

XTree and XTreeQuery

for Declarative XML Querying

CHEN ZHUO
(B.Comp (Hons.), NUS)

A THESIS SUBMITTED

 FOR THE DEGREE OF MASTER OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments i

Acknowledgments

First and foremost, I would like to thank my supervisor, Professor Ling Tok Wang, for his

invaluable guidance and advice throughout my whole research work. Throughout the

project, he has been guiding me very carefully not only on how to solve problems, but also

on how to solve them efficiently and completely. I would like to thank him also for his

kindness, patience, and his ingenuity in solving the problems. His priceless remarks,

suggestions and supports always encouraged me to strive for good work.

Also I would sincerely appreciate my lab fellows, Chen Yabin, Ni Wei, He Qi and Li

Changqing for their generous suggestions and help in my research, and for the pleasant

and friendly environment of the database research lab.

Table of contents ii

Table of contents

Acknowledgments ………………………………………………………………….. i

Table of contents …………………………………………………………………… ii

List of figures ………………………………………………………………………. v

List of tables ………………………………………………………………………... vi

Summary …………………………………………………………………………… vii

Chapter 1. Introduction …………………………………………………………… 1

Chapter 2. Preliminaries …………………………………………………………... 4

2.1 XPath ………………………………………………………………………... 5

2.2 XQuery ……………………………………………………………………… 8

2.3 Limitations of XPath and XQuery ………………………………………….. 12

2.3.1 Limitations of XPath ………………………………………………….. 12

2.3.2 Limitations of XQuery ………………………………………………... 15

2.4 Other declarative XML query languages …………………………………… 24

2.5 Modeling XML documents as in databases ………………………………… 33

2.5.1 XML query data model ……………………………………………….. 34

2.5.2 Complex object data model …………………………………………… 35

2.5 Summary ……………………………………………………………………. 38

Table of contents iii

Chapter 3. XTree …………………………………………………………………... 40

3.1 XTree syntax ………………………………………………………………... 41

3.2 XTree for querying ………………………………………………………….. 42

3.2.1 Binding variables on URLs …………………………………………… 43

3.2.2 Binding variables on XML data ………………………………………. 44

3.2.3 List-valued variables and OO functions ………………………………. 47

3.2.4 Conditions …………………………………………………………….. 51

3.3 XTree for result construction ……………………………………………….. 52

3.4 Summary ……………………………………………………………………. 54

Chapter 4XTreeQuery …………………………………………………………….. 56

4.1 Basic syntax of XTreeQuery ………………………………………………... 57

4.2 Join ………………………………………………………………………….. 58

4.3 Negation …………………………………………………………………….. 60

4.4 Group by …………………………………………………………………….. 62

4.5 Recursion ……………………………………………………………………. 65

4.6 Quantification ……………………………………………………………….. 67

4.7 Special queries ………………………………………………………………. 68

4.7.1 URL-related querying ………………………………………………… 68

4.7.2 Structure level querying ………………………………………………. 69

4.7.3 Sample querying ………………………………………………………. 70

4.7.4 Top-k querying ………………………………………………………... 70

4.8 Updates ………………………………………………………………............ 71

4.9 Comparison of related works ………………………………………………. 73

4.10 Summary ……………………………………………………………........... 76

Table of contents iv

Chapter 5. Algorithms to transform XTreeQuery to XQuery ………………….. 78

5.1 Transformation algorithm for querying part ………………………………... 81

5.2 Transformation algorithm for result construction part ……………………… 85

5.3 An example of our algorithm ……………………………………………….. 89

5.4 Summary ……………………………………………………………………. 92

Chapter 6. Conclusion and future works ………………………………………… 94

6.1 Conclusion …………………………………………………………………... 94

6.2 Future works …………………………………………………………............ 96

Publication list ……………………………………………………………………... 97

References ………………………………………………………………………….. 98

Appendix I. Sample XML document of bibliography data ……………………... 102

Appendix II. Sample DTD for three XML documents ………………………….. 103

Appendix IIIA. Sample XML document of employee list ………………………. 104

Appendix IIIB. Result of recursive query: employee tree ………………………. 104

Appendix IV. Sample XML document of people ………………………………... 105

Appendix V. Formal description of XTree/XTreeQuery syntax ……………….. 106

List of figures v

List of figures

Figure 1a. Wrong XQuery script of sample query ……………………………………. 13

Figure 1b. Correct XQuery script of sample query …………………………………… 13

Figure 2. DTD for employees.xml …………………………………………………… 17

Figure 3. XML Query Data Model Representation ………………………………….. 35

Figure 4. Algorithm to transform an XTree expression in querying part ……………. 82

Figure 5. Algorithm to transform an XTree expression in result construction part …. 85

Figure 6. Function translate($expr) ………………………………………………….. 87

Figure 7a. Sample XTree graph for querying part …………………………………….. 90

Figure 7b. Sample XTree graph for result construction part ………………………….. 90

Figure 8. Result XQuery of Example 5.4 ……………………………………………. 92

List of tables vi

List of tables

Table 1. Sample XPath expressions …………………………………………………… 5

Table 2. Sample XPath expressions with conditions ……………………….................. 6

Table 3. Variable binding expressions in querying part ………………………………. 44

Table 4. Comparison between XML query languages ………………………………... 75

Summary vii

Summary

XML is becoming prevalent in data representation and data exchange on the Internet. How

to query XML documents to extract and restructure information is an important issue in

XML research. Currently, XQuery based on XPath is the most promising standard from

the W3C. However, XPath and XQuery do have some limitations: XPath is only a linear

path, which is not like the XML’s tree structure; in XQuery, we can only assign one

variable for each XPath expression, which is inefficient to use, and difficult to reveal the

relationship among correlated XPaths; XQuery handles group-by operation and recursive

querying in some non-normative ways, by nested querying and defining recursive

functions respectively, which are inefficient in practice. In addition, Current version of

XQuery can only query XML documents, but cannot do update operation on XML

documents.

 In this thesis, we will propose a new set of syntax rules called XTree, which is a

generalization of XPath. XTree uses a complex object data model that models XML

documents as in databases. It has a tree structure, which is similar to the structure of XML

documents, so that a user can bind multiple variables in one XTree expression. XTree

explicitly identifies list-valued variables, uniquely determines their values, and defines

some natural built-in functions to manipulate them in an object-oriented way. XTree

Summary viii

expressions can be used not only in querying part, but also in result construction part, to

define result format.

 We also develop a query language called XTreeQuery, which is based on XTree

expressions. By using XTree expressions on both querying part and result construction

part, XTreeQuery can avoid nested querying structure, and make the whole query easy to

read and comprehend. XTreeQuery can effectively handle join operation, group-by

operation and recursive querying in a direct way, and can express some special kinds of

queries, such as URL-related queries, structure level queries, sample queries and top-k

queries; all these queries cannot be expressed by XQuery, or cannot be expressed

efficiently by XQuery. With these features, we believe that XTreeQuery is much more

compact and efficient, and is more convenient to write and understand than XQuery. In

addition, we design XTreeQuery to be the analog of SQL in XML data. XTreeQuery is

not only a data query language, but also a data management language: it can specify

updates on XML documents. These features dramatically widen the usage of XTreeQuery.

 To be compatible with current XQuery parsers, we have also designed algorithms that

convert some simple XTreeQuery queries based on XTree expressions to standard XQuery

queries. There are two algorithms, the first one is to transform an XTree expression in

querying part to a set of XPath expressions, and the second one is to transform an XTree

expression in result construction part to some nested XQuery expressions.

Chapter 1. Introduction 1

Chapter 1

Introduction

XML is fast emerging as the dominant standard for data representation and exchange in

the web. How to query XML documents is an important issue in XML research and

development. Various query languages have been proposed in the past few years, such as

XPath[32], XQuery[33], Lorel[1], XML-GL[4], XQL[29], XML-QL[14], XSLT[39],

YATL[8], XDuce[17], a rule-based semantic query language[7], a declarative XML

querying in [23]. Bonifati and Ceri [2] gave a comparative analysis of some of these query

languages. Some of these query languages are in the tradition of database query languages,

others are more closely inspired by XML. The XML Query Working Group has published

XML Query Requirements for XML query languages[36], and XQuery has been selected

as the basis for an official W3C query language for XML.

 Most of the existing XML query languages are based on SQL and OQL[3]. However,

unlike querying on relational databases whose results are always flat relations, the result

of queries on XML documents are complex, and need to be formatted explicitly. Thus,

XML queries must have two parts: a querying part and a result construction part. The

existing XML query languages intermix these two parts in a nested way, making the

queries cumbersome to express and difficult to comprehend. For example, XML-QL has

Chapter 1. Introduction 2

two constructs: where and construct, for querying and result constructing respectively.

However, the construct clause can contain nested where-construct clauses so that querying

and result-constructing are intermixed. For XQuery, it uses five constructs: for, let, where,

order by and return, i.e., FLWOR expressions. XPath expressions are embedded within

for clauses and let clauses. As in XML-QL, FLWOR expressions can be nested in the

return clause to form a nested querying structure.

 In this thesis, we will analyze some limitations of XPath, and propose a new set of

syntax rules called XTree, which is a generalization of XPath, and show how it can

efficiently replace the notations of XPath. XTree has a tree structure, which is similar to

the structure of an XML document, so that a user can bind multiple variables in one XTree

expression. It explicitly identifies list-valued variables, uniquely determines their values,

and defines some natural built-in functions to manipulate them. It supports the binding of

variables on the URL or part of the URL so that it can also be queried. It can also be used

for the result constructing part of a query, to make that part easy to read and comprehend.

We will also define a querying language called XTreeQuery based on XTree expressions,

which is more compact in the query structure, and has more expressive power than current

XQuery. To be compatible with current XQuery parsers, we also give algorithms to

convert XTreeQuery queries to standard XQuery queries.

 The rest of this thesis is organized as follows. Chapter 2 gives some literature surveys

on existing declarative XML query languages, with emphasis on XPath and XQuery,

which are the most promising standard of W3C. It also discusses the limitations of XPath

and XQuery, and briefly introduces a complex object data model for XML data. Chapter 3

introduces the XTree syntax by giving some examples, and shows its advantages over

XPath. Chapter 4 introduces the XTreeQuery which is based on XTree with some

Chapter 1. Introduction 3

examples, and shows that it can express many kinds of queries easily and efficiently. A

comparison is made among our XTreeQuery and some other declarative XML query

languages. Chapter 5 presents two algorithms to transform simple XTreeQuery queries to

standard XQuery queries. Finally, Chapter 6 summarizes this thesis and points out future

research directions.

Chapter 2. Preliminaries 4

Chapter 2

Preliminaries

During the development of XML, researchers have proposed many declarative query

languages to extract data from XML documents. W3C has selected XQuery based on

XPath as basis for an official standard of XML query language. In this chapter, we will

give a background introduction of XPath and XQuery in Section 2.1 and Section 2.2

respectively, and discuss their limitations in Section 2.3. A literature survey on some other

declarative XML querying languages will be given in Section 2.4, and a complex object

data model for modeling XML documents will be introduced in Section 2.5. Finally, in

Section 2.6 we summarize the existing declarative XML query languages.

 Basically there are two classes of XML query languages: graphical query languages

and declarative query languages. The former includes XML-GL[4], Equix[9],

GLASS[28], BBQ[27] etc, and the latter includes Lorel[1], XQL[29], XML-QL[14],

XQuery[33], Quilt[6], YATL[8], a rule-based semantic query language[7], a declarative

XML querying language [23], etc.

 The graphical query languages have been researched ever since the first application of

QBE[13] in 1970s. They are thought to be intuitive and user-friendly compared to

Chapter 2. Preliminaries 5

traditional textual languages. Also, for querying of XML document, the tree-like structure

of XML data can be naturally represented as a graph.

 Comparing to declarative query languages, these graphical query languages are more

natural and easier to understand. However, it is very difficult to express complex queries

with many nesting levels in graphical query language. The query graph cannot be drawn

too big and too complex; otherwise users will get confused about the meaning of the query

graph. Also, sometimes it is much simpler for use to declare what he/she wants to query,

than to express this request in the graph representation. Thus, for more complex queries,

declarative query languages will be advantageous over graphical query languages.

 This thesis will focus on declarative XML querying languages.

2.1 XPath

XPath is a set of syntax rules for defining parts of XML documents. It uses paths to locate

nodes (elements and attributes) in XML documents, and the path expressions look very

much like computer file system paths. For example, consider the bibliography XML

document in Appendix I, Table 1 gives some examples of XPath expressions, according to

the XML document in Appendix I.

Table 1. Sample XPath expressions

XPath expression Description
/bib/book get each “book” element of the root element “bib”
/bib/book/@year get attribute “year” of each book.
/bib/book/author get element “author” of each book.
//author get all elements named “author”, even if they have

different absolute paths. Here “//” means any number of
levels down.

/bib/book/* get all sub-elements of each book.
/bib/book/@* get all attributes of each book.
/bib/book[1] get the first “book” element.
/bib/book[last()] get the last “book” element.

Chapter 2. Preliminaries 6

 XPath uses a pattern expression to identify nodes in an XML document. An XPath

pattern is a slash-separated list of child element (or attribute at the last position) names

that describe a path through the XML document. The pattern “selects” elements that

match the path. If the path starts with a slash (/), it represents an absolute path to an

element, otherwise it represents a relative path. If the path starts with two slashes (//),

then all elements in the document that fulfill the criteria will be selected (even if they are

at different levels in the XML tree). Wildcards (*) can select all elements located by

proceeding path. An index number enclosed in a square bracket in an XPath expression

can further specify an element: A number in the brackets gives the position of the element

in the selected set; the function last() selects the last element in the selection. Attributes

are specified by @ prefix.

 In an XPath expression, brackets can also be used to specify selection conditions (some

people view this feature as the abbreviated format of XQuery). Table 2 gives some

examples of XPath expressions with conditions, according to the XML document in

Appendix I.

Table 2. Sample XPath expressions with conditions

XPath expression Description
/bib/book[@year] get all “book” elements that have a “year” attribute.
/bib/book[@year=“1994”] get all “book” elements that have a “year” attribute with

a value of “1994”.
/bib/book[@*] get all “book” elements that have any attribute.
/bib/book[price] get all “book” elements that have a “price” sub-element.
/bib/book[price>50] get all “book” elements that have a “price” sub-element

with a value greater than 50.
/bib/book[position()<4] get the first 3 “book” elements.
/bib/book[count(author)>1] get all “book” elements that have more than one “author”

sub-elements.
/bib/book[starts-with(title,
“Data”)]

get all “book” elements that have a “title” sub-element
with a value starting with “Data”.

Chapter 2. Preliminaries 7

 Since the brackets can be used to enclose both an index and a selection condition, in

the XPath expressions where these two usages are mixed, they will have same preference,

and they will be executed in a left-to-right order. For example, the path expression

/bib/book[2][starts-with(title, “Data”)]

means to select the second book and its title must start with “Data” (if the title of the

second book is not “Data”, then it will return an empty result), and

/bib/book[starts-with(title, “Data”)][2]

means to select the second book whose title starts with “Data”.

 XPath also supports some axes with the syntax axisname::nodetest[predicate], where

an axis defines a node-set relative to the current node, and the node test is used to identify

a node within an axis. Such axes including ancestor, ancestor-or-self, child, descendent,

descendent-or-self, following, following-sibling, parent, preceding, preceding-sibling, self,

etc. For example,

 /bib/book/title/following-sibling::*

returns the sub-elements “author”, “publisher” and “price” of each book;

 /bib/book/author/ancestor::*[@year]

returns all ancestors of some “author” element, which have an attribute “year” (actually

just all the book elements and journal elements).

 However, these axes notations either can be abbreviated to normal XPath expression

(child can be abbreviated to “/”, self can be abbreviated to “.”, parent can be abbreviated

to “..”, descendent-or-self can be abbreviated to “//”, etc), or they only concern the

structure of the document, not the semantics (such as following, following-sibling,

preceding, preceding-sibling, etc), so these axes are rarely used in real queries (they never

appear in the query examples in [37]).

Chapter 2. Preliminaries 8

2.2 XQuery

XQuery is a powerful way to search XML documents for specific information, it is

derived from several previous proposals, such as XML-QL[14], YATL[8], Lorel[1].

 XQuery is based on XPath expressions; each query is built from expressions that can

be nested to arbitrary depth. XQuery has the FLWOR (For-Let-Where-Order by-Return)

statements, which generalize the “Select-From-Where-Order by” statements in SQL. For

clause and let clause bind values to variables: for clause (syntax: “For $var in xpath-

expression”) iterates the variable over the result of the XPath expression, whereas let

clause (syntax: “Let $var := xpath-expression”) binds the variables to the whole result of

the XPath expression as a list. Where clause filters these bindings by some conditions, the

order-by clause orders the surviving bindings based on some item, and the return clause

defines the result format, and constructs the result based on the evaluation of the variable

bindings. XQuery provides facilities to build output XML fragments with arbitrarily

complex structures. There are two types of constructors: direct (using an XML notation)

and computed (using a notation with braces { } to indicate enclosed expressions, which

force the inner code to be evaluated and replaced by their value, instead of being treated as

literal text), for element and attribute construction.

Example 2.1. List the title and year of all books.

 <bib>
 {

 for $book in /bib/book
 return <book>
 { $book/@year, $book/title }
 </book>
}
</bib>

Chapter 2. Preliminaries 9

 Note that the outer braces { } (after <bib> and before </bib>) defines a query block;

and the inner braces { } indicates enclosed expression. Without inner braces, its inner code

“$book/@year, $book/title” will be treated as literal text, and be placed on the result

directly, without being executed.

Example 2.2. Get the title, year and number of authors of all books published before

2000, and sort in publishing year.

 <bib>
 {

 for $book in /bib/book
 let $authors := $book/author
 where $book/@year < 2000
 order by $book/@year
 return <book>
 { $book/@year, $book/title }
 <authors> { count($authors) } </authors>
 </book>
}
</bib>

 Note that the built-in aggregate function count returns the number of items in the list.

 In return clauses of XQuery, we can use conditional expression “if … then … else …”

to define conditional treatments for different cases.

Example 2.3. List the year, title and price of each book. If the price is less than 50, just

put an empty element <lowprice/> instead of its concrete price value.

