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SUMMARY  

 

This thesis presents an intelligent protocol, Genetic Algorithm Transport Protocol 

(GATP) based on Genetic Algorithms (GAs), which evolve and adapt to the network 

environment to achieve a best effort user-configurable Quality of Service (QoS). 

Surveys on current competitor’s work on protocol engineering for configurability, 

adaptability, and QoS networking are done. However, the greatest feature of GATP is 

the amalgamation of all the features of configurability, adaptability and best effort QoS 

orientation combined together. Work also encompasses the study on how low-level 

packet flow control can similarly achieve best effort QoS. The networking 

environment is modeled as an evolutionary playground for data packets, which evolve 

using a fitness level of QoS achievement. The different QoS criteria in jitter, error rate, 

throughput and round trip time provided multiple objectives from GATP. Different 

fitness functions of weighted, single objectives, and finally multi-objectives are 

applied to understand the network problem. Experiments provide performance analysis 

of GAs in an actual network environment. The solutions obtained from the different 

fitness functions, exemplifies the dynamic problem area of networking, where best 

solutions for QoS are changing according to network environment. Experiments also 

show how GATP is able to achieve best effort QoS compared with Transmission 

Control Protocol (TCP) and User Datagram Protocol (UDP). Although, GATP may 

lack the efficiency in code compared to TCP and UDP, it possesses potential through 

virtues of its sensitivity to network environment and fast solution. The nature of 

networking on the Internet is dynamic and even unpredictable at times and will be 

better served by such a protocol in GATP. This paper surveys the possible techniques 

used in Multi-Objective Genetic Algorithm (MOGA) to solve a similar problem in 
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dynamic landscaping. Using such a technique, GATP can likewise enhance the 

networking performance, to provide solution to this dynamic landscaping cum multiple 

QoS problem area. An experiment to show the possible benefit of such a measure is 

studied. A controlled network experiment is also done to demonstrate the effectiveness 

of GATP to restore QoS in a controlled changing landscape. An additional study of the 

overheads of GATP is done. This includes various Automatic Repeat Requests (ARQs) 

Algorithms, which are modified for GATP usage. The efficiency of each ARQ 

incorporated into GATP, is computed and discussed. This thesis also shows that using 

less than maximum packetization feature in packet size, it allows GATP to achieve 

better overall QoS. A greater understanding into the possibility of deploying such a 

protocol on varying scales is achieved. 
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Chapter 1 

Introduction 

1.1 Open Protocol 

This thesis proposes an open protocol, which as suggested by the word “open”, a 

willingness to accept new ideas. In this case, a networking protocol is proposed to 

allow feedback on the performance of various protocol configurations and to use 

genetic algorithms to produce new configurations. This protocol serves 3 purposes 

being quality of service, configurability and adaptability which will be discussed in 

this section. 

  

1.2 Quality of Service  

Through greater applications of continuous media (CM) application, there is a demand 

for meeting QoS requirements instead of simply delivering data of the highest quality. 

QoS assures that data not just transmitted but to also conforms to a certain standard of 

networking required for different applications as discussed in [1-2]. QoS is of utmost 

importance without which, the applications are useless. Two main approaches by the 

IETF are through integrated services (IntServ) [3-4] with the resource reservation 

protocol (RSVP) and the differentiated services (DiffServ) [5-7]. Resource reservation 

and prioritisation are the two main methods of QoS assurances.  

 

Resource reservation and prioritisation are the two main methods of QoS assurances 

using monitoring on the server and appropriate reactive or pre-emptive measures. 

Their approach locks up resources and requires changes to routers and networks. A 

minimum invasion of current systems to provide easily deployable multiple QoS needs 
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to be explored. Best effort protocols like UDP and TCP monopolise the resources at 

any given opportunity. A low QoS requirement should not aim to get the best that the 

network can offer. On the contrary, it should only get what it needs, such that the other 

systems may have a better resource availability. For a real time streaming system with 

low expectation of voice data integrity, a decrease in voice data would offer a good 

compromise for a reasonable QoS. Perhaps by modification of certain packetization 

characteristics or transmission trait, a better QoS is achieved in a congested 

environment.  

 

An open networking environment presents constant changes and unpredictable 

situations, contrary to a closed computing environment with unique solutions [8]. 

Internet traffic is bursty and random, therefore networking should ideally explore a 

larger solution space and provide intelligent solutions to scale with this environment. 

Maintenance and achievement of QoS in such an open environment, are important for 

networking to service applications successfully. This is the greatest challenge for this 

thesis. 

 

1.3 Configurable and Adaptable Networking Protocol  

Protocol configurability is the ability to customise a different set of working protocols 

while protocol adaptability is the ability of a protocol to respond effectively to 

changes. 

 
1.3.1 Configurability 

Currently, data communication by TCP/IP over the Internet is a default for general 

uses. Protocols like TCP/IP, UDP and RTP prevent users from specifying and 

receiving the exact quality of service it requires of during networking. A non-
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discriminated best effort in error-free throughput approach in TCP is an inflexible 

solution to users. Network video streaming, file download and telephony all require 

different QoS. For example, high data integrity is important in file transfer but 

telephony requires short round trip time. MPEG video also has different data rates, 

where a much higher data rate is incurred in fast action scenes and vice versa. As new 

applications may require different QoS at different stages of networking, specification 

of QoS should be on user end rather than protocol, for maximum relevance in ability of 

protocol to satisfy users’ purpose in networking. 

 

1.3.2 Adaptability 
 
Network environment is not always static and bandwidth may not be consistent or 

predictable. A previous set of protocols may not be relevant in a different environment, 

and therefore protocol adaptation to the environment should be actively pursued to 

ensure that QoS is adhered to and the purpose of networking is achieved. TCP/IP 

currently avoids congestion with windowing technique, slow start algorithm and MTU 

discovery. However, TCP only ensures maximum error-free throughput in networking, 

while other aspects of QoS in jitter and round trip delay are neglected. In addition, 

TCP could only change the transmission window for throughput manipulation of 

networking as an adaptation method. This is a limited measure as opposed to GATP’s 

method of manipulating multiple packet parameters. Window size in TCP is change 

stepwise to discover the best throughput whereas GATP uses GA to derive and test for 

the best solutions. This thesis offers a finer grained solution in customised QoS suite of 

round trip time, jitter, error rate and throughput. The performance feedback from 

multiple QoS criteria, allows networking to adapt and achieve satisfaction of multiple 

QoS in open environment, by making a greater effort through changes in finer grains 
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of protocol in data integrity, retries limit, packet size and interpacket length. These 

changes at the low packet levels allow changes in all the QoS criteria, not just the 

throughput and error rate. 

 

From the above sections 1.3.1 and 1.3.2, TCP’s approach to networking was contrasted 

to GATP. The main purpose of TCP was mentioned to be networking with the best-

effort reasonable throughput with full sequenced data integrity. This may be adequate 

for some applications like web browsing, but for applications with greater need for 

multiple QoS like video conferencing, more can be done. By adopting the approach of 

GATP, multiple QoS may be achieved better. The finer grain approach of GATP also 

allows a greater change to be exacted by the sender to control the results of 

networking. 

 

The paper will first discuss the related research by others on improve the networking 

protocol through configurability or adaptability. Subsequently, the design goals and 

implementation details of Genetic Algorithm Transport Protocol (GATP) will be 

discussed. Treating the network domain as a problem area for GA, the solution 

methodology of using weighted fitness, single fitness and finally multi objectiveness 

shall explore. Experiments conducted using various schemes provide a very effective 

means of studying the workings of genetic algorithm in this specific problem domain 

as well as the effectiveness of GATP. This also answers how similar problem spaces 

with dynamic solutions and good overall population fitness can be tackled. 
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1.4 Networking landscape as Evolutionary Background 

The playground of genetic evolution is found naturally in all habitats and biological 

systems. The processes of selection, mutation, crossover and survival all exist to find 

the best-fitted individuals for the systems. Computer networking where data packets 

are sent across the physical network can be an evolutionary playground. Data packets 

are individuals or genes bearing individual traits like packet parameters, with a 

survival need for QoS achievement. Individuals compete in the network for resources. 

In TCP/IP flow control, the windowing technique changes the window size of 

transmission, while maintaining a maximal reasonable throughput and yet prevent 

buffer overflow. However, the adaptation assumes a maximal QoS criterion of only 

error rate and throughput, which may not necessarily be the user’s choice. On the 

contrary, GATP evolves to all aspects of QoS according to user’s QoS specification. 

Benefits of evolving to user’s QoS specification was discussed in section 1.3.1. Buffer 

overflow is also discouraged through poor QoS achievement of packets with larger 

throughput. 

 

1.5 Dynamic Landscaping in Networking  

GATP was designed and implemented for the purpose of achieving adaptability, 

configurability and QoS satisfaction. However, GATP is proposed to solve a problem 

that’s changing dynamically. In an actual networking environment [8] there are 

constant changes and unpredictable situations, quite contrary to a close computing 

environment with unique solutions. This is a challenge to networking to provide a 

greater dynamic solution space for scaling this environment intelligently. However, all 

these must take place with QoS achievement as a primary goal of solution. This is the 

greatest challenge for GATP. The Internet is not only dynamic, it also lacks real time 
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predictability. The performance of routers, switches, hubs and Internet traffic may be 

random, bursty or fluctuating.  

 

GATP uses the NSGA techniques of MOGA to solve the multiple objectives in QoS 

for networking. However, the techniques in MOGA were traditionally applied to static 

solution search, and may not be so effective in a dynamic landscaping environment. 

Greffenstein in [2] and Mark in [3-4] answered these issues of dynamic landscaping in 

GA. Using the shifting balance technique of dynamic landscaping, combined with the 

NSGA MOGA techniques, GATP was able to solve multi objectives problems in a 

dynamic Internet environment. The NSGA technique was shown to be more effective 

in GATP by using an elitist selection scheme instead of a tournament scheme, while 

the subcolony in the shifting balance technique produced a better result when more 

genes are different from the main colony. These results will be elaborated in 

subsequent sections.  

 

GATP will contribute to the area of networking protocol, through the usage of the 

abovementioned techniques to provide a multiple objectives as well as a greater 

effectiveness in reacting to dynamic changes in networking environment. GATP taps 

into a large resource of genes, and searches for a heuristic and fast solution. However, 

a traditional protocol like TCP avoids congestion by the slow and progressive 

windowing technique. This is a stepwise reaction that attempts to slow down 

throughput in a stepwise fashion, and may therefore be less efficient in a dynamic 

changing landscape.  
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This report will confirm the nature of networking and the capability of GATP to return 

the system to QoS satisfaction in the event of dynamic changes. In addition, an 

overhead study of this protocol will be studied for possible scalability. 
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Chapter 2  

 
Related Work 
 
 
GATP is a protocol that is easy to implement and deploy with configuration and 

evolvability intelligence. Similar works on protocol configuration have been done by 

others in [11], [12], [13], [14], [15], [16], [17], [18] with limited adaptability and 

insufficient QoS orientation. The evolvability of GATP with intelligence from genetic 

algorithm provides a multiple QoS objectives orientation. In addition, Chapter 5 will 

show the performance of traditional weighted GA applied to a networking protocol. 

More advanced GA techniques employed will be discussed in Chapter 6. Some 

existing work on configurable and adaptive protocol will first be discussed in this 

chapter. 

 

2.1 Self Modifying Protocol  

Firstly, Guan & Jiang in [9-10] provides Self Modifying Protocol (SMP), which is an 

initial design of the engine for evolution of transport protocols. The simulation results 

are favorable and explore the possibility of GA to solve networking issues. However, 

implementation details are insufficient. This report aims to provide solutions to actual 

design and implementation issues, which we shall explore in an actual network 

environment. GATP has a focus in three main areas of adaptability, configurability and 

QoS orientation. The amalgamation of all three issues motivated the design and 

development of GATP.  
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GATP needs to harness a robust protocol to carry its packets and yet provide the full 

flexibility in configuration. IP is the best candidate due to its backward and upward 

compatibility from Asynchronous Transfer Mode (ATM) to Wavelength Division 

Multiplexing WDM). Full flexibility in sending customized packets is also possible. 

Redesigning of IP to take on the entire transport mechanism is also feasible. However, 

GATP runs on IP in this report. Even after GATP is built on IP, it runs alongside all 

existing technologies, and can be upgraded to optical networks, and other newer 

technologies. The overheads in terms of header size will be discussed in Chapter 9. 

