
MAKING BETTER RECOMMENDATIONS WITH

ONLINE PROFILING AGENTS

DANNY OH CHIN HOCK

NATIONAL UNIVERSITY OF SINGAPORE

2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MAKING BETTER RECOMMENDATIONS WITH

ONLINE PROFILING AGENTS

DANNY OH CHIN HOCK

(B.SC., COMPUTER AND INFORMATION SCIENCES)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2003

ACKNOWLEDGEMENT

In the course of living, there will always be a few people that come across to us as

special and they are the ones that will leave a lasting impression on us by teaching us

through their demeanor the true meaning of what it is to learn and to live. Prof. Tan

Chew Lim is certainly one of them. With his simple refined demeanor, he patiently

sought to give me clear guidance whenever I needed them. His tremendous faith in me,

especially in times where my research efforts appeared to be going nowhere, proved to

be instrumental in guiding me out of seemingly blind alleys. And, the freedom he gave

me in pursing new and sometimes radical ideas taught me how to think and perceive

creatively. I am deeply thankful to Prof. Tan for his support, guidance and contribution to

this thesis by giving me space, that most precious of gifts - space to work and space to

be. It is a joy to work with him.

I would like to express my love and gratitude to my mother and belated father, without

whom this thesis would not have come into existence.

Finally, I am also thankful to my spiritual teachers and the greatest guru of all: life.

TABLE OF CONTENTS

List Of Figures vi

List Of Tables vii

Summary viii

CHAPTER 1 1

Introduction 1
1.1 Summary 1
1.2 Motivations 1
1.3 Contributions 3
1.4 Organization 4

CHAPTER 2 5

Related works 5
2.1 Summary 5
2.2 Introduction 5
2.3 Roles of agents as mediators in e-commerce 5
2.4 Agent technologies for e-commerce 7

2.4.1 Recommender systems 7
2.4.2 Profiling-based recommender systems 9

2.5 Electronic profiling 9
2.5.1 Information retrieval systems 9
2.5.2 Information filtering systems 10
2.5.3 Collaborative filtering systems 11
2.5.4 Hybrid profiling-based recommender systems 13

2.6 User interface approaches 14
2.7 Challenges 16

CHAPTER 3 17

Better recommendations with HumanE 17
3.1 Summary 17
3.2 Problems in developing profiling agents for complex domains 17
3.3 Practical approach to building online profiling agents 18
3.4 HumanE components 19

3.4.1 Account component 20
3.4.2 Product component 20
3.4.3 Database component 20
3.4.4 Favourite component 20
3.4.5 Feature component 20
3.4.6 Match component 20
3.4.7 Profile component 21
3.4.8 Auto policy update component 21

3.5 Agent workflow 21
3.6 Component-based model 23
3.7 Design assumption 23
3.8 Domain analysis 24

3.8.1 Real estate websites 24
3.8.2 Humane real estate agents 25
3.8.3 Transferring domain knowledge 26

3.9 Learning approach 26
3.10 User interface 26
3.11 How HumanE works in real estate domain 28

CHAPTER 4 29

Learning approach 29
4.1 Summary 29
4.2 Introduction 29
4.3 Initial profile vs initial policy 29
4.5 Constituents of a profile 30
4.5 Overview of the learning approach 33
4.6 Phase one learning 34

4.6.1 Learning from an initial policy 35
4.6.2 Reinforcement learning using a multidimensional utility function 37
4.6.3 Learning by observation 38
4.6.4 Matching algorithm 38

4.7 Phase two learning 39
4.8 Example of the profile refinement process 40

4.8.1 1st Iteration: Creating the initial profile 40
4.8.2 1st Iteration: Bootstrapping using the initial policy 40
4.8.3 1st Iteration: Making the first recommendation 41
4.8.4 2nd Iteration: Making the first feature selection 41
4.8.5 3rd Iteration: Making the second feature selection 44
4.8.6 Summary 47

4.9 Crafting an initial policy 48
4.10 Benefits of proposed learning approach 48

CHAPTER 5 51

Experimental analysis 51
5.1 Summary 51
5.2 Methodology 51

5.2.1 Metrics 51
5.2.2 Test data 52

5.3 Experimental design 52
5.4 Experimental results 56

5.4.1 First test: Test HumanE without learning approach 56
5.4.2 Second test: Test HumanE with learning approach (excludes initial policy) 56
5.4.3 Third test: Test HumanE with learning approach (includes initial policy) 57
5.4.4 Scalability 57
5.4.5 Test result summaries 58

5.5 Discussion 59

CHAPTER 6 62

Conclusion 62
6.1 Summary 62
6.2 Conclusion 62
6.3 Future directions 63

CHAPTER 7 64

References 64

LIST OF FIGURES

Figure 3.1 Main components of HumanE

Figure 3.2 Agent workflow diagram

Figure 3.3 Earlier version of HumanE agent interface (range indication)

Figure 3.4 Earlier version of HumanE agent interface (specific indication)

Figure 3.5 Current version of HumanE interface

Figure 4.1 Learning approach workflow

Figure 4.2 Initial policy used in HumanE

Figure 4.3 Initial profile

Figure 4.4 Initial policy

Figure 4.5 Profile after first feature selection

Figure 4.6 Profile after second feature selection

Figure 5.1 Test result summary for “number of profile changes” metric

Figure 5.2 Test result summary for “time taken to create a profile” metric

Figure 5.3 Test result summary for “ease of use” metric

Figure 5.4 Test result summary for “performance” metric

LIST OF TABLES

Table 4.1 Profile constituents

Table 5.1 Cross-section profiles of the testers in terms of age

Table 5.2 Cross-section profiles of the testers in terms of occupation

Table 5.3 Scale definitions for “ease of use” metric

Table 5.4 Scale definitions for “performance” metric

Table 5.5 First test: Test results for "number of searches" metric

Table 5.6 First test: Test results for "time taken to create a profile" metric

Table 5.7 First test: Test results for "ease of use" metric

Table 5.8 First test: Test results for "performance" metric

Table 5.9 Second test: Test results for "number of profile changes" metric

Table 5.10 Second test: Test results for "time taken to create a profile" metric

Table 5.11 Second test: Test results for "ease of use" metric

Table 5.12 Second test: Test results for "performance" metric

Table 5.13 Third test: Test results for "number of searches" metric

Table 5.14 Third test: Test results for "time taken to create a profile" metric

Table 5.15 Third test: Test results for "ease of use" metric

Table 5.16 Third test: Test results for "performance" metric

Table 5.17 Test results for "scalability" metric

SUMMARY

In recent years, we have witnessed the success of autonomous agents applying machine

learning techniques across a wide range of applications. However, agents applying the

same machine learning techniques in online applications have not been so successful.

Even agent-based hybrid recommender systems that combine information filtering

techniques with collaborative filtering techniques have only been applied with

considerable success to simple consumer goods such as movies, books, clothing and

food. Complex, adaptive autonomous agent systems that can handle complex goods such

as real estate, vacation plans, insurance, mutual funds, and mortgage have yet emerged.

To a large extent, the reinforcement learning methods developed to aid agents in learning

have been more successfully deployed in offline applications. The inherent limitations in

these methods have rendered them somewhat ineffective in online applications.

Moreover, we feel that existing implementations of interactive learning method for

online systems are simply impractical as the state-action space is simply too large for the

agent to explore within its lifetime. This is further exacerbated by the short attention

time-span of typical online users.

In this thesis, we postulate that a small amount of prior knowledge and human-provided

input can dramatically speed up online learning. We demonstrate that our agent HumanE

- with its prior knowledge or “experiences” about a complex domain such as real estate -

can effectively assist users in identifying requirements, especially unstated ones, quickly

and unobtrusively. The experimental results showed that the use of HumanE for complex

multidimensional domains such as real estate can result in higher customer satisfaction as

it can learn faster via a supplied initial policy and is able to elicit trust from users through

its user-friendly interface, quality recommendations and excellent performance. HumanE

addresses the problem of poor learning when implementing online implementation of

large-scale autonomous agent-based recommender systems for several complex domains

through the use of a supplied initial policy which allows it to make more

“knowledgeable” exploratory recommendations.

Page 1 of 70

C h a p t e r 1

INTRODUCTION

1.1 Summary
In this chapter, we present the motivations and the contributions of this thesis as well as

its organization.

1.2 Motivations
Electronic profiling has become the norm in most e-commerce websites. Whether you

are making online purchases or using online services, you certainly would need to go

through the tedious task of filling up a questionnaire. Merchants would then use the

information provided to create an initial electronic profile. Subsequent specifications of

user preferences such as keywords used in product searching, goods purchased or placed

in wish-lists are used to refine the user profile without much user intervention.

This technique of learning user behavior through the creation of a user profile has been

used rather successfully by certain agent-based recommender systems, namely,

information filtering (IF) systems and collaborative filtering (CF) systems. IF involves

continuous analysis of product content and attributes and the development of a personal

user profile which will then be used to produce useful recommendations.

However, IF agents lack the ability to make serendipitous discoveries of new user

preferences. CF functions by identifying users with similar tastes and using their

opinions (usually by asking them to rate the product on a predefined scale) to

recommend items. But, CF systems suffer from the reliance of user ratings which make

recommending new or obscure items very difficult. Ongoing research work such as the

GroupLens Research Project [45] has successfully combined the two techniques to form

hybrid recommender systems that have proven that they can make better

recommendations than using either IR systems or CF systems alone.

Unfortunately, the successes of these systems have been restricted to simple consumer

goods such as movies, books, clothing and food. When the IR and/or CF techniques plus

other reinforcement learning methods are applied in online applications for complex

Page 2 of 70

consumer products such as real estate, vacation plans, insurance, mutual funds, and

mortgages, they fail to enjoy much success.

This is because agents operating in complex domains require a substantial amount of

knowledge and it is difficult to build such agents as it requires too much insight,

understanding and effort from the end-user, since the user has to endow the agent with

explicit knowledge (specifying this knowledge in an abstract language) and item-

maintain the agent’s rules over time (as work habits or interests change, etc.). This

approach of making the end-user program the interface agent has proven to be feasible

for simple tasks [25] but not so for complex ones.

Other agent developers tried to endow an interface agent with extensive domain-specific

background knowledge about the application and the user (called a domain model and

user model respectively). This knowledge-based approach is adopted by the majority of

people working in AI on intelligent user interfaces [20, 24, 68] for simple tasks. The

disadvantage of this approach is that even for simple tasks it requires a huge amount of

work from the knowledge engineer. A large amount of application-specific and domain-

specific knowledge has to be entered into the agent’s knowledge base. Little of this

knowledge or the agent’s control architecture can be used when building agents for other

applications. Another problem is that the knowledge of the agent is fixed once and for

all. It cannot be customized to individual user habits and preferences. The possibility of

providing an agent with all the knowledge it needs to always comprehend the user’s

sometimes unpredictable actions is questionable. Furthermore, there is also a problem

with trust. It is probably not a good idea to give a user an interface agent that is very

sophisticated, qualified and autonomous from the start. Schneiderman [7] has argued

convincingly that such an agent would leave the user with a feeling of loss of control and

understanding. Since the agent has been programmed by someone else, the user may not

have a good model of the agent’s limitations, the way it works, etc.

Another reason for the low success rate of agent-mediated systems for complex domains

is that many reinforcement learning implementations assume that the agent developed

knows nothing about the environment to begin with, and that the agent must gain all of

its information by exploration and subsequent exploitation of learned knowledge. When

dealing with a real, complex online system such as a large-scale real estate listing and

Page 3 of 70

brokerage application, however, this approach is simply not practical. Typically, the

state-space is too large to explore satisfactorily within the lifetime of the agent (much

less within the attention time-span of typical online users). Worse still, making “random”

exploratory recommendations can frustrate and disappoint the user, potentially causing

the user to abandon the system totally.

1.3 Contributions
In our work, we explore an alternative approach to building autonomous interface or

profiling agents that relies on Machine Learning techniques for complex products. In this

thesis, the complex product is real estate properties. We also aim to resolve the problems

confounded by the “knowledge-based approach” to building profiling agents.

Accumulated knowledge in the form of memories and experiences allows humans to go

about performing daily tasks. In the real world, we often go to a human real estate agent

for assistance in selling or acquiring real estate properties. We naturally expect the agent

to be an expert in the real estate domain, and hence able to offer suitable advice and

recommendations. Certainly, we do not expect the real estate agent to have no

knowledge about the real estate domain. Hence, in order to take our prior knowledge

(which are often implicit) and incorporate them into a reinforcement learning framework,

we have examined in this work the idea of supplying the agent with an initial policy

about the real estate domain in the learning algorithm for HumanE.

The learning approach is inspired by the metaphor of a smart and experienced personal

assistant and a similar approach has been reported upon by Kaelbling [74] working on

mobile robots. In the real world, we usually tend to hire smart and experienced people for

such tasks. Even though, the personal assistant is not very familiar with the habits and

preferences of his or her employer and may not even be very helpful, he or she must

prove his or her abilities in a relatively short span of time with the help of prior

knowledge and experiences accumulated previously.

The goal of our research is to demonstrate that the learning approach can present a

satisfactory solution to developing effective and practical profiling agents for use in

large, complex and multi-dimensional domains.

Page 4 of 70

We believe that the learning approach has several advantages over past approaches. First,

it requires less work from the end-user and application developer to specify initial

knowledge. Second, the agent is potentially more competent at the initial stage of use and

thus can elicit greater trust from the user. Thirdly, the agent can more easily adapt to the

user over time and become customized to individual and organizational preferences and

habits.

Furthermore, the agent framework and architecture can be transferred easily to other

complex domains. Finally, the approach helps in transferring information, habits and

know-how among the different users of a community.

1.4 Organization
The rest of the thesis is organized as follows:

• Chapter 2 – We discuss some related work pertaining to agent-mediated e-

commerce systems and the corresponding AI techniques.

• Chapter 3 – We introduce a general model of agent learning and explain its

working in the context of the real estate domain.

• Chapter 4 – We discuss in detail the proposed model of agent learning using a

running example.

• Chapter 5 – We discuss the experimental findings obtained when we apply the

general agent learning model to the real estate domain and explain the advantages

of using an initial policy for better performance of web agents.

