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Summary

In this thesis, we propose a scalable, extensible and high-fidelity emulator for mobile

ad hoc network emulation. Generally speaking, there are three approaches towards

testing of ad hoc network protocols and applications. They are test-bed approach,

simulation approach, and emulation approach. Emulation approach combines the

strengths from both test-bed and simulation.

Our emulator is able to emulate at least 6 mobile nodes without actually moving

the nodes physically. These emulated mobile nodes are connected by a mobility-

aware virtual switch. The virtual switch dynamically enables/disables the connec-

tions among emulated mobile nodes. In this way, these emulated mobile nodes move

virtually in our emulator.

In the current version, the emulator runs on a single Linux machine. Depending

on the computing capacity of the machine, number of emulated mobile nodes varies.

The emulator is scalable, because it is able to run on a cluster of Linux machines

with some modifications in the virtual switch and its controllers. If each physical

machine is capable of emulating n mobile nodes and a cluster has m participating

physical machines, it is possible to emulate a total number of n × m mobile nodes in

the cluster.

ix



The emulator is extensible. It is implemented using Perl. Extensions and addi-

tional features can be added to the emulator easily, since Perl is good at fast proto-

typing. For instance, we can add a module to the virtual switch to introduce packet

corruption at a given rate.

Each mobile node runs in an User Mode Linux (UML) [1]. From the host point of

view, each UML runs as a normal application in its user space; for the applications

running in UML, UML is a Linux operating system, which is exactly the same as

a real Linux. Unmodified Linux applications can run directly on UML. Therefore,

common daemons, which run on Linux machines, can run on our virtual mobile nodes

without any modification. For example, real TCP/IP stack can run properly inside

our virtual mobile nodes. Applications like ssh, telnet and ftp can run in our virtual

mobile nodes without knowing that it is running on top of virtual nodes. Hence, the

emulation results have high fidelity.

The architecture of the emulator is motivated by MobiEmu [2], which was devel-

oped by Yongguang Zhang and Wei Li. However, our emulator differs from MobiEmu

in many ways, such as the tasks of master/slave controllers, emulation synchroniza-

tion, utilization of UML, and the use of a virtual switch. We explain these differences

in Chapter 3 and Chapter 4.

The design of the virtual switch is motivated by uml switch [1], which was de-

veloped by Jeff Dike. Our virtual switch extends the functionality of the original

uml switch by adding the mobility-aware feature. Furthermore, the implementation

language is different. Uml switch was written in C, while our virtual switch is written

in Perl, which is fast and suitable for prototyping.

x



We believe that our emulator can help MANET protocol and application develop-

ers to verify existing implementations and test new designs in various mobile scenarios

in a convenient, efficient and safe way.
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Abstract

Most current Mobile Ad Hoc Network (MANET) testing environments do not

scale very well, due to the fact that each physical node only represents one mobile

node. We have built an extensible MANET emulator in order to carry out large-scale

experiments with high fidelity. By making use of virtual machine technology (User

Mode Linux), each physical host is able to emulate 6 or more virtual mobile nodes,

if computing capacity can support. These virtual mobile nodes are interconnected

with a mobility-aware virtual switch. New features, like packets corruption, can be

added to the virtual switch easily. Without any physical movements, the testing

environment can emulate any mobile scenario. Consequently, both high scalability

and extensibility can be achieved. Each virtual machine runs as if it is a real mobile

node with CPU, hard-disk, and network interface cards. High fidelity can be achieved

by running real ad hoc networking applications, such as ad hoc routing daemons, on

top of individual virtual mobile node.



Chapter 1

Introduction

This Master’s thesis deals with the design and implementation of a Mobile Ad hoc

NETwork (MANET ) Emulator. The emulator makes use of virtual machine technol-

ogy to achieve high scalability, extensibility and fidelity. In this chapter, we introduce

what motivates us to accomplish this work firstly. Then, the objectives and contribu-

tions of our work are presented. Finally, the organization of this thesis is introduced.

1.1 Motivation

With the rapid development of wireless communication technology, mobile networking

has drawn lots of attentions from the research community in recent years. Due to

the complex and indeterministic nature of the wireless communication channel, some

knowledge and experiences we gathered previously in wired network no longer hold in

this new field. At the same time, numerous new challenges are waiting to be tackled.

This is a young and promising field with high research value.

There are two modes of operation in mobile networking. In the first mode, the

mobile network is made up of mobile hosts and base stations. Base stations are used

1
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Figure 1.1: An example of an Ad Hoc Network

to forward traffic among mobile hosts or between a mobile host and a wired network.

Usually, this is called infrastructure mode. In the second mode, the mobile network is

set up and maintained dynamically by a group of mobile hosts, without the presence of

any communication infrastructure, or base station. This mode is regarded as Ad Hoc

mode. Figure 1.1 illustrates a simple ad hoc network. Nowadays, the infrastructure

mode is the dominating mode used in mobile networks. However, ad hoc mode is

gaining popularity because of the requirements from both military and commercial

applications.

For example, when there is a need for certain networking applications, people used

to think that they must hook their computing devices to a wired network. However,

2
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in practice, sometimes there is no such wired network infrastructure available. This

is where ad hoc networking can help. Suppose people in a few neighboring offices

want to have a informal discussion. If they don’t have wired network access, the best

solution is setting up an ad hoc network among the participants of the discussion.

It is safe to assume that not all the participants have the knowledge to configure

the routing table by hand. Therefore, the formation and maintenance of the ad hoc

network must be carried out automatically.

Specialized routing protocols have been developed for ad hoc environment. Well-

known ad hoc routing protocols includes DSDV (Destination-Sequenced Distance-

Vector) [3], AODV (Ad Hoc On-Demand Distance-Vector) [4], DSR (Dynamic Source

Routing) [5] and TORA (Temporally Ordered Routing Algorithm) [6].

The evaluation of ad hoc routing protocols is non-trivial. Generally speaking,

researchers carry out ad hoc network testing using one of the three approaches:

Test-bed Approach The most intuitive approach is setting up a real test-bed, which

consists of a number of mobile hosts. Each mobile host has a wireless adaptor

that is configured to ad hoc mode. In this way, ad hoc routing protocols are

tested directly on real machines.

Simulation Approach Simulation is the technique of representing the real world by

a computer program. Both software and hardware used in simulation approach

are not real. In other words, in simulation approach, “ad hoc routing protocols”

and “mobile hosts” are only components of a program, which is developed in a

specific simulation environment. Many simulation environments coupled with

3
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well-designed protocol modules and configuration utilities have been developed

by researchers, such as ns2 [7], GloMoSim [8], and etc.

Emulation Approach Emulation can be considered as the technique of represent-

ing hardware A by a computer program and another hardware B. The computer

program is named emulation layer. With the help of the emulation layer, hard-

ware B will behave exactly the same as hardware A. Therefore,unmodified real

protocols can run on the emulator in the same way as they are running on real

mobile hosts. In this way, emulation can take the strength of both test-bed and

simulation. In recent years, the investigation of emulation approach has become

a hot-spot in research community. Lots of papers have been published in this

area.

Each of the above mentioned testing approaches has its own advantages and dis-

advantages:

• Testing results collected from test-bed approach are convincing. This is because

that the tests are carried out with real software on real hardware. However,

due to the high cost involved with hardware, space constraints, and limited

manpower, test-bed approach does not scale well. Normally researchers use

only several mobile hosts in their test-bed;

• Simulation approach has the advantage of high scalability and low hardware

cost. It is not surprising that in a single test, hundreds of mobile hosts can be

easily simulated. However, this approach suffers serious drawback from porta-

bility and extensibility. A particular protocol implementation developed on a

4
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simulator is difficult to be ported to real systems. At the same time, simulator

usually provides a set of specialized APIs for developers. As a result, develop-

ing applications on a simulator and writing extensions for a simulator are both

difficult;

• Emulation combines the strength of both test-bed and simulation. Emulation

tests with real software components directly. In this way, emulation results

usually have high credibility, and the portability is no longer a problem. In

a simulation environment, a number of general purpose APIs are available to

developers. Therefore, it is easier to develop applications and write extensions

in emulation approach than in simulation approach. At the same time, without

costly investment in hardware, emulators usually have good scalability. These

advantages makes emulation a promising testing approach in the MANET re-

search community.

One of the recent advancements in virtual machine technology is used in ad hoc

network emulators. Virtual machines are Virtual Operating Systems running on top

of a real Host Operating System. From applications’ point of view, a virtual machine

is exactly the same as a real OS. Applications can run directly on the virtual machine

without being modified or recompiled. System/hardware resource access inside virtual

machines are virtualized. In other words, applications running on the virtual OS have

no direct access to the real underlying hardware. For example, in the virtual machine,

hard-disk access is virtualized as the access of a file system in the real host operating

system. Thus, a well-controlled protection of the host OS is achieved.

