
AUTOMATIC MAPPING OF STATECHART

INTO VERILOG

TRAN VU VIET ANH

(B.Sc, Hanoi University of Science, Vietnam)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I express my deep gratitude to my parents.

I would like to give sincere thanks to my advisor A/P Chin Wei Ngan for his

invaluable guidance, crucial suggestions, and support to my study and research.

With his understanding and his willing to help, I have overcome many difficulties

in last two years.

I thank also Dr. Qin Shengchao for his valuable and critical comments that

helped to improve the preciseness of the system and the quality of the report.

Through the discussions, he helps me to figure out many good points which

I misunderstand. I greatly appreciate the kindness of A/P Khoo Siau Cheng.

Thanks the members of Programming Language System Lab and my friends.

Last but not least, special thanks to my girlfriend, Thanh Van, for her

understanding, support, and boosting my morale when I’m tired or bored.

ii

Contents

Acknowledgements ii

Summary vii

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Statechart . 1

1.2 Verilog . 2

1.3 Motivation: Bridge the gap between Statecharts and Verilog . . 3

1.4 Layout of the thesis . 4

2 Preliminaries 6

2.1 Statechart . 6

iii

2.1.1 A formal syntax of statechart 6

2.1.2 State . 9

2.1.3 Event . 9

2.1.4 Transition . 10

2.1.5 State hierarchy . 13

2.1.6 Concurrency . 15

2.1.7 Textual representation 17

2.2 Verilog . 18

2.2.1 Abstract Verilog language 18

2.2.2 Guarded choice . 20

2.2.3 Parallel expansion . 21

2.3 Summary of the notation used in this thesis 23

3 Mapping algorithm 25

3.1 Mapping algorithm . 25

3.2 Some simple examples . 30

3.2.1 Example of Or-statecharts 30

3.2.2 Example of And-statecharts 32

3.3 The replacement of guarded choices 36

3.4 Related work . 36

4 Implementation 38

4.1 Overview . 38

4.2 Statechart editor . 39

iv

4.3 AMSV - Core mapping program 42

4.3.1 DFS algorithm . 42

4.3.2 Recursion . 45

4.3.3 Parallel expansion . 45

4.3.4 AMSV Program Structure 45

4.4 Related work . 46

5 Case studies 49

5.1 CD-player . 49

5.1.1 Specification . 49

5.1.2 Result . 52

5.2 Washing machine . 52

5.2.1 Specification . 52

5.2.2 Result . 57

6 The transformation from abstract to concrete Verilog 60

6.1 Verilog program . 60

6.2 The transformation from abstract to concrete Verilog 61

6.3 Some examples . 64

7 Conclusion 70

A The syntax of Verilog 72

B Programs in Verilog 75

B.1 Simple examples . 75

v

B.2 Washing machine example . 77

Bibliography 80

vi

Summary

This thesis establishes a connection between statechart and Verilog program-

ming language. Statechart (invented by David Harel) is a powerful visual for-

malism for specifying discrete event systems and is a significant specification

language. Statechart diagrams capture the behavior of entities capable of dy-

namic behavior by specifying the responses to possible event instances. Verilog

is widely used for hardware description in industry. There are number of works

on both statechart and Verilog. However, the translation from statechart to

Verilog is still unexplored. In this work, we shall propose a system to map

each source statechart specification into corresponding target Verilog code. We

demonstrate our work through an implemented system and some examples.

Our implementation is divided into two parts: a statechart editor and a

mapping program. The editor, called Statechart E, is exactly a stencil that

has been built as an add-on to Microsoft Visio. The mapping program, called

vii

AMSV (Automatic Mapping of Statechart into Verilog), is written in Java.

Details of the algorithms and implementation are discussed in chapters 3 and 4

of this thesis.

Background of statechart and its specification are presented in chapter 2.

In this chapter, we shall also discuss the syntax and algebraic laws of Verilog.

This chapter sets the scene for the rest of the work by introducing the basic

knowledge and key notations need. Chapter 5 presents two case studies to

illustrate our work. In chapter 6, we introduce the concrete Verilog program

and discuss a possible solution to transform abstract Verilog to concrete Verilog.

viii

List of Tables

A.1 The syntax of Verilog . 72

ix

List of Figures

1.1 An example of a statechart. 2

2.1 Example of a state. 9

2.2 Example of a transition between two states P1 and P2. 11

2.3 Example of complex transitions. 13

2.4 Statechart of a tape-recorder with hierarchy. 14

2.5 Statechart of a tape-recorder, flattened version. 14

2.6 Statechart of a tape-recorder with the search function. 16

2.7 The flat representation of Fig. 1.1. 17

3.1 Example of simple statechart 1. 30

3.2 Example of simple statechart 2. 31

3.3 Example of simple statechart 3. 33

3.4 Example of simple statechart 4. 34

x

4.1 Structure of the implementation. 39

4.2 Statechart E interface. 40

4.3 Statechart E menu. 41

4.4 Hierarchy tree. a) Statechart example, b) hierarchy tree, and c)

DFS route. 43

5.1 CD player with track information (ct). 51

5.2 Interface of the washing machine. 53

5.3 Main statechart of a washing machine. 54

5.4 Statechart of Washing-Ctr in the washing machine. 55

xi

Chapter 1
Introduction

1.1 Statechart

In this thesis, we have used Statechart [13–16] (detail in section 2.1) for systems

specification. Statechart is a powerful visual formalism for specifying discrete

event systems. It retains the visual and intuitive appeal inherent for state

transition systems and extends these systems in the following ways:

• Hierarchy

• Orthogonal (concurrency)

• Broadcast communication

Fig. 1.1 shows an example of a statechart with eight states. Here, P0 is an

And-state, with two inner Or-states; P1 and P2. P3 is the default sub–state of

P1, P5 is the default sub–state of P2. Altogether, there are six transitions in

the statechart.

1

P0

P1

P3

P4

P2

P5

P6

t1: a t3: bt2: b t4: a

t5: y

t6: e

P7

Figure 1.1: An example of a statechart.

Statechart descriptions can be readily simulated and translated to hardware

description languages such as Verilog. The relevance of statecharts as inputs to

our developed tools will become clear later.

1.2 Verilog

Verilog [21, 32] is a widely used language for hardware description in industry [6,

12, 25, 26] and also in research. Verilog is used to model the structure and

behaviour of digital systems ranging from simple hardware building block to

complete systems. Verilog semantics is based on the scheduling of events and

the propagation of changes. One early attempt to investigate the semantics of

Verilog is the work of Gordon [12] which explains how top-level modules can be

simulated.

A Verilog program (or specification, as it is more frequently referred to) is a

description of a device or process rather similar to a computer program written

2

in C or Pascal. However, Verilog also includes constructs specifically chosen to

describe hardware. One major difference from a language like C is that Verilog

allows processes to run in parallel. This is obviously very desirable if one is

to exploit the inherently parallel behaviour of hardware. In this project and

thesis, we will make use of abstract Verilog [26, 37], that is described in the

next chapter.

Quoting from Gordon [12]: “Verilog is a relatively simple real–world lan-

guage in need of theoretical support. It poses a variety of interesting semantics

and logical challenges ranging from routine applications of standard techniques

(e.g. formalizing the simulation cycle) to hard theoretical problems (e.g. devel-

oping a theory of behavioural congruence)”

Moreover, what started initially as a proprietary hardware modelling lan-

guage by Gateway Design Automation Inc. around 1984 and first used in 1985

and was extended substantially through 1987. Nowadays, there are a large

numbers of Verilog users and designers. Listed by Google search engine on 20th

November, 2003, there are more than 300,000 links related to Verilog. This

indicates a huge number of works related to Verilog around the world.

1.3 Motivation: Bridge the gap between Stat-

echarts and Verilog

As introduced in last two subsections, Statecharts is a visual formalism catering

for high-level behaviourial specification of embedded systems. Its hierarchical

3

structure and orthogonal features make the system specification compact and

intuitive to understand. It is a very good candidate for executable specification

in system design. Moreover, the formal semantics of Statecharts has been ex-

tensively investigated [13–16, 17, 44] in recent years. Some works also attempt

to provide tools for formal verification of Statecharts specifications [9, 28, 42].

On the other hand, Verilog is a hardware description language that has been

widely used by hardware designers. Its rich features make it a good candidate

for low–level system specifications. The formal semantics of Verilog was first

given by Gordon [12] in terms of simulation cycles. It has been thoroughly

investigated afterwards [18, 19].

As the advantages of Statecharts and Verilog in embedded system design

process are complementary to each other, a natural question that can be raised

is, can we make use of both of them in system design? That is, can we use

Statecharts as the high level specification, while use Verilog as the low level

description? This question has motivated our work and this thesis shall pro-

vide a positive answer by bridging the gap between Statecharts and Verilog.

The compilation from Statecharts to Verilog can be embedded into the hard-

ware/software co-specification process. A mapping algorithm will be given in

the following chapters, where the soundness has been given in Qin and Chin [37].

1.4 Layout of the thesis

The thesis is organized as follows:

4

• Chapter 2 In this chapter, we introduce some details about statecharts,

Verilog language and key notations used.

• Chapter 3 This chapter explores the mapping algorithm that is used to

translate statecharts to abstract Verilog.

• Chapter 4 This chapter presents the implementation of our system. We

discuss how we use the mapping algorithm in our system.

• Chapter 5 This chapter discusses some case studies that are used to

illustrate the algorithm and our results.

• Chapter 6 we discuss the transformation from Verilog to concrete Verilog

in this chapter.

• Chapter 7 The last chapter concludes with a discussion on future work.

5

Chapter 2
Preliminaries

This chapter sets the scene for the rest of the work by introducing basic knowl-

edge and notation used. Section 2.1 presents more detail of Statechart and its

operational semantics. Both states and transitions are formally defined in this

section. Section 2.2 introduces valid laws of Verilog language, which we use in

our work. The last section summarizes key notations used in this thesis.

2.1 Statechart

2.1.1 A formal syntax of statechart

Statecharts is specification language derived from finite-state machines. The

language is rather rich in features including state hierarchy and concurrency.

Transitions can perform nontrivial computations unlike finite-state machines

where they contain at most input/output pairs. In this section we will describe

Statecharts presented by David Harel [13–15].

6

Statechart diagrams capture the behaviour of entities capable of dynamic

behaviour by specifying their responses to the event occurrences. Typically, it is

used for describing the behaviour of classes, but statecharts may also describe

the behaviour of other model entities such as use cases, actors, subsystems,

operations, or methods.

We use a simple textual representation of Statecharts, while our system can

automatically translate a graphical representation to the textual representation.

The statecharts language we adopt has some features that are not present in

UML statecharts. For example, broadcast communication is supported in our

language but not in UML statecharts. It is also possible to adopt XMI as a

representation language for our Statecharts language. This is left for future

consideration.”

As already mentioned in previous chapter, Statecharts is extensible by hi-

erarchy, orthogonality or broadcast communication. In this thesis, we use the

formal syntax of statechart from [14] and [37]. The syntax of Statecharts for-

mula is defined as follows (quoting from [37]):

S : a set of names used to denote Statecharts. This is expected to be large

enough to prevent name conflicts.

Πe : a set of all abstract events (signals). We also introduce another set Π e to

denote the set of negated counterparts of events in Πe , i.e. Π e =df {e | e ∈

Πe}, where e denotes the negated counterpart of event e, and we assume e = e.

Πa : a set of all assignment actions of the form v = exp.

σ : V ar → V al is the valuation function for variables, where V ar is the set of

7

all variables, V al is the set of all possible values for variables. A snapshot for

variables v is σ(v).

T : a set of transitions, which is a subset of S × 2Πe∪Π e × 2Πe∪Πa × Be × S,

where Be is the set of boolean expressions.

A term-based syntax of statecharts was introduced in [37] and [28–31]. We

re-introduce it here for the benefit of the reader. The set SC is a set of State-

charts terms that is constructed by the following inductively defined functions.

Basic : S → SC

Basic(s) =df |[s]|

Or : S × [SC] × T → SC

Or(s, [p1, ..., pl, ..., pn], pl, T) =df |[s : [p1, ..., pl, ..., pn], pl, T]|

And : S × 2SC → SC

And(s, {p1, ..., pn}) =df |[s : {p1, ..., pn}]|

Note that:

– Basic(s) : denotes a basic statechart named s.

– Or(s, [p1, ..., pl, ..., pn], pl, T) : represents an Or-statechart with a set of sub-

states {p1, ..., pn}, where p1 is the default sub-state, pl is the current active sub–

state, T is composed of all possible transitions among immediate sub-states of s.

– And(s, {p1, ..., pn}) is an And-statechart named s, which contains a set of or-

thogonal (concurrent) sub-states {p1, ..., pn} .

8

2.1.2 State

A state is a condition during the life of an object or an interaction during

which it satisfies some conditions, performs actions, or waits for some events.

