle subtended by the

largest arc; (b) total number of inliers. Ellipse 1 is the true ellipse detected in

Fig. 6.4(c), ellipses 2-8 are those in Fig. 6.4(d) with increasing inlier number.
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clear that the number of inliers of all seven false ellipses is more than that of true

ellipse, which indicates that the number of inliers is ineffective in identifying the

true ellipses.

6.7.3 Multiple unconnected ellipses

In some applications, there are multiple ellipses in the image that do not touch any

other curves. The synthetic image of Fig. 6.6(a), which contains 12 un-connected

ellipses, is one such example. The total amount of edge data in Fig. 6.6(b) is 4096.

McLaughlin [33] has employed various HT methods into multiple ellipse fitting.

A comparing study of various HT methods (the RHT, the SHT, the PHT and the

HT using geometric symmetric) is presented in [33]. The percentage of correctly

extracted ellipses falls for all four methods when the number of ellipses in an image

increases. The estimation correctness of all methods are less than 30% when there

are 8 ellipses in the image. The conclusion is not surprising because the outlier

ratio of each ellipse increases when more ellipses appear in the image.

This situation will also occur in those robust regression methods and LS-based

methods that start estimation from a randomly selected data subset and thus

depend crucially on the quality of initial guess. In order to remove as many outliers

as possible from the selected data set, the window size could not be too large. From

our experiments, we observed that the shape and direction of the estimated ellipse

may be severely deviated from the correct value (due to edge digitization error)

when the angle subtended by the selected elliptic arc for estimation is too small.

It indicates that the precision of the estimated model parameters is better if the
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(a)

(b)

(c)

Figure 6.6. Example 2: (a) original image of size 512× 512; (b) edge data; (c) the

ellipses detected by the proposed method.
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Figure 6.7. Indexed ellipses in Fig. 6.6 in increasing inlier order

subtended angle of the elliptic arc for fitting is larger. Therefore accurate ellipse

fitting requires the window size to be as large as possible such that more elliptic

arcs are included in this window for ellipse estimation. These two requirements for

outlier problem and correctness of estimation are contradictory.

Our connectivity-based multiple curve estimator, however, avoids this kind of

undesired detections. Using pixel connectivity, the entire data set is first sepa-

rated into intra-connected data subsets. Ellipse estimation is always limited in

the intra-connected data subsets; consequently, the problem of extracting multi-

ple unconnected ellipses with our method is simplified to several subproblems of

fitting a single ellipse in an intra-connected data subset, which is its inlier subset.

The parameters of ellipses can easily be estimated by LS estimation. Fig. 6.6(c)

demonstrates the result of extracting all 12 ellipses with our estimator.

The inlier ratio, R(i), is the ratio of the number of inliers to the number of

edge data in the entire set. The connectivity-based inlier ratio, Rc(i), is the ratio

of the number of inliers to the number of data in an intra-connected data subset.
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Table 6.1. Inlier Number and Inlier Ratio of Ellipses.

Ellipse Inlier number N(i) Inlier ratio R(i) Inlier ratio Rc(i)

1 136 3.3% 100%

2 170 4.2% 100%

3 171 4.2% 100%

4 176 4.3% 100%

5 198 4.8% 100%

6 256 6.2% 100%

7 260 6.3% 100%

8 278 6.8% 100%

9 552 13.6% 100%

10 608 14.8% 100%

11 645 15.7% 100%

12 646 15.8% 100%
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Table 6.1 displays the number of inliers N(i), and the two inlier ratios R(i) and

Rc(i), for the 12 ellipses indexed in Fig. 6.7. Without considering pixel connectivity,

the largest inlier ratio of all 12 ellipses is below 20%. In contrast, the inlier ratio

of each ellipse in the corresponding intra-connected subsets rises to 100%, which

makes this ellipse estimation problem very simple.

6.7.4 Occluded ellipses

The occurrence of multiple occluded ellipses is a special form of the outlier prob-

lem. For every ellipse, the inliers of other occluded ellipses are outliers. The test

image of Fig. 6.8(a), which contains 8 occluded ellipses, is used to demonstrate

the effectiveness of the proposed algorithm in such a situation. The edge image

obtained with the Canny edge detector is shown in Fig. 6.8(b).

Fig. 6.8(c) shows that all 8 occluded incomplete ellipses are accurately located

with our algorithm. Compared with our method, the performance of four HT-based

methods (the SHT, the RHT, the PHT and the HT using geometric symmetric)

would be very poor, with percentage of correctness below 30% [33].

6.7.5 Noise

Noise is another important cause of unsuccessful ellipse detection. Since our algo-

rithm is based on LS estimation, it inherits the robustness of the LS method against

Gaussian noise. Therefore we focus here on salt-and-pepper noise, which severely

distorts the detection in HT-based algorithms due to the high outlier ratios.