 

GATP is modeled into two specialized engines; transport and intelligence. These two 

engines will provide a framework to achieve configured protocol as well as adaptation 

intelligence. Its essential to have two separate and yet integrated engines for a full 

realization of the three motivations. This is based on the usage of object-oriented 

programming, to allow instantiation of networking protocol. The configurability of 

protocol is intact, as the full suite of transport mechanism is made available. The 

adaptability is strong, since the transport engine will compute the genetic evolution of 

the next generation protocol. This intelligence is running based on a robust genetic 

algorithm engine not limited to fixed congestion avoidance strategies. This differs 

from conventional protocols that see a tight integration of intelligence and 

packetization activities, like TCP, UDP and IP. Changes in conventional IP need to be 

made to allow for full IP control such that GA can exercise its intelligence. 
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GATP has innovated strongly in terms of transport engine intelligence. Firstly, is the 

application domain innovation, which sees dynamic GA issues being transposed to the 

networking domain. The issue of appropriate population size, and degree of mutation, 

which is although not new to dynamic GA, is an innovation in the networking domain. 

Chapter 9 will show the cost analysis that reveals a resulting QoS satisfaction in GATP 

using less than efficient packet size.  

 

2.2 Programming Language Constructs 

In [11], programming language constructs are used to support run time software 

adaptation. An adaptive middleware is used but with an explicit issue that the degree 

of adaptation could result in undesirable effects versus a greater survival in adverse 

conditions. A three component interface in Java was used with meta socket to create a 

dynamic observation and change effecting protocol. An achievement in transformation 

of components at run time to adapt to different dimension was made. Expert 

knowledge was use for the intelligence to adapt by employing forward error correction 

or noise detection algorithm. Java is used which may be rather sluggish and slow 

especially in events of rapid and frequent adaptations. Intelligence in adaptation is also 

limited by expert knowledge. The meta socket used makes the implementation less 

portable. 

 

GATP however offers a solution based on existing IP using a conventional socket and 

C programming. Its immense portability in Operating systems and ease of 

implementation is extremely desirable. The efficiency of the C program is beneficial 

for rapid and frequent adaptations. Using intelligence from GA, a fast optimization can 

be achieved with little or no expert knowledge. Such intelligence is extremely suited 
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for dynamic environments, which may require a solution outside of implanted existing 

expert knowledge. 

 

The work on GATP also demonstrates clearly, the best performance comes from 

different protocol characteristic. Using QoS achievement as a basis of protocol 

adaptation allows a high percentage of QoS achievement. This approach vastly differs 

from a best effort performance. It offers a self-restrained usage of networks to only use 

as much resources as possible to achieve its targeted QoS.  

 

2.3 DROPS 

DROPS [12] use a configurable protocol that persists during runtime for adaptability. 

Benefits of adaptability to a changing network environment were mentioned in the 

paper. Persistent configurability and adaptability was a key issue in their work. Their 

work was on the Operating System (OS) and differed from GATP, that uses socket 

programming. Many intelligent schemes were suggested like lookup tables, Boolean 

logic, and Fuzzy logic. But further study into intelligence was not provided. 

 

2.4 Configurable Transport Protocol 

Configurable Transport Protocol (CTP) in [13], is a user configurable protocol, which 

gives users the flexibility of building up a protocol in x-kernel process level. 

Performance efforts are limited to best effort or simply reserving resources. CTP 

doesn’t discuss much on the adaptation ability. 

 

The limitations of CTP is over-reliance on the x-kernel push-pop for interacting with 

upper levels as well a need for modification of socket API to support the transport 
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properties is considerable. Interoperability is low as custom headers are required. 

Intelligence is also very much limited. 

 

2.5 Adaptive Software 

Adaptive software in [14], provides an adaptation framework on Cactus [13], [15] and 

[16]. Run time adaptation in [14] is achieved in 3 phases of change detection, 

agreement and adaptive action. A global system state is concluded and a consensus 

reached on an adaptive action. Their approach uses Component Adaptor Module 

(CAM) that calculates the fitness of the different algorithms and switches to the 

algorithm that has the best fitness. Their work focused on the gracefulness of 

adaptation. [14] is actually a reactive solution such that an event will trigger adaptation 

through theoretical calculations. The best-fit function for determining the best protocol 

for adaptation could be difficult. GATP actually evolves the protocol and test for its 

actual fitness using an evolutionary process that’s based on fitness of each gene. GATP 

uses an experimental fitness evolutionary method where practical solutions could 

remove expert or unpredicted judgment errors. 
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2.6 Other Protocols 

Ensemble [20] may provide a framework for new protocol stacks but there is a 

disadvantage of a runtime disengagement of services for the new protocol to take 

effect.  

 

Fuzzy control [15] was used for adaptation on the application layer. A hybrid 

adaptation was used where linear behavior was solved with Task Control and non-

linear problems were solved with Fuzzy control. Application-specific choices can be 

used in Fuzzy control with a rule base.   

 

The systems discussed lack intelligence in adaptability. Heuristic knowledge is 

required and at best a complex fuzzy knowledge [15] is employed. Evolving protocol 

is a possible candidate to offer the intelligent adaptation required. 

 

The evolution of protocol engineering from static protocol to a runtime configurable 

and adaptive protocol progresses to the next stage in GATP. The full suite of 

intelligent adaptability, run time configurability, and QoS orientation makes GATP the 

next evolution of protocol. 

 

2.7 Dynamic Landscaping in Genetic Algorithms 

In Genetic Algorithms (GAs), dynamic landscape problems take on different models 

and require different measures. However, solving stationary problems in GA has 

always been the norm. Lately GA has been applied to solving dynamic landscape 

problems. [24-29]  
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Grefenstette in [25] discussed several mutation schemes and their respective 

performances in varying dynamic landscapes. Models of Evolvability are Fixed 

Mutation(FM), Genetic Mutation(GM), Fixed Hypermutation(FH), and Genetic 

Hypermutation(GH). In FM, all individuals have a fixed random probability of bits 

changed. GM however, puts the mutation rate under genetic control. The FH mandates 

a fixed fraction of population for random mutation while the remaining population 

undergoes baseline mutation or FM. The GH model has hypermutation rate under 

genetics control, where individual will either hypermutate or baseline mutate. 

Landscapes are primarily 2 types; Gradual and Abrupt. The experiments conducted by 

Greffenstette found that Fixed Hypermutation Strategies perform well in gradual 

changing landscape. GH Strategies perform well in both landscapes. Controlling of 

hypermutation rate genetically, allows GA to climb well even after abrupt change and 

as hypermutation rate decreases in stable landscape. 

 

Mark Wineberg & Franz Oppacher proposed the technique Shifting Balance Genetic 

Algorithm (SBGA) in [26-27] as strategies to outperform traditional GA in difficult 

dynamic environment. Firstly, colonies are forced away from the core. Secondly, 

migrants enter core for integration and exploitation. Colonies are forced away from 

core using cluster analysis. Bi-Objectives are derived from following of landscape, and 

yet moving away from core. The Selection involves two populations using Objective 

fitness and distance from core. Mating restricted to within sub population is also 

enforced. Effective migration of colonies towards the best fitness is usually pioneered 

by diverse small colonies. Integration of Migrants is achieved by replacing current 

population with migrants and to enlarge population to cover migrants. This technique 

was shown to outperform traditional GA in dynamic environments. 
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Karez-Duleba in [22] presented the work on performance of the population using uni 

and bimodal fitness functions and and demonstrated that under certain conditions, the 

equilibrium of traits can be multi modal. 

 

HDEA [25] reinforced the work on using GA to solve non-stationary environment 

through the usage of specie adaptation, species memory and microevolution within 

species.  

 

GATP adopts the SBGA techniques to solve the dynamic landscaping problem in 

networking. This problem is also a multi-objectives problem, such that GATP shall 

combine the techniques of both multi-objectives GA and dynamic landscaping GA. 

This combinational approach is used in a networking protocol to allow a fast 

adaptation of the protocol to fast changing networking conditions. Traditional protocol 

like TCP uses a slow and cautious stepwise discovery of appropriated throughput, and 

its focus on multiple QoS apart from throughput, is weak. Work on configurable and 

adaptive network protocols may deliver in terms of configuration and adaptability. 

However, the solution of GATP is one of multiple QoS and the use of heuristic 

intelligence in GA for adaptation to a dynamic landscaping network.    
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Chapter 3  

 
Genetic Algorithm Transport Protocol (GATP) 
 
GATP is proposed as an evolutionary transport protocol that will adapt to the network 

environment using the intelligence from genetic algorithms (GAs). This protocol 

allows a customized packetization, data integrity, sequencing, and QoS specification 

even at run time. The evolvable characteristics include packet size, inter-packet length, 

throughput and retries limit. The number of evolvable parameters can be more, but 

only these few are used here as a prototype. However, GATP can only achieve best 

effort QoS according to the fitness function used. Best-effort QoS is the utilization of 

available resources to provide a QoS as close as possible to the predefined  QoS.  

 

Optimizing a network that may have different reasons for data loss other than 

congestion could be found in a general optimization algorithm like Genetic algorithm. 

These will allow for seamless transport across different media with different reasons 

for data loss. Possibly network routers could be smart enough to implement heuristic 

weightages into the algorithm as transition into a different medium occurs. 

 

Intelligence is implemented through genetic algorithm.  Fitness level combined with 

heuristic knowledge as well as pure optimization methodology enables the transport 

engine to determine the best configuration for the current networking needs. This 

ensures that heuristic knowledge that may provide solutions are complemented by the 

optimization of genetic algorithm. The fitness level weightage would most likely be 

influenced by heuristic knowledge.  
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3.1 Design Goals 
 
GATP aims to achieve a thorough QoS achievement through protocol reconfiguration 

according to fitness function. Genetic algorithms are used to provide adaptability and 

configurability. The protocol shall have a configurable transport mechanism for 

transportation of data and this shall be controlled by an intelligence embedded in the 

transport engine. The server and client model is used in this work for simplicity 

although it can be extended to peer-to-peer, where a networking entity can be both 

server and client. The client will execute the evolved protocol and upload data to the 

server that uses GAs for protocol evolution. Intermediate routers treat GATP packets 

as IP packets and thus require no special reconfiguration. 

 

1. The Transport Mechanism shall achieve configurability through controls in 

micro protocols shown below. 

 

a. Packetisation factor: Interpacket length, packet length, maximum retries 

limit, maximum round rime trips time, different data integrity. 

 

b. QoS values: Jitter, error rate, throughput and round time trips. 

 

2. The transport engine based on genetic algorithm shall adapt the transport 

mechanism to network environment through fitness level monitoring. 

Evolutionary process can be tracked and studied.  
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3.2 User Level Configurable Protocol 

User QoS requirements in jitter, round trip time, error rate and throughput are directed 

to the transport engine. Configuration is achieved by sending a packet with a preferred 

set of QoS values from the client to the server, using the header fields for specified 

throughput, specified round trip time, specified jitter, and specified error rate as shown 

in Section 3.3 Figure 3.3.2. Reconfiguration on server is achieved by sending a packet 

with configuration derived from GAs. Traditional protocols like TCP only evolve to 

best effort throughput and error rate and are unable to provide all rounded QoS 

satisfaction as opposed to GATP’s adaptability to network changes and QoS 

achievements. The configurable networking features in GATP are packet size, 

Interpacket length, and retries limit, which are discussed below. Details of exact 

configurations are discussed later in Section 4.3.1. 

 

3.2.1 Packet Size 

The protocol shall be able to send out datagrams of different sizes according to Genetic 

Algorithms. To minimize header size, two bits are chosen to represent each GA 

parameter which has 4 predefined levels. The maximum packet size is chosen to be 

1024 bytes which is a non-fragmented size for Ethernet networks shown later in Table 

9.2.1. The minimum size was set at a minimum of the GATP header and IP header. 

This will cover the 2 possible size limits of the GATP packets.    

 

3.2.2 Interpacket Length 

Inter-packet length is a major factor contributing to the value of jitter, and it can be 

controlled by GAs. A few predefined levels, represented by two bits in the header are 
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used for minimum overhead. The minimum time to send subsequent packets is 

immediate while the maximum is set at single-trip time. Timeout is set at twice the 

round trip time like TCP. 

 

3.2.3 Maximum Retries 

This will allow GATP to consider user’s specification for maximum attempts at 

resending packets. There are a few predefined levels, which are determined by 2 bits in 

the header. The transport protocol will ensure that the limit is not exceeded before 

retransmission. Other wise, the next sequence will be transmitted. 

