

OPEN PROTOCOL DESIGN

BOH CHEK LIANG DOMINIC

NATIONAL UNIVERSITY OF SINGAPORE

2003

 Founded 1905

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

OPEN PROTOCOL DESIGN

BY

BOH CHEK LIANG DOMINIC

(B.eng.(Hons), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2003

ACKNOWLEDGEMENTS

I would like to acknowledge my supervisor, Associate Professor Guan Sheng-Uei for

his advice and support in my research work. I would also like to thank the National

University of Singapore for the research scholarship grant. In addition, my gratitude

extends to Ms. Rose Seah, the lab supervisor for her prompt help in equipment and

facilities. Finally, I thank God and my loved ones for their support during the past two

years.

 i

SUMMARY

This thesis presents an intelligent protocol, Genetic Algorithm Transport Protocol

(GATP) based on Genetic Algorithms (GAs), which evolve and adapt to the network

environment to achieve a best effort user-configurable Quality of Service (QoS).

Surveys on current competitor’s work on protocol engineering for configurability,

adaptability, and QoS networking are done. However, the greatest feature of GATP is

the amalgamation of all the features of configurability, adaptability and best effort QoS

orientation combined together. Work also encompasses the study on how low-level

packet flow control can similarly achieve best effort QoS. The networking

environment is modeled as an evolutionary playground for data packets, which evolve

using a fitness level of QoS achievement. The different QoS criteria in jitter, error rate,

throughput and round trip time provided multiple objectives from GATP. Different

fitness functions of weighted, single objectives, and finally multi-objectives are

applied to understand the network problem. Experiments provide performance analysis

of GAs in an actual network environment. The solutions obtained from the different

fitness functions, exemplifies the dynamic problem area of networking, where best

solutions for QoS are changing according to network environment. Experiments also

show how GATP is able to achieve best effort QoS compared with Transmission

Control Protocol (TCP) and User Datagram Protocol (UDP). Although, GATP may

lack the efficiency in code compared to TCP and UDP, it possesses potential through

virtues of its sensitivity to network environment and fast solution. The nature of

networking on the Internet is dynamic and even unpredictable at times and will be

better served by such a protocol in GATP. This paper surveys the possible techniques

used in Multi-Objective Genetic Algorithm (MOGA) to solve a similar problem in

 ii

dynamic landscaping. Using such a technique, GATP can likewise enhance the

networking performance, to provide solution to this dynamic landscaping cum multiple

QoS problem area. An experiment to show the possible benefit of such a measure is

studied. A controlled network experiment is also done to demonstrate the effectiveness

of GATP to restore QoS in a controlled changing landscape. An additional study of the

overheads of GATP is done. This includes various Automatic Repeat Requests (ARQs)

Algorithms, which are modified for GATP usage. The efficiency of each ARQ

incorporated into GATP, is computed and discussed. This thesis also shows that using

less than maximum packetization feature in packet size, it allows GATP to achieve

better overall QoS. A greater understanding into the possibility of deploying such a

protocol on varying scales is achieved.

 iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

SUMMARY ii

TABLE OF CONTENTS iv

LIST OF FIGURES viii

LIST OF TABLES x

1 Introduction 1

1.1 Open Protocol 1

1.2 Quality of Service 1

1.3 Configurable and Adaptable Networking Protocol 2

1.3.1 Configurability 2

1.3.2 Adaptability 3

1.4 Networking landscape as Evolutionary Background 5

1.5 Dynamic Lanscaping in Networking 5

2 Related Work 8

2.1 Self Modifying Protocol 8

2.2 Programming Language Constructs 10

2.3 DROPs 11

2.4 Configurable Transport Protocol 11

2.5 Adaptive Software 12

2.6 Other Protocols 13

2.7 Dynamic Landscaping in Genetic Algorithms 13

3 Genetic Algorithm Transport Protocol (GATP) 16

3.1 Design Goals 17

3.2 User Level Configurable Protocol 18

3.2.1 Packet Size 18

3.2.2 Interpacket Length 18

3.2.3 Maximum Retries 19

 iv

3.2.4 Other Configurations 19

3.3 Protocol Communication Overhead 20

3.4 Intelligent Transport Engine 22

3.4.1 Fitness Level 23

3.4.2 Jitter and Throughput 23

4 Implementation 25

4.1 Transport Mechanism 25

4.2 Transport Engine 27

4.3 Genetic Makeup 29

4.3.1 Packet Level Parameters 29

4.3.2 QoS Parameters 30

4.3.3. Mutation and Crossover 30

4.4 GATP Dynamic Landscape Strategies 31

4.5 Stopping Criteria in GATP 32

4.6 Congestion Avoidance Strategy in GATP. 33

5 Weighted Fitness Experiment 35

5.1 Number of genes employed in sub colony 35

5.2 Sampling Size 36

5.3 Study of Efficiency 39

5.4 Fitness Phenomenon 40

5.5 Genotype Phenomenon 42

5.6 QoS Satisfaction in Weighted Fitness Function 44

5.6.1 Non Persistent Best solution 44

5.7 Single Fitness Function 45

5.7.1 Genotype Observation 48

5.8 WAN vs. LAN 49

6 Multi Objective Genetic Algorithm 50

6.1 Assigning fitness level to the genes 50

6.2 Tournament 50

6.3 Elitist method with complete competition 51

 v

6.4 Crossover and mutation 51

6.5 Experiment Results 51

6.6 QoS Satisfaction in MOGA 53

6.7 Tournament Inadequacy 53

6.8 QoS performance of Weighted Fitness function 53

6.9 Comparison of MOGA with Weighted Fitness 54

6.10 Side Colony effects on GATP in dynamic Landscape 54

7 Comparison Experiments with TCP and UDP 57

7.1 Jitter 57

7.2 Throughput 58

7.3 Round Trip Time 59

7.4 Error Rate 60

8 Controlled Network Environment Experiment 62

8.1 Jitter and Round Trip Time 63

8.2 Throughput 65

8.3 Error Rate 66

9 GATP Overhead Computation 67

9.1 Theoretical Analysis of GATP Flow Control Overhead 67

9.1.1 Stop and Wait Automatic Repeat Request (SAW ARQ) 67

9.1.2 GATP and Stop & Wait (SAW) 69

9.1.3 Processing Overhead at Stations 69

9.1.4 GATP Overhead in LAN with SAW ARQ 70

9.1.5 GATP Utilization under Varying Error Rates 74

9.2 Variable Frame sizes 75

9.2.1. Maximum Transmission Unit (MTU) 75

9.2.2. Throughput Computation for GATP 76

9.2.3. Throughput of GATP with varying Packet Sizes 79

9.2.4 Analysis of Throughput performance against packet sizes 80

9.3 Automatic Repeat Request (ARQ) Schemes 83

 vi

9.3.1 SAW ARQ 83

9.3.2 SR ARQ 83

9.3.3. GbN ARQ 85

9.3.4 Comparison of ARQs 86

9.3.4.1 SAW & GbN 86

9.3.4.2. SAW & SR 88

9.3.5. Performance of ARQ 88

9.3.5.1 Short Distance Performance 89

9.3.5.2 Long Distance Performance 90

9.3.5.3 Scalability of GATP 91

10 Conclusion 93

References 87

Appendix A 106

 vii

LIST OF FIGURES

3.3.1 Header of Typical Packet for GATP 20

3.3.2 GATP Header 20

4.1.1 Pseudo Code of Transport Mechanism 26

4.1.2 Pseudo Code of Transport Engine 28

4.3.1 Process of Selection Next Generation of Genes 31

5.1.1 Number of Generations to Satisfy Stopping criteria in a Light-Traffic
Network Environment

36

5.1.2 Number of Generations to Satisfy Stopping criteria in a Heavier-Traffic
Network Environment

36

5.2.1 Number of Generations to study Stopping Criteria in Varying Sampling
Sizes in Light Network Environment

37

5.2.2 Number of Generations to Satisfy Stopping Criteria in Heavier-Traffic
Network Environment

38

5.2.3 Number of Generations to Satisfy Stopping Criteria in Lighter-Traffic
Network Environment

38

5.3.1 Size of Data Sent against Generations 40

5.4.1 Weighted Fitness against Iterations 41

5.4.2 Weighted Fitness of Best Performer of Population against Iterations 41

5.5.1 Gene ID of All Genes Employed against Iterations 42

5.5.2 Gene ID of Best Performing Gene against Generation 43

5.7.1 Single Fitness Function based on Throughput 45

5.7.2 Single Fitness Function based on Jitter 46

5.7.3 Single Fitness Function based on Round Trip Time 46

5.7.4 Single Fitness Function based on Error Rate 47

5.7.5 All Genotype against Iterations 48

5.7.6 Best Genotype against Generation Number 48

 viii

6.5.1 Graph of All Genotype Employed against Iteration Number 52

6.5.2 Graph of Top Performing Genotype against Generation Number 52

6.10.1 Effect of Side Colony on Throughput Performance in GATP 55

6.10.2 Effect of Side Colony on Round Trip Time Performance in GATP 55

7.1.1 Jitter Performances of UDP, GATP and TCP against Transmission
Generation

58

7.2.1 Throughput Performances of UDP, GATP and TCP against Transmission
Generation

59

7.3.1 Round Trip Time Performances of UDP, GATP and TCP against
Transmission Generation

60

7.4.1 Error Rate of UDP, GATP and TCP against Transmission Generation

61

8.1.1 Jitter Performance of GATP in controlled Network environment

64

8.1.2 Round Trip Time of GATP in controlled Network environment

64

8.2.1 Throughput Performance of GATP in Controlled Network Environment 65

8.3.1 Error Rate Performance of GATP in Controlled Network Environment 66

9.1.1 Effect of α Value on the Performance of SAW in terms of Utilization under
Different Error Rate

75

9.2.1 Throughput of Useful Data against Size of Useful Data in Each Packet 81

9.2.2 Average Total Time to Send a Successful Packet against size of Useful
Data in Each Packet

82

9.3.1 ARQ Utilization under different error rates with α =0.0065, distance=100m 89

9.3.2 ARQ Utilization under Different Error Rates with α =6.48,distance=100km 91

 ix

LIST OF TABLES

4.3.1 Chromosome of GATP Packet 29

4.3.2 Packet Level Parameters 30

4.3.3 QoS Parameters 30

5.3.1 Analysis of Efficiency of Sampling Size in Terms of Total Data Sent 40

5.6.1 Performance of Weighted Fitness 44

5.8.1 Performance of WAN vs LAN 49

6.6.1 Results MOGA using Tournament vs. Elitist Schemes 53

6.8.1 Results of Repetition of Weighted Fitness 53

6.9.1 Comparison of MOGA Elitist with Weighted Fitness Method 54

6.10.1 Percentage QoS Satisfaction 56

9.1.1 Processing Time Computation 70

9.1.2 Study of GATP Efficiency on LAN using Minimum Frame Size Traversing
Copper Media

72

9.1.3 Study of GATP Efficiency on LAN using Maximum Frame Size
Traversing Copper Media

72

9.1.4 Study of GATP Efficiency using Minimum Frame Size on LAN Traversing
Optic Fibre Media

72

9.1.5 Study of GATP Efficiency using Maximum Frame Size on LAN
Traversing Optic Fibre Media

73

9.2.1 Maximum Frame Sizes 76

9.2.2 Throughput of Different Packet Sizes 79

 x

Chapter 1

Introduction

1.1 Open Protocol

This thesis proposes an open protocol, which as suggested by the word “open”, a

willingness to accept new ideas. In this case, a networking protocol is proposed to

allow feedback on the performance of various protocol configurations and to use

genetic algorithms to produce new configurations. This protocol serves 3 purposes

being quality of service, configurability and adaptability which will be discussed in

this section.

1.2 Quality of Service

Through greater applications of continuous media (CM) application, there is a demand

for meeting QoS requirements instead of simply delivering data of the highest quality.

QoS assures that data not just transmitted but to also conforms to a certain standard of

networking required for different applications as discussed in [1-2]. QoS is of utmost

importance without which, the applications are useless. Two main approaches by the

IETF are through integrated services (IntServ) [3-4] with the resource reservation

protocol (RSVP) and the differentiated services (DiffServ) [5-7]. Resource reservation

and prioritisation are the two main methods of QoS assurances.

Resource reservation and prioritisation are the two main methods of QoS assurances

using monitoring on the server and appropriate reactive or pre-emptive measures.

Their approach locks up resources and requires changes to routers and networks. A

minimum invasion of current systems to provide easily deployable multiple QoS needs

 1

to be explored. Best effort protocols like UDP and TCP monopolise the resources at

any given opportunity. A low QoS requirement should not aim to get the best that the

network can offer. On the contrary, it should only get what it needs, such that the other

systems may have a better resource availability. For a real time streaming system with

low expectation of voice data integrity, a decrease in voice data would offer a good

compromise for a reasonable QoS. Perhaps by modification of certain packetization

characteristics or transmission trait, a better QoS is achieved in a congested

environment.

An open networking environment presents constant changes and unpredictable

situations, contrary to a closed computing environment with unique solutions [8].

Internet traffic is bursty and random, therefore networking should ideally explore a

larger solution space and provide intelligent solutions to scale with this environment.

Maintenance and achievement of QoS in such an open environment, are important for

networking to service applications successfully. This is the greatest challenge for this

thesis.

1.3 Configurable and Adaptable Networking Protocol

Protocol configurability is the ability to customise a different set of working protocols

while protocol adaptability is the ability of a protocol to respond effectively to

changes.

1.3.1 Configurability

Currently, data communication by TCP/IP over the Internet is a default for general

uses. Protocols like TCP/IP, UDP and RTP prevent users from specifying and

receiving the exact quality of service it requires of during networking. A non-

 2

discriminated best effort in error-free throughput approach in TCP is an inflexible

solution to users. Network video streaming, file download and telephony all require

different QoS. For example, high data integrity is important in file transfer but

telephony requires short round trip time. MPEG video also has different data rates,

where a much higher data rate is incurred in fast action scenes and vice versa. As new

applications may require different QoS at different stages of networking, specification

of QoS should be on user end rather than protocol, for maximum relevance in ability of

protocol to satisfy users’ purpose in networking.