Fig. 6.9(a) shows the edge image of the third example corrupted by 5% salt-and-
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(a)

(b)

(c)

Figure 6.8. Example 3: (a) original image of size 512 × 512; (b) edge data; (c)

occluded ellipses extracted by the proposed method.
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pepper noise. In this noisy image, none of the inlier percentages (the number of

inliers as a percentage of the total number of edge points used in the fitting) of the

8 true ellipses exceeds 4%, and the sum of the inlier percentages of all the 8 ellipses

is less than 25%. Our algorithm manages to extract all 8 true ellipses without any

false detection (Fig. 6.9(b)) despite an outlier percentage of 96%. Furthermore, we

note that for LS-based methods that commence fitting from an initial guess, the

probability of poor initialization is more than 75%, which will very likely result in

their failure. The probability of sampling 5-tuple edge points from a single model

of all 8 true ellipses is below 8.2 × 10−7. Such a low probability indicates that the

RHT is very likely to fail in this example.

McLaughlin [33] pointed out that the percentages of correctness for four HT-

based methods (the SHT, the RHT, the PHT and the HT using geometric sym-

metric) degrade rapidly as noise levels increased. His experiments show that the

percentages of correctness for these four HT-based methods decrease to 0 when

the percentage of salt and pepper noise in edge data image increases to 4%, i.e.,

these four methods cannot extract even one true ellipse. Our connectivity-based

multiple curve estimator, in contrast, extracts all 8 occluded ellipses without any

false detections from the noisy edge data corrupted by 5% salt-and-pepper noise.

It is clear that our algorithm deals very effectively with salt and pepper noise,

the reason being that scattered noisy edge data are grouped into small intra-

connected subsets that contain very few points. These subsets are rejected during

ellipse fitting as there are too few points to form a valid elliptic arc.
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(a)

(b)

Figure 6.9. (a) Edge data of Fig. 6.8(b) corrupted by 5% salt-and-pepper noise;

(b) multiple occluded ellipses extracted by the proposed method.
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6.7.6 Computational Complexity

The classification of all edge points into intra-connected subsets before ellipse esti-

mation requires the detection of connectivity between each pair of edge data. The

computational complexity for connectivity detection ranges from O(n) to the worst

case of O(n2). The computation burden for outlier search depends on the number

of data in the intra-connected subset and the inlier percentage of the valid models.

The worst case is that all data in the image are connected, then the complexity for

iterative weighted LS methods is O(n2). In a word, the computational complexity

with our method is no more than O(n2). It is much better than the computational

complexity of the HT method for ellipse detection, which is O(n5).

6.8 Experimental Results

The proposed connectivity-based multiple model estimator has been implemented

for the reconstruction of occluded and touching ellipses from real binary edge

images. A variety of images is used to test the performance and versatility of

the algorithm. In the experiments, the edge images are obtained by applying the

Canny detector.

Fig. 6.10(a) shows a real image obtained by viewing the No-smoking sign at

an angle. The edge image obtained by Canny detector is shown in Fig. 6.10(b).

Fig. 6.10(c) shows the estimation results of meaningful ellipses. Here the connec-

tivity threshold is Tc = 5, the error threshold Tρ = 0.03 and the subtended angle

threshold Tφ = 100◦. All three real ellipses in this image are successfully extracted
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(a) (b) (c)

Figure 6.10. (a) Original image of size 128 × 256; (b) edges detected by Canny

detector; (c) extracted ellipses.

without any false detections.

Fig. 6.11(a) shows a real image containing a cup and a book. Fig. 6.11(b) is

the edge image. Fig. 6.11(c) shows the desired extraction of ellipses achieved by

applying the proposed estimator. With the connectivity threshold Tc = 2.5, the

error threshold Tρ = 0.1 and the subtended angle threshold Tφ = 180◦, the ellipses

generated by the boundary of the lip, bottom and handle of the cup are successfully

extracted.

Fig. 6.12 shows different ellipse fitting results with different threshold selections.

Fig. 6.12(a) presents extraction results with TN = 0, i.e., there is no requirement

for the minimum number of inliers in a valid elliptic arc. Hence up to eight small el-
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(a)

(b)

(c)

Figure 6.11. (a) Original image of size 512 × 480; (b) edges detected by Canny

detector; (c) extracted ellipses.
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(a)

(b)

(c)

Figure 6.12. (a) Extracted ellipses with TN = 0; (b) extracted ellipses with Tφ = 0◦;

(c) extracted ellipses with Tr = 0.02.
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lipses formed by small groups of data are identified as valid models. In Fig. 6.12(b),

the threshold for the angle subtended by a valid elliptic arc, Tφ, is set to 0◦, which

leads to the wrong detection of the ellipse under the cup handle. The error thresh-

old Tr is raised to 0.02 in Fig. 6.12(c). The consequence is that the inner one of two

valid elliptic arcs at the cup mouth in Fig. 6.12(c) is ignored because the inliers of

the inner valid elliptic arc do not satisfy the Inlier Criterion (Criterion 3.1) with a

threshold Tr = 0.02. Fig. 6.12 illustrates the fact that the selection of thresholds is

very important to the correctness of ellipse fitting results. Inappropriate thresholds

may lead to the false ellipse detection.

In the two examples, the outlier percentage is greater than 50% for the ellipses

that intersect other curves. Therefore robust regression methods will not work

well. The presence of a variety of curves in these examples will cause the HT and

its variants to generate false estimations formed by the edges of straight lines and

other curves. Our proposed algorithm, however, successfully extracts real ellipses

while avoiding false detection by searching for valid elliptic arcs.