• Chapter 6 – We conclude the thesis and outline future work.

Page 5 of 70

C h a p t e r 2

RELATED WORKS

2.1 Summary
Intelligent agents help to automate a variety of tasks including those involved in buying

and selling products over the Internet. This chapter surveys several of these agent-

mediated e-commerce systems. We then discuss the various AI techniques that support

agent mediation and conclude with the challenges faced when applying these techniques

to complex domains.

2.2 Introduction
Intelligent agents are particularly useful for the information-rich and process-rich

environment of e-commerce as they are personalized, continuously running and semi-

autonomous. E-commerce encompasses a broad range of issues including security, trust,

reputation, law, payment mechanisms, advertising, ontologies, online catalogs,

intermediaries, multimedia shopping experiences, and back-office management. Agent

technologies can be applied to any of these areas where a personalized, continuously

running, semi-autonomous behavior is desirable. However, certain characteristics will

determine to what extent agent technologies are appropriate. Generally, the more time

and money that can be saved through automation, the easier it is to express preferences,

the lesser the risks of making sub-optimal transaction decisions, and the greater the loss

for missed opportunities, the more appropriate it is to employ agent technologies in e-

commerce.

Intelligent agents will play an increasing variety of roles as mediators in e-commerce

[23]. This section explores these roles, their supporting technologies, and how they relate

to e-commerce in its three main forms: business-to-business, business-to-consumer, and

consumer-to-consumer transactions.

2.3 Roles of agents as mediators in e-commerce
The roles of agents as mediators in e-commerce typically fall into the following three

categories:

Page 6 of 70

• Product Broker

o Comprises of the retrieval of information to help determine what to buy.

This includes product evaluation based on consumer-provided criteria to

come up with a “consideration set” of products.

o Examples include PersonaLogic [57], Firefly [27, 72], Apt Decision agent

[65], and RentMe [17, 18].

• Merchant Broker

o Combines the “consideration set” from Product Brokering with merchant-

specific information to help determine who to buy from. This includes

merchant evaluation based on consumer-selected criteria (e.g. price,

warranty, availability, delivery time, reputation, etc.)

o Examples include BargainFinder [9], Jango [43, 59], and Kasbah [1, 45].

• Negotiator

o Determines the terms of the transaction. Negotiation varies in duration

and complexity depending on the market. In traditional retail markets,

prices and other aspects of the transaction are often fixed leaving no room

for negotiation. In other markets (e.g. stocks, automobile, fine art, local

markets, etc.), the negotiation of price or other aspects of the deal are

integral to product and merchant brokering.

o Examples include OnSale [55], eBay [30], AuctionBot [5], and Tete-a-

Tete [38, 71].

The personalized, continuously-running, semi-autonomous nature of agents make them

well-suited for mediating those consumer behaviors involving information filtering and

retrieval, personalized evaluations, complex co-ordinations, and time-based interactions.

Page 7 of 70

2.4 Agent technologies for e-commerce
Most of today’s agent-mediated e-commerce systems are powered by AI technologies. In

this section, we review several AI technologies that support the systems described earlier

on, discuss user interface challenges, and then focus on issues and technologies

concerning the next-generation agent-mediated e-commerce infrastructure.

2.4.1 Recommender systems
The majority of product recommender systems are developed using content-based,

collaborative-based or constraint-based filtering methods as their underlying technology.

In content-based filtering [2, 33, 39, 52] the system processes information from various

sources and tries to extract useful features and elements about its content. The techniques

used in content-based filtering can vary greatly in complexity. Keyword-based search is

one of the simplest techniques that involve matching different combinations of keywords

(sometimes in Boolean form). A more advanced form of filtering is the one based on

extracting semantic information from a document’s contents. This can be achieved by

using techniques like associative networks of keywords in a sentence or price list, or

directed graphs of words that form sentences.

Systems like BargainFinder and Jango try to collect information (e.g. product

descriptions, prices, reviews, etc.) from many different web information sources. These

sources were intended to be read by humans and their content is rendered accordingly

(i.e. in HTML). Different sources have presentation methods, so recommender systems

have to adjust their interaction methods depending upon the web site. Since there is no

standard way of defining and accessing merchant offerings, most recommender systems

employ “wrappers” to transform the information from a specific website into a locally

common format. The recent adoption of XML has made it easier for these systems to

collect information.

Different systems adopt different approaches to creating wrappers. In BargainFinder, the

URLs of online CD stores and the wrapper methods (i.e. searching for a product and

getting its price) are hard-coded by the programmers. This method worked well initially

but there is a need to maintain the wrapper for each site whenever it changes its access

methods or catalog presentation format. Jango helps automate the creation of wrappers

for new sites by generalizing from example query responses to online merchant

Page 8 of 70

databases. This technique is not perfect, but boasts a nearly 50% success rate in

navigating random websites [53]. Firefly uses a collaborative-based filtering technology

[56, 72, 75] to recommend products to consumers. Systems using collaborative

techniques use feedback and ratings from different consumers to filter out irrelevant

information. These systems do not attempt to analyze or “understand” the features or the

descriptions of the products. Rather, they use consumers’ rankings to create a

“likeability” index for each product. This index is not global, but is statistically computed

for each user on the fly by using the profiles of other users with similar interests.

Products that are liked by similar-minded people will have priority over products that are

disliked.

As in content-based approaches, constraint-based filtering uses features of items to

determine their relevance. However, unlike most feature-based techniques which access

data in their native formats, constraint-based techniques require that the problem and

solution space be formulated in terms of variables, domains, and constraints. Once

formulated in this way, however, a number of general purpose (and powerful) constraint

satisfaction problem (CSP) techniques can be employed to find a solution [26, 73].

Many problems can be formulated as a CSP such as scheduling, planning, configuration,

and machine vision problems. In PersonaLogic, CSP techniques are used during product

brokering to evaluate product alternatives. Given a set of constraints on product features,

PersonaLogic filters products that do not meet the given “hard” constraints and

prioritizes the remaining products using “soft” constraints (which need not be completely

satisfied).

Tete-a-Tete uses CSP techniques to assist shoppers during product brokering, merchant

brokering, and negotiation. This is achieved by consumers providing product constraints

(as in PersonaLogic) as well as merchant constraints such as price, delivery time,

warranty, etc. Hard and soft constraints are used to filter and prioritize products and

merchants as well as construct a multi-attribute utility that is used to negotiate with the

merchants. Tete-a-Tete’s argumentative style of negotiation resembles a distributed CSP

[76] with merchants providing counter-proposals to each customer’s critiques [61].

Page 9 of 70

2.4.2 Profiling-based recommender systems
In this section, we talk about a special class of agents - electronic profiling agents, and

their roles in agent-based recommender systems. Additionally, we discuss the limitations

of existing implementations of these systems and ask if we are expecting too much from

our agents.

2.5 Electronic profiling
Electronic profiling has become the norm in most e-commerce websites. Whether you

are making online purchases or using online services, you certainly would need to go

through the tedious task of filling up a questionnaire. Merchants would then use the

information provided to create an initial electronic profile. Subsequent specifications of

user preferences such as keywords used in product searching, goods purchased or placed

in wish-lists are used to refine the user profile without much user intervention. This

technique of learning user behavior through the creation of a user profile has been used

rather successfully by recommender systems such as information retrieval (IR) systems,

information filtering (IF) systems and collaborative filtering (CF) systems.

2.5.1 Information retrieval systems
Information retrieval (IR) systems allow users to express queries to select documents that

match a topic of interest. IR systems may index a database of documents using the full

text of the document or only document abstracts. Sophisticated systems rank query

results using a variety of heuristics including the relative frequency with which the query

terms occur in each document, the adjacency of query terms, and the position of query

terms. IR systems also may employ techniques such as term stemming to match words

such as “retrieve,” “retrieval,” and “retrieving” [62]. IR systems are generally optimized

for ephemeral interest queries, such as looking up a topic in the library [11]. In the

Internet domain, popular IR systems include Google for web pages [35] and Google

Groups [36] for discussion list postings.

An IR front-end is useful in a recommender system both as a mechanism for users to

identify specific products about which they would like to express an opinion and for

narrowing the scope of recommendation. For example, MovieLens [51] allows users to

specifically request recommendations for newer movies, for movies released in particular

time periods, for particular movie genres such as comedy and documentary, and for

Page 10 of 70

various combinations of movie. However, the knowledge that a user can acquire from

such systems depends predominantly on a user’s skill to query the system and to

assimilate the results. IR techniques are less valuable in the actual recommendation

process, since they capture no information about user preferences other than the specific

query.

2.5.2 Information filtering systems
Information filtering (IF) systems require a profile of user needs or preferences. The

simplest systems require the user to create this profile manually or with limited

assistance. Examples of these systems include: spam killers that are used to filter out

advertising, e-mail filtering software that sorts e-mail into categories based on the sender,

and new-product notification services that request notification when a new book or

album by a favorite author or artist is released. More advanced IF systems may build a

profile by learning the user’s preferences. A wide range of agents, including Maes’

agents for e-mail and Usenet news filtering [49] and Lieberman’s Letizia [48], employ

learning techniques to classify, dispose of, or recommend documents based on the user’s

prior actions. Similarly, Cohen’s Ripper system has been used to classify e-mail [21];

alternative approaches use other learning techniques and term frequency [14]. More

complex IF systems provide periodic personalized digests of material from sources such

as news wires, discussion lists, and web pages [11].

One embodiment of IF techniques is software agents. These programs exhibit a degree of

autonomous behavior, and attempt to act intelligently on behalf of the user for whom

they are working. Agents maintain user interest profiles by updating them based on

feedback on whether the user likes the items selected by the current profile. Research has

been conducted in various feedback generation techniques, including probabilistic

models, genetic algorithms and neural network based learning algorithms [7]. NewT is a

filtering agent for Usenet news based on genetic algorithm learning techniques [49]. It

performs full text analysis of articles using vector-space technique. Amalthaea is a multi-

agent system for personalized filtering, discovery and monitoring of information sources

in the World Wide Web domain [49].

IR and IF systems can be extremely effective at identifying documents that match a topic

of interest, and at finding documents that match particular patterns (e.g. discarding email

Page 11 of 70

with the phrase “Get Rich Fast” in the title). Unlike human editors, however, these

systems cannot distinguish between high-quality and low-quality documents on the same

topic. As the number of documents on each topic continues to grow, even the set of

relevant documents will become too large to review. For some domains, therefore, the

most effective filters must incorporate human judgments of quality.

Information filtering techniques have a central role in recommender systems. IF involves

continuous analysis of product content and attributes and the development of a personal

user profile which will then be used to produce useful recommendations. The user profile

is particularly valuable when a user encounters new content that has not been rated

before. IF techniques also have an important property that they do not depend on having

other users in the system, let alone users with similar tastes. IF techniques can be

effective but they suffer certain drawbacks, including requiring a source of content

information, and the inability to make serendipitous discoveries of new user preferences.

2.5.3 Collaborative filtering systems
Collaborative filtering (CF) systems build a database of user opinions of available items.

They use the database to find users whose opinions are similar (i.e. those that are highly

correlated) and make predictions of user opinion on an item by combining the opinions

of other likeminded individuals. In their purest form, CF systems do not consider the

content of the documents at all, relying exclusively on the judgment of humans as to

whether the document is valuable. In this way, collaborative filtering attempts to

recapture the cross-topic recommendations that are common in communities of people.

Tapestry [46], one of the first computer-based collaborative filtering systems, was

designed to support a small, close-knit community of users. Users could filter all

incoming information streams, including email and Usenet news articles. When users

evaluated a document, they could annotate it with text, with numeric ratings, and with

Boolean ratings. Other users could form queries such as “show me the documents that

Mary annotated with ‘excellent’ and Jack annotated with ‘Sam should read.’” A similar

approach is used in Maltz and Ehrlich’s active collaborative filtering [50], which

provides an easy way for users to direct recommendations to their friends and colleagues

through a Lotus Notes database.

Page 12 of 70

Collaborative filtering for large communities cannot depend on each person knowing the

others. Several systems use statistical techniques to provide personal recommendations

of documents by finding a group of other users, known as neighbours that have a history

of agreeing with the target user. Once a neighborhood of users is found, particular

documents can be evaluated by forming a weighted composite of the neighbors’ opinions

of that document. Similarly, a user can request recommendations for a set of documents

to read and the system can return a set of documents that is popular within the

neighborhood. These statistical approaches, known as automated collaborative filtering,

typically rely upon ratings as numerical expressions of user preference. Several ratings-

based automated collaborative filtering systems have been developed. The GroupLens

Research system [47, 56] provides a pseudonymous collaborative filtering solution for

Usenet news and movies. Ringo [72] and Video Recommender [41] are email and web

systems that generate recommendations on music and movies respectively, suggesting

collaborative filtering to be applicable to many different types of media. Recently, a

number of systems have begun to use observational ratings; the system infers user

preferences from actions rather than requiring the user to explicitly rate an item [70]. A

wide range of web sites have begun to use CF recommendations in a diverse set of

domains including books, grocery products, art, entertainment, and information.

Collaborative filtering techniques can be an important part of a recommender system.

One key advantage of CF is that it does not consider the content of the items being

recommended. Rather than map users to items through “content attributes” or

“demographics,” CF treats each item and user individually. Accordingly, it becomes

possible to discover new items of interest simply because other people liked them; it is

also easier to provide good recommendations even when the attributes of greatest interest

to users are unknown or hidden. For example, many movie viewers may not want to see

a particular actor or genre so much as “a movie that makes me feel good” or “a smart,

funny movie.” At the same time, CF’s dependence on human ratings can be a significant

drawback. For a CF system to work well, several users must evaluate each item; even

then, new items cannot be recommended until some users have taken the time to evaluate

them. These limitations, often referred to as the first-rater and sparsity problems, cause

trouble for users seeking obscure movies (since nobody may have rated them) or advice

Page 13 of 70

on movies about to be released (since nobody has had a chance to evaluate them), and

not make use of its ratings.

The early-rater problem arises because a collaborative filtering system provides little or

no value when a user is the first one in his neighborhood to enter a rating for an item.