1.3.2 Adaptability

Network environment is not always static and bandwidth may not be consistent or

predictable. A previous set of protocols may not be relevant in a different environment,

and therefore protocol adaptation to the environment should be actively pursued to

ensure that QoS is adhered to and the purpose of networking is achieved. TCP/IP

currently avoids congestion with windowing technique, slow start algorithm and MTU

discovery. However, TCP only ensures maximum error-free throughput in networking,

while other aspects of QoS in jitter and round trip delay are neglected. In addition,

TCP could only change the transmission window for throughput manipulation of

networking as an adaptation method. This is a limited measure as opposed to GATP’s

method of manipulating multiple packet parameters. Window size in TCP is change

stepwise to discover the best throughput whereas GATP uses GA to derive and test for

the best solutions. This thesis offers a finer grained solution in customised QoS suite of

round trip time, jitter, error rate and throughput. The performance feedback from

multiple QoS criteria, allows networking to adapt and achieve satisfaction of multiple

QoS in open environment, by making a greater effort through changes in finer grains

 3

of protocol in data integrity, retries limit, packet size and interpacket length. These

changes at the low packet levels allow changes in all the QoS criteria, not just the

throughput and error rate.

From the above sections 1.3.1 and 1.3.2, TCP’s approach to networking was contrasted

to GATP. The main purpose of TCP was mentioned to be networking with the best-

effort reasonable throughput with full sequenced data integrity. This may be adequate

for some applications like web browsing, but for applications with greater need for

multiple QoS like video conferencing, more can be done. By adopting the approach of

GATP, multiple QoS may be achieved better. The finer grain approach of GATP also

allows a greater change to be exacted by the sender to control the results of

networking.

The paper will first discuss the related research by others on improve the networking

protocol through configurability or adaptability. Subsequently, the design goals and

implementation details of Genetic Algorithm Transport Protocol (GATP) will be

discussed. Treating the network domain as a problem area for GA, the solution

methodology of using weighted fitness, single fitness and finally multi objectiveness

shall explore. Experiments conducted using various schemes provide a very effective

means of studying the workings of genetic algorithm in this specific problem domain

as well as the effectiveness of GATP. This also answers how similar problem spaces

with dynamic solutions and good overall population fitness can be tackled.

 4

1.4 Networking landscape as Evolutionary Background

The playground of genetic evolution is found naturally in all habitats and biological

systems. The processes of selection, mutation, crossover and survival all exist to find

the best-fitted individuals for the systems. Computer networking where data packets

are sent across the physical network can be an evolutionary playground. Data packets

are individuals or genes bearing individual traits like packet parameters, with a

survival need for QoS achievement. Individuals compete in the network for resources.

In TCP/IP flow control, the windowing technique changes the window size of

transmission, while maintaining a maximal reasonable throughput and yet prevent

buffer overflow. However, the adaptation assumes a maximal QoS criterion of only

error rate and throughput, which may not necessarily be the user’s choice. On the

contrary, GATP evolves to all aspects of QoS according to user’s QoS specification.

Benefits of evolving to user’s QoS specification was discussed in section 1.3.1. Buffer

overflow is also discouraged through poor QoS achievement of packets with larger

throughput.

1.5 Dynamic Landscaping in Networking

GATP was designed and implemented for the purpose of achieving adaptability,

configurability and QoS satisfaction. However, GATP is proposed to solve a problem

that’s changing dynamically. In an actual networking environment [8] there are

constant changes and unpredictable situations, quite contrary to a close computing

environment with unique solutions. This is a challenge to networking to provide a

greater dynamic solution space for scaling this environment intelligently. However, all

these must take place with QoS achievement as a primary goal of solution. This is the

greatest challenge for GATP. The Internet is not only dynamic, it also lacks real time

 5

predictability. The performance of routers, switches, hubs and Internet traffic may be

random, bursty or fluctuating.

GATP uses the NSGA techniques of MOGA to solve the multiple objectives in QoS

for networking. However, the techniques in MOGA were traditionally applied to static

solution search, and may not be so effective in a dynamic landscaping environment.

Greffenstein in [2] and Mark in [3-4] answered these issues of dynamic landscaping in

GA. Using the shifting balance technique of dynamic landscaping, combined with the

NSGA MOGA techniques, GATP was able to solve multi objectives problems in a

dynamic Internet environment. The NSGA technique was shown to be more effective

in GATP by using an elitist selection scheme instead of a tournament scheme, while

the subcolony in the shifting balance technique produced a better result when more

genes are different from the main colony. These results will be elaborated in

subsequent sections.

GATP will contribute to the area of networking protocol, through the usage of the

abovementioned techniques to provide a multiple objectives as well as a greater

effectiveness in reacting to dynamic changes in networking environment. GATP taps

into a large resource of genes, and searches for a heuristic and fast solution. However,

a traditional protocol like TCP avoids congestion by the slow and progressive

windowing technique. This is a stepwise reaction that attempts to slow down

throughput in a stepwise fashion, and may therefore be less efficient in a dynamic

changing landscape.

 6

This report will confirm the nature of networking and the capability of GATP to return

the system to QoS satisfaction in the event of dynamic changes. In addition, an

overhead study of this protocol will be studied for possible scalability.

 7

Chapter 2

Related Work

GATP is a protocol that is easy to implement and deploy with configuration and

evolvability intelligence. Similar works on protocol configuration have been done by

others in [11], [12], [13], [14], [15], [16], [17], [18] with limited adaptability and

insufficient QoS orientation. The evolvability of GATP with intelligence from genetic

algorithm provides a multiple QoS objectives orientation. In addition, Chapter 5 will

show the performance of traditional weighted GA applied to a networking protocol.

More advanced GA techniques employed will be discussed in Chapter 6. Some

existing work on configurable and adaptive protocol will first be discussed in this

chapter.

2.1 Self Modifying Protocol

Firstly, Guan & Jiang in [9-10] provides Self Modifying Protocol (SMP), which is an

initial design of the engine for evolution of transport protocols. The simulation results

are favorable and explore the possibility of GA to solve networking issues. However,

implementation details are insufficient. This report aims to provide solutions to actual

design and implementation issues, which we shall explore in an actual network

environment. GATP has a focus in three main areas of adaptability, configurability and

QoS orientation. The amalgamation of all three issues motivated the design and

development of GATP.

 8

GATP needs to harness a robust protocol to carry its packets and yet provide the full

flexibility in configuration. IP is the best candidate due to its backward and upward

compatibility from Asynchronous Transfer Mode (ATM) to Wavelength Division

Multiplexing WDM). Full flexibility in sending customized packets is also possible.

Redesigning of IP to take on the entire transport mechanism is also feasible. However,

GATP runs on IP in this report. Even after GATP is built on IP, it runs alongside all

existing technologies, and can be upgraded to optical networks, and other newer

technologies. The overheads in terms of header size will be discussed in Chapter 9.

GATP is modeled into two specialized engines; transport and intelligence. These two

engines will provide a framework to achieve configured protocol as well as adaptation

intelligence. Its essential to have two separate and yet integrated engines for a full

realization of the three motivations. This is based on the usage of object-oriented

programming, to allow instantiation of networking protocol. The configurability of

protocol is intact, as the full suite of transport mechanism is made available. The

adaptability is strong, since the transport engine will compute the genetic evolution of

the next generation protocol. This intelligence is running based on a robust genetic

algorithm engine not limited to fixed congestion avoidance strategies. This differs

from conventional protocols that see a tight integration of intelligence and

packetization activities, like TCP, UDP and IP. Changes in conventional IP need to be

made to allow for full IP control such that GA can exercise its intelligence.

 9

GATP has innovated strongly in terms of transport engine intelligence. Firstly, is the

application domain innovation, which sees dynamic GA issues being transposed to the

networking domain. The issue of appropriate population size, and degree of mutation,

which is although not new to dynamic GA, is an innovation in the networking domain.

Chapter 9 will show the cost analysis that reveals a resulting QoS satisfaction in GATP

using less than efficient packet size.

2.2 Programming Language Constructs

In [11], programming language constructs are used to support run time software

adaptation. An adaptive middleware is used but with an explicit issue that the degree

of adaptation could result in undesirable effects versus a greater survival in adverse

conditions. A three component interface in Java was used with meta socket to create a

dynamic observation and change effecting protocol. An achievement in transformation

of components at run time to adapt to different dimension was made. Expert

knowledge was use for the intelligence to adapt by employing forward error correction

or noise detection algorithm. Java is used which may be rather sluggish and slow

especially in events of rapid and frequent adaptations. Intelligence in adaptation is also

limited by expert knowledge. The meta socket used makes the implementation less

portable.

GATP however offers a solution based on existing IP using a conventional socket and

C programming. Its immense portability in Operating systems and ease of

implementation is extremely desirable. The efficiency of the C program is beneficial

for rapid and frequent adaptations. Using intelligence from GA, a fast optimization can

be achieved with little or no expert knowledge. Such intelligence is extremely suited

 10

for dynamic environments, which may require a solution outside of implanted existing

expert knowledge.

The work on GATP also demonstrates clearly, the best performance comes from

different protocol characteristic. Using QoS achievement as a basis of protocol

adaptation allows a high percentage of QoS achievement. This approach vastly differs

from a best effort performance. It offers a self-restrained usage of networks to only use

as much resources as possible to achieve its targeted QoS.

2.3 DROPS

DROPS [12] use a configurable protocol that persists during runtime for adaptability.

Benefits of adaptability to a changing network environment were mentioned in the

paper. Persistent configurability and adaptability was a key issue in their work. Their

work was on the Operating System (OS) and differed from GATP, that uses socket

programming. Many intelligent schemes were suggested like lookup tables, Boolean

logic, and Fuzzy logic. But further study into intelligence was not provided.

2.4 Configurable Transport Protocol

Configurable Transport Protocol (CTP) in [13], is a user configurable protocol, which

gives users the flexibility of building up a protocol in x-kernel process level.

Performance efforts are limited to best effort or simply reserving resources. CTP

doesn’t discuss much on the adaptation ability.

The limitations of CTP is over-reliance on the x-kernel push-pop for interacting with

upper levels as well a need for modification of socket API to support the transport

 11

properties is considerable. Interoperability is low as custom headers are required.

Intelligence is also very much limited.

2.5 Adaptive Software

Adaptive software in [14], provides an adaptation framework on Cactus [13], [15] and

[16]. Run time adaptation in [14] is achieved in 3 phases of change detection,

agreement and adaptive action. A global system state is concluded and a consensus

reached on an adaptive action. Their approach uses Component Adaptor Module

(CAM) that calculates the fitness of the different algorithms and switches to the

algorithm that has the best fitness. Their work focused on the gracefulness of

adaptation. [14] is actually a reactive solution such that an event will trigger adaptation

through theoretical calculations. The best-fit function for determining the best protocol

for adaptation could be difficult. GATP actually evolves the protocol and test for its

actual fitness using an evolutionary process that’s based on fitness of each gene. GATP

uses an experimental fitness evolutionary method where practical solutions could

remove expert or unpredicted judgment errors.

 12

2.6 Other Protocols

Ensemble [20] may provide a framework for new protocol stacks but there is a

disadvantage of a runtime disengagement of services for the new protocol to take

effect.

Fuzzy control [15] was used for adaptation on the application layer. A hybrid

adaptation was used where linear behavior was solved with Task Control and non-

linear problems were solved with Fuzzy control. Application-specific choices can be

used in Fuzzy control with a rule base.

The systems discussed lack intelligence in adaptability. Heuristic knowledge is

required and at best a complex fuzzy knowledge [15] is employed. Evolving protocol

is a possible candidate to offer the intelligent adaptation required.

The evolution of protocol engineering from static protocol to a runtime configurable

and adaptive protocol progresses to the next stage in GATP. The full suite of

intelligent adaptability, run time configurability, and QoS orientation makes GATP the

next evolution of protocol.

2.7 Dynamic Landscaping in Genetic Algorithms

In Genetic Algorithms (GAs), dynamic landscape problems take on different models

and require different measures. However, solving stationary problems in GA has

always been the norm. Lately GA has been applied to solving dynamic landscape

problems. [24-29]

 13

Grefenstette in [25] discussed several mutation schemes and their respective

performances in varying dynamic landscapes. Models of Evolvability are Fixed

Mutation(FM), Genetic Mutation(GM), Fixed Hypermutation(FH), and Genetic

Hypermutation(GH). In FM, all individuals have a fixed random probability of bits

changed. GM however, puts the mutation rate under genetic control. The FH mandates

a fixed fraction of population for random mutation while the remaining population

undergoes baseline mutation or FM. The GH model has hypermutation rate under

genetics control, where individual will either hypermutate or baseline mutate.

Landscapes are primarily 2 types; Gradual and Abrupt. The experiments conducted by

Greffenstette found that Fixed Hypermutation Strategies perform well in gradual

changing landscape. GH Strategies perform well in both landscapes. Controlling of

hypermutation rate genetically, allows GA to climb well even after abrupt change and

as hypermutation rate decreases in stable landscape.

Mark Wineberg & Franz Oppacher proposed the technique Shifting Balance Genetic

Algorithm (SBGA) in [26-27] as strategies to outperform traditional GA in difficult

dynamic environment. Firstly, colonies are forced away from the core. Secondly,

migrants enter core for integration and exploitation. Colonies are forced away from

core using cluster analysis. Bi-Objectives are derived from following of landscape, and

yet moving away from core. The Selection involves two populations using Objective

fitness and distance from core. Mating restricted to within sub population is also

enforced. Effective migration of colonies towards the best fitness is usually pioneered

by diverse small colonies. Integration of Migrants is achieved by replacing current

population with migrants and to enlarge population to cover migrants. This technique

was shown to outperform traditional GA in dynamic environments.

 14

Karez-Duleba in [22] presented the work on performance of the population using uni

and bimodal fitness functions and and demonstrated that under certain conditions, the

equilibrium of traits can be multi modal.

HDEA [25] reinforced the work on using GA to solve non-stationary environment

through the usage of specie adaptation, species memory and microevolution within

species.

GATP adopts the SBGA techniques to solve the dynamic landscaping problem in

networking. This problem is also a multi-objectives problem, such that GATP shall

combine the techniques of both multi-objectives GA and dynamic landscaping GA.

This combinational approach is used in a networking protocol to allow a fast

adaptation of the protocol to fast changing networking conditions. Traditional protocol

like TCP uses a slow and cautious stepwise discovery of appropriated throughput, and

its focus on multiple QoS apart from throughput, is weak. Work on configurable and

adaptive network protocols may deliver in terms of configuration and adaptability.

However, the solution of GATP is one of multiple QoS and the use of heuristic

intelligence in GA for adaptation to a dynamic landscaping network.