6.9 Conclusion

In this chapter, we apply the connectivity-based multiple curve estimator for fitting

multiple touching or occluded ellipse with the Direct LS estimator, appropriately

selected error and features of valid elliptic arcs. An efficient method to search for

the endpoints of elliptic arcs and the angles subtended by the arcs is proposed.

Analysis of algorithm performance and experimental results show the following
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major advantages of this multiple-model estimator for ellipse fitting: (1) it can

effectively deal with outliers more than 50% of all edge data; (2) it can extract

an a priori unknown number of meaningful ellipses in the edge image; and (3) it

can handle fitting of multiple occluded or touching ellipses; (4) it can prevent false

ellipses from being extracted; (5) it reduces the search field for model fitting using

pixel connectivity, thus reduce computational complexity significantly.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have developed a new general framework for multiple parametric

model fitting. It allows us to build an accurate parametric model that fit curve

edge data without requiring to a lucky initial estimate, and to extract the desired

inliers of the curve even though there are more than 50% outliers of this curve in

the original edge data set. It neither has a limit to breakdown point nor requires

assumptions about the a priori distribution information of both inliers and out-

liers. The only necessary assumption that there are enough inliers constructing

the underlying curve arcs guarantees the success of curve fitting with the iterative

multiple model estimation framework.

The proposed framework has several novel features and compares favorably

with various parametric model fitting algorithms proposed previously. The most

significant advantage of this approach is that it does not require an accurate initial

142
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local curve model estimate. Due to the global outlier search style of the region

trimming scheme, the iterative multiple models estimation approach avoids the

troublesome problem of making an accurate initial estimate because it starts inlier

detection from the initial optimal global model based on the entire original edge

data set.

The region trimming scheme is implemented by the iterative weighted LS ap-

proach. Thus it has the advantage of high accuracy in estimating parameters

provided by the least squares technique if enough genuine inliers can be found.

The region trimming scheme seeks the global least qualified edge data with respect

to the optimal model estimation of all current available edge data, which is rea-

sonably treated as the current most qualified outliers. The remaining edge data

are used for further iterative model fitting. It is due to the strategy of expelling

only those data with largest deviation that prevents underlying inliers from being

eliminated even when the current model is seriously corrupted by outliers.

This characteristic assures the region trimming scheme of being robust against

a high percentage of outliers and occluded multiple models. In this way, our pro-

posed approach may begin with an initial global estimate that may not necessarily

correspond to any underlying curve but give a global optimal curve model de-

scribing the entire edge data. The undesired global initial estimate then gradually

converges to the local desired solution by consistently eliminating current detected

outliers. As a consequence, it is robust against more than 50% outliers or occluded

curves. The iterative multiple models estimation approach is in fact a global-to-

local search strategy. In contrast, most curve fitting techniques are based on the
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region growing scheme, which starts from a local initial estimate made from a local

inlier edge data subset and then extends to other edge data.

Another significant thrust of our framework is that it is able to extract all curves

when there is an a priori unknown number of models in the image. While applying

the region trimming scheme to a subregion, the most favorable underlying curve

will be first extracted. Then all its inliers in this subregion are excluded from the

following model estimation. In this way, the current most favorable curves with

respect to the updated edge data set are fitted sequentially until no further possible

curves can be extracted. These extracted models will then be tested whether they

are true or pseudo curves with the model verification method.

By introducing the intra-connectivity feature of curve arcs, we then develop a

general framework for multiple curve fitting, the connectivity-based multiple curve

estimator. In this approach, the curve fitting turns to be a task of searching for

meaningful arcs, which are actually intra-connected inlier subsets.

The performance of applying the connectivity-based multiple curve estimator

to multiple circles and ellipses fitting demonstrated the following advantages com-

pared with most parametric model-fitting algorithms in the literature:

• It effectively avoids false curve detection because only valid arcs are used to

extract real curves.

• It does not depend on the quality of the initial guess.

• It is able to handle more than 50% outliers, which is a cause of failure in

many methods, e.g., the RHT and robust regression.
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• It can successfully extract touching or occluded curves due to the ability of

our estimator to deal with a high percentage of outliers.

• It is remarkably robust against salt-and-pepper noise because the use of pixel

connectivity effectively excludes the majority of separated distributed noisy

data from model estimation.

7.2 Future Work

We have demonstrated that the general framework proposed in this thesis is a

robust regression estimator that can handle various types of noise. It is still reliable

when there is an arbitrarily high percentage of outliers but no a priori information

about noise distribution and number of models are available.

The error function and region trimming schemes are very important components

of our framework, which offer a convenient way to extract the most qualified outliers

with respect to current estimated model. Since the error function in the application

of fitting circles and ellipses is defined as the error of edge data to the estimated

model, the inliers of underlying model may have a large error with respect to the

current extracted model when there is still a high percentage of outliers in current

data set. Hence in each iteration we can only eliminate the most qualified outlier

subset with the largest error. Otherwise we may mistakenly delete most of inliers

before we eliminate outliers. The convergence speed of this method is therefore

not satisfactory. A challenge is to achieve a better error function such that more

outliers are correctly detected and removed at each iteration of the region trimming
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scheme.

The image pre-partitioning strategy used in this framework is to split the entire

image into sub-images according to some a priori application dependent informa-

tion for the implementation convenience. A good heuristic image pre-partitioning

strategy that separates a complicated image into several simplifier sub-images will

greatly improve the speed and quality of model estimation.