Current collaborative filtering systems depend on the altruism of a set of users who are

willing to rate many items without receiving many recommendations. Economists have

speculated that even if rating required no effort at all, many users would choose to delay

considering items to wait for their neighbors to provide them with recommendations [6].

Without altruists, it might be necessary to institute payment mechanisms to encourage

early ratings.

Another limitation, the sparsity problem, arises because the goal of collaborative filtering

systems is to help people focus on reading documents (or consuming items) of interest.

In high-quantity, low-quality environments, such as Usenet news, users may cover only a

tiny percentage of documents available (Usenet studies have shown a rating rate of about

1% in some areas; we can estimate that few people will have read and formed an opinion

on even 1/10 of 1% of the over two million books available through the largest

bookstores). On the one hand, this sparsity is the motivation behind filtering: most people

do not want to read most available information. On the other hand, sparsity poses a

computational challenge as it becomes harder to find neighbors and harder to

recommend documents since few people have rated most of them.

2.5.4 Hybrid profiling-based recommender systems
CF functions by identifying users with similar tastes and using their opinions (usually by

asking them to rate the product on a predefined scale) to recommend items. But, CF

systems suffer from the reliance of user ratings which make recommending new or

obscure items very difficult. Ongoing research work such as the GroupLens Research

Project [37] has successfully combined the two techniques to form hybrid recommender

systems that have proven that they can make better recommendations than using either

IR systems or CF systems alone.

Several other systems have also tried to combine information filtering and collaborative

filtering techniques in an effort to overcome the limitations of each. Fab [8] maintains

Page 14 of 70

user profiles of interest in web pages using information filtering techniques, but uses

collaborative filtering techniques to identify profiles with similar tastes. It then can

recommend documents across user profiles. [9] trained the Ripper machine learning

system with a combination of content data and training data in an effort to produce better

recommendations. Researchers working in collaborative filtering have proposed

techniques for using IF profiles as a fall-back, e.g. by requesting predictions for a

director or actor when there is no information on the specific movie, or by having dual

systems and using the IF profile when the CF system cannot produce a high-quality

recommendation. In earlier work, [63] showed that a simple but consistent rating agent,

such as one that assesses the quality of spelling in a Usenet news article, could be a

valuable participant in a collaborative filtering community. In that work, they showed

how these filterbots - ratings robots that participate as members of a collaborative

filtering system - helped users who agreed with them by providing more ratings upon

which recommendations could be made. For users who did not agree with the filterbot,

the CF framework would notice a low preference correlation and not make use of its

ratings.

2.6 User interface approaches
Most websites today still use the metaphor of an “electronic catalog” which resembles an

enhanced price list with search capabilities as the user interface. Even though these lists

are searchable, it is still difficult for consumers to find a product that suit their needs

when they have to literally browse through pages and pages of product information. This

potentially tedious browsing experience obviously offers less engaging shopping

experiences than their physical-store counterparts. Hence, it is reasonable to assume that

greater customer satisfaction can be generated by matching the system’s user interface

with the consumer’s manner of shopping.

To overcome this problem, some websites try to mimic the familiar physical storefront

by constructing virtual shopping malls using VRML (Virtual Reality Markup Language)

in the hope of providing a more familiar shopping experience. Although this approach is

promising [3], these shopping environments have not yet lived up to their expectations

due to the awkwardness of navigating 3D worlds with 2D interfaces and other technical

limitations (e.g. bandwidth).

Page 15 of 70

Another approach is the introduction of sales agent avatars - semi-animated graphical

characters that interact in natural language with the consumer and feature a long-term

consistent “personality” that remembers each customer, his or her shopping habits, etc.

Anthropomorphized avatars (e.g. from Extempo [32]) attempt to mimic real-world sales

agents to provide a more engaging online shopping experience and assist customers in

finding the products that best meet their needs. Through immediate positive feedback

and personalized attention, anthropomorphized sales agents can help build engaging,

trusted relationships with customers [42]. However, the AI technologies behind the

graphical representations of today’s avatars are not yet up to meeting their users’

expectations. Due to this and other reasons, the anthropomorphization of agents is still a

controversial approach [4].

Interface agents help a user accomplish tasks by acting like a personal assistant. From

user interactions, they are able to learn and adapt themselves to user preferences and

work habits. Patti Maes [49] at MIT identifies four ways that learning can occur. First, an

agent can learn by observing what the user does and imitating the user. Second, the agent

can offer advice or take actions on the user’s behalf and then learn by receiving feedback

from the user. Third, the agent can get explicit instructions from the user. Finally, by

asking other agents for advice, an agent can learn from their experiences. An important

point to note is that interface agents collaborate primarily with the user and not with

other agents. Asking advice is the only exception. Using various learning techniques,

interface agents can customize the user interface of a computer system or application for

a particular user and her unique working style.

Additionally, some agents rely on the iterative process of browsing and user feedback via

an intuitive user interface to make recommendations. For example, Apt Decision

interface went through a number of iterations to make it more intuitive and responsive to

the user’s actions. Adding the drag-and-drop feature was crucial to this effort. Apt

Decision also takes an interactive learning approach, that is, it learns from each

interaction with the user. Interactive learning makes the assumption that all the user’s

actions have some meaning, and the agent is designed so that this is true. Each time the

user drags an apartment feature to the profile, the reinforcement learning algorithm

changes the weightings on the features in the user’s “ideal” apartment. This approach

differs from traditional machine learning in several ways. First of all, it works with very

Page 16 of 70

small, but precise, amounts of data. Also, it is an interactive technique, in that the user is

in constant contact with the agent; there is no batch processing of datasets. Each feature

of an apartment in Apt Decision has a base weight. Weights on individual features

change when the user chooses to place them in or remove them from a profile slot. The

new weight depends on which slot the feature occupies, whether the feature is crucial,

and whether the slot was filled using profile expansion. Crucial features are weighted

more heavily; features automatically added to the profile are weighted less heavily. In

addition, Apt Decision records the history of a user’s interaction with the agent. If at

some point in the profile building process, there are suddenly no apartments that match

the profile, the agent can offer the recourse of backtracking to a prior point in the

interaction.

Other research involving interface agents include the BlueEyes project [13] at IBM

Almaden Research Center features a camera that can figure out where a user is looking

on the screen (gaze identification) to determine what article they are reading. Gesture

recognition software allows computers to respond to waves of the hand, and even

understand facial expressions. And, no surprise here, intelligent software forms the basis

for these types of applications. Similarly, the COLLAGEN project at Lotus Research and

Mitsubishi Research develops agents that can watch a user interact with an application

and figure out the task that the user is trying to perform and give assistance [60]. The

OpenSesame application on Macintosh watches a user, learns their behaviour, and offers

to automate repetitive tasks [19].

2.7 Challenges
Unfortunately, the successes of these recommender systems have been restricted to

simple consumer goods such as movies, books, clothing and food. When the IR and/or

CF techniques plus other reinforcement learning methods are applied in online

applications for complex consumer products such as real estate, vacation plans,

insurance, mutual funds, and mortgage, they fail to enjoy much success. The proposed

learning model incorporating the initial policy will solve the problems faced by current

implementations of agent-mediated e-commerce systems for complex domains. The

details will now be found in the next chapter.

Page 17 of 70

C h a p t e r 3

BETTER RECOMMENDATIONS WITH HUMANE

3.1 Summary
This chapter presents an introduction to HumanE – an online profiling agent for

recommending real estate properties. We give a concise explanation on HumanE’s

design and explain our approach to accelerate agent learning with the provision of an

initial policy and discuss some of the solutions taken to overcome existing problems in

creating online profiling agents for complex multi-dimensional domains.

3.2 Problems in developing profiling agents for complex domains
Based on our discussion in earlier chapters, let us recap the problems encountered when

developing online profiling agents for complex multi-dimensional domains:

• Assumption that the agent knows nothing and must acquire its knowledge

through exploration and subsequent exploitation of learned knowledge results in

slow agent learning for complex domains and makes online implementation

difficult

• Difficult to give an agent large amount of application-specific and domain-

specific knowledge

• Difficult to encode this knowledge in an abstract language

• Difficult to transfer agent knowledge and the control architecture for building

agents for other applications

• Difficult to maintain the individual rules in the agent rule base over time

• Static agent knowledge (i.e. cannot be customized to individual user habits and

preferences)

• Making “random” exploratory recommendations can frustrate and disappoint the

user

Page 18 of 70

• Difficult to allow for serendipitous discoveries of user preferences

• Difficult to obtain user trust when an interface agent is very sophisticated,

qualified and autonomous from the start

• Too much data is required in an online setting for typical learning methods (e.g.

reinforcement-learning methods)

3.3 Practical approach to building online profiling agents
We strongly believe that practical agent learning for online applications is possible by

integration with human-supplied knowledge. This is because humans can provide a lot of

help to assist agents in learning, even if humans cannot perform the task very well.

Humans can provide some initial successful trajectories through the space. Trajectories

are not used for supervised learning, but to guide the learning methods through useful

parts of the search space leading to efficient exploration of the search space.

Online profiling agents can be bootstrapped from a human-supplied policy which

basically gives some sample trajectories. The purpose of the policy is to generate

“experiences” for the agents. This policy can be hand-coded by domain experts. It need

not be optimal and may be very wrong. The policy shows the agents “interesting” parts

of the search space. In fact, “bad” initial policies might be more effective.

In brief, this gives us a natural way to insert human knowledge and a simple method to

bootstrap information into a utility function.

Our online profiling agent, HumanE, is based on the aforementioned approach and it

offers users the opportunity to find products that will best meet their requirements.

HumanE guides users through a product selection process. Users get to specify

information about their individual requirements and restrictions by creating and refining

their profiles.

Based upon the profile (and initial policy if the profile is newly created), HumanE offers

an initial selection of products. Users can then select from these matching products to

view more detailed product information such as product features. HumanE also tries to

Page 19 of 70

be helpful by providing products that are newly added as well as products that are

popular among other users.

To refine the profile, users can specify which features are desirable or undesirable

through an intuitive and friendly interface, and HumanE will offer a new selection of

products matching the revised profile. If no matching products are found, users can

backtrack to their previous profile.

Furthermore, users can add an unlimited number of desired products to their profile using

the “favourites” feature. Moreover, users can specify HumanE to send email alerts if

there are any new products that fit the profile.

We discuss in greater detail the working of HumanE with regards to its learning

approach and other features in later sections.

3.4 HumanE components
This section explains the main functionalities of the various components used by

HumanE. A schematic diagram showing the main components of HumanE is shown in

Figure 3.1.

Web interface

Database Access

Match

Search

Profile Account

Learn

Auto policy
update

Favourite

Product Feature

Initial policy

Figure 3.1 Main components of HumanE

Page 20 of 70

3.4.1 Account component
This component provides user authorization, authentication and registration services. If

the user is not a member, it allows the user to register as a member. The component

provides the registration form and saves the details as provided by the user. After the

registration is completed successfully, it returns some of the user’s particulars such as

name, address, and email address back to HumanE. If the user is already a member, then

similarly some of the user’s particulars such as name, address, and email address are sent

back to HumanE after successful login. Furthermore, this component is used whenever

the user makes any changes to the account.

3.4.2 Product component
This component manages the creation, modification, and deletion of products. And it

provides parameter-based retrieval of product listings. HumanE makes extensive use of

this component for the display of matching product listings or whenever the user requests

for more information about a particular product.

3.4.3 Database component
This component provides the functionality for data access used by other components. All

common database functions (i.e. reading data from database and populating the data read

into a dataset) are consolidated in this component for ease of reusability.

3.4.4 Favourite component
This component handles all the work relating to the creation and modification of a

“favourites” list. It is called whenever the user adds or removes a product from a

“favourites” list.

3.4.5 Feature component
This component provides the functionality of parameter-based retrieval of feature lists in

the form of name-value pairs and is used extensively by the Match Component and

Profile Component.

3.4.6 Match component
This component looks for real estate products that best match the criteria provided by the

user to HumanE. It uses the profile to return a list of real estate product information. And

if the profile is newly created, it uses a combination of user profile and initial policy to

Page 21 of 70

return a list of matching products. As the list of matching products returned is typically

small, a filtering algorithm is used to ensure that only the most appropriate products are

added to the list. The component also keeps track of the number of times a product is

added to a “favourites” list and the number of times the detailed information of a product

was been viewed. Additionally, it provides product retrieval based on pre-defined criteria

such as popularity and “viewership”.

3.4.7 Profile component
This component provides the user interface to allow the user to explicitly manipulate and

save the resulting profile. It retrieves the existing profile from the database, provides the

mechanism to allow the user to add new features or modify existing ones to the profile. It

then saves the modified profile as a new profile under the same user ID. This allows for

backtracking during the profile refinement process. In addition, the component contains

the agent learning algorithm that allows HumanE to learn user preferences and to

customize the profile accordingly. Other functions include deletion of profile and

management of email alert.

3.4.8 Auto policy update component
This component provides HumanE with the ability to automatically maintain the initial

policy based on the history of past user interactions. It is called on a periodic basis to

update the knowledge encoded inside the initial policy.

3.5 Agent workflow
HumanE performs tasks based on a predefined workflow sequence as shown in Figure

3.2 below.

Page 22 of 70

Login

Member?

Retrieve questions
(search criteria)

Display questions
on product

Create initial profile
based on answers

Show matching
products

Navigate

Retrieve detailed info
for product

Show detailed info

Satisfied?

Logoff

Give feedback

Update profile

Yes

Yes

No

Register as memberNo

Figure 3.2 Agent workflow diagram

• The Account component is called for authorization and authentication.

• If the user is not a member yet, the Account component is called to present the

registration form to the user.

• Upon successful registration, the Profile component is called in order to present

the questions to the user. It receives the user’s answers and generates a set of

selection criteria from these answers.

• The Profile component is called to store this set of criteria as an initial profile.

• The initial profile is sent to the Match component and the component retrieves a

list of matching products based on the initial profile and initial policy and

displays the list.

Page 23 of 70

• When the user decides to view more information about any product, the Product

component is called and displays the relevant product details.

• The user is asked to provide feedback on the product shown by specifying the

features that he likes best or dislikes most. The user can also rank the features

selected using an intuitive interface.

• The Profile component is called to save the user’s feedback as part of a new

profile.