5
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The virtual machine technology used in the implementation of our ad hoc network

emulator is “User Mode Linux” [1]. UML is a virtual machine, which can run most

applications that the host Linux can. Therefore, using UML, it’s possible to run a

group of independent virtual machines on one real machine. Each mobile host is

emulated by an UML. In this way, on a single machine, multiple mobile hosts can be

emulated.

1.2 Thesis Objectives

In this thesis, we present the design and implementation of a mobile ad hoc network

emulator, which is scalable, extensible and of high-fidelity. The main objectives of

our work are:

• To design and implement an emulator, which is capable of emulating multiple

mobile nodes on a single physical machine efficiently by using User Mode Linux;

• To design and conduct systematic experimentations to evaluate the effectiveness

of the emulator and measure its performance;

• To generalize an emulator framework from the master/slave control architec-

ture, which is used in the implementation of our emulator. The general em-

ulator framework should be flexible enough to be configured to support both

infrastructure mode and ad hoc mode mobile network emulation.

6
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1.3 Contributions

Current mobile ad hoc network emulators use one machine to emulate one mobile

host. This limits total number of mobile hosts participating in the ad hoc network

emulation. The main contributions of our work include:

• We have designed and implemented an ad hoc network emulator. The emulator

is capable of emulating 6 mobile hosts or more on a single physical machine,

if computing capacity can support. Virtual machine technology (UML) and

mobility-aware virtual switch play important roles in our emulator. At the

same time, our emulator is designed to be extensible. Porting it to a computing

cluster mainly involves adding an extension to the virtual switch;

• We have designed and conducted experiments using a systematic method. We

verify the effectiveness of the emulator by testing reachability and routing cor-

rectness. Throughputs under various network scenario are measured to evaluate

the performance of the emulator;

• We have generalized the master/slave control architecture of our emulator as

a framework for mobile network testing. By providing configurable APIs, new

features, like monitoring routing overhead, can be easily added into the frame-

work.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 gives a description of the

problems faced by MANET researchers, and a literature survey of the technological

7
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backgrounds needed to understand the rest of this thesis. Chapter 3 provides detailed

information on the design of the emulator. Chapter 4 explains implementation con-

siderations. Experimentation design and experimental results are summarized and

analyzed in Chapter 5. Chapter 5 also discusses future works. Finally, Chapter 6

summarizes the thesis.

8



Chapter 2

Background

This chapter explains the problems experienced by MANET researchers firstly. Then,

a survey of the technological backgrounds needed to understand the rest of this thesis

is given.

2.1 Problem Description

To understand MANET protocols and applications well, researchers need to be fa-

miliar with some concepts and characteristics of mobile ad hoc network. James A.

Freebersyser and Barry Leiner summarized the fundamental issues [9] that MANET

researchers should know. These issues include:

Mobile Scenario Mobile scenario generally describes how a set of mobile nodes move

around in the terrain and the resulting connectivity. Mobile scenario is influ-

enced by three factors: network size, connectivity and network topology. Usually,

network size is regarded as the number of nodes in the network. Alternatively,

it can also refer to the area covered by the network. Connectivity refers to a

number of issues. It may refer to neighbors within the communication range

9



2.1 Problem Description Chapter 2. Background

of each node. It may also refer to link capacity between two nodes. Network

topology is a concept expressed by the mobility of network nodes. As the net-

work nodes move, connectivity changes, as well as the network topology. Ad

hoc routing protocols must adapt to these changes;

User traffic The characteristics and types of user generated traffic play an important

role in MANET design. Certain patterns of user traffic may be very sensitive

to connectivity changes. Some network applications may tolerate packet loss.

Knowledge on user traffic can be helpful in both design and experimentation of

MANET;

Operational environment Operational environment refers to how radio channels

are affected by surroundings, such as terrain or interference;

Energy Normally, network nodes in MANET operate on batteries. If a MANET

design does not take energy into consideration, mobile nodes may soon run out

batteries. As a result, the mobile network will have less nodes alive, and overall

connectivity is hurt seriously;

Regulatory A MANET design must comply with existing regulations on its emitting

power, for legal and public health reasons;

Performance metrics Evaluation of MANET design is important. Performance

metrics like protocol overhead, packet loss, throughput, delay and so on, must

be carefully chosen to suit the user requirements;

Cost High performance-cost ratio will lead to well acceptance by MANET users.

10
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MANET design and evaluation should take performance-cost ratio under con-

sideration.

How well researchers understand the above mentioned issues affects the design of

the MANET routing protocols. Before the design is ready for deployment, tests need

to be carried out to find whether correctness, efficiency, and other objectives of the

MANET routing protocol design have been achieved. Over years, many of MANET

testing environments have been developed. They can be classified into three types:

• Testbed

• Simulation

• Emulation

Detailed discussion of the three types of testing environments is given in later part of

this chapter.

The problems in the current MANET research challenge us to develop a testing

environment, which takes the seven issues mentioned above into serious consideration.

It is the advantages of emulation and the advancement of virtual machine technology

UML that motivate us to design and implement an emulator with high scalability,

extensibility and fidelity.

2.2 Literature Survey

In the section we present a comprehensive literature survey, which covers most im-

portant aspects of MANET and its testing environments.

11
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2.2.1 Ad Hoc Network

The history of ad hoc network can be traced back to as early as 1970s. As the pioneer-

ing work, PRNet project [10] (initiated in 1972), studied efficient means of sharing a

broadcast radio channel, and techniques used to deal with changing connectivity. It

also demonstrated store and forward routing.

After its demonstration in the early 1980s, PRNet began to draw more and more

attentions from DoD of US. At that time, MANET technology was not advanced

enough in terms of radio channel design and routing management algorithm. However,

the huge potential of MANET had been visioned by the United States military. Across

the U.S. Army, Navy and Air Force, new research grants were given to exploit the

MANET technology.

MANET technology evolved with the advancements in networking infrastructure

and microprocessor technology. However, physical characteristics of MANET tech-

nology stay unchanged since the early work of MANET had been accomplished.

Although initiated as a military research project, MANET has been embraced by

a number of commercial applications now. These applications [9] [11] include:

• Conferencing

• Home Networking

• Personal Area Networking

• Emergency Services

• Embedded Computing

12
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• Warehouse Inventory Management

• Sensor Network

• Automotive Control & Communication

• Location/Context Based Mobile Services

As the MANET community grows further, more and more products developed for

ad hoc networks will be available to meet the requirements of both commercial and

military world.

2.2.2 Ad Hoc Routing Protocols

The task of ad hoc routing protocols is to establish route from a source to a destination

correctly and efficiently in MANET environment. Therefore, ad hoc routing protocols

must be able to adapt to mobility changes. Each mobile node in an ad hoc network

behaves as both end host and router. The design of ad hoc routing protocols is

quite different from the design of those well-studied routing protocols used in wired

networks.

Besides the issues mentioned earlier in this chapter, MANET protocol designers

faced additional challenges as pointed out in [9] :

Scalability Aggregating routing information available in the Internet keeps routing

table small and easy to maintain. However, this property cannot be found in

ad hoc networks. As a result, ad hoc routing protocols often suffer from large

overhead of maintaining and querying routing table.

13
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Node mobility causes additional scalability problems. Unless the relative po-

sition changes stay low, high mobility in an ad hoc network normally leads to

frequent route changes. To adapt to these changes in topology, control messages

are exchanged in order to maintain connectivity. Though ad hoc routing pro-

tocols try their best to keep routing overhead as low as possible, large amount

of control messages need to be exchanged. In case the population is sufficiently

large, it is possible that routing overhead may consume all bandwidth avail-

able [12]. Therefore, good ad hoc routing protocols consume only reasonably

small portion of available bandwidth.

Power Limitation Each mobile node in an ad hoc network acts as both end host

and router. Although forwarding traffic consumes part of battery power of each

mobile node, it makes ad hoc routing possible. Ad hoc routing protocols should

keep the routing overhead low, such that the processing of each node is simplified

and the battery power can be saved.

Protocol Deployment and Incompatible Standards It may take some time and

effort before useful standards in ad hoc routing emerge. Given the design free-

dom, there are many ad hoc routing protocols. Interoperability among them is

a problem. IETF MANET Working Group is an organization that promote the

standardization of MANET routing protocols.

Wireless Data Error Rate Bandwidth of wireless link is not as high as that of

wired link and is very sensitive to the operating environment. At the same

time, wireless communication channels also suffer from high bit-error-rate. Many
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Figure 2.1: Ad Hoc Routing Protocols

researchers are studying TCP performance issues related to packet corruption

over wireless link.

Security Exposure Wireless communication is vulnerable to security threats due

to the characteristics of its transmitting medium. This makes securing ad hoc

routing protocols difficult. Besides, key distribution in encrypted ad hoc routing

protocols is also challenging.