Our connectivity-based multiple curve estimator cannot deal with virtual curve

models supported by sparsely distributed edge points due to it being based on

connectivity. It would be interesting and important to develop other appropriate

features of the significant inlier subset for curves comprised of unconnected edge

data such that false detection of this kind of curves can be prevented.

Due to the iterative style of searching for any underlying meaningful curve arcs

in the entire edge data, the speed of connectivity-based multiple curve estimator

is not satisfactory when the number of edge data is very large. Therefore fast

outlier search strategies need to be developed for the applications of fitting multiple

models in complicated images, especially those Possibilistic-based strategies and

Monte Carlo approach.



Appendix A

Endpoints of Circular Arcs

In order to prove Theorem 5.1, we have to first introduce some lemmas.

Lemma A.1. Let vertices A, B and C form a triangle as shown in Fig. A.1. Let

a = BC, b = CA, c = AB and θ(a, b, c) = ∠BAC. Suppose b and c are fixed,

|b− c| < T , 0 < a ≤ T . Then θ is maximized when a = T , i.e.,

θ(T, b, c) = max
0<a≤T

θ(a, b, c). (A.1)

Proof. From elementary geometry, we have

cos θ =
b2 + c2 − a2

2bc
. (A.2)

By differentiating both sides with respect to a, we get

− sin θ
dθ

da
=

−2a

2bc
. (A.3)

Since sin θ > 0 for 0 < θ < π, a > 0, b > 0 and c > 0, we have

dθ

da
=

a

bc sin θ
> 0. (A.4)
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B

A

C

PQ

b

T

c

a

Figure A.1. Triangle ABC with fixed sides b and c.

This indicates that θ increases when a increases. Since 0 < a ≤ T , θ is maximized

when a = T . The condition |b − c| < T ensures the existence of a triangle with

a = T .

Fig. A.1 shows that the vertex C can only move on the arc
⌢

PQ. Obviously,

∠BAC is maximized when C moves to point P or Q where a = BC = T . �

Lemma A.2. Let vertices A, B and C form a triangle as shown in Fig. A.2. Let

a = BC, b = CA, c = AB and θ = ∠BAC. Suppose b is fixed, and 0 < a ≤ T <

r1 ≤ c ≤ b ≤ r2. Then

max
a,c

θ(a, b, c) =















θ(T, b,
√
b2 − T 2), if

√

T 2 + r2
1 ≤ b ≤ r2

θ(T, b, r1), if r1 ≤ b <
√

T 2 + r2
1

, (A.5)

Proof. In order to form a triangle, c > b − T is a necessary condition since
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0 < a ≤ T . From Lemma A.1, we obtain a = T as the solution of max
a
θ(a, b, c),

i.e., max
a,c

θ(a, b, c) = max
c
θ(T, b, c). Then

cos θ =
b2 + c2 − T 2

2bc
. (A.6)

By differentiating both sides with respect to c, we have

dθ

dc
=
b2 − T 2 − c2

2bc2 sin θ
. (A.7)

We now consider:

(1) If b ≥
√

T 2 + r2
1 and c ≥ r1, then

dθ

dc
= 0 =⇒ c =

√
b2 − T 2. (A.8)

The maximum value of θ is

max
a,c

θ(a, b, c) = θ(T, b,
√
b2 − T 2) = arctan

T√
b2 − T 2

. (A.9)

This is easily seen in Fig. A.2(a). When vertices A and B are known, vertex C

must locate within the shaded area. Obviously, θ is the maximum value when AC

is tangent to the circle centered at B.

(2) If b <
√

T 2 + r2
1 < T + r1 and c ≥ r1, then

dθ

dc
=
b2 − T 2 − c2

2bc2 sin θ
< 0. (A.10)

Therefore θ increases when c decreases. Since c ≥ r1,

max
a≤T,c≥r1

θ(a, b, c) = θ(T, b, r1) = arccos
b2 + r2

1 − T 2

2br1
. (A.11)

This is also presented in a geometrical way in Fig. A.2(b). Vertex C is restricted

in the shaded area. Obviously, when C moves to point P or Q, the maximum angle

θ is achieved. �
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1
r

(b)

Figure A.2. (a)Triangle ABC with fixed side b ≥
√

T 2 + r2
1; (b) triangle ABC

with fixed side b <
√

T 2 + r2
1.

Lemma A.3. Let vertices A, B and C form a triangle. Let a = BC, b = CA,

c = AB and θ = ∠BAC. Suppose 0 < a ≤ T , r1 ≤ b ≤ r2, r1 ≤ c ≤ r2 and

0 < T < r1. Then

max
a,b,c

θ(a, b, c) = θ(T, r1, r1) = arccos
2r2

1 − T 2

2r2
1

. (A.12)

Proof. Without loss of generality, we assume that b ≥ c. Since a < c, then

θ(a, b, c) < π
2
. Two cases are discussed in the following.