 15

Chapter 3

Genetic Algorithm Transport Protocol (GATP)

GATP is proposed as an evolutionary transport protocol that will adapt to the network

environment using the intelligence from genetic algorithms (GAs). This protocol

allows a customized packetization, data integrity, sequencing, and QoS specification

even at run time. The evolvable characteristics include packet size, inter-packet length,

throughput and retries limit. The number of evolvable parameters can be more, but

only these few are used here as a prototype. However, GATP can only achieve best

effort QoS according to the fitness function used. Best-effort QoS is the utilization of

available resources to provide a QoS as close as possible to the predefined QoS.

Optimizing a network that may have different reasons for data loss other than

congestion could be found in a general optimization algorithm like Genetic algorithm.

These will allow for seamless transport across different media with different reasons

for data loss. Possibly network routers could be smart enough to implement heuristic

weightages into the algorithm as transition into a different medium occurs.

Intelligence is implemented through genetic algorithm. Fitness level combined with

heuristic knowledge as well as pure optimization methodology enables the transport

engine to determine the best configuration for the current networking needs. This

ensures that heuristic knowledge that may provide solutions are complemented by the

optimization of genetic algorithm. The fitness level weightage would most likely be

influenced by heuristic knowledge.

 16

3.1 Design Goals

GATP aims to achieve a thorough QoS achievement through protocol reconfiguration

according to fitness function. Genetic algorithms are used to provide adaptability and

configurability. The protocol shall have a configurable transport mechanism for

transportation of data and this shall be controlled by an intelligence embedded in the

transport engine. The server and client model is used in this work for simplicity

although it can be extended to peer-to-peer, where a networking entity can be both

server and client. The client will execute the evolved protocol and upload data to the

server that uses GAs for protocol evolution. Intermediate routers treat GATP packets

as IP packets and thus require no special reconfiguration.

1. The Transport Mechanism shall achieve configurability through controls in

micro protocols shown below.

a. Packetisation factor: Interpacket length, packet length, maximum retries

limit, maximum round rime trips time, different data integrity.

b. QoS values: Jitter, error rate, throughput and round time trips.

2. The transport engine based on genetic algorithm shall adapt the transport

mechanism to network environment through fitness level monitoring.

Evolutionary process can be tracked and studied.

 17

3.2 User Level Configurable Protocol

User QoS requirements in jitter, round trip time, error rate and throughput are directed

to the transport engine. Configuration is achieved by sending a packet with a preferred

set of QoS values from the client to the server, using the header fields for specified

throughput, specified round trip time, specified jitter, and specified error rate as shown

in Section 3.3 Figure 3.3.2. Reconfiguration on server is achieved by sending a packet

with configuration derived from GAs. Traditional protocols like TCP only evolve to

best effort throughput and error rate and are unable to provide all rounded QoS

satisfaction as opposed to GATP’s adaptability to network changes and QoS

achievements. The configurable networking features in GATP are packet size,

Interpacket length, and retries limit, which are discussed below. Details of exact

configurations are discussed later in Section 4.3.1.

3.2.1 Packet Size

The protocol shall be able to send out datagrams of different sizes according to Genetic

Algorithms. To minimize header size, two bits are chosen to represent each GA

parameter which has 4 predefined levels. The maximum packet size is chosen to be

1024 bytes which is a non-fragmented size for Ethernet networks shown later in Table

9.2.1. The minimum size was set at a minimum of the GATP header and IP header.

This will cover the 2 possible size limits of the GATP packets.

3.2.2 Interpacket Length

Inter-packet length is a major factor contributing to the value of jitter, and it can be

controlled by GAs. A few predefined levels, represented by two bits in the header are

 18

used for minimum overhead. The minimum time to send subsequent packets is

immediate while the maximum is set at single-trip time. Timeout is set at twice the

round trip time like TCP.

3.2.3 Maximum Retries

This will allow GATP to consider user’s specification for maximum attempts at

resending packets. There are a few predefined levels, which are determined by 2 bits in

the header. The transport protocol will ensure that the limit is not exceeded before

retransmission. Other wise, the next sequence will be transmitted.

3.2.4 Other Configurations

The configurations are not restricted to only these few. In fact, more degree and

variation of configurations can be used according to requirements and header size

limit. For example, are number of acknowledgements, time-out time, and transmission

window size. Networking will benefit through higher security in successful

transmission and faster transmission in environment of lesser congestion. Checksum

ensures a level of integrity of the packet. Based on the error rate and integrity required

by user, GA shall decide the types between 1’s complement, 2’s complement, Cyclic

Redundancies Check (CRC), Fletcher 16 checksum or other choices. These simple

CRCs are selected for ease of implementation. The support for different checksum

types is to cater to different needs of data integrity.

 19

3.3 Protocol Communication Overhead

GATP uses information embedded in packet headers to execute different protocol

configurations. The header structures will be explained first, followed by the different

configurations.

IP Header (20 Bytes)
GATP Header (40 bytes)
DATA (0 to 900 bytes)

Figure 3.3.1: Header of Typical Packet for GATP

Figure 3.3.1 above shows the total header structure of a GATP packet. The Internet

Protocol (IP) header allows GATP packets to flow through the network like any other

IP packets. Actual GATP header contains protocol statistic used by GATP and DATA

is the actual user data transmission. The inter-packet length, packet length, retries limit

contain protocol

Checksum value (8 bytes)
Request (1 byte)
Sequence Number (4 bytes)
Interpacket Length (1 bytes)
Packet Length (1 byte)
Maximum Retries Size (1 byte)
Number of Retransmission (1 byte)
Time (8 bytes)
Specified Round Time Trip (1 byte)
Specified Jitter (1 byte)
Specified Error rate (1 byte)
Specified Throughput (1 byte)
Options (11 bytes)

Figure 3.3.2: GATP Header

Figure 3.3.2 above shows the format of the GATP header. These fields affect protocol

configuration. Below are the different packet configurations embedded in the GATP

header. These configurations are minimal, to ensure small overhead and yet adequate

information for protocol execution. Reconfiguration of packet size, inter-packet delay,

and retries limit are done based on GA evolution of the configuration for QoS

 20

achievement. Request type is used to identify nature of transaction. A value of 1 will

indicate a new request by client, while 2 means an acknowledgment reply and 3 means

a useful data transmission. Sequence number allowed a control of ordering in

transmissions. The inter-packet length, packet length, retries limit contain protocol

configurations. Number of retransmission and time are useful statistics to be used by

GA for computation of fitness. Specified values displayed the intended QoS of the

packet. The options field in the header allow for future expansion of header data. For

example, the bits for window control can be implemented in this optional header field.

However, there is only implementation work based on stop and wait automatic

acknowledgement request for simplicity. In Chapter 9 on studies of overhead of

GATP, a further exploration of the efficiency of other types of automatic repeat

request types is done. Processing of header field starts with the request field, where 1

indicates a new request, 2 indicates a reply from the server and 3 indicates an

download data packet. Firstly, the client will send a packet with request set to 1. Then

the server will start by sending the first download packet to the client according to the

QoS specified by the client. Replies packet from client will allow server to compute

the new configurations using GAs. The semantics of the header will be discussed in

section 4.3.

Checksum value: The checksum value using the default checksum of Fletcher 16.

Request: This contains the type of services below.

 1: Request for new data stream

 2: Acknowledgement of Packet reception at end point

 3: Data packet

Sequence number: Sequence of packet in the transmission stream

 21

Interpacket Length: The intermittent time delay of the sending of packets

Packet Length: Length of packet

Maximum Retries Size: The maximum times that this particular packet can be resent.

Number of Retransmission: The current number of attempts to send this packet

Time: Time packet was sent

Specified Round Time Trip: User specified round time trip in milliseconds

Specified Jitter: User specified Jitter in milliseconds

Specified Error Rate: User specified error rate

Specified Throughput: User specified error rate in bit per seconds

3.4 Intelligent Transport Engine

Transport Engine manages the GAs to evolve the protocol to changing network

environment and user needs. The GA engine used in Guan & Jiang [5] has been

reconfigured for an actual implementation. Based on user specifications and packet

performance encapsulated in the GATP header, the transport mechanism uses GAs to

evolve subsequent transmission. A Genetic Algorithm based engine [5] is used by the

transport mechanism. Firstly, the engine will initialize a population of random genes

with different packet length, inter-packet length, and retries limit which will be passed

to the transport mechanism for transmission. When acknowledgement packets for the

population returns, computation of QoS is done. Evolution occurs where the genes are

ranked according to a specified fitness function. Mutation and crossover occurs to

evolve a new population, for subsequent transmissions.

 22

3.4.1 Fitness Level

The basis of performance measure shall be a fitness function shown below [4]. This is

a method in GA for combining multiple fitness objectives with its own relative

importance.

Fitness = W1 * Q1 + W2 * Q2 +
 RTT Specified Jitter Specified
 W3 * Q3 + W4 * Q4
 Throughput_Specified Error Rate_Specified

where Q1 =RTT achieved-RTT Specified,
Q2=Jitter Achieved-Jitter Specified,
Q3= throughput achieved–Throughput Specified,
Q4=Error Rate Achieved–Error Rate Specified.

(3.4.1)

Q1 to Q4 if negative, are set to zero to favor QoS achievement towards specified levels

and not beyond so that a fitness better than the specified QoS does not gain any

advantages compared to the specified QoS. Fitness level thus range from best value of

zero and above.

3.4.2 Jitter and Throughput

Throughput is calculated as below:

Throughput = (Packet Size/round trip time)*(1.0/sqrt(p_err)) (3.4.2)

Probability of error (P_err) was taken to be the packet loss rate while packet size is the

size of the packet used in GATP. The round time trip is the time taken for a packet to

travel from the sender to the receiver and the acknowledgement back to the sender.

Sliding window can be achieved by acknowledging a transmission window of packets.

This Send and Wait implementation was chosen for simplicity.

 23

The jitter computation follows Guan & Jiang [3] as below where Di,i-1 is the difference

in arrival rate between the most recent packet and the previous packet..

Ji = Ji-1 + (|Di-1,i| - Ji-1)/16 = 15/16 * Ji-1 + 1/16 * |Di-1,i| (3.4.3)

Instead of the server controlling QoS degradation through preemption and remedy, the

client can take on a more active role. Packetization and evolvable statistics can be

conveyed to the client for appropriate data transmission. In this case, negotiation of

client’s transmission to achieve the same QoS is done with a major load removed from

the server. For example, a client will first request for a certain QoS configuration, and

the server will send a packet to approve the request. When successful, the client will

immediately download data from the server. Computation of the achievement of QoS

is done on the server, which also uses GA to derive the next generation of packet

configuration. This new configuration will be used to send data from the server to the

client.

 24

Chapter 4

Implementation

The GATP protocol is made up of two parts. One part is the transport mechanism to

provide configurable data transmission. The other part is the transport engine that

provides the intelligence and instructions to the transport mechanism.

4.1 Transport Mechanism

The implementation of the predefined levels in jitter, throughput, round-trip time, and

error rate were set at 4. This was done for simplicity. Implementation was done on raw

socket through the raw IP protocol for flexibility and control. Redesigning of IP for

GATP is not necessary in this socket implementation as protocol execution is done by

user-level programs. A connectionless approach was used without reservation of

resources. Below in Figure 4.1.1 shows the pseudo code of the transport mechanism.

The transport mechanism is a typical socket program with two concurrent processes;

Send_data and Listener. The function Send_data sends out data according to the

configurations given by transport engine, in terms of packet size, interpacket delay,

and retries limit. A timer is used for interpacket delay countdown. Inter-packet delay is

implemented by checking the timer to ensure that the delay is enforced between

sending of consecutive packets. The function Listener, waits for incoming data, and

forwards this data to another function called display for processing of incoming

packets. Function display processes the data to ascertain the integrity of the packet and

the request type. This information is passed to the transport engine for processing.

 25

Figure 4.1.1 Pseudo Code of Transport Mechanism

Pseudocode of Transport Mechanism

//Create Socket
if ((sockfd = socket(AF_INET, SOCK_RAW, proto->p_proto)) == -1) {
perror("socket");
exit(1);
}

//SET THE HOST ADDRESS
// printf("sockfd after raw socket creation:%d", sockfd);
my_addr.sin_family = AF_INET; /* host byte order */
my_addr.sin_port = htons(MYPORT); /* short, network byte order */
my_addr.sin_addr.s_addr = INADDR_ANY; /* automatically fill with my IP */
bzero(&(my_addr.sin_zero), 8); /* zero the rest of the struct */

//BIND THE HOST ADDRESS TO THE SOCKET

if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr)) == -1){
perror("bind");
exit(1);
}

//FORK LISTENING PROCESS
fork();
listening(sockfd);

//FORK SEND_DATA PROCESS TO SEND PACKETS
fork()
Send_data(sockfd, (struct sockaddr*)&myhost_addr, myhost_addr);

Function Listener(int sockfd){
//CHECK FOR MESSAGES
recvfrom(sockfd, buf, sizeof(buf),0, addr, &len);
//if message arrives, send for processing
If(buffer!=0)
Display(buf, bytes, sockfd)
}

Function Send_Data(int sockfd, char ipaddr[14], int intersize, int pack_size, int retries_size, int
request, int actual_retries){
//Check Timer and send packet
if(timer is up){
//Format packet according to genes
sendto(sockfd, &fullheader1, sizeof(fullheader1), 0, toclientadd, sizeof(struct sockaddr));
}
}
Function Display(void *buf, int bytes, int sockfd){
//Process packet
Calculate checksum
Check Request Type
//Call transport engine for next evolution
Ga(ipaddr, chkpacket.pack_info.inter_size, chkpacket.pack_info.pack_size,
chkpacket.pack_info.retries_size, chkpacket.pack_info.actual_retries, rtt, Q1, Q2, Q3, Q4)

 26

4.2 Transport Engine

A GA based engine [5] shown below is used by the transport mechanism. Figure 4.1.2

below shows the pseudo code of the transport engine. Firstly, the engine will initialize

a population of random genes with different packet length, inter-packet length, and

retries limit which will be passed to the transport mechanism for transmission.

Acknowledgment packets contain information of transactions and are sent by the client

to the server upon receiving a data packet. When acknowledgement packets for the

population returns to the server, computation of QoS will be done. Round-trip time is

derived using timestamp of packet, error rates are tabulated from the history of packet

transmissions, while fitness, jitter and throughput are derived from above Equations

3.4.1-3.4.3. The population round trip times, throughput, and fitness are obtained from

the average values of all packets in the population. Evolution occurs where the genes

are ranked according to fitness function. Mutation and crossover occurs to evolve a

new population, for subsequent transmissions.