Generally speaking ad hoc routing protocols can be classified into three groups,

as illustrated in figure 2.1: proactive, reactive and hybrid of the two. In the following

paragraphs, we explain the three groups of ad hoc routing protocols one by one.
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Proactive Protocols

Proactive protocols are also called table-driven routing protocols. Using proactive

routing protocols, the routing table of each mobile node contains the routing infor-

mation for all nodes in the network. Since routes to all possible destinations are al-

ready in the routing table, applications usually experience low initial delay. However,

proactive protocols introduce extra overhead to keep the routing table of each mobile

node up-to-date. Well known proactive protocols includes Destination Sequenced Dis-

tance Vector (DSDV) [3], Cluster Switch Gateway Routing (CSGR) [13] and Wireless

Routing Protocol (WRP) [14]. The following paragraphs give an overview of these

protocols.

• Destination Sequenced Distance Vector (DSDV) offers loop-free routing in an ad

hoc network. This feature makes DSDV stand out among other distance-vector

algorithms, like Bellman-Ford routing algorithms. Each node in the ad hoc

network maintains routes to all possible destinations in the network. Connec-

tivity change between any two mobile nodes will trigger routing table updates

of all nodes. These updates propagates through the entire network with the

help of sequence numbers. Sequence numbers are used in DSDV to reflect the

“freshness” of routes. Special techniques are introduced to reduce the amount

of control information exchanged in the network. Sequence numbers together

with route metrics (hop count) are used as route selection criteria.

• Cluster Switch Gateway Routing (CSGR) partitions the network into a group

of interconnected clusters. Each cluster has a cluster head. Through clustering,
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a framework for code separation (among clusters), channel access, routing, and

bandwidth allocation can be realized. Figure 2.2 provides a good illustration on

CSGR. Least Cluster Change (LCC) is introduced to reduce the frequency of

cluster head changes, such that more bandwidth are available to relay packets.

When transmitting packet over mobile network via CSGR, the packet is sent to

the cluster head of source node firstly. Then, the packet is forwarded from the

cluster head to another cluster head via a gateway. The forwarding procedure

continues until the packet reaches the cluster head of the destination node. The

packet is then delivered to the destination by the last cluster head.

• Wireless Routing Protocol (WRP) is a loop-free table-driven routing protocol.

In WRP, update messages are sent to neighboring nodes to reflect connectivity

changes. What makes WRP different from other protocols is that distance to

destination (hop count) and second-to-last hop information are exchanged as

part of the routing procedure.

Reactive Protocols

Reactive protocols are sometimes referred as source-initiated on-demand routing pro-

tocols. Using proactive routing protocols, the routing table of each mobile node

contains only the routing information for part of nodes in the network. When a node

needs to communicate with another node, whose routing information is not kept in

the routing table, it will send Routing Discovery Packets to find a route to the des-

tination. Thus, less bandwidth is used to maintain the routing table at each node.

However, the latency experienced by applications increases. This is because packets

17



2.2 Literature Survey Chapter 2. Background

� � � � �
� ���

	 
 � �  � � � � � �� �  � � � �� � � �
Figure 2.2: Routing in CSGR

cannot be transmitted until all the necessary routing information has been collected.

Well studied source-initiated on-demand protocols include: Ad Hoc On-Demand Dis-

tance Vector (AODV) [15], Dynamic Source Routing (DSR) [16], Temporally Ordered

Routing Algorithm (TORA) [17]. All of the three protocols will be explained briefly

in the following paragraphs.

• Ad Hoc On-Demand Distance Vector (AODV) is the on-demand version DSDV.

Using AODV, only routes that are in used are kept in the routing table at each

mobile node. If a route is not used for some time, it will be discarded from

the routing table. Three types of messages are exchanged in route discovery

and maintenance. They are Route Request (RREQ), Route Reply (RREP),

and Route Error (RERR). AODV is capable of supporting unicast, multicast,

and broadcast. This feature reduces the overall routing overhead of AODV

and simplifies the coding complexity of its implementation. By default, AODV
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assumes that communication links are symmetric. AODV does not have special

requirement on the physical communication channel.

• Dynamic Source Routing (DSR) is a simple loop-free routing protocol for mobile

ad hoc networks. It is based on two procedures: route discovery and route main-

tenance. In route discovery phrase, a node handle a route request by adding its

own “footprint” in the request and forwarding it to its neighbors. A route reply

is generated when the route request reaches the destination or an intermediate

node knows how to reach the destination. Route maintenance is carried out by

route error packets and acknowledges. One interesting feature of DSR is that

the data packets includes a ordered list of all nodes that the packet must travel

through. The feature enable the nodes, which forward the packet or overhear

the packet, to remember the routing information.

• Temporally Ordered Routing Algorithm (TORA) is a link reversal routing al-

gorithm. Mobile nodes use relative “height” to form a Directed Acyclic Graph

(DAG) rooted at the destination. When the DAG route is broken, TORA is

able to reconstruct a DAG rooted at the same destination in a single pass. The

pass accomplishes three functions: deleting the routes caused by broken link,

initializing the search for new routes, and reconstructing the new routes.

Hybrid Protocols

As the name suggested, hybrid protocols are combination of proactive protocols and

reactive protocols. Hybrid protocols take the advantages of both proactive and reac-

tive approaches. Zone Routing Protocol (ZRP)[18] is one of hybrid protocols.
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• Zone Routing Protocol (ZRP) utilizes the concept of zones. Zones are similar

to clusters. Special border nodes are selected dynamically to connect adjacent

zones, which is different from hierarchical routing. Zone radius adjusts the size

of the zone. A proactive protocol is used inside the zone, and a reactive protocol

is applied outside the zone. By adjusting the zone radius dynamically, we can

find a value, which gives the best overall utilization of proactive and reactive

routing protocols.

2.2.3 Testing Environments

To analyze and evaluate the design of various ad hoc routing protocols, we need

testing environments, where real world ad hoc networks can be represented. Over

years of investigation, researchers have developed numerous approaches to test ad hoc

networks, which can be classified into three categories:

• Test-bed Approach

• Simulation Approach

• Emulation Approach

In the remaining of this chapter, we discuss the advantages and disadvantages of each

category in detail.

Test-bed Approach

In test-bed approach, real hardwares and softwares are used in tests. Therefore,

the experimental results collected by test-bed approach are convincing. Arbitrary
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user traffic can be injected into the test-bed. At the same time, the operational

environment used for test is also real. Every possible factors, such as EMI (Electric

Magnetic Interference), energy issues, etc., are actively affecting the communication

channels. Further more, gathering various statistical information of the test results is

not difficult for test-bed approach.

However, time, money and man power involved in this approach is a negative

factor. In practice, large and complex mobility scenarios are too difficult to test with

test-bed approach. But test-bed approach is still indispensable in research community,

as it offers convincing testing results.

David A. Maltz, Josh Broch and David B. Johnson [19] together with other re-

searchers from Carnegie Mellon University managed to build a multi-hop wireless ad

hoc network of 8 nodes moving around in a 700m by 300m area. Each node runs

Dynamic Source Routing (DSR) protocol. The test-bed is designed to fulfil two ob-

jectives. One is to build a platform to investigate the impact of real implementations

running on physical machines in a outdoor environment. The other one is to study

the behavior of ad hoc protocols under highly mobile scenario. Within 7 months,

researchers collects huge amount of valuable data regarding to many aspects of ad

hoc networking. However, taking the time and cost into consideration, such test-bed

approach is limited to testing the behavior of small scale ad hoc networks, in terms

of population and geographic size.

Another example of this approach is the Ad hoc Protocol Evaluation test-bed (APE)

[20]. APE is able to create verifiable and reproducible experiment environments, using

strict “choreography” and “virtual mobility metric” (derived from measured signal
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quality). Researchers in [20] reported that up to 37 nodes were involved in the ad

hoc network experiments with APE.

Simulation Approach

One distinctive advantage of simulation approach is that it can usually support large,

and complex mobility scenario due to the use of parallel computing technology. It

reasonably models both the operational environment and the energy condition. An-

other advantage of simulation is that the cost involved in simulation approach is not

high, even when simulating a large scale network.

However, the variety of user traffic that can used in this approach is limited, since

simulators often require that ad hoc applications are re-implemented using its own

specific APIs. This is an obvious disadvantage. Another drawback of simulation is

that designs proved useful by the simulator are often difficult to be ported the real

target platforms. According to the research work of David Cavin, Yoav Sasson, and

Andre Schiper [21], simulated behaviors have to match the reality closely enough so

as to generate meaningful results. Their research work has another two important

findings:

• It is vital for simulator to correctly model components like radio propagation,

collision and MAC protocols;

• Meaningful and credible results come from realistic simulation parameter set-

tings, e.g. initial conditions. If the values of simulation parameters are gathered

from real data, the simulation results should be more credible.