(1) If
√

T 2 + r2
1 ≤ b ≤ r2, by Lemma A.2, we have

max
a,b,c

θ(a, b, c) = max
b
θ(T, b,

√
b2 − T 2)

= max
b

arctan
T√

b2 − T 2
. (A.13)
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The function arctan(·) is an monotonically increasing function over the interval

(0, π
2
). Hence θ is maximized when b = bmin =

√

r2
1 + T 2, i.e.,

max
a,b,c

θ(a, b, c) = max
b
θ(T, b,

√
b2 − T 2)

= θ(T,
√

r2
1 + T 2, r1)

= arctan
T

r1
. (A.14)

If r1 ≤ b <
√

T 2 + r2
1, by Lemma A.2, we have

max
a,b,c

θ(a, b, c) = max
b
θ(T, b, r1)

= max
b

arccos
b2 + r2

1 − T 2

2br1
. (A.15)

Therefore, max
a,b,c

θ(a, b, c) becomes the function of b, i.e.,

cos θ =
b2 + r2

1 − T 2

2br1
. (A.16)

By differentiating both sides with respect to b,

dθ

db
=
r2
1 − b2 − T 2

2b2r1 sin θ
. (A.17)

Since sin θ > 0 for 0 < θ < π, and b ≥ r1 > 0, we have

dθ

db
=
r2
1 − b2 − T 2

2b2r1 sin θ
< 0, (A.18)

which indicates that θ increases when b decreases. Then,

max
a,b,c

θ(a, b, c) = max
b
θ(T, b, r1)

= θ(T, r1, r1)

= arccos
2r2

1 − T 2

2r2
1

. (A.19)
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With the conclusions in case (1) and (2), we obtain

max
a,b,c

θ(a, b, c) = max(θ(T, r1, r1), θ(T,
√

r2
1 + T 2, r1)). (A.20)

Let θ1 = θ(T,
√

r2
1 + T 2, r1) and θ2 = θ(T, r1, r1). Hence tan θ1 = T

r1
and

tan θ2 =
T
√

4r2
1−T 2

2r2
1−T 2 . Since function tan(·) is monotonically increasing over interval

(0, π
2
), we compare the tangent function of both θ1 and θ2,

tan θ1 − tan θ2 =
T

r1
− T

√

4r2
1 − T 2

2r2
1 − T 2

=
T

r1(2r2
1 − T 2)

(2r2
1 − T 2 − r1

√

4r2
1 − T 2)

=
T

r1(2r2
1 − T 2)

[(
√

4r2
1 − T 2 − r1

2
)2 − 9

4
r2
1]. (A.21)

Since 0 < T < r1, then 2r2
1 − T 2 > r2

1 > 0. We then have

√

4r2
1 − T 2 − r1

2
<

√

4r2
1 −

r1
2

=
3

2
r1. (A.22)

This leads to

(
√

4r2
1 − T 2 − r1

2
)2 − 9

4
r2
1 < (

3

2
r1)

2 − 9

4
r2
1 = 0. (A.23)

Hence,

tan θ1 − tan θ2 < 0 =⇒ θ1 < θ2 (A.24)

Therefore, we obtain

max
a,b,c

θ(a, b, c) = max(θ1, θ2) = θ2

= arccos
2r2

1 − T 2

2r2
1

. (A.25)

Obviously, maximum θ exists in the triangle with sides T , r1 and r1. �



Appendix A. Endpoints of Circular Arcs 153

Lemma A.4. Let two points P1 and P2 be inliers of circle C(
→
α) cantered at O as

shown in Fig. A.3. Let r1 = (1 − Tr)r. We assume Tc ≪ (1 − Tr)r.

(1) If P1 and P2 are connected, then the angle ∠P1OP2 is limited, i.e.,

d(p1, p2) < Tc =⇒ ∠P1OP2 = |θ2 − θ1| ≤ Tϕ, (A.26)

where

Tϕ = arccos
2r2

1 − T 2
c

2r2
1

, (A.27)

and θ1, θ2 can be achieved from Eq. (5.20).

(2) If ϕ is larger than Tϕ, these two points are not connected, i.e.,

∠P1OP2 = |θ2 − θ1| > Tϕ =⇒ d(p1, p2) ≥ Tc. (A.28)

Proof. (1) Since the two points P1 and P2 are inliers of circle C(
→
α) centered at

O, we have

r1 ≤ OP1 ≤ (1 + Tr)r, (A.29)

r1 ≤ OP2 ≤ (1 + Tr)r. (A.30)

Since P1 and P2 are connected, 0 < P1P2 < Tc. Obviously, points O, P1 and P2

form a triangle (Fig. A.3), where ∠P1OP2 is actually ϕ2. By Lemma A.3,

∠P1OP2 = |θ2 − θ1| < arccos
2r2

1 − T 2
c

2r2
1

. (A.31)

(2) Suppose two points P1 and P2 are connected, then |θ2 − θ1| < Tϕ. This is

contradictory to the condition. Therefore the points P1 and P2 are not connected.

�
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X

Y

nP

1
P

2
P

kP

1-kP

endpoints of the arc

endpoints of the arc

O

Figure A.3. Polar angles θi, incremental angles ϕi, the endpoints of the arc υ(Ω)

and its subtended angle φ(Ω) (black points represent edge points with (θi,ϕi)).
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Lemma A.5. Suppose data set Ω is an intra-connected inlier subset of circle C(
→
α).

Let ϕi be the incremental angles of sorted polar angles θi. Let υi be the arc of circle

C(
→
α) subtending the angle ϕi in a counterclockwise direction from polar angle θi−1

to θi.