• The updated profile is sent to the Match component to obtain a new list of

matching products.

• This iterative process of product browsing and user profile modification will take

place until the user is satisfied with the profile.

• Finally, the Security component is called when the user logs off the system.

3.6 Component-based model
HumanE adopts the component-based software development model which enables reuse

of core functionality within the application and across applications. In addition, HumanE

uses a three-tier architecture (i.e. presentation, business logic and data access layers) and

components-based model plays an important role in developing all three tiers. In order to

ensure HumanE can be used successfully in other domains without major reworking, the

components are designed to be as generic as possible; any profiling agent designed to

find and recommend products can use them. HumanE is also generic in its design and its

modularized architecture makes it easy to plug a different learning mechanism, for

example, genetic algorithm or neural network into it. Although the HumanE database

contains real estate data, it could also be populated with data on insurance plans, vacation

plans, mutual funds, or any other complex product.

3.7 Design assumption
Even until today, users are still using the simple search function provided by many local

online real estate web sites [66, 67] when browsing for real estate properties. There is no

Page 24 of 70

interactivity between each search attempt and users are bombarded with endless pages of

real estate properties listing which they will never be able to finish viewing.

Our design approach assumes that the entire user experience is an iterative process of

browsing and meaningful user feedback. The approach has in fact been adopted

successfully by similar systems such as RentMe [17, 18], CASA [34] and Apt Decision

[65]. As the user is actively involved throughout the entire profile creation process, the

user can react independently to every feature of the real estate offerings.

3.8 Domain analysis
To test the feasibility of the proposed learning model, we chose the real estate domain.

As the agent needed to have built-in knowledge about the domain, we analyzed online

and offline apartment advertisements to determine the standard apartment features for the

local real estate domain. After the ad analysis, we had a list of about one hundred

features commonly advertised in local real estate listings and we added another eighty

features.

Next, we considered how people choose apartments. After examining the features, we

concluded that some of them (e.g. district, type, price) were pivotal to the final choice of

apartment. That is, most people would reject an apartment if the value for a crucial

feature were not to their liking. Other features (e.g. bridge, underpass, swimming pool)

were less pivotal – some people would like them, some would be indifferent, some

would dislike them. All this domain knowledge went into HumanE.

In addition, we examined two destinations of apartment seekers: real estate websites and

human real estate agents, to determine what knowledge we could glean from those

interactions.

3.8.1 Real estate websites
Many real estate websites adopt either the pure browsing metaphor [67] or the search-

like metaphor [66]. One problem is that users are expected to enter many specific details

about their ideal apartment. Since buying apartment is a complex decision, people find it

difficult to articulate what they really want initially. What they think they want may

change in the course of their exploration of what is available; they may have firm

Page 25 of 70

constraints or weak preferences; they may have unstated goals, such as finding

something quickly, or determining how reliable the agent is.

Another problem is that they must enter their preferences when they visit a new site and

each time they visit the site. This is because there is no option to save multiple sets of

preferences for a single site. Especially with a complex decision such as renting an

apartment, people find it difficult to specify exactly what it is that they want.

HumanE empowers the user to quickly and easily ascertain preferences via a profile as it

represents salient features of the real estate domain. It removes the cognitive burden of

questions such as: What can I expect of apartments in Jurong? What features are

common and which are unusual? What is the range of price I can expect to pay for a

certain neighbourhood? As a result, it allows the user to concentrate on questions not

easily solved by technology, such as: Can I trust this broker? Can I get a better bargain?

3.8.2 Humane real estate agents
To improve HumanE’s ability to increase online real estate experience, we consider how

people deal with the ambiguity and imprecision of real world decisions.

For example, when a customer interacts with a real estate agent, the agent does not make

the customer fill out a questionnaire containing all the possible attributes of apartments,

then search a database to present the customer with all the choices that fit the

questionnaire. Instead, the agent asks, “How may I help you?” and the customer is free to

respond however he or she wishes.

Typically, the customer will supply a few criteria such as price range, apartment type and

district: e.g. “I would like to buy a three-room apartment in Jurong East for about

$140,000.” These criteria provide a rough “first estimate” for the agent. All of the criteria

might be lies; the customer might very well buy something that fits none of the initial

criteria.

The real estate agent uses the initial guidelines to retrieve a few examples: “I've got a

three-room apartment in Jurong East for $150,000 but there are no nearby shops. And

how about this nice three-room apartment for $130,000 in Jurong West that has a great

view?” The agent then waits to see the customer’s reaction.

Page 26 of 70

The key point is that the customer may react in a variety of ways not limited by answers

to explicitly posed questions. The agent’s description will typically contain many details

not asked for originally by the customer. The success of the interaction is determined

largely by the agent’s ability to infer unstated requirements and preferences from the

responses. “Let’s see the one in Jurong East.” lets the agent infer assent with the initial

criteria, but “What about my car?” establishes a previously unstated requirement that the

car park is a must.

Near-miss examples, such as “I've got a three-bedroom for $190,000, but it is in Ang Mo

Kio”, “Would you pay $170,000 if the apartment was in Yishun and near MRT?”

establish whether the ostensible constraints are firm or flexible. Good agents are marked

by their ability to converge quickly on a complicated set of constraints and priorities.

3.8.3 Transferring domain knowledge
Much of the work done for HumanE would transfer well into any domain in which the

user could browse the features of a complex object. That is, objects such as calling plans,

mutual funds, homes, computers, vacation plans, or cars would work well, but simple

consumer goods such as clothing or food would not. Transferring the agent into another

domain would require the services of a subject matter expert who could identify salient

features of the complex objects in the domain, alter the program to work with those

features and determine which features were crucial to the final decision. After testing on

a suitable list of objects, the “new” agent could be released.

3.9 Learning approach
We have adopted a two-phase learning approach for HumanE. In the first phase of

learning, HumanE learns by reinforcement, observation and actions taken that arise from

a supplied initial policy. In the second phase, HumanE learns by reinforcement and

observation. The initial policy is dynamic as it is updated without human intervention

from the actions taken by the agent. The next chapter discusses in detail the proposed

learning approach using illustrations of a running example.

3.10 User interface
We do not expect an average user to have a high degree of computer skills. Hence, we

have paid extra attention to the design of the agent interface. We have made several

changes to the HumanE agent interface in the hope that the interface will be intuitive and

Page 27 of 70

responsive to users’ actions. Since HumanE is a web agent, it interacts with the user via a

Web browser such as Internet Explorer or Netscape. To better capture user preferences,

we have tried a few approaches such as using a combination of web controls such as

radio buttons (range indication as shown in Figure 3.7) or check boxes (specific

indication as shown in Figure 3.8) to allow the user to specify his or her liking of a

specific feature.

Figure 3.3 Earlier version of HumanE agent interface (range indication)

Figure 3.4 Earlier version of HumanE agent interface (specific indication)

After trying out a few approaches and gathering some useful user feedback, we decided

to use two list boxes i.e. “desired” list box and “undesired” list box to allow the user to

specify which feature is desirable or undesirable. Figure 3.9 shows the interface of the

current version of HumanE.

Page 28 of 70

Figure 3.5 Current version of HumanE interface

The user clicks on the left arrow button to add a feature to the “desired” list box or clicks

on the right arrow button to add a feature to the “undesired” list box. Furthermore, the

user can rank the features in each list box in accordance to their liking. The features at

the top of each list box correspond to those features well-liked most or dislike most. One

potential limitation is that the interface cannot handle the situation where the user has no

stated preference for features present in the two list boxes. We have decided against

having a user-controlled function to turn off the ranking feature as it adds a certain

amount of complexity to the learning algorithm. However, one positive observation we

find is that the user is “compelled” to consider carefully their liking of the features as

indicated in the list boxes and this may help to speed up the process of discovering

unstated user preferences.

3.11 How HumanE works in real estate domain
Instead of letting the user browse through pages and pages of real estate listings,

HumanE adopts the iterative process of browsing and user feedback. Through HumanE,

the user is able to react independently to every feature of an apartment offering and not

just the apartment itself. In addition, the user is able to participate in the entire profile

creation process which gives him or her more flexibility in specifying the requirements.

By soliciting feedback from the user through the critique of concrete examples, HumanE

is able to infer user preferences and gives better recommendations. In the next chapter,

we will explain in greater detail the proposed learning approach.

Page 29 of 70

C h a p t e r 4

LEARNING APPROACH

4.1 Summary
This chapter presents in detail the learning approach adopted by HumanE. We explain in

greater detail our two-phase learning approach to accelerate agent learning with the

provision of an initial policy using a running example. The discussion covers important

aspects of the learning approach such as matching algorithm and reinforcement learning

using a multidimensional utility function.

4.2 Introduction
The proposed two-phase learning approach has been tested successfully in past research

on robotics [74]. Kaelbling et. al. found that robots using reinforcement learning learnt

better when they were provided prior knowledge about their environment using a

supplied initial policy. The policy generated example trajectories through the state-action

space and showed the robot areas of high rewards and low rewards. After the robot had

acquired a suitable amount of information through this initial phase of learning, the

reinforcement learning system took control of the robot. Usually by this time, the robot

had learned enough to make more informed exploration of the environment.

In this work, we adapt a similar approach when building a agent-based online real estate

system. To do so, we consider each user decision as a trajectory in the search space much

like the trajectories in the robot motion.

4.3 Initial profile vs initial policy
To minimize any confusion, we feel that it is important that we explain the difference

between initial profile and initial policy.

Initial profile refers to the profile that is created at the very beginning of the learning

approach. The initial profile contains only the user-defined preferred district, desired

apartment type, and price.

Initial policy refers to the set of trajectory samples that show HumanE areas of high

rewards and low rewards in the search space.

Page 30 of 70

4.5 Constituents of a profile
The main objective of HumanE is to create a user profile (or simply called a profile) to

store user preferences and to assist the user to refine his or her profile intelligently using

the supplied learning approach. In our scenario, a profile stores both static and dynamic

(learned) user preferences in the form of desired and undesired apartment features.

Examples of apartment features include “high floor”, “near MRT”, “marble floor”, etc.

The constituents of a profile are listed in the table below.

Profile Field Field Description

RowId Refers to a unique identifier tagged to each profile
for identification purpose.

District Refers to a single-valued user-specified preferred
apartment district (i.e. Bishan, Tampines, etc).

Type Refers to a single-valued user-specified preferred
apartment type (i.e. 3-room, 4-room, etc).

Price Refers to a single-valued user-specified preferred
apartment price (user budget).

DesiredFeatures Refers to an ordered list of user-specified
“desired” features. The list can store up to a
maximum of five “desired” features.

The first feature in the list represents the “most
desirable” of the desired features and the last
feature in the list represents the “least desirable” of
the desired features.

This list is updated every time when a user
indicates his or her liking of a particular feature.
See Figure 3.5.

UndesiredFeatures Refers to an ordered list of user-specified
“undesired” features. The list can store up to a
maximum of five “undesired” features.

The first feature in the list represents the “most
undesirable” of the undesired features and the last
feature in the list represents the “least undesirable”
of the undesired features.

This list is updated every time when a user
indicates his or her disliking of a particular feature.
See Figure 3.5.

ActualDesiredFeatures Refers to an ordered list of “desired” features
learned by HumanE.

Page 31 of 70

The list can store up to a maximum of five
“desired” features.

The first feature in the list represents the “most
desirable” of the learned desirable features and the
last feature in the list represents the “least
desirable” of the learned desirable features.

The difference between DesiredFeatures and
ActualDesiredFeatures is that the value of
ActualDesiredFeatures takes into account past user
selections of “desired” features. Hence, in most
cases, the two values differ.

ActualDesiredFeaturesScore Refers to the score ranging from one to five
assigned to every feature which appears in the
ActualDesiredFeatures list.

Five is the maximum score assigned to a feature as
we only allow a maximum of five features in the
DesiredFeatures list. One is the minimum score
that can be assigned to a feature.

This score is added to the existing score for the
same feature found in the corresponding
ActualDesiredFeatures list to obtain the total score.

ActualDesiredFeaturesFreq Refers to a counter that stores the number of times
a feature is present in the ActualDesiredFeatures
list.

It is automatically incremented whenever a feature
is found in both DesiredFeatures and
ActualDesiredFeatures lists or present in the
DesiredFeatures list but missing in the
ActualDesiredFeatures list.

However, it is automatically decremented
whenever a feature is missing in the
DesiredFeatures list but present in the
ActualDesiredFeatures list.

ActualDesiredFeaturesNetScore Refers to the value obtained when we divide the
total score (ActualDesiredFeaturesScore) by the
total frequency (ActualDesiredFeaturesFreq) for
each feature in the ActualDesiredFeatures list.

If the net score is less that 1.0, the feature is
removed from the ActualDesiredFeatures list.

ActualDesiredFeaturesRanked Refers to a “replica” of the ActualDesiredFeatures
list in which the features are sorted based on their
net scores (ActualDesiredFeaturesNetScore) in

Page 32 of 70

ascending order.

This list is used to assist in the various
computations performed by HumanE.

ActualUndesiredFeatures Refers to an ordered list of “undesired” features
learned by HumanE.

The list can store up to a maximum of five
“undesired” features.

The first feature in the list represents the “most
undesirable” of the learned undesirable features
and the last feature in the list represents the “least
undesirable” of the learned undesirable features.

The difference between DesiredFeatures and
ActualDesiredFeatures is that the value of
ActualDesiredFeatures takes into account past user
selections of “desired” features. Hence, in most
cases, the two values differ.

ActualUndesiredFeaturesScore Refers to the score ranging from one to five
assigned to every feature which appears in the
ActualUndesiredFeatures list.

Five is the maximum score assigned to a feature as
we only allow a maximum of five features in the
UndesiredFeatures list. One is the minimum score
that can be assigned to a feature.

This score is added to the existing score for the
same feature found in the corresponding
ActualUndesiredFeatures list to obtain the total
score.

ActualUndesiredFeaturesFreq Refers to a counter that stores the number of times
a feature is present in the ActualUndesiredFeatures
list.

It is automatically incremented whenever a feature
is found in both UndesiredFeatures and
ActualUndesiredFeatures lists or present in the
UndesiredFeatures list but missing in the
ActualUndesiredFeatures list.