A composite statechart is a state that, in contrast to a simple state, can be

decompounded into smaller Statecharts (composite states and their notation

are described in more detail latter.) Conceptually, an object remains in a state

for an interval of time. However, the semantics allows for modelling to “flow-

through” states in an instantaneous manner, as well as transitions that are not

instantaneous.

In the diagram, a state is shown as a rectangle with rounded corners. Each

state must have at least a name, and it may contain other information like: en-

try/exit, activities, internal transitions, sub-states, deferred events, etc. Fig. 2.1

shows an example of a basic-state with the name State.

State

Figure 2.1: Example of a state.

2.1.3 Event

An event is a noteworthy occurrence. For practical purposes in state diagrams,

it is an occurrence that may trigger a state transition. Events may be of several

kinds (not necessarily exclusive).

• A designated condition becoming true (described by a Boolean expression)

9

results in a change event instance. The event occurs whenever the value

of the expression changes from false to true. Note that this is different

from a guard condition. A guard condition is evaluated once whenever its

event fires. If it is false, then the transition does not occur and the event

is lost.

• The receipt of an explicit signal from one object to another results in a

signal event instance. It is denoted by the signature of the event as a

trigger on the transition.

• The receipt of a call for an operation implemented as a transition by an

object is called a call event instance.

• The passage of a designated period of time after a designated event (often

the entry of the current state) or the occurrence of a given date/time is

called a TimeEvent.

The event declaration has scope within the package it appears in and may

be used in state diagrams for classes that have visibility inside the package.

Take note that events are not local to class.

2.1.4 Transition

A simple transition is a relationship between two states indicating that an ob-

ject in the first state (source state) will enter the second state (target state).

Furthermore, it will perform specific actions when the event occurs provided

10

that certain specified conditions are satisfied. During such a change of state,

the transition is said to “fire”. The trigger for a transition is the occurrence of

the event labelling for the transition. The event may have parameters, which

are accessible by the actions specified on the transition as well as in the cor-

responding exit and entry actions associated with the source and target states

respectively. Events are processed one at a time. If an event does not trigger

any transition, it is discarded. If it can trigger more than one transition within

the same sequential region (i.e., not in different concurrent regions), only one

will fire. If these conflicting transitions are of the same priority, an arbitrary

one is selected and triggered.

A transition is shown as a solid line originating from the source state and

terminated by an arrow on the target state. It may be labeled by a transition

string that has the following general format:

Name: event signature / action–expression [condition]

where, Name is the transition name. The event signature (may contain

several events, separated by a comma) describe events with its arguments and

a transition can be taken only if its event occurs. The action-expression is

executed if and when the transition fires. The condition is a Boolean expression

written in terms of the parameter of the triggering event and attributes.

P1 P2
t1: e / n=n+1 (n<10)

Figure 2.2: Example of a transition between two states P1 and P2.

11

Fig. 2.2 is an simple example of a transition from source state P1 to target

state P2, where t1 is transition name. Transition t1 will be fired if event e occurs

and action n = n + 1 will be executed. n < 10 is condition for the transition.

The syntax of a transition with its arguments (source and target states,

Name, event signature, action-expression, and condition) is:

Name = 〈source state, event signature, action− expression,

condition, target state〉

For example, t1 in Fig. 2.2 will be written as:

t1 = 〈P1, e, n = n + 1, n < 10, P2〉

More complex transitions are transitions which normally do not connect be-

tween two states of the same parent, for example transitions from/to concurrent

states or composite states. Transitions of concurrent states may have multiple

source states and target states. It represents synchronization and/or a splitting

of control into concurrent threads without concurrent sub-states. Those transi-

tions are enabled when all of the source states are occupied. After a transition

fires, all of its destination states are occupied. Transitions in composite states

are drawn to the boundary of composite states. The entry action is always

performed when a state is entered from outside.

Fig. 2.3 shows an example of concurrent transitions and composite transi-

tions. Here, (t1, t3), (t2, t4) are concurrent transitions, and t7, t8 are composite

transitions.

12

P0

P1

P3

P4

P2

P5

P6

t1: a t3: bt2: b t4: a

t5: y

t6: e

P7

P8

t8
:
h
t7

: g

Figure 2.3: Example of complex transitions.

2.1.5 State hierarchy

A statechart contains some sub-states, and these sub-states may be other stat-

echarts (contain states inside). In this case we have a hierarchic statechart.

Fig. 2.4 shows an example of a hierarchic statechart. It describes a tape-recorder

(named Tape recorder) with three states; namely Stop, Record, and Control.

The Tape recorder is an Or-state with the following syntax description:

Tape recorder = |[s, [Stop, Record, Control], Stop, T]|

where, T = {t1, t2, r3, t4} is a set of transitions within Tape recorder and Stop

is the default sub-state. The Control state is a sub-state of Tape recorder.

And it is an Or-state with Play and FF states inside.

In fact, it is easy to read the statechart in Fig. 2.4 as a hierarchical version

of the statechart in Fig. 2.5. In the second version, we removed the Control

13

Tape_recorder

Control

Stop

Play

t1: play t2: stop

Record
t3: rec

t4: stop

FF
t5: FF_pressed

t6: FF_released

Figure 2.4: Statechart of a tape-recorder with hierarchy.

state and rewire it with transitions, such as t1, t2 and add a new transition

t2 a. The net effect of two statecharts is no difference. However, according to

the semantics of statecharts in [15], when taking a transition, we must allow

Basic-states to be entered. For example, in Fig. 2.5, all states have transitions

to Stop with event stop. We called this a compound transition.

Tape_recorder

Stop

Play

t1: play t2: stop

Record
t3: rec

t4: stop

FF
t5: FF_pressed

t6: FF_released

t2a: stop

Figure 2.5: Statechart of a tape-recorder, flattened version.

Hierarchical statecharts are very common in real systems. It can handle

14

more complex system and also contain concurrent states (presented in next

subsection). With a more sophisticated statechart, the source and target states

of transitions need not be at the same level (same parent state). To deal with

this problem, we can calculate the depth of a state, called or-depth, with a

function that calculates the depth of the path along its transitions and active

states. The or-depth of a Basic-state is 0, because Basic-state contains no

sub-state. An Or-state of formula |[s : [p1, ..., pn], pl, T]|, is or-depth(pl)+1.

2.1.6 Concurrency

Statecharts have constructs to express concurrency. A composite state (or called

an And-state) is decomposed into two or more orthogonal sub-states. And each

orthogonal sub-state may have an initial and a final state. A transition to this

And-state represents a transition into all initial states. For example, consider an

extension of the tape recorder which provides a search facility. A user can get

the tape to advance forward or backward even while the tape recorder is playing

or recording. The statechart is depicted in Fig. 2.6. States with concurrently

executed components are called And-states. In this statechart we can have more

than one compound transitions executing concurrently, provided they reside in

concurrent states; such as stop.

Statechart Tape recorder is an And-state with two orthogonal sub-states,

Control and Search. The syntax of Tape recorder is:

Tape recorder = |[s: {Control, Search}]|

where, Stop and Idle are initial states of Control and Search regions. If

15

Tape_recorder

Control

Stop

Play

Search

Idle

Rew_FF

t1: play t5: rev or fft2: stop t6: stop

Record
t3: rec

t4: stop

Figure 2.6: Statechart of a tape-recorder with the search function.

there exists any transition to Tape recorder, it means that this transition will

go to Stop and Idle simultaneously.

The or-depth function is also defined for the And-states. However, or-depth

value of And-states with formula |[s : {p1, ..., pn}]| is always 1.

In the next section, we discussed about Verilog programming language, a

target language for our statecharts. Verilog can support parallel processes, but

only at the top level. Hence, if a given statechart has And-states inside, we have

to deal with it via expansion rules. These rules are discussed in section 2.2.3.

Another example of And-state was shown earlier in Fig. 1.1, where P0 is also

a concurrent statechart. If concurrent states were not available, we would have

to represent the statechart of Fig. 1.1 with a more complex finite state machine

(FSM) in Fig. 2.7.

In this thesis we use sub-state interchangeables as children term of Or-state.

Correspondingly, we use children and region of And-state interchangeably. For

statecharts used this thesis, we shall assume that each And-state will have at

16

P3P5

P4P5

t'1: a

P3P6

t'3: b

t'2: b

t'4: a

P4P6

t''1: a t''2: b

t''4: a

t''3: b

P3P7
t'6: e

P4P7
t''6: e

t'5: y

t''5: y

t'''1: a t'''2: b

Figure 2.7: The flat representation of Fig. 1.1.

least two regions. Furthermore, each region shall be an Or-state.

2.1.7 Textual representation

We shall take the textual representation of statecharts as input data for our

mapping program. The format of a textual representation of a statechart follow

the syntax of states and transitions presented in previous sub-sections. For

example, the textual representation of statechart in Fig. 1.1 is:

P0 = |[S1: { P1, P2 }]|

P1 = |[S2: [P3, P4], P3, { t1, t2 }]|

P3 = |[S3]|

P4 = |[S4]|

P2 = |[S5: [P5, P6, P7], P5, { t3, t4, t5, t6 }]|

P5 = |[S6]|

P6 = |[S7]|

P7 = |[S8]|

t1 = < P3, { a }, { }, true, P4 >

t3 = < P5, { b }, { }, true, P6 >

t2 = < P4, { b }, { }, true, P3 >

17

t4 = < P6, { a }, { }, true, P5 >

t5 = < P7, { y }, { }, true, P5 >

t6 = < P6, { e }, { }, true, P7 >

In chapter 5, we shall show more complex examples.

2.2 Verilog

This section gives a brief overview of Verilog. Verilog was introduced around

1984 by Gateway Design Automation Inc, and the first used in 1985. However,

the formal semantics of Verilog has not well-studied until recent years. All

essential topics will be treated in some depth, and this obviously includes the

full language that will be treated formally later. The semantics of Verilog is

usually given in terms of how a simulator should behave and there are many

previous efforts which use this approach. Until recently, the semantics of Verilog

is formally introduced in the works of Gordon [12] and He [25, 26]. In our project

we shall use the operational semantic of Verilog, which was introduced in [26]

and [37]. The next sub-section gives an algebraic presentation of Verilog. This

is followed by a description on parallel expansion laws for parallel composition.

2.2.1 Abstract Verilog language

In this project, we shall use a simple version of Verilog presented in [26, 37]. This

is based on an algebraic model of Verilog. This more abstract version of Verilog

can be used to express designs at various levels of hardware behaviour. Such an

abstract design can be gradually refined into an equivalent counterpart in the

18

Verilog HDL which can provide a closer match to the underlying architecture of

the hardware. This process may be repeated until the design is at a sufficiently

lower level such that the hardware device can be synthesised from it. There

are two main features in abstract Verilog that are not present in Verilog HDL,

namely guarded choice extension and recursion. The translation from general

guarded choices to parallel composition in normal Verilog is achievable, although

nontrivial. The conversion of recursion to iteration is harder but there exists

standard conversion techniques to realise some subsets of them. Furthermore,

for bounded recursion, it is possible to inline the abstract Verilog code so as to

remove recursion.

A Verilog program can be a parallel or a sequential process, but only par-

allel process may contain sequence processes, not vice-versa. Here are some

categories of syntactic elements:

1. Parallel process

we have:

P ::= S | P ‖ P

where, S is a sequential process.

2. Sequential process can be formally described as following

S ::= PC (primitive command) | S; S (sequence composition)

| s C b B S (condition) | b ∗ S (iteration)

| (b&g S) [] ... [] (b&g S) (guarded choice) | fix X • S (recursion)

where, b is boolean condition, and

19

PC ::= skip | sink | ⊥ | → η (output event) | v = ex (assignment)

g ::= → η | @(x = v) (assignment guard))

| #1 (time delay) | eg (event control)

eg ::= η | eg & eg | eg & ¬eg

η ::= ↑ v (value rising) | ↓ v (value falling) | e (a set of abstract events)

Recall that a Verilog program can only be a parallel processes at the top

level, a sequential process cannot contain a parallel processes. However, most

real systems contain many parallel processes possibly organised hierarchically.

To solve this restriction, we shall use an expansion rule to change parallel code

into guarded choice in subsection 2.2.3.

Here are some examples of abstract Verilog:

– (e & (→ f) sink) [] (g & (→ h) sink)

– µX • (e (f X))

– (a & (→ e) sink) ‖ (b & (→ f) sink)

2.2.2 Guarded choice

To facilitate equational reasoning, we shall add a guarded choice construct to

the language as we showed in the syntax. This takes as arguments a number of

guarded processes. A guarded process is a guard and a process (g P).

[]{ g1 P1, ..., gn Pn}

Guards may be simple tests:

@(e), #(1), e, τ

20

or composite tests:

@(η1 or ... or ηn), b&e, b&τ

where b denotes a Boolean expression.

2.2.3 Parallel expansion

Parallel processes in Verilog can interact with each other via shared variables.