 

3.2.4 Other Configurations    

The configurations are not restricted to only these few. In fact, more degree and 

variation of configurations can be used according to requirements and header size 

limit. For example, are number of acknowledgements, time-out time, and transmission 

window size.  Networking will benefit through higher security in successful 

transmission and faster transmission in environment of lesser congestion. Checksum 

ensures a level of integrity of the packet. Based on the error rate and integrity required 

by user, GA shall decide the types between 1’s complement, 2’s complement, Cyclic 

Redundancies Check (CRC), Fletcher 16 checksum or other choices. These simple 

CRCs are selected for ease of implementation. The support for different checksum 

types is to cater to different needs of data integrity. 
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3.3 Protocol Communication Overhead 

GATP uses information embedded in packet headers to execute different protocol 

configurations. The header structures will be explained first, followed by the different 

configurations. 

IP Header (20 Bytes) 
GATP Header (40 bytes) 
DATA (0 to 900 bytes) 

Figure 3.3.1: Header of Typical Packet for GATP 
 

Figure 3.3.1 above shows the total header structure of a GATP packet. The Internet 

Protocol (IP) header allows GATP packets to flow through the network like any other 

IP packets. Actual GATP header contains protocol statistic used by GATP and DATA 

is the actual user data transmission. The inter-packet length, packet length, retries limit 

contain protocol  

 

Checksum value (8 bytes) 
Request (1 byte) 
Sequence Number (4 bytes) 
Interpacket Length (1 bytes) 
Packet Length (1 byte) 
Maximum Retries Size (1 byte) 
Number of Retransmission (1 byte) 
Time (8 bytes) 
Specified Round Time Trip (1 byte) 
Specified Jitter (1 byte) 
Specified Error rate (1 byte) 
Specified Throughput (1 byte) 
Options (11 bytes) 

Figure 3.3.2: GATP Header 
 
Figure 3.3.2 above shows the format of the GATP header. These fields affect protocol 

configuration. Below are the different packet configurations embedded in the GATP 

header. These configurations are minimal, to ensure small overhead and yet adequate 

information for protocol execution. Reconfiguration of packet size, inter-packet delay, 

and retries limit are done based on GA evolution of the configuration for QoS 
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achievement. Request type is used to identify nature of transaction. A value of 1 will 

indicate a new request by client, while 2 means an acknowledgment reply and 3 means 

a useful data transmission. Sequence number allowed a control of ordering in 

transmissions. The inter-packet length, packet length, retries limit contain protocol 

configurations. Number of retransmission and time are useful statistics to be used by 

GA for computation of fitness. Specified values displayed the intended QoS of the 

packet. The options field in the header allow for future expansion of header data. For 

example, the bits for window control can be implemented in this optional header field. 

However, there is only implementation work based on stop and wait automatic 

acknowledgement request for simplicity. In Chapter 9 on studies of overhead of 

GATP, a further exploration of the efficiency of other types of automatic repeat 

request types is done. Processing of header field starts with the request field, where 1 

indicates a new request, 2 indicates a reply from the server and 3 indicates an 

download data packet. Firstly, the client will send a packet with request set to 1. Then 

the server will start by sending the first download packet to the client according to the 

QoS specified by the client. Replies packet from client will allow server to compute 

the new configurations using GAs. The semantics of the header will be discussed in 

section 4.3. 

 

Checksum value: The checksum value using the default checksum of Fletcher 16. 

Request: This contains the type of services below.  

  1: Request for new data stream 

  2: Acknowledgement of Packet reception at end point 

  3: Data packet  

Sequence number: Sequence of packet in the transmission stream 
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Interpacket Length: The intermittent time delay of the sending of packets 

Packet Length: Length of packet 

Maximum Retries Size: The maximum times that this particular packet can be resent. 

Number of Retransmission: The current number of attempts to send this packet 

Time: Time packet was sent 

Specified Round Time Trip: User specified round time trip in milliseconds 

Specified Jitter: User specified Jitter in milliseconds 

Specified Error Rate: User specified error rate 

Specified Throughput: User specified error rate in bit per seconds 

 

3.4 Intelligent Transport Engine 

Transport Engine manages the GAs to evolve the protocol to changing network 

environment and user needs. The GA engine used in Guan & Jiang [5] has been 

reconfigured for an actual implementation. Based on user specifications and packet 

performance encapsulated in the GATP header, the transport mechanism uses GAs to 

evolve subsequent transmission. A Genetic Algorithm based engine [5] is used by the 

transport mechanism. Firstly, the engine will initialize a population of random genes 

with different packet length, inter-packet length, and retries limit which will be passed 

to the transport mechanism for transmission. When acknowledgement packets for the 

population returns, computation of QoS is done.  Evolution occurs where the genes are 

ranked according to a specified fitness function. Mutation and crossover occurs to 

evolve a new population, for subsequent transmissions. 
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3.4.1 Fitness Level 

The basis of performance measure shall be a fitness function shown below [4]. This is 

a method in GA for combining multiple fitness objectives with its own relative 

importance. 

 
      

 
           
         

Fitness = W1 * Q1 + W2 * Q2                                     + 
   RTT Specified    Jitter Specified 
 W3 * Q3 + W4 * Q4
   Throughput_Specified    Error Rate_Specified 

where Q1 =RTT achieved-RTT Specified, 
Q2=Jitter Achieved-Jitter Specified, 
Q3= throughput achieved–Throughput Specified, 
Q4=Error Rate Achieved–Error Rate Specified. 

 
 
 
 
 
 
 
 

(3.4.1) 
 

 
Q1 to Q4 if negative, are set to zero to favor QoS achievement towards specified levels 

and not beyond so that a fitness better than the specified QoS does not gain any 

advantages compared to the specified QoS. Fitness level thus range from best value of 

zero and above. 

 

3.4.2 Jitter and Throughput 

Throughput is calculated as below: 

Throughput = (Packet Size/round trip time)*(1.0/sqrt(p_err))     (3.4.2) 

 

Probability of error (P_err) was taken to be the packet loss rate while packet size is the 

size of the packet used in GATP. The round time trip is the time taken for a packet to 

travel from the sender to the receiver and the acknowledgement back to the sender. 

Sliding window can be achieved by acknowledging a transmission window of packets. 

This Send and Wait implementation was chosen for simplicity. 
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The jitter computation follows Guan & Jiang [3] as below where Di,i-1 is the difference  

in arrival rate between the most recent packet and the previous packet.. 

Ji = Ji-1 + ( |Di-1,i| - Ji-1 )/16 = 15/16 * Ji-1 + 1/16 * |Di-1,i|         (3.4.3) 

 

Instead of the server controlling QoS degradation through preemption and remedy, the 

client can take on a more active role. Packetization and evolvable statistics can be 

conveyed to the client for appropriate data transmission. In this case, negotiation of 

client’s transmission to achieve the same QoS is done with a major load removed from 

the server. For example, a client will first request for a certain QoS configuration, and 

the server will send a packet to approve the request. When successful, the client will 

immediately download data from the server. Computation of the achievement of QoS 

is done on the server, which also uses GA to derive the next generation of packet 

configuration. This new configuration will be used to send data from the server to the 

client. 
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Chapter 4 

Implementation 

The GATP protocol is made up of two parts. One part is the transport mechanism to 

provide configurable data transmission. The other part is the transport engine that 

provides the intelligence and instructions to the transport mechanism. 

 

4.1 Transport Mechanism 

The implementation of the predefined levels in jitter, throughput, round-trip time, and 

error rate were set at 4. This was done for simplicity. Implementation was done on raw 

socket through the raw IP protocol for flexibility and control. Redesigning of IP for 

GATP is not necessary in this socket implementation as protocol execution is done by 

user-level programs. A connectionless approach was used without reservation of 

resources. Below in Figure 4.1.1 shows the pseudo code of the transport mechanism. 

The transport mechanism is a typical socket program with two concurrent processes; 

Send_data and Listener. The function Send_data sends out data according to the 

configurations given by transport engine, in terms of packet size, interpacket delay, 

and retries limit. A timer is used for interpacket delay countdown. Inter-packet delay is 

implemented by checking the timer to ensure that the delay is enforced between 

sending of consecutive packets. The function Listener, waits for incoming data, and 

forwards this data to another function called display for processing of incoming 

packets. Function display processes the data to ascertain the integrity of the packet and 

the request type. This information is passed to the transport engine for processing. 
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Figure 4.1.1 Pseudo Code of Transport Mechanism 

Pseudocode of Transport Mechanism 

//Create Socket 
if ((sockfd = socket(AF_INET, SOCK_RAW, proto->p_proto)) == -1) { 
perror("socket"); 
exit(1); 
} 
 
//SET THE HOST ADDRESS 
//  printf("sockfd after raw socket creation:%d", sockfd); 
my_addr.sin_family = AF_INET;         /* host byte order */ 
my_addr.sin_port = htons(MYPORT);     /* short, network byte order */ 
my_addr.sin_addr.s_addr = INADDR_ANY; /* automatically fill with my IP */ 
bzero(&(my_addr.sin_zero), 8);        /* zero the rest of the struct */ 
 
//BIND THE HOST ADDRESS TO THE SOCKET 
 
if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr)) == -1){ 
perror("bind"); 
exit(1); 
} 
 
//FORK LISTENING PROCESS 
fork(); 
listening(sockfd); 
 
//FORK SEND_DATA PROCESS TO SEND PACKETS 
fork() 
Send_data(sockfd, (struct sockaddr*)&myhost_addr, myhost_addr); 
 
Function Listener(int sockfd){ 
//CHECK FOR MESSAGES 
recvfrom(sockfd, buf, sizeof(buf),0, addr, &len); 
//if message arrives, send for processing 
If(buffer!=0) 
Display(buf, bytes, sockfd) 
} 
 
Function Send_Data(int sockfd, char ipaddr[14], int intersize, int pack_size, int retries_size, int 
request, int actual_retries){ 
//Check Timer and send packet 
if(timer is up){ 
//Format packet according to genes 
sendto(sockfd, &fullheader1, sizeof(fullheader1), 0, toclientadd, sizeof(struct sockaddr)); 
} 
} 
Function Display(void *buf, int bytes, int sockfd){ 
//Process packet 
Calculate checksum 
Check Request Type 
//Call transport engine for next evolution 
Ga(ipaddr, chkpacket.pack_info.inter_size, chkpacket.pack_info.pack_size, 
chkpacket.pack_info.retries_size, chkpacket.pack_info.actual_retries, rtt, Q1, Q2, Q3, Q4) 
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4.2 Transport Engine  

A GA based engine [5] shown below is used by the transport mechanism. Figure 4.1.2 

below shows the pseudo code of the transport engine. Firstly, the engine will initialize 

a population of random genes with different packet length, inter-packet length, and 

retries limit which will be passed to the transport mechanism for transmission. 

Acknowledgment packets contain information of transactions and are sent by the client 

to the server upon receiving a data packet. When acknowledgement packets for the 

population returns to the server, computation of QoS will be done. Round-trip time is 

derived using timestamp of packet, error rates are tabulated from the history of packet 

transmissions, while fitness, jitter and throughput are derived from above Equations 

3.4.1-3.4.3. The population round trip times, throughput, and fitness are obtained from 

the average values of all packets in the population.  Evolution occurs where the genes 

are ranked according to fitness function. Mutation and crossover occurs to evolve a 

new population, for subsequent transmissions. 
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Pseudo Code of Transport Engine 

GA(ipaddr, chkpacket.pack_info.inter_size, chkpacket.pack_info.pack_size, 

chkpacket.pack_info.retries_size, chkpacket.pack_info.actual_retries, rtt, Q1, Q2, Q3, Q4); 

 

//INITIALIZE A RANDOM POPULATION OF INDIVIDUALS 

init(); // create random genes 

for(sample1 to SampleN){ 

// whole population 

//evaluate fitness of gene samples 

calculatefit(gene);             } 

if(population completed){ // check that QoS results from the entire generation has arrived 

evolution(gene_pool); // evolution of fit genes to create a unique subcolony} 

} 

evolution(gene_pool){ 

Fitness-Rankin(gene_pool);// genes are ranked 

Mutate(gene_pool) // mutation between fit genes 

Crossover(gene_pool) //cross between fit genes 

Create-new-population// new evolved population 

} 
 

Figure 4.1.2 Pseudo Code of Transport Engine 

 

Actual transmission was conducted between two computers located in the Intranet. 