(1) All edge points are the endpoints of arcs υi, i = 1, · · · , n.

(2)

ϕi > 0, (A.32)

n
∑

i=1

ϕi = 2π. (A.33)

(3) The collection of circular arcs υi, i = 1, · · · , n, is a partition of detected

circle.

Proof. The relationship among the polar angles θi of the edge points, incremental

angles ϕi and the subtended angle φ(Ω) of the detected arc is illustrated in Fig. A.3.

(1) Suppose there is a point with polar angle θk that is not an endpoint of arcs

υi. Assume it is located within the neighbor of arc υi, i 6= 1, which subtends the

incremental angle ϕi = θi − θi−1. Therefore the polar angle θk is in the interval

(θi−1, θi), i.e., θi−1 < θk < θi. This is contradictory to Eq. (5.24), in which all θi

are sorted in increasing order.

If the point with polar angle θk is located within the neighbor of arc υ1 in a

counterclockwise direction from polar angle θ0 to θ1, then the polar angle θk is

actually in the interval (θn, 2π)
⋃

[0, θ1), i.e., θk < θ1 or θk > θn. This is

contradictory to the Eq. (5.24), in which θ1 = min θi and θn = max θi.

Hence all edge points with polar angle θi are endpoints of arc υi subtending the

incremental angles ϕi.
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(2)

θi > θi−1 =⇒ ϕi = θi − θi−1 > 0, i = 2, · · · , n, (A.34)

θn < 2π =⇒ θ0 = θn − 2π < 0 =⇒ ϕ1 = θ1 − θ0 > 0, (A.35)

n
∑

i=1

ϕi =
n

∑

i=1

(θi − θi−1) = θn − θ0 = 2π. (A.36)

(3) It is easy to see that all of arcs υi subtending the angles ϕi do not overlap

each other because ϕi = θi − θi−1 and 0 ≤ θi < θj < 2π for i < j. By Eq. (A.33),

the collection of arcs υi is obviously a partition of circle C(
→
α). �

With Lemmas A.4 and A.5, we can now present the proof of Theorem 5.1.

Proof of Theorem 5.1. Let Z(θi) denote the subset of edge points pk with the

polar angle θi, i.e., Z(θi) = {pk|θ(pk) = θi}, because there may be more than one

edge data having the same polar angle.

(1) Suppose there are two incremental angles, ϕi and ϕj, which are larger than

Tϕ, i.e., ϕi = θi − θi−1 > Tϕ and ϕj = θj − θj−1 > Tϕ. By Lemma A.4, we have

the conclusion that there is no point in Z(θi) that is directly connected to points

in Z(θi−1). By the same reasoning, there is no point in Z(θj) that is directly

connected to points in Z(θj−1). Without loss of generality, we assume that

0 < θi−1 < θi < θj−1 < θj. (A.37)

Let Ω1 = {pk|θ(pk) ≤ θi−1 or θ(pk) ≥ θj} and Ω2 = {pk|θi ≤ θ(pk) ≤ θj−1}.

Obviously, Ω1 and Ω2 are not connected because there is no connection path from

Ω1 to Ω2 through Z(θi−1) to Z(θi) or Z(θj) to Z(θj−1). Hence Ω = Ω1 ∪ Ω2 is

not an intra-connected subset. This is contradictory to the condition that Ω is
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an intra-connected inlier subset of circle C(
→
α). Therefore, there is at most one

incremental angle, ϕk, such that ϕk = max
i
ϕi > Tϕ.

If the arc υ(Ω) is actually the complete circle, then there are no endpoints in

this arc. If the arc υ(Ω) is not a closed circle, its endpoints are edge points like A

and C in Fig. 5.1(b) such that no point in Ω with polar angle larger than theirs is

directly connected to them, or edge points like B and D in Fig. 5.1(b) such that

no point in Ω with polar angle less than theirs is directly connected to them.

By Lemma A.5, the collection of circular arcs υi, i = 1, · · · , n, is a partition of

the detected circle. If the arc υ(Ω) is open, there is an arc υk subtending ϕk, whose

endpoints, Z(θk−1) and Z(θk), are endpoints of υ(Ω). The arc υk subtending the

angle ϕk does not belong to the arc υ(Ω) (Fig. A.3).

All other arcs belong to the arc υ(Ω), i.e. υi ⊂ υ(Ω) for i 6= k. Furthermore,

there is at least a pair of endpoints from two endpoint sets of those arcs that are

directly connected, i.e.,

min
p∈Z(θi−1), p

′
∈Z(θi)

d(p, p
′

) < Tc, for i 6= k. (A.38)

By Lemma A.4, inequality (A.38) indicates that 0 ≤ ϕi ≤ Tϕ, for i 6= k.

If there is one and only one incremental angle ϕk such that ϕk > Tϕ, by

Lemma A.4, points from Z(θk−1) and Z(θk) are nor directly connected. Obvi-

ously points of Z(θk−1) and Z(θk), Pk−1 and Pk, are endpoints of υ(Ω), which is

illustrated in Fig. A.3.

The arc υ(Ω) consists of all arcs subtending incremental angles except υk, i.e.,

υ(Ω) =
⋃

i6=k

υi. (A.39)
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Therefore the angle subtended by the arc υ(Ω) shown in Fig. A.3 is

φ(
→
α,Ω) =

∑

i6=k

ϕi = 2π − ϕk. (A.40)

(2) If all incremental angles ϕi are less than Tϕ, there are two possibilities.