Furthermore, the parallel operator is associative and symmetric, and has skip

as its unit and ⊥ as its zero. This properties are captured by the following

rules:

1. P ‖ Q = Q ‖ P

2. (P ‖ Q) ‖ R = P ‖ (Q ‖ R)

3. P ‖ skip = P

4. P ‖ ⊥ = ⊥

The following expansion rules permit us to convert a parallel construct into

sequential one in term of guarded choice. In program of algebra of Verilog,

guarded choice plays a role of head normal form [26]. It can be regarded

as a textual representation of the corresponding labeled transition system.

5. Let P = P1 ‖ P2

where P1 = g1 P ′
1 and P2 = g2 P ′

2. We then have:

21

P =

g1 & g2 (P ′
1 ‖ P ′

2)

[] g1 & ¬g2 (P ′
1 ‖ g2 P ′

2)

[] g2 & ¬g1 (P ′
2 ‖ g1 P ′

1)

The more general expansion laws are:

6. Let P = P1 ‖ P2

where, P1 = []ni=1 g1i
P1i

and P2 = []mj=1 g2j
P2j

and if let g1 =

g11 &...& g1n , g2 = g21 &...& g2m , we then have:

P =

[]n,m
i=1,j=1 g1i

& g2j
(P1i

‖ P2j
)

[] []ni=1 g1i
& ¬g2 (P1i

‖ []mj=1 g2j
P2j

)

[] []mj=1 g2j
& ¬g1 (P2j

‖ []ni=1 g1i
P1i

)

7. Let P = P1 ‖ P2 ‖ P3, where, P1 = g1 P ′
1, P2 = g2 P ′

2, and P3 = g3 P ′
3

and if expand P ′ = P2 ‖ P3 first, then P = P1 ‖ P ′, we then have:

P =

g1 & g2 & g3 (P ′
1 ‖ P ′

2 ‖ P ′
3)

[] g1 & g2 & ¬g3 (P ′
1 ‖ P ′

2 ‖ g3 P ′
3)

[] g1 & ¬g2 & g3 (P ′
1 ‖ g2 P ′

2 ‖ P ′
3)

[] g1 & ¬g2 & ¬g3 (P ′
1 ‖ g2 P ′

2 ‖ g3 P ′
3)

[] ¬g1 & g2 & g3 (g1 P ′
1 ‖ P ′

2 ‖ P ′
3)

[] ¬g1 & g2 & ¬g3 (g1 P ′
1 ‖ P ′

2 ‖ g3 P ′
3)

[] ¬g1 & ¬g2 & g3 (g1 P ′
1 ‖ g2 P ′

2 ‖ P ′
3)

22

8. from 7, can we generalize for P = P1 ‖...‖ Pn? The answer is not easy.

Here, we try to explain it through an implementation.

We have n orthogonal sub-states and Pi = gi P ′
i , i = 1..n.

Let S = {S0, ..., S2n−2} is set of binary representations of {0, ..., 2n− 2}.

For example, with n = 3:

S0 = 000, S1 = 001, ..., S6 = 110

and we call

Gki =

gi Ski = 0

¬gi Ski = 1

k = 0..2n − 2, i = 1..n

Qki =

P ′
i Ski = 0

gi P ′
i Ski = 1

k = 0..2n − 2, i = 1..n

then we have,

P =

(
[]2

n−1
k=0 Gk1 & ... & Gkn (Qk1 ‖ ... ‖ Qkn)

)

2.3 Summary of the notation used in this thesis

In this section we summarise some notations used in this thesis.

In short:

‖1≤i≤n Pi : is a short representation of P1 ‖ ...‖ Pn

[]1≤i≤n Pi : is a short representation of P1 [] ...[] Pn

&1≤i≤n hi : is a short representation of h1 & ...& hn

23

If sc is a statechart and T is composed of all possible transition τ among im-

mediate sub-states of sc, we have:

active(sc) : is active sub–state of sc.

resc(τ, sc) : is a function that returns a statechart which is the result

of sc after transition τ is fired. The type of resc is:

resc : T × SC → SC

T ∗(sc) : is a set contains all possible transitions inside Or-statechart

sc along its transitive active sub-state chain, like: T ∗(sc) =df {τ | τ ∈

T ∧ src(τ) = pl}
⋃

T ∗(pl).

or-depth(sc) : is used to calculate the or-depth of sc.

If τ is a transition, then

src(τ) : returns a source state of τ .

tgt(τ) : returns a target state of τ .

24

Chapter 3
Mapping algorithm

In this chapter we present the mapping algorithm from statecharts to abstract

Verilog. We also use some simple examples to illustrate the algorithm. After

that we discuss some related works.

3.1 Mapping algorithm

We apply the algorithm that takes statecharts as input and outputs the abstract

Verilog code which was defined in chapter 2. This mapping algorithm works in a

top–down manner starting from the root of the statechart and then moving to its

children. Each time, we consider the input statechart (each part of Statecharts)

as a singleton statechart and continue until no further applicable.

We present the mapping function L as originally proposed in [37] which deal

with each type of source statechart. It means that the algorithm divides the

input statechart into three kinds; Basic, Or, and And-statechart, then constructs

the output with each case. The function is defined below:

Definition of mapping function L:

25

L : SC→ Verilog

maps any statechart description into a corresponding Verilog process. It keeps

unchanged the set of variables employed by the source description, i.e.,

∀sc ∈ SC • vars(L(sc)) = vars(sc)

and it is inductively defined as follows.

• For a statechart sc = |[s]| constructed by Basic, L maps its input into an

idle program sink which can do nothing but let time advance, i.e.,

L(sc) =df sink

• For a statechart sc = |[s : {p1, ..., pn}]| constructed by And, L maps its

input into a parallel construct in Verilog.

L(sc) =df ‖1≤i≤n L(pi)

• For a statechart sc = |[s : [p1, ..., pn], pl, T]| constructed by Or, we define

L by exhaustively figuring out the first possible transitions of sc if any,

otherwise it returns sink.

L(sc) =df

sink if T ∗(sc) = ∅

P otherwise

where

P =df []0≤k≤or−depth(sc) []{bτk
& gi

τk
& (&0≤j≤k hj) & g0

τk
L(resc(τk, sc)) |

τk ∈ T (activek(sc)) ∧ src(τk) = activek+1(sc) ∧

hj = &{¬gi
τ | τ ∈ T (activej−1(sc)) ∧ src(τ) = activej(sc)}}

and

26

active0(sc) =df sc

active1(sc) =df active(sc)

activei+1(sc) =df active(activei(sc))

For each statechart, we always assume each of its variables has bounded

range, and the set of possible events is finite, which implies that the set of its

configurations is finite. Therefore, the set of configurations (under transition re-

lation) forms a well–founded quasi order, which indicates the mapping function

L is terminating.

Following are some formal notations used in the above definition. Firstly,

the function or−depth : SC → N to calculate the “or–dept” of a statechart,

which is defined as follows:

- for a statechart sc = |[s]| constructed by Basic, or−depth(sc) =df 0;

- for a statechart sc = |[s : [p1, ..., pn], pl, T]| constructed by Or,

or−depth(sc) =df or−depth(pl) + 1;

- for a statechart sc = |[s : {p1, ..., pn}]| constructed by And, or−

depth(sc) =df 1.

The or–depth of an Or-chart just records the depth of the path transitively along

its active Or-sub-states. We stop going further once an And-state is encountered.

The or–depth of an And-chart is simply 1.

Secondly, the source and target state functions, src(τ) and tgt(τ), respectively

represent the source and target state of a transition τ . Given a transition

τ = &1≤k≤mτik ∈ T , where τik ∈ T ∗(pik), for 1 ≤ k ≤ m, and i1, ..., in is a

27

permutation of 1, ..., n, we define its source and target state as follow:

src(τ) =df (q1, ..., qn), where qik = src(τik), for 1 ≤ k ≤ m, and qik =

active(pik), for m < k ≤ n;

tgt(τ) =df (r1, ..., rn), where rik = tgt(τik), for 1 ≤ k ≤ m, and rik =

active(pik), for m < k ≤ n.

Where, T ∗(p) contains all possible transitions inside p along its transitive

active sub-state chain, i.e., T ∗(p) =df {τ | τ ∈ T ∧ src(τ) = pl} ∪ T ∗(pl).

And active(sc) denotes a current active sub-state of sc. With an Or-statechart

sc = |[s : [p1, ..., pn], pl, T]|, we have active(sc) = pl. With an And-statechart

sc = |[s : {p1, ..., pn}]|, we have the active state is a vector of the active states

of these constituents, i.e., active(sc) =df (active(p1), ..., active(pn)).

Thirdly, we need to know the resulting statechart after a transition is taken.

When a transition τ occurs, any involved statechart can have changes in its

(transitive) active sub-states. We use a function:

resc : T × SC → SC

to return the modified statechart after performing a transition in a state-

chart. It is defined inductively with regard to the type of the statechart.

- for a Basic-statechart sc, and any transition τ , resc(τ, sc) =df sc;

- for an Or-statechart sc = |[s : [p1, ..., pn], pl, T]|, and a transition τ ,

resc(τ, sc) =df

sc[l 7→a2d(tgt(τ))], if τ ∈ T ∧ src(τ) = pl;

sc[l 7→resc(τ,pl)], if τ ∈ T ∗(pl);

sc, otherwise.

28

- for an And-statechart sc = |[s : {p1, ..., pn}]|, and a transition τ ,

resc(τ, sc) =df

scτ , if τ = &1≤k≤mτik ∈ T (sc);

sc, otherwise.

where scτ = sc[q1/p1, ..., qn/pn] is the statechart obtained from sc via

replacing pi by qi, for 1 ≤ i ≤ n, qik = resc(τik , pik), for 1 ≤ k ≤ m,

and qik = pik , for m < k ≤ n.

The function a2d(sc) is used to change the active sub-state of sc into its

default sub-state, and the same change is applied to its new active sub-state.

This function is defined as:

- a2d(|[s]|) =df |[s]|

- a2d(|[s : [p1, ..., pn], pl, T]|) =df |[s : [p1, ..., pn], a2d(p1), T]|

- a2d(|[s : {p1, ..., pn}]|) =df |[s : {a2d(p1), ..., a2d(pn)}]|

The substitution sc[l 7→pm] for an Or-statechart sc = |[s : [p1, ..., pn], pl, T]| is

defined by sc[l 7→pm] =df |[s : [p1, ..., pn], pm, T]|

We present some simple examples in section 3.2 to illustrate the mapping

algorithm. There are some more complicated statecharts we discuss in case

studies in chapter 5. The specifications of these case studies can be handled by

our implementation.

Note that the result of function L is the abstract Verilog code which is based

on guarded choices (not real Verilog code yet). We discuss as the key difference

from concrete Verilog code in the next section.

29

3.2 Some simple examples

We provide two groups of examples here. The first group has two Or-statecharts

and the next has two And-statecharts.

3.2.1 Example of Or-statecharts

First example is shown in Fig. 3.1.

P0

P1

P3

t2: e (true)

t3: f (true)

P2

t1: a / e (true)

P4
t4: b (true)

Figure 3.1: Example of simple statechart 1.

The textual specification of this example is:

States:

P0 = |[S1: [P1, P3, P2, P4], P1, { t2, t3, t1, t4 }]|

P1 = |[S2]|

P3 = |[S3]|

P2 = |[S4]|

P4 = |[S5]|

Transitions:

t1 = < P1, { a }, { e }, true, P2 >

t2 = < P2, { e }, { }, true, P3 >

t3 = < P3, { f }, { }, true, P2 >

t4 = < P1, { b }, { }, true, P4 >

30

After applying the mapping algorithm, we will obtain the abstract Verilog code:

L(ex1) = ((a & → e (fix X2. (e (f X2)))) [] (b sink))

This example contains four transitions and there is one recursive process (from

state P2 to P3 by t2 and back by t3) in the statechart. The recursive process

is represented by fix X2. Process will sink if transition t4 is taken and event

b occurs when the control is in state P1.

Second example is more complicate, as shown in Fig. 3.2.

P0

P1 P2

t1: e (true)

t2: f
 (t

rue)

P3

P1a

P1b

t3: c (true)

P2a

P2b

t6
:
g
 (

tr
u
e

)

t4
:
a

 (
tr

u
e

) t5
: b

 (tru
e
)

Figure 3.2: Example of simple statechart 2.

The specification of the example in Fig. 3.2 is:

States:

P0 = |[S1: [P1, P2, P3], P1, { t1, t2, t3 }]|

P1 = |[S2: [P1a, P1b], P1a, { t4, t5 }]|

P2 = |[S3: [P2a, P2b], P2a, { t6 }]|

P3 = |[S4]|

P1a = |[S5]|

P1b = |[S6]|

P2a = |[S7]|

31

P2b = |[S8]|

Transitions:

t1 = < P1, { e }, { }, true, P2 >

t2 = < P2, { f }, { }, true, P3 >

t3 = < P1, { c }, { }, true, P3 >

t4 = < P1a, { a }, { }, true, P1b >

t5 = < P1b, { b }, { }, true, P1a >

t6 = < P2a, { g }, { }, true, P2b >

After applying the mapping algorithm, we get the following abstract Verilog

process:

L(ex2) = fix X1.(P1 [] P1a)

where:

P1 = ((e (P2 [] P2a)) [] (c sink))

P2 = (f sink)

P1a = ((a & ¬c & ¬e) (b & ¬c & ¬e) X1)

P2a = (g & ¬f P2)

and Px is process start from state Px, like P1a is process start from state P1a.