<bib>
 {

 for $book in /bib/book
 return <book>
 { $book/@year, $book/title,
 if ($book/price < 50)
 then <lowprice/>
 else $book/price
 }
 </book>
}
</bib>

Chapter 2. Preliminaries 10

 The result of the above query is as follows:

 <bib>
 <book year=“1994”>

 <title>TCP/IP Illustrated</title>
 <price>65.95</price>

 </book>
 <book year=“1992”>

 <title>Advanced Programming in the Unix Environment</title>
 <price>59.95</price>

 </book>
 <book year=“2000”>

 <title>Data on the Web</title>
 <lowprice/>

 </book>
</bib>

 In where clauses of XQuery, we can use quantified expressions “some…in…satisfies”

or “every…in…satisfies…” to define existential and universal quantifications, respectively.

Example 2.4. Find the books which have an author with last name “Stevens”.

for $book in /bib/book
where some $author in $book/author satisfies ($author/last = “Stevens”)
return $book

Example 2.5. Find the books which have no author with last name “Stevens”.

for $book in /bib/book
where every $author in $book/author satisfies ($author/last != “Stevens”)
return $book

 XQuery is a functional language, besides the extensive collection of built-in functions

(such as doc for specifying target XML file, concat, compare, contains, starts-with, ends-

with, string-length, substring, normalize-space for string management; matches, replace,

tokenize for pattern matching; ceiling, floor, round for number operation; count, avg, max,

min, sum for aggregate operation; name, local-name, string to get element/attribute name

and value; position, last to get the position/last position of the context node. The detailed

XQuery built-in functions can be found at [35]), XQuery also allows a user to create

reusable function expressions in their queries, in the following syntax:

declare function function_name(parameters) as return_type

Chapter 2. Preliminaries 11

Example 2.6. Get the year, title and number of authors of all the books.

 declare function summarize($book as element()) as element()
 {
 let $authors := $book/author
 return <book>
 { $book/@year, $book/title }
 <authors> { count($authors) } </authors>
 </book>
 }

<bib>
 {

 for $book in /bib/book
 return summarize($book)
}
</bib>

 Because XQuery supports complex queries and complex result constructions with

nested clauses, very complicated queries can be expressed in XQuery (which may have

deep nesting level).

Example 2.7. For each book that has at least one author, list its title and first two authors,

and an empty “et-al” element if the book has additional authors.

<bib>
 {

 for $book in /bib/book
 where count($book/author) > 0
 return <book>
 { $book/title }
 {
 for $author in $book/author[position() <= 2]
 return $author
 }
 {
 if (count($book/author) > 2)
 then <et-al/>
 else ()
 }
 </book>
}
</bib>

Chapter 2. Preliminaries 12

 By executing the above query, the third book (which has 3 authors) will be outputted as

follows:

<book>
 <title>Data on the Web</title>
 <author><last>Abiteboul</last><first>Serge</first></author>
 <author><last>Buneman</last><first>Peter</first></author>
 <et-al/>

</book>

2.3 Limitations of XPath and XQuery

From the above examples, we can see that XPath can clearly define a unique path in the

XML tree; and XQuery can effectively express queries on XML documents, based on

XPath expressions. However, they have some limitations. In this section we will discuss

some limitations of XPath and XQuery.

2.3.1 Limitations of XPath

In this sub-section, we will introduce the limitations of XPath. XPath has four main

limitations as follows:

(1) One path one variable

Firstly, in an XPath expression, although the condition can be a branch, there is still only

one linear path. Thus, we can only assign one variable for each XPath expression, which is

inefficient. If a query needs several variables from some paths, a user must assign a

variable to each path, or use one path when referring to another path (relative path).

Example 2.8. If a user is interested in title, authors and publisher (but not year and price,

etc) of each book in the bibliography data in Appendix I, we have to write the following

statement:

Chapter 2. Preliminaries 13

For $b in /bib/book
Let $t := $b/title
 $a := $b/author
 $p := $b/publisher

 Note that each variable holds a set of nodes defined by an XPath expression, and $t, $a

and $p are defined relatively from $b.

(2) Unclear relationship among XPaths

Secondly, it is difficult to reveal the relationship among correlated XPaths. For example,

suppose there are two XPath expressions: /bib/book/title and /bib/book/author, in fact

these two paths are correlated, however, the XPath expressions do not show this

correlation explicitly, and this may result in some mistakes if the user does not pay

attention when writing a query.

Example 2.9. Create a flat list of all the title-author pairs, with each pair enclosed in a

“result” element.

 The XQuery script in Figure 1a will output a wrong answer, because it does not pay

attention to the correlation of XPath expressions. It will produce a Cartesian product of all

authors and titles, regardless of whether they are of the same book. Figure 1b gives the

correct version of this query.

 Figure 1a. Wrong query Figure 1b. Correct query

for $t in /bib/book/title,
 $a in /bib/book/author
return
 <result>
 { $t }
 { $a }
 </result>

for $b in /bib/book,
 $t in $b/title,
 $a in $b/author
return
 <result>
 { $t }
 { $a }
 </result>

Chapter 2. Preliminaries 14

(3) Inefficient for distant conditions

Thirdly, it is inefficient to read a query which returns elements at path A while the

condition is in a distant path B, such query will be very lousy and difficult to comprehend

when written in XPath.

Example 2.10. Suppose we want to find the value of publisher id of a book which has an

author with last name as “Stevens” and first name as “W.”. The XPath expression is as

follows:

/bib/book[author[last=“Stevens” and first=“W.”]]/publisher/@pubid

 We can see that it is difficult to distinguish the condition branch from target branch,

especially for multiple conditions and nested conditions.

(4) Difficult to split name-value pair structure

Finally, in XPath, a variable can only be bound to the whole node (element or attribute)

structure, which is a name-value pair. If we want to get some substructure (name or value)

of the node, we have to call some built-in functions. Thus it is difficult to query XML

documents with unknown structures, or to rename the elements or attributes in the query

result construction.

Example 2.11. Suppose that for each book, we want to list all it sub-elements, except the

sub-element “publisher”. In XQuery we write the following query:

<bib>
{
 for $book in /bib/book
 return <book> {
 for $elem in $book/*
 where local-name($elem) != “publisher”
 return $elem
 }
 </book>
}
</bib>

Chapter 2. Preliminaries 15

 Note that the function local-name() is used to get the node name. Each $elem instance

is a name-value pair of some sub-element of a $book instance, we use local-name()

function to get the tag name of current $elem instance. The above nested query is difficult

to read and understand.

 In addition, if we want to get the node value only, without the associated node name,

then for element node bound to variable $var, we have to use $var/*, $var/@* and

$var/text() to get all its possible values; for attribute node bound to variable $var, we have

to call the function string($var) to get its value.

2.3.2 Limitations of XQuery

In this sub-section, we will introduce the limitations of XQuery. XQuery has eight main

limitations as follows:

(1) Join operation as sub-query

Firstly, we know that join operation are widely used to combine data from multiple

sources into one single result; it is a very important type of query. However, XQuery

supports join in the following way: it binds a variable on the join field of the first source;

then, for each of the other sources, it uses sub-queries with join field in the conditions to

get the instances that have the current join field value. This way for join is very unnatural,

which is quite different from SQL or QBE (Query By Example, [13]), and the query is

difficult to read and comprehend. We illustrate this point by the following example:

Example 2.12. Appendix II is the DTD for three XML files: sailors.xml, boats.xml and

reservations.xml, whereas sailors.xml and boats.xml record information of sailors and

boats respectively, and reservations.xml records all the reservations of certain boats by

Chapter 2. Preliminaries 16

certain sailors, which is a relationship between sailors and boats. Suppose we want to get

the sailor name and boat name for each reservation.

for $r in doc(“reservations.xml”)/reservations/reservation
let $s := doc(“sailors.xml”)/sailors/sailor[@sid=$r/@sid],
 $b := doc(“boats.xml”)/boats/boat[@bid=$r/@bid]
return
 <reservation>
 <sailor> { $s/sname/text() } </sailor>
 <boat> { $b/bname/text() } </boat>
 { $r/start-time, $r/end-time }
</reservation>

 Note that function text() is used to get the text value of an element. In the above

XQuery, it is not so easy for a reader to find out what join operations are performed. This

“join as sub-queries” style is indirect and unnatural.

(2) Grouping as sub-query

Secondly, many queries involve forming data into groups and applying aggregate

functions to each group. However, XQuery does not support grouping operations

explicitly, as the groupby operator in SQL does. In XQuery, grouping is done by sub-

querying structure, which is difficult to read and understand; and is very inefficient, as it

will scan the entire document once for each value of the grouping field. Moreover, such

kind of sub-querying may even get error result when there are two or more grouping

fields, due to some invalid empty groups generated.

Example 2.13. For the bibliography document in Appendix I, list the book titles published

in each year.

for $year in distinct-values(/bib/book/@year)
return
 <year value = { $year }>
 {
 /bib/book[@year=$year]/title
 }
</year>

Chapter 2. Preliminaries 17

 Note that the above XQuery may scan the bibliography document many times, each

time for a specific year value. This will be very expensive, when there are many different

values in the year field. However, it is possible that some query optimizer can execute the

above query efficiently, and scan the whole document only once, by remembering the

books of each “year” group, instead of executing the query as the way it is written.

Example 2.14. Figure 2 shows the DTD for the document employees.xml. Find the

average salary of employees, grouping by department and jobtitle.

Figure 2. DTD for employees.xml

 The XQuery query for this grouping operation is as follows:

for $dept in distinct-values(/employees/employee/department),
 $jobtitle in distinct-values(/employees/employee/jobtitle)
let $salary := /employees/employee[department=$dept and
 jobtitle=$jobtitle]/salary
return
 <type dept={ $dept } job={ $jobtitle }>
 <avgsalary> { avg($salary) } </avgsalary>
 </type>

 In this example, the nested for clauses will produce a Cartesian product of departments

and job titles, but some pairs of department and job title may not have employees, thus the

above query will generate some empty groups, which are not expected. We can add extra

code to eliminate groups with no employees. For example, we can use if…then…else

conditional statement in return clause, however, the query will be more lengthy and

difficult to read:

<!ELEMENT employees (employee*)>
<!ELEMENT employee (name, department, jobtitle, salary)>
<!ATTLIST employee id ID #REQUIRED>
<!ELEMENT department (#PCDATA)>
<!ELEMENT jobtitle (#PCDATA)>
<!ELEMENT salary (#PCDATA)>

Chapter 2. Preliminaries 18

return {
 if (count($salary) > 0)
 then {
 <type dept={ $dept } job={ $jobtitle }>
 <avgsalary> { avg($salary) } </avgsalary>
 </type>
 }
 else ()
}

 The essential reason of getting invalid empty groups is due to that the function distinct-

value() can only accept one XPath expression (or a list-valued variable that holds an

XPath expression) and remove the duplicates. It cannot process two or more XPaths as a

tuple. In fact, even if the function distinct-value() can accept multiple XPaths as its

arguments and remove the duplicate tuples, we will still have problems when assigning

the output of this function to a variable, because in XQuery there is no such type of

variable that can bind to tuple values.

(3) Recursion by user-defined recursive function

Thirdly, sometimes it is necessary to scan over a hierarchy of elements recursively,

applying some transformation at each level of the hierarchy. XQuery does not support

recursive querying explicitly; instead, it handles recursions by user-defined recursive

functions. This indirect way of expressing recursion will make the query difficult to read.

Also we think that the purpose of functions is for general and common computation that

would be needed for many times rather than a sideway for other purpose. In our view, this

is the drawback of the language design anyway.

Example 2.15. Consider the list of employees in Appendix IIIA. Each employee element

has an attribute name indicating his/her name, an attribute id indicating his/her unique

employee number, and an optional attribute manager indicating the ID number of his/her

manager. Suppose we want to convert the employee list to a tree structure, where the

Chapter 2. Preliminaries 19

parent node is the manager and the children nodes are the direct subordinates. Following

is the XQuery solution:

declare function one_level_down($e as element()) as element()
{
 <employee id={ $e/@id } name={ $e/@name }>
 {
 for $a in doc(“employeeList.xml")//employee
 where $a/@manager = $e/@id
 return one_level_down($a)
 }
 </employee>
}

<employeeTree>
 {
 for $e in doc(“employeelist.xml")//employee[empty(@manager)]
 return one_level_down($e)
 }
</employeeTree>

The result of the above query is shown in Appendix IIIB.

(4) Nested querying structure

Fourthly, in practice, XQuery usually has nested querying structure, which is difficult to

read and comprehend. The nesting is mainly due to the result formatting purpose in the

return clause (unlike SQL for relational databases, whose result is always a flat structure,

in XQuery the result format must be defined explicitly in the query. For example, if the

result of an XQuery query is to be stored as an XML document, then it must have one and

only one root element, as required by XML syntax.) Thus the return clause is often quite

long and lousy, mixing up the plain XML segments, enclosed expressions and even sub-

queries, which makes it difficult to read and understand.

Example 2.16. For the documents in Appendix II, list all the sailors in alphabetic order by

name, and for each sailor, list the boats that the sailor has a reservation, in alphabetic order

by the boat name.

Chapter 2. Preliminaries 20

<result>
{
 for $s in doc(“sailors.xml”)/sailors/sailor
 order by $s/sname
 return
 <sailor>
 { $s/@sid, $s/sname }
 {
 for $bid in distinct-values(doc(“reservations.xml”)/reservations
 /reservation[@sid = $s/@sid]/@bid)
 let $bname := doc(“boats.xml”)/boats/boat[@bid = $bid]/bname/text()
 order by $bname
 return <boatname> { $bname } </boatname>
 }
 </sailor>
}
</result>

Example 2.17. Get the titles and publishers of the most expensive books, according to the

bibliography document in Appendix I.

let $prices := /bib/book/price
let $maxprice : = max($price)
return
 <result>
 {
 for $book in /bib/book[price = $maxprice]
 return
 <expensive_book>
 { $book/title , $book/publisher }
 </expensive_book>
 }
</result>

 From the above example, we can see that the nested and mixed return clause is

difficult to read, thus we want to write the return clause in a more compact and clearer

way.

(5) Built-in functions

Fifthly, in XQuery most built-in functions are used in functional manner, rather than in

object-oriented manner (but functions position() and last() are used in an object-orient

Chapter 2. Preliminaries 21

way). Thus we often need to refer to the context node again in the argument of the

function, which is not so intuitive. We think it will be more natural to use the functions in

an object-oriented fashion, whose meanings are obvious and easy to understand.

Example 2.18. Consider the bibliography in Appendix I, find the books which has more

than two authors, and the title contains the word “Data”.

for $book in /bib/book
let $author : = $book/author
 $title := $book/title/text()
where count($author) > 2 and contains($title, “Data”)
return $book

Example 2.19. Consider the bibliography in Appendix I. Find the books in which the

name of an element starts with the string “au” and the same element contains the string

“Suciu” somewhere in its content. For each such book, return its title and the qualifying

element.

for $book in /bib/book
let $elem : = $book/*[contains(string(.), “Suciu”) and
 starts-with(local-name(.), “au”)]
where exisits($elem)
return
 <book>
 { $book/title, $elem }
 </book>

 In the above example, in the let clause, the two “.” in the condition refer to $book/*,

but this is difficult to read, since they are textually far away from their substituting context

node.

(6) Special queries

Sixthly, XQuery does not support some special kind of queries, or does not support them

efficiently. These special queries include URL-related querying, structure level querying,

sample querying and top-k querying.

Chapter 2. Preliminaries 22

 XQuery does not support variable bindings on the URL or URL components of some

documents, thus a user cannot write an XQuery to query some unknown URL or URL

components.

 As the last limitation of XPath we discussed before, since variables are bound to the

name-value pairs of some XML nodes, and special built-in functions are needed to split

them, thus XQuery is very inefficient to handle queries over XML documents with

unknown structures, or to rename elements/attributes in the result construction without

knowing their inner structure.

 Since XQuery does not have functions to get a certain subset of a list, it is very

inefficient to handle queries that just pick up several items randomly, or pick up the first

several items according to a certain order, instead of getting the entire result set. For

example, if we just want to list three random books for a look (not all the books), or list

three most expensive books (not all the books sorted by price), we cannot easily write

XQuery to do that.

Example 2.20. Consider the bibliography in Appendix I. Suppose we do not know the

sub-structure of book elements, now we want to restructure books in this way: keep text

nodes and sub-elements unchanged, but convert attributes to be sub-elements in the format

of <attribute name=“attributeName”, value=“attributeValue”/>. We can write XQuery as

follows:

for $book in /bib/book
let $attrib := $book/@*
return
 <book>
 { $book/text(), $book/* }
 <attribute name={ local-name($attrib) } value={ string($attrib) }/>
 </book>

Chapter 2. Preliminaries 23

 Note that the function string() is used to get the content value of some XML attribute.

Without knowing sub-structures of book element, we have to consider all its possible

children: /text() for text nodes, /* for all its sub-elements, and /@* for all its attributes.

(7) Negation on paths only

Seventhly, although XQuery supports universal and existential quantification (every … in

… satisfies …and some … in … satisfies …), it can only express negation in the condition

clause (where clause), but not the query clause (for clause and let clause). In addition, due

to the fact that XQuery is based on XPath, a user can only set negative condition on some

paths, but not a sub-tree structure of the XML data. Thus, it is difficult to express complex

negation (such as a negative sub-tree) or nested negation.

Example 2.21. Consider the bibliography in Appendix I. Suppose we want to get the

books which do not have a sub-element named “comments”, and do not have an author

with last name “Stevens”.

for $book in /bib/book
where not(exists($book/comments)) and not($book/author/last=“Stevens”)
return $book

 Note that the function exists will return false if the path indicated by its parameter does

not exist. The unary function not will reverse the truth value of its parameter, which is

normally a condition evaluation on a path.

(8) No update operations

Finally, unlike SQL for relational database, which is both a data query language and a data

management language, currently XQuery can only query XML documents, but cannot do

updates on XML documents. We think the problem of expressing updates over XML data

will become prominent in the near future, and it will be useful to extend XQuery to

support update operations.

Chapter 2. Preliminaries 24

2.4 Other declarative XML query languages

Since the introduction of XML as standard for data representation and exchange,

comprehensive research has been done in the database community on the development of

XML query languages. The closest research topics to the work presented in this thesis are

the various declarative query languages proposed for XML documents. Besides XPath and

XQuery that we have discussed before, here we will also briefly introduce some other

declarative XML query languages, such as Lorel[1], XQL[29], XML-QL[14], Quilt[6],

XDuce[17], a rule-based semantic query language[7], a declarative XML querying

language[23]. Note that XQuery is developed from XQL, XML-QL and Quilt.

Lorel

Lorel[1] was part of Lore project (for Lightweight Object Repository) in Stanford

University, which aims to provide convenient and efficient storage, querying and updating

for semi-structured data. Lorel was initially designed to query semi-structured data, and

was later migrated to support XML. It uses OEM (for Object Exchange Model) data model

and has the SQL/OQL style, which is a select-from-where format.