There are many simulators available for ad hoc networking, such as NS-2 [7],
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GloMoSim [8], OPNET Modeler [22]. Some of the popular MANET simulators are

well explained in [21].

We summarize several popular MANET simulators as following:

• NS-2 is a discrete event network simulator. It is initially used to simulate wired

networks. CMU extended NS-2 to support wireless networks such as MANET

and wireless LAN. It simulates layers from physical layer and above. This prop-

erty makes it a good candidate for testing end-host applications. Powered by

C++ for core engine and OTcl for configuration and simulation scripts, it is

easy to use without losing much performance;

• GloMoSim is a library-based discrete event simulator for MANET. It is capable

of carry out both sequential and parallel simulations. Because it is developed

on top of PARSEC, a C-based parallel simulations language, it is extensible.

• OPNET Modeler is able to simulate both wired and wireless networks. It has

many built-in node types, such as a wireless node, a firewall, a router, etc. A

network is constructed by connecting different nodes. Existing node types can

be extended. OPNET Modeler uses state machine to describe a process, such

as an algorithm.

MANET simulators will continue to evolve in the future due to its high scalability

and low costs.
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Emulation Approach

Emulation approach is able to support reasonable large scale mobility scenario. The

emulation layer allows most applications to be run directly without any modification

on emulators. Some emulators support emulation of operational environment. This

approach is also cost-effective. Emulators are usually easy to maintain and extend,

since applications can be fit into both real platforms and emulators easily. This out-

standing feature makes emulator easy to learn and use. Logically, emulation approach

lies between test-bed approach and simulation approach.

Generally speaking, there are two ways towards emulation of ad hoc networks.

They are trace emulation and direct emulation.

In trace emulation, a trace of a network dynamics is obtained through either

simulation or real-world experiments. The trace is then used to manage the behaviors

of real hosts’ networking stack, such as error, out-of-order, delay, etc.

Paper [23] uses the trace-based method to reconstruct the dynamics of a real

wireless network. This reconstruction procedure is reproducible and adjustable. The

emulation is complete transparent to applications. Therefore, real applications can

run on emulators without any modification. The emulation consists of three phases:

trace collection, trace analysis, network dynamics reproduction.

In direct emulation as illustrated in figure 2.3, packets generated by real machines

are sent to a centralized system, which emulates the behavior of an ad hoc network

setting. The system then forwards the packets to their destinations at appropriate

times. Emulator mentioned in [24] uses this technique. Its authors claims that the

emulator is able to evaluate realistic and repeatable ad hoc network scenarios on real
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Figure 2.3: Direct emulation

systems.

MobiEmu[2] developed by Yongguang Zhang and Wei Li applies direct emulation

differently. The centralized system behaves like a normal switch, which can seen in

figure 2.4. Packets are either dropped or forwarded by the kernel of the source node

(a real Linux machine) according to predefined rules.

Emulators usually have limited support for operational environment. It is not

trivial to emulate energy models in emulators. Carefully designed emulators offers a

competitive overall usability over the other two approaches. It is likely that, in the

near future, emulation approach will become more and more popular in the MANET

research community.
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Figure 2.4: Architecture of MobiEmu
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Chapter 3

Emulator Design

Most current Mobile Ad-Hoc Network (MANET) testing environments do not scale

very well, due to the fact that each physical node only represents one ad-hoc node.

With the help of virtual machine technology UML, we have built an extensible

MANET emulator to carry out large-scale experiments with high fidelity. This chapter

explores the design of our emulator.

3.1 Overall Architecture

We have developed an ad hoc network emulator for testing real ad hoc protocols and

applications (test subject). Our emulator is able to emulate n mobile ad hoc nodes

on a physical Linux machine. In a real ad hoc network environment, connectivity

changes are caused by mobile nodes moving in or out of communication range of

one another. Among various characteristics of a mobile ad hoc network, we only

focus on connectivity changes in this emulator. In our emulator, mobile nodes are

connected to a mobility-aware virtual switch. By dynamically enabling/disabling

packets forwarding between two ports, the virtual switch emulates the connectivity
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Figure 3.1: Overall Architecture of Our Emulator

changes in a real ad hoc network. In other words, the role of the virtual switch is the

wireless communication medium. Extensions, such as physical medium emulation,

can be easily added to the simulator.

Our emulator uses the “direct emulation” technique mentioned in chapter 2. The

design of our emulator is motivated by MobilEmu [2] and [24]. The overall architecture

of our emulator and MobiEmu are similar. However, they are different in various ways,

such as techniques used to control the connectivity, utilization of virtual OS (or virtual

machine) technology, emulation synchronization, etc. We will explain the details of

the emulator design step by step.

Figure 3.1 illustrates the overall architecture of our emulator. Each mobile node is
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emulated by an User Mode Linux (UML). UML is a virtual machine, which can run

most software that the host Linux can. There are two virtual NICs in each mobile

node: one connected to the control channel, the other connected to the data channel.

Therefore, there are two virtual switches. The virtual switch in control channel be-

haves almost the same as a real switch. It can be viewed as a “software” switch. To

manage the mobile connectivity changes, virtual switch in the data channel operates in

ad hoc mode. Its basic function is dynamically enabling/disabling packet forwarding

between a pair of nodes according to predefined rules. For mobile nodes in this emu-

lator, these connectivity rules mean that they move in or out of the communication

range of one another.

Like MobiEmu, our emulator operates in a master/slave control architecture. The

master controller runs either on the host machine or another dedicated UML. The

slave controller runs inside each UML, which emulates one mobile node. The master

controller has three main functions:

• It initializes the emulation environment;

• It controls all slaves and coordinates their actions;

• It sends out connectivity rules to the virtual switch, which operates in ad hoc

mode.

The control channel is dedicated to the master/slave control communication. We

don’t want message exchanges between master controller and slave controller affected

by ad hoc topology. That is why we setup the control channel and an associated

virtual switch. The data channel is purely for transmitting network traffic in an
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Figure 3.2: Internal Structure of our Emulator

ad hoc network. Figure 3.2 illustrates the internal structure of our ad hoc network

emulator.

3.2 Master Controller

The master controller is responsible for controlling and coordinating of various compo-

nents of the emulator. In current implementation, the master controller is a command

line tool without graphical user interface (GUI). In the future, we may implement a

GUI to provide better visualization and convenience of control.
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Column 1 2 3 4 5 6 7
Values 10.18 6 100.31 95.66 200.78 400.21 2.00

Table 3.1: An example entry in a scenario file

3.2.1 Mobile Scenario

Every emulation needs a scenario file, which describes the mobile scenario of an ad hoc

network. The scenario file is loaded and parsed by master controller before the start of

emulation. The scenario file is an ordered list of movement and location information

sorted according to time. The scenario file format recognized by our emulator contains

the following fields:

• Time

• Node ID

• Current location represented by x and y coordinates

• Destination location represented by x and y coordinates

• Speed of moving

The arrangement of fields in each movement and location information is very

similar to MobiEmu design. An example entry of a scenario file is shown in table 3.1.

The meaning of the entry shown in the table is that at time 10.18 (seconds), mobile

node 6 is at location (100.31, 95.66) and is moving towards (200.78, 400.21) at the

speed of 2.00 meter/second.

To generate such scenario file, we take the output of setdest in NS-2 [7] with CMU

wireless extension and convert it to the format recognized by our emulator.
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Time Node 1 Node 2 Connectivity
10.18 6 7 0
10.18 6 8 1

Table 3.2: Connectivity Rules

Mobile scenario file cannot be used directly in our emulator. Our emulator needs

the connectivity “rules”, which are timed connectivity between two mobile nodes, to

run. These connectivity “rules” are extracted from mobile scenario file. Table 3.2

shows us two simple rules.

The meaning of the table is that at time 10.18 (seconds) node 6 and node 7 are

too far away for communication. At the same time, node 6 and node 8 are within the

communication range of each other.

Unlike MobiEmu, slave controllers do not know any rules. Only master controller

maintains all the connectivity rules. When emulation starts, the master controller

sends out connectivity rules to the virtual switch at appropriate times. Note that

theses rules are actually the changes of connectivities in an ad hoc network. For

instance, at time t0, node 1 and node 2 are “connected”. Later on, at time t1 these

two nodes are still able to communicate with each other. Therefore, no rules are sent

regarding the connectivity of these two nodes from t0 till t1. After a while, at time

t2, these two nodes are too far to “talk” to each other. Between t1 and t2, still no

rules are sent regarding the connectivity of two nodes. However, at time t2, a rule

indicating that node 1 and node 2 are not within communication range, is sent from

master controller to virtual switch.
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3.2.2 Emulation Clock and its Synchronization

Each virtual node in our emulator is an UML (User Mode Linux). The “clock” inside

UML runs as fast as the host’s “clock” [25]. So if a program inside UML “sleeps” for

5 seconds. The 5 seconds is equivalent to 5 seconds in the host machine. The clock

of UML is synchronized with the clock of host machine. Because of this feature of

UML, we need not worry about time synchronization problem of the emulator. The

master controller can operate on both the host machine or on an UML. Consequently,

master controller, UML, and slave controller of our emulator virtually share the same

“clock”, which runs on the host machine.