We can see that when the process goes to state P1b after transition t4 is

taken. However, the process can still continue with transition t1 or t3 if event

e or c occurs. This is because the transition of parent state has higher priority

than that of its children.

3.2.2 Example of And-statecharts

We will now present an And-statechart with two children, as illustrated in

Fig 3.3:

32

P0

P1 P2

P1a

P1b

t1: a (true)

P2a

P2b P2c

t2: b (true)

t3: c (true)

Figure 3.3: Example of simple statechart 3.

The textual specification is:

States:

P0 = |[S1: { P1, P2 }]|

P1 = |[S2: [P1a, P1b], P1a, { t1 }]|

P2 = |[S3: [P2a, P2b, P2c], P2a, { t2, t3 }]|

P1a = |[S4]|

P1b = |[S5]|

P2a = |[S6]|

P2b = |[S7]|

P2c = |[S8]|

Transitions:

t1 = < P1a, { a }, { }, true, P1b >

t2 = < P2a, { b }, { }, true, P2b >

t3 = < P2b, { c }, { }, true, P2c >

After applying the mapping algorithm, we obtain the following abstract Verilog

process:

L(ex3) = P1a ‖ P2a

where:

33

P1a = (a sink)

P2a = (b c sink)

The last example is illustrated in Fig. 3.4.

P

P1

P10

P2

P9

t3: d / x=x-1 (true)t2: / (x>0)

P3 P4

P5

P6

t4: b / c (true)

P7

P8

t5: a / (true)

P11

P12

t7
: f / y

=
y
+

1
 (tru

e
)

t6
:

 /

(y
<

1
0
)

t1: e / y=0 (true)

Figure 3.4: Example of simple statechart 4.

The textual specification is:

States:

P = |[S1: [P1, P10], P1, { t1 }]|

P1 = |[S2: [P2, P9], P2, { t3, t2 }]|

P10 = |[S3: [P11, P12], P11, { t7, t6 }]|

P2 = |[S4: { P3, P4 }]|

P9 = |[S5]|

P3 = |[S6: [P5, P6], P5, { t4 }]|

P4 = |[S7: [P7, P8], P7, { t5 }]|

34

P5 = |[S8]|

P6 = |[S9]|

P7 = |[S10]|

P8 = |[S11]|

P11 = |[S12]|

P12 = |[S13]|

Transitions:

t1 = < P1, { e }, { y=0 }, true, P10 >

t2 = < P9, { }, { }, x>0, P2 >

t3 = < P2, { d }, { x=x-1 }, true, P9 >

t4 = < P5, { b }, { c }, true, P6 >

t5 = < P7, { a }, { }, true, P8 >

t6 = < P12, { }, { }, y<10, P11 >

t7 = < P11, { f }, { y=y+1 }, true, P12 >

After applying the mapping algorithm, we obtain the following abstract Verilog

process:

L(ex4) = fix X1.(P1 [] P2 [] (g0 [] g1 [] g2))

where:

P1 = ((e & @(y = 0)) P11)

P2 = ((d & ¬e & @(x = x− 1)) (¬e & (x > 0) X1))

P5 = ((b & ¬e & ¬d & → c) P8)

P7 = (a & ¬e & ¬d P8)

P8 = P2 [] P1

P11 = (fix X12.((f & @(y = y + 1)) (& (y < 10) X12)))

g0 = (b & ¬a & ¬e & ¬d & → c) (P2 [] P1 [] P7)

g1 = (a & ¬b & ¬e & ¬d) (P2 [] P1 [] P5)

g2 = ((b & a & ¬e & ¬d & → c) P8)

35

Above are examples of four statecharts, these examples are used to illustrate

the mapping algorithm and their results. In chapter 5 we shall discuss two more

complicated examples.

3.3 The replacement of guarded choices

The mapping algorithm presented above is to map a statechart specification

into a program in abstract Verilog. However, we are expecting to do one step

further; we are trying to get a concrete Verilog code form abstract version by

eliminating all guarded choices. For example if we have:

L(sc) = g1 P1 [] g2 P2

then we can replace it by a parallel composition like L(sc) = g1 P ′1 ‖ g2 P ′2.

This is a very simple example so we can easy to understand. However, we

have to figure out the common way for bigger process of abstract Verilog. This

is more difficult and we are now still working on it.

3.4 Related work

There are many works related to translate or to map statecharts into other

language [1, 4, 5, 9, 29, 40, 41, 42, 43, 44, 47]. Beauvais et.al. [4] presented their

study on translating statecharts into Signal language. Their aim is to use Signal

(a synchronous language) and its environment for formal verification purposes.

Other supporting tool for formal verification purposes is provided by Seshia

36

et.al. [43]. This work translates statecharts to Esterel language. However,

both of these translations are based on the informal semantics of statechart

from [15]. There is no guarantee of the correctness. Other attempted works

are David [9] and Mikk [29], the authors discuss the translation of statecharts

into another graphical formalism called Extended Hierarchical Automata (EHA)

and used UPPAAL/SPIN tools to check properties of statechart models. In this

formulation, the inter–level transitions are eliminated, by extending the label

to include source restriction and target determinator sets. From the denotation

semantics of [17], Sowmya et.al. [44] state their aim to connect a subset of

statecharts with temporal logic FNLOG for theoretically proving statecharts’

properties. And then Almeida Júnior [27] employed this idea and developed an

adaptive models for systems description.

A translation from statecharts to B/AMN is reported by Sekerinski et.al. [40,

41, 42]. This work takes hierarchical code generation approach and a tree of

nested layers is encoded in a nested switch statement or in a class hierarchy with

virtual methods (see [1] for general version). The statechart semantic in [40] is

based on [29] and no correctness issue has been given.

Two other works on efficient code synthesis from statechart are Björklund

et.al. [5] and Wasowski [47]. Björklund’s work devises an intermediate language

to gain the efficiency, but the use of flattening in course of translation may

cause code explosion. Wasowski presents a technique to represent statecharts

as a hierarchy tree and use two arrays to store the tree.

37

Chapter 4
Implementation

4.1 Overview

Our implementation consists of two parts: a statechart editor and a mapping

program from statechart into abstract Verilog.

• The first part, called Statechart E, is a stencil that was built as an add-on

of Microsoft Visio 2002.

• The second part, called AMSV (Automatic Mapping of Statechart into

Verilog), is essentially a Java program.

Fig. 4.1 shows the stages of using our system. Users first draw their state-

charts, using Statechart E, which also automatically generates the correspond-

ing textual representations. AMSV will then generate abstract Verilog code

from textual representation of these statecharts. In next two sections, we will

discuss about Statechart E, AMSV, and some other techniques used in the sys-

tem.

38

Statechart drawing
(Statechart_E)

Mapping
(AMSV)

texture

representation

Code generation
(AMSV)

abstract

Verilog

Figure 4.1: Structure of the implementation.

4.2 Statechart editor

Our statechart editor is built with three main purposes:

• First, of course is for editing Statechart diagrams. The editor should be

convenient to use and easy to draw.

• Second, it should also be easy to export textual representation of state-

chart. This is used by the mapping algorithm which converts statechart

to abstract Verilog.

• Last, it should be easy to save the statecharts to other graphical formats

(like bmp, jpg, ps, eps, etc) This is important for portability and for

documentation.

From these requirements, we built Statechart E as an add-on/embedded

stencil in Microsoft Visio. We make use of MS. Visio because Visio is a very

39

powerful graphical editor tool for drawing diagrams. Visio also supports many

graphical formats for exporting our diagrams. Moreover, using Visio, we can not

only draw statechart components but also other shapes from suitable drawing

types or stencils.

Figure 4.2: Statechart E interface.

Fig. 4.2 shows how Statechart E stencil looks like. The left hand side is

a group of masters to draw statechart components. The right hand side is a

statechart diagram under construction.

Features of Statechart E:

• A menu named Statechart is added to the menu bar of Visio as illustrated

in Fig. 4.3. This menu contains two functions, namely: Generate state-

chart and Add new statechart page. The first function is used to export

the current statechart to a textual file. This file is used as input for the

40

mapping program which to transform to abstract Verilog. The second

function is used to add a new page for current statechart diagram. To en-

able this menu and its functions, users must allow a macro to be accepted

when opening the stencil.

Figure 4.3: Statechart E menu.

• A set of masters is added to the stencil and this is used for constructing

statecharts. It consists of a state master, a default master (common for all

kind of states), 8 transition masters (to help build complex statecharts),

and vertical/horizontal separators for And-state. The left hand side of

Fig. 4.2 shows these masters.

• Each master is accompanied by a program written in Visual Basic for Ap-

plication (VBA) to check data, events and perform actions of each master.

Some masters are linked to a window to allow input of needed data. This

program also partially checks the supplied data such as duplicate name,

etc.

• We also allow users to build hierarchical statecharts. Users can easily

extend a given statechart by adding a new page (using the second function

in menu Statechart) and continue to extend the current statechart in a

41

hierarchical manner in the new page. For example, a user may draw

the sub-states of P1 and P2 of Fig. 4.2 using two new pages. Note that

generate function will read all components in all pages of the statechart.

How to use Statechart E:

To draw a new statechart, users need to first open stencil and enable its

macro. The usage of Statechart E stencil and its masters is almost the same

as other stencils in Visio. However, the generation function does not work with

external components. Chapter 5 will present some bigger examples when we

describe some case studies.

4.3 AMSV - Core mapping program

4.3.1 DFS algorithm

As presented in chapter 3, the mapping algorithm has to deal with each state;

Basic, And, and Or states. It can construct the corresponding Verilog code after

the mapping algorithm has been applied to all states of the source statechart.

Nevertheless, how do we traverse all states of the input statechart? In the

AMSV, we make use of depth–first–search (DFS) algorithm [8] to reach all

states of the statechart.

However, DFS works on each tree of nodes. To apply DFS we have to

reconstruct the source statechart into a tree of states. Fig. 4.4 shows an example

of hierarchy tree (b) for a simple statechart (a). Here, dashed arrows denote

the children of an And-state (like arrow from P0 to P1, P2), while the doted

42

arrows point to the active sub-states of Or-state (like arrow from P1 to P3 or

P2 to P6). The solid arrows represent the transitions.

P0

P1

P3

P4

P2

P6

P7

t3: e3

P5

t2
: e

2
t1

:
 e

1

t4
:
e
4

P8

P9t5: e5

a)

P0

P1

P3

P4

P2

P6

P7P5

P8 P9

P0

P1

P3

P4

P2

P6

P7P5

P8 P9

b) c)

Figure 4.4: Hierarchy tree. a) Statechart example, b) hierarchy tree, and c)
DFS route.

After reconstructing each statechart into a hierarchy tree, we apply a recur-

sive function which maps each statechart to abstract Verilog. At each time, we

only consider one state, called the current state. Through this recursive func-

tion, we apply the mapping algorithm to all states of the source statechart to

43

obtain Verilog process code. These codes are kept in a hash table for latter use.

After that, we gather the output code (from sub-states or from target states of

all transitions to the current state) to generate final abstract Verilog process.

For example, in the Fig. 4.4, first we start from the root state (like P0).

After that, we invoke the function itself if it is possible to go to current state’s

children (P1, P2) or target states of transitions (P3 to P4, P5). A systematic

way of finding the next state is described below. Fig. 4.4 c shows the route

taken by our DFS traversal:

• each state is the target of transition: If there exists any transition from the

current state, go to the target state of the transition. Like transitions from

P3 to P4 or P5. The information of the transition will be memorized to

generate output code. If there are more than one transitions from current

state, process it one by one. The order between these transitions is not

important.

• each state is a child of the And-state: If the current state is And-state, go

to all children. Like from P0 to P1 or P2. Information of children in that

And-state will be memorized during code generation, as acquired by the

Verilog language.

• state is sub-state of Or-state: Just go to active state and continue as

before. For example, P3 and P6 are the active states of P1 and P2.

44

4.3.2 Recursion

During the traversal to the states of a given statechart, it is possible for a

transition to re-occur. This may be due to non-termination. To solve this

problem we use a boolean array to remember all states which the program has

already encountered. If a program reaches a marked state, it just uses that

information to generate a loop, and then go back to previous state. This is

meant to terminate a recursive transition.

4.3.3 Parallel expansion

Recall from section 2.2.3, we have to take into account the parallel expansion

of And-state. Whenever an And-state is reached, all information (guards, condi-

tions, etc) of the children of a current state are used for expansion. The only

exception is when the current state is the root. In this case we generate Verilog

code from all its children and gather it using the parallel operation (‖). This

situation was discussed in section 2.2, with Fig. 3.3 and Fig. 3.4 as examples.