Both terminals used Linux. The server is a Pentium 4 1.2 GHz with 128 MB RAM 

while client is a Pentium 667MHz with 128 MB RAM. Transmission was done across 

the actual campus 100Mbps Ethernet LAN, to ensure that it is a typical LAN 

environment. Experiments to investigate the effects of GATP in an actual network 

environment can be studied.   
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This experiment aims to study the effects of GATP in an actual network environment. 

However, an optimum performance of GATP needs to be explored through the 

variation of the workings of the GATP. The parameters to be adjusted and studied are: 

sampling size, number of mutated genes used, and performance of GATP. Using the 

weighted fitness function discussed earlier, the round trip time and throughput will be 

assigned weights of 3 while Jitter and Error Rate has weights of 1. These experiments 

were conducted by allowing the user to specify the QoS requirements and subsequent 

transmission of 10, 000 to 20, 000 packets were monitored. 

 

4.3 Genetic Makeup 

The gene format used in packet features is presented below in Table 4.3.1. However, 

only the packet parameter chromosome will be embedded in the header and 

communicated across the network. The gene used in packet features are represented 

below in Table 4.3.1. The packet genotype of packet size, interpacket delay and 

number of maximum retries will be concatenated to form a single gene. For example, a 

genotype of 0 would be 000000 in binary, meaning a packet size of 64, zero 

interpacket delay and no retries are allowed. 

Table 4.3.1: Chromosome of GATP Packet 
Chromosome Packet Size Inter-packet Delay Retries Limit 

AABBCC AA BB CC 
 

4.3.1 Packet Level Parameters 

Shown below in Table 4.3.2 are the values of packet parameters for each genotype. 

Packet sizes range from 64 to 964 bytes so that a good spread of size is employed 

which are not too large to be fragmented by routers or terminals. Interpacket delay was 

also set to be less than 80 ms, to ensure throughput does not become too low. Number 

of retries was set to less than 4 to prevent excessive delay. 
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Table 4.3.2:  Packet Level Parameters 
Genotype Packet size/ 

bytes 
Interpacket 
Delay/ ms 

Number of 
Retries 

00 64 0 0 
01 364 1 1 
10 664 50 2 
11 964 80 3 

 
4.3.2 QoS Parameters 
 
Below in Table 4.3.3 is the chart of the predefined levels of QoS parameters. These 

few levels of possible QoS objectives are implemented for simplicity and convenience. 

For consistency in experiments, the specified RTT, Jitter, Error and throughput was set 

to genotype 10, 11, 11, 01. This set of specified QoS shall be used consistently in all 

experiments to ensure a fair comparison of performance, as they will all have the same 

QoS objectives. 

Table 4.3.3: QoS Parameters 

Genotype RTT/ ms Jitter/ ms Error Rate/ % Throughput/ 
Mbps 

00 5 1.5 0.25 0.8 
01 6 2 0.33 3.2 
10 7 2.5 0.5 6.4 
11 8 3 1 12 

 
 
 
4.3.3. Mutation and Crossover 
 
Although mutation rate used is 75%, it only applies to the genes made available for 

mutation. Crossover is based on 80% where 2-point crossover is used. Figure 4.3.1 

below shows the process of evolution. Firstly, 10 genes are randomly initialized. These 

genes are implemented and run on the network. The performance of the genes are 

derived and genes are ranked. In this example, the best 7 out of 10 genes according to 

fitness function will survive to the next population. The last 3 genes from mutation and 

crossover make up the remaining population. The process of sending data into the 

network and evolution continues. 
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5. Mutation 75%  
4. Cross Over 80% 

1. Implemented
 and ranked 

Gene1   
Gene2 
Gene3 
Gene4 
Gene5 
Gene6 
Gene7 

Gene8 
Gene9 
Gene10 

6. Insert 
New genes

3. Best 7 
survive 

Gene1  
Gene2 
Gene3 
Gene4 
Gene5 
Gene6 
Gene7 

Gene1  
Gene2 
Gene3 
Gene4 
Gene5 
Gene6 
Gene7 

2. Best Genes 
Chosen

Gene1  
Gene2 
Gene3 
Gene4 
Gene5 
Gene6 
Gene7 
Gene8 
Gene9 
Gene10

 
Figure 4.3.1: Process of Selection of Next Generation of Genes 

 
 

4.4 GATP Dynamic Landscape Strategies 

Simple strategy is adopted using SBGA [23] principles. A main colony is created for 

coexisting with a sub colony of possible migrants. Migrants are created from mutation 

and crossover of the fittest main colony. Migrants and random genes form the 

subcolony. This subcolony shall initiate shifting balance [24]. Randomness and 

differentiation from main colony is achieved in sub colony to present migrants to 

effectively track dynamic landscape changes. Shifting balance for four objectives of 

QoS are round trip time, jitter, throughput and error rate. Introducing reproduced 

diverse and random genes into the subcolony, the gene pool is diversified for multiple 

objectives balance shifting. Integration of migrants to the main colony shall be based 

on fitness levels. Studies on the diversity and population of the sub colony will be 

discussed later. 
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4.5 Stopping Criteria in GATP 

The stopping criterion as it is traditionally known in GAs, is a measurement of 

optimisation. However, for GATP to persistently adapt to the environment, there is no 

stopping of evolution. The determination of the stopping criteria is only for 

performance comparison. In Chou [22], several stopping criteria suggested were 

number of generations, computing time, and fitness convergence. Such an approach 

assumes a static environment and is unsuitable for GATP.  In the approach of Jiang in 

[23], the stopping criterion was used for fitness evaluation. If a cycle yielded a greater 

or lesser score than previously, the counter is decreased or increased respectively. 

Achieving a certain predefined value for the counter, signifies stabilisation. The fitness 

score is the best fitness of the generation and the predefined stability indication counter 

value is 3. This training of GA must be done sufficiently but not to produce an overly 

specialised solution. But in the case of GATP we use the attainment of counter value 

as an indication of the speed of GATP in solution finding. To prevent solutions from 

being trapped in a local minimum, or over specialisation of the solutions, the use of 

new mutated genes at every generation ensures that sufficient gene pool is available 

This can be taken as a gauge for GATP completing its evolution temporarily till 

another drastic network change occurs. 

 

For GATP, the stopping criteria can be taken as the instance that the counter reaches a 

predefined value. Subsequently, fitness can deteriorate when the network environment 

changes and GATP has to evolve again to achieve the stopping criteria. The 

determination of stopping criteria is when there are at least 6 genes ranked highest 7 in 

the same generation being repeatedly selected for the next 2 consecutive generations. 

This consecutive generation condition is used to ensure that if 6 genes do not produce 
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good fitted results, it will not survive to the next generations. This stopping criterion is 

used primarily in experiments as a guide to investigate the effects of sampling size and 

mutation rates in GATP. For example, if gene 1, 4, 6, 63, 23, 43 are seen in 

generations 4, 5, and 6, then generation 6 has met the stopping criteria. 

 

4.6 Congestion Avoidance Strategy in GATP. 

GATP employs a rate adjustment adaptation to the network environment. This protocol 

monitors the fitness of the packet transmission. The changing of transmission rates is 

achieved by using a different interpacket delay, packet size and maximum retries limit, 

with the fitness level as a monitor. This fitness will undergo a survival tournament 

where the best gene of the generations will be retained for subsequent generations. In 

order for new variants to be injected into the new generation, a crossing over and 

mutation process will occur to allow for new genes to participate. During congestion, 

the fitness of genes will change and the favored genes are those that perform well in 

the congestion and will be promoted and retained while poor genes will die. Likewise 

in a more free environment, the fitness changes accordingly and evolution will produce 

the best performers. 

 

Although GATP can be adapted with the fastest response to produce the fittest gene for 

the current network environment, this adaptability will produce a slower response in a 

less busy network environment. Since adaptability is introduced by increasing the 

search space through injection of new genes, this extra search space may be 

unnecessary when the network environment is less busy and less dynamic and 

solutions may be found faster.  Therefore, to overcome network congestion, suitable 

adaptability is suggested. This is done by ensuring that appropriate sub population size 
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of new genes are inserted into the subsequent generations to check if its a better 

solution. 
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Chapter 5  

Weighted Fitness Experiment 

This experiment will show the behavior of the transport protocol in a robust 

networking environment. The fitness computation in Equation 3.4.1 is used. Using a 

different number of reproduced genes and sampling sizes, the protocol performance is 

observed in different networking environments. Crossover and mutation used is as 

shown in Section 4.3.3. The traffic conditions for all subsequent experiments in this 

thesis are defined as follows. Heavy-traffic is defined as average traffic on networking 

being 90% of full load which is 90 Mbps.  Likewise, moderate traffic is 80% and light 

traffic is 50%. 

  

5.1 Number of genes employed in sub colony 

The experiments were done on the intranet using a gene pool of 10 and using the 

GATP features as described in section 4.3 above. The fitness function used is based on 

Equation 3.4.1. Weightings W1-W4 are chosen to be 3, 1, 3, 1 respectively. The main 

colony consists of genes which are retained for subsequent generations while sub 

colony consists of new genes that didn’t appear in the previous generation. The main 

colony when 7, has a sub colony of 3. This sub colony consists of reproduced genes. 

The sample size, which is the number of packets of the same genes sent into the 

network, is 10. Therefore each gene is sent out using 10 packets, making 1 generation 

of 10 genes being 100 packets. The effect of varying the number of new genes was 

studied. Figure 5.1.1 shows that the fastest speed was achieved in using only 1 new 

gene in a light network environment. The protocol is able to achieve the fastest speed 

of optimization when a very small number of genes are allowed to undergo mutation. 
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For a busy network environment as shown in the Figure 5.1.2, the greatest speed of 

optimization was towards a larger number of permissible mutant genes. 
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Figure 5.1.1: Number of Generations to Satisfy Stopping Criteria 
in a Light-Traffic Network Environment 
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Figure 5.1.2: Number of Generations to Satisfy Stopping Criteria in a 
Heavier-Traffic Network Environment 
 

 
 
5.2 Sampling Size 

The experiments were done on an intranet using a gene pool of 10 and using the GATP 

features as described in section 4.3 above. The fitness function used is based on 

weighted fitness function in Equation 3.4.1. Weighting W1-W4 are chosen to be 3, 1, 3, 

1 respectively. Thus if the main colony is 7, then the sub colony is 3. The experiments 

were conducted by sending each gene into the network using n packets. Therefore each 

generation uses 10n packets. The effect of varying the sampling sizes, n are studied in 
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the experiments below. Performance is done in terms of optimization speed. The 

environments were in both light and heavy network environment for better contrast. 
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Figure 5.2.1: Number of Generations to Satisfy Stopping Criteria in Varying 
Sampling Sizes in Light Network Environment  

 
 

Figure 5.2.1 above shows the performance of GATP in a relatively light network 

condition. The fastest speed is achieved by using a sampling size 10 where only 12 

generations is required to achieve optimisation. Only in a very congested environment 

can there be benefits in using sampling size smaller than 10 as shown in Figure 5.2.2 

below. Likewise, only in a very light congestion environment, benefits are seen in 

using a sampling size greater than 10. 

 

To better confirm the impact of sampling sizes, a finer calibration of the experiment 

was done and depicted in figures 5.2.2 and 5.2.3.  Figure 5.2.3 shows that in a very 

light networking environment, sampling size of 18 actually performed the best while 

figure 5.2.2 shows that in a heavy network environment a smaller sampling size of 10 
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or below yielded a better performance. Through a smaller sampling size, a greater 

reaction to the network environment is enabled and thus a better adaptability and hence 

subsequent optimization of GATP is achieved.  
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Figure 5.2.2: Number of Generations to Satisfy Stopping Criteria in Heavier -

Traffic Network Environment 
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Figure 5.2.3: Number of Generations to Satisfy Stopping Criteria in Lighter-

Traffic Network Environment 
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5.3 Study of Efficiency 
 
GATP will evolve the packet size according to the fitness and networking 

environment. However, the efficiency will be studied in this section and the QoS will 

be done in later sections. Figure 5.3.1 shows the graph of total data sent against the 

iterations of generations. Trial 1, 2 and 3 shows the experiments using sampling size of 

10, 20 and 30 respectively and a sub colony size of 3 with all other experiment 

parameters being similar to Section 5. Shown Below in Table 5.3.1, is the size of data 

sent at the respective generations of 325 and 556 for the 3 sampling sizes.  