 27

Pseudo Code of Transport Engine

GA(ipaddr, chkpacket.pack_info.inter_size, chkpacket.pack_info.pack_size,

chkpacket.pack_info.retries_size, chkpacket.pack_info.actual_retries, rtt, Q1, Q2, Q3, Q4);

//INITIALIZE A RANDOM POPULATION OF INDIVIDUALS

init(); // create random genes

for(sample1 to SampleN){

// whole population

//evaluate fitness of gene samples

calculatefit(gene); }

if(population completed){ // check that QoS results from the entire generation has arrived

evolution(gene_pool); // evolution of fit genes to create a unique subcolony}

}

evolution(gene_pool){

Fitness-Rankin(gene_pool);// genes are ranked

Mutate(gene_pool) // mutation between fit genes

Crossover(gene_pool) //cross between fit genes

Create-new-population// new evolved population

}

Figure 4.1.2 Pseudo Code of Transport Engine

Actual transmission was conducted between two computers located in the Intranet.

Both terminals used Linux. The server is a Pentium 4 1.2 GHz with 128 MB RAM

while client is a Pentium 667MHz with 128 MB RAM. Transmission was done across

the actual campus 100Mbps Ethernet LAN, to ensure that it is a typical LAN

environment. Experiments to investigate the effects of GATP in an actual network

environment can be studied.

 28

This experiment aims to study the effects of GATP in an actual network environment.

However, an optimum performance of GATP needs to be explored through the

variation of the workings of the GATP. The parameters to be adjusted and studied are:

sampling size, number of mutated genes used, and performance of GATP. Using the

weighted fitness function discussed earlier, the round trip time and throughput will be

assigned weights of 3 while Jitter and Error Rate has weights of 1. These experiments

were conducted by allowing the user to specify the QoS requirements and subsequent

transmission of 10, 000 to 20, 000 packets were monitored.

4.3 Genetic Makeup

The gene format used in packet features is presented below in Table 4.3.1. However,

only the packet parameter chromosome will be embedded in the header and

communicated across the network. The gene used in packet features are represented

below in Table 4.3.1. The packet genotype of packet size, interpacket delay and

number of maximum retries will be concatenated to form a single gene. For example, a

genotype of 0 would be 000000 in binary, meaning a packet size of 64, zero

interpacket delay and no retries are allowed.

Table 4.3.1: Chromosome of GATP Packet
Chromosome Packet Size Inter-packet Delay Retries Limit

AABBCC AA BB CC

4.3.1 Packet Level Parameters

Shown below in Table 4.3.2 are the values of packet parameters for each genotype.

Packet sizes range from 64 to 964 bytes so that a good spread of size is employed

which are not too large to be fragmented by routers or terminals. Interpacket delay was

also set to be less than 80 ms, to ensure throughput does not become too low. Number

of retries was set to less than 4 to prevent excessive delay.

 29

Table 4.3.2: Packet Level Parameters
Genotype Packet size/

bytes
Interpacket
Delay/ ms

Number of
Retries

00 64 0 0
01 364 1 1
10 664 50 2
11 964 80 3

4.3.2 QoS Parameters

Below in Table 4.3.3 is the chart of the predefined levels of QoS parameters. These

few levels of possible QoS objectives are implemented for simplicity and convenience.

For consistency in experiments, the specified RTT, Jitter, Error and throughput was set

to genotype 10, 11, 11, 01. This set of specified QoS shall be used consistently in all

experiments to ensure a fair comparison of performance, as they will all have the same

QoS objectives.

Table 4.3.3: QoS Parameters

Genotype RTT/ ms Jitter/ ms Error Rate/ % Throughput/
Mbps

00 5 1.5 0.25 0.8
01 6 2 0.33 3.2
10 7 2.5 0.5 6.4
11 8 3 1 12

4.3.3. Mutation and Crossover

Although mutation rate used is 75%, it only applies to the genes made available for

mutation. Crossover is based on 80% where 2-point crossover is used. Figure 4.3.1

below shows the process of evolution. Firstly, 10 genes are randomly initialized. These

genes are implemented and run on the network. The performance of the genes are

derived and genes are ranked. In this example, the best 7 out of 10 genes according to

fitness function will survive to the next population. The last 3 genes from mutation and

crossover make up the remaining population. The process of sending data into the

network and evolution continues.

 30

5. Mutation 75%
4. Cross Over 80%

1. Implemented
 and ranked

Gene1
Gene2
Gene3
Gene4
Gene5
Gene6
Gene7

Gene8
Gene9
Gene10

6. Insert
New genes

3. Best 7
survive

Gene1
Gene2
Gene3
Gene4
Gene5
Gene6
Gene7

Gene1
Gene2
Gene3
Gene4
Gene5
Gene6
Gene7

2. Best Genes
Chosen

Gene1
Gene2
Gene3
Gene4
Gene5
Gene6
Gene7
Gene8
Gene9
Gene10

Figure 4.3.1: Process of Selection of Next Generation of Genes

4.4 GATP Dynamic Landscape Strategies

Simple strategy is adopted using SBGA [23] principles. A main colony is created for

coexisting with a sub colony of possible migrants. Migrants are created from mutation

and crossover of the fittest main colony. Migrants and random genes form the

subcolony. This subcolony shall initiate shifting balance [24]. Randomness and

differentiation from main colony is achieved in sub colony to present migrants to

effectively track dynamic landscape changes. Shifting balance for four objectives of

QoS are round trip time, jitter, throughput and error rate. Introducing reproduced

diverse and random genes into the subcolony, the gene pool is diversified for multiple

objectives balance shifting. Integration of migrants to the main colony shall be based

on fitness levels. Studies on the diversity and population of the sub colony will be

discussed later.

 31

4.5 Stopping Criteria in GATP

The stopping criterion as it is traditionally known in GAs, is a measurement of

optimisation. However, for GATP to persistently adapt to the environment, there is no

stopping of evolution. The determination of the stopping criteria is only for

performance comparison. In Chou [22], several stopping criteria suggested were

number of generations, computing time, and fitness convergence. Such an approach

assumes a static environment and is unsuitable for GATP. In the approach of Jiang in

[23], the stopping criterion was used for fitness evaluation. If a cycle yielded a greater

or lesser score than previously, the counter is decreased or increased respectively.

Achieving a certain predefined value for the counter, signifies stabilisation. The fitness

score is the best fitness of the generation and the predefined stability indication counter

value is 3. This training of GA must be done sufficiently but not to produce an overly

specialised solution. But in the case of GATP we use the attainment of counter value

as an indication of the speed of GATP in solution finding. To prevent solutions from

being trapped in a local minimum, or over specialisation of the solutions, the use of

new mutated genes at every generation ensures that sufficient gene pool is available

This can be taken as a gauge for GATP completing its evolution temporarily till

another drastic network change occurs.

For GATP, the stopping criteria can be taken as the instance that the counter reaches a

predefined value. Subsequently, fitness can deteriorate when the network environment

changes and GATP has to evolve again to achieve the stopping criteria. The

determination of stopping criteria is when there are at least 6 genes ranked highest 7 in

the same generation being repeatedly selected for the next 2 consecutive generations.

This consecutive generation condition is used to ensure that if 6 genes do not produce

 32

good fitted results, it will not survive to the next generations. This stopping criterion is

used primarily in experiments as a guide to investigate the effects of sampling size and

mutation rates in GATP. For example, if gene 1, 4, 6, 63, 23, 43 are seen in

generations 4, 5, and 6, then generation 6 has met the stopping criteria.

4.6 Congestion Avoidance Strategy in GATP.

GATP employs a rate adjustment adaptation to the network environment. This protocol

monitors the fitness of the packet transmission. The changing of transmission rates is

achieved by using a different interpacket delay, packet size and maximum retries limit,

with the fitness level as a monitor. This fitness will undergo a survival tournament

where the best gene of the generations will be retained for subsequent generations. In

order for new variants to be injected into the new generation, a crossing over and

mutation process will occur to allow for new genes to participate. During congestion,

the fitness of genes will change and the favored genes are those that perform well in

the congestion and will be promoted and retained while poor genes will die. Likewise

in a more free environment, the fitness changes accordingly and evolution will produce

the best performers.

Although GATP can be adapted with the fastest response to produce the fittest gene for

the current network environment, this adaptability will produce a slower response in a

less busy network environment. Since adaptability is introduced by increasing the

search space through injection of new genes, this extra search space may be

unnecessary when the network environment is less busy and less dynamic and

solutions may be found faster. Therefore, to overcome network congestion, suitable

adaptability is suggested. This is done by ensuring that appropriate sub population size

 33

of new genes are inserted into the subsequent generations to check if its a better

solution.

 34

Chapter 5

Weighted Fitness Experiment

This experiment will show the behavior of the transport protocol in a robust

networking environment. The fitness computation in Equation 3.4.1 is used. Using a

different number of reproduced genes and sampling sizes, the protocol performance is

observed in different networking environments. Crossover and mutation used is as

shown in Section 4.3.3. The traffic conditions for all subsequent experiments in this

thesis are defined as follows. Heavy-traffic is defined as average traffic on networking

being 90% of full load which is 90 Mbps. Likewise, moderate traffic is 80% and light

traffic is 50%.

5.1 Number of genes employed in sub colony

The experiments were done on the intranet using a gene pool of 10 and using the

GATP features as described in section 4.3 above. The fitness function used is based on

Equation 3.4.1. Weightings W1-W4 are chosen to be 3, 1, 3, 1 respectively. The main

colony consists of genes which are retained for subsequent generations while sub

colony consists of new genes that didn’t appear in the previous generation. The main

colony when 7, has a sub colony of 3. This sub colony consists of reproduced genes.

The sample size, which is the number of packets of the same genes sent into the

network, is 10. Therefore each gene is sent out using 10 packets, making 1 generation

of 10 genes being 100 packets. The effect of varying the number of new genes was

studied. Figure 5.1.1 shows that the fastest speed was achieved in using only 1 new

gene in a light network environment. The protocol is able to achieve the fastest speed

of optimization when a very small number of genes are allowed to undergo mutation.

 35

For a busy network environment as shown in the Figure 5.1.2, the greatest speed of

optimization was towards a larger number of permissible mutant genes.

Optimisation Speed

0

5

10

15

20

25

1 2 3 4 5
No. of New Genes

O
pt

im
is

at
io

n
L

en
gt

h

Figure 5.1.1: Number of Generations to Satisfy Stopping Criteria
in a Light-Traffic Network Environment

Optimisation Length

0
10
20
30
40
50

1 2 3 4 5

No. New Genes

O
pt

im
is

at
io

n
L

en
gt

h

Figure 5.1.2: Number of Generations to Satisfy Stopping Criteria in a
Heavier-Traffic Network Environment

5.2 Sampling Size

The experiments were done on an intranet using a gene pool of 10 and using the GATP

features as described in section 4.3 above. The fitness function used is based on

weighted fitness function in Equation 3.4.1. Weighting W1-W4 are chosen to be 3, 1, 3,

1 respectively. Thus if the main colony is 7, then the sub colony is 3. The experiments

were conducted by sending each gene into the network using n packets. Therefore each

generation uses 10n packets. The effect of varying the sampling sizes, n are studied in

 36

the experiments below. Performance is done in terms of optimization speed. The

environments were in both light and heavy network environment for better contrast.

Speeds of Optimisation

0

10

20

30

40

50

60

n=10 n=20 n=30

sampling size

G
en

er
at

io
n

N
um

be
r

Figure 5.2.1: Number of Generations to Satisfy Stopping Criteria in Varying
Sampling Sizes in Light Network Environment

Figure 5.2.1 above shows the performance of GATP in a relatively light network

condition. The fastest speed is achieved by using a sampling size 10 where only 12

generations is required to achieve optimisation. Only in a very congested environment

can there be benefits in using sampling size smaller than 10 as shown in Figure 5.2.2

below. Likewise, only in a very light congestion environment, benefits are seen in

using a sampling size greater than 10.

To better confirm the impact of sampling sizes, a finer calibration of the experiment

was done and depicted in figures 5.2.2 and 5.2.3. Figure 5.2.3 shows that in a very

light networking environment, sampling size of 18 actually performed the best while

figure 5.2.2 shows that in a heavy network environment a smaller sampling size of 10

 37

or below yielded a better performance. Through a smaller sampling size, a greater

reaction to the network environment is enabled and thus a better adaptability and hence

subsequent optimization of GATP is achieved.

Generations to Satisfy Stopping Criteria in Heavier-Traffic Network
Environment

0

10

20

30

40

50

60

n=2 n=6 n=10 n=14 n=18

Sampling size

G
en

er
at

io
n

N
um

be
r

Figure 5.2.2: Number of Generations to Satisfy Stopping Criteria in Heavier -

Traffic Network Environment

Number of Generations to Satisfy Stopping Criteria in Lighter-
Traffic Network Environment

0

5

10

15

20

25

30

n=2 n=6 n=10 n=14 n=18

Sampling size

G
en

er
at

io
n

N
um

be
r

Figure 5.2.3: Number of Generations to Satisfy Stopping Criteria in Lighter-

Traffic Network Environment

 38

5.3 Study of Efficiency

GATP will evolve the packet size according to the fitness and networking

environment. However, the efficiency will be studied in this section and the QoS will

be done in later sections. Figure 5.3.1 shows the graph of total data sent against the

iterations of generations. Trial 1, 2 and 3 shows the experiments using sampling size of

10, 20 and 30 respectively and a sub colony size of 3 with all other experiment

parameters being similar to Section 5. Shown Below in Table 5.3.1, is the size of data

sent at the respective generations of 325 and 556 for the 3 sampling sizes.

It can be seen that trial 2 being of sampling size 20 is twice the sampling size of trial 1.

Trial 2 achieved twice the data sent in trial 1. For trial 3 its is 3 times the sampling size

of trial 1 and it achieved less than an exact multiple of 3 times the data sent in trial 1

for generation 325. However, at generation 556, trial 3 shows a better performance

then expected. However, for larger sampling size, there are relatively little benefits in

terms of sending of data. The efficiency achieved from iterating large evolutionary

generations for large sampling sizes is too much of an overhead.