There is still one issue left, that is the clock of the virtual switch. As we mentioned

before, master controller sends out rules to virtual switch. Virtual switch applies rules

during packet forwarding. So if master controller sends out rules faster, virtual switch

will apply them faster. Therefore, it is the master controller that has the control

over how fast rules are applied. Emulation functions, such as “speed up/slow down”

and “pause/resume”, can be easily added to the master controller. Unlike MobiEmu,

emulation clock and its synchronization are easily handled in our emulator. MobiEmu

broadcasts/multicasts time-stamp messages to achieve global time synchronization.

This approach wastes bandwidth in the “control channel”. This drawback of MobiEmu

is avoided in our emulator.

3.3 Virtual Switch

The interaction between virtual switch and master controller is the heart of our emu-

lator. Virtual switch in our emulator has two operating modes: normal mode and ad

33



3.4 Virtual Node Chapter 3. Emulator Design

hoc mode. The meanings of these two modes are explained as the following:

Normal Mode In this mode, virtual switch behaves like normal network switches/hubs.

It forwards packets from source mobile nodes to destination nodes. If -hub op-

tion is passed to the virtual switch, every node connected to the virtual switch

except the source node will get a copy of the packet, witch is being transmitted.

Ad Hoc Mode In this mode, the virtual switch initially disables all the possible

communications among its nodes. As the emulation begins, the master controller

will send out rules (connectivity changes) to the virtual switch. Consequently,

packets forwarding among mobile nodes are dynamically enabled/disabled. This

is the emulation of connectivity changes caused by topology changes in an ad

hoc network.

In our emulation, two virtual switches are used. One is configured to normal mode.

This virtual switch is used in control channel, since we want this channel to behave

like normal Ethernet. The other virtual switch is configured to ad hoc mode. It is

placed in data channel to reflect connectivity changes of mobile nodes.

3.4 Virtual Node

Each virtual mobile node in our emulator is an User Mode Linux (UML) [1] [25]. UML

is a port of Linux kernel to Linux. By using virtualized system call interface, UML is a

fully functional Linux kernel. Normally, applications in Linux run directly on the host

as shown in figure 3.3. UML provides a wrap for applications as shown in figure 3.4.

The wrap is transparent for applications running in it. From the applications’ point
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Figure 3.3: Applications running on Linux

Figure 3.4: Applications running on UML

of view, they are running in Linux. Therefore, applications that run on Linux can run

on UML normally without modification. On the other hand, if an application fails, at

most this will lead to the failure of its corresponding UML. There will be no damage

in underling host. This makes UML ideal for testing new applications safely.

3.4.1 Advantages of UML

As a new virtual machine technology, UML has a number of features. The important

UML features that we concern about include:
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• UML kernel is a complete Linux system with its own virtual machine (VM),

scheduler, file systems, and various I/O devices. UML supports three categories

of devices: storage devices, terminal devices, and network devices. UML’s sup-

port for network devices is very flexible and powerful;

• UML kernel runs as non-privileged user process on the host. But inside UML,

normal user on the host can be privileged root;

• UML and its process do not have direct access to host hardware resources. This

is a security advantage of UML;

• Most binaries that run in normal Linux kernel can directly run in UML kernel

without modification. This makes application porting between Linux and UML

easy in most cases;

• UML’s clock ticks at the same speed as the host clock. This provides time

synchronization between UML and the host;

There are other virtual machine technologies, such as VMWare [26] and Plex86 [27].

But UML suits our needs best due to the features mentioned just now.

3.4.2 Virtual Networking with UML

UML provides a number of virtual networking mechanisms, such as ethertap, mul-

ticast, TUN/TAP, a switch daemon, etc. Some of these mechanisms enable a pure

UML virtual network; some of them connect UML with the host to form a hybrid

virtual network; some mechanisms can support both pure UML virtual network and

hybrid virtual network, such as the switch daemon. Our virtual switch may be viewed
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as an extension to the switch daemon, which only supports normal switch-like packet

forwarding behaviors. New features of switch daemon approach are proposed to solve

problems like performance drop in heavy-load network, switching among UMLs across

different host, etc. These new features will also benefits our virtual switch.

3.5 Slave Controller

The responsibility of our slave controller is not as heavy as its counterpart in Mo-

biEmu. Generally speaking, its duty includes:

• Initialization

• Providing Services to Master Controller

All master/slave communications take place in control channel.

3.5.1 Initialization

Before UML is booted, the two communication channels have already been set up

by the master controller. By parsing the boot arguments of UML, slave controller

collects enough information to connect UML to both control channel and ad hoc data

channel. After the virtual NICs have been hooked to the two networks, the slave

controller needs to play an additional trick with virtual switch in data channel. Even

after the virtual NIC has “connected” to a port in the virtual switch, the virtual switch

cannot figure out the MAC address of the NIC by itself. Therefore, slave controller

needs to send out dummy packet to inform the virtual switch its MAC address. After

that, the virtual switch is able to apply MAC filtering, since it has known the identity

of all the nodes connecting to its ports.
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After the two networks are configured, slave controller sends “ready” signal to the

master controller. Only after the master controller learns that the current boot is

successful, subsequent boots can take place.

3.5.2 Providing Services to Master Controller

Slave controller is able to respond to simple queries like “ping”, which are initiated

by master controller to check slave status.

Slave controller also collects statistical information, such as routing table changes,

ad hoc routing daemon status, etc. These information can be passively polled by

master controller. They also can be sent by slave controller as feedback periodically.

Sometimes slave controller send outs urgent information, like crash of routing

daemon. These urgent information is another form of feedback. When sending urgent

information, the slave controller is the communication initiator.

As requested by master controller, slave controller needs to shut down the UML

after emulation has finished.

3.6 Emulation - The Complete Picture

The process of a complete emulation consists of three phases:

• generating mobile scenarios,as shown in figure 3.5;

• preparing UML root file systems, which contains slave controller, ad hoc routing

daemon and all other applications, if necessary, as shown in figure 3.6;

• emulating the mobile scenario, as shown in figure 3.7.
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Figure 3.6: Prepare root file systems, slave controller, ad hoc routing daemon, etc.
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Figure 3.7: The emulation
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Chapter 4

Emulator Implementation

In this chapter we discuss the implementation details of our ad hoc network emulator.

4.1 Implementation Languages

We want to develop a mobile network emulator that is easy to use and has good

performance. Among all possible choices of programming languages, we select Perl

as the implementation language of the emulator because of its distinctive features.

Firstly, programs written in Perl usually are very short. Consequently, they are easier

to debug compared with programs written in other programming languages. Given

the large amount of modules and extensions available in Perl, we can concentrate on

realizing high level ideas instead of going to details on writing low level supporting

libraries. Last but not least, Perl has good performance.

The implementation of ad hoc network emulator involves many considerations,

such as writing individual emulator components, creating installers, collecting test

results, etc. It is not surprising that Perl is the best choice.
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4.2 Virtual Switch

There are many kinds of networking supports in UML. Some networking supports are

designed for purely virtual networking, such as multicast transport; some are used

only for UMLs to communicate with the host, such as TUN/TAP ; and others can

support both types of communication, such as the daemon transport. The following

are the issues that we take into consideration during networking support selection:

• Multicast transport is not a good candidate for virtual switch because of two

reasons. First, the performance of multicast transport degrades fast as the

number of participating UMLs increases. Second, there is generally no easy way

to emulate link changes using multicast transport.

• TUN/TAP together with the bridging may be able to emulate connectivity

changes. However, managing TUN/TAP devices in Linux requires special privi-

lege. This is not desirable in the host, since the privilege granted to TUN/TAP

may lead to security problems.

• The daemon transport requires only normal user privilege. It can also support

large number of UMLs. These two advantages make daemon transport an ideal

solution for virtual switches. This transport has two parts: one resides as virtual

NIC in UML, the other is in the switch daemon.

Among all components of our emulator, virtual switch is the most difficult to

implement. switch daemon is written in C in the UML utilities release. But it is
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difficult to add extensions to it. Therefore, we need to implement switch daemon in

Perl firstly and then add our own extensions, i.e. the ad hoc mode.

When we implemented the TUN/TAP support feature of the virtual switch, we

realized that some system call interfaces are not well supported in Perl. To solve this

problem, we wrote a Perl module in C to support the missing system calls.

During the implementation of the virtual switch, we started with normal mode

support. Later on, ad hoc mode was built on top of it. As a result, we saves lots of

development time and efforts because of the modular design of the virtual switch.