 The most important features of Lorel includes the extensive use of coercion to relieve

the user from the strict typing of OQL, and the powerful path expressions that permit a

flexible form of declarative navigational access. In addition, Lorel also supports

declarative update on the database. We will give several examples to illustrate Lorel

language.

Example 2.22. Suppose some restaurants information has been stored in Lore system.

Find the names and zipcodes of all “cheap” restaurants. Here the zipcode may be a part of

Chapter 2. Preliminaries 25

the address, or may instead be a direct subobject of the restaurant. Also, we do not know if

the string “cheap” will be part of a category, price, description, or other subobject of

restaurant. We are still able to ask the query in Lorel as follows:

 select Guide.restaurant.name,
 Guide.restaurant(.address)?.zipcode
 where Guide.restaurant.% grep “cheap”

 In the above query, the ? after .address means that the address is optional in the path

expression; the wildcard % will match any subobject of the restaurant; and the comparison

operator grep will return true if the string “cheap” appears anywhere in that subobject’s

value.

Example 2.23. Find the names of restaurants whose category is “gourmet”.

 select N
 from Guide.restaurant R, R.name N
 where R.category = “gourmet”

 The above query is very similar with SQL/OQL queries. Object variables R and N will

bind to restaurants and their names respectively.

 Lorel can also express the update of XML data, by update-from-where statement.

Example 2.24. Add the restaurant’s city as a direct subobject of the restaurant object

whenever the city is Palo Alto or Menlo Park.

 update R.city += C
 from Guide.restaurant R, R.address.city C
 where C = “Palo Alto” or C = “Menlo Park”

 Although Lorel was one of the earliest proposed query languages, it is very powerful

and easy to use, even comparing to latest query languages. Its flexible and powerful path

expression and type coercion can express complicated queries; and the SQL/OQL syntax

style is very clear and simple to use. However, to make queries on XML documents using

Chapter 2. Preliminaries 26

Lorel, the documents must be mapped and stored in Lore database management system,

which limits the usage of Lorel query language. In addition, the returned result is not in

XML format, but some flat structure as in SQL/OQL.

XQL

XQL (XML Query Language) [29] is a notation for addressing and filtering the elements

and text of XML documents. XQL is an extension to the XSL pattern syntax; it provides a

concise, compact and understandable notation for pointing to specific elements and for

searching for nodes with particular characteristics.

 XQL is designed specifically for XML documents. It is a general purpose query

language; it builds upon the XSL capabilities of identifying classes of nodes, by adding

Boolean logic, filters, indexing into collections of nodes, etc.

 The basic of XQL querying syntax mimics the directory navigation syntax, and the

navigation is through the elements in the XML tree. This is quite like XPath.

Example 2.25. Suppose we want to find books which do not have any author with last

name “Bob”. We can write XQL query as follows:

 /bib/book[all author/last != “Bob”]

 Note that brackets [] are used to enclose condition expressions, and keyword all

means universal quantification.

 For some semi-joins, XQL also supports nested queries.

Example 2.26. Find all books whose year information is the same as the year of the book

“Data on the Web”.

 /bib/book[@year = /bib/book[title=“Data on the Web”]/@year]

Chapter 2. Preliminaries 27

 XQL is very simple and compact; it has similar path expression as XPath. However,

XQL does not indicate the format of the output, but rather the logical returns. The result of

an XQL query could be a node, a list of nodes, an XML document, an array, or some other

structure. XQL can only query one XML document; it does not support joins over several

XML documents. It even cannot define variable bindings for the use in complex queries.

Thus, the expressive power of XQL is quite limited.

XML-QL

XML-QL [14] was designed at AT&T Labs in 1998. It can express queries which extract

pieces of data from XML documents, as well as transformations, which, for example, can

map XML data between DTDs and can integrate XML data from different sources. The

data model for XML-QL is a variation of the semi-structured data model.

 XML-QL has a where-construct construct similar to select-where in SQL, making it

easy for users familiar with SQL. It uses XML like tags to specify constraints or

conditions. XML-QL supports nested queries: a construct clause can contain other where-

construct clauses.

 Example 2.27. Get the titles of books published by “Addison-Wesley”. We can write

XML-QL query as follows:

 where <bib><book>
 <title> $t </>
 <publisher>Addison-Wesley</>
 </></> in “bib.xml”
 construct <result>
 <title> $t </>
 </>

 In the above query, for convenience, we use </> to denote the abbreviation of the

corresponding end tags.

Chapter 2. Preliminaries 28

Example 2.28. For each book published by “Addison-Wesley”, get its title and authors.

 where <bib><book> $b </></> in “bib.xml”,
 <title> $t </>, <publisher>Addison-Wesley</> in $b
 construct <result>
 <title> $t </>
 where <author> $a </> in $b
 construct <author> $a </>
 </>

 XML-QL has some other important features: it can express joins by using same

variable name in different places in the querying part, which is similar to QBE (Query by

Example) style; it supports querying of element tags using tag variables; it supports

regular expression on element tags, to traverse arbitrary paths through XML elements; it

can also use object identifies and Skolem functions to control how result is produced and

grouped in the data integration.

 However, the patterns that are used in XML-QL for binding variables tend to be

unnecessarily verbose. More important, the result of the where clause is a relation

composed of scalar values, which is not sufficient to preserve all the information about the

hierarchic and sequential relationships among the elements of the original document. As a

result, XML-QL is weak at expressing queries based on hierarchy and sequence, such as

“Find the second author of the third book.”

Quilt

Quilt[6] is the integration of some previous XML query languages such as XML-QL,

XQL, XPath and XSQL. It adapts features from those languages and assembles them to

form a new powerful XML querying language.

Chapter 2. Preliminaries 29

 Although Quilt borrows from many languages (e.g., it borrows path expressions from

XQL and XPath, and notions of variable bindings from XML-QL), its conceptual integrity

comes from a deep reliance on the structure of XML, which is based on hierarchy,

sequence, and reference. Quilt is able to express queries based on document structure and

to produce query results that either preserve the original structure or generate a new

structure. Quilt can operate on a broad range of data sources, ranging from documents to

relational databases.

 Quit has very similar syntax as XQuery (actually XQuery is derived from Quilt), it has

for, where and return constructs. For clauses bind variables on some XPath expressions,

where clauses specify filters and return clauses define output format using the values of

the bound variables. The Quilt queries can be nested; a return clause can contain another

for-where-return statement.

Example 2.29. For each book after year 1993, get its title and authors information, and

order the authors alphabetically. We can write the Quilt query as follows:

 for $b in /bib/book
 where $b/@year > 1993
 return <book>
 <title> $b/title </title>
 {
 for $a in $b/author
 return $a sortby(.)
 }
 </book>

 Note that the above query is nested, and sortby(.) indicates that the generated elements

(authors) are to be ordered by their contents.

Chapter 2. Preliminaries 30

XDuce

XDuce[17] is a statically typed programming language that is specifically designed for

processing XML data. It defines regular expression types, and designs a corresponding

mechanism for regular expression patter matching. Regular expression types are a natural

generalization of DTDs, describing the structures in XML documents using regular

expression operators. Regular expression pattern matching is similar to ML pattern

matching except that regular expression types can be embedded in patters. XDuce also

provides a powerful notion of subtyping, which not only gives substantial flexibility in

programming, but also is useful for schema evolution or integration.

 The main part of an XDuce program is a series of function definitions, which define the

input patterns (for matching) as well as the output formats.

Example 2.30. Suppose we have an address book which contains a list of triplets (name,

address and optional telephone information), we want to convert it into a telephone list, by

deleting the address information. We can write the XDuce program as follows:

 type Addrbook = addrbook[(Name, Addr, Tel?)*]
 type Name = name[String]
 type Addr = addr[String]
 type Tel = tel[String]
 fun mkTelList : (Name, Addr, Tel?)* → (Name, Tel)* =
 name[n:String], addr[a:String], tel[t:String], rest:(Name, Addr, Tel?)*
 → name[n], tel[t], mkTelList(rest)
 | name[n:String], addr[a:String], rest:(Name, Addr, Tel?)*
 → mkTelList(rest)
 | ()
 → ()

 In above program, the function mkTelList takes a value of type (Name, Addr, Tel?)*

and returns a value of type (Name, Tel)*. The body is a pattern match consiting of three

cases: the first case matches when the first tuple of input sequence has a tel label; the

Chapter 2. Preliminaries 31

second case matches when the first tuple of input sequence does not have a tel label; and

the third case matches the empty input sequence, which means the termination of this

function call.

 XDuce is more oriented to a programming language, instead of a querying language.

Its static typing mechanism can ensure that the programs never yield run-time type errors

and the result always conform to specified types; and it supports very complicated

transformation, it can even apply dynamic programming algorithms in its program.

 However, we need to define all the types before we can use XDuce (like Name, Addr,

Tel in the above example), this may be not convenient if a user just want to do a simple

query. Also, some pattern matching may be exhaustive and ambiguous, which requires

some special treatments to handle. In addition, XDuce can only bind variables on the fixed

nodes; it cannot bind variables on the unknown nodes, since it does not know their types.

A rule-based semantic query language

Chippimolchai et. al [7] proposed a rule-based semantic query language for XML

databases. It employs XML Declarative Description (XDD) to model the databases, and

can be used to retrieve the semantics of XML data based on semantic information as well

as syntactic information.

Example 2.31. Find employees whose salary is more than 2000, assuming that a faculty is

also an employee. We can write two querying rules as follows:

 <Employee xsi:type=“TFaculty” $P:attrs>
 $E:subElements
 </Employee> ← <Faculty $P:attrs>
 <$E:subElements>
 </Faculty>

Chapter 2. Preliminaries 32

 <answer>
 <Employee $P:attrs>
 $E:otherElements1
 <Salary>$S:salary</Salary>
 $E:otherElements2
 </Employee>
 </answer> ← <Employee $P:attrs>
 $E:otherElements1
 <Salary>$S:salary</Salary>
 $E:otherElements2
 </Employee>
 GreaterThan(<Value>$S:salary</Value>,<Value>2000</Value>)

 In the above query, the first rule specifies that a faculty is also an employee. The

second rule queries employees whose salaries are above 2000. Thus if a faculty has a

salary more than 2000, he/she will be included in the answer. Note that variables are

typed: a variable prefixed with P: (e.g., $P:attrs in the example) means a sequence of

attribute-value pairs; a variable prefixed with E: (e.g., $E:subElements) means a sequence

of XML expressions; and a variable prefix with S: (e.g., $S:salary) means some strings.

 The semantic query language has some advantages: it is efficient for dynamically

changed documents and frequently used queries, since changes on the schema do not

require re-writing of the whole queries. However, the variables of this query language are

typed, so it is not flexible to assign variables on various XML structures; and in the query

rule, the header and body (corresponding to result construction part and querying part

respectively) are written in XML format directly, which makes the rule long and difficult

to read. In addition, it is not clear how to form nested querying structure for complicated

queries.

Chapter 2. Preliminaries 33

A declarative XML query language

Liu and Ling [23] proposed a rule-based declarative XML querying language, based on

the data model that views XML structure as complex objects. It can bind multiple

variables in one query statement, and naturally separates querying and result construction

parts, to make the queries compact and easy to read.

Example 2.32. List the books published by Addison-Wesley after 1993.

 querying /bib/book ⇒ $b (publisher ⇒ $p, @year ⇒ $y)
 $p = “Addison-Wesley”, $y > 1993
 constructing /results/book ⇒ $b

 Note that in the above query, variables $b, $p and $y are bound to book element,

publisher element and year attribute respectively, in one expression.

 In this query language, several rules can be used for the same query so that complex

queries can be expressed in a simple and natural way; also it provides a natural and direct

support for recursion as in deductive databases. In addition, it explicitly supports list-

valued variables. However, the semantics of list-valued variables are not formally defined,

and the syntax for binding list-valued variables is in an unnatural way. To bind {$books}

on all the book elements under bib, it writes /bib/{$books(book)}, which is not so easy to

read and comprehend.

2.5 Modeling XML documents as in databases

In this section, we will introduce the complex object data model proposed by Liu and

Ling[23], which provides a natural way to model XML document as complex objects. As

a result, a user can easily comprehend XML data from database point of view. In this data

model, XML data are modeled as complex objects with nested structure. There are five

Chapter 2. Preliminaries 34

types of objects: element objects, attribute objects, tuple objects, lexical objects and list

objects. We will use this complex object data model for our XTree and XTreeQuery.

2.5.1 XML query data model

The data model of a query language serves two purposes. First, it defines precisely the

information contained in the input to a query processor. Second, it defines all permissible

values of expressions in the query language. A language is closed with respect to a data

model if the value of every expression in the language is guaranteed to be in the data

model.

 XPath and XQuery model XML data by XML Query Data Model[34], which is a low

level data model. The XML Query Data Model is more oriented on document structure,

instead of database structure, so it is not very suitable for database operations such as

querying and data management. For our XTree and XTreeQuery, we want to view XML

data as a complex object by the data model proposed in [23]. With such a view, querying

presentation also becomes higher level.

 Consider the following simple XML document:

 <person id=“p123”>
 <name>
 <first>John</first>
 <last>Smith</last>
 </name>
 <gender>Male</gender>
 <age>25</age>
 </person>

 This XML document is represented in XML Query Data Model as a tree structure

shown in Figure 3, in which person, name, first, last, gender, age are element nodes, id is

an attribute node, and p123, John, Smith, Male, 25 are text nodes.

Chapter 2. Preliminaries 35

person

@id name gender age

p123 first last Male 25

John Smith

Figure 3. XML Query Data Model Representation

 From the above tree graph, we only know the hierarchical structure of the source data.

The elements, attributes and text are all represented as nodes in the tree. It is easy to

identify attributes, since they are prefixed by symbol “@”, however, it is difficult to

differentiate empty elements from literal text.

2.5.2 Complex object data model

 For the XML data in the above example, we can view it as a nested complex object in

complex object data model as follows:

 person → [
 @id → p123,
 name → [
 first → John,
 last → Smith],
 gender → male,
 age → 25]

 We call the above complex object an element object, which is a pair of element name

and element value, connected by symbol “→”. The element value “@id → p123, name →

[first → John, last → Smith], gender → male, age → 25]” is a tuple object, which

contains an attribute object “@id → p123”, nested element object “name → [first →

John, last → Smith]” and element objects “gender → male” and “age → 25”. The textual

values of attributes and simple element objects such as “p123”, “John”, “Smith”, “male”,

Chapter 2. Preliminaries 36

“25” are called lexical objects. The symbol “@” is used to denote an attribute, “→” is

used to separate element/attribute name from element/attribute value, and square brackets

[] are used to enclose a list of elements and attributes of the same level to form a tuple

object. (Note that XPath uses square brackets to denote the conditions in paths. However,

later in Section 3.2.4 we will show that our XTree does not need to specially use square

brackets to denote conditions, instead, a user can write those conditions in a direct way in

XTree notations).

 By comparing with XML Query Data Model, we have introduced several higher level

notations in our complex object data model, such as element object, attribute object, tuple

object and lexical object that naturally correspond to XML notations.

 Besides the above objects, we also need other kinds of objects. Consider the XML

document in Appendix IV, it can be represented in our data model as an element object as

follows:

 people → [
 person → [
 @id → o123,
 name → Jane],
 person → [
 @id → o234,
 mother → o456,
 name → John],
 person → [
 @id → o456,
 @children → {o123, o234},
 name → Mary],
 person → [
 @id → o567,
 name → Joan],
 person → [
 @id → o678,
 @children → {o456, o567},
 name → Tony],
 person → null]

Chapter 2. Preliminaries 37

 Note that the attribute children (actually IDREFS type in the DTD) has list values such

as {o123, o234} and {o456, o567}. Such list values are called list objects in our data

model, which are enclosed by a pair of braces { } with commas as separators. Also there

are several elements with the same element name person and similar sub-structures, but

different values, especially the null value for an empty person element. From querying

point of view, if we just want one instance of element person at a time, then the above

representation is enough. However, if we want all the instances of the element person,

then it is not clear what should be returned from this representation. To solve this

problem, the data model also extends the notion list object to cover element values and

represent the above XML document as follows:

 people → [
 person → {
 [@id → o123, name → Jane],
 [@id → o234, mother → o456, name → John],
 [@id → o456, @children → {o123, o234}, name → Mary],
 [@id → o567, name → Joan],
 [@id → o678, @children → {o456, o567}, name → Tony],
 null}]

 Thus, we can treat person element as list-valued if we are interested in all of its values.

This extension is necessary as it corresponds to the let clause in XQuery (In XQuery, a let

clause will bind a variable to the whole result of the XPath expression as a list, whereas a

for clause will iterate a variable over the result of the XPath expression).

 An XML document over the web has a URL that specifies its location and contains

exactly one root element. The URL consists of the protocol name, domain name,

directories and the file name. In XQuery, the URL of some XML document is indicated

by doc() function. In our framework, we treat the URL and the associated element as the

first class citizen.

Chapter 2. Preliminaries 38

Example 2.33. Consider the bibliography XML document in Appendix I. Suppose it is

located at http://www.abc.com/people/people.xml, where http is the protocol name,

www.abc.com is the domain name, people is the directory name, and people.xml is the file

name. It contains one bib element consisting of three book sub-elements and one journal

sub-element. Its representation in complex data model as an XML object is as follows:

 (http://www.abc.com/people/people.xml)/
 bib → [@name → IT,
 book → [@id → b001, @year → 1994,
 title → ICP/IP illustrated,
 author → [last → Stevens, first → W.],
 publisher → [@pid → p01, name → Addison-Wesley],
 price → 65.95],
 book → [@id → b002, @year → 1992,
 title → Advanced Programming in the Unix environment,
 author → [last → Stevens, first → W.],
 publisher → [@pid → p01, name → Addison-Wesley],
 price → 59.95],
 book → [@id → b003, @year → 2000,
 title → Data on the Web,
 author → [last → Abiteboul, first → Serge],
 author → [last → Buneman, first → Peter],
 author → [last → Suciu, first → Dan],
 publisher → [@pid → p02, name → Morgan Kaufmann],
 price → 39.95],

 journal → [@id → j001, @year → 1998,
 title → XML,
 editor → [last → Date, first → C.],
 editor → [last → Gerbarg, first → M.],
 publisher → [@pid → p02, Morgan Kaufmann]]]

 Note that the data model described here is just intended for us to conceptualize XML

documents based on which we can express queries.