The conventional approach in most protocols employs the strategy of having a larger

sampling size and therefore a greater efficiency. This may not be relevant in a

evolvable protocol. As the protocol aims to adapt to a changing landscape, a small

sampling size will be sufficient. In fact too large a sampling size removes much

adaptability and sensitivity to the landscape. Thus GATP cannot adopt a strategy of

aiming for the largest sampling size for efficiency.

 39

0

2000000

4000000

6000000

8000000

10000000

12000000

1 42 83 12
4

16
5

20
6

24
7

28
8

32
9

37
0

41
1

45
2

49
3

53
4

Generation Number

D
at

a
Si

ze
 /

B
yt

es
trial1
Trial2
Trial3

Figure 5.3.1: Size of Data Sent against Generations

Table 5.3.1: Analysis of Efficiency of Sampling Size in terms of Total Data Sent

Trial1

Total Data
Trial2 Total

Data
Trial3 Total

Data
Trial 3 Efficiency
Against Trial 1

325 Generations 2.035M 4.07M 5.87M -3.8%
556 Generations 3.5M 7.0M 10.6M +1%

5.4 Fitness Phenomenon

The experiments followed Section 5 using a sub colony size of 3 and sampling size of

10. Other experiment criteria remained the same. Iterations in the experiment results

refer to the results of each gene that was sent out, while generations, refer to the result

of each generation consisting of all the genes in the same generation. The actual

fitness of each genes employed in GATP is shown below in Figure 5.4.1. The poor

fitness is due to unsuitable poorly performing genes. It can be seen that GATP

 40

maintains a best fitness of 0.8. Further explanation will be given in the subsequent

section.

Fitness of Iterated Individual Genes employed

0
0.5

1
1.5

2
2.5

3
3.5

4

1 34 67 10
0

13
3

16
6

19
9

23
2

26
5

29
8

33
1

36
4

39
7

43
0

46
3

49
6

52
9

56
2

Iterations

FI
tn

es
s

Figure 5.4.1: Weighted Fitness against Iterations

Fitness of Top Performer of Each Generation over Evolutionary
Generations

0

0.2

0.4

0.6

0.8

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Generations

Fi
tn

es
s

Figure 5.4.2: Weighted Fitness of Best Performer of Population against Iterations

 41

5.5 Genotype Phenomenon

Earlier, the fitness phenomenon was explored, and the fittest gene of each population

achieved an average fitness of 0.8. However, Figure 5.5.1 below shows a diversity of

genes exist in the population to support a discovery of the best genes in Figure 5.5.2. A

best gene not necessarily similar in each population is derived through evolutions.

GATP uses different genes to maintain good fitness of 0.8 for a dynamic networking

environment.

Genotype of All Genes Employed Against Iteration Number

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700
Iteration

G
en

e
ID

Figure 5.5.1: Gene ID of All Genes Employed against Iteration Number

 42

Genotype of Best Performing Gene of Population Over Generation Number

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 7
Generation

G
en

e
ID

0

Figure 5.5.2: Gene ID of Best Performing Gene against Generation Number

 43

5.6 QoS Satisfaction in Weighted Fitness Function

Shown below in Table 5.6.1 are the actual QoS achieved from the experiments using

the weighted fitness function in Equation 4.3.1. QoS specification followed section

4.3.2. The subcolony size is 2, while sampling size is 10. The average results over 10

iterations were used to compute the results. The population performance is the rate of

successful achievement of specified QOS within the entire data transmission. The

weighted fitness method actually achieved a reasonable satisfaction of QoS of at least

above 55.7% for all 4 QoS measurements.

Table 5.6.1: Performance of Weighted Fitness

Performance Error Rate/% Jitter/% Throughput/
%

Round Trip
Time/%

Population Performance 55.7 92.1 87.5 88.7

5.6.1 Non Persistent Best solution

The observation in Section 5.6 has clearly shown that the previous best solution gene

actually performs poorer than the entire population. Therefore, a best performer in any

generation does not guarantee a best performance in subsequent generations. In fact,

GATP has successfully achieved a best performer with a fitness level of 0.8 with the

entire population achieving below 3.75. This could be a problem from attempting to

solve 4 different objectives with a single fitness function. A possible confirmation of

the inappropriateness of the weighted function can be confirmed with GATP

functioning on a fitness function based on a single objective in the next section.

 44

5.7 Single Fitness Function

Conflict of fitness function in multiple objectives is eliminated by experiments with

only a single fitness objective. Experiments of weighted fitness and single fitness were

iterated to allow for a good sampling distribution and objectivity. The experiment was

conducted across the intranet with sample size of 10 and sub colony size of 3. The

fitness function was a modification of Equation 3.4.1 to only contain the objective

under study. The single throughput fitness chart of the best performer of each

generation against the evolutionary generations in Figure 5.7.1 shows that good fitness

can be achieved when best gene are found in the gene pool. At generation 19, when an

extremely good solution gene was found, the fitness immediately drop to a fittest value

of zero. The same result was obtained in experiments conducted based on other single

objectives: Round trip time, jitter, and error rate shown in Figure 5.7.2. to 5.7.4.

Finding solutions in multiple objectives is more difficult and explains for the poorer

fitness.

Figure 5.7.1: Single Fitness Function based on Throughput

 45

Figure 5.7.2: Single Fitness Function based on Jitter

Figure 5.7.3: Single Fitness Function based on Round Trip Time

 46

Figure 5.7.4: Single Fitness Function based on Error Rate

 47

5.7.1 Genotype Observation

A great diversity of gene pool was available as shown below in Figure 5.7.5. However,

from Figure 5.7.6, the best genotype employed actually changes according to the

landscape changes, to achieve the best fitness. This further impresses the existence of a

dynamic landscape that GA is called upon to climb even in the absence of multiple

contending objectives.

Genotype against Iteration Number

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700
Iteration

G
en

e
ID

Figure 5.7.5: All Genotype against Iteration Number

Best Performer of Generation Gene Type Against Generation Number

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

Generation

G
en

e
ID

Figure 5.7.6: Best Gene ID against Generation Number

 48

5.8 WAN vs. LAN

The experiments for weighted fitness function were repeated on a Wide Area Network

(WAN). The results are shown below in Table 5.8.1. QoS satisfaction in WAN was

much poorer due to poorer efficiency in GATP. However, reasonable achievement in

QoS was achieved.

Table 5.8.1: Performance of WAN vs. LAN

Performance Error Rate/% Jitter/% Throughput
/%

Round Trip
Time/%

LAN Performance 55.7 92.1 87.5 88.7
WAN Performance 50.2 63.0 79.1 60.1

 49

Chapter 6

Multi Objective Genetic Algorithm

With 4 contending fitness objectives, Multi-objective genetic algorithm (MOGA) is

proposed as a more appropriate transport engine for GATP. The algorithm used will be

modeled after Dias [30] and Deb [31].

6.1 Assigning fitness level to the genes

The fitness assignment is similar to NSGA [30, 31]. There are four performance

objectives. The four fitness computations were shown earlier in Section 3 for jitter,

throughput, round trip time and error rate. A fitness rank will be given for each

objective according to the actual objective performance. The most undominated gene

in a single objective will be assigned the fittest rank followed by the next most

undominated gene. This ranking starts from one and increases towards less fit genes.

However, genes with equal fitness will have the same ranking. The final ranking is a

summation of the four fitness ranking derived from the different objectives.

6.2 Tournament

This is primarily the tournament stage. A random assignment is done to assign 3

different groups with extra care taken to prevent any particular order of the groups. 10

genes will fall into 3 groups with members of 4, 3, 3 in each group. In the event of

similar fitness ranking for all competitions, a matter of chance will decide the

competitors’ fate. A complete tournament is held within each group and a distinctive

ranking is achieved. The top 2 players of each group will survive to the next round of

 50

competition-semifinals, while the rest of the losers will fight it out to produce a

distinctive list of winners also classified as winnersC. The top player will fight the

second best winner from another group. The winner shall proceed to the final stage

while the losers form winnersB will fight it out again. A complete tournament is held

within winnersA, winnersB and winnersC to produce their own distinctive winners.

Then the 3 groups shall form the final winners list. The aim of this tournament is to

produce a supreme winner and to eliminate individuals sitting on the same fitness

front.

6.3 Elitist method with complete competition

This is an alternative to the tournament process shown in section 6.2. In fact, this is the

process used by the weighted fitness function. The objective is to have a death match

of all the individuals in the population. By allowing every individual to have competed

with all others in the population, the true ability of the individual is obtained and

ranked. Individuals sitting on the same front will no longer destroy each other by a

matter of chance.

6.4 Crossover and mutation

Crossing over is done using two point and one point crossover. Flipping the bits of the

genes does mutation. A random selection of the new genes will be done.

6.5 Experiment Results

Experiments were conducted by iterating all experiments with different processes

changed or omitted for a fair and accurate analysis. The network environment was that

of an Intranet LAN with moderate congestion defined here as having a TCP flow rate

 51

of 40 Mbps between the 2 machines being tested. Below in Figures 6.5.1 and 6.5.2,

are results of using MOGA with tournament. The best performing gene in Figure 6.5.2

persisted shortly, due to rapidly changing network environment, even though a vast

diversity of genes were available in Figure 6.5.1.

Genotype against Iteration Number

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 1400

Iteration Number

G
en

e
ID

Figure 6.5.1: Graph of All Genotype employed against Iteration Number

Gene ID against Generation for Best Performer

0
10
20
30
40
50
60
70

0 200 400 600 800 1000 1200 1400

Generations

G
en

e
ID

Figure 6.5.2: Graph of Top Performing Genotype against Generation Number

 52

6.6 QoS Satisfaction in MOGA

The experiments were iterated between the different schemes on the Intranet LAN,

with sample sizes of ten, sub colony size of three, and all other experiment parameters

being the same as in Section 5. The average of ten results was tabulated in Table 6.6.1.

The Elitist was shown to produce better results than tournament.

Table 6.6.1: Results MOGA using Tournament vs. Elitist Schemes
 Tournament Elitist
Performance Jitter/% Error/% Tp/% RTT/% Jitter/% Error/% Tp/% RTT/%
Population 89.8 42.9 67.2 67.5 91.7 43.2 66 74.5

*Legends: Tp Represents Throughput, and RTT represents Round Trip Time.

6.7 Tournament Inadequacy

The above results in Tables 6 shows the lacklustre performance of tournament, good

for finding the absolute best, but inadequate in achieving good overall population

performance.

6.8 QoS performance of Weighted Fitness function

The weighted fitness method was repeated in the same experiment with MOGA for

consistency. Below in Table 6.8.1 are the results. Since the experiments were iterated

within the same batch, a fair comparison could be made.

Table 6.8.1: Results of Repetition of Weighted Fitness

 Weighted fitness with absolute
uniqueness in new genes

Performance Jitter/% Error/% Tp/% RTT/%

Population 83.5 37.6 82.0 77.9
*Legends: Tp Represents Throughput, and RTT represents Round Trip Time.

 53

6.9 Comparison of MOGA with Weighted Fitness

Shown below in Table 6.9.1 are the results of implementation of the MOGA compared

to the weighted fitness function method. It is seen that MOGA method produced a

higher QoS achievement compared to the weighted fitness function. MOGA is a more

ideal technique for GATP to adapt and react to the networking environment, through

its multi-objectiveness.

Table 6.9.1: Comparison of MOGA Elitist with Weighted Fitness Method

 MOGA with Elitist Weighted fitness

Performance Jitter/% Error/% Tp/% RTT/% Jitter/% Error/% Tp/% RTT/%

Population 94.8 67.8 65.1 80.3 88.4 40.5 89.5 78.4

*Legends: Tp Represents Throughput, and RTT represents Round Trip Time.

6.10 Sub Colony effects on GATP in dynamic Landscape

The experiments were done using using MOGA with elitist selection. The sample size

used was 10 and sub colony size of 3 with all other experiment parameters being the

same as in section 3. 1 set of experiment has the side colony being reduced such that

only small mutation rate and crossover of parents being 25%. Random genes were not

allowed into the sub colony. The other set contained a side colony with random genes.

Shown in Figures 2 and 3 are the results of the experiments. Using a side colony

allows GATP to perform better. A faster reaction to network changes can be seen and a

better QoS achievement in Table 6.10.1 below.

The experiments were done using using MOGA with elitist selection. The sample size

used was 10 and sub colony size of 3 with all other experiment parameters being the

same as in section 3. One set of experiment has the side colony being reduced such

that only small mutation rate and crossover of parents being 25%. Random genes were

 54

not allowed into the side colony. The other set contained a side colony with random

genes. Shown in Figures 6.10.1 and 6.10.2 are the results of the experiments. Using a

side colony allows GATP to perform better. A faster reaction to network changes can

be seen and better QoS achievement in Table 6.10.1 below. It can be seen that GATP

achieves greater QoS satisfaction when a higher degree of mutation and crossover

occurs in the sub colony for a stronger shifting balance. This occurs in an environment

of higher and more dynamic traffic.

Figure 6.10.1 Effect of Sub Colony on Throughput Performance in GATP

Notes: TP represents Throughput without sub colony while TP_Dyn represents
throughput using sub colony.

Figure 6.10.2 Effects of Sub Colony on Round Trip Time Performance in GATP

Notes: rtt represents round trip time without sub colony while rtt_dyn represents
round trip time using sub colony.

 55

Table 6.10.1: Percentage QoS Satisfaction

 Round Trip Time
Satisfaction/ %

Jitter Satisfaction
/ %

Throughput
Satisfaction / %

25% Mutation
25% Crossover 9.86 50.30 12.82
75% Mutation
80% Crossover 22.49 67.46 22.49

 56

Chapter 7

Comparison Experiments with TCP and UDP

Data transmission using TCP and UDP were also implemented on the socket client and

server. The maximum packet size was 1024 bytes, similar to GATP. GATP used

MOGA scheme and elitist selection, with QoS; Jitter, Round Trip Time, Error Rate

and Throughput of 1.5ms, 6ms, 0.05 and 2Mbps respectively. These values were

selected, as they were relatively attainable but not too easy. The sub colony size used

was three. Other parameters were same as section 4.3.1 and 4.3.2. The results are

shown below in Section 7.1.

7.1 Jitter

GATP achieved good jitter performance as compared to UDP and TCP. This is due

GATP adopting a QoS objective orientation towards jitter. Shown below in Figure

7.1.1, is the jitter performance of the 3 protocols under study. Although GATP has the

lowest jitter value, there were also instances of poor jitter. UDP and TCP achieved a

lesser range of jitter values but with a poorer performance bound.