4.3 Root file system

The root file system in UML is like a hard-disk in a computer. UML cannot boot if

the root file system is missing. We decided to select a root file system with a Linux

distribution, such as Red Hat, Mandrake or Suse, Debian, etc. This is because that a

distribution usually bundled with a lot of useful general purpose utilities and handy

system maintenance scripts. Experiments showed that Debian is a suitable Linux

distribution, which is very flexible and easy to set up. By connecting UML to the

Internet, we can tailor the Debian packages to meet our requirements easily.

There is copy-on-write (COW) support in UML. The COW mechanism consists of

a read-only shared device and a groups of private read-write devices layering on top

of the read-only shared device. The read-only device stores data that are common

to all UMLs. The private device stores it’s own updates/adjustments with respect to

the shared read-only device. Through the use of COW devices, large amount of disk

space can be saved, since usually private device is small compared with the shared

43



4.4 Master Controller Chapter 4. Emulator Implementation

device. Another reason to use COW is that the host is able to cache the shared data

(in the shared device) in memory. In this way, UMLs spend less time accessing their

virtual hard-disks. Our emulator fully utilize this feature of UML to save hard-disk

space, which is used to store root file systems, and to boost emulator performance.

4.4 Master Controller

Implementation of master controller is straight forward except one part, which issues

connectivity updates to the virtual switch. We require the updates to be sent at

specific times. When large number of updates need to be sent out in a short interval,

delay or failure may occur. These delay and failure will reduce the accuracy of our

emulator. Our solution is forking one dedicated process to deal with connectivity

updates. These updates can be very near to one another in term of timing. In this

way, the master controller is able to support frequent topology changes, which may

happen in real ad hoc networks.

4.5 Slave Controller

Slave controller behaves like a normal daemon, such as an ssh server. A helper script

is developed to install slave controller to mobile nodes and to configure it to run in

appropriate run level.

The basic role of the slave controller in our emulator is quite different from its

counterpart in MobiEmu. In MobiEmu, a slave controller is in charge of dynamically

enabling/disabling connections. In our emulator, this function is moved to the virtual

switch. We believe that having the virtual switch control the connectivity is intuitive.
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On the other hand, the overhead that presents in the control channel of MobiEmu

does not present in our emulator. This is because, in our emulator, there is no need

to pass time-stamp information in the control channel.
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Chapter 5

Experimentations and Results

The characteristics of our emulator (testing environment) are best demonstrated by

well designed experiments. In this chapter, we introduce the systematic design of a

set of experiments firstly. Then, we present and analyze the experimental results.

Possible enhancements are covered at the end of this chapter.

5.1 Experiment Design

Before going to experiment design details, we would like to highlight the objectives

of our experiments. Experiments are carried out to test the reachability, routing

correctness and throughput of our emulator. The explanations of these objectives are

given in the following paragraphs.

• Reachability: Reachability is the ability that packets can reach their intended

destinations in our testing environment, if a valid route is set up. Reachability

may mean that we can PING mobile node B from mobile node A if there is a

valid route in a mobile scenario. Reachability may also mean that we can telnet

to mobile node B from mobile node A. Reachability is the foundation of our ad
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hoc emulation environment.

• Routing Correctness: Reachability itself is not sufficient to prove the effec-

tiveness of our emulator. We also need to demonstrate that ad hoc routing pro-

tocols can work on our emulator correctly. In other words, routing correctness

refers to whether our emulator can help ad hoc routing protocols to establish and

maintain correct routing tables. Together with reachability, routing correctness

determines the effectiveness of our ad hoc emulator(testing environment).

• Capability: Capability of our emulator is determined by the throughput of

virtual switch. The throughput indicates how fast virtual switch can forward

packets from the source node to the destination node. The throughput is mea-

sured in MB/Sec. We do not use the total number of nodes supported by the

emulator as the metric of capability, because capability is determined by the

density of traffic passing through it for a given period of time, not by the num-

ber of participating mobile nodes. The following scenarios explain why we select

throughput as capability measurement metric. In scenario (a), which is shown

in Figure 5.1, there are three mobile nodes, and all of them are transferring large

files through FTP with one another. Respective FTP sessions are represented

by dotted arrows. In scenario (b), which is also shown in Figure 5.1, the only

network traffic is the “PING” traffic between node 1 and node 5. The “PING”

traffic is represented by dotted arrow. As we mentioned in Chapter 3, a packet

is forwarded by virtual switch on each hop. Therefore each packet needs to be

handled by virtual switch at least once. It is clear that the amount of traffic
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Figure 5.1: Throughput Vs Total number of mobile nodes
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handled by virtual switch in scenario (a) is larger than in scenario (b), even

though there are more mobile nodes in scenario (b). As a result, we choose the

throughput of virtual switch as capability measurement metric instead of the

total number of nodes supported by the emulator.

5.1.1 Design Considerations

Mobile Node

As we mentioned in Chapter 3, each mobile node is emulated by a virtual node (UML)

in our emulator. Typically, a Linux system must have processor, root file system

(normally on hard-disk partition), memory, operating system, and applications to

operate properly. A virtual mobile node needs these resources as well.

The processor of a virtual node is abstracted as slices of CPU time of the host. To

make the complexity of the experiments manageable, the host uses the default Linux

CPU scheduling algorithm. In other words, each process in the virtual node consumes

CPU resources as a normal unprivileged process on the host.

The memory of a virtual node is mapped to a special file on the host’s file sys-

tem. Each virtual node is allocated 32MB memory, because we want to minimize the

memory used by one virtual node in order to support large number of virtual nodes

on a single host.

The size of the root file system is not minimized, as we make use of the copy-on-

write(COW) mechanism provided by UML (see Chapter 4 for details) to save disk

space. The size of each root file system is 150MB. Suppose that there are n virtual

mobile nodes. The total amount of disk space required, which is measured in MB,
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can be calculated as in Equation 5.1:

total size = 150 × (1 + n × k) (5.1)

where k is the average amount of difference of the n root files systems with respect to

the read-only reference 150MB root file system. Normally k is around 0.01. If COW is

not used, the total amount of disk space required can be calculated by Equation 5.2:

total size = 150 × n (5.2)

Comparing Equation 5.1 with Equation 5.2, we can notice the advantage of COW

mechanism in terms of disk space usage.

As mentioned in Chapter 4, COW mechanism can help to boost the overall per-

formance of these virtual nodes.

Mobile Scenario

Mobility is one of the fundamental characteristics of MANET. By mobility we are

referring to two concepts:

• Speed of a Mobile Node

• Changes in Relative Positions among Mobile Nodes

Suppose we have two mobile nodes: node A and node B. As shown in Figure 5.2,

both node A and node B are moving very fast during certain period of time. We

sometimes refer these two nodes as high-mobility nodes. High-mobility does not

always lead to frequent routing table changes. In Figure 5.2, although both node A

and node B are moving fast, they are always (or most of the time) within the “reach”
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Figure 5.2: Fast moving nodes - infrequent link changes

of each other. Therefore the connection between them seldom changes. So does the

route between node A and node B. Situation shown in Figure 5.3 is different. In

Figure 5.3, even if both node A and node B move slowly, the connection between

them may change frequently.

Network Traffic

Both “connectionless” (UDP) and “connection oriented” (TCP) traffic are tested in

our emulator. These two kinds of traffic are dominant traffic in today’s Internet.

There are growing research interests in studying TCP performance on wireless

networks in general. TCP is originally designed for wired network. Many assumptions

made on wired networks no longer stand in wireless networks, especially in ad hoc

networks. For instance, in wired networks, repeated retransmissions are treated as a

sign of network congestion. If repeated retransmissions occur, the sender’s TCP stack
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Figure 5.3: Slow moving nodes - frequent link changes

will slow down its transmission to avoid further network congestion. TCP recovers

from slow transmission rate when ACKs are received. However, in wireless networks,

repeated retransmissions may be due to packet corruption in the transmission media

instead of network congestion. In this case, there is no need for the sender to slow

down its TCP transmission rate. Many researchers are seeking methods to improve

TCP performance in wireless network.

Unlike TCP, UDP is a light weight protocol, which does not has sophisticated

methods to adapt to changing network environment. It introduces small amount of

overhead in the packets and packets’ processing time. Therefore, it is widely used by

real-time applications, such as IP telephony and video conferencing. By studying the
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behavior of UDP in wireless networks, especially in ad hoc networks, researchers can

make their real-time applications work more efficiently.

We make use of Iperf [28], a powerful tool to generate TCP and UDP traffic and

measure their performance respectively. Iperf operates in client-server mode. To

measure network characteristics, such as bandwidth and packet lost ratio, between

two hosts, one host is configured as Iperf server, and the other is configured as Iperf

client. One can specify the transmission time, amount of data to be transited, or a

file to be transited in Iperf. With the help from Iperf, we can spend more time on

experiment’s design and deployment, rather than on utilities, which are used to collect

experiment’s data and to analyze them.