2.6 Summary

In this chapter, we gave a brief introduction of XPath and XQuery through examples, and

discussed their limitations. Basically, XPath is only a linear path leading to a specific set

Chapter 2. Preliminaries 39

of nodes in XML documents, which can only be bound to one variable; and it is difficult

to reveal the relationship among correlated XPaths. XQuery often has a nested structure

(in the return clause) in order to express complex queries, or just for result formatting

purpose. In addition, XQuery is quite inefficient to express join, grouping, recursion, these

are done by nested sub-queries and user-defined recursive functions. Due to lack of proper

functions, XQuery can only output a whole set of nodes which satisfy the query

requirement, but cannot just pick up some samples randomly or some top k elements; also

it is very inefficient to express queries on unknown structures, or to re-format the structure

in the result. XQuery also cannot do update on XML documents.

 We have also surveyed some other declarative XML querying languages, such as

Lorel[1], XQL[29], XML-QL[14], Quilt[6], XDuce[17], a rule-based semantic query

language[7], and a declarative XML query language[23]. They are effective in querying

data from XML documents, however, except the last one, their querying parts are all based

on XPaths or XML-segment patterns, and the result construction parts are usually nested,

which are not efficient. None of these declarative query languages have solved the

limitations discussed in Section 2.3. Thus, we want to propose a new set of syntax rules

which generalizes XPath, and based on it, a new declarative query language XTreeQuery

that solves the abovementioned limitations, to make the queries compact and efficient.

 The XML Query Data Model (used in XPath and XQuery) is a low data model, which

is more oriented on the document structure, instead of database structure. Our XTree and

XTreeQuery will adopt the complex object data model proposed by Liu and Ling [23],

which models XML data as complex objects with nested structure, thus a user can easily

comprehend XML data from database point of view.

Chapter 3. XTree 40

Chapter 3

XTree

After discussing the limitations of XPath and XQuery, in this chapter, we will introduce a

new set of syntax rules called XTree, which is a generalization of XPath and is

advantageous over XPath. It has a tree structure which is similar to the structure of XML

document, and multiple variables can be bound in one XTree expression in the querying

part of a query. XTree can also be used in the result construction part of a query to define

the result format efficiently. Besides single-valued variables, XTree supports list-valued

variables explicitly, and defines their semantics concisely. Section 3.1 will introduce the

basic syntax of XTree. In Section 3.2, we will describe how to use XTree expressions for

selection and variable bindings in the querying part of a query, and discuss the explicit

indication of list-valued variables in XTree expressions and how to determine their values

uniquely. In Section 3.3, we will describe how to use XTree expressions to define result

format in the result construction part of a query, to avoid unnecessary nesting. Finally, we

summarize our contributions in Section 3.4.

Chapter 3. XTree 41

3.1 Basic syntax of XTree

XTree is a new set of syntax rules, which generalizes XPath. It has a tree structure like the

structure of XML documents. As in XPath, child node follows parent node via a slash /,

and a double-slash // means no matter how many levels down. However, in the XTree

expressions, sibling tree nodes are enclosed by a pair of square brackets [] and are

separated by commas, and [] can be nested. For an XML document, only interested sub-

trees are written in XTree, not the entire XML tree structure.

 XTree treats the URL of an XML document and the associated element as first class

citizens, we use parentheses () to enclose the URL at the beginning of XTree expression,

in order to indicate the source of the XML document. An URL is composed of protocol

name, domain name, directories and file name, and any part of the URL can be unknown

and bound to a variable. The URL is optional, if it is missing, then the document is from

default input. In XPath the URL is specified by the function doc, and its parameter must

be a known URL.

 In XTree expressions, we use logical variables as place holders to bind/match the

name-value pairs of XML nodes at their places. Because we need to bind various parts of

XML documents to logical variables, in order to be flexible and easy to use in practice, the

variables in XTree are non-typed. A variable can be used for any location, but when the

same variable occurs in different places in the query, it has the same value. There are two

kinds of variables: single-valued variables and list-valued variables. Single-valued

variables start with $, such as $X, $abc. List-valued variables are of the form {$X} which

is constructed from the single-valued variable $X that ranges over all $X instances in a list.

Chapter 3. XTree 42

Such list-valued variables are common in advanced deductive database languages such as

F-Logic[19], ROL[20], RelationLog[21], and ROL2[22].

 There are two types of XTree expressions: one used in the querying part of a query, to

indicate the interested paths and bind variables on them; and the other used in the result

construction part of a query, to define the format of the returned result. Symbol → is used

to assign values to variables, it is used in the querying part of a query only; symbol ← is

used to get values from variables, it is used in the result construction part of a query only.

The use of these two symbols is as follows:

 sourcePath → $var to assign the value of sourcePath to variable $var

 targetPath ← $var to place the value of variable $var at the path targetPath

 Because we can write the result construction part of a query in an XTree expression,

we do not need to use curly braces { } to indicate the enclosed expressions or nested query

blocks as in XQuery; also we can effectively reduce the nesting level in the query,

comparing to XQuery, as most of the nestings are due to result formatting.

 Appendix V gives the formal description of the XTree syntax.

3.2 XTree for querying

In the querying part of a query, we can write XTree expressions to bind variables on the

URL or part of the URL, to get the URL information of the XML document, or to bind

variables on some specific set of nodes. An important advantage of XTree is that a user

can bind multiple variables in one XTree expression, whereas only one variable can be

bound in one XPath expression.

Chapter 3. XTree 43

3.2.1 Binding variables on URLs

As we make URL and its associated XML element first class citizen in our framework, we

can also use various variables for URL and URL components. Such variable bindings will

not involve symbol →. Consider the following examples:

($URL)/$document

 It is expected that the system should find a URL and the corresponding document over

the Internet one at a time.

Example 3.1. If we want to search the site http://www.abc.com to find some XML

documents in the directory /dir that contain a book element with 1994 for attribute year

and “TCP/IP Illustrated” for sub-element title, we can write the following XTree

expression:

(http://www.abc.com/dir/$file.xml)
/bib/book/[@year=“1994”, title=“TCP/IP Illustrated”]

 Here the variable $file will bind to the XML document names, and .xml extension

restricts the file type to XML documents. Currently XPath and XQuery do not support

such kinds of queries.

Example 3.2. Find two distinct URLs that contain the same document.

 ($URL1)/$document, ($URL2)/$document,
 $URL1 ≠ $URL2

 The feature of binding variables on URLs or URL components enable a user to make a

query on the location of some document, as what a search engine does. However, such

query is not efficient, as we need to search over all the files under some websites, or even

in the Internet.

Chapter 3. XTree 44

3.2.2 Binding variables on XML data

To bind variables on specific set of nodes, we can use symbol → to assign the value of

nodes on the left side to the variable on the right side. If the right side is a single-valued

variable, it means to iterate the nodes one by one, as in for clause of XQuery; if the right

side is a list-valued variable, it means to keep all nodes in the list, as in let clause of

XQuery. The left side of symbol → can also be a variable, which means to bind the name

of the nodes to the variable at the left side. In one XTree expression a user can bind

multiple variables, which is easy and efficient to write. Table 3 gives the meaning of the

variable bindings in the querying part of a query.

Table 3. Variable binding expressions in querying part

Variable binding Description

elem_name→$var_value bind the value of elements with name “elem_name” to the
variable $var_value.

@attr_name→$var_value bind the value of attribute with name “attr_name” to the
variable $var_value.

*→$var_value bind the value of all elements to the variable $var_value.
@*→$var_value bind the value of all attributes to the variable $var_value.
text()→$var_value bind the lexical text to the variable $var_value.

$var_name→$var_value bind the name of every element to the variable $var_name,
and the corresponding value to the variable $var_value.

@$var_name→$var_value bind the name of every attribute to the variable $var_name,
and the corresponding value to the variable $var_value.

 Here we just use single-valued variables as an illustration, which means to bind each

value of the target nodes iteratively. In fact XTree also supports another type of variables,

list-valued variables, which bind all the values of the left side target nodes as a list. We

will discuss list-valued variables and their semantics in details at Section 3.2.3.

 Note that in XPath expressions, a variable is bound to the whole node (element or

attribute) structure, as a name-value pair. It is not so easy to split this pair to be name and

value separately, especially when we do not know the internal sub-structure of this node

Chapter 3. XTree 45

(as in Example 2.11). However, in XTree expressions, the bindings of names and values

are clearly separated. Variables at the left side of symbol → will bind to the node names,

and variables at the right side of symbol → will bind to the node values.

Example 3.3. Suppose the XML document in Appendix I is located at the URL

www.abc.com/bib.xml. If we want to get each of the books, we can use the variable $b in

the following XTree expression:

 (http://www.abc.com/bib.xml)/bib/book→$b

 The above expression corresponds to the XPath expression /bib/book/(*|@*|text()).

Note that the variable $b is bound to the content of book elements. In XQuery, we have to

know exactly what is there and use proper functions such as local-name(), text(), string(),

in order to express query accurately. However, in our framework, we simply use variables

to match whatever is there so that query expression becomes much easier for users.

Example 3.4. If we want to get the year of each book, we can use the variable $year in the

following XTree expression:

 (http://www.abc.com/bib.xml)/bib/book/@year→$year

 The above expression corresponds to XPath expression /bib/book/@year/text().

 A user can instantiate many variables in one XTree expression, whereas each XPath

expression can only instantiate one variable. Thus XTree expressions are very easy and

efficient to write, read and comprehend. Consider the following example:

Example 3.5. If we are interested in the year and title of each book, and its authors’ first

names and last names, we can use the variables $y, $t, $first, $last respectively in the

following XTree expression:

(http://www.abc.com/bib.xml)
/bib/book/[@year→$y, title→$t, author/[last→$last, first→$first]]

Chapter 3. XTree 46

 The above XTree expression corresponds to the following six XPath expressions:

let $doc := doc(“http://www.abc.com/bib.xml”)
for $book in $doc/bib/book,
 $y in $book/@year, $t in $book/title, $author in $book/author,
 $last in $author/last, $first in $author/first

 XTree supports path abbreviations as in XPath. Consider the following example:

Example 3.6. Suppose we want to get the first name and last name elements at whatever

depth in the document, we can write XTree expression as follows:

(http://www.abc.com/bib.xml)/bib//[last→$last, first→$first]

 Note that the pair of square brackets [] enclosing last and first specifies that the two

elements last and first are sibling nodes, they share a common parent, which is

/bib/book/author or /bib/journal/editor for the sample XML document in Appendix I.

 XTree also allows a user to bind variables on the structure of XML document, that is, a

user can write variable $var on the left side of → symbol, and here $var will be bound to

the name of the corresponding elements or attributes.

Example 3.7. If we want to obtain child elements of bib, which is not title, we can use

variables $elem_name and $elem_value in the following XTree expression:

(www.abc.com/bib.xml)/bib/$elem_name→$elem_value
$elem_name ≠ “title”

 XPath cannot bind variables on XML node names directly; it can only bind variables on

the nodes and use function local-name() to get the node names, as in Example 2.11. Thus

XTree expression is more convenient to use in this case.

Example 3.8. If we want to obtain some attribute name with value “1992” in some book

element, and bind variable $b to this book, we can write the following XTree expression:

(www.abc.com/bib.xml)/bib/book→$b/@$attr=“1992”

Chapter 3. XTree 47

 According to the sample XML document in Appendix I, $b will bind to the second

book element, and $attr will bind to string “year”, which is the attribute name. The

XQuery version of this query is as follows, which is more complex:

for $b in doc(“http://www.abc.com/bib.xml”)/bib/book,
 $attr in $b/@*
where string($attr) = “1992”
return local-name($attr)

3.2.3 List-valued variables and OO functions

A list-valued variable can bind its value to a list of XML nodes; it is somewhat like the

variable in the let clauses of XQuery. However, in XQuery list-valued variables look

exactly like single-valued variables. In our XTree expressions, a list-valued variable is

explicitly indicated by a pair of curly braces { } (e.g., {$books} for a list of book

elements). Also, since we model the XML documents as complex objects, thus unlike

XPath and XQuery which use many unintuitive functions (as in functional languages), we

define some natural functions that are obvious and easy to understand, and they are used

in an object-oriented fashion.

Example 3.9. Suppose we want to obtain all the books in the bibliography document in

Appendix I, and bind them to a list-valued variable {$b}. We can write the following

XTree expression:

 /bib/book→{$b}

 The value of {$b} is a list of three books in the bibliography document. The above

XTree expression is equivalent to the XQuery statement

 let $b := /bib/book

Chapter 3. XTree 48

 However, in the above let clause, the list-valued variable $b looks no different with

other single-valued variables defined in for clause. In our XTree expressions, we use a

pair of curly braces { } to explicitly distinguish list-valued variables.

 We have defined some built-in object-oriented functions for list-valued variables:

Example 3.10. Suppose a list-valued variable {$number} binds to a list of numbers, then

we can obtain their aggregate values as follows:

{$number}.count() gives the number of items in the list
{$number}.avg() gives the average value of items in the list
{$number}.min() gives the minimum value in the list
{$number}.max() gives the maximum value in the list
{$number}.sum() gives the sum of values in the list

Example 3.11. Suppose {$authors} bind to a list of authors element, then we have the

following built-in operators:

{$authors}[1-3, 6] gives a sub-list that contains first to third items, and
the sixth item

{$authors}.last() gives the last author
{$authors}.sort() sorts the items in the list in ascending order
{$authors}.sort_desc() sorts the items in the list in descending order
{$authors}.distinct() returns a list of authors with no duplicates
{$authors}.random(3) picks out 3 authors randomly
$author ∈ {$authors} checks whether $author is in the list
{$authors’}⊆ {$authors} checks if the first list is a sub-list of the second list
{$authors}.iterate() returns an item in the list each time, one by one
{$authors}.some() some item in the list satisfies a certain condition

(like existential quantifier)
{$authors}.every() all items in the list satisfy a certain condition (like

universal quantifier)
{$authors}.none() no item in the list satisfies a certain condition

 In fact, since XTree uses an object model, other functions are also redefined in the

object-oriented manner. For example, to check whether variable $title contains the string

“XML”, instead of using the expression contains($title, “XML”) in XQuery, we write the

object-oriented version as $title.contains(“XML”). It is very easy to convert the functions

from functional fashion to object-oriented fashion.

Chapter 3. XTree 49

 Next we will define the semantics of list-valued variables.

Definition 1. The associated path of variable $a (or {$a}) is the absolute path expression

on the schema of the XML document, from root of the document to the nodes represented

by $a (or {$a}). The associated path is a schema path, not an object path; it leads to a set

of objects conform to that path, instead of a single XML node.

 For example, in XTree expression /bib/book→$b/title→$t, the associated path of $b is

/bib/book, and the associated path of $t is /bib/book/tilte.

Definition 2. Variable $a is an ancestor variable of $b if $a and $b are defined in the

same XTree expression, and the associated path of $a is a prefix of the associated path of

$b.

 For example, in XTree expression /bib/book→$b/[title→$t, author→$a], $b is an

ancestor variable of $t and $a, but $t is not an ancestor variable of $a (they are siblings).

Definition 3. In an XTree expression, when a variable is bound to a value in the query

evaluation, the variable is instantiated.

 For example, in XTree expression /bib/book/[author→$a/first→$f, title→$t], in the

evaluation, when we have reach /bib/book/author, $a is instantiated; and when we have

reach /bib/book/author/first, $a and $f are instantiated.

Definition 4. The value of list-valued variable {$a} is a list of all instances of $a with all

its ancestor variables instantiated.

Example 3.12. Compare the following two XTree expressions:

XTree expression Value of {$a}
/bib/book/author→{$a} all the author elements of all the books.
/bib/book→$b/author→{$a} all the authors of a certain book $b. When $b is bound

to next book, {$a} will also bind to the authors of next
book.

Chapter 3. XTree 50

 Note that in the above example, for the first expression, the value of {$a} is the

concatenation of all the authors of all the books (the order of values in {$a} is the same as

that in the document), which may include duplicated authors (an author may write several

books). We can use the function {$a}.distinct() to remove duplicates. For the second

expression, {$a} has an ancestor variable $b, thus the value of each {$a} instance is related

to the corresponding $b instance.

 List-valued variables can still have children variables. If the child variable is single-

valued, that means to iteratively get the child based on each value in the list; if the child

variable is list-valued, that means to create a list of children based on all the values in the

list.

Example 3.13. For the bibliography document in Appendix I, consider the XTree

expressions and their corresponding XQuery statements in the following table:

XTree expression XQuery statements
/bib/book→$b/author→$a for $b in /bib/book, $a in $b/author

/bib/book→$b/author→{$a} for $b in /bib/book
let $a := $b/author

/bib/book→{$b}/author→$a let $b := /bib/book
for $a in $b/author

/bib/book→{$b}/author→{$a} let $b := /bib/book
let $a := $b/author

 The pair of curly braces { } can also be used as a grouping operator. If the enclosed

expression of a pair of curly braces is not a list-valued variable defined before, then it will

evaluate the enclosed expression, and group all the result instances to a list. This gives an

easy and flexible way to generate a list of instances for immediate use, without assigning

it to a list-valued variable for later usage. For example, {bib/book} will generate a list of

all book instances. If we have defined {$b} by the XTree expression: /bib/book→{$b},

then {$b/author} will generate a list of authors of book items in the list $b.

Chapter 3. XTree 51

 This grouping operator also supports tuple values in its enclosed expression. If we have

defined $b as /bib/book→{$b}, then {$b/[title, name]} means to generate a list of tuples,

and each tuple consists of title and name of a book instance in the list $b.

3.2.4 Conditions

Unlike in XPath that condition expressions are enclosed by a pair of square brackets, a

user can write conditions directly in XTree expressions.

 In XPath, the square brackets [] are used to express conditions in the path. This is

necessary because an XPath expression is only one linear path to the target node set, thus

we have to use square brackets to indicate that its enclosed expression is not a part of the

target path but the conditions along the path. Otherwise, if we write the condition directly

without this special mark, it will be difficult to interpret the XPath expression. However,

for our XTree, each XTree expression can have multiple target paths, and the variable

bindings are explicitly defined, thus a user can write conditions directly in the XTree

expression, without the use of square brackets for indication. Instead, in XTree

expressions, square brackets are used to indicate a tuple of sibling nodes, thus to ensure

the clear hierarchy of the tree structure. If there is only one node to be considered, the

enclosed square brackets can be omitted.

Example 3.14. For the bibliography document in Appendix I, suppose we want to get the

books which have an author named “Stevens W.”, we can write the following XTree

expression:

 /bib/book→$b/author/[last=“Stevens”, first=“W.”]

Chapter 3. XTree 52

 Condition expressions can also cooperate with list-valued variables.