 57

Figure 7.1.1: Jitter Performances of UDP, GATP and TCP against Transmission

Generation
Notes: udp-j represents jitter performance of udp, gatp-jitter represents jitter
performance of GATP and tcp-j represents jitter performance of TCP.

7.2 Throughput

Shown below in Figure 7.2.1 are the Throughput performances of GATP, UDP and

TCP. The throughput of GATP was worse than TCP and UDP on the whole. GATP

was able to achieve a greater range of performance by exploiting the best packet

configuration according to the network conditions. Poorer throughput of GATP is due

to efficiency issues of different Automatic Repeat Request (ARQ) schemes, which will

be discussed, later in the overhead studies on GATP.

 58

Figure 7.2.1: Throughput Performances of UDP, GATP and TCP against

Transmission Generation
Notes: udp-tp represents throughput performance of udp, gatp-tp represents
throughput performance of GATP and tcp-tp represents throughput
performance of TCP.

7.3 Round Trip Time

Shown below in Figure 7.3.1 are the performance of UDP TCP and GATP for Round

Trip Time. The Round Trip Time of GATP was much poorer than TCP and UDP. This

is mainly because GATP is not able to compete with TCP and UDP, which were

optimised greatly over many years. The packetisation delay was a main factor as much

intelligence was required at each packetisation process. There was also a micro

management of packets. The overheads of GATP will be explained later in Chapter 9.

However the QoS orientation of GATP towards a Round trip time of 6ms was fulfilled

by at least half the transmission.

 59

Figure 7.3.1: Round Trip Time Performances of UDP, GATP and TCP against

Transmission Generation

Notes: udp-rtt represents round trip time performance of udp, gatp-rtt represents
round trip time performance of GATP and tcp-rtt represents round trip time
performance of TCP.

7.4 Error Rate

Shown below in Figure 7.4.1 are the error rates of UDP TCP and. The error rate of

GATP ranged the greatest from the lowest error rate to the highest error rate equivalent

to the UDP. This is mainly because GATP is able to perform better than TCP and

UDP, through a faster search mechanism which may also result in a worse error rate.

The overheads of GATP will be explained later in Chapter 9. However the QoS

orientation of GATP towards a error rate of 0.05 was fulfilled by at least half the

transmission.

 60

Figure 7.4.1: Error Rate UDP, GATP and TCP against Transmission Generation
Notes: udp-error represents error rate of udp, gatp-err represents error rate of GATP
and tcp-err represents error rate of TCP.

 61

Chapter 8

Controlled Network Environment Experiment

To Control the network environment, the server and client computer was isolated from

the intranet and networked directly. Experiments were conducted for GATP employing

NSGA techniques with elitist and unique diverse sub colony. Single objectives

experiments were conducted on throughput, Round Trip Delay and Jitter. Solutions

were found to propagate all generation in this non-competitive environment.

To further investigate the performance of GATP with competing traffic, the

experiments below were conducted. Firstly, GATP was conducted with elitist selection

and unique diverse sub colony with no competing traffic. Other parameters were same

as section 4.3.1 and 4.3.2. The results are shown below in Section 8.1. Crossover and

Mutation probability is 75% and 80% respectively.

QoS targets for GATP was set to be Round Trip Time was 0.006s, Jitter 0.0015s, Error

Rate of less than 0.02%, and Throughput of 3.2 Mbps. The sub colony size of GATP

was 3 while the main colony was 7. Each gene was transmitted in sample sizes of 10

packets. Therefore the each generation was 100 packets.

Solution genes were found and propagated. Then at generation 20 of GATP

transmission, a UDP traffic generator was started to transmit 1024 bytes sized packets

at a speed of 1 Mbps. The size chosen was 1024 to prevent UDP fragmentation which

could in term create a bursty competing traffic. This would cause a highly uncontrolled

competing traffic quite opposed to the aim of this experiment. The UDP traffic was

 62

terminated at generation 28. This allowed GATP to adapt back to it initial non

competitive environment. Then at generation 47 the UDP traffic was again restarted

till generation 54.

8.1 Jitter and Round Trip Time

Shown below in Figure 8.1.1 is the result for jitter and round trip time, where j

represents jitter and r represents round trip time. Competing UDP traffic was

introduced at generation 20. The Round Trip Delay worsened as a result and managed

a worst value of 0.03s. However, it was restored to original Round Trip Time of

0.0055s at generation 23.3. Likewise for jitter, it managed to achieve 0.002s before the

introduction of UDP traffic at generation 20. However after the competing traffic

entered the network, jitter took a worst value of 0.0058s. This poor performance was

however, remedied by generation 23.3 where jitter was restored to original value. Thus

restoration of jitter and Round trip time took less than 4 generations with competing

UDP traffic. It can be seen from Figures 8.1.1 and 8.1.2 below that at generation 23.3

and generation 50.8, the jitter and round trip time was restored to the original levels

before the introduction of the UDP traffic. The response of GATP to the UDP traffic at

generation 20 could be seen by the poorer jitter and round trip time. However by

generation 24, GATP has found the solutions to the networking environment. When

the UDP traffic was removed at generation 28, GATP was able to continue providing

the same level of QoS in terms of jitter and RTT. The next change came at generation

47. GATP again exhibited the same robustness to change and was able to restore QoS

by generation 51.

 63

Figure 8.1.1: Jitter Performance of GATP in Controlled Network Environment

*Notes: Actual Generation number is X axis value divided by 10

Figure 8.1.2: Round Trip Time of GATP in Controlled Network Environment

*Notes: Actual Generation number is X axis value divided by 10

 64

8.2 Throughput

Figure 8.2.1 below demonstrates the throughput QoS of GATP under the same

controlled network environment. It can be seen that at generation 20, the introduction

of UDP traffic reduced the throughput of GATP traffic, which was restored to initial

original level at generation 23. Throughtput has a worst value of 1.11Mbps before

generation 20. At generation 20, GATP throughput worsened to a minimum of

0.46Mps at the worst case at generation 22. However, by generation 24, Throughput

was restored to the original performance before the competing traffic was introduced.

Likewise throughput lessened in generation 47 and was restored at generation 51.

Figure 8.2.1: Throughput Performance of GATP in Controlled Network
Environment

*Notes: Actual Generation number is X axis value divided by 10. t represents
throughput of GATP.

 65

8.3 Error Rate

Below in Figure 8.3.1 are the results for error rate. The error rate behaviour was

similar to throughput, jitter and Round Trip Time. The robustness of GATP to a

changing network environment was again demonstrated. Error rate was kept close to

zero before generation 20. However, after UDP traffic was introduced at generation 20,

GATP shown a worst error rate performance of 0.55 at generation 22. This error rate

deterioration was remedied by generation 24, where restoration to original healthy

error rate was achieved. The restoration of QoS to original levels before introduction

of any traffic was seen after GATP adapted to changes in the network. This

phenomenon was revisited in generation 47 to 51.

Figure 8.3.1: Error Rate Performance of GATP in Controlled Network
Environment

*Notes: Actual Generation number is X axis value divided by 10

 66

Chapter 9

GATP Overhead Computation

9.1 Theoretical Analysis of GATP Flow Control Overhead

GATP has implemented several flow control mechanisms combined with genetic

algorithm for optimization. The Automatic Repeat Request (ARQ), variable frame size,

was implemented for reasons of improving real time data streaming ability and exploring

the feasibility of a genetic algorithm approach. Subsequently, this section shall discuss the

mechanisms employed in GATP; These are mainly Stop and Wait (SAW) ARQ, Variable

Frame sizes and multiplexing. Finally, a proposal for a better ARQ is suggested.

9.1.1 Stop and Wait Automatic Repeat Request (SAW ARQ)

Stallings [40] describes various Automatic Repeat Request (ARQ), schemes. GATP has

adopted the most basic scheme, the stop and wait ARQ technique. The overhead of such a

technique will be studied and discussed.

Assume that the time to send 1 frame of data is

Tf = tframe + 2tprop +tack + tproc (9.1.1)

67

Where,

tprop = Propagation time from source to destination

tframe = Transmission time of a frame

tproc = Total processing time at stations for 1 transmission

tack = Time to transmit an acknowledgement

Nr = Expected number of transmission of a successful frame

α = Propagation Time (9.1.2)
Transmission Time

Assume that transmission time is normalized to 1 and therefore propagation time is α.

p is the probability that a single frame is in error

Time taken to send 1 frame = Nr(2tprop + tframe + tack + tproc) (9.1.3)

68

9.1.2 GATP and Stop & Wait (SAW)

The total time taken to send a successful frame of data is

T = Nr (2tprop + tframe + tack + tproc) (9.1.4)

The utilization or efficiency is,

U= (h/h+d)* tframe (9.1.5)
Nr(2tprop + tframe + tack + tproc)

Where Nr = 1/(1-p), h=header size, d=useful data size

Using

U= (h/h+d)*(1-p) (9.1.6)
2 α + 1+ (tack + tproc)/ tframe

U= (h/h+d)*(1-p) (9.1.6)

2 α + 1+ (tproc)/ tframe

* Notes: tack is the processing time of acknowledgement packet which is neglected since
its 100 times smaller that tproc as shown below in Section 9.1.3

9.1.3 Processing Overhead at Stations

An estimated 30123 and 1000 lines of machine instructions from the GATP programs are

processed at the server and client stations respectively. A processor of Pentium 1.5Ghz

with a capability of processing 1.5x109 instructions in a single clock cycle is used.

Therefore the processing time is obtained for the stations is as shown in the Table 4

69

below. The average processing time, tproc is 1.38x10-14s. The time to process an

acknowledgement packet which is smaller than a frame since it only contains no data at

the client stations would be 4.44x10-16.

Table 9.1.1: Processing Time Computation

Station Processor /hz Clock Period/s

Processor
Instructions per
cycle

Total
Instructions Time taken/s

Server 1.50E+09 6.67E-10 1.50E+09 30123 1.34E-14
Client 1.50E+09 6.67E-10 1.50E+09 1000 4.44E-16

9.1.4 GATP Overhead in LAN with SAW ARQ

LAN is considered in this study Utilization in GATP using SAW. In LANs distances

typically range from 0.1 to 10km and data rates range from 10 to 100Mbps. Link speed for

copper medium is approximately 0.67 times the speed of light while link speed is speed of

light for optic fiber. Shown below in Tables 9.1.2 and 9.1.3 are the calculated utilization

or efficiency of Stop and Wait ARQ on LAN for minimum and maximum frame size

respectively. A shorter distance of 0.1 km can be seen in both tables to produce a better

utilization than longer distances. Best utilization is achieved with a shorter distance

between stations. A slightly higher utilization is achieved when the data rate is slower at

10Mbps compared to 100Mbps. Maximum and minimum frame sizes used in Tables

9.1.2-9.1.5 are obtained from Section 4.3.1, which are 7712 bits and 512 bits respectively.

Computation for actual useful data are derived from Equation 9.1.7 in Tables 9.1.2–9.1.5.

70

Utilization is derived from Equation 9.1.6.

Actual Useful Data= Frame Size –Header Size (9.1.7)
Frame Size

 *Notes Header size used is 480 bits from Section 3.3 Figure 3.3.1.

For example in Table 9.1.2 first row,

For a Distance 0.1km, Link Speed 2.00E+08/ms-1, Frame Size 512 / bits, DataRate 10

/Mbps,

 Min Actual Useful data ratio = Frame Size –Header Size / Frame Size
= (512-480)/512
= 0.0625

α =Propagation Time / Transmission Time

 = (Distance/Link Speed) / (FrameSize/Data Rate)

= (0.1*1000)/2x108 / 512/10*106)
= 0.009766

Min Utilization, U = Useful Data Ratio * 1
 2 α + 1+ (tproc)/ tframe

 = 0.0625 *1/ [2x0.009766 + 1 + 1.38x10-14/(512/10x106)]

= 0.0613

71

Table 9.1.2 Study of GATP Efficiency on LAN
using Minimum Frame Size Traversing Copper Media

Distance

/km
Link Speed

/ms-1

Min
Frame

Size/ bits

Data
Rate/
Mbps

Min Actual
Useful data

ratio α
Min

Utilization
0.1 2.00E+08 512 10 0.0625 0.009766 0.06130
10 2.00E+08 512 10 0.0625 0.976563 0.02116
0.1 2.00E+08 512 100 0.0625 0.097656 0.05228
10 2.00E+08 512 100 0.0625 9.765625 0.00304

Utilization increases, as the useful data size is maximal reducing the percentage overhead

of header data in a packet, as shown in Tables 9.1.3 and 9.1.4. The utilization would range

from 0.004 to 0.937, depending on the strategy of GATP to employ varying packet sizes.

However, the SAW ARQ adopted, would see a better utilization when the distance is

shorter and data rate not as fast.

Table 9.1.3: Study of GATP Efficiency on LAN
using maximum frame size traversing copper media

Distance
/km

Link Speed
/ms-1

Max Frame
Size/ bits

Data
Rate/
Mbps

Max Actual
Useful data

ratio α
Max

Utilization
0.1 2.00E+08 7712 10 0.9378 0.000648 0.93654
10 2.00E+08 7712 10 0.9378 0.064800 0.83011
0.1 2.00E+08 7712 100 0.9378 0.006483 0.92575
10 2.00E+08 7712 100 0.9378 0.648340 0.40831

72

Table 9.1.4: Study of GATP Efficiency using Minimum Frame Size
on LAN Traversing Optic Fibre Media

Distance
/km

Link Speed
/ms-1

Min Frame
Size/ bits

Data
Rate/
Mbps

Min Actual
Useful data

ratio α
Min

Utilization
0.1 3.00E+08 512 10 0.0625 0.006510 0.06169
10 3.00E+08 512 10 0.0625 0.651047 0.02714
0.1 3.00E+08 512 100 0.0625 0.065104 0.05529
10 3.00E+08 512 100 0.0625 6.510417 0.00445

Table 9.1.5: Study of GATP Efficiency using Maximum Frame Size on LAN
Traversing Optic Fibre Media

Distance
/km

Link Speed
/ms-1

Max
Frame

Size/ bits

Data
Rate/
Mbps

Max Actual
Useful data

ratio α
Max

Utilization
0.1 3.00E+08 7712 10 0.9378 0.0004322 0.93694
10 3.00E+08 7712 10 0.9378 0.0432226 0.86314
0.1 3.00E+08 7712 100 0.9378 0.0043222 0.92972
10 3.00E+08 7712 100 0.9378 0.4322268 0.50296

The above computation of overhead is that of actual data transmission. An alternative

approach is to scout for network conditions. For a LAN copper media network, the

utilization is between the range of 0.003 and 0.937 from Tables 9.1.2 and 9.1.3. Thus a

periodic sending of data packets could be a feasible means of measuring the best genetic

performance. The accuracy of results can be peg to the sampling size. A utilization cost of

0.003 and 0.937 could be used to find the best genes for actual data transmission. Rather

than finding a single optimum solution, the entire main gene colony of GATP can be

73

retained and used for subsequent data transmission.