4.3.4 AMSV Program Structure

AMSV was built using the Java programming language. Here are brief technical

specifications of AMSV:

• AMSV is written in Java SDK 1.4.1.

• AMSV reads a statechart specification (list of states and transitions) from

45

an input file (specify by argument) in textual specified format. The cor-

rectness of the input data is assumed to have been checked.

• AMSV transforms the source statechart into abstract Verilog and prints

out the generated code as a text file.

AMSV program structure:

• The main class is amsv.java, for controlling the program.

• Two data structure classes (State.java and Tranition.java) are used

to capture states and transitions.

• A class of data (data.java) is used to keep all information during the

execution time.

• A core class (mapping.java) is used for the mapping algorithm.

• Two classes (getInput.java and writetoFile.java) are used to read

and to create data from each input file and to write the result to output

file.

4.4 Related work

There are several works and related software, like Rhapsody, AnyStates. How-

ever, these are expensive commercial products. There are some free graphical

tools to edit statechart, like Diagen, DOME. Some of these tools have both GUI

and code generation. We shall describe these tools briefly in what follows.

46

Some works are very old and no longer supported, for example, of Paulisch [48]

and Lucas [49]. Their idea is to create a graphical interface to edit concurrent,

hierarchical, finite state machines (CHSMs). Both systems are written in C++

in X–Windows environment. Another work almost at the same time is the work

of Edwards [50] based on tcl package. These old tools are typically unable to

handle larger statecharts.

Three more free tools are Diagen [51], DOME [52], and Jgraphpad [53].

Diagen (The Diagram Editor Generator) is a system for easy development of

powerful diagram editors. It consists of two main parts: A framework of Java

classes that provides generic functionality for editing and analyzing diagrams

and a generator program that can produce Java source code for most of the func-

tionality that depends on the concrete diagram language. DOME (the DOmain

Modeling Environment) is a meta-CASE system suitable for building object ori-

ented software models (Coad-Yourdon OOA and UML, for example), and more

importantly, for building original models. It includes a graphical front-end, and

a powerful back-end language for generating code, analysis and documentation.

JGraphpad is a powerful diagram editor for Swing that offers XML, drag and

drop, zoom, automatic layout, print support, and much more. JGraphpad, can

be used to create flow charts, maps, UML diagrams, and networks with thou-

sands of nodes. JGraphpad is available with sourcecode, which may be used to

develop new (commercial) applications.

Commercial software are typical costly, such as Rhapsody [55], Rhapsody re-

verses the traditional design process, allowing you to find problems as they

47

occur, versus waiting until the very end when they are far more costly to

correct. Another commercial tool is I–logix’s product Statemate. This is a

graphical modelling and simulation tool. Another product is that of XJ Tech-

nologies, called AnyStatesTM [57], for state analysis. This aims at developing

software components based on statecharts (state machines). Some key fea-

ture of Anystates are: state-of-the-art graphical statechart editor, synchronous

graphical and textual views on a statechart, and on-the-fly code generation.

BetterStater [56] (product of Wind River) is a graphical programming tool

based on Statecharts and Flowcharts. With graphical specification, automatic

code generation, graphical debugging, and round–trip engineering, BetterState

offers embedded system developer’s significant benefits. This include simpler

software development, reduced design iterations, and easier maintenance and

design reuse. Lastly, is Stateflow [58] (product of The MathWorks) is an inter-

active design tool for modelling and simulating event–driven systems. Tightly

integrated with Simulink and MATLAB, Stateflow provides an elegant solution

for designing embedded systems that contain supervisory logic. Its combination

of graphical modelling and animated simulation brings system specification and

design closer together.

48

Chapter 5
Case studies

In this chapter, we illustrate the mapping algorithm via the following examples:

a CD player and a washing machine.

5.1 CD-player

5.1.1 Specification

Fig. 5.1 shows the graphical statechart of a CD-player. It contains two orthog-

onal regions: Play control (PlayCtr) and Track information (TrackCtr), which

are used to control the playing mode and record the track information respec-

tively. The first region contains Stop, Play, Pause sub-states to control the

playing mode, while the second one contains only a sub-state, Track. Three

buttons, Next, Prev, and select a track, are associated with the Track state.

The variable ct (that is, current track) is used to keep record of the current posi-

tion of the CD being played. We assume ct is initially 0 whenever the CD-player

is switched on.

In this model, Stop and Track are respectively two default sub-states of

49

two orthogonal regions. So when the CD-Player is switched on, both of them

are entered simultaneously. Upon the arrival of event Play pressed (that is, the

Play button is pressed), transition t1 is taken and state PlayingCtr is entered,

where the default sub-state Playing becomes active. Transitions t4 and t3 are

used to alter between state Playing and Paused. Transition t2 connects state

PlayingCtr with state Stop. When the control is in state PlayingCtr (either

Playing or Paused), and t2 is enabled, it will yield the Stop state (that is, the

CD-player will stop).

In the orthogonal state TrackCtr, upon the arrival of events Next pressed

or Prev pressed, the variable ct (current track) will be changed according to the

event. Conditions (ct > 1) and (ct < Max(track)) are used to check the range

of the ct. The transition t7 is taken if users select any track in the range.

For simplicity, we only added track information in this specification of a CD-

player. A real CD-player may contain other functionalities, like timer, forward,

rewind, etc. We can add these setting as parallel regions in a similar way.

After drawing the statechart specification in Statechart E, the following tex-

tual representation is automatically generated:

CD-Player-ON = |[S1: { PlayCtr, TrackCtr }]|

PlayCtr = |[S2: [Stop, PlayingCtr], Stop, { t1, t2 }]|

TrackCtr = |[S3: [Track], Track, { t5, t7, t6 }]|

Stop = |[S4]|

PlayingCtr = |[S5: [Playing, Paused], Playing, { t3, t4 }]|

Playing = |[S6]|

Paused = |[S7]|

Track = |[S8]|

t1 = < Stop, { Play_pressed }, { ct=1 }, true, PlayingCtr >

50

CD-Player-ON

PlayCtr

TrackCtr

Stop

t1: P
lay_pressed / c

t=1

(tr
ue)

t2: Stop_pressed / ct=1

(true)

PlayingCtr

Playing

Paused

t3
:

P
la

y
_

p
re

s
s
e

d

(t
ru

e
)

t4
: P

a
u

s
e

_
p

re
s

s
e

d

(tru
e

)

Track

t5: Next_pressed / ct=ct+1

(ct<max(track))

t7
 : T

ra
 c

 k
 _

 s
 e

 le
 c
 t / c

 t=
 trs

 l

(0
 <

 c
 t<

 m
 a

 x
 (tra

 c
 k

)+
 1

)

t6: Prev_pressed /

ct=ct-1 (ct>1)

Figure 5.1: CD player with track information (ct).

t2 = < PlayingCtr, { Stop_pressed }, { ct=1 }, true, Stop >

t3 = < Paused, { Play_pressed }, { }, true, Playing >

t4 = < Playing, { Pause_pressed }, { }, true, Paused >

t5 = < Track, { Next_pressed }, { ct=ct+1 }, ct<max(track),

Track >

t7 = < Track, { Track_select }, { ct=trsl }, 0<ct<max(track)+1,

Track >

t6 = < Track, { Prev_pressed }, { ct=ct-1 }, ct>1, Track >

The first 8 lines are information of states. The rest are transitions.

51

5.1.2 Result

The textual representation given in last section is taken as the input of our

algorithm AMSV, the output we obtain is the following code in abstract Verilog:

Result:

L_PlayCtr || L_TrackCtr

Where:

L_PlayCtr = fix X0. (L_Stop)

L_TrackCtr = fix X2. (

(((Next_pressed & @(ct=ct+1) & (ct<max(track)) X2)

[] (Track_select & @(ct=trsl) & (0<ct<max(track)+1) X2))

[] (Prev_pressed & @(ct=ct-1) & (ct>1) X2)))

L_Stop = ((Play_pressed & @(ct=1))

((Stop_pressed & @(ct=1) X0) [] fix X1. (L_Playing)))

L_Playing = ((Pause_pressed & not Stop_pressed)

(((Play_pressed & not Stop_pressed) X1)

[] (Stop_pressed & @(ct=1) X0)))

note that we use fix (rather than µ) to denote the recursion. L state is the

corresponding result from state.

Here we can see that the L PlayCtrl and L TrackCtr are processes which are

running in parallel, where the recursive identifiers X0, X1, X2 represent three

loop points.

5.2 Washing machine

5.2.1 Specification

In this subsection, we discuss a washing machine with five setting functions;

Timer, Hot water, Rinse level, Water level, and Pre-wash. Fig. 5.2 shows

52

the user interface of the washing machine. Fig. 5.3 gives the statechart speci-

fication of the washing machine corresponding to the interface, while Fig. 5.4

zooms into the sub-state Washing-Ctr. Statechart in Fig. 5.3 contains six par-

allel regions corresponding to five setting functions and the washing progress

(Wash-Ctr). Each setting region contains a sub-statechart to change the value

of its function. For example, in the Timer-Ctr region, the variable tm denotes

the time that the washing machine has to wait before it starts to wash. It can

be changed by Inc or Dec buttons. Other variables hw (hot water), rl (rinse

level), wl (water level) and pw (pre-wash) are similar, and can be changed via

pressing corresponding buttons. The default values of these variables are shown

in Fig. 5.2 with black circles (hw = 0, rl = 0, wl = 0, and pw = 0) and default

timer is 0.

Start

Pre-
wash

Water

level

Yes

No Normal

Half

Full

Rinse

Light

Medium

Extra

Hot

water

Cold

Warm

Hot

Inc

Dec

 0 h

Figure 5.2: Interface of the washing machine.

The Washing-Ctr is an Or-state as given in Fig. 5.4. The state Check-wait

is activated once state Washing-Ctr is entered. If tm is greater than 0, the

machine keeps waiting for tm time before the control moves to Pre-wash state.

The transition t18 calculates the value of the variable washtime based on the

53

Washing-machine-ON

Wash-Ctr

Idle

Washing-Ctr

t1: Start / washing=true

(true)

Timer-Ctr

Timer

t5: timer-increase / tm=tm+1
(tm<10 & washing=false)

t6: timer-decrease / tm=tm-1

(tm>1 & washing=false)

Water-Ctr

Normal Half

Full

t10: Water-
pressed / wl=1

(true)

t1
1
: W

at
er

-p
re

ss
ed

 /

w
l=

2
(t
ru

e)

t12: W
ater-pressed /

w
l=0 (true)

Light Medium

Extra

t7: Rinse-pressed /
rl=1 (true)

t8
: R

in
se

-p
re

ss
ed

 /

rl=
2

(t
ru

e)

t9: R
inse-pressed /

rl=0 (true)

Prewash-Ctr

Pre-w-no Pre-w-yes

t13: Pre-wash / pw=1
(washing=false)

t14: Pre-wash / pw=0
(washing=false)

Hotwater-Ctr

Cold

Warm

Hot

t2: Hot-water /

hw=1 (true)

t3: H
ot-w

ater /

hw=2 (tr
ue)

t4
:
H

o
t-

w
a
te

r
/

h
w

=
0
 (

tr
u

e
)

Rinse-Ctr

Figure 5.3: Main statechart of a washing machine.

pre-wash setting. For example, if pw is 0 then washtime = 1. The variable

washtime is used to keep record of the time that the clothes have been washed

so far. It is explained as follows:

• washtime = 0: if pw = 1, need pre-wash.

• washtime = 1: if pw = 0, no need pre-wash, need powder, no spin.

• washtime = 2 or 3: wash without powder, spin.

54

Start-washing

Waitt15: / timer-cal

(tm>0)

t16: /
check-pre-wash

(tm
=0)

Pre-wash

Washing

water-in

cold-w warm-w hot-w

t22: /
 check-wl

(hw=0)

t24: / check-wl
(hw=2)

t23: / check-wl

(hw=1)

washing

t25: / start-wash

(true) t27: /
 start-w

ash

(tru
e)

t26: / start-wash

(true)

water-out

t28: / washtime=washtime+1 (true)

Powder-in

t18: / washtime=1-pw (true)

Spin

t29: / start-spin (washtime>1)

Wash-end

t31: / Beep-finish

(washtime=4)

Check-wait

t17: / check-pre-wash

(tm=0)

t19: fill-water

(washtime!=1)

t20: / get-powder-in(washingtime=1)

t30: / r
ewash

(washtime<4)

t21: fill-w
ater (tru

e)

Figure 5.4: Statechart of Washing-Ctr in the washing machine.

• washtime > 3: finish.

Upon finishing, the machine beeps to inform the user.