However, it is automatically decremented
whenever a feature is missing in the
UndesiredFeatures list but present in the
ActualUndesiredFeatures list.

ActualUndesiredFeaturesNetScore Refers to the value obtained when we divide the
total score (ActualUndesiredFeaturesScore) by the

Page 33 of 70

total frequency (ActualUndesiredFeaturesFreq) for
each feature in the ActualUndesiredFeatures list.

If the net score is less that 1.0, the feature is
removed from the ActualUndesiredFeatures list.

ActualUndesiredFeaturesRanked Refers to a “replica” of the
ActualUndesiredFeatures list in which the features
are sorted based on their net scores
(ActualUndesiredFeaturesNetScore) in ascending
order.

This list is used to assist in the various
computations performed by HumanE.

Table 4.1 Profile constituents

4.5 Overview of the learning approach
We have adopted a two-phase learning approach for HumanE. In the first phase of

learning, HumanE learns by reinforcement, observation and takes actions that arise from

a supplied initial policy. This mode of learning will last for one iteration of the profile

refinement process (i.e. the iterative process of viewing apartments and selecting/ranking

desired and undesired features). In the second phase, HumanE learns by reinforcement

and observation. The content of the initial policy is dynamic as it is updated without

human intervention from the actions taken by HumanE. Figure 4.1 depicts the workflow

of the two-phase learning approach.

Page 34 of 70

User selects
apartment district,

type and price

HumanE learns
from initial policy
and initial profile

Initial policy

HumanE creates
initial profile

Initial profile

HumanE
generates list of
recommended

apartments

User selects
desired and/or

undesired features

HumanE updates
profile

Profile

HumanE
generates list of
recommended

apartments

User selects
desired and/or

undesired features

HumanE updates
profile

Profile

Second
iteration?

Yes

No

User interactions

Initial policy

Learning system

Observation

Action

Reinforcement

User interactions

Initial policy

Learning system

Observation

Action
Reinforcement

First Phase

Second Phase

Figure 4.1 Workflow for the two-phase learning approach

4.6 Phase one learning
In phase one learning, HumanE initially learns and takes action from a supplied initial

policy. This occurs right after when an initial profile is created. Using the information

Page 35 of 70

stored within the supplied initial policy and initial profile, HumanE learns the locations

of desired (high rewards) and undesired (low rewards) apartments in the search space

that match the user preferences stored in the initial profile.

4.6.1 Learning from an initial policy
To emulate some of the inference power a human real estate agent might have, we have

incorporated an initial policy to enhance the interactive learning ability of the agent.

Basically, an initial policy is a XML file that stores information about which apartment

features are generally considered as desirable and undesirable. In HumanE, the initial

policy is stored in a file named “Bootstrap.xml”. Figure 4.2 shows the content of this file.

<?xml version=“1.0” encoding=“utf-8” ?>
<features>
 <item id=“desired” value=“1,4,8,98”/>
 <item id=“undesired” value=“23,24,43”/>
</features>
<desired>
 <district>
 <item id=“1” value=“15,45,92,123,280,410,488,523,677,712”/>
 <item id=“2” value=“31,41,88,100,256,323,690,732,822,845”/>
 <item id=“3” value=“22,57,186,229,311,396,498,554,651,781”/>
 ……
 </district>
</desired>
<undesired>
 <district>
 <item id=“1” value=“23,34,52,166,232,359,390,416,509,682”/>
 <item id=“2” value=“27,55,75,98,167,293,531,567,734,802”/>
 <item id=“3” value=“16,56,78,139,266,345,482,573,680,744”/>
 ……
 </district>
</undesired>

Figure 4.2 Initial policy used in HumanE

The first piece of information encoded in the initial policy as shown above is the list of

features generally considered as desirable and undesirable features. The attribute “id”

denotes the attribute name and the attribute “value” refers to the value of the attribute

“id”. The second piece of information encoded is the list of top ten most popular

apartments per district. The attribute “id” denotes the attribute name which in this case

refers to the district id. The attribute “value” refers to the value of the attribute “id” i.e.

the apartment id of the top ten most popular apartments per district. The third piece of

information encoded is the list of top ten most unpopular apartments per district. The

Page 36 of 70

attribute “id” denotes the attribute name which in this case refers to the district id. The

attribute “value” refers to the value of the attribute “id” i.e. the apartment id of the top

ten most unpopular apartments per district.

Coupling with the information stored in the initial profile, the initial policy will generate

certain “interesting” trajectories through the search space, showing HumanE areas of

high (popular apartments) and low (unpopular apartments) rewards. These trajectories

and associated rewards are then used in this first, passive phase of learning.

As shown in Figure 4.1, the bootstrapping process occurs after the creation of the initial

profile. Here, HumanE observes the states and rewards being generated and bootstraps

this information into its “memory”. In our domain, the areas of high rewards are those

apartments which have at least half of the “desired” features as specified in the initial

policy. On the other hand, the areas of low rewards are those apartments which have at

least half of the “undesired” features as specified in the initial policy. We have labeled

each feature as either “desired” or “undesired” based on commonsense rules. In short,

this corresponds to a real-life situation in which a human real estate agent always has in

mind a small number of real estate properties that he or she knows that are popular or

unpopular by virtue of the features they had.

The initial policy will show HumanE where the locations of potentially “desired” and

“undesired” apartments based on the profile. For example, if the user has specified in the

profile that the features desired are “MRT”, “Schools” and “High Floor”, then HumanE

will search for matching apartments that have a combination of the following criteria:

1. All desired features as stated in the profile (“MRT”, “Schools” and “High

Floor”).

2. More than half of the desired features as stated in the initial policy (e.g. “MRT”,

“Bus Stop”, “Lift Level”, “Mid Floor”, “Good View”, and “Windy”).

3. Less than half of the undesired features as stated in the initial policy (e.g.

“Playground”, “Rubbish Dump”, “Low Floor”, “Blocked View”, and “Facing

Afternoon Sun”).

Page 37 of 70

By combining the information from the initial profile and the initial policy, HumanE is

able to generate a larger but potentially interesting set of matching apartments. This gives

the user an opportunity to learn about apartments that do not exactly match the initial

profile but may be of interest to him. In this way, HumanE allows for the serendipitous

discoveries of new user preferences without the danger of random, unguided

“exploratory” recommendations.

4.6.2 Reinforcement learning using a multidimensional utility function
After HumanE has generated a list of recommended apartments, it adopts reinforcement

learning as the next learning technique to learn user preferences. It learns a

multidimensional utility function on states (or histories) and uses it to select actions that

maximize the expected utility of their outcomes. The reinforcement learning approach is

used through the entire profile refinement process.

As mentioned in Section 4.5, every profile stores a set of “desired” (DesiredFeatures) and

“undesired” (UndesiredFeatures) feature lists and a set of aggregated “desired”

(ActualDesiredFeatures) and “undesired” (ActualUndesiredFeatures) feature lists. The

DesiredFeatures and UndesiredFeatures lists store exactly the current user preferences as

specified by the user when he or she makes changes to the profile. This information is

required as HumanE needs to repopulate the profile information whenever the user

wishes to update the profile.

However, the ActualDesiredFeatures and ActualUndesiredFeatures lists store the

aggregated user preferences for desired and undesired features. They store the history of

user interactions with regards to profile creation. The utility function uses the total scores

(ActualDesiredFeaturesScore or ActualUndesiredFeaturesScore), total frequencies

(ActualDesiredFeaturesFreq or ActualUndesiredFeaturesFreq) and net scores

(ActualDesiredFeaturesNetScore or ActualUndesiredFeaturesNetScore) to generate these

two lists.

In this way, the multidimensional utility function is able to capture past profile changes

(i.e. the agent remembers history information) and incorporate the knowledge learned

into a simple representation to be used by the matching algorithm.

Page 38 of 70

4.6.3 Learning by observation
To augment the serendipitous discoveries of apartments which can be of potential

interest to the user, we have implemented the “favourites” and “views” functions. First,

the user can specify an apartment to be added to a “favourites” list for a particular

profile. When this happens, HumanE increments the value of the “FavouriteNum”

column in the “Apartment” database table of this particular apartment. The

“FavouriteNum” column stores the number of times a particular apartment has been

added to some “favourites” lists. Second, the user can select an apartment to develop the

profile or simply to view more details about it. Similarly, when this happens, HumanE

increments the value of the “ViewNum” column in the “Apartment” database table of

this particular apartment.

As part of the matching process, HumanE selects the top ten apartments which have the

greatest value for both the “FavouriteNum” column and “ViewNum” column and display

the resulting apartments in the “Top Ten Most Popular Apartments” and “Top Ten Most

Viewable Apartments” sections of the web interface. This encourages the user to make

more serendipitous discoveries of apartments which the user may be interested in. The

assumption taken here is that there is a high possibility that a typical user may be

interested in apartments which are generally considered by other users to be “good”.

4.6.4 Matching algorithm
HumanE employs a matching algorithm that is based on the concept of property

relaxation. It uses the following rules are shown below in the order of execution when

searching for matching apartments:

1. Search based on the exact specifications as stated in the current profile

2. Search using ActualDesiredFeatures and ActualUndesiredFeatures attributes

instead of DesiredFeatures and UndesiredFeatures attributes

3. Search neighbouring districts based on the exact specifications as stated in the

current profile

Page 39 of 70

4. Search neighbouring districts using ActualDesiredFeatures and

ActualUndesiredFeatures attributes instead of DesiredFeatures and

UndesiredFeatures attributes

5. Search but ignore apartment type

6. Search from neighbouring districts but ignore apartment type

7. Search but relax on price restriction

8. Search from neighbouring districts but relax on price restriction

9. If no matching apartments can be found, HumanE displays the apartments listed

in the “top ten most popular apartments per district” information contained in the

initial policy for the district specified in the profile.

We have specified that only twenty matching apartments can be retrieved and shown to

the user. This is to prevent the user from being overwhelmed if many apartments are to

be shown to him or her. If less than twenty apartments are found using the first rule, then

HumanE uses the subsequent rules to search for more matching apartments until there

are twenty apartments selected.

Rule 5 and 6 use a relaxed price restriction when searching for matching apartments.

Here, we consider price as an upper bound with a slight deviation of ±10%, meaning

apartments having price that is within 0.90 and 1.10 times of the price specified by the

user or less are returned.

Every apartment offering stores information about its neighbouring districts. If no

apartments are found in the district as specified in the profile, HumanE will return

apartments in the neighboring districts. This is used in Rule 2, 4 and 6.

4.7 Phase two learning
The purpose of having the initial policy in phase one learning is simply to generate

experiences of the world which is tantamount to incorporating prior knowledge into

HumanE. After a suitable amount of information has been acquired in the bootstrapping

process, the second phase of learning takes over where HumanE learns primarily using

Page 40 of 70

reinforcement learning and learning by observation. Usually by this time, HumanE is

more “knowledgeable” which allows for more informed exploration of the search space.

4.8 Example of the profile refinement process
We present a simple example to further illustrate how the two-phase learning approach

functions in the profile refinement process. Beginning with the creation of the initial

profile, we trace the various steps that HumanE take to learn the user preferences and

make better recommendations.

4.8.1 1st Iteration: Creating the initial profile
Let us assume that John (a fictitious user) is looking for a three-room apartment in the

Ang Mo Kio district and is willing to pay about S$200,000. He enters these preferences

into the web interface provided by HumanE to create the initial profile. Figure 4.3 shows

the content of the initial profile.

Field name Value
District Ang Mo Kio
Type 3NG
Price 200,000
DesiredFeatures
UndesiredFeatures
ActualDesiredFeatures
ActualDesiredFeaturesScore
ActualDesiredFeaturesFreq
ActualDesiredFeaturesNetScore
ActualDesiredFeaturesRanked
ActualUndesiredFeatures
ActualUndesiredFeaturesScore
ActualUndesiredFeaturesFreq
ActualUndesiredFeaturesNetScore
ActualUndesiredFeaturesRanked

Figure 4.3 Initial profile

4.8.2 1st Iteration: Bootstrapping using the initial policy
Since this is the first iteration of the profile refinement process, HumanE bootstraps the

initial policy into its “memory”. This takes place right after the creation of the initial

profile and before HumanE recommends any apartments to John. For the sake of

illustration, let us assume that the content of the initial policy is as shown in Figure 4.4.

Page 41 of 70

Field name Value
Desired features MRT, Bus Terminal, Central, Well Renovated
Undesired features Industrial Estate, Port, Cemetery
Desired apartment ids (for
Ang Mo Kio district)

15,45,92,123,280,410,488,523,677,712

Undesired apartment ids (for
Ang Mo Kio district)

23,34,52,166,232,359,390,416,509,682

Figure 4.4 Initial policy

4.8.3 1st Iteration: Making the first recommendation
After the bootstrapping process has completed, HumanE has some initial knowledge

about John’s preferences (from initial profile) and some of the popular and unpopular

apartments in Ang Mo Kio (from initial policy). To generate the twenty apartments for

recommendations, HumanE first tries to locate popular apartments from the initial policy

that matches the user preferences. If matching apartments are found, they are selected for

display later.

Typically, less than twenty apartments (and sometimes no apartments) are found using

this method and the remaining apartments are located using the matching algorithm as

described in Section 4.6.4. During the execution of the matching algorithm, HumanE

continuously checks that any apartment selected is not found within the list of top most

unpopular apartments in the Ang Mo Kio district. And if it is found, then the matching

algorithm discards the selected apartment and selects the nearest matching apartment.

Once twenty apartments are selected, HumanE displays the selection to John for his

consideration. HumanE also displays other information such as the Top Ten Most

Popular Apartments (for all districts) and Top Ten Most Viewable Apartments (for all

districts) to create the opportunity for John to discover and consider other potentially

interesting apartments.

4.8.4 2nd Iteration: Making the first feature selection
Suppose John examines one of the apartments from the list and selects some desired and

undesired features using the user interface provided (see Figure 3.5). Let us assume that

the desired features selected are “MRT” and “Market” and the undesired features

selected are “Community Club” and “School” in the order as shown, meaning “MRT” is

more preferred than “Market” and “Community Club” is less preferred than “School”.

Page 42 of 70

Next, we explain how HumanE computes the values of each of the profile fields.