9.1.5 GATP Utilization under Varying Error Rates

Show below in Figure 9.1.1 is the efficiency of SAW in different values of α. It can be

seen that the greatest efficiency is achieved when α is low. This only occurs for

propagation time being very much shorter than the transmission time. This can be

achieved through faster transport media like optic fiber or satellite medium. Figure 9.1.1

actually show the efficiency as error rate is increased. Efficiency as expected decrease

with increasing error rate due to retransmission overhead and acknowledgement waiting

time. The main overhead of such an approach is attributed mainly to only one frame being

in flight as the sender transits into idle state, to wait for acknowledge. This overhead

increases as flight time increases or when data rate increases as seen in above Equation

9.1.6.

74

Figure 9.1.1: Effects of α Value on the Performance of SAW

ARQ in terms of Utilization under Different Error Rate

9.2 Variable Frame sizes

9.2.1. Maximum Transmission Unit (MTU)

Different network transmission architectures have different physical limit for the number

of data bytes in a given frame, which is referred to as the MTU of the network. RFC 1191

has specified the MTU for several architectures as shown in Table 9.2.1 below. IEEE

802.3 Ethernet has a MTU of 1500 bytes.

75

Table 9.2.1: Maximum Frame Sizes

Network Architecture MTU/
Bytes

802.3 Ethernet 1500
4 Mb Token Ring 4464
16 Mb Token Ring 17914
FDDI 4352
X.25 576

9.2.2. Throughput Computation for GATP

GATP has employed an IP delivery method with encapsulated GATP control Headers.

These do however introduce overheads. Earlier in Section 9.1.2, utilization of GATP was

discussed. This section will discuss the throughput of GATP.

Causes of Network Delay:

1. Transmission Delay

2. Propagation Delay

3. Queuing Delay

4. Processing Time

Network delay is caused by transmission delay, propagation delay, queuing delay, and

processing time at stations. The queuing time is taken to be very much smaller than the

propagation time and transmission time and can be neglected for simplicity of

76

computation. The transmission time for one packet is tf. When no error occurs,

acknowledgement packet arrives at the transmitter site, tack or βtf seconds after

transmission. The tack used in this section is the time that the acknowledgement packet

takes to reach the sending station. Thus it includes the processing, and propagation time.

Retransmission-Time-Out, tout is set as 2*tack, so that its twice the computed time, tack

similar to TCP

Packet Error Probability is,

p = 1 - (1-e)d+h (9.2.1)

Where h= Header size in bits, d=Data size in bits, e= Error

probability of link with error rate of each bit being independently.

Retransmission will begin after time tret,

tret = tf + tout (9.2.2)

 = tf (1 + 2β)

Total Time, for a single packet transmission including retransmission,

T= tf + R(1 + 2β) tf (9.2.3)

Where R is the number of retransmission.

77

AverageTotal Time, for a single successful packet including retransmission time,

Ť = tf + Ř(1 + 2β) tf (9.2.4)

Where Ř is the number of retransmission.

Probability of packet retransmitting k times,

rk = pk(1-p) (9.2.5)

Number of retransmission,

∞
Ř= ∑ kpk(1-p) (9.2.6)

 K=0

 = p / (1-p)

AverageTotal Time, for a single successful packet including retransmission time,

Ť = p(1 + 2β) + (1-p) (d+h) (9.2.7)
 1-p C

 = (2pβ+1) (d+h)
 1-p C

Maximum packet rate,
 λmax = 1 / Ť (9.2.8)

 = 1-p C
 (2pβ+1) (d+h)

 = C (1-e)d+h

 (2β(1-(1-e) d+h)+1) (d+h)

78

tack=2βtf

tack = 2tf + tprop + tproc

β=(2tf + tprog + tproc) / 2tf (9.2.9)

9.2.3. Throughput of GATP with varying Packet Sizes

Using values of c= 100Mbps, β=2, e=0.00001, h=480. The table below is obtained. It can

be seen that with a smaller d value, a greater inefficiency is incurred as opposed to a larger

d value. However, In spite of these inefficiencies, the main strength comes in a reduced

error probability shown in Equation 6. Average total time, Ť for a single successful packet

including retransmission time, is shown in Table 9.2.2 below to be fastest for a smaller

sized packet. A higher success and faster transmission is compromised with a larger

overhead.

Table 9.2.2: Throughput of Different Packet Sizes

d/bits p β

λmax /
bits per

sec

Useful
Data rate/
bits per sec

Useful
data/ % Ť/ s

32 0.00001 1 193327.7 12083.0 6.3 512.0
2432 0.00001 1 32424.5 27079.9 83.5 2912.0
4832 0.00001 1 16973.3 15439.6 91.0 5312.0
7232 0.00001 1 11175.0 10479.4 93.8 7712.0

79

9.2.4 Analysis of Throughput performance against packet sizes

Shown below in Figure 9.2.1 is a graph of useful throughput data. The throughput

response to the varying size of useful data embedded in each packet with header size of

480 bits. Increasing the packet size does increase the throughput on to a certain point of

about 800bits as shown in the graph, which correspond to a total packet size of about 1180

bits. Increasing of packet size beyond this value actually reduces throughput. This is due

to the higher loss probability of a larger packet. Increasing packet size that could earlier

increase throughput, has on the contrary decreased throughput. The higher loss probability

of a large packet has become an overhead to throughput.

80

Figure 9.2.1: Throughput of Useful Data against Size of Useful data in each

Packet

Figure 9.2.2 below shows the average total time of 1 successful packet transmission

inclusive of all retransmission according to the equations explained earlier. It can be seen

that the time taken for a successful packet increases steadily as the packet size increases.

The speed of transmission is in fact an advantage to round trip time. The rate of increase

of time in figure 3 can be seen to be higher after packet useful data size 800 bits, where

error rate of the larger packet has diminished the benefits of increasing packet size.

81

Figure 9.2.2: Average Total Time to Send a Successful Packet

against Size of Useful Data in each Packet

The header size of 480 bits consisted of IP header of 160 bits and GATP header of 320

bits. Compression of GATP header is very feasible, since only IP header is necessary for

transport. Such compression will allow a larger header size with more QoS factors to be

implemented. According to Moore’s Law, processing capability is ever increasing. These

factors of improving compression and processing power can certainly reduce processing

time and header size in time to come.

82

9.3 Automatic Repeat Request (ARQ) Schemes

There are basically three types of ARQ being, Stop & Wait(SAW), Selective Reject(SR),

and Go-Back-N(GbN). The current implementation of GATP has chosen to adopt SAW

for its simplicity.

9.3.1 SAW ARQ

This was explained earlier in section 9.1.

U= (h/h+d)*(1-p) (9.3.1)
2α + 1+ (tack + tproc)/ tframe

= (h/h+d)*(1-p)
2α + 1+ (tack + tproc)/ tframe

= (h/h+d)*(1-p)
2α + 1+ (tproc)/ tframe

*Notes: tack is negligible as discussed earlier in section 9.1.

9.3.2 SR ARQ

This method retains the channel utilization efficiency of Go-Back-N ARQ and yet

improves on the retransmission method where retransmission of single error frame is

allowed rather than a mandatory entire window retransmitting. Out of order frames are

also retained in the buffer. The maximum window size is 2k-1 due to the overlapped sender

and receiver windows.

83

When packets acknowledgement of first frame arrives at source before the sending of N

packets,

 U= (h/h+d)(1-p) N>2α +1 (9.3.2)

When acknowledgment of first packet arrive at source after the sending of N packets,

U= N*(h/h+d)*(1-p) N<2α +1 (9.3.3)
2α + 1+ (tack + tproc)/ tframe

= N*(h/h+d)*(1-p)
2α + 1+ (tproc)/ tframe

*Notes: tack is negligible as discussed earlier in section 9.1.

It can be seen from Equations 9.1.6, 9.3.2 and 9.3.3, that SR ARQ has a significantly

higher utilization than SAW. The waiting of a single packet in flight for SAW ARQ

wastes utilization. SR ARQ gains utilization advantage by allowing packets to be sent

while waiting for acknowledgement. In fact, when the acknowledgment packet returns

before N packets are sent, SR ARW is at least double the efficiency of SAW ARQ. If

acknowledgment takes very long, much longer than the sending of N packets, and this

delay is acceptable, efficiency is at best, N/2 times faster than SAW ARQ.

84

9.3.3. GbN ARQ

Go-Back-N ARQ is designed to allow continuous frames to utilize channel while waiting

for acknowledgement. This will cut down the idle time of source. A limited number of

frames, which are collectively referred to as the window size is used in this technique.

The source will transmit the entire window of frames without waiting for the

acknowledgement of each frame. A time out at the end of the window transmission will

see the source re-transmitting the entire window. An acknowledgement from the

destination can also allow the source to retransmit the frames starting from the first lost

frame. This allows efficient utilization of the channel. The maximum window size is 2n-1.

For Go back N ARQ, the K frames are retransmitted upon an error. Using Nr as the

expected number of transmission of a frame, below is the calculation of utilization.

 ∞
Nr = ∑ f(i)pi-1(1-p) (9.3.4)

 i=1

Using f(i), total number of frames transmitted if original frames takes i transmission,

 f(i)= 1+(i-1)K

Nr = 1-p+Kp (9.3.5)
1-p

K is approximated as (2α +1) for N>2α +1 and K =N for N<(2α +1).

85

Nr = 1+2α p K=2α +1 (9.3.6)
1-p

Nr = 1-p+Np K=N (9.3.7)

1-p

U = (h/h+d)*(1-p) N>2α +1 (9.3.8)
1+2αp

U = N*(h/h+d)(1-p) N<2α +1 (9.3.9)
(2α + 1+ (tproc)/ tframe)(1-p+Np)

9.3.4 Comparison of ARQs

A comparison of the utilization of the different ARQ schemes is done in this section to

show the efficiency of each scheme.

9.3.4.1 SAW & GbN

This section will compare the efficiency of SAW over GbN. The equations below show

that SAW ARQ is less efficient that GbN when error rate is not zero.

Usaw = 1+2αp N>2α +1 (9.3.10)
UGbN 2α + 1+ (tproc)/ tframe

Usaw < p
UGbN

86

Usaw = (1-p+Np) N<2α +1 (9.3.11)
UGbN N

 1 <= Usaw <= 1

N UGbN

The utilization of GbN ARQ seen in Equations 9.3.10 and 9.3.11, are better than SAW

ARQ shown in Equation 9.1.6. If the acknowledgment packets take very much longer than

the sending of N packets, then efficiency of GbN is slightly better than SAW. However,

when acknowledgment is slow very much slower than then sending of N packets, then

GbN has a at best N times the efficiency of SAW. However, GbN when compared to SR

ARQ, has slightly worse efficiency than SR ARQ when acknowledgment is faster than the

sending of N packets. However, when acknowledgement is slower than sending of N

packets, and error rate is very low, then GbN and SR have similar efficiency. This

efficiency will favour SR as error rate increases. SAW seems to have poor efficiency and

is only almost as good as SR and GbN when the acknowledgment is fast.

87

9.3.4.2. SAW & SR

This section will compare the efficiency of SAW over SR. Selected Reject Method is

more efficient than SAW in all circumstances of error conditions. It can be seen from the

below equations that as N and α increases, the efficiency of SR outperforms SAW

proportionally.

Usaw = 1 N>2α +1 (9.3.12)
UGbN 2α + 1+ (tproc)/ tframe

*Notes: tack is negligible as discussed earlier in section 9.1.

1 <= Usaw <= 1
2 UGbN 2α +1

Usaw = 1 N<2α +1 (9.3.13)
 UGbN N

9.3.5. Performance of ARQ

The performance of the ARQ shall be studied in terms of utilization. The scalability of

GATP to extend beyond a smaller LAN network shall be studied in this section.

88

9.3.5.1 Short Distance Performance

Figure 8 below shows the utilization for close proximity travel of 100m, with link speed of

2.x108ms-1 and transmission speed 100Mbps. Performance of SAW in short distance is not

as efficient as other ARQs. SAW ARQ achieved a utilization of 0.47. SR and GbN ARQs

achieved maximum efficiency constrained by the header size up to an error rate of 0.47.

The performance of GbN is optimum at window size 100, but SR ARQ increases

utilization with larger window size.

Figure 9.3.1: ARQ Utilization under Different Error Rates
with α =0.0065, distance=100m

89

9.3.5.2 Long Distance Performance

However in longer distances, ∂ increases due to longer propagation time. Figure 7 below

shows the utilization of maximum packet sizes. SAW ARQ achieved a zero error rate

utilization of 0.0007 as compared to 0.47 in shorter distance earlier. GbN ARQ with

window size 10 achieved a zero error rate utilization of 0.0057. GbN ARQ’s utilization

improved when window size increased from 10 to 100. SR ARQ with largest window size

200 outperforms all ARQs with an optimum utilization of 0.0093 up to error rate of 0.97.

The effects of increasing window sizes can be seen to increase utilization up to a certain

point for GbN ARQ but proportionally throughout for Selective Reject ARQ. It can be

seen that, SR scheme actually improves utilization to maximum as window sizes

increases. GbN was only able to increase efficiency to maximum when error rate is low by

increasing window size. This has displayed the effects of improving efficiency through

increasing window size for the two schemes; Gbn and SR.

90

Figure 9.3.2: ARQ Utilization under Different Error Rates
with α =6.48, distance=100km

9.3.5.3 Scalability of GATP

Thus by adopting an acknowledgement of larger window size, the utilization of SAW

ARQ in GATP can be improved. This implementation of GATP is only for SAW ARQ.