The textual representation generated from Statechart E is as follows:

Washing-machine-ON = |[S1: { Wash-Ctr, Timer-Ctr, Water-Ctr,

Prewash-Ctr, Hotwater-Ctr, Rinse-Ctr }]|

Wash-Ctr = |[S2: [Idle, Washing-Ctr], Idle, { t1 }]|

Idle = |[S3]|

Washing-Ctr = |[S4: [Wait, Pre-wash, Washing, Wash-end, Check-wait],

55

Check-wait, { t15, t16, t18, t17, t30 }]|

Timer-Ctr = |[S5: [Timer], Timer, { t5, t6 }]|

Timer = |[S6]|

Water-Ctr = |[S7: [Normal, Half, Full], Normal, { t10, t11, t12 }]|

Normal = |[S8]|

Half = |[S9]|

Full = |[S10]|

Light = |[S11]|

Medium = |[S12]|

Extra = |[S13]|

Prewash-Ctr = |[S14: [Pre-w-no, Pre-w-yes], Pre-w-no,

{ t13, t14 }]|

Pre-w-no = |[S15]|

Pre-w-yes = |[S16]|

Hotwater-Ctr = |[S17: [Cold, Warm, Hot], Cold, { t2, t3, t4 }]|

Cold = |[S18]|

Warm = |[S19]|

Hot = |[S20]|

Rinse-Ctr = |[S21: [Light, Medium, Extra], Light, { t7, t8, t9 }]|

Start-washing = |[S22]|

Wait = |[S23]|

Pre-wash = |[S24]|

Washing = |[S25: [Start-washing, water-in, cold-w, warm-w, hot-w,

washing, water-out, Powder-in, Spin], Start-washing,

t22, t24, t23, t25, t27, t26, t28, t29, t31, t19, t20, t21 }]|

water-in = |[S26]|

cold-w = |[S27]|

warm-w = |[S28]|

hot-w = |[S29]|

washing = |[S30]|

water-out = |[S31]|

Powder-in = |[S32]|

Spin = |[S33]|

Wash-end = |[S34]|

Check-wait = |[S35]|

t1 = < Idle, { Start }, { washing=true }, true, Washing-Ctr >

t5 = < Timer, { timer-increase }, { tm=tm+1 }, tm<10 & washing=false,

Timer >

56

t6 = < Timer, { timer-decrease }, { tm=tm-1 }, tm>1 & washing=false,

Timer >

t10 = < Normal, { Water-pressed }, { wl=1 }, true, Half >

t11 = < Half, { Water-pressed }, { wl=2 }, true, Full >

t12 = < Full, { Water-pressed }, { wl=0 }, true, Normal >

t7 = < Light, { Rinse-pressed }, { rl=1 }, true, Medium >

t8 = < Medium, { Rinse-pressed }, { rl=2 }, true, Extra >

t9 = < Extra, { Rinse-pressed }, { rl=0 }, true, Light >

t13 = < Pre-w-no, { Pre-wash }, { pw=1 }, washing=false, Pre-w-yes >

t14 = < Pre-w-yes, { Pre-wash }, { pw=0 }, washing=false, Pre-w-no >

t2 = < Cold, { Hot-water }, { hw=1 }, true, Warm >

t3 = < Warm, { Hot-water }, { hw=2 }, true, Hot >

t4 = < Hot, { Hot-water }, { hw=0 }, true, Cold >

t15 = < Check-wait, { }, { timer-cal }, tm>0, Wait >

t16 = < Wait, { }, { check-pre-wash }, tm=0, Pre-wash >

t22 = < water-in, { }, { check-wl }, hw=0, cold-w >

t24 = < water-in, { }, { check-wl }, hw=2, hot-w >

t23 = < water-in, { }, { check-wl }, hw=1, warm-w >

t25 = < cold-w, { }, { start-wash }, true, washing >

t27 = < hot-w, { }, { start-wash }, true, washing >

t26 = < warm-w, { }, { start-wash }, true, washing >

t28 = < washing, { }, { washtime=washtime+1 }, true, water-out >

t18 = < Pre-wash, { }, { washtime=1-pw }, true, Washing >

t29 = < water-out, { }, { start-spin }, washtime>1, Spin >

t31 = < Spin, { }, { Beep-finish }, washtime=4, Wash-end >

t17 = < Check-wait, { }, { check-pre-wash }, tm=0, Pre-wash >

t19 = < Start-washing, { fill-water }, { }, washtime!=1, water-in >

t20 = < Start-washing, { }, { get-powder-in }, washingtime=1,

Powder-in >

t30 = < Washing, { }, { rewash }, washtime<4, Washing >

t21 = < Powder-in, { fill-water }, { }, true, water-in >

5.2.2 Result

We then run the AMSV algorithm to generate the Verilog program for the

washing machine. We only give some part of the target code here. The full

version of code can be found in Appendix B.2.

57

First of all, let us regard Washing-Ctr as a basic state (before we zoom into it).

We have the following Verilog program:

Result:

L_Wash-Ctr || L_Timer-Ctr || L_Water-Ctr || L_Prewash-Ctr ||

L_Hotwater-Ctr || L_Rinse-Ctr

Where:

L_Wash-Ctr = L_Idle

L_Idle = (Start & @(washing=true) sink)

L_Timer-Ctr =

fix X0. (((timer-increase & @(tm=tm+1) &

(tm<10 & washing=false) X0)

[] (timer-decrease & @(tm=tm-1) &

(tm>1 & washing=false) X0)))

L_Water-Ctr = fix X1. (L_Normal)

L_Normal = ((Water-pressed & @(wl=1)) L_Half)

L_Half = ((Water-pressed & @(wl=2))

(Water-pressed & @(wl=0) X1))

L_Light = ((Rinse-pressed & @(rl=1)) L_Medium)

L_Medium = ((Rinse-pressed & @(rl=2))

(Rinse-pressed & @(rl=0) X4))

L_Prewash-Ctr = fix X2. (L_Pre-w-no)

L_Pre-w-no = ((Pre-wash & @(pw=1) & (washing=false))

(Pre-wash & @(pw=0) & (washing=false) X2))

L_Hotwater-Ctr = fix X3. (L_Cold)

L_Cold = ((Hot-water & @(hw=1)) L_Warm)

L_Warm = ((Hot-water & @(hw=2)) (Hot-water & @(hw=0) X3))

L_Rinse-Ctr = fix X4. (L_Light)

The sink process in L Idle is used to denote the Washing-Ctrl process, as we

regard it as a basic state. On the other hand, if we consider Washing-Ctr as a

stand-alone statechart, the corresponding code for it is as follows:

Result:

L_Check-wait =

(((& @(timer-cal) & (tm>0)) L_Wait)

58

[] ((& @(check-pre-wash) & (tm=0)) L_Pre-wash))

L_Start-washing =

(((fill-water & (washtime!=1)) L_water-in

(& @(rewash) & (washtime<4) X0))

[] ((& @(get-powder-in) & (washingtime=1)) L_Powder-in

(& @(rewash) & (washtime<4) X0)))

L_Wait = ((& @(check-pre-wash) & (tm=0)) L_Pre-wash)

L_Pre-wash = ((& @(washtime=1-pw))

fix X0. (((& @(rewash) & (washtime<4) X0)

[] L_Start-washing)))

L_water-in =

((((& @(check-wl) & (hw=0)) L_cold-w

(& @(rewash) & (washtime<4) X0))

[] ((& @(check-wl) & (hw=2)) L_hot-w

(& @(rewash) & (washtime<4) X0)))

[] ((& @(check-wl) & (hw=1)) L_warm-w

(& @(rewash) & (washtime<4) X0)))

L_cold-w = ((& @(start-wash)) L_washing

(& @(rewash) & (washtime<4) X0))

L_warm-w = ((& @(start-wash)) L_washing

(& @(rewash) & (washtime<4) X0))

L_hot-w = ((& @(start-wash)) L_washing

(& @(rewash) & (washtime<4) X0))

L_washing = ((& @(washtime=washtime+1)) L_water-out

(& @(rewash) & (washtime<4) X0))

L_water-out = ((& @(start-spin) & (washtime>1)) L_Spin

(& @(rewash) & (washtime<4) X0))

L_Powder-in = ((fill-water) L_water-in

(& @(rewash) & (washtime<4) X0))

L_Spin = (& @(Beep-finish) & (washtime=4) sink

(& @(rewash) & (washtime<4) X0))

In the final code, the sink process in L Idle is replaced by the process

L Check-wait.

59

Chapter 6
The transformation from abstract to

concrete Verilog

In order to move further, in this chapter we introduce the concrete Verilog

programs and the the transformation from abstract Verilog to concrete Verilog.

The full manual of Verilog can be found at [32, 54] and the behaviour of Verilog

programs is described in [2, 7, 11, 23, 30]. A subset of the Verilog syntax is

presented in appendix A. In the first section we present a Verilog program to

illustrate the Verilog module. The next section describes some transformations

from abstract to concrete Verilog. Lastly, we discuss some simple examples.

6.1 Verilog program

Verilog is a language based on C where its code is organised as modules. Mod-

ules in Verilog are the main units of behaviour. For example, a module be-

haviour can be specified as:

Behaviourally: o = ¬(i1 ∧ i2)

60

module NAND (i1,i2,o);

input i1, i2; //inputs

output o; //output

assign o = ~(i1 & i2); //continuous assignment

endmodule

Structurally:
i1

i2

W o

module AND (i1,i2,o);

input i1, i2; //inputs

output o; //output

wire w; //wire

NAND NAND1(i1,i2,w); //module instances

NAND NAND2(w,w,o);

endmodule

In Verilog program, each module has: a name, a port list, declarations, and

body of the module. The body consists of one or more items. More examples

are shown in appendix B.1.

6.2 The transformation from abstract to con-

crete Verilog

In this section we only discuss common instructions, other statements like dec-

larations, data structures or operations are not covered. The abstract Verilog

is discussed in section 2.2. A subset of the concrete Verilog syntax is presented

in appendix A. The transformations are divided into several parts as below:

The primitive commands

• Skip: This is a simplest instruction to define as it does nothing.

61

• Sink: Sink is a command to terminate the Verilog program. In a purpose

of simulation we can use $finish statement to terminate the program.

• Assignment: The essential meaning of v = ex is that v takes the value of

ex. This is identical to assignment statement in Verilog.

Guards

Guards block a process from continuing execution until a certain event occurs,

or a number of time units elapse. Guards, as we mentioned in section 2.2, are

either time delay (e.g #n) or event of changing values (e.g ↑ v, ↓ v). Then

applying the transformation function ([[.]]) to the guards, we have:

[[#n]] = #n;

[[↑ v]] = @(posedge v);

[[↓ v]] = @(negedge v);

[[→e]] = →e;

@(v); is used to wait for a change of v. An other instruction is wait ex, it is

wait until expression ex is true.

Guard choice

As guarded choice is not defined in Verilog syntax, we shall provide the following

algebraic law to eliminate it.

Rule to eliminate the guarded choice (6.2.1)

[]1≤i≤m (gi Pi) [] []1≤j≤n (hj Qj) = []1≤i≤m (gi P ′
i) ‖ []1≤j≤n (hj Q′

j)

provided that

Pi = P ′
i ‖ ([]1≤j≤n (hj Q′

j)), 1 ≤ i ≤ m

62

Qj = ([]1≤i≤m (gi P ′
i)) ‖ Q′

j, 1 ≤ j ≤ n

Note that for simplicity, we assume that all guards g1, ..., gm, h1, ..., hn are dis-

joint:

Note that from RHS to LHS, it is the expansion law for parallel composition

(section 2.2.3). In the next section we will show an example for this rule.

Constructive operators

• Condition: The conditional constructor P / b . Q describes a program

which behaves like P if the initial value b is true, or like Q if b is false.

We have:

[[P / b . Q]] = if (b) P else Q

If the condition in the form of P / b . skip then the concrete version is

if (b) P.

The if statement is also used to rewrite the compound guards, g1 or g2 ... or gn,

as follow:

if (g1)

else if (g2)

...

else if (gn)

• Iteration: Iteration constructor of the form: b ∗ S, means that the program

S is repeatedly executed as long as b is true. The corresponding operator

is:

63

[[b ∗ S]] = while (b) S

We can also use a forever loop if b is always true, or a for loop if b is

a conditional expression based on an integer number (number of cycles is

known).