Field name DesiredFeatures
Value MRT, Market
Computation
Description

No computation is needed. Its value is taken directly from the web
interface and includes ranking information i.e. “MRT” is more desired
than “Market”.

Field name UndesiredFeatures
Value Community Club, School
Computation
Description

No computation is needed. Its value is taken directly from the web
interface and includes ranking information i.e. “Community Club” is
more undesired than “School”.

Field name ActualDesiredFeatures
Value MRT, Market
Computation
Description

If ActualDesiredFeatures is null, then its value is equal to the
DesiredFeatures.

Field name ActualDesiredFeaturesScore
Value 5,4
Computation
Description

If ActualDesiredFeaturesScore is null, then its value is equal to the
position occupied by each feature in ActualDesiredFeatures. For
example, “MRT” (in ActualDesiredFeatures) is given a score of five as
it occupies the first position in ActualDesiredFeatures. “Market” is given
a score of four as it occupies the second position.

Field name ActualDesiredFeaturesFreq
Value 1,1
Computation
Description

Since both “MRT” and “Market” appear for the first time in
ActualDesiredFeatures, their frequency is one.

Field name ActualDesiredFeaturesNetScore
Value 5,4
Computation
Description

The net score of “MRT” is calculated using the formula below:
ActualDesiredFeaturesNetScore = ActualDesiredFeaturesScore /
ActualDesiredFeaturesFreq. For example, the net score for “MRT” is 5 /
1 = 5 and the net score for “Market” is 4 / 1 = 4.

Field name ActualDesiredFeaturesRanked
Value Market, MRT
Computation
Description

This value is derived when ActualDesiredFeatures is sorted against
ActualDesiredFeaturesNetScore in ascending order.

Field name ActualUndesiredFeatures
Value Community Club, School
Computation
Description

If ActualUndesiredFeatures is null, then its value is equal to the
UndesiredFeatures.

Page 43 of 70

Field name ActualUndesiredFeaturesScore
Value 5,4
Computation
Description

If ActualUndesiredFeaturesScore is null, then its value is equal to the
position occupied by each feature in ActualUndesiredFeatures. For
example, “Community Club” (in ActualUndesiredFeatures) is given a
score of five as it occupies the first position in ActualUndesiredFeatures.
“School” is given a score of four as it occupies the second position.

Field name ActualUndesiredFeaturesFreq
Value 1,1
Computation
Description

Since both “Community Club” and “School” appear for the first time in
ActualUndesiredFeatures, their frequency is one.

Field name ActualUndesiredFeaturesNetScore
Value 5,4
Computation
Description

The net score of “Community Club” is calculated using the formula
below: ActualUndesiredFeaturesNetScore = ActualUndesiredFeatures
Score / ActualUndesiredFeaturesFreq. For example, the net score for
“Community Club” is 5 / 1 = 5 and for “School” is 4 / 1 = 4.

Field name ActualUndesiredFeaturesRanked
Value School, Community Club
Computation
Description

This value is derived when ActualUndesiredFeatures is sorted against
ActualUndesiredFeaturesNetScore in ascending order.

Field Name Value
District Ang Mo Kio
Type 3NG
Price 200,000
DesiredFeatures MRT, Market
UndesiredFeatures Community Club, School
ActualDesiredFeatures MRT, Market
ActualDesiredFeaturesScore 5,4
ActualDesiredFeaturesFreq 1,1
ActualDesiredFeaturesNetScore 5,4
ActualDesiredFeaturesRanked Market, MRT
ActualUndesiredFeatures Community Club, School
ActualUndesiredFeaturesScore 5,4
ActualUndesiredFeaturesFreq 1,1
ActualUndesiredFeaturesNetScore 5,4
ActualUndesiredFeaturesRanked School, Community Club

Figure 4.5 Profile after first feature selection

Page 44 of 70

4.8.5 3rd Iteration: Making the second feature selection
After John has made the first feature selection, HumanE selects another set of apartments

for John to consider. Suppose John examines one of the apartments from the list and

selects again the desired and/or undesired features. Let us assume that the desired feature

selected is “High Floor” and the undesired feature selected is “Next to Corner Unit”. He

also re-orders the features in the DesiredFeatures list by moving “High Floor” to the top

of the list. In addition, he moves “School” to the top of the UndesiredFeature list and

removes “Community Club” from it.

We explain how HumanE computes the new values of each of the profile fields below:

Field name DesiredFeatures
Value High Floor, MRT, Market
Computation
Description

No computation is needed. Its value is taken directly from the web
interface and includes ranking information i.e. “High Floor” is more
desired than “MRT” and “MRT” is more desired than “Market”.

Field name UndesiredFeatures
Value School, Next to Corner Unit
Computation
Description

No computation is needed. Its value is taken directly from the web
interface and includes ranking information i.e. “School” is more
undesired than “Next to Corner Unit”.

Field name ActualDesiredFeatures
Value MRT, Market, High Floor
Computation
Description

Any new feature is automatically added to the tail of the
ActualDesiredFeatures list. Hence, the new feature “High Floor” is
added to the tail of the list even though it appears at the head of the
DesiredFeatures list.

Field name ActualDesiredFeaturesScore
Value 9,7,5
Computation
Description

If ActualDesiredFeaturesScore is not null, then the score = current score
+ previous score. The current score is calculated using the following
formula:
Current score = maximum number of features in DesiredFeatures list –
individual feature’s current position on DesiredFeatures list.

Score for “MRT”
 5 (maximum number of features in DesiredFeatures list)
– 1 (second position of the DesiredFeatures list)
+ 5 (previous score)

 9

Page 45 of 70

Score for “Market”
 5 (maximum number of features in DesiredFeatures list)
– 2 (third position of the DesiredFeatures list)
+ 4 (previous score)

 7

Score for “High Floor”
 5 (maximum number of features in DesiredFeatures list)
– 0 (first position of the DesiredFeatures list)
+ 0 (previous score)

 5

Field name ActualDesiredFeaturesFreq
Value 2,2,1
Computation
Description

If current frequency is not null, then the new frequency is calculated
based on the following formula:
New frequency = Previous frequency + 1

Frequency for “MRT” = 1 + 1 = 2 (second occurrence)
Frequency for “Market” = 1 + 1 = 2 (second occurrence)
Frequency for “High Floor” = 1 (first occurrence)

Field name ActualDesiredFeaturesNetScore
Value 4.5,3.5,5.0
Computation
Description

The net score is calculated using the formula below:
ActualDesiredFeaturesNetScore = ActualDesiredFeaturesScore /
ActualDesiredFeaturesFreq.

Net score for “MRT” = 9 / 2 = 4.5
Net score for “Market” = 7 / 2 = 3.5
Net score for “High Floor” = 5 / 1 = 5.0

Field name ActualDesiredFeaturesRanked
Value High Floor, MRT, Market
Computation
Description

This value is derived when ActualDesiredFeatures is sorted against
ActualDesiredFeaturesNetScore in ascending order.

Field name ActualUndesiredFeatures
Value Community Club, School, Next to Corner Unit
Computation
Description

Any new feature is automatically added to the tail of the
ActualUndesiredFeatures list. Hence, the new feature “Next to Corner
Unit” is added to the tail of the list. For the sake of illustration,
“Community Club” is still reflected in the value shown above as its net
score is less than 1.0. It will be removed eventually as shown in Figure
4.6. See the calculation for ActualUndesiredFeaturesNetScore for more
details.

Page 46 of 70

Field name ActualUndesiredFeaturesScore
Value 0,9,4
Computation
Description

If a feature is removed from the UndesiredFeatures list, the feature is
given a current score of five. In this case, the new score is calculated
using this formula: new score = previous score – current score.

Score for “Community Club”
 5 (previous score)
- 5 (current score)

 0

Score for “School”
 5 (maximum number of features in UndesiredFeatures list)
– 0 (first position of the UndesiredFeatures list)
+ 4 (previous score)

 9

Score for “Next to Corner Unit”
 5 (maximum number of features in UndesiredFeatures list)
– 1 (second position of the UndesiredFeatures list)
+ 0 (previous score)

 4

Field name ActualUndesiredFeaturesFreq
Value 2,2,1
Computation
Description

If current frequency is not null, then the new frequency is calculated
based on the following formula:
New frequency = Previous frequency + 1

Frequency of “Community Club” = 1 + 1 = 2
Frequency of “School” = 1 + 1 = 2
Frequency of “Next to Corner Unit” = 1

Field name ActualUndesiredFeaturesNetScore
Value 4.5,4
Computation
Description

If the net score of a feature is less than 1.0, it is removed from the
ActualUndesiredFeatures list. The net score is calculated using the
formula below:

ActualUndesiredFeaturesNetScore = ActualUndesiredFeaturesScore /
ActualUndesiredFeaturesFreq

Net score of “Community Club” = 0 / 2 = 0 (removed)
Net score of “School” = 9 / 2 = 4.5
Net score of “Next to Corner Unit” = 4 / 1 = 4.0

Page 47 of 70

Field name ActualUndesiredFeaturesRanked
Value Next to Corner Unit, School
Computation
Description

This value is derived when ActualUndesiredFeatures is sorted against
ActualUndesiredFeaturesNetScore in ascending order.

Field Name Value
District Ang Mo Kio
Type 3NG
Price 200,000
DesiredFeatures High Floor, MRT, Market
UndesiredFeatures School, Next to Corner Unit
ActualDesiredFeatures MRT, Market, High Floor
ActualDesiredFeaturesScore 9,7,5
ActualDesiredFeaturesFreq 2,2,1
ActualDesiredFeaturesNetScore 4.5,3.5,5.0
ActualDesiredFeaturesRanked High Floor, MRT, Market
ActualUndesiredFeatures School, Next to Corner Unit
ActualUndesiredFeaturesScore 9,4
ActualUndesiredFeaturesFreq 2,1
ActualUndesiredFeaturesNetScore 4.5,4.0
ActualUndesiredFeaturesRanked Next to Corner Unit, School

Figure 4.6 Profile after second feature selection

Figure 4.5 shows the profile after second feature selection with “Community Club”

feature removed from the corresponding profile fields as its net score is less than 1.0.

4.8.6 Summary
The preceding example shows in detail how HumanE refines the profile with each user

interaction. During the first iteration, HumanE makes use of the initial policy to make the

apartment recommendations (first phase) and after which HumanE relies primarily on

reinforcement learning and learning by observation to make subsequent apartment

recommendations. The longer each feature appears or is ranked higher in the

ActualDesiredFeatures or ActualUndesiredFeatures list, the higher will be its net score.

This implies that HumanE will make greater use of this feature for making

recommendations. Similarly, every time when a feature is removed or is ranked lower

from either one of the lists, its net score will be lower, meaning that HumanE will make

less use of this feature for making recommendations. In this way, the

ActualDesiredFeatures and ActualUndesiredFeatures lists store the history of the user’s

past and present preferences. Hence, even though a user may remove a feature selected

Page 48 of 70

previously, HumanE will still consider the feature during the apartment selection process

as long as it is still present in the ActualDesiredFeatures or ActualUndesiredFeatures list.

Eventually, when the net score of a feature falls below 1.0, the feature is removed from

the list signaling the end of this feature’s influence during the apartment selection

process.

4.9 Crafting an initial policy
Typically, a domain expert will craft the initial policy during the initial system setup and

after which the maintenance of the initial policy is handled by HumanE automatically.

HumanE will basically rank each apartment feature in descending order based on

aggregated feature data obtained from apartments that have been added to some

“favourites” lists. The top three to five features will be taken as the new “desired”

features and replaced the existing ones in the initial policy. HumanE will also rank each

apartment feature found in the “UndesiredFeatures” part of each profile in terms of the

frequency of appearance in descending order. And HumanE will take the bottom three to

five features as the new “undesired” features to replace the existing ones in the initial

policy.

More complex knowledge can be encoded within the initial policy as it is based on XML

which supports hierarchical data structures. For instance, it is possible to specify which

features are loosely related. For example, “MRT”, “LRT”, and “Bus Stop” are features

that are loosely related in the sense that they both relate to public transport. If the user

selects “MRT” feature as desirable, then HumanE can infer that the user may also prefer

“LRT” feature or even “Bus Stop” feature. Since the user has indicated the “High Floor”

feature as desirable, HumanE will similarly infer that apartments with “Mid Floor”,

“Good View”, “Windy” features could be of interest to the user too. This is because the

“High Floor” feature is loosely associated with both the “Good View” and “Windy”

features.

4.10 Benefits of proposed learning approach
One of the main reasons why many reinforcement learning implementations fail to

achieve much success for complex goods is that it is assumed that the agent developed

knows nothing about the environment to begin with and that the agent must gain all of its

information by exploration and subsequent exploitation of learned knowledge. When

Page 49 of 70

dealing with a real, complex online system such as a large-scale real estate listing and

brokerage application, however, this approach is simply not practical. Typically, the

search space is too large to explore satisfactorily within the lifetime of the agent (much

less within the attention time-span of typical online users). Worse still, making “random”

exploratory recommendations can frustrate and disappoint the user, potentially causing

the user to abandon the system totally.

For example, Apt Decision [65] suffers from the possibility that the user may get

frustrated and disappointed if no suitable recommendations are found during the initial

use of the system. This scenario can result as the Apt Decision agent has no prior

knowledge about the real estate domain and cannot make good recommendations

initially. Moreover, the agent needs time to learn the user’s preferences from scratch and

the time taken could be significantly long enough to cause the user to give up on the

agent.

Another example is the SurfJet Agent [69] which is an intelligent assistant (much like

HumanE) that acts as an autonomous learning agent. It is non web-based and uses an

interest profile to perform searches on the Internet for articles on the user’s behalf.

SurfJet is able to make more accurate and useful searches as compared to traditional

searching techniques as the user can give it a profile describing many of his or her

interests, including how interesting (or uninteresting) each item is and how they relate to

each other. However, SurfJet does not store any prior knowledge and rely solely on the

iterative process of user feedback and profile refinement to make increasing accurate

recommendations. Making good recommendations in the early stages of learning could

be difficult and, like Apt Decision, a considerable amount of time may be spent to train

SurfJet to understand a user’s stated and unstated interests. It is likely that many users

may not be prepared to commit that kind of time and effort to train the agent until it is

sufficiently capable of making fairly good recommendations.