Example 3.15. If we want to obtain the authors of each book published in 1992, we can

write an XTree expression as follows:

/bib/book→$b/[@year=“1992”, author→{$a}]

 Each {$a} will store the list of authors of a certain book $b that was published in 1992,

since $b is an ancestor variable of {$a}. However, if we want to obtain all the authors who

have a book published on 1992, we can write an XTree expression as follows:

/bib/book/[@year=“1992”, author→{$a}]

3.3 XTree for result construction

XTree expressions not only can be used to bind variables in the querying part, but also can

be used to define the result format. We can use symbol ← to get values of variables from

right side and assign them to the expressions on the left side. The variables on the right

side of symbol ← must be previously defined in the querying part; and the left side of

symbol ← cannot be a variable, it must be a concrete element name or attribute name. If

the right side is a single-valued variable, we just put its value of current iteration to the left

side expression; if the right side is a list-valued variable, we will put all the values in the

list to the left side expression. Unlike in XQuery, which often mixes XML plain text and

variable values and even sub-queries in the return clause, here the result constructing part

is just an XTree expression, which is very simple to write and read.

 Note that unlike the XTree expressions in the querying part, which allows conditions

and abbreviations (such as // for any levels down), the XTree expression in the result

construction must be concrete and well-defined, which does not allow any condition

checking or uncertainty in the structure.

Chapter 3. XTree 53

Example 3.16. Suppose we have bound the variables by the following XTree expression:

 (www.abc.com/bib.xml)/bib/book/[@year→$y, title→$t]

 If we only want to retain the title and year information of each book, and store the

result in the file at URL www.xyz.com/books.xml, we can write the following XTree

expression:

 (www.xyz.com/books.xml)/result/book/[@year←$y, title←$t]

 The above XTree expression defines the URL to the result (www.xyz.com/books.xml,

which is not supported by XQuery), and the structure of the result document. Under the

root result, each book element will store the title and year of that book. Suppose that $y

and $t are defined to hold year and title information of a book in the for clauses, the above

expression is equivalent to the following XQuery return clause:

 <result>
 {
 return <book> { $y, $t }
 }
 </result>

 Comparing the XTree expressions between XQuery return clauses, we can see that

XTree expression for result construction is also more compact, and is easier to read and

write. In addition, XQuery return clause cannot specify the location to store the result.

Example 3.17. Suppose we have bound the variables by the following XTree expression:

 (www.abc.com/bib.xml)/bib/book/[title→$t, author→{$a}]

 If we want to count the number of authors for each book, and only show the title and

the first author of each book, we can write the following XTree expression:

/result/book/[title←$t, numAuthors←{$a}.count(), firstAuthor←{$a}[1]]

Chapter 3. XTree 54

 Note that without specifying a URL at beginning, the result is directed to the standard

output. {$a}[1] gives the first item in the {$a} list, and {$a}.count() counts the number of

items in the {$a} list.

 The right side of symbol ← does not have to be some pre-defined variables or

invocations of functions on variables. Instead, it can also be some literal text, or even be

omitted, which means an empty value. In such case, we just put the literal text directly

into the structure of the left side.

Example 3.18. Suppose we want to return a book whose title is “Computer Architecture”,

and which does not have a specified author. We can write the following XTree expression:

 /bib/book/[title ← “Computer Architecture”, no-author]

 The above XTree expression will output the following XML segment:

 <bib>
 <book>
 <title>Computer Architecture</title>
 <no-author/>
 </book>
 </bib>

3.4 Summary

In many existing declarative XML querying languages, XPath expressions are used to

select querying patterns. Although XPath expression can clearly define a unique path in

the XML tree, it has some limitations, such as one path one variable, unclear relationship

among paths, inefficient for distant conditions, difficult to split name-value pair structure

(as discussed in Section 2.3.1).

 In this thesis, we proposed a new set of syntax rules called XTree, which generalizes

XPath and is more advantageous and efficient than XPath. XTree has a tree structure,

Chapter 3. XTree 55

which is similar to the structure of XML data. For the queries based on XTree expressions,

in the querying part, multiple variables can be defined in one XTree expression; in the

result construction part, a user can just write one XTree expression to define the result

format. The separation of querying part and result construction part effectively avoids

nested structure in the query, and makes the whole query easy to read and understand. In

XTree expressions, list-valued variables are explicitly indicated, and their values are

uniquely determined. Some natural built-in functions are defined to manipulate list-valued

variables in an object-oriented fashion.

 Writing XML queries based on XTree expressions is better than on XPaths, this is

mainly because of the limited expressive power of XPath: it is only a linear path to target

XML nodes, and can only bind one variable for each XPath. Essentially, if we write a

query based on XPath expressions, we have to split the whole query tree into several

XPaths for representation; each XPath only represents a piece of information of that

query. However, to execute the query, the query parser may need to reassemble these

XPaths to rebuild the global view of the whole query. Thus, the query based on XPaths is

not only lengthy and difficult to read, but also may cause inefficiency in execution. On the

other hand, if we write a query based on XTree expressions, each query tree corresponds

to an XTree expression. This makes the query script very compact, and the query parser

can directly get the global view of the query tree instead of reassembling pieces of

information.

Chapter 4. XTreeQuery 56

Chapter 4

XTreeQuery

After introducing XTree notations, in this chapter we will propose a new query language

called XTreeQuery, which makes use of XTree expressions. XTreeQuery is more

powerful than XQuery, by solving some limitations of XQuery listed in Section 2.3.2. It

uses the same complex object data model as XTree, and explicitly supports list-valued

variables. XTreeQuery can express join, negation, grouping, recursion and quantification

directly and efficiently, can write some special queries such as URL-related querying,

structure level querying, sample querying, top-k querying; and supports updates on XML

documents. These features are not well supported by current XQuery. Section 4.1 will

introduce the basic syntax of XTreeQuery. From Section 4.2 to Section 4.8, we will show

how to express join operation, negation, grouping operation, recursion, quantification,

some special queries and update operation in XTreeQuery, respectively, through some

examples. In Section 4.9, we will make a briefly comparison among our XTreeQuery and

some other existing declarative XML query languages. Finally, we will summarize our

contributions in Section 4.10.

Chapter 4. XTreeQuery 57

4.1 Basic syntax of XTreeQuery

The syntax of XTreeQuery is similar to that of XQuery. Unlike XQuery’s FLWOR (From-

Let-Where-Order by-Return) statements, XTreeQuery has the QWOC (Query-Where-

Order by-Construct) statements for querying. Query clause contains one or more XTree

querying expressions for selection and variables binding, which is similar to the for

clauses (for the binding of single-valued variables) and let clauses (for the bindings of list-

valued variables) in XQuery. Where clause and order-by clause are optional, they are used

for specifying constraints and ordering respectively, which are the same as where and

order-by in XQuery. Construct clause contains exactly one XTree result construction

expression to define the output format; it does not need a nested structure as what often

happens in the return clause in XQuery, thus makes the result construction part more

concise and easier to understand.

 Appendix V gives the formal description of the XTreeQuery syntax.

Example 4.1. For the bibliography document in Appendix I, if we want to list the title and

authors (but not publisher information) of books published after 2000, we can write the

query in XTreeQuery as follows:

query /bib/book/[@year→$y, title→$t, author→{$a}]
where $y ≥ 2000
construct /results/newbook/[title←$t, author←{$a}]

 We can see that the querying part is an XTree expression which binds necessary

variables, and the result constructing part is another XTree expression which defines the

structure of the returned result: under the root results, each newbook element will store the

title and authors information of that book. Where clause specifies the condition of the

query.

Chapter 4. XTreeQuery 58

Example 4.2. For each book that has equal or more than three authors, list its title and the

first two authors, and use an empty tag <et-al/> to indicate the rest of authors. Also the

result should be ordered by the book title.

query /bib/book/[title→$t, author→{$a}]
where {$a}.count() ≥ 3
order by $t
construct /result/book/[title←$t, authors/[author←{$a}[1-2], et-al]]

 The output of the above query is as follows:

 <result>
 <book>
 <title>Data on the Web</title>
 <authors>
 <author><last>Abiteboul</last><first>Serge</first></author>
 <author><last>Buneman</last><first>Peter</first></author>
 <et-al/>
 </book>
 </result>

 Note that in the construct clause of the above query, {$a}[1-2] will return a sub-list of

the first two items in {$a} (i.e., first two author elements); and due to the absence of

symbol ←, by default the right side of ← is empty, and thus “et-al” will be interpreted as

an empty tag “<et-al/>” under element “authors”. If we change the construct clause to

construct /result/book/[title←$t, authors/[author←{$a}[1-2], author←“et-al”]]

then after the first two author elements, there will be an element “<author>et-al</author>”

under element “authors”.

4.2 Join

Join operation is one of the most important and widely used operations in database

queries. It combines data from multiple database sources into one single result. XQuery

Chapter 4. XTreeQuery 59

does not support join operations explicitly, instead, it actualizes join operations by nested

sub-queries, which is difficult to read and comprehend, as illustrated in Example 2.12.

 In our XTreeQuery, we implement join in a more natural way, which is quite similar to

SQL and QBE[13]. In the XTree expressions of the query clauses, variables of the same

name mean a join operation, and the instances of them must have the same value. Now we

can re-write Example 2.12 in our XTreeQuery format:

Example 4.3. According to the three XML documents in Appendix II, get the sailor name

and boat name for each reservation. We can write the following XTreeQuery.

 query (sailors.xml)/sailors/sailor/[@sid→$sid, sname→$sname],
 (boats.xml)/boats/boat/[@bid→$bid, bname→$bname],

 (reservations.xml)/reservations/reservation/
 [@sid→$sid, @bid→$bid, start-time→$st, end-time→$et]

 construct /reservations/reservation/
 [sailor←$sname, boat←$bname, start-time←$st, end-time←$et]

 Note that in the querying part of the above query, two occurrences of variable $sid

means a join operation over sailors and reservations, and two occurrences of variable $bid

means a join operation over boats and reservations. This natural way to express join is

easier for a user to read and write queries over multiple data sources. The XQuery version

of this query is as follows:

 for $r in doc(“reservations.xml”)/reservations/reservation
 $sname in doc(“sailors.xml”)/sailors/sailor[@sid=$r/@sid]/sname
 $bname in doc(“boats.xml”)/boats/boat[@bid=$r/@bid]/bname
 return <reservations><reservation>
 <sailor> { $sname } </sailor>

 <boat> { $bname } </boat>
 { $r/start-time, $r/end-time }
 </reservation></reservations>

 Note that in the above query, the second and third for clauses (which defines $sname

and $bname respectively) are actually sub-queries, through the equity selection at attribute

@sid and @bid respectively.

Chapter 4. XTreeQuery 60

4.3 Negation

Negation is an important feature in database query, especially for deductive databases[20,

22]. However, XQuery can only express negations in the condition clause (where clauses),

but not the query clause (for clause and let clause). In addition, because XQuery is based

on XPath expressions, thus its negative condition can only be set on some XPaths, but not

a sub-tree structure. Thus, in XQuery it is difficult to express complex negation or nested

negation.

 However, in our XTreeQuery, we define a unary negation operator not() in the query

clause for negative conditions. The enclosed expression of not() is a sub-tree structure,

which also conform to the XTree syntax. The negation operator not() forces the conditions

on the enclosed XTree expression to be evaluated as false, or the enclosed XTree structure

does not exist in the document.

 As the negation operator in other languages, in XTreeQuery, the expression enclosed

by not() is by default existentially quantified, and the negation operator not() can be

nested.

Example 4.4. According to the bibliography document in Appendix I, find the books

which do not have an author named “Stevens W.”. We can write the XTreeQuery as

follows:

 query /bib/book→$b/not(author/[last=“Stevens”, first=“W.”])
 construct /results/book←$b

 Note that the negative condition enclosed by not() is actually a sub-tree structure (in

XTree format), instead of just a path. It has the existential quantification and forces the

conditions on the enclosed sub-tree to be evaluated as false, i.e., for a book $b, there is no

such an author named “Stevens W.”. It is equivalent to the following XQuery:

Chapter 4. XTreeQuery 61

 <results>
 for $b in /bib/book
 where every $a in $b/author satisfies ($a/last≠“Stevens” and $a/first≠“W.”)
 return $b
 </results>

 We can see that in the XQuery, for negation, we can only set negative conditions on

XPaths ($a/last and $a/first), and we have to explicitly define the quantification (where

every … satisfies …).

Example 4.5. Find the books which do not have a sub-element named “reference”. We

can write the XTreeQuery as follows:

 query /bib/book→$b/not(reference)
 construct /results/book←$b

 Note that there is no condition defined in the XTree expression enclosed by not(), thus

the not() operator will force that the inner XTree structure does not exist, i.e., the book $b

does not have a sub-element with the name “reference”. It is equivalent to the following

XQuery:

 <results>
 for $b in /bib/book
 where not($b/reference)
 return $b
 </results>

Example 4.6. Select all the books except those whose title contain word “TCP” and price

more than 50. We can write the XTreeQuery as follows:

 query /bib/book→$b/not(title.contains(“TCP”) and price>50)
 construct /results/book←$b

 Note that title and price are sibling nodes under book, keyword “and” means both

condition must be satisfied. This will select the second and the third books in the

bibliography document in Appendix I.

Chapter 4. XTreeQuery 62

Example 4.7. Find the books whose title does not contain word “TCP”, and whose price is

not more than 50. We can write the XTreeQuery as follows:

 query /bib/book→$b/not(title.contains(“TCP”) or price>50)
 construct /results/book←$b

 Note that title and price are sibling nodes under book, keyword “or” means either

condition can be satisfied. This will select only the third book in the bibliography

document in Appendix I.

Example 4.8. For the bibliography document in Appendix I, suppose each author of a

book has one or more “address” elements, which consists of three sub-elements “street”,

“city” and “country”. To find the books which do not have any author who does not have

an address in New York, i.e., find the books with all the authors having an address in New

York, we can write the following XQuery:

 query /bib/book→$b/not(author/not(address/city=“New York”))
 construct /results/book←$b

 Note that the nested negations both have existential quantification for their enclosed

expressions. It is equivalent to the following XQuery:

 <results>
 for $b in /bib/book
 where not (some $a in $b/author satisfies
 not (some $addr in $a/address satisfies $addr/city=“New York”))
 return $b
 </results>

4.4 Group by

Grouping operation is often used in database queries to form data into groups and apply

aggregate functions to each group. Currently XQuery does not support grouping directly,

as the groupby operator used in SQL. Instead, XQuery implements grouping by sub-

Chapter 4. XTreeQuery 63

queries, which is not only difficult to read and comprehend, but also inefficient to execute,

as illustrated by Example 2.13. Moreover, such kind of sub-querying may even get error

results when grouping by multiple fields, due to invalid empty groups generated by nested

for clauses, as illustrated by Example 2.14.

 However, our XTreeQuery supports grouping in an explicit way. It has the keyword

groupby for grouping operations. Groupby will classify the XML nodes into groups, based

on the grouping fields, and assign the result to a two-dimensional list-valued variable.

Unlike in SQL, where all data are in flat format so the grouping result is clear and easy to

use, XML data has more complicated structures, and thus we have to put the grouping

result into some variables for future use. The variable that holds the grouping result has a

two-dimensional structure: it is a list of list, each inner list is the items of a particular

group. The syntax of groupby is as follows:

 {{$result}} ← {$a} groupby $b

The above statement means to group items in {$a} based on the values of $b, and assign

the result to the two-dimensional list {{$result}}. {{$result}} has a two dimensional

structure: it is a list of list. Each inner list {$result} is the $a instances with a certain $b

value, a special function key() will return the value of the grouping field for the current

group. If the grouping is based on a tuple of multiple grouping field, then the function

key() will return the tuple value of the grouping fields for the current group, with the first

item key()[1] be the value of the first grouping field, the second item key()[2] be the value

of the second grouping field, and so on. By default, duplicate values will be eliminated in

the grouping field; otherwise we cannot distinguish two groups with same value in the

grouping field.

Chapter 4. XTreeQuery 64

 In this way, the grouping operation is explicit and easy to read. Also, the entire

document will only be scanned once for the grouping, it is much more efficient than the

nested-querying of XQuery, which may scan the document once for each value of the

grouping field (maybe a good query optimizer can avoid multiple scans). Finally, our

grouping will not generate invalid empty groups when there are multiple grouping fields,

as we regard multiple grouping fields as tuples, thus if some tuple does not occur in the

document, it will also not appear in the grouping result. XQuery may generate such empty

groups because it uses nested for clauses which are the Cartesian products of the grouping

fields, instead of the tuples.

 Here we re-write the Example 2.13 and Example 2.14 in our XTreeQuery format:

Example 4.9. For the bibliography document in Appendix I, list the book titles published

in each year.

 query /bib/book→{$b},
 {{$yeargroup}} ← {$b} groupby $b/@year

 construct /year/[@value←{$yeargroup}.key(), title←{$yeargroup/title}]

 Note that in the above query, by the grouping definition, each {$yeargroup} is a list of

books with the same publishing year, {$yeargroup}.key() returns the value of publishing

year (which is the grouping field) of the books in the list {$yeargroup}, and

{$yeargroup/title} generates the titles of the books in the list {$yeargroup}.

Example 4.10. For the document employees.xml with DTD shown as in Figure 2, find the

average salary of employees, grouping by department and jobtitle.

 query /employees/employee→$e,
 {{$empgrp}} := {$e} groupby $e/[department, jobtitle]
 construct /type/[@dept←{$empgrp}.key()[1], @job←{$empgrp}.key()[2],
 avgsalary←{$empgrp/salary}.avg()]

Chapter 4. XTreeQuery 65

 Note that in the above grouping, the grouping fields are the tuple of department and

jobtitle (indicated by $e/[department, jobtitle]). If some combination of department and

jobtitle does not occur in the document (i.e., no employee has that combination of

department and jotitle), it will also not appear in our grouping result.

4.5 Recursion

Sometimes we need to scan over a hierarchical structure of elements, applying a

transformation at each level of the hierarchy. XQuery does not support recursion directly;

instead, it uses user-defined recursive functions. This indirect way of expressing recursion

makes the query difficult to read, and such usage of function is not natural, as illustrated

by Example 2.15. The main reason that XQuery cannot write recursion directly is because

that XQuery defines the return format in nested return clause, which is difficult to be used

as the source for another query.

 In contrast, our XTreeQuery supports recursion directly in an easy and natural way.

The construct clause of XTreeQuery is an XTree expression itself, which can also serve as

a query data source (i.e., the querying part of a query can directly refer to an XTree

expression returned by the construct clause of some query). Thus we can write a query on

the XTree expression of the construct clause in another query; or even write a query on

the XTree expression of its own construct clause, to make the whole query recursively

defined.