 

It can be seen that trial 2 being of sampling size 20 is twice the sampling size of trial 1. 

Trial 2 achieved twice the data sent in trial 1. For trial 3 its is 3 times the sampling size 

of trial 1 and it achieved less than an exact multiple of 3 times the data sent in trial 1 

for generation 325. However, at generation 556, trial 3 shows a better performance 

then expected. However, for larger sampling size, there are relatively little benefits in 

terms of sending of data. The efficiency achieved from iterating large evolutionary 

generations for large sampling sizes is too much of an overhead. 

 

The conventional approach in most protocols employs the strategy of having a larger 

sampling size and therefore a greater efficiency. This may not be relevant in a 

evolvable protocol. As the protocol aims to adapt to a changing landscape, a small 

sampling size will be sufficient. In fact too large a sampling size removes much 

adaptability and sensitivity to the landscape. Thus GATP cannot adopt a strategy of 

aiming for the largest sampling size for efficiency. 
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Figure 5.3.1: Size of Data Sent against Generations 

 
 
 

Table 5.3.1: Analysis of Efficiency of Sampling Size in terms of Total Data Sent 

 
Trial1 

Total Data 
Trial2 Total 

Data 
Trial3 Total 

Data 
Trial 3 Efficiency 
Against Trial 1 

325 Generations 2.035M 4.07M 5.87M -3.8% 
556 Generations 3.5M 7.0M 10.6M +1% 

 
 

 
5.4 Fitness Phenomenon 
 
The experiments followed Section 5 using a sub colony size of 3 and sampling size of 

10. Other experiment criteria remained the same. Iterations in the experiment results 

refer to the results of each gene that was sent out, while generations, refer to the result 

of each generation consisting of all the genes in the same generation.  The actual 

fitness of each genes employed in GATP is shown below in Figure 5.4.1. The poor 

fitness is due to unsuitable poorly performing genes. It can be seen that GATP 
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maintains a best fitness of 0.8. Further explanation will be given in the subsequent 

section. 
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Figure 5.4.1: Weighted Fitness against Iterations 
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Figure 5.4.2: Weighted Fitness of Best Performer of Population against Iterations 
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5.5 Genotype Phenomenon 
 
Earlier, the fitness phenomenon was explored, and the fittest gene of each population 

achieved an average fitness of 0.8. However, Figure 5.5.1 below shows a diversity of 

genes exist in the population to support a discovery of the best genes in Figure 5.5.2. A 

best gene not necessarily similar in each population is derived through evolutions. 

GATP uses different genes to maintain good fitness of 0.8 for a dynamic networking 

environment. 
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Figure 5.5.1: Gene ID of All Genes Employed against Iteration Number 
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Figure 5.5.2: Gene ID of Best Performing Gene against Generation Number 
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5.6 QoS Satisfaction in Weighted Fitness Function 
 
Shown below in Table 5.6.1 are the actual QoS achieved from the experiments using 

the weighted fitness function in Equation 4.3.1. QoS specification followed section 

4.3.2. The subcolony size is 2, while sampling size is 10. The average results over 10 

iterations were used to compute the results. The population performance is the rate of 

successful achievement of specified QOS within the entire data transmission. The 

weighted fitness method actually achieved a reasonable satisfaction of QoS of at least 

above 55.7% for all 4 QoS measurements. 

 
Table 5.6.1: Performance of Weighted Fitness 

Performance  Error Rate/% Jitter/% Throughput/
% 

Round Trip 
Time/% 

Population Performance 55.7 92.1 87.5 88.7 
 
 

 

5.6.1 Non Persistent Best solution  

The observation in Section 5.6 has clearly shown that the previous best solution gene 

actually performs poorer than the entire population. Therefore, a best performer in any 

generation does not guarantee a best performance in subsequent generations. In fact, 

GATP has successfully achieved a best performer with a fitness level of 0.8 with the 

entire population achieving below 3.75. This could be a problem from attempting to 

solve 4 different objectives with a single fitness function.  A possible confirmation of 

the inappropriateness of the weighted function can be confirmed with GATP 

functioning on a fitness function based on a single objective in the next section. 
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5.7 Single Fitness Function 

Conflict of fitness function in multiple objectives is eliminated by experiments with 

only a single fitness objective. Experiments of weighted fitness and single fitness were 

iterated to allow for a good sampling distribution and objectivity. The experiment was 

conducted across the intranet with sample size of 10 and sub colony size of 3. The 

fitness function was a modification of Equation 3.4.1 to only contain the objective 

under study. The single throughput fitness chart of the best performer of each 

generation against the evolutionary generations in Figure 5.7.1 shows that good fitness 

can be achieved when best gene are found in the gene pool. At generation 19, when an 

extremely good solution gene was found, the fitness immediately drop to a fittest value 

of zero. The same result was obtained in experiments conducted based on other single 

objectives: Round trip time, jitter, and error rate shown in Figure 5.7.2. to 5.7.4.  

Finding solutions in multiple objectives is more difficult and explains for the poorer 

fitness. 

 

 

Figure 5.7.1: Single Fitness Function based on Throughput 
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Figure 5.7.2: Single Fitness Function based on Jitter 

 
 
 
 

 
Figure 5.7.3: Single Fitness Function based on Round Trip Time 
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Figure 5.7.4: Single Fitness Function based on Error Rate 
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5.7.1 Genotype Observation 

A great diversity of gene pool was available as shown below in Figure 5.7.5. However, 

from Figure 5.7.6, the best genotype employed actually changes according to the 

landscape changes, to achieve the best fitness. This further impresses the existence of a 

dynamic landscape that GA is called upon to climb even in the absence of multiple 

contending objectives. 
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Figure 5.7.5: All Genotype against Iteration Number 
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Figure 5.7.6: Best Gene ID against Generation Number 
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5.8 WAN vs. LAN 

The experiments for weighted fitness function were repeated on a Wide Area Network 

(WAN). The results are shown below in Table 5.8.1. QoS satisfaction in WAN was 

much poorer due to poorer efficiency in GATP. However, reasonable achievement in 

QoS was achieved.  

Table 5.8.1: Performance of WAN vs. LAN 

Performance  Error Rate/% Jitter/% Throughput
/% 

Round Trip 
Time/% 

LAN Performance 55.7 92.1 87.5 88.7 
WAN Performance 50.2 63.0 79.1 60.1 
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Chapter 6  

Multi Objective Genetic Algorithm 

 

With 4 contending fitness objectives, Multi-objective genetic algorithm (MOGA) is 

proposed as a more appropriate transport engine for GATP. The algorithm used will be 

modeled after Dias [30] and Deb [31]. 

 

6.1 Assigning fitness level to the genes 

The fitness assignment is similar to NSGA [30, 31]. There are four performance 

objectives. The four fitness computations were shown earlier in Section 3 for jitter, 

throughput, round trip time and error rate. A fitness rank will be given for each 

objective according to the actual objective performance. The most undominated gene 

in a single objective will be assigned the fittest rank followed by the next most 

undominated gene. This ranking starts from one and increases towards less fit genes. 

However, genes with equal fitness will have the same ranking. The final ranking is a 

summation of the four fitness ranking derived from the different objectives. 

 

6.2 Tournament 

This is primarily the tournament stage. A random assignment is done to assign 3 

different groups with extra care taken to prevent any particular order of the groups. 10 

genes will fall into 3 groups with members of 4, 3, 3 in each group. In the event of 

similar fitness ranking for all competitions, a matter of chance will decide the 

competitors’ fate. A complete tournament is held within each group and a distinctive 

ranking is achieved. The top 2 players of each group will survive to the next round of 
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competition-semifinals, while the rest of the losers will fight it out to produce a 

distinctive list of winners also classified as winnersC. The top player will fight the 

second best winner from another group. The winner shall proceed to the final stage 

while the losers form winnersB will fight it out again. A complete tournament is held 

within winnersA, winnersB and winnersC to produce their own distinctive winners. 

Then the 3 groups shall form the final winners list. The aim of this tournament is to 

produce a supreme winner and to eliminate individuals sitting on the same fitness 

front.  

 

6.3 Elitist method with complete competition 

This is an alternative to the tournament process shown in section 6.2. In fact, this is the 

process used by the weighted fitness function. The objective is to have a death match 

of all the individuals in the population. By allowing every individual to have competed 

with all others in the population, the true ability of the individual is obtained and 

ranked. Individuals sitting on the same front will no longer destroy each other by a 

matter of chance.  

 

6.4 Crossover and mutation 

Crossing over is done using two point and one point crossover. Flipping the bits of the 

genes does mutation. A random selection of the new genes will be done. 

 

6.5 Experiment Results 

Experiments were conducted by iterating all experiments with different processes 

changed or omitted for a fair and accurate analysis. The network environment was that 

of an Intranet LAN with moderate congestion defined here as having a TCP flow rate 
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of 40 Mbps between the 2 machines being tested.  Below in Figures 6.5.1 and 6.5.2, 

are results of using MOGA with tournament. The best performing gene in Figure 6.5.2 

persisted shortly, due to rapidly changing network environment, even though a vast 

diversity of genes were available in Figure 6.5.1.  
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Figure 6.5.1: Graph of All Genotype employed against Iteration Number 
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Figure 6.5.2: Graph of Top Performing Genotype against Generation Number 
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6.6 QoS Satisfaction in MOGA 
 
The experiments were iterated between the different schemes on the Intranet LAN, 

with sample sizes of ten, sub colony size of three, and all other experiment parameters 

being the same as in Section 5. The average of ten results was tabulated in Table 6.6.1. 

The Elitist was shown to produce better results than tournament. 

 

Table 6.6.1: Results MOGA using Tournament vs. Elitist Schemes 
 Tournament Elitist 
Performance Jitter/% Error/% Tp/% RTT/% Jitter/% Error/% Tp/% RTT/% 
Population 89.8 42.9 67.2 67.5 91.7 43.2 66 74.5 

*Legends: Tp Represents Throughput, and RTT represents Round Trip Time. 
 
6.7 Tournament Inadequacy 
 
The above results in Tables 6 shows the lacklustre performance of tournament, good 

for finding the absolute best, but inadequate in achieving good overall population 

performance. 

 

6.8 QoS performance of Weighted Fitness function  

The weighted fitness method was repeated in the same experiment with MOGA for 

consistency. Below in Table 6.8.1 are the results. Since the experiments were iterated 

within the same batch, a fair comparison could be made. 

Table 6.8.1: Results of Repetition of Weighted Fitness 

 Weighted fitness with absolute 
uniqueness in new genes 

Performance Jitter/% Error/% Tp/% RTT/% 

Population 83.5 37.6 82.0 77.9 
*Legends: Tp Represents Throughput, and RTT represents Round Trip Time. 
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6.9 Comparison of MOGA with Weighted Fitness 

Shown below in Table 6.9.1 are the results of implementation of the MOGA compared 

to the weighted fitness function method. It is seen that MOGA method produced a 

higher QoS achievement compared to the weighted fitness function. MOGA is a more 

ideal technique for GATP to adapt and react to the networking environment, through 

its multi-objectiveness. 

Table 6.9.1: Comparison of  MOGA Elitist with Weighted Fitness Method 

 MOGA with Elitist Weighted fitness 

Performance Jitter/% Error/% Tp/% RTT/% Jitter/% Error/% Tp/% RTT/%

Population 94.8 67.8 65.1 80.3 88.4 40.5 89.5 78.4 

*Legends: Tp Represents Throughput, and RTT represents Round Trip Time. 
 
 

6.10 Sub Colony effects on GATP in dynamic Landscape 
 
The experiments were done using using MOGA with elitist selection. The sample size 

used was 10 and sub colony size of 3 with all other experiment parameters being the 

same as in section 3. 1 set of experiment has the side colony being reduced such that 

only small mutation rate and crossover of parents being 25%. Random genes were not 

allowed into the sub colony. The other set contained a side colony with random genes. 

Shown in Figures 2 and 3 are the results of the experiments. Using a side colony 

allows GATP to perform better. A faster reaction to network changes can be seen and a 

better QoS achievement in Table 6.10.1 below. 