Accumulated knowledge in the form of memories and experiences allows humans to go

about performing daily tasks. In the real world, we often go to a human real estate agent

for assistance in selling or acquiring real estate properties. We naturally expect the agent

to be an expert in the real estate domain, and hence able to offer suitable advice and

Page 50 of 70

recommendations. Certainly, we do not expect the real estate agent to have no

knowledge about the real estate domain.

Hence, in order to take our prior knowledge (which are often implicit) and incorporate

them into a reinforcement learning framework, we have examined the idea of supplying

HumanE with an initial policy about the real estate domain and in this chapter, we have

described in detail the learning approach which we are confident that it can aid profiling

agents in making better recommendations faster with the ultimate aim of soliciting

greater satisfaction, confidence and trust from users. We will support our claims using

experimental results and the details can be found in the next chapter.

Page 51 of 70

C h a p t e r 5

EXPERIMENTAL ANALYSIS

5.1 Summary
In this chapter, we evaluate the effectiveness of HumanE in contributing to customer

satisfaction using various experiments and real-life data.

5.2 Methodology
The following sections outline the methodology used for the experiments conducted with

HumanE and our testers.

5.2.1 Metrics
There are four dimensions to measure HumanE’s ability to increase customer

satisfaction:

• Number of profile changes

o This refers to the overall number of times that a user has modified the

profile since the profile was created and until the time when the user is

satisfied with the profile and decides to print out a hard copy of the

“favourites” list.

• Time taken to create a profile

o This refers to the overall time taken by the user starting from creating a

profile to printing out a hard copy of the “favourites” list when the user is

satisfied.

• Ease of use

o This refers to the perceived level of user-friendliness when using

HumanE with regards to the ease of developing a user profile using the

interface provided.

Page 52 of 70

• Performance

o This refers to the perceived level of performance when using HumanE in

terms of the quality of matching apartments returned and the time taken to

return the matching apartments.

HumanE’s ability to handle large databases was tested using the scalability metric.

• Scalability

o This refers to HumanE’s ability to handle large databases in terms of

returning matching apartments within a reasonable period of time.

5.2.2 Test data
To ensure the realistic nature of the experiments to be conducted, we painstakingly

created our test data set from more than eight hundred actual real estate ad postings from

both offline and online sources.

To ascertain whether HumanE can scale when the database grows, we also wrote a

simple program to fabricate another test data set of about sixty-five thousand records.

5.3 Experimental design
Basically, we want to test whether our proposed learning approach with the use of initial

policy contributes to better performance for web profiling agents. Based on the findings

in [44, 54], we decided to use survey research in our experimental design for the

following reasons:

• Surveys are easy to administer.

• Surveys are simple to score and code.

• Surveys determine the values and relations of variables and constructs.

• Responses can be generalized to other members of the population studied and

often to other similar populations.

Page 53 of 70

• Surveys can be reused easily, and provide an objective way of comparing

responses over different groups, times, and places.

• Surveys can be used to predict behavior.

• Specific theoretical propositions can be tested in an objective fashion.

• Surveys can help confirm and quantify the findings of qualitative research.

In addition, our experimental design is also strongly influenced by the findings from [31,

58] especially in the area of web page evaluation.

We invited one hundred and fifty genuine real estate buyers to evaluate HumanE based

on the chosen metrics. Figure 5.1 and 5.2 shows the cross-section profiles of the testers

in terms of age and occupation respectively.

Age 20-29 30-39 40-49 50-59 60-69
No. of testers 33 45 42 24 6

Table 5.1 Cross-section profiles of the testers in terms of age

Occupation Business Finance Govt Healthcare IT Retail
No. of testers 24 30 24 18 39 15

Table 5.2 Cross-section profiles of the testers in terms of occupation

Most testers were of the age between late twenties to fifty years old. This coincided with

the age range where most people would consider buying apartments and would

genuinely be interested in using HumanE as an intelligent assistant during the searching

and selection of apartments.

We also took into consideration the occupational profiles of the testers. We wanted to

avoid having many IT professionals as our testers and they would naturally be more IT-

savvy and might be inclined to rate HumanE more favourably due to its sophisticated

mechanics.

Another factor we considered was the size of the test groups. The size of each test group

should be sufficiently large to allow for more precision in the analysis of the test results.

Page 54 of 70

On the other hand, we did not want the test groups to be overly large as the returns in

terms of the accuracy of the test results could be diminishing as the test group size grew.

Based on HDB Annual Report for FY 2002-03 [40], there were about fifty thousand

people who either applied for new HDB apartments or registered for resale flats. Hence,

the population size was taken as 50,000. The confidence level is fixed at 95% to get high

confidence in our findings and the confidence interval is fixed at a low 8 due to the large

population size. Using the sample size calculator found at [22], the recommended sample

size was 150 and thus we invited one hundred and fifty people to be our testers.

The evaluation process consisted of the following three tests:

• First test: Test HumanE without learning approach

• Second test: Test HumanE with learning approach without initial policy

• Third test: Test HumanE with learning approach with initial policy

We assigned fifty different testers to each test. We could not repeat the three tests for the

same group of testers as they might be influenced by the earlier test data. To obtain

consistent feedbacks from the three groups of testers, we gave the testers some guidelines

to follow when giving answers. For example during the measurement of the “ease of

use” metric and “performance” metric, we instructed the testers to give their answers

based on the following definitions:

Scale Very Bad Bad Neutral Good Excellent
Number of times
a tester requests
for help or asks
questions on the
use of HumanE

>10 10 - 8 7 - 6 5 - 3 2 - 0

Table 5.3 Scale definitions for “ease of use” metric

Scale Very Bad Bad Neutral Good Excellent
Time taken to
return matching
apartments (sec)

>60 60 - 30 29 - 21 20 - 11 10 - 0

Page 55 of 70

Table 5.4 Scale definitions for “performance” metric

Before the actual evaluation took place, we gave the testers a quick introduction on how

to use HumanE. To ensure the objectiveness of the testers’ assessments, we chose not to

be directly involved throughout the evaluation process (except the scalability test).

Instead, a test coordinator with adequate knowledge of HumanE was asked to conduct

the experiment.

Typically, the main method to show that a variable affects the outcome is to hold all

other variables constant while changing only that variable. Preferably the experiment

should be conducted in such a way that the users do not know the state of the variable so

that they are unable to help the result even if they want to. Thus to ensure the accuracy of

the test results, an identical interface is used to test HumanE 1) without, 2) with the

learning approach (excludes initial policy) and 3) with the learning approach (includes

initial policy) while the user is not informed of whether HumanE is learning or not.

The objective of each test is to allow the tester to arrive at a satisfactory profile. Each

tester was asked to select his or her desired apartments using HumanE’s web interface.

The test was considered completed when the user declared that he or she was satisfied

with the list of desired apartments stored in the “favourites” list. Subsequently, the user

was allowed to keep the profile created by printing out a hard copy of the “favourites”

list. In each of the three tests, the user was not told whether HumanE was used in helping

him or her develop the profile.

The user went through the entire profile creation process without much intervention from

the test coordinator. The only assistance that was provided by the test coordinator was to

clarify some questions asked by a few users pertaining to navigation and program

operation.

At the end of each test, the values of the four metrics were recorded. For the “ease of

use” and “performance” metrics, each tester was asked to rate them from a scale of one

to five (i.e. 1: Very Bad, 2: Bad, 3: Neutral, 4: Good, 5: Excellent) for the three tests. For

each test, the values for the “time taken to create a profile” and “number of profile

changes” metrics were recorded and computed by HumanE. Since HumanE recorded the

login time and logoff time for each tester, HumanE was able to compute the value for the

Page 56 of 70

“time taken to create a profile” metric by subtracting the logoff time from the login time.

And because every profile modification was recorded, HumanE was able to provide the

value of the “number of profile changes” metric for each tester.

Additionally, we tested the scalability of HumanE in terms of the time taken to retrieve

matching apartments from large databases. We ran several tests involving different

database sizes ranging from 20,000 to 100,000 mock records and recorded the average

time taken for each display of the matching apartment list. One unit of Intel Pentium 4

2.4GHz machine with 1 GB of memory was used for this test. Internet Information

Server 5.1, .NET Framework SDK 1.1 and SQL Server 2000 were installed on this test

machine.

5.4 Experimental results
The results from the experiments conducted are tabulated in the following tables.

5.4.1 First test: Test HumanE without learning approach

Frequency 1-5 6-10 11-15 16-20 21-25
No. of testers 0 0 7 28 15

Table 5.4 First test: Test results for “number of profile changes” metric

Time taken (min) 1-5 6-10 11-15 16-20 20-30
No. of testers 0 0 5 30 15

Table 5.5 First test: Test results for “time taken to create a profile” metric

Scale Very Bad Bad Neutral Good Excellent
No. of testers 0 0 8 26 16

Table 5.6 First test: Test results for “ease of use” metric

Scale Very Bad Bad Neutral Good Excellent
No. of testers 8 25 14 3 0

Table 5.7 First test: Test results for “performance” metric

5.4.2 Second test: Test HumanE with learning approach (excludes initial
policy)

Page 57 of 70

Frequency 1-5 6-10 11-15 16-20 21-25
No. of testers 5 7 18 19 1

Table 5.8 Second test: Test results for “number of profile changes” metric

Time taken (min) 1-5 6-10 11-15 16-20 21-30
No. of testers 0 5 24 18 3

Table 5.9 Second test: Test results for “time taken to create a profile” metric

Scale Very Bad Bad Neutral Good Excellent
No. of testers 0 0 5 22 23

Table 5.10 Second test: Test results for “ease of use” metric

Scale Very Bad Bad Neutral Good Excellent
No. of testers 2 5 12 21 10

Table 5.11 Second test: Test results for “performance” metric

5.4.3 Third test: Test HumanE with learning approach (includes initial
policy)

Frequency 1-5 6-10 11-15 16-20 21-25
No. of testers 11 16 15 8 0

Table 5.12 Third test: Test results for “number of profile changes” metric

Time taken (min) 1-5 6-10 11-15 16-20 20-30
No. of testers 8 19 16 7 0

Table 5.13 Third test: Test results for “time taken to create a profile” metric

Scale Very Bad Bad Neutral Good Excellent
No. of testers 0 0 4 21 25

Table 5.14 Third test: Test results for “ease of use” metric

Scale Very Bad Bad Neutral Good Excellent
No. of testers 0 0 8 18 24

Table 5.15 Third test: Test results for “performance” metric

5.4.4 Scalability

Page 58 of 70

No. of records 50,000 100,000 150,000 200,000 250,000
Time taken (sec) 2 3 5 7 10

Table 5.16 Test results for “scalability” metric

5.4.5 Test result summaries

0

5

10

15

20

25

30

1-5 6-10 11-15 16-20 21-25

Frequency

N
o

of
 te

st
er

s

First test

Second test

Third test

Figure 5.1 Test result summary for “number of profile changes” metric

0

5

10

15

20

25

30

35

1-5 6-10 11-15 16-20 20-30

Time taken (min)

N
o

of
 te

st
er

s

First test

Second test

Third test

Figure 5.2 Test result summary for “time taken to create a profile” metric

Page 59 of 70

0

5

10

15

20

25

30

Very Bad Bad Neutral Good Excellent

Scale

N
o

of
 te

st
er

s

First test

Second test

Third test

Figure 5.3 Test result summary for “ease of use” metric

0

5

10

15

20

25

30

Very Bad Bad Neutral Good Excellent

Scale

N
o

of
 te

st
er

s

First test

Second test

Third test

Figure 5.4 Test result summary for “performance” metric

5.5 Discussion
The test results for the first test for the “number of profile changes” metric showed that

most testers took eleven to twenty-five profile changes before converging on a

satisfactory profile. The test results for the second test for the “number of profile

changes” metric showed some improvement as most testers took eleven to twenty

searches. The test results for the third test for the “number of searches” metric showed

further improvement as most testers took one to fifteen searches. Thus, it is evident that

testers tend to make less number of profile changes with HumanE’s assistance and even

lesser number when HumanE becomes more intelligent with the supply of the initial

policy.

Page 60 of 70

Similarly, the time taken to create a satisfactory profile decreased as we introduced a

more intelligent HumanE with each test. The test results for the first test for the “time

taken to create a profile” metric showed that most testers took sixteen to thirty minutes

while most testers in the second test took less time i.e. from eleven to twenty minutes.

However, the testers from the third test took the least time as most of them spent six to

fifteen minutes. Thus, it is clear that HumanE can reduce the time taken by users when

creating and refining their profiles.

The test results for the three tests for the “ease of use” metric are quite similar indicating

that almost all of the testers are happy with using HumanE regardless of whether the

learning system with or without the initial policy was present or not. Hence, it is safe to

say that using HumanE can result in increased customer satisfaction during the apartment

selection process.

The test results for the “performance” metric for the first test apparently showed that

majority of the testers were not satisfied with the average quality of the “recommended

apartments” shown to them for selection and the average response time taken to display

an apartment listing. Quite a number of them perceived HumanE as a search engine for

apartment listings and they were not satisfied with the perceived browsing metaphor

which is offered by typical search engines. Even though many testers were fairly happy

that they were given complete control over the entire profile creation process, they also

voiced out their displeasure of having to make many tedious profile changes before

converging on a good profile. On the other hand, the test results for the second test and

the third test showed that the majority of testers preferred to use HumanE to assist them

during the apartment selection process. Obviously, the use of HumanE can increase

customer satisfaction.

Test results for “scalability” metric showed that HumanE is quite comfortable when it

comes to handling large databases. The ability of HumanE to scale is of utmost important

with regards to commercial deployment as real-life ecommerce databases are typically

large-scale (i.e. several hundred thousand records).

Any agent-based online system implementation should take this into consideration as

agent performance affects the feasibility and viability of the implementation especially in

Page 61 of 70

terms of costs as the system has high computing needs which imply that a high

investment in hardware and software is required. Not many companies are willingly to

make such large investments for ecommerce purpose, especially at this time of writing,

due to the sluggish and uncertain global economy. However, we are confident that

corporations dealing with complex domains can implement HumanE without massive

hardware and software investment. The test results have shown that HumanE is quite

comfortable residing on a single-CPU Intel Pentium 4 server with sufficient memory of

about 1 GB.