 Here we re-write the Example 2.15 in our XTreeQuery format:

Example 4.11. Consider the list of employees in Appendix IIIA. Convert the list to a tree

structure of employees, in which a parent node is the manager, and the children nodes are

the direct subordinates.

Chapter 4. XTreeQuery 66

query /employeelist/employee→$e/not(@manager)
construct /employeetree/employee/[@id←$e/@id, @name←$e/@name]

query /employeetree//employee→$e/[@id→$x, not(employee)],
 /employeetlist/employee→$e’/@manager→$x
construct $e/employee/{@id←$e’/@id, @name←$e’/@name}

 The first query states that for each employee that does not have a manager, we put it as

a first level employee in the tree. By evaluating this query, we will get an employee tree

with only first level employees. Then the second query states that for each leaf employee

(specified by not(employee), meaning that this employee does not have a child element

named “employee”) in the tree, we search the employee list to find those employees

whose manager is this employee (by the use of common variable $x), and put them one

level below this employee in the tree (as the subordinates of the employee). After

evaluating this query, we will expand each leaf node in the employee tree, to add its

subordinate employees, and continue this expansion with the newly added employee

nodes.

 Note that the second query is recursively defined, because its query clause queries the

XTree expression defined in its own return clause. It will run until no more new results

are produced.

 Also, in the second query, the specified return format in construct clause does not start

from an XML root node (/), but refers to the position of XML node $e, which is some

employee element in the employee tree (similar to a relative XPath), i.e., the XTree

expression in the construct clause can be used in another construct clause again. This will

make all the subordinate employees be placed correctly under their supervisor employee.

The result of the queries is shown in Appendix IIIB.

Chapter 4. XTreeQuery 67

4.6 Quantification

Sometimes in a query, we want some or all of the items in a list satisfy some conditions,

thus we need to enforce the quantification check. In XQuery, we use every…in…satisfies

in where clauses for universal quantification, and some…in…satisfies in where clauses for

existential quantification. In the query the default state is existential quantification.

 Our XTreeQuery expresses quantification in a more direct way. It can apply the built-in

functions some(), every(), none() to a list-valued variable for existential, universal and

non-existential quantification on that list respectively.

Example 4.12. Consider the bibliography document in Appendix I, select those books

whose authors all have a first name called “Peter”. In XQuery we can write as follows:

 for $b in /bib/book
 where every $a in $b/author satisfies $a/first = “Peter”
 return $b

 However in our XTreeQuery we can write the quantification functions directly on the

list-valued variables, as following:

 query /bib/book→$b/author→{$a}
 where {$a}.every()/first=“Peter”
 return /results/book←$b

 Note that function every() will check each item in the list {$a}, i.e., each author of a

book, to see whether its first name is “Peter”.

Example 4.13. According to the three XML documents in Appendix II, find the sailors, if

any, who have reserved every boat. In XQuery we can write as follows:

 for $s in doc(“sailors.xml”)/sailors/sailor
 where
 every $b in doc(“boats.xml”)/boats/boat satisfies
 some $r in doc(“reservations.xml”)/reservations/reservation satisfies
 ($b/@bid = $r/@bid and $s/@sid = $b/@sid)
 return $s

Chapter 4. XTreeQuery 68

 In our XTreeQuery we can write the query as follows:

 query (sailor.xml)/sailors/sailor→$s/@sid→$sid
 (boat.xml)/boats/boat→{$b}

 (reservations.xml)/reservations/reservation→{$r}/@sid→$sid
where {$b}.every()/@bid = {$r}.some()/@bid
construct /results/sailor←$s

 Note that {$r} will be a list of reservations of a certain sailor $s, since the common

variable name $sid in the first and third XTree expressions in the query clause indicates a

join operation, as we described in Section 4.2.

4.7 Special queries

Because our XTreeQuery is rich in syntax and semantics, it can express some special

queries that are not supported by XQuery, or not supported efficiently.

4.7.1 URL-related querying

As we described before, XTree treats the URL of an XML document and the associated

element as first class citizens, and variables can be bound on the URL or part of the URL,

thus a user can write a query to get the URL information of the XML document. Such

queries are not supported by XQuery.

Example 4.14. Suppose we want to find the bibliography documents located in the

website http://www.abc.com and directory /docs/bib, which has the structure as in

Appendix I and contains a book with 1994 for the attribute year and “TCP/IP Illustrated”

for the sub-element title. We can write XTreeQuery query as follows:

 query (http://www.abc.com/docs/bib/$file)
 /bib/book/[@year=“1994”, title=“TCP/IP Illustrated”

 construct /results/filename←$file

Chapter 4. XTreeQuery 69

4.7.2 Structure level querying

Structure level queries are the queries on XML documents with unknown structure, or the

queries that rename the elements/attributes in the result without knowing their inner

structure. However, in XQuery, variables are bound to the name-value pairs of some XML

nodes, and special built-in functions are needed to split them, thus it is very inefficient to

handle structure level queries. This is illustrated by Example 2.11.

 However, in our XTreeQuery, names and values of XML nodes are explicitly split in

the variable bindings: variables in the left side of symbol → will bind to the node names,

and variables in the right side of symbol → will bind to the node values. These variables

can be used directly in the appropriate places, and no special functions are needed to split

them for internal information. This will make the queries on unknown structure easier to

write and understand.

 Here we re-write the Example 2.11 in our XTreeQuery format:

Example 4.15. Consider the bibliography in Appendix I, suppose we do not know the

substructure of book elements, now we want to restructure books in this way: keep text

nodes and sub-elements unchanged, but convert attributes to be sub-elements in the format

of <attribute name=“attribName”, value=“attribValue”/>.

 query /bib/book→$b/@$attribName→$attribValue
 construct /result/book[$b/*, $b/text(),
 attribute/[@name←$attribName, @value←$attribValue]]

Example 4.16. Find books which have some attribute with the value “1994”, and return

the titles of the books and the name of that attribute.

 query /bib/book/[title→$t, @$attribName=“1997”]
 construct /result/[title←$t, attribute←$attribName]

Chapter 4. XTreeQuery 70

Example 4.17. Get all the sub-elements of each book, except the sub-element “price”.

 query /bib/book/$elemName→$elemValue
 where $elemName ≠ “price”
 construct /result/book/$elemName←$elemValue

4.7.3 Sample querying

Sample queries are the queries that just pick up several items randomly after selecting and

filtering, instead of getting the whole result set. XQuery does not have functions to get a

certain subset of a list, thus it is difficult to express sample queries. However, our

XTreeQuery can easily handle such queries because it supports list-valued variables

explicitly, and defines various functions to manage a list.

Example 4.18. In the bibliography document in Appendix I, just pick up any two books.

 query /bib/book→{$b}
 construct /result/book←{$b}.random(2)

 Note that in the XTreeQuery, function random(x) will pick up x items in the list

randomly to form a sub-list.

Example 4.19. Get any three books with price more than 50.

 query /bib/book→{$b}/price>50
 construct /result/book←{$b}.random(3)

4.7.4 Top-k querying

Top-k queries are the queries that just pick up the first several items according to some

order, instead of getting the whole ordered result set. XQuery does not have functions to

get a certain subset of a list, thus it is difficult to express sample queries. However, our

XTreeQuery can easily handle such queries because it supports list-valued variables

explicitly, and defines various functions to manage a list.

Chapter 4. XTreeQuery 71

Example 4.20. Get the prices of the two cheapest books.

 query /bib/book/price→{$p}
 construct /result/cheap_price←{$p}.sort()[1-2]

 Note that the above query may return two prices with the same value, since there may

be more than one cheapest book (with same price). Function sort() will sort the items in

the list in ascending order (increasing order for list of numbers, and alphabetic order for

list of strings); it will not remove duplicates in the list. To remove the duplicates, we can

call function distinct(), by writing {$p}.sort().distinct()[1-2].

Example 4.21. Get all the content of the two cheapest books.

 query /bib/book→{$b}
 order by $b/price
 construct /result/cheap_book←{$b}[1-2]

 Note that order by clause will sort the XML nodes in ascending order of the specified

fields. For descending order, we can write the statement as order by … descending. This

is same as the order by clause in XQuery.

Example 4.22. Get all the content of the two most expensive books.

 query /bib/book→{$b}
 order by $b/price descending
 construct /result/expensive_book←{$b}[1-2]

4.8 Updates

Current XQuery language can only query XML documents, but cannot update them.

However, in order to fully evolve XML into a universal data representation and sharing

format, we must allow users to make updates on XML documents. Researchers have

proposed some methods to specify updates and have developed techniques to process

them efficiently [24, 30]. Being not only a data querying language, but also a data

management language, our XTreeQuery supports update on XML documents.

Chapter 4. XTreeQuery 72

 Update operation often follows some querying, in order to target the specific set of

nodes that we want to update. After querying, instead of returning results, we can write

update expressions to modify the XML document. There are five kinds of update

expressions in XTreeQuery:

• insert content before var

This statement is used to insert the information in content before the position of var,

where content is a segment of XML data expressed in XTree format, and var is either

a variable or an invocation of some built-in functions.

• insert content after var

This statement is used to insert the information in content after the position of var.

• insert content into var

This statement is used to insert the information in content into the structure of var.

• delete var

This statement is used to delete information hold by var. Deleting an element node

will remove all its contents, i.e., its sub-elements and attributes.

• replace var with content

This statement is used to replace the information hold by var by the information in

content, with the position unchanged.

Example 4.23. For the bibliography document in Appendix I, add a new book as the first

book in the document.

 query /bib/book[1]→$b
 insert book/[@id←“010”, year←“2000”,

 title←“Introduction to Algorithms”,
 author/[first←“Thomas H.”, last←“Cormen”],
 author/[first←“Charles E.”, last←“Leiserson”],
 publisher←“The MIT Press”, price←“69.99”]
 before $b

Chapter 4. XTreeQuery 73

Example 4.24. Add the above new book as the last book in the document.

 query /bib/book[last()]→$b
 insert book/[@id←“010”, year←“2000”,

 title←“Introduction to Algorithms”,
 author/[first←“Thomas H.”, last←“Cormen”],
 author/[first←“Charles E.”, last←“Leiserson”],
 publisher←“The MIT Press”, price←“69.99”]
 after $b

Example 4.25. Add a sub-element named “comments” with value “among best sellers in

year 2001” to the book whose id is 010.

 query /bib/book→$b/@id=“010”
 insert comments←“among best sellers in year 2001”
 into $b

Example 4.26. Delete all the books whose title contains word “violence”.

 query /bib/book→$b/title→$t
 where $t.contains(“violence”)
 delete $b

Example 4.27. Delete the two earliest published books.

 query /bib/book→{$b}
 order by $b/@year
 delete {$b}[1-2]

Example 4.28. Increase the price by 10% for all books published after 1995.

 query /bib/book[@year>1995, price→$p]
replace $p with 1.1 * $p

4.9 Comparison of related works

In this section, we will compare our XTreeQuery with other existing XML querying

languages, such as Lorel[1], XQL[29], XML-QL[14], Quilt[6], XDuce[17], a rule-based

semantic query language[7], a declarative XML query language[23], which are briefly

introduced in Section 2.4, and XQuery[33] which is the current trend of W3C.

Chapter 4. XTreeQuery 74

 The comparison of these query languages emphasizes on their expressive power, and

whether they can make types of queries efficiently. We will use the following criteria:

1. Data model: how to model the XML data. It specifies what information in the

XML document is accessible for querying.

2. Expressions: how to specify interested paths in the query.

3. Join: whether the query language supports joins over different data sources, and

how efficient are the join operations.

4. Negation: whether the query language can express negative queries.

5. Grouping: whether the query language can divide the data into groups according to

some group fields, and apply aggregate functions over each group.

6. Recursion: whether the query language can recursively query a hierarchical data,

and apply some transformation at each level of the hierarchy.

7. Quantification: whether the query language supports existential quantification and

universal quantification.

8. URL-related querying: whether the query language supports queries on the URL

information.

9. Structure level querying: whether the query language supports queries on XML

documents with unknown structure.

10. Sample/Top-k querying: whether the query language supports queries that only

pick up several items randomly, or only pick up the first several items according to

some order, instead of the whole results set.

11. Ordering: whether the query language can order the element instances according to

the ascending or descending values of some data of the result.

Chapter 4. XTreeQuery 75

12. Nesting: whether the query language supports nested querying structure (queries

containing nested sub-queries), in order to express complicated queries.

13. Updates: whether the query language can specify update operations on XML

documents.

 Table 4 compares the expressive power of our XTreeQuery with Lorel, XQL, XML-

QL, a rule-based semantic query language, a declarative XML query language, and

XQuery.

Table 4. Comparison between XML query languages

 XTreeQuery Lorel XQL XML-QL
A rule-based

semantic
querying

A declarative
XML

querying
XQuery

Data model
complex

object data
model

Lore data
model

XML
implied

data model

Unordered
/Ordered

data model

XDD (XML
Declarative
Description)

complex
object data

model

XQuery
/XPath

data model

Expression XTree OQL-like XPath regular tag
expression

XML-like
patterns

XTree-like
expression XPath

Join YES YES Partial YES Unsure YES YES
Negation YES YES YES NO NO Unsure YES
Grouping YES YES NO NO NO YES YES
Recursion YES Unsure NO NO NO YES YES

Quantification YES YES YES existential existential YES YES
URL-related

querying YES NO NO NO NO YES NO

Structure level
querying YES NO NO YES NO YES YES

Sample/Top-k
querying YES NO NO NO NO NO NO

Ordering YES YES NO YES NO NO YES
Nesting No need YES NO YES NO No need YES
Updates YES YES NO NO NO NO NO

 Note that for the join, negation, grouping, recursion and quantification operations, our

XTreeQuery can express them in a more direct and efficient way. For the join operations,

XTreeQuery uses a QBE-like solution, instead of by nested sub-queries; for the negation,

XTreeQuery can express a negative sub-tree in the querying part; for the grouping

operations, XTreeQuery uses a two dimensional list to hold the values of all groups, to

Chapter 4. XTreeQuery 76

avoid multiple scans over the document; for the recursion, XTreeQuery can directly query

the output XTree expression in the construct clause, instead of by defining recursive

functions; and for the quantification, XTreeQuery can invoke built-in functions on list-

valued variables directly, to express the corresponding quantification on that list of items.

In addition, because XTreeQuery is based on XTree expressions, which can bind multiple

variables in one expression, thus the queries are more compact and efficient.

 Thus we can see that our XTreeQuery has rich expressive power, and outperforms

other query languages. It supports most of database operations efficiently.

4.10 Summary

Currently, XQuery is the most promising standard from W3C. However, it has some

limitations, such as join operation as sub-query, grouping as sub-query, recursion by user-

defined recursive function, nested querying structure, no update operations (as we

discussed in Section 2.3.2). In this chapter, we introduced our XML query language

named XTreeQuery, which is based on XTree expressions. Through some examples, we

showed that our XTreeQuery based on XTree expressions is simpler yet more expressive

than XQuery.

 For XTreeQuery, in the querying part, multiple variables can be defined in one XTree

expression, and the list-valued variables are explicitly identified; in the result construction

part, a user can just write one XTree expression to define the result format, the values of

variables will be substituted at appropriate nodes in the XTree expression. The separation

of querying part from result construction part effectively avoids nested structure in the

query, and makes the whole query easy to read and comprehend.

Chapter 4. XTreeQuery 77

 XTreeQuery can express join, negation, grouping, recursion and quantification directly

and efficiently. It also supports some special queries (URL-related querying, structure

level querying, sample querying, top-k querying) and update operations. All these

operations are not supported by XQuery, or not supported efficiently. By a comparison

between our XTreeQuery and some other existing XML query languages, we proved that

XTreeQuery has richer expressive power, and is more advantageous than other query

languages.

Chapter 5. Algorithms to transform XTreeQuery to XQuery 78

Chapter 5

Algorithms to transform XTreeQuery to XQuery

We have seen that XTreeQuery has more expressive power than current XQuery, and it

can express queries in a much compact and efficient version. However, we would like to

transform standard XTreeQuery queries to XQuery queries, to make them executable by

existing XQuery parsers. In this chapter, we present two algorithms for the translation. In

Section 5.1, we describe an algorithm that transforms an XTree expression in querying

part of a query to a set of XPath expressions. In Section 5.2, we describe an algorithm that

transform an XTree expression in the result construction part of a query to some nested

XQuery expressions. In Section 5.3, an example is given to better illustrate the algorithms.

Finally, we summarize our contributions in Section 5.4.

 The main idea of the XTreeQuery-to-XQuery translation is to convert the XTree

expressions in query clause and construct clause of XTreeQuery to some XQuery

expressions (since the where clause and order by clause of XTreeQuery have the same

syntax as the where clause and order by clause of XQuery).

 Currently our translation algorithms are a basic version; it can only translate basic

XTreeQuery queries, which have no variables in the URL, no join, negation, grouping,

recursion and quantification operations, and no updates on XML document. We will

Chapter 5. Algorithms to transform XTreeQuery to XQuery 79

extend the algorithms to support join, negation, grouping, recursion and quantification.

However, for the XTreeQuery queries with variables in URL and update operations, we

cannot translate them to XQuery, since these features are not supported by XQuery.

 Before introducing the algorithms, we will make the following definitions:

Definition 5. Definition 1 defines that the associated path of variable $a (or {$a}) is the

absolute path expression on the schema of the document, from the root to the nodes

represented by $a (or {$a}). Function path($var) returns the associated path of variable

$var, path({$var}) returns the associated path of variable {$var}.

 For example, for XTree expression /bib/book/[title→$t, author→{$a}], path($t) =

/bib/book/title, path({$a}) = /bib/book/author.

Definition 6. The relative path of path1 with regard to path2 is the path on the schema of

the XML document, that starts from the endpoint of path2 and ends at the endpoint of

path1. Function relaPath(path1, path2) returns the relative path of path1 with regard to

path2. It can be evaluated by a prefix elimination of path2 in path1. The relative path is

also a schema path.

 For example, relaPath(/a/b/c/d, /a/b) = c/d, relaPath(/a/b, /a/b) = null

 Relative path will be used to express an XPath expression whose location path is not an

absolute path starting from the root, but a relative path starting from some pre-defined

XPath (such as $book/title, where $book is defined before as /bib/book).

Definition 7. Variable $a is the nearest ancestor variable of variable $b if $a is an

ancestor variable of $b, and no other ancestor variables of $b are defined between

path($a) and path($b).