The first possibility is that the arc υ(Ω) is a closed circular arc. There are no

endpoints in υ(Ω). Therefore the angle subtended by υ(Ω) is

φ(
→
α,Ω) = 2π > 2π − Tϕ. (A.41)

The second possibility is that the arc υk, whose end points are endpoints of

υ(Ω), subtends an angle ϕk ≤ Tϕ. Hence, the angle subtended by the arc υ(Ω) is

φ(
→
α,Ω) =

∑

i6=k

ϕi = 2π − ϕk ≥ 2π − Tϕ. (A.42)

�



Appendix B

Endpoints of Elliptic Arcs

In order to prove Theorem 6.1, we have to first introduce some lemmas in the

following.

Lemma B.1. Let two points P1 and P2 be inliers of ellipse C(
→
α) centered at O as

shown in Fig. B.1. Let ρ1(θ) = (1 − Tρ)ρ(θ). We assume Tc ≪ ρ1(θ).

(1) If P1 and P2 are connected, then the angle ∠P1OP2 is limited, i.e.,

d(p1, p2) < Tc =⇒ ∠P1OP2 = |θ2 − θ1| ≤ Tϕ, (B.1)

where

Tϕ = max(Tϕ(θ1), Tϕ(θ2)), (B.2)

Tϕ(θi) = arccos
2ρ1(θi)

2 − T 2
c

2ρ1(θi)2
(B.3)

and θ1, θ2 can be achieved from Eq. (6.5).

(2) If ϕ is larger than Tϕ, these two points are not connected, i.e.,

∠P1OP2 = |θ2 − θ1| > Tϕ =⇒ d(p1, p2) ≥ Tc. (B.4)

159



Appendix B. Endpoints of Elliptic Arcs 160

X

Y

nP

1
P

2
P

k
P

1-kP

O

endpoints of the arc

endpoints of the arc

Figure B.1. Polar angles θi, incremental angles ϕi, the endpoints of the arc υ(Ω)

and its subtended angle φ(Ω) (black points represent edge points with (θi,ϕi)).
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Proof. (1) Since two points P1 and P2 are inliers of the ellipse C(
→
α) centered at

O, we have

ρ1(θ1) ≤ OP1 ≤ (1 + Tρ)ρ(θ1), (B.5)

ρ1(θ2) ≤ OP2 ≤ (1 + Tρ)ρ(θ2). (B.6)

We can summarize Eq. (B.5) and (B.6) as

min(ρ1(θ1), ρ1(θ2)) ≤ OP1, OP2 ≤ max((1 + Tρ)ρ(θ1), (1 + Tρ)ρ(θ2)), (B.7)

Since function arccos(·) is monotonically decreasing, we have

ρ1(θ1) < ρ1(θ2) =⇒ Tϕ(θ1) > Tϕ(θ2). (B.8)

This indicates that min(ρ1(θ1), ρ1(θ2)) corresponds to max(Tϕ(θ1), Tϕ(θ2)).

Since P1 and P2 are connected, 0 < P1P2 < Tc. Obviously, points O, P1 and P2

form a triangle (Fig. 6.5), where ∠P1OP2 is actually ϕ2. Let r1 = min(ρ1(θ1), ρ1(θ2)),

then with (B.8), we obtain

arccos
2r2

1 − T 2
c

2r2
1

= max(Tϕ(θ1), Tϕ(θ2))

= Tϕ. (B.9)

By Lemma A.3,

∠P1OP2 = |θ2 − θ1| < arccos
2r2

1 − T 2
c

2r2
1

= Tϕ. (B.10)

(2) Suppose two points P1 and P2 are connected, then |θ2 − θ1| < Tϕ. This is

contradictory to the condition. Therefore the points P1 and P2 are not connected.

�
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Lemma B.2. Suppose data set Ω is an intra-connected inlier subset of ellipse

C(
→
α). Let ϕi be the incremental angles of sorted polar angles θi. Let υi be the arc

of ellipse C(
→
α) subtending the angle ϕi in a counterclockwise direction from polar

angle θi−1 to θi.

(1) All edge points are the endpoints of arcs υi, i = 1, · · · , n.

(2)

ϕi > 0, (B.11)

n
∑

i=1

ϕi = 2π. (B.12)

(3) The collection of elliptic arcs υi, i = 1, · · · , n, is a partition of the detected

ellipse.

Proof. The relationship among the polar angles θi of the edge points, incremental

angles ϕi and the subtended angle φ(Ω) by the detected ellipse is illustrated in

Fig. B.1.

(1) Suppose there is a point with polar angle θk that is not an endpoint of arc

υi. Assume it is located within the neighborhood of arc υi, i 6= 1, which subtends

the incremental angle ϕi = θi − θi−1. Therefore the polar angle θk is in the interval

(θi−1, θi), i.e., θi−1 < θk < θi. This is contradictory to Eq. (6.49), in which all θi

are sorted in increasing order.