Ad Hoc Routing Protocols

Routing Protocols are integrated part of MANET. As we mentioned earlier, there are

three categories of ad hoc routing protocols: proactive, reactive and hybrid. Even

under the same category, protocols behave differently under same network scenario.

It would be both challenging and interesting to test real Linux implementations of

ad hoc routing protocols on our emulator. Porting ad hoc routing protocols to UML

is not as easy as it seems. As we mentioned earlier in chapter 3, UML virtualizes

the Linux kernel system call interface. UML kernel is not an exact copy of real

Linux kernel. Modifications of the kernel source introduce challenges on porting ad

hoc routing protocol implementations, which relay heavily on certain kernel support,

from real Linux kernel to UML.

MADHOC is an early attempt of AODV implementation. Since it is implemented
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completely in user space without any special kernel support (like a routing utility

kernel module), we choose it as the AODV implementation in all our experiments.

MADHOC runs on our emulator without any modification. All participating mobile

nodes start an user-space MADHOC routing daemon before the start of test. As an

early attempt, the functionalities/features of MADHOC are limited. More informa-

tion is given in experiments details.

There are other AODV implementations available, like KERNEL AODV [29] and

AODV-UU [30]. They are more mature, thus offer improved performance and stan-

dard compliance (RFC 3561) compared with MADHOC. However, both of them need

special kernel support. KERNEL AODV runs completely in Linux kernel. AODV-UU

runs in user-space. But it uses a helper program, which runs as a kernel module. We

managed to compile both of them. However, currently we are still investigating some

run time errors generated by these two AODV implementations.

5.1.2 Measurement Metrics

In order to meet the objectives of the experiments, we make use of the following

measurement metrics:

• Connectivity: Connectivity is the metric of reachability. We use PING to test

the reachability among mobile nodes in our emulator. Connectivity is measured

when there is a valid route between two mobile nodes in our emulator. Here,

connectivity has two meanings. The first one is that whether the two nodes can

PING each other. The other one is the round trip time.

• Routing Table: Routing table is the metric of Routing Correctness. The most
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effective way to measure routing correctness is observing the routing table of

participating mobile nodes. Suppose there is a route between mobile node A

and mobile node B, and node A is sending packets to node B. Node A’s routing

table should contain an entry that indicates the valid route to node B.

• Throughput: Throughput is the metric of capability. There is a module inside

virtual switch to measure the throughput of virtual switch. Capability of the

emulator is measured in MBits per second.

5.2 Experiment Results and Analysis

Three sets of experiments were carried out to meet our objectives. Each of the fol-

lowing subsections will focus on one set of the experiments.

5.2.1 Reachability

Static Scenario

As shown in Figure 5.4, we developed a series of straight-line-topology scenarios to

test reachability of our emulator. In each of the scenarios, there is only one sender

node and one receiver node. These two nodes are edge nodes in the topology. In

other words, they have only one neighboring node. The rest of the nodes are able

to communicate with two neighboring nodes. This series of straight-line-topology

scenarios are foundations of all other scenarios. For example, as shown shown in

Figure 5.5, at time t, there is a sender (node 1) and three receivers (node 3, node 7

and node 8) in an ad hoc network. This scenario can be treated as the summation of

three straight-line-topology scenarios: node 1 to node 3, node 1 to node 7 and node
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Figure 5.4: Straight-line-topology scenarios
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1 to node 8. Once the reachability of the fundamental scenarios are maintained, the

reachability of those scenarios, which are derived from the fundamental ones, can also

be maintained.

Figure 5.5: A complex ad hoc network scenario

We focus on static network scenarios first. The experiments start with scenario

(a) and end at the scenario (e) as shown in Figure 5.4:

• The routing tables of all the mobile nodes are preconfigured to contain the

correct routing entries to every other mobile node in the scenario;

• The routing table of each mobile node remains the same in all scenarios;

• There is no physical layer emulation. In other words, no packets are dropped

by virtual switch;

• For each of the scenarios in Figure 5.4, all mobile nodes stay still for a period

of 3 minutes;
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• During each experiment period, the sender node keeps sending PING packets

to the receiver node at the speed of 1 packet/second.

We measured the average round trip time (RTT) and the average packet loss ratio

for each scenario. We modified the experiment setup, so that each mobile node uses

MADHOC routing daemon to maintain its routing table. Then we reran the same set

of experiments with the modified setup. The average round trip time and the average

packet loss ratio were also measured this time. The details of the modified setup are

listed below:

• There is no preconfigured routing table this time. MADHOC routing daemon

is in charge of the maintenance of routing table;

• The routing tables of the mobile nodes are changed by MADHOC routing dae-

mon if necessary;

• There is no physical layer emulation. In other words, no packets are dropped

by virtual switch;

• For each of the scenarios in Figure 5.4, all mobile nodes stay still for a period

of 3 minutes;

• During each experiment period, the sender node keeps sending PING packets

to the receiver node at the speed of 1 packet/second.

We summarize the results obtained from the above two sets of experiments and

present them in Figure 5.6 and Figure 5.7.
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Figure 5.6: Round trip time Vs Number of mobile nodes (static scenario)

From Figure 5.6 we can find that as the number of mobile nodes increases, the

round trip time also increases. The reason is straightforward. As straight-line topology

is used in the experiments, more nodes lead to more forwarding of packets by virtual

switch and mobile nodes along the routing path. Each “forwarding” introduces some

delay. Therefore, adding mobile nodes in the scenario has the effect of increasing

round trip time. Another interesting finding from Figure 5.6 is that the setup that uses

preconfigured routing tables leads to smaller round trip time compared with the one

that uses MADHOC routing daemons. According to AODV specification, each mobile

node maintains a list of neighboring nodes. How this is achieved is implementation
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Figure 5.7: Packet loss ratio Vs Number of mobile nodes (static scenario)

dependent. What MADHOC does is that it keeps broadcasting hello messages to

its neighboring nodes. Once a neighboring node receives the hello message, it will

respond with a acknowledgment message to the sender of the hello message. When

the sender of hello message receives the acknowledgment, it will add the sender of the

acknowledge message to its neighbor list. As the expire period of the entries in the

neighbor list is short, the hello-ack messages need to exchange frequently to keep the

entries in the list. Both hello and acknowledgment packets are competing network

bandwidth with PING packets. It is likely that PING packets will frequently wait in

the transmission queue of a mobile node. This is the reason why there is a small gap

between the lines of the two setups in Figure 5.6.
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As shown in Figure 5.7, although the number of mobile nodes increases, packet

loss ratio of the MADHOC-disabled setup remains zero. All routes in this setup are

preconfigured. A mobile node does not perform any route discovery work, thus does

not need to drop packets. However, packet loss ratio of the MADHOC-enabled setup

increases very fast. This is due to two reasons:

• When there is no entry in the routing table to a particular destination, MAD-

HOC daemon initiates the route discovery procedure. Usually the discovery

procedure takes some time to complete. MADHOC daemon does not buffer

the packets going to that destination during this period of time. These packets

could be removed, as the space in the output queue of the machine is limited.

A few AODV implementations have already included packet-buffering to reduce

packet loss. The design of MADHOC focuses on simplicity, therefore, it does not

implement support for buffering packets, whose destination route is not known

in advance;

• The MADHOC implementation of AODV has a serious drawback, i.e. as the hop

count between the sender mobile node and the receiver mobile node increases, it

becomes harder and slower for the sender mobile node to find a valid path to the

receiver mobile node. According to our experiments, when the hop count reaches

5, it is extremely hard for MADHOC to find a valid route. This drawback can

cause the growth of packet loss ratio when the number of mobile nodes increases.
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Figure 5.8: Dynamic scenario

Dynamic Scenario

Previous experiments all focus on static scenarios. We shall now move our atten-

tion to dynamic scenarios. In the following few paragraphs, we will discuss a set of
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experiments carried out on dynamic scenarios.

The design of dynamic scenarios is based on static scenarios. By adding dynamic

behaviors to the receiver mobile node, we can turn a static scenario to a dynamic

scenario. Suppose we want to convert scenario b in Figure 5.4 to a dynamic scenario.

The receiver mobile node moves away from it neighbor node’s communication range for

30 seconds. Then it moves back to its neighbor’s communication range for 30 seconds.

The mobile node moves back and forth in this way until the end of experiment.

Figure 5.8 illustrates this dynamic scenario.
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Figure 5.9: Round trip time Vs Number of mobile nodes (Dynamic scenario)

Figure 5.9 and Figure 5.10 summarized the results of experiments on dynamic
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scenarios.