Chapter 5. Algorithms to transform XTreeQuery to XQuery 80

 For example, in XTree expression /bib/book→$b/[title→$t, author/last→$last], $b is

the nearest ancestor variable of $t and $last.

 Nearest ancestor variable will be used to serve as the start point of the relative path

expression. For the above example, $b has no nearest ancestor variable, so its XPath

expression will be an absolute path from the root, as /bib/book; however, since $b is the

nearest ancestor variable of $t, the XPath expression of $t will be a relative path starting

from $b, as $b/title.

 In order to construct the result format correctly, we have to figure out the

correspondence between the structure of XTree expression in the querying part and the

structure of XTree expression in the result construction part.

Definition 8. We say that node B (in the result construction part of a query) is derivable

from node A (in the querying part of a query) if the content of B can be derived from the

content of A. Initiatively, node B is derivable from node A means they are correlated as

follows: node A is binding values to variables in the querying part; and node B is getting

values from those variables in the result construction part.

Lemma 1. Suppose node A is from querying part, and node B is from result construction

part, then node B is derivable from node A if and only if one of the following holds:

(1) If node B is a leaf node and it does not contain any variable (e.g., the expression of B

is: node, node←“abc”), then node B is derivable with any node A. In this case we say

node B is trivially derivable.

(2) If the expression of node A is: A→$x, the expression of node B is: B←$x or invocation

of a function on $x (e.g., $x.substring(1,5), $x.string-length(), $x.normalize-space()), then

node B is derivable from node A.

Chapter 5. Algorithms to transform XTreeQuery to XQuery 81

(3) If the expression of node A is: A→{$x}, the expression of node B is: B←{$x} or

invocation of a list-valued function on {$x} (e.g., {x}[1-3], {x}.distinct(), {$x}.sort()), then

node B is derivable from node A.

(4) If the expression of node A is: A→{$x}, the expression of node B is: B← invocation of

an aggregate function on {$x} (e.g., {x}.count(), {x}.avg()), then node B is derivable from

node A.

(5) If node A have variables bound to its children A1…Am, node B have variable

substitutions on its children B1…Bn. If every Bi is derivable from a Aj, then node B is

derivable from node A.

(6) Node B is NOT derivable from node A for any other cases.

5.1 Transformation algorithm for querying part

Transforming an XTree expression in the querying part to a set of XPath expressions is

not just extracting each path associated with a variable to be an XPath expression, because

variables may correlate to each other by some common ancestors, thus we need to use

such common ancestors to constrain the descendent variables, and define them correctly.

 It is very easy to get these common ancestors, by just analyzing the textual XTree

expression itself. The paths just before every pair of square braces for branching (not for

list-valued variables) are the common ancestors we want, because the pair of square

braces implies that all the enclosed sibling branches are interested by the user, no matter

the sibling branches will head to some variable bindings or some constraints.

 Figure 4 gives the pseudo code of the algorithm that transforms an XTree expression in

the querying part to a set of XPath expressions.

Chapter 5. Algorithms to transform XTreeQuery to XQuery 82

Figure 4. Algorithm to transform an XTree expression in querying part

 The main idea of this algorithm is that we find all the common ancestors of variables,

except the root (since an XML document only has one root node), and assign single-

valued variables on them if they are not bound to variables originally. Then we traverse

the XTree expression from left to right (which corresponds to the depth-first order of the

tree), translate each single-valued variable to be an XPath expression in a for clause, and

translate each list-valued variable to be an XPath expression in a let clause. We will use a

stack to store the ancestor variables during the translation; each item in the stack is a pair

of variable name (that may be an ancestor for the nodes processed later) and its path. For

each variable, we will find its nearest ancestor variable by popping the stack until the

Initialize an empty stack
Process the textual XTree expression from left to right
for each node traversed {
 if it is bound to a single-valued variable $svar {
 try to pop the stack until it is empty, or its top item $ancvar is ancestor of $svar
 // if initially the top item is ancestor of $svar, then no need to pop
 if the stack is empty, output XPath: For $svar in path($svar)
 else // now the top item of the stack $ancvar is ancestor of $svar
 output XPath: For $svar in $ancvar/relaPath(path($svar), path($ancvar))
 push $svar and path($svar) into stack
 }
 else if it is bound to a list-valued variable {$lvar} {
 try to pop the stack until it is empty, or its top item $ancvar is ancestor of {$lvar}
 if the stack is empty, output XPath: Let $lvar := path({$lvar})
 else output XPath: Let $lvar := $ancvar/relaPath(path({$lvar}), path($ancvar))
 push $lvar and path({$lvar}) into stack
 }
 else if it is followed by a pair of square braces [] for branching, and it is not the root {
 assign a new single-valued variable $new_svar to this node
 try to pop the stack until it is empty, or its top item $ancvar is ancestor of $new_svar
 if the stack is empty, output XPath: For $new_svar in path($new_svar)
 else output XPath:
 For $new_svar in $ancvar/relaPath(path($new_svar), path($ancvar))
 push $new_svar and path($new_svar) into stack
 }
}
empty the stack

Chapter 5. Algorithms to transform XTreeQuery to XQuery 83

stack is empty, or the top item of the stack is ancestor of it. If the stack is popped empty

(no such ancestor found), we will output the XPath expression of this variable to be the

absolute path from the root of the document; otherwise we will output the XPath

expression of this variable to be the relative path from the top item in the stack (its nearest

ancestor variable). Then we will push this variable together with its path into the stack,

since it may be the ancestor of some variables processed later. When we have processed

all the nodes in the XTree expression, we can empty the stack.

 Note that in the above algorithm, whenever we encounter a list-valued variable {$lvar},

we will just use its inner name $lvar (without curly braces { }) in the output, because in

XQuery a variable defined by a let clause does not have curly braces in its name. Also,

since we process the XTree expression in a left-to-right manner, after applying the

algorithm to an XTree expression, the output paths will be in depth-first order of the

XTree.

Example 5.1. Translate the following XTree expression to a set of XPath expressions:

 query /bib/book→$b/author/last→$last

 By the algorithm, we process the XTree expression from left to right, when we reach

node book, which binds to variable $b, we will output an XPath expression from root,

since now the stack is empty:

 for $b in /bib/book

and push a pair ($b, /bib/book) into the stack. Later when we reach node last, we check

that the top item of the stack (which is $b and its path) is an ancestor of $last, thus we will

output XPath expression of $last to be the relatively path from $b:

 for $last in $b/author/last

Chapter 5. Algorithms to transform XTreeQuery to XQuery 84

Example 5.2. Translate the following XTree expression to a set of XPath expressions:

 query /bib/book→$b/author/[last→$last, first→$first]

 By the algorithm, we process the XTree expression from left to right, when we reach

node book, we output XPath expression:

 for $b in /bib/book

and push a pair ($b, /bib/book) into the stack. Later when we reach node author, since it is

followed by a branch (i.e., it is a branching node), we assign a new single-valued variable

$a to it. We check that the top item of the stack (which is $b and its path) is an ancestor of

$a, thus we output XPath expression of $a to be the relative path from $b:

 for $a in $b/author

and push a pair ($a, /bib/book/author) into the stack. Later when we reach node last, we

check that the top item of the stack (which is $a and its path) is an ancestor of $last, thus

we output XPath expression of $last to be the relative path from $a:

 for $last in $a/last

and push a pair ($last, /bib/book/author/last) into the stack. Later when we reach node

first, we check that the top item of the stack (which is $last and its path) is not an ancestor

of $first, thus we pop the stack, and check again. Now the top item of the stack (which is

$a and its path) is an ancestor of $first, thus we output XPath expression of $first to be the

relative path from $a:

 for $first in $a/first

 Thus the final output XPath expressions are as follows:

 for $b in /bib/book
 for $a in $b/author
 for $last in $b/last
 for $first in $a/first

Chapter 5. Algorithms to transform XTreeQuery to XQuery 85

5.2 Transformation algorithm for result construction part

Transforming an XTree expression in the result construction part of a query to some

XQuery expressions is more complicated, since we often encounter nested sub-queries in

XQuery. Also, if the node name to get the variable value is different from the node name

where the variable was bound in the querying part (i.e., the user wants to restructure the

result), it will be difficult to handle, since we have to explicitly split the name-value pair

of variables in XQuery. Figure 5 gives the pseudo code of the algorithm that transforms an

XTree expression in the result construction part to some XQuery statements.

Figure 5. Algorithm to transform an XTree expression in result construction part

1. String $begin := “”, String $end := “”
2. Process the XTree expression from left to right
3. for each node nodei traversed {
4. if nodei is trivially derivable {
 //suppose the expression of current node is $expr := nodei or nodei←string
5. $begin := $begin + “return ” + translate($expr)
 }
6. else if nodei has no “←” symbol {
7. if it is derivable from a non-leaf node (bound to variable $anc) in last algorithm
10. $begin := $begin + “{” + the XPath expression of $anc from last algorithm
11. $begin := $begin + “return <nodei>”
12. $end := “</nodei>” + $end
13. else //it is the first several levels in result structure, e.g., root of result
14. $begin := $begin + “<nodei>”, $end = “</nodei>” + $end
 }
16. else {
 //suppose the expression of current node is: $expri := nodei←$vari or nodei←{$vari}
18. $begin := $begin + “{” + the XPath expressions of variable $vari or {$vari}
19. $begin := $begin + “return ” + translate($expri) + “}”
20. if next node is descendent of current node, or this is the last node (no next node)
21. $end := “</nodei> }” + $end
22. else if next node is sibling of current node
23. $begin := $begin + “</nodei> }”
24. else //next node is sibling of some nodej processed before
 //let string $endj be the substring of $end from beginning till “</nodej> }”
26. $begin := $begin + “</nodei> }”
27. $begin := $begin + $endj,, $end := $end - $endj
 }
 }
30. output $begin + $end

Chapter 5. Algorithms to transform XTreeQuery to XQuery 86

 The main idea of this algorithm is that we process the XTree expression in result

construction part step by step. We will find the corresponding XPath expressions of each

variable in the output of last algorithm, and use curly braces { } to form sub-query blocks

according to the structure of the XTree expression in construct clause. If a step is a leaf

node with only plain text (not variable value substitution) (line 4), then this node will be

written in the return clause of XQuery directly as an XML tag (line 7). If the node does

not get value from a variable but is compatible with a non-leaf node in the querying part

(line 9), we will get the XPath expression of its compatible node (line 10), and write its

node name directly in the return clause (line 11-12) (the algorithm will process its

children nodes later in sub-query blocks); otherwise if it is not compatible with any node

in the querying part (this usually occurs as the first several levels of result construction,

such as /results/result/…) (line 13), we will just write node tags directly (line 14). For the

last case, if the node gets values from a variable (line 16), we will find the corresponding

XPath expression of this variable (line 18), and translate the variable substitution

statements depending on whether the node name for value substitution is the same as node

name where the variable was bound in the querying part, as a sub-query block (line 19).

Then we will check whether the next node to be processed is the descendent of current

node (line 20), the sibling of current node (line 22), or the sibling of a node processed

before (line 24), and adjust the sub-query blocks accordingly (line 21, 23, 26-27). At last

we output the whole translated XQuery queries (line 30).

 In the above algorithm, function translate($expr) will translate a plain node segment or

a node with value substitution expression to a return clause in XQuery. It is defined as in

Figure 6.

Chapter 5. Algorithms to transform XTreeQuery to XQuery 87

Figure 6. Function translate($expr)

 For case 1 to case 3, the node only has plain text, and there is no variable value

substitution involved, we just write the XML segment directly. For case 4 to case 6, the

node has a variable value substitution expression, we translate the expression depending

on whether the node name for value substitution is the same as the node name where the

variable was bound in querying part. If the node name remains the same, we just put the

value of the variable at the place. Otherwise if the node name is changed, we will get all

possible inner structure (sub-elements, attributes, text fields, etc) of the node and put their

values enclosed by the new node name. Case 4 is for expression with element value

substitution from a single-valued variable; case 5 is for expression with element value

substation from a list-valued variable; and case 6 is for expression with attribute value

define function translate($expr) {
 case 1. $expr is of format: element //no ← symbol
 return <element/>
 case 2. $expr is of format: element ← string
 return <element> string </element>
 case 3. $expr is of format: attribute ← string
 return attribute = “string”
 case 4. $expr is of format: element ← $var {
 if element is the same name as the node where $var was bound in querying part
 return $var
 else //name changed
 return <element> {$var/*} {$var/@*} {$var/text()} </element>
 }
 case 5. $expr is of format: element ← {$var} {
 if element is the same name as the node where {$var} was bound in querying part
 return $var
 else
 return { for $x in $var
 return <element> {$x/*} {$x/@*} {$x/text()} </element> }
 }
 case 6. $expr is of format: @attribute ← $var {
 if attribute is the same name as the node where $var was bound in querying part
 return $var
 else //suppose the parent element of $var is element
 return <element attribute = {string($var)}>
 }
}

Chapter 5. Algorithms to transform XTreeQuery to XQuery 88

substitution from a single-valued variable. Note that list-valued variables cannot be used

for attributes, since in XML an element cannot have multiple attributes with the same

name.

Example 5.3. Suppose for each book, we want to keep its title and author information,

and rename the “author” element to be “writer”. Following is the XTreeQuery for this

query, translate it to XQuery version:

 query /bib/book/[title→$t, author→$a]
 construct /result/book/[title←$t, writer←$a]

 By the first algorithm, the XTree expression in the querying part will be translated as

the following XPath expressions:

 for $b in /bib/book
 for $t in $b/title

for $a in $b/author

 Now we process the XTree expression in the result construction part. The first node

result does not have value assignment symbol “←”, and is not derivable from any node in

the XTree of the querying part, thus by line 14 of the algorithm, its tags <result> and

</result> will be put at the beginning and end of the query directly.

 For the node book, it is derivable from the node book in the XTree of the querying part

(which bounds to variable $b), thus by lines 10-12 of the algorithm, we will form a

querying block:

{
 for $b in /bib/book
 return <book>
 … (to be filled by later processed node translations)
 </book>
}

 For the node title, by lines 18-19, and line 23 (since the next node author is a sibling of

title), we will form a sub-querying block:

Chapter 5. Algorithms to transform XTreeQuery to XQuery 89

{
 for $t in $b/title
 return $t
}

 Lastly, for the node writer, by lines 18-19, and line 21 (since it is the last node to be

processed), we will form a sub-querying block:

{
 for $a in $b/author
 return <writer> {$a/*} {$a/@*} {$a/text()} </writer>
}

 Thus, combine the above sub-querying blocks together, we have the whole translated

XQuery as follows:

 <result> {
 for $b in /bib/book
 return <book> {
 for $t in $b/title
 return $t
 }
 {
 for $a in $b/author
 return <writer> {$a/*} {$a/@*} {$a/text()} </writer>
 }
 </book>
}
</result>

5.3 An example of our algorithm

To illustrate how our algorithms transform an XTreeQuery query based on XTree

expressions into standard XQuery query, we use our algorithms to process the following

example:

Example 5.4. Consider the following XTreeQuery query. We want to list each book and

each journal. For each book, we rename the title to name, add an element authors that

consists of all the authors of this book, add an attribute count in authors which counts the

Chapter 5. Algorithms to transform XTreeQuery to XQuery 90

number of authors of the book, and rename author element to au. For each editor of a

journal, we put his/her first name before last name. The XTreeQuery query is as follows:

query /bib/[book/[title→$t, author→{$a}],
 journal/[title→$jt, editor/[last→$last, first→$first]]]
construct /results/[book/[name←$t, authors/[@count←{$a}.count(), au←{$a}],

 journal/[title←$jt, editor/[first←$first, last←$last]]]

 Figure 7a. XTree graph for querying Figure 7b. XTree graph for result construction

 Figure 7a shows the XTree graph for querying part, and Figure 7b shows the XTree

graph for result construction part.

 For the XTree expression in the querying part, by applying the first algorithm, we

process it from left to right. The algorithm will output an XPath expression for each node

bound to a variable and each branch node.

 First we reach the node book, which is followed by a branch. It is not bound to any

variable originally, and is not the root, thus we assign a new single-valued variable $b to

it, output a for clause: for $b in /bib/book, and push the pair ($b, /bib/book) into the stack.

 Next we reach the node title, which is bound to a single-valued variable $t, we check

that the top item of the stack (which is $b and its path) is an ancestor of $t, thus we output

the XPath expression of $t to be a relative path from $b: for $t in $b/title, and push the

pair ($t, /bib/book/title) into the stack.

bib

book journal

title author title editor

last first

→$t →{$a} →$jt

→$last →$first

(→$b) (→$j)

results

book journal

name authors title editor

first last

←$t ←$jt

←$first ←$last
au@count

←{$a}.count() ←{$a}

Chapter 5. Algorithms to transform XTreeQuery to XQuery 91

 Next, for node author, which is bound to a list-valued variable {$a}, we check that the

top item of the stack (which is $t and its path) is not an ancestor of {$a}, thus we pop the

stack, and check again. Now the top item of the stack (which is $b and its path) is an

ancestor of {$a}, thus we output the XPath expression of $a to be a relative path from $b:

let $a := $b/author, and push the pair ($a, /bib/book/author) into the stack.

 Then, for node journal, which is followed by a branch. It is not bound to any variable

originally, and is not the root, thus we assign a new single-valued variable $j to it. By

checking whether the top item of the stack is an ancestor of $j, we will pop the stack to be

empty, thus we output the XPath expression as: for $j in /bib/journal, and push the pair

($j, /bib/journal) into the stack.

 By continuing such procedure, finally we will have the following output:

for $b in /bib/book
for $t in $b/title
let $a := $b/author
for $j in /bib/journal
for $jt in $j/title
for $e in $j/editor
for $last in $e/last
for $first in $e/first

 From the above translated XPath expressions. We can see that for this example, one

XTree expression in the querying part corresponds to 8 XPath expressions here (7 for

clauses and 1 let clause). Among the 8 variables, 5 variables ($t, $a, $jt, $last and $first)

are originally defined in the XTree expression, and the rest 3 variables ($b, $j and $e) are

the generated by the algorithm, they are common ancestors used as starting points of

relative paths.

 For the result construction part, by applying the second algorithm, we will get the

following XQuery query (detailed execution omitted) as in Figure 8.