If the point with polar angle θk is located within the neighborhood of arc υ1

in a counterclockwise direction from polar angle θ0 to θ1, then the polar angle θk

is actually in the interval (θn, 2π)
⋃

[0, θ1), i.e., θk < θ1 or θk > θn. This is

contradictory to Eq. (6.49), in which θ1 = min θi and θn = max θi.
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Hence all edge points with polar angle θi are endpoints of arc υi subtending to

incremental angle ϕi.

(2)

θi > θi−1 =⇒ ϕi = θi − θi−1 > 0, i = 2, · · · , n, (B.13)

θn < 2π =⇒ θ0 = θn − 2π < 0 =⇒ ϕ1 = θ1 − θ0 > 0, (B.14)

n
∑

i=1

ϕi =
n

∑

i=1

(θi − θi−1) = θn − θ0 = 2π. (B.15)

(3) It is easy to see that all the arcs υi subtending the angles ϕi do not overlap

with each other because ϕi = θi − θi−1 and 0 ≤ θi < θj < 2π for i < j. By

Eq. (B.12), the collection of arcs υi is obviously a partition of ellipse C(
→
α). �

With Lemmas B.1 and B.2, we can now present the proof of Theorem 6.1.

Proof of Theorem 6.1. Let Z(θi) denote the subset of edge points pk with the

polar angle θi, i.e., Z(θi) = {pk|θ(pk) = θi}, because there may be more than one

edge data having the same polar angle.

(1) Suppose there are two incremental angles, ϕi and ϕj, that are larger than Tϕ,

i.e., ϕi = θi−θi−1 > max(Tϕ(θi−1), Tϕ(θi)) and ϕj = θj−θj−1 > max(Tϕ(θj−1), Tϕ(θj)).

By Lemma B.1, we have the conclusion that there is no point in Z(θi) that is di-

rectly connected to points in Z(θi−1). By the same reasoning, there is no point in

Z(θj) that is directly connected to points in Z(θj−1). Without loss of generality,

we assume that

0 < θi−1 < θi < θj−1 < θj. (B.16)

Let Ω1 = {pk|θ(pk) ≤ θi−1 or θ(pk) ≥ θj} and Ω2 = {pk|θi ≤ θ(pk) ≤ θj−1}.

Obviously, Ω1 and Ω2 are not connected because there is no connection path from
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Ω1 to Ω2 through Z(θi−1) to Z(θi) or Z(θj) to Z(θj−1). Hence Ω = Ω1 ∪ Ω2 is

not an intra-connected subset. This is contradictory to the condition that Ω is

an intra-connected inlier subset of circle C(
→
α). Therefore, there is at most one

incremental angle, ϕk, such that ϕk > max(Tϕ(θk−1), Tϕ(θk)).

If the arc υ(Ω) is actually the complete ellipse, then there are no endpoints in

this arc. If the arc υ(Ω) is not a closed circle, some of its endpoints may be like A

and C in Fig. 6.3(a). All of points directly connected to them have smaller polar

angle. Other edge points may be like B and D in Fig. 6.3(a). All of point directly

connected to them have larger polar angles.

By Lemma B.2, the collection of elliptic arcs υi, i = 1, · · · , n, is a partition

of the detected ellipse. If the arc υ(Ω) is open, there is an arc υk subtending ϕk,

whose endpoints, Z(θk−1) and Z(θk), are endpoints of υ(Ω). The arc υk subtending

the angle ϕk does not belong to the arc υ(Ω) (Fig. B.1).

All other arcs belong to the arc υ(Ω), i.e. υi ⊂ υ(Ω) for i 6= k. Furthermore,

there is at least a pair of endpoints from two endpoint sets of those arcs that are

directly connected, i.e.

min
p∈Z(θi−1), p

′
∈Z(θi)

d(p, p
′

) < Tc, for i 6= k. (B.17)

By Lemma B.1, inequality (B.17) indicates that 0 ≤ ϕi ≤ max(Tϕ(θi−1), Tϕ(θi)),

for i 6= k.

If there is one and only one incremental angle ϕk such that ϕk > max(Tϕ(θk−1), Tϕ(θk)),

by Lemma B.1, points from Z(θk−1) and Z(θk) are not directly connected. Obvi-

ously points of Z(θk−1) and Z(θk), Pk−1 and Pk, are endpoints of υ(Ω), which is

illustrated in Fig. B.1.
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The arc υ(Ω) consists of all arcs subtending incremental angles except υk, i.e.,

υ(Ω) =
⋃

i6=k

υi. (B.18)

Therefore the angle subtended by the arc υ(Ω) shown in Fig. B.1 is

φ(
→
α,Ω) =

∑

i6=k

ϕi = 2π − ϕk. (B.19)

(2) If all incremental angles ϕi are less than max(Tϕ(θi−1), Tϕ(θi)), there are

two possibilities.

The first possibility is that the arc υ(Ω) is a closed elliptic arc. There are no

endpoints in υ(Ω). Therefore the angle subtended by υ(Ω) is

φ(
→
α,Ω) = 2π > 2π − max(Tϕ(θk)). (B.20)

The second possibility is that the arc υk, whose end points are endpoints of

υ(Ω), subtends an angle ϕk ≤ max(Tϕ(θk−1), Tϕ(θk)). Hence, the angle subtended

by the arc υ(Ω) is

φ(
→
α,Ω) =

∑

i6=k

ϕi = 2π − ϕk ≥ 2π − max(Tϕ(θi)). (B.21)

�
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