• Recursion: A recursion has a form of µX • S. We discuss here a special

case of the recursion, a tail recursion. For example, if a tail recursion has

a form of µX • (S ′; X) then we can use always statement in concrete

Verilog to represent it. We have:

[[µX • (S ′; X)]] = always S′

6.3 Some examples

Example 1:

Given the following guarded choices:

P = (g1 ((@(v = 1) g3 skip) [] (g3 (v = 1))))

[] (g2 ((@(u = 1) g3 skip) [] (g3 (u = 1))))

[] (g3 ((g1 (v = 1)) [] (g2 (u = 1))))

We can obtain the following Q by using the elimination rule (6.2.1):

Q = ((g1 (v = 1)) [] (g2 (u = 1))) ‖ (g3 skip)

P = Q can be demonstrated by the following:

Apply the expansion law to Q”, we have:

Q = (g1 ((v = 1) ‖ (g3 skip)))

[] (g2 ((u = 1) ‖ (g3 skip)))

64

[] (g3 ((g1 (v = 1)) [] (g2 (u = 1))))

= (g1 ((@(v = 1) g3 skip) [] (g3 (skip ‖ (v = 1)))))

[] (g2 ((@(u = 1) g3 skip) [] (g3 (skip ‖ (u = 1)))))

[] (g3 ((g1 (v = 1)) [] (g2 (u = 1))))

Because of the deduction rule from the parallel expansion section 2.2.3:

S ‖ skip = skip ‖ S = S

then we have:

Q = (g1 (@(v = 1) g3 skip [] g3 (v = 1)))

[] (g2 (@(u = 1) g3 skip [] g3 (u = 1)))

[] (g3 (g1 (v = 1) [] g2 (u = 1)))

= P

Example 2:

L(sc) = fix X. ((@(v) & @(n = n + 1)) (@(n < 10) X))

Here we have a recursion consisting of two sub-processes. In the first half,

a guarded choice v is used to allow the increment of variable n. The second

contains no guard, which is automatically performed if the condition (n < 10) is

satisfied. A while block and an input signal v are used to represent the process

as follows:

module ex2(v, n);

input v;

output [7:0] n;

reg [7:0] n;

initial begin

65

@(v) n=n+1;

while (n<10)

begin

@(v) n = n+1;

end

end

endmodule

There are two states and two transitions in this example. The first transition

will be taken if value of v is changed. Then the variable n will increased by 1.

The second transition will be taken if n < 10. This recursion is represented by

while block where it will waiting for the change of v.

Example 3:

L(sc) = (a & →e (fix X. (e (→f X))))

There is a guarded choice a before a recursion. If the guard a is taken, then

an event e will be generated. The event e is waiting in the recursion. Other

event f will be generated once event e occurs. We can rewrite the corresponding

Verilog program as follows:

module ex3(a);

input a;

event e, f;

initial begin

@(a) ->e;

end

always @(e)

begin

->f;

#1;

end

endmodule

66

The argument of this module consist of a input variables a and two events

e, f . The signal a represent the guarded choice of a transition. When a occurs,

the event e will be generated. Then the always blocks will be activated and will

be executed. After that, the event f will be generated. The #1; instruction is

used to delay the always block, and gives control to other blocks if necessary.

Example 4: In this example we discuss the CD-player program (Verilog process

at section 5.1.2). The program of the CD-player consists of two modules to

control playing state and track information. In the concrete Verilog version we

also write a program for two separate modules. However, these two modules

can be called and run in parallel from one main module, or can be composed in

other ways. These modules are:

module moduleplay(ct, play, pause, stop);

input play, pause, stop;

reg playing;

inout [7:0] ct;

reg [7:0] ctt;

wire [7:0] ct = ctt;

initial begin

playing = 0;

assign ctt = 1;

end

always @(stop) begin

playing = 0;

ctt = 1;

end

always @(play or pause)

if (play)

67

playing = 1;

else if (pause)

playing = 0;

always begin

if (playing) begin

//playing

end

#1;

end

endmodule

module moduletrack(ct, next, prev, select, maxtrack, trsl);

input next, prev, select;

input [7:0] maxtrack, trsl;

inout [7:0] ct;

reg [7:0] ctt;

wire [7:0] ct = ctt;

always @(next) begin

if (ctt < maxtrack)

ctt = ctt + 1;

end

always @(prev) begin

if (ctt > 1)

ctt = ctt - 1;

end

always @(select) begin

if ((ctt > 1) && (ctt < maxtrack))

ctt = trsl;

end

endmodule

In the first module, the main loop is for playing (in the third always block).

At the beginning all four blocks start to execute, but only the initial block

terminates. The three always blocks are waiting for some events. If signal play

occurs, it will switch to playing status. If any of stop or pause signal occurs,

68

then the CD-player will stop playing and change its status. Take note that #1

is used to give the control to other blocks, as there is an always block without

an event guard.

In the second module, three always blocks are used to control three signals

(next, prev, and select). If any of these signals occurs, the corresponding

always block will be activated. All of these blocks have event control so we

do not need to use time delay, such as #1. In these modules we use a wire

declaration to connect the information of ct between modules.

In the examples above show that we can transform abstract Verilog process

to concrete Verilog program. However, some difficulties still remain. The most

difficult situation is for the recursion. With simple cases like example 2 and 3

(in the previous subsection), we can use while loop or always block to represent

the recursion. Complex programs, which may contain several nested recursions

are more difficult because the always blocks cannot be written in a hierarchical

structure. In this case, we may have to flatten the recursion into several always

blocks in parallel. Currently, we are formalizing the guarded choice elimination

and also replacing the other control structures for abstract Verilog.

69

Chapter 7
Conclusion

In this thesis we presented the specification of Statechart and abstract Verilog,

and then provided a mapping algorithm which is used to translate statecharts

into Verilog processes. The main aim of this work is to present the connection

between Statecharts and Verilog. We also make use of abstract Verilog to

simplify the mapping algorithm, with concrete Verilog being used as actual

hardware compilation, where possible.

The main achievement is the construction of a system which maps each

input statechart into abstract Verilog. Users use graphical interface to draw

their statecharts before our mapping algorithm generates their corresponding

Verilog programs. We have discussed also a solution to eliminate the guarded

choice and the replacement of the certain structures of abstract Verilog so as to

obtain concrete Verilog programs.

There are many approaches in compiling statechart into other languages,

including some works that are related to Verilog. However, the powerful features

of Statecharts make it difficult to combine into a uniform formalism. Our work

70

follows from the use of formal semantics of statechart and operational semantics

of Verilog. This acts as a base to make our mapping algorithm correct and

sound.

The mapping of Statecharts into Verilog can be used in hardware design.

After translating the input statechart specification into abstract Verilog code,

we can proceed to obtain lower level using concrete Verilog, as a prelude to

hardware implementation.

Future works

In order to provide the concrete Verilog programs to users, future work include

guarded choices elimination and the replacement of the other structures of ab-

stract Verilog, so that the AMSV can generate also concrete Verilog program.

This should make our tool especially useful for hardware designer.

71

Appendix A
The syntax of Verilog

A table bellow in this section is a subset of Verilog syntax.

Table A.1: The syntax of Verilog

module ::= module <name-of-module> <list-of-ports>;
<module-item>

endmodule
name-of-module ::= <identifier>
list-of-ports ::= | (<port-list>)
port-list ::= <identifier> | <port-list>, <port-list>
module-item ::= <parameter-declaration> | <input-declaration>

| <output-declaration> | <inout-declaration>
| <reg-declaration> | <integer-declaration>
| <wire-declaration> | <event-declaration>
| <gate-declaration> | <module-instantiation>
| <always-statement> | <initial-statement>
| <continuous-assign> | <task> | <function>
| <module-item> | <module-item>

module-instantiation ::= <type-of-module> <name-of-instance>
<module-agreement>;

parameter-declaration ::= parameter <range> <list-of-assignments>
range ::= | [<expression> : <expression>]
list-of-assignments ::= <param-assignment>

| <param-assignment> , <list-of-assignments>
param-assignment ::= <identifier> = <expression>
input-declaration ::= input <range> <list-of-variables>;
inout-declaration ::= inout <range> <list-of-variables>;
output-declaration ::= output <range> <list-of-variables>;

72

wire-declaration ::= wire <range> <list-of-variables>;
| wire <range> <list-of-assignements>;

integer-declaration ::= integer <list-of-variables>;
reg-declaration ::= reg <range> <list-of-variables>;
event-declaration ::= event <list-of-variables>;
list-of-variables ::= <name-of-variable>;

| <name-of-variable>, <list-of-variables>;
name-of-variable ::= <identifier>
generate-event-statement ::= -> <event-variable>;
event-variable ::= <identifier>
initial-statement ::= initial <statement>
always-statement ::= always <statement>
event-control-construct ::= @ <event-variable>

| @ (<event-expression>)
event-expression ::= <expression>

| posedge <expression>
| negedge <expression>
| <event-variable> or <event-variable>

delay-control-construct ::= # <number>
| # <variable>
| # <expression>

statement-or-null ::= ; | <statement>
statement ::= if (<expression>) <statement-or-null>

| if (<expression>) <statement-or-null>
else <statement-or-null>
| case (<expression>) <case-item> endcase
| casez (<expression>) <case-item> endcase
| casex (<expression>) <case-item> endcase
| forever <statement>
| repeat (<expression>) <statement>
| while (<expression>) <statement>
| for (<assignment> ; <expression> ;
<assignment>) <statement>

fork-statement ::= fork <statements> join
statements ::= <statement>

| <statements> <statement>
finish-statement ::= $finish;
stop-statement ::= $stop;

| $stop (<expression>);

73

where, <identifier>: An identifier is any sequence of letters, digits, dollar signs
($), and underscore () symbol, except that the first must be a letter or the
underscore; the first character may not be a digit or $. Upper and lower case
letters are considered to be different. Identifiers may be up to 1024 characters
long. Some Verilog-based tools do not recognize identifier characters beyond
the 1024th as a significant part of the identifier. Escaped identifiers start with
the backslash character (\) and may include any printable ASCII character. An
escaped identifier ends with white space. The leading backslash character is not
considered to be part of the identifier.

74

Appendix B
Programs in Verilog

B.1 Simple examples

Example of a counter:

module count;

integer count;

initial

begin

count = 0;

while (count < 128)

begin

$display("Count = %d", count);

count = count + 1;

end

end

endmodule

Example of a clock:

‘timescale 1ns/1ns

module clock_component (en, clk);

input en;

output clk;

reg clk;

wire en;

//

75

initial clk = 1’b0;

always

begin

#1000

if (en == 1) clk = ~clk;

end

endmodule

Example of a office telephone:

/* Abstract behavioral system describing a telephone */

module office_phone;

parameter min_conversation=1, max_conversation=30,

false=0, true=!false;

event ring, incoming_call, answer, make_call, busy;

reg off_hook;

integer seed, missed_calls;

initial begin

seed=43; // seed for call duration

missed_calls=0;

end

always @ incoming_call // someone tries to call us

if (! off_hook) -> ring; // if not on the phone it rings

else begin

-> busy; // else they get a busy signal

$display($time," A caller got a busy signal");

missed_calls = missed_calls + 1;

end

always @ring begin // phone is ringing . . .

$write($time," Ring Ring");// do we want to answer it?

if ($random & ’b110) begin // yes we will answer it

-> answer;

off_hook = true;

$display(" answered");

end // no we do not want to answer

else begin // this phone call

missed_calls = missed_calls + 1;

$display(" not answered missed calls =%d",

76

missed_calls);

end

end

always @make_call

if (off_hook)

$display($time," cannot make call phone in use");

else

begin

$display($time," making call");

off_hook = true;

end

always wait(off_hook == true) begin // we are on the phone

// wait the call duration

#($dist_uniform(seed, // a uniform distribution

min_conversation,max_conversation))

off_hook = false;

$display($time," off phone");

end

// might wait about 2 hours between making calls

always #($random & 255) -> make_call;

// someone might call in within 4 hours

always #($random & 511) -> incoming_call;

// Simulate two days worth of calls

initial #(60*24*2) $finish;

endmodule

B.2 Washing machine example

Result:

L_Wash-Ctr || L_Timer-Ctr || L_Water-Ctr || L_Prewash-Ctr ||

L_Hotwater-Ctr || L_Rinse-Ctr

Where:

L_Wash-Ctr = L_Idle

L_Idle = ((Start & @(washing=true)) L_Check-wait)

77

L_Timer-Ctr =

fix X1. (((timer-increase & @(tm=tm+1) & (tm<10 & washing=false) X1)

[] (timer-decrease & @(tm=tm-1) &

(tm>1 & washing=false) X1)))

L_Water-Ctr = fix X2. (L_Normal)

L_Normal = ((Water-pressed & @(wl=1)) L_Half)

L_Half = ((Water-pressed & @(wl=2)) (Water-pressed & @(wl=0) X2))

L_Light = ((Rinse-pressed & @(rl=1)) L_Medium)

L_Medium = ((Rinse-pressed & @(rl=2)) (Rinse-pressed & @(rl=0) X5))

L_Prewash-Ctr = fix X3. (L_Pre-w-no)

L_Pre-w-no = ((Pre-wash & @(pw=1) & (washing=false))

(Pre-wash & @(pw=0) & (washing=false) X3))

L_Hotwater-Ctr = fix X4. (L_Cold)

L_Cold = ((Hot-water & @(hw=1)) L_Warm)

L_Warm = ((Hot-water & @(hw=2)) (Hot-water & @(hw=0) X4))

L_Rinse-Ctr = fix X5. (L_Light)