Chapter 5. Algorithms to transform XTreeQuery to XQuery 92

Figure 8. Result XQuery of Example 5.4

5.4 Summary

In this chapter, we have developed algorithms to transform a simple XTreeQuery query to

an XQuery query. There are two algorithms for the transformation: the first algorithm

transforms an XTree expression in the querying part of a query to a set of XPath

expressions, and the second algorithm transforms an XTree expression in the result

construction part of a query to some nested XQuery expressions. The pseudo code of the

<result> {
 for $b in /bib/book
 return <book> {
 for $t in $b/title
 return <name> {$t/*} {$t/@*} {$t/text()} </name>
 }
 {
 let $a := $b/author
 return <authors count={count($a)}> {
 for $x in $a
 return <au> {$x/*} {$x/@*} {$x/text()} </au>
 }
 </authors>
 }
 </book>
}
{
 for $j in /bib/journal
 return <journal> {
 for $jt in $j/title
 return {$jt}
 }
 {
 for $e in $j/editor
 return <editor> {
 for $first in $e/first
 return {$first}
 }
 {
 for $last in $e/last
 return {$last}
 }
 </editor>
 }
 </journal>
}
</result>

Chapter 5. Algorithms to transform XTreeQuery to XQuery 93

two algorithms is presented, and some examples are given to illustrate how the algorithms

work.

 After transformation, the output XQuery query can be executed by current XQuery

parsers.

Chapter 6. Conclusion and future works 94

Chapter 6

Conclusion and future works

In this chapter, we summarize our research work in Section 6.1. In addition, some future

research directions are recommended in Section 6.2 to further enhance the expressive

power of XTree and XTreeQuery.

6.1 Conclusion

In this thesis, we have surveyed some existing XML query languages, discussed the

limitations of XPath and XQuery, and proposed our XTree and XTreeQuery based on the

complex object data model[23].

 XTree is a generalization of XPath; it is more compact and convenient to use than

XPath. XTree can be used in both querying part and result construction part of a query. It

has a tree structure that is similar to XML document, thus in the querying part, a user can

instantiate multiple paths (each path is bound to a variable) at the same time in one XTree

expression. It explicitly identifies list-valued variables, uniquely determines their values

and defines some natural built-in functions to manipulate them in an object-oriented

manner. XTree also supports URL-related searches by binding variables on the URL or

Chapter 6. Conclusion and future works 95

part of the URL so that they can also be queried, thus it supports the functionality of

search engines. To prevent the mixing of XML plain text and variable values and even

sub-queries in the result construction, we can also use an XTree expression in the result

construction part, to define the result format in a clearer and more compact way.

 XTreeQuery is a query language based on XTree expressions. It is more powerful and

efficient than XQuery. In the querying part, multiple variables can be defined in one

XTree expression; in the result construction part, the result format can be defined in just

one XTree expression, which prevents nested structure in the query. The separation of

querying part and result construction part effectively avoids nested structure in the query,

and makes the whole query easy to read and understand. Thus the XTreeQuery queries are

much shorter in length and clearer to understand, compared to XQuery. Our XTreeQuery

also effectively supports join, negation, grouping, recursion, quantification, updates and

some special queries which are not supported by XQuery, or not supported efficiently. By

a comparison between our XTreeQuery and some other existing XML query languages,

we can see that our XTreeQuery has richer expressive power, and supports most of the

database operations efficiently.

 To utilize the current XQuery parsers, we have also designed two algorithms that

convert an XTreeQuery query to a XQuery query. The first algorithm transforms an XTree

expression in the querying part into a set of XPath expressions, and the second algorithm

transforms an XTree expression in the result construction part into some nested XQuery

statements.

Chapter 6. Conclusion and future works 96

6.2 Future works

For the future research, we would like to implement the XTreeQuery system that supports

XTreeQuery query and update language. An XTreeQuery query parser will execute

queries directly, instead of translating it into XQuery queries. The querying evaluation

will be more efficient on this approach, since we will have a global view of the entire

query tree.

 Currently, our algorithms for translating XTreeQuery to XQuery is a basic version,

which only support queries without join, negation, grouping, recursion and quantification.

We will extend the algorithms by adding translation rules for join, negation, grouping,

recursion and quantification operations.

 Also, the output XQuery queries of our transformation algorithms look very lengthy,

because the algorithms assume nothing is known in the structure of the XML document,

thus all the possible contents of an element/attribute are considered. If we also know the

schema of the document (e.g., in the bibliography data in Appendix I, title is a text

element, without sub-elements and attributes, each author element has only one last name

and one first name, etc) , we may optimize the queries to be more compact. We will think

about the formal optimization algorithms which can utilize the schema of the XML

documents, and make the output XQuery queries simpler.

 In addition, we will also observe the progressive development of XQuery to

continuously enhance the expressive power of our XTreeQuery.

Publication list 97

Publication list

1. Zhuo Chen, Tok Wang Ling, Mengchi Liu, Gillian Dobbie. “XTree for Declarative

XML Querying”, In proceedings of the 9th Int’l Conference on Database Systems for

Advanced Applications, Korea, 2004.

References 98

References

[1] S.Abiteboul, D.Quass, J.McHugh, J.Widom, and J.L. Wiener. The Lorel Query

Language for Semistructured Data. Intl. Journal of Digital Libraries, 1(1):68-99,

1997.

[2] A.Bonifati and S.Ceri. Comparative Analysis of Five XML Query Lanugages.

SIGMOD Record, 29(1):68-79, 2000.

[3] R.G.G.Cattell and D.Barry. The Object Database Standard: ODMG 2.0. Morgan

Kaufmann, Los Altos, CA. 1997.

[4] S.Ceri, S.Comai, E.Damiani, P.Fraternali, S.Paraboschi, and L.Tanca. XML-GL: a

Graphical Language for Querying and Restructuring WWW data. In Proceedings of

the 8th International World Wide Web Conference, Toronto, Canada, 1999.

[5] S.Ceri, S.Comai, E.Damiani, P.Fraternali, and L.Tanca. Complex Queries in XML-

GL. SAC(2) 2000:888-893.

[6] D.Chamberlin, J.Robie, and D.Florescu. Quilt: An XML query language for

heterogeneous data sources, In Proceedings of International Workshop on the Web

and Databases, 2000.

[7] P.Chippimolchai, V.Wuwongse and C.Anutariya. Semantic Query Formulation and

Evaluation for XML Databases. In Proceedings of WISE 2002, 205-214, Singapore,

2002.

References 99

[8] S.Cluet and J.Simeon. YATL: a Functional and Declarative Language for XML.

http://db.bell-labs.com/user/simeon/icfp.ps, 1999.

[9] S.Cohen, Y.Kanza, Y.Kogan, W.Nutt, Y.Sagiv and A.Serebrenik. Equix – Easy

Querying in XML Databases. In proceedings of Webdb’98 – The Web and Database

Workshop, 1998.

[10] S.Comai, E.Damiani, P.Fraternali. Computing Graphical Queries over XML Data.

ACM Transactions on Information Systems, Vol. 19, No. 4, October 2001, Pages

371-430.

[11] S.Comai, E.Damiani, L.Tanca. The WG-Log System: Data Model and Semantics.

INTERDATA technical report, T2-R06, July 1998.

[12] I.F.Cruz, A.O.Mendelzon, and P.T.Wood. A Graphical Query Language Supporting

Recursion. Proc. ACM SIGMOD Conf. on Management of Data, 1987, pp. 323—

333.

[13] C.J.Date. An Introduction to Database Systems. 3rd Edition, Addison-Wesley

Publishing Company, 1981.

[14] A.Deutsch, M.Fernandez, D.Florescu, A.Levy, and D.Suciu. XML-QL: A Query

Language for XML. http://www.w3.org/TR/1998/Note-xml-ql-19980819, August

1998.

[15] G.Dobbie, X.Y.Wu, T.W.Ling, M.L.Lee. ORA-SS: An Object-Relationship-

Attribute Model for Semistructured Data. TR21/00, Technical Report, Department of

Computer Science, National University of Singapore, December 2000.

[16] P.W.Eklund, J.Leane, and C.Nowak. GrIT: An implementation of a graphical user

interface for conceptual structures. Technical Report TR94-03, Computer Science

Department, The University of Adelaide, February 1994.

References 100

[17] H.Hosoya and B.Pierce. XDuce: A Typed XML Processing Language (Preliminary

Report). In Proceedings of WebDB Workshop, 2000.

[18] M.Kifer, G.Lausen: F-Logic: A Higher-Order language for Reasoning about Objects,

Inheritance, and Scheme. SIGMOD Conference 1989: 134-146

[19] M.Kifer, G.Lausen, and J.Wu. Logical Foundations of Object-Oriented and Frame-

Based Languages. Journal of ACM, 42(4):741-843, 1995.

[20] M.Liu. ROL: A Deductive Object Base Language. Information Systems, 21(5):431-

457, 1996

[21] M.Liu. Relationlog: A Typed Extension to Datalog with Sets and Tuples. Journal of

Logic Programming, 36(3): 271-299, 1998.

[22] M.Liu and M.Guo. ROL2: A Real Deductive Object-Oriented Database Language.

In Proceedings of the 17th International Conference on Conceptual Modeling

(ER’98), pp 302-315, Singapore, November 1998. Springer-Verlag LNCS 1507.

[23] M.Liu and T.W.Ling. Towards Declarative XML Querying. In Proceedings of WISE

2002, 127-138, Singapore, 2002.

[24] M.Liu, L.Lu and G.R.Wang. A Declarative XML-RL Update Language. In

Proceedings of ER2003, 506-519, Chicago, USA, 2003

[25] L.Mark, et. al. XMLApe. College of Computing, Georgia Institute of Technology.

http://www.cc.gatech.edu/projects/XMLApe/

[26] Y.Y.Mo, T.W.Ling. Storing and Maintaining Semistructured Data Efficiently in an

Object-Relational Database. Research Report. School of Computing, NUS.

[27] K. D. Munroe and Y. Papakonstantinou. BBQ: A visual interface for integrated

browsing and querying of XML. In Proceedings of Visual Database Systems, May,

2000.

References 101

[28] W. Ni, T. W. Ling. GLASS: A Graphical Query Language for Semi-Structured Data.

DASFAA 2003.

[29] J.Robie, J.Lapp, and D.Schach. XML Query Language (XQL).

http://www.w3.org/TandS/QL/QL98/pp/xql.html, 1998

[30] I.Tatarinov, Z.G.Ives, A.Y.Halevy and D.S.Weld. Updating XML. In Proceedings of

SIGMOD 2001, pages 413-424, 2001.

[31] SQLX Working Draft. http://www.sqlx.org/

[32] XML Path Language (XPath) 2.0. W3C Working Draft, August 2003.

http://www.w3.org/TR/xpath20/

[33] XQuery 1.0: An XML Query Language. W3C Working Draft, August 2003.

http://www.w3.org/TR/xquery/

[34] XQuery 1.0 and XPath 2.0 Formal Semantics. W3C Working Draft, August 2003.

http://www.w3.org/TR/xquery-semantics/

[35] XQuery 1.0 and XPath 2.0 Functions and Operators. W3C Working Draft, May

2003. http://www.w3.org/TR/xpath-functions/

[36] XML Query Requirements. W3C Working Draft, June 2003.

http://www.w3.org/TR/xquery-requirements/

[37] XML Query Use Cases. W3C Working Draft, August 2003.

http://www.w3.org/TR/xquery-use-cases/

[38] XML Schema. W3C Recommendation, May 2001.

http://www.w3.org/XML/Schema

[39] XSL Transformations (XSLT) Version 1.0. W3C Recommendation, November

1999. http://www.w3.org/TR/xslt

Appendices 102

Appendix I. Sample XML document of bibliography data
<?xml version=“1.0” encoding=“UTF-8”?>
<bib name=“IT”>
 <book id=“b001” year=“1994”>
 <title>TCP/IP Illustrated</title>
 <author>
 <last>Stevens</last>
 <first>W.</first>
 </author>
 <publisher pid=“p01”>Addison-Wesley</publisher>
 <price>65.95</price>
 </book>
 <book id =“b002” year=“1992”>
 <title>Advanced Programming in the Unix Environment</title>
 <author>
 <last>Stevens</last>
 <first>W.</first>
 </author>
 <publisher pid=“p01”>Addison-Wesley</publisher>
 <price>59.95</price>
 </book>
 <book id=“b003” year=“2000”>
 <title>Data on the Web</title>
 <author>
 <last>Abiteboul</last>
 <first>Serge</first>
 </author>
 <author>
 <last>Buneman</last>
 <first>Peter</first>
 </author>
 <author>
 <last>Suciu</last>
 <first>Dan</first>
 </author>
 <publisher pid=“p02”>Morgan Kaufmann</publisher>
 <price>39.95</price>
 </book>
 <journal id=“j001” year=“1998”>
 <title>XML</title>
 <editor><last>Date</last><first>C.</first></editor>
 <editor><last>Gerbarg</last><first>M.</first></editor>
 <publisher pid=“p02”>Morgan Kaufmann</publisher>
 </journal>
</bib>

Appendices 103

Appendix II. Sample DTD for three XML documents

Three XML documents named sailors.xml, boats.xml and reservations.xml use the

following Document Type Definition (sample.dtd):

<!DOCTYPE sailors [
 <!ELEMENT sailors (sailor*)>
 <!ELEMENT sailor (sname, gender, age)>
 <!ATTLIST sailor sid ID #REQUIRED>
 <!ELEMENT sname (#PCDATA)>
 <!ELEMENT gender (#PCDATA)>
 <!ELEMENT age (#PCDATA)>
]>

<!DOCTYPE boats [
 <!ELEMENT boats (boat*)>
 <!ELEMENT boat (bname, model, year)>
 <!ATTLIST boat bid ID #REQUIRED>
 <!ELEMENT bname (#PCDATA)>
 <!ELEMENT model (#PCDATA)>
 <!ELEMENT year (#PCDATA)>
]>

<!DOCTYPE reservations [
 <!ELEMENT reservations (reservation*)>
 <!ELEMENT reservation (start-time, end-time)>
 <!ATTLIST reservation sid CDATA #REQUIRED>
 <!ATTLIST reservation bid CDATA #REQUIRED>
 <!ELEMENT start-time (#PCDATA)>
 <!ELEMENT end-time (#PCDATA)>
]>

 Note: In sailors.xml, there’s a line <!DOCTYPE sailors SYSTEM “sample.dtd”> at the

beginning; in boats.xml, there’s a line <DOCTYPE boats SYSTEM “sample.dtd”> at the

beginning; and in reservations.xml, there’s a line <DOCTYPE reservations SYSTEM

“sample.dtd”> at the beginning.

Appendices 104

Appendix IIIA. Sample XML document of employee list

<?xml version=“1.0” encoding=“ISO-8859-1”?>
<employeelist>
 <employee id=“0” name=“John”/>
 <employee id=“1” manager=“0” name=“Tom”/>
 <employee id=“2” manager =“0” name=“Jack”/>
 <employee id=“3” manager =“1” name=“Ken”/>
 <employee id=“4” manager =“2” name=“Bush”/>
 <employee id=“5” manager =“2” name=“Jeremy”/>
 <employee id=“10” manager =“Ivan”/>
 <employee id=“11” manager =“10” name=“Gerald”/>
 <employee id=“12” manager =“10” name=“Albert”/>
 <employee id=“20” name =“Michael”/>
</employeelist>

Appendix IIIB. Result of recursive query: employee tree

<?xml version=“1.0” encoding=“ISO-8859-1”?>
<employeetree>
 <employee id="0" name=“John">
 <employee id="1" name=“Tom">
 <employee id="3" name=“Ken"/>
 </employee>
 <employee id="2" name=“Jack">
 <employee id="4" name=“Bush"/>
 <employee id="5" name=“Jeremy"/>
 </employee>
 </employee>
 <employee id="10" name=“Ivan">
 <employee id="11" name=“Gerald"/>
 <employee id="12" name=“Albert"/>
 </employee>
 <employee id="20" name=“Michael"/>
</employeetree>

Appendices 105

Appendix IV. Sample XML document of people

<?xml version=“1.0” encoding=“ISO-8859-1”?>
<!DOCTYPE people [
 <!ELEMENT people (person*)>
 <!ELEMENT person (name)>
 <!ATTLIST person id ID #IMPLIED
 mother IDREF #IMPLIED
 children IDREFS #IMPLIED>
 <!ELEMENT name (#PCDATA)>
]>

<people>
 <person id=“o123”>
 <name>Jane</name>
 </person>
 <person id=“o234” mother=“o456”>
 <name>John</name>
 </person>
 <person id=“o456” children=“o123 o234”>
 <name>Mary</name>
 </person>
 <person id=“o567”>
 <name>Joan</name>
 </person>
 <person id=“o678” children=“o456 o567”>
 <name>Tony</name>
 </person>
 <person/>
</people>

Appendices 106

Appendix V. Formal description of XTree/XTreeQuery syntax

XTreeExpr ::= [“(” URLExpr “)”] (“/” | “//”) TreeExpr
URLExpr ::= [ProtoExpr] SVarName

 | [ProtoExpr] SVarName “/” FileExpr
 | [ProtoExpr] DomainExpr (“/” DirExpr)* “/” FileExpr

ProtoExpr ::= <String> “://”
DomainExpr ::= (<Stirng> (“.” <String>)+) | SVarName
DirExpr ::= <String> | SVarName
FileExpr ::= ((<String> | SVarName) “.” <String>) | SVarName
TreeExpr ::= NodeExpr
 | NodeExpr (“/” | “//”) TreeExpr

 | “{” TreeExpr (“,” TreeExpr)+ “}”
NodeExpr ::= NodeName

 | CondExpr
 | VarExpr

NodeName ::= [“@”] <String>
CondExpr ::= (NodeName | VarValue) CompOp (VarValue | <Constant>)
VarValue ::= VarName [“.” FuncExpr]
VarName ::= SVarName | LVarName
SVarName ::= “$” <String> [(“/” NodeName)*]
LVarName ::= “{$” <String> [(“/” NodeName)*] “}”
FuncExpr ::= FuncName “(“ ParaListExpr “)”
FuncName ::= <String>
ParaListExpr ::= ParaExpr [(“,” ParaExpr)*]
ParaExpr ::= VarValue | <Constant>
CompOp ::= “=” | “<” | “<=” | “>” | “>=” | “ !=” | …
VarExpr ::= VarBindExpr | VarAssignExpr
VarBindExpr ::= LeftSideExpr “→” VarName
VarAssignExpr ::= LeftSideExpr “←” (VarName | <Constant>)
LeftSideExpr ::= NodeName | ([“@”] SVarName)

XTreeQueryExpr ::= Query_clause Where_clause? Orderby_clause? Return_clause
Query_clause ::= “Query” XTreeExpr (“,” XTreeExpr)*
Where_clause ::= “Where” CondExpr (“,” CondExpr)*
Orderby_clause ::= “Order by” VarName (“,” VarName)*
Return_clause ::= “Return” XTreeExpr