However, window sizing can be implemented in the option header field of GATP as

discussed earlier. Adopting the best performing ARQ, SR ARQ scheme was shown to

increase efficiency. Using the largest window size possible, 2k-1 where k is the number of

bits available in the header field, further improves SR ARQ. Complexity is the only

91

drawback, although such an approach combined with header compression, will improve

optimization to maximal even at high error rates. Alternatively, utilization of GATP can

be improved through a multiple streaming technique to upscale the number of concurrent

streams to increase utilization.

92

Chapter 10

Conclusion

GATP allows reconfiguration and evolution of networking protocols to adapt to network

environment. Adaptation was achieved by GAs through selection of the best network

protocol configuration at run time. The introduction of sub colony and different sampling

sizes were shown to provide adaptation of varying speed. A smaller sampling size and

larger sub colony provide the fastest adaptation and vice versa.

Through weighted and single fitness functions for GATP, the networking environment is

shown to be a dynamic landscape and multi objective problem. The issues of dynamic

landscaping were also explored.

GATP employed a MOGA technique to allow a better satisfaction of QoS in networking.

Although the MOGA tournament process is useful for discovering the best-fit solution, the

overall population performance suffers. GATP has been shown to provide QOS

satisfaction, configurability and adaptability. GATP is able to better network performance

in jitter, round trip time and even throughput. However, due to the inefficiency of GATP

in terms of overheads, it cannot reach beyond certain high levels of QoS. Although GATP

93

lags UDP and TCP due to its inefficiency, it has potential in achieving QoS and

adaptability.

Work in this thesis also addresses the unique dynamic landscape of the networking

environment, and suggests solutions using traditional MOGA which was not built

specifically for networking, but is suitable for multiple network QoS achievements. For

example, is a scenario when the network environment is assumed to have only 2

distinctive environment of static and dynamic. In a static network environment, GATP

adopts a less frequent injection of migrant population, as the main colony need not

traverse elsewhere. On the contrary, in a dynamic network environment, frequent injection

of migrant population is necessary to detect changes and shift the main colony towards

best performance. Strategies to enhance a greater sensitivity and faster shifting of colony

towards best performance would require a more frequent, diverse migrant population.

Alternatively, GATP can be left unchanged with a fixed main and migrant colony size as a

less optimal approach, due to the lack of shifting signals in dynamic environment. This

approach creates too much noise in static environment. This dynamic landscaping problem

in networking is exemplified in GATP as a result of the studies on the low-level packet

behavior. GATP uses low-level packet changes to achieve QoS and efficiency, opposed to

TCP’s windowing technique. Other protocols like TCP and UDP, follow the size of MTU

94

according to different network architectures.

GA is used to find the best solution in a pool of 64 candidate solutions. The algorithm

may not be fully optimized in such a small solution space and will be more effective in a

larger solution space. However, there are some issues involving solution space. A smaller

search space decreases the search time for the best effort QoS solution which may be

necessary in a dynamic environment where the time step to the next change may be

extremely short. This is a compromise of search time and best solution. For example

assuming that the gene pool is increased to 4096. Each gene of the original 64 candidates

solutions now represent a group of another 64 solutions. There is a greater chance of

solutions being churned out within the same group as compared to the earlier case of

having only 64 candidates. This may be unnecessary if all solutions within the same group

provide the same fitness. A possible improvement to the gene pool would be to offer a

finer calibration through a greater gene pool only after solutions in the higher groups have

been fully explored. A small gene pool accomplishes a breadth first search and upon

exhaustion of solutions, a further depth search can be done. This will reduce the overheads

of GATP to only carry a larger header when depth search is launched.

GATP can be deployed in multicasting operations. GATP when configured for the entire

95

routed data transmission may only be as good as the weakest link. Grouping networks in

multicasting prevents replicated data transmission. At routers where data is replicated to

different destinations, different GATP configurations can be used to achieve optimal

performance. This will allow QoS oriented multicasting session where the quality of data

transmission is based on what an end user would like to have. In fact, routers, which

disseminate replicated multicasting information, can configure GATP packets to achieve

adaptation for these networks.

96

 References

[1] G. Ghinea, J. P. Thomas, R. S. Fish, “Multimedia, Network Protocols and Users-

Bridging the Gap”, Proceedings of the Seventh ACM International Conference on

Multimedia (Part 1), pp. 473-476, October 1999.

[2] Rob Procter, Mark Hartswood, Andy McKinlay , Scott Gallacher, “An Investigation of

the Influence of Network Quality of Service on the Effectiveness of Multimedia

Communication”, Proceedings of the International ACM SIGGROUP Conference on

Supporting Group Work, pp. 160-168, November 1999.

[3] Hong, D.W.K. Yoo, J.H. Kim, W.S. Hong, C.S., “An Integrated Service and Network

Management System for Point-to-Multipoint Reservation Service in an ATM Network”,

Network Operations and Management Symposium, 2002 (NOMS 2002), IEEE/IFIP, pp.

545 –558, 2002.

[4] Jian-Hao Hu, Yeung, K.L., “IRED: A Router Algorithm for Supporting Integrated

Services in the Internet”, International Conference on Communications, 2002 (ICC 2002),

IEEE, Vol. 4, pp. 2358 –2362, 2002.

97

[5] R. Braden, L. Zhang, S. Berson, S. Herzog and S. Jamin, Resource, “ReSerVation

Protocol (RSVP)”, Version 1, Functional Specification RFC 2205, September 1997.

[6] Salles, R.M., Barria, J.A., “Utility-Based Scheduling Disciplines for Adaptive

Applications over the Internet”, IEEE Communications Letters, Vol. 6, Issue 5, pp. 217 –

219, May 2002.

[7] Fang Hao; Zegura, E.W.; Ammar, M.H., “QoS routing for Anycast Communications:

Motivation and an Architecture for DiffServ Networks”, IEEE Communications

Magazine, Vol. 40, Issue 6, pp. 48 –56, June 2002.

[8] C. Williamson, “Internet Traffic Management”, IEEE Internet Computing Vol. 15,

Issue 4, pp. 70-74, Nov-Dec 2001.

[9] Sheng-Uei Guan and Zhiqiang Jiang, “A New Approach to Implement Self-modifying

Protocols”, IEEE International Symposium on Intelligent Signal Processing and

Communication Systems, pp. 539-544, Nov. 2000.

[10] Sheng-Uei Guan and Zhiqiang Jiang, “An Adaptable QoS-centric Transport Protocol

98

Based on Genetic Algorithms” Proceedings of the IASTED, International Conference on

Advances in Communications, Anaheim, CA92804: ACTA Press, pp. 13-18, 3 July 2001.

[11] PK McKinley, E.P. Kasten, S.M. Sadjadi and Z.Zhou, “Realizing Multi-Dimensional

Software Adaptation,” 16th Annual ACM International Conference on Supercomputing,

New York City, NY, June 23rd, 2002.

[12] Fish, R.S.; Graham, J.M.; Loader, R.J., “DRoPS: kernel support for runtime

adaptable protocols”, Proceedings of the 24th Euromicro Conference, 1998, Vol. 2, pp.

1029 –1036, 1998.

[13] Gary T. Wong, Matti A. Hiltunen, and Richard D. Schlichting, “A Configurable and

Extensible Transport Protocol”, Proceedings of the 20th Annual Conference of IEEE

Communications and Computer Societies (INFOCOM 2001), Anchorage, Alaska, pp.

319-328, April 2001.

[14] Wen-Ke Chen, Matti A. Hiltunen, and Richard D. Schlichting, “Constructing

Adaptive Software in Distributed Systems”, Proceedings of the 21st International

Conference on Distributed Computing Systems (ICDCS-21), Mesa, AZ, pp. 635-643,

99

April 2001.

[15] B.C. Li and K. Nahrstedt, “A Control Based Middleware Framework for Quality of

Service Adaptations”, IEEE Journal on selected areas in Communications, Vol. 17, No.9,

September 1999.

[16] B. Stiller, C. Class, M. Waldvogel, G. Caronni, and D.Bauer, “A Flexible

Middleware for Multimedia Communication: Design Implementation and Experience,”

IEEE Journal of Selected Areas in Communications, Vol. 17, No. 9, pp. 1580-1598,

September 1999.

[17] Matti A. Hiltunen, Richard D. Schlichting, Carlos A. Ugarte, and Gary T. Wong ,

“Survivability through Customization and Adaptability: The Cactus Approach.” DARPA

Information Survivability Conference and Exposition (DISCEX 2000), pp. 294-307,

January 2000.

[18] Nina T. Bhatti, Matti A. Hiltunen, Richard D. Schlichting, and Wanda Chiu, “Coyote:

A System for Constructing Fine-Grain Configurable Communication Services”,. ACM

Transactions on Computer Systems, Vol. 16, No. 4, pp. 321-366, November 1998.

100

[19] D. Schmidt, D. Box, and T. Suda, “ADAPTIVE: A Dynamically Ensembled Protocol

Transformation and Integration and Evaluation Environment”, Concurrency: Practice and

Experience, Vol 5, No.4, pp 269-286, June 1993.

[20] M. Hayden, “The Ensemble System,” Technical Report, TR98-1662, Department of

Computer Science, Cornell University, Jan 1998.

[21] Doll, A.; Verstege, J.F., “ An Evolution Strategy Based Approach for a Congestion

Management System”, Power Tech Proceedings, 2001 IEEE Porto, pp. 6, Vol.1, 2001.

[22] Hsinghua Chou, G. Premkumar, Chao-Hsien Chu, “Genetic Algorithms And Network

Design: An Analysis Of Factors Influencing GA's Performance,” eBusiness Research

Center Working Paper 09-1999.

[23] Jiang, J., “A Fast Competitive Learning Algorithm for Image Compression Neural

Networks”, IEE Electronic Letters, Vol. 32, No. 15, pp. 1380-1381, 1996.

[24] I.K. Karez-Duleba, “Dynamics of Infinite Populations Evolving in a Landscape of

101

Uni- and Bimodal Fitness Landscapes”, IEEE Transactions on Evolutionary Computation,

Vol. 5, No.4, August 2001.

[25] J.J. Grenfenstette, “Evolvability in Dynamic Landscapes: A Genetic Algorithm

Approach”, Proceedings of 1999 Congress on Evolutionary Computation, Vol. 3, pp.

2031-2038, 1999.

[26] M. Wineberg and F. Oppacher, “ Enhancing the GA's Ability to Cope with Dynamic

Environments”, Proceedings of the 2nd Conference on Genetic and Ev. Comp. (GECCO-

2000), San Francisco, Morgan Kaufmann, pp. 3-10, 2000.

[27] F. Oppacher and M. Wineberg, “ Reconstructing the Shifting Balance Theory in a

GA: Taking Sewall Wright Seriously”, Proceedings of 2000 Congress on Ev. Comp.

(CEC2000), IEEE Press, pp. 219-226, 2000.

[28] SK Oh, C.Y. Lee, and J.J. Lee, “ A New Distributed Evolutionary Algorithm for

Optimization in Non Stationary Environments”, Proceedings of the Congress on

Evolutionary Computing 2002 (CEC ’02), Vol. 1, pp. 279-284, 2002.

102

[29] Cedeno, W. Vemuri, V.R., “On the Use of Niching for Dynamic Landscapes”, IEEE

International Conference on Evolutionary Computation, pp. 361 –366, 1997.

[30] Dias, A.H.F.; de Vasconcelos, J.A., “Multiobjective Genetic Algorithms Applied to

Solve Optimization Problems”, IEEE Transactions on Magnetics, Vol. 38, Issue 2, Part 1,

pp. 1133 –1136, March 2002.

[31] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., “A Fast and Elitist Multiobjective

Genetic Algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, Vol. 6

Issue 2, pp. 182 –197, April 2002.

[32] Fonseca, C.M.; Fleming, P.J., “Multiobjective Optimization and Multiple Constraint

Handling with Evolutionary Algorithms. I. A unified formulation”, IEEE Transactions on

Systems, Man and Cybernetics, Part A, Vol. 28 Issue 1, pp. 26 –37, Jan. 1998.

[33] Rodriguez-Vazquez, K.; Fleming, P.J., “Multi-objective Genetic Programming for

Nonlinear System Identification”, Electronics Letters, Vol. 34, Issue 9, pp. 930 –931, 30

April 1998.

103

[34] Ishibuchi, H.; Murata, T., “A Multi-Objective Genetic Local Search Algorithm and

its Application to Flowshop Scheduling”, IEEE Transactions on Systems, Man and

Cybernetics, Part C: Applications and Reviews, Vol. 28, Issue 3, pp. 392 –403, Aug.

1998.

[35] Bingul, Z., Sekmen, A.S., Palaniappan, S.; Zein-Sabatto, S., “Genetic Algorithms

Applied to Real Time Multiobjective Optimization Problems,” Proceedings of the IEEE

Southeastcon 2000, pp. 95 –103, 2000.

[36] Obayashi, S., Sasaki, D., Takeguchi, Y., Hirose N., “Multiobjective Evolutionary

Computation for Supersonic Wing-Shape Optimization”, IEEE Transactions on

Evolutionary Computation, Vol. 4, Issue 2, pp. 182 –187, July 2000.

[37] Haiming Lu Yen, G.G., “Multiobjective Optimization Design via Genetic

Algorithm,” Proceedings of the 2001 IEEE International Conference on Control

Applications (CCA '01), pp. 1190 –1195, 2001.

[38] Costa, L.; Oliveira, P., “An Evolution Strategy for Multiobjective Optimization”,

Proceedings of the Congress on Evolutionary Computation 2002 (CEC '02), Vol. 1, pp. 97

104

–102, 2002.

[39] Farina, M.; Sykulski, J.K., “Comparative Study of Evolution Strategies Combined

with Approximation Techniques for Practical Electromagnetic Optimization Problems”,

IEEE Transactions on Magnetics, Vol 37, Issue 5, Part 1 , pp. 3216 –3220, Sept. 2001.

[40] William Stallings. “Data and Computer Communications”, Prentice Hall Inc., Fifth

Edition, 1997, pp. 158-197.

105

Appendix A

Publications

1. “Intelligent Protocol Design Using Genetic Algorithm”, International

Conference in Networks 27-30 Aug 2002, Singapore, Chek Liang Dominic Boh,

SU Guan.

2. “An Intelligent Transport Protocol Based on Genetic Algorithm”, Submitted

to Journal, SU Guan, Chek Liang Dominic Boh.

3. “Genetic-Algorithm Based Transport Protocol for Communicating under a

Dynamic Networking Environment”, Submitted to Journal, SU Guan, Chek

Liang Dominic Boh.

106