L_Start-washing =

(((fill-water & (washtime!=1)) L_water-in

(& @(rewash) & (washtime<4) X0))

[] ((& @(get-powder-in) & (washingtime=1)) L_Powder-in

(& @(rewash) & (washtime<4) X0)))

L_Wait = ((& @(check-pre-wash) & (tm=0)) L_Pre-wash)

L_Pre-wash = ((& @(washtime=1-pw))

fix X0. (((& @(rewash) & (washtime<4) X0)

[] L_Start-washing)))

L_water-in =

((((& @(check-wl) & (hw=0)) L_cold-w

(& @(rewash) & (washtime<4) X0))

[] ((& @(check-wl) & (hw=2)) L_hot-w

(& @(rewash) & (washtime<4) X0)))

[] ((& @(check-wl) & (hw=1)) L_warm-w

(& @(rewash) & (washtime<4) X0)))

L_cold-w = ((& @(start-wash)) L_washing

(& @(rewash) & (washtime<4) X0))

L_warm-w = ((& @(start-wash)) L_washing

(& @(rewash) & (washtime<4) X0))

L_hot-w = ((& @(start-wash)) L_washing

(& @(rewash) & (washtime<4) X0))

L_washing = ((& @(washtime=washtime+1)) L_water-out

(& @(rewash) & (washtime<4) X0))

L_water-out = ((& @(start-spin) & (washtime>1)) L_Spin

(& @(rewash) & (washtime<4) X0))

78

L_Powder-in = ((fill-water) L_water-in

(& @(rewash) & (washtime<4) X0))

L_Spin = (& @(Beep-finish) & (washtime=4) sink

(& @(rewash) & (washtime<4) X0))

L_Check-wait = (((& @(timer-cal) & (tm>0)) L_Wait)

[] ((& @(check-pre-wash) & (tm=0)) L_Pre-wash))

79

Bibliography

[1] J. Ali and J. Tanaka. Converting statecharts into Java code. In Proceed-

ings of the 5th International Conference on Integrated Design and Process

Technology (IDPT99), Dallas,Texas, June 1999.

[2] Mark Gordon Arnold. Verilog digital computer design : algorithms into

hardware. Upper Saddle River, NJ : Prentice Hall PTR, c1999.

[3] I. D. Bates, E. G. Chester, D. J. Kinniment. A statechart based HW/SW

codesign system. International Conference on Hardware Software Code-

sign archive Proceedings of the seventh international workshop on Hard-

ware/software codesign, pp. 162 - 166, 1999.

[4] J.-R. Beauvais, T. Gautier, P. Le Guernic, E. Rutten, R. Houdebine. A

translation of StateCharts into Signal. In Proceedings of the International

Conference on Application of Concurrency to System Design (CSD’98), pp.

52-62, Aizu-Wakamatsu, Japan, March 1998 (IEEE Publ.).

80

[5] D. Björklund, J. Lilius, and I. Porres. Towards efficient code synthesis from

statecharts. In A. Evans, R. France, and A. M. B. Rumpe, editors, Practical

UML-Based Rigorous Development Methods-Countering or Integrating the

eXtremists. Workshop of the pUML-Group., Lecture Notes in Informatics

P-7, Toronto, Canada, October, 2001. GI.

[6] J. P. Bowen, He Jifeng and Xu Qiwen. An Animatable Operational Seman-

tics of the VERILOG Hardware Description Language. Proc. ICFEM2000:

3rd IEEE International Conference on Formal Engineering Methods, IEEE

Computer Society Press, pp. 199207, York, UK, September 2000.

[7] Michael D. Ciletti. Modeling, synthesis, and rapid prototyping with the

Verilog HDL. Upper Saddler River, N.J. : Prentice Hall, 1999.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein.

Introduction to Algorithms. MIT Press; 2nd edition (September 2001).

[9] Alexandre David, M. Oliver Möller and Wang Yi. Formal Verification of

UML Statecharts with RealTime Extensions. In the Proc. of Fundamental

Approaches to Software Engineering (FASE 2002), LNCS 2306, pp. 218–232,

SpringerVerlag, 2002.

[10] Kay Fuhrmann, Jan Hiemer. Formal Verification of Statemate-Statecharts.

Report 1998.

81

[11] Ulrich Golze, Peter Blinzer, Elmar Cochlovius, Michael Schafers, Klaus-

Peter Wachsmann. VLSI Chip Design With the Hardware Description Lan-

guage Verilog: An Introduction Based on a Large RISC Processor Design.

Berlin ; New York : Springer, 1996.

[12] M. J. C. Gordon. The Semantic Challenge of Verilog HDL. Proc. Tenth

Annual IEEE Symposium on Logic in Computer Science, IEEE Computer

Society Press, pp. 136145, June 1995.

[13] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Sci.

Comp. Prog., vol. 8, pp 231-274, 1987.

[14] D. Harel. On Visual Formalisms. Communications of the ACM, Vol. 31,

No. 5, pp. 541–530, 1988.

[15] D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4,

pp. 293–333, October 1996.

[16] D. Harel, E. Gery. Executable Object Modeling with Statecharts. Com-

puter, 30(7), pp. 31-42, 1997.

[17] J.J.M. Hooman, S. Ramesh, and W.P. de Roever. A Compositional Ax-

iomatization of Statecharts. Theoretical Computer Science 101, pp. 289–335,

1992.

[18] Zhu Huibiao, J. P. Bowen and He Jifeng. From Operational Semantics to

Denotational Semantics for Verilog. Proc. CHARME 2001: 11th Advanced

82

Research Working Conference on Correct Hardware Design and Verification

Methods, Livingston, Scotland, September 2001. Springer-Verlag, LNCS 2144,

2001.

[19] Zhu Huibiao, J. P. Bowen and He Jifeng. Deriving Operational Semantics

from Denotational Semantics for Verilog. Technical Report SBU-CISM-01-16,

South Bank University, London, UK, June 2001.

[20] Daniel C. Hyde. CSCI 320 Computer Architecture Handbook on Verilog

HDL. CSCI 320 Handbook on Verilog.

[21] IEEE Standard Hardware Description Language based on the Verilogr

Hardware Description Language. IEEE Standard 1364-1995, 1995.

[22] Juliano Iyoda and He Jifeng. A Prolog Prototype for the Synthesis of

Verilog. Technical report 237, UNU, IIST, P.O.Box 3058, Macau, July 2001.

[23] James M. Lee. Verilog Quickstart : a practical guide to simulation and

synthesis in Verilog. Boston : Kluwer Academic Publishers, 2002.

[24] He Jifeng and Xu Qiwen. An Operational Semantics of a Simulator Algo-

rithm. Technical Report 204, UNU/IIST, P.O. Box 3058, Macau, 2000.

[25] He Jifeng and Zhu Huibiao. Formalising Verilog. Proc. IEEE International

Conference on Electronics, Circuits and Systems, IEEE Computer Society

Press, pp. 412415, Lebanon, December 2000.

[26] He Jifeng. An Algebraic Approach to the VERILOG Programming. in

83

the Proc. of 10th Anniversary Colloquium of the United Nations University /

International Institute for Software Technology (UNU/IIST), SpringerVerlag,

2002.

[27] J. R. Almeida Júnior, João José Neto. Using Adaptive Models for Systems

Description. Proceedings of the IASTED International Conference Applied

Modelling and Simulation, September, Cairns, Australia, 1999.

[28] G. Lüttgen, M. von der Beeck, and R. Cleaveland. A Compositional

Approach to Statecharts Semantics. NASA/CR2000210086, ICASE Report

No.200012, March 2000.

[29] E. Mikk, Y. Lakhnech, M. Siegel and G. Holzmann. Implementing Stat-

echarts in Promela/SPIN. in the Proc. of the 2nd IEEE Workshop on In-

dustrialStrength Formal Specification Techniques, IEEE Computer Society,

1999.

[30] Zainalabedin Navabi. Verilog digital system design. New York : McGraw-

Hill, 1999.

[31] A. Maggiolo-Schettini, A. Peron, and S. Tini. Equivalences of Statecharts.

in 7th International Conference on Concurrency Theory (CONCUR’96),

Pisa, Italy, August 1996, LNCS 1119, pp.687–702, SpringerVerlag.

[32] Open Verilog International (OVI). Verilog Hardware Description Language

Reference Manual.

84

[33] Gordon J. Pace. Hardware Design Based on Verilog HDL. Ph.D thesis,

Oxford University, 1998.

[34] Jan Philipps and Tomohiro Yoneda. Symbolic verification of statecharts.

Technical Report FTS95-37, IEICE. Technische Universität München, 1995

[35] A. Pnueli and M. Shalev. What is in a Step: On the Semantics of Stat-

echarts. in the Proc. of the Symposium on Theoretical Aspects of Computer

Software, LNCS 526, pp. 244–264, SpringerVerlag, Berlin.

[36] Qin Shengchao and He Jifeng. An Algebraic Approach to Hard-

ware/Software Partitioning. Proceedings of ICECS2000, 273-277, 2000.

[37] Shengchao Qin and WeiNgan Chin. Mapping Statecharts to Verilog for

Hardware/Software CoSpecification. FM03, Pisa, Italy, Sep. 2003. Lecture

Notes in Computer Science, Springer-Verlag.

[38] Hisashi Sasaki. A Formal Semantics for Verilog-VHDL Simulation Inter-

operability by Abstract State Machine. DATE99, pp. 353-357.

[39] G. Schneider and Q.-W. Xu. Towards a formal semantic of Verilog using

Duration Calculus. In A. Ravn and H. Rischel, editor, formal Techniques for

Real-Time and Fault Tolerant Systems. LNCS, Springer-Verlag, 1998.

[40] E. Sekerinski and R. Zurob. From statecharts to code: A tool for the

graphical design of reactive systems. Technical report, McMaster University,

2001.

85

[41] E. Sekerinski and R. Zurob. iState: A statechart translator. In M.

Gogolla and C. Kobryn, editors, UML 2001 - The Unified Modeling Lan-

guage, Toronto, Canada, October 2001, volume 2185 of Lecture Notes in

Computer Science, pages 376390. Springer-Verlag, 2001.

[42] E. Sekerinski and R. Zurob. Translating Statecharts to B. in B. Butler, L.

Petre, and K. Sere, eds., Proc. of the 3rd International Conference on Inte-

grated Formal Methods, Turku, Finland, LNCS 2335, pp. 128144, Springer-

Verlag, 2002.

[43] S. Seshia, R. Shyamasundar, A. Bhattacharjee and S. Dhodapkar. A Trans-

lation of Statecharts to Esterel. In J. Wing, J. Woodcock, and J. Davies, eds.,

FM99: World Congress on Formal Methods, LNCS 1709, pp. 983–1007, 1999.

[44] A. Sowmya and S. Ramesh. Extending Statecharts with Temporal Logic.

IEEE Transactions on Software Engineering, Vol. 24, No. 3, March, 1998.

[45] M. von der Beck. A comparison of statechart variants. In H. Langmaack,

W.-P. deRoever, and J. Vytopil, editors, Formal Techniques in Real-Time

and Fault-Tolerant Systems, Lecture Notes in Computer Science Vol. 863,

pp. 128148. Springer Verlag, 1994.

[46] Andrzej Wasowski, Peter Sestoft. On the Formal Semantics of Visual-

STATE Statecharts. IT University Technical Report Series, TR-2002-19, IT

university of Copenhagen, 2002.

[47] Andrzej Wasowski. On Efficient Program Synthesis from Statecharts. Proc.

86

of the Conference on Languages, Compilers, and Tools for Embedded Systems,

LCTES03, pp. 163-170, USA, 2003.

[48] Frances Newbery Paulisch. The Design of an Extendible Graph Editor.

Ph.D. Dissertation, Karlsruhe University, January 1992.

[49] Paul Jay Lucas. A Graphical Editor Proposal for Developing Concurrent,

Hierarchical, Finite State Machines. Technical Report: UIUCDCS-R-93-1799,

Urbana, Illinois.

[50] Stephen Edwards. An Interactive Editor for the Statecharts Graphical

Language.

Available at: http://www1.cs.columbia.edu/~sedwards/sc/overview.html

[51] DiaGen. The Diagram Editor Generator

Available at: http://www2.informatik.uni-erlangen.de/DiaGen/

[52] Honeywell. DOME (the DOmain Modeling Environment)

Available at: http://www.htc.honeywell.com/dome/

[53] Jgraphpad. Available at: http://jgraph.sourceforge.net/

[54] Chris Satterlee. Verilog Formal Syntax Specification.

Available at: http://agcad.ict.tuwien.ac.at/info/hdl_gesamt/verilog/

[55] I-LOGIX Inc. Rhapsodyr

Available at: http://www.ilogix.com

87

[56] Wind River. BetterStater

Available at: http://www.windriver.com/

[57] XJ Technologies. AnyStatesTM

Available at: http://www.xjtek.com/

[58] The MathWorks. Stateflow

Available at: http://www.mathworks.com/products/stateflow/

88