 

The experiments were done using using MOGA with elitist selection. The sample size 

used was 10 and sub colony size of 3 with all other experiment parameters being the 

same as in section 3. One set of experiment has the side colony being reduced such 

that only small mutation rate and crossover of parents being 25%. Random genes were 
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not allowed into the side colony. The other set contained a side colony with random 

genes. Shown in Figures 6.10.1 and 6.10.2 are the results of the experiments. Using a 

side colony allows GATP to perform better. A faster reaction to network changes can 

be seen and better QoS achievement in Table 6.10.1 below. It can be seen that GATP 

achieves greater QoS satisfaction when a higher degree of mutation and crossover 

occurs in the sub colony for a stronger shifting balance.  This occurs in an environment 

of higher and more dynamic traffic. 

 

 
Figure 6.10.1 Effect of Sub Colony on Throughput Performance in GATP 

Notes: TP represents Throughput without sub colony while TP_Dyn represents 
throughput using sub colony. 
 

 
Figure 6.10.2 Effects of Sub Colony on Round Trip Time Performance in GATP 

Notes: rtt represents round trip time without sub colony while rtt_dyn represents 
round trip time using sub colony. 
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Table 6.10.1: Percentage QoS Satisfaction 

 Round Trip Time 
Satisfaction/ % 

Jitter Satisfaction 
/ % 

Throughput 
Satisfaction / % 

25% Mutation 
25% Crossover 9.86 50.30 12.82 
75% Mutation 
80% Crossover 22.49 67.46 22.49 
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Chapter 7  

Comparison Experiments with TCP and UDP 

 

Data transmission using TCP and UDP were also implemented on the socket client and 

server. The maximum packet size was 1024 bytes, similar to GATP. GATP used 

MOGA scheme and elitist selection, with QoS; Jitter, Round Trip Time, Error Rate 

and Throughput of 1.5ms, 6ms, 0.05 and 2Mbps respectively. These values were 

selected, as they were relatively attainable but not too easy. The sub colony size used 

was three. Other parameters were same as section 4.3.1 and 4.3.2. The results are 

shown below in Section 7.1. 

 

7.1 Jitter 

GATP achieved good jitter performance as compared to UDP and TCP. This is due 

GATP adopting a QoS objective orientation towards jitter. Shown below in Figure 

7.1.1, is the jitter performance of the 3 protocols under study. Although GATP has the 

lowest jitter value, there were also instances of poor jitter. UDP and TCP achieved a 

lesser range of jitter values but with a poorer performance bound. 
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Figure 7.1.1: Jitter Performances of UDP, GATP and TCP against Transmission 

Generation 
Notes: udp-j represents jitter performance of udp, gatp-jitter represents jitter 
performance of GATP and tcp-j represents jitter performance of TCP. 
 

7.2 Throughput  

Shown below in Figure 7.2.1 are the Throughput performances of GATP, UDP and 

TCP. The throughput of GATP was worse than TCP and UDP on the whole. GATP 

was able to achieve a greater range of performance by exploiting the best packet 

configuration according to the network conditions. Poorer throughput of GATP is due 

to efficiency issues of different Automatic Repeat Request (ARQ) schemes, which will 

be discussed, later in the overhead studies on GATP. 
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Figure 7.2.1: Throughput Performances of UDP, GATP and TCP against 

Transmission Generation 
Notes: udp-tp represents throughput performance of udp, gatp-tp represents 
throughput performance of GATP and tcp-tp represents throughput 
performance of TCP. 
 

7.3 Round Trip Time 

Shown below in Figure 7.3.1 are the performance of UDP TCP and GATP for Round 

Trip Time. The Round Trip Time of GATP was much poorer than TCP and UDP. This 

is mainly because GATP is not able to compete with TCP and UDP, which were 

optimised greatly over many years. The packetisation delay was a main factor as much 

intelligence was required at each packetisation process. There was also a micro 

management of packets. The overheads of GATP will be explained later in Chapter 9. 

However the QoS orientation of GATP towards a Round trip time of 6ms was fulfilled 

by at least half the transmission. 
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Figure 7.3.1: Round Trip Time Performances of UDP, GATP and TCP against 

Transmission Generation 
 
Notes: udp-rtt represents round trip time performance of udp, gatp-rtt represents 
round trip time performance of GATP and tcp-rtt represents round trip time 
performance of TCP. 
 
 
7.4 Error Rate 

Shown below in Figure 7.4.1 are the error rates of UDP TCP and. The error rate of 

GATP ranged the greatest from the lowest error rate to the highest error rate equivalent 

to the UDP. This is mainly because GATP is able to perform better than TCP and 

UDP, through a faster search mechanism which may also result in a worse error rate. 

The overheads of GATP will be explained later in Chapter 9. However the QoS 

orientation of GATP towards a error rate of 0.05 was fulfilled by at least half the 

transmission. 

 

 60



 

Figure 7.4.1: Error Rate UDP, GATP and TCP against Transmission Generation  
Notes: udp-error represents error rate of udp, gatp-err represents error rate of GATP 
and tcp-err represents error rate of TCP. 
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Chapter 8 

Controlled Network Environment Experiment 

 

To Control the network environment, the server and client computer was isolated from 

the intranet and networked directly. Experiments were conducted for GATP employing 

NSGA techniques with elitist and unique diverse sub colony. Single objectives 

experiments were conducted on throughput, Round Trip Delay and Jitter. Solutions 

were found to propagate all generation in this non-competitive environment. 

 

To further investigate the performance of GATP with competing traffic, the 

experiments below were conducted. Firstly, GATP was conducted with elitist selection 

and unique diverse sub colony with no competing traffic. Other parameters were same 

as section 4.3.1 and 4.3.2. The results are shown below in Section 8.1. Crossover and 

Mutation probability is 75% and 80% respectively. 

 

QoS targets for GATP was set to be Round Trip Time was 0.006s, Jitter 0.0015s, Error 

Rate of less than 0.02%, and Throughput of 3.2 Mbps. The sub colony size of GATP 

was 3 while the main colony was 7. Each gene was transmitted in sample sizes of 10 

packets. Therefore the each generation was 100 packets.  

 

Solution genes were found and propagated. Then at generation 20 of GATP 

transmission, a UDP traffic generator was started to transmit 1024 bytes sized packets 

at a speed of  1 Mbps. The size chosen was 1024 to prevent UDP fragmentation which 

could in term create a bursty competing traffic. This would cause a highly uncontrolled 

competing traffic quite opposed to the aim of this experiment. The UDP traffic was 
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terminated at generation 28. This allowed GATP to adapt back to it initial non 

competitive environment. Then at generation 47 the UDP traffic was again restarted 

till generation 54.  

 

8.1 Jitter and Round Trip Time 

Shown below in Figure 8.1.1 is the result for jitter and round trip time, where j 

represents jitter and r represents round trip time. Competing UDP traffic was 

introduced at generation 20. The Round Trip Delay worsened as a result and managed 

a worst value of 0.03s. However, it was restored to original Round Trip Time of 

0.0055s at generation 23.3. Likewise for jitter, it managed to achieve 0.002s before the 

introduction of UDP traffic at generation 20. However after the competing traffic 

entered the network, jitter took a worst value of 0.0058s. This poor performance was 

however, remedied by generation 23.3 where jitter was restored to original value. Thus 

restoration of jitter and Round trip time took less than 4 generations with competing 

UDP traffic. It can be seen from Figures 8.1.1 and 8.1.2 below that at generation 23.3 

and generation 50.8, the jitter and round trip time was restored to the original levels 

before the introduction of the UDP traffic. The response of GATP to the UDP traffic at 

generation 20 could be seen by the poorer jitter and round trip time. However by 

generation 24, GATP has found the solutions to the networking environment. When 

the UDP traffic was removed at generation 28, GATP was able to continue providing 

the same level of QoS in terms of jitter and RTT. The next change came at generation 

47. GATP again exhibited the same robustness to change and was able to restore QoS 

by generation 51.  
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Figure 8.1.1: Jitter Performance of GATP in Controlled Network Environment 

*Notes: Actual Generation number is X axis value divided by 10 
 

 
Figure 8.1.2: Round Trip Time of GATP in Controlled Network Environment 

*Notes: Actual Generation number is X axis value divided by 10 
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8.2 Throughput 

Figure 8.2.1 below demonstrates the throughput QoS of GATP under the same 

controlled network environment. It can be seen that at generation 20, the introduction 

of UDP traffic reduced the throughput of GATP traffic, which was restored to initial 

original level at generation 23. Throughtput has a worst value of 1.11Mbps before 

generation 20. At generation 20, GATP throughput worsened to a minimum of 

0.46Mps at the worst case at generation 22. However, by generation 24, Throughput 

was restored to the original performance before the competing traffic was introduced. 

Likewise throughput lessened in generation 47 and was restored at generation 51. 

 

 

Figure 8.2.1: Throughput Performance of GATP in Controlled Network 
Environment 

*Notes: Actual Generation number is X axis value divided by 10. t represents 
throughput of GATP. 
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8.3 Error Rate  

Below in Figure 8.3.1 are the results for error rate. The error rate behaviour was 

similar to throughput, jitter and Round Trip Time. The robustness of GATP to a 

changing network environment was again demonstrated. Error rate was kept close to 

zero before generation 20. However, after UDP traffic was introduced at generation 20, 

GATP shown a worst error rate performance of 0.55 at generation 22. This error rate 

deterioration was remedied by generation 24, where restoration to original healthy 

error rate was achieved. The restoration of QoS to original levels before introduction 

of any traffic was seen after GATP adapted to changes in the network. This 

phenomenon was revisited in generation 47 to 51. 

 

Figure 8.3.1: Error Rate Performance of GATP in Controlled Network 
Environment 

*Notes: Actual Generation number is X axis value divided by 10 
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Chapter 9  
 
GATP Overhead Computation 
 

 
9.1 Theoretical Analysis of GATP Flow Control Overhead 
 

GATP has implemented several flow control mechanisms combined with genetic 

algorithm for optimization. The Automatic Repeat Request (ARQ), variable frame size, 

was implemented for reasons of improving real time data streaming ability and exploring 

the feasibility of a genetic algorithm approach. Subsequently, this section shall discuss the 

mechanisms employed in GATP; These are mainly Stop and Wait (SAW) ARQ, Variable 

Frame sizes and multiplexing. Finally, a proposal for a better ARQ is suggested. 

 

9.1.1 Stop and Wait Automatic Repeat Request  (SAW ARQ) 

Stallings [40] describes various Automatic Repeat Request (ARQ), schemes. GATP has 

adopted the most basic scheme, the stop and wait ARQ technique. The overhead of such a 

technique will be studied and discussed. 

 

Assume that the time to send 1 frame of data is  

Tf = tframe + 2tprop +tack + tproc      (9.1.1) 
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Where, 

tprop = Propagation time from source to destination 

tframe = Transmission time of a frame 

tproc = Total processing time at stations for 1 transmission  

tack =  Time to transmit an acknowledgement 

Nr = Expected number of transmission of a successful frame 

 
 

α = Propagation Time     (9.1.2) 
Transmission Time 

 
Assume that transmission time is normalized to 1 and therefore propagation time is α. 

 

p is the probability that a single frame is in error 

 
Time taken to send 1 frame = Nr(2tprop + tframe + tack + tproc)  (9.1.3) 
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9.1.2 GATP and Stop & Wait (SAW) 
 
The total time taken to send a successful frame of data is 
 
T = Nr (2tprop + tframe + tack + tproc)     ( 9.1.4) 
 
 
 
 
The utilization or efficiency is,   
 
 

U= (h/h+d)* tframe      (9.1.5) 
Nr(2tprop + tframe + tack + tproc) 

 
Where Nr = 1/(1-p), h=header size, d=useful data size 

 
Using 
 

U=        (h/h+d)*(1-p)     (9.1.6) 
2 α + 1+ (tack + tproc)/ tframe 

 
U=        (h/h+d)*(1-p)     (9.1.6) 

2 α + 1+ (tproc)/ tframe 
 

* Notes:  tack is the processing time of acknowledgement packet which is neglected since 
its 100 times smaller that tproc as shown below in Section 9.1.3 
 
9.1.3 Processing Overhead at Stations 
  
An estimated 30123 and 1000 lines of machine instructions from the GATP programs are 

processed at the server and client stations respectively. A processor of Pentium 1.5Ghz 

with a capability of processing 1.5x109 instructions in a single clock cycle is used. 

Therefore the processing time is obtained for the stations is as shown in the Table 4 
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below. The average processing time, tproc is 1.38x10-14s. The time to process an 

acknowledgement packet which is smaller than a frame since it only contains no data at 

the client stations would be  4.44x10-16. 