In summary, the experimental results showed that the use of HumanE for complex

multidimensional domains such as real estate can result in higher customer satisfaction as

it can learn faster via a supplied initial policy and is able to elicit trust from users through

its user-friendly interface, quality recommendations and excellent performance.

Page 62 of 70

C h a p t e r 6

CONCLUSION

6.1 Summary
In this chapter, we conclude this thesis with a summary of our research findings and

outline our future directions.

6.2 Conclusion
HumanE addresses the problem of poor learning when implementing online

implementation of large-scale autonomous agent-based recommender systems for several

complex domains through the use of a supplied initial policy which allows it to make

more “knowledgeable” exploratory recommendations.

We feel that existing implementations of interactive learning method for online systems

are simply impractical as the state-action space is simply too large for the agent to

explore within its lifetime. This is further exacerbated by the short attention time-span of

typical online users.

It seems easier and more intuitive for the application developer to specify what the agent

should be doing and to let it learn the fine details of how to do it. The key strength of our

approach is that, by incorporating an initial policy or prior knowledge, HumanE is able to

provide better recommendations within a shorter time span. This is because the initial

policy has generated some experiences or knowledge about the real estate domain which

HumanE can use throughout the interactive learning process. No longer does the user

need to face an agent that does not know anything about the task to be completed. We

believe that this approach is far more practical and effective than current

implementations [16, 28, 29, 64].

We also postulate, contrary to the experimental results obtained from past research [15],

that a good initial policy is critical to the success of HumanE from a reward perspective

as the user usually takes less time to build a good profile. Good initial policies head

directly for the goal state and they typically do not expose much of the state-space, since

their trajectories through it are much more directed. This behavior is actually quite

Page 63 of 70

desirable as most online users generally have little patience and want to see a good

profile built quickly.

Finally, transferring the work done here to another different domain such as vacation

plans, insurance, mutual funds, and mortgages would not require a rocket scientist. The

main requirement would be to find a domain expert who would be able to identify the

key features of the complex objects in the domain. Creating an initial policy would

require the identification of “good” and “bad” features and the classification of features

into loosely connected groups.

6.3 Future directions
The development of HumanE will continue to evolve particularly in a different domain

i.e. vacation plans. In future versions of HumanE, we would like to incorporate some of

the following features to improve its usefulness.

• Refine the initial policy refining algorithm based on the results obtained using

more sophisticated data mining tools.

• The ability to ask the user questions in natural language, allow the user to enter

the response in natural language, and finally understand the response obtained for

profile refinement.

• The ability to seek advice from users with similar profiles via email, interpret the

reply so as to refine the profile.

• The ability to submit user profile to multiple domain-specific web sites, and show

the user the results online. The agent will also need to parse and understand the

listing obtained for profile refinement.

Page 64 of 70

C h a p t e r 7

REFERENCES

[1] A. Chavez, D. Dreilinger, R. Guttman, and P. Maes. “A Real-Life Experiment in

Creating an Agent Marketplace.” Proceedings of the Second International Conference on

the Practical Application of Intelligent Agents and Multi-Agent Technology

(PAAM’97). London, UK, April 1997.

[2] A. Moukas. “Amalthaea: Information Filtering and Discovery using a Multiagent

Evolving System.” Journal of Applied AI, Vol. 11, No. 5, 1997.

[3] A. Richmond. “Enticing Online Shoppers to Buy – A Human Behavior Study.” In the

Proceedings of the Fifth International World Wide Web Conference. Paris, France, May

6-10, 1996.

[4] A. Wexelblat and P. Maes. “Experiments on Anthropomorphizing Agents.”

Submitted to Interactions, ACM Press.

[5] AuctionBot URL: http://auction.eecs.umich.edu/

[6] Avery, C. and Zeckhauser, R. Recommender Systems for Evaluating Computer

Messages. CACM. 40(3), pp. 88-89, March 1997.

[7] B. Shneiderman and P. Maes. “Debate: Direct Manipulation vs. Interface Agents.”

Interactions: New Visions for Human-Computer Interaction, vol. iv.6, December 1997.

[8] Balabanovic, M. and Shoham, Y. Fab: Content-Based, Collaborative

Recommendation. CACM. 40(3), pp. 66-72, March 1997.

[9] BargainFinder URL: http://bf.cstar.ac.com/bf (offline)

[10] Basu C., Hirsh H., and Cohen, W.W. 1998. Using Social and Content-Based

Information in Recommendation. In Proceedings of the AAAI-98,: AAAI Press.

Page 65 of 70

[11] Belkin, N. J. and Croft, B. W. Information Filtering and Information Retrieval: Two

Sides of the Same Coin? CACM. 35(2), December 1992.

Bill Trochim's Center for Social Research Methods URL:

http://trochim.human.cornell.edu/

[13] BlueEyes URL: http://www.almaden.ibm.com/cs/BlueEyes/index.html

[14] Boone, G. 1998. Concept Features in Re:Agent, an Intelligent Email Agent. In The

Second International Conference on Autonomous Agents, 141-148, Minneapolis/St.

Paul, MN:ACM.

[15] Bratman, M. E. (1987). Intentions, Plans, and Practical Reasons. Cambridge, MA:

Havard University Press.

[16] Brooks, R.A. (1986), A robust layered control system for a mobile robot. IEEE

Journal of Robotics and Automation 2:14-23.

[17] Burke, D., Hammond, K. J., and Young, B. C. (1997). “The FindMe Approach to

Assisted Browsing,” IEEE Expert, pp. 32-40, July-August 1997.

[18] Burke, R., Hammond, K., and Cooper, E. (1996). Knowledge-based navigation of

complex information spaces. In Proceedings of the 13th National Conference on

Artificial Intelligence, pp. 462-468. AAAI, 1996.

[19] Caglayan, A., Snorrason, M., Jacoby, J., Mazzu, J., Jones, R., and Kumar, K.

(1997). Learn Sesame: a learning agent. Applied Artificial Intelligence 11(5): 393-412.

[20] Chin, D. Intelligent Interfaces as Agents. In: Intelligent User Interfaces. J. Sullivan

and S. Tyler (eds). ACM Press, New York, New York, 1991.

[21] Cohen, W.W. 1996. Learning Rules that Classify E-mail. In Proceeding of the

AAAI Spring Symposium on Machine Learning in Information Access,: AAAI Press.

[22] Creative Research Systems URL: http://www.chartwellsystems.com/sscalc.htm

Page 66 of 70

[23] D. Hawkins, K. Coney, and R. Best. Consumer Behavior: Implications for

Marketing Strategy. Business Publications, Inc., 1980.

[24] Dent, L. Boticario, J. Mc Dermott, J. Mitchell, T. and Zabowski, D. A Personal

Learning Apprentice. In: Proceedings of the National Conference on Artificial

Intelligence, 1992.

[25] Don, A. Anthropomorphism: From Eliza to Terminator 2, panel description. In:

Proceedings of the CHI'92 Conference, ACM Press, 1992.

[26] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[27] Firefly URL: http://www.firefly.com/

[28] Franklin, Stan and Graesser, Art: Is it an Agent, or just a Program? A Taxonomy for

Autonomous Agents, Proceedings of the Third International Workshop on Agent

Theories, Architectures, and Languages, Springer-Verlag, 1996.

[29] Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E.

Aronson. Copyright 1998, Prentice Hall, Upper Saddle River, NJ.

[30] eBay URL: http://www.ebay.com/

[31] Evaluating Websites URL: http://trochim.human.cornell.edu/WebEval/webeval.htm

[32] Extempo URL: http://www.extempo.com/

[33] G. Salton. “The SMART Retrieval System.” Experiments in Automatic Document

Processing. 1971.

[34] Gao X., Sterling L. (1998). Classified Advertisement Search Agent (CASA): a

knowledge-based information agent for searching semi-structured text. Proceedings of

the Third International Conference on the Practical Application of Intelligent Agents and

Multi-Agent Technology, pp. 621-624.

[35] Google URL: http://www.google.com

Page 67 of 70

[36] Google Groups URL: http://groups.google.com/

[37] GroupLens URL: http://www.grouplens.org

[38] Guttman, R., and Maes, P. “Agent-mediated integrative negotiation for retail

electronic commerce.” In Proceedings of the Workshop on Agent-Mediated Electronic

Trading AMET 98 (Minneapolis, May 1998).

[39] H. Lieberman. “Letizia: An Agent that Assists Web Browsing.” In Proceedings of

the 14th International Joint Conference on Artificial Intelligence (IJCAI’95). Montreal,

Canada, 1995.

[40] HDB InfoWeb URL: http://www.hdb.gov.sg/isoa032p.nsf/infoweb?openframeset

[41] Hill, W., Stead, L., Rosenstein, M., Furnas, G. Recommending and Evaluating

Choices in a Virtual Community of Use. Proceedings of CHI ’95.

[42] J. Sculley. “The Knowledge Navigator.” Video, 1987.

[43] Jango URL: http://www.jango.com/

[42] K. Kraemer (ed.), The Information Systems Research Challenge: Survey Research

Methods, K. Kraemer (ed.), Boston: Harvard Business School, 1991, pp 299-315.

[45] Kasbah URL: http://kasbah.media.mit.edu/

[46] Kay, A. User Interface: A Personal View. In: The Art of Human-Computer Interface

Design, B. Laurel (ed), Addison-Wesley, 1990.

[47] Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R. and Riedl, J.

GroupLens: Applying Collaborative Filtering to Usenet News. CACM. 40(3), March

1997.

[48] Lieberman, H. (1997). Autonomous Interface Agents. In Proceedings of ACM CHI

97,67-74,:ACM.

Page 68 of 70

[49] Maes, P. (1994). Agents that reduce work and information overload.

Communications of the ACM 7:31-40.

[50] Maltz, D. and Ehrlich, K. Pointing the Way: Active Collaborative Filtering.

Proceedings of CHI ’95.

[51] MovieLens URL: http://movielens.umn.edu/

[52] N. Belkin and B. Croft. “Information Filtering and Information Retrieval.”

Communications of the ACM, 35, No. 12:29–37, 1992.

[53] N. Kushmerick, D. Weld, R. Doorenbos. “Wrapper Induction for Information

Extraction.” In Proceedings of the 16th International Joint Conference on Artificial

Intelligence (IJCAI’97), 1997.

[54] Newsted, P. R., W. Chin, O. Ngwenyama, and A. Lee, “Resolved: Surveys have

Outlived their Usefulness in IS Research,” Panel presented at the 1996 International

Conference on Information Systems, December 17, 1997 ,Cleveland, Ohio.

[55] OnSale URL: http://www.onsale.com/

[56] P. Resnik, N. Iacovou, M. Sushak, P. Bergstrom, and J. Riedl. “Grouplens: An Open

Architecture for Collaborative Filtering of Netnews.” In Proceedings of Computer

Supported Cooperative Work (CSCW’94), 1994.

[57] PersonaLogic URL: http://www.personalogic.com/

[58] Pinsonneault, A. & K. Kraemer, "Survey research methodology in management

information systems," Journal of Management Information Systems, Fall, 1993, pp 75-

105.

[59] R. Doorenbos, O. Etzioni, and D. Weld. “A Scalable Comparison-Shopping Agent

for the World Wide Web.” Proceedings of the First International Conference on

Autonomous Agents (Agents ’97). Marina del Rey, CA, February 1997.

Page 69 of 70

[60] Rich, C. and Sidner, C. (1997). COLLAGEN: When Agents Collaborate with

People. Proceedings of the First International Conference on Autonomous Agents

(Agents ’97). Association for Computing Machinery. 284-291.

[61] S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and negotiate by

arguing. Journal of Logic and Computation, 8(3):261-292, 1998.

[62] Salton, G. and McGill M. J. Introduction to Modern Information Retrieval.

McGraw-Hill, Inc. 1983.

[63] Sarwar, B.M., Konstan, J.A., Borchers, A., Herlocker, J.L., Miller, B.N., and Riedl,

J. 1998. Using Filtering Agents to Improve Prediction Quality in the Grouplens Research

Collaborative Filtering System. In Proceedings of CSCW ‘98,Seattle, WA.: ACM.

[64] Schneiderman, B., Direct Manipulation: A Step Beyond Programming Languages,

IEEE Computer, Vol. 16, No. 8, pp. 57-69, 1983.

[65] Shearin, S. and Lieberman, H. Intelligent Profiling by Example, in Proceedings of

Conference on Intelligent User Interfaces, ACM Press, 2001.

[66] Singapore-Real-Estate URL: http://www.singapore-real-estate.com/

[67] SingaporeResidentialProperties URL: http://www.singaporeresidential properties

.com/

[68] Sullivan, J.W. and Tyler, S.W. (eds.) Intelligent User Interfaces, ACM Press, 1991.

[69] SurfJet Agent URL: http:// www.leptonicsystems.com/surfjet/

[70] Terveen, L., Hill, W., Amento, B., McDonald, D., Creter J. 1997. PHOAKS: A

System for Sharing Recommendations. Communications of the ACM 40(3):59-62.

[71] Tete-a-Tete URL: http://ecommerce.media.mit.edu/tete-atete/

[72] U. Shardanand and P. Maes. “Social Information Filtering: Algorithms for

Automating 'Word of Mouth'.” Proceedings of the Computer-Human Interaction

Conference (CHI'95), Denver, CO, May 1995.

Page 70 of 70

[73] V. Kumar. “Algorithms for Constraint Satisfaction Problems: A Survey.” AI

Magazine, 13(1):32-44, 1992.

[74] William D. Smart and Leslie Pack Kaelbling, “Effective Reinforcement Learning

for Mobile Robots,” Proceedings of the IEEE International Conference on Robotics and

Automation, 2002.

[75] Y. Lashkari. Webhound Master’s Thesis, MIT Media Laboratory Technical Report,

1995.

[76] Z. Collin, R. Dechter, and S. Kaiz. “On the Feasibility of Distributed Constraint

Satisfaction.” Proceedings of the 10th International Joint Conference on Artificial

Intelligence (IJCAI’91), 1991.