Figure 5.9 and Figure 5.6 are very similar. This is not a coincidence. Suppose the

receiver mobile node is far away from its neighbor. Then most PING packets will be

dropped by the receiver’s neighbor, as the neighbor cannot find a valid route to the

receiver mobile node. Most of these PING request will time-out. When we compute

the average round trip time, we does not include the time-out values. Therefore,

whether the receiver node is able to communicate with its neighbor has minimal

impact on the average round trip time.
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Figure 5.10: Packet loss ratio Vs Number of mobile nodes (Dynamic scenario)

We find that Figure 5.10 is similar to Figure 5.7. This is because that when the
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receiver node is able to communicate with its neighbor, the dynamic scenario is the

same as the static scenario. When the receiver moves away from its neighbor, all

packets are lost. This has the effect of adding 50% to the packet loss ratio.

From Figure 5.10 We can also find that MADHOC implementation of AODV

cannot find a valid route if the hop count between two mobile nodes is greater than

or equal to five.

Emulation of Packet Corruption

We implement a packet corruption module inside virtual switch to make the emulation

of our emulator more realistic. The packet corruption module has only one parameter,

i.e. packet corruption ratio. This parameter represents the probability of a packet to

be corrupted by virtual switch. We tested the packet corruption module using a

dynamic scenario, which is derived from scenario b in Figure 5.4. There are 2 static

nodes (node 1 and node 2 ) and 1 dynamic node (node 3) in this scenario. Node

1 is the sender node, while node 3 is the receiver node. The experiment results are

summarized in Figure 5.11.

Summary of Experiments on Reachability

Given the experiments results on static scenario ,dynamic scenario, and emulation

of packet corruption we are confident to claim that reachability of our emulator is

satisfactory.
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Figure 5.11: Packet loss ratio Vs Packet corruption ratio

5.2.2 Routing Correctness

Based on the experiences learnt from the experiments on reachability, we know that

MADHOC cannot find a valid route if the cost of the route is beyond 5. MADHOC

only works well with small scale scenarios.

We use scenario b from Figure 5.4 to carry out experiments on routing correct-

ness. Each virtual mobile node in the scenario has two virtual NICs. Each virtual

NIC is associated with a class B IP address. As mentioned in Chapter 3, a virtual

machine needs to connect to two channels, i.e. control channel and data channel. In

our experiment setup, “192.168.0.0” is the network address for control channel, and

“192.168.1.0” is the network address for data channel. MADHOC modifies AODV

66



5.2 Experiment Results and Analysis Chapter 5. Experimentations and Results

specification to use “255.255.255.255” as the broadcast address.

Table 5.1 is the routing table of the sender mobile node before there is route

discovery. As shown in the table, the routing entry to mobile node 2 (“192.168.1.2”)

is added right after MADHOC is started. This is because that MADHOC keeps

broadcasting HELLO messages to its neighbors in order to keep an up-to-date view

of its neighbors.

Destination Gateway Genmask Flags Iface
192.168.1.2 192.168.1.2 255.255.255.255 UGH eth1
255.255.255.255 * 255.255.255.255 UH eth1
192.168.1.0 * 255.255.255.0 U eth1
192.168.0.0 * 255.255.255.0 U eth0

Table 5.1: Routing table of sender mobile node before route discovery

Route discovery is initiated by the sender mobile node when it tries to send packets

to the receiver mobile node. When MADHOC receives route reply, it updates the

routing table accordingly. Table 5.2 is the routing table of sender mobile node after

a valid route to the receiver mobile node is discovered.

Destination Gateway Genmask Flags Iface
192.168.1.3 192.168.1.2 255.255.255.255 UGH eth1
192.168.1.2 192.168.1.2 255.255.255.255 UGH eth1
255.255.255.255 * 255.255.255.255 UH eth1
192.168.1.0 * 255.255.255.0 U eth1
192.168.0.0 * 255.255.255.0 U eth0

Table 5.2: Routing table of sender mobile node after route discovery
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Summary of Experiments on Routing Correctness

Besides observing routing table directly, we also use “traceroute” and “ping -R” to

study routing behaviors. As expected, both methods produce the same results as

Table 5.1 and Table 5.2. We also conduct experiments based on other scenarios from

Figure 5.4. Again, correct routing tables are updated and maintained by MADHOC.

Based on the experiments results, we are confident that our emulator can help ad hoc

routing daemon to setup and maintain correct routing tables.

5.2.3 Capability

With the help of iperf [28], it is easy to measure TCP/UDP throughput on our

emulator.

Using scenarios from Figure 5.4, we conducted a series of experiments to measure

the capability of our emulator. Iperf generates both UDP and TCP traffic, and

measures the throughput between the sender and the receiver.

The experiments’ results are summarized in Figure 5.12. From the figure we find

that throughput of both types of traffic drop as the number of the mobiles nodes

increases. As more nodes are placed between the sender node and the receiver node,

the contention on the virtual switch increases. This leads to the drop of throughput.

TCP is “sensitive” to network congestion, while UDP is not. Therefore, throughput

of TCP traffic is less than throughput of UDP traffic.
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Figure 5.12: Emulator Throughput

5.3 Possible Enhancement

There is still a lot of space left to improve our emulator. We have short term plan

and long term plan on the emulator’s enhancement.

5.3.1 Short Term Plan

Considering the amount of work involved and resources available, we’ve planed the

following enhancements:

• GUI: First of all, we need GUI to help us visualize the mobile topology and

adjust various parts of the emulator conveniently and intuitively.

• Faster Virtual Switch: We also need to have our virtual switch run faster.
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By making virtual switch forward packets faster, we can support heavy traffic

effectively. The virtual switch is designed to be a single process polling packets

from the ports. At any given point of time, only one packet can be processed.

Therefore it is possible that a slow receiving virtual NIC may affect the overall

performance of virtual switch. As the number of attached UMLs increases, the

polling mechanism is not robust and efficient. Possible solution implementing

the virtual switch using multiple processes or threads. In other words, each port

is a process or thread. This will bring a significant performance boost for the

virtual switch under heavy load.

• Emulation Management: Now our emulator does not support advance con-

trols like pause, fast forward, jump, etc. These are useful features helping us

control how fast emulation clock ticks. To facilitate debugging of ad hoc routing

protocols, we sometimes need to pause the emulation and resume it; sometimes

for the same scenario, we just want to have the topology change faster in or-

der to study the behavior of ad hoc routing protocols under certain extreme

conditions.

• Trace Support: In order to aid ad hoc routing protocols debugging, we can

extend slave controller in our emulator to support packet tracing.

5.3.2 Long Term Plan

Based on workload and availability of appropriate hardware support, our long term

plan is:
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• Cluster Version of the Emulator: Given the limited computing power of a

single machine, we are not able to emulate large population of mobile nodes. It

would be a major enhancement to port the single machine version to a computer

cluster, which can potentially support very large scale mobile network scenarios.

• Physical Layer Emulation: Now our emulator only emulates link connec-

tivity changes. If we can add physical layer emulation, like radio propagation

model, signal strength detection, etc, the accuracy of emulation can be greatly

improved. To emulate physical characteristics of wireless medium in real-time,

huge amount of data need to be processed in real-time. It is likely that the

physical layer emulation is implemented on a high performance Linux cluster.

• Beyond Master/Slave Mode: There are situations where the scenario is not

known before emulation. The slave controllers may keep updating their move-

ments to the master controller. Consider the following situation. We want to

emulate a set of “intelligent” vehicles moving around. These vehicles determine

their movements by themselves. At the same time they want to exchange infor-

mation. A new mechanism of control and collaboration among virtual mobile

nodes is needed for this situation.
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Conclusion

We have successfully implemented a scalable, extensible, and high-fidelity mobile ad

hoc network emulator. This emulator is built on top of scalable architecture, which

can emulate large number of mobile nodes. Mobility-aware virtual switch is one of the

key components in this architecture. By dynamically enabling/disabling the traffic

flow between any pair of ports attached, the virtual switch can effectively emulate

the connectivity changes in mobile ad hoc networks. Currently the virtual switch

only emulate connectivity changes and packets corruption. Extensions like packets

reordering, packets corruption can be implemented as modules in the virtual switch.

Emulated mobile nodes are connected to the virtual switch via virtual NICs. We use

UML (User Mode Linux) to emulate mobile node. This ensures high-fidelity of the

emulation results. UML is a virtual machine technology, which ports Linux kernel to

Linux. It is found that through the use of virtual machine technology and mobility-

aware virtual switch, our emulator can effectively emulate the basic behavior of mobile

ad hoc network. Master/slave control mechanism is built into our emulator in order

to support various emulation management function.
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Chapter 6. Conclusion

The advantages of our emulator is unique among solutions of mobile ad hoc net-

work testing environment. This research work is the first of its kind to emulate many

mobile node in a single machine. Limited by the computing power of single machine,

our emulator is not able to support very large population of mobile nodes. However,

porting our emulator to a computing cluster is easy. Further research effort should

concentrate on making our emulator work in a computing cluster, so that researchers

could study implications of large and complex mobile ad hoc scenarios.
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