Table 9.1.1: Processing Time Computation 

Station Processor /hz Clock Period/s 

Processor 
Instructions per 
cycle 

Total 
Instructions Time taken/s 

Server 1.50E+09 6.67E-10 1.50E+09 30123 1.34E-14
Client 1.50E+09 6.67E-10 1.50E+09 1000 4.44E-16

 
 
9.1.4 GATP Overhead in LAN with SAW ARQ 
 
LAN is considered in this study Utilization in GATP using SAW. In LANs distances 

typically range from 0.1 to 10km and data rates range from 10 to 100Mbps. Link speed for 

copper medium is approximately 0.67 times the speed of light while link speed is speed of 

light for optic fiber. Shown below in Tables 9.1.2 and 9.1.3 are the calculated utilization 

or efficiency of Stop and Wait ARQ on LAN for minimum and maximum frame size 

respectively. A shorter distance of 0.1 km can be seen in both tables to produce a better 

utilization than longer distances. Best utilization is achieved with a shorter distance 

between stations. A slightly higher utilization is achieved when the data rate is slower at 

10Mbps compared to 100Mbps. Maximum and minimum frame sizes used in Tables 

9.1.2-9.1.5 are obtained from Section 4.3.1, which are 7712 bits and 512 bits respectively. 

Computation for actual useful data are derived from Equation 9.1.7 in Tables 9.1.2–9.1.5. 
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Utilization is derived from Equation 9.1.6. 

Actual Useful Data=        Frame Size –Header Size  (9.1.7)  
Frame Size 

 *Notes Header size used is 480 bits from Section 3.3 Figure 3.3.1. 

For example in Table 9.1.2 first row, 

For a Distance 0.1km, Link Speed 2.00E+08/ms-1, Frame Size 512 / bits, DataRate 10 

/Mbps, 

 Min Actual Useful data ratio = Frame Size –Header Size / Frame Size 
= (512-480)/512  
= 0.0625 

    
       

α  =Propagation Time / Transmission Time  
 
  = (Distance/Link Speed) / ( FrameSize/Data Rate) 

 
= (0.1*1000)/2x108 / 512/10*106)  
= 0.009766 

 
 

Min Utilization, U = Useful Data Ratio *    1     
       2 α + 1+ (tproc)/ tframe 
 
   = 0.0625 *1/ [2x0.009766 + 1 + 1.38x10-14/(512/10x106)] 

= 0.0613 
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Table 9.1.2 Study of GATP Efficiency on LAN  
using Minimum Frame Size Traversing Copper Media 

 
Distance

/km 
Link Speed 

/ms-1

Min 
Frame 

Size/ bits

Data 
Rate/ 
Mbps 

Min Actual 
Useful data 

ratio α 
Min 

Utilization
0.1 2.00E+08 512 10 0.0625 0.009766 0.06130 
10 2.00E+08 512 10 0.0625 0.976563 0.02116 
0.1 2.00E+08 512 100 0.0625 0.097656 0.05228 
10 2.00E+08 512 100 0.0625 9.765625 0.00304 

 
 
 
Utilization increases, as the useful data size is maximal reducing the percentage overhead 

of header data in a packet, as shown in Tables 9.1.3 and 9.1.4. The utilization would range 

from 0.004 to 0.937, depending on the strategy of GATP to employ varying packet sizes. 

However, the SAW ARQ adopted, would see a better utilization when the distance is 

shorter and data rate not as fast.  

Table 9.1.3: Study of GATP Efficiency on LAN  
using maximum frame size traversing copper media 

Distance
/km 

Link Speed 
/ms-1

Max Frame 
Size/ bits 

Data 
Rate/ 
Mbps

Max Actual 
Useful data 

ratio α 
Max 

Utilization
0.1 2.00E+08 7712 10 0.9378 0.000648 0.93654 
10 2.00E+08 7712 10 0.9378 0.064800 0.83011 
0.1 2.00E+08 7712 100 0.9378 0.006483 0.92575 
10 2.00E+08 7712 100 0.9378 0.648340 0.40831 
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Table 9.1.4: Study of GATP Efficiency using Minimum Frame Size  
on LAN Traversing Optic Fibre Media 

Distance
/km 

Link Speed 
/ms-1

Min Frame 
Size/ bits 

Data 
Rate/ 
Mbps 

Min Actual 
Useful data 

ratio α 
Min 

Utilization
0.1 3.00E+08 512 10 0.0625 0.006510 0.06169 
10 3.00E+08 512 10 0.0625 0.651047 0.02714 
0.1 3.00E+08 512 100 0.0625 0.065104 0.05529 
10 3.00E+08 512 100 0.0625 6.510417 0.00445 

 
 

Table 9.1.5: Study of GATP Efficiency using Maximum Frame Size on LAN
Traversing Optic Fibre Media 

Distance
/km 

Link Speed 
/ms-1

Max 
Frame 

Size/ bits 

Data 
Rate/ 
Mbps 

Max Actual 
Useful data 

ratio α 
Max 

Utilization
0.1 3.00E+08 7712 10 0.9378 0.0004322 0.93694 
10 3.00E+08 7712 10 0.9378 0.0432226 0.86314 
0.1 3.00E+08 7712 100 0.9378 0.0043222 0.92972 
10 3.00E+08 7712 100 0.9378 0.4322268 0.50296 

 
 

The above computation of overhead is that of actual data transmission. An alternative 

approach is to scout for network conditions. For a LAN copper media network, the 

utilization is between the range of 0.003 and 0.937 from Tables 9.1.2 and 9.1.3. Thus a 

periodic sending of data packets could be a feasible means of measuring the best genetic 

performance. The accuracy of results can be peg to the sampling size. A utilization cost of 

0.003 and 0.937 could be used to find the best genes for actual data transmission. Rather 

than finding a single optimum solution, the entire main gene colony of GATP can be 
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retained and used for subsequent data transmission.   

 
9.1.5 GATP Utilization under Varying Error Rates 
 
Show below in Figure 9.1.1 is the efficiency of SAW in different values of α. It can be 

seen that the greatest efficiency is achieved when α is low. This only occurs for 

propagation time being very much shorter than the transmission time. This can be 

achieved through faster transport media like optic fiber or satellite medium. Figure 9.1.1 

actually show the efficiency as error rate is increased. Efficiency as expected decrease 

with increasing error rate due to retransmission overhead and acknowledgement waiting 

time. The main overhead of such an approach is attributed mainly to only one frame being 

in flight as the sender transits into idle state, to wait for acknowledge. This overhead 

increases as flight time increases or when data rate increases as seen in above Equation 

9.1.6. 
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Figure 9.1.1: Effects of α Value on the Performance of SAW 

ARQ in terms of Utilization under Different Error Rate 
 
 
9.2 Variable Frame sizes 
 
9.2.1. Maximum Transmission Unit (MTU)  
 
Different network transmission architectures have different physical limit for the number 

of data bytes in a given frame, which is referred to as the MTU of the network. RFC 1191 

has specified the MTU for several architectures as shown in Table 9.2.1 below. IEEE 

802.3 Ethernet has a MTU of 1500 bytes.  
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Table 9.2.1: Maximum Frame Sizes 

Network Architecture MTU/ 
Bytes 

802.3 Ethernet 1500
4 Mb Token Ring 4464
16 Mb Token Ring 17914
FDDI 4352
X.25 576

 
 
9.2.2. Throughput Computation for GATP 
 
GATP has employed an IP delivery method with encapsulated GATP control Headers. 

These do however introduce overheads. Earlier in Section 9.1.2, utilization of GATP was 

discussed. This section will discuss the throughput of GATP. 

 

Causes of Network Delay: 

1. Transmission Delay 

2. Propagation Delay  

3. Queuing Delay 

4. Processing Time 

 
Network delay is caused by transmission delay, propagation delay, queuing delay, and 

processing time at stations. The queuing time is taken to be very much smaller than the 

propagation time and transmission time and can be neglected for simplicity of 

 
 

76 
 

 

 
 
 
 
 
 

 
 
 



 

computation. The transmission time for one packet is tf. When no error occurs, 

acknowledgement packet arrives at the transmitter site, tack or βtf seconds after 

transmission. The tack used in this section is the time that the acknowledgement packet 

takes to reach the sending station. Thus it includes the processing, and propagation time. 

Retransmission-Time-Out, tout is set as 2*tack, so that its twice the computed time, tack 

similar to TCP 

 
 
Packet Error Probability is, 
 

p = 1 - (1-e)d+h    (9.2.1) 
 
Where  h= Header size in bits, d=Data size in bits, e= Error 

probability of link with error rate of each bit being independently. 

 
Retransmission will begin after time tret, 
 

tret = tf + tout     (9.2.2) 

              = tf (1 + 2β)  

  

Total Time, for a single packet transmission including retransmission, 

T= tf + R(1 + 2β) tf    (9.2.3)

Where R is the number of retransmission. 

 
 

77 
 

 

 
 
 
 
 
 

 
 
 



 

 

AverageTotal Time, for a single successful packet including retransmission time, 

Ť = tf + Ř(1 + 2β) tf    (9.2.4) 

Where Ř is the number of retransmission. 

 

Probability of packet retransmitting k times, 

rk = pk(1-p)    (9.2.5) 

 
Number of retransmission, 

∞ 
Ř= ∑  kpk(1-p)   (9.2.6) 

               K=0 
   
  = p / (1-p) 

 
AverageTotal Time, for a single successful packet including retransmission time, 
  

Ť = p(1 + 2β) + (1-p) (d+h)  (9.2.7) 
                      1-p            C   

   = (2pβ+1) (d+h) 
         1-p      C   
 
Maximum packet rate, 
     λmax = 1 / Ť    (9.2.8) 
  

        =   1-p      C
           (2pβ+1) (d+h) 
 
         = C (1-e)d+h 

            (2β(1-(1-e) d+h )+1) (d+h) 
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tack=2βtf
 
tack = 2tf + tprop + tproc 
 
β=(2tf + tprog + tproc) / 2tf  (9.2.9) 

 
 

9.2.3. Throughput of GATP with varying Packet Sizes 

Using values of c= 100Mbps, β=2, e=0.00001, h=480. The table below is obtained. It can 

be seen that with a smaller d value, a greater inefficiency is incurred as opposed to a larger 

d value. However, In spite of these inefficiencies, the main strength comes in a reduced 

error probability shown in Equation 6. Average total time, Ť for a single successful packet 

including retransmission time, is shown in Table 9.2.2 below to be fastest for a smaller 

sized packet. A higher success and faster transmission is compromised with a larger 

overhead. 

Table 9.2.2: Throughput of Different Packet Sizes 

d/bits p β 

λmax / 
bits per 

sec 

Useful 
Data rate/ 
bits per sec

Useful 
data/ % Ť/ s 

32 0.00001 1 193327.7 12083.0 6.3 512.0
2432 0.00001 1 32424.5 27079.9 83.5 2912.0
4832 0.00001 1 16973.3 15439.6 91.0 5312.0
7232 0.00001 1 11175.0 10479.4 93.8 7712.0
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9.2.4 Analysis of Throughput performance against packet sizes 
 
Shown below in Figure 9.2.1 is a graph of useful throughput data. The throughput 

response to the varying size of useful data embedded in each packet with header size of 

480 bits. Increasing the packet size does increase the throughput on to a certain point of 

about 800bits as shown in the graph, which correspond to a total packet size of about 1180 

bits. Increasing of packet size beyond this value actually reduces throughput. This is due 

to the higher loss probability of a larger packet. Increasing packet size that could earlier 

increase throughput, has on the contrary decreased throughput. The higher loss probability 

of a large packet has become an overhead to throughput.  
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Figure 9.2.1: Throughput of Useful Data against Size of Useful data in each 

Packet 
 
Figure 9.2.2 below shows the average total time of 1 successful packet transmission 

inclusive of all retransmission according to the equations explained earlier. It can be seen 

that the time taken for a successful packet increases steadily as the packet size increases. 

The speed of transmission is in fact an advantage to round trip time. The rate of increase 

of time in figure 3 can be seen to be higher after packet useful data size 800 bits, where 

error rate of the larger packet has diminished the benefits of increasing packet size. 

 

 
 

81 
 

 

 
 
 
 
 
 

 
 
 



 

 
Figure 9.2.2: Average Total Time to Send a Successful Packet 

against Size of Useful Data in each Packet 
 
 
The header size of 480 bits consisted of IP header of 160 bits and GATP header of 320 

bits. Compression of GATP header is very feasible, since only IP header is necessary for 

transport. Such compression will allow a larger header size with more QoS factors to be 

implemented. According to Moore’s Law, processing capability is ever increasing. These 

factors of improving compression and processing power can certainly reduce processing 

time and header size in time to come. 
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9.3 Automatic Repeat Request (ARQ) Schemes 
 
There are basically three types of ARQ being, Stop & Wait(SAW), Selective Reject(SR), 

and Go-Back-N(GbN). The current implementation of GATP has chosen to adopt SAW 

for its simplicity. 

 
 
9.3.1 SAW ARQ 
 
This was explained earlier in section 9.1. 
 

U=        (h/h+d)*(1-p)     (9.3.1) 
2α + 1+ (tack + tproc)/ tframe 

= (h/h+d)*(1-p)     
2α + 1+ (tack + tproc)/ tframe

= (h/h+d)*(1-p)     
2α + 1+ (tproc)/ tframe 

 
*Notes: tack is negligible as discussed earlier in section 9.1.
 
 
9.3.2 SR ARQ 
 
This method retains the channel utilization efficiency of Go-Back-N ARQ and yet 

improves on the retransmission method where retransmission of single error frame is 

allowed rather than a mandatory entire window retransmitting. Out of order frames are 

also retained in the buffer. The maximum window size is 2k-1 due to the overlapped sender 

and receiver windows. 
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When packets acknowledgement of first frame arrives at source before the sending of N 

packets, 

 
 U= (h/h+d)(1-p)   N>2α +1  (9.3.2) 
 
 
When acknowledgment of first packet arrive at source after the sending of N packets, 
 

U=        N*(h/h+d)*(1-p)  N<2α +1  (9.3.3) 
2α + 1+ (tack + tproc)/ tframe 

= N*(h/h+d)*(1-p)    
2α + 1+ ( tproc)/ tframe

 
*Notes: tack is negligible as discussed earlier in section 9.1. 
 
It can be seen from Equations 9.1.6, 9.3.2 and 9.3.3, that SR ARQ has a significantly 

higher utilization than SAW. The waiting of a single packet in flight for SAW ARQ 

wastes utilization. SR ARQ gains utilization advantage by allowing packets to be sent 

while waiting for acknowledgement. In fact, when the acknowledgment packet returns 

before N packets are sent, SR ARW is at least double the efficiency of SAW ARQ. If 

acknowledgment takes very long, much longer than the sending of N packets, and this 

delay is acceptable, efficiency is at best, N/2 times faster than SAW ARQ.  
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9.3.3. GbN ARQ 
 
Go-Back-N ARQ is designed to allow continuous frames to utilize channel while waiting 

for acknowledgement. This will cut down the idle time of source. A limited number of 

frames, which are collectively referred to as the window size is used in this technique.  

The source will transmit the entire window of frames without waiting for the 

acknowledgement of each frame. A time out at the end of the window transmission will 

see the source re-transmitting the entire window. An acknowledgement from the 

destination can also allow the source to retransmit the frames starting from the first lost 

frame. This allows efficient utilization of the channel. The maximum window size is 2n-1. 

 

For Go back N ARQ, the K frames are retransmitted upon an error. Using Nr as the 

expected number of transmission of a frame, below is the calculation of utilization. 

 
 ∞ 
Nr =  ∑ f(i)pi-1(1-p)     (9.3.4) 

   i=1 

Using f(i), total number of frames transmitted if original frames takes i transmission, 

  f(i)= 1+(i-1)K 
 

Nr = 1-p+Kp      (9.3.5) 
1-p 
 

K is approximated as (2α +1) for N>2α +1 and K =N for N<(2α +1). 
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Nr = 1+2α p     K=2α +1 (9.3.6) 
1-p 

 
Nr = 1-p+Np    K=N  (9.3.7) 

1-p 
 

U = (h/h+d)*(1-p)    N>2α +1 (9.3.8) 
1+2αp 
 

U =           N*(h/h+d)(1-p)   N<2α +1 (9.3.9) 
(2α + 1+ ( tproc)/ tframe)(1-p+Np) 

  
 

 
9.3.4 Comparison of ARQs 

A comparison of the utilization of the different ARQ schemes is done in this section to 

show the efficiency of each scheme. 

 
 
9.3.4.1 SAW & GbN 
 
This section will compare the efficiency of SAW over GbN. The equations below show 

that SAW ARQ is less efficient that GbN when error rate is not zero. 

 
 

 
 

Usaw =           1+2αp    N>2α +1 (9.3.10) 
UGbN  2α + 1+ ( tproc)/ tframe

  
Usaw < p 
UGbN
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Usaw = (1-p+Np)    N<2α +1 (9.3.11) 
UGbN         N 

 
 1 <= Usaw <= 1 

N  UGbN
 
 
The utilization of GbN ARQ seen in Equations 9.3.10 and 9.3.11, are better than SAW 

ARQ shown in Equation 9.1.6. If the acknowledgment packets take very much longer than 

the sending of N packets, then efficiency of GbN is slightly better than SAW. However, 

when acknowledgment is slow very much slower than then sending of N packets, then 

GbN has a at best N times the efficiency of SAW. However, GbN when compared to SR 

ARQ, has slightly worse efficiency than SR ARQ when acknowledgment is faster than the 

sending of N packets. However, when acknowledgement is slower than sending of N 

packets, and error rate is very low, then GbN and SR have similar efficiency. This 

efficiency will favour SR as error rate increases. SAW seems to have poor efficiency and 

is only almost as good as SR and GbN when the acknowledgment is fast. 
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9.3.4.2. SAW & SR 
 
This section will compare the efficiency of SAW over SR. Selected Reject Method is 

more efficient than SAW in all circumstances of error conditions. It can be seen from the 

below equations that as N and α increases, the efficiency of SR outperforms SAW 

proportionally. 

 

 
Usaw =  1   N>2α +1  (9.3.12) 
UGbN  2α + 1+ ( tproc)/ tframe

 
*Notes: tack is negligible as discussed earlier in section 9.1. 
 

1 <= Usaw <=    1      
2  UGbN  2α +1 

 
 

Usaw = 1    N<2α +1  (9.3.13) 
 UGbN N 
 
 
 
9.3.5. Performance of ARQ 

The performance of the ARQ shall be studied in terms of utilization. The scalability of 

GATP to extend beyond a smaller LAN network shall be studied in this section. 
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9.3.5.1 Short Distance Performance 

Figure 8 below shows the utilization for close proximity travel of 100m, with link speed of 

2.x108ms-1 and transmission speed 100Mbps. Performance of SAW in short distance is not 

as efficient as other ARQs. SAW ARQ achieved a utilization of 0.47. SR and GbN ARQs 

achieved maximum efficiency constrained by the header size up to an error rate of 0.47. 

The performance of GbN is optimum at window size 100, but SR ARQ increases 

utilization with larger window size.   

Figure 9.3.1: ARQ Utilization under Different Error Rates  
with α =0.0065, distance=100m 
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9.3.5.2 Long Distance Performance 
 
However in longer distances, ∂ increases due to longer propagation time. Figure 7 below 

shows the utilization of maximum packet sizes. SAW ARQ achieved a zero error rate 

utilization of 0.0007 as compared to 0.47 in shorter distance earlier. GbN ARQ with 

window size 10 achieved a zero error rate utilization of 0.0057. GbN ARQ’s utilization 

improved when window size increased from 10 to 100. SR ARQ with largest window size 

200 outperforms all ARQs with an optimum utilization of 0.0093 up to error rate of 0.97. 

 

The effects of increasing window sizes can be seen to increase utilization up to a certain 

point for GbN ARQ but proportionally throughout for Selective Reject ARQ. It can be 

seen that, SR scheme actually improves utilization to maximum as window sizes 

increases. GbN was only able to increase efficiency to maximum when error rate is low by 

increasing window size. This has displayed the effects of improving efficiency through 

increasing window size for the two schemes; Gbn and SR.    
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Figure 9.3.2: ARQ Utilization under Different Error Rates  
with α =6.48, distance=100km 

 
 
9.3.5.3 Scalability of GATP  

Thus by adopting an acknowledgement of larger window size, the utilization of SAW 

ARQ in GATP can be improved. This implementation of GATP is only for SAW ARQ. 

However, window sizing can be implemented in the option header field of GATP as 

discussed earlier. Adopting the best performing ARQ, SR ARQ scheme was shown to 

increase efficiency. Using the largest window size possible, 2k-1 where k is the number of 

bits available in the header field, further improves SR ARQ. Complexity is the only 
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drawback, although such an approach combined with header compression, will improve 

optimization to maximal even at high error rates. Alternatively, utilization of GATP can 

be improved through a multiple streaming technique to upscale the number of concurrent 

streams to increase utilization. 
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Chapter 10 
 
Conclusion 
 
GATP allows reconfiguration and evolution of networking protocols to adapt to network 

environment. Adaptation was achieved by GAs through selection of the best network 

protocol configuration at run time. The introduction of sub colony and different sampling 

sizes were shown to provide adaptation of varying speed. A smaller sampling size and 

larger sub colony provide the fastest adaptation and vice versa.  

 

Through weighted and single fitness functions for GATP, the networking environment is 

shown to be a dynamic landscape and multi objective problem. The issues of dynamic 

landscaping were also explored. 

 

GATP employed a MOGA technique to allow a better satisfaction of QoS in networking. 

Although the MOGA tournament process is useful for discovering the best-fit solution, the 

overall population performance suffers. GATP has been shown to provide QOS 

satisfaction, configurability and adaptability. GATP is able to better network performance 

in jitter, round trip time and even throughput. However, due to the inefficiency of GATP 

in terms of overheads, it cannot reach beyond certain high levels of QoS. Although GATP 
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lags UDP and TCP due to its inefficiency, it has potential in achieving QoS and 

adaptability.  

 

Work in this thesis also addresses the unique dynamic landscape of the networking 

environment, and suggests solutions using traditional MOGA which was not built 

specifically for networking, but is suitable for multiple network QoS achievements.  For 

example, is a scenario when the network environment is assumed to have only 2 

distinctive environment of static and dynamic. In a static network environment, GATP 

adopts a less frequent injection of migrant population, as the main colony need not 

traverse elsewhere. On the contrary, in a dynamic network environment, frequent injection 

of migrant population is necessary to detect changes and shift the main colony towards 

best performance. Strategies to enhance a greater sensitivity and faster shifting of colony 

towards best performance would require a more frequent, diverse migrant population. 

Alternatively, GATP can be left unchanged with a fixed main and migrant colony size as a 

less optimal approach, due to the lack of shifting signals in dynamic environment. This 

approach creates too much noise in static environment. This dynamic landscaping problem 

in networking is exemplified in GATP as a result of the studies on the low-level packet 

behavior. GATP uses low-level packet changes to achieve QoS and efficiency, opposed to 

TCP’s windowing technique. Other protocols like TCP and UDP, follow the size of MTU 
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according to different network architectures.  

 

GA is used to find the best solution in a pool of 64 candidate solutions. The algorithm  

may not be fully optimized in such a small solution space and will be more effective in a 

larger solution space. However, there are some issues involving solution space. A smaller 

search space decreases the search time for the best effort QoS solution which may be 

necessary in a dynamic environment where the time step to the next change may be 

extremely short. This is a compromise of search time and best solution. For example 

assuming that the gene pool is increased to 4096. Each gene of the original 64 candidates 

solutions now represent a group of another 64 solutions. There is a greater chance of 

solutions being churned out within the same group as compared to the earlier case of 

having only 64 candidates. This may be unnecessary if all solutions within the same group 

provide the same fitness. A possible improvement to the gene pool would be to offer a 

finer calibration through a greater gene pool only after solutions in the higher groups have 

been fully explored. A small gene pool accomplishes a breadth first search and upon 

exhaustion of solutions, a further depth search can be done. This will reduce the overheads 

of GATP to only carry a larger header when depth search is launched. 

 

GATP can be deployed in multicasting operations. GATP when configured for the entire 
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routed data transmission may only be as good as the weakest link. Grouping networks in 

multicasting prevents replicated data transmission. At routers where data is replicated to 

different destinations, different GATP configurations can be used to achieve optimal 

performance. This will allow QoS oriented multicasting session where the quality of data 

transmission is based on what an end user would like to have. In fact, routers, which 

disseminate replicated multicasting information, can configure GATP packets to achieve 

adaptation for these networks. 